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Preface

The 1999 international conference on Information Processing in Medical Imaging
(IPMI ’99) was the sixteenth in the series of biennial meetings and followed the
successful meeting in Poultney, Vermont, in 1997. This year, for the first time,
the conference was held in central Europe, in the historical Hungarian town
of Visegrád, one of the most beautiful spots not only on the Danube Bend
but in all Hungary. The place has many historical connections, both national
and international. The castle was once a royal palace of King Matthias. In the
middle ages, the Hungarian, Czech, and Polish kings met here. Recently, after
the summit meeting of reestablished democracies in the area, it became a symbol
for the cooperation between central European countries as they approached the
European Union. It was thus also symbolic to bring IPMI, in the year of the
30th anniversary of its foundation, to this place, and organize the meeting with
the close cooperation of local and traditional western organizers.

It also provided a good opportunity to summarize briefly a history of IPMI
for those who were new to the IPMI conference.

This year we received 82 full paper submissions from all over the world.
Of these, 24 were accepted as oral presentations. These were divided into 6
sessions. In spite of our efforts, it was found to be impossible to make these
sessions fully balanced and homogeneous. Therefore, the session titles express
the leading themes of the respective sessions rather than provide a thorough
description of all papers included in each of them.

The first session (traditionally) dealt with new imaging techniques. The top-
ics here span from an analytical study of bioelasticity using ultrasound, to mul-
tipolar MEG, binary tomography, and navigated surgery. The second session
concerned image processing in three-dimensional ultrasonography and dynamic
PET. The third and the fifth sessions presented classic IPMI topics about image
segmentation and registration. The papers on segmentation brought new ideas
about hybrid geometric snake pedals, geodesic active contours, adaptive fuzzy
segmentation, and segmentation of evolving processes in three dimensions. Pa-
pers on registration expanded both linear and non-linear approaches to elastic
transformations and introduced hierarchical deformation models for 4-D cardiac
SPECT data. The fourth session included a mixture of papers on segmentation
and registration as applied to analysis of images of the brain cortex. The final
(sixth) session dealt with feature detection and modelling. It included detection
of masses in mammography, physiologically oriented models for functional MRI,
comparison of MR and x-ray angiography, and a unified framework for atlas
matching based on active appearance models. It was an explicite requirement
of the IPMI Board, as well as the conviction of the organizers, to insist on a
demonstration of medical applicability of all the image processing methods pre-
sented. We believe that all the selected papers fulfill this difficult but crucial
criterion. The time alloted to oral presentations was 20 minutes plus 30 minutes
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for a (scheduled) discussion which, however, by IPMI tradition is virtually un-
limited and depends on the importance of the problem, the clarity of the paper
and the interest of the audience. In the proceedings, the space alloted to each
oral presentation is 14 pages. It is a compromise between a need to provide the
readers with sufficient details of the presentation and a requirement to keep the
extent of the book to within 500 pages. The organizers regret that they could
not accept the often justified requests of many authors to expand the space for
their papers.

An additional 28 submissions were accepted as poster presentations. Ample
time was given to the audience to meet the authors in front of their posters and to
discuss the presentations in depth. In addition to short oral presentations, each
of two poster sessions was concluded by a plenary discussion. In the proceedings,
the space alloted to each poster presentation is 6 pages.

The poster presentations were divided into 2 sessions. The first dealt with var-
ious methods of cardiovascular image analysis, modelling and analysis of shapes,
and with the segmentation and detection of specific image structures. The sec-
ond concerned reconstruction, measurement in medical images, registration, and
image modelling. Although oral papers and plenary discussions form the tradi-
tional basis of the IPMI meeting, the introduction of poster sessions further
enlarged the space permitted for additional topics, for considering more specific
applications, and for extended informal discussions.

The uniqueness of the IPMI meeting has been emphasized from various per-
sonal viewpoints in the forewords of previous proceedings. It consists in a magic
mixture of an interdisciplinary approach, informal communication, thorough dis-
cussions, high scientific standards, the promotion of young researchers, and a
friendly atmosphere. It is a great responsibility for the organizers to cultivate
the IPMI tradition and sustain all its many flavours for the future. We sincerely
wish IPMI many happy returns for its 30th birthday and wish it well, long into
the 21th century.

March 1999 Attila Kuba
Martin Šámal

Andrew Todd-Pokropek
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A brief history of the universe, the IPMI phenomenon
(IPMI 1969-1999)

The big bang from the point of view of IPMI took place in late 1969. Some 20 odd
(some of them very odd) researchers gathered together in Brussels for an ad hoc
meeting on the use of computers in nuclear medicine, sponsored by a grant from
Euroatom, obtained by our first ‘president’, François Erbsmann. The meeting
was originally given the name Information Processing in Scintigraphy, and only
Europeans participated. It is worth noting that at that time a computer with 4K
of memory was considered respectable. By 1971, the expansion of this Universe
had reached Hannover, under our second president, Eberhard Jahns, and by this
time some grit from across the Atlantic had also been incorporated. From these
first few seconds of the expanding IPMI universe, little (written) trace remains
of the white heat of invention. The first meeting produced no written record, and
the second proceedings only exist (but do exist) as an unpublished manuscript.
One of the pieces of grit, present at the 2nd meeting, agreed to run the 3rd
meeting in Boston (Cambridge), and so Steve Pizer (aided by Charlie Metz)
permitted continuing expansion to North America. As a result of this, IPMI
has been established of an oscillating universe with a period of 2 years with, at
this interval, the centre of gravity switching between Europe and North Amer-
ica. We have considered further expansion to the far east, Australia, or South
America, but have been prevented from doing so by the strong force effect (lack
of money). A rare photograph exists of some of the participants at the Boston
meeting, lounging on a lawn, not wearing very much, and observing attractive
students go by. Ah, the universe was young then! By now, the ratio of North
American contributions had reached 50%, a value which has been maintained.
Although scintigraphy (nuclear medicine) was still the target application, tomo-
graphic reconstruction was considered important and a number of general image
processing papers foreshadow a slow drift towards computer vision applications.

Two years later, in 1975, the meeting switched to Paris (Orsay) which I ran.
The meeting was now scheduled for a total of 5 days, with one free afternoon,
and another long lasting phenomenon was discovered, that of the IPMI football
(soccer) match. Despite unwarranted complaints about bias in refereeing, this
match has always been won by the European team, and it is hoped and antici-
pated that this strange effect will be preserved. We have also always had a few
female scientists present at the IPMI meetings, but regrettably their charm has
only been present in limited numbers. In Paris the IPMI universe reached the
number of 100 participants, and a major aim of the meeting has been to try to
limit total numbers to this order. IPMI has always permitted long presentations
with effectively unlimited time for ensuing questions, and it has been a second
major aim of IPMI to try to remove limits in total time to permit this disorder.

In 1977 we arrived in Nashville under the leadership of Randy Brill, and
the title of the meeting now changed officially to Information Processing in
Medical Imaging (IPMI). Many other clinical applications were now included,
such as angiography, ultrasound, and CT, with a significant component of to-
mographic reconstruction. In 1979 we returned to (central) Paris, under the
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direction of Robert Di Paola, the first paper being about a relatively novel tech-
nique, magnetic resonance. The spin doctors have increased their influence at
each successive meeting. The proceedings were published by INSERM. In 1981
we were laid back in California, activated by the acerbic wit of Michael Goris,
but mainly thinking about nuclear medicine and ultrasound (and Californian
fruit and wine). A major theme of the meeting was applications in cardiology

In 1983 we returned to Brussels, led by Frank Deconinck, and the first pub-
lication of the proceeding by a regular publisher was produced. All subsequent
proceedings have been published, by Martinus Nijhoff, Plenum, Wiley, Kluwer,
and for the majority, Springer. Papers such as ‘Image analysis– topological meth-
ods’ indicated new directions in scale space, and more substantial mathematical
presentations. While evaluation continued to be an important topic, the meeting
welcomed novel acquisition methods, here Impedance Tomography. In 1985 we
passed to Washington and Steve Bacharach. While the scientific highlights of the
meeting were significant, a couple of our Scottish participants yet again remain
fondly in our memories as being those most responsible for the excellent social
interactions always a feature of IPMI (here the infamous fire alarm incident).

We were received in The Netherlands in 1987 by Max Viergever and now
bathed in the more abstract universe of general image processing (meta-models,
multiresolution shape) whilst retaining our interest in reconstruction. One of
our present chairmen gave his first paper expressing his deep angst with the title
‘The reality and meaning of physiological factors’. As usual, the bar near our
student accommodation remained open late in the night as the deeper notions
of Information Processing were explored.

As a result of the tragic death of our first chairman, it was here that the
François Erbsmann prize was established in recognition of his original intention,
to aim the meeting towards promoting the work of young scientists (even if some
of the lengthy questions and answer sessions do not always seem to reflect this).
I should also sadly point out that we have also lost our 2nd chairman, Eberhard
Jahns, as a result of a car accident. However, I am pleased to report that as far
as we are aware, all the rest have so far survived (despite the ravages of time
and of our Scottish colleagues).

Two years later we returned to California (1989), now as Berkeley ageing
hippies (or at least some of us). MRI was now considered to warrant a whole
session, segmentation even more, but image reconstruction was the major topic
here. The quality of the papers had now reached a level where the competition to
be included was such that then (and we hope now) authors reserved their best
papers for this meeting, and braced themselves for the Spanish inquisition of
the questions following their presentations. The final decade of the 20th century
dawned for the IPMI universe in Wye in England, organised by Alan Colch-
ester and Dave Hawkes (1991). The quality of the meeting seemed to have been
maintained, as were the traditions. Multi-modality approaches appeared, MR
was the dominant image type, and computer vision methods were emphasised.
Posters were first introduced, but not published, at this meeting. A highlight
was probably the sometimes violent philosophical discussions about whether an
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edge could actually exist. On the final day, after the football match, Nico Karsse-
meijer was obliged to present his paper in plaster, having had his leg broken,
illustrating yet again our tremendous dedication to science. From the embrace
of the elegant pubs in Kent, 2 years later we stormed the mountains of Arizona,
to be precise, Flagstaff, under the leadership of Harry Barrett (1993). The meet-
ing continued its traditions, ranging from discussions of higher order differential
structures to optical tomography. The arguments about segmentation continued,
we were somewhat on edge and tetchy (a skeleton in our cupboard?), but the high
point was reached by those climbing to the top of the nearby Humphrey’s peak
(3850m). The highlight of our next meeting, in Brest directed by Yves Bizais,
was certainly the student celebration of their end of term where a group of them
promenaded with loud drumming throughout the night. Fortunately, this did
not worry everyone, as the student bar rarely closed before dawn. More posters
were presented and now included in the proceedings. This excellent meeting was
followed by that organised by Jim Duncan in Poultney, Vermont. The scientific
quality was again considered to be excellent, and the surroundings beautiful.
Neuroscience here clearly dominated other clinical applications. Despite this in-
creasing interest in brains, somehow (again!) the Europeans won the football
match. During the outing to a ski-resort a number of participants found refuge
from the plague of insects, against instructions, by skiing down an icy ski-run
(exceptionally open in June in a heat wave!). Jim Duncan as (to date) our last
chairman has said how much he appreciated the cooperation and respect given
to him by the enthusiastic participants at an IPMI meeting. At least he did not
have to rescue any from jail as I have had to in the past.

I do not know what will be the highlights of the current meeting for which
these proceedings represent the written trace. I hope that the scientific expansion
of the meeting will continue, and that in the social context, we will also continue
in the long tradition of IPMI to enjoy ourselves, have fun, and make many
new friends. The proceedings of this meeting only reflects a small part of the
value of the IPMI experience. The length of time allocated for questions and
answers after presentations is an important part of the IPMI experiment, but
unfortunately is not recorded (perhaps fortunately in some cases). A new ‘Special
Prize for Brilliance’ has been suggested. The ability to discover and discuss new
approaches in depth is just as important, which has always been the justification
for limiting the total number of participants.

This brief and certainly biased history of the IPMI universe has not men-
tioned the first presentations of some very significant results, nor included the
names of all the co-chairmen of the meetings, and especially the names of all
the participants without whom the meetings could never have happened or been
successful. Let us hope that the strange charm of the meeting will persist (where
you can find a GUT in a TOE), with its ups and downs, strung together in the-
ory, without loss of colourful traditions. Can this be maintained? This question
is perhaps the big crunch (or is that the result of the next football match)?

March 1999 Andrew Todd-Pokropek
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François Erbsmann Prize winners 1987–1997

1987 10th IPMI, Utrecht, NL:
John M. Gauch
Dept. of Computer Science, University of North Carolina, Chapel Hill, NC, USA
Gauch, J.M., Oliver, WR, Pizer, SM: Multiresolution shape descriptions and
their applications in medical imaging. In Information Processing in Medical
Imaging. Eds. de Graaf, CN, Viergever, MA, Plenum, New York (1988) 131-
149

1989 11th IPMI, Berkeley, CA, USA:
Arthur F. Gmitro
Dept. of Radiology, University of Arizona, Tucson, AZ, USA
Gmitro, A.F., Tresp, V., Chen, Y., Snell, R., Gindi, G.R.: Video-rate reconstruc-
tion of CT and MR images. In Information Processing in Medical Imaging. Eds.
D.A. Ortendahl, J. Llacer., Wiley-Liss. New York (1991) 197-210

1991 12th IPMI, Wye (Kent), UK:
H. Isil Bozma
Dept. of Electrical Engineering, Yale University, New Haven, CT, USA
Bozma, H.I., Duncan, J.S.: Model-based recognition of multiple deformable ob-
jects using a game-theoretic framework. In Information Processing in Medical
Imaging. Eds. Colchester, A.C.F., Hawkes, D.J., Springer, Berlin (1991) 358-372

1993 13th IPMI, Flagstaff, AZ, USA:
Jeffrey A. Fessler
Division of Nuclear Medicine, University of Michigan, Ann Arbor, MI, USA
Fessler, J.A.: Tomographic reconstruction using information-weighted spline
smoothing. In Information Processing in Medical Imaging. Eds. Barrett, H.H.,
Gmitro, A.F., Springer, Berlin (1993) 372-386

1995 14th IPMI, Brest, France:
Maurits K. Konings
Dept. of Radiology and Nuclear Medicine, University Hospital Utrecht, Utrecht,
The Netherlands
Konings, M.K., Mali, W.P.T.M., Viergever, M.A.: Design of a robust strategy to
measure intravascular electrical impedance. In Information Processing in Medical
Imaging. Eds. Bizais, Y., Barillot, C., Di Paola, R., Kluwer Academic, Dordrecht
(1995) 1-12

1997 15th IPMI, Poultney, VT, USA:
David Atkinson
UMDS, Radiological Sciences, Guy’s Hospital, London, United Kingdom
Atkinson, D., Hill, D.L.G., Stoyle, P.N.R., Summers, P.E., Keevil, S.F.: An aut-
ofocus algorithm for the automatic correction of motion artifacts in MR im-
ages. In Information Processing in Medical Imaging. Eds. Duncan, J., Gindi, G..
Springer, Berlin (1997) 341-354
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Karl Heinz Höhne University of Hamburg, Germany
Gabor Herman University of Pennsylvania, USA
Richard Leahy University of Southern California, USA
Kyle Myers Food and Drug Administration, USA
Stephen Pizer University of North Carolina, Chapel Hill, USA
Jerry Prince Johns Hopkins University, USA
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Institute of Informatics, József Attila University, Szeged,
Hungary,

First Faculty of Medicine, Charles University, Prague,
Czech Republic

Hungarian National Committee for Technological Development
(OMFB),

Philips Medical Systems Nederland BV,

Czech Society of Nuclear Medicine, Czech Medical Association
J.E. Purkyně,
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Abstract. A framework is presented for designing and evaluating bioe-
lasticity imaging systems.

1 Introduction

Manual palpation has been an essential technique for diagnosing disease since
the time of the ancient Greeks. They found that by compressing the surface
of the skin a stress field is created inside the elastic tissues of the body that
can be sensed by the fingertips. Regions atop stiff objects like cancerous lesions
produce a greater restoring force at the skin surface than do adjacent regions.
Hence, abnormalities may be detected and, in some cases, identified and sized
based on their elasticity. The clinical success of manual palpation is based on the
high elasticity contrast that exists for many pathologies – orders of magnitude
for some cancers [1] – producing intense stress fields that make it easy to detect
surface lesions. Unfortunately those stress fields decay rapidly with distance from
the lesion, so it is difficult to sense objects deep in the body.

Elasticity imaging is palpation by remote sensing. It is the name for a class
of techniques used to visualize tissue stiffness with a sensitivity and spatial res-
olution much greater than manual palpation. Often local elastic properties are
imaged using ultrasonic or magnetic resonance signals to track local movements
in mechanically stimulated tissues [2,3,4,5]. We use ultrasound to track the mo-
tion produced during static compression [6,7,8]. Two sets of radio-frequency echo
signals are recorded from a region in the body before and after applying a small
compressive force. The two echo fields are compared using a series of correlation
techniques to register the data and thereby estimate displacement in one, two,
or three dimensions depending on the boundary conditions for motion and the
dimensionality of the echo fields. Spatial derivatives of the displacement field
are combined to estimate strain tensor components that we call strain images. If
the stress field is approximately uniform, then strain is inversely proportional to
elasticity, and strain images describe tissue stiffness directly. The key to elasticity
imaging is precise displacement estimation at high spatial resolution.

Ostensibly the procedure for creating strain images is straightforward, but
in practice achieving high-quality images requires great attention to detail. We
must seek a careful balance between three experimental conditions: high wave-
form coherence and accurate displacement estimation are required for low noise
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and superior spatial resolution, and a large applied compression yields high strain
contrast. Conditions resulting in high strain contrast often produce severe decor-
relation noise, i.e. strain noise caused by the inability of the image formation
algorithm to track motion when there is low coherence between pre- and post-
compression echo fields. A balance is achieved by carefully selecting the applied
stress, boundary conditions, ultrasonic system parameters, and signal processing,
none of which are independent. Thus far, the designs of most elasticity imaging
experiments are empirical. Comprehensive analyses provided by the time-delay
estimation literature [9] are of limited value because, unlike most radar and sonar
applications, ultrasound echo signals are stochastic and the spatially-spread scat-
terers move in three dimensions when tissue is deformed.

This paper briefly summarizes a maximum-likelihood (ML) strategy for ultra-
sonic strain image formation and outlines a new approach for evaluating experi-
mental designs. The evaluation is based on the Fourier crosstalk matrix concept
originated by Barrett and Gifford [10] for designing medical imaging systems.
We describe two mathematical models of ultrasonic waveforms recorded from a
deformed object. A continuous model leads to the ML approach to strain imag-
ing. A discrete model leads to the crosstalk matrix. The paper concludes with
applications of the crosstalk matrix to the evaluation of system design.

2 Continuous Waveform Model

Biological tissues are modeled as incompressible, viscoelastic materials contain-
ing randomly positioned point scatterers. The object function that describes
the spatial distribution of scatterers is the acoustic impedance field, z(x), a
zero-mean, Gaussian random process. The three-space coordinate vector is x =
(x1, x2, x3)t, where xt is the transpose of x. A shift-invariant sensitivity func-
tion1 h(x) maps the object function z(x) into the echo data r(x) over a region
of support S according to the convolution equation

r(x) =
[∫

S
dx′ h(x − x′) z(x′)

]
+ n0(x)

= r(x) + n0(x) . (1)

The additive noise process n0(x) is signal independent, zero-mean, band-pass
white, and Gaussian with power spectral density Gn, i.e.,

E{n∗
0(x) z(x)} = 0 , E{n0(x)} = 0 , E{n∗

0(x) n0(x′)} = Gn δ(x − x′) ,

where E{fg} is the expected value taken over all f and g. We assume a 2-D echo
field from a linear array transducer. An echo field is a collection of waveforms

1 Sensitivity functions combine the pulse-echo system response with two frequency-
dependent functions that describe scattering and absorption in the medium. If the
system response function is Gaussian, the Fourier transform of the sensitivity func-
tion, (6), is approximately Gaussian [11].
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recorded from parallel transducer beams oriented along the coordinate axis x1.
Adjacent waveforms are arranged parallel to x2. The scan plane is located at
(x1, x2, 0) (Fig. 1). Before compression (Fig. 1a), the object is scanned to record
a precompression echo field defined by (1).

After compression (Figs. 1b and 1c), the same object region is re-scanned to
find the postcompression echo field,

r1(x) =
[∫

S
dx′ h(x − x′) z(A−1x′ − τ a)

]
+ n1(x)

= r1(x) + n1(x) , (2)

where the physical deformation of the object is reflected by a coordinate transfor-
mation of the object function z(x). In modeling r1(x), we assume the movement
of scatterers within all or part of the compressed object can be accurately de-
scribed as an affine transformation [12] of the scatterer positional coordinates.
Specifically, we use the material [13] or Lagrangian [14] description of motion:
if x̃ and x are the pre- and postcompression coordinate vectors, respectively,
then x(x̃) = A(x̃ + τ a), where A is a linear transformation matrix and τ a is
a displacement vector. A−1 exists, its determinant detA is approximately one,
and it is straightforward to interpret A in terms of strain, s, when the applied
compression is small.

3 Image Formation Algorithms

For example, the top surface of the object in Fig. 1a is uniformly displaced
in Fig. 1b along the direction of the ultrasound beam axis, x1, corresponding
to an average downward displacement and scaling transformation of the object
coordinates with non-zero components A11 = 1− s and A22 = A33 = (1− s)−1/2

' 1 + s/2. A finite-element algorithm (FEA) was used to compute the axial
displacement field (Fig. 1d) and longitudinal strain (Fig. 1e). Longitudinal refers
to the component of the strain tensor in the direction of the applied force [13],
in this case along x1, while axial is the direction parallel to the ultrasound beam
axis, also along x1 in this example. Bright areas in the two images indicate large
displacements (in the frame of the moving transducer!) and large strains.

A second example is illustrated in Fig. 1c, depicting a nonuniform displace-
ment of the object surface along x1 at a shear angle β = 5.7◦. The average
deformation (Fig. 1g) is represented as a combination of displacement, scaling,
and shearing with non-zero matrix elements A11, A22, and A12 = tanβ. Non-
zero, off-diagonal elements of A indicate shearing and rotation.

Of course, the average transformation cannot adequately describe the com-
plex deformation of a large region in elastically heterogeneous media. Notice
there are variations in the strain field near the stiff inclusion and at the edges
where the top and bottom surfaces were not allowed to slip. Consequently echo
fields are partitioned into small regions, such as the triangular meshes in Fig. 1,
and A and τ a are estimated for each region using companding [6] or warping
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with deformable mesh algorithms [15,16]. This particular tissue-like phantom
was built [17] and scanned at 5 MHz [11] to produce the experimental strain
image of the stiff inclusion shown as an insert in Fig. 1f.

Several image formation algorithms have been proposed to estimate strain
under challenging experimental conditions. Most are based on least-squares tech-
niques, e.g., block matching [4,6,8], deformable mesh [15,16] and filtered correla-
tion [11,14]. The least-squares approach involves ML estimation through the use
of a wide-band ambiguity function, Λ, which aims to determine all motion fea-
tures simultaneously. In some cases, these estimators are efficient and unbiased
[18]. An expression for the wide-band ambiguity function is

Λ(B, τ b) = detB
∫ ∞

−∞
dx r1(x) r∗

0(x) , where r0(x) = r(B−1x − τ b) . (3)

B and τ b are the linear transformation matrix and displacement vector applied
to the precompression echo field r(x) to match the physical deformation of the
object as it is modeled using A and τ a. Notice that (3) is a multi-dimensional
representation of the correlation between r0(x) and r1(x) for various values of B
and τ b. With our current algorithm [16] and 2-D echo fields, B and τ b provide
a total of six motion parameters. The algorithm computes Λ for the data within
the triangular subregions of Fig. 1 and searches for a peak value, similar to the
use of a cross correlator to estimate time delay. Parameter values at the peak
become the estimates. In principle, an image formation algorithm based on the
wide-band ambiguity function will achieve strain images with the lowest noise.
In addition, joint estimates of B and τ b could determine the entire strain tensor
resulting from the applied compression.

4 Definitions

Important familiar functions are stated below in the current notation.
Fourier-series coefficient estimates R̂jk for the jth 2-D echo field and the kth

spatial frequency are [19]

R̂jk =
1
S ′

∫
S

dx rj(x) e−i2πut
kx for j = 0, 1 . (4)

The wavevectors uk define points on an infinite 2-D grid [20]. For convenience,
the two integer indices required to define the grid are lumped into a single index
k = 1, . . . , N that enumerates all N frequency points within S. S ′ ,

∫
S dx is

the measure of S. The Fourier transform of rj(x) is related to the Fourier-series
coefficients by the expression Rj(u) = limS′→∞ S ′ R̂jk.

Applying the shift and scaling theorems [19], the forward Fourier transforms
of r0(x) and r1(x) are, respectively,

R0(u) = F{r0(x)} = detB
[
H(Btu) Z(Btu) + N0(Btu)

]
e−i2πutBτ b and

R1(u) = F{r1(x)} = detA H(u) Z(Atu) e−i2πutAτa + N1(u) , (5)
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Fig. 1. Uniform compression (a,b) generates displacement (d) and strain (e) fields.
Shear compression (c) produces (g). FEA simulations in (d-g); phantom image in (f)

where Z(u) = F{z(x)}, Nj(u) = F{nj(x)} and u = (u1, u2, u3)t is the continu-
ous spatial-frequency vector corresponding to the spatial coordinate x. Further-
more, we model the Fourier transform of the 2-D sensitivity function as

H(u) = F{h(x)} = C0u
2
1 exp (−α(u1))

× [
exp

(−2π2(u1 − u0)2L2
1
)− exp

(−2π2(u1 + u0)2L2
1
)]

exp
(−2π2u2

2L
2
2
)

(6)

at carrier frequency u0. L1 and L2 are pulse and beamwidth parameters, C0 is
a constant, and α(u1) describes attenuation losses [11].

The cross power spectral densities for continuous and discrete frequencies are

Gr0r1(uk) = S ′2 E{R̂∗
0kR̂1k′} −−−−−−→

S′,N→∞
Gr0r1(u) = E{R∗

0(u)R1(u)} , (7)

the autospectral densities are Gr0r0(u) = E{|R0(u)|2}, Gr1r1(u) = E{|R1(u)|2},
and the magnitude squared coherence function is

|γr0r1(u)|2 =
|Gr0r1(u)|2

Gr0r0(u)Gr1r1(u)
, (8)

where 0 ≤ |γr0r1(u)|2 ≤ 1 [21].

5 Maximum-Likelihood Estimation

Displacement. The ML estimator for displacement selects τ̂ to maximize the
value of the likelihood function p(R̂|θ) [22]. θ is a vector of all deterministic
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parameters that affect the data, viz., the motion parameters A, B, τ a, and
τ b and waveform parameters H(u), Gzz(u), and Gnn(u). Ignoring all terms
independent of displacement, the log-likelihood function is [11]

ln p(R̂|θ) ' S ′
∫ ∞

−∞
du Re

{
R∗

0(u)R1(u) W 2(u) e−i2πut(Aτa−Bτ b)
}

, (9)

where Re{· · · } is the real part of the argument and

W 2(uk) =
|γr0r1(uk)|√

Gr0r0(uk)Gr1r1(uk) (1 − |γr0r1(uk)|2)
is a frequency filter.

The ML strategy for displacement is defined by the generalized cross corre-
lator [23] of (9). First, choose values for B and τ b that warp the precompression
echo field to match the physical deformation defined by A and τ a. Specifically,
choose Bτ b = Aτ a so that the value of the exponential factor in the brackets of
(9) is one at all frequencies. Second, the ML estimator filters the pre- and the
postcompression waveforms each with the function W (u). Filtering increases the
weight of the most coherent frequency components between r0 and r1 but only
if the statistical properties of the waveform are known a priori. Third, the esti-
mator cross correlates the filtered r0 and r1 and finds the displacement estimate
τ̂ at the peak cross correlation value. The main difference between the gener-
alized cross correlator and the wide-band ambiguity function is that the former
estimates parameters sequentially and the latter simultaneously.

Strain. The total displacement, v, at each position in the deformed medium is
given by the sum of the displacement applied during the echo field warp, τ b, and
that determined from the cross correlation measurement, τ̂ , i.e., v = τ̂ + τ b.
The Eulerian strain tensor is [13]

εmn =
1
2

[
∂vn

∂xm
+

∂vm

∂xn

]
, (10)

and the longitudinal strain measured along the axis of the sound beam is

s , ε11 =
∂v1

∂x1
. (11)

For imaging, strain is adequately approximated using difference formulas [3,4].

6 Variance Bounds

From the likelihood function of (9) and the strain estimate of (11), we computed
the Cramér-Rao lower bound on strain variance for unbiased estimates to find
[11]

var(ŝ) ≥ 2(A2
12Y1 + A2

22Y2)
T1∆T (A11A22 − A12A21)

2
Y1Y2

. (12)
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where T1 is the length of the data segment and ∆T is the distance between over-
lapping data segments. These experimental parameters are selected when using
the difference equation to approximate the derivative in (11). ∆T is particu-
larly significant since it determines the axial pixel size of the strain image. Amn

are components of the transformation matrix A and Y1 and Y2 are frequency
integrals

Yi , 2S ′
∫ ∞

0
du (2πui)2

|γr0r1(u)|2
(1 − |γr0r1(u)|2) .

Equation (12) describes how longitudinal strain errors are affected by motion in
the plane – motion that includes scaling, shearing, and rotation.

We predicted strain errors from the variance bound of (12). These were com-
pared with standard deviations of strain measurements obtained from a tissue-
like phantom acquired under nearly ideal conditions [11] to assess estimation
efficiency (Fig. 2). An elastically homogeneous material was uniformly com-
pressed, as in Fig. 1b, while strain was measured in a small region near the
center. Applied strains in excess of 1% generated significantly more error than
that predicted because the predictions ignore the effects of echo-data sampling.
The log-likelihood function was derived assuming a continuous waveform model
with large object support. In reality, data are sampled at different rates along
x1 and x2: typical sampling intervals for a linear array are ∆x1 = 0.015 mm and
∆x2 = 0.180 mm. So the predictions of (12) are not limited by the effects of
aliasing or small data sets used to estimate displacement at high resolution. A
continuous model led to error bounds, but to obtain a more realistic evaluation
of elasticity system design, including the limitation of spatial resolution, we turn
now to a discrete waveform model and an analysis of Fourier crosstalk.

7 Discrete Waveform Model

The process of imaging a continuous object z(x) with a linear system character-
ized by the sensitivity function hm(x) to produce the mth discrete measurement
sample rm in noise nm is represented by [24]

rm =
[∫ ∞

−∞
dx hm(x) z(x)

]
+ nm

= rm + nm . (13)

M measurements are recorded from signals generated within the object support
S such that −(M − 1)/2 ≤ m ≤ (M − 1)/2 where, for convenience, M is an odd
integer. The discussion is limited to one spatial dimension for simplicity. The
object function is exactly represented by the Fourier series [19]

z(x) =
∞∑

`=−∞
Z` ei2πu`x S(x) , (14)
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where Z` are Fourier coefficients and ei2πu`x are Fourier basis functions. In our
one-dimensional example, S(x) = rect(x/S ′) and u` = `/S ′. Integer indices m
and ` indicate digitized waveform samples and frequencies, respectively.

Combining (13) and (14), the noise-free echo measurements are [20]

rm =
∞∑

`=−∞
Ψm` Z` = (ΨZ)m , where Ψm` =

∫
S

dx hm(x) ei2πu`x . (15)

Ψm` are components of an M ×∞ matrix whose rows are the Fourier transforms
of the product of the sensitivity function and support function for each mea-
surement. Equation (15) expresses the mth waveform sample as the sum over
frequency of the Ψm` components weighted by their respective Fourier coeffi-
cients. The object contributes to rm through Z`, while the measurement process
contributes to rm through Ψm`.
Example: Ideal Ultrasonic Imaging System. Consider the perfect, linear, shift-
invariant (LSI) system with sensitivity function

hm(x) =
1

2πz0

d2

dx2 δ(x − m∆x) .

For large support, (15) gives

rm =
∞∑

`=−∞
Z`

[
1

2πz0

∫ ∞

−∞
dx

d2

dx2 δ(x − m∆x) ei2πu`x

]

=
1

2πz0

(
d2z(x)
dx2

)
x=xm

,

which is precisely the acoustic scattering function of the object, i.e., the second
derivative of the relative impedance profile z(x)/z0. Images from this ideal ultra-
sonic system reproduce the object function without distortion. We have assumed
that the sampling interval satisfies the Nyquist criterion; specifically, if Z` = 0
for ` ≥ N , then ∆x ≤ S ′/N . The row (column) vectors of Ψ are orthogonal for
the ideal system, and their components are second derivatives of the object basis
functions.

To study displacement or strain, we must analyze the relationship between
two ultrasonic echo fields. A discrete representation of those fields is

r0m =
∞∑

`=−∞
Z`

[
B

∫
S

dx hm(x) ei2πu`x

]
=

∞∑
`=−∞

Ψ0m` Z` Warped Pre

(16)

r1m =
∞∑

`=−∞
Z`

[∫
S

dx′ hm(x′) ei2πu`( x′
A −τa)

]
=

∞∑
`=−∞

Ψ1m` Z` . Post

If the support is large compared with the range of motion, then the integrals
over S before and after the coordinate transformation are approximately equal.
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Equation (16) expresses an important symmetry: imaging a deformed object is
mathematically equivalent to imaging the undeformed object with a deformed
sensitivity function.

8 Crosstalk Matrix

Following the ML strategy of (9), we produce r0 by warping r to match the
physical deformation in r1 (16). The echo fields are then filtered and cross cor-
related. A discrete form of the cross correlation function φq at lag index q for a
particular r0 and r1 is

E{φq}n|z =
(M−1)/2∑

m=−(M−1)/2

r∗
0m r1(m+q) =

∞∑
`=1

∞∑
`′=1

Z` Z`′ βq``′ , (17)

where the ensemble average is over all noise realizations for a specific object,
and

βq``′ ,
(M−1)/2∑

m=−(M−1)/2

Ψ∗
0m` Ψ1(m+q)`′ (18)

is the crosstalk matrix for ultrasonic displacement estimation. For an LSI system,
hm(x) = h(x − m∆x). Hence, a general form of the crosstalk matrix is

βq``′ =
(M−1)/2∑

m=−(M−1)/2

[
B H∗(u`)e−i2πu`

m∆x
B

] [
H
(u`′

A

)
ei2πu`′( (m+q)∆x

A −τa)
]

=
[
B H∗(u`) H

(u`′

A

)] [
e−i2πu`′(τa− q∆x

A )
] [

M
sincM

(
u`

B − u`′
A

)
∆x

sinc
(

u`

B − u`′
A

)
∆x

]
.(19)

Frequencies u` refer to the warped precompression data while u`′ refer to the
postcompression data. We used the Dirichlet kernel in the expression above:

(M−1)/2∑
m=−(M−1)/2

ei2πmy = M
sinc My

sinc y
, where sinc x ,

sinπx

πx
.

The crosstalk matrix predicts the coherence between r0 and r1 for an ex-
periment independent of the object, and therefore provides the comparison we
require for evaluating alternative experimental designs. In general, the matrix is
complex with three indices: ` and `′ are over frequency and q is over space.

The first factor on the right-hand side (19) is a band-pass filter; the diag-
onal elements of the matrix, β``, are the system transfer function that defines
the sensitivity and spatial resolution of the ultrasound system for estimating
displacement.
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The second factor in (19) is the phase shift corresponding to the object
displacement. When the correlation lag q∆x equals the scaled translation of
the object Aτa, displacement estimates are accurate, the second factor is unity,
and the crosstalk matrix is real. As with the Cramér-Rao bound, we assume
q∆x = Aτa to focus on the two frequency dimensions of the crosstalk matrix,
β``′ = βq``′ |q=Aτa/∆x. The most important use of the second factor is to describe
the effects of estimating a discrete displacement value q∆x/A when in fact the
true displacement τa is continuous.

The third factor in (19) is the crosstalk between Fourier components of r0
and r1. Under-sampling and incomplete warping generate non-zero off-diagonal
components that indicate energy from frequency channels in r0 is not being
placed into the same frequency channels in r1. Increased crosstalk is exactly
what is meant by a loss of waveform coherence.

9 Examples of Strain Imaging

Using β``′ , the Gaussian system response function of (6), and applying the ML
strategy of (9), we can predict realistic consequences for strain noise of using
sampled ultrasonic waveforms. Figures 3 and 4 illustrate β for a typical 5 MHz
linear array configuration when there is no object deformation. Figure 3 illus-
trates the crosstalk matrix along the axis of the ultrasound beam x1, where the
echo field consists of a set of band-pass signals whose spectra are peaked at
±5 MHz. Figure 4 is an image of the crosstalk matrix along the axis x2 that
is perpendicular to the beam axis, where the echo field consists of base-band
signals peaked at 0 MHz.2 Figures 5 and 6 are analogous to 3 and 4 except a 5%
scaling deformation was applied to the former along x1. Each quadrant of Figs.
3 and 5 is a copy of the others except for polarity. Off-diagonal components for
band-pass signals (Figs. 3 and 5) are not crosstalk. These are cross terms from
the correlation at u` = −u`′ = ±5 MHz.
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Fig. 2. Strain errors: pre-
dicted and measured (•)

Fig. 3. Axial crosstalk
matrix, no deformation

Fig. 4. Lateral crosstalk
matrix, no deformation

2 Bandwidth was extended to facilitate clearer comparisons between Figs. 4 and 6.
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The 41 × 41 element matrices depicted in these figures include 20 negative
frequencies, 20 positive frequencies, and u` = u`′ = 0 at the center. System
parameters were selected to represent broad-band pulsed transmission with a
5 MHz carrier frequency from a Gaussian-weighted aperture. Waveforms were
sampled at the Nyquist rate. Examining any quadrant of the band-pass matrix
(Fig. 3) or the entire base-band matrix (Fig. 4) we find no crosstalk (non-zero,
off-diagonal elements) because the ultrasound data are adequately sampled and
there only rigid-body translation. This highly-coherent system is limited only
by bandwidth and additive noise. Sensitivity is low only for motion of small
scattering structures detectable at the highest spatial frequencies.

Figures 5 and 6 show Re{β``′} for the same measurement system but with
uncompensated deformation: A11 = 0.95, A22 = 1.05, A12 = A21 = 0 and
B = I. The effect of axial compression on the axial crosstalk matrix (Fig. 5) is
to “rotate” the matrix patterns counterclockwise about the origin. Rotation is a
consequence of the third factor in (19). Hence the greatest loss of coherence, i.e.,
the most energy removed from the diagonal, occurs at the high frequencies. The
concomitant lateral expansion is seen in the lateral crosstalk matrix (Fig. 8)
as a clockwise rotation of the patterns about the origin. Deformation creates
low-amplitude crosstalk that appears as ringing in Figs. 5 and 6 from the loss
of matrix orthogonality. Normally, patterns along any row or column are given
by the ratio of sinc functions in (19). With a constant sampling interval, the
frequency components are naturally orthogonal since the harmonic frequencies
occur at zeros of the sinc function. In summary, the crosstalk matrix shows us
that uncompensated deformation reduces waveform coherence by (a) misplac-
ing information along the matrix diagonal, (b) disturbing frequency component
orthogonality, and (c) aliasing signal components just beyond the Nyquist fre-
quency (see upper-right and lower-left corners of Fig. 6). Crosstalk is eliminated
by accurate warping, viz., Aτ a = Bτ b.

The diagonal of the crosstalk matrix may be used to quantify spatial reso-
lution for displacement estimates. We plotted diagonal components of the axial
crosstalk matrix in Fig. 7 for 0%, 2.5%, and 5% axial compression. The plots
show that deformation reduces the effective bandwidth for displacement estima-
tion and that high spatial frequencies are preferentially lost. Warping, however,
only partially restores the lost resolution. The full matrix shows the location of
energy missing from the diagonal.

While the crosstalk matrix reveals many aspects of strain imaging physics, it
is convenient to develop a scalar quantity that summarizes design performance.
We propose the trace of the crosstalk matrix divided by its L2 norm as that
figure of merit:

B ,
trβ

‖β‖2
=

(∑
`

β``

)∑
`,`′

β2
``′




−1/2

. (20)

We computed (20) for the longitudinal strain images shown in Fig. 8 to see if
B correlates with visual impressions of image quality. Each echo field was simu-
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Fig. 5. Axial crosstalk,
5% axial compression

Fig. 6. Lateral crosstalk,
5% axial compression

0
−u0 0 u0 ul

bll 0%®
2.5%®

5%®

Fig. 7. Crosstalk matrix
diagonals for three com-
pressions

lated by combining an ultrasound waveform simulator with a FEA as described
previously [7]. Relative to the tissue-like background, the bright circles are soft
and the dark circles are hard. The object was “scanned” with linear array trans-
ducers having different point spread functions (psfs) whose envelopes are shown
enlarged near the upper right corner. Along x1 the same Gaussian pulse length
was applied for all, but the aperture function varied giving different psfs along x2.
We used a rectangular aperture in Figs. 8a-c with the corresponding f-numbers
f/1.5, f/3.0, and f/4.5. In Fig. 8d, the f/3.0 aperture of 8b was apodized using
a Hanning function weighting to supress side-lobes at the expense of the main
lobe width.

The object was scanned, compressed 3%, and rescanned, as in Fig. 1b, to
generate the strain images of Fig. 8. Noise was greatest in Fig. 8c, which had the
most weakly focused beam, and least in Fig. 8a, which had the most strongly
focused beam. Axial shear occurring near the inclusions reduces waveform co-
herence more for wide beams than narrow. The rank order of B, shown in Fig. 8,
tracks the visual impression of image quality and such quantitative measures as
mean-square error. Consequently, the quickly-computed B correctly predicted
that decorrelation noise is minimized with the most focused beams. Figure 8 is
a realistic simulation describing how the crosstalk matrix enables designers to
explore the physics of strain imaging and provide summary measures of design
quality.

10 Summary

The ML estimator for displacement is consistent with the well-known gener-
alized cross correlator for time-delay estimation [23]. Another implementation
is the wide-band ambiguity function [18], which estimates all motion parame-
ters simultaneously. Comparisons of measured variances with the Cramér-Rao
lower bound showed that our implementation of the ML estimator using sampled
waveforms was not efficient for compressions greater than 1% (Fig. 2). A dis-
crete waveform model was developed to formulate the Fourier crosstalk matrix
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Fig. 8. Simulated strain images for different ultrasonic point spread functions shown
at upper right. Four stiff (dark) and soft (bright) targets are included. Values of B,
(20), are shown

for ultrasonic strain imaging using sampled waveforms, and thus obtain a realis-
tic means for evaluating experimental system designs from first principles. The
crosstalk matrix was found to provide important new insights into experimental
design, e.g., the diagonal of the matrix evaluated at the true displacement value
is a rigorous measure of spatial resolution for displacement and strain estimation.
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Abstract. We describe the use of truncated multipolar expansions for
producing dynamic images of cortical neural activation from measure-
ments of the magnetoencephalogram. We use a signal-subspace method
to find the locations of a set of multipolar sources, each of which repre-
sents a region of activity in the cerebral cortex. Our method builds up
an estimate of the sources in a recursive manner, i.e. we first search for
point current dipoles, then magnetic dipoles, and finally first order mul-
tipoles. The dynamic behavior of these sources is then computed using
a linear fit to the spatiotemporal data. The final step in the procedure
is to map each of the multipolar sources into an equivalent distributed
source on the cortical surface. The method is demonstrated through a
Monte Carlo simulation.

1 Introduction

Magnetoencephalography (MEG) data are measurements of the magnetic fields
produced by neural current sources within the brain. The problem of estimating
these sources is highly ill-posed due to the inherent ambiguities in the associated
quasistatic electromagnetic inverse problem, the limited number of spatial mea-
surements and significant noise levels. To overcome these problems, constraints
can be placed on the location and form of the current sources. Mapping studies
using direct electrical measurements, fMRI and PET reveal discrete focal areas
of strong activation within the cortex that are associated with specific cognitive,
sensory and motor activities. Consequently, a plausible model for the current
generators in an event related study consists of a number of focal cortical re-
gions each of which has an associated time course [12]. The MEG inverse problem
requires estimation of the spatial and temporal characteristics of these sources.

There are two major classes of methods for solving the MEG inverse problem
which we will refer to as “imaging” and “model based.” The imaging methods
typically constrain sources to a tessellated representation of the cortex, assume

A. Kuba et al. (Eds.): IPMI’99, LNCS 1613, pp. 15–28, 1999.
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an elemental current source in each area element, and solve the linear inverse
problem that relates these current sources to the measured magnetic field. Ac-
curate tessellations of the cortex require on the order of 105 elements. Since
the maximum number of MEG sensors in the current generation of whole head
MEG system is approximately 300, the problem is highly underdetermined. By
using regularized linear methods based on minimizing a weighted L2-norm on
the image, we can produce unique stable solutions [11,14]. Unfortunately, these
methods tend to produce very smooth solutions that are inconsistent with the fo-
cal model described above. Many nonlinear algorithms have been proposed that
attempt to avoid this oversmoothing problem. While they have met with some
success, the cost functions required to achieve more focal solutions are usually
highly nonconvex and computation times can be very high, e.g. [1,11].

The model-based methods assume a specific parametric form for the sources.
By far the most widely used models in MEG are multiple current dipoles [4,9,12].
These assume that the neural sources are relatively small in number and each
sufficiently focal that they can be represented by a few equivalent current dipoles
with unknown locations and orientations. Parametric methods can be extended
to model the temporal correlation expected in the solutions through fitting the
multiple dipole model to the entire data set and estimating the time course
for each estimated dipole location. As with the nonlinear imaging methods, the
cost functions are nonconvex. Signal subspace based methods such as MUSIC
or RAP-MUSIC [7,8,9] can be used to rapidly locate the sources in a sequential
fashion and avoid the problem of trapping in local minima.

The equivalent current dipole model is directly interpretable as a current
element restricted to the cortical surface. As discussed in [10], the dipole may
also represent locally distributed sources that are not necessarily restricted to
a single point. However, one of the perceived key limitations is that these dis-
tributed sources may not be adequately represented by the dipole model. This
problem was one of the prime motivations for the development of the imaging
approaches. An alternative solution is to remain within the model-based frame-
work but to broaden the model to allow parametric representations of distributed
sources. The multipolar expansion provides a natural framework for generating
these models. The multipolar expansions are formed using a Taylor series repre-
sentation of the magnetic field equations. If the expansion point is chosen near
the center of a distributed source, then the contribution of higher order terms
will drop off rapidly as the distance from the source to the sensor increases.
Using this framework we expand the set of sources to include magnetic dipoles
and first order multipoles. These sources are able to represent the field from a
distributed source more accurately than is the current dipole. While the idea of
using multipolar expansions in MEG source modeling is not new, the approach
has generally seen only limited used in magnetocardiography, e.g. [6,15].

The parameters of the estimated higher-order multipolar terms are not eas-
ily related to the actual physiological processes that produce the MEG signals.
We describe here a two-stage procedure in which we first estimate the locations
and parameters of the multiple multipoles, then relate each of the multipoles to
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equivalent cortical sources. The method described here for estimating the loca-
tion and moment parameters of these multipolar representations is an extension
of the RAP-MUSIC method developed in [8] for localizing current dipoles. The
algorithm recursively builds a model for the current source configuration by first
testing for the presence of point current dipoles, then magnetic dipoles, and fi-
nally first order multipoles. In this way the model order and complexity is gradu-
ally increased until the combined estimated sources adequately explain the data.

In the cortical re-mapping stage, we find regions of cortex in the vicinity
of the parametric source on which we fit current distributions consistent with
the fields associated with each estimated multipole. The final result is then a
dynamic image of current activity mapped onto a tessellated representation of
the cortex which reveals the time varying behavior at the various locations on
the cerebral cortex activated during a particular experiment.

2 Multipolar Source Modeling

2.1 Multipolar Expansions

The relationship between the measured magnetic field and the current sources
is determined by the quasistatic form of Maxwell’s equations. In the special
case in which the head is modeled as a set of concentric nested spheres, each
with uniform and isotropic conductivity, there is a simple integral equation that
relates the external magnetic field to the current sources. We use this result
to derive the multipolar expansion. We include details only for the case where
measurements are made of the radial component of the magnetic field. They
extend directly both to the case of non-radial magnetic field measurements and
to measurements of surface potentials of the type that would be collected using
an EEG system.

Fig. 1. Primary neural activity of current density jp(r′) at location r′ inside a closed
conducting volume generates an external magnetic field at location r as detected by a
magnetometer with radial orientation r/r, to yield the scalar magnetic measurement
br(r). We develop a multipolar expansion for sources in a small region, G, using a
Taylor series for local displacement x
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A truncated multipolar expansion will be used to represent the measured
magnetic field for the case of a current source restricted to a relatively small
volume, G as illustrated in Fig. 1. As the extent of the source grows, more terms
are required in the expansion to adequately represent the external magnetic field.
In the following we will develop expressions for the special cases of (i) point
sources that are exactly represented as point current dipoles, (ii) highly focal
sources that can be represented by a magnetic dipole model, and (iii) locally
distributed sources that can be represented by a first-order multipole model.

The external magnetic field is generated by the sum of the primary neural ac-
tivity, designated by the current density vector jp(r′), and the volume or return
currents resulting from the electric field produced by the current source. It is the
primary currents that are the sources of interest in MEG inverse problems [4].
The contribution of the volume currents to the external field must be accounted
for but the currents themselves are of little interest. In the special case treated
here of radial measurements for sources confined to a spherical volume, the vol-
ume currents do not contribute to the measured field, and the radial component
br(r) of the magnetic field b(r) at location r is given by direct extension of the
well known Biot-Savart equation:

br(r) ≡ r

r
· b(r) =

r

r
· µ0

4π

∫
G

r′ × jp(r′)
d(r, r′)3

dr′ =
r

r
· µ0

4π

∫
G

M(r′)
d(r, r′)3

dr′, (1)

where d(r, r′) = r − r′ is the distance vector between the two arguments,
d(r, r′) = ‖r − r′‖ the corresponding scalar distance, and G is any volume
containing the source. For the final equality, we define the magnetic moment
density or magnetization as M(r′) = r′ × jp(r′) (e.g., [5](eq. 5.53)).

The multipolar representation is found using the Taylor series expansion of
a scalar function

ψ(r + x) =
∞∑

n=0

(x · ∇)nψ(r)/n!, (2)

applied to the distance d(r, r′), where ∇ represents the gradient with respect
to r. Using the equalities ∇r = I (where I is the identity matrix), ∇rn =
∇(r · r)n/2 = nrn−2r, and ∇d(r, r′)n = −∇′d(r, r′)n = nd(r, r′)n−2

d(r, r′)
(where ∇′ is w.r.t. the primed variable), yields the expansion about r′:

d(r, r′ + x)−3 = d(r, r′)−3 + 3d(r, r′)−5(x · d(r, r′)) + . . . . (3)

To produce the multipolar expansion, we use (3) to expand (1) about rl, the
centroid of the region to which the primary source is confined (cf. [6] (eq. 9.3.18)):

br(r) =
µ0

4π
r

r‖r − rl‖3 ·
∫

G

(
M(rl + x) +

3M(rl + x)
‖r − rl‖2 x · (r − rl) + . . .

)
dx. (4)
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If ‖x‖ � ‖r − rl‖, then we may generally neglect the higher order terms.
From Fig. 1 we can see that this inequality is equivalent to the extent of the
distributed source being much smaller than the distance from the source to the
sensor. We now consider the three types of sources that will be used to represent
regions of increasing size in our model of cortical activation.

Point Current Dipole: We consider first the case where the current source
is confined to a single point, i.e. jp(r′) = δ(r′−rl)q where q is the current dipole
moment and δ is the Dirac delta functional. Substitution into (4) produces the
result

br(r) =
µ0

4π
r × rl

rd(r, rl)3
· q, (5)

since all terms but the first are identically zero. This is the standard current
dipole model that is widely used in the MEG and EEG literature. The source is
characterized by the location rl and moment q.

Magnetic Dipole: We now consider the effect of allowing the extent of the
source to grow so that it can no longer be represented using a delta function.
We let the extent of the source be sufficiently small that the second and higher
order terms are negligible, and we rewrite the first term of (4) as

br(r) ∼= µ0

4π

(
r

rd(r, rl)3
·
∫

G

M(rl + x)dx
)

=
µ0

4π
r

rd(r, rl)3
· m, (6)

where we define m to be the magnetic dipole moment

m =
∫

G

(rl + x) × jp(rl + x)dx. (7)

Thus we can characterize the magnetic dipole with the moment vector m and
location rl. In (7) we can define q(rl) =

∫
G

jp(rl + x)dx to be the equivalent
current dipole moment and m̃(rl) =

∫
G

x×jp(rl+x)dx to be the local magnetic
dipole moment, i.e. a local “spin” of the source about a central point. We can
therefore express the magnetic moment as m(rl) = rl × q(rl) + m̃(rl), and the
magnetic dipole includes the equivalent current dipole as the special case.

First-Order Multipole: Now we consider the final case where the source is
sufficiently large that the first two terms in the Taylor series should be included.
In this case we can rewrite (4) as

br(r) ∼= µ0

4π
r

rd(r, rl)3
·
(

m +
3(Q(rl) · d(r, rl))

d(r, rl)2

)
, (8)

where Q(rl) is the magnetic quadrupolar term defined as the matrix formed from
the tensor product

Q(rl) ≡
∫

G

M(rl + x)xdx. (9)
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We can rewrite (8) using the Kronecker product a⊗b, defined as the concate-
nation of the product of each element of a with the vector b, and the operator
vec(A), defined as the concatenation of the columns of a matrix into a vector:

br(r) ∼= µ0

4π

(
r

rd(r, rl)3
· m +

3(d(r, rl) ⊗ r)
rd(r, rl)5

· vec(Q(rl))
)
. (10)

We therefore characterize the first-order multipole using the combination of the
magnetic dipole moment vector m, the nine magnetic quadrupolar terms in
Q(rl), and the location rl.

We could obviously continue to expand the multipolar series to higher-order
terms. In theory, focal sources could exist such that the leading terms of the ex-
pansion integrate to zero, leaving only the higher-order terms. In practice, how-
ever, our assumption that the primary activity is modeled as elemental dipoles
restricted to the cortex minimizes our need to consider these higher terms. The
spatial distance from the cortex to the sensors, the relative smoothness of the
cortical surface, and the relatively high noise levels suppress these higher-order
moments in relatively focal regions of activation.

2.2 The Forward Problem

The multipolar development above includes three models of assumed increasing
spatial extent, each of which produces a radial magnetic field measurement which
is a nonlinear function of the location (i.e. the center of expansion for the Taylor
series) and a linear function of its moments. In the inverse problem, both the
linear and nonlinear terms are assumed unknown. The decomposition into linear
and nonlinear components for the current dipole model has previously been
used to simplify nonlinear least squares fitting [9] and localization using signal
subspace methods such as MUSIC [7,8]. Since the magnetic dipole and first order
multipole are similarly decomposed, these methods can be directly extended
to include searches for distributed non-dipolar sources. Furthermore, as noted
above, the expansions included here can be readily extended to the case of non-
radial MEG and EEG measurements for the spherical head models.

The radial magnetic field can be represented for each of the three types of
source as the inner product of a gain vector and the vector of linear parameters,
b(r) = g(r, rl) · l. The separation of nonlinear and linear parameters are clearly
shown in (5), (6), and (10). We assume an MEG array of m sensors sampling
the magnetic field of the source. By concatenating these measurements into a
vector, we can represent the “forward field” of the source as

[
b(r1) . . . b(rm)

]T =
[
g(r1, rl), . . . , g(rm, rl)

]T
l = G(rl)l (11)

where G(rl) is the “gain matrix” which accounts for all possible orientations of
the source at rl [9]. The forward model for an arbitrary combination of sources
can be found by linear superposition. To extend the forward model to include
temporal variations, we adopt the assumption that there are a finite combination
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of sources that are active. The solution of the inverse involves estimating the
location, moment parameters and time courses of each of these sources.

It is possible for two sources to be synchronous. For example, bilateral ac-
tivation in sensory or auditory cortex could be represented by two synchronous
focal dipoles, one in each hemisphere. To account for this possibility in the sub-
space methods described below, we adopt an independent topography model [7] in
which each topography consists of one or more elementary sources, all of which
have identical time courses. For a p-source topography sampled over m sensors
and n time instances, we may express the resulting m× n spatiotemporal data
matrix as


b(r1, t1) · · · b(r1, tn)

...
. . .

...
b(rm, t1) · · · b(rm, tn)


 =

[
G(rl1), · · · , G(rlp)

]



l1(t1) · · · l1(tn)
...

. . .
...

lp(t1) · · · lp(tn)


 (12)

where lj(tk) represents the linear parameters for the jth source sampled at the
kth time instance. Since all of these sources have the same time course, the
matrix of linear parameters is rank one and may be decomposed using an SVD
into the outer product of a single pair of singular vectors u and v scaled by the
singular value σ,

uσvT =




l1(t1) · · · l1(tn)
...

. . .
...

lp(t1) · · · lp(tn)


 . (13)

Defining the scalar time series of this independent topography to be s = σv,
we may rewrite (12) as

[
G(rl1) · · · G(rlp)

]
u

[
s(t1), · · · , s(tn)

]
= a(ρ1,u1)sT . (14)

The p-source topography vector is a function of the set ρ1 of p source locations,
ρ1 = {rli

}, i = 1, . . . , p and the unit norm vector u1 from (13). The vector u1
may be viewed as a generalization of an “orientation” vector by concatenating
all of the linear source parameters and scaling by its length,

ul ≡
[
lT1 , . . . , l

T
p

]T

/
∥∥∥[

lT1 , . . . , l
T
p

]∥∥∥ . (15)

To complete the full model for the observed MEG data we simply concatenate
the r independent topographies that make up the complete source and add noise:

F = A(ρ,u)ST + N =
[
a(ρ1,u1), . . . , a(ρr,ur)

]



sT
1
...

sT
r


 + N , (16)

where each m × 1 column vector a(ρi,ui) ≡ G(ρi)ui represents the ith inde-
pendent topography corresponding to the ith time series si. The set ρ comprises
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the r sets of source locations {ρi} and the set u the corresponding topogra-
phy orientations {ui}. Each topography may comprise one or more multipolar
sources, but only a single time series. By our definition of independent topogra-
phies, the matrix of time series S is rank r, and the matrix of topographies A
is assumed to be unambiguous and also of rank r. The matrix N represents ad-
ditive random noise, which we will assume to be spatially and temporally white
with zero mean and variance σ2

e .

2.3 Signal Subspace

Under the assumption that the signal is uncorrelated with the noise, the auto-
correlation matrix for the m× n spatiotemporal data in (16) is

R = E{FF T } = A(ST S)AT + nσ2
eI. (17)

The autocorrelation matrix can expressed using an eigendecomposition as:

R = [Φs|Φe]
[

Λs 0
0 Λe

]
[Φs|Φe]T (18)

where the diagonal matrix Λs = Λ + nσ2
eI represents the r largest “signal plus

noise” eigenvalues and their corresponding eigenvectors form the matrix Φs. The
diagonal matrix Λe = nσ2

eI represents the smallest “noise” eigenvalues and their
corresponding eigenvectors form the matrix Φe.

We refer to Φs as spanning the signal subspace and to Φe as spanning the
noise-only subspace. In practice, we estimate the signal Φs and noise Φe subspace
basis vectors by a eigendecomposition of the outer product FF T or an SVD of
F . We denote the estimate of Φs as Φ̂s.

3 Source Localization

3.1 RAP-MUSIC

The RAP-MUSIC algorithm is described in detail in [8]. Here we briefly review
the method and describe its application in combination with the multipolar
models developed above. The first source is found at the location which produces
the global maximum of the metric

ρ1 = arg max(subcorr(G(ρ), Φ̂s)1). (19)

The function subcorr(·) represents the “subspace correlations” between the two
matrices. The subspace correlations are the ordered set of cosines of the principal
angles as defined in [3]. The first subspace correlation, subcorr(·)1, corresponds
to the cosine of the smallest principal angle and will be unity if the two matrices
have at least a one-dimensional subspace in common. If we define UG to be
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the orthogonal matrix spanning the same space as G(ρ), then the square of the
subspace correlations are found as the eigenvalues of the matrix

UT
GΦ̂sΦ̂

T
s UG. (20)

By maximizing the first subspace correlation in (19), we identify the source
location and corresponding gain matrix that has the smallest principal angle with
respect to the signal subspace. Since we only need to search over the location
parameter, a nearly exhaustive search over a relatively dense three-dimensional
grid within the brain volume can be performed relatively quickly for any of the
three source models of the previous section. For the case of synchronous sources,
the dimensionality of the search increases by at least a factor of two and the
computational cost rises dramatically, but the procedure nonetheless proceeds
directly.

To complete the first independent topography model, we need the corre-
sponding source orientation vector, which is a simple linear transformation of
the eigenvector of (20) corresponding to the maximum eigenvalue [3,7]. The re-
sulting estimates yield the first estimated independent topography, a(ρ̂1, û1) =
G(ρ̂1)û1.

For each of the remaining k = 1, 2, . . . , r RAP-MUSIC recursions, the non-
linear source location parameters are found as

ρ̂k = arg max
(
subcorr

(
Π⊥

Âk−1
G(ρ),Π⊥

Âk−1
Φ̂s

)
1

)
(21)

where Âk−1 = [a(ρ̂1, û1), . . . ,a(ρ̂k−1, ûk−1)] represents the composite indepen-
dent topography matrix, and the projection operator Π⊥

Âk−1
is computed as

Π⊥
Âk−1

= I − Âk−1Â
†
k−1 (22)

where Â
†
k−1 ≡ (Â

T

k−1Âk−1)−1Â
T

k−1 is the pseudoinverse of Âk−1. Through this
recursion, we sequentially remove the components of the signal subspace that
can be explained by the sources that have already been found. We then search
the remaining signal subspace for additional sources.

At each iteration the source location set ρ in (21) may represent one or more
multipolar sources. To find the simplest sources consistent with the data, we
begin the search with the current dipole model, then progress through the mag-
netic and first-order multipole models. The decision to increase the complexity
of the model is based on a minimum correlation threshold. In this paper, we
will restrict the search to one-source models only, halting the recursion when the
first-order multipole maximum subspace correlation drops too low. Examples of
different correlation thresholds are given in the Monte Carlo simulations in the
next section. Extensions to multiple synchronous dipolar sources are discussed
in [7], with obvious extensions to multiple multipolar sources.

With all sources in the data identified and their independent topographies
represented in the final topography matrix Âr, estimates of the corresponding
time series are readily found as Ŝ = (Âr

T
Âr)−1Âr

T
F or in some regularized

form thereof.
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3.2 Mapping Parametric Sources onto Cerebral Cortex

The linear parameters of the multipolar model computed using the RAP-MUSIC
search are estimates of the moments formed by integrating the primary current
sources as defined in (1). When the sources are confined to cortex, which we
can represent as a continuous surface, the moments are generated as integrals
over a surface patch containing the sources. For the single-source topographies
considered here, we assume that each source represents the activation of a single
contiguous cortical patch. The final step in our parametric imaging method
is then to relate the multipolar moments back to a plausible distribution on
the cortical surface which consists of a set of patches of activation consistent
with the estimated moments. Fitting the moments to sources on the cortex
involves estimation of both the surface patch and the current distribution on that
patch. As with the original MEG inverse problem, the solutions are ambiguous.
However, under the assumption that each surface patch is contiguous and in the
vicinity of the estimated multipole, the degree of ambiguity is greatly reduced.

To perform the final stage of the multipolar imaging method we use a finely
tesselated cortical surface extracted from an MRI volume. In fitting the multi-
polar sources to the cortex, we allow a current element at the vertex of each
triangular patch on the surface, with an orientation derived as a weighted sum
of the triangular normals adjacent to the vertex. To fit a specific multipolar
source with topography a(ρi,ui) to the cortical surface, we begin by creating a
list of candidate locations on the cortex in the vicinity of the source location.
For each candidate point, we test the subspace correlation between the point
and the topography. If the point with the highest correlation meets a minimum
threshold (e.g. 98%), we designate it as the corresponding re-mapped cortical
source for that topography and halt. Otherwise, we add adjacent points to each
of the candidate points to form small distributed patches and continue to swell
each candidate point until we find a patch that meets the threshold.

This approach will generate a patch of minimal size consistent with the iden-
tified topography. We may continue to swell the patch and find additional pos-
sible sources consistent with the topography, a consequence of the ambiguity in
the inverse problem rather than a specific limitation of the method described.
Currently we grow the patch by adding a ring of triangles around the elements
already in the patch. A more sophisticated approach based on testing a number
of possible candidates to add to each patch may prove more robust. Alterna-
tively, we could adopt a stochastic model for the mapping between the estimated
multipolar parameters and the corresponding cortical activation. This approach
could readily incorporate the activation models described in our previous work
on Bayesian MEG imaging [11].

4 Monte Carlo Simulations

In the first simulation we used the tesselated human cortex shown in Fig. 2
which contains approximately 230,000 triangles. Radial magnetic fields sensors
and a spherical forward model were used in the generation of the simulated
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Fig. 2. (a) The ground truth for the simulation study showing mappings of the three
sources onto the cortical surface; (b) Reconstruction of the cortical activity using the
multipolar method; (c) Reconstruction of the data from time t = 10 using a regularized
minimum L2 norm method

data and in the inverse method. Three distributed sources were created on the
cortical surface, also shown in Fig. 2. The three sources were given overlapping
independent time courses as shown in Fig. 3. The forward magnetic field was
measured by a simulated array of 104 magnetometers spaced approximately
uniformly on the upper hemisphere at a radius of 12 cm. Zero mean Gaussian
white noise was added to the sensor data at a ratio of 100:1 signal to noise
variance.

Although analysis of the singular value spectrum of this high SNR data
clearly revealed a rank of three, we overspecified the rank to ten to demonstrate
robustness to selecting too great a rank. We set the acceptance threshold for
correlation at 98%. The RAP-MUSIC algorithm was first run with the simplest
of the source topographies, the current dipole (5), for which a maximum cor-
relation of 99.9% was found. On the second recursion, the correlation with the
dipole model dropped below the threshold of 98%. We therefore increased the
complexity of the model to the magnetic dipole (6) and achieved a correlation
of 98.3%. The third recursion was below the threshold for the magnetic dipole,
so we increased the model to a first-order multipole (10) to obtain a correlation
of 99.9%. On the fourth recursion, the correlation plummeted to 62% for the
multipole and the recursion was halted at three sources. The three topographies
found were then used in a least-squares fit to determine the time series of the
three sources, Fig. 3.

We mapped the three topographies into the minimal cortical source regions,
also shown in Fig. 2. For comparison we also include a regularized minimum
L2-norm solution fitted at one of the intermediate time slices, for which the
spatial distribution and time series are also shown in Fig. 2 and Fig. 3. We see
that although the re-mapped topographies obtained using the multipolar method
are not identical to the “ground truth” they are indeed similar. In comparison,
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Fig. 3. Time courses for the three sources (a) ground truth; (b) time courses estimated
using the multipolar method; (c) time courses averaged over each of the true activation
areas computed from the minimum norm solutions. In this high SNR example, the time
series reconstruction in (b) is nearly perfect, while (c) exhibits high noise sensitivity

the minimum norm solution exhibits substantial source blurring due to the low
resolution of the linear inverse methods.

As discussed above, the multipolar source center is assumed to be near the
distributed cortical source. We tested this assumption in a Monte Carlo simu-
lation of 10,800 distributed sources over a range of noise levels. We also tested
the effects of the correlation threshold parameter used in the RAP-MUSIC algo-
rithm to accept a model. Each source was centered randomly on the upper half
of the brain surface in Fig. 2. With a 50% probability, each source was either
a “monophasic” contiguous patch of 200 mm2 or a “biphasic” patch of two 200
mm2 patches centered about 8 mm apart (about 50% overlap) and of opposite
polarity. Each Monte Carlo realization simulated three such sources with over-
lapping non-orthogonal time series. No attempt was made to force the three
sources to be widely separated, so that source overlaps were possible in any sin-
gle realization. A hemispherical array of 138 magnetometers was simulated a few
centimeters above the cortical surface. Although the true signal subspace rank
was three, we intentionally selected a larger rank of five for each realization.

Twelve cases of SNR and correlation threshold were tested, with 300 Monte
Carlo realizations per case, for a total number of 10,800 sources. For each simu-
lated source, we determined the geometric centroid of the patch. We then com-
puted the distance from this centroid to the multipolar source location nearest
to the source as an indication of the accuracy of the estimate. However, we note
that the multipole that gives the best fit to a particular distributed cortical
source does not necessarily lie on the cortex.

The global statistics presented in Table 1 show that the current dipolar loca-
tions are in general closer to the patch centroids than the non-dipolar locations.
The 20 dB SNR case represents a mostly noiseless signal to allow observations of
the modeling effects. Even though the sources were spatially large, the majority
of the monophasic and some of the biphasic sources were modeled quite well
as dipoles, even at the 99% correlation level. The first-order multipole model
accounted for the remainder. The 3 dB SNR case represents a rather severe case
of 67% signal variance to 33% noise variance. At 99% correlation, most sources
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Table 1. Monte Carlo Study. SNR is ten times the log base-ten of the ratio of the
total signal variance to the total noise variance, both values measured at the array of
sensors. Correlation threshold is the minimum subspace correlation value for the model
to be accepted. The first row summarizes the results over all trials for a total of 10,800
sources localized. Each additional row represents a different Monte Carlo trial of 300
realizations and 900 sources. The sources are described in the text. The mean and
standard deviation (in mm) for the solution distances are given for the ECD model
and the non-ECD (magnetic dipoles and first-order multipoles combined). The final
column gives the number not localized at the given threshold.

SNR Correlation Number Mean, Non- Mean, Missing
(dB) Threshold of ECDs Std.Dev ECDs Std.Dev Sources
ALL ALL 6659 (5.34, 4.56) 2977 (7.06, 5.98) 1164

3 0.94 643 (6.51, 5.38) 183 (6.05, 5.81) 74
3 0.96 565 (5.69, 4.03) 215 (6.28, 6.58) 120
3 0.98 378 (5.17, 3.88) 282 (7.25, 6.59) 240
3 0.99 65 (6.32, 3.98) 220 (14.58, 8.37) 615
10 0.94 698 (6.35, 5.81) 198 (4.85, 6.70) 4
10 0.96 641 (5.68, 4.86) 254 (4.43, 5.55) 5
10 0.98 575 (4.47, 3.15) 302 (4.20, 3.41) 23
10 0.99 489 (3.99, 2.86) 332 (4.41, 3.57) 79
20 0.94 737 (6.03, 5.60) 163 (4.99, 6.72) 0
20 0.96 702 (4.97, 4.17) 198 (4.73, 5.27) 0
20 0.98 625 (4.69, 3.94) 275 (3.96, 3.56) 0
20 0.99 541 (4.26, 3.38) 355 (3.96, 2.97) 4

are lost in the noise, but at the lower correlation thresholds we see the majority
of sources still detected quite well as either dipoles or multipoles. Although we
intentionally set too large a rank for the signal subspace, we also note the impor-
tant fact that no spurious sources were found, i.e. we never saw more than three
sources. As we might expect, the effect of lowering the correlation threshold is
to allow more sources to be detected, but at the cost of greater mean distance
between the source locations and the patch centroids.

5 Conclusion

We have described an algorithm for computing estimates of cortical current
activity from MEG data. The method exploits the low dimensionality of para-
metric multipolar models to estimate the locations of equivalent representations
of the current sources. These representations are then mapped onto a tessellated
representation of the cortical surface resulting in a spatiotemporal estimate of
cortical activity. Monte Carlo simulations indicate that the potential of this
method to extend the parametric approach to the representation of more dis-
tributed sources. The resulting images avoid the very low resolution encountered
using minimum norm methods and the high computational costs of the other
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nonlinear imaging methods. Planned studies include experimental phantoms and
human studies of self paced and visually cued motor activation.
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Abstract. The problem of reconstructing a binary image (usually an
image in the plane and not necessarily on a Cartesian grid) from a few
projections translates into the problem of solving a system of equations
which is very underdetermined and leads in general to a large class of
solutions. It is desirable to limit the class of possible solutions, by using
appropriate prior information, to only those which are reasonably typical
of the class of images which contains the unknown image that we wish to
reconstruct. One may indeed pose the following hypothesis: if the image
is a typical member of a class of images having a certain distribution,
then by using this information we can limit the class of possible solu-
tions to only those which are close to the given unknown image. This
hypothesis is experimentally validated for the specific case of a class of
binary images representing cardiac cross-sections, where the probability
of the occurrence of a particular image of the class is determined by a
Gibbs distribution and reconstruction is to be done from the three noisy
projections.

1 Introduction

The subject matter of this paper is the recovery of binary images from their
projections. A binary image is a rectangular array of pixels, each one of which
is either black or white. In the case of cardiac angiography, we can represent a
section through the heart as a binary image in which white is assigned to those
pixels which contain contrast material. A projection of a binary image is defined
as a data set, which for every line (in a set of parallel lines, each of which goes
through the center of every pixel which it intersects at all) tells us, at least
approximately, how many white pixels are intersected by that line. According
to this definition there can be only four projections: one horizontal, one vertical
and two diagonal. There exist more general definitions of projections in the
literature [1], but it is typical for many applications that only a few projections
are available [2,3].

The problem of binary tomography is the recovery of a binary image from
its projections. This problem can be represented by a system of equations which
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is very underdetermined and leads typically to a large class of solutions. It is
desirable to reduce the class of possible solutions to only those which are reason-
ably “close” to the (unknown) image which gave rise to the measurement data.
Appropriate prior information on the image may be useful for this task [4]. In
addition to the inherent information in binary tomography that there are only
two possible values, Gibbs priors [5,6] describing the local behavior/character of
the image can also provide useful information. We pose the hypothesis that, for
certain Gibbs distributions, knowledge that the image is a random element from
the distribution is sufficient for limiting the class of possible solutions to only
those which are close to the (unknown) image which gave rise to the measure-
ment data.

Binary images can be described in many applications by the following simpli-
fied characterization: a set of objects - “white” regions - are located in a “black”
background. (We adopt the convention that 1 represents white and 0 represents
black.) This can be easily translated into Gibbs distributions by using a set of
configurations of neighboring image elements and assigning a value (which is an
indicator of the likelihood of occurrence) to each of these configurations.

One type of test presented in this paper is motivated by the task of recon-
structing semiconductor surface layers from a few projections. Fishburn et al. [3]
designed three test phantoms for assessing the suitability of binary tomography
for that task. These phantoms have been recently used in the binary tomography
literature by the several other researchers (see, e.g., [1]). The common experi-
ence reported by these researchers is that knowing the horizontal, vertical and
one diagonal projection is not sufficient for exact recovery of such phantoms.
However, it is shown in [7] that an algorithm, which makes use of an appropriate
Gibbs prior, correctly recovers the test phantoms of [3] from three projections.

The following section introduces Gibbs distributions and discusses their def-
inition using a look-up table. A reconstruction algorithm based on two given
perfect projections and a Gibbs prior is presented in the third section, where it
is also illustrated for the phantoms of [3] that the algorithm (while achieving its
mathematical aim) fails to recover the original object. Since three projections are
sufficient to recover these test phantoms based on semiconductor surface layers,
it appears possible that three projections would also be sufficient for the recovery
of cardiac cross-sections. An algorithm to do this is presented in Section 4; this
algorithm does not assume that the projections are noiseless. Its performance is
investigated in Section 5, where the influence of noise is also demonstrated. The
final section presents our conclusions.

2 Gibbs Distributions Associated with Binary Images

Local properties of a given binary image ω defined on H pixels (each pixel is
indexed by an integer h, 1 ≤ h ≤ H, and ω(h) is either black or white) can be
characterized by a Gibbs distribution of the form

Π(ω) =
1
Z

eβ
∑H

h=1 Ih(ω) , (1)
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where Π(ω) is the probability of occurrence of the image ω, Z is the normalizing
factor (which insures that Π is a probability density function; i.e. that the sum
of Π(ω) over all possible binary images is 1), β is a parameter defining the
“peakedness” of the Gibbs distribution (this is one of the parameters controlling
the appearance of the typical images), and Ih(ω) is the “local energy function”
for the pixel indexed by h, 1 ≤ h ≤ H. The local energy function is defined in
such a way that it encourages certain local configurations, such as uniform white
or black clusters of pixels and configurations forming edges or corners. Each of
these configurations can be encouraged to a different extent by assigning to
them a specific value. In this paper we have adopted the convention that the
local energy function at a pixel depends only on its own color and those of its
eight neighbors. Thus, the color of a particular pixel influences the value of the
local energy function of only itself and its eight neighbors.

Appropriate definition of the local energy function plays an important role
in successful image recovery. The definition should reflect the characteristics of
a typical image of the particular application area. There are many possible ways
of defining the local energy function. One of them is to use a look-up table
which contains a value for each possible configuration. (In our case, there are
512 possible configurations.) Given an ensemble of typical images for a particular
application (a training set), the look-up table can be created by counting the
number of times each particular configuration appears in the images. Then the
Ih(ω) of (1) is defined as ln(q+1), where q is the value in the look-up table of the
local configuration in the image ω at the pixel h. The usefulness of the resulting
prior depends on the size of the training set (the larger, the better) and on how
representative the images in the training set are for the application area.

3 Biplane Tomography: Preliminary Experiments

Ryser showed in the 1950’s [8] that if one matrix of 0’s and 1’s has the same
row and column sums as another such matrix then the first matrix can be trans-
formed into the second by a finite sequence of simple switching operations each
of which changes two 1’s to 0’s and two 0’s to 1’s and leaves the row and column
sums unaltered. This can be regarded as a result of binary tomography, since
matrices of 0’s and 1’s can be viewed as binary images; two matrices that have
the same row and column sums correspond to two binary images which have
the same horizontal and vertical projections. We refer to such images as being
tomographically equivalent. The simple switching operation described above will
be referred to as a rectangular 4-switch.

Let C be any tomographic equivalence class of binary images. Consider the
graph whose vertices are in 1 – 1 correspondence with the binary images in C,
in which two vertices are adjacent if and only if the image corresponding to
one vertex can be obtained from the image corresponding to the other by a
single rectangular 4-switch. We will call this the Ryser graph of the tomographic
equivalence class C.
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The Ryser graph is a finite graph since each tomographic equivalence class
is finite. In view of Ryser’s result [8], the Ryser graph is connected.

We now give an application of the Ryser graph. Let P be the set of all binary
images. Consider the following problem: Given a binary image ω ∈ P, find an
image in ω’s tomographic equivalence class for which Π(ω) of (1) has a relatively
high value. (Ideally, we would like to find an image that maximizes Π(ω), but
we do not expect to always achieve this.)

Kong and Herman [9] describe (two versions of) an iterative stochastic al-
gorithm to do this. The algorithm is a typical instance of a class of algorithms
known in the literature as Metropolis algorithms [10]. Since such algorithms are
often time consuming, [9] devotes a considerable amount of space to the achieve-
ment of a relatively efficient implementation. The essential idea is to first find a
single binary image which satisfies the two given projections and then iteratively
investigate the effect on Π(ω) of making a random rectangular 4-switch.

Roughly speaking, a single step in the Metropolis procedure starts with “ran-
domly picking” a possible rectangular 4-switch for the current image ω1. Let ω2
be the image that is obtained by performing this rectangular 4-switch on ω1.
Let p be the ratio of Π(ω2) to Π(ω1). The single step of the iterative procedure
is completed by replacing ω1 by ω2 if p is greater than 1, and replacing ω1 by
ω2 with probability p (and hence retaining ω1 with probability 1− p) if p is less
than 1. As explained in [9], properties of Ryser graphs and of the Metropolis
algorithms guarantee that the procedure just described will produce images ω
with relatively high values of Π(ω); for a precise statement (as well as for a
discussion of implementational concerns), see [9].

In order to test out our ideas on reconstructions from two projections, we
implemented the algorithms described in [9] and applied them to the binary
images in [3] representing semiconductor surface layers. (For these experiments,
the lookup-table was created using the three phantoms of [3].) For all three
phantoms (these are shown on the left of Figs. 1, 2 and 3, respectively), the
algorithms of [9] performed “too well” in the sense that the reconstructed images
(these are shown on the right of Figs. 1, 2 and 3, respectively) have a higher
value of Π(ω) than the originals. One might say after looking at these figures
that the reconstructions are versions of the original binary images in which the
boundaries have been smoothed.

As a result of these preliminary experiments combined with the fact that
all three phantoms of [3] were perfectly recovered when Gibbs priors were com-
bined with three perfect projections [7], we decided to investigate the efficacy of
triplane rather than biplane cardio-angiography.
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1 .............................................. ..............................................
2 .............................................. ..............................................
3 ....................11........................ ....................11........................
4 ....................1111...................... ....................1111......................
5 .....11.............11111.............1....... ....*11.............11111.............-.......
6 ....1111............11111.............111..... ....1111............11111.............111.....
7 ....11111..........1111111...........11111.... ...*11111..........1111111...........-1111....
8 ...1111111.........1111111...........11111.... ...1111111.........1111111...........11111....
9 ...11111111.......11111111..111.....1111111... ..*11111111.......11111111..111.....-111111...

10 ..11111111111...1111111111111111....11111111.. ..11111111111...1111111111111111....11111111..
11 ..1111111111111111111111111111111...11111111.. ..1111111111111111111111111111111...11111111..
12 ..11111111111111111111111111111111..11111111.. ..11111111111111111111111111111111..11111111..
13 ..111111111111111111111111111111111111111111.. ..111111111111111111111111111111111111111111..
14 ..111111111111111111111111111111111111111111.. ..111111111111111111111111111111111111111111..
15 ..111111111111111111111111111111111111111111.. ..111111111111111111111111111111111111111111..
16 ..111111111111111111111111111111111111111111.. ..111111111111111111111111111111111111111111..
17 ..111111111111111111111111111111111111111111.. ..111111111111111111111111111111111111111111..
18 ..111111111111111111111111111111111111111111.. ..111111111111111111111111111111111111111111..
19 ..111111111111111111111111111111111111111111.. ..111111111111111111111111111111111111111111..
20 ..111111111111111111111111111111111111111111.. ..111111111111111111111111111111111111111111..
21 ..111111111111111111111111111111111111111111.. ..111111111111111111111111111111111111111111..
22 ..111111111111111111111111111111111111111111.. ..111111111111111111111111111111111111111111..
23 ..111111111111111111111111111111111111111111.. ..111111111111111111111111111111111111111111..
24 ..111111111111111111111111111111111111111111.. ..111111111111111111111111111111111111111111..
25 ..1111111111111111111111111111111111111111.... ..1111111111111111111111111111111111111111....
26 ..11111111111111111111111........11111111..... ..11111111111111111111111........11111111.....
27 ..111......................................... ..---...............................***.......
28 .............................................. ..............................................
29 .............................................. ..............................................

Fig. 1. Phantom 1 (left) and its reconstruction (right) based on Ryser graphs and a
Metropolis algorithm from perfect horizontal and vertical projections; . and 1 represent
the values zero and 1 (respectively) in the phantom and at correctly reconstructed loca-
tions; - and * represent incorrectly reconstructed values of zero and one (respectively);
the total number of incorrectly reconstructed pixels is 12

1 ......................................... .........................................
2 ......................................... .........................................
3 .....11..............1111111111.......... .....11..............1111111111..........
4 ..111111...........1111111111111......... ..111111...........1111111111111.........
5 ..1111111.........111111111111111........ ..1111111.........111111111111111........
6 ..11111111.......11111111111111111....... ..11111111.......11111111111111111.......
7 ..1111111111....1111111111111111111...1.. ..1111111111*...-111111111111111111...1..
8 ..1111111111111111111111111111111111.11.. ..-111111111111111111111111111111111*11..
9 ..1111111111111111111111111111111111111.. ..1111111111111111111111111111111111111..

10 ..1111111111111111111111111111111111111.. ..1111111111111111111111111111111111111..
11 ..1111111111111111111111111111111111111.. ..1111111111111111111111111111111111111..
12 ..1111111111111111111111111111111111111.. ..1111111111111111111111111111111111111..
13 ..1111111111111111111111111111111111111.. ..1111111111111111111111111111111111111..
14 ..1111111111111111111111111111111111111.. ..1111111111111111111111111111111111111..
15 ..1111111111111111111111111111111111111.. ..1111111111111111111111111111111111111..
16 ..1111111111111111111111111111111111111.. ..1111111111111111111111111111111111111..
17 ..1111111111111111111111111111111111111.. ..1111111111111111111111111111111111111..
18 ..1111111111111111111111111111111111111.. ..1111111111111111111111111111111111111..
19 ..1111111111111111111111111111111111111.. ..1111111111111111111111111111111111111..
20 ..111111111111111111111111111......1111.. ..111111111111111111111111111......1111..
21 ..11111111111111.111111111111.......111.. ..11111111111111*111111111111.......-11..
22 ...1111111111......1111111.1.........11.. ..*111111111-......1111111.1.........11..
23 ......................1111...........11.. ......................1111...........11..
24 ........................1................ ........................1................
25 ......................................... .........................................
26 ......................................... .........................................

Fig. 2. Phantom 2 (left) and its reconstruction (right) based on Ryser graphs and a
Metropolis algorithm from perfect horizontal and vertical projections; . and 1 represent
the values zero and 1 (respectively) in the phantom and at correctly reconstructed loca-
tions; - and * represent incorrectly reconstructed values of zero and one (respectively);
the total number of incorrectly reconstructed pixels is 8
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1 .......................................... ..........................................
2 .......................................... ..........................................
3 .................1........................ .................-...................*....
4 ................11........................ ................--...................**...
5 ...........11..1111.........1............. ...........--..----.........-.**...*****..
6 ..11......111..11111.......111..11111111.. ..11*.....111**1-1--.......--1**11111111..
7 ..111....11111111111......11111111111111.. ..111*..*111111111--......11111111111111..
8 ..1111..1111111111111....111111111111111.. ..-111**11111111111-1....111111111111111..
9 ..1111111111111111111...1111111111111111.. ..-111111111111111111*..1111111111111111..

10 ..11111111111111111111.11111111111111111.. ..-1111111111111111111*11111111111111111..
11 ..11111111111111111111111111111111111111.. ..11111111111111111111111111111111111111..
12 ..11111111111111111111111111111111111111.. ..11111111111111111111111111111111111111..
13 ..11111111111111111111111111111111111111.. ..11111111111111111111111111111111111111..
14 ..11111111111111111111111111111111111111.. ..11111111111111111111111111111111111111..
15 ..1111111111111111111111111.111111111111.. ..-111111111111111111111111*111111111111..
16 ..1111111111111111111111111..11111111111.. ..-111111111111111111111111.*11111111111..
17 ..1111111111111111111111111..11111111111.. ..-111111111111111111111111.*11111111111..
18 ..1111111111111111111111111...1111111111.. ..1111111111111111111111111...1111111111..
19 ...11111111111111111111111....1111111111.. ..*11111111111111111111111....-111111111..
20 ...11111111111111111111111....1111111111.. ..*11111111111111111111111....-111111111..
21 ...1111111111111111111111......111111111.. ..*1111111111111111111111......-11111111..
22 ...111111111111111111111.......111111111.. ..*111111111111111111111.......-11111111..
23 ...11111111111111111111.........11111111.. ..*1111111111111111111-.........11111111..
24 ...1111111111111....11..........11111111.. ..*11----1111111****1-..........11111111..
25 ....1....1111111.................1111111.. ....-....1111111****.............1111---..
26 .........1111111...................1111... .........1111111****...............----...
27 .........111111......................1.... .........111111*.....................-....
28 .........111111........................... .........111111...........................
29 .........111111........................... .........111111...........................
30 .........111111........................... .........111111...........................
31 ..........1..11........................... ..........1**--...........................
32 ..........1............................... ..........1...............................
33 ..........1............................... ..........1...............................
34 ..........1............................... ..........1...............................
35 .......................................... ..........................................
36 .......................................... ..........................................

Fig. 3. Phantom 3 (left) and its reconstruction (right) based on Ryser graphs and a
Metropolis algorithm from perfect horizontal and vertical projections; . and 1 represent
the values zero and 1 (respectively) in the phantom and at correctly reconstructed loca-
tions; - and * represent incorrectly reconstructed values of zero and one (respectively);
the total number of incorrectly reconstructed pixels is 90

4 A Reconstruction Algorithm for Three Noisy
Projections

Assume that our data consist of estimates of three (horizontal, vertical and one
diagonal) projections of an image, which we believe to be a random sample from a
known Gibbs distribution. Then a reconstruction algorithm should find an image
which is not only consistent with the data, but which is also a typical sample
from the known Gibbs distribution. We use a modified Metropolis algorithm
in which the search for a likely image is altered to take also into account the
effect of replacing ω1 by ω2 on the consistency with the given projection data.
Roughly speaking, if the data inconsistency is increased or decreased, then the
change is discouraged or encouraged, respectively. The relative influence of the
data inconsistency is controlled by a parameter α (α ≥ 0).

To be exact, the Metropolis algorithm is modified as follows. First, since it
may no longer be possible to find a binary image which satisfies our (noisy)
projection data exactly, we do not attempt to start the iterative process with
such an image. (In the experiments which are reported below, the initial image
is always totally black.) Second, in the iterative step, the current image ω1 is
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changed into ω2 by randomly picking a single pixel h1 and changing its color.
The role of p is replaced by

p′ = eβ({∑
h∈N(h1)[Ih(ω2)−Ih(ω1)]} − α{Fh1 (ω2)−Fh1 (ω1)}) , (2)

where N(h1) is the set of at most nine pixels consisting of h1 and its neighbors
and

Fh1(ω) = |dh1(ω)−mh1 |, (3)

dh1(ω) =
3∑

i=1

di
h1

(ω), (4)

mh1 =
3∑

i=1

mi
h1

, (5)

where di
h1

(ω) is the number of white pixels in image ω on the line going in the
direction i through the pixel h1 and mi

h1
is the value of the corresponding item in

the given projection data. Finally, ω2 may, or may not, replace ω1 as determined
by the Metropolis principle with p′ defined as in (2). To be exact, ω1 is replaced
by ω2 if p′ is greater than 1 and ω1 is replaced by ω2 with probability p′ (and
hence ω1 is retained with probability 1− p′) if p′ is less than 1.

Such a procedure is guided preferentially towards images which have rela-
tively large probability, as defined by (1), and are at the same time not too
inconsistent with the projection data. The procedure is run for a “long time”
(see below) and at its termination we select as its output that image from the
sequence produced by it which has the maximum probability (1).

5 Triplane Tomography: Application to Cardiac
Angiography

For this application, we have identified a statistical ensemble of mathematically
described images based on cardiac cross-sectional images in [11]. These images all
consisted of three geometrical objects (an ellipse representing the left ventricle, a
circle representing the left atrium and the difference between two circular sectors
representing the right ventricle) of statistically variable size, shape and location.
By assigning white to every pixel whose center is inside one of these objects (and
black to every other pixel) each mathematically described image gives rise to a
binary image; we refer to such binary images as “phantoms”. (The reason why
the binary assumption is justified is that the intended application is subtraction
angiography in which the projection data are obtained by subtracting a pre-
injection x-ray picture from a post-injection x-ray picture; the difference is the
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Fig. 4. Two of the 10 phantoms from the training set

projection data of the image containing either the injected contrast material or
nothing.)

Ten phantoms were randomly generated to create our training set. (Two
of these are shown in Fig. 4.) Based on them, we collected the Gibbs prior
information, by simply counting the occurrences of each possible configuration
of a 3×3 window over all the images of our training set. This produces a look-up
table, and hence a Gibbs distribution, as explained in Section 2.

The phantoms were defined on the square grid with height and width equal
to 63 pixels. Thus, in our experiments, we have H=3,969. The phantoms and
the raysums were generated using the software SNARK93 [12] and the pixel size
used was 1mm, producing 63mm × 63mm images. Using SNARK93, we added
noise to the raysums generation, producing raysums corrupted by an additive
noise of mean 0.0 and standard deviations (σ) equal to 0.0 (noiseless case), 0.5
and 1.0. Since SNARK93 generates the projection data based on the geometri-
cally described objects, even the “noiseless” data are only approximations of the
projections of binary images of the discretized phantoms.

In our experimental study we investigated the actual benefit of prior infor-
mation for cardiac cross-sectional binary image reconstruction. Our testing set
consisted of 10 phantoms (from the same ensemble as the training set, but sta-
tistically independent), and for each phantom and each noise level (0.0, 0.5 and
1.0) three projections were generated; horizontal (←), vertical (↓) and diagonal
(↙). Since the image size was 63 × 63, for each phantom and noise level we
produced 63 horizontal, 63 vertical and 125 diagonal raysums, adding to a to-
tal of 251 raysums. The algorithm received as input the raysums generated by
SNARK93 and values for α and β in (2). The values of α and β for the noiseless
case were selected based on the Gibbs prior (look-up table), that was generated
by scanning the images of the training set and counting the pixel configurations
on a 3× 3 window. Using this knowledge, we selected α = 23.0 and β = 0.1 for
the experiments using noiseless raysums. The selected α and β values balance
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Fig. 5. A phantom (upper left corner) and its reconstructions using noiseless raysums
(upper right corner) and raysums with additive noise of mean 0 and standard deviation
(σ) of 0.5 (lower left corner) and 1.0 (lower right corner)

the contribution of the raysums and the Gibbs prior to the image reconstruction.
Since, in the other cases, some noise was introduced into the raysums generation,
we selected smaller α values, α = 18.4 for σ = 0.5 and α = 13.8 for σ = 1.0
(reflecting change in our confidence level on the raysums), while maintaining
β = 0.1 for both cases.

For any binary image we define its energy as the sum of the local energy func-
tion over all pixels; i.e.,

∑H
h=1 Ih(w). In all experiments, the program outputs

the image with the highest energy after 50,000 cycles (excluding the first 5,000
cycles, during which the totally black starting image could still have an influence
on the image energy). In each cycle the algorithm randomly visits 3,969 pixels
in the image and performs the modified Metropolis step as defined in Section 4.
Using the phantom and the output image, we computed their energy difference,
the number of pixels for which the output has a different color from the phan-
tom and the total difference of their projections. Another quality measurement
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Fig. 6. A phantom (upper left corner) and its reconstructions using noiseless raysums
(upper right corner) and raysums with additive noise of mean 0 and standard deviation
(σ) of 0.5 (lower left corner) and 1.0 (lower right corner)

used was the absolute difference (measured in pixels) of the areas of the objects
representing the right ventricle, left ventricle and left atrium, in the phantom
and in the reconstruction. In a reconstruction an “object” is defined as a compo-
nent (a maximally connected subset) of the set of white pixels under 8-adjacency
(two pixels are 8-adjacent if they share a corner or an edge). Two examples of
a phantom (phantoms number 3 and 7) and the corresponding reconstructions
using the raysums generated with the three different noise levels are shown in
Figs. 5 and 6. (In this initial work we concentrated on investigating the possi-
bility of accurate reconstructions from triplane data and paid no attention to
the efficiency of implementation. Because of this the total computer time for the
50,000 cycles is 5 hours on an Sun ultra 10 300MHz.)

As can be seen in Table 1, all ten phantoms were reconstructed successfully
for all three noise-levels. The table shows the results for the ten phantoms of
the testing set with the three different noise levels for each one. The energy
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Table 1. Table reporting the phantom numbers and energy values (Energy), and the
energy difference (DEnr, where DEnr = Enrphantom - Enrreconstruction), pixel difference
(DPi) and projection difference (DPr) for reconstructions using raysums corrupted by
three different noise levels (σ = 0.0, 0.5 and 1.0). The energy difference average is
computed using the sum of the absolute values of the energy differences and all values
in the last row (Avg) are calculated by averaging the ten individual values in the same
column. (Negative values of DEnr indicate that the energy of the reconstruction is
higher than that of the phantom)

Phantom σ=0.0 σ=0.5 σ=1.0
Num Energy DEnr DPi DPr DEnr DPi DPr DEnr DPi DPr

1 36480.53 -45.43 35 23 -11.40 54 42 596.05 98 82
2 36087.34 -50.89 60 24 -54.48 79 60 442.01 157 157
3 36986.62 -220.74 51 27 -27.03 60 61 662.92 105 106
4 37427.52 -77.94 72 23 -34.01 96 46 421.38 94 88
5 36344.12 -32.58 39 24 149.69 68 49 556.40 128 95
6 36171.59 16.10 44 26 148.82 80 55 682.61 127 84
7 36414.56 -30.55 41 31 32.81 61 40 751.89 141 97
8 36905.06 -97.57 49 24 -62.91 64 46 705.68 104 100
9 36273.46 -56.87 59 20 155.52 109 51 532.50 165 91
10 36064.98 -40.43 60 26 84.34 77 46 507.49 118 89

Avg 36515.58 -63.18 51 25 38.13 75 50 585.97 124 99

difference (DEnr) was computed as DEnr = Enrphantom - Enrreconstruction, the
pixel difference (DPi) reports the number of pixels that were different between
the phantom and the reconstruction, and the projection difference (DPr) reports
the sum of the absolute differences between the data (phantom raysums) and
the projection sums for the reconstructed image. The total number of pixels and
projections were equal to 3,969 and 251, respectively. The last row of Table 1
reports the average (Avg) of the absolute energy differences, pixel differences
and projection differences for the ten phantoms. The averages pixel differences
(DPi) and projection differences (DPr) were rounded to the nearest integer. The
average percentages of misclassified pixels are 1.3% (if σ=0.0), 1.9% (if σ=0.5)
and 3.1% (if σ=1.0).

The numbers reported for the phantoms in Table 2 refer to the total number
of pixels in the three objects, while the numbers under LA, LV and RV report
the absolute difference of the areas measured for the three objects in the phan-
tom and reconstructions. The area difference averages (DA) reported in Table 2
contains information about all ten phantoms (rounded to the nearest integer).
The average percentage errors in the areas are 1.0% (if σ=0.0), 1.3% (if σ=0.5)
and 2.6% (if σ=1.0).

Since the choices of the α and β in (2) and the “measurement model” ex-
pressed in (3)-(5) are somewhat arbitrary, we have looked into the possibility of
improving on our results by a more careful choice of these. To date we have not
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Table 2. Table reporting the areas for the three objects (left atrium, left ventricle and
right ventricle) in the phantoms and the absolute difference between the the object
areas in the phantom and in the reconstructions using raysums corrupted by three
different noise levels (σ = 0.0, 0.5 and 1.0). The last row reports the average of such
differences (DA) for each object over all phantoms rounded to the nearest integer

Phantom σ=0.0 σ=0.5 σ=1.0
Num LA LV RV LA LV RV LA LV RV LA LV RV

1 293 441 170 0 1 8 0 2 4 11 8 3
2 213 539 238 7 1 1 7 3 4 8 2 16
3 197 355 119 0 1 0 2 5 8 5 9 11
4 109 439 101 2 2 1 1 2 0 2 3 11
5 97 527 358 3 4 2 3 1 4 7 3 2
6 177 469 382 1 1 2 3 10 3 10 3 4
7 177 389 367 2 7 2 5 2 0 5 1 2
8 177 349 255 10 1 1 8 2 3 18 7 3
9 185 583 218 1 2 0 4 5 12 1 5 15
10 225 515 349 3 2 3 0 1 0 2 11 7
DA 182 452 258 3 2 2 3 3 4 7 5 7

succeeded to do this; other models we tried did not improve upon the results
resported in Tables 1 and 2.

6 Conclusions

We have shown how Gibbs priors can be defined and used in binary reconstruc-
tion problems. Experimental tests were done for the case when data are known
for two or three projections. An algorithm based on the Ryser graph and the
Metropolis algorithm was tested and it was found that two views were not suffi-
cient to determine the object even if the data are noiseless and the Gibbs prior
is based on the very pictures to be reconstructed. On the other hand, in the case
of three views, our results indicate that a similar approach could be useful in
triplane cardiac angiography even in the presence of noise in the data.

A modified Metropolis algorithm based on the known Gibbs prior proved
to provide a good tool to move the reconstruction process towards the correct
solution when the projection data by themselves are not sufficient to find such a
solution. Our experiments suggest that if an algorithm is able to maximize the
Gibbs probability subject to consistency with the data, then it is likely to be able
to (nearly) recover a random image from the Gibbs distribution. This supports
our hypothesis posed in the introduction, namely that if an image is a typical
member of a class of images having a certain Gibbs distribution, then by using
this information we can usually limit the class of possible solutions to only those
which are close to the (unknown) image which gave rise to the measurement
data.
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Abstract. Surgical navigation systems are used intraoperatively to pro-
vide the surgeon with a display of preoperative and intraoperative data
in the same coordinate system and help her or him guide the surgery.
However, these systems are subject to inaccuracy caused by intraopera-
tive brain movement (brain shift) since commercial systems in use today
typically assume that the intracranial structures are rigid. Experiments
show brain shifts up to several millimeters, making it the cause of the
dominant error in the system. We propose an image-based brain shift
compensation system based on an intraoperatively guided deformable
model. We have recorded a set of brain surface points during the surgery
and used them to guide and/or validate the model predictions. Initial
results show that this system limits the error between its brain surface
prediction and real brain surfaces to within 0.5 mm, which is a signif-
icant improvement over the systems that are based on the rigid brain
assumption, that in this case would have an error of 3 mm or greater.

1 Introduction

The use of surgical navigation systems has become a standard way to assist
the neurosurgeon in navigating within the intraoperative environment, planning
and guiding the surgery. One of the most important features of these systems is
the ability to relate the position of the surgical instruments to the features in
the preoperative images. Ideally, they should provide a 3D display of the neu-
roanatomical structures of interest and include visualization of surgical instru-
ments within the same frame. In order to be reliably used, the surgical navigation
system should be as precise as possible, preferably to within the voxel size of the
used dataset (see [4]). Most of the current systems use preoperatively-acquired
3D data and register it to the patient coordinate system (see [3,4,5]). However,
they assume that the brain and other intracranial structures are rigid and fixed
relative to the skull. The preoperative data is registered to the patient coordinate
system at the beginning of the surgery. While this can be done with a precision
to within 1 mm at the initial moment (see [4]), since the brain deforms over time,
the accuracy of the system deteriorates. The median brain shift of points on the
brain surface was estimated to range from 0.3 mm to 7.4 mm (see [1]). It is clear
that the system based on the rigid brain assumption cannot achieve a precision
better than a few millimeters at the outer structures. Since the deeper brain
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structures deform less than the outer ones, the error is the largest at the cortical
surface. The brain deforms even more after interventions, e.g. post-resections.
Furthermore, the average brain shift for cases in which hematoma or tumors
were removed was reported to be 9.5 mm and 7.9 mm, respectively (see [2]). In
such cases the error is even larger.

In our research we are mainly concerned with (but not limited to) issues
surrounding epilepsy surgery. To quantitatively investigate such a case we have
recorded six points on the exposed brain surface approximately every ten min-
utes during the surgery starting when the dura was opened. The mean shift in
the direction perpendicular to the brain surface was about 3 mm. The initial
and final set of points displayed over the rigid (initial) brain surface are shown
in Fig. 1. This result clearly shows the need for a high quality intraoperative
3D acquisition system and/or a method for estimating brain shift. The tradeoffs
among different approaches to these problems are discussed later in the paper.
The approach we have taken is to use a biomechanically-based deformable model

Fig. 1. Intraoperatively recorded points on the brain surface at the beginning of the
surgery are shown at left, while their positions one hour later relative to the non-
deformed (initial) brain surface are shown at right. Gravity is perpendicular to the
sagittal plane. The points moved in the direction of gravity and they are hidden under
the brain surface (only one of the points is still visible in the figure at right). Since
the brain deformed (in the direction of the gravity vector) the surface points moved
relative to the original (initial) brain surface

that incorporates the effects of gravity and can be driven by intraoperative mea-
surements. Currently, we have performed only partial validation of the deforma-
tion results, since a full human in-vivo 3D validation is practically difficult with



44 O.M. Škrinjar and J. S. Duncan

current technology. With this system, 3D estimation of the brain shift can be
performed in real-time, i.e. faster or equal to the real brain deformation, and
for this reason can be used in an actual operating room (OR) application. This
project is a continuation of our endeavors to overcome the brain shift problem
in surgical navigation, initialized by our modeling efforts reported in [6]. This
work extends the model, puts the model in touch with real data and discusses
our plans for a complete brain shift compensated surgical navigation system. We
also note relevant work in soft tissue deformation (see [2,7,8,9,10,11]).

2 System Overview

Our approach to brain shift compensation is to deform an intraoperatively-
guided model and use the model data during the surgery to display (deformed
according to the current model state) preoperative data. Therefore we propose
an image based brain shift compensation system made up of several compo-
nents: segmentation, mesh generation, a model, registration of the model to the
intraoperative environment, driving and guiding the model, and displaying the
deformed data.

The first step is segmentation of the brain tissue and the skull since they
are the two most important parts of the model. For brain tissue extraction we
have adopted the automatic segmentation algorithm suggested in [12], enhanced
with a few pre- and post-processing steps. Eventually, the skull segmentation
will be done from CT scans, and then it will be registered with the initial MRI
data. However, for this preliminary effort, we approximate the inner skull sur-
face segmentation using dilation and erosion operators applied to the previously
segmented brain tissue. An output is shown in Fig. 2. It is important to have
the inner skull surface available for the model since it defines the boundary con-
ditions. Clearly, the brain is bounded by the skull and it cannot go outside it.
When a gravitational force is applied to the brain, slightly globally, but non-
rigidly, it shifts downward, and from the bottom and sides it is resisted by the
inner skull surface. Therefore, the largest deformation is on the top of the brain.

For object surface rendering we have used an improved version of the algo-
rithm suggested in [13]. Some of the surfaces produced by this algorithm can be
seen in Figs. 1, 4 and 6.

In order to display and use brain surface points a correspondence between
the patient and MRI dataset coordinate systems has to be established. We used
a set of markers placed on the patient’s skin. In the OR, the marker coordinates
were recorded using a mechanical localizer [16]. In addition the markers were
manually localized in the MRI dataset. Next, a robust point matching algorithm
for resolving the correspondence and finding the optimal transformation between
the two sets was applied. It is important to notice that for various reasons, the
surgeon is not always able to touch all of the markers. Therefore one of the two
sets could contain outliers. Our point matching algorithm covers such cases in an
automatic fashion. The result of the matching between the two sets of markers
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(a) (b) (c)

Fig. 2. An output of the inner skull surface segmentation algorithm in three orthogonal
slices: (a) axial, (b) coronal and (c) sagittal. The brain tissue is colored white, inner
skull surface gray and CSF black

is shown in Fig. 3. The same mechanical localizer is used to record the points on
the brain surface during the surgery. Once the correspondence was established,
the brain surface points were transformed to the MRI coordinate system.

The next step is to generate the model mesh from the segmented brain tissue.
Here we use prism (“brick”) elements, having 8 nodes at the vertex positions.
The output of our mesh generator is shown in Fig. 4. The mesh does not cap-
ture all of the fine details of the segmentation output, since this mesh density
allows for reasonable performance (in terms of errors). A much finer mesh that
would capture all brain geometric details (i.e. all sulcal structures) would have
too many nodes and would slow down computation, not achieving a significant
improvement in performance. Once the current node positions are known, any
information obtained prior to surgery can be deformed according to the model
interpolation functions (the trilinear back interpolation used for this purpose is
explained in the next section). Currently, we use the model to deform the MRI
gray scale image slices (three orthogonal slices) using texture maps and the outer
brain surface, but it can as easily be used to deform additional CT, functional
MRI, MRA or any other volumetric preoperatively-acquired data with update
speed limited only by the graphics capabilities of the display engine.

3 Model

3.1 Brain Tissue Modeling

According to our findings and findings of other groups (see [1,2]) brain shift
is a relatively small deformation and a slow process. This fact facilitates our
approach to brain tissue modeling. As we move in these directions we also note
relevant work in soft tissue deformation (see [2,7,8,9,10,11]). Here, we employ
a linear stress-strain relation, which is a good approximation for small tissue
displacements. The model consists of a set of discrete interconnected nodes each
representing a small part of the brain tissue. Nodes have masses depending
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Fig. 3. The lighter points are the marker positions obtained from the MRI dataset,
while the darker ones are the markers touched by the surgeon in the OR. These two
figures show the marker sets after the correspondence has been established. There are
12 markers, but in this case, the surgeon managed to touch only 10 of them. Our
correspondence algorithm handles the outlier problem as well

on the size of the volume they represent and on the local tissue density. Each
connection is modeled as a parallel connection of a linear spring and dashpot,
known as the Kelvin solid model (see [14]). As for the nodes, the connection
parameters can depend on their position in the brain. The Kelvin solid model
is a model for a visco-elastic material subject to slow and small deformations,
which is exactly the case with brain shift. It is also a rather simple approach,
which is a desirable property since the model deformation should be computed
in real time, i.e. faster or at least at the speed of the brain deformation, since
it must be utilized (e.g. displayed) during the surgery. The constitutive relation
for the Kelvin solid model is

σ = q0ε + q1ε̇, (1)

where σ is stress and ε strain, while q0 and q1 are local parameters. The dotted
variables represent the time derivatives, e.g. ε̇ = d

dtε.
The equation (1) can me rewritten in the following way. If two nodes are at

positions r1 and r2, have velocities v1 and v2, and are connected in the above
fashion, then the force acting on the first node is

finner(r1, r2,v1,v2) = [ks(‖r2 − r1‖ − r12) − kd(v2 − v1)n21]n21, (2)

where ks is the stiffness coefficient, kd is the damping coefficient and r12 is the
rest length of the spring connecting the two nodes. In a general case they can
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Fig. 4. The mesh generator output. The left figure shows the mesh, while the right one
shows the mesh and the outer brain surface

vary from connection to connection depending on the local material properties.
n21 is the unit vector from r1 to r2. Note that the same force acts on the other
node but in the opposite direction.

3.2 Modeling the Brain — Skull Interaction

The brain–skull interaction as modeled in our initial efforts in [6], is a highly
nonlinear function, and significantly slows down the adaptive step-size numerical
integration. The consequence was that the steady-state for this previous 3D
model was reached in approximately four hours, which is much slower than
the real brain deformation, and therefore the model cannot be used for display
updating during the surgery. A coarse approximation could be to make the outer
brain surface nodes rigid in the bottom part of the brain (bottom with respect to
gravity) as used in [11]. However, we think that having the brain–skull interaction
contributes to the total precision of the system.

For this reason we now use an alternate approach. Prior to the simulation,
the skull and brain tissue have to be segmented. Ideally, the MRI scan would be
used for brain tissue segmentation, and CT scan for skull segmentation, but for
the aforementioned reason we have used the procedure explained in the previous
section to extract the inner skull surface. The brain–skull interaction is not
directly incorporated in the model equations, but rather incorporated via the
numerical integration, through a contact algorithm. As the model evolves over
time, when a node enters the skull area, it is returned to its previous position (to
its position from the previous step in the numerical integration). This prevents
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nodes from entering the skull, but permits them to come arbitrarily close to it
(more precisely, close up to the precision set in the numerical integration) and
can move along the skull surface if pulled by forces that are not perpendicular to
the skull surface. Effectively, nodes can move freely unless they reach the skull,
in which case they can move only in the direction tangential to the skull surface.
This behavior is identical to the one achieved by the brain–skull interaction
suggested in [6], but it is much faster to simulate. As a result, the 3D model now
needs about 10 minutes to reach the steady state, which is faster than the actual
brain deformation (which is approximately half an hour). Thus, this model can
potentially be used during the surgery, which is our eventual goal.

3.3 The Model Equations

Newton’s Second Law for each node j in the model gives

mjaj = mjg +
nj∑
i=1

finner
j

sj
i

, (3)

where mj is the node’s mass, aj is its acceleration, finner
j

sj
i

is the interaction

between nodes j and sj
i defined by (2) and g is the gravity acceleration, while

{sj
1, s

j
2, . . . , sj

nj } is the set of the neighboring nodes of the node j. Equation (3)
represents a system of second order nonlinear ordinary differential equations.

One can define the state variables to be x2j−1 = rj and x2j = vj for j =
1, . . . , N , where N is the number of the brain model nodes. Obviously, ẋ2j−1 =
x2j . The expression for ẋ2j follows directly from (3), since ẋ2j = d

dtx2j = aj . It
depends only on state variables but not on their time derivatives. Now it is clear
that (3) can be rewritten in the compact state-space form Ẋ = f(X ), where X
is the vector of the state variables and Ẋ = d

dtX . It is assumed that the brain
starts deforming from a rest position, i.e. vj(t = 0) = 0 for all j. The initial node
positions rj(t = 0) were obtained from the preoperative images, as discussed in
the previous section.

The system in state-space form is suitable for numerical integration (see [15]).
In this case the fourth order Runge-Kutta method with adaptive stepsize was
employed. The brain–skull interaction is implicitly included in the numerical
integration as explained in the previous section.

3.4 Interpolation

The output of the numerical integration is the set of model nodes over time. One
usually wants to display deformed gray scale data (e.g. from preoperative MRI)
using texture maps, brain structure surfaces or any other preoperative data. For
this purpose we have employed trilinear interpolation.

The texture map (we use texture maps to display three orthogonal slices in
the MRI datasets) deformation and the brain surface deformation are principally
different procedures. In the case of the texture map deformation for a given
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voxel position in the current frame, one should find the element (“brick”) it
belongs to, find the voxel local coordinates in the element, and then find the voxel
position in the original (initial) model state, using the same local coordinates
in the corresponding initial element. Since the corresponding initial position is
generally not exactly at a voxel center we perform an interpolation among the
neighboring voxels. This procedure is referred to as back interpolation. The brain
surface deformation is a reverse process. For a given point in the initial state, one
should find out the element it falls in and the corresponding local coordinates
and then, using the same local coordinates find the new (deformed) coordinates
in the same element in the current frame.

The trilinear interpolation, i.e. the dependence between the global x, y and
z coordinates and local element α, β and γ coordinates is given by the following
equation:

x = (cx
1 + cx

2α)(cx
3 + cx

4β)(cx
5 + cx

6γ),
y = (cy

1 + cy
2α)(cy

3 + cy
4β)(cy

5 + cy
6γ),

z = (cz
1 + cz

2α)(cz
3 + cz

4β)(cz
5 + cz

6γ).
(4)

The equation (4) can be expressed using matrix notation in the following
way,




x
y
z


 = A3,8

[
1 α β γ αβ αγ βγ αβγ

]T
. (5)

It is obvious that the function is nonlinear, but it is linear with respect to any
single local coordinate (e.g. it is linear with respect to γ). Therefore it is called
a trilinear function. To be strict, this function should be called a “tri-affine
function” but it is commonly referred to as being trilinear. The 24 elements of
the matrix A are uniquely determined from the fact that the local coordinates
take either 0 or 1 at the eight element vertex positions. It is easy to show that
this interpolation provides C0 continuity.

One can directly compute the global coordinates for given local coordinates
using (5). However, it is not simple to solve (5) for α, β and γ (the solution
expressions are huge). For this reason we have used an iterative search method to
determine local coordinates for given global coordinates. The method converges
very fast, i.e achieves the given precision (0.1 mm) in several iterations.

An example of texture map deformation is given in Fig. 5. The increase in
the gap between the skull and brain at the top is small (approximately 3 mm -
check Table 1 in the next section for the maximal surface movement value). The
MRI dataset is a 256 by 256 by 124 T1 weighted sequence (1 mm by 1 mm by
1.5 mm).
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Fig. 5. The texture map deformation. The left figure shows the initial state while the
right shows the final state. Note the increase in the gap between the skull and brain
at the top

4 Parameter Estimation

The global problem in modeling, especially in modeling heterogeneous materi-
als, is reliable model parameter setup and estimation. The approach we have
employed here is to use intraoperative measurements to estimate model param-
eters.

Although our model allows for local parameter control, we still assume a
homogeneous model for two reasons. First, it is very difficult to estimate the
brain tissue parameters locally and second, there are contradictory reports in
the literature regarding white and gray stiffness properties. Even in the case
of a homogeneous model there are two parameters to be estimated: stiffness
coefficient ks and damping coefficient kd in (2).

For parameter estimation we have used so called off-line parameter estima-
tion, where the whole sequence of the recorded (and registered) brain surface
“time” points was used. Practice shows that the steady state does not depend
on the choice of the damping coefficient, but only on the stiffness coefficient. The
damping coefficient determines how fast the steady state will be reached, while
the stiffness coefficient determines the final shape of the brain.

For this reason we use the steady state to estimate the stiffness coefficient.
An approximate value for this coefficient is initially assumed, the model is driven
to the steady state and signed average distance over all six of the recorded points
to the model surface is computed. Based on the signed average distance a new
stiffness coefficient is chosen, and the procedure is repeated until the final average
signed error was small enough (we required it to be smaller than 0.5 mm).

Once the stiffness coefficient is determined, the damping coefficient is deter-
mined in a similar fashion, but this time reducing the average signed distance in
the transient period.
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The Table 1 shows the average distance between the rigid (initial) gray/CSF
brain surface and recorded brain surface points over time (i.e. during the op-
eration) in row “surface movement”. In addition, row “model error” contains
the average error between the model prediction of the gray/CSF brain surface
and the recorded brain surface points over time. This table contains data for a
single patient undergoing epileptic (implant) surgery. The surgeon touched six
points (measured their positions with the mechanical arm) every 7 minutes (on
average).

Table 1. Average brain surface movement and model error

time[min:sec] 0:00 7:40 14:40 19:40 24:40 34:52 49:00 max
surface movement [mm] 0.34 1.38 2.21 2.30 2.74 3.24 3.29 3.29

model error [mm] 0.34 0.45 0.30 0.13 0.20 0.32 0.04 0.45

One can see that the distance between the initial gray/CSF brain surface and
the recorded brain surface points increases over time reaching 3.29 mm. The
model with optimal parameters (determined in the off-line way) has maximal
error of 0.45 mm over time. Clearly, the use of the model has done a reasonable
job of estimating the brain shift near the brain surface (where the error is the
greatest).

However, the off-line parameter estimation cannot be used in OR applica-
tions, since at each moment only the current and previous measurements are
available, not all the measurements over time. The parameters would need to be
estimated using the available intraoperative data. An idea for on-line parame-
ter estimation is to start with reasonable initial parameters, based on previous
experiments (say, on other patients), and then to adjust the parameters accord-
ing to the error between the model prediction and the measurements. At the
moment, the intraoperative measurements we have are too sparse and noisy to
allow for on-line parameter estimation. Refer to the Discussion section for our
future work plans including on-line parameter estimation.

5 Intraoperative Model Guidance

In addition to designing a reasonable model, and estimating model parameters
in an optimal sense, one can guide the model by intraoperative data. The idea
is to readjust the model at the time points when the intraoperative measure-
ments are available, and in between to let the model deform on its own. The
model tries to predict the node positions at the moment of new measurements,
new measurements are used to readjust the model, and so on. The denser the
intraoperative data are both in space and time the smaller the error between the
model and real brain.

We have employed such an approach using the model parameters estimated
as described above. The results are given in the Table 2 (this table also contains
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data for a single patient). It is clear that performance has improved over the
case of non-data-guided model. The maximal error in the case of guided model
is 0.20 mm (not taking into the account the initial state), but over time it is
even smaller because of the feedback-like guidance. The error does not approach
zero over time due to noise in data.

Table 2. Average brain surface movement and model errors

time[min:sec] 0:00 7:40 14:40 19:40 24:40 34:52 49:00 max
surface movement [mm] 0.34 1.38 2.21 2.30 2.74 3.24 3.29 3.29

non-guided model error [mm] 0.34 0.45 0.30 0.13 0.20 0.32 0.04 0.45
guided model error [mm] 0.34 0.20 0.05 0.01 0.03 0.08 0.02 0.20

The last two rows represent the same type of error as the model error in Table
1, but for non-guided and guided models. One should be aware that the errors
reported in Table 2 for guided model are very small since the six recorded brain
surface points are used to guide the model, and then the error is computed with
respect to them. A more realistic error estimation is given in the next section.
However, in an OR application one should use all available intraoperative data
to guide the model.

The results of the brain deformation modeling are shown in the Fig. 6. The
brain model is deformed by taking into account the measurements (points), and
the surface of the brain is computed according to the current model state. One
can see that the surface (prediction) matches the points (measurements).

5.1 Validation

To completely validate the model reliability one would need to obtain a dense
time sequence of 3D brain datasets using intra-operative sensing, and then com-
pare the model predictions to the actual deformations. This can be done by using
intraoperative MRI, or maybe an intraoperative CT or ultrasound scanner. Since
at this point we have brain surface points recorded over time as the only intra-
operative data, we used two of the points to guide the model and compared the
model predictions to the rest four points. The results are given in the Table 3.

Table 3. Average brain surface movement and model error

time[min:sec] 0:00 7:40 14:40 19:40 24:40 34:52 49:00 max
surface movement [mm] 0.34 1.38 2.21 2.30 2.74 3.24 3.29 3.29

validated model error [mm] 0.34 0.12 0.38 0.44 0.35 0.49 0.14 0.49
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(a) (b) (c)

Fig. 6. The results of the model deformation: (a) represents the recorded points at
initial time with the initial brain surface. The points are on the brain surface, (b)
represents the final brain surface points with initial brain surface (darker) and final
brain surface (lighter). One can see that the brain surface points moved inside the
original brain. This is due to the effect of gravity that pulled the brain downwards, (c)
represents the final brain surface points and final brain surface. The points are again
on the brain surface. The final brain surface is obtained from the final model state,
i.e. it is a prediction of the surface, while the final points are the measurements on the
brain surface when the brain settled down (after approximately one hour from the mo-
ment when the dura was opened). The prediction (surface) matches the measurements
(points)

As before the last row represents the error defined in the same way as the
model error in Table 1, but in this case for the validated model (validated by the
four left points - first two were used for model guidance). This partial validation
suggests that the use of our model reduces the error caused by the brain shift, i.e.
the difference between the current brain and the current model state is smaller
than the difference between the current brain and the initial brain.

6 Discussion

The main contribution of the model we have suggested is the ability to signif-
icantly reduce the error in real time1. The model has 2088 nodes, 11733 con-
nections and 1521 elements (bricks) and it takes typically less than 10 minutes
on an Octane SGI workstation (R10000 250 MHz processor) to reach the steady
1 By real time we mean the following. The brain deforms with certain speed (it takes

about 30 minutes to assume a steady state). At the other hand it takes certain
time to simulate the brain deformation on a computer, i.e. to deform the model.
However, at say 8 minutes after opening the dura (8 minutes of the actual, surgical
time) the corresponding model state (the state that corresponds to the 8th minute of
the actual time) has already been computed and stored in the memory, and can be
used for displaying (deformed) surfaces, texture maps or whatever is needed. Thus,
the simulation of the brain deformation is computed faster than the actual brain
deformation, i.e. in real time. If this is not the case, i.e, if the simulation of brain
takes more time than the actual brain deformation, then the model cannot be used
during the surgery (in real time) for displaying the deformed surfaces and datasets.
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state. This is significant improvement compared to our previous model (see [6]).
For these reasons it can be used in a real time application as a part of surgical
navigation system. Once the model deformation is computed, any preoperative
data, including but not limited to brain structure surfaces, slice texture maps
of MRI, fMRI, CT or MRA data can be deformed accordingly. In other words,
knowing the model state (the deformed mesh) at certain time (t0), and know-
ing the initial model state, and preoperative say fMRI dataset, one can directly
calculate the corresponding deformed fMRI data (at time t0).

As noted above, an alternative is to use an intraoperative MRI system (see
[3,4]). They certainly have their own advantages, but they are expensive, restrict
surgical access to the patient, prevent usage of metal surgical tools and their
spatial resolution is typically not as high as that of preoperative MRI. However,
a combination of a deformable model and intraoperative MRI and/or CT would
probably provide a surgical navigation system with a means to handle a variety of
deformations potentially including those due to tissue removal with an acceptable
precision.

To successfully model the brain deformation one needs to take into account
not only the soft tissue mechanics, but also neuro-anatomical knowledge. For
instance, our neurosurgical colleagues observe that it appears that the cerebellum
does not deform due to toughness of tentorium. If this assumption is valid, this
part of brain does not need to be modeled, and the deformable part of the
volume is reduced, causing the performance (both in precision and speed) to be
enhanced.

Our future work is eventually aimed at on-line parameter estimation, richer
intraoperative data acquisition, including intraoperative (portable) CT imaging,
CSF modeling and non-homogeneous brain tissue modeling.
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Abstract. Knowledge about the status of the female reproductive sys-
tem is important for fertility problems and age-related family planning.
The volume of these fertility requests in our emancipated society is
steadily increasing. Intravaginal 3D ultrasound imaging of the follicles
in the ovary gives important information about the ovarian aging, i.e.
number of follicles, size, position and response to hormonal stimulation.
Manual analysis of the many follicles is laborious and error–prone. We
present a multiscale analysis to automatically detect and quantify the
number and shape of the patient’s follicles. Robust estimation of the
centres of the follicles in the speckled echographic images is done by cal-
culating so-called winding number of the intensity singularity, i.e. the
path integral of the angular increment of the direction of the gradient
vector over a closed neighbourhood around the point. The principal edges
on 200–500 intensity traces radiating from the detected singularity points
are calculated by a multiscale edge focussing technique on 1D winding
numbers. They are fitted with 3D spherical harmonic functions, from
which the volume and shape parameters are derived.

1 Introduction

Changes in societal behaviour have led to postponement of childbearing in most
developed countries. In the Netherlands the mean age at which a woman gives
birth to her first child has now risen to 30 years. As female fecundity decreases
with advancing age an increasing number of couples is faced with unexpected
difficulties in conceiving. It is estimated that approximately 15,000 couples visit
infertility clinics in the Netherlands annually. For some 70% of these couples,
age-related fecundity decline may play a role and a further increase is to be
expected.

The decline in the number of follicles containing oocytes from the ovary and
a decrease in the quality of these oocytes are the main causes of the decline in
female fecundity. This loss in functional capacity of the ovary is more rapid in
some women. Identification of women with advanced loss in ovarian function has
been quite difficult so far. Recent research has shown that the number of visible

A. Kuba et al. (Eds.): IPMI’99, LNCS 1613, pp. 56–69, 1999.
c© Springer-Verlag Berlin Heidelberg 1999
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follicles, assessed by ultrasound in a group of women, is correlated with proven
fertility [3,4,18]. Based on this observation, ultrasound-based follicle counts are
being developed as a ‘test’ for reproductive age. This enables us to recognise
infertile women with exhausted reproductive capacity and advise them to refrain
from further diagnosis and treatment. Likewise, recognition of especially younger
infertile women with advanced loss of follicles will lead to prompt referral for
the application of assisted reproduction techniques. In our modern emancipating
society, questions are being raised related to the planning tension between career
and family: when I am young, what is the status of my reproductive system; can
I safely postpone childbearing and first pursue a career? When I get older, until
what age am I still likely to be able to conceive spontaneously? It is known that
the decrease in number of follicles is bi–exponential, and accelerates after the
age of 37 [4,18] (Fig. 1). Furthermore, the risk of damage to the ovary during
chemo– or radiotherapy is another reason to predict the age when the follicular
storage is depleted.

Fig. 1. Two 2D slices from a 3D ultrasound image of a normal 23 year old volunteer.
The follicles are clearly visible as dark hypo-echogenic circular areas in the ovary, which
is visible as a slightly darker background in the central part of the images. Typical
diameters of follicles are 2–8 mm, in a 2–4 cm diameter slightly ellipsoidal ovarian
capsule

For a large–scale evaluation of these application areas, high quality and au-
tomated information about the ovarian anatomy, especially of the follicles, is
needed. 3D ultrasound turns out to be an practical and cost effective acquisi-
tion mode. Manual counting and measuring all the follicles by inspecting the
2D slices from a 3D dataset is tedious and time consuming, and often inaccu-
rate. Automated analysis reports have been few and only in 2D [15,16,21,22].
Ultrasound data are characterised by interference noise, a wide range of often-
occurring artefacts, and low contrasts. So robust and noise resistant methods
must be developed to find the follicle centres and contours. Often follicles are
not spherical, particularly when they are touching each other, making Hough
transform methods less suitable [16]. This paper describes a new scale-space
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based method to detect and delineate the follicles automatically and accurately
in 3D ultrasound. The paper focuses on the multiscale detection methods. A
clinical paper describing the patient studies in detail is in preparation.

2 Ovarian Anatomy

The decline of human quota of oocytes begins before birth when ovarian aging
begins. At birth some million follicle are present, the number falling continuously
during childhood and adulthood until a few hundreds to thousands remain at the
age of about 50 [18]. During the total reproductive lifespan only a few hundred
will reach full maturation and ovulation. The left and right ovaries are thumb
size structures, containing the collection of follicles. Follicles are round or oval
structures embedded in the tissue of the ovarian stroma. The wall of the follicles
comprises hormone-producing cells that are responsible for the production of
fluid that is contained by the follicle wall and are filled with liquid. In transvagi-
nal ultrasound they appear as clear low echoic spheres (Fig. 1). A prime indicator
for ovarian aging is the number of antral follicles exceeding a certain size, their
relative position in the ovary, and their responsiveness (expressed in growth rate)
to hormonal stimulation [7]. This last measurement typically requires multiple
periodic measurements, i.e. daily measurements over 3–5 consecutive days.

3 3D Ultrasound

2D vaginosonography can only yield sagittal and frontal sections of the lesser
pelvis; 3D volume scanning, however, visualises all three perpendicular planes
simultaneously on a monitor screen. The 3D ultrasound system (Combison 5600,
Kretz Technik AG, Medicor, Austria / Korea) can be equipped with a 12 MHz
transvaginal 3D probe of 2.2 cm diameter, focal distance of 2–10 cm. The system
is capable of a full 3D image acquisition in about 2 seconds. From the pyramidal
volumetric dataset a Cartesian dataset is extracted with equidistant voxels by
interpolation. Sonographically, follicles with diameters of 3 mm and above can
be detected reliably. 3D ultrasound has some important advantages over 2D
imaging. Volume measurements using 2D ultrasound methods have been found
to be much less accurate than 3D ultrasound methods for irregularly shaped
objects [17]. It is a step towards interactive follicle puncturing [5]. To prevent as
much as possible the appearance of vessels just outside the ovary and to restrain
the field of view to the ovary proper, the operator, guided by 3 simultaneous
orthogonal multiplanar reformatted views, performs a 3D cut–off of the total
volume (maximum size 2563 voxels). Typical resulting datasets are 180×180×150
voxels (1 byte/voxel intensity range).

4 Detection of Follicle Centres by 3D Topological
Winding Numbers

The key clinical question is the automatic counting of the number of antral folli-
cles and their size distribution as the indicator for fertility from noisy datasets.
From Gaussian scale–space theory we know that the extraction of (invariant)
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differential structural information like edges and curvature needs to be done
with regularised differential operators, i.e. Gaussian derivative kernels [6]. The
centre of a hypo–echoic follicle is characterised as a singularity of the luminance
field; here the intensity (of the observed, thus multiscale, blurred image) reaches
a minimum. A singularity is defined as a point where the intensity gradient
vanishes. The local isophote curvature reaches infinity, due to the vanishing of
the gradient. Singular points are important topological structural descriptors of
images, especially when their behaviour is studied as a function of scale. They
are used in the next step after local features detection, as important nodes in a
perceptual grouping process, when the multiscale context of pixels needs to be
taken into account.

The detection of singular points can conveniently be done by studying the
so–called winding numbers. From the theory of vector fields [13] important theo-
rems exist (Stoke’s and Gauss’) giving the relation between something happening
in a volume and just on its surface, i.e. we can detect the singularities by mea-
surements around the singularity. To explain the notion, we start in 2D. Image
intensity is denoted by ξ, the gradient is denoted in index notation by ξi, where
indices always run over the dimensions: ξi = {∂ξ/∂x, ∂ξ/∂y}. The winding num-
ber ν is defined as the number of times the image gradient vector rotates over 2π
when we walk around the point: i.e. we integrate over a closed path, indicated
by ∂W , the increments of angle the vector ξi is making:

ν =
∮

W

ξidξjε
ij .

Fig. 2. Small rotation a vector along the contour
of the closed path around the point of study

From Fig. 4 we see:

tanα =
ξ2

ξ1
, tan(α + ∆α) =

ξ2 + ∆ξ2

ξ1 + ∆ξ1
.

We expand the left– and right–hand side of the last equation in a Taylor series
up to first order in α and ξ1, respectively. For the left–hand side we obtain

tan(α + ∆α) = tanα +
1

cos2 α
∆α + O(∆α2)
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and for the right hand side we obtain

ξ2 + ∆ξ2

ξ1 + ∆ξ1
=

ξ2 + ∆ξ2

ξ1
− ξ2 + ∆ξ2

ξ2
1

∆ξ1 + O(∆ξ2
1)

=
ξ2

ξ1
+

ξ1∆ξ2 − ξ2∆ξ1

ξ2
1

+ O(∆ξ2
1).

Taking the limit ∆α → 0 and using the expression for tanα we get

dα =
ξ1dξ2 − ξ2dξ1

ξ2
1 + ξ2

2
.

In our case we consider a unit gradient vector, so ξ2
1 + ξ2

2 = 1, and using sub-
script notation we obtain dα = ξidξjε

ij , where εij is the antisymmetric tensor
{{0,−1}, {1, 0}}.

The rotation is always an integer number times 2π (in 2D), which gives
interesting robustness through rounding. In 3 dimensions we calculate the space
angle of the gradient ξidξj∧dξk, where we recognise the gradient ξi and a directed
infinitesimal surface element dξj ∧ dξk. This is a so–called wedge (∧) product
(see e.g. [13]). We integrate these surface elements now over the closed surface
around our point of study, and see how often a full space angle of 4π is reached.
This is then the 3D–winding number.

In practice, in 3D it is calculated as follows: we investigate the 26 voxels
around a specific voxel. The form is defined in 3D as

Φ = ξidξj ∧ dξkεijk = ξi∂lξj∂mξkdxl ∧ dxmεijk.

Indices in pairs are summed over the dimensions, which process is called
contraction of indices (the summing symbol in front of the equation is routinely
left out: the so–called Einstein convention). Performing the contraction of indices
on l and m gives

Φ = εijkξi ( (∂xξj∂yξk − ∂yξj∂xξk)dx ∧ dy

+ (∂yξj∂zξk − ∂zξj∂yξk)dy ∧ dz

+ (∂zξj∂xξk − ∂xξj∂zξk)dz ∧ dx ).

This expression has to be evaluated for all voxels of our closed surface. We can
do this e.g. for the 6 planes of the surrounding cube. On the surface z =constant
the previous equation reduces to

Φ = εijkξi((∂xξj∂yξk − ∂yξj∂xξk)dx ∧ dy.

Performing the contraction on the indices i, j and k gives

Φ = 2ξx(∂xξy∂yξz − ∂xξz∂yξy)
+ 2ξy(∂yξx∂yξz − ∂xξx∂yξz)
+ 2ξz(∂xξx∂yξy − ∂xξy∂yξz).
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The gradient vector elements ξi = ξx, ξy, ξz = ∂ξ/dx, ∂ξ/dy, ∂ξ/dz can be
calculated e.g. by neighbour subtraction, as can be done in a similar way for the
derivatives of the gradient field, e.g. ∂xξy = ∂ξy/dx. The single pixel steps dx
and dy are unity.

The general theory comes from homotopy theory, where so–called topological
homotopy class numbers are defined [9,10,11]. In d dimensions we again see how
these reflect the behaviour of the intensity gradient ξi in a close neighbourhood
∂W around a given point. So, the d–dimensional homotopy class number ν of an
image pixel over the surface ∂W of the small environment W around the point
is defined as follows:

ν =
∮

∂W

ξi1dξi2 ∧ dξi3 . . . dξid
εi1i2...id .

There are no singularities on ∂W . For regular points, i.e. when no singularity
is present in W , the winding number is zero, as we see from the Stokes’ theorem:

Φ = ξi1dξi2 ∧ dξi3 . . . dξid
εi1i2...id , Stokes:

∮
∂W

Φ =
∮

W

dΦ ≡ 0,

where the fact that the (d − 1)–form Φ is a closed form was used. So, as most of
our datapoints are regular, we detect singularities very robustly as integer values
embedded in a space of zeros.

maximum: ν = 1
minimum: ν = 1

regular point: ν = 0
saddle point: ν = −1

monkey saddle: ν = −2

Fig. 3. The direction of the gradient as a vectorfield for a minimum (upper left), saddle-
point (upper right) and monkeysaddle (lower left) in a 2D spatial intensity distribution.
The number of full rotations of the gradient vector tracing a path around a point is the
winding number ν, here indicated as multiples of one full rotation 2π of the gradient
vector. All regular points give rise to ν = 0. The centre of a follicle is a singular point
in 3D, i.e. a minimum with ν = 1
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The winding number has nice properties:

– Within the closed contour there is a conservation of winding number; when
we enclose a saddlepoint and a minimum, we measure the sum of the winding
numbers (they sum to zero in this case as we are close to their annihilation);

– The winding number is independent of the shape of ∂W , it is a topological
entity;

– The winding number only takes integer values as multiples of the full rota-
tion angle; even when the numerical addition of angles does not sum up to
precisely an integer value, we may rightly round off to the nearest integer;

– The winding number is a scaled notion, the neighbourhood defines the scale;
– The behaviour over scale of winding numbers generates a treelike structure

which shows typical annihilations, creations and collisions, from which much
can be learned about the ‘deep structure’ of images;

– The winding number is very easy to compute, in any dimension;
– The winding number is a robust characterisation of the singular points in

the image: small deformations have a small effect.

Fig. 4. 2D echographic slices from the 3D dataset. Follicles appear as black circles
(yellow (white) arrows). Detected follicle centres are marked yellow (white), oversized
for clarity. Length arrow: 1 cm

In 1D the homotopy class number boils down to the difference of the sign
of the signals second derivative taken from the left and from the right. We will
use the ‘edge focusing’ multiscale behaviour of this 1D number in the sequel for
the characterisation of multiple points on the surface of the follicle. The the-
ory of homotopy numbers can easily be extended to subdimensional manifolds
(strings, surfaces) in higher dimensions and for other vectorfields, such as the
frames spanned by the eigenvectors of the Hessian, or any other well defined
vectorfield [9].
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5 The Detection of Follicle Centres and Boundary Points
by 3D and 2D Topological Numbers

The winding number in 3D is computed by adding the increments in orientation
angle of the gradient vector when moving the gradient over a closed surface
around the point of study, e.g. along the 6, 8 or 26 neighbouring pixels. Because
we need detection of the minima of extended structures, i.e. the follicles, which
are much larger then the noise grains of the raw data, we need to move to
a higher scale of analysis (i.e. blur). We perform the following steps for the
automatic detection of the follicles:

– isotropic blurring of the 3D ultrasound data, and the establishment of an
optimal scale in the sense of minimising the number of false-positives; a too
small scale gives too many minima, a too large scale too few;

– calculation of 3D winding numbers as estimators for the follicle centres; this
gives their number and spatial distribution;

– generation of 200–500 radial rays in a homogeneous orientation distribution
from these centres and determine the most pronounced 1D intensity edge
along the ray by its ‘lifetime’ over scale;

– fit spherical harmonics functions to some order to the detected endpoints in
order to get an analytical description of the shape of the follicle; from this
the volume can easily be calculated, and statistics on shape.

In Fig. 4 we show a typical result for a patient dataset; the detected winding
numbers are indicated as yellow (white) dots, indicated by arrows. The winding
numbers do not show up in all follicles because only the slices through the
follicle centres are shown. From the winding number locations, 200–500 rays
(1D profiles) are drawn in all directions, and a maximum length of 32 pixels.
The search for the most prominent contrast step along the rays is done by edge
focusing of the 1D winding number over scales 0 to 2 pixels in increments of 0.1.

Fig. 5. Hierarchical multiscale edge detection. Left: noisy 1D intensity profile Right:
sign of the second derivative (subtraction of neighbours) as a function of scale. Scale
(vertical axis) ranging from 1 to 5 pixel units. The sign of the second derivative (black
−, white +) is plotted as a function of scale. Note the closure of the extrema (causality
in a linear scale-space)
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Fig. 6. Left: 3D scatterplot of the detected edgepoints of three bovine ovary follicles.
Right: the corresponding fitted spherical harmonics. Note the irregular shape of the
follicles

Figure 5 shows an example where seemingly no edge is present but where
at high scale one edge emerges despite the noise, which is traced down to the
lowest scale. The longest lifetime is taken as a measure of importance of the
edge, indicating a follicle boundary point. When more edges survive at σ = 2
pixels we decided to take the edge at σ = 2 pixels which is closest to the centre of
the follicle. The detected edgepoints are then fitted with 3D spherical harmonic
functions Y m

l (Θ, φ) using MathematicaTM1. Spherical harmonics are orthogonal
functions with respect to integration over the surface of the unit sphere, and
form a natural basis for the description of (in our case convex) 3D shape. The
advantages of spherical harmonics are the wide range of shapes that can be
modelled, giving explicit knowledge about the deviation from a pure spherical
shape, and that the volume of the follicle can easily be calculated by analytical
integration.

Figure 6 shows a set of detected points, and the corresponding 3D fit by
spherical harmonics. The method was tested on artificial data: 3 spherical test
follicles with diameters of 3, 6 and 12 pixels (intensity 0) in a 643 pixel cube
(background intensity 1) with additive and uncorrelated Gaussian noise of σ =
0.1, 0.25, 0.5 and 1.0 intensity unit. Figure 1 shows a plane with some of the
225 edgepoints detected by edge focusing for the largest follicle in the noisy test
dataset (σ = 0.25) and a blurring scale of 6 pixels. The detection works well, and
the average radii were correct within a half a pixel for all tests. The detection of
follicle minima from the 3D US data by 3D winding numbers is scale-dependent
and we need multiple scales. Some follicles are only detected at small scales,
other at large scales.

1 Mathematica commands to generate the spherical harmonics to 4th order and do the
fitting:
fitset = Table[SphericalHarmonicY[l,m,Θ,φ],{m,-l,l,1},{l,0,4}];
fitted[Θ,φ] = Fit[data,fitset,{Θ,φ}];
ParametricPlot3D[fitted[Θ,φ]{Cos[Θ],Sin[Θ] Cos[φ],Sin[Θ] Sin[φ]},
{Θ,0,π},{φ,0,π}];
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Fig. 7. Edgepoints are successfully detected on the
surface of the follicle in the noisy testset. Back-
ground intensity 1, follicle intensity 0. Additive un-
correlated Gaussian noise: σ = 0.25. Blurring scale
6 pixels. Image resolution 642 pixels. The detected
edgepoints are indicated as dots on the ultrasound
image

Figure 1 shows the detected number for blurring scales 3, 4, 6 and 10 pixels.
At σ = 3 pixels, many minima are detected, but also many false positives. At
scale σ = 4 pixels (without scale σ = 3 pixels) only one minimum is missed. At
σ = 6 pixels we have little errors, but also few new detections. At σ = 10 pixels
we have no errors, we only detect the large follicle(s). These cannot be seen at
smaller scales, due to the impossibility to detect minima at a small scale in a
homogeneous region of a follicle (i.e. the follicle is large relative to the size of
the operator). This leads to the conclusion that two scales suffice: σ = 3 and
σ = 10 cover the detection range well for the 3D US datasets. Processing times
for typical datasets (150 × 150 × 150 pixels) take about 1 minute per scale on a
300 MHz Pentium II PC.

Fig. 8. Upper left: number of detected
points as a function of scale. Upper
right: cumulated number of detected
points. Lower left: Diagram of detected
follicles in bovine ovary II as a function
of the blurring scale (vertical scale, in
pixels)

False positive winding numbers also generated 225 edgepoints which should
be discarded. If such a winding number emerged as a noise minimum, the set of
edgepoints can be tested for roundness i.e. discriminated by the large variance
of the detected radii length, or a test can be done on the (low) intensity of the
internal pixels of the pseudo-follicle. This turned out to be very difficult due
to the great variability in echo amplitude output. If the false winding number
is due to another structure (vessel, another follicle) the shape derived from the
edgepoint fit may discriminate. We have not performed this test yet. However,
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if the data is cut off in such a way as only to include the ovary, such detections
are unlikely to occur. We employed this strategy as much as possible, because it
is a fairly easy task to restrict the Cartesian volume to the ovarian space after
scanning.

The algorithm was implemented in a universal image analysis program writ-
ten in Borland C++ (Image Explorer by van Ginneken and Staal (ISI)).

6 Validation of the Detection Procedures with Bovine
Ovaries

To calibrate the full range of steps of the automatic detection procedure, two
fresh bovine ovaries with multiple follicles of widely different diameters were
used as test objects. The thumbsize ovaries were subsequently:

– scanned with 3D–US, immersed in physiological salt solution and with the
3D ultrasound probe at the same typical object–probe distance (2–4 cm)
as applied on female patients; three subsequent acquisitions with different
probe positions;

– scanned with high resolution FSE (fast spin–echo pulse sequence) MRI: slice
thickness 0.5 mm, non–overlapping, in–plane pixelsize 100×100 µ, TR = 20
ms, TE = 75 ms; (An example 2D slice from the 3D MRI is given in Fig. 4.)

– sliced with a microtome, embedded in CMC (carboxymethylcellulose) and
after freezing (−30 to −35 0C), into anatomical coupes of 25 micron thick-
ness. Image resolution 1528 × 1146 at 100–micron intervals with a digital
camera (300 images, no histological staining).

Fig. 9. Calibration of the automated method with two bovine ovaries. Left: Anatomical
coupe. Middle: Coronal MRI, FSE. Right: 3D surface rendering of the follicles from
the MRI acquisition shows their spatial relationship. Segmentation by thresholding

We analysed the 3D–US data with scales σ = 3, 4, 6 and 10 pixels. The
cumulated number of pixels detected as a function of scale for the first bovine
ovary is indicated in Fig. 9 (left). For σ = 3 we find 11 follicles detected, when
also scale σ = 4 is included, we find 12. Adding σ = 6 we find 13, and adding
σ = 10 no extra follicle is added. If we start from a slightly higher scale, i.e.
σ = 4, we see in Fig. 9 (right) that only 5 follicles are detected, then adding
σ = 3 gives 12 detected. Only scales σ = 4 and σ = 6 gives 7 detected follicles,
and only scales σ = 3 and 6 gives 13 detected. The conclusion here is that two
scales suffice: σ = 3 and σ = 10. If computing time is no penalty, σ = 6 could
be added.
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The images from MRI and anatomical slices were analysed with standard im-
age visualisation and measurement tools. The 3D-ultrasound data were acquired
three times individually. The method of winding numbers introduces negligible
dislocation of the minima despite the wide range of blurring scales, as can be seen
in Table 1 where the x, y, z co–ordinates, the distances between the minima and
the volumes of the three largest follicles of each acquisition is given. The average
diameters (over 3 perpendicular directions) of the test follicles were measured
after identification of the follicles in the corresponding 3D ultrasound datasets.
The volume measured from the MRI and anatomical data are estimated from
the average diameters and assuming a spherical shape.

Table 1. x, y, z co–ordinates in pixels of the centres of the three largest follicles, from
three individual 3D ultrasound acquisitions (v00, v01 and v44) of bovine ovary I. Inde-
pendent measurements. Note the accurate correspondence in the calculated distances
between the winding number points, indicating independence of scale-dependent dislo-
cation. The difference in volume from the spherical harmonics fit was about 4% for the
two larger, and 10% for the smallest follicle. The three methods of volume measuring
compare very favourably

Follicle x y z distance to volume from volume volume
# centre centre centre neighbour spherical harmonics from MRI from

(pixels) (mm3) anatomy
v00 99 51 35 25.4 259.7 250.0 262.1

93 28 44 45.0 28.4 27.0 29.8
113 55 74 41.6 56.2 54.9 59.3

v01 33 41 66 25.3 242.3
47 22 75 44.5 34.0
64 49 44 38.9 54.7

v44 72 49 84 25.4 239.7
69 28 70 45.2 28.4
32 51 82 40.1 59.3

7 Patient Data
This study focuses on the methodology to automatically count and analyse the
follicles from the 3D-ultrasound data, and only limited patient studies have been
carried out so far. The follicle count results on 10 patients are shown in Table 2.
Each dataset was cut off to include only the ovary immediately after scanning
by an experienced echographer, and automatic and human expert counts were
compared. We are currently finalising a clinical PC-based system with a user-
friendly user–interface. In a next phase of the study the accuracy and efficacy of
the method will be evaluated on a large patient group.

8 Conclusion and Discussion
The automatic detection of follicles from 3D ultrasound data is not an easy
task, given the strong noise characteristics of the ultrasound signal, the size
and contrast of the follicles and the follicle looking like structures in and at the
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Table 2. Performance of the algorithm compared with a human expert. Number of
follicles found. Data for 6 patients. The datasets are cut off to contain only the ovary.
Scales used: σ = 3.6, 4.8, 7.2 and 12 pixels

Patient # manual Computer Patient # Manual computer
1 17 15 4 14 9
2 10 8 5 9 7
3 7 5 6 9 7

immediate neighbourhood of the ovary. Clinically, the most important parameter
is the number of follicles. Still, with the introduction of multiscale topological
and edge focusing methods we are able to extract the follicles automatically with
95% accuracy. Good cut-off to leave only the ovary region in the resulting 3D
datacube by the operator immediately after scanning is an important step to
higher score.

We exploit knowledge about the convex shape of the follicles by means of
spherical harmonics function fitting. This can be exploited in other ways, such
as by a Hough transform, parametrically deformable contours [23] or scale–space
primal sketch blobs, each over a range of scales. Our approach however enables a
much better accuracy of shape description than e.g. a 5 parameter Hough trans-
form for ellipsoidal shapes [15,16]. The approach is computationally efficient,
with just sign differences over 1D signals. The method can now be applied in a
larger scale clinical setting, which is scheduled as a next phase of the project.
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Abstract. It has previously been demonstrated that using 3-D rather
than 2-D ultrasound can increase the accuracy of volume measurements.
Unfortunately, the time required to produce them is also increased. While
freehand 3-D ultrasound allows complete freedom of movement during
scanning, the resulting B-scans are generally resampled onto a low reso-
lution, regular voxel array before subsequent processing — increasing the
time even further. In contrast, sequential freehand 3-D ultrasound does
not require a voxel array, and hence both the data resolution and the
processing times are improved. Such a system is presented here, incorpo-
rating three novel algorithms, each operating directly on non-parallel
B-scans. Volume is measured using Cubic planimetry, which requires
fewer planes than step-section planimetry for a given accuracy. Maximal
disc guided interpolation can be used to interpolate non-parallel cross-
sections. Regularised marching tetrahedra can then be used to provide a
regular triangulation of the zero iso-surface of the interpolated data. The
first of these algorithms is presented in detail in this paper.

1 Introduction

There has been much research in the last two decades on systems which al-
low the construction and visualisation of three dimensional (3-D) images from
medical ultrasound data. One of the more compelling applications where 3-D
ultrasound can provide a real benefit is in the accurate measurement of volume.
This is important in several anatomical areas, for instance the heart [7], foe-
tus [5], placenta [8], kidney [6], prostate [1], bladder and eye [11]. Measurements
have traditionally been made with 2-D ultrasound, but it is generally accepted
that 3-D ultrasound can provide much greater accuracy.

Freehand 3-D ultrasound allows the clinician unrestricted movement of the
ultrasound probe. The ultrasound images (B-scans) are digitised and stored in
a computer. In addition, the position and orientation of the probe is measured
and recorded with each B-scan. The various 3-D ultrasound systems are reviewed
in [5]. One of the disadvantages of freehand scanning is that the recorded B-scans
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are not parallel — this makes processing of the data more complex, hence most
systems interpolate this data to a regular 3-D voxel array, or cuberille. However,
this can take considerable time and generate potentially misleading artifacts.

By contrast, in sequential freehand 3-D ultrasound, the original B-scan data,
and the order of acquisition of the B-scans, are maintained throughout the sub-
sequent processing. This reduces the time from scanning to display, at a cost
of a slight increase in processing time for each display. Moreover, any sequen-
tial method which does not require human interaction1 has the potential to
be performed during scanning, greatly decreasing the residual (post scanning)
processing time.

It has already been demonstrated that re-slice displays (i.e. 2-D displays in
new orientations) and panoramic displays (i.e. 2-D displays with extended cover-
age) can be performed efficiently by sequential methods [14]. Resampling is only
performed once, rather than once to the cuberille and once again to the viewing
plane, which leads to increased quality displays. This paper demonstrates that
volume measurements and organ surfaces can also be efficiently estimated in a
sequential manner. Segmentation remains the most complex and time consum-
ing step in this process. In view of this, the proposed algorithms are designed for
sparse cross-sections, to limit the time spent segmenting, in non-parallel planes,
so the segmentation can be performed in the original B-scans (which do not
suffer from interpolation artifacts). Reducing total organ volume measurement
time is particularly important in a clinical setting.

2 Volume Measurement Using Ultrasound

2.1 Sequential Volume Measurement from Scan Plane Data

Volume measurement using conventional 2-D ultrasound is achieved by approx-
imating the organ of interest as an ellipsoid, or some other simple shape, and
estimating the main dimensions from appropriate B-scans. A correction is then
made to the result, dependent on the organ, the age and sex of the patient and
other factors. There are many formulations for the resulting equations [8,16].

Ellipsoid formulae are easy to use, but they make geometrical assumptions
about the shape of a given organ, leading to errors in the volume measurement
which can be greater than 20%. Planimetry is an alternative approach, made
possible with 3-D ultrasound, in which object cross-sections are outlined on each
scan plane, and the volume is calculated from the cross-sectional areas and plane
positions. The most common implementation of this is step-section planimetry,
which assumes that the cross-sections are parallel.

There are numerous reports which indicate that step-section planimetry is
much more accurate than ellipsoid or other geometrical formulae [1,13,15]. In one
exception, planimetry was compared with 16 equations for measuring prostatic
volume and π

6 (transverse diameter)2(anteroposterior diameter) was found to be

1 All the algorithms presented here are fully automatic, save segmentation.
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marginally more accurate [16]. However, planimetry has recently been shown to
have much better intra- and inter-observer variability [17].

Freehand 3-D ultrasound does not generate data on parallel planes. Volume
measurement is most often achieved by interpolating to form a cuberille, then
segmenting the entire cuberille, resulting in a set of parallel cross-sections whose
volume can be measured using step-section planimetry. This is equivalent to
counting the voxels inside the object.

There are two alternatives to this approach, which do not require the creation
of a cuberille, and hence can in general be performed sequentially. The first is an
extension of planimetry developed by Watanabe [20] to non-parallel, and even
overlapping, cross-sections, which has been used to determine the volume of the
prostate [2]. The second, and more common, is to estimate the surface directly
from the cross-sections, then calculate the volume of this surface.

2.2 Volume Measurement from Surface Reconstructions

Surface estimation is generally achieved by triangulation between neighbouring
cross-sections. Such techniques have been developed for parallel cross-sections,
but can usually be adapted for slightly non-parallel cases. Even for parallel cases,
estimating the surface in a robust manner is difficult, which is evident from the
wealth of related literature.

Once the surface of an object has been estimated, the volume can be calcu-
lated by several different methods, dependent on surface representation.

Tetrahedral Volume. If the surface has been estimated by forming tetrahedra,
the volume can be calculated from the sum of the volumes of these tetra-
hedra. Alternatively, the polyhedral approximation formula developed in [4]
can be used. This is based on tetrahedral volume, but formulated in terms of
the points making up the object cross-section on each plane. Although this
appears to allow volume calculation from cross-sections without triangula-
tion, in fact a simple triangulation is assumed in the algorithm which will
only be correct for simple shapes. This technique is used, for instance, in [7].

Cylindrical/Pyramidal Volume. If the scanning pattern is rotational, parts
of cross-sections can be connected with the mid-point of the rotation to
form pyramidal or cylindrical part sections, from which the volume can be
calculated. This technique has been used for the eye [11]. Moritz also applied
it to freehand scans by re-sampling these scans in a rotational pattern and
then calculating the volume from the new cross-sections [12].

Volume from Triangulation. Hughes has suggested two ways of measuring
the volume directly from a triangulated surface. ‘Ray Tracing’ involves pro-
jecting rays from a 2-D grid through the object, and calculating the volume
from the length of the part of each ray contained by the object [9]. Alterna-
tively, a discrete version of Gauss’ theorem can be adapted to calculate the
volume component for each individual triangle such that the sum of these
components is equivalent to the object volume [10].



Volume Measurement in Sequential Freehand 3-D Ultrasound 73

Comparisons of some of the various freehand volume measurement techniques
have been performed [9] — it is clear that any of the non-geometrical methods are
to be preferred over the ellipsoid equations [7]. There are two areas that warrant
further research, in the context of sequential volume measurement. Firstly, it is
suggested in the literature [2,20] that using a cubic interpolant would increase
the accuracy of the, already flexible, non-parallel planimetry technique. However,
this has never previously been reported. Secondly, a sequential surface estimation
algorithm is required which can handle cross-sections with the same complex
topology and arbitrary orientation as this planimetry technique.

3 A Sequential Volume Measurement System

A fast and accurate volume measurement system has been incorporated into
Stradx2 [14]. Stradx is a flexible sequential freehand 3-D ultrasound tool which
can be used to grab ultrasound video images and orientation information and
display these in various ways, including re-slicing and panoramic displays, with-
out creating a cuberille. The volume measurement system includes three novel
algorithms for estimating volume, interpolating segmented data and triangulat-
ing the iso-surface of this data, all from the original freehand B-scans. The first
of these algorithms, for estimating volume, is presented in detail in Sect. 4.

Fig. 1. Stradx v5.2 interface

2 http://svr-www.eng.cam.ac.uk/∼rwp/stradx/.
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Figure 1 is an example of the interface provided for this purpose. The steps
in the volume estimation are as follows.

Manual segmentation. This is performed by the clinician on a subset of the
original B-scans, using a mouse (the review window in Fig. 1). Although
many automatic segmentation algorithms have been investigated, none are
flexible enough to be used for generic ultrasound data in a manner which
is faster than manual segmentation. This is no surprise — often the clini-
cian will draw a cross-section through apparently featureless data, guided
only be their prior knowledge of the organ shape and a 3-D reconstruction
they have in their head. Semi-automatic segmentation methods which do
use prior models are generally difficult to use, because it is hard to make
the model both flexible enough to be used in different circumstances and
detailed enough to be helpful.

Real-time display of cross-sections. The cross-sections are displayed in 3-D
wire-frame format as they are drawn (the outline window in Fig. 1). This
provides feedback on both the shape and the spacing of the cross-sections,
allowing the clinician to concentrate on the more complicated areas.

Real-time volume estimate. As the cross-sections are completed, a real-time
volume estimate is calculated using cubic planimetry (the volume in the
outline window of Fig. 1), described in more detail in Sect. 4.

Surface estimation and display. Estimation and display of the object sur-
face is useful for giving the clinician confidence in the segmentation. In or-
der to achieve this, a distance field is calculated from the cross-sections, and
an iso-surface triangulation algorithm used to extract the zero surface of
this field (the surface window of Fig. 1). This is a more robust method
than triangulating the cross-sections directly. The distance field is calculated
from the non-parallel cross-sections using maximal disc guided shape based
interpolation, described in [19], which is a fast, simple method that can han-
dle complex cross-sections. The iso-surface is triangulated using regularised
marching tetrahedra, described in [18], another fast method which generates
triangles with good aspect ratios.

Secondary volume estimate from surface. The volume of the triangulated
surface can be calculated by a variant of Gauss’ theorem [9] (the volume
in the surface window of Fig. 1). Although this is less accurate than the
cubic planimetry volume [19], similarity between the volume estimates gives
confidence in the cubic planimetry volume.

4 Cubic Planimetry

4.1 Volume from Arbitrarily Oriented Planes

The equation for the volume v of any object defined from sequential cross-
sections is given by Watanabe [20] as

v =
∣∣∣∣
∫

L

s · dω

∣∣∣∣ (1)



Volume Measurement in Sequential Freehand 3-D Ultrasound 75

where ω is the position vector of the centroid of the cross-sectional surface S
whose vector area is given by s, and L is the path of ω as the object is scanned.
Equation (1) can be evaluated discretely by approximating the integral using
the trapezoidal rule between each pair of slices, which gives

v =

∣∣∣∣∣
N∑

i=2

1
2

(si + si−1) · (ωi − ωi−1)

∣∣∣∣∣ (2)

where N cross-sections have vector areas s1, . . . , sN and centroids ω1, . . . ,ωN .
This approximation is equivalent to assuming that the surface area projected
onto a plane normal to the path of the centroids, L, varies linearly from one
slice to the next. This is clearly true for objects whose cross-sectional area does
not vary, e.g. prisms, and in this case (2) is the exact solution. Paraboloids also
have this property. However, objects which are either more concave or more
convex than a paraboloid will not be correctly approximated by this equation.
For example, the volume of a cone will be overestimated, and that of a sphere or
an ellipsoid will be underestimated. The error increases as the number of scan
planes reduces.

Equation (2) can easily be implemented on a computer once the cross-sections
have been determined and the areas and centroids calculated. In practice, the
first step is by far the most time consuming, typically taking half a minute or
so for each cross-section for manual segmentation. Once this has been done, the
calculation of the volume is trivially fast in comparison (a few milliseconds).

Clearly, some form of cubic rather than trapezoidal interpolation would in-
crease the accuracy of the volume estimate and eliminate the bias towards
paraboloids or prisms. It has been argued [2] that the small increase in accuracy
this would represent does not justify the additional complexity that would be
required. However, two points can be made in defence of this approach. Firstly,
the additional complexity is completely transparent to the user — once the al-
gorithm has been implemented, the user performs precisely the same operations
(i.e. outlining of the cross-sections) in both cases. Secondly, the reduction in the
number of cross-sections required for an accurate volume estimation with cubic
planimetry is very welcome, since segmentation is the time consuming step in
the process. We present results to demonstrate this advantage in Sect. 5.

4.2 2-D Representation of the Problem

Interestingly, the whole problem can be reduced to finding the area of a care-
fully constructed 2-D graph which represents a combination of the original 3-D
object with the scanning pattern. The equivalence between the 3-D and 2-D
representations is shown in Fig. 2.

The area enclosed within the dashed and solid lines in the 2-D representation
is equivalent to the volume which would be calculated by Watanabe’s trapezoidal
equation from the 3-D representation. This can be easily proved by considering
the 2-D representation to have a nominal thickness of 1 unit, and then applying
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Fig. 2. 3-D and 2-D representation equivalence. i) The length of a 2-D line, a, is
equivalent to the area of the cross-section, |s|. ii) The length of the line, c, is equal to
the magnitude of the vector, |∆ω|. iii) The angle, α, between the line c joining the
centres of each line a and the normal to those lines is equal to the angle, θ, between
the vector area s and the vector ∆ω joining the centroids of each area. iv) Similarly,
the angle, β, is equal to the angle, φ

(2) to calculate the area

A =

∣∣∣∣∣
N∑

i=2

1
2

(ain̂i + ai−1n̂i−1) · (ci−1)

∣∣∣∣∣

=

∣∣∣∣∣
N∑

i=2

|ci−1|
2

(ain̂i · ĉi−1 + ai−1n̂i−1 · ĉi−1)

∣∣∣∣∣

=

∣∣∣∣∣
N∑

i=2

|ci−1|
2

(ai cos β + ai−1 cos α)

∣∣∣∣∣ . (3)

Equation (2) can be similarly re-written as

v =

∣∣∣∣∣
N∑

i=2

|∆ωi−1|
2

(|si| cos φ + |si−1| cos θ)

∣∣∣∣∣ (4)

If the variables in (3) and (4) are equated for all values of i, then A ≡ v. There
is, however, significant redundancy in this conversion. Firstly, only the multiple
of the lengths of the lines a and c is used, and hence an arbitrary scale factor
can be multiplied into one, so long as it is divided from the other. This has the
effect of stretching or shrinking the 2-D graph, but has no bearing on the volume
calculation. Secondly, only the cosine of the angles α and β are used, hence they
can be arbitrarily positive or negative. The effect of this choice is demonstrated
in Fig. 3.

Although the choice of angles has no effect on the volume calculated by
the trapezoidal method, it clearly does affect how well the 2-D representation
matches the original 3-D representation. Cubic interpolation involves the use of
information from several sequential slices and, therefore, an additional heuristic
rule is required to ensure that the angles α and β are chosen correctly.
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Fig. 3. Choice of angles for 2-D representation

For each choice of angle α between the line joining centroids ci and the area
representation ai, the angle which ci makes with ci−1 is also calculated. The
value of α is then chosen for which this calculated angle is closest to the 3-D
version (i.e. the angle which ∆ωi makes with ∆ωi−1). A similar rule is employed
for the angle β, using the area normals rather than the lines joining the centroids
as the reference.

The result of this entire process is shown for an ellipsoid in Fig. 4. The
ellipsoid was sliced with a scanning pattern which varied in position, azimuth,
elevation and roll. The resulting 2-D graph retains some of the shape of the
ellipsoid but also reflects the way in which it was scanned.

(a) original cross-sections (b) 2-D graph representation

Fig. 4. Freehand scanned ellipsoid in 3-D and 2-D representations

4.3 Cubic Interpolation of 2-D Representation

If instead of joining the end points of the lines a with straight lines, a smooth
curve is fitted between them, then the area enclosed by these curves should
represent a more accurate measure of the volume of the original object. The
curves must at least be cubic, since we would like to have continuity in at least
the first derivative (i.e. the curves are smooth at the joints). They must also be
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defined parametrically, since we expect them to have multiple values in both x
and y directions.

The smoothest possible curve could be obtained by fitting an appropriate
function through all the end-points simultaneously. However, this sort of global
optimisation is in general costly to compute, which would violate one of the
motivations for improving the volume calculation, namely that the increase in
processing time is negligible. A less optimal but faster solution can be found by
using parametric cubic splines. We require a spline which interpolates the control
points, i.e. the resulting curve passes through the points which are used to define
it. This can be achieved with a spline introduced by Catmull and Rom [3], which
uses four sequential control points (in our case the end points of the lines a),
fitting a curve between the middle two of these points.

The first and last curve segments are necessarily a special case, since only
three points can be used to fit the curve. There are a variety of ways of handling
this, which can all be implemented by inventing an additional control point. If
this is chosen to be the same as the second to last point, the effect is to place
a null gradient constraint at the end point, which results in a rate of change of
gradient of zero. Figure 5 shows the curve for the same situation as in Fig. 4,
together with the actual curve which results from scanning in smaller steps.

(a) cubic and linear

(b) more cross-sections (c) (a) and (b) superimposed

Fig. 5. Cubic and linear interpolations compared with actual 2-D graph for a scanned
ellipsoid. The actual volume is 2.009. (a) the linear planimetry volume is 1.857 (92.4%),
and cubic volume is 1.989 (99.0%). (b) using linear planimetry with more cross-sections
gives 2.008 (99.9%)

Once the curves joining the end points of the lines a have been defined, the
area enclosed by them can be calculated directly from the parametric coefficients
of each curve. This calculation is based on the application of (1), and is given in
Appendix A.
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5 Results
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Fig. 6. Results: Sphere, scanned using a fanning action
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Fig. 7. Results: Cone, scanned using a linear sweep

In order to verify the accuracy of the volume measurement algorithm, a computer
simulation was constructed in which mathematical objects could be ‘scanned’
with freehand sweep patterns, and pre-segmented cross-sections generated. The
results of this process are shown for a sphere, a cone and a ‘baseball glove’
shape in Figs. 6, 7 and 8 (a more thorough investigation is reported in [19]).
The number of scans was varied in each case from 4 to 20, keeping the first
and last scans fixed. The graphs show the volume measurements, using linear
and cubic planimetry, and from a surface estimated with maximal disc guided
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Fig. 8. Results: Glove shape, scanned using a linear sweep

interpolation. Solid horizontal lines indicate the actual volume and a margin
of ±1%. Cross-sections and surfaces are displayed for the minimum number of
scans for which the cubic planimetry volume was within this margin.

It is clear from these graphs that the cubic planimetry volume converges much
faster than the alternative volume measurements — very few cross-sections are
required to give an accuracy better than ±1%. This is the case both for com-
plex shapes and freehand scanning patterns. In addition, maximal disc guided
interpolation creates surfaces from these cross-sections which are good approxi-
mations of the actual shapes.

In order to validate in vivo volume measurements, the actual volume must
be known. This can be done for the human bladder, by measuring the amount of
voiding. The input to the bladder is difficult to measure, but can be estimated
from sequential volume measurements in periods with no voiding. The bladder
wall is very well defined by ultrasound, and is therefore easier to segment than,
for instance, the kidney.

Ten scans were performed of an initially full bladder, in pairs, with partial
voiding between each pair. The bladder was completely voided after the eighth
scan. The scans were performed in fast sequence, the output being collected
for later measurement, in order to limit the amount of bladder filling during
the experiment. The output was then measured using a 20ml or 60ml graded
syringe (dependent on the volume) to an accuracy of approximately 1ml. The
stored ultrasound B-scans were then segmented, using 15 to 20 cross-sections
per examination: Figure 9(a) shows an example of this. Volumes calculated from
these cross-sections using cubic planimetry are tabulated in Table 1.

The amount of bladder filling was estimated in three stages. Firstly, the
linear rate of filling was calculated, for each pair of scans, from the volume
measurements. Secondly, cubic splines were used to interpolate these values and
give a continuous bladder filling rate. Thirdly, this function was integrated, to
give the estimated amount by which the bladder had filled at any point during
the experiment. This information was used to estimate the actual bladder volume
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Fig. 9. Results: Human bladder. The bladder was partially voided four times during
the examination. Two sets of scans were recorded between each partial voiding. The
data is tabulated in Table 1

at any point in time. The resulting curve is shown in Fig. 9(b), along with the
estimated amount of voiding from this curve.

Table 1. Results: Human bladder. Fill is the estimated rate at which the bladder
was filling. Diff is the calculated difference in volumes, adjusted for bladder filling,
and Void is the actual measured output. The interpolated volume and difference are
shown graphically in Fig. 9(b)

Time, m:s 00:00 00:40 02:54 03:54 05:17 05:58 07:28 08:07 10:26 11:02
Volume, ml 342.7 363.4 360.9 369.2 306.0 319.8 194.8 206.2 14.7 20.3
Fill, ml/min 30.7 8.3 20.0 17.5 9.3
Diff, ml 24.2 84.1 155.6 219.0
Void, ml 25 74 156 234
Error, % 1.6 6.8 0.1 3.2

The errors in Table 1 are calculated for the actual volume measurements,
rather than the amount of voiding. The amount of voiding is a complicated
function of the volume measurements, due to the adjustments for bladder fill
rate. Since it is essentially a measure of difference, the actual volume errors are
assumed to add to give the voiding error, hence these errors are approximated
to be half the voiding error.
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6 Conclusions

Cubic planimetry allows accurate measurement of volume with sequential free-
hand 3-D ultrasound. None of the algorithms presented place any restrictions
on the scanning pattern, and they do not require the construction of a cuberille.
Volumes can be measured to ±1% in simulation and ±7% in vivo, with typically
only 10–20 cross-sections. The entire process, including scanning and manual
segmentation of the organ of interest, can be completed in only 5–10 minutes.
This makes the system both a practical and accurate method of measuring organ
volume using ultrasound in a clinical setting.
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A Area from Parametric Cubic Splines

Given two curves, each defined parametrically:

[
xi(t) yi(t)

]
=

[
t3 t2 t 1

]



xi3 yi3
xi2 yi2
xi1 yi1
xi0 yi0


 where 0 ≤ t ≤ 1.

If each curve is connected to the other by two straight lines joining the points,
t = 0 and t = 1, the enclosed area can be calculated from the application of (1):

A =
∣∣∣∣
∫ 1

t=0
s · dω

∣∣∣∣ (5)

where s is a vector normal to the line joining the curves at the same value of t,
and ω is the position of the centre of that line:

s(t) =
[
y1(t) − y2(t) x2(t) − x1(t)

]
(6)

dω(t) =
1
2

[
dx1(t) + dx2(t) dy1(t) + dy2(t)

]
. (7)
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Abstract. We suggest that identification and measurement of objects
in 3D images can be automatic, rapid and stable, based on the statistical
properties of populations of medial primitives sought throughout the im-
age space. These properties include scale, orientation, endness, and me-
dial dimensionality. The property of medial dimensionality differentiates
the sphere, the cylinder, and the slab, with intermediate dimensionality
also possible. Endness results at the cap of a cylinder or the edge of a
slab. The values of these medial properties at just a few locations provide
an intuitive and robust model for complex shape. For example, the left
ventricle during systole can be described as a large cylinder with an apical
cap at one end, a slab–like mitral valve at the other (closed during sys-
tole), and appropriate interrelations among components in terms of their
scale, orientation, and location. We demonstrate our method on simple
geometric test objects, and show it capable of automatically identifying
the left ventricle and measuring its volume in vivo using Real–Time 3D
echocardiography.

1 Introduction

The lineage of the medial approach may be traced to the medial axis (otherwise
known as symmetric axis or skeleton) introduced on binary images by Blum and
developed by Nagel, Nackman, and others [1–3]. Pizer has extended the medial
axis to gray–scale images producing a graded measure called medialness, which
links the aperture of the boundary measurement to the radius of the medial axis
to produce what has been labeled a core, a locus in a space of position, radius,
and associated orientations [4, 5] Methods involving these continuous loci of
medial primitives have proven particularly robust against noise and variation in
target shape [6]. Determining locations with high medialness and relating them
to a core has been accomplished by analyzing the geometry of loci resulting from
ridge extraction [7]. Models including discrete loci of medial primitives have also
provided the framework for a class of active shape models known as Deformable
Shape Loci [8].

A. Kuba et al. (Eds.): IPMI’99, LNCS 1613, pp. 84–97, 1999.
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The objective of the work reported here is to build on these ideas to produce
a method for analyzing the shape of the heart in Real Time 3D ultrasound,
a new imaging modality that uses a matrix array of transducer elements to
scan the moving heart in 3D at more than 20 frames/second [9]. The approach
to analyzing this data aims to extract the scale, orientation and dimensionality
(shape type) of sections of cardiac anatomy by statistical analysis of populations
of medial primitives. In particular, the primitives are identified by first searching
for individual boundary points throughout the image in an initial sweep, and
then by matching pairs of boundary points to form what are called core atoms.
Core atoms tend to cluster along a medial ridge and allow for statistical analysis
of the core and its underlying figure. Core atoms have already been developed
for analysis of 2D shape [10] and are generalized here to 3D. The analysis is also
extended to spatially sampled populations of core atoms. This research is part
of a Ph.D. dissertation which covers many aspects in greater detail [11].

2 What is a Core Atom?

A core atom is defined as two boundary points b1 and b2 that satisfy particular
requirements (described in detail below) guaranteeing that the boundaries face
each other. A core atom can be represented by a single vector c1,2 from the
first boundary point to the second. The core atom is said to be “located” at a
center point midway between the boundary points (see Fig. 1). The medialness
at the center point is high because the boundariness at both boundary points
is high and because the boundary normals face each other. Core atoms carry
orientation, width and position, providing the ability for populations of core
atoms to be analyzed in these terms.

cmin

cmax

n̂1
b1

b2center

b1 b2

c 1,2

Fig. 1. A core atom consists of two boundary points that face each other across an
acceptable distance, and a center point at which the core atom is said to be located.
The search area (gray) for boundary point b2 determined by boundary normal n̂1

Unlike medial models where object angle (half the angle between lines from
the center point to each respective boundary point) is permitted to vary, the
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object angle of a core atom is fixed at 90◦. Core atoms thus follow in the tradi-
tion of Brady [12] . As in Brady, the underlying figure is not required to have
parallel boundaries. In the experiments presented below, boundariness is based
on a Difference of Gaussian (DOG) measurement of intensity gradient, accom-
plished by repeated application of a binomial kernel. The number of applications
determines the aperture of the boundariness detector, and is generally propor-
tional to the size of the core atom. Further constraints are placed on the levels
of intensity along the gradient direction. Other forms of boundariness, such as
those based on texture analysis, could also be used for core atoms, provided an
orientation is established for each boundary point.

Boundariness vectors are sampled on a rectilinear grid, and their magnitude
compared to a threshold to select a population of boundary points bi at locations
xi with orientations n̂i (“v̂” denotes normalization, v̂ ≡ v/‖v‖). The strength
inherent to the statistics of populations is meant to counteract the weakness of
thresholding. Core atoms are created from this population by finding pairs of
candidate boundary points that satisfy the following three criteria:

1. The magnitude of the core atom vector c1,2, i.e., the distance from one
boundary point to the other, must be between cmin and cmax.

c1,2 = x2 − x1 cmin ≤ ‖c1,2‖ < cmax. (1)

The core atom vector can be oriented either way since the order of the
boundary points is arbitrary.

2. The boundary points must have sufficient face–to–faceness defined as

F (b1, b2) = f1 · f2 f1 = ĉ1,2 · n̂1 f2 = ĉ2,1 · n̂2. (2)

Since f1 and f2 are normalized to lie between +1 and -1, their product F
must also lie between +1 and -1. Values for F near +1 occur when the
boundaries face towards (or away from) each other across the distance be-
tween them. A threshold for acceptable face–to–faceness is set within some
error εf such that F (b1, b2) > 1 − εf .

3. Assuming F (b1, b2) > 0, it follows that f1 and f2 are both positive, or
both negative. The sign of f1 (or f2) is called the polarity. The appropriate
polarity is either + or - depending on whether the expected target is lighter
or darker than the background.

Although at first glance the search for pairs of boundary points appears to
be O(n2), hashing individual boundary points beforehand by location yields a
large reduction in computation time. The search area for b2 is limited to a solid
sector surrounding the orientation n̂1 of the first boundary point, and to a range
between cmin and cmax. The width of the sector depends on εf (see Fig. 1).
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3 Three Basic Configurations: Sphere, Cylinder, and Slab

Observe that collections of core atoms can group in three basic ways correspond-
ing to the fundamental geometric shapes shown Fig. 2. The surfaces are shown
in dark gray with the corresponding cores shown in light gray. Beneath each
object is the population of core atoms that would be expected to form with such
objects, the core atoms being depicted as simple line segments.

The sphere generates a “Koosh ball” like cloud of core atoms with spherical
symmetry, with the core atom centers clustered at the center of the sphere. The
cylinder generates a “spokes–of–a–wheel” arrangement with radial symmetry
along the axis of the cylinder, and the core atom centers clustered along the axis
of the cylinder. The slab results in a “bed–of–nails” configuration across the slab,
with core atom centers clustered in the mid–plane of the slab. It is reassuring to
find that the cores of these basic objects are the point, the line, and the plane.
As shown in Fig. 2, a system of shape–specific coordinate axes, namely â1, â2,
and â3, can be assigned in each case, although not all the axes are unique given
the symmetries involved. For example, in the slab, â1 and â2 can rotate freely
about â3. Such a set of coordinate axes can be found for any population of core
atoms using eigenanalysis, as will be shown below. Furthermore, the extent to
which a core atom population resembles one of the three basic configurations
depends on the corresponding eigenvalues.

sphere                    cylinder                     slab

â1

â2 â3
â1 â2

â3
â1

â2
â3

Fig. 2. Fundamental shapes (dark gray), corresponding cores (light gray), core atom
populations (line segments) and eigenvectors â1, â2 and â3

Given a population of m core atoms ci, i = 1, 2, 3, . . . m, the analysis of a core
atom population begins by separating each core atom vector ci into its magnitude
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ci and its orientation ĉi. We ignore, for the moment, the location of the core atom.
The analysis of magnitude ci over a population of core atoms is straightforward,
yielding a mean and standard deviation for the measurement of width in the
underlying figure. The orientation ĉi of core atoms in a population lends itself
to eigenanalysis, yielding measures of dimensionality and overall orientation for
the population. We develop the eigenanalysis here in n dimensions, although for
the remainder of the paper n will be 3.

Given the population of m vectors in n dimensions, we find an n–dimensional
vector â1 that is most orthogonal to that population as a whole by minimizing
the sum of squares of the dot product between â and each individual ĉi.

â1 = arg min
â

1
m

m∑
i=1

(â · ĉi)2 = arg min
â

(âT Câ) where C =
1
m

m∑
i=1

ĉiĉ
T
i . (3)

The C matrix is positive definite, symmetric, and has a unit trace. Therefore,
its eigenvalues are positive and sum to 1, and its eigenvectors are orthogonal.
If the eigenvalues of C are sorted λ1 ≤ λ2 ≤ . . . ≤ λn, the corresponding
eigenvectors â1 . . . ân are the axes of a coordinate system in which â1 is the
most orthogonal to the population ĉi as a whole. For example, it would be the
axis of the cylinder in Fig. 2. Furthermore, the eigenanalyis guarantees that â2
is the most orthogonal to the population ĉi among those directions that are
already orthogonal to â1. This process can be repeated until ân remains the
least orthogonal to the population ĉi, representing a form of average orientation
for ĉi.

4 The Lambda Triangle

Returning now specifically to 3D, the previous analysis yields three eigenvalues
which describe the dimensionality of the core.

λi ≥ 0 λ1 + λ2 + λ3 = 1. (4)

An eigenvalue of zero means that the corresponding eigenvector is perfectly
orthogonal to every core atom ĉi. Such is the case for â1 in the cylinder, and for
both â1 and â2 in the slab. In the sphere none of the eigenvectors is completely
orthogonal to the core atom population. Given the symmetries of the three basic
shapes, the eigenvalues shown in Fig. 3 result.

Since λ3 is dependent on the other two, the system may be viewed as having
only two independent variables, λ1 and λ2. Because of constraints already men-
tioned, possible values for λ1 and λ2 are limited by λ1 ≤ λ2 and λ2 ≤ (1−λ1)/2
which define a triangular domain we call the lambda triangle (Fig. 3).

The vertices of the lambda triangle correspond to the three basic shapes in
Fig. 2, with all possible eigenvalues falling within the triangle. A rather crude
simplification of dimensionality is possible by dividing the triangle into three
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l1 = 0
l2 = 1 2
l3 = 1 2

l1 =1 3
l2 = 1 3
l3 = 1 3

l1 = 0
l2 = 0
l3 = 1

sphere         cylinder           slab

Fig. 3. The lambda triangle defines the domain of possible eigenvalues

compartments to provide an integer description of dimensionality. Arbitrary
thresholds of λ1 = 0.2 and λ2 = 1/3 will be used to divide the triangle into such
areas of integer dimensionality to clarify our experimental results. However, it
should be remembered that the underlying dimensionality is not an integer or
even a single scalar, but rather two independent scalars, λ1 and λ2 whose values
are constrained by the lambda triangle.

5 Spatial Sampling in the Corona

We now return to the question of core atom location, which we have so far
ignored. To incorporate location into the analysis of core atoms, we sort them
into bins on a regular 3D lattice by the location of their center points. Thus each
bin represents a spatial sampling of medialness. The number of core atoms in a
sample volume can be thought of as the medial density at that location.

How do we choose an appropriate size for the sample volume? As we shall
see, the local distribution of core atoms can have a significant cross section, and
the density within that distribution may not be uniform. To preserve resolution,
the sample volume needs to be smaller than the typical cross section of a core
atom cloud. When a core is sampled off–center, it will demonstrate a distortion
in its dimensionality. For example, the zero–dimensional core at the center of a
sphere will appear to be one–dimensional (cylindrical) when sampled off center,
as shown in Fig. 4. The vector from the theoretical core (center of the sphere)
to the center of the density in the sample volume is called the displacement
vector p (See Fig. 4C). The core atom population within a sample volume may
not contain the entire thickness of the core, but rather a sub–sampling of the
core called a coronal density. We can generally expect, in fact, to be sampling
coronal densities. It would be helpful to know where, in a given cloud around the
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core, a sample was collected, but that presupposes knowledge about the overall
distribution of core atoms which we may not have.

We can, at least, predict certain relationships to exist between the distribu-
tion of core atoms over the entire core and that of a sample volume displaced
from the center of the core. The displaced sample of core atoms will be flattened
in a plane orthogonal to p, and thus develop orthogonality to that direction. This
can be seen in Fig. 4, where the spherical distribution of core atoms in 4B has
been flattened into a cylindrical distribution in 4C. The same effect can be seen
in the case of the cylinder in Fig. 5, where, displaced off the central axis of the
cylinder by p, the population of core atoms becomes slab–like and orthogonal
to p. One expects the displacement vector to be one of the eigenvectors at the
closest point on the theoretical core, because (1) the displacement vector will be
orthogonal to the core at that point, and (2) the normal to the core is always one
of its eigenvectors. In 3D, the medial manifold can have at most 2 dimensions
and thus will always have such a normal.

A B C

p

Fig. 4. A. sphere. B. all core atoms C. cylindrical coronal density displaced by p

A B C

p

Fig. 5. A. cylinder. B. all core atoms C. slab–like coronal density displaced by p

Figs. 4 and 5 suggest that the displacement vector p could somehow be used
to compensate for the dimensional distortion in the corona. However, an isolated
density that is, for example, cylindrical cannot know whether it represents the
true center of a cylinder or simply the corona of a sphere. The results of the
eigenanalysis for each density may be used in a Hough–like fashion simultane-
ously to vote for its own dimensionality and center of mass, and for possible
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densities whose corona it may inhabit. The voting takes place within ellipsoids
around each density. The axes of each ellipsoid are long in directions orthogonal
to the core atom population in its density. Thus the ellipsoid can be expected
to extend in the p direction, orthogonal to the core atoms.

core atom population

object

corresponding ellipsoid

Fig. 6. Ellipsoids of three coronal core atom densities coalescing at the true center

Fig. 6 demonstrates this concept. A circular cross–section through an object
is shown with three coronal densities (each containing 3 core atoms) displaced
from the center. An ellipsoid is associated with each density, with the major axis
of each ellipsoid along the eigenvector most orthogonal to the corresponding
core atoms. The three ellipsoids intersect at the center the circle. The figure
can be interpreted as the cross–section of a sphere with the populations of core
atoms being cylindrical (seen in cross–section) and the ellipsoids intersecting at
the center of the sphere (as in Fig. 4). Alternatively it can be interpreted as the
cross–section of a cylinder with the populations of core atoms being slab–like and
the ellipsoids intersecting along the axis of the cylinder (as in Fig. 5). There are
various ways to construct such ellipsoids. We have chosen the following heuristic
for its simplicity. The axes of each ellipsoid are the eigenvectors of its density’s
C matrix. The lengths ai of the axes are related to the eigenvalues λi as follows:

a1 = γc̄, a2 =
α2

α1
a1, a3 =

α3

α1
a1 where αi = 1 − λi, γ =

1
2
. (5)

The scalar distance c̄ is the mean diameter of the core atoms in the density, and
the dimensionless number γ relates c̄ to the size of the ellipsoid, determining
how many neighbors will be reached. The ellipsoids make it possible to cluster
the core atoms for a given cloud, in effect to coalesce the corona. Each sample
volume (the votee) receives votes from all the neighboring sample volumes whose
ellipsoids overlap it. The votes from those ellipsoids are assigned a strength v,
where v = m·exp(−de

2), m being the number of core atoms in the voting density,
and de the ellipsoidal distance
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de =

√√√√ 3∑
i=1

(
âi · d

ai

)2

. (6)

from the center of the voter ellipsoid to the votee, d being the vector from
the voter to the votee. Votes are constructed to contain information about the
voter, including its C matrix which may simply be summed (scaled by v) for an
eigenanalysis of the entire constituent core atom population of a particular can-
didate. Thus are formed what we call superdensities, clusters of core atoms that
no longer suffer from coronal distortion. The center of mass for the constituent
core atom population of a superdensity will tend to be at the true core, rather
than in the corona.

6 Tests with Parametric Objects

To validate these methods, we applied them to three parametric test objects
with simple geometries: a sphere, a torus, and a spherical shell. The torus is
basically a cylinder of varied and known orientation, and the spherical shell is
likewise a slab of varied and known orientation. (The sphere is simply itself.)

Eigenanalysis of the coronal densities collected in a rectilinear lattice of sam-
ple volumes yielded the following results. Fig. 7 shows all densities containing
greater than 1% of the entire core atom population plotted on the lambda trian-
gle. The sphere shows two groups of densities, one near the top (sphere) vertex
of the triangle and another near the right (cylinder) vertex, consistent with the
dimensional effects of the corona predicted in Fig. 4. The torus, which is locally a
cylinder, shows clustering near the right (cylinder) vertex, with some spreading
towards the left (slab) consistent with the dimensional effects of the corona pre-
dicted in Fig. 5. The spherical shell, which is locally a slab, shows tight clustering
at the left (slab) vertex consistent with the observation that core atoms in a slab
are collinear with p and therefore will not develop significant orthogonality.

Unfortunately, Fig. 7 does not contain spatial information about the sampled
densities. The spatial distribution of densities for the test objects is shown Fig.
8. Each sample volume whose density contains more than 1% of the total core
atoms is shown as a thin–lined symbol. The simple partition of the lambda
triangle in Fig. 3 is used to decide between three possible symbols: a slab is
represented as a single line, a cylinder as a cross, and a sphere as 3 intersecting
axes. The length of the thin lines is constant, chosen for clarity in each test
object. The orientation of the thin lines indicates the predominant direction(s)
of core atoms in each density, i.e. across the slab, or orthogonal to the axis of the
cylinder, keeping in mind that perfect spheres have no predominant orientation
and perfect cylinders allow arbitrary rotation around the axis.

As expected the sphere shows cylindrical densities in its corona oriented to-
wards the center. Further out from the center a few slabs–like densities reflect
simply the paucity of core atoms in those sample volumes. Near the center one
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Sphere
sphere

cylslab

Torus
sphere

cylslab

Sph. Shell
sphere

slab cyl

Fig. 7. Distribution of densities on lambda triangles, for parametric test objects

Fig. 8. Densities and superdensities for parametric objects

true spherical density (a small 3–axis symbol) may be discerned. The thick–lined
symbols show the results of ellipsoidal voting, i.e., they represent superdensities.
To prevent a cluttered illustration, superdensities are limited to non–overlapping
constituencies. They are represented by thick lines in a manner similar to the
densities, except the length of the axes now corresponds to the actual mean scale
of the constituent core atoms. Thus the thick–lined 3–axis cross indicates the
actual diameter of the spherical object. For the sphere there is only one predom-
inant winning superdensity, with virtually every core atom in its constituency.
The torus shows cylindrical densities properly oriented but dispersed through-
out the corona. At the outer regions of the corona a few slab–like densities are
visible. The superdensities, by contrast, are centered on the circular mid–line
of the torus. The spherical shell shows only slab–like densities, which coalesce
with ellipsoidal voting into slab–like superdensities. The orientation of both are
across the local slab. Ellipsoidal voting is seen to perform another function, that
of connecting densities that share a core along the mid–plane of a slab or the
axis of a cylinder.
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7 Endness

Some attention must be paid to cases where a cylinder ends at a hemispherical
cap, or a slab ends at a hemicylindrical edge. The property of endness has been
described by Clary, et al. [13] . Endness as viewed from the core atom perspective
is illustrated in Fig. 9A and 9B. To detect endness, densities of core atoms are
used as starting points. Once a local cylinder has been established, boundary
points are sought along the axis of the cylinder in either direction as evidence
of a cap. Similarly, once a local slab has been found, boundary points indicating
an edge can be sought. Mathematics for this is derived elsewhere [11].

A. Cap of cylinder          B. Edge of slab              C. Model of left ventricle

a3

a1 a2

b

b b

myocardium

epicardium

slab

cylinder

cap

left atrium

mitral valve
left ventricle

b

a
a

1
2

b

a3

Fig. 9. Endness, manifested as a cap on a cylinder (A) and the edge of a slab (B)

8 Identifying and Measuring the Cardiac Left Ventricle

We now turn to a useful clinical application, the automated determination of
left ventricular volume using Real Time 3D (RT3D) echocardiography. RT3D is
a new imaging modality that electronically scans a volume in 3D using a matrix
array instead of the conventional linear array. RT3D is described in detail else-
where [9] , but its primary novelty is the ability to capture a single cardiac cycle
at 22 frames/second, which no other available imaging modality can accomplish.

RT3D images of an in vivo human heart present a significant challenge to
image analysis techniques, including high noise, low resolution, path dependence,
and a non–rectilinear data space. These problems are addressed elsewhere [11] ,
but the suggestion that the statistical nature of our method yields robustness is
severely tested in its application to RT3D echocardiography.

We now expand on the example from the abstract: The left ventricle during
systole is basically a large cylinder with an apical cap at one end, and a slab–like
mitral valve at the other (we limit ourselves here to apical scans, and to times
when the mitral valve is closed). The model is shown in Fig. 9C. To identify
the cylinder in the image data, core atoms of an appropriate range of diameters
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Fig. 10. Real Time 3D ultrasound with automated and manual identification of LV

were collected in sample volumes on a regular lattice, and ellipsoidal voting was
applied. An example of the resulting superdensities is displayed in Fig. 10A.
Crosses are shown in the cylindrical chamber of the ventricle. Due to the pre–
selection of core atoms by scale, no other significant densities of core atoms were
found.

Next, the mitral valve was sought, by limiting the formation of core atoms to
an appropriately smaller scale, and to orientations nearly perpendicular to the
transducer. As shown in Fig. 10B, the strongest superdensities (short vertical
line segments) were clustered around the center of the mitral valve, although
weaker false targets were detected in the myocardium. To eliminate these false
targets, a criterion was established for the formation of appropriate pairs of su-
perdensities, in the spirit of core atoms. Only slab–like densities appropriately
located and oriented with respect to cylindrical densities were accepted. These
pairs were allowed to vote for their constituent superdensities, and the mean
location of the winning superdensities used to establish a single mitral valve lo-
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cation and a single LV cylinder location. The vector between these two locations
was used to establish a cone for expected boundary points at the apex of the LV,
and the mean distance to the resulting boundary points used to determine the
location of the apical cap along that vector. Thus an axis between the apex and
the mitral valve was established. Given this axis, LV volume was estimated by
collecting boundary points around the axis. Only boundaries that faced the axis
were accepted. The boundary points were organized into bins using cylindrical
coordinates, in other words, disks along the axis and sectors within each disk.
An average radius from the axis was established for the boundary points in each
bin, creating a surface map of the endocardial surface. Fig. 10C shows such a
surface map (dots) and the underlying axis. The problem of empty bins was
avoided by convolving the surface map with a binomial kernel in 2D until each
bin had some contribution to its average radius. Volumes were then calculated
by summing over all sectors. The entire procedure including identification and
volume measurement of the LV was automated, and required approximately 15
seconds on a 200 MHz Silicon Graphics O2 computer.

The automated volumes were compared to manual tracings performed on a
stack of flat slices orthogonal to a manually–placed axis (see Fig. 10D). This axis
employed the same anatomical end–points (the ventricular apex and the center
of the mitral valve) as the axis determined automatically above. The volumes
and locations of the end–points were compared to those determined automati-
cally. Results are shown in Fig. 11. They are very encouraging, particularly for
the automated placement of the axis end points, which had an RMS error of
approximately 1 cm. Volume calculations introduced additional errors of their
own, but were still reasonable for ultrasound. Only four cases have been tried,
and all are shown. The method worked in all cases.

9 Conclusions

We have described a new method for identifying anatomical structures using fun-
damental properties of shape extracted statistically from populations of medial
primitives, and have demonstrated its feasibility by applying it under challenging
conditions. Further studies are presently underway to establish reliability over
a range of data. Future directions include introducing greater specificity and
adaptability in the boundary thresholding, incorporating more than 2 nodes
into the model, introducing variability into the model to reflect normal variation
and pathologic anatomy, extending the method to the spatio–temporal domain,
and applying it to visualization.
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Abstract. We describe a method for computing a continuous time es-
timate of dynamic changes in tracer density using list mode PET data.
The tracer density in each voxel is modeled as an inhomogeneous Pois-
son process whose rate function can be represented using a cubic B-spline
basis. An estimate of these rate functions is obtained by maximizing the
likelihood of the arrival times of each detected photon pair over the con-
trol vertices of the spline. By resorting the list mode data into a standard
sinogram plus a “timogram” that retains the arrival times of each of the
events, we are able to perform efficient computation that exploits the
symmetry inherent in the ordered sinogram. The maximum likelihood
estimator uses quadratic temporal and spatial smoothness penalties and
an additional penalty term to enforce non-negativity. Corrections for
scatter and randoms are described and the results of studies using sim-
ulated and human data are included.

1 Introduction

Dynamic PET imaging usually involves the collection of a series of frames of
sinogram data over contiguous time intervals that can range in duration from
10 seconds to over 20 minutes. Data from each of the frames is independently
reconstructed to form a set of images. These images can then be used to esti-
mate physiological parameters [8]. This approach involves selection of the set of
acquisition times, where one must choose between collecting longer scans with
good counting statistics but poor temporal resolution, or shorter scans that are
noisy but preserve temporal resolution. List mode data acquisition avoids this
problem by allowing frame durations to be determined after acquisition. Alter-
natively, the problem of temporal binning can be avoided entirely by directly
using the arrival times in the list mode data to estimate a dynamic image.

Snyder [23] developed a list mode maximum likelihood (ML) method for es-
timation of dynamic PET images using inhomogeneous Poisson processes. Each
voxel has an associated time-varying tracer density that is modeled using basis
functions that are based on assumptions about the physiological processes gener-
ating the data, e.g. blood activity curves convolved with a basis of exponentials.

A. Kuba et al. (Eds.): IPMI’99, LNCS 1613, pp. 98–111, 1999.
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The observed list mode PET data are then inhomogeneous Poisson processes
whose rate functions are linear combinations of the dynamic voxel tracer den-
sities. Here we follow a similar approach but instead work with rate functions
formed as a linear combination of known basis functions. Not only does the lin-
earity of the model lend itself to efficient computation of the estimates, but also
we can better represent the dynamic activity seen in experimental data that is
not well modeled by the more restrictive physiological models.

A second advantage of using list mode data arises in cases where the number
of detected photon pairs in a particular study is far less than the total number
of detector pairs. This is often the case in modern 3D PET systems which can
have in excess of 108 sinogram elements in a single frame. To reduce this num-
ber to manageable proportions, the data are often rebinned by adding nearby
elements together. Alternatively, the raw list mode data case be stored and the
need for rebinning is avoided. Barrett et al. [1,18] describe a list mode maxi-
mum likelihood method for estimation of a temporally stationary image. While
this method will often reduce storage costs and avoid the need for rebinning,
the random spatial ordering of the detected events in the list mode data does
not lend itself to fast forward and backprojection and exploitation of the many
symmetries in 3D projection matrices [10,19]. To avoid this problem we use a
hybrid combination of the standard sinogram and list mode formats that allows
the reconstruction algorithm to exploit the same matrix symmetries used in our
static imaging work [19]. All events in a dynamic study are collected into a single
standard sinogram; this is then augmented by a “timogram” which contains the
arrival times of each event stored so that they are indexed using the values in
the associated sinogram.

In this paper we present a method for reconstructing a continuous time es-
timate of a dynamic PET image using list mode data and the theory of inho-
mogeneous Poisson processes. A general B-spline model is used to represent the
dynamic activity in each voxel so that the dynamic image is parameterized by
a sequence of control vertex “images” where the control vertices are the coef-
ficients for the spline basis. Tomographic projections of these control vertices
produce the control vertices for the rate functions of the inhomogeneous Pois-
son processes representing coincidence detections between each detector pair.
A maximum likelihood estimate of the control vertices for each voxel can then
be computed using the standard likelihood function for inhomogeneous Poisson
processes [21,22]. The final result is a temporally continuous representation of
the PET image that utilizes the temporal resolution of list mode data.

Our parameterization of the inhomogeneous Poisson rate function is appli-
cable to any linear combination of basis functions. This form encompasses the
parametric imaging work of Matthews [14], Snyder [21] and mixture models of
O’Sullivan [17]. We also note that Ollinger [16] used list mode data to recon-
struct rate functions as histograms with adaptive bin-widths; our work could be
viewed as a continuous-time extension of this. For this paper we consider only
cubic B-splines. The key advantage of B-splines are that they have systematic
compact support. In particular, for any point on a cubic spline only 4 basis func-
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tions are nonzero. Also, simple closed forms exist for all derivatives and integrals
of a polynomial spline.

Since inhomogeneous Poisson rate functions are unnormalized densities, we
note that the density estimation literature using splines is closely related to
our work (e.g. [24,6]). The standard methods involve exponentiated splines or
squared splines. While these implicitly constrain the rate function to be positive,
they cannot be represented with a linear basis. As there are substantial compu-
tational savings to having a common basis for all voxels and projections, we did
not pursue these approaches.

The paper is organized as follows. We describe the model and maximum like-
lihood method in Sections 2 and 3, respectively. Methods for selecting the spline
knot points and methods for randoms and scatter correction are included in Sec-
tion 4. Computational considerations including resorting data into a timogram
format and the details of the algorithm used for computing the ML estimate are
given in Section 5. In Section 6 we demonstrate the performance of the method
with some preliminary simulation and experimental results.

2 Dynamic Modeling Using Inhomogeneous Poisson
Processes

We model the positron emissions from each voxel in the volume as an inhomo-
geneous Poisson process. The rate function for the voxel represents, to within a
scalar calibration factor, the time varying PET tracer density. We parameterize
the rate functions using a cubic B-spline basis:

ηj(t) =
∑

`

wj`B`(t), ηj(t) ≥ 0 ∀ t,

where ηj(·) is the rate function for voxel j, wj` is the `th basis weight (control
vertex) for voxel j, and B`(t) is the `th spline basis function. The problem of
reconstructing the dynamic PET image is then reduced to estimating the control
vertices for each voxel.

We denote by pij the probability of detecting at detector pair i a photon
pair produced by emission of a positron from voxel j. The probabilities pij

are identical to those used in static PET imaging. Here we use the factored
matrix forms developed in [19]. Assuming that the detection probabilities are
independent and time invariant, it follows that coincidence detection at detector
pair i is also an inhomogeneous Poisson process with rate function

λi(t) =
∑

j

pij

∑
`

wj`B`(t) =
∑

`


∑

j

pijwj`


B`(t) (1)

where the right-most term demonstrates that the rate functions for the data are
also B-splines.
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The Poisson process observed at the detectors is corrupted by random and
scatter components that can also be modeled as inhomogeneous Poisson pro-
cesses. Combining the three components, we have the model:

λ∗
i (t) = λi(t) + ri(t) + si(t)

where ri(·) and si(·) are the randoms and scatter rate functions for detector pair
i and λ∗

i (t) is the rate function for the process actually observed at detector pair
i. In estimating the rate function parameters wj` we will assume that the rate
functions for the random and scatter components have been determined through
a calibration procedure and can be treated as known processes.

For a Poisson process with rate function λ(t), with N events observed from
time T0 to T1 and event arrival times a1, . . . , ak, . . . , aN , the likelihood function
is [22]

P(a1, . . . , ak, . . . , aN |λ(t)) =

(
N∏

k=1

λ(ak)

)
exp

{
−
∫ T1

T0

λ(u)du

}
. (2)

For N = 0, the product is defined as unity.
For the set of independent events recorded in the list mode data the log

likelihood is therefore given by

L(D|W) =
∑

i

∑
k

log λ∗
i (aik) −

∑
i

∫
λ∗

i (u)du, s.t. λ∗
i (t) ≥ 0 ∀ t. (3)

where D denotes the list mode data and W the set of parameters for the rate
functions. We represent the data as D = (x,a1, . . .,ai, . . .,aI), where x =
(x1, . . ., xi, . . ., xI) are the sinogram count data, and ai = (ai1, . . ., aik, . . ., aixi

),
the set of xi event arrival times at detector pair i. For the B-spline basis,
W = (wj`|` = 1, . . ., L, j = 1, . . ., J) are the set of basis coefficients. While x
is a function of a and hence redundant, we use the sinogram counts to index the
arrival times, as described in section 5.1.

3 Penalized Maximum Likelihood Estimation

We estimate the image control vertex values that define our dynamic image using
penalized maximum likelihood. The objective function of the statistical model
is modified with three regularizing terms

L∗(D|W) = L(W|D) − αρ(W) − βφ(W) − γν(W). (4)

The terms ρ(W) and φ(W) regularize temporal and spatial roughness, respec-
tively; ν(W) penalizes negativity of the image rate functions; α, β and γ are the
tuning parameters. We now describe each of these terms.

We employ a temporal smoothing term to control the roughness of the spline
rate functions [3]. The form of the roughness penalty is the integrated squared
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curvature. For voxel j this is ∫ {
∂2

∂u2 ηj(u)
}2

du.

Fortunately, for cubic splines this quantity has a simple expression, a quadratic
form of the control vertices ([3], pg. 238). We denote the symmetric, banded
matrix of this quadratic form Q. Thus the temporal roughness penalty is given
by

ρ(W) =
∑

j

∑
`1

∑
`2

wj`1Q`1`2wj`2 .

We regularize the estimates of the control vertices using a spatial smooth-
ing function equivalent to the pair-wise quadratic penalty used previously in
penalized ML [4] and Bayesian estimation [19] of static PET images:

φ(W) =
∑

`

∑
j

∑
j′∈Nj ,j′>j

κjj′(wj` − wj′`)2.

where Nj denotes a set of neighbors of voxel j and κjj′ is the reciprocal of the
Euclidean distance between voxel j and j′. Other possible choices of the penalty
function include the discrete approximation of the thin plate spline bending
energy [12] or a non-quadratic edge preserving function such as that described
in [5].

We now justify applying the same regularization to the control vertices as has
previously been applied to images. First, the spline basis is the same for all voxels,
so the control vertices have the same meaning for all voxels. Second, each member
of the spline basis has limited support so that the effect of spatial smoothing
is localized in time. Lastly, the B-spline basis we use is well conditioned [3],
meaning that small changes in the control vertices produce small changes in the
spline function. Hence if we expect two rate functions to be similar, then it is
sufficient to constrain their control vertices to be similar.

The optimization method must account for the non-negativity of the image
rate functions ηj(t). We use unconstrained optimization with a penalty function
[13]. The problem is complicated somewhat in that the control vertices them-
selves are not necessarily non-negative; instead we need to ensure that the cor-
responding spline does not become negative. The local extrema of a cubic spline
have a closed form, so we initially tried to penalizing negative local minima.
This approach complicated the gradient and Hessian and made their evaluation
prohibitively slow.

Instead we simply penalize negative values computed at a finite number of
time points. The vector z contains the locations at which we enforce positivity.
It is constructed by uniformly spacing dz points in each inter-knot interval. Any
elements of z for which the spline is negative are penalized with the square of
the spline value, resulting in the penalty:

ν(W) =
∑

j

∑
m

min

(
0,
∑

`

wj`B`(zm)

)2

.
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This approach does not necessarily ensure that the spline is non-negative
everywhere. However, we have found that when used in combination with the
temporal roughness penalty, the resulting estimates do not become negative,
except possibly in the intervals just preceding a large increase in activity.

It is straightforward to show that each of the four terms in the penalized
likelihood (4) have negative semi-definite Hessian matrices. Their null spaces
only intersect at the zero vector. Therefore, the objective function is strictly
concave and has a unique global maximum which can be found by a gradient-
based search algorithm.

4 Calibration Procedures

4.1 Selection of Knot Spacing

Before proceeding to the estimation we must decide on the spacing between
knots in the B-spline basis. A cubic B-spline basis is defined by knot locations,
u = (u1, . . . , uL+4), where L ≥ 4 is the number of basis elements and the
first and last 4 knots are identical, to allow discontinuity at the end points.
Uniformly spaced knots will not be efficient for most tracer studies since early
changes in concentration have much greater magnitude than those later in the
study. While we do not attempt to adaptively place the knots, in a modest
attempt to optimize knot placement, we use the head curve to define knots that
produce approximately equal arc lengths, as suggested in [3]. The head curve is
a temporal histogram using all of the list mode data and it serves as an estimate
of the average rate function. Once the knot locations are determined, the actual
basis functions are computed using the recurrence relations as described in [2,3].

4.2 Randoms and Scatter Rate Functions

To apply the penalized likelihood estimation procedure described above, we
should first apply calibration procedures to account for the presence of scat-
tered and random events in the list mode data. We note that the simple ran-
doms subtraction method that is used in static imaging is not applicable to list
mode data. While neither randoms or scatter are included in the preliminary
results presented here, they are described for completeness and will be essential
in extracting accurate quantitative dynamic information from our results.

The randoms rate varies approximately as the square of the true coincidence
rate. We can model the randoms rate for each detector pair using an inhomoge-
neous Poisson process:

ri(t) =
∑

`

γi`B`(t),

where γi`, ` = 1, . . . , L are the control vertices for the randoms component in
the ith line of response (LOR). The list mode data produced on the ECAT HR+
(CTI Systems, Knoxville Tennessee) contains both prompt (on-time) and delayed
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events. We can use the delayed events to compute an ML estimate of these control
vertices. The number of counts per LOR in the delayed events is typically quite
small so that these estimates would probably exhibit high variance. However,
after scaling for variations in individual detector sensitivities, there is a high
degree of spatial smoothness in the mean randoms sinogram [15]. Consequently
we can use a penalized ML estimate in which substantial spatial smoothing is
used to regularize the estimator. By choosing the knot spacing for the randoms
rate functions to be at the same locations as for the image rate functions, the
separate treatment of randoms in the estimation algorithm below produces little
increase in the computational cost.

The spatio-temporal scatter distribution is a function of both the dynamic
tracer distribution and the object. We assume no interaction between the tem-
poral and spatial distribution and scale a fixed spatial scatter estimate over
time. While this is a rather crude approximation, we anticipate that it will be
reasonably accurate due to the very smooth nature of the scatter contribution
to the sinogram. However, for certain ligand studies of the brain, where the
tracer eventually binds solely to subcortical structures, this approximation may
perform poorly.

Integrating the coincidence detections over time yields a sinogram from which
we estimate the spatial scatter distribution using the simulation method in [25].
Let Si denote the estimated scatter contribution at the ith LOR. Next we cal-
culate a least-squares spline estimate of the head curve using the same B-spline
basis of the dynamic study; we normalize this spline to integrate to unity. Denote
this estimate as h(t) =

∑
` h`B`(t) where h` are the control vertices of the head

curve spline fit. The estimated scatter rate function is then

si(t) = Sih(t) = Si

∑
`

h`B`(t).

Note that when computing Si and h(t) we subtract the delayed events from the
prompts to correct for randoms.

5 Computational Considerations and Image Estimation

5.1 The “Timogram”

The raw list mode data is in a form that is inconvenient for computing the
gradient of the penalized likelihood function. The list mode events arrive in
random spatial order and hence require random rather than sequential access to
the control vertices that define the rate functions in the sinogram domain. We
have therefore developed a means to store list mode data in sinogram form while
preserving the temporal information. This is achieved using a single standard
sinogram that contains all detected events augmented by a second file listing
the arrival times of all events sorted in projection order. We call this second
file the “timogram”. The timogram simply consists of the arrival times of each
event. The sinogram is required to indicate how many arrival times to read for
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each bin. The resulting pair of files can be substantially smaller than either the
original list mode data file or the set of sinograms that would be stored in a
conventional dynamic study. We note that Ollinger [16] also resorted list mode
data prior to reconstruction, though his format did not completely eliminate the
random spatial order.

ECAT HR+ list mode data consists of a sequence of 4-byte event words,
each either a coincident event or a timing event. The coincident events record
the sinogram bin, optional gating information, and are identified as “prompt”
or “delay”. The timing events are inserted in the list mode stream every 1 mil-
lisecond, and they also record time with a 27 bit integer. By re-encoding the
arrival time of each coincidence event using 16 bits, we can retain a temporal
resolution of 256ms and a maximum acquisition time of 4.6 hours. Using this
format we need only 2 bytes per event in the timogram. Thus we can discard all
of the timing events in the list mode data and save a factor of two in the space
required to store the remaining coincidence arrival times. The space savings from
discarding the timing events are significant. For example, in a 90 minute scan,
the timing events take more space than a 3D sinogram set and hence the raw
list mode data will always take more space than the sinogram-timogram, even
if no coincidences are detected!

The sinogram-timogram format will also be more space efficient than a multi-
frame sinogram when the space required to store the event arrival times in the
timogram is less than the 2nd through nth sinograms. For example, an 11 frame
acquisition is 10 frames larger (∼ 200MB larger) than a sinogram-timogram with
no events; only after 200MB-worth of events, or 100 million counts are stored
will the sinogram-timogram be less space efficient.

The sinogram-timogram format could be made even more compact by stor-
ing inter-arrival times and then performing entropy-based compression [9]. The
motivation for this is that LOR’s with high activity will tend to have short inter-
arrival times, hence will have many high bits consistently zero, a property that
compression can exploit.

5.2 Preconditioned Conjugate Gradient Based Reconstruction

A preconditioned conjugate-gradient method was used to maximize the objec-
tive function. The particular method closely follows our previous work on static
reconstructions [15,19], so we only describe the method briefly here. We use the
following preconditioned Polak-Ribiere form of the conjugate gradient method.

W(n+1) = W(n) + α(n)s(n)

s(n) = d(n) + β(n−1)s(n−1)

d(n) = C(n)g(n)

β(n−1) = (g(n)−g(n−1))′d(n)

g(n−1)′d(n−1)

where g(n) is the gradient vector of the penalized likelihood (4) at W = W(n),
C(n) is a preconditioner, and the step size α(n) is found using a Newton-Raphson
line search.
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In this study C(n) was chosen analogously to the static PET reconstruction
[20] as

C(n) = diag

{
| w

(n)
j` | +δ∑

i pij

}
,

where δ is a small positive number to ensure that C(n) is positive definite. Here
we set δ equal to 0.01 maxjl{w

(n)
j` }.

The algorithm was initialized with a constant image for which the forward
projected rate function matches the average rate of the data after subtracting
scatters and randoms. The search vector is initialized by setting s(0) = d(0).
At each iteration we test whether the search vector is an ascent direction, i.e
g(n)′

s(n) > 0. If not, then we reinitialize the PCG algorithm with s(n) = d(n).
The logarithm in the likelihood function requires that the line search in (5)

is performed with the hard constraint that the forward projected rate function
at any arrival time is non-negative, i.e.

λi(aik) ≥ 0, ∀i, k.

The negativity penalty in (4) is soft allowing small negative values. The hard
constraint can be satisfied by limiting the step size in the update step of the
conjugate gradient algorithm. To minimize the effect of this constraint on the
convergence rate, we use a bent, rather than truncated, line search [11].

6 Simulation Studies and Performance Evaluation

6.1 Simulation Study

We evaluated our method with simulated and real data. We simulated a blood
flow data set using a single slice of the Hoffman brain phantom. We evaluated the
simulated data on the basis of instantaneous rate accuracy as described below.
The real data consisted of one 2D subset of a 10 minute 3D 15O-water list mode
brain study. Our subjective evaluations focused on tissues that are known to
have distinctly different dynamics with this tracer.

The simulated data was a simplified model of the dynamics of a bolus in-
jection of 15O-water using tissue time activity curves generated by the Kety
autoradiographic model ([7], Figure 3B). We chose two extreme curves, one cor-
responding to very high blood flow, one to very low blood flow. White matter
voxels were assigned to have low blood flow, gray matter voxels to have high
blood flow. We used an 11 element B-spline basis with support from 0 to 140
seconds; the spacing of the knot locations were determined by equally spacing
7 points along a medium blood flow curve. We used 7 negativity penalty points
(dz) in each knot interval. Approximately 5 million counts were generated for
this data set.

As a preliminary evaluation we computed the mean squared error (MSE)
between the true source and the instantaneous rate estimate at three times, t =
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10, 23 and 60 seconds. We compared this MSE to that obtained by estimating
the instantaneous rate with a static sinogram based on events arriving in the
interval [t − d/2, t + d/2], for d = 1, 2, 4, 10, and 20 seconds. In both cases
the MSE’s are based on one realization, the mean taken over voxels. While
this comparison of instantaneous rate accuracy could be regarded as an unfair
since the static data has no information on the nonstationarity of the tracer
distribution, it is comparable to existing methods. We did not attempt to match
the spatial smoothness (bias) of the two methods; for each d, the static data sets
were reconstructed with an ML estimate (β = 0) with 25 iterations.

Figure 1 shows the results of the blood flow simulation for 120 iterations.
The rate functions for six voxels are shown in top left; there is generally good
agreement between true and estimated functions. The plot of instantaneous mean
squared error is shown top right. The spline estimates (horizontal lines) have
appreciably lower MSE than all static estimates with frame durations less than
10 seconds. Note that of the 20 second static estimates, the one with largest
MSE occurs at t = 23 seconds, corresponding to the mode of the high-flow
curve. This is expected since averaging across greater durations from the mode
will bias the static estimate downward; at the other time points the rate function
is approximately linear and there will be less bias in the static estimate.

6.2 Human Study

For the real data we used a 15 element B-spline basis with support over the
whole acquisition duration, 0 to 600 seconds; knot spacing was determined by
approximate equal spacing of 11 points along the head curve; again dz = 7.
The subject was injected with a 5 mCi (∼ 200 MBq) bolus of 15O-water ap-
proximately 30 seconds after the start of 3D data acquisition. To create the 2D
data set we rebinned data from eight ring pairs into a single dataset with about
400,000 counts, using only the prompt events.

Figure 2 shows the results of the human study after 40 iterations. A three
panel image shows the tracer distribution at 20, 60 and 120 seconds post injec-
tion. At 20 seconds the carotid arteries are visible, especially the right one; at 60
seconds the water has perfused the brain and surrounding tissue and the carotids
are sill visible; at 120 seconds the carotids are indistinguishable from background
tissue though the brain still has increased activity. This differing temporal char-
acter is clear from the plot of selected voxels. The carotid artery shows a sharply
peaked distribution, while brain tissue rises later and more smoothly; the sinus
region has much lower flow though it’s rate function shows a similar character
to that of the brain tissue.
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Fig. 1. This figure shows the results of the blood flow simulation. The top left plot
shows the estimated (dashed) and true (solid) rate functions; the vertical lines (dotted)
indicate knot locations. The top right plot shows the mean squared error over the image
for estimating the instantaneous rate at 3 time points; the horizontal lines are for the
spline estimate, the decreasing curves show mean squared error for the static estimates
of different frame lengths. The bottom two rows show instantaneous rate images; the
top row is for t=23 seconds, the bottom row for t=60 seconds. The left column is the
spline estimate, the center column is the truth and the right column is the estimate
from the longest static acquisition; the truth images have circles noting the location of
the voxels plotted top left
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Fig. 2. This figure shows the result of our method using real data. The top row shows
a sequence of instantaneous rate images for 20, 60 and 120 seconds post-injection.
(Injection occurred at t ≈ 30 seconds). The early arrival and fast clearance of the
tracer in the carotid artery is apparent, as the carotid is visible in the left and center
images, but not in the right. The bottom right shows the estimated rate functions for 4
individual voxels; the vertical dotted lines are the knot-locations. The image on left is
the total counts image; circles indicate the location of the 4 voxels plotted; the bilateral
circles mark the right and left cerebellum, the circle outside of brain tissue is the sinus
and the other circle is the right carotid artery
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7 Discussion and Conclusions

We have presented preliminary results on estimating continuous time dynamic
PET images from list mode PET data. We modeled the dynamic tracer den-
sity as an inhomogeneous Poisson process and parameterized the rate functions
with a B-spline basis. We introduced the timogram as a means to compactly
represent the temporal information of list mode data. The B-spline basis and
the timogram’s spatial ordering both contribute to an efficient implementation
that makes the creation of continuous time reconstructions feasible.

We have presented basic performance analysis with arbitrarily chosen tun-
ing parameters for spatial and temporal regularization. While these results are
encouraging in general, Monte Carlo simulations are needed to assess bias and
variance in ROI’s and in the image at different parameter values.

Estimating images of physiological parameters is a possible extension of this
work. This could be accomplished either through embedding the physiological
model in the rate function (as in [16]) or estimating parameters with the spline
functions. The standard to compare these results to would be estimates from the
temporally binned data. In fact, temporally binned data could also be applied
in this inhomogeneous Poisson framework, as there is a counterpart to equation
(2) for binned data [22].
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Abstract. In this paper, we propose extensions to a powerful geomet-
ric shape modeling scheme introduced in [14]. The extension allows the
model to automatically cope with topological changes and for the first
time, introduces the concept of a global shape into geometric/geodesic
snake models. The ability to characterize global shape of an object using
very few parameters facilitates shape learning and recognition. In this
new modeling scheme, object shapes are represented using a parame-
terized function – called the generator – which accounts for the global
shape of an object and the pedal curve/surface of this global shape with
respect to a geometric snake to represent any local detail. Traditionally,
pedal curves/surfaces are defined as the loci of the feet of perpendiculars
to the tangents of the generator from a fixed point called the pedal point.
We introduce physics-based control for shaping these geometric models
by using distinct pedal points – lying on a snake – for each point on
the generator. The model dubbed as a “snake pedal” allows for interac-
tive manipulation via forces applied to the snake. Automatic topological
changes of the model may be achieved by implementing the geometric
active contour in a level-set framework. We demonstrate the applicability
of this modeling scheme via examples of shape estimation from a variety
of medical image data.

1 Introduction

Extracting shapes of anatomical structures from medical image data is a chal-
lenging problem in Medical Image Analysis and has been the focus of research
of numerous researchers in the medical imaging community over the past sev-
eral years. Since the inception of active contours/surfaces a.k.a. snakes, in the
vision/graphics community by Kass et al. [5], these elastically deformable con-
tours/surfaces have been widely used for a variety of applications including Med-
ical Image Analysis where it has facilitated boundary detection and represen-
tation, motion tracking etc. of anatomical structures of interest. The classical
approach to object shape recovery using the snakes is based on deforming an
initial configuration of the snake represented by a position vector P0 towards the

A. Kuba et al. (Eds.): IPMI’99, LNCS 1613, pp. 112–125, 1999.
c© Springer-Verlag Berlin Heidelberg 1999
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boundary of the shape being detected by minimizing a functional that can be
regarded as the bending energy stored in a thin flexible beam/rod or a stretch-
able string subject to loading. There are several problems associated with this
approach, such as initialization, the automatic specification of the physical or
elasticity parameters etc. Moreover, this energy model requires that the topol-
ogy of the shape to be estimated be known a priori. Several researchers have
addressed these issues in detail and some of them are open research issues to
date.

A viable alternative to the snakes model was proposed by Malladi et al. [8]
and Caselles et al. [1]. These models are based on the theory of curve evolu-
tion and geometric flows. Automatic changes in topology can be handled in a
natural way in this modeling technique, by implementing the curve evolution
using the level-set embedding schemes. A generalization of this model was later
proposed simultaneously by Caselles et. al., [2] and Kichenassamy et. al., [6].
The generalization also known as the geometric active contours showed the link
between the Kass et. al., [5] snakes and the geometric active contours a.k.a.
geodesic/geometric snakes. For details on the theory of curve/surface evolu-
tion and its level-set implementation, we refer the reader to [1,8,9,2,6,12,13,15].
Geoemtric active contours and its variants are quite successful in recovering
shapes from medical as well as non medical images. They do not suffer from
the initialization problems, do not have too many user specified parameters and
can handle arbitrary topologies in an elegant manner. One might ask, what then
is lacking in these models? Firstly, there is no way to characterize the global
shape of an object or anatomical structure, which is a useful property to have in
describing shape for identification purposes. Secondly, it is not easy to incorpo-
rate prior shape information. In this paper, we will address these problems and
propose a novel modeling scheme along with efficient numerical techniques for
use in shape recovery from image data.

1.1 Overview of the Hybrid Geometric Active Contour Model

In many Medical Imaging applications such as shape recognition, character-
izing the global shape of an object is crucial. Traditional geometric active con-
tour/surface models do not possess the capability to characterize the global shape
of an object. In this paper, we introduce a novel concept of a global/core model
into the PDE-based curve evolution framework by embedding the snake pedal
model into a level-set framework. Instead of characterizing a shape boundary by
the position of every point on the boundary, our proposed model, referred to as
the hybrid geometric active model, now describes a shape as a combination of a
global/core shape such as an ellipse, super-ellipse, etc. and a variable offset de-
fined with respect to the global shape. The variable offsets are controlled by this
global shape and an evolving curve — the controlling snake in the snake pedal
model. For the model to recover the object boundary, we introduce a reliable
and efficient numerical method which consist of a global plus local shape esti-
mation technique in the model fitting. We use the Levenberg-Marquardt (LM)
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for estimating the global shape and a combination of up-wind and minmod fi-
nite difference schemes in a level-set framework for estimating the local shape.
The hybrid geometric active contour/surface model retains all the advantages
of traditional geometric active models (for example, topology change, ability to
model complex geometries and amenability to stable numerical implementation)
and has the added ability/advantage of being able to compactly represent global
shape of an object. Augmentating the curve evolution framework with a global
shape/core will be very useful in shape learning/recognition and image indexing
applications.

1.2 Organization of the Paper

In Section 2.1 we briefly discuss the snake pedal model introduced in [14] and
then present the novel hybrid geometric active models in Section 2.2. The numer-
ical issues of the model fitting process will be discussed in Section 2.3, followed
by the implementation results in Section 3.

2 Hybrid Geometric Active Model

In this section we will first briefly review the snake pedal model – introduced in
[14] – with the aid of 3D model fitting examples. We will then present the hybrid
geometric active model which is obtained by replacing the snake in the snake
pedal with a geometric/geodesic snake implemented in a level-set framework.

2.1 The Snake Pedal Model

Let α be a planar curve, the pedal curve [3] of α is defined as the locus of
points on the foot f of the perpendicular from a fixed point p called the pedal
point to a variable tangent of α. Let β be the pedal curve of α with respect

fg

planar curve a pedal curve b

pedal point p

Fig. 1. f is on the pedal curve of α with respect to the pedal point p

to the pedal point p, and let α(t) = g,β (t) = f , as shown in the Fig. 1. The
projection of α (t)−p in the direction Jα

′
(t) must be β (t)−p, where α

′
(t) is

the tangent line of the plane curve α (t), J : <2 −→ <2 is a linear map given by
J(p1, p2) = (−p2, p1). J can be geometrically interpreted as a rotation by π/2
in a counterclockwise direction. We can thus define a pedal curve as follows [3]:
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Definition 1. The pedal curve of a regular curve α : (c, d) −→ <2 with respect
to a fixed (pedal) point p ∈ <2 is given by

pedal[p,α](t) = p +
(α(t) − p) · Jα

′
(t)

‖Jα′(t)‖2 Jα
′
(t). (1)

In Fig. 2, we present examples depicting the pedal curves of an ellipse for different
positions of the pedal point (shown by a bold dot). Note that the pedal curve is
capable of exhibiting local as well as a global deformations and the location of
the local deformation is in the locality of the pedal point. By moving the position
of the pedal point, it is possible to synthesize a variety of local deformations as
depicted in the Fig. 2. The curve α(t) will be referred to as the generator for
the pedal curve β (t) and process of generating a pedal curve will be referred to
as the pedaling operation.

(a) (b) (c) (d)

Fig. 2. Examples of pedal curves of an ellipse for different pedal point positions. Pedal
points are shown by a dot in each case

More general shapes may be synthesized by letting the pedal point be dif-
ferent for each point of the generator. We can let the pedal points be specified
by another curve p(t) represented by a standard snake [5] and then apply the
pedaling operation to each point on the generator αi = α (ti) with respect
to corresponding pedal point pi = p(ti). The generator can be either a param-
eterized or an implicit function representing a curve. The pedaling operation
generates a new curve that we dub a snake pedal x(t) as shown in Fig. 3.

If the generator is an ellipse as shown in Fig. 3 (a), we can represent it in a
parametric form by

α(t) =
[

cosθ sinθ
−sinθ cosθ

][
a1 cost
a2 sint

]
+

[
m1
m2

]
(2)

where a1, a2 are aspect ratio parameters, θ is the rotation angle between the
intrinsic (material) coordinates and inertial coordinates, m = (m1, m2)T is the
centroid of the generator in the world coordinates. We collect the generator
parameters into the global parameter vector q = (a, b, θ, m1, m2)T .
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Fig. 3. (a) The process of generating a snake pedal with an ellipse generator. (b) “snake
pedal” controlled by the snake using an ellipse generator

In Fig. 4(a)-(b) we depict some examples of snake pedals, curves generated
using snakes and an ellipse as the generator. Note the variety of local defor-
mations that can be generated using this modeling technique. We remind the
reader that the snake pedal itself is a geometric model and that it is not directly
responsive to the application of external forces unlike the standard snake models
[5].

Fig. 4. Examples of “snake pedals” using an ellipse generator

The pedal curve definition can be modified slightly by subtracting the second
term from the first in (1). This allows for larger local deformations including
shrinkage and expansion. A pedal surface is the surface analog of the pedal
curve. It is the locus of the points on the foot of the perpendicular from a fixed
pedal point to a variable tangent plane of the surface. As in the 2D case, we can
let the pedal point vary for each point on the generator surface. Thus we have
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the snake pedal surfaces in 3D whose shape can be controlled by snakes which
are either curves or surfaces in 3D [14].

Fitting the “snake pedal” to data is posed as a nonlinear minimization and
we use the Levenberg-Marquardt nonlinear optimization algorithm [11] in con-
junction with an efficient version of the alternating direction implicit (ADI)
technique [14] to achieve the fitting. Fig. 2.1 presents a model fitting example to
sparse 3D data points placed by an expert neunro-scientist along the boundaries
of a gyrus in selected slices of an MR brain scan. Such a scenario arises in the
semi-automatic construction of anatomical models for possible use as a prior
model in shape recovery from unknown data. In this example, from left to right,
the images depict a slice of an MR brain scan in which the shape of interest –
a gyrus – has been identified by a neuro-scientist via sparsely placed points on
the shape boundary. The next image shows the collection of these 3D points in
red and the initialized snake pedal model followed by an image depicting the
intermediate stage of fitting and the final fitted model respectively. As evident,
the model achieves a visually accurate fit to the data. In addition, the model fit
has been validated against manual segmentation from an expert neuro-scientist.

(a) (b) (c) (d)

Fig. 5. Left to right: MR brain scan depicting a region of interest (a gyrus), initialized
model, intermediate fitting stage and final model fit

2.2 Evolving Snake Pedals

As described in the earlier sections, the traditional PDE-based geometric curve
evolution algorithms do not provide a mechanism to characterize the global
shape of an object. In this section, we describe how the level set formulation
of the geometric curve evolution can be applied to our snake pedal model to
realize topological changes (when necessary) as well as capture the global shape
representation of an object.

In our approach, to incorporate a smoothing constraint on the snake pedal, we
impose regularization via Euclidean arc-length minimization of the snake pedal.
This leads to the standard geodesic/geometric active contour. Let us consider
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a snake pedal denoted by Pe(t), with its position denoted by pe = {pe1, pe2},
then the standard geometric curve evolution formula for the snake pedal can be
written as

∂pe

∂t
= F (ke)Ne, (3)

where ke and Ne are the curvature and normal of the snake pedal respectively.
We now examine how the “snake” would evolve if the snake pedal were evolv-
ing as a function of its local curvature. Indeed, we will not evolve the snake
pedal curve directly, instead, we will first solve for the snake position under the
constraint that the arc-length of the snake pedal is minimized, and the pedal
curve can then be determined by the pedaling operation defined in Section 2.1,
given the position of the generator. The problem therefore can be solved by the
following procedure:

1. Derive the curve evolution equation for the snake P(t) by minimizing the
arc-length of the snake pedal Pe(t);

2. Embed the evolving curve P(t) in a higher dimensional surface φ1 and for-
mulate the equation of motion for φ1;

3. Solve the equation of motion for φ1 using proper numerical techniques;
4. Determine the snake pedal curve from the evolving snake via the pedaling

operation, given the generator.

x

y

z
f

1(x,y,t)
f

2
(x,y,t)

e (t) = Level Set f
2

= 0

(t) = Level Set f = 0
1

Fig. 6. Relation between P(t), Pe(t), φ1, and φ2, the level-sets of the higher dimensional
surfaces φ1 and φ2 respectively. They are related by the pedaling operation

We remind the reader that in the above procedure, the snake pedal curve
also evolves, but it evolves as a standard geometric active contour embedded in
another higher dimensional surface φ2. We do not need to solve the equation
of motion for φ2 directly instead, φ2 can be regarded as being implicit in the
procedure. Thus, we do not determine the level-set curve Pe(t) of the surface
φ2 instead, we first evaluate φ1 and determine its zero set, then we apply the
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pedaling operation to obtain the snake pedal Pe(t). In addition, even though φ2
is not involved in the final algorithm, it is very useful in the derivation of the
governing PDE for the function φ1. Note that the snake model discussed here
is no longer the classical energy-minimizing model, since its deformation is not
obtained by minimizing some internal deformation energy, but we will still use
the name “snake” to represent the controlling active contours in the snake pedal
model. Fig. 6 depicts this important relationship between P(t),Pe(t), φ1, and
φ2.

Note that an important feature of this modeling technique is the incorporation
of a global parameterized shape, namely, the generator, into the curve evolution
framework. As already mentioned earlier, this global parameterized shape can
be very useful in applications involving objects recognition as well as in shape
learning (by collecting statistics on the global shape parameters of the model).
Since a geometric active contour is used to represent the controlling “snake” in
the model, and also the model can capture the “global orientation” of an object
or a group of objects, this snake pedal model is referred to as a hybrid geometric
active contour model. Detailed discussion of the related concepts will be given in
the following sections, starting with the derivation of the relationship between
the snake and the snake pedal evolution.

Relation Between the Snake and Snake Pedal Curve Evolution Con-
sider a snake p = (p1, p2)T and a generator α = (α1, α2)T with normal J

′
α =

(n1, n2)T , where p and α are related by an association scheme – a radial associ-
ation produced by using the same parameterization for both the curves [4]. We
obtain the corresponding snake pedal pe = (pe1, pe2)T via the following pedaling
operation:

pe = p − (α − p) · J′
α

‖J′
α‖2 · J′

α , (4)

or simply,

pe = JA p − b, (5)

where

JA =




1 + n2
1

n2
1 + n2

2

n1 · n2
n2

1 + n2
2

n1 · n2
n2

1 + n2
2

1 + n2
2

n2
1 + n2

2


 , (6)

and

b = α1 · n1 + α2 · n2
n2

1 + n2
2

[
n1
n2

]
. (7)

Let the inverse of JA be denoted by JB , which is also a function of n1 and n2.
We remind the reader that because the generator does not evolve over time,



120 Y. Guo and B.C. Vemuri

the forms of JB and b do not change over time, but their contents change only
during the iterative estimation process. Thus, we can treat JB as a constant
matrix and b as a constant vector with respect to time when evolving p(t) or
pe(t). Therefore, (5) can be explicitly written as a function of time:

pe(t) = JA p(t) − b. (8)

Taking partial derivative on both sides of (8) with respect to time t yields

∂pe(t)
∂t

= JA
∂p(t)

∂t
, or

∂p(t)
∂t

= JB
∂pe(t)

∂t
. (9)

Equation (9) reveals a very crucial relationship between the snake and snake
pedal evolution: the evolution of two curves are linearly related by a Jacobian
matrix. We remind the reader that the relationship between the snake and snake
pedal is not linear, but their evolutions over time are related by a linear trans-
formation.

PDE for the Snake and Snake Pedal Evolution When embedding the
snake P(t) as the zero set of a higher dimensional surface φ1, we have:

{P(t) ∈ <2 : φ(p, t) = 0}, (10)

Differentiating (10) with respect to t yields: ∂φ1
∂t

+∇φ1·∂p
∂t

= 0. Similarly, for the

higher dimensional function φ2, we have the following formula: ∂φ2
∂t

+∇φ2·∂pe
∂t

=
0. From the discussion in the previous section, we have


∂pe
∂t

= JA · ∂p
∂t

,

or
∂p
∂t

= JB · ∂pe
∂t

.

(11)

As described earlier, we want to minimize the arc-length of the snake pedal,
which amounts to imposing a smoothness constraint on the snake pedal curve,
hence we require that: ∂pe

∂t
= F (ke)Ne, where F (ke) is the speed function,

which depends on the curvature of the snake pedal ke. Ne is the unit normal of
the snake pedal. Similar to the relation between the normal of the snake and its
higher dimensional function φ1 : N = − ∇φ1

‖∇φ1‖ . For the zero level set of φ2, the

following relation holds: Ne = − ∇φ2
‖∇φ2‖ Combining the above three equations

we obtain,

∂φ2

∂t
= F (ke)‖∇φ2‖. (12)

Equation (12) is the standard level-set evolution. Similarly, for the governing
equation of the snake curve, we have:

∂φ1

∂t
= F (ke)∇φ1 · JB

∇φ2

‖∇φ2‖ . (13)
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The above two equations are the equations of motion for φ1 and φ2, respectively.
We rewrite them together as follows:




∂φ2
∂t

= F (ke)‖∇φ2‖
∂φ1
∂t

= F (ke)∇φ1 · JB
∇φ2

‖∇φ2‖
. (14)

Eq. (14) represents the PDEs for the evolution of φ1 and φ2 (note that they are
not coupled). One approach to solve these PDEs is to use a combination of central
and upwind finite differences [10] to solve the first equation in every iteration,
and then solve the second equation using a similar method subsequently. We
will discuss the up-wind finite difference method in Section 2.3. This approach
is straightforward, but needs large amounts of storage for both φ1 and φ2. Note
that in (14), only the gradients of φ1 and φ2 are involved on the right hand sides
of both equations, we propose a more elegant approach to solve the PDEs in
(14) with much less storage, by employing the intrinsic relation between ∇φ1
and ∇φ2 as discussed in [4]. In [4], a surprisingly simple relation between φ1 and
φ2 is obtained after a tedious derivation. This relationship is given by,

∇φ1 = JA · ∇φ2, or ∇φ2 = JB · ∇φ1. (15)

Where the Jacobian between the evolution of the snake and snake pedal curve
JA and JB = J−1

A are defined as before. At first glance, this relation is seemingly
contradictory to our intuition. One would think that since ∂pe(t)

∂t = JA
∂p(t)

∂t , if
there is any Jacobian between the gradients of φ1 and φ2, the relation should be
∇φ2 = JA∇φ1, rather than ∇φ1 = JA∇φ2.

Since our objective is to obtain the equation of motion for the higher dimen-
sional surface φ1, we substitute φ2 with JB φ1 in (13) to get

∂φ1
∂t

= F (ke) ‖JB∇φ1‖. (16)

The representation of ke in terms of φ1 is quite complicated, we refer the reader
to [4] for these details. Equation (16) is the equation of motion for φ1 and
constitutes the primary equation in our application. When using the snake pedal
model for recovery of the shape of interest from image data, we need to solve
the more general equation of motion for the higher dimensional function φ1:
∂φ1
∂t

= g(x, y) F (ke) ‖JB∇φ1‖ + ∇φ1 · ∇g, where g(x, y) is an image feature
based function and is used to stop the curve evolution when the contour is close
to the desired edges. ∇φ1 and ∇g must be evaluated at locations on the snake
and the snake pedal, respectively.

2.3 Numerical Solution

In this section, we discuss application of the snake pedal to recover the bound-
aries of the shape of interest from an image using a novel global plus local shape
estimation procedure. For the global shape estimation, we employ the well known
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Levenberg-Marquardt (LM) method; while for the local shape estimation, we
present a modified level-set method.

In Section 2.2, we illustrated that the solution for the snake pedal evolu-
tion can be achieved by first solving the snake evolution, which is embedded
in a higher dimensional surface φ1, then applying the pedaling operation on
the snake. Therefore, developing a reliable and efficient numerical algorithm for
solving the governing equation of φ1, i.e., (16) is the primary task in applying
the snake pedal model for extracting shapes of interest from image data. The
governing equation of motion for φ1, in the simplest form is given in (16).

As discussed in [10], the speed function F (.) in (16) consists two terms,
namely, the advection term FA and the diffusion term FG. The diffusion term
smooths the curve while the advection term may result in sigularities during the
curve evolution even with smooth initial data. A variety of entropy-satisfying
algorithms have been proposed to evlove the curve beyond the formation of
sigularities.

In our numerical approach, to solve the equation of motion (16), for the
diffusion term, we use the standard central difference approximation. Whereas,
for the advection term, we need to solve the following hyperbolic initial-value
problem:

φ1t =
√

a(x, y)φ2
1x + b(x, y)φ2

1y + c(x, y)φ1xφ1y, (17)

where a(x, y), b(x, y) and c(x, y) are determined by the entries of JB and do
not change over time. φ2

1x and φ2
1y can be approximated by the upwind finite

difference scheme discussed in [10]. But for the φ1xφ1y term, we use the minmod
finite difference approximation discussed in Kimmel et al. [7]. The minmod finite
derivative is defined as:

minmod{a, b} =
{

sign(a)min(|a|, |b|) if ab > 0
0 otherwise. (18)

Using this definition to approximate φ1xφ1y leads to

φ1xφ1y| x=i∆x
y=j∆y

=minmod(D+
x φ1,(i,j), D

−
x φ1,(i,j)) minmod(D+

y φ1,(i,j), D
−
y φ1,(i,j)),

(19)

where D+
x , D−

x are as defined are

D−
x φ1i =

φn
1i − φn

1(i−1)

∆x
, D+

x φ1i =
φn

1(i+1) − φn
1i

∆x
, (20)

and similar definitions apply to D+
y and D−

y .
Combining these finite differences yields a first order numerical scheme for

solving (17), the advection term in (16):

φn+1
1,(i,j)= φn

1,(i,j)+∆t

[ai,j((max(D−
x φ1,(i,j), 0))2 + (min(D+

x φ1,(i,j), 0))2)
+bi,j((max(D−

y φ1,(i,j), 0))2 + (min(D+
y φ1,(i,j), 0))2)

−ci,jminmod(D+
x φ1,(i,j), D

−
x φ1,(i,j))minmode(D+

y φ1,(i,j), D
−
y φ1,(i,j))]1/2

(21)
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This numerical scheme is stable and provides a natural way to handle the topo-
logical changes in the snake evolution.

3 Implementation Results

In this section, we present the level-set implementation of the hybrid geometric
active model with ellipse and super-ellipse generators described in Section 2.2 re-
spectively. The examples contain 2D slices from an MR scan of the human heart.
In each row of Fig. 7, from left to right, images show the model initializations,
intermediate stages of fitting and the final model fits. The model is initialized to
capture the endocardium structure. In the top row, we used an ellipse generator
and in the bottom row, a superellipse was used. AS evident from the results, the
super-ellipse captures the global shape better for this example. The snake pedal
is shown in green (light gray) and the global shape in red (dark gray). We use
image-based speed function to deter the model evolution in both examples.

Fig. 7. Hybrid geometric active contour fitting examples: Left to right, model initializa-
tion (snake pedal in green (light gray) and generator in red (dark gray)), intermediate
stages of evolution and final fit. The first row uses an ellipse generator while the second
row uses a super-ellpise generator

Fig. 8 depicts a topological change example for synthetic data. From left to
right, images depict model initialization, intermediate stage of evolution and final
fit respectively. In this example, the snake pedal is initialized as a single small
ellipse, as the fitting proceeds, the model expands and splits, and finally fits to
all the object contours in the whole image. The global shapes of the generator
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is not shown here since the meaning of the “global” shape in these examples is
not very useful.

By replacing the ellipse generator with a super-ellipse, we can obtain a more
general/powerful representation of the global shape in the snake pedal model.

In all these examples, we implemented the level-set form of the equation:

∂φ1

∂t
= g(x, y) F (ke) ‖JB∇φ1‖ + ∇φ1 · ∇g,

where, g(∇I) = 1/(1 + ‖∇(G ∗ I)‖2/K)with G ∗ I being a Gaussian convolved
with the image and K being a scaling constant. More sophisticated stopping
criteria may be synthesized to yield better accuracy in shape recovery. We use
the upwind difference and minmod difference method described in Section 2.3
to implement this Hamilton-Jacobi equation of motion.

Fig. 8. Topological change examples with hybrid geometric active contour models: Left
to right, initialization (snake pedal in yellow (white)), intermediate stages of evolution
and final fit

4 Conclusions

In this paper, we proposed novel extensions to a powerful geometric shape mod-
eling scheme called the snake pedals, introduced in [14]. The extension involved
methods for automatically coping with topological changes and for the first time,
the introduction of the concept of a global shape into geometric/geodesic snake
models. The ability to characterize global shape of an object using very few
parameters facilitates shape learning and recognition. Unlike the deformable
superquadrics, the geometric snake pedals have the ability to cope with large
bending and twists in a shape without explicitly introducing parameters to char-
acterize the same. This leads to reduced numerical complexity and increased nu-
merical stability in the resulting shape recovery algorithms used. The modeling
scheme was applied to recover shapes of interest from a variety of medical image
data using numerically stable algorithms.
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Abstract. Automatic and semi-automatic magnetic resonance angiog-
raphy (MRA) segmentation techniques can potentially save radiologists
large amounts of time required for manual segmentation and can facili-
tate further data analysis. The proposed MRA segmentation method uses
a mathematical modeling technique which is well-suited to the compli-
cated curve-like structure of blood vessels. We define the segmentation
task as an energy minimization over all 3D curves and use a level set
method to search for a solution. Our approach is an extension of previ-
ous level set segmentation techniques to higher co-dimension.

1 Introduction

The high-level goal of this research is to develop computer vision techniques
for the segmentation of medical images. Automatic and semi-automatic vision
techniques can potentially assist clinicians in this task, saving them much of the
time required to manually segment large data sets. Specifically, we consider the
segmentation of volumetric vasculature images, such as the magnetic resonance
angiography (MRA) image pictured in Fig. 1.

As shown here, blood vessels appear in MRA images as bright curve-like
patterns which may be noisy and have gaps. What is shown is a “maximum
intensity projection”. The data is a stack of slices where most areas are dark,
but vessels tend to be bright. This stack is collapsed into a single image for
viewing by performing a projection through the stack that assigns to each pixel
in the projection the brightest voxel over all slices. This image shows projections
along three orthogonal axes.

Thresholding is one possible approach to this segmentation problem and
works adequately on the larger vessels. The problem arises in detecting the small
vessels, and that is the objective of our work. Thresholding cannot be used for
the small vessels for several reasons. The voxels may have an intensity that is
a combination of the intensities of vessels and background if the vessel is only
partially inside the voxel. This sampling artifact is called partial voluming. Other
imaging conditions can cause some background areas to be as bright as other

A. Kuba et al. (Eds.): IPMI’99, LNCS 1613, pp. 126–139, 1999.
c© Springer-Verlag Berlin Heidelberg 1999
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vessel areas, complicating threshold selection. Finally, the images are often noisy,
and methods using local contextual information can be more robust.

Our method uses the fact that the underlying structures in the image are
indeed 3D curves and evolves an initial curve into the curves in the data (the
vessels). In particular, we explore techniques based on the concept of mean cur-
vature flow, or curve-shortening flow, from the field of differential geometry.

Fig. 1. Maximum intensity projection of a phase-contrast MRA image of blood vessels
in the brain

2 Curvature Evolution Methods

Mean curvature evolution schemes for segmentation, implemented with level set
methods, have become an important approach in computer vision [5,10,11]. This
approach uses partial differential equations to control the evolution. An overview
to the superset of techniques using related partial differential equations can be
found in [4]. The fundamental concepts from mathematics from which mean
curvature schemes derive were explored several years earlier when smooth closed
curves in 2D were proven to shrink to a point under mean curvature motion
[8,9]. Evans and Spruck and Chen, Giga, and Goto independently framed mean
curvature flow of any hypersurface as a level set problem and proved existence,
uniqueness, and stability of viscosity solutions [7,6]. For application to image
segmentation, a vector field was induced on the embedding space, so that the
evolution could be controlled by an image gradient field or other image data. The
same results of existence, uniqueness, and stability of viscosity solutions were
obtained for the modified evolution equations for the case of planar curves, and
experiments on real-world images demonstrated the effectiveness of the approach
[3,5].

Curves evolving in the plane became surfaces evolving in space, called min-
imal surfaces [5]. Although the theorem on planar curves shrinking to a point
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could not be extended to the case of surfaces evolving in 3D, the existence,
uniqueness, and stability results of the level set formalism held analogously to
the 2D case. Thus the method was feasible for evolving both curves in 2D and
surfaces in 3D. Beyond elegant mathematics, spectacular results on real-world
data sets established the method as an important segmentation tool in both do-
mains. One fundamental limitation to these schemes has been that they describe
only the flow of hypersurfaces, i.e., surfaces of co-dimension 1.

Altschuler and Grayson studied the problem of curve-shortening flow for
3D curves [1], and Ambrosio and Soner generalized the level set technique to
arbitrary manifolds in arbitrary dimension. They provided the analogous results
and extended their level set evolution equation to account for an additional
vector field induced on the space [2].

We herein present the first implementation of geodesic active contours in
3D, based on Ambrosio and Soner’s work. Specifically, our system uses these
techniques for automatic segmentation of blood vessels in MRA images. The
dimension of the manifold is 1, and its co-dimension is 2.

3 Mean Curvature Flow

Intuitively, mean curvature flow refers to some curve evolving in time so that at
each point, the velocity vector normal to the curve is equal to the mean curvature
vector. This concept is normally defined for arbitrary generic surfaces, but only
curves are necessary for this paper, so we have restricted the definition. More
formally, let C(t), t ≥ 0 be a family of curves in <2 or <3, N the normal for a
given orientation. That is, C is a curve, and t represents the “time” parameter
or the index into the family of curves, not position. The mean curvature flow
equation is then given by the vector equation

Ct = κN (1)

with given initial curve C(0) = C0, κ the curvature of the curve, and Ct the
time derivative of the curve. Note that since we consider only 1D curves here,
as opposed to evolving surfaces, the mean curvature is just the usual curvature
of the curve. This motion is also called “curve-shortening flow” since it is the
solution, obtained by Euler-Lagrange equations, to the problem of minimizing
curve length:

min
C

∫
|C ′(p)|dp

where p is the spatial parameter of the curve.

4 Level Set Method for Planar Curves

We give the basic idea of the level set method [12] to evolve a planar curve C.
Define a function u : <2 → < so that C is a level-set of u. We follow the conven-
tion that C is, in particular, the zero level set of u, although this choice is not
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necessary for the method. The function u is now an implicit representation of
the curve C. The advantages of this representation are that it is intrinsic (inde-
pendent of parameterization) and that it is topologically flexible since different
topologies of C are represented by the constant topology of u. Let C0 be the
initial curve.

It is shown in [7] and [6] that evolving C according to

Ct = βN (2)

with initial condition C(·, 0) = C0(·) for any function β, is equivalent to evolving
u according to

ut = β|∇u| (3)

with initial condition u(·, 0) = u0(·) and u0(C0) = 0.

Fig. 2. Level sets of an embedding function u, for a closed curve in <2

This result is independent of the choice of function u [7,6]. As customary in
the literature, we choose u0 to be the signed distance function to the curve C
(Fig. 2).

5 Level Set Method for Curves in Higher Codimension

The level set evolution equations that follow were proven in [2]. They enable us
to evolve space curves, with evolution driven by both mean curvature and image
information. In the following discussion, C is a curve in 3D.

5.1 Mean Curvature Flow

Let v : <3 → [0,∞) be an auxiliary function whose zero level set is identically C,
that is smooth near C, and such that ∇v is non-zero outside C. For a nonzero
vector q ∈ <n, define

Pq = I − qqT

| q |2
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Fig. 3. Evolving curves under mean curvature flow. The first three images show a circle
shrinking to a point, and the last two images show a helix shrinking to its axis

as the projector onto the plane normal to q. Further define λ(∇v(x, t),∇2v(x, t))
as the smaller nonzero eigenvalue of P∇v∇2vP∇v. The level set evolution equa-
tion is then

vt = λ(∇v(x, t),∇2v(x, t)).

That is, this evolution is equivalent to evolving C according to Ct = κN in the
sense that C is the zero level set of v throughout the evolution.

Figure 3 demonstrates this evolution. As discussed above, a circle shrinks to
a point under mean curvature motion. Under this motion, a helix evolves into
its axis.

5.2 Incorporation of Vector Field

This section discusses the situation where there is an underlying vector field driv-
ing the evolution, in combination with the curvature term. Assume the desired
evolution equation is of the form

Ct = κN − Πd,

where Π is the projection operator onto the normal space of C (which is a vector
space of dimension 2) and d is a given vector field in <3. The evolution equation
for the embedding space then becomes

vt = λ(∇v,∇2v) + ∇v · d.

5.3 3D Image Segmentation

For the case of 1D structures in 3D images, we wish to minimize
∫ 1

0
g(|∇I(C(p))|)|C ′(p)|dp

where C(p) : [0, 1] → <3 is the 1D curve, I : [0, a] × [0, b] × [0, c] → [0,∞)
is the image, and g : [0,∞) → <+ is a strictly decreasing function such that
g(r) → 0 as r → ∞ (analogous to [5]). For our current implementation, we use
g(r) = exp(−r) because it works well in practice. Another common choice is
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Fig. 4. (a) The tangent to C at p, the normal plane, the image-based vector, and its
projection onto the normal plane. (b) ε-level set method

Fig. 5. Evolving helix under mean curvature flow with additional vector field: target
curve, initial level set, level set after evolution with endpoints constrained

g(|∇I|) = 1
1+|∇I|2 . By computing the Euler-Lagrange equations, we find that

the curve evolution equation is

Ct = κN − g′

g
Π(H

∇I

| ∇I | ), (4)

where H is the Hessian of the intensity function. The second term in the above
equation is illustrated in Fig. 4(a). That is,

d =
g′

g
H

∇I

| ∇I | ,

so the equation for the embedding space is

vt = λ(∇v(x, t),∇2v(x, t)) +
g′

g
∇v(x, t) · H ∇I

| ∇I | . (5)

Thus, Ambrosio and Soner’s work has provided the basis for the use of mean
curvature flow and level set methods to segment 1D structures in 3D. Figure 5
illustrates how underlying image information can attract the evolving tube. The
underlying volumetric image data is shown, as a maximum intensity projection,
in the first image. This volume was generated by drawing a cosine curve in
the volume, then smoothing with a Gaussian filter. The second image shows the
initial curve, a helix. The result of the evolution is shown in the rightmost image.
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6 MRA Segmentation System

This section describes our system for segmentation of vessels from MRA using
the described level set method. A flowchart is shown in Fig. 6. We discuss issues
that have arisen in converting the theory above to practice for this application.

ε-Level Set Method: Since the projection operator Pq is defined only for
non-zero vectors q, the method is undefined at ∇v = 0, which is the curve
itself, and is numerically unstable near the curve. For this reason, we regard v
as a distance function to a “tube” of small radius ε around the curve, instead of
extracting the true 1D curve. That is, we evolve the ε-level set instead of evolving
the true curve (Fig. 4(b)). Note that ε does not denote a fixed value here: we
mean simply that the evolving shape is a “tubular” surface of some (unspecified
and variable) nonzero width. In addition to being more robust, this method
better captures the geometry of blood vessels, which have nonzero diameter.

Banding: Instead of evolving the entire volume, we evolve only the portion
of the volume within a narrow band of the zero level set (the current surface).
This technique is commonly used in level set methods. Normally, we set the
band to include voxels that are up to 6 voxels away from the surface. We have
increased this distance up to 12 for some experiments. The advantage of this
technique is efficiency, and the disadvantage is that we may miss structures that
are outside the band if the potential function g does not have a large enough
capture range to attract the segmentation to these structures. This issue can be
addressed by ensuring that g is compatible with the band size.

Curvature Instead of Eigenvalues: For computational efficiency and be-
cause of numerical instability of the gradient computations and thus the evolu-
tion equation near ∇v = 0, we remark that the level sets of the function v flow
in the direction of the normal with velocity equal to the sum of their smaller
principal curvature and the dot product of ∇v with the image-based vector field
d. Therefore, we compute the smaller curvature directly from v instead of as an
eigenvalue of P∇v∇2vP∇v.

Image Scaling: To control the trade-off between fitting the surface to the
image data and enforcing the smoothness constraint on the surface, we add an



Co–dimension 2 Geodesic Active Contours for MRA Segmentation 133

image scaling term imscale to Equation 5 to obtain

vt = λ(∇v(x, t),∇2v(x, t)) + imscale ∗ g′

g
∇v(x, t) · H ∇I

| ∇I | (6)

imscale is set by the user or can be pre-set to a default value.
Gradient Directionality: Because vessels appear brighter than the back-

ground, we weight the image term by the cosine of the angle between the normal
to the surface and the gradient in the image. This cosine is given by the dot
product of the respective gradients of v and I, so the update equation becomes

vt = λ(∇v(x, t),∇2v(x, t)) + imscale ∗ (∇v · ∇I) ∗ g′

g
∇v(x, t) · H ∇I

| ∇I | . (7)

For example, if the two vectors point in the same direction, then the brighter
region is inside the surface and the darker region is outside; the angle between
the vectors is 0, whose cosine is 1, so the image term is fully counted. However,
if they point in opposite directions, the negative weighting prevents the evolving
vessel walls from being attracted to image gradients that point in the opposite
direction.

Reinitializing Volume: As customary in level set segmentation methods,
the volume v is periodically reinitialized to be a distance function: the zero level
set S is extracted, then each point in the volume is set to be its distance to S. For
our implementation, this reinitialization is itself a level set method. To obtain
the positive distances, the surface is propagated outward at constant speed of 1,
and the distance at each point is determined to be the time at which the surface
crossed that point. A second step propagates the surface inward to obtain the
negative distances analogously. For some experiments, we have used the Fast
Marching Method [12] to implement these steps.

Initial Surface: Figure 7 shows additional detail on the generation of the
initial surface. This initial surface (and thus the initial volume) is normally

OR
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SthrGaussian
smoothing Threshold

I

MRA Image

Generate
pre-defined
surface

S v(.,0)

Fig. 7. More detailed illustration of initialization part of algorithm
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Fig. 8. Illustration of a vertical bar evolving in a segmentation of the first dataset in
Fig. 10

generated by thresholding the MRA dataset. However, the method does not
require that the initial surface be near the target surface but may use any initial
surface. Figure 8 illustrates a vertical bar evolving into the segmentation of the
first dataset in Fig. 10.

Smoothing: As shown in Fig. 7, the datasets may be pre-processed to reduce
noise. For the results presented here, the raw datasets were convolved with an
isotropic Gaussian of σ = 0.5.

Cleaning: We post-process the segmentations to remove any surface patches
whose surface area is less than some threshold (a parameter of the method) to
eliminate patches corresponding to noise in the original data.

Vessel Radii Estimation: The larger principal curvature can be useful in
measuring the radii of the vessels for a particular application, since radius is the
inverse of curvature. This curvature can be easily computed when the smaller
principal curvature is computed for the segmentation. We have added the option
to color-code our segmentations based on vessel radii, as estimated from the local
larger principal curvature of the tubular surface.

7 Results

We demonstrate segmentation results on four datasets, courtesy of the Surgi-
cal Planning Laboratory, Brigham and Womens Hospital and Harvard Medical
School (Figs. 9, 10, and 11). All datasets had an initial resolution of .9375x.9375x
1.5mm3 (256x256x60 voxels). The final example only was resampled to .9375x
.9375x.9375mm3 (256x256x96 voxels) before segmentation; the other segmen-
tations were performed directly on the raw data. The images are not square
(256x256) because uninteresting portions were cropped for efficiency. In Fig. 10,
the initial surface for the segmentation was a surface obtained by thresholding
the raw dataset whereas in Fig. 9 it was a tube as in Fig. 8; imscale also varied as
discussed below. For comparison, Fig. 10 first shows results obtained by thresh-
olding alone. Figure 11 shows an enlargement of a portion of the segmentations
and corresponding maximum intensity projection considered in Fig. 10.

The following parameters were used in these experiments; all settings were
chosen empirically. For our method, imscale varied across the datasets depending
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Fig. 9. The first image in each row is the maximum intensity projection of the raw data,
and the second and third are the segmentation result from two orthogonal viewpoints.
These results are obtained by our method where the initial surface was a vertical bar
as showed in Fig. 8
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Fig. 10. Results on three datasets are shown. For each image pair, the first image
is the maximum intensity projection of the raw data, the second is the segmentation
result from thresholding only and the third is the segmentation result using our method

on the noise present. A threshold tinit was used in Fig. 10 to obtain the initial
surface from the dataset; such a threshold was obviously not needed in Fig. 9.
A cleaning threshold c indicated the minimum surface area of connected com-
ponents of the surface to be retained in the post-processing “cleaning” step.

For thresholding only, the threshold tthresh was chosen and also the cleaning
threshold c. For all datasets, tinit was slightly higher than tthresh for the same
dataset: although using a lower tthresh alone looks better after the cleaning step,
the noise before cleaning worsened our results and led us to use a slightly higher
value for initialization.

Recall that obtaining the very small vessels is the goal of this work since
the large vessels are easily segmented by thresholding. For this reason, imscale
was set fairly high in the experiments in Fig. 10 to obtain the small vessels, at
the expense of also obtaining many imaging artifacts. A coarser segmentation is
obtained in Fig. 9 by choosing lower values for imscale. Although the results in
this figure are only similar to those obtained by simple thresholding, the objective
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of the demonstration is academic: it shows that we capture the vasculature shape
even when the initial guess is meaningless. In practice, better results are obtained
using thresholding for initialization.

When considering that the imscale parameter controls the trade-off between
noise and small vessels in our method, and when comparing our method to
thresholding alone, it is important to note that it would not be possible to
similarly lower tthresh to obtain the small vessels (and noise) by thresholding
alone. Lowering the threshold obtains large blobs in the volume which do not
correspond to vessels. Our method is thus more powerful than thresholding alone.

Finally, we demonstrate the capability to color-code the vasculature surface
based on local curvature. Notice (Fig. 12) that for a ribbon-like vessel, the flatter
sides shows a large radius, and the sharply curved edges show a small radius.
In this example, the colorscale is continuous from darkest to lightest intensities,
with darkest indicating a radius of curvature ≤ 1mm and lightest indicating a
radius of curvature ≥ 2mm. The curvatures output by our evolution have been
smoothed by a 3x3x3 filter prior to coloring the surface.

8 Future Work

Vessels tend to appear thinner in our segmentations than in those obtained by
thresholding. One possible reason is that our method uses gradients instead of
intensities, so the vessel wall is found attracted to the strongest gradients, which
may be fully inside the bright region indicated by thresholding. A second option
is that the underlying mathematics of our algorithm assume that the vessels
are 1D curves, not tubular surfaces. We believe that our ε-level set method
allows the method to successfully handle tubular surfaces, but have not yet
verified this analytically. A final potential reason for the discrepancy is that
the segmentations obtained by thresholding may be thicker than the true blood
vessels due to noise around the vessels. Future work will involve comparisons to
manual segmentations which will provide ground truth to evaluate both methods.

We also observe a lot of noise in our segmentations of the first and second
datasets. As mentioned above, we could obtain much less noise at the expense of
the thinnest vessels by lowering imscale. For the large amounts of noise in these
datasets, noise is often indistinguishable from small vessels when only a small
local neighborhood is considered, as in our algorithm. To address this problem,
one could reduce noise prior to segmentation by filtering or incorporate a more
sophisticated image measure into Equation 5.

On the positive side, the segmentation of small vessels that were not ob-
tainable by thresholding encourages us to continue in the development of this
algorithm. Although still in preliminary stages, we believe that it has the poten-
tial to yield effective segmentations of very thin vessels.
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Fig. 11. Enlargement of a portion of the second example from Fig. 10. As above, the
second image is the segmentation obtained by thresholding alone, and the third image
is the result of our method

Fig. 12. Our method naturally allows estimation of local radii of curvature of the
segmented vessels. In this image of a partial segmentation of the first dataset in Fig. 10,
the colorscale is continuous from darkest to lightest intensities, with darkest indicating
a radius of curvature ≤ 1mm and lightest indicating a radius of curvature ≥ 2mm
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Abstract. An algorithm is proposed for the fuzzy segmentation of two
and three-dimensional multispectral magnetic resonance (MR) images
that have been corrupted by intensity inhomogeneities, also known as
shading artifacts. The algorithm is an extension of the two-dimensional
adaptive fuzzy C-means algorithm (2-D AFCM) presented in previous
work by the authors. This algorithm models the intensity inhomogeneities
as a gain field that causes image intensities to smoothly and slowly vary
through the image space. It iteratively adapts to the intensity inhomo-
geneities and is completely automated. In this paper, we fully generalize
2-D AFCM to three-dimensional (3-D) multispectral images. Because
of the potential size of 3-D image data, we also describe a new, faster
multigrid-based algorithm for its implementation. We show using simu-
lated MR data that 3-D AFCM yields significantly lower error rates than
both the standard fuzzy C−means algorithm and several other compet-
ing methods when segmenting corrupted images. Its efficacy is further
demonstrated using real 3-D scalar and multispectral MR brain images.

1 Introduction

Tissue classification is a necessary step in many medical imaging applications
including the quantification of tissue volumes, study of anatomical structure,
and computer integrated surgery. Classification of voxels exclusively into dis-
tinct classes, however, is problematic due to artifacts such as noise and the
partial volume effect, which occurs when multiple tissues are present in a single
voxel. To compensate for these artifacts, there has recently been growing interest
in fuzzy segmentation methods. In fuzzy segmentations, voxels may be classified
into multiple classes with a varying degree of membership. The membership thus
gives an indication of where noise and partial volume averaging have occurred
in the image. Standard fuzzy segmentation algorithms, however, do not effec-
tively compensate for intensity inhomogeneities, a common artifact in magnetic
resonance (MR) images.

A. Kuba et al. (Eds.): IPMI’99, LNCS 1613, pp. 140–153, 1999.
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In MR images, intensity inhomogeneities are typically caused by non-uniformi-
ties in the RF field during acquisition, although other factors also play a role
[15]. The result is a shading effect where the pixel or voxel intensities of the
same tissue class vary over the image domain. It has been shown that the shad-
ing in MR images is well modeled by the product of the original image and a
smooth, slowly varying gain field [7,18]. Corrupted images may be segmented
by first applying a correction algorithm (cf. [7,16]) to remove intensity inhomo-
geneities, and then applying a standard segmentation algorithm that assumes
no inhomogeneities are present.

Several methods have also been proposed that simultaneously compensate
for the shading effect while segmenting the image. These methods have the ad-
vantage of being able to use intermediate information from the segmentation
while performing the correction. Most of these methods, however, have focussed
on classifying each voxel into distinct tissue classes [19,13,17]. An expectation-
maximization algorithm has also been proposed [18,8] that models the inho-
mogeneities as a bias field of the image logarithm. This method is capable of
obtaining fuzzy segmentations based on posterior probabilities, but for most
data sets some manual interaction is required to provide training data.

Recently, we presented some initial results on an unsupervised segmenta-
tion algorithm called the adaptive fuzzy C-means algorithm (AFCM), designed
for segmenting two-dimensional (2-D) scalar images corrupted by intensity in-
homogeneities [10,11]. Based on the fuzzy C-means algorithm (FCM) [1], the
advantages of 2-D AFCM are that it automatically produces fuzzy segmenta-
tions, it is robust to inhomogeneities, and it computes a smooth gain field based
on all pixels in the image. Although this algorithm is suitable for the segmenta-
tion of MR images obtained using single or multi-slice acquisitions, it cannot be
used in volumetric acquisitions where the inhomogeneities are three-dimensional
(3-D) in nature, nor can it be used on multispectral data.

In this paper, we generalize AFCM to 3-D multispectral images. Our gen-
eralization also allows for the adjustment of the “crispness” or “fuzziness” of
the resulting segmentation and for the segmentation of data with ellipsoidal
shaped clusters. A novel algorithm is presented for computing the gain field
that typically yields a threefold improvement in speed over a standard multigrid
approach without reducing accuracy. This speed improvement is especially sig-
nificant when working with large 3-D data sets. We also provide in this paper
several new results using simulated data that show that the segmentations ob-
tained using FCM on uncorrupted images and AFCM on corrupted images are
accurate both in terms of classification and modeling of partial volume effects.
Moreover, we show that under default initializations, AFCM’s performance on
corrupted 3-D images is superior to the performance of methods presented in
[16] and [19].
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2 Background

In this section, we give a brief overview of FCM and 2-D AFCM. FCM has
previously been used with some success in the fuzzy segmentation of magnetic
resonance (MR) images (cf. [12,1]) as well as for the estimation of partial vol-
umes [3]. It clusters data by computing a measure of membership, called the
fuzzy membership, at each voxel for a specified number of classes. The fuzzy
membership function, constrained to be between zero and one, reflects the de-
gree of similarity between the data value at that location and the prototypical
data value or centroid, of its class. Thus, a high membership value near unity
signifies that the data value at that location is “close” to the centroid for that
particular class.

FCM is formulated as the minimization of the following objective function
with respect to the fuzzy membership functions uj and the centroids vk [1]:

JFCM =
∑

j∈Ω

C∑

k=1

uq
jk‖yj − vk‖2 (1)

Here, Ω is the set of voxel locations in the image domain, q is a parameter that is
constrained to be greater than one, ujk is the membership value at voxel location
j for class k such that

∑C
k=1 ujk = 1, yj is the observed (vector) image intensity

at location j, and vk is the centroid of class k. The total number of classes
C is assumed to be known. The parameter q is a weighting exponent on each
fuzzy membership and determines the amount of “fuzziness” of the resulting
classification. For q = 1, JFCM reduces to the classical within-group sum of
squared errors objective function and FCM becomes equivalent to the K-means
or ISODATA clustering algorithms [1]. A commonly used value is q = 2 (cf. [12]).
The operator ‖ · ‖ is any inner product norm on lRP , where P is the number of
channels in the image, and ‖ · ‖ =

√
<·, ·>. By specifying the appropriate norm,

FCM can be applied to data that possess ellipsoidal shaped clusters, although
typically the Euclidean norm is used.

The FCM objective function (1) is minimized when high membership values
are assigned to voxels whose intensities are close to the centroid for its particular
class and low membership values are assigned when the voxel intensity is far from
the centroid. The resulting fuzzy segmentation can be converted to a hard or
crisp segmentation by assigning each voxel solely to the class that has the highest
membership value for that voxel. This is known as a maximum membership
segmentation. The advantages of FCM are that it is unsupervised (i.e. it does
not require training data), and it is robust to initial conditions [6]. However,
FCM assumes that the centroids of the image are spatially invariant, which is
not true of images that have been corrupted by intensity inhomogeneities.

In order to preserve the advantages of FCM, we proposed the following ob-
jective function [11,10] for segmenting 2-D scalar images possessing intensity
inhomogeneities:
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JAFCM2D =
∑

j∈Ω

C∑

k=1

u2
jk(yj − gjvk)2

+λ1

∑

j∈Ω

2∑

r=1

(Dr ∗ g)2j + λ2

∑

j∈Ω

2∑

r=1

2∑

s=1

(Dr ∗ Ds ∗ g)2j (2)

where yj is the pixel intensity, vk is the centroid, gj is an unknown gain field to be
estimated, and Dr is a (known) finite difference operator along the rth dimension
of the image. The notation (D ∗ g)j refers to the operation of convolving g with
the difference kernel D and taking the resulting value at the jth pixel. Note
that JAFCM2D assumes q = 2. Equation (2) models the brightness variation of
the inhomogeneity by allowing the centroids to spatially vary according to the
gain field gj . The last two terms are first and second order regularization terms
used to ensure gj is spatially smooth and slowly varying. The finite difference
operators act like derivatives, except they are performed on a discrete domain.
AFCM, like FCM, does not place any assumption of spatial smoothness on the
membership functions uj .

In [11], (2) was minimized by taking its first partial derivatives with respect
to u, v, and g, and performing iterating through these three necessary conditions.
The necessary condition on g leads to a difference equation with spatially varying
coefficients that was solved using a standard multigrid approach (see Sect. 3.3).

3 Adaptive Fuzzy C-Means

In this section, we generalize the AFCM objective function to 3-D, multispectral
images and describe an algorithm for minimizing the objective function. We also
describe an implementation that yields much faster results than the standard
multigrid approach.

3.1 Objective Function

When working with multispectral MR data corrupted by intensity inhomo-
geneities, there are two possible assumptions one can make about the gain field:
1) the gain field is a scalar field; 2) the gain field is a vector field. The first as-
sumption implies that the brightness variation in each component or spectra of
the acquired image is identical, while the second assumes that they can be differ-
ent. In practice, we have found in double-echo MR data that the scalar gain field
assumption provides nearly identical segmentation results to the vector gain field
assumption and is also faster, requiring fewer computations. Furthermore, the
algorithm derived from the scalar case is notationally cleaner and therefore more
easily explained. For these reasons, we focus mainly on the scalar assumption
for the remainder of this paper.
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Using the scalar gain field assumption, we define AFCM to be an algorithm
that seeks to minimize the following objective function with respect to member-
ship functions uj , the centroids vk, and the gain field g:

JAFCM =
∑

j∈Ω

C∑

k=1

uq
jk‖yj − gjvk‖2

+λ1

∑

j∈Ω

R∑

r=1

(Dr ∗ g)2j + λ2

∑

j∈Ω

R∑

r=1

R∑

s=1

(Dr ∗ Ds ∗ g)2j . (3)

This equation is applicable to 2-D images when R = 2 and to 3-D images when
R = 3. For R = 2, q = 2, and scalar image data, Eq. (3) reduces to the 2-D
AFCM objective function given in (2).

If we assume that the membership values ujk and the centroids vk are known
in (3), then the gain field that minimizes JAFCM is the field that makes the
centroids close to the data, but is also slowly varying and smooth. Without
the regularization terms, a gain field could always be found that would set the
objective function to zero. If λ1 and λ2 are set sufficiently large, then the gain
field is forced to be constant and the AFCM objective function essentially reduces
to the standard FCM objective function.

The scalar gain field objective function JAFCM in Eq. (3) can be minimized
by taking the first derivatives of JAFCM with respect to ujk, vk, and gj , setting
them equal to zero, and iterating through these three necessary conditions for
JAFCM to be at a minimum. This yields the following algorithm:

Algorithm 1: AFCM

1. Provide initial values for the centroids, vk, k = 1, . . . , C, and set the gain
field gj equal to one for all j ∈ Ω.

2. Compute membership functions as follows:

ujk =
‖yj − gjvk‖−2/(q−1)

C∑

l=1

‖yj − gjvl‖−2/(q−1)

(4)

for all j ∈ Ω and k = 1, . . . , C.

3. Compute new centroids as follows:

vk =

∑

j∈Ω

uq
jkgjyj

∑

j∈Ω

uq
jkg2

j

, k = 1, . . . , C. (5)

4. Compute a new gain field by solving the following space-varying difference
equation for gj :

C∑

k=1

uq
jk<yj ,vk> = gj

C∑

k=1

uq
jk<vk,vk> + λ1(H1 ∗ g)j + λ2(H2 ∗ g)j
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where the convolution kernels H1 and H2 are given by

H1 =
R∑

r=1

(Dr + Ďr)j (6)

H2 =
R∑

r=1

R∑

s=1

(
(Dr ∗ Ds) + (Ďr ∗ Ďs)

)
j

(7)

where Ď is the mirror reflection of the finite difference operator D. Standard
forward differences were used in this work.

5. If the algorithm has converged, then quit. Otherwise, go to Step 2.

We define convergence to be when the maximum change in the membership
functions over all pixels between iterations is less than a given threshold value.
In practice, we used a threshold value of 0.01. Methods for determining initial
centroids in Step 1 are described in Sect. 3.2. Solution to the difference equation
in Step 4 is described in Sect. 3.3.

3.2 Initial Centroids

AFCM requires an initial estimate of centroid values. Like FCM, AFCM is fairly
robust to the selection of these initial estimates; however, proper selection will
generally improve accuracy and convergence of the algorithm. We propose two
methods for automatically selecting initial centroids: the first method may be
applied generally to all scalar data, while the second method is specific to mul-
tispectral MR images.

If the given data is scalar-valued, then one can apply the approach described
in [11,10], where the modes of a critically smoothed kernel estimator of the
image histogram are used to determine the initial centroids. The approach is
essentially the same as the “bump-hunting” algorithm described by Silverman
in [14]. Briefly, a kernel estimator of the histogram is smoothed in an iterative
fashion until it possesses a number of modes equal to the desired number of
classes, C. These modes are then numerically computed using first and second
derivatives of the kernel estimator and used as initial centroids.

For multispectral data, manipulation of a multidimensional kernel estimator
can be computationally prohibitive. In this case, one can obtain initial centroids
by applying the approach described in [12]. This approach requires a priori
knowledge of the approximate T1, T2, and proton spin density of the tissue
classes being segmented. Most of these values for different tissue classes have
been documented in the literature (cf. [2]). These values can then be used in an
imaging equation derived for the corresponding pulse sequence (e.g. spin echo) to
obtain expected intensity values. This rough initialization is normally sufficient
for AFCM to yield good convergence properties.

3.3 Solution to Gain Field

In Step 4 of AFCM, a new gain field is computed given the current values of the
centroids and membership functions. This is the most computationally intensive
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Fig. 1. Multigrid: (a) a four-level multigrid pyramid, (b) a full multigrid V -cycle

step in AFCM and deserves special attention in its numerical implementation.
Because the difference equation (4) is space-varying, the gain field cannot be
found using standard frequency domain filters. The equation could be solved
iteratively using the Jacobi or Gauss-Seidel schemes [4], but these methods take
a large number of iterations to converge. In [11,10], this equation was solved
using a standard multigrid algorithm at each iteration of AFCM (for a general
overview of multigrid algorithms, see [17] or [4]). For 2-D images, this approach
is sufficiently fast, but for large 3-D images, execution times can grow to several
hours. We now describe a modified multigrid algorithm that yields significantly
faster overall execution time without loss of accuracy. Its premise is that during
early iterations of AFCM, only an approximate solution to the gain field is
required. Thus, a subsampled solution is used and later refined as the number
of iterations increases.

Figure 1a illustrates the structure of a multigrid pyramid. Level 0 represents
the original resolution of the data, while the higher levels represent increas-
ingly coarser representations of the data. The basis of a multigrid algorithm is
the substitution of fine grid iterations for solving Eq. (4), with iterations on a
coarse grid, thereby reducing the number of computations required. In addition,
the multiresolution update scheme used in a multigrid algorithm yields much
faster convergence. In [11,10], the gain field was computed by applying one full
multigrid V -cycle [4] at each iteration of 2-D AFCM. A four level full multigrid
V -cycle is illustrated in Fig. 1b.

For 3-D images, we propose a new, faster method that takes advantage of
the fact that during early iterations of AFCM, the estimates of the centroid and
membership functions are poor and an exact solution to the gain field is not
necessary. We define a truncated multigrid cycle at level L to be a full multigrid
V -cycle that terminates the first time the Lth pyramid level is reached. In Fig. 1b,
the termination points of a truncated multigrid cycle are shown as open circles.
For a truncated multigrid cycle at level L > 0, the estimated gain field is an
approximation of the final solution on a coarse grid but it can be computed
quickly. The implementation of AFCM using a truncated full multigrid cycle
proceeds as follows:
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Algorithm 2: AFCM using truncated multigrid cycle

1. Set the size of the multigrid pyramid to some value K. Set L = K − 2.
2. Run entire AFCM algorithm until convergence using a truncated multigrid

cycle at level L to solve for the gain field at each iteration.
3. If L > 0, decrease L by 1. Using the most recent values of u,v, and g as

initial values, go to Step 2. Else if L = 0, terminate.

This modified multigrid algorithm greatly increases the speed of AFCM dur-
ing its early iterations. As the number of iterations increase, the truncation
level reduces towards the original resolution and the iterations become slower.
If a result is required quickly, one can terminate Algorithm 2 at some value of
L > 0. This provides an approximation of the final solution. We have found that
since the gain field is smooth, the approximation error decreases rapidly as the
resolution increases.

4 Results

AFCM was implemented in C on a Silicon Graphics O2 system with an R10000
processor running IRIX 6.3. It has been tested on both real MR data as well
as simulated MR brain images obtained from the Brainweb simulated brain
database at the McConnell Brain Imaging Centre of the Montreal Neurological
Institute, McGill University [5]. (Simulated brain data sets of varying noise,
inhomogeneity, and contrast are available on the World Wide Web at the website
listed under References.) In this section, we present the application of AFCM
only to 3-D images. For 2-D results, readers are referred to [11]. In all results that
follow, the value of q was set to 2, and the standard Euclidean distance norm
was used. We denote the AFCM results computed with the full multigrid V -cycle
as FM-AFCM and the results computed with the truncated multigrid V -cycle
as TM-AFCM. Using FM-AFCM, execution times for a 3-D, T1-weighted, MR
data set with 1mm cubic voxels are typically between 45 minutes and 3 hours.
Using TM-AFCM, execution times are between 10 minutes and 1 hour. We show
in this section that this speed increase does not result in reduced accuracy.

4.1 Visual Evaluation of Performance on Simulated Data

Figure 2 shows the results of applying FCM and AFCM on a Brainweb simu-
lated MR brain image. This brain image was simulated with T1-weighted con-
trast, 1mm cubic voxels, 3% noise and 40% image intensity inhomogeneity. All
extracranial tissue was removed prior to applying the segmentation algorithms.
The number of tissue classes was assumed to be three, corresponding to gray
matter (GM), white matter (WM), and cerebrospinal fluid (CSF) tissue classes.
Background pixels were ignored. Figure 2a shows a slice from the simulated data
set and Fig. 2b shows the true partial volume model of the gray matter (GM)
tissue class that was used to generate the simulated image. Figures 2c and 2d
show the GM membership function obtained by applying FCM and TM-AFCM,
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(a) (b) (c) (d)

Fig. 2. FCM and AFCM membership functions: (a) Simulated MR phantom, (b) GM
partial volume truth model, (c) FCM GM membership function, (d) TM-AFCM GM
membership function.

(a) (b) (c) (d)

Fig. 3. Comparison of hard segmentations: (a) truth model, (b) FCM max membership
segmentation, (c) AMRF segmentation, (d) TM-AFCM max membership segmenta-
tion.

respectively, to the 3-D data set. Bright areas represent where the member-
ship function is close to one. Because of the shading effect present in the data,
the FCM membership function deteriorates near the bottom of the image. The
AFCM result, however, shows less speckling at the bottom of the image and is
very similar to the true partial volume image. Both results do, however, show
some overall grain because of the effects of noise.

Figure 3 shows the results of three different segmentation algorithms applied
to the same data set described in the previous example. Figure 3a shows the
true hard segmentation of the simulated data. CSF is labeled as dark gray, GM
as light gray, and WM as white. Figures 3b-d show the maximum membership
segmentation produced by FCM, the segmentation produced by the adaptive
Markov random field (AMRF1) method used in [19], and the maximum mem-
bership segmentation produced by TM-AFCM, respectively. Clearly, the AFCM
segmentation is most similar to the truth model. Both the FCM and AMRF

1 This method is also very similar to the one described in [13].
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Table 1. Error measures from simulated data results

Error measure
Method 0% MSE 20% MSE 40% MSE 0% MCR 20% MCR 40% MCR
FCM 0.0194 0.0272 0.0517 3.988% 5.450% 9.046%

FM-AFCM 0.0210 0.0242 0.0251 4.171% 4.322% 5.065%
TM-AFCM 0.0210 0.0214 0.0244 4.168% 4.322% 4.938%

EM 0.0437 0.0491 0.0770 6.344% 7.591% 13.768%
AMRF – – – 3.876% 4.795% 6.874%

MNI-FCM – – – 4.979% 4.970% 5.625%

results segment much of the WM as GM near the bottom of the image. The
AMRF segmentation is also spatially smoother than the other methods. This
is because it takes into account pixel dependency while both FCM and AFCM
classify pixels independently.

4.2 Quantitative Evaluation of Performance on Simulated Data

Table 1 summarizes error measures resulting from applying the FCM, FM-
AFCM, TM-AFCM and the AMRF algorithms to Brainweb simulated T1-weight-
ed data sets (1mm cubic voxels, 3% noise) with varying levels of inhomogeneity.
Also shown are the errors using an expectation-maximization (EM) algorithm
for finite Gaussian mixture models [9]. In addition, error measures were also
computed for a segmentation obtained by first applying the N3 inhomogeneity
correction software [16] obtained from the Montreal Neurological Institute, then
applying FCM. The results of this method are given in the row labeled MNI-
FCM. Two error measures were used. The first measure was the mean squared
error (MSE) between the true GM partial volume and the GM fuzzy member-
ship function. For the EM algorithm, the posterior probability of each tissue
class given the data was compared with the GM partial volume. The second
error measure used was the misclassification rate (MCR), defined as the number
of pixels misclassified by the algorithm divided by the total number of pixels in
the image. For FM-AFCM and TM-AFCM, the parameters λ1 and λ2 were fixed
to a default value of 2 × 104 and 2 × 105 respectively. Default parameters were
also used for all other segmentation methods.

Columns 1-3 show the MSE resulting from segmenting data sets with 0%,
20%, and 40% inhomogeneity, respectively. Similarly, columns 4-6 show the MCR
for the same respective data sets. The MSE columns show that AFCM is capable
of estimating partial volume coefficients with a reasonable accuracy even in the
presence of inhomogeneities. The MCR columns show that as the inhomogene-
ity is increased, the errors for all methods also increase. However, the AFCM
methods are much more robust to increased inhomogeneity than the other meth-
ods, with TM-AFCM achieving slightly lower errors than FM-AFCM. The EM
algorithm performs poorly with respect to both error criteria, possibly because
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the Gaussian mixture model assumption is incorrect. In the case of 40% inho-
mogeneity, AFCM provides an improvement of nearly 50% over FCM, nearly
30% over the MRF methods, and over 10% over the MNI-FCM method. At zero
inhomogeneity, both the FCM and AMRF methods perform slightly better than
AFCM, while AMRF yields the lowest error. This is expected since the AMRF
method provides some smoothing of noise, while FCM and AFCM do not. The
increase in error of AFCM over FCM in the zero inhomogeneity case is due to
the additional freedom of the gain field. This effect is also seen in the errors
resulting from the MNI-FCM method. One could easily reduce the error by in-
creasing the regularization terms, if the amount of inhomogeneity was known to
be low. The difference in error is small, however, and overall, AFCM performs
well on images of varying inhomogeneity without the need for modifying the
regularization parameters. Note that one can potentially achieve much lower er-
rors in each of the AFCM, AMRF, and MNI-FCM methods if more information
about the inhomogeneity is known a priori, thereby allowing some tailoring of
their parameters.

4.3 Correction of Inhomogeneities

Figure 4 shows the results of using AFCM to correct the inhomogeneity in an
actual 3-D T1-weighted MR image data set. Figure 4a shows a slice from the
original data set. Figure 4b shows the same slice after correction by AFCM.
The correction was obtained by multiplying the original image by the reciprocal
of the estimated gain field. The corrected image does not exhibit the left to
right shading present in the original image. Figure 4c shows the computed gain
field for that slice. The gain field is actually computed everywhere in the image
domain but for visual purposes, it has been masked by the brain area. Note the
bright area on the upper left quadrant of the image has been captured by the
gain field.

Figures 4d and 4e show histograms of the slice before and after the correction
has been performed. On a typical histogram of an uncorrupted MR image, three
modes are present corresponding to (from left to right) CSF, GM, and WM. The
original histogram in Fig. 4d, however, exhibits an additional mode around an
intensity of 80 that corresponds to the bright WM on the upper left of the image
slice. The corrected histogram does not possess this additional mode and also
shows a significant improvement in contrast between the modes corresponding
to GM and WM.

4.4 Multispectral Data

Figure 5 shows the results of FCM and TM-AFCM when applied to a 3-D spin
echo (T2-weighted and proton spin density (PD) weighted) multispectral MR
data set that has been preprocessed to removed extracranial tissues. Figures 5a
and 5b show a PD–weighted and the corresponding T2–weighted slice, respec-
tively, from the data set. Figures 5c and 5d show the GM membership functions
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Fig. 4. Correction of inhomogeneity using TM-AFCM: (a) slice from original MR im-
age, (b) MR slice after AFCM correction, (c) gain field computed using AFCM, (d)
histogram of slice before correction, (e) histogram after correction.

computed by FCM and AFCM, respectively. One can see that the FCM member-
ship function has a noticeable fading on the left side. There is also an increased
speckling in the FCM membership function on the right side of the image. The
AFCM membership function, however, is markedly cleaner and does not exhibit
the same fading. Figures 5e and 5f show the contour of where the GM mem-
bership function is equal to the white matter membership function, overlayed
on the PD-weighted slice. The inhomogeneity can have the effect of shifting the
apparent boundaries between tissue classes. On the upper right hand side of Fig.
5e, the FCM contour has shifted inward towards the center of the image while on
the left of the image, the contour has shifted outward. The AFCM contour how-
ever, conforms to the GM-WM boundary as seen on the original images much
more accurately.

Acknowledgments

The authors would like to thank Chenyang Xu, Maryam Etemad, Daphne Yu
and Dr. Carey Priebe for their support in this work. The authors would also



152 D. L. Pham and J. L. Prince

(a) (b) (c)

(d) (e) (f)

Fig. 5. FCM vs. AFCM for double-echo MR data: (a) slice from PD-weighted MR
image, (b) slice from T2-weighted MR image, (c) FCM GM membership function,
(d), TM-AFCM GM membership function, (e) FCM isocontour superimposed on PD-
weighted image, (f) TM-AFCM isocontour superimposed on PD-weighted image.

like to thank Michelle Yan for use of the AMRF segmentation software and
the McConnell Brain Imaging Centre of the Montreal Neuroimaging Institute
for the use of their simulated brain database and N3 inhomogeneity correction
software. This work was supported in part by an NSF Presidential Faculty Grant
(MIP-9350336) and by NIH Grant 1RO1NS37747-01.

References

1. Bezdek, J., Hall, L., and Clarke, L.: Review of MR image segmentation techniques
using pattern recognition. Medical Physics 20 (1993) 1033–1048

2. Bottomley, P., Foster, T., Argersinger, R., and Pfeifer, L. M.: A review of nor-
mal tissue hydrogen NMR relaxation times and relaxation mechanisms from 1-100
MHz: Dependence on tissue type, NMR frequency, temperature, species, excision,
and age. Medical Physics 11 (1984) 425–448



An Adaptive Fuzzy Segmentation Algorithm for 3D MRI 153

3. Brandt, M., Bohan, T., Kramer, L., and Fletcher, J.: Estimation of CSF, white
and gray matter volumes in hydrocephalic children using fuzzy clustering of MR
images. Computerized Medical Imaging and Graphics 18 (1994) 25–34

4. Briggs, W.: A Multigrid Tutorial. Society for Industrial and Applied Mathematics
(1987)

5. Collins, D., Zijdenbos, A., Kollokian, V., Sled, J., Kabani, N., Holmes,
C., and Evans, A.: Design and construction of a realistic digital brain
phantom. IEEE Trans. on Medical Imaging 17 (1998), 463–468, See
http://www.bic.mni.mcgill.ca/brainweb

6. Davenport, J., Bezdek, J., and Hathaway, R.: Parameter estimation for finite
mixture distributions. Comput. Math. Applic. 15 (1988) 810–828

7. Dawant, B., Zijidenbos, A., and Margolin, R.: Correction of intensity variations
in MR images for computer-aided tissue classification. IEEE Trans. on Medical
Imaging 12 (1993) 770–781

8. Kapur, T., Grimson, W., Kikinis, R., and Wells, W.: Enhanced spatial priors for
segmentation of magnetic resonance imagery. In Proc. of the First Int. Conf.
on Medical Image Computing and Computer Assisted Interventions (MICCAI98)
(1998) 457–468

9. Liang, Z.: Tissue classification and segmentation of MR images. IEEE Eng. in
Med. and Bio. (1993) 81–85

10. Pham, D., and Prince, J.: An adaptive fuzzy c-means algorithm for image seg-
mentation in the presence of intensity inhomogeneities. In Proc. of SPIE Medical
Imaging 1998: Image Processing vol. 3338 (1998) 555–563

11. Pham, D., and Prince, J.: An adaptive fuzzy c-means algorithm for image segmen-
tation in the presence of intensity inhomogeneities. Pattern Recognition Letters
20 (1999) 57–68

12. Pham, D., Prince, J., Dagher, A., and Xu, C.: An automated technique for statisti-
cal characterization of brain tissues in magnetic resonance imaging. International
Journal on Pattern Recognition and Artificial Intelligence 11 (1997) 1189–1211

13. Rajapakse, J., Giedd, J., and Rapoport, J.: Statistical approach to segmentation
of single-channel cerebral MR images. IEEE Trans. on Medical Imaging 16 (1997)
176–186

14. Silverman, B.: Density estimation for statistics and data analysis. Chapman and
Hall (1993)

15. Simmons, A., Tofts, P., Barker, G., and Arridge, S.: Sources of intensity nonuni-
formity in spin echo images at 1.5T. Magnetic Resonance in Medicine 32 (1994)
121–128

16. Sled, J., Zijdenbos, A., and Evans, A.: A nonparametric method for automatic
correction of intensity nonuniformity in MRI data. IEEE Trans. on Medical
Imaging 17 (1998) 87–97

17. Unser, M.: Multigrid adaptive image processing. In Proc. of the IEEE Conference
on Image Processing (ICIP95) (1995) 49–52

18. Wells, W., Grimson, W., Kikins, R., and Jolesz, F.: Adaptive segmentation of MRI
data. IEEE Trans. on Medical Imaging 15 (1996) 429–442

19. Yan, M., and Karp, J.: An adaptive Bayesian approach to three-dimensional MR
brain segmentation. In Proc. of XIVth Int. Conf. on Information Processing in
Medical Imaging (1995) 201–213



Automatic Detection and Segmentation of
Evolving Processes in 3D Medical Images:

Application to Multiple Sclerosis

David Rey, Gérard Subsol, Hervé Delingette, and Nicholas Ayache
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Abstract. Physicians often perform diagnoses based on the evolution of
lesions, tumors or anatomical structures through time. The objective of
this paper is to automatically detect regions with apparent local volume
variation with a vector field operator applied to the local displacement
field obtained after a non-rigid registration between successive temporal
images. In studying the information of apparent shrinking areas in the
direct and reverse displacement fields between images, we are able to
segment evolving lesions. Then we propose a method to segment lesions
in a whole temporal series of images. In this paper we apply this approach
to the automatic detection and segmentation of multiple sclerosis lesions
in time series of MRI images of the brain.

1 Introduction

1.1 Multiple Sclerosis Data

Multiple sclerosis is a progressive disease that requires an evolution study through
time. The evolution of the disease can be followed on a patient with a tempo-
ral series of examinations. A time series of 3D images of a patient is acquired
from the same modality and with a definite protocol to have similar properties:
similar histogram, field of view, voxel size, image size, etc. In this paper we use
two sets of multiple sclerosis time series composed of T2 weighted MRI images.
These two time series come from the Brigham and Women’s Hospital 1 and from
the BIOMORPH 2 European project. The data from the Brigham and Women’s
Hospital consist in 256 × 256 × 54 images, with a voxel size of 0.9 × 0.9 × 3.0
mm. The temporal interval between two images of the series is about one week.
The data from the BIOMORPH project consist in 256 × 256 × 24 images with
a voxel size of 0.9 × 0.9 × 5.0 mm. The temporal interval between two images of
the series is about four weeks.

1 Dr Guttman and Dr Kikinis
2 http://www.cs.unc.edu/̃styner/biomorph/biomorph.html

A. Kuba et al. (Eds.): IPMI’99, LNCS 1613, pp. 154–167, 1999.
c© Springer-Verlag Berlin Heidelberg 1999
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1.2 Quantitative Measurements

A quantitative analysis is required to give accurate and reproducible results, and
because the data are large. Between two examinations, a patient does not have
the same position in the acquisition device. Therefore images at different times
are not directly comparable. We have to apply a transformation to each image to
compensate for the difference in position (translation) and orientation (rotation).
Then we can compare the two images, and apply automatic computerized tools
to detect and quantify evolving processes There are several existing automatic
methods to study the lesions of multiple sclerosis in time series:

– With a single image, it is possible to threshold or to study the image intensity
to segment lesions [1]. Unfortunately, thresholding does not always make it
possible to distinguish the lesions from the white matter.

– It is possible to subtract two successive images to find areas where the le-
sions have changed. But this method has two major problems. First, the
subtraction is extremely dependent on the rigid registration [2], [3]. For in-
stance, we show in Fig. 13 an evolving lesion that appears in the image of
the subtraction as a dark hole. But when the registration is inaccurate, it is
hard to distinguish evolving lesions: the edges of the anatomical structures
appear (cortex, ventricles, etc.) and give the same apparent information as
the lesions. Secondly, the subtraction only characterizes the difference of in-
tensity between two images. The image of the subtraction does not give a
contrasted image with respect to the evolution ratio, but only with respect
to the difference between the intensity of the lesion and the intensity of the
background. For example we show in Fig. 1 that if we threshold the image
of the subtraction, only some parts of the evolving structures are detected.
Moreover the threshold value is not related to the amplitude of the evolu-
tions as can be seen in Fig. 1 where a series of threshold values is applied to
a synthesis example.

image 1 image 2 image2 - image 1 image2 - image 1 < -0.5 image2 - image 1 < -0.1 image2 - image 1 > 0.1 image2 - image 1 > 0.3

Fig. 1. Different threshold values applied to an image of subtraction. For each value,
only some parts of the evolving structures are detected. Moreover, the threshold value
is not related to the amplitude of the evolutions

– With n images, it is possible to follow the intensity of each voxel in time
[4]. Although very nice results are obtained with perfectly rigidly aligned,
the approach remains sensitive to the rigid registration, and there is no di-
rect relation between the amplitude of evolution and the variation of voxels
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Fig. 2. Method of detection and segmentation of evolving processes using the displace-
ment field

intensity. Moreover, this method does not take into account the spatial cor-
relation between neighboring voxels.

1.3 A New Method Based on the Displacement Field

Our idea is thus to avoid a voxel by voxel comparison and to use the “apparent”
motion between two images. Figure 2 shows the different stages of the automatic
processing and gives an overview of this paper. First, images are aligned by a rigid
registration. Then we compute the displacement field to recover the “apparent”
motion between images with a non-rigid registration algorithm. We focus on the
detection of the regions of interest of the field thanks to vector field operators,
and use them to segment evolving lesions. This work is a natural continuation
of the previous research work of Thirion and Calmon [5].

2 Computation of the Displacement Field

2.1 Rigid Registration

First we compute a rigid registration with an algorithm which matches “ex-
tremal” points defined as the maxima of the crest lines of the images [6]. Fea-
ture points called “extremal” points are automatically extracted from the 3D
image. They are defined as the loci of curvature extrema along the “crest lines”
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image 1 image 2 displacement field (zoom)

Fig. 3. An example of the computation of the “apparent” displacement field thanks to
a non-rigid registration algorithm. Notice how it emphasizes the shrinking lesion

of the isosurface corresponding to the zero-crossing of the Laplacian of the im-
age. Based on those stable points, a two-step registration algorithm computes a
rigid transformation. The first step called “prediction” looks for triplets of points
from the two sets which can be put into correspondence with respect to their
invariant attributes. The second step called “verification” checks whether the
3D rigid transformation computed from the two corresponding triplets is valid
for all the other points. A study of the accuracy of this algorithm, especially for
aligning MS data, can be found in [7].

2.2 Non-rigid Registration

We compute the 3D displacement field with a non-rigid algorithm based on
local diffusion [8]. This algorithm diffuses the first image into the second one.
Each point of the second image “attracts” or “repels” the point that has the
same coordinates as the first image according to their difference of intensity.
All these forces are regularized and deform the second image. The process is
iterated based on a multi-scale scheme. At the end, each point P (x, y, z)T of
the reference image has a vector u(u1(P ), u2(P ), u3(P )) that gives its apparent
displacement (cf Fig. 3). We can also define the deformation which is a
function Φ(Φ1(P ), Φ2(P ), Φ3(P )) that transforms the point P (x, y, z)T into the
point P ′(x′, y′, z′)T . We have thus:




x′ = x + u1(x, y, z) = Φ1(x, y, z)
y′ = y + u2(x, y, z) = Φ2(x, y, z)
z′ = z + u3(x, y, z) = Φ3(x, y, z)

This apparent displacement field u gives an idea of the time evolution between
two images. We can compute the two fields: from image 1 to image 2, and from
image 2 to image 1, which contain complementary information as we will see in
section 4.1. Figure 3 shows the vector field from 1 to 2 around a lesion, emphasiz-
ing a radial shrinking. The vector field operators should transform a 3D vector
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Fig. 4. u(P ) is the apparent displacement of P at time 1. P ′ = P +u(P ) is the apparent
location of P at time 2. The Jacobian of the apparent deformation measures the local
volume variation δV ′

δV
(see text)

field in a simpler representation that is a 3D scalar image. This scalar image
should be contrasted with respect to the time evolutions. Moreover we need to
introduce operators that have a physical meaning for a better interpretation.

3 The Jacobian Operator

3.1 Mathematical Expression and Physical Meaning

We introduce as an operator the Jacobian of the deformation function at point
P, as suggested from [9]: Φ(Φ1(P ), Φ2(P ), Φ3(P )). This operator is widely used
in continuum mechanics [10] [11]. The Jacobian of Φ at point P is defined as:

Jacobian = det(∇pΦ) =

∣∣∣∣∣∣∣

∂Φ1
∂x

∂Φ1
∂y

∂Φ1
∂z

∂Φ2
∂x

∂Φ2
∂y

∂Φ2
∂z

∂Φ3
∂x

∂Φ3
∂y

∂Φ3
∂z

∣∣∣∣∣∣∣
.

It can also be written with the vector displacement field u(u1, u2, u3) at P:

det(∇pΦ) = det(Id + ∇pu) =

∣∣∣∣∣∣∣

∂u1
∂x + 1 ∂u1

∂y
∂u1
∂z

∂u2
∂x

∂u2
∂y + 1 ∂u2

∂z
∂u3
∂x

∂u3
∂y

∂u3
∂z + 1

∣∣∣∣∣∣∣
.

It is useful to recall a physical interpretation of the Jacobian operator in terms of
local variation of volume. With the notations of the Fig. 4, u(P ) is the apparent
displacement of P at time 1. P ′ = P + u(P ) is the apparent location of P at
time 2. The volume δV of the elementary tetrahedron defined by (P, P +δx, P +
δy, P + δz) is given by:

δV = 1
6

∣∣∣∣∣∣∣∣

1 1 1 1
x x + δx x x
y y y + δy y
z z z z + δz

∣∣∣∣∣∣∣∣
= 1

6

∣∣∣∣∣∣∣∣

1 1 1 1
0 δx 0 0
0 0 δy 0
0 0 0 δz

∣∣∣∣∣∣∣∣
= 1

6δxδyδz.

As we assume that δx is small, a first order approximation of the deformation
Φ in P is given by Φ(P + δx) = Φ(P ) + ∂Φ

∂x δx + o(δx2). We have the same
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approximation in y and z directions. Thus the volume δV ′ of the deformed
elementary tetrahedron is:

δV ′ ' 1
6

∣∣∣∣∣∣∣∣∣

1 1 1 1
0 ∂Φ1

∂x δx ∂Φ1
∂y δy ∂Φ1

∂z δz

0 ∂Φ2
∂x δx ∂Φ2

∂y δy ∂Φ2
∂z δz

0 ∂Φ3
∂x δx ∂Φ3

∂y δy ∂Φ3
∂z δz

∣∣∣∣∣∣∣∣∣
= 1

6Jacp(Φ)δxδyδz.

Therefore:

δV ′ ' Jacp (Φ) · δV.

Thus, the local variation δV ′
δV of an elementary volume is given (as a first order

approximation) by the Jacobian of the deformation function Φ. When Jacp(Φ) >
1 there is a local expansion at point P, and when Jacp (Φ) < 1 there is a local
shrinking at point P. The transformation is locally preserving the volume when
Jacp (Φ) = 1.

3.2 Robustness of the Jacobian with Respect to Misalignment

Figure 5 shows what happens when two images are not perfectly aligned: the
deformation function Ψ , which is measured, is different from the ideal one Φ.
The misregistration is given by a residual rotation R and translation t. We have
Ψ = R ◦ Φ + t.

image 2image 1

y

F

(R,t) -> misregistration

F

y

x

Y’ =    (x) = Ro    (x) + t

Y =    (x)

F

Fig. 5. Φ is the deformation function for a perfect rigid registration, and Ψ is the
deformation function when there is a misregistration (R,t). We have Ψ = R ◦ Φ + t

Then we have:

Jac (Ψ) = det(∇Ψ) = det(∇(R ◦ Φ + t)) = det(R · ∇Φ) = Jac (Φ).

Therefore the Jacobian of the theoretical deformation function (for a perfect
rigid registration) is equal to the Jacobian of a measured deformation function
(whatever the misregistration). Of course this requires that, even in the case of
an approximate alignment of images, the non-rigid registration still computes a
correct displacement field. In our case the rigid registration is performed because
our non-rigid registration algorithm requires a proper initial alignment to give a
good result. Nevertheless, the rigid registration does not have to be as accurate
as for the subtraction method where a precision better than or equal to one voxel
is required.
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3.3 Computation and Application of the Jacobian

We have seen that the computation of the Jacobian of the deformation Φ can
be performed directly with the displacement field u. We need to compute the
first 9 derivatives of the displacement field u: ∂ux

∂x , ∂ux

∂y , ∂ux

∂z , . . . , ∂uz

∂z . For a faster
computation we use recursive filtering that gives an image for each derivative.
Then, we need to store in memory the 9 derivatives to compute the Jacobian and
for an image of 256 × 256 × 180 this requires about 425M-bytes of memory. So
to avoid overfilling the memory space we compute the Jacobian on sub-images
and then we fuse the different sub-results which include an overlapping border
to avoid side effects.

The Jacobian gives a contrasted image with respect to the evolution am-
plitude. The most contrasted areas tend to correspond to shrinking or growing
lesions. In Fig. 6 we see that an important shrinking of a lesion between two
images gives a dark region in the Jacobian image. On other areas, the value is
almost constant and very close to 1, which indicates no apparent variation of
volume. A zoom around a lesion shows that darker areas correspond to shrinking
lesions.

Fig. 6. Application of the Jacobian: we can see a lesion that shrinks
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3.4 Other Operators

Calmon and Thirion have developed another vector field operator based on the
divergence and the norm of the displacement field u [12] [13]:

norm · div(P ) = ‖u(P )‖div u(P ) = ‖u(P )‖(
∂u1

∂x
+

∂u2

∂y
+

∂u3

∂z
).

This operator has no simple physical meaning even if the sign of the operator
gives information about shrinking (negative values) or expansion (positive val-
ues). As we have no physical interpretation of the value, it is difficult to threshold
the image automatically in order to extract the regions of interest.

Prima et al. proposed another operator which gives the local variation of
volume [14]. A cell of voxels of volume is V1 is deformed to a complex polyhedron
which volume V2 is computed. Then V 2−V 1

V 1 is calculated. Note that another
algorithm to compute V2 is given in [15]. This operator is directly related to the
Jacobian:

V2 − V1

V1
=

V2

V1
− 1 ' Jac − 1.

Figure 7 shows the application of these three operators on the same dis-
placement field. In particular we can notice how the Jacobian and the discrete
computation of the relative variation of volume are similar. The advantage of
our approach is that it provides a continuous framework for a computation of
the Jacobian at any scale.

(a) (b) (c)

Fig. 7. Comparison between different existing operators. (a): ‖u‖div u. (b): discrete
computation of V2−V1

V1
∼ (Jac (Φ) − 1). (c): Jacobian
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4 Results

4.1 Thresholding and Segmentation

We can extract the areas that correspond to a significant time evolution. It is
possible to find a uniform threshold over the whole Jacobian image relying on its
physical interpretation in terms of local variation of volume. We chose an empiric
threshold of 0.3 for significant shrinking. An example in Fig. 8 shows that it gives
a good segmentation of a shrinking lesion. correspond to shrinking lesions. In

Fig. 8. The threshold det(∇Φ) < 0.3 makes it possible to segment shrinking lesions

fact, we are going to focus only on the shrinking areas. We can see in Fig. 9 that
a better description is provided with the shrinking field. If there is an important
expansion locally between images 1 and 2, we would need a one to many mapping
due to limited resolution of the image. To avoid this, we consider only shrinking
regions from 1 to 2, and then shrinking regions from 2 to 1. By thresholding
shrinking areas we obtain the segmentations s1→2 in the first image, and s2→1
in the second image. Then we have to combine those two information: the whole
segmentations in image 1 and 2 are given by S12(t1) = [s1→2] ∪ [u2→1(s2→1)],
and S12(t2) = [s2→1] ∪ [u1→2(s1→2)]. Figures 10 show automatic segmentation
results obtained at two times.

With the fields between images 1 and 2 and between images 2 and 3, we can
compute segmentations S12 in the images 1 and 2 and S23 in the images 2 and
3. Then we propagate the segmentations S12 and S23 respectively to times t3
and t1, thanks to the vector fields u21 and u23. Then by addition, we obtain a
segmentation of the lesions in all the images of a series ([16]). In Fig. 11, we can
see the result of this method on three successive instances.

4.2 Study on a Synthetic Example

We have created two images I1 and I2, by including two artificial evolving 3-
D lesions into the same 3-D T2 weighted image of a brain without lesions. The
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field from 2 to 1 (shrinking)

evolving lesion or anatomical structure

field from 1 to 2 (expansion)

Fig. 9. The information is richer when we look at the shrinking field. Left: If there is
a large expansion, the direct displacement field cannot express that one voxel should
deform to several voxels. We would need a one to many mapping due to limited res-
olution of the image. Right: Thanks to the reverse field, a better description of the
phenomenon is possible

Fig. 10. Segmentation of evolving lesions. Left: Brigham & Women’s Hospital data.
Right: BIOMORPH data

artificial lesions are represented by spheres of radius respectively 10mm and 4mm
in I1, and 6mm and 8mm in I2 (Fig. 12a). Because the global rigid registration
of I1 and I2 is the identity in this case, we have only applied the non-rigid reg-
istration algorithm to compute the direct and reverse local displacement field
everywhere. We have then applied our method to extract the boundary of evolv-
ing regions, with Jac(Φ) < 0.3. Results on Fig. 12c show that the evolving
regions are correctly detected. The accuracy of the delimitation of the boundary
is qualitatively correct, but we observed a difference between 5 and 20 percent
between the correct diameter of lesions and the measured one.

4.3 Robustness with Respect to Imperfect Rigid Registration

From the previous example, we also created an image I ′
2 by translating I2 by 3

voxels in one direction. As expected, our method provides similar results when
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Fig. 11. Thanks to the segmentation of the evolutions between times 1 and 2, and
between times 2 and 3, it is possible to visualize the lesions evolution between the 3
successive acquisitions

applied to I1 and I ′
2 (Fig. 12e) , while a simple difference yields very noisy results

(Fig. 12d).
We also considered the application of our method between two real T2

weighted MR image, Im1 and Im2 (same 3D images as the ones presented in Fig.
3). When Im1 and Im2 are perfectly rigidly registered, our method produces
the segmentation of an evolving lesion in the cross-section shown in Fig. 13b,
which can be compared to a simple difference analysis between the registered
images (Fig. 13a). We also created an image Im′

2 by adding a misalignment to I2
corresponding to a rotation of 1 degree around an axis orthogonal to this cross-
section and passing through its center, plus a translation of 1 voxel in the two
directions of the plane of this cross-section. We observe that the results provided
by our method (Fig. 13c) remain similar to the results of Fig. 13b, whereas a
simple difference now produces very noisy results (Fig. 13d).

5 Conclusion

In this article we proposed a new method to study multiple sclerosis lesions evo-
lution through time based on the apparent displacement field between images.
We believe that our approach will be useful to detect evolving regions corre-
sponding to local apparent expansion or shrinking. As this method is robust
with respect to imperfect rigid alignment, we plan to use it in combination with
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Fig. 12. (a): two synthetic temporal images I1 and I2. (b): the Jacobian image of the
field from I1 to I2 and I2 to I1. (c): automatic segmentation of evolving lesions in I1

and I2 using Jac(Φ) < 0.3. (d): I2 − I1 on the left. On the right I ′
2 − I1 where I ′

2 is a
translated version of I2. (e): automatic segmentation of evolving lesions in I1 and I ′

2,
which shows robustness to imperfect rigid registration of images

other segmentation algorithms in order to delineate more precisely the bound-
ary of the lesions in temporal sequences. Then we will compare our results with
manual and other automatic segmentation results [17]. This will be done within
the BIOMORPH project. Finally we plan to apply our approach to study the
“mass effect” by quantifying the evolution of anatomical structures such as the
cerebral ventricles or the interface between grey matter and white matter.
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Abstract. Inter-subject non-rigid registration of cortical anatomical
structures as seen in MR is a challenging problem. The variability of
the sulcal and gyral patterns across patients makes the task of regis-
tration especially difficult regardless of whether voxel- or feature-based
techniques are used. In this paper, we present an approach to matching
sulcal point features interactively extracted by neuroanatomical experts.
The robust point matching (RPM) algorithm is used to find the optimal
affine transformations for matching sulcal points. A 3D linearly interpo-
lated non-rigid warping is then generated for the original image volume.
We present quantitative and visual comparisons between Talairach, mu-
tual information-based volumetric matching and RPM on five subjects’
MR images.

1 Introduction

The recent development of brain imaging technologies (PET, MRI, fMRI) has
provided rich information on the human brain. A potentially fruitful emerging
area of research is human brain mapping [25] which requires a comprehensive
statistical analysis of brain structure and function across diverse populations
and different imaging modalities. A major requirement in brain mapping is that
the imaging data from different subjects and modalities have to be placed in a
common reference frame. Recent efforts have focused on using anatomical MR
as the basis for such registration.

Inter-subject anatomical registration is a difficult task due to the complexity
and variability of brain structures. This is most obvious in the cortical regions.
The folding of the cortical surfaces – the sulci and gyri – vary dramatically from
person to person and, in some cases [25] are not even always present in each sub-
ject. However, the folding pattern is not completely arbitrary. In fact, the sulci
often serve as important cortical landmarks. Furthermore, many cortical areas
have been associated with critical brain functionalities (vision, language, motor
control etc.) with the sulci often representing important functional boundaries.
Cortical registration, despite its enormous difficulty, is hence highly desirable as
a basis for further statistical quantitative analysis.

A. Kuba et al. (Eds.): IPMI’99, LNCS 1613, pp. 168–181, 1999.
c© Springer-Verlag Berlin Heidelberg 1999
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Our approach is based on matching feature points representing the sulcal
structures. The points were obtained using a tool [17] which allows a neu-
roanatomy expert to interactively trace sulci on a 3D skull-stripped MRI brain
volume. In contrast to just choosing a few landmarks, the tool allows us to rep-
resent sulci using hundreds of 3D points. Also, major sulci can be identified and
easily labeled.

We then match two sets of labeled sulci (extracted from two subjects’ MRI)
using a robust point matching (RPM) algorithm [20]. The method first deter-
mines the best global 3D affine transformation that brings the two sets of sulci
into register. Then piecewise affine transformations are solved for each sulcus
to further refine the registration. Afterward, a linearly weighted 3D volumetric
warping is generated from the piecewise affine mapping.

RPM has been previously developed and used for 2D rigid alignment [20] and
2D affine warping [11]. For the first time, we have developed the technique for
3D affine and piecewise affine warping and applied it to real 3D sulcal features.
Embedded within a deterministic annealing scheme, RPM allows us to jointly
estimate the spatial mapping (affine, piecewise affine) and the point-to-point
sulcal correspondences. Moreover, some sulcal structures in one subject may not
have corresponding homologies in the other. RPM is able to reject a fraction of
such non-homologies as outliers. Unlike other methods of point feature registra-
tion, RPM returns a one-to-one correspondence between sulcal points. Except
for the extraction of the sulci, the whole process is done automatically and the
registration and warping of one pair of brains only takes a few minutes.

2 Review

There are two principal approaches to non-rigid brain registration: voxel-based
methods and feature-based methods.

Voxel-based approaches try to find the optimal transformation such that a
local image intensity similarity measure is maximized. Most methods in this
class allow highly complex transformations which are normally proportional to
the size of the volume. Elastic media models, viscous fluid models [4] or local
smoothness models [6] are introduced as constraints to guide the non-rigid spa-
tial mapping. From these efforts, the need for non-rigid transformations is by
now quite clear. Note, however that these algorithms are driven by local voxel
intensities. Each voxel is treated equally without taking advantage of higher
level geometric information (such as the sulcal and gyral patterns used here). In
these methods, further anatomic validation is necessary to ensure that homolo-
gous sulci are indeed matched. Aware of this lack, landmarks were used as an
initial step in [4]. As [5] also pointed out in their recent work, the voxel inten-
sity approach worked well for deep subcortical structures, but sometimes had
difficulty aligning sulci and gyri. To correct this, in their recent work, [5] used a
chamfer distance measure [3] on sulcal points and combined it with their former
voxel-based matching (ANIMAL) framework. All of these efforts are attempting
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to incorporate neuroanatomic geometric feature expertise into their registration
engines.

Feature-based methods, as the name implies, capitalize on the information
from different identifiable brain structures. Features which represent important
brain structures are extracted. The features run the gamut of landmark points
[2], curves [22] or surfaces [24,8]. Subsequently, these methods attempt to solve
for the correspondence and transformation between the features. The spatial
transformations resulting from feature matching are then propagated to the
whole volume. Underlying the philosophy of feature matching is that homol-
ogous features always provide an effective anchor for registration. However, en-
thusiasm for these methods is usually tempered not only by the difficulty of
feature extraction but also by the difficulty of simultaneously determining the
correspondences or homologies and the spatial mapping. The first problem –
feature extraction – usually calls for some residual manual intervention while
the second problem – automated matching – involves the computationally de-
manding task of determining the correspondences and the spatial mapping. As
our method basically belongs to this category, we discuss previous methods in
some detail and compare them to ours.

Bookstein [2] pioneered the usage of landmark points for registration and
shape analysis. The thin-plate-spline is used as the spatial mapping between the
two landmark point sets to generate a elastic transformation in which the bend-
ing energy is minimized. Since this method basically relies on a few landmark
points, the accuracy of their locations is essential. The homologies between all
landmark points is deemed known (in advance). In contrast, in our approach,
the correspondences and the spatial mapping are co-determined from hundreds
of sulcal feature points. In addition, the anatomical variability between subjects
can create many outliers, i.e., sulcal points which do not match. Since we are us-
ing hundreds of points to represent the structural information, it is statistically
much more robust and the noise or point “jitter” which may be caused by various
sources such as the tracing process or sampling error, should not significantly
affect the final result.

In [24], 3D active surfaces are used to extract the surfaces of lateral ventri-
cle and outer cortex which are developmentally fundamental for the brain. An
initial surface is first constructed from some fiducial points and is then relaxed
towards the edges until a final balance is reached between the edge attraction
force and the surface smoothness measure. To better represent the deep corti-
cal structures (sulci), parametric mesh surfaces are also interactively extracted.
A point-to-point mapping between the two surfaces is then calculated and a
linearly weighted 3D volumetric warping is generated. [8] has a similar frame-
work where surface curvature maps at different scales are used for different brain
structures. More consideration is given to the inhomogeneity within the brain.
A more sophisticated elasticity model makes the algorithm more flexible at the
ventricles and more powerful to account for some abnormal cases where, for ex-
ample, tumors are involved. Both methods emphasize the importance of sulcal
alignment and not surprisingly, the validation in [24] has shown that anatom-
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ically homogeneous points can be accurately aligned. As our method is based
on matching cortical structures, it is quite similar to both of these approaches.
However, we use point-sets as a representation for the sulci rather than surfaces.
The major sulci are labeled which imposes strong constraints on the match-
ing. Moreover, the non-rigid matching of 3D surfaces (parameterized by surface
normals for example) is a difficult problem. The parameterization of cortical
structures as point-sets allows us to easily utilize Procrustes methods of shape
analysis [12,18] (by equating the atlas with the Procrustes mean). Eigenanalysis
of the error covariance matrix (around the Procrustes mean atlas) also yields
valuable information regarding the dominant modes of deformation present in a
population [7].

We have presented a detailed review of competing approaches to solving
point correspondence problems elsewhere [20]. Here we briefly discuss chamfer
distances [3,5] and the iterated closest point (ICP) matching algorithm [1]. The
chamfer distance has been used in cortical registration by [22] and [5]. The main
problem with the chamfer distance is that it uses a brittle nearest neighbor
measure to assign correspondence. Nearest neighbor methods used in chamfer
matching and ICP are problematic in the vicinity of outliers since they generate
local minima [19]. Unlike the chamfer matching in [5] where a distance image
is calculated from the Euclidean distance from each voxel to its nearest sulcal
point feature, we directly use the sulcal point feature locations for the match-
ing. Finally, we should mention the work presented in [13] where a maximum
clique approach is taken to matching relational sulcal representations. Maximum
cliques is a very difficult NP-complete problem [10] which in this case increases
the likelihood of getting stuck in local minima. Also, it is difficult to explicitly
model non-rigid spatial mappings in the maximum clique approach [13]. Conse-
quently, the “engine” that does the work has to be pure sulcal correspondences
making the problem more difficult.

3 Robust Sulcal Matching

3.1 Softassign and Deterministic Annealing

There are two important factors that make RPM different from other point
matching methods. These two factors mostly account for RPM’s robustness,
which proved to be well suited for matching of the complex sulcal patterns.

The first is the softassign technique. Let’s suppose we have two point sets
{Xi, i = 1, 2, . . . , N1} and {Yj , j = 1, 2, . . . , N2}, where N1and N2 are the num-
bers of points in each set. (Xi = (1, X1

i , X2
i , X3

i )T : we are using homogeneous
coordinates with a 4x4 affine spatial mapping so that the whole transformation
could be simply written as AXi .) The point matching problem is then equivalent
to solving the following optimization problem:

min
M,A

E(M, A) = min
M,A

N1∑

i=1

N2∑

j=1

Mij ||Xi − AYj ||2 − α

N1∑

i=1

N2∑

j=1

Mij (1)
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subject to:
∑N1+1

i=1 Mij = 1,∀j ∈ {1, . . . , N2},
∑N2+1

j=1 Mij = 1,∀i ∈ {1, . . . , N1},
where Mij ∈ {0, 1}. Matrix A represents the set of transformation parameters
we are trying to solve. M is the binary correspondence matrix [20,11] with an
extra row and an extra column introduced to account for outliers. The second
term in (1) controls the degree of robustness. Greater the value of α, less points
are rejected as outliers and vice-versa.

Obviously, the transformation parameters, represented by A, belong to the
set of continuous variables; on the other hand, the correspondence matrix M is
binary. The softassign technique provides a way to solve the optimizaton problem
with two such variables of different natures. Instead of forcing Mij to be binary,
we relax it to be continuous in the interval [0, 1], but with the row and column
sum constraints still intact. In addition to being just a numerical technique, it
also gives us a new way of treating correspondence. Now, one point does not
necessarily just correspond to only one other point; it could have multiple mem-
berships with all others with one membership being much larger than the rest.
This property is clearly desirable if you have one point in one set lying in between
two points in the other set. It does not have to choose immediately which one
it belongs to but instead keeps a degree of “fuzziness” while preferring the clos-
est one a little bit more. This also suggests that during the registration process
when the transformation is optimized gradually, the correspondence member-
ships would change continuously and gradually as well without jumping around
in the space of permutation matrices (and outliers). In more formal terms, mak-
ing the correspondences fuzzy smoothes the energy function ridding it of poor
local minima [19]. The fuzzy correspondence matrix still has to satisfy the row
and column constraints. It turns out that the Sinkhorn balancing procedure of
alternating row and column normalizations is an ideal vehicle to satisfy the row
and column constraints [20]. The softassign essentially keeps all correspondences
positive and then uses Sinkhorn’s theorem to ensure that all rows and columns
sum to one (except for the outlier row and column).

Another classic point matching method is the ICP algorithm [1,9]. ICP uses a
nearest neighbor heuristic to set binary correspondences. The algorithm iterates
between the spatial mapping and the nearest neighbor correspondences until
convergence. As in the chamfer distance [3], the brittleness of the nearest neigh-
bor measure can in many cases create local minima [19]. Some efforts have been
made to improve ICP’s robustness by including an adaptive thresholding [9].
Also, there is no guarantee that ICP will return one-to-one correspondences.
While correspondence does not have to be a pre-requisite for registration, it
does play a more significant role in the creation of probabilistic atlases [15]; the
atlas formation step requires averages and covariance matrices to be computed
over all the corresponding points in a training set. We expect the one-to-one
correspondence returned by RPM to play a significant role in the formation of
probabilistic atlases.

Deterministic Annealing [27] is the other important technique used in RPM,
which is a good companion to softassign. It is closely related to simulated anneal-
ing except that all operations are deterministic. The temperature parameter T
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in deterministic annealing specifies the degree of fuzziness of the correspondence
matrix – the higher the temperature, the greater the fuzziness. At each temper-
ature, the initial condition from the previous temperature is used and a straight-
forward deterministic descent is performed on the energy function. The process
is repeated at lower and lower temperatures until M becomes almost binary.
The method is more robust than classical gradient methods in that more config-
urations are allowed at higher temperature, and this makes the energy function
smoother and less vulnerable to local minima. At very low temperatures, RPM
is very similar to ICP with the added benefit of one-to-one correspondence.

3.2 The Spatial Mapping – 3D Affine Transformations

With the above background regarding softassign and deterministic annealing in
place, it is reasonably straightforward to develop the method for a 3D affine
spatial mapping. The complete form of the energy function is:

min
M,A

max
µ ν

E(A, M)

= min
M,A

max
µ ν

{
N1,N2∑

i,j

Mij ||Xi − (A + I)Yj ||2 + λ trace(AT A) − α

N1,N2∑

i,j

Mij

+
N1∑

i

µi(
N2+1∑

j

Mij − 1) +
N2∑

j

νj(
N1+1∑

i

Mij − 1)

+T

N1,N2∑

i,j

Mij(log Mij − 1)}. (2)

Even though there are six terms, only the first two will be directly involved
when we are going to solve for the transformation A (actually A+I where I is the
identity transformation). The transformation A is now in 3D. The first term is
the error measure. Assume for the moment that the correspondence M is known.
The second term is the regularization on A. Basically we are assuming that the
affine transformation should be close to identity. The degree of deviation from
identity depends on λ. Typically, we begin with a high value of λ and quickly
decrease it, with the consideration being that at first the correspondences are
still far from the right answer and the transformation should not be too com-
mitted. Though this may add some complexity to the algorithm, we have found
it worthwhile for two reasons. The first is that the algorithm does not seem to
be very sensitive for slightly different choices of λ annealing schedules, i.e. as
long as the starting value is high enough so that the transformations are not too
large in the beginning and the final value small enough so that the transforma-
tions won’t always forced too close to identity. The second reason stems from an
observation that because of the extra constraint we put on the transformation,
we could then choose not to use that robustness term −α

∑N1,N2
i,j Mij at all.

Actually, in all our experiments α was set to 0.
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With M held fixed, the energy function w.r.t. A is:

Eaffine(A)|M =
N1,N2∑

i,j

Mij ||Xi − (A + I)Yj ||2 + λ trace(AT A) (3)

which is a standard least squares problem for the matrix A . By taking the
derivative ∂Eaffine

∂A = 0, we can get the closed-form solution for A.

A = [
N1,N2∑

i,j

Mij(XiY
T
j − YjY

T
j )] · [

N1,N2∑

i,j

MijYjY
T
j + λI]−1 = P · Q. (4)

We will briefly describe the solution for the correspondence mainly for the
sake of completion. The fourth and fifth terms are the row and column con-
straints expressed via Lagrange parameters. The Sinkhorn algorithm within the
softassign process will automatically satisfy these constraints so we do not need
to explicitly solve for the Lagrange parameters µi and νj [20]. The sixth term is
an entropy term which can also be regarded as a barrier function [14]. Solving
for Mij (keeping the Lagrange parameters µi and νj fixed), we get:

Mij = e− ||Xi−(A+I)Yj ||2−α−µi−νj
T . (5)

Having specified both the spatial mapping in (4) and the correspondences in
(5), we summarize the algorithm in the following pseudo-code.

The Robust Point Matching (RPM) Algorithm

Initialize M, T, A, λ

Begin A: Deterministic Annealing. Do A until T < Tfinal

Begin B: Softassign and Relaxation. Do B until M converges or # of
iterations > I0

Qij ← ‖Xi − (A + I)Yj‖2 − α

Mij ← exp(−Qij

T
)

Begin C: Sinkhorn. Do C until M converges or # of iterations > I1

Mij ← Mij
∑N2+1

j=1 Mij

(row normalization)

Mij ← Mij
∑N1+1

i=1 Mij

(column normalization)

End C
A← [

∑N1,N2
i,j Mij(XiY

T
j − YjY

T
j )] · [∑N1,N2

i,j MijYjY
T

j + λI]−1

End B
T ← T ∗ Tanneal−rate

λ← λ ∗ λanneal−rate

End A
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3.3 Global/Piecewise Affine Registration and Warping

Given two brains’ sulcal point-sets, the registration is done in two steps. The first
step finds the global affine transformation to account for the overall translation,
orientation, scale and skew. After that, we further allow each sulcus to move
locally to refine the alignment by solving for a piecewise affine transformation
for each of them. To make sure that the sulcus only does local adjustment,
the regularization is increased compared to the first step so that only small
transformations are allowed.

We then tried to propagate the transformations found for the sulcal points to
the whole 3D volume to generate a 3D warping. A weighted linear combination of
all the sulci’s piecewise affine transformations is calculated based on the shortest
distance between a voxel and each sulcus. More specifically, we have a total
number of N sulci with each of them (nth) denoted by a set of points, {X

(n)
l , l =

1, 2, . . . } and a set of affine transformations A(n), n = 1, 2, . . . , N . For the current
voxel Yijk (other than the sulcal points locations, where the transformation is
unknown and need to be calculated ), the shortest distance to the nth sulcus
is found, d

(n)
ijk = minl ||Yijk − X

(n)
l || , n = 1, 2, . . . , N . A set of weights is then

defined as:

w
(n)
ijk =

1

d
(n)
ijk∑N

n=1
1

d
(n)
ijk

(6)

and the final voxel transformation is the weighted summation of all A(n). This
is done for each voxel to warp the entire volume.

Aijk =
N∑

n=1

w
(n)
ijk · A(n). (7)

4 Experiments and Results:

The sulcus tracing was done on an SGI graphics platform [17] with a ray-casting
technique that allows drawing in 3D space by projecting 2D coordinates of the
tracing onto the exposed cortical surface. A screenshot of the tool is shown
on the left in Fig. 1. The inter-hemispheric fissure and 10 other major sulci
(superior frontal, central, post-central, Sylvian and superior temporal on both
hemispheres) were extracted as point features. A sulcal point-set extracted from
one subject is shown on the right in Fig. 1.

4.1 RPM Applied to Sulcal Point Sets

The original sulcal point-sets normally contain around 3,000 points each. The
point-set is first sub-sampled to have around 300 points by taking every tenth
point. The original MRI volume’s size is 106(X) x 75(Y) x 85(Z, slices). With
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Fig. 1. Left: A screenshot of the sulcus tracing tool with some traced sulci on
the 3D MR brain volume. Right: Sulci extracted and displayed as point-sets

that in mind, it is reasonable to assume that the average distances between
points before registration should be in the range of 10 - 100. We set our starting
temperature to be roughly in the same scale. After registration, we would expect
the average distance between corresponding points to be within a few voxels (say,
1 – 10). Our final temperature should be slightly smaller. From these consider-
ations, we set the RPM annealing parameters to be the following: Tinit = 50 ,
Tfinal = 1 , Tanneal−rate = 0.95 . The regularization parameter λ is set to force
A to be small at first. We use the value of λinit = maxij [Pij ] (P, as defined in
(4)) and decrease it by λanneal−rate = 0.8 at the end of every temperature itera-
tion. As mentioned above, the idea is that the regularization should prevent the
affine to be over determined by the initial fuzzy correspondence at first; once
the algorithm starts moving towards the right correspondence, which usually
happens within the first few iterations, the regularization should be relaxed by
decreasing λ faster than the temperature. Actually, we observed that normally
any annealing rate between 0.7 and 0.9 works quite well.
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Fig. 2. Demonstration of the robust point matching process. Left four: 3D point
sets and their three 2D projections in the middle of the matching. 3D point
sets are shown as circles and crosses. Their most significant correspondences are
shown as dotted lines. Right four: Towards the end of the matching
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Figure 2 shows one example of RPM in action. The circles and crosses stand
for two sets of sulcal points and the gray links indicate the most significant
correspondences ((Mij > 1

N1
or 1

N2
)) between the two point-sets at that moment.

The first is taken in the middle of the registration procedure in which clearly
one can see that correspondence is still “fuzzy”. The second is taken towards the
end of the process and the correspondence is close to binary so fewer links are
seen.

4.2 A Comparison between Talairach, Voxel-based matching and
RPM.

We applied RPM to five sulcal point-sets and compared it with two other meth-
ods which also use affine (and piecewise-affine) transformations for brain regis-
tration.

As mentioned in the review section, we suspected that the voxel-based meth-
ods’ performance would not be as satisfying as feature-based methods for sulcal
alignment. To test this, we compare RPM with a voxel-based affine matching
method [23] which maximizes the mutual information between the two volumes.

By defining a common coordinate system, the Talairach method is a standard
technique for brain alignment. A piecewise affine transformation is applied to 12
rectangular regions of brains defined by landmark points of anterior and posterior
commissures and extrema of the cortex. We used the Talairach program available
as part of the MEDx package (from Sensor Systems Inc.) to align 5 brains. Sulcal
points were traced on the resulting brain volumes.

The volumes were then matched by the voxel-based method described in
[23] and the resulting spatial mapping was applied to the sulcal points. RPM
was separately run on the sulcal point-sets, and both the result from a simple
global affine transformation and piecewise affine transformations are shown in
Fig. 3. Since we register every brain to the first one, after registration, the
minimum distance from each sulcal point in the current brain to the first is
calculated. The mean and variance of such minimum distances for each sulcus
is calculated for quantitative comparison. The results are shown in Fig. 4. The
above comparison of Talairach with RPM and voxel-based approaches shows that
RPM can significantly improve upon Talairach in most cases even though it may
have less degrees of freedom. The voxel-based method’s performance is mixed;
it gives bigger errors for 5 of the 11 sulci. The significant improvement from the
global affine transformations by allowing piecewise transformations confirmed
the belief of the importance of non-rigid transformations.

4.3 3D Warping and Comparison.

The three dimensional warping of the brain volumes is calculated from the trans-
formations found for the sulci as described above. The insufficiency of the Ta-
lairach alignment for the sulcal structure is clearly seen. Even though our warping
strategy based on piecewise affine transformations is quite simple, the results
show further improvement upon the global affine transformation.
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Fig. 3. Sulcal points alignment. The alignment results of five brains’ sulcal point-
sets on the left side of the brain are shown together. Denser, closely packed
distributions of sulcal points suggest that they are better aligned. We clearly
see the improvement of RPM over both Talairach and the voxel-based approach,
especially for RPM with the piecewise affine mapping

Two subjects’ brains as well as some of their major sulci are shown in Fig. 5.
The variability of the sulci can be appreciated from this figure.

By displaying the reference brain’s sulci on the other brain volumes warped
using the Talairach technique, global affine transformation from RPM and piece-
wise affine transformations from RPM, we can see the improvement of sulcal
structure alignment by our method. We should also note that the better align-
ment is accompanied by increased degree of brain deformation. These are shown
in Figs. 6, 7, and 8.

5 Discussion and Conclusion

Our simulation and experiments with real data indicate that sulcal point match-
ing is a fast, robust and accurate tool for the registration of cortical anatomical
structures. We now mention several enhancements that could further improve
our point feature-based non-rigid registration. First, statistical shape models
can be computed using the correspondence information returned by RPM. From
these models, more meaningful deformation modes based on principal compo-
nents can be constructed. Also, an arc length-based ordering of the points (akin
to curves) can be imposed. This would have the effect of radically reducing the
correspondence search. Finally, using a mixture model [21], we can extend the
matching algorithm to the problem of matching a labeled sulcal atlas to an un-
labled or partially labeled sulcal point-set. This would allow us to automatically
label the sulci extracted from a new brain image. We have reported preliminary
work on matching labeled point-sets to unlabeled features (though not sulcal
point features) elsewhere [16].

Since we are using point-sets, which are quite flexible – i.e. it does not matter
if those points all lie on a curve, a surface or a more complicated geometrical
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Fig. 4. The minimum distance measure (as described in text) for each sulcus
(sulcal label: 0 - interhemispheric fissure; 1,2 - central sulcus; 3,4 - Sylvian fissure;
5,6 - superior temporal sulcus; 7,8 - post-central sulcus; 9,10 - superior frontal
sulcus. ) Top figure shows the comparison between Talairach (dashed line), voxel-
based method (light dotted line) and RPM with a global affine transformation
(solid line). Bottom figure shows the first two again with results of RPM with
piecewise affine transformation (light line)

Fig. 5. Two brain volumes after Talairach alignment with their sulci are shown
here. Left to right: Both sides of one brain A, both sides of another brain B

object – deep cortical structures (for example representations like sulcal ribbons
[26]) can be easily incorporated into our framework. Future work will focus
on hierarchical (labeled and unlabeled) point-set representations of the cortical
structures.
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Abstract. This paper builds upon our previous work on elastic registra-
tion, using surface-to-surface mapping. In particular, a methodology for
finding a smooth map from one cortical surface to another is presented,
using constraints imposed by a number of sulcal and gyral curves. The
outer cortical surface is represented by a map from the unit sphere to the
surface which is obtained by a deformable surface algorithm. The sulcal
and gyral constraints are defined as landmark curves on the outer corti-
cal surface representation. The unit sphere is then elastically warped to
itself in 3D using the predefined sulcal and gyral constraints, yielding a
reparameterization of the original surface. This method is tested on MR
images from 8 subjects, showing improved registration in the vicinity of
the sulci used as constraints. We also describe a hierarchical framework
for automating this procedure, by using conditional spatial probability
distributions of cortical features on the spherical parametric domain, in
order to automatically identify cortical features. This approach is demon-
strated on the central and precentral sulci.

1 Introduction

Deformable registration has received a great deal of attention by the brain imag-
ing community in the past decade [1,2,3,4,5,6,7,8,9,10]. Finding a spatial trans-
formation that morphs one brain to another is important in several applications,
including computational anatomy [2,11,12], functional image analysis [13], and
image guided neurosurgery.

The several methods that have been proposed in the literature can be broadly
classified into image-matching and feature-matching methods. The former are
based on the assumption that two images to be matched have similar signal
characteristics. Accordingly, these methods look for transformations that max-
imize some measure of overlap or similarity between the transformed and the
target images [2,5]. Feature-based approaches utilize distinct anatomical features
that are first extracted from images, in order to find the morphing transforma-
tion [1,3,7,8,9,10]. We have previously reported a method that uses open or
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closed surfaces as features that drive a 3D elastic transformation [7]; similar ap-
proaches have been pursued by other investigators [3,6,10]. Features can be the
boundaries of brain structures, or the cortical sulci, which can be modeled as
thin convoluted ribbons embedded in 3D [14].

One of the important issues that needs to be considered in a surface matching
paradigm is that there is an infinite number of possible ways in which one surface
can be mapped to another. In the context of deformable registration, however,
only the map that preserves anatomical homologies is meaningful. In this paper
we present an approach for defining such a map, using distinct features of the
cortex (Sect. 2). Moreover, in Sect. 3 we describe a framework for automating
this procedure, by using spatial probability distributions of cortical features on a
spherical reference domain, in conjunction with geometric properties of an indi-
vidual’s cortical surface, in order to automatically identify these features. In this
paper we restrict our attention to the outer cortical surface. Our methods, how-
ever, are applicable to any anatomical surface that is parameterized on the unit
sphere. Of particular interest is the application of our methods to the problem
of spatial normalization of the whole cortical surface, the accurate extraction
of which is still an open research problem [10,15,16,17], in order to normalize
structural and functional data to a common reference system.

Using prior spatial distributions for identifying cortical sulci has been recently
shown to be a promising approach [18]. The method presented in [18] was based
on 3D spatial distributions of the sulci, after an overall shape normalization
of the corresponding brain images via a 3D linear transformation. The work
we present herein is similar in nature, but it differs in three respects. First, our
spatial priors pertain to curves that belong to surfaces parameterized on the unit
sphere, and are therefore applicable to any surface matching paradigm using the
unit sphere as parametric domain. In addition to reducing the dimensionality
of the problem by one dimension, we believe that our approach might turn out
to produce tighter spatial priors, since the fact that we work in the parametric
domain implies that variability in the overall shape of the brain is factored out.
Moreover, in Sect. 3 we propose a hierarchical approach, which starts with the
identification of the major and less variable cortical features, and then proceeds
with more variable ones. Effectively, our method removes a certain degree of
variability at each stage of the hierarchical matching. Our assumption, which is
tested on variability measurements gathered from the precentral and central sulci
of 20 subjects, is that having identified the location of, e.g. the central sulcus,
gives us a better idea of where to look for the precentral sulcus, as opposed to
looking for the precentral sulcus directly.

2 Elastic Registration

2.1 Overall Framework

In [7] we treated the problem of finding a map from one surface to another as
a problem of finding an elastic reparameterization of one of the two surfaces,
so that the geometric structures (quantified by the principal curvatures) of the
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two surfaces are similar on surface points with the same parametric coordinates.
That approach has been tested on a large sample of 250 images [19], and it
has demonstrated an overall good registration. However, accurate registration
of individual sulci or gyri could not be achieved. This is due primarily to the
complexity of the cortical structure. In particular, because of the convoluted
nature of the cortex, we only used global geometric properties of the brain, in
order to find a map from one surface to another. Typically, these global shape
measures highlight structures such as the inter-hemispheric and Sylvian fissures,
or at the tips of the temporal and occipital lobes. Figure 1a shows the gray
matter and white matter distributions of 100 subjects after elastic warping to
the Talairach space [20]. Achieving a better registration in the cortical region is
the main goal of the work reported in this paper.

(a) (b)

Fig. 1. (a) Triplanar display of the average distribution of gray matter from 100
normal subjects, after segmented images of these subjects were mapped to Talairach
space. Individual cortical folds were not brought into perfect registration as reflected
by the fuzziness in the average image. (b) The average distributions of gray and white
matter for 8 subjects, after elastic warping using 9 landmark curves primarily in the
left hemisphere (right in the images). Arrows indicate regions of good registration
(low fuzziness) around landmark curves. Note the good registration around the central
sulcus (top left, arrow)

In particular, we first present a method for morphing one cortical surface
to another, using a map between corresponding sulci and gyri; these are curves
defined on a parameterized surface. Some investigators have previously used
flattened representations of surfaces in order to find a morphing transformation
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from one surface to another [7]. An issue that arises in the reparameterization
of flat maps is singularities at corner points of the parametric grids or bound-
ary constraints. In the approach we describe in this paper, we get around this
problem by using an iterative procedure which consists of 3D surface warping
steps followed by projections onto the parametric domain. Upon convergence,
this procedure results in a reparameterization of a surface under constraints im-
posed by sulcal or gyral curves. We now describe each step of our algorithm in
further detail.

2.2 Surface Construction

We represent each surface by a map from the unit sphere to the surface. In
this paper we focus on the outer cortical surface. A spherical map is obtained
by shrink wrapping a deformable surface [21], which is initialized at a spherical
configuration. After convergence of the deformable surface to a configuration
conforming to the outer cortex, we readily obtain a map from the sphere to the
surface by simply following the trajectory of each point on the initial sphere.

For the numerical implementation of the algorithm, the sphere is represented
as a tessellated icosahedron. We typically start with 2,500 vertices in order to
speed up the deformation of the deformable surface, and as the surface conforms
to the outer cortical boundary, we increase the number of vertices by subdividing
the triangles. The final resolution surface is sampled with with 40,000 vertices,
and at convergence, each point on the tessellated sphere is mapped to a point on
the outer cortical surface. This map will be denoted by x(u, v), where (u, v) is a
pair of parametric coordinates on the sphere, such as longitude and latitude.

2.3 Curvature Estimation

The geometric structure around each point of the triangular grid of a surface is
determined via a least-squares estimation procedure, which finds the bi-quadratic
patch that best fits the shape of the surface in the neighborhood of a point
[21]. The major difficulty in the least-squares estimation procedure is that the
optimal size of the neighborhood used to estimate the parameters of the bi-
quadratic patch are not known in advance. In order to optimally capture the
local variations of the sulcal shape, while maximally smoothing out the noise,
the optimal size of the neighborhood is found adaptively, as described in [21].
Although we do not impose any continuity constraints on the curvature estimates
of neighboring vertices, the fact that the surface patches used to estimate the
curvature on neighboring vertices overlap, for the most part, results in smoothly
varying curvature estimates. Figure 2a,b show three-dimensional renderings of
two outer cortical surfaces. Overlaid on the surfaces is shown one of the two
principal curvatures as blue.

2.4 Defining Constraints on the Surface

The initial parameterization, x(u, v), of the surface depends on how the de-
formable surface shrink-wraps around a particular brain boundary, and there-
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fore it depends on initialization as well as on the shape of the individual brain.
Therefore, there is no reason to expect that the parametric coordinates (u, v) on
the unit sphere, S, correspond to the same anatomically region in two different
brains. Consider two different brain images, I1 and I2, and the corresponding
outer cortical surfaces, x1(u, v) and x2(u, v), with

x1 : S −→ I1 , (1)

and similarly for x2(·). A map from I1 to I2 can be implicitly defined as a
reparameterization, r(u, v), of x1(u, v). In particular if

r : S 3 (u, v) −→ r(u, v) ∈ S , (2)

then

χ : I1 3 x1(r(u, v)) −→ x2(u, v) ∈ I2 (3)

defines a map from one cortical surface to the other. Our goal here is to find
the reparameterization, r(·), which brings the two cortical anatomies into good
correspondence. That is, x1(r(u, v)) and x2(u, v) should be anatomically corre-
sponding regions.

We define this parameterization based on a number of landmark-curves on the
sphere. In particular, let cj

1(l), and cj
2(l), j = 1, . . . , K, l ∈ [0, 1], be two sets of

curves parameterized on the unit interval and positioned on S. These curves are
parameterized by piece-wise constant speed parameterizations, i.e. their points
are evenly spaced in-between break points along the curves. Typical curves we
use are the inter-hemispheric fissure, the central, precentral, postcentral, supe-
rior frontal, lateral, superior temporal sulci, or the ridge curves of the adjacent
gyri. Examples of break points are the precentral knob, intersection points of
sulci (e.g. precentral with superior frontal, central sulcus with inter-hemispheric
fissure), or distinct points such as the tips of the temporal or occipital lobes. For
the experiments of this section, the K pairs of curves are defined manually on
three-dimensional renderings of the surfaces, using an OpenGl-based interface
(see Fig. 2). These curves are then mapped onto the sphere via the inverse of
the maps x1(·) and x2(·). In the following section we describe a framework for
automatically defining these curves using prior probability spatial distributions
in conjunction with geometric properties of the surface, such as its curvature.

2.5 Surface Reparameterization

By construction, the K pairs of curves provide point correspondences on the
surface. In particular,

∀l ∈ [0, 1], cj
1(l) −→ cj

2(l) .

We use these point correspondences to elastically warp the sphere to itself, and
therefore find the reparameterization function, r(u, v). In principle, this can be
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formulated as a 2D transformation problem. However, in order to avoid difficul-
ties introduced by discontinuities on singular points (e.g. on the two poles of a
polar coordinate system) or along boundaries of flat maps, we have formulated
this problem as a 3D problem, i.e. as a problem of warping S onto itself via an
iterative procedure. Successive projections back on S warranties that the result
is the desired two dimensional transformation, r(·) from S to S. This iterative
algorithm is described in detail below.

Let p(u, v) be the position of a vertex of S at some time point during the
iterative procedure. As we will discuss below, p(u, v) does not necessarily remain
on S during our iterative algorithm, but is continuously projected onto S. Let,
also, s(u, v) be the 3D unit vector of the point on the unit sphere that has
parametric coordinates (u, v). Finally, let f(p(u, v)) be a force field defined for
each vertex point (u, v) as follows:

f(p(u, v)) =




s(cj
2(l)) − p(u, v) , if (u, v) = cj

1(l), for some l ∈ [0, 1],
j ∈ {1, . . . , K} ,

0 , otherwise .

That is, f(·) is nonzero only on the K landmark curves. Let, also, e(u, v) be the
sum of elastic forces applied from the neighbors of p(u, v). [Since the vertices of
the grid on the sphere result from successive tessellations of an icosahedron, all
but 12 points of this grid have 6 neighbors; the rest have 5 neighbors]. Then, we
find the function r(u, v) with the following iterative algorithm:

p0(u, v) = s(u, v)
pt+1(u, v) = P {

pt(u, v) + δt
[
f(pt(u, v)) + Le(pt(u, v)

]}
(4)

r(u, v) = s−1(pT (u, v))

where T is the maximum number of iterations, and P{} denotes the operator
that projects a point radially onto the unit sphere.

According to this iterative algorithm, the vertices of the unit sphere move
in the three-dimensional space under the influence of attractive forces between
corresponding curves, which are interpolated by elastic forces. As soon as a
vertex moves away from the unit sphere, however, it is projected back on the unit
sphere, and the algorithm continues until convergence. Convergence is achieved
when the K curves in S that correspond to landmark curves in I1 are very
close to (in the absence of elastic forces, they coincide with) their counterparts
corresponding to I2. Convergence is generally achieved after 200 iterations.

2.6 3D Elastic Warping

After the surface correspondences are defined via the map χ (see (3)), I1 is
elastically transformed to I2. This transformation (STAR) has been described
in detail elsewhere [7]. Since most of our research subjects are elderly individuals,
we have adopted a framework of prestrained elasticity in order to account for
ventricular expansion that is typical in these individuals.
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2.7 Experiments

In our first experiment we considered two MR images, and we outlined several
sulci, as shown in Fig. 2. The maximum curvature is shown in gray, in the 3D
renderings of the outer cortical surface. The positions of the outlined curves on
the unit sphere are shown in the Fig. 2c, with white corresponding to Fig. 2b and
black to Fig. 2a. We then elastically reparameterized the surface of Fig. 2b. The
new positions of the white curves, together with the target (black) curves are
shown in Fig. 2d. The grid is overlaid on the two renderings of the unit sphere
in order to appreciate how the curve deformation is interpolated in the rest of
the vertices.

(a) (b) (c) (d)

Fig. 2. (a),(b) 3D renderings of two outer cortical surfaces, with landmark curves
overlaid on them (white). (c) The position of the landmark curves in the parametric
domain (the unit sphere). The curves corresponding to (a) are shown in black and the
curves corresponding to (b) are shown in white. (d) An elastic reparameterization of
the sphere, so that the two sets of curves have similar parametric coordinates

We then applied this method to 3D MR images from 8 individuals. These
images were first segmented into gray matter, white matter, and CSF, using a
Markov Random Field method described in [22]. A deformable surface was then
fitted to the gray matter/CSF boundary of each image. Based on the resulting
surfaces, we then defined the following curves: inter-hemispheric and Sylvian
fissures, central, precentral, postcentral, superior frontal, and superior temporal
sulci, and the medial axis of the inferior aspect of the temporal lobe, for the left
hemisphere only (right in the images, according to the radiology convention). We
used the first of the 8 images as the target image, and we applied our algorithm
to reparameterize the remaining 7 images. Finally, we used the STAR algorithm
to warp the 7 images into conformation to the target.

In order to visualize the degree to which the warped images were in regis-
tration, we calculated the average distributions of the gray and white matter,
which are displayed in Fig. 1b. In Fig. 1b, relatively fuzzier regions imply a rela-
tively poorer registration, whereas crisp regions imply a good registration, since
in these regions cortical gyri are aligned and therefore averaged together. No-
table is the very good registration in the vicinity of regions in which constraining
sulcal curves were used. Those regions are marked with arrows in the triplanar
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display; notable is the almost perfect registration in the precentral knob (upper
left), which is thought to be the region controlling hand movement. Note that
even though we only used sulcal constraints on one of the two hemispheres, a
relatively good registration is also apparent in the contralateral sites. This is
primarily due to the symmetry of the brain, and to the elastic forces. For ex-
ample, if we correctly map the intersection of the left central sulcus with the
inter-hemispheric fissure across individuals, then we are very likely to also map
the intersection of the right central sulcus with he inter-hemispheric fissure, since
these two points are identical under perfect symmetry.

3 Hierarchical Labeling of the Sulci

3.1 Overall Framework

Our experiments in the previous section demonstrated that cortical constraints
are important in bringing the highly variable cortical regions into registration.
However, the manual definition of the sulcal curves is a laborious procedure (in
the experiments of the previous section, defining the set of curves for each brain
required approximately 25 minutes of a trained person’s time). Therefore, we
have investigated an approach for automatically labeling major cortical features.

Our approach is based on a hierarchical labeling of a number of landmark
curves in the parametric domain, i.e. in the unit sphere S; the labels propagate
to the sulcal curves that are embedded in 3D via the surface parameterization
x(u, v). Labeling of the landmark curves is achieved by elastically matching a
“template unit sphere”, which contains statistics of each landmark curve that are
collected from a training set, to the unit sphere holding the parameterization of
a particular brain’s surface. The statistics currently provide prior knowledge of
the expected location of each landmark curve and its variability. This matching
is done hierarchically. In the simplest case, at each stage of this hierarchical
procedure, one landmark curve is considered only.

One could, in principle, use the spatial distributions on S to label all cortical
features simultaneously. However, the high variability of many cortical features,
such as the folds of the prefrontal cortex, might be an impediment. Our reason
for using a hierarchical scheme is that the variability of certain cortical features
can be reduced if measured relative to other, less variable features. For example,
the precentral sulcus is a relatively more variable feature than the central sulcus.
However, if we know the location of the central sulcus, we can make a better guess
as of where the precentral sulcus might be; this is shown quantitatively using data
from a sample of 20 of our subjects in Sect. 3.2. Accordingly, in our hierarchical
matching scheme, we use conditional spatial probability distributions of sulci on
S, which we will refer to as CSPD’s. For example, assume that, in a particular
subject, the central sulcus has been somehow labeled. Then, the outer cortical
surface of that subject can be reparameterized as described in the previous
section, so that its central sulcus has the same position on the unit sphere as the
average central sulcus of the training set. The CSPD of the precentral sulcus,
conditioned on the fact that the central sulcus is coincident with its average
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in the training set, is presumably tighter, i.e. it has lower variance, and it can
subsequently used for labeling the precentral sulcus. We now describe the details
of this algorithm. We have focused on the central and precentral sulci, in order
to better understand how our methods behave.

3.2 The Spatial Probability Distributions

A training set of 20 normal subjects was

Fig. 3. The CSPD’s(90% regions)
derived from 20 normal subjects, of
the central sulcus (black), and the
lateral portion of the precentral sul-
cus (gray) conditioned on the align-
ment of the central sulcus with its
average

randomly selected from our database. Pa-
rameterizations of the outer cortical surface
were then found for these subjects, as de-
scribed in Sect. 2.2. The central and precen-
tral sulcal curves were then outlined for all
subjects. This resulted in 20 pairs of curves,
each parameterized in the unit interval by
a piece-wise constant speed parameteriza-
tion, as described in Sect. 2.4. For each l ∈
[0, 1], the corresponding sulcal curve point
was assumed to follow a Gaussian distribu-
tion, which was estimated via the mean and
the covariance matrix.

The spatial distribution of the precen-
tral sulcus was calculated conditioned on the

fact that the location of the central sulcus was known. More specifically, we
reparameterized all 20 surfaces so that the central sulci were all aligned to their
average position on the unit sphere. The precentral sulci were transformed ac-
cordingly. Subsequently, the CSPD of the (transformed) precentral sulci was
calculated. Figure 3 shows the 90%-thresholded regions of the central sulcus,
and of the precentral sulcus after alignment of the central sulcus.

In order to test the hypothesis behind the hierarchical formulation of the
sulcal matching, we calculated the variance along each point of the precentral
sulcus with and without aligning the central sulcus first. The resulting variances
are shown in Fig. 4a. The reduction in the variance is clear, and it is due to the
fact that the locations of the central and precentral sulci are correlated with each
other. In Fig. 4b we show the variance along the superior frontal sulcus, before
and after alignment of the central sulcus. As expected, the variance doesn’t
change much, since the positions of these two sulci are not highly correlated.

3.3 Hierarchical Labeling

Consider, for example, the average shape of the curves on S that correspond to
the central sulcus in the training set. We will loosely refer to this curve as the
average central sulcus, having in mind that the true shape of the average central
sulcus is actually found via the map from its average position on S to 3D. We
achieve the labeling of an individual’s central sulcus by mapping S onto itself,
so that the average central sulcus is mapped to the individual’s central sulcus,
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Fig. 4. Plots of the variance along the precentral sulcus (a), and the superior frontal
sulcus (b) before (solid line) and after (dotted line) alignment of the central sulcus with
a fixed curve (namely, the average of its spatial distribution)

thereby transferring its label. This is accomplished via the procedure described
in (4), with the force field f(u, v) being nonzero only on the central sulcus. More
generally, a different curve (or set of curves) is considered at different hierarchical
levels of our algorithm. Therefore, in general, the force field f(u, v) is nonzero
on the curve(s) considered at a particular stage of the hierarchical matching
procedure.

In (4), the target curves, cj
2(l), which determined the force field f(u, v), were

predefined on S since they were manually drawn in advance. However, here,
the target curve is not known in advance, but is calculated at each iteration.
In particular, consider the hierarchical level in which the central sulcus is to
be labeled in an individual’s surface. At each iteration in this stage, a search
in the neighborhood of each point on the average central sulcus is performed,
looking for points for which the subject’s surface has high curvature; for sulcal
curves we use the minimum principal curvature, whose absolute value is high on
the sulci, while for gyral curves we use the maximum curvature. The center of
mass of the high curvature points is then calculated. The collection of the center
of mass points forms the target curve, c2(l), at each iteration in (4). Clearly,
as an average sulcus deforms towards its shape in an individual’s brain, the
target curve, formed by the collection of the center of mass points, is reevaluated
continuously. This mechanism is shown schematically in Fig. 5.

In equilibrium, the average central sulcus is mapped to the central axis of
the subject’s sulcus, and the rest of the points on the unit sphere are mapped
accordingly to some other location on the unit sphere. The inverse of this trans-
formation is a reparameterization of the subject’s surface, for which the subject’s
central sulcus has exactly the coordinates of the average central sulcus of the
training set. In the subsequent stage of the hierarchical matching procedure, the
precentral sulcus, which has been mapped to a new location during the previous
stage, is used as the driving-force curve. The central sulcus is fixed to its average
configuration.
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(a) (b) (c)    (d)

Fig. 5. A schematic representation of the hierarchical labeling of the sulci. (a) The
average central and precentral sulci overlaid on the curvature map of an individual
surface. (b) Stage during which the average central sulcus is mapped to the individual’s
central sulcus, via the center of mass forces originating from high curvature regions,
as shown schematically by the arrow. (c) Stage during which the precentral sulcus is
labeled, after alignment of the central sulcus. (d) The inverse transformation, which
effectively reparameterizes the individual’s surface so that its central and precentral
sulci have the parametric coordinates of the sample average

We have used two different mechanisms for calculating the center of mass
forces. First, we have weighted the center of mass force by the probability of
the corresponding location, using the corresponding CSPD. Second, we use the
CSPD only to define the maximum search window, but we don’t weight the forces
by the value of the probability. The former mechanism is, in some cases, slightly
more robust. However, the latter allows more flexibility in the transformation,
and hence we have adopted it in our experiments.

3.4 Experiments

Figure 6a shows the average central sulcus (bottom curve in white) overlaid on
a subject’s surface; this curve was obtained by following the map x(·) of that
subject, starting from the average parametric coordinates of the central sulcus
on S. The lateral part of the precentral sulcus is also shown (top curve in white).
Figure 6b shows the same curves after reparameterization of the subject’s surface
in the first level of the hierarchical procedure, in which the central sulcus was
used as the driving curve. The result of the subsequent stage is shown in Fig. 6c,
in which the precentral sulcus was used as driving curve. The corresponding
transformations of the unit sphere, demonstrating the elastic reparameterization
of the subject’s surface, are shown in Figs. 6d-f.

One could, in principle, apply this mechanism without computing the inverse
transformation, as follows. First, transform the unit sphere so that the average
central sulcus is mapped to the central sulcus of the individual’s surface, as de-
scribed above. Then do the same with the precentral sulcus, and so on. The
difficulty in this approach would be in estimating how the probability distribu-
tion of the precentral sulcus (and all the other sulci) is warped from its initially
Gaussian form, as the surface itself is warped. In contrast, when mapping the
individual’s curvature pattern to match the average sulci through the inverse
transformation described above, the CSPD’s of all sulci remain Gaussian and
easily computable.
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(a) (b) (c)

(d) (e) (f)

Fig. 6. An example of the automated labeling of the central sulcus and the lateral
portion of the precentral sulcus. (a) The curves having the parametric coordinates of
the average central sulcus (bottom curve in each figure) and average precentral sulcus
(top curve in each figure) on the unit sphere, which is shown in (d). (b) The same
curves, after elastic reparameterization of the unit sphere, as shown in (e), using the
central sulcus as driving curve. (c) The same curves, after the reparameterization of
the unit sphere at the second hierarchical level (f), in which the precentral sulcus was
used as driving curve

4 Summary and Discussion

We presented a methodology for deformable brain registration, which aims at
improving registration accuracy in the cortical region, by using landmark curves
such as the outer edge of a sulcus or a gyrus. In this work we have focused on
the outer cortical surface. The landmark curves are used to find a map between
two surfaces to be registered.

We presented a framework for obtaining the surface reparameterization,
which avoids problems introduced by singularities of the parametric domain,
such as poles. In particular, we determine the reparameterization of a surface
parameterized on the unit sphere by a sequence of three-dimensional elastic
transformations followed by projections onto the unit sphere.

We also presented a framework for automatically determining this surface-
to-surface map via a hierarchical procedure using conditional spatial probability
distributions. This procedure is based on the premise that the variability of a
highly variable curve is a composite of its own intrinsic variability and of the
variability of certain less variable curves. For example, the variability of the pre-
central sulcus is a composite of its own intrinsic variability and of the variability
of the adjacent central sulcus. Therefore, if the central sulcus is identified, then
it is reasonable for one to look for the precentral sulcus in the vicinity of the
central sulcus and at a certain distance from it. We use use conditional spatial
distributions of the sulci in order to define the region in which to look for a par-
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ticular sulcus, given that all the sulci in the previous stages of this hierarchical
procedure have been identified.

Our work on the automated identification of cortical curves is still at a pre-
liminary stage. Several issues need to be addressed. First, we need to precisely
determine strong correlations between sulci and gyri, which will define which
landmark curves depend highly on others, and therefore it will determine the
sequence in which these curves must be visited by our hierarchical procedure.
Purely based on the development of the brain, one would expect that the most
stable features are the inter-hemispheric and Sylvian fissures, which are formed
in relatively early embryonic life. The central sulcus is one of the features ap-
pearing next. Although the adjacent precentral and postcentral sulci do not
necessarily follow, it is reasonable to consider them after the central sulcus in
our hierarchical scheme, since their position naturally depends on the position
of the central sulcus.

The second issue to be investigated is a model for representing variability on
the structure of landmark curves, in addition to our current model of variability
in their position. For example, certain sulci are often interrupted. Moreover, parts
of certain sulci tend to be interrupted more often than others. This information
can be readily incorporated into our CSPD’s. For example, labels attached to
each point on a sulcal curve, in addition to its average position on the unit
sphere and its covariance matrix, can be the probability of being interrupted,
its average depth [21,14], curvature and torsion [23]. This information can help
resolve ambiguities introduced by the high variability of the cortical morphology.
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Abstract. This paper presents a series of 3D statistical models of the
cortical sulci. They are built from points located automatically over the
sulcal fissures, and corresponded automatically using variants on the Iter-
ative Closest Point algorithm. The models are progressively improved by
adding in more and more structural and configural information, and the
final results are consistent with findings from other anatomical studies.
The models can be used to locate and label anatomical features auto-
matically in 3D head images for analysis, visualisation, classification, and
normalisation.

1 Introduction

The aim of this work is to build statistical models of the cortical sulci from a
set of example (training) images. These models can provide an insight into the
biological variability present in cortical configurations and can be used in Active
Shape Model (ASM) [10] searches to locate and label the sulci in unseen images.
Since many of the sulci demarcate functional areas [29], this provides a basis
for labelling the cortical surface providing a standard frame within which to
analyse functional and structural change in disease. The form of the statistical
models and their incorporation into ASM search are described briefly in Sect. 3.
The method requires that ‘landmark’ points are found for each member of a set
of training images and that a one-to-one correspondence be established between
these sets of landmark points for each pair of training images. Because the struc-
tures are so complex, it was desirable to develop automated methods for finding
the landmark points and establishing the correspondences. We have developed
a simple data-driven method, described in Sect. 4, was developed for generating
the landmark points over the mouths of the sulcal fissures. Automatic correspon-
dence is based on the iterative closest point (ICP) algorithm [4,41]. Naive ICP
gives poor results, but incorporating structural and configural information (Sect.
6) results in significantly better models that capture forms of variability already
known to be present in the configuration of the cortical surface [3]. Quantitative
and visualisation results are given in Sect. 8 and examples of sulcal and cortical
labelling using ASM search are shown in Sect. 9.
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2 Background

We are interested in methods for locating brain structures automatically. Many
attempts to segment the cortex have relied on clustering (which tends to be
more effective with multi-sequence data) [5] or image morphology [6,26], but
these techniques only provide gross structure for visualisation and not informa-
tion about the location of particular areas. Generally anatomical labelling has
required an expert user to label structures of interest manually [19,34]. Com-
puterised anatomical atlases have been developed [31], but these tend to be
derived from as little as one subject brain. Such atlases usually deform to the
new example using intensity information [9,38] or a combination of prescribed
transformations [2,11], sometimes user driven [12]. These take little or no ac-
count of the variation of the object class; the resulting labelling may therefore
be unreliable. In order to extract and label structures automatically the infor-
mation must be incorporated into the model used [1,22], as in [13,21,37] where
3D models of structures in the head were developed from a training set of ex-
amples. In these cases the structures chosen were considerably simpler than the
cortical surface, which meant that manual delineation and point correspondence
was possible. Subsol et al. [35,36] developed more complex 3D models of skull
and cortical ridges from sets of examples. The ridges were detected and matched
automatically to produce an atlas but the authors chose to use mathematical
modal analysis based on physical structure [23] rather than statistical observa-
tion. Sandor & Leahy [33] developed a model which could locate and label a small
number of sulci, but had no built in knowledge of their structural variations and
configurations. Other authors have analyzed the sulcal variability with a view to
labelling automatically [17,32,39] or interactively [24] detected structures, but
generally this has been restricted to a small number of major fissures or only a
small number of manually labelled and corresponded examples are used[20]. The
work presented here is fully 3D, uses automatically marked and corresponded
data, and considers the whole of the exposed surface, building on earlier less
complex experiments which used poorer data [8].

3 Active Shape Models

Active Shape Models (ASM) have as their basis the Point Distribution Model
(PDM). PDMs have been used to model many classes of variable objects ranging
from faces [16] to electrical components [10]. Full details of the PDM can be found
in [10] but the following gives a brief description. Given a set of example pattern
vectors {xiεR

n}, where correspondence is established between the values at each
index of xi, then each vector can be rewritten:

xi = x̄ + Epi (1)

where x̄ is the mean pattern vector, E is the matrix whose columns are the
eigenvectors of the co-variance matrix of the set, and pi is an n-dim vector of
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parameters describing the degree to which xi varies from x̄ in a way described
by the corresponding eigenvectors. Each eigenvector describes the way in which
linearly correlated xij move together over the set, referred to as a ’mode of
variation’. New examples, not included in the training set, can be generated by
manipulating the elements of p. To model objects in three-dimensions the {xi}
are constructed using the co-ordinates of descriptive features of each example.
The features must correspond to the same ‘points’ on each object. Given co-
ordinates (xij , yij , zij) at each feature j of object i, the shape vector is:

xi = (xi1, yi1, zi1, xi2, yi2, zi2, . . . , xin, yin, zin)T . (2)

Appropriate features may be corners, edges, borders, surface patterns, etc.
These can often be identified and corresponded by hand, but for extremely com-
plex subjects, like the cortical surface, an automated approach preferable. A
PDM can be adapted for search by recording grey-level intensity data in a
neighbourhood around each point and progressively adapting the model shape
through an unseen image until the neighbourhood matches are optimal (within
model constraints). The final positions of the model enable those specific features
to be labelled (see Sect. 9).

4 Automatically Placing Landmarks

In order to generate PDMs, landmark points must be placed on significant fea-
tures over a set of training examples. The sulcal fissures were chosen because
they provide anatomical landmarks [28,40] and can be used as a diagnostic aid
[34]. Since the cortical surface is extremely convoluted with complex sulcal con-
figurations [25], it was necessary to develop some automated process to do this.
Inspired by volume visualisation techniques [18], a projection method was devel-
oped which locates points above the mouths of the sulcal fissures on the cortical
envelope or hull. The images used were 22 full 3D acquisitions obtained on a
1.5T machine with a 3D Fourier-transform spoiled-gradient-recalled sequence.
Each has 124 slices, 1.5mm thick, at 256x256 resolution, optimised for good T1
contrast. Firstly the brain is segmented from the skull semi-automatically using
region growing in ANALYZE [30]. Using a closing operation the cortical hull is
produced and the grey levels of the brain image are averaged along the surface
normals up to a specified depth. The averaged intensity is then projected onto
the hull. The intensity values can then be thresholded to leave a representation
of the sulcal fissures on the hull which is finally thinned [27] to produce the
landmark points. Fig. 1 illustrates the projection approach and Fig. 2 shows the
whole process.

Once the points are obtained they can be allocated to curve segments. This is
done automatically and curves are delimited by joins (more than 2 neighbours)
and endpoints (1 neighbour). Fig. 3 shows a point set labelled in this way. The
grey-level intensities were projected onto the hull to a depth of 5 units and the
grey-level threshold was set at 0.8 standard deviations below the mean of the
distribution.



Using Local Geometry to Build 3D Sulcal Models 199

Fig. 1. The aver-
age grey-level in-
tensity along the
surface normal is
projected on to
the cortical enve-
lope

(a) (b) (c)

(d) (e)

Fig. 2. The projection process: Segmented brain (a), cortical
envelope (b), projection image (c), thresholded projection (d),
thinned point set (e)

5 Iterative Closest Point Matching

The problem of establishing matches between the point sets falls into two parts:
finding the global alignment of the points and then the specific point correspon-
dences. The ICP algorithm [4,41] tackles both of these problems simultaneously,
although the first rather better than the second. The algorithm is run through a
series of iterations; at each step the closest points (Euclidean distance) between
sets are found and then, based on these matches, one (or both) of the sets is
brought more closely into alignment with the other by adjusting global pose
parameters. Specifically, for this application, each training example is matched
to a master example chosen arbitrarily. This is not an ideal method and future

Fig. 3. Point set labelled
with short curve segments

Fig. 4. Point set labelled
with long curve segments
(Sect. 6.4.1)
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work will attempt to use pairwise-tree matching [14] to eliminate the dominance
of one set. The point correspondences are established in both directions and
any matches outside a particular distance limit (2 standard deviations above
the mean) are disallowed. The pose of the matched set only is modified to bring
it into alignment with the master [15]. This is continued until either the pose
adjustment is sufficiently small or a specific number of iterations have been per-
formed. In order to build the model, all allowed matches (in either direction)
to each point on the master are averaged to produce matches for that set. Due
to the distance limit imposed, not all points in each set will be included in
the model. This basic algorithm produced a model with good shape descriptive
properties but with poor configurational representation. I.e. simply matching the
closest point has taken no account of the actual variability of structures (and
their mutual configuration) between examples, therefore the model can readily
represent shape variations but cannot accurately reproduce the variability of
cortical patterns (see Sect. 6). To rectify this, certain modifications were made
to the basic algorithm by incorporating local shape and pattern information into
the matching metric, and by taking into consideration the branching and break-
ing of structures. This improved the way the algorithm tackled part two of the
matching problem: the specific point correspondences.

6 Incorporating Structural and Configural Information

6.1 Local Attributes

There are several local attributes that are suitable for inclusion in some kind
of similarity measure in order to find the ’closest’ point for the ICP. Over the
course of the experiments presented here, items used were as follows.

6.1.1 3D co–ordinates. Compared using Euclidean distance:

de
ij =

√
(xi − xj)2 + (yi − yj)2 + (zi − zj)2 (3)

where de
ij is the distance between two points i on one set and j on the other.

6.1.2 Surface normal. Considering angles between 0 and 180 degrees:

dn
ij =

2 + δ
−→n i · −→n j + 1 + δ

(4)

where −→n i is the unit surface normal at point i and δ is a small value designed
to prevent division by 0, say 1e-5.

6.1.3 Curve segment direction. The principal directions of the curve
segments containing the points i and j are compared considering angles between
0 and 90 degrees:

da
ij =

1 + δ
−→a i · −→a j + δ

(5)

where −→a i is the unit vector principal direction.
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6.1.4 Neighbourhood histogram. This is a 2D low-resolution represen-
tation of the local configuration of sulcal fissures about a point, see Fig. 5. The
histogram is centred on each point and aligned with the direction of its associ-
ated curve. The bins represent the number of points in a particular area of the
local neighbourhood as projected from 3D into 2D. Since a curve effectively has
2 directions and a point can belong (join) to several curves, each point can have
many histograms associated with it.

Fig. 5. The neighbourhood histogram about a point. The grid is centred over the point
and aligned with the principal direction of its curve segment. The bins represent the
number of points in that area of the neighbourhood

They are compared by concatenating the rows into a 1D normalised vector
and using a dot product:

dh
ij =

1 + δ

maxkl{−→
h ik

· −→
h jl

+ δ} (6)

where −→
h ik

is the normalised vector representing the kth histogram of point i.
This assumes that corresponding points will have similar sulcal configurations
around them.

6.2 Curve Segments

Although the basic ICP algorithm attempts to match corresponding points, there
is no provision for ensuring that points from the same structures did correspond.
To do this, the curve segment information was introduced, and curve matching
was decided on a voting basis; i.e. after point correspondences were established
(by whatever means) each curve is considered matched to the curve with the most
point matches. After that, corresponding points between curves were established
using simple Euclidean distance.

6.3 Size Variation

Not only is the variation in sulcal configuration extreme but each structure can
vary in size. In order to ensure that points are correctly matched between such
structures, they are aligned at their centres of gravity (COG), and then one is
scaled to match the extent of the other. Fig. 6 illustrates the process and it can
be seen that this correspondence is superior to taking the closest point on the
original structures.
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Fig. 6. Matched structures are aligned and scaled before points are corresponded

6.4 Combining Curves

Due to the effects of breaking and branching in particular, a large structure
can consist of several small curve segments as described in Sect. 4. The basic
ICP algorithm is not affected by this but, once the concept of curve segments is
introduced, it becomes an issue. One-to-one matching of curves using a voting
scheme will in many cases fail to match some parts correctly, if at all, and two
methods were introduced to combat this as follows.

6.4.1 Joining curve segments. By examining the principal directions and
proximity of curve segments, suitable candidates could be joined to form longer
curves. The three angles between the axes and the line joining the COGs must
all be close to 0, and the curves must be sufficiently close to allow joining, see
Fig. 7. The same point set of Fig. 3 is shown in Fig. 4 with long curve segments.

6.4.2 Matched linked sets. This method relies on linking curves after
matching. For this scheme a chain of matches is established and all the included
points on each set are considered as one structure for the purposes of establishing
closest points. Figure 8 shows this process which should allow varying numbers
of segments on the same structure to match successfully.

Fig. 7. Testing for a valid join.
The angles and distance are con-
sidered. (It is unlikely these two
curves would be joined)

Fig. 8. Matched linked
sets. A chain of curve
matches is established
(left) and all the points
in each set are allowed to
match as one structure
to give uniform closest
points (right)
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7 Experiments

Various combinations of the modifications described in the previous section were
used to generate models. However, for the purposes of this paper we present the
most significant.

Method 1. Basic ICP (Euclidean distance - eqn (3)).
Method 2. Adding normals and axes (6.1.2 & 6.1.3) and then matching

curve segments (6.2). The distance between points i and j becomes:

dij = de
ij ∗ dn

ij ∗ da
ij . (7)

Method 3. As Method 2 but allowing matched linked sets (6.4.2) and scaling
and aligning (6.3.1).

Method 4. As Method 3 but using long curve segments (6.4.1) and incorpo-
rating neighbourhood histograms of size 40 with a resolution of 8 pixels (6.1.4).

dij = de
ij ∗ dn

ij ∗ da
ij ∗ dh

ij . (8)

8 Assessing the Models

Since ground truth is not known, a self-contained method had to be developed
to assess the models. A PDM represents an object class by combining the mean
shape with a linear combination of the principal components of the variation
over the set. Each principal component is one way in which all the points move
together and is referred to as a ‘mode of variation’. Since these models represent
the configurations of structures rather than isolated features, it is reasonable to
assume that most neighbouring points should be connected. This means that
they should move in a similar fashion within each mode. A measure was de-
vised, therefore, which assesses the degree to which neighbours move together.
A coherence value is calculated for each mode:

ck =
1
N

N∑
i=1

1
ni

‖
ni∑

j=1

−→m j‖ (9)

where N is the total number of points in the model, is the number of points in the
neighbourhood of point i, and the unit vectors are the displacement directions of
the points. Fig. 9 shows the principle. In theory this can take values between 0
and 1 but in practice will never reach the extremes. Fig. 10 shows the coherence
values for the 4 methods described in Sect. 5 when a neighbourhood size of 0.05
was used (the model is scaled to unit size). The Wilcoxon paired signed ranks
test statistics give p<0.005 for all hypotheses that the coherence values from one
method to the next are not improved.
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Fig. 9. Calculating Co-
herence. The direction
vectors of neighbours are
examined for each point Fig. 10. Coherence values for Methods 1–4

It is clear from these results that adding in local geometric and topographical
information has improved the matching metric and that the countermeasures to
branching and breaking have been successful. It is also reasonable to assume
that, as point correspondence becomes more precise, the number of points in the
model may fall as structures become excluded on some examples. Table 1 shows
the number of points for each method and this supports that assumption.

Table 1. The numbers of points in each model

Method 1 2 3 4
No. Points 7234 6719 6715 6613

Visual inspection of the models was particularly important and a method
was devised of displaying the shape changes (movement normal to the surface -
Fig. 12) present in the model, and the pattern changes (tangential movement -

Fig. 11. The labelled cortex of the unseen image of Fig. 14 (right & left views)
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Fig. 13). In all cases the mean shape is shown. The size of the point indicates the
amount it moves and the colour indicates direction, for positive model parame-
ters, as shown in the key. These directions are reversed for negative parameters.
It is important to note that point sizes are relative within mode only. Table 2
gives the percentage of variance explained by each mode of Method 4, these were
similar for all the models.

Table 2. The percentage variation represented by each mode from Method 4

Mode % Variance Mode % Variance Mode % Variance
1 8.14738 8 5.01766 15 4.02958
2 7.85342 9 4.84648 16 3.94542
3 6.56275 10 4.64844 17 3.84594
4 6.41422 11 4.43208 18 3.54666
5 5.58816 12 4.36429 19 3.49159
6 5.33754 13 4.2875 20 3.18029
7 5.11439 14 4.2394 21 1.1068

From Figs. 12 and 13 it can be seen that, as the matching method is improved,
the emphasis moves from shape to pattern change and the model becomes visibly
more coherent (neighbouring points show similar size and colour). In fact the
asymmetrical pattern changes of modes 1 & 4 for Method 4, localised around the
temporal lobe and sylvian fissure, agree with observations in other anatomical
studies [3]. Also the shape change of Mode 2 in Method 1, and Mode 3 in Method
4, shows a diagonal squashing which can be interpreted as the relationship of
the two hemispheres to each other, or torque, which is an acknowledged source
of variation.

9 Active Shape Model Search

Taking the labelling scheme of Fig. 4, the model from Method 4 was used to
search an unseen original (unsegmented) image. The grey-level templates at
each model point were derived from the unprocessed images of the training
set. All the modes of the model were used since the sulcal configurations are
extremely complex, and it can be seen from Table 2 that even the minor modes
account for a substantial amount of variation. Figure 14 shows the final position
superimposed on the cortex. Ultimately anatomical labels will be attached to the
model points. Similarly, since the fissures are used to demarcate cortical areas
[29,40] the model can be used to locate these also. For example, the model was
fitted to one of the original training examples using an ICP-like fitting process.
At each iteration, the model points were modified (within the scope of the PDM)
towards their closest neighbour on the target set. Using the point locations as a
guide, the hull for that example was labelled for lobar regions. Using the model
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Mode 1 Mode 2 Mode 3 Mode 4

Fig. 12. Modes 1-4 of Methods 1 (top) & 4. Showing
shape change, i.e. movement normal to the surface.
Top views are shown

Key: Red & Green indi-
cate opposite directions

Mode 1 Mode 2 Mode 3 Mode 4

Fig. 13. Modes 1-4 of Methods 1 (top) & 4. Showing
pattern change, i.e. movement tangential to the surface.
3/4 views are shown

Key:

Fig. 14. The final model position after searching an unseen original (unsegmented)
image. The labels are those from Fig. 4
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points on the unseen example of Fig. 14 to calculate a 3D mapping (3D Thin
Plate Spline, TPS [7]), the labelled hull was warped to the new example. From
that position, labels were transferred to the pre-segmented cortex on a closest
point basis. Fig. 11 shows the results. It can be seen that some labels have ‘bled’
into adjoining regions. These are due to innaccuracies in the model search. This
should be alleviated by adding more examples to the model, improving its ability
to represent such complex structures.

10 Summary

We have shown that adding in local structural and configural information to
the point matching metric has improved PDMs generated automatically from
unlabelled feature data. In addition special measures to account for the variable
fragmentation of structures have also made improvements. These models can
then be used to search for, and label, specific features in unseen 3D images, and
can provide a 3D mapping for an atlas to an unlabelled image. The potential
applications include visualisation, measurement, diagnosis and normalisation.
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Abstract. An algorithm for improved automatic segmentation of gross
anatomical structures of the human brain is presented that merges the
output of a tissue classification process with gross anatomical region
masks, automatically defined by non-linear registration of a given data
set with a probabilistic anatomical atlas. Experiments with 20 real MRI
volumes demonstrate that the method is reliable, robust and accurate.
Manually and automatically defined labels of specific gyri of the frontal
lobe are similar, with a Kappa index of 0.657.

1 Introduction

Quantitative analysis of neuro-anatomical or neuro-functional data often requires
explicit regional identification of gross anatomical structures. Unfortunately,
manual segmentation is time-consuming, subjective and error prone. Further-
more, inter- and intra-observer variability may reduce detectability of subtle
differences when making comparisons. Automatic structure identification from
medical images is a difficult task, due to the anatomical variability between
subjects, differences in subject positioning (between patients and with respect
to standard anatomical texts), the distinct physical properties measured by the
imaging modalities, and variability of acquisition parameters such as slice thick-
ness and pixel size.

It is important to note that we differentiate between classification and seg-
mentation. We define segmentation to be the top-down regional parceling of an
image into anatomically meaningful continuous groups of voxels; classification is
defined to be the bottom-up (or data driven) labelling of individual voxels with a
tissue class label without demanding spatial contiguity for a class of voxels. The
image data represent only one measure (or a few measures in the case of multi-
spectral data) concerning the underlying anatomy, and by itself is sufficient only
for classification. Anatomically distinct regions of the brain are differentiated
on the basis of histology, cyto-architecture, connectivity, cyto-chemistry or func-
tion. As such, data from external sources are required to constrain and guide
the segmentation process.

A. Kuba et al. (Eds.): IPMI’99, LNCS 1613, pp. 210–223, 1999.
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These external data can be represented in at least two basic forms, and this
distinction is used here as a basis to identify two main classes of methods that
have been proposed to solve the segmentation problem for different applications.
In the first, a symbolic mapping is created between features extracted from the
image volume (usually small homogeneous regions) and a symbolic model of the
anatomical structures to be segmented.

Expert rule-based systems are often used to achieve this mapping where
anatomical knowledge is stored explicitly along with segmentation heuristics in
semantic form such as an ‘if-then’ rule. Example of these procedures can be
found in the work of Raya et. al. [1], Chen et. al. [2], Dellepiane et. al. [3],
Arata and Dhawan [4,5] and Davis et. al. [6]. Other algorithms do not explicitly
employ if-then rules to drive the segmentation. Instead, anatomical constraints
are implicitly incorporated into the procedure. Kaneda et. al. [7] use model-
guided contour extraction and 3-D reconstruction to identify dilated ventricles
in CT images. Anatomical constraints have also been used by Brummer [8,9] to
extract brain contours from MRI. Pathology (i.e. MS lesions) can be identified
using similar techniques [10].

Registration-based segmentation procedures differ from those previously de-
scribed since they estimate a spatial transformation function that best maps
features of one data set onto another pre-labelled volume that serves as an iconic
model. These procedures are all based on the assumption that there exists a one-
to-one mapping between the brain to be segmented and the one used as a model.
In one of the first 2D examples, Broit et. al. [11] used elastically-constrained
non-linear registration between a computed tomography (CT) image and a cor-
responding atlas slice. This work has been continued by Bajcsy et. al. , extended
to 3D and reposed in a probabilistic formulation [12,13,14]. Miller et. al. also
use a probabilistic formulation with physically based models [15,16,17] in order
to segment individual brains by registering them to a target. We too have devel-
oped a registration-based segmentation procedure named animal (Automatic
Nonlinear Image Matching and Anatomical Labeling) to automatically identify
structures in the brain (described in more detail in Sect. 2.4). It has been shown
to successfully segment basal ganglia structures [18] but it has not been able to
segment cortical structures satisfactorily (voxel-based overlap indices with man-
ual segmentations have been typically around 40-50%). There are two reasons
for this: i) there exists important variability in the topology of sulcal and gy-
ral patterns cortex. For example, how should one account for the existence of a
double Heschl’s Gyrus in a subject when the pre-labeled target has only one?
This is an example of where the one-to-one relationship that animal depends
on does not hold at the cortex1. ii) the deformation field estimated by animal
does not have the power to unfold the cortex of one brain and then refold it
back onto a target brain. The deformation field is bandlimited and therefore
does not have high enough frequencies to introduce (or remove) cortical folds

1 Note that this problem affectsnot only animal, but all registration-based segmen-
tation procedures. Even though fluid-based methods may recover a continuous map-
ping, point correspondence between model and model is ill-defined.
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where needed. Still, the animal procedure is able to correctly identify structure
location, position and smooth structure boundaries.

The procedure presented here addresses these problems. By merging the com-
plementary information from animal’s non-linear deformation (i.e. low resolu-
tion region identification) with the output of a classification technique (i.e. voxel
class labels), it is possible to accurately identify specific cortical structures from
a subject’s MRI. The work presented here is most similar to that of Zachmann
et. al. [19], where an iconic model (represented by a voxelated volume, where
the value in each voxel represents the probability of existence of a structure) is
used for identification of the different fluid spaces of the brain. The work here
is different in that it is fully 3D, uses non-linear registration (instead of linear),
and is applied to the entire cerebral volume including not only the cerebrospinal
fluid (CSF) filled spaces, but deep brain structures and cortical gyri and sulci as
well.

2 Methods

2.1 Stereotaxy

The methodology presented here is highly dependent on the notion of stereotaxic
space, i.e. a standardized brain-based coordinate system that yields a method of
identification of structure location and position so that regions of interest can be
compared between brains using standard coordinates. Like many groups in brain
mapping research, we have selected to use a coordinate system similar to that
defined by Talairach [20] with the origin placed at the anterior commissure, the
x-axis running from left to right, the y-axis running from posterior to anterior
and the z-axis running from inferior to superior.

When image volumes are transformed into this space and resampled on the
same voxel grid such that all brains have the same orientation and size, voxel-by-
voxel comparisons across data volumes from different populations are possible,
since each voxel (i, j, k) corresponds to the same (x, y, z) point in the brain-
based coordinate system. The transformation to this coordinate system also
provides a means for enhancement of functional signals by averaging images
in this space [21]. This paradigm allows information (anatomical, metabolic,
electrophysiological, chemical, architectonic) from different brains to be spatially
organized and catalogued by mapping all brains into the same coordinate system
[22]. Finally, in the original Talairach spirit, the coordinate corresponding to a
particular structure, as defined by an atlas in this coordinate system, can be
used to predict its location in a subject’s brain volume when mapped into the
same space. However, normal anatomical morphometric variability limits this
predictive value since there remains variability in structure position even after
linear transformation.

We represent this variability by a statistical probability anatomy maps
(SPAM) [23]. By definition, the SPAM for any given structure is a volumetric
data set sampled in stereotaxic space, where the value at each voxel position
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represents the probability of existence of that structure at that location within
the brain-based coordinate system. At each voxel, the probability is proportional
to the number of volumes containing the structure label, divided by the total
number of volumes. For example, SPAMs can be created with voxel-by-voxel
averaging of label volumes from tissue classified data from many subjects to yield
spatial priors that can be used in classification procedures. Here the SPAMs are
created from the segmented structure labels from many subjects (see Sect. 2.5)
and used as prior anatomical model information to drive the segmentation.

2.2 MRI Preprocessing

A number of processing steps are required to achieve segmentation. We have
combined preprocessing steps (image intensity non-uniformity correction [24]),
linear registration (animal in linear mode [25]) and resampling into stereotaxic
space, cortical surface extraction (Multiple surface deformation or msd [26,27]),
tissue classification (insect [28]), and non-linear registration (animal in non-
linear mode [18]) into a processing pipeline. These are represented schematically
in Fig. 1. Since the animal and insect procedure are merged to improve seg-
mentation, the new procedure is termed animal+insect. After running this
pipeline, a subject’s MRI volume can be visualized in stereotaxic space with its
corresponding tissue labels, anatomical structure labels and cortical surface —
all in 3D. The following sections describe the classification (insect) and nonlin-
ear registration (animal) procedures in more detail.
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Fig. 1. Processing pipeline. All MRI data are processed through the pipeline shown
above. After preprocessing to correct for intensity non-uniformity, the data are linearly
registered into stereotaxic space and resampled onto a 1mm isotropic grid. The resulting
volume is automatically classified into GM, WM, and CSF components and the cortical
surface is automatically extracted. The non-linear transformation to stereotaxic space is
used to warp the standard probabilistic atlas onto the classified data, defining structures
by masking tissue classes. The cortical surface is used to mask non-brain from cerebral
structures

2.3 INSECT

After image intensity non-uniformity correction, stereotaxic registration and re-
sampling, the classification strategy used by insect relies on a standard feed-
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forward error-backpropagation artificial neural network (ANN). Since after re-
sampling an (x,y,z) location in the image lattice corresponds to the same physical
(brain) location in all MRI modalities, the intensity values of all MRI modalities
at that location are used as the ANN inputs. As such, the number of ANN input
nodes is equal to the number of MRI modalities, whereas the number of out-
put nodes is equal to the number of tissue classes (typically white matter, gray
matter, CSF, and background). The ANN is fully connected between layers, and
contains one hidden layer with 10 nodes. Training of the network is accomplished
using a collection of fixed stereotaxic coordinates, derived from the SPAMs (or
probability maps, see Sect. 2.1) of WM, GM, and CSF. Based on these SPAMs,
any spatial location included in the training set belongs to one of the three tissue
classes with a minimum likelihood of 90%. The MRI intensity values of the sub-
ject’s MRI acquisition at these locations are used as training input to the ANN,
with the corresponding tissue class label as the target output. After training,
the ANN is used to classify each voxel of the subject data set into WM, GM, or
CSF.

2.4 ANIMAL

Identification of individual brain regions, such as the caudate nucleus, planum
temporale or superior frontal gyrus, faces two major problems. First, while
anatomists may generally agree where a structure is located, there is often no
consensus on exactly which part of the structure should be included or excluded.
Secondly, the manual labelling process is both time-consuming and the position
identified of chosen boundary is subjective, and dependent on the level and con-
trast of the image displayed. To address these difficulties we have developed
animal, an algorithm to perform this labelling automatically in 3D [18].

The animal algorithm deforms one MRI volume to match another, previ-
ously labelled, target MRI volume. It builds up a 3D non-linear deformation field
in a piecewise linear fashion, recursively fitting local spherical neighbourhoods.
Each local neighbourhood from one volume is translated to achieve an optimal
match within the other volume. The local neighbourhoods are arranged on a
3-D grid to fill the volume and each grid node moves within a range defined by
the grid spacing. The algorithm is applied iteratively in a multi-scale hierarchy.
At each step image volumes are convolved with a 3D Gaussian blurring kernel
where blurring and neighbourhood size (sphere diameter) are reduced after each
stage. Local neighbourhood fit is measured by correlation of the blurred image
intensities. Initial fits are obtained rapidly since at lower scales, only gross dis-
tortions are considered, but later iterations at finer scales accommodate local
differences at the price of increasing computational cost. Anatomical segmenta-
tion is achieved by transforming labels from the second (target) volume onto the
first volume, via the inverse of spatial mapping of the 3D deformation field (see
Fig. 4-c for an example of an animal segmentation).

This method has the important advantage that it is atlas independent, since
the labels do not take part in the fitting process. In fact, multiple atlases defined
for different applications or by different anatomists can co-exist on the target
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volume, and each one can be mapped through the non-linear transformation
without recomputation of the latter.

2.5 ANIMAL+INSECT

In the standard application of animal, the target is an MRI volume from a
single subject where all of the voxels within the volume have been anatomi-
cally labelled by a neuroanatomist to form an atlas [29]. In the animal+insect
paradigm described here, the target is an voxel-by-voxel intensity average of 305
MRI volumes, where each volume was automatically registered and resampled in
stereotaxic space [30]. The atlas used for segmentation was created by averaging
anatomical labels from 152 subjects young normal subjects, collected as part of
the ICBM project [31].

Probabilistic Atlas There are a number of problems associated with an anatom-
ical atlas that is based on a single subject. For example, even though the subject
may be normal, certain brain regions may represent an extreme of the normal
distribution. Also, the use of a single brain atlas does not contain any notions of
anatomical variability, so it is impossible to evaluate the normality of shape, size
or position of specific structures from other subjects by comparing them with
the atlas. Finally, only one cortical topology (sulcal/gyral pattern) is represented
even though large variability is known to exist [32]. Since all registration-based
segmentations strategies (animal included) are based on the assumption that
there exists a 1-to-1 homology for all structures between source and target brains,
these strategies are undefined and may fail when this correspondence does not
exist, especially at the cortex.

Many of the problems listed above are addressed by using a probabilistic
atlas, or SPAM, created from the labellings of a large ensemble of normal sub-
jects [23]. The SPAM atlas used here models the anatomical variability of shape,
size and topology of 91 gross anatomical structures, where each structure is
represented by a SPAM volume in stereotaxic space (see Sect. 2.1). The an-
imal+insect segmentation paradigm requires that the atlas labels be trans-
formed from the target space and resampled onto the subject’s MRI volume.
Resampling a large number of SPAM volumes is inefficient, since only the label
of the most likely structure at each voxel position need be transferred to the
subject’s volume for masking. Therefore, a max-probability atlas (MPA) was
created in the target space, where only the label of the most probable structure
is stored at each voxel. This volume is created once by traversing the stereotaxic
volume, voxel-by-voxel, and storing only the label of the SPAM with the highest
probability at that voxel.

In practice, labelled data from large number of subjects is needed to create
the atlas. Ideally, manual segmentations of all atlas structures on all subjects
should be used. Unfortunately manual identification is very time consuming (e.g.,
1 man-month required to segment the thalamus on 200 subjects [33]), making
the ideal situation unrealistic. Here, as proof of principal, the standard animal
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[18] procedure was used with a gross anatomical atlas containing 91 structures
[29] to segment 150 data sets of young normal adults [34]. Validations of the
animal procedure have demonstrated that on average, automatic segmentations
are comparable to manual labellings for basal ganglia [18] and cortical gyri2 [35],
making this solution only slightly less than ideal. These 150 segmentations were
used to create 91 SPAM volumes that were in turn used to produce the MPA
shown in Fig 2. In addition, three other MPA models were created from 1) the
set of 71 grey matter SPAMs to create a gMPA, 2) the set of 16 white matter
SPAMs to create a wMPA and 3) the set of 4 CSF SPAMs to create a vMPA (v
for ventricular).

Merge Method Application of animal, using the MNI305 intensity average
target and the corresponding MPA results in a customized maximum probabilistic
atlas (c-MPA) for the given subject (see Fig. 3). This paradigm is similar to the
typical use of the Talairach atlas in brain mapping for structure interpretation
and localization. The major advantage is that the customized atlas indicates the
most likely structure label for each voxel for a particular subject given anatomical
variability of a normal population, instead of only a structure label of the single
target brain. The animal+insect methodology makes a further improvement
by incorporating tissue class information derived from the subject in question in
the following manner.

After the three c-MPA models corresponding to GM, WM and CSF are
warped and resampled, they are used as masks to assign labels to regions of the
corresponding tissue types classified by insect. The c-gMPA is applied to the
GM tissue class to identify the gyri of the different cerebral lobes, basal ganglia
structures and the thalamus. The c-wMPA is applied to the WM tissue class to
label the corpus collosum, the anterior and posterior limbs of the internal capsule
and the WM voxels belonging to the lobes. In the same fashion, the c-vMPA is
applied to the CSF tissue class to segment the lateral, third and forth ventricles.
Note that while the c-MPAs actually overlap and thus may yield several different
labels for a given voxel, only the c-MPA label corresponding to the voxel’s tissue
is applied. In the same manner, partial volume effects may be accounted for if
the classification procedure outputs continuous (instead of discrete) data. For
example, sulcal CSF can be labelled as such with the c-vMPA, even though the
classifier outputs CSF voxels with a magnitude less than 1.0.

Some cortical SPAMs extend past the inner table of the skull and may extend
into the scalp with a very low (but non-null) probability, since there are no other
cerebral structure SPAMs that will compete for the maximum probability label.
When the original MPA is created, these extra voxel labels remain and will
erroneously apply a cortical label to voxels located in the skull or scalp that
were classified as GM or WM. In order to remove these incorrect labels, the

2 It is interesting to note that while individual cortical structure labellings may be in
error, SPAMs generated by averaging either manual or automatic labellings are very
similar.
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Fig. 2. Max-probability atlas. These images show slices through the maximum prob-
ability atlas (left) and the corresponding slices through the ICBM150 T1-weighted
average brain (right)
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Fig. 3. Schematic of animal+ insect merge. The non-linear transformation required to
customized the stereotaxic MPA for the subject is estimated by animal. The subject’s
MRI is classified in to WM, GM and CSF classes by insect. The classified data are
masked by the regions in the c-MPA to segment regions on the subjects MRI volume

Fig. 4. ANIMAL-only vs ANIMAL+INSECT. (Left to right) Coronal slice through
original MRI volume; typical zoomed result (upper left quadrant) result of insect
classification; of animal-only segmentation; of animal+ insect segmentation; or man-
ual segmentation. Note how the animal+ insect result improves segmentation at the
cortex and the ventricles and agrees with the expert labelling
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cortical surface extracted by msd is used to create a brain mask that is applied
against the label volume.

Some structures cannot be segmented using only the method described above.
For example, in the T1-weighted volumes from the ICBM data base, the medial
half of the thalamus is usually classified as GM, while the lateral half is classified
as WM and cannot be distinguished from the adjacent white matter of the
posterior limb of the internal capsule. In this case, it is impossible to apply a
regional mask to a single tissue class to extract and label the structure. Therefore,
some structure-specific segmentation rules are required. For the thalamus, the
medial border is easily defined by masking the GM tissue class with the c-gMPA.
The definition of the lateral border is completely model-based using the standard
animal(-only) segmentation technique and is equal to the lateral border of the
thalamus in the cMPA. Similar rules are used for the head of the caudate nucleus,
putamen and globus pallidus. Once these structures are segmented, their labels
are overlaid on top of the previous segmentation result, overwriting any labels
already specified by the initial cMPA masking process.

3 Experiments and Results

3.1 MRI Acquisition

The data used for the experiments described below were acquired as part of the
International Consortium for Brain Mapping (ICBM) project, a Human Brain
Mapping funded research project with the goal of building a probabilistic atlas of
human neuro-anatomy [31]. T1-weighted MRI volumes from 152 young normal
volunteers (86 male, 66 female, age 24.6±4.8) were acquired using a 3-D spoiled
gradient-echo acquisition with sagittal volume excitation (TR=18, TE=10, flip
angle=30o, 140-180 sagittal slices). As described below in Sect. 3, frontal lobe
gyri were manually identified on twenty of these volumes.

3.2 Comparison of Segmentations

Figure 4 shows a comparison of an animal-only segmentation, an animal+insect
segmentation and a manual segmentation. Not only is the animal+insect seg-
mentation improved at the cortex, where some grey-matter regions were missed
with the standard animal technique, the segmentation of the lateral ventricles is
much better as well. Where the animal technique overestimated the size of the
ventricle, the animal+insect is in complete agreement with the MRI anatomy
and with the expert’s labelling. Note that there remain some discrepancies be-
tween the animal+insect and the manual segmentations - especially at the
boundaries between gyri.

In order to determine how well the segmentation procedure works in general,
we used manually segmented labels of gyri of the frontal lobes and compared
these to automatic labellings.
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3.3 Manual Labelling

In each hemisphere, the gray matter of five pre-frontal regions (superior, medial
and inferior frontal gyrus, the anterior cingulate gyrus and the orbito-frontal
gyri) were labelled by hand. The voxels for each structure were manually iden-
tified by voxel painting using Display, a computer program developed in our
lab [36] that shows four 2D orthogonal slices (transverse, coronal, sagittal and
user-defined oblique) through the volume with arbitrary pan, zoom and intensity
mapping on each slice. Display also includes a 3D graphics window that is capa-
ble of displaying 3D geometric objects such as the cortical surface. The cursor
can be placed in any of the 2D or 3D windows, and its position is simultaneously
updated in the other views. Voxel labels are painted on any of three orthogo-
nal views with simultaneous update in the other two. Cortical landmarks such
as the precentral, superior and inferior frontal, cingulate, fronto-orbital, fronto-
marginal and superior rostral sulci are identified in the 3D window and are used
to guide the manual segmentation. Manual segmentation of the ten gyri listed
above required approximately 10-15 hours per subject.

3.4 Automatic Labelling

Qualitatively, the images in Fig 5 demonstrate that the automatic labellings of
the left superior frontal gyrus are very similar to the manual segmentations. In
fact, the grey-white border and grey-CSF borders are very similar. In some cases
however, the animal+insect method includes the opposite sulcal bank in the
gyral labels.

In order to compare the two methods quantitatively, we have used a similarity
measure first proposed by Dice [37]. As shown by Zijdenbos [38], this measure is
a variant of the standard chance-corrected Kappa (κ) coefficient first developed
by Cohen [39]. This measure is the same as κ when the background is infinitely
large.

When averaged over the 20 segmentations, the mean and standard deviation
of the κ variant is 0.657 ± 0.037. In order to interpret this value and put it into
context, the right-most image on the third row of Fig 5 has a value of 0.728 (best
κ value in this experiment), while the third image in the top row has a value of
0.573 (worst κ value). Finally, the labelling of the superior frontal gyrus from
a single subject was deliberately dilated by one voxel, and the κ variant was
evaluated between on the original and dilated labelling, yielding 0.725. Dilating
by 2 voxels yields 0.593.

4 Discussion

We have presented an improved method for automatic segmentation of brain
structures by merging the complementary information from animal’s non-linear
deformation regional identification with the output of insect’s classification
technique. The procedure presented here is completely automatic and therefore
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Fig. 5. Segmentation of the Superior Frontal Gyrus. These images compare the manual
(left) and automatic (right) segmentations of the left superior frontal gyrus on coronal
slices from 20 subjects

fully objective and applicable to large ensembles of brain volumes. While the
new procedure uses two algorithms that were developed at the Montreal Neu-
rological Institute, the new improved segmentation method is not dependent on
these particular methods. In fact, any classification method that differentiates
tissue types and any non-linear registration method may be merged to max-
imize the complementary information of both techniques. Since insect yields
high resolution structure information, it is no longer necessary to run animal
to fine resolutions, thus providing a considerable improvement in speed. In fact,
running times are reduced from approximately 10 hours for estimation of the
high resolution non-linear fit to less than 2 hours, including both classification
and low-resolution warping.

The qualitative results shown in Fig 5 demonstrate that the animal+insect
methodology can segment individual gyri from MRI data. While the quantitative
measures presented here are not as high as we would like, we are currently
working on estimating intra- and inter-observer variability estimates to put these
values into context.

At least three methodological problems remain for future work: 1) In their
current form, the cortical SPAMs do not explicitly represent multiple topolog-
ical patterns that exist for cortical gyri. We plan to use an atlas that contains
multiple SPAM representations for specific cortical regions, where each SPAM
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corresponds to a given cortical pattern for that region. 2) Structures that have a
high anatomical variability are represented by SPAMs whose size is smaller than
their true average size. These structures must be segmented using a model-only
method, similar to those described above for the segmentation of the thalamus,
caudate, putamen and globus pallidus. 3) Surface data, extracted by msd, will be
used to refine over–defined cortical regions (e.g., where the opposite sulcal bank
is included in the segmentation of a gyrus). By using the surface information, it
will be possible to separate small disconnected regions on the cortical surface,
and then correct the gyral labelling in 3D.
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Abstract. A fundamental problem with a large class of image registra-
tion techniques is that the estimated transformation from image A to B
does not equal the inverse of the estimated transform from B to A. This
inconsistency is a result of the matching criteria’s inability to uniquely
describe the correspondences between two images. This paper seeks to
overcome this limitation by jointly estimating the transformation from
A to B and from B to A while enforcing the consistency constraint that
these transforms are inverses of one another. The transformations are
further restricted to preserve topology by constraining them to obey the
laws of continuum mechanics. A new parameterization of the transfor-
mation based on a Fourier series in the context of linear elasticity is
presented. Results are presented using both Magnetic Resonance and X-
ray Computed Tomography Imagery. It is shown that joint estimation of
a consistent set of forward and reverse transformations constrained by
linear-elasticity gives better registration results than using either con-
straint alone or none at all.

1 Introduction

A reasonable but perhaps not always desirable assumption is that the mapping of
one anatomical image (source) to another (target) is diffeomorphic, i.e., continu-
ous, one-to-one, onto, and differentiable. By definition, a diffeomorphic mapping
has an unique inverse that maps the target image back onto the source image.
Thus, it is reasonable goal to estimate a transformation from image A to B that
should equal the inverse of the transformation estimated from B to A assuming
a diffeomorphic mapping exists between the images. However, this consistency
between the forward and reverse transformations is not guaranteed with many
image registration techniques.

Depending on the application, the diffeomorphic assumption may or may not
be valid. This assumption is valid for registering images collected from the same
individual imaged by two different modalities such as MRI and CT, but it is not
necessarily valid when registering images before and after surgery. Likewise, a
diffeomorphic mapping assumption may be valid for registering MRI data from
two different normal individuals if the goal is to match the deep nuclei of the
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brain, but it may not be valid for the same data sets if the goal is to match the
sulcal patterns.

Alternatively, diffeomorphic transformations may be used to identify areas
where two image volumes differ topologically by analyzing the properties of the
resulting transformation. For example, consider the problem of matching an
MRI image with a tumor to one without a tumor. A possibly valid diffeomor-
phic transformation would be one that registers all of the corresponding brain
structures by shrinking the tumor to a small point. Such a transformation would
have an unusually small Jacobian which could be used to detect or identify the
location of the tumor. Conversely, consider the inverse problem of matching the
image without the tumor to the one with the tumor. A valid registration in this
case may be to register all of the corresponding brain structures by allowing the
transformation to “tear” (i.e., not be diffeomorphic) at the site of the tumor.
Just as valid could be a diffeomorphic transformation that registers all of the
corresponding brain structures by allowing the transformation to stretch at the
site of the tumor.

As in the previous examples, we will assume that a valid transformation
is diffeomorphic everywhere except possibly in regions where the source and
target images differ topologically, e.g., in the neighborhood of the tumor. For
the remainder of the this paper, we will consider registration problems that the
diffeomorphic transformation assumption is valid. These ideas can be extended to
certain non-diffeomorphic mapping problems by including boundary conditions
to model, isolate or remove regions that differ topologically.

Transformations that are diffeomorphic maintain topology guaranteeing that
connected subregions remain connected, neighborhood relationships between
structures are preserved, and surfaces are mapped to surfaces. Preserving topol-
ogy is important for synthesizing individualized electronic atlases; the knowledge
base of the atlas maybe transferred to the target anatomy through the topol-
ogy preserving transformation providing automatic labeling and segmentation.
If total volume of a nucleus, ventricle, or cortical sub region are an important
statistic it can be generated automatically. Topology preserving transformations
that map the template to the target also can be used to study the physical
properties of the target anatomy such as mean shape and variation. Likewise,
preserving topology allows data from multiple individuals to be mapped to a
standard atlas coordinate space [1]. Registration to an atlas removes individ-
ual anatomical variation and allows information from many experiments to be
combined and associated with a single conical anatomy.

The forward transformation h from image T to S and the reverse transfor-
mation g from S to T are pictured in Fig. 1. Ideally, the transformations h and g
should be uniquely determined and should be inverses of one another. Estimating
h and g independently very rarely results in a consistent set of transformations
due to a large number of local minima. As a result, we propose to jointly esti-
mate h and g while constraining these transforms to be inverses of one another.
The joint estimation makes intuitive sense in that the invertibility constraint
will reduce the number of local minima because the problem is being solved
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from two different directions. Although uniqueness is very difficult to achieve in
medical image registration, the joint estimation should lead to more consistent
and biologically meaningful results.

T(x) S(x)h(x)

g(x)

Fig. 1. The transformation h maps the image volume T to S and the transformation g
maps S to T . In order for the mappings to be biologically meaningful, h and g should
be inverses of one another

The need to impose the invertibility consistency constraint depends on the
particular application and on the correspondence model used for registration. In
general, registration techniques that do not uniquely determine the correspon-
dence between image volumes should benefit from the consistency constraint.
This is because such techniques often rely on minimizing/maximizing a similar-
ity measure which has a large number of local minima/maxima due to correspon-
dence ambiguity. Examples include similarity measures based on features in the
source and target images such as image intensities, object boundaries/surfaces,
etc. In theory, similarity measures have more local minima as the dimension of
the transformation increases. A registration method that determines the corre-
spondence between images by minimizing an image intensity similarity measure
is considered in this paper.

Methods that use specified correspondences for registration will benefit less
or not at all from the invertibility consistency constraint. For example, landmark
based registration methods implicitly impose an invertibility constraint because
the correspondence defined between landmarks is the same for estimating the
forward and inverse transformations. However, the drawbacks of specifying cor-
respondences include requiring user interaction to specify landmarks, unique cor-
respondences can not always be specified, and such methods usually only provide
coarse registration due to the small number of correspondences specified.

2 Registration Algorithm

2.1 Problem Statement

The image registration problem is usually stated as: Find the transformation h
that maps the template image volume T into correspondence with the target
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image volume S. Alternatively, the problem can be stated as: Find the trans-
formation g that transforms S into correspondence with T . For this paper, the
previous two statements are combined into a single problem and restated as:

Problem Statement: Jointly estimate the transformations h and g
such that h maps T to S and g maps S to T subject to the constraint
that h = g−1.

It is assumed that the 3D image volumes T and S are medical imaging
modalities such as MRI, fMRI, CT, cryosection imagery, etc. collected from
similar anatomical populations. Each image is defined as a function of x ∈ Ω =
[0, 1]3 where Ω is called the image coordinate system. The transformations are
vector-valued functions that map the image coordinate system Ω to itself, i.e.,
h : Ω 7→ Ω and g : Ω 7→ Ω. Diffeomorphic constraints are placed on h and g
so that they preserve topology. Throughout it is assumed that h(x) = x + u(x),
h−1(x) = x+ ũ(x), g(x) = x+w(x) and g−1(x) = x+ w̃(x) where h(h−1(x)) = x
and g(g−1(x)) = x. All of the fields h, g, u, ũ, w, and w̃ are (3×1) vector-valued
functions of x ∈ Ω.

Registration is defined using a symmetric cost function C(h, g) that describes
the distance between the transformed template T (h) and target S, and the dis-
tance between the transformed target S(g) and template T . To ensure the desired
properties, the transformations h and g are jointly estimated by minimizing the
cost function C(h, g) while satisfying diffeomorphic constraints and inverse trans-
formation consistency constraints. The diffeomorphic constraints are enforced by
constraining the transformations to satisfy laws of continuum mechanics [2].

2.2 Symmetric Cost Function

The main problem with image similarity registration techniques is that mini-
mizing the similarity function does not uniquely determine the correspondence
between two image volumes. In addition, similarity cost functions generally have
many local minima due to the complexity of the images being matched and the
dimensionality of the transformation. It is these local minima (ambiguities) that
cause the estimated transformation from image T to S to be different from the
inverse of the estimated transformation from S to T. In general, this becomes
more of a problem as the dimensionality of the transformation increases. To
overcome this problem for 3×3 linear transformations, Woods et al. [3] averages
the forward and inverse linear transformations to reconcile differences between
pairwise registrations.

To overcome correspondence ambiguities, we jointly estimate the transforma-
tions from image T to S and from S to T . This is accomplished by defining a cost
function to measure the shape differences between the deformed image T (h(x))
and image S(x) and the differences between the deformed image S(g(x)) and im-
age T (x). Ideally, the transformations h and g should be inverses of one another,
i.e., h(x) = g−1(x). The transformations h and g are estimated by minimizing
a cost function that is a function of (T (h(x)) − S(x)) and (S(g(x)) − T (x). The
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cost function used in this work is given by

C1(T (h), S) + C1(S(g), T ) =
∫

Ω

|T (h(x)) − S(x)|2dx +
∫

Ω

|S(g(x)) − T (x)|2dx.

(1)

Alternatively, the mutual information cost function given in [4,5] could be used.
Notice that this joint estimation approach applies to both linear and non-linear
transformations.

2.3 Transformation Parameterization

A 3D Fourier series representation is used to parameterize the forward and in-
verse transformations. This parameterization is simpler than the parameteriza-
tions used in our previous work [6,7,8] and each basis coefficient can be inter-
preted as the weight of a harmonic component in a single coordinate direction.
The displacement fields are constrained to have the form

u(x) =
N−1∑
k=0

N−1∑
j=0

N−1∑
i=0

µijkeĵ<x,ωijk> and w(x) =
N−1∑
k=0

N−1∑
j=0

N−1∑
i=0

ηijkeĵ<x,ωijk>

(2)

where µijk and ηijk are (3×1), complex-valued vectors and ωijk = [2πi
N , 2πj

N , 2πk
N ].

Notice that this parameterization is periodic in x and therefore has cyclic bound-
ary conditions for x on the boundary of Ω . The coefficients µijk and ηijk are
constrained to have complex conjugate symmetry during the estimation proce-
dure.

Proposition 1. Each displacement field in (2) is real and can be written as

u(x) = 2
N−1∑
k=0

N−1∑
j=0

N/2−1∑
i=0

(
aijkRe{eĵ<x,ωijk>} − bijkIm{eĵ<x,ωijk>}

)
(3)

if the (3 × 1) vector µijk = aijk + ĵbijk has complex conjugate symmetry.

Proof. Notice that (2) can be written as

u(x) =
N−1∑
k=0

N−1∑
j=0

N/2−1∑
i=0

(aijk + ĵbijk)eĵ<x,ωijk> + (aijk − ĵbijk)e−ĵ<x,ωijk>

because the µijk are complex conjugate symmetric. Simplifying the summand
gives the result. ut
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2.4 Inverse Transformation Consistency Constraint

Minimizing the cost function in (1) is not sufficient to guarantee that the trans-
formations h and g are inverses of each other. The inverse transformation con-
sistency constraint is enforced by minimizing the squared difference between the
transformation h and and the inverse transformation of g, and vice versa. To
state this mathematically we define the following relationships: h(x) = x+u(x),
h−1(x) = x + ũ(x), g(x) = x + w(x) and g−1(x) = x + w̃(x). The consistency
constraint is enforced by minimizing

C2(u, w̃) + C2(w, ũ) =
∫

Ω

||u(x) − w̃(x)||2dx +
∫

Ω

||w(x) − ũ(x)||2dx. (4)

The inverse transformation h−1 is estimated from h by solving the minimiza-
tion problem h−1(y) = arg min

x
||y − h(x)||2 for each y on a discrete lattice in Ω.

The inverse h−1 exists and is unique if h is a diffeomorphic transformation, i.e.,
continuous, one-to-one, and onto.

2.5 Diffeomorphic Constraint

Minimizing the cost function in (4) does not ensure that the transformations h
and g are diffeomorphic transformations except for when C2(u, w̃)+C2(w, ũ) = 0.
To enforce the transformations to be diffeomorphic, we use continuum mechan-
ical models such as linear elasticity [7,9] and viscous fluid [9,10]. For this paper,
a linear-elastic constraint of the form

C3(u) + C3(w) =
∫

Ω

||Lu(x)||2dx +
∫

Ω

||Lw(x)||2dx (5)

was used to enforce the diffeomorphic property where h(x) = x+u(x) and g(x) =
x+w(x). The operator L has the form Lu(x) = −α∇2u(x)−β∇(∇·u(x))+γ for
linear elasticity, but in general can be any nonsingular linear differential operator
[8].

Following the approach in [8], the operator L can be considered a (3 × 3)
matrix operator. Discretizing the continuous partial derivatives of L, it can be
shown that (5) has the form

C3(u) + C3(w) = N3
N−1∑
k=0

N−1∑
j=0

N−1∑
i=0

µ†
ijkD2

ijkµijk + η†
ijkD2

ijkηijk (6)

where † is the complex conjugate transpose. Dijk is a real-valued, (3×3) matrix
with elements

d11 = 2α
[
β
(
1 − cos

(
2πi
N

))
+

(
1 − cos

(
2πj
N

))
+

(
1 − cos

(
2πk
N

))]
+ γ

d22 = 2α
[(

1 − cos
(

2πi
N

))
+ β

(
1 − cos

(
2πj
N

))
+

(
1 − cos

(
2πk
N

))]
+ γ
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d33 = 2α
[(

1 − cos
(

2πi
N

))
+

(
1 − cos

(
2πj
N

))
+ β

(
1 − cos

(
2πk
N

))]
+ γ

d12 = d21 = β
[
cos

(
2π
N (i − j)

)
− cos

(
2π
N (i + j)

)]

d13 = d31 = β
[
cos

(
2π
N (i − k)

)
− cos

(
2π
N (i + k)

)]

d23 = d32 = β
[
cos

(
2π
N (j − k)

)
− cos

(
2π
N (j + k)

)]
.

2.6 Minimization Problem

By combining (1), (4), and (5), the image registration problem becomes

ĥ(x), ĝ(x) = arg min
h(x),g(x)

∫
Ω

|T (h(x)) − S(x)|2 + |S(g(x)) − T (x)|2dx

+λ

∫
Ω

||u(x) − w̃(x)||2 + ||w(x) − ũ(x)||2dx

+ρ

∫
Ω

||Lu(x)||2 + ||Lw(x)||2dx

(7)

where the constants λ and ρ are Lagrange multipliers used to enforce/balance
the constraints.

2.7 Estimation Procedure

The transformations ĥ and ĝ that satisfy (7) were estimated using a gradient
descent algorithm to determine the basis coefficients {µijk, ηijk}. The estimation
was accomplished by solving a sequence of optimization problems from coarse to
fine scale via increasing the number of the basis coefficient vectors {µijk, ηijk}
during the estimation. This is analogous to multi-grid methods but here the
notion of refinement from coarse to fine is accomplished by increasing the number
of basis components. As the number of basis functions is increased, smaller and
smaller variabilities between the template and target images are accommodated.

3 Results

Two MRI and two CT image volumes were used to evaluate the registration al-
gorithm. The data sets were collected from different individuals using the same
MR and CT machines and the same scan parameters. The MRI data sets corre-
spond to two normal adults and the CT data sets correspond to two 3-month-old
infants, one normal and one abnormal (bilateral coronal synostosis). The MRI
and CT data sets were chosen to test registration algorithm when matching
anatomies with similar and dissimilar shapes, respectively.

The MRI data were preprocessed by normalizing the image intensities, cor-
recting for translation and rotation, and segmenting the brain from the head
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using AnalyzeTM . The translation aligned the anterior commissure points, and
the rotation aligned the corresponding axial and sagittal planes containing the
anterior and posterior commissure points, respectively. The data sets were then
down-sampled and zero padded to form a 64 × 64 × 64 voxel lattice. The CT
data sets were corrected for translation and rotation and down-sampled to form
a 64 × 64 × 50 voxel lattice. The translation aligned the basion skull landmarks,
and the rotation aligned the corresponding Frankfort Horizontal and midsagittal
planes, respectively.

The data sets were registered initially with zero and first order harmonics.
After every 40th iteration, the maximum harmonic was increased by one. The
MRI-to-MRI registration was terminated after 300 iterations and the CT-to-CT
registration was terminated after 200 iterations. Tables 1, 2, and 3 show the
results of four MRI experiments and four CT experiments. In order to isolate
the contribution of each term of (7), one experiment was done with no priors,
one with the linear-elastic model, one with the inverse consistency constraint,
and one with both priors. The four MRI experiments used the parameters 1.
λ = ρ = 0, 2. λ = 0 and ρ = 50, 3. λ = 0.07 and ρ = 0, and 4. λ = 0.07 and
ρ = 50; and four CT experiments used the parameters: 1. λ = ρ = 0, 2. λ = 0
and ρ = 25, 3. λ = 0.02 and ρ = 0, and 4. λ = 0.02 and ρ = 25. The labels MRI1
and CT1 are used to refer to results from the Case 1 experiments, and likewise
for 2 to 4.

Table 1. Cost Terms Associated with Transforming Image Volume T to S

Experiment C1(T (h), S) λC2(u, w̃) ρC3(u) Total
orig. final final final

MRI1 1980 438 0 0 438
MRI2 1980 606 0 85.7 692
MRI3 1980 482 33.4 0 516
MRI4 1980 639 13.0 74.6 727
CT1 454 27.0 0 0 27.0
CT2 454 38.8 0 28.1 66.9
CT3 454 28.5 3.15 0 31.6
CT4 454 40.8 3.34 28.3 72.4

Case 1. corresponds to unconstrained estimation in which h and g are esti-
mated independently. The numbers in the tables are consistent with this obser-
vation. First, C2(u, w̃) and C2(w, ũ) show the largest error between the forward
and inverse mapping for each group of experiments. Secondly, the Jacobian for
these cases are the lowest in their respective groups. This is expected because the
unconstrained experiments find the best match between the images without any
constraint preventing the Jacobian from going negative (singular). This is fur-
ther supported by the fact that the final values of C1(T (h), S) and C1(S(g), T )
are the lowest in there groups.
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Table 2. Cost Terms Associated with Transforming Image Volume S to T

Experiment C1(S(g), T ) λC2(w, ũ) ρC3(w) Total
orig. final final final

MRI1 1980 512 0 0 512
MRI2 1980 660 0 78.3 738
MRI3 1980 539 33.6 0 573
MRI4 1980 676 13.0 73.7 727
CT1 454 30.6 0 0 30.6
CT2 454 47.7 0 32.4 80.1
CT3 454 34.6 3.43 0 38.0
CT4 454 50.8 3.78 31.9 86.5

Case 2. corresponds to independently estimating h and g while requiring
each transformation to satisfy the diffeomorphic constraint enforced by linear
elasticity. Just as in Case 1, the large difference between the forward and reverse
displacement fields as reported by C2(u, w̃) and C2(w, ũ) confirms that linear
elasticity alone is not sufficient to guarantee that h and g are inverses of one
another. We do however, see that the linear elasticity constraint did improve the
transformation over the unconstrained case because the minimum Jacobian and
the inverse of the maximum Jacobian is far from being singular.

Case 3. corresponds to the estimation problem that is constrained only by the
inverse transformation consistency constraint. The C2(u, w̃) and C2(w, ũ) values
for these experiments are much lower than those in Cases 1. and 2. because
they are being minimized. The transformations h and g are inverses of each
other when C2(u, w̃) + C2(w, ũ) = 0 so that the smaller the costs C2(u, w̃) and
C2(w, ũ) are, the closer h and g are to being inverses of each other.

Table 3. Transformation Measurements

Experiment Jacobian(h) Jacobian(g) C2(u, w̃) C2(w, ũ)
min 1/max min 1/max

MRI1 0.257 0.275 0.100 0.261 28,300 29,500
MRI2 0.521 0.459 0.371 0.653 10,505 10,460
MRI3 0.315 0.290 0.226 0.464 478 479
MRI4 0.607 0.490 0.410 0.640 186 186
CT1 0.340 0.325 0.200 0.49 73,100 76,400
CT2 0.552 0.490 0.421 0.678 28,700 28,300
CT3 0.581 0.361 0.356 0.612 158 171
CT4 0.720 0.501 0.488 0.725 167 189

Case 4. is the joint estimation of h and g with both the inverse consistency
constraint and the linear-elastic constraint. We can see that this produced the
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best results because the differences between the inverse transformations were so
small, i.e., C2(u, w̃) and C2(w, ũ). Also, the minimum Jacobian of h is nearly the
inverse of the maximum Jacobian of g, and vice versa. In addition, the minimum
and one over the maximum Jacobian of h and g have their largest values for
this experiment (excluding one entry from MRI2). The MRI4 experiment shows
a better than twofold improvement over MRI3 with respect to the difference in
the inverse transformations, while the the inverse transformations difference for
the CT4 and CT3 experiments are nearly equal. This may suggest that the in-
verse consistency constraint may be used without the linear-elasticity constraint.
However, the minimum and one over the maximum Jacobian values are larger
for CT4 than CT3 and similarly for MRI4 and MRI3 suggesting less distortion.
The closer the minimum Jacobian is to one, the smaller the distortion of the
images.

Figure 2 shows three slices from the 3D result of Case 4 for both the MRI and
CT experiments. The first two columns show the template T and target S images
before transformation. The third and forth columns show the transformed tem-
plate T (h) and target S(g). Columns 5,6, and 7 show the x-,y-, and z-components
of the displacement field u used to deform the template and columns 8,9, and 10
show the same for the displacement field w. The near invertibility in gray-scale
between the displacement fields u and w gives a visual impression that h and g
are nearly inverses of each other.

The time series statistics for MRI4 and CT4 experiments are shown in Figs. 3
and 4. These graphs show that the gradient descent algorithm converged for each
set of transformation harmonics. In both cases, the cost functions C1(T (h), S)
and C1(S(g), T ) decreased at each iteration while the prior terms increased be-
fore decreasing. Notice that the inverse consistency constraint increased as the
images deformed for each particular harmonic resolution. Then when the number
of harmonics were increased, the inverse constraint decreased before increasing
again. This is due to the fact that a low-dimensional Fourier series does not have
enough degrees of freedom to faithfully represent the inverse of a low-dimensional
Fourier series. This is easily seen by looking at the high dimensionality of a Tay-
lor series representation of the inverse transformation. Finally, notice that the
inverse consistency constraint caused the extremal Jacobian values of the for-
ward and reverse transformations to track together. This is easiest to see in the
CT4 experiment. Note that these extremal Jacobian values correspond to the
worst case distortions produced by the transformations.

4 Discussion

The experiments presented in this paper were designed to test the validity of the
new inverse transformation consistency constraint as applied to a linear-elastic
transformation algorithm. As such, there was no effort made to optimize the
rate of convergence of the algorithm. The convergence rate of the algorithm can
be greatly improved by using a more efficient optimization technique than gra-
dient descent such as conjugate gradient at each parameterization resolution. In



234 G.E. Christensen

T            S          T(h)       S(g)         u1          u2          u3          w1          w2         w3

T            S          T(h)       S(g)         u1          u2          u3          w1          w2         w3

Fig. 2. Images associated with the MRI4 and CT4 experiments

addition, a convergence criteria can be used to determine when to increment
the number of parameters in the model. The CT data used in the experiments
was selected to stress the registration algorithm. The convergence of the algo-
rithm would have been much faster if the data sets were adjusted for global scale
initially.

It is important to track both the minimum and maximum values of the Ja-
cobian during the estimation procedure. The Jacobian measures the differential
volume change of a point being mapped through the transformation. At the start
of the estimation, the transformation is the identity mapping and therefore has
a Jacobian of one. If the minimum Jacobian goes negative, the transformation is
no longer a one-to-one mapping and as a result folds the domain inside out [11].
Conversely, the reciprocal of the maximum value of the Jacobian corresponds
to the minimum value of the Jacobian of the inverse mapping. Thus, as the
maximum value of the Jacobian goes to infinity, the minimum value of the Ja-
cobian of the inverse mapping goes to zero. In the present approach, the inverse
transformation consistency constraint was used to penalize transformations that
deviated from their inverse transformation. A limitation of this approach is that
cost function in (4) is an average metric and can not enforce the pointwise con-
straints that min

x
{J(h)} = 1/ max

x
{J(g)} and min

x
{J(g)} = 1/ max

x
{J(h)}. This
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Fig. 3. Statistics associated with the MRI4 experiment

point is illustrated by Table 3 by the fact that the minimum values of J(h)
and J(g) differ from the reciprocal of the maximum values of J(g) and J(h),
respectively, However, these extremal Jacobian values do give an upper-bound
on the worst case distortions produced by the transformations demonstrating
the consistency between the forward and reverse transformations.

5 Summary and Conclusions

This paper presented a new algorithm for jointly estimating a consistent set of
transformations that map one image to another and vice versa. A new param-
eterization based on the Fourier series was presented and was used to simplify
the discretized linear-elasticity constraint. The Fourier series parameterization
is simpler than our previous parameterizations and each basis coefficient can be
interpreted as the weight of a harmonic component in a single coordinate direc-
tion. The algorithm was tested on both MRI and CT data. It was found that
the unconstrained estimation leads to singular or near transformations. It was
also shown that the linear-elastic constraint alone is not sufficient to guarantee
that the forward and reverse transformations are inverses of one another. Results
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were presented that suggest that even thought the inverse consistency constraint
is not guaranteed to generate nonsingular transformations, in practice it may be
possible to use the inverse consistency as the only constraint. Finally, it was
shown that the most consistent transformations were generated using both the
inverse consistency and the linear-elastic constraints.
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Abstract. In this paper we classify inhomogeneous non-linear registra-
tion algorithms into those of variable data influence, of variable deforma-
bility and of variable model type. As examples we introduce three mod-
ifications of the viscous fluid registration algorithm: passing a filter over
the computed force field, adding boundary conditions onto the velocity
field, and re-writing the viscous fluid PDE to accommodate a spatially-
varying viscosity field. We demonstrate their application on artificial test
data, on pre-/post-operative MR head slices and on MR neck volumes.

1 Introduction

Image registration requires finding an optimal transformation between an image
pair, the source S(x) and target T (x). Single-level registration algorithms are
divided between those which apply linear transformations and those which allow
higher order deformations. Generally higher order deformations are performed
after an initial registration by a linear method, so linear and non-linear are com-
bined sequentially. In [1] we examined the application of hierarchies of data, warp
and model, where complexity increases temporally with the progress of registra-
tion. It is rare that an algorithm allows simultaneous or parallel application of
both linear and non-linear models within one image, so that only selected areas
of the image deform. Many medical images contain regions representing both soft
and hard tissue, and whereas the former often require high order deformations
to achieve a good registration, in an intra-subject study the hard tissue regions
should remain rigid. Registration of such image pairs requires algorithms where
the model varies spatially within the image domain, using prior information on
the variation of tissue types within the deforming image. These are instances
of inhomogeneous non-linear registration algorithms. This paper classifies types
of inhomogeneity and reviews those available in the literature. We then present
three modifications to the fluid algorithm which introduce inhomogeneities into
its application. Section 4 describes inhomogeneities in applying the force field
and in computing the velocity field, and presents the varying-viscosity fluid regis-
tration algorithm. Finally, Sect. 5 shows results of application of these algorithms
to 2- and 3-dimensional data.

A. Kuba et al. (Eds.): IPMI’99, LNCS 1613, pp. 238–251, 1999.
c© Springer-Verlag Berlin Heidelberg 1999
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2 Spatial Inhomogoneneities in Registration Algorithms

We [1] classify temporal hierarchies of registration into those of data, those of
descriptors of deformation or warp, and those of complexity of model. In a similar
vein, we classify spatial inhomogeneities as those in the data influence, in the
strength of deformation constraints, and in the application of model type.

2.1 Variable Data Influence

The first type of inhomogeneity varies the importance attached to information
content in the domain of the image pair when computing the transformation re-
quired at each point in the source. In terms of a Bayesian approach [2], where the
deformation is determined by the solution of a weighted sum of likelihoods and
priors, the weight assigned to the likelihood is varied according to assumptions
about the relevance of the data in different regions of the image. In terms of
regularisation, where the equation solved is a weighted sum of driving forces and
constraints on the deformation, the influence of the driving force is weakened or
strengthened relative to the deformation constraints.

By ignoring the contribution of the driving force, we can force a region to be
passive, whose deformation is due solely to its proximity to active regions.

Let Ω = {x} be the domain of the image. We make the following definitions:

Definition 1 (Active and passive regions). Let Θ ⊂ Ω be a region whose
deformation is given by u(x) satisfying a regularisation equation

g(u(x)) + τf (S(u(x)), T (x)) = 0 (1)

where f is the likelihood and g is the prior constraint dependent on the defor-
mation. We define Θ to be passive if for all pixels x ∈ Θ, the regularisation
parameter τ weighting the likelihood is equal to zero, and active otherwise.

A medical application would be an intra-modality pair of which the source
contains known segmented structures whose homologues are absent in the target
but which may be confused, due to similarities of intensity, with regions nearby.

2.2 Variable Deformability

The second inhomogeneity paradigm varies the strength of deformation con-
straint. Regions of the image are then classified as strongly or weakly deformable.
In the case of registration modelled on the behaviour of a physical material, the
deformability is described by one or more parameters of the material proper-
ties - the elasticity of an elastic medium (Sect. 3.3) or the viscosity of a fluid
(Sect. 4.3). Allowing these parameters to vary spatially requires the derivation
of modified Partial Differential Equations (PDEs) to account for the parameter
gradients.
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Definition 2 (Strongly and weakly deformable). Let Θ ⊂ Ω be a region
whose deformation is given by u(x) satisfying a regularisation equation

g(u(x);µ(x)) + τf (S(u(x)), T (x)) = 0 (2)

where f is the likelihood and g is a prior constraint dependent on the deformation
and on an independent parameter µ ∈ [0, 1] varying spatially within the image,
such that g(µ) → 0 as µ → 0. We define Θ to be strongly or weakly deformable
according to the range of µ from 0 (strongest) to 1 (weakest).

The strength of the deformation parameter is supplied at every position in
the source image, using prior information obtained from one of two sources:
physical or statistical. In the first case, prior information is available on the de-
formability of the physical tissues which the images represent. For example, [3]
demonstrate the estimation of tissue elasticity using certain scanning protocols,
and we assume the rigidity of hard tissue. Basing the variability of the deforma-
tion constraint on such physical information is valid only in intra-subject studies,
where the registration of the source to the target attempts to reproduce actual
physical movements of tissue. A second type of prior information is applicable
to and derived from cross-population studies, where the variation in the defor-
mation constraint is a function of the statistical cross-population variability in
the shape of each structure in the images. Structures which have been found
to display little variance in size and shape across a population of normals will
be labelled with a high value of µ, while other areas exhibiting greater vari-
ability will be labelled with a low value of µ and allowed greater deformations
in registering to their homologues in the target image. For instance, [4] allows
high variability in ventricular and cortical fold regions, and low variability in
subcortical structures, in a variable-elasticity algorithm (Sect. 3.3).

2.3 Variable Model Type

Finally it is possible to vary spatially the models or equations causing defor-
mation. This type of inhomogeneity can achieve completely affine transforma-
tions within selected regions while deforming intervening or surrounding areas.
Boundary conditions are set between model type regions such that a continuity
of mapping is ensured across the image. Examples of such algorithms are the
Combination MultiQuadric (C-MTQ), Sect. 3.2, the three component Finite El-
ement (3C-FEM), Sect. 3.1, and a version of the modified fluid 2 (MF2), Sect.
4.2. In the case of 3C-FEM and MF2, the updating of nodal displacements or of
pixel velocities is prohibited within selected areas. This is an easy and effective
method of ensuring that these regions remain rigid; additionally they remain
motionless.

We define here the concept of a rigid body within the deforming source,
together with two paradigms of a rigid region.

Definition 3. A region Θ ⊂ Ω is said to be rigid within a non-linear deforma-
tion of source S(Ω) to target T (Ω) if the transformation u(Θ) is linear.
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Definition 4. A region Θ ⊂ Ω is said to be motionless if ∀x ∈ Θ, the trans-
formation u(x) = 0. Where the registration S(u(Ω, t)) → T (Ω) is a function of
time, Θ is motionless if ∂

∂tu(Θ, t) = 0 ∀x ∈ Θ,∀ t and if u(Θ, 0) = 0.

It may be desirable to have rigid but independently-moving regions:

Definition 5. A region Θ ⊂ Ω is said to be independently-moving if ∀x ∈ Θ,
the transformation u(x, t) = c(x, t) is a non-zero linear function of x where
c(xi) = c(xj) ∀xi,xj ∈ Θ at any time t and where ∃x ∈ Ω, x 6∈ Θ such that
u(x, t) 6= c(x, t) satisfies the regularisation of a likelihood and prior.

The main application of such algorithms will be in the modelling of movement
of hard and soft tissue during surgery.

3 Review of Inhomogeneous Registration Methods

3.1 Three-component Finite Element Model (3C-FEM)

[5] gives a finite-element model based on three tissue types, labelled rigid, de-
formable and ‘fluid’. The deformations are driven by user-supplied landmark
displacements and deformations of the deformable regions are constrained by
three energy terms:

Etension(Ni, Nj) =
∣∣Nj − Ni − N0

ij

∣∣2
Estiffness(Ni, Nj , Nk) = |Nj + Nk − 2Ni|2

Efold(Nk, Nl, Nm) =

{
A2

γ2A2
0

+ γ2A2
0

A2 if A
A0

≤ γ

2 otherwise

where N0
ij is the original distance between the nodes Ni and Nj and the nodes

Ni, Nj and Nk are collinear before deformation; nodes Nk, Nl and Nm form
a triangle with initial area A0 and deformed area A and γ is a threshold of
triangular area reduction. The ‘fluid’ deformations are constrained only by Efold
which prevents folding of the image. Rigid regions are obtained by prohibiting
the updating of their nodal displacements.

3.2 Combination Multiquadric Spline (C-MTQ)

Little et. al. [6] have constructed a variant of the landmark spline, incorporating
regions which undergo independent linear transformations only. The method is
applied to pre-segmented images, with regions classified as hard or soft tissue.
The hard tissue regions form a set O of n rigid bodies {Oi} such that O =⋃n

i=1 Oi, where one body Oi, can consist of separate parts (all undergoing the
same linear transformation) but no two bodies may overlap. The method uses a
distance transform to weight differently the linear and non-linear components of
the overall image mapping, such that the non-linear terms are smoothly reduced
to zero as the rigid bodies are approached, and each rigid body is constrained to
its own linear mapping while contributing to the underlying linear drift of the
non-rigid areas.



242 H. Lester et al.

3.3 Elastic Registration with Variable Elasticity

Davatzikos [4] presents an elastic registration model applied to images of the head
where the elasticity parameters vary spatially within the image. The deformation
is driven by distances between parametrically-defined pre-segmented cortical and
ventricular surfaces in the source and target, and also incorporates a pre-strained
elasticity term. The latter allows for voluntary growth in specified image areas,
for example to model the growth of a tumour.

First the brain tissue is segmented from the images and a deformable surface
is applied to the source and target brain volumes, giving for each a parametric
description of the shape of the outer cortical surface. At each point on the
ventricular surface in the deforming source, a force is computed from the distance
to the nearest point on the boundary of the target ventricular surface, weighted
by the scalar product of outward normals at these points. These ventricular
forces together with cortical forces derived from matching cortical surfaces by
curvature measures provide a total external driving force field f which is supplied
to the variable-elasticity equation:

{f + λ∇2u + (λ + µ)∇(∇ · u)}+

{(∇u + (∇u)T − 2¯̄I)∇λ + (∇ · u − 3)∇µ}+
{ε(2∇λ + 3∇µ) + (2λ + 3µ)∇ε} = 0. (3)

The first bracketed term is the regularisation between driving forces f and the
elasticity constraints on the displacements vector u(x). The second contains gra-
dients in the elasticity parameters λ and µ, allowing variation in the elasticity
field. ventricular and cortical surface regions are set lower elasticity values, al-
lowing for greater ease of deformation. The third term contains gradients in a
parameter ε determining an additional strain tensor ¯̄E0 = ε(x)¯̄I which forces
extra expansion or contraction in pre-selected regions. Hence the algorithm also
contains inhomogeneities in activity, or data influence.

4 Modifications to the Viscous Fluid Registration Model

The fluid PDE is summarised by

∇ · ¯̄σ + f = 0 (4)

where f is the driving force and ¯̄σ is the stress tensor, given by

¯̄σ = −p¯̄I + µ
(∇v + (∇v)T

)
(5)

where v is the velocity field, p is a pressure term and µ is the viscosity parameter.
We now describe methods of introducing inhomogeneities into the application

of the fluid algorithm [7] such that deformation is reduced or prohibited in areas
specified as passive, motionless or weakly deformable. They are intended for use
with prior estimates of the rigidity or cross-population variability of different
tissue structures identified in a rough initial segmentation.
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4.1 Modified Fluid 1 (MF1)

MF1 utilises prior knowledge of regions whose intensity information we do not
wish to contribute to driving the registration. These regions will be passive in
the registration. A binary array is provided whose pixels, corresponding to those
in the source, are flagged as passive or active. It is subjected to the same defor-
mations as the source image and is supplied to a Euclidean Distance Transform
(EDT) which specifies the distance x from the passive regions. At each timestep
in the fluid algorithm, forces at each pixel in the source are computed as in
[8] from source-target intensity differences and from intensity gradients in the
source. Prior to solution of the PDE, the forces are multiplied by the weighting
function (6), which smoothly reduces them to zero in the neighbourhood of the
passive regions.

w(x; a, b) =




0 : x ≤ a

1
2

(
1 − cos

(
π(x − a)

b − a

))
: a < x < b

1 : x ≥ b.

(6)

with a = 2, We used a = 1 and b = 13 and found the 4SED algorithm [9] to be
an adequate approximation to the Euclidean distance.

4.2 Modified Fluid 2 (MF2)

This method allows for specified regions to remain rigid by prohibiting their
pixel movements. A binary array, labelling pixels as either motionless or mobile,
is passed as extra boundary conditions to the SOR function solving the fluid
PDE in each timestep. Only velocities at mobile pixel locations are updated;
those labelled motionless remain at zero velocity.

4.3 Modified Fluid 3 (MF3)

The third modification varies the viscosity parameter µ spatially over the image.
We expand (4), ignoring p, to give the PDE for the variable viscosity fluid model:

(∇µ · ∇)v +
∂µ

∂xj
∇vj + µ∇2v + µ∇ (∇ · v) + f = 0. (7)

Since the partial differential operator now varies over the image, a fast so-
lution by a basis function expansion or by convolution with filters derived from
its Green’s functions [10] is no longer possible; instead we use the successive
over-relaxation (SOR) iterative method [11].

5 Results

5.1 Synthetic Labelled Images

We created a set of 4 artificial images of size 256 × 256, labelled house, clown,
house2 and clown2, illustrated in Fig. 1. All 4 contain 5 corresponding structures:
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roof (hat) of intensity 87; shadow (hair) of intensity 39; wall (face) of intensity
127; windows (eyes and mouth) of intensity 215; and background of intensity
255.

Fig. 1. Artificial images: (left–right) clown, house, clown2, house2

We applied unmodified (UF) and modified (MF1–3) fluid to register the
house to the clown images, with the house door defined as normal, weakly-
deformable, passive or motionless to compare the ability of the algorithms to
reduce or prohibit deformation. Figures 2 and 3 show the results.

Fig. 2. Progress of the UF registration of house to clown image

To measure the deformation of the door, we applied to a grid image the
same deformation as that of the source, and noted the locations of gridpoints in
the door region before and after registration. For each registration, we inserted
these into a thin-plate spline and computed its bending energy as given by [7].
The results were: UF (target: clown) 1.018; MF3 (target: clown) 0.065; MF3
(target: clown2) 0.058; MF1 (target: clown2) 0.045; MF2 (target: clown2) 0.
Fig. 3 (bottom) shows the final deformations of the door regions in the grids.

5.2 Pre/post-operative Head Images, Rigid Scalp

The next exercise attempted to reduce deformation at an area where source-
target differences are known a priori in order to highlight other areas where there
are unknown differences due to abnormalities. The target and source were coronal
slices of a pre-/post-operative data set exhibiting hydracephalous and coning,
Fig. 4. Since these are slices through the same subject at approximately, but not
exactly, the same location, they exhibit slight differences in scalp shape. To some
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Fig. 3. Registration of S = house2 to T = clown/clown2, restricting deformation of the
door. (Columns, left–right): UF ( T = clown); MF3 (T = clown); MF3 (T = clown2);
MF1 (T = clown2); MF2 (T = clown2). (Rows, top–bottom): Deformed S; T - deformed
S; original S - deformed S; door regions of corresponding deformed grids

extent the same applies to the cortex and internal brain structures; however the
main cause of their source-target differences was the surgical procedure and its
after-effects. It is these differences which were to be highlighted as abnormal.

We compared registration by the UF, by MF3 and by MF2.
The target (pre-operative) image was used as an atlas, defining the normal

brain shape for that subject. The scalp region was segmented manually with the
aid of the display tool xdispunc developed by Dave Plummer of UCH Medical
Physics. This prior information of known ‘abnormal’ scalp shape was supplied
as a binary image indicating the region where deformation was to be reduced.
Five sets of images were generated for each registration:

1. the deformed source image, S(u) after registration to the target T.
2. the same deformation applied to a regular grid image, G(u). The ideal in-

homogeneous registration paradigm would exhibit no deformation in G(u)
in the scalp region (painted white on the grid prior to deformation).

3. local magnitudes of the resulting displacements field and local Laplacian,
bending and elasticity energy metrics [12], to highlight regions of severe
distortion of the source image from the normal brain shape.
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Fig. 4. Data set of (left) head4A and (right) head4B

4. the difference of the deformed source from the undeformed source, S −S(u).
Assuming registration to the target is optimal in regions where no prior infor-
mation was supplied, this gives a further indication of abnormality, defined
as shape difference from the target. (Known) differences in the scalp region
are not highlighted if its registration to the target has been successfully
suppressed.

5. the difference of the deformed source from the target, T − S(u). This is to
check that registration is complete in the unknown regions and suppressed
in the scalp. In this case, for an ideal registration, the difference image is
zero in unknown regions and non-zero in the scalp region.

The results are shown in Fig. 5. Of the three registrations, in S −S(u), MF2
with motionless scalp is the clearest at highlighting only the differences in the
ventricular and left-cortical areas, (Fig. 5, bottom row, far right). By inspecting
the grid lines in the white regions of G(u) (Fig. 5, bottom row centre left) we
see it has respected the rigidity of the scalp. Finally, to check completeness of
registration, Fig. 5, (bottom row centre right) shows good registration in the
brain region (the difference image shows little structure) and poor registration
at the scalp. In comparison, MF3 allowed the scalp to distort, shown in the grid
image (Fig. 5, centre row, centre left), leaving less structure in the scalp region
of T − S(u) (Fig. 5, centre row, centre right); hence the known scalp shape
difference shows up as an abnormality in S −S(u) (Fig. 5, centre row, far right).

5.3 3D Results - Neck Images

3-dimensional versions of UF and MF3 were compared on MRI neck volumes
with the vertebrae defined as weakly deformable. The original images were ac-
quired at the Hammersmith hospital1. Two full-3D neck volumes were provided,
neckDand neckI. NeckI was of the chin down and neckD was with the head flexed
backwards within the confines of the scanner bore. Both were of the same sub-
ject. Since the imaging field of view had been the spinal column specifically, the
1 The scanner was a Picker 1.0T HPQ. The acquisitions were RF spoiled volume scans

with TR = 42, TE = 7, 192 x 255 matrix, 1 Nex 30 cm FoV, 38 x 2 mm slices. The final
images were Fourier interpolated to a 256 x 256 matrix. A c-spin quadrature surface
coil was used for reception. All 3 volumes were 16-bit, of dimension 256 × 256 × 38,
with the neck vertebrae as the field of view; pixel dimensions were 1.17188×1.17188×
2.
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Fig. 5. Results of registering source S = head4B to target T = head4A. (Rows, top–
bottom): UF; MF3; MF2. (Columns, left–right): deformed S, S(u); deformation applied
to grid, G(u); T - S(u), showing completeness of registration; S - S(u), highlighting
differences due to the deformation (right 2 columns are contrast-enhanced)

Fig. 6. Deformation metrics (left–right): Laplacian, bending, elastic, magnitude of
transformation, of the registration by (top) UF and (bottom) MF3
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volumes did not extend to include the whole neck laterally. The images exhib-
ited a strong intensity ramp, with high values at the back of the neck and total
signal loss in the face. We pre-processed the images to give a more uniform range
of intensities in the anterior-posterior direction, using the scheme described by
Fig. 7. Due to memory capacity and time constraints, it was not feasible to
apply the fluid registrations directly to the full-resolution data sets; hence they
were downsampled, by blurring with a Gaussian of standard deviation σ = 2 and
storing alternate pixels (Fig. 7, right). Since the Gaussian blurring for downsam-
pling, and intensity gradient calculations during registration, were performed in
the Fourier domain and required image dimensions of powers of two, we used
zero padding to give full resolution dimensions 256× 256× 64 and downsampled
volumes of 128 × 128 × 32.

Fig. 7. Pre-processing stages shown on neckD. (left–right): slice 19 of the original 3D
256 × 256 × 38 volume; after division pixelwise by the same image blurred with a
Gaussian of spatial standard deviation σ = 5; masked with the aid of the automatic
contouring and manual alteration tool in xdispunc; downsampled by a half

We segmented the spinal vertebrae slice-by-slice from the full-resolution source
volumes using the xdispunc display tools. The contrast between vertebrae and
intervening tissue was variable and so segmentation was performed manually
with reference to an atlas [13]. The segmentations were converted to binary
spine volumes which were then downsampled using the same process as for the
necks.

Both fluid registration tests (UF, MF3) were applied in a six-level scale space
(Gaussian blurs of spatial standard deviation 2i with i = {5, 4, 3, 2, 1, 0}). Within
each scale level, the fluid was set to iterate through at least three timesteps,
with an optional extra 100 timesteps until the stopping criterion was met, the
stopping criterion being a reduction in correlation coefficient of less than 10−4.
On termination, we upsampled the displacement fields obtained from both fluid
registrations of neckD to neckI and applied them to the original neckD images,
to give full-resolution deformations. These are shown in Fig. 8 (top, centre).

We applied the transformation fields produced by both fluid tests to the intial
spine volumes segmented from neckD; the results of the volume-rendered spines
are shown from two angles in Fig. 9. The UF registration shows an extension of
the upper two vertebrae of the spines on comparison to the original segmentation
from neckD (Fig. 9 far right).
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Fig. 8. (top) Central slices of full resolution neckD (left) and neckI (right). (centre-left)
UF and (centre-right) MF3 registration of neckD to neckI. (bottom) Central slices of
(left to right:) neckD - neckI; UF neckD - neckI; MF3 fluid neckD - neckI

Fig. 9. (left–right) original spineD; spineD after UF registration of neckD to neckI;
spineD after MF3 registration of neckD to neckI with vertebrae weakly deformable;
(far right): the upper three vertebrae after (left) UF and (right) MF3 registration. The
3D images were volume-rendered using the Analyze package

Figure 10 shows logs of the Laplacian and elasticity energies as local defor-
mation metrics computed from the displacements of both registrations of neckD
to neckI. The deformation metrics clearly show dark patches in the vertebrae in
MF3 indicating low distortion: compare Fig. 10 (left) with those of the UF (Fig.
10 right).

5.4 Computational Time

Solution of the fluid PDE in the spatial domain using finite differencing and
relaxation is slow. We restricted the upper limit of the number of SOR iterations
within each timestep to 40002 in the 2D case and to 50 in the 3D case. This
provided a compromise between speed and accurate solution of the PDE, since
within each timestep computation of velocities is approximate and is improved
on in the next timestep. For images sized 32 × 1282, 50 SOR iterations took
2 minutes 36 seconds for the constant-viscosity fluid on a Sun UltraSPARC -
2 generally around 1300 were sufficient for the norms calculated from the residuals to

drop to less than 0.1% of those calculated at the start of each iteration cycle.
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Fig. 10. Central slices of the deformation metric images, after registration of neckD to
neckI (left) log of Laplacian, UF; (centre left) log of elasticity energy, UF; (centre right
and far right) the equivalent for MF3

equivalent to 416 minutes for 4000 iterations for a 64 × 1282 image. [14] have
implemented full-multigrid (FMG) solution of the same PDE applied to the
displacement field for elastic registration; they estimate 6,592 Jacobi relaxation
iterations for a 64 × 1282 grid. For a grid sized J × J , SOR requires 2

3J the
number of iterations compared to Jacobi relaxation [15]. [14] show that two 3D
FMG cycles are sufficient for a 64 × 1282 grid to solve the elasticity PDE per
iteration, giving 20 minutes per iteration. Hence we estimate that replacing SOR
with FMG would speed the fluid registration by a factor of 20.

MF1 additionally multiplies each pixel by (6) once per timestep, a minimal
overhead compared to the SOR iterations. MF2 provides a considerable gain in
speed over UF, depending on the volume percentage of rigid bodies(pixels whose
velocities are not computed). The percentage of passive regions in the image is
equal to the percentage speed-up in the SOR solution. For MF3, extra finite
differencing computations are added to the SOR due to the extra terms in (7);
we timed 3 minutes 47 seconds for 50 SOR iterations for images sized 32× 1282.

6 Conclusions and Discussion

We have presented a new fluid deformation algorithm with variable viscosity
for the registration of images containing structures with variable deformability.
Results show the algorithm reduces the deformation of selected regions. The
hierarchical strategy (registration within Gaussian scale space) was not optimal
for the 3D case since it preferred initial registration at the strongest boundaries
which were the (non-homologous) outer boundaries. We suggest instead a model-
based hierarchy, using initial registration by an (automated) C-MTQ with rigid
vertebrae, followed by MF3 for more localised deformations.

Inhomogeneities in deformability can be extended to include anisotropies in
the constraint parameters, such that there are preferential directions of deforma-
tion. Anisotropies in ease of deformation are common in physical tissue such as
muscle. Adapting the mathematical representation of the deformation of a physi-
cal medium to allow anisotropies is more complex than only allowing for isotropic
inhomogeneities; we leave such a possibility for future research. Another possi-
ble amendment to the fluid registration is to supply pre-determined uniform and
constant but non-zero velocities within regions defined as independently moving
to allow rigid-body transformations within an overall fluid deformation.
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Abstract. We introduce an approach to elastic registration of tomo-
graphic images based on thin-plate splines. Central to this scheme is a
well-defined minimizing functional for which the solution can be stated
analytically. In this work, we consider the integration of anisotropic land-
mark errors as well as additional attributes at landmarks. As attributes
we use orientations at landmarks and we incorporate the corresponding
constraints through scalar products. With our approximation scheme it
is thus possible to integrate statistical as well as geometric information as
additional knowledge in elastic image registration. On the basis of syn-
thetic as well as real tomographic images we show that this additional
knowledge can significantly improve the registration result. In particu-
lar, we demonstrate that our scheme incorporating orientation attributes
can preserve the shape of rigid structures (such as bone) embedded in
an otherwise elastic material. This is achieved without selecting further
landmarks and without a full segmentation of the rigid structures.

1 Introduction

Image registration based on point landmarks plays a major role in, e.g., neuro-
surgery planning and intraoperative navigation. While rigid and affine schemes
can only describe global geometric differences between images, elastic schemes
can additionally cope with local differences. Reasons for local geometric differ-
ences are different anatomy (or pathology), scanner- or patient-induced distor-
tions, as well as intraoperative deformations due to surgical interventions.

The most widely applied method for point-based elastic image registration
is based on thin-plate splines. This approach has been introduced into medical
image analysis by Bookstein [2]. Evans et al. [9] applied this scheme to 3D med-
ical images. Thin-plate splines have a physical motivation, are mathematically
well-founded, and are moreover computationally efficient. Alternative splines
based on the Navier equation, which have been named elastic body splines, have
recently been introduced by Davis et al. [7]. Extensions of point-based elastic
schemes which allow to include additional attributes at landmarks have been
proposed by Bookstein and Green [5] and Mardia and Little [11]. The combina-
tion of thin-plate splines with mutual information as similarity measure for the

A. Kuba et al. (Eds.): IPMI’99, LNCS 1613, pp. 252–265, 1999.
c© Springer-Verlag Berlin Heidelberg 1999
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purpose of refining initially coarsely specified landmarks has been proposed by
Meyer et al. [16].

In all of these approaches from above the interpolation case has been treated.
This means that corresponding landmarks are forced to match exactly and thus
it is (implicitly) assumed that the landmark positions are known exactly. This
assumption, however, is unrealistic since landmark extraction is always prone to
error. Approximation schemes, on the other hand, allow to incorporate landmark
errors. The error information is used to control the influence of the landmarks
on the registration result, which is important in clinical applications. Also, the
resulting computational scheme is more robust in comparison to an interpolation
approach. However, it seems that approximation schemes have so far not been
a focus of research (but see Bookstein [3], Rohr et al. [17], and Christensen et
al. [6] for exceptions). A more detailed discussion of these schemes is given in
Section 2 below.

This contribution is concerned with an approximation scheme for point-based
elastic image registration using thin-plate splines. Central to this scheme is a
well-defined minimizing functional for which the solution can be stated ana-
lytically. Therefore, we yield an efficient computational scheme for determining
the transformation between two images. In earlier work, we have introduced an
approach that allows to incorporate isotropic as well as anisotropic landmark
errors and we have proposed a scheme for estimating landmark localization un-
certainties directly from the image data (Rohr et al. [17,19]). In this contribution,
we suggest a generalization of our work which allows to integrate additional at-
tributes at point landmarks. By this, additional knowledge is used to further im-
prove the registration result without the necessity of specifying additional land-
marks. In our case, we consider orientation attributes at corresponding points.
Generally, these attributes characterize the local orientation of the contours at
the landmarks. In previous work on the incorporation of additional attributes,
Bookstein and Green [5] have represented orientations by additional points close
to the landmarks, thus they used a finite difference scheme. Mardia and Lit-
tle [11] have proposed a scheme based on the method of kriging where exact
orientations are incorporated. Their scheme requires the orientation vectors to
be unit vectors. This imposes constraints which may not be desired. The ap-
proach we propose also includes exact orientations, however, in comparison to
[11] the orientation vectors need not to be normalized to unit vectors. This is
achieved by representing the constraints due to the orientations through scalar
products. Additionally, we treat the interpolation as well as the approximation
case. In particular, we propose a combined scheme that integrates isotropic as
well as anisotropic errors together with orientation attributes. Also, we extend
the domain of application of our scheme to the important case of preserving rigid
structures (such as bone) embedded in an otherwise elastic material. It seems
that this application has so far not gained much attention in previous work on
point-based registration using attributes (but see Mardia and Little [11]). In
comparison to other schemes such as Little et al. [14] a full segmentation of the
rigid structures is not necessary for our approach.
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The remainder of this contribution is organized as follows. In the next section,
we discuss in more detail related work on approximation schemes for point-based
nonrigid image registration. Then, we describe our approach based on thin-plate
splines which integrates anisotropic landmark errors and orientation attributes.
The applicability of the approach is demonstrated for synthetic data as well as
real tomographic images of the human brain.

2 Related Work

In this section, we discuss approximation schemes for point-based nonrigid image
registration. For other approaches to medical image registration we refer to a
recent review by Maintz and Viergever [15].

In [3], Bookstein proposed an approach to relaxing the original interpolating
thin-plate spline approach [2] by straightforward combination of different energy
terms, where one term represents the bending energy of interpolating thin-plate
splines and the other the distance of the landmark configurations (note, that in
total four different energy terms have been proposed which may be combined).
The basis of the approach is a linear regression model and the technique is
referred to as ‘curve décolletage’ (Leamer [13]). With this approach it is possible
to incorporate isotropic and anisotropic errors. However, since the approach has
not been related to a minimizing functional w.r.t. the searched transformation
it is generally not clear whether all solutions in the whole function space are
obtained. The approach has been described for 2D datasets and experimental
results have been reported for 2D synthetic data. The landmarks as well as the
corresponding errors have been specified manually.

In [17], we have introduced approximating thin-plate splines for elastic image
registration. Our approach is based on the mathematical work of Duchon [8]
and Wahba [21] which is a different mathematical framework in comparison to
that in Bookstein [3]. The basis is a minimizing functional w.r.t. the searched
transformation. The solution in the whole function space can be shown to be
unique and can be stated analytically. While in [17] we have treated the case of
isotropic errors, in [18,19] we have recently incorporated anisotropic errors for
the landmarks in both of the images to be registered. Also, we have proposed to
estimate the landmark localization uncertainties directly from the image data
utilizing the Cramér-Rao bound (see [19]). The approach has been applied to 2D
as well as 3D tomographic images of the human brain and the landmarks have
been localized semi-automatically using differential operators.

Recently, Christensen et al. [6] introduced a hierarchical approach to im-
age registration combining a landmark-based scheme with an intensity-based
approach using a fluid model. The landmark scheme is based on the linear elas-
ticity operator, thus the resulting splines are different from thin-plate splines.
Another difference to our approach is that the nonaffine part of the transforma-
tion is separated from the affine part in their functional. The approach has been
applied to the registration of 3D cryosection data of a macaque monkey brain
as well to MR images of the human brain. Isotropic landmark errors have been
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included in one of the two images to be registered. Since no further details have
been given on how the errors have been determined, it seems that equal isotropic
errors have been used in their application.

As already mentioned above, Bookstein and Green [5] as well as Mardia and
Little [11] introduced nonrigid registration schemes incorporating orientation
attributes. These schemes are based on a finite difference scheme and the method
of kriging, resp. In both of these works the interpolation case has been treated
only, although a generalization to approximation is principally possible.

3 Thin-Plate Splines with Landmark Errors and
Additional Attributes

We now describe our approach to elastic image registration based on thin-plate
splines. This approach incorporates landmark errors as well as orientation at-
tributes at landmarks. While the landmark errors represent statistical informa-
tion about the uncertainty of landmark localization, the orientation attributes
represent geometric information about the contours at the landmarks. Below,
we first briefly review our scheme incorporating anisotropic landmark errors and
then describe an extension for incorporating orientation attributes.

3.1 Anisotropic Landmark Errors

We denote the sets of landmarks in two images by pi and qi, i = 1 . . . n, and
the transformation that maps two images by u with components uk, k = 1 . . . d,
where d is the image dimension. The bending energy of thin-plate splines can
be written as a function of the order m of derivatives in the functional as well
as the image dimension d as

Jd
m(u) =

d∑
k=1

Jd
m(uk), (1)

where

Jd
m(uk) =

∑
α1+...+αd=m

m!
α1! · · ·αd!

∫
IRd

(
∂muk

∂xα1
1 · · · ∂xαd

d

)2

dx (2)

according to Duchon [8], Wahba [21]. Under the necessary and sufficient condi-
tion of 2m − d > 0 the functional is bounded.

Anisotropic landmark errors are represented by covariance matrices Σi. In
this case the minimizing functional reads as

Jλ(u) =
1
n

n∑
i=1

(qi − u(pi))T Σ−1
i (qi − u(pi)) + λJd

m(u) (3)

and consists of two terms (see Rohr et al. [18,19]). The first term measures the
distance between the two landmark sets weighted by the covariance matrices
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Σi. The second term represents the smoothness of the transformation, and the
parameter λ weights the two terms. Special cases of this approximation scheme
are interpolating thin-plate splines and optimal affine transformations. The ap-
proach is applicable to arbitrary image dimensions d, e.g., 2D and 3D images.
For the functional in (3) there exists a unique analytic solution, which can be
stated as

uk(x) =
M∑

ν=1

ak,νφν(x) +
n∑

i=1

wk,iU(x,pi), k = 1, ..., d, (4)

with monomials φ up to order m − 1 and suitable radial basis functions U (see
Wahba [21,22], Wang [23]). The coefficients a = (aT

1 , ...,aT
M )T , aT

i = (a1,i, ..., ad,i),
and w = (wT

1 , ...,wT
n )T , wT

i = (w1,i, ..., wd,i) of the transformation u can effi-
ciently be computed through the following system of linear equations:

(K + nλW−1)w + Pa = v (5)
PT w = 0,

where W represents the landmark errors by W−1 = diag{Σ1, . . . ,Σn} and is
a block-diagonal matrix. The other matrices in (5) are given by K = (KijId),
where Kij = U(pi,pj) and Id is the d × d unity matrix, and P = (PijId),
where Pij = φj(pi). The vector v can be written as v = (vT

1 , ...,vT
n )T , vT

i =
(qi,1, ..., qi,d).

Note, that our approximation scheme using covariance matrices is also a
generalization of the work in Bookstein [4], where the interpolation case is solved
while the landmarks are allowed to slip along straight lines within a 2D image.
Actually, this is a special case of our approximation scheme since for straight
lines the variance in one direction is zero whereas in the perpendicular direction
it is infinite.

3.2 Landmark Errors and Orientation Attributes

The approach described above can further be generalized for inclusion of addi-
tional attributes at landmarks. In our case, we incorporate orientation attributes.
These attributes characterize the local orientation of the contours at the land-
marks and represent additional knowledge for elastic image registration.

At corresponding landmarks we assume to have orientations which we want
to match (note, that these landmarks are generally a subset of the overall land-
marks). We denote those landmarks in the first and second image by pθi

and
qθi and the corresponding orientations by di and ei, resp. To define a matching
criterion between the orientations, we need the transformed vector of di. This
vector can be stated as (dT

i ∇)u(pθi
). Now we require that this transformed

vector is perpendicular to e⊥
i,k, which are the k-th orthogonal vectors to the ori-

entation vector ei in the second image. In this case, the scalar product between
the vectors is zero, otherwise it is different from zero. Choosing vectors from
the orthogonal space has the advantage that the corresponding scalar product
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is zero independently of the length of the vectors. This is an advantage over the
approach in Mardia and Little [11] (see also Mardia et al. [12]), where the orien-
tation vectors are required to be unit vectors and where the interpolation case
has been treated only. In our work, we both treat the interpolation as well as
the approximation case. Note, however, that the property of length independence
only holds in the case of interpolation, but not for approximation. In general we
have d− 1 perpendicular orientations e⊥

i,k which constrain the orientation of the
transformed orientation vector of the first image to lie on a line. If the number
of perpendicular orientations is smaller, i.e., the number of constraints is lower,
then the orientation of the transformed orientation vector is not constrained
w.r.t. a line, but w.r.t. a plane, for example (see also Fornefett et al. [10]).

Having defined the matching criterion between orientations we can now state
the generalized minimizing functional using εi = qi − u(pi) as

Jλ(u) =
1
n

n∑
i=1

εT
i Σ−1

i εi +
1
n′

2

nθ∑
i=1

d−1∑
k=1

(
(dT

i ∇)uT (pθi)e
⊥
i,k

)2
+ λJd

m(u), (6)

where n′
2 = n2/c, c > 0, and n2 = nθ(d − 1). In comparison to the functional

(3) from above we have an additional term that incorporates the orientation
constraints. nθ is the total number of orientations in each of the images. The pa-
rameter c weights the orientation term w.r.t. the term representing the landmark
errors and also determines (besides λ) whether we interpolate or approximate the
orientations. Note, that we can incorporate an arbitrary number of orientations
at each landmark. As described above, the orientation constraints are incorpo-
rated by scalar products between the transformed orientations of the first image
and orientations perpendicular to the orientations in the second image. The
solution to the functional in (6) can be stated as

u(x) =
M∑

ν=1

d∑
k=1

ak,νφν(x)εk +
n∑

i=1

d∑
k=1

w1,k,iU(x,pi)εk

−
nθ∑
i=1

d−1∑
k=1

w2,k,i(dT
i ∇)U(x,pθi

)e⊥
i,k, (7)

with monomials φ up to order m − 1 and radial basis functions U as above. εk,
k = 1 . . . d, are the canonical basis vectors of the IRd. The solution is analogous to
(4) from above, but additionally we have a term that represents the orientation
constraints. Note, that in order to obtain bounded functionals the used function
space has to be constrained. Choosing m = 2 for the order of derivatives of the
smoothness term, then for both cases of 2D and 3D images (d = 2, 3) incorporat-
ing orientations, we have the basis function U(x) = |x|3. The parameter vectors
a = (aT

1 , ...,aT
M )T , aT

i = (a1,i, ..., ad,i), and w = (wT
1,1, ...,w

T
1,n,wT

2,1, ...,w
T
2,nθ

)T ,
wT

1,i = (w1,1,i, ..., w1,d,i), wT
2,i = (w2,1,i, ..., w2,d−1,i) of the transformation u can

be computed by solving the linear system of equations

Kw + Pa = v (8)
PT w = 0,
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with

K =
(

K1 + nλW−1 K2
K3 K4 + n′

2λIn2

)
and P =

(
P1
P2

)
, (9)

where W−1 = diag{Σ1, . . . ,Σn} as in (5) and In2 is the n2 × n2 unity matrix
with n2 = nθ(d−1). The other matrices in (9) are given by K1 = (K1,ijId), where
K1,ij = U(pi,pj) and Id is the d×d unity matrix; K2 = (K2,ijFj), where K2,ij =
−(dT

j ∇)U(pi,pθj ), Fj,kl = εT
k e⊥

j,l, and Fj are d × (d − 1) matrices; K3 = KT
2 ;

K4 = (K4,ijEij), where K4,ij = −(dT
j ∇)(dT

i ∇)U(pθi ,pθj ), Eij,kl = (e⊥
i,k)T e⊥

j,l,
and Eij are (d − 1) × (d − 1) matrices; P1 = (P1,ijId), where P1,ij = φj(pi),
and P2 = (P2,ijFT

i ), where P2,ij = (dT
i ∇)φj(pθi

). K and P are of dimension
n′ × n′ and n′ × dM , resp., with n′ = nd + nθ(d − 1). The vector v is given by
v = (vT

1 , ...,vT
n , 0, ..., 0)T , vT

i = (qi,1, ..., qi,d), with n2 zeros at the end.

4 Experimental Results

We demonstrate the applicability of our approach using synthetic data as well as
real tomographic images of the human brain. In the first two experiments we have
incorporated either anisotropic landmark errors only or orientation attributes
only. For the last two experiments we have integrated both landmark errors
(isotropic as well as anisotropic errors) and orientation attributes.

In the first example, we register the 2D MR brain images of different patients
displayed in Fig. 1. We have used normal landmarks and quasi-landmarks. The
quasi-landmarks have no unique position in comparison to normal landmarks,
e.g., arbitrary edge points. The incorporation of quasi-landmarks is important
since normal point landmarks are hard to define at the outer parts of the human
head. For all landmarks the covariance matrices have been estimated directly
from the image data by utilizing the Cramér-Rao bound

Σg =
σ2

n

m
C−1

g , (10)

where σ2
n denotes the variance of additive white Gaussian image noise, m the

number of voxels in a local 3D window, and Cg = ∇g (∇g)T is the averaged
dyadic product of the image gradient (Rohr [19], van Trees [20]). Note, that the
Gaussian noise model is an approximation and that we assume that the depen-
dence of the noise on the signal can be neglected (but see Abbey et al. [1]). In
Fig. 1 the landmark localization uncertainties are represented by error ellipses
(note, that the ellipses have been enlarged by a factor of 7 for visualization pur-
poses). It can clearly be seen that for the normal landmarks the localization
uncertainty is small in all directions, while for the quasi-landmarks (landmarks
no. 9-12) the localization uncertainty is large along the edge but small perpen-
dicular to it. Fig. 2 on the left shows the registration result when using only
the normal landmarks for elastic image registration (landmarks no. 1-6 and 8).
Here, we have applied our approximating thin-plate spline approach while in-
corporating isotropic errors and setting m = d = 2 in (3). We have transformed
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Fig. 1. MR data sets of different patients: normal landmarks, quasi-landmarks, and
estimated error ellipses (enlarged by a factor of 7)

Fig. 2. Registration results: Thin-plate spline approximation using normal landmarks
along with equal scalar weights (left), and using normal landmarks, quasi-landmarks
and estimated covariance matrices (right)

the first image and have overlayed it onto the computed edges of the second
image. While the registration accuracy within the inner parts of the brain is
quite good, at the outer parts there are larger errors. If instead we use both
the normal landmarks and the quasi-landmarks while incorporating anisotropic
errors, then we can significantly improve the registration accuracy as shown in
Fig. 2 on the right.

With the second example we demonstrate the usefulness of incorporating
orientation attributes at landmarks. With the two synthetic images in Fig. 3
we simulate the rotation of a rigid structure (such as bone) embedded in an
otherwise elastic material. If we use point landmarks only (four landmarks at
the rigid structure and four landmarks at the image corners), then we obtain
the result shown in Fig. 4 on the left. We see that the whole image including the
rigid structure is elastically deformed. Next, we have incorporated orientations
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Fig. 3. Synthetic images simulating the rotation of a rigid structure in an otherwise
elastic material

Fig. 4. Registration results: Interpolating thin-plate splines using only point landmarks
(left) and incorporation of orientations at landmarks (right)

at the landmarks of the rigid structure. In all our experiments incorporating
orientations we used c = 1 and m = 2 for the functional in (6). At each of the four
landmarks of the rigid object in Fig. 3 we have specified two orientations which
are aligned with the contours of the object. Using this additional knowledge for
image registration significantly improves the result, i.e., the shape of the rigid
object is well preserved (Fig. 4 on the right). Previously, Little et al. [14] have
considered the problem of preserving rigid structures within elastic material.
However, in their approach a full segmentation of the rigid structures is necessary.
With our scheme we neither needed a full segmentation nor have we needed
additional point landmarks.

In the third example we treat the case of several rigid structures embedded
in elastic material. Fig. 5 shows two synthetic images that simulate the bending
of a spine which is represented by five rigid components (see also [14]). The
registration result in Fig. 6 on the left is obtained if we apply interpolating thin-
plate splines while using four landmarks for each rigid component as well as four
image border landmarks. In Fig. 6 in the middle the result is shown if we include
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two orientations at each landmark of the rigid components, while still applying
an interpolation scheme. It can be seen that the shape of the rigid structures is
better preserved, particularly the outer contours of the rigid components are not
curved as in the case of using point landmarks only. A further improvement is
obtained if we use both the point landmarks and the orientations but apply an
approximation scheme (Fig. 6 on the right). Here we have used equal isotropic
landmarks errors in the functional in (6). From the result it can be seen that the
contours of the rigid components are straight and now also the gridlines within
the rigid components are nearly straight. Thus the shape of the rigid structures
is better preserved.

With the last example we show an application where we have integrated
both anisotropic landmark errors and orientation attributes. In Fig. 7 two MR
images of different patients are shown. We have selected normal point land-
marks and quasi-landmarks, and we have estimated the error ellipses directly
from the image data. If we use only the normal landmarks (9 landmarks; no.
1,2,4,7,10,11,16,17,18) and apply interpolating thin-plate splines, then we ob-
tain the result shown in Fig. 8 on the left. Deviations can be observed in the
regions where no landmarks have been specified, particularly at the upper part of
the brain and at the corpus callosum. Next, we have used the normal landmarks
from above together with three quasi-landmarks at the skin contour (landmarks
no. 25,26,27). For all landmarks we have automatically estimated the covariance
matrices and we have applied the approximating thin-plate spline approach in-
corporating anisotropic errors. From Fig. 8 on the right it can be seen that the
registration accuracy at the upper part of the brain is now much better while at
the corpus callosum there is still a larger deviation. We can further improve the
result in this region if we additionally integrate orientations at landmarks. In this
example, we have included one orientation at landmark no. 1 (genu of corpus
callosum). In both images this orientation points to the top of the corpus callo-
sum. From Fig. 9 we see, that we now obtain a significantly better registration
accuracy of the whole corpus callosum.

5 Summary and Future Work

In this contribution, we have proposed an approach to elastic registration of
medical images that is based on point landmarks and additional attributes. Our
scheme is based on a minimizing functional which covers the full range from
interpolation to approximation. Since the solution can be stated analytically we
yield an efficient computational scheme. Central to this work is the integration of
anisotropic landmark errors and orientation attributes at landmarks. By this we
incorporate statistical as well as geometric information as additional knowledge
in elastic image registration. We have demonstrated that this additional knowl-
edge can significantly improve the registration result. In particular, we have
shown that by incorporating orientation attributes it is possible to preserve the
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Fig. 5. Synthetic images simulating a spine that is bended

Fig. 6. Registration results: Interpolating thin-plate splines using only point landmarks
(left), integration of two orientations at each object landmark (middle), and approxi-
mating thin-plate splines using point landmarks and orientations (right)
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Fig. 7. MR images of different patients: normal landmarks, quasi-landmarks, and es-
timated error ellipses

Fig. 8. Registration results: Interpolating thin-plate splines using normal landmarks
(left), and approximating thin-plate splines using normal landmarks, quasi-landmarks
and estimated covariance matrices (right)

Fig. 9. Registration result: Approximating thin-plate splines using normal landmarks,
quasi-landmarks, estimated covariance matrices, and orientations
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shape of rigid structures (such as bone) in an otherwise elastic material. This can
be achieved without selecting further landmarks and without a full segmentation
of the rigid structures.

One problem with our approach is that the influence of incorporated orienta-
tions is rather global, i.e., image parts further away from the positions of added
orientations are often strongly affected, which is generally not desired. This ob-
servation has already been made earlier (see Mardia et al. [12]). In future work,
means have to be found to constrain this global influence. Another topic for
further research is the automatic estimation of the orientation attributes. While
for rigid structures within elastic material the local orientation of the contour
seems to be quite appropriate, for elastic material other choices which rather
reflect the global geometry of anatomical structures, seem to be better suited.
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Abstract. In this paper we describe a statistical model for the observa-
tion of labeled points in gated cardiac single photon emission computed
tomography (SPECT) images. The model has two major parts: one based
on shape correspondence between the image for evaluation and a refer-
ence image, and a second based on the match in image features. While
the statistical deformation model is applicable to a broad range of image
objects, the addition of a contraction mechanism to the baseline model
provides particularly convincing results in gated cardiac SPECT. The
model is applied to clinical data and provides marked improvement in
the quality of summary images for the time series. Estimates of heart
deformation and contraction parameters are also obtained.

1 Introduction

In the SPECT modality, a patient is injected with a radiotracer compound and
an image is recorded based on using photons emitted from the tissue where the
compound accumulates. In traditional SPECT, a single 3D volume is imaged.
However, when applied to cardiac imaging, motion artifacts result in a serious
degradation of the reconstructed image. To overcome this problem, gated cardiac
SPECT can be used to divide the image acquisition period into n subsegments
or gates based on the patient’s electrocardiogram. If this is done, n SPECT im-
ages are acquired in parallel over several heart beats, one image corresponding
to each gate. This imaging technique provides a useful diagnostic tool for direct
evaluation of heart tissue damage, since the image artifacts due to the motion of
the heart are much reduced. However, its success depends heavily on the com-
pilation of data across gates, since each gated image is based on a relatively low
number of photon counts (compared to the traditional approach). A reasonable
summary of the n images can only be be obtained once the physical deformation
of the heart through time is accurately modeled. The resulting summary image
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will then ideally have a signal-to-noise ratio (SNR) comparable to the traditional
ungated SPECT images but with minimal motion blur.

We propose a method for modeling and summarizing gated cardiac SPECT
data by tracking anatomical points within the heart volume through the series
of gated images. Based on this tracking, a composite image can be calculated
by summing each gate’s image intensity at voxels dictated by the estimated
path of each anatomical point through time. This procedure offers the potential
of combining the benefits of better delineation of the heart walls with more
accurate estimates of the tissue perfusion as measured by radiotracer compound
uptake.

Several previous approaches have been taken in similar problems. Klein et.
al. [10] have applied an approach which matches gated positron emission tomog-
raphy (PET) images based on image values, smoothness of the motion field and
physical incompressibility. Tagged magnetic resonance imaging has also been
used to identify specific regions of heart tissue and match those through a time
series [19]. There exist a variety of other approaches to modeling heart deforma-
tions in medical images based, for example, on surface matching[17,4]. Several
“ground truth” studies for determining heart tissue motion have been carried
out, for example by Potel et. al., who [21] have performed marker-based direct
measurements of the motion of surface points, and numerical phantoms of the
heart have been used in dose calculations and simulations [5,20]. Similar ap-
proaches for deformation modeling to those offered here have been successfully
applied to the case of finding image features, for example, using active shapes
[7], snakes [8,9], and landmark-type methods[3,1,16]. The deformation method
as described for a single image is comparable to the work of Collins et. al. [6], in
which a varying-resolution grid is used to register MR brain images to an atlas
by balancing constraints on grid continuity and a local feature function match.
A similar multiresolution approach was applied in the work by Klein et. al. [10].
The multiresolution approach to maximization (and the description of images in
general) is well-documented in the literature, particularly within the scalespace
framework (see e.g. [12] or [22])and work in the context of optical flow[13].

Our general facet model approach, previously described in [15] and [14], is
perfectly suited to gated cardiac SPECT since it provides a method for calculat-
ing the deformations required to trace a set of anatomical points through a set
of images. Facet models are based on a large number of landmark-like points,
termed facets, acting on a set of images drawn from a common class. Facets
combine ideas from many of the approaches cited above in a framework which
is intended to model observer placement of an arbitrary number of points in an
image based on knowledge of those points in a reference image. This is accom-
plished via a probability distribution defined on facet locations and on image
feature values at the facet locations.

In this paper, we extend the facet model to incorporate a gross model for
heart contraction by including a set of contraction parameters in the shape
portion of the probability distribution. Facet motion results are obtained by
maximizing the joint distribution on facet locations for each image in the series.
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Fig. 1. Basic model element (for image dimension d = 1). Each facet has an associated
parameter pair (µ, x); positions in the reference image and an image for evaluation,
respectively. The facet can also contain the pair (φ, f) which represent a reference image
feature and the image feature observed at the estimated facet location x, respectively.
Facets are modeled jointly in a hierarchy (see Sect. 2.1), where they are influenced
directly by 2d facets one level up and in turn influence 4d facets on the next level down

Several methods for exploring the high-dimensional results are exhibited, in order
to show the utility of the method for the gated cardiac SPECT application.

2 Model and Methods

In the following subsections, the statistical model is defined. First, the general
facet model is briefly reviewed. (For more details, see [14].) This model is gen-
erally applicable to a broad range of image modalities, however, we introduce
several model extensions specific to the cardiac gated SPECT application based
on a priori knowledge of general heart motion. Finally, the details of implemen-
tation are discussed.

2.1 General Model

The process that we wish to model is the placement of labeled points, or facets,
within an image by a human observer. Facets differ from landmarks (following
Bookstein[3]) in that facets do not correspond to specific pre-defined anatomical
or mathematical features. Instead, each facet’s label is generally inferred by its
location in a reference image. A set of facets is applied hierarchically (see Fig.
1) to capture deformation on several levels of coarseness as inspired by models
of vision[23]. Each facet has an associated position x, and may also have an
associated feature value f , depending on its location in the hierarchy (see Sect.
2.1.1). A joint distribution is defined for all facet positions and feature values.
We model the vectors x and f as conditionally independent given a parameter
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vector θ = {θx, θf}; that is

p(x, f |θ) = pS(x|θx)pI(f |θf ). (1)

The parameter vector θx contains location and scale parameters {µ, κ, σ2} for
the facet location (shape) portion of the distribution, and θf similarly contains
parameters {φ, τ} for the feature (image) part of the distribution. These param-
eters are described below.

Shape Distribution Let x be the vector of facet positions. Let xl indicate the
vector of facets at level l in the hierarchy and let xlj refer to an individual facet
j in that level. Similarly, let µ be the vector of corresponding facet locations
in the reference image T . The distribution pS(x|θx) is then assumed to have a
hierarchical normal structure defined by (2) and (3). Each level has Nl facets, and
d is the dimension of the image. For (L+1) levels in the hierarchy, l ∈ {0, . . . , L},
define

pS(x|θx) = pS(x0|θx)pS(x1|x0; θx) . . . pS(xL|xL−1; θx) , (2)

where each factor is a density of the form

pS(x0|κ, µ) = MVN(µ0, κσ2
0Id)

pS(x1|x0;κ, µ) = MVN(µ1 + A1∆x0, κσ2
1IN1d)

...

pS(xL|xL−1;κ, µ) = MVN(µL + AL∆xL−1, κσ2
LINLd) .

(3)

Here, MVN(a, Σ) denotes the multivariate normal density with mean a and
covariance matrix Σ. The vectors xl and µl have length Nld, ∆xl = xl − µl,
In is the n by n identity matrix, and Al is an Nld by Nl−1d design matrix
for the hierarchical model. For example, in one dimension, A might be defined
schematically as follows (refer also to Fig. 1),
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where the w
(l)
jk values are set proportional to the inverse distance between µlj

and µ(l−1)k, constrained by
∑

k w
(l)
jk = 1 and such that only the 2d closest facets
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on level (l − 1) to facet lj are given non-zero weights w
(l)
jk . In the 3-dimensional

application presented here, such entries in a row of Al are thus kept limited to 8
by extending the above Al in the most obvious way to 3 dimensions. Each level in
the hierarchy is laid out such that µl forms an evenly spaced grid with Nl = 2ld

facets per level. Finally, σ2
l is the conditional variance of a facet on level l given

the locations of facets on level (l − 1). These parameters were set such that the
marginal variance for bottom level facets is approximately independent of the
number of levels in the hierarchy. The parameter κ is an overall scale factor to
allow for adjustments in the weighting of shape (pS) versus image (pI) portions
of the density in (1). This parameter was set empirically.

The form for pS captures the deformation on several levels of scale, thus eas-
ing the exploration of configuration space. This means that gross deformations
are modeled by upper-level facets and that lower-level facets will not be subse-
quently penalized for the same movement. The form chosen for Al enforces some
smoothness on the deformation, i.e., the marginal covariance between any pair
of facets on a level l is a smooth decreasing function of their distance (µlj −µlj′)
in the reference image [14]. This is unlike previous models in which only one
non-zero term per row was used[11]. Computational tractability is ensured by
the choice of a normal hierarchical model.

Feature Distribution Let f be the vector of image-derived feature values
associated with the set of facets. Similarly, let φ be the corresponding vector of
reference image feature values. Then given an image match function g, we model
the facet features as drawn from the exponential family distribution given in (4).
Here, we further assume that if {fj , φj} are the corresponding jth element of
the vectors {f, φ}, then the feature distribution pI is modeled as a product of
univariate distributions with a common image match function gI . Thus,

pI(f |τ, φ) ∝ exp {−g(f, φ)}

∝ exp


− 1

2τ

NL∑
j=1

gI(fj , φj)


 ,

(4)

where τ is an overall scale parameter which is similar to κ defined for the shape
distribution pS . The sum extends over those facets that have associated feature
values, which in this paper are the facets on the lowest level L in the hierar-
chy. The means φj are taken to be the image feature value calculated at the
locations µLj in the reference image T : φj = φ(T, µLj). Note that this does
not necessarily imply taking the image value at µLj directly. The derivation of
{fj , φj} from the image data can be specified in a number of ways; we have
used either a quantile-rescaled image intensity or a low-scale image Laplacian.
For choices of the functions g, scaled squared differences between fj and φj

(yielding independent normal distributions) have been used[15,11], and a local
intensity regression, as described in the next subsection, has also been employed.
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2.2 Application-Specifics

The baseline shape model (3) captures the shape changes in the general case
when little prior knowledge is available about the shape change within the image
class. Since we know a priori that the heart size changes during the heart beat
cycle, it is sensible to build this into the model. We choose a simple scalar
correction, due in part to the coarseness of the images. The left ventricular
(LV) wall is approximately 3 pixels wide across in a 2D slice. Also, non-linear
contractions not incorporated into the gross model can still be accommodated
by the deformation model.

To define the contraction model, let γ1 be coordinates for a center of con-
traction, and let γ2 be a 3-dimensional set of contraction factors for orthogonal
directions {1, 2, 3}. The full vector γ = {γ1, γ2} transforms µ in the shape por-
tion of the model (3) to a vector of contracted means µc(t) at time t in the image
time series, and the shape distribution pS is modified accordingly :

pS(xl|xl−1;κ, µ, γ(t)) = MVN(µc
l (t) + Al∆xl−1, κσ2

l INld),
µc

l (t) = γ11Nld + (µl − γ11Nld)γ̄2(t) ,
(5)

where γ̄2 is a stacked vector of Nl replicates of γ2 and 1n is the n-dimensional
vector of ones. Otherwise, Al, κσ2

l and µ remain unchanged. A prior distribution
can also be included to capture the expected contraction pattern during the beat
cycle, for example

p(γ2(t)) = MVN(ω(t), ν−1I3) , {γ1
2(t), γ2

2(t), γ3
2(t)} ∈< 0,∞ > , (6)

yielding the final form for the joint shape distribution,

pS(x, γ2|θx) = pS(x|θx, γ2)p(γ2) . (7)

The center of contraction γ1 is fixed in this implementation at µ0, since having
it vary for a scalar contraction only involves a non-informative translation of
the reference grid. Note that the introduction of µc does not change the values
of φj , which are still taken as the reference image feature values at µLj . (For a
graphical outline representation of the model, see Fig. 2.)

The feature function gI found to be most effective for gated cardiac SPECT
images is one based on a local intensity regression around the facet in question.
A small neighborhood defined by a set of m points is placed around the facet’s
position in the reference image T (around µLj) and observed image Q (around
xLj). Subsequently, these points are evaluated in T and Q, respectively, to form
m-vectors φj and fj , indexed by k. A normalized regression parameter (see [14]
for details) is then calculated,

gI(fj , φj) = 1 − f∗
j

′φ∗
jφ

∗
j
′f∗

j ,

= 1 − (
∑

k φjkfjk − 1
m

∑
k φjk

∑
k fjk)2

(
∑

k φ2
jk − 1

m (
∑

k φjk)2)(
∑

k f2
jk − 1

m (
∑

k fjk)2)
,

(8)

which is then used to define the distribution function pI (4).
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Fig. 2. Conceptual model framework. The facets at locations µ are placed in the ref-
erence image to obtain the feature vector φ. The deformation is then modeled as a
contraction of the µ to µc and a deformation from µc to the predicted facet positions
x. At the same time, the deformation is evaluated for image feature match between φ
(fixed) and f at the facet locations x; f = f(Q, x)

2.3 Implementation

As described above, one goal of this methodology is to provide a computationally
tractable method for estimating observed facet locations. This maximization is
relatively straightforward in the framework of iterated conditional modes (ICM),
in which each parameter is updated by setting it to the mode of its full condi-
tional distribution[2].

Since our interest lies in the facet positions x, we treat the image Q which is
to be evaluated as a constraint on the model, thus imposing f = f(Q, x) given
the image Q (details in [14], Appendix A). The resulting constrained distribution
on facet locations x in an image Q is proportional to (2), namely

p(x|θ) ∝ pS(x|θx)pI(f = f(Q, x)|θf ) . (9)

Numerical maximization is required when the locations of facets on the lowest
level are predicted, since the pI factor in (9) introduces a non-standard distri-
bution on x under this constraint. Maximization steps over the full conditional
distributions for upper-level facets have closed form solutions. The full condi-
tional mode for facet position xlj on a level l in the hierarchy, for l not equal to
the top or bottom level (l /∈ {0, L}) is given as

xICM
lj = µc

lj +
σ2

l

σ2
c

∑
k∈Plj

w
(l)
jk (x(l−1)k − µc

(l−1)k) +
σ2

l+1

σ2
c

∑
k∈Dlj

w
(l+1)
kj ξlk , (10)

ξlk = {(x(l+1)k − µc
(l+1)k) −

∑
j′∈P ′

(l+1)k

wl
j′k(xlj′ − µc

lj′)},

σ−2
c = σ−2

l + σ−2
l+1

∑
k∈Dlj

(w(l+1)
kj )2 .
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In this expression, k indexes facets on level (l−1) or (l+1) in the set Plj or Dlj ,
respectively, of those facets which contribute to the means in the full conditional
distribution on xlj . The prime notation (′) indicates facet index or parent set
relating to one of the children of facet lj. The top level (l = 0) facet has a similar
form to (10), dropping terms relating to the set Plj .

The full conditional distribution for the contraction factor γ2 also has normal
form, with the mode given in (11). Assume a normal distribution truncated at
zero with mean ω and precision ν for the prior p(γ2). Then

γICM
2 =

∑L
l=1

∑Nl

j=1 {(∆lj
µ )−2(κσl)−2∆lj

x ∆lj
µ } + ων

∑L
l=1

∑Nl

j=1 {(∆lj
µ )−2(κσl)−2} + ν

, (11)

∆lj
µ = µlj −

∑
k∈Plj

w
(l)
jk µ(l−1)k , ∆lj

x = xlj −
∑

k∈Plj

w
(l)
jk x(l−1)k ,

and as before, k is the index for a facet in the set Plj which contribute non-zero
terms to the full conditional distribution on xlj .

For the ICM maximization steps involving the lowest-level facets, the Nelder-
Mead simplex method is applied[18]. To enhance computational efficiency, our
maximization approach involves partial maximization of the upper levels with
relations between lower-level facets kept fixed, and with approximate image fea-
ture contributions calculated based on the scale-space[12] of the observed and
reference image.

3 Results

The method described was applied to a dataset from Duke University Medical
Center consisting of 16 images acquired during the heart beat cycle. For each
gate, an image of size 64x64x16 voxels was acquired (7.1 mm voxel size). The
heart was contained entirely in a 16x16x16 voxel volume. Using a 5 level facet
hierarchy, each voxel in the reference heart volume contained one bottom-level
facet, located at the voxel center. The entire hierarchy spans a 163 cube at five
different resolutions (L = 4) and has a total of 4681 facets. Gate 8 (filling phase,
mid-diastole) was used as the reference image throughout. The resulting density
on facet locations x was then maximized for each of the other gates individually.
Typical maximization time was approximately 3 minutes per gated image on a
DEC 433au workstation.

The results are summarized as follows. First, we show plots of facet move-
ment from slices in the reference image to slices in another gated image for
three orthogonal directions. Next, several individual facets are displayed on the
reference and the other gated image to demonstrate the deformation achieved
under the model. We then display a composite image and compare it to the
traditional SPECT image and a single gated image. Difference images for the
composite versus the traditional and gated image are also shown. Subsequently,
estimated changes in overall size (contraction) are shown for the time series.
Finally, convergence and stability relative to initial condition is examined.
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3.1 Facet Motion
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Fig. 3. Facet motion from gate 8 (reference;mid-diastole) to gate 4 (end-systole) in
representative slices. Panels (a)–(c) show a transaxial plane, (d)–(f) a coronal plane
and (g)–(i) a sagittal plane. The left column shows the reference image slice, the middle
column shows the facet motion estimate and the right column shows that same estimate
superimposed on the image slice from the gate 4 image

In Fig. 3, facet displacement vectors from gate 8 to gate 4 are shown for a
representative slice in three orthogonal directions. Gate 4 corresponds to the
contracted state (end-systole). The general contraction from diastole (gate 8) to
systole is clearly captured by this estimated mode of the joint density on facet
locations. Note also that though the grid has contracted, there are also regions
on the heart which have not moved significantly. This is consistent with typical
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Fig. 4. Selected facet positions in transaxial slice 8 of the reference image (a), with
corresponding estimated facet positions in the gate 4 image, slice 8 (b) and 9 (c).
Note the contraction and deformation in relative positioning without losing relations
between neighboring facets, as well as the slice-jump, indicating fully 3D deformation

heart motion. Thus, the model achieved two of the objectives stated earlier; there
was an overall size correction as well as a local deformation.

The positions of several individual facets in the reference image and gate 4
are shown in Fig. 4. Points in the heart are estimated under the model to deform
in a complex manner, and are consistent with the heart shape seen. Note also
the fully 3-dimensional nature of the deformation as evidenced in the slice-jump
of the upper leftmost section.

3.2 Summary Images

To more accurately represent the distribution of radiotracer uptake in the heart,
a facet-composite (composite for short) image was calculated. The maximization
for facet placement in all gated images was consolidated into this composite
image by mapping the gated image intensity found at the facet position in each
image to that facet’s reference image position and averaging across the image
sequence; Scomp(µLj) = 1

n (T (µLj) +
∑

t6=tµ
Qt(xLj(t))), where Qt is the t-th

image in the time series of n images and tµ is the gate used as the reference,
i.e. Qtµ = T . This image (Fig. 5(a)) compares favorably to both of the other
representations of the data, the voxel-wise mean (standard SPECT equivalent,
Fig. 5(b)) and the gated image alone (Fig. 5(c)). Image intensity uniformity has
also been improved in the LV wall region relative to the gated image alone, while
retaining image contrast. Comparing the facet-composite with the mean image
shows a better delineation of the lateral wall of the left ventricle. The composite
image thus represents a specific state of the heart (here, it maps to mid-diastole)
rather than a time-averaged state which does not exist. The difference images
shown in Fig. 6 highlight the structural differences between the summary images.
The mean image minus the composite image (pixel-wise difference) shows a clear
pattern (dark and bright) that corresponds to the lateral wall of the left ventricle.
Again, this corresponds to known heart motion. Also, when the composite image
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Fig. 5. Slice 9 (transaxial) : (a) Composite image mapped to gate 8, (b) mean voxel-
wise image (standard SPECT), (c) gate 8 image only. The composite image was formed
by computing average intensity based on the facet motion through the series of images
and mapping back to the reference image (gate 8). We observe similarity between gate
8 and composite, with the composite having superior smoothness in regions of activity.
Furthermore, a better spatial delineation of the heart wall in the composite image
relative to the standard SPECT image is seen
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Fig. 6. Difference images corresponding to the images in Fig. 5; (a) mean minus com-
posite (mapped to gate 8), (b) gate 8 minus composite. For detailed explanation of the
composite image, see Sect. 3. Here we see clearly the structural difference between the
standard (mean) image and the composite facet-based image. The regions of dark and
bright indicate that the deformation model has shifted intensity outward for the lateral
wall of the left ventricle (arrow). This is in accordance with the use of gate 8 (mid-
diastole) as the reference. The gated versus composite comparison shows no structural
differences other than an overall intensity level difference in the heart region, which is
attributable to a known intensity trend discussed in the text
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Fig. 7. Estimated overall contraction through cycle, measured in percent of total vol-
ume spanned by µc relative to µ. This corresponds well to the expected and observed
heart contraction through the series of images. It is not interpretable as heart chamber
volume, however

is subtracted from the gate 8 reference image, no pattern other than the known
intensity difference between an average and any individual gate late in the time
series is apparent. (Early gates tend to have more intensity due to an out-of-
phase blurring effect which worsen towards the end of the beat cycle.)

3.3 Contraction

A relatively non-informative prior distribution on γ2 (uniform on < 0, 3 >) was
used for the results reported here. Figure 7 shows the contraction correction
as a function of time (gates) when taken as an overall volume change. The
parameters behave sensibly through the cycle: Gates 1–6 comprise the relatively
short contraction phase (systole), while the remaining images are acquired in the
expanded or dilated state (diastole) of the heart. The parameter time evolution
tracks this. Since this is an overall correction, this parameter could be interpreted
as a rough indicator of relative heart size, but it should not be used as a measure
of particular quantities, such as LV chamber volume. The general trend shown
in Fig. 7 matches well with visual inspection of changes in heart size over the
image series.

3.4 Stability

Each full ICM cycle includes an iterative maximization over facet locations x,
followed by a maximization for γ2. The model was allowed to run for 200 such
cycles, and did not exhibit any significant changes in parameter estimates or facet
locations from the values determined with a shorter run (5 full cycles). Previous
work [14] has shown fast convergence of the maximization for a model which
does not incorporate contraction (γ) directly. Finally, several starting positions
for the maximization routine were used without changing the final results.
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4 Discussion

The model proposed in this paper improves the utility and applicability of gated
cardiac SPECT data. While future modifications to the model are being inves-
tigated, current results are promising. Taken together, the set of locations for
every facet in every gate constitutes a very rich representation of this image
data. With further investigation of true anatomical correspondence, this repre-
sentation will offer new diagnostic ways to look at heart function abnormalities
via estimated deformations rather than based solely on radiotracer uptake. The
facet-composite image is also a clearly improved summary of the image time
series over the voxel-wise sum and offers better intensity uniformity in the heart
region and from that a better SNR than the individual gated images. In the
future, we plan to evaluate numerically this improvement in SNR and the accu-
racy of estimated facet locations using a newly developed Monte Carlo computed
phantom of a beating heart in a thorax [20]. This is important since we currently
have no clinical data available to evaluate the real motion of individual heart
tissue elements for these time series. With such reference data, numerical eval-
uations of performance and subsequent educated model modifications will be
possible. More advanced modeling based on known physiology of heart contrac-
tion, use of smoothness constraints on individual facet motion and the inclusion
of registered and simultaneously acquired transmission computed tomography
(TCT) data are current model extensions under investigation.
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Abstract. A method has been developed for detection masses in mam-
mograms by analysis of local orientation patterns. Concentration of gra-
dient and line orientation computed at a fine scale reveals the presence
of masses and spiculation, respectively. In this paper a new computa-
tional approach is presented which allows efficient computation of these
features as a continuous function of spatial scale. It is shown that by us-
ing these scale signatures estimates of mass size can be readily obtained.
Experimentally it was found that mass size estimates can be used to
improve mass detection, while full exploitation of the information repre-
sented by the scale signatures is expected lead to further improvement.
Results are presented for detection of malign masses in a database of 264
mammograms representing 71 consecutive cancers found in screening.

1 Introduction

The success of breast cancer screening programs critically depends on the ability
to detect non-palpable invasive cancers when they are still small, as tumor size is
a very important prognostic factor [1]. Invasive cancers are visible as masses. Ide-
ally, these should be detected when they are smaller than 1.5 cm, because then
they are detected early enough to have a strong impact on overall mortality re-
duction. Masses smaller than 5 mm are rarely visible in mammograms. Detection
of non-invasive intraductal in situ cancers, only visible by microcalcifications, is
less effective as many of these do not get invasive during lifetime.

Detection of small masses in screening mammograms is difficult, because they
may be hard to distinguish from normal fibroglandular tissue patterns. Moreover,
in a screening population only three to six out of thousand women have breast
cancer. This very large fraction of normal cases makes screening a complex visual
task for radiologists. To avoid perception errors, radiologist need to be alert at
a constant high level. That failures are not uncommon has been revealed by a
number of studies [2,3,4]. Recently, it was found in a large multi-center study that
as much as 70 percent of the cancers detected in screening were are already visible
on previous screening mammograms, where up to 20 percent was obvious enough
to be classified as actionable by the majority of a panel of reviewing radiologists
[5]. In another recent study, findings at previous screening mammograms of 544

A. Kuba et al. (Eds.): IPMI’99, LNCS 1613, pp. 280–293, 1999.
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cancers that were not detected in screening were reviewed [6]. In 25% of these
cases the tumor was classified as overlooked or misinterpreted. An effective way
to increase performance of radiologist in screening is double reading [7]. Increases
of sensitivity with 5-15 percent have been reported by having two independent
readers. However, implementation of double reading may be hard to organize
because of cost and time limitations. As an alternative, it has been suggested
that computer programs that identify suspicious regions in mammograms can
be used as a second reader. This approach turned out to be successful in a few
small studies [8,9,10], but its success in practice will depend on the level of
performance of detection algorithms in terms of both sensitivity and specificity.

Masses in mammograms can be described as more or less compact areas
that appear brighter than the tissue in which they are embedded, due to a
higher attenuation for X-rays. When the tissue surrounding a mass is fatty,
the detection problem is relatively easy and tumors as small as 5 mm can be
detected. However, when a mass is projected in dense fibroglandular tissue it may
be very difficult to recognize. Even large masses may be completely obscured by
dense tissue [11]. This is one of the reasons for taking two different views of
each breast, as is common practice in most screening programs. Usually, oblique
and cranio-caudal (CC) projections are recorded. The appearance of masses can
be circumscribed, fuzzy, or spiculated. In the latter case there is a radiating
pattern of spicules surrounding the central mass area. Differentiation of masses
from normal glandular tissue structures may be so difficult that one has to
rely on distortion or asymmetry of the normal mammographic pattern, while
sometimes a comparison with previous mammograms provides an important cue.
Especially stellate patterns of straight lines are suspect, or straight retractions
of the glandular tissue boundary. Bilateral asymmetry may form an important
clue when a mass like area only appears in one side. Furthermore, the location
of a suspect area sometimes plays a role. For instance, in a fatty area behind
the glandular tissue and close to the chest wall, the presence of a mass is very
suspect if it does not have a corresponding sign in the contralateral breast. Some
examples of malign masses are shown in Fig. 1.

In the past decade different methods for detection of masses in mammograms
have been suggested, some focusing on bilateral asymmetry [12,13,14], detection
of spiculation [15], or on contrast and texture differences [16,17,18]. All these
methods have some aspects in common. Usually, a first phase is executed in which
local image features are calculated at each pixel or at a set of regularly spaced
points across the segmented breast area. Using these features, pixels are grouped
into regions by a segmentation scheme. In a second phase features are calculated
for each candidate region and a classifier determines regions that are regarded as
suspicious. Various methods differ in the way they address and emphasize each
of the two phases. Some apply very simple procedures to form many candidate
regions and rely heavily on region classification in order to remove an abundance
of false positives. The approach that is taken here is to concentrate on designing
features that can be computed directly from the pixel grid, e.g. without requiring
a region boundary. A classifier computes the likelihood of each pixel to be part
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Fig. 1. Examples of malignant lesions: a circumscribed mass (left), a spiculated mass
(middle), and an architectural distortion (right)

of a mass, and a simple threshold on this likelihood image is applied to segment
regions marked as suspicious as the final output.

Analysis of local line and gradient direction patterns forms the basis for
computation of the local features that are used. A detailed description of this
method is given in Sect. 2. The method is an extension of earlier work [15,19]. The
size of the neighborhood in which orientations patterns are evaluated is one of
the most important parameters in the computation of these features. Variation
of this size can have a dramatic effect on the detection of individual cancers,
although the influence of this parameter on the overall performance measured
on a large database tends to be less. In the past, the output of a local contrast
operator has been used to set the size of the neighborhood adaptively. In Sect. 2
a new approach is presented, in which features are computed as a continuous
function of the neighborhood size, only slightly increasing the computational
load. The curves that represent the directional features as a function of the radius
of the neighborhood reveal aspects of the neighborhood patterns that may be
very useful for improving detection performance by removing false positives.

In Sect. 3 it is shown that the maximum of a gradient orientation feature can
be used to estimate the size of a lesion. This size is used as an additional feature
to improve detection performance in a scheme where various local features are
combined using a neural network classifier. In Sect. 5 results are shown that were
obtained using on a series of 264 mammograms, representing consecutive cases of
cancer detected in screening, excluding cases which only had microcalcifications.

2 Methods

2.1 Local Orientation Distributions

It has been shown that features representing local orientation distributions are
well suited for detection of masses in mammograms [20,15,19]. The fact that such
features are very insensitive to changes in contrast is a major advantage when
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processing large datasets of mammograms of various origin, because one has to
deal with unknown non-linear variation of the greyscale. Orientation maps are
computed using first and second order Gaussian derivatives. When there is a
concentration of gradient orientation towards a certain point this indicates the
presence of a mass. A concentration of line orientations computed from second
order directional derivatives indicates the presence of spiculation or architectural
distortion. These concentration features will be denoted by g1 and l1, respec-
tively for gradient and line orientations. In addition, features representing radial
uniformity measure whether or not increase of pixels oriented to a center comes
from the whole surrounding area or from a few directions only. These will be
denoted by g2 and l2.

Previously, features for orientation concentration were computed by counting
the number of pixels pointing to a center, and were defined to measure deviations
of this number from the expected value in a random orientation pattern. The
assumption was made that a binomial distribution of this number with mean
probability p̄ of a pixel pointing to a center can be used for normalization. As
the probability p of hitting the center varies with the distance, this normalization
may not be best choice. A more general definition of the features is given below,
which allows to deal with varying values of p properly.

For computation of the features at a given pixel i a circular neighborhood is
used. All pixels j located within a distance rmin < rij < rmax from i are selected
when the magnitude of the orientation operator exceeds a small threshold. This
selected set of pixels is denoted by Si. The features are based on a statistic xj

defined by

xj =
{

1 − pj , if pixel j oriented to center,
−pj else (1)

with pj the probability that pixel j is oriented towards the center given a ran-
dom pattern of orientations ϕ with a probability density fi(ϕ). In principle this
density can be estimated from the image in an area around site i. However, in
this work only a uniform density is used. Pixels that are oriented to the center
are determined by evaluating

|ϕj − αij | <
D

2rij
(2)

with αij the direction of the line through i and j and D a constant determining
the accuracy with which pixels should be directed to the center to be counted.
A weighted sum Xi is computed by

Xi =
∑
j∈Si

wjxj (3)

where the weight factors can be chosen as a function of the distance rij , for
instance to give pixels closer to the center a larger weight. For a noise pattern,
the variance of this sum can be estimated when it is assumed that all pixel
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contributions are independent:

var(Xi) = var(
∑
j∈Si

wjxj)

=
∑
j∈Si

w2
j var(xj)

=
∑
j∈Si

w2
j pj(1 − pj). (4)

Normalizing the sum Xi by the square root of the variance the value of the
concentration feature f1 is defined by

f1 =

∑
j∈Si

wjxj

(
∑

j∈Si
w2

j pj(1 − pj))
1
2
. (5)

When no weight factors are used and the neighborhood Si is subdivided in K
rings around i in which the probability pk can be considered constant, the sum
Xi can be written as

Xi =
∑

k

∑
j∈Si,k

xj . (6)

These rings are circular and concentric when the probability density of the ori-
entations f(ϕ) is taken uniform. In each ring k the number of pixels hitting the
center Nk,hit can be counted, allowing the sum to be rewritten as

Xi =
∑

k

Nk,hit(1 − pk) + (Nk − Nk,hit)(−pk)

=
∑

k

Nk,hit − Nkp̄k

= Nhit − Np̄ (7)

with Nk and N the number of pixels in ring k and in total, respectively. This is
identical to the definition used previously, but the normalization factor, which
can be written as (N(p̄ − p̄2))− 1

2 , is slightly different than the one used before,
(N(p̄ − p̄2))− 1

2 .
If weight factors are used that only depend on pj , the sum Xi can be written

as

Xi =
∑

k

wk [Nk,hit − Nkp̄k] (8)

which shows that the expected value of f1 remains zero. If the probability density
f(ϕ) is uniform, all choices of wj that depend only on rij fall in this category.
Results shown in this paper were obtained without using weights. Thus far no
clear advantage of using a non-uniform weight function could be demonstrated
experimentally.



Local Orientation Distribution 285

j j

i

rmax

rmin

Fig. 2. Detection of a spiculated mass using line (top) and gradient orientation (bot-
tom) maps. The figures in the central column show the labels allocated to pixels based
on their orientations, when the window is centered at the tumor. The right column
shows the output of line and gradient concentration filters l1 and g1. Pixels are marked
white when they are oriented towards the center, or grey when they are not. For the
orientation filter, pixels are marked black when their line magnitude is negative: dark
linear structures do not represent spicules and are excluded

It is noted that the approximation that is made by assuming all pixels to
have independent directions is clearly incorrect, even when pixels have indepen-
dent random values. Orientations of neighboring pixels become correlated by the
use of convolution kernels for estimation. This leads to underestimation of the
variance, which becomes larger with larger kernels. However, it seems that this
effect is similar for normal and abnormal areas. For the purpose of removing
dependency of the size of the neighborhood and compensating unwanted effects
at the breast edge boundary the method is effective.

In Fig. 2 an example is shown of a spiculated lesion. The line orientation
feature l1 shows a peak at the center of a spiculated mass. This coincides with
an increase of the gradient concentration feature g1, which is not very strong in
this case because the mass is not very compact. By combination of the features at
each pixel using a classifier and by segmentation of the result a highly suspicious
region results.

Features g2 and l2 that measure radial uniformity of the orientation patterns
around site i are computed by subdividing the neighborhood Si in L directional
bins, that is like a pie. The statistic Xi is computed now for each bin. When there
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is only noise the expected value of Xi in each bin is zero. In previous work, the
number of bins was counted in which the number of pixels pointing to the center
was larger than the median of a binomial distribution determined by Nl and
p̄, with Nl and p̄l the number of pixels in bin l and p̄l the average probability
of hitting the center. This definition had some problems, as the median of a
binomial distribution is not exactly defined. With the approach described here,
it is sufficient to compute the number of bins n+ in which the sum of Xi,k is
positive. The radial uniformity feature is defined by

f2 =
n+ − Ki/2√

Ki/4
, (9)

with Ki the number of sectors at i. The standard deviation of n+ for random
noise

√
Ki/4 is used for normalization, which is important to avoid problems at

the edge of the breast where not all sectors can be used.

2.2 Computation of Features as a Function of Scale

In multiscale methods one tries to match the scale of feature extraction to the
scale of the abnormality in order to optimize detection performance. Generally,
the value of features used for mass detection depend strongly on the size of
the abnormality, which makes multiscale approaches attractive. However, most
multiscale methods are computationally intensive, because features have to be
computed repeatedly at a number of scales. Usually only a very limited num-
ber of scales are chosen, which reduces accuracy. Multiscale methods that have
been proposed for detection of masses in mammograms include wavelets [21,22],
maximum entropy [16], and multi-resolution texture analysis [23]. Also line con-
centration measured at a number of scales was used in previous work on detection
of stellate lesions, where the maximum over the scales was used [15].

In this section a method is described that allows very efficient computation
of a class of local image features as a continuous function of scale, only slightly
increasing the computational effort needed for computation at the largest scale
considered. The non-linear features described in the previous subsection belong
to this class. In the first step of the algorithm an ordered list is constructed in
which each element represents a neighbor j within distance rij of the central
location i. In this list, positional information of the neighbor that is needed for
the computation is stored, here the xj , yj offset, angle ϕj and distance rij with
respect to center. This list is constructed by visiting all pixels in any order, and
by subsequently sorting its elements by distance to the center. In the second step
the actual computation of the features takes place, at each pixel or at a given
fraction of pixels using a sampling scheme. The ordered list of neighbors is used
to collect the data from the neighborhood. The xj , yj offsets in the list are used
to address the pixel data and precomputed derivatives or orientations at the
location of the neighbor. The orientation with respect to i is used to compute
orientation related features. Because the neighbors are ordered with increasing
distance to the center, computation of the features from the collected data can
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Fig. 3. Construction of an ordered list neighborhood pixels. In the right figure the
grey value of each pixel represents its placement in the list, obtained by sorting with
respect to distance to center

be carried out at given intervals, for instance each time the number of neighbors
has increased by some fixed number. As the computational effort lies in collection
of the data, this only slightly increases the computational load. We use intervals
in which the number of neighbors increases quadratically. Thus, features are
computed at regularly spaced distances from the center. An example is shown
in Fig. 1, where line and gradient concentration are plotted as a function of the
distance to the center. In a similar way, a contrast feature can be computed by
collecting the sum of pixel values as a function of distance to the center, and
by and subtracting the mean of the last interval from the mean of the previous
intervals.

The curves that represent features as a function of the distance to the center
reveal aspects of the neighborhood patterns that can be very useful for differ-
entiation of true and false positive detections. For instance, in Fig. 4 the peak
of the gradient orientation signature g1(r) is reached at the edge of the mass,
and coincides with the radius at which the spiculation feature l1(r) reaches some
kind of plateau. This observation fits with the model of a mass from which most
spicules radiate from the contour, and therefore should raise more suspicion that
two similar maximum values reached at radii that do not correlate.

3 Applications

By taking the maximum of the scale signature g1(r) representing gradient ori-
entation concentration the size of a mass can be estimated. In this section the
accuracy of such a measurement is determined, and the use of size estimates to
improve detection performance is studied.

Results are obtained on a database of 71 consecutive cancers detected in
a bi-annual screening program in Nijmegen, in the period of 1993 to 1996. In
total, this set consisted of 132 mammograms with a cancer. In ten cases only
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Fig. 4. Scale signatures of line and gradient concentration features, computed in the
center of the tumor

oblique views had been taken at screening. All cases detected by screening in
the selected period were included, with an exception to those that only showed
microcalcifications. Thus, the set may be regarded as representative for cases
with masses detected by screening mammography. All cancers were annotated
with the help of an expert mammographer. The annotations were used as the
gold standard for evaluation of estimated mass sizes and detection performance.
In cases with spiculated masses or stellate lesions, only the central mass or area
was annotated. The median diameter of the annotated lesions was 15.4 mm,
and 72 percent of the lesions was smaller than 2 cm. This may seem somewhat
large for cancers detected by screening, but one should realize that many small
intraductal cancers with only microcalcifications where excluded. The images
were digitized with a Lumisys-85 digitizer at 50 microns and 12 bits per pixel,
and were averaged down to 200 micron/pixel prior to all further processing.

3.1 Estimation of Tumor Size

For each mammogram in the database the gradient orientation signatures g1(r),
were computed at sites spaced regularly at distances of 1.6 mm apart, storing the
radius ri,max at which g1(r) has its maximum for each site i. Before taking the
maxima, the signatures were smoothed. Two parameters needed to be adjusted
for calculation of g1, the scale σ at which gradient orientations are determined
and the parameter D used to determine whether or not a pixel is oriented to the
center. Results that are shown were obtained by using σ = 0.2 mm and D = 4
mm. The interval in which g1(r) was computed was r ∈ [2, 20] mm, and the
maximum of g1(r) was searched for in the interval [6, 20] mm.

If a pixel is close to the true center of a mass, it is reasonable to use the
maximum of the g1 signature to estimate the size of the mass. In the detection
application we have in mind, however, the true center is unknown. Moreover,
it appeared that the g1 signatures may change considerably when the central
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location used in the measurement is somewhat changed, especially when small
values of D are used. Therefore, to estimate size all maxima of the g1(r) curves
measured in a small region were taken into account, rather than relying only on
the curve measured at one place. A small circular region was chosen, denoted by
C. Different methods to estimate size were evaluated:

1. The radius corresponding with the highest maximum of g1 in C
2. The mean of the radii corresponding to the maxima of g1 in C
3. The minimum radius corresponding with a maximum of g1 in C

In the experiments the radius of C was 2 mm.
For validation of the size estimation methods the annotations in the database

were used. It should be noted that not all the annotations in the database corre-
spond with masses that can be clearly identified. Also architectural distortions
without a clear central mass are included. Using the annotations as ground truth,
the effective radius for each mass is used as size measure. This radius is defined
as

√
A/π, with A the area of the annotation in mm2. The circular measurement

region C was chosen at the center of mass of each annotation.
Results are shown in Fig. 5. It appears that taking the mean of the radii

in a small region yields the most accurate estimates. It is also shown that the
tumor sizes are somewhat overestimated by the radius at which the maximum
of g1(r) occurs. This bias can be easily corrected for by subtracting a constant.
In some cases, however, it appears that the estimated tumor size is far too large.
Some of these are cases where a central mass is less or hardly visible. It would be
interesting, if a measure could be derived from the g1(r) signature that represents
whether the shape of the curve is typical for a mass. Obviously, a curve with a
clear maximum will more likely yield a good estimate of tumor size than a curve
that is more flat. Such a measure was defined by

g3 =
1

2R − rmin

∫ 2R

r=rmin

|g1(r) − g1(r − ∆r)| (10)

with R the estimated size of the mass. In Fig. 5 it is shown that by using this
measure a subset of mass cases can be obtained that have better size estimates,
where a threshold on g3 was set as such that 60 percent of the cases was selected.

It was found that size estimates based on g1 signatures computed with a
high value of σ, the gradient scale, were less accurate. Size estimates obtained
by using a smaller value of D in the g1 computation were comparable to those
in Fig. 5.

3.2 Mass Detection Performance

Experiments to determine detection performance were carried out using the
database described earlier in this section. By adding 132 bilateral normal mam-
mograms a set of 264 mammograms was obtained. According to the major radi-
ologic sign, mammograms were classified as masses (68), spiculated masses (44),
architectural distortions (12) and asymmetries (8). Features that were used were
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Fig. 5. Comparison of tumor size estimates with true sizes derived from annotations.
The estimates are based on g1 signatures in a region of 125 pixels around the center
of mass of the annotation. The g1 signatures were computed with D = 4mm and
σ = 0.2mm. Top row: size estimates obtained at the site with the highest value of
g1max (left) and at the site with the smallest radius at the maximum of g1(r) (right).
In the bottom row the plots show estimates computed as the mean of the radii in the
region, for all cases (left) and for cases with g3 > T , which more likely correspond to
a well defined mass

the line and gradient orientation features described in Sect. 2, each computed
at the scale where the orientation concentration feature reached its maximum
value. In addition, features representing bilateral asymmetry and estimated size
were used, where size was computed as explained in the previous section, cen-
tering a small region at each site to be classified. The asymmetry feature was
computed by non-rigid registration and subtraction of the right and left breast,
followed by a Gaussian smoothing to focus on large asymmetries only [24].

A neural network classifier was used to compute the likelihood of suspicious-
ness of individual pixels was trained on a separate dataset. All 39 mammograms
with malignancies in the public MIAS database were used for this purpose [25],
excluding those with only microcalcifications. It should be noted that these im-
ages were digitized using a different digitizer. Features that are used are defined
in such a way that this should not make a difference.

FROC curves displaying results are shown in Fig. 6. Sensitivity is computed
as the number of lesions hit divided by the total number of lesions. A hit was
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Fig. 6. Using estimated size in combination with asymmetry and mass detection fea-
tures (a). The overall performance is improved when adding features for detection of
spiculation (b). The case based FROC curve is obtained by counting a true positive
whenever a cancer is found in either the CC or Oblique view

counted when the center of mass of a region marked by the detection program
fell inside the annotation, otherwise a false positive was counted.

The results in Fig. 6 show that adding estimated size to the mass detection
method based on asymmetry and gradient orientation in single views improves
detection performance. The performance improves further when features to de-
tect spiculation are added. The sensitivity that is obtained using a cases based
measure is over 90 percent at a false positive rate of 0.5 FP/image. Remarkably,
at a rate of 1 false positive in 50 images still 50 percent of the cases are flagged.

4 Conclusions

An efficient method to compute features representing line and gradient orien-
tation concentration as a function of spatial scale was developed. Using such
scale signatures size estimates of mammographic masses can be obtained. These
estimates can be useful when regions with masses need to be segmented. Also,
the radii at which the feature maxima occur can be used to select the neighbor-
hood size adaptively. In combination with other features, including asymmetry,
adding estimated size as a feature led to improved detection results.

On a consecutive sample of non-microcalcification cases from screening, most
with oblique and CC views, a high case sensitivity was obtained. The use of the
mass detection features gave a much larger improvement of the FROC curve on
this database than on datasets biased towards spiculated masses used previously
[19], as could be expected. Interestingly, this also holds for very low FP/image
values. At 0.02 FP/image a case sensitivity of 50 percent was obtained. Assuming
an incidence of 5 cancers per 1000 women and 4 mammograms per case this
corresponds with a recall rate of 8 percent, which is quite common in the US. It
may be advantageous in a prompting system to present suspicious regions that
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have such a high specificity in another way to the radiologists than regions only
generated at lower specificity levels.

The method described in this paper is applicable to other areas in medical
image analysis, for instance to lung nodule detection in CT. The features used to
represent local orientation patterns are general and can be computed efficiently
in 3D datasets as well.
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Abstract. Today, most studies of cognitive processes using functional
MRI (fMRI) experiments adopt highly flexible stimulation designs, where
not only the activation amount but also the time course of the measured
hemodynamic response is of interest. The measured signal only indirectly
reflects the underlying neuronal activation, and is understood as being
convolved with a hemodynamic modulation function. An approach to
better allow inferences about the neuronal activation is given by model-
ing this convolution process. In this study, we investigate this approach
and discuss computational models for the hemodynamic response. An
analysis of a recent fMRI experiment underlines the usefulness of this
approach.

1 Introduction

Functional magnetic resonance imaging (fMRI) has become one of the major
experimental methods for analyzing cognitive processes in humans. The most
common fMRI technique employs the blood-oxygen-level-dependent (BOLD)
contrast [1], which is sensitive to changes of the relative local concentration
of oxygenated hemoglobin (HbO2) vs. deoxy-hemoglobin and thus reflects an in-
direct measure of the brain’s neuronal activation. This effect is small, and data
are noisy: thus, analysis of fMRI data has mostly focused on the detection and
statistical quantification of functional activation.

Fig. 1. Signals at various stages of the convolution model of fMRI time series

A. Kuba et al. (Eds.): IPMI’99, LNCS 1613, pp. 294–307, 1999.
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Understanding brain function requires information not only on the spatial
localization of neural activity, but also on its temporal evolution. There is an in-
creasing interest in the time course (i.e. the shape) of the hemodynamic response
(HR) and its modulation with respect to different experimental conditions. The
measured fMRI signal y(t) is understood as the result from a series of convo-
lutions of the input stimulus function i(t) ([2], see Fig. 1). So the question was
raised to what extent conclusions may be drawn about the neuronal activation
n(t) from the HR shape g(t). For example, the hemodynamic modulation in-
troduces time constants at least an order longer than the underlying functional
activation; the time-to-maximum of a HR due to a transient stimulus is typically
delayed by 5-8s and dispersed by 3-4s [3]. So the key to detecting changes in the
neuronal activation is the adoption and deconvolution of the HR by a model
function [4].

A number of heuristic functions have been proposed to describe the hemo-
dynamic response: the Poisson function [3], the Gamma function [5,6], a linear
combination of the Gamma function and its temporal derivatives [7], and the
Gaussian function [8]. The evolution of these approaches follows their modeling
complexity; early approaches assumed constant pre-set values for the lag [3],
while current models determined HR parameters voxelwise in the time series
[5,6,8], or even per stimulus period [9]. HR parameters were shown to depend
on the subject, the site and the stimulation conditions [8,9,10], which underlines
the usefulness of this approach. However, some issues were raised.

– With the Poisson or the Gamma functions, interesting shape characteristics
like delay (time-to-maximum), rise and fall times are hard to obtain.

– While the best fits to an HR are generally found with the Gaussian function,
especially responses following short stimuli were asymmetric (shorter rise
than fall times).

– For a better understanding of the underlying neuronal processes, a deconvo-
lution of the hemodynamic modulation to yield parameters of the neuronal
activation directly is highly desirable.

– None of these functions is based on a physiological model. Although models
of the oxygen delivery at membranes have been proposed [11], details of the
neurono-vascular coupling are still under discussion and have not yet led to
a comprehensive physiological model of hemodynamic modulation.

Aims of this study were: (1) to test the feasibility of introducing more complex
model functions for the HR, (2) to separate parameters describing the hemo-
dynamic modulation from parameters of neuronal activation, and (3) to find
physiologically more plausible models for the hemodynamic modulation.

Recently, we described and validated a non-linear regression context [9] to
model the HR per stimulation period (trial) and region-of-interest (ROI), which
is briefly reviewed in the next section, along with a discussion of the three model
functions studied here: (1) the Gaussian function, (2) a convolved asymmetric
Gaussian function, and (3) a convolved compartment model. To compare the
usefulness of these approaches, we re-analyzed a fMRI study of working memory.
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2 Description of the Estimation Model

A theoretical discussion and validation of our estimation model is described else-
where [9]. For an excellent discussion about non-linear regression procedures, see
[12]. Throughout this paper, we assume that the locus of a functional activation
is known. This knowledge may arise from a previous determination by well-
established signal detection procedures or defined as regions of neurofunctional
interest. These regions are considered as stationary in space. Note that we focus
on single trial experimental designs here: a single cognitive task is given, and the
hemodynamic response to this stimulus recorded.

2.1 Model Definition

We consider a subset of the fMRI data collected spatially from a ROI of k
voxels and temporally from a single experimental trial at l discrete timesteps
and denote this n = k ∗ l-dimensional vector as y. Timesteps are referenced by a
l-dimensional vector t. We model the hemodynamic response as a deterministic
function g(t,β), where β denotes a p-dimensional vector of model parameters,
and we require that g(t,β) is differentiable at least once with respect to β. Data
y are composed of g(·) and a stochastic part ε:

y = g(t,β) + ε. (1)

The stochastic part is independent of the signal and stationary with respect to
time, and its elements are normally distributed with a nonsingular covariance
matrix V:

ε ∼ Nn(0,V), then y ∼ Nn(g(β),V). (2)

This allows us to use preprocessed data where the processing has introduced (or
enhanced) a correlation structure. A way to determine the covariance structure
from experimental data is described later in this section.

We will now propose the model functions g(·) investigated in this paper. The
first two are heuristic but offer a parsimonous number of parameters. The third
function is complex but tries to incorporate the properties of tissue compart-
ments involved in the BOLD effect.

Model 1: Gaussian Function The best compromise between goodness-of-fit
and the number of model parameters is found with the Gaussian function [8]:

g(t, β) = a exp(−(t − t0)2/(2d2
0)) + b. (3)

We denote the 4 components of β as a: gain (the “height” of the HR), d0: disper-
sion (proportional to the duration of the HR), t0: lag (the time from stimulation
onset to the HR peak), and b: baseline. Here, no distinction can be made between
“neuronal” and “vascular” parameters.
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Model 2: Convolved Asymmetric Gaussian Function A first approach to
closer model the processes depicted in Fig. 1 is to define the HR function g(t)
by a convolution of a neuronal stimulation function n(t) with a hemodynamic
modulation function f(t):

g(t, β) = n(t) ⊗ f(t) + b, (4)

where ⊗ denotes the convolution operator and b is a baseline term. We simply
assume a square-wave function for the neuronal stimulation n(t):

n(t) =
{

a if t >= t0 and t < t0 + t1,
0 otherwise. (5)

A Gaussian function is introduced for hemodynamic modulation function f(·),
here with different dispersions (d0, d1) for the rising and the falling edge:

f(t) =
{

exp(−t2/(2d2
0)) if t < 0,

exp(−t2/(2d2
1)) if t >= 0. (6)

In this model, β consists of 6 parameters (d0: dispersion on the rising edge, d1:
dispersion on the falling edge, a: gain, t0: neuronal response onset, t1: neuronal
response duration, b: offset). Modeling of the convolution process allows us to
address the meaning of a, t0, and t1 as “neuronal” parameters, resp. d0, d1 as
vascular parameters.

Model 3: Convolved Compartment Model In model 3, the formulation of
a stepwise defined Gaussian function for the hemodynamic modulation function
f(·) is still heuristic. It is physiologically more plausible to model the hemody-
namic modulation process by a compartment model. We define the HR model
function g(t) as in 4 and the neuronal stimulation n(t) as in 5 and now focus on
a new definition of f(t).

For the BOLD contrast, as discussed in the introduction, it is viable to think
of the oxygenated blood as an “endogenous tracer” of brain activation. The ki-
netic of external tracers such as radioactive markers or pharmaceuticals have
successfully been modeled by compartment models since 1920 [13]. This mod-
eling context is rich and well understood (for introductions, see [12,14]). Com-
partments correspond to a body subspaces (i.e. tissue, vasculature), in which
the local concentration of a tracer (i.e. oxygenated blood) is modified by trans-
port between compartments (i.e. by diffusion, flow) or active processes (i.e. by
consumption). If we assume a linear imaging process, then the HR measured
in fMRI is proportional to the HbO2 concentration, and a compartment model
should allow us to draw conclusions about the temporal oxygen flow pattern.
Such a model is depicted in Fig. 2.

HbO2 flows from the arterial into the capillary compartment at a rate γ0,
as mediated by a consumption process in the tissue compartment. The oxygen
exchange between capillaries and tissue is described by rates γ1 and γ2. Finally,
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Fig. 2. Movement of oxygen in two vascular and a tissue compartments

rate γ3 denotes the HbO2 drainage into the venous compartment. Assuming
constant rates, the kinetic equations for the compartment model in Fig. 2 are:

ḟ1 = −γ0f1,

ḟ2 = γ0f1 + γ2f3 − (γ1 + γ3)f2, (7)
ḟ3 = γ0f2 − γ2f3.

The solution to this linear system of differential equations can be written in a
sum-of-exponentials model for the ith compartment (see [12], p. 379ff):

fi = ki1 exp(−γ0t) + ki2 exp(λ0t) + ki3 exp(λ1t), (8)

where the parameters λ0,1 and kij are:

λ0 = −1
2

(
γ1 + γ2 + γ3 +

√
(γ1 + γ2 + γ3)2 − 4γ2γ3

)
,

λ1 = −1
2

(
γ1 + γ2 + γ3 −

√
(γ1 + γ2 + γ3)2 − 4γ2γ3

)
,

k1j = [1, 0, 0] , (9)

k2j =
[

γ0(γ2 − γ0)
(γ0 + λ0)(γ0 + λ1)

,
γ0(γ2 + λ0)

(γ0 + λ0)(λ0 − λ1)
,

γ0(γ2 + λ1)
(γ0 + λ1)(λ1 − λ0)

]
,

k3j =
[

γ0γ1(γ2 − γ0)
(γ0 + λ0)(γ0 + λ1)

,
γ0γ1(γ2 + λ0)

(γ0 + λ0)(λ0 − λ1)
,

γ0γ1(γ2 + λ1)
(γ0 + λ1)(λ1 − λ0)

]
.

The parameter vector β for this model consists of 8 items (γi: 4 transfer rates,
a: gain, t0: neuronal response onset, t1: neuronal response duration, b: offset).
We attribute a, t0, and t1 as “neuronal” parameters, resp. the transfer rates as
vascular parameters.

2.2 Stochastic Background Model

It was shown [15,16] that the stochastic part in preprocessed fMRI data may
approximately be described by an Ornstein-Uhlenbeck process [17]: (1) it is
stationary with respect to time, (2) its elements εi are normally distributed with
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a covariance matrix V (see 1) and (3) their correlation is described by an AR(1)
model. We assume that the spatio-temporal covariance matrix V is separable in
space and time:

V = S � T, (10)

where � denotes the Kronecker product. The elements of the (spatial) covariance
matrix S are given by the variance sii = σ2 and the covariance sij = cov(h) which
depend on the distance h of the voxels i and j. Most easily, a semivariogram η(h)
[18] is used to determine the type of stationary dependence in the data:

η(h) = σ2 − cov(h) ≈ 1
2 ∗ nh

∑
(i,j)∈N(h)

(yi − yj)2, (11)

where N(h) is the set of voxel pairs at distance h, and nh is the number of
pairs in the set. For an AR(1) process with positive correlations, an exponential
function fits to the semivariogram:

η(h) = α0(1 − exp(−α1h)), (12)

where h is the distance between voxel sites. From the model parameters, we
can derive the variance σ2 = α0 and the autocorrelation ρ = exp(−α1). The
covariance matrix S of a linear array of k voxels is defined as:

S = σ2




1 ρ ρ2 · · · ρk−1

ρ 1 ρ · · · ρk−2

ρ2 ρ 1 · · · ρk−3

· · ·
ρk−1 · · · 1


 , (13)

Similarly, a matrix T is formed for the temporal domain and composed as given
in 10.

2.3 Estimation

We find the ML estimate β̂ of our model parameters as the vector β that mini-
mizes the quantity:

arg min
β

{
(y − g(t,β))T V−1(y − g(t,β))

}
. (14)

In the case of the Gaussian function in model 1, this problem corresponds to a
4-dimensional nonlinear minimization problem, which can easily be solved by the
downhill simplex method of Nelder and Mead [19]. This method is not feasible
with the more complex models 2 and 3, where the cost function (14) is expected
to possess multiple local minima. Because derivatives of the model functions are
only available as finite difference approximations, derivative-free optimization
methods are preferable. We investigated the use of (1) a combination of simu-
lated annealing with the downhill simplex method [19], (2) Shor’s minimization
method [20], and (3) an optimization using a genetic algorithm [21].
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2.4 Confidence Limits and Statistical Tests

Using a first-order linear model, we can derive confidence limits for the estimation
from the inverse of the Fisher information matrix F [22]:

β̂ ∼ N(β,F−1
β

), where Fβ = GβV−1GT
β , (15)

and Gβ denotes the Jacobian matrix of g(·) with respect to β.
A simple measure for the goodness-of-fit (GOF) is given by the χ2-statistics:

χ2 = εT V−1ε, where ε = y − g(t,β) (16)

A more complex measure is derived for the F-statistics, following Hartley
[23]:

P = GβF−1
β

GT
β (17)

Fp,n−p ∼ (n − p)
p

εT Pε

εT (In − P)ε
, (18)

where n corresponds to the number of data points, p to the number of parame-
ters, and In is the n ∗ n identity matrix.

3 Experiments

To study the usefulness of this modeling approach, we re-evaluated datasets
acquired in a fMRI study of working memory [24].

Behavioral Experiment : Subjects learned three sets of letters (4, 6 or 8 char-
acters) at least two days before the scanning session. A trial started with the
display of a small red box (for 800ms), followed by the cue and, after a delay (0,
2 or 4 seconds), the probe. Subjects had to indicate by a button press whether
the probe item belonged to the cued set. 108 randomized trials were run using
an intertrial interval of 18s.

fMRI Parameters: During the behavioral experiment, 7 axial slices (64x64
voxels, 3.8x3.8x5mm voxel size, 2mm gap) were recorded on a Bruker Medspec
300 system using an EPI protocol with a repetition time of 1s. All timings were
corrected for the slice acquisition delay in the EPI protocol.

Preprocessing : We randomly selected data obtained from 4 subjects. Data
were preprocessed by (1) correction for in-plane movements and (2) corrected
for baseline fluctuations, (3) lowpass filtered in the temporal domain to reduce
the amount of system and physiological noise (see [25] for details). As a result
of this preprocessing, only the fundamental frequency (corresponding to the
stimulation) and its first harmonic were retained in the temporal domain of the
data.

Definition of ROIs: Standard procedures were applied to detect functional ac-
tivation in the datasets: (1) analysis for activated regions by Pearson correlation
with a time-shifted box-car waveform (∆ = 6s), (2) conversion of the correlation
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coefficient into z-scores and thresholding of the corresponding z-map by a score
of 10, (3) assessment of the activated regions for their significance on the basis
of their spatial extent [26]. Now that we detected voxels with functional activa-
tion, we defined ROIs by collecting the 6 most highly activated voxels around
local maxima in the z-map. We obtained a total of 94 ROIs from 4 subjects. An
illustrative map of ROIs is shown in Fig. 3.

Fig. 3. An illustrative z-map overlay onto the corresponding anatomical from the work-
ing memory experiment. Neurofunctionally interesting ROIs are labeled: AIL: superior
anterior insula, MPCL: middle prefrontal cortex, IPGL: inferior precentral gyrus,
CMA: cingulate motor area, MCL: motor cortex, PPCL: posterior parietal cortex,
SCL: sensory cortex

Averaging : To reduce the number of estimations, we averaged voxels within
a ROI at a given timestep and across trials with the same delay time manip-
ulation (0, 2, and 4 s). So per ROI, we obtained three different timecourses of
18 timepoints each. As a consequence of averaging in space, we simplified our
estimation model by setting S = Ik, where k = 6.

Tests We adapted the 3 HR models defined in the preceeding section to
the 3 averaged timecourses in the 94 ROIs. To achieve realistic solutions, we
constrained the solution space by the following intervals:

– model 1: gain: 0 <= a < 5000, dispersion: 0 <= d0 < 10, lag: 0 <= t0 < 10,
and baseline: −500 < b <= 0,

– model 2: onset and duration: 0 <= ti < 10, dispersions, gain and offset as
above.

– model 3: diffusion constants: 0 <= γi < 10, onset, duration gain and baseline
as above.

For model 1, the downhill simplex algorithm was applied, with computation
times of less than a second per estimation. For models 2 and 3, we achieved the
best GOFs using the genetic algorithm. Parameters of the genetic optimization
process were: 1000 generations, 500 population members, p(exchange) = 0.2,
p(mutation) = 0.01, p(crossover) = 0.2.
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4 Results

To give an impression of typical waveforms and modeling results, we selected
a signal from the left motor cortex MCL (see Fig. 3) in one of the subjects.
Averaged HRs of different experimental delay times are shown in Fig. 4.
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Fig. 4. HRs from region MCL for the 3 different delay times

For longer delays, the HR in this region was higher, the time-to-maximum and
duration were longer. This was reflected in the parameters of the 3 HR models
(see Table 1). For all models, the increasing height of the HR with delay time was
found as an increase of the gain a. For model 1, the shift of the time-to-maximum
led to an increase of t0, the increasing width to an increase in the dispersion
d0. For model 2, the parameters attributed to the hemodynamic modulation
(d0 and d1) were relatively independent of the delay time manipulation. Shift
and delay were reflected in increasing values of t0 and t1. Finally, with the
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convolved compartment model, only an increase of t1 with the delay was found,
rate constants were similar.

Table 1. HR parameters for the signals in Fig. 4 for the 3 different experimental delays

Model 1: Gaussian Function
Delay [s] a t0 [s] d0 [s] χ2

0 324 3.95 2.78 2381
2 429 4.34 3.21 1270
4 496 5.05 3.34 1994

Model 2: Convolved Asymmetric Gaussian Function
Delay [s] a t0 [s] t1 [s] d0 [s] d1 [s] χ2

0 2324 2.58 3.31 2.00 3.30 724
2 3420 3.45 3.55 2.94 3.07 1193
4 4062 3.36 5.05 2.78 3.04 1625

Model 3: Convolved Compartment Model
Delay [s] a t0 [s] t1 [s] γ0 γ1 γ2 γ3 χ2

0 1847 0.06 5.63 0.66 6.11 4.60 1.27 770
2 2439 0.03 6.47 0.39 6.50 6.10 1.54 1934
4 3056 0.06 7.24 0.60 6.17 6.56 1.52 2161

By inspection of the waveforms, we typically found that ROIs in all subjects
showed an increase of the time-to-maximum and the gain with increasing delay
time, similar to the example HR in Fig. 4. A closer examination of the estimated
modeling parameters by a cluster analysis revealed differences, which allowed us
to group ROIs into 4 categories (see Table 2):

– Group 1 : early rise, little dependence on the delay time manipulation. ROIs
of this category were found in cortical areas, which are relevant for encoding
the stimulus. Examples include the posterior parietal cortex PPCL.

– Group 2 : early rise, delay dependence: ROIs of this category are relevant for
maintaining the stimulus. Examples include the anterior insula AIL.

– Group 3 : late rise, delay dependence: ROIs take part in the decision process
following the delay and for generating the motor response. An ROI in the
primary motor cortex (MCL) belongs to this group.

– Group 4 : late rise, little delay dependence. An example for this group is given
with the sensory cortex (SCL): subjects left their finger on the response
button independent on the delay time.

In accordance with the observation of general delay dependence, most ROIs
either belong to group 2 or group 3. It is interesting to note that most early
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Table 2. Onset (t0), duration (t1) and end time (te = t0+t1) of the neuronal activation
as estimated by model 2. Examples for 4 groups defined by their different temporal
behaviour are shown. ROI labels correspond to Fig. 3, all values are given in [s]

Group 1: PPCL Group 2: AIL Group 3: MCL Group 4: SCL

Delay t0 t1 te t0 t1 te t0 t1 te t0 t1 te

0 2.90 1.74 4.64 3.27 0.71 3.98 4.02 1.46 5.48 4.04 4.26 8.30
2 2.78 2.54 5.32 2.86 1.85 4.91 3.71 4.68 8.39 4.80 4.34 9.14
4 3.90 1.64 5.54 2.92 3.61 6.53 4.92 4.89 9.81 4.98 4.93 9.91

activated areas in group 2 exhibited their delay time dependence in the duration
time t1, while late responses in group 3 showed a delay time dependence in the
end time te. This finding may be interpreted as a pre-activation of group 3 areas
during the delay phase: i.e. the motor cortex is “held active” until the response
decision following the delay period.

Experiences with the 3 models were summarized as:

– Model 1: For the Gaussian model, 3 parameters describe the shape of the
response: the lag t0, the dispersion d0, and the gain a. It was shown [9] that
these parameters are interpretable in terms of the experimental stimulation.
However, there is no distinction between parameters describing the hemody-
namic modulation and neuronal activation in this model. Thus, no decision
is possible whether a wide HR is due to a longer activation (i.e. a neuronal
effect) or a longer dispersion (i.e. a hemodynamic effect). However, good
convergence properties allowed us to use a rather simple and very efficient
optimization scheme.

– Model 2: Fits are better in comparison with model 1, often down to χ2 ≈ 50,
which was a consequence of modeling the HR asymmetry by two different
dispersion parameters. As it was suspected previously [9], HRs which arise
early and follow short stimuli were found asymmetric with a shorter ris-
ing edge d0 (typically 2-3s) than falling edge d1 (typically 3-4s). Late and
wide HRs tend to be symmetric with dispersions in the order of 3-4s. The
attributed neuronal activation parameters, onset t0, and duration t1, are
interpretable in the context of the fMRI experiment. A genetic algorithm
was necessary to optimize this model, so there is a marked increase in the
computation time (12min per estimation) in comparison with the previous
model.

– Model 3: We adapted HRs both to model equations for the capillary com-
partment 2 and the tissue compartment 3. Fits for both compartments are
comparable with model 1, with slightly better values for compartment 2.
This is in agreement with the mechanism of the BOLD effect; the fMRI sig-
nal arises from the vascular compartment. Rates γ0 (inflow) and γ3 (outflow)
(see Fig. 2) were found between 0.3-0.7, rates γ1 (vessel to tissue) and γ2
(tissue to vessel) in the order of 6-9. This is interpretable as an easy transfer
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(of oxygen) between the vascular and tissue compartment, while the slug-
gish (active) effect of vascular dilatation and constriction was modeled by
low inflow and outflow rates. Onset times t0 were always below 1s, and the
duration in the order of 4-7s. With the current formulation and optimization
approach, this model needs the rather high amount of computation time of
32min per waveform.

5 Discussion

The description of the HR by a model function is considered as an advantage
because it provides a compact and concise parameterization of the HR shape.
Current choices for model function are arbitrary, since none is based on a com-
prehensive physiological model. Our preference for the Gaussian function in pre-
vious studies was only justified by the fact that we observed the best fits in a
non-linear estimation procedure.

In this study we tested the feasibility of separating “neuronal” from “vascu-
lar” parameters by introducing complex HR model functions. Separating hemo-
dynamic from neuronal factors is highly desirable in cognitive research, not only
to better characterize the neuronal mechanisms of a cognitive task, but also to
better understand the reasons for interindividual differences in terms of “good”
and “bad” responders in fMRI experiments.

From experiences with model 2 we confirmed that asymmetries are present in
HRs. By including parameters to adapt to asymmetries, marked improvements
in the fits were achieved, especially with brief stimuli and early responses. The
introduction of the convolution operation in the modeling context allowed us to
separate parameters. However, no experimental justification yet exists for the
designation as neuronal or vascular properties other than the conformance of
results with the current understanding of cognitive processes involved in the
example fMRI study. However, it is rather easy to design fMRI experiments
better targeted towards a justification of this hypothesis.

The non-linear regression model from (1) and (14) allows the use of complex,
highly non-linear functions in our problem domain. We had to resort to a costly
optimization method (the genetic algorithm) and to averaged waveforms instead
of using single trial data directly. From this feasibility study we learned that it is
possible to derive rather narrow limits for hemodynamic modulation parameters.

An interesting reformulation of the compartment model follows from the
observation that oxygen delivery to the tissue compartment obeys a Hill-type
equation [11,27], i.e. transfer rates γi from the vascular to the tissue compartment
are non-linear functions of the oxygen tension. At least in healthy subjects, this
functional dependency is well described and thus may be introduced in a more
complex formulation of the compartment model in 7. Since usually only a few
timesteps per trial are recorded, there is an upper bound for the parameter
number for any model function.

We regard HR modeling as a new tool in fMRI data analysis which will
lead to a deeper understanding of the mechanisms underlying the physiological
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and neuronal basis of brain functioning. Models as proposed in this paper open
another approach for investigating the dynamical properties of the brain.
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Abstract. This paper describes largely automated methods of creat-
ing connected, 3D vascular trees from individual vessels segmented from
magnetic resonance angiograms. Vessel segmentation is initiated by user–
supplied seed points, with automatic calculation of vessel skeletons as
image intensity ridges and automatic estimation of vessel widths via
medialness calculations. The tree–creation process employs a variant of
the minimum spanning tree algorithm and evaluates image intensities
at each proposed connection point. We evaluate the accuracy of nodal
connections by registering a 3D vascular tree with 4 digital subtraction
angiograms (DSAs) obtained from the same patient, and by asking two
neuroradiologists to evaluate each nodal connection on each DSA view.
No connection was judged incorrect. The approach permits new, clini-
cally useful visualizations of the intracerebral vasculature.

1 Introduction

Neurosurgeons and interventional radiologists must often occlude blood vessels
during vascular procedures. The risk of stroke to the patient depends largely
upon the collateral flow provided by other parts of the circulation. It is therefore
important for the clinician to visualize vascular connections in order to make
correct decisions about vessel occlusion.

Three types of medical images provide vascular information. The first is by 3D
data acquisition, as computed tomographic or magnetic resonance angiography
(CTA or MRA). These studies do not explicitly define vascular connections.
The second method is digital subtraction angiography (DSA), which produces
localized projection images of the circulation in a form that is usually difficult to
interpret in 3D. Indeed, neither of these imaging methods provides the clinician
direct, 3D information about vascular connections.

The third method of vascular visualization, currently under development by
several commercial companies, is 3D reconstruction of a series of DSA images
obtained in an arc [14]. Each contrast injection opacifies a vascular subtree that

A. Kuba et al. (Eds.): IPMI’99, LNCS 1613, pp. 308–321, 1999.
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is visualized from multiple points of view. The subtree is then reconstructed into
3D using an approach similar to that used to create CT datasets. This approach
still does not provide the necessary connectivity information, however. Although,
in theory, one could create a connected vascular map of the entire circulation
by performing hundreds of contrast injections, reconstructing each sequence into
3D, and then concatenating the results with a knowledge–based approach, the
time required and the toxicity of the contrast agent preclude such methods.
The fundamental problem is that, like MRA and CTA, 3D–DSA provides the
clinician only visualizations based upon image intensity values.

We share this interest in 3D DSA reconstruction [3,4,5,6]. However, we be-
lieve that the utility of 3D–DSA is severely limited without an associated directed
graph description of the vasculature. A symbolic representation of vascular con-
nectivity is necessary in order to estimate collateral flow to a region, to simulate
catheter motion through a 3D vascular tree, or to permit ready identification on
projection images of safe occlusion points. It is exactly this kind of information
that the clinician needs to know. No current imaging modality (MRA, DSA, or
3D–DSA) can provide this kind of information directly.

This paper describes methods of producing directed graphs of the intracere-
bral vasculature from segmented MRA data. The same approach could also be
applied to 3D–DSA images. We intend these graphs for use under conditions
in which errors may produce patient injury. Four requirements must be met in
order for these graphs to be clinically useful. First, the segmentation must be
accurate and complete in the region of interest. Second, the parent–child associ-
ations must be correct. Third, the accuracy of the construct must be evaluable.
Finally, editing and display tools are required.

This paper discusses issues 2–4 above. Our MRA segmentation method is
described elsewhere [2] and is only outlined here. The current report focuses
upon automated methods of producing directed graphs from segmented vessels.
We evaluate the accuracy of nodal connections in a final tree by comparison of
projections of our construct to the “gold standard” of DSA. Finally, we describe
editing and display tools. Our aim is to provide symbolic vascular descriptions
that can be used effectively under clinical conditions of high risk.

2 Issues in Vascular Model Creation and Testing

This study employs both MRA and DSA images. This section outlines four im-
portant facts about the intracerebral circulation and the two imaging modalities
employed. The term “vessel” refers to an unbranched, 3D, vascular segment.

First, an MRA contains vessels not seen by DSA. Human beings usually
have 3 intracerebral arterial circulations arising from different parent vessels.
An MRA provides a 3D image that shows all 3 circulations simultaneously. A
DSA, however, provides 2D projections of child vessels opacified following focal
injection of contrast. An angiogram therefore depicts flow only within a single
subtree. Since an MRA visualizes all 3 circulations, it contains information a
DSA does not.
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Second, a DSA contains projections of vessels not seen by MRA. A DSA fills
vessels of many widths. An MRA tends to contain only the larger vessels. DSA
therefore provides more vascular detail than MRA. Many MRA studies also do
not include the full head. A DSA therefore contains information an MRA does
not.

Third, both DSA and MRA contain distortion errors that may interfere with
MRA–DSA registration. DSAs contain geometrical distortions such as pincush-
ion effects. We (and others) can largely correct such errors. The distortions pro-
duced by MR are more difficult. Although machine–specific and patient–specific
flow errors can be reduced or eliminated [12,13], it is more difficult to correct
distortions at a tissue–air interface. Such errors are reported to displace objects
by as much as a centimeter [7,13] and tend to occur at the skull base and brain
surface.

Finally, the human intracerebral circulation is complex, plethoric, and vari-
able. Multiple vessels exist in the same region of space. The track of an individual
vessel can contain tight loops. Even the 3 major circulatory groups are connected
differently in different patients via the Circle of Willis at the base of the skull.
It is thus impossible to create a single model applicable to all patients. Fig. 1
illustrates the circulation’s complexity, the differences between DSA and MRA,
and an example of MRA segmentation. The segmentation method is outlined
later.

(a) (b) (c)

Fig. 1. DSA and MRA. (a) Left internal carotid DSA from the front. DSAs show only
a portion of the circulation. No vessels fill on the right side or back of the head; these
areas are supplied by different parent vessels. (b) Volume rendered MRA from below.
Vessels occupy the entire head but detail is missing. (c) Vessels segmented from the
MRA shown in B and projected from the same point of view. An aneurysm is at image
center

This study creates a directed graph from segmented MRA vessels and tests
the accuracy of nodal connections by projecting each parent–child connection
against a sequence of DSA images obtained from the same patient. Evaluation is
only possible for the set of vessels the two imaging modalities hold in common.
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Registration is imperfect at the skull base and for some peripheral vessels close
to the brain surface.

3 Methods

3.1 Image Acquisition and Image Distortion Correction

The vessel segmentation method does not require a specific image acquisition
protocol, and is applicable to both CT and MR data. For this study, 3D, time
of flight MRA was performed in a Siemens 1.5 T Vision unit with a quadrature
head coil and with magnetization transfer suppression. Images were acquired in
the axial projection over a 7.6 cm volume, using 69 contiguous 1.1 mm sections
and an x and y spacing of 0.85 mm. Machine–specific distortion errors were
evaluated by imaging a Siemens multi–purpose phantom. The major problem
found was a 10% error in interslice spacing, which our software now corrects.

We use DSAs to evaluate the connections made by the tree creation program.
The case analyzed in this report employed four 459 × 484 pixel DSA images
(AP, lateral, LAO, and modified LAO) obtained from a portable Diasonics OEC
digital angiographic unit. The field of view was variously 8 or 12 degrees. This
report also includes a picture of a vessel tree created from a different patient’s
MRA and registered with a high resolution (1024 × 1024 pixel) lateral DSA
obtained using a Siemens Multistar digital angiographic unit.

Major distortions in the 2D images were corrected by imaging a finely milled
crosshair phantom grid placed on the image plane. Phantom images were ob-
tained using a variety of fluoroscopic positions. Each DSA was then corrected
for distortion via a landmark–based system and interpolation by triangles to
adjust the spatial location of each pixel. The greyscale value at each (x,y) point
in the corrected image was then determined by interpolation. For the highly dis-
torted OEC images, the image size after correction was 476 × 476 pixels (pixel
size 0.3 mm).

3.2 MRA Segmentation

The MRA segmentation method makes use of the geometry of blood vessels. As
outlined below, extraction of a vessel involves 3 steps: definition of a seed point,
automatic extraction of an image intensity ridge representing the vessel’s central
skeleton, and automatic determination of width at each skeleton point. Further
details are provided by Aylward [2].

Extraction of each vessel begins from a user–supplied seed point. The user
views a set of MRA slices and clicks on a point within a vessel, simultaneously
supplying a rough estimate of that vessel’s width. The method then automati-
cally extracts the central skeleton of the indicated vessel beginning from the seed
point. Vessels can be viewed as 3D tubular objects delineated from background
by contrast differences. This combination of geometry and intensity means that
blurring the image creates a central intensity ridge along each vessel. This in-
tensity ridge is extracted via the height ridge definition:



312 E. Bullitt et al.

Define: I as the intensity at x,

H as the Hessian of I at x,

vi and ai the eigenvectors and associated eigenvalues of H

where a1 < a2 < a3.

Then for the program to classify x as being on a ridge, it must be true that:

a2/
√

a2
1 + a2

2 + a2
3 ∼< −0.5 , (1)

v1 · ∇I ∼= 0 and v2 · ∇I ∼= 0 . (2)

Equation 1 states that most of the local curvature should be captured by
the two principal components of the Hessian (hence 0.5) and that the curvature
should be negative, corresponding to a ridge rather than to a valley.

The width of the vessel is automatically estimated at points along its central
skeleton. The method takes advantage of the fact that vessels have nearly circular
cross–sections. The width of a tube about a central skeleton point is proportional
to the scale that produces a maximal response from a cylindrical medialness
measure. Define M(x, s) as the response from convolving the image at x with an
extruded Laplacian of a Gaussian kernel aligned with the central skeleton and
at a scale s. Then the radius r of the vessel at x is:

r ∼= 0.5 ∗ arg-maxs{M(x, s)} . (3)

3.3 Characteristics of Segmented Vessels

The output of the segmentation program is a set of unbranched, directed, 3D
skeleton curves with an associated width at each point. Important characteristics
of the segmentation include the following.

1) The segmentation is largely complete when compared to volume rendered
images of the initial MRA [3]. Figure 1 gives an example.

2) As MRA datasets are noisy, the segmentation may include spurious ves-
sels. One of the requirements for providing an accurate graph description is
elimination of spurious curves.

3) Segmented curves representing true vessels are often long and extend past
multiple branchpoints. Figure 2A shows the projection of the skeleton of a single
segmented vessel.

4). The gap between the extracted vessel skeletons of a true parent–child pair
is usually very short and in the order of a millimeter (Fig. 2C).

5) During segmentation, no new vessel is allowed to occupy territory previ-
ously defined by another. Segmentation therefore tends to stop at “Y” branch-
points.
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(a) (b) (c)

Fig. 2. Characteristics of extracted vessels. (a) An individual vessel skeleton (white)
projected against a DSA. The white ball at the tip indicates flow direction. The curve
is long. (b) The same vessel shown in (a) and its parent vessel. The parent begins as
the carotid artery, extends into the middle cerebral trunk, and follows a path into a
small middle cerebral branch (arrow). (c) Magnification of the parent–child connection
region. The 1 mm distance between the segmented vessel skeletons (arrow) is so short
that it cannot be seen on this projection

6) Each extracted skeleton curve consists of an ordered series of 3D points
and thus has a direction. However, this direction is determined during extraction
and may not correctly model the direction of blood flow. Figure 3 illustrates the
three types of “Y” connections produced. For two of these three cases, the tree
creation protocol must modify the child’s flow direction during connection with
a parent vessel.

V1 V1 V1

V2 V2 V2

(a) (b) (c)

Fig. 3. “Y” connection of segmented vessels: flow redirection. Arrows indicate the
direction of flow in segmented vessels prior to connection. Child vessel V2 is about to
connect to parent vessel V1. (a) The direction of flow in V2 is correct. No adjustment
is needed. (b) Flow direction in V2 is incorrect and must be reversed. (c) V2 must be
broken and the flow reversed in the left half of the vessel
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3.4 Tree Creation

The protocol for connecting segmented vessels uses both linear distance measure-
ments and the 3D image intensity data in suspected regions of connection. Both
“I” connections (connection of 2 endpoints) and “Y” connections (connection of
an endpoint with an intermediate point on a segmented vessel) are permitted;
“X” connections are not. All allowed connections therefore involve at least one
endpoint of an extracted vessel’s skeleton curve.

A version of the minimum spanning tree algorithm is employed. The user
views a projection of the segmented vessels and interactively selects one or more
roots. A maximum 3D–connection distance is set (default 2 mm) as is a max-
imum intensity ratio (default 0.75), described below. The program then auto-
matically builds a set of trees by progressively attaching a child to the connected
base until no orphan remains whose connection meets both distance and image
intensity requirements.

On each iteration, the orphan is selected whose connection provides the min-
imum “connection value”. Figure 3 shows the 3 allowed types of parent–child
connection. For each orphan–parent, the program estimates the 3 pairs of possi-
ble connection points and then inspects the image data. A line is drawn between
each point pair in the 3D image. A hollow, concentric cylinder of radius larger
than that of the child is then constructed along this axis. The average image
intensities of the cylinder and line are expressed as a ratio. A low ratio (high
central intensity and low peripheral intensity) suggests a valid connection. The
“connection value” is a weighted sum of this ratio (4 x ratio) with the linear dis-
tance between connection points. The orphan with the lowest connection value
is added next. As noted earlier, the flow direction in segmented data may not
be correct. When appropriate, the protocol therefore reverses flow in the child
(Fig. 3B) or splits the child and reverses flow in one segment (Fig. 3C).

As shown later, noise in the MRA results in the extraction of multiple spuri-
ous curves that are processed along with curves representing true vessels. These
spurious vessels are almost entirely eliminated during tree creation as we start
from a given root, examine only connections involving an endpoint, and allow
only connections involving short distances and fitting the image intensity data.

3.5 Tree Editing and Tree–Based Display

The 3 cerebral circulations are variably connected at the skull base through the
Circle of Willis. Our methods cannot automatically detect the direction of flow in
these connections. The program therefore provides editing tools and the ability
to load a DSA as a background bitmap to help the user separate or connect
major trees of interest.

During tree creation, each parent orders and marks the position of each child
as the child is added, and each child marks its parent. It is therefore relatively
simple to provide a set of tree–based editing tools. More specifically, the user may
click on a projection point to a) delete proximal and/or distal vessel segments
and associated subtrees, b) delete a vessel with associated subtrees, c) disconnect
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a subtree from a parent and reconnect to a user–selected parent or to a specific
parent point, and d) reverse flow in a vessel with automatic recalculation of child
order and position. All changes are implemented in 3D.

Similarly, a variety of display options are available. One may click on a vessel
projection to view that vessel’s subtree, the vessel and its parent in isolation,
or the set of connections from that vessel to the root. One may even simulate
passage of a catheter by progressively clicking along a desired path; only the
distal vessel and its appropriate descendents will be shown.

The case analyzed in this study is that of a left carotid circulation that fills
the anterior cerebral and left middle cerebral groups. Following segmentation of
the left half of the supratentorial portion of an MRA, a single vascular tree was
created with the left carotid as root. The editing tool was then used to delete
the distal posterior communicator and right A1 segments (with simultaneous
automatic deletion of all descendents of these vessels) to produce a single vascular
tree that contained only the vascular groups shown by DSA.

3.6 Evaluation by DSA Images

Each 3D vascular tree may contain dozens of connections. Connection accuracy
can be evaluated by the gold standard of angiography. We superimpose a pro-
jection of each 3D tree upon a series of DSA images obtained from a variety of
angles. Each nodal connection can then be examined individually in light of the
information provided by DSA.

Registration of segmented vessels with DSA is done as described by Liu [11].
The 3D/2D registration process uses as primitives 4–8 2D curves extracted from
the DSA and an equivalent number of 3D curves extracted from the MRA.
The program then optimizes a viewplane based disparity measure based on the
iterative closest point paradigm between the DSA skeletons and the projections
of the MRA skeletons. Newton’s method on the pose parameters in 3D is used
to refine the solution iteratively.

Four different DSA views of the left carotid circulation were available for the
case analyzed in this paper. All four views, together with registered projections
of our 3D vascular tree, were given to two neuroradiologists for evaluation. A
variety of viewing options were available, including stepwise progression through
the set of connections such that only one parent, child, and connection were
projected (and color coded) at one time.

Each radiologist filled out a form in which each connection was judged as:
1) correct, 2) partially correct (a minor error of no clinical consequence), or 3)
incorrect. A fourth category “?” indicated a miscellaneous problem, such as an
extraneous vessel or indeterminable parentage.

For a vessel connection evaluable under the first 3 categories, the global
rating for that connection was taken as the worst rating given. For example, a
connection that was judged as incorrect on even one view was judged as globally
incorrect. For vessels and vessel connections falling into the fourth category
(“?”), analysis was performed in two ways: as if the vessels had been removed
from analysis and as if the vessels had been judged incorrect.
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Statistical analysis for this test case was summarized using confidence in-
tervals for both the proportion completely correct and the proportion clinically
acceptable (completely or partially correct). Confidence intervals were computed
using StatXact, as described in Johnson et.al. [10,16]. As the confidence inter-
vals were not independent, a Bonferroni correction was utilized so as to present
a 97.5 confidence interval for each proportion.

The confidence intervals were calculated in the following manner. Suppose
that p represents the true probability of success (correct or clinically acceptable,
depending on the case). It follows that the distribution of the number of successes
in N trials may be described as:

Pr ( T = t | p ) =
(

N

t

)
· pt · (1 − p)N−t . (4)

After observing the number of successes (t) in the N trials, 97.5% confidence
intervals were computed by finding (pL, pU ), where:

Pr ( T ≥ t | pL ) = 0.0125 and Pr ( T ≤ t | pU ) = 0.0125 . (5)

If t = 0 it follows that pL = 0. Likewise, if t = N it follows that pU = 1.

4 Results

Figure 4 illustrates a DSA with a superimposed projection of the constructed left
carotid tree during the stages of tree creation. Figure 4A shows the skeletons
of all extracted vessels prior to processing. There is an enormous amount of
noise. Following automated tree creation (Fig 4B) the noise is almost entirely
eliminated. Figure 4C shows the result after exclusion of connections to the
posterior and right carotid circulations via point and click operations.

Two modifications to the final tree were made before giving it to the neu-
roradiologists for evaluation. A small branch that probably represented noise
was deleted. More significantly, flow within the vessel shown in Fig. 2A was
reversed. This extracted vessel terminated 0.8 mm from a peripheral middle
cerebral branch and originated 1.1 mm from its proper parent. The distances in-
volved were too short to make good use of intensity evaluations at the proposed
connection point. The resultant connection error was fixed by point and click
editing.

The final tree comprised 25 vessels out of the initial 140 used as input data.
One of these vessels was a root with no parent. Twenty–four vessel connections
were therefore available for evaluation.

On formal evaluation, not one of the nodal connections was judged as incor-
rect by either neuroradiologist. However, both radiologists judged 22 connections
as fully correct and questioned or faulted two others. Reviewer A felt there was
insufficient image data to adequately evaluate two cases. Reviewer B judged
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two connections as “partially correct” (containing a minor error of no clinical
significance). Both reviewers agreed that one connection was questionable; they
disagreed about the second connection in question with each reviewer accepting
as fully correct the connection that the other reviewer queried.

(a) (b) (c)

Fig. 4. Skeletons of projected 3D vessels are white. (a) Extracted vessels projected
upon a DSA. There is much noise. (b) Projected vessels following tree creation with
left carotid as root. Almost all noise is eliminated, but connections remain to the
right carotid and posterior circulations. The arrow points to the right carotid artery, a
legitimate vessel connected to the left carotid circulation, but one that does not receive
flow from this patients left carotid. (c) Final tree after point and click deletions to clear
the right and posterior circulations

Statistical evaluation was performed on each reviewer’s response to deter-
mine the 97.5% confidence intervals for both the proportion entirely correct and
for the proportion clinically acceptable. For reviewer B, who marked two con-
nections as partially correct, these intervals were respectively (70%, 99%) and
(83%, 100%). For reviewer A, who marked two connections as “?”, results were
calculated in two ways: with the 2 connections removed from analysis and with
the 2 connections viewed as fully incorrect. For the case in which 22 of 22 con-
nections were deemed correct, the confidence interval for both the percentage
entirely correct and the percentage clinically acceptable was (82%, 100%). For
the case in which 22 of 24 connections were considered correct and 2 incorrect,
the confidence intervals for the proportion entirely correct and for the proportion
clinically acceptable were both (70%, 99%).

Tree–based description of the vasculature permits a variety of useful view-
ing options not otherwise available. Figure 5 shows a sequence of images that
simulate progressive passage of a catheter through a vascular tree. When this
viewing mode is selected, clicking on a vessel’s projection point will display only
the distal portion of that vessel and its relevant descendents. The tree shown is
the same as that in Fig. 4, but from a different point of view.
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(a) (b) (c)

Fig. 5. Simulation of catheter passage through a tree by point and click. Projections
of the skeletons of segmented vessels are in white. (a) Catheter is in the carotid artery.
The anterior cerebral and middle cerebral groups fill. (b) The catheter passes into one
of the three middle cerebral trunks. The anterior cerebral group and the 2 other middle
cerebral trunks do not fill. (c) The catheter passes distally. Only a few small branches
fill

5 Discussion

The rapid rise of interventional neuroradiology has underlined the need for indi-
vidualized 3D maps of the intracranial vasculature. This paper describes creation
of vascular trees from segmented MRA data.

The proposed task is made difficult by the complexity of the vasculature
and because MRA datasets are noisy. Segmentation is difficult. In addition,
any segmentation that includes large portions of the circulation is also likely to
include spurious objects (Fig. 4A). The creation of meaningful vascular trees
therefore not only requires correct determination of parent–child relationships
but also the elimination of spurious vessels produced by noise.

Several groups have segmented a few vessels from MRA and have registered
them with DSA [1,7,8,18]. Extraction is usually limited to large vessels, however,
and no tree description is provided. Gerig and colleagues provide images that
suggest more complete extraction [9,15,17]. This group also suggests graph–
based description of the intracerebral vasculature [9,17]. However, the number
of vessels actually included in their graph description appears small [17]. These
graphs have also not been clinically tested for accuracy. It is therefore difficult
to compare them with those produced by the methods described here.

5.1 Disadvantages of Our Approach

A potential disadvantage of our segmentation protocol is that it provides geo-
metrical information alone. We do not use the MRA flow direction data used
by others [9,15,17,18]. We therefore do not know flow direction in the Circle of
Willis. This report employs a DSA to segregate major vascular groups. It would
be preferable to eliminate this step. One solution may be to use the width in-
formation of segmented data, since arterial flow is normally directed from wider
arteries into narrower ones.



3D Graph Description of the Intracerebral Vasculature 319

(a) (b) (c)

Fig. 6. Connectivity error produced by missing MR data. (a) 3D vascular tree com-
prised of segmented vessels (white) whose skeletons are projected upon a DSA
(1024 × 1024). The topmost MR section is given by a dotted line. (b) Enlargement
of the indicated region in (a). The segmentation has a gap at the top of a loop (arrow)
because the MR is incomplete. A connectivity error is produced and the distal portion
of the loop connects incorrectly to a nearby vessel. (c) Connectivity and flow correction
by manual editing. Changes are implemented in 3D

A limitation inherent to any method of determining nodal connections is
that missing data may produce connectivity errors. There are at least 3 reasons
why our segmentations may contain gaps. First, if the MRA does not cover a
sufficient volume of the head, vascular loops will be truncated. In such cases the
graph description either fails to include the distal part of the loop or, worse,
falsely connects the distal loop to a neighboring vessel. Figure 6 provides an
example for a patient not included in this study.

A second reason for gaps in the data is that our segmentations require a
user–supplied seed point for each vessel. If the user does not inspect the image
data carefully, a faint but important vessel may be missed. A more automated
approach is preferable. Our group is actively pursuing solution to this problem,
and initial results from fully automated, problem specific extraction methods
are promising. Finally, an MRA may fail to visualize vessels containing slow or
turbulent flow. We have no solution to the connectivity problem produced by
missing vessel segments other than that of manual editing.

A final disadvantage of our approach is that, for some types of surgical plan-
ning, the amount of detail provided by MRA may be insufficient. The current
study analyzes only the accuracy of nodal connections and the presence of extra-
neous data. It does not address the issue of missing vessels except as such vessels
influence the accuracy of nodal connection. We are therefore developing methods
to provide a 3D map at an angiographic level of detail by reconstructing sets of
DSA images and building upon the 3D base provided by MRA [3,4,5,6].

5.2 Advantages of Our Approach

Despite these limitations, our approach has several advantages, many of which
are inherent to the segmentation method itself. First, our segmentation method
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is capable of tracking an individual vessel for long distances. Second, the ex-
tractions do not appear to jump from one vessel into another or to extend for
noticeable distances into patches of noise. Third, the segmentation of each true
vessel is close to complete, so that in the majority of cases the parental and
child connection points are within 1–2 voxels of each other. This feature makes
it possible to enforce tight connectivity requirements during tree creation and
to deal effectively with the problem of spurious vessels produced by noise.

Another major advantage of our approach is that the computations are rea-
sonably fast and inexpensive. Extraction of a full MRA takes 20–30 minutes,
registration of segmented vessels with a DSA takes about 10 minutes, and tree
creation is performed in seconds. All programs run well on a Pentium 220 ma-
chine under Windows. All programs require less than 64 megabytes of memory.

The ability to provide accurate graph descriptions of the vasculature will
benefit both surgeons and interventional neuroradiologists. Figure 5 provides
one example of how we intend to use these methods. Specifically, we intend to
help guide endovascular procedures by tracking the position of the catheter and
placing each vessel projection within a 3D context.

Although further testing is required before we fully know the strengths and
limitations of the method, these results are highly encouraging. We have ported
all programs to the Windows environment and are writing user interfaces suitable
for clinicians.
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Abstract. We propose to use statistical models of shape and texture
as deformable anatomical atlases. By training on sets of labelled ex-
amples these can represent both the mean structure and appearance of
anatomy in medical images, and the allowable modes of deformation.
Given enough training examples such a model should be able synthesise
any image of normal anatomy. By finding the parameters which min-
imise the difference between the synthesised model image and the target
image we can locate all the modelled structure. This potentially time con-
suming step can be solved rapidly using the Active Appearance Model
(AAM). In this paper we describe the models and the AAM algorithm
and demonstrate the approach on structures in MR brain cross-sections.

1 Introduction

It has been recognised for some time that the ability to match an anatomical
atlas to individual patient images provides the basis for solving several important
problems in medical image interpretation. Once the atlas has been matched to a
particular image, structures of interest can be labelled and extracted for further
analysis. Matching to an atlas also defines the registration between different
images of the same patient - allowing information obtained at different times or
from different imaging modalities to be combined - and the non-rigid registration
of images of different patients - allowing population studies to be analysed in a
common frame of reference. Same-patient data fusion is sometimes approached
directly as a rigid registration problem (particularly in the brain) but the atlas
matching approach is more general.

Given its central importance, the atlas-matching problem has received con-
siderable attention. Two main approaches can be identified: landmark-based -
in which key points or surfaces in image and atlas are brought into alignment;
and image-based - in which an atlas image is allowed to deform to achieve as
close a match as possible between corresponding pixel/voxel intensity values in
the deformed atlas and patient image. In either case, a dense correspondence
is established between atlas and image, allowing labels and image values to be
transferred between the two frames of reference. The landmark-based approach
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relies on extracting landmark points/surfaces on the basis of local image struc-
ture, then establishing correspondences between atlas and image landmarks. We
have shown previously that this approach can be made efficient and robust if
a statistical model of shape (representing the possible spatial arrangements of
landmarks) is used to constrain the solution to the correspondence problem via
an Active Shape Model [13]. Once landmark correspondences have been estab-
lished a dense correspondence is obtained by interpolation. The image-based
approach has the advantage that all the data are used in establishing the dense
correspondence. To set against this is the disadvantage that shape statistics
cannot easily be used in establishing the match – typically, arbitrary elastic or
viscous regularisation terms are used to limit the degree of deformation allowed.
Recently Wang and Staib [25] have described a method of incorporating statisti-
cal shape information into an image-based elastic matching algorithm. Although
they show that this leads to more accurate results, shape and intensity match-
ing are combined in an ad hoc way and the method is slow. In this paper we
describe a unified approach to matching an atlas to patient images using both
shape and intensity information. We show how a statistical appearance model
(atlas), describing allowable variation in shape and intensity, can be constructed
from a set of example images. We also describe an efficient Active Appearance
Model (AAM) algorithm for matching the model to new images by minimising
pixel/voxel intensity differences, subject to statistical constraints captured by
the model. We illustrate the method applied to 2-D MR images of the brain,
using an atlas containing all the important sub-cortical structures, and present
quantitative results demonstrating that our method achieves accurate matching
in a few seconds on a modern PC.

2 Background

The inter- and intra-personal variability inherent in biological structures makes
medical image interpretation a difficult task. In recent years there has been
considerable interest in methods that use deformable models, or atlases, to in-
terpret images. One motivation is to achieve robust performance by using the
atlas to constrain solutions to be valid examples of the structure(s) modelled.
Of more fundamental importance is the fact that, once an atlas and patient im-
age have been matched – producing a dense correspondence – anatomical labels
and intensity values can be transferred directly. This forms a basis for automated
anatomical interpretation and for data fusion across different images of the same
individual or across similar images of different individuals. For a comprehensive
review of work in this field there are recent surveys of image registration meth-
ods and deformable models in medical image analysis [19,18]. We give here a
brief review covering some of the more important points.

Bajcsy et. al. describe an image-based atlas that deforms to fit new im-
ages by minimising pixel/voxel intensity differences [2]. Since this is an under-
constrained problem, they regularise their solution by introducing an elastic
deformation cost. Christensen et. al. describe a similar approach, but use a vis-
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cous flow rather than elastic model of deformation, and incorporate statistical
information about local deformations [9,8]. This results in more accurate match-
ing, but is computationally expensive. Both approaches require good initialisa-
tion to converge to a satisfactory solution since the deformations allowed are
not constrained to be anatomically plausible. Landmark-based methods involve
three steps: locating the landmarks, establishing correspondences, and warping
the image or atlas to align the corresponded landmarks. Bookstein describes an
elastic matching approach based on the use of thin plate splines [3] – he assumes
that landmarks have been identified and corresponded manually. Subsol et. al.
[23] extract crest-lines, which they use to establish landmark-based correspon-
dence. They use these to perform morphometrical studies and to match images
to atlases.

We have previously shown that a statistical deformation model can be used
to simultaneously locate landmarks and establish image-atlas correspondences
[12]. We obtain a parameterised statistical model of the domain of ‘legal’ shape
variation from a set of training images. An Active Shape Model (ASM) is used
to search for local image structure consistent with each of the landmarks, whilst
constraining the configuration of landmarks using the statistical shape model.
Typically, landmarks are closely spaced around the boundaries of structures of
interest. A dense image-atlas correspondence can be established using thin plate
splines. The original scheme was described in 2-D - it has been extended to 3-D
by Hill et. al. [16] and Szekely et. al. [24].

None of the approaches outlined above is ideal. The use of a statistical defor-
mation model allows rapid, reasonably robust matching and provides a principled
basis for constraining deformation during matching. The ASM algorithm does
not, however, use the image evidence particularly efficiently – only the intensity
data in the vicinity of landmark points affects the final solution. The image-
based approaches of Bajcsy et. al. [1] and Christensen et. al. [9] use the image
evidence more efficiently, but allow arbitrary deformations. Wang and Staib [25]
have recently attempted to incorporate statistical shape information into an
image-based elastic matching approach. They do this by using a method very
closely related to an ASM to find boundary landmarks in the image. An addi-
tional elastic matching term is added to the matching criterion, to encourage the
image boundaries to coincide with the atlas boundaries. This is a rather ad hoc
approach and the method is computationally expensive. In this paper we seek
to unify the image-based and statistical modelling approaches in a principled
way, leading to a method that is fast, robust and makes optimal use of both the
image data and prior knowledge of the variability present in the class of images
to be analysed.

The Active Appearance Model (AAM) approach that we describe also draws
on other previous work. Cootes et. al. describe a model of the position-intensity
surface, allowing full synthesis of the appearance of objects that are variable in
shape and intensity [11]. They do not, however, describe a plausible matching
algorithm. Nastar et. al. describe a related model combining physical and statis-
tical modes of deformation [20]. Although they describe a matching algorithm
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it requires very good initialisation. Jones and Poggio use a model capable of
synthesizing faces and describe a stochastic optimisation method to match the
model to new face images [17]. The method is slow but can be robust because of
the quality of the synthesized images. Edwards et. al. also describe models of the
combined shape and intensity appearance of faces [14]. They describe how the
models can be matched to new images using an ASM; the method is fast, but
does not make full use of the image data. Our new AAM approach is an exten-
sion of this idea, using all the information in the combined appearance model to
match to the image. Sclaroff and Isidoro describe Active Blobs for tracking [22].
Their approach is similar to our AAM, though an Active Blob is derived from
a single image rather than a training set of images. The example is used as a
template, allowing low energy shape deformations and simple intensity variation.
In contrast, AAMs learn what are valid shape and intensity variations from a
training set.

3 Active Appearance Models

This section describes our statistical appearance models and outlines the basic
AAM matching algorithm. A more comprehensive description is given in [10]. An
AAM contains two main components: A parameterised model of object appear-
ance, and an estimate of the relationship between parameter errors and induced
image residuals.

3.1 Appearance Models

An appearance model can represent both the shape and texture variability seen
in a training set. The training set consists of labelled images, where key landmark
points are marked on each example object. For instance, to build a model of the
sub-cortical structures in 2D MR images of the brain we need a number of images
marked with points at key positions to outline the main features (Fig. 1).

Given such a set we can generate a statistical model of shape variation by
applying Principal Component Analysis (PCA) to the set of vectors describing
the shapes in the training set (see [13] for details). The labelled points, x, on
a single object describe the shape of that object. Any example can then be
approximated using:

x = x̄ + Psbs (1)

where x̄ is the mean shape vector, Ps is a set of orthogonal modes of shape
variation and bs is a vector of shape parameters.

To build a statistical model of the grey-level appearance we warp each exam-
ple image so that its control points match the mean shape (using a triangulation
algorithm). We then sample the intensity information from the shape-normalised
image over the region covered by the mean shape. To minimise the effect of global
lighting variation, we normalise the resulting samples.
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Fig. 1. Example of MR brain slice labelled with 123 landmark points around the ven-
tricles, the caudate nucleus and the lentiform nucleus

By applying PCA to the normalised data we obtain a linear model:

g = ḡ + Pgbg (2)

where ḡ is the mean normalised grey-level vector, Pg is a set of orthogonal modes
of intensity variation and bg is a set of grey-level parameters.

The shape and appearance of any example can thus be summarised by the
vectors bs and bg. Since there may be correlations between the shape and grey-
level variations, we concatenate the vectors, apply a further PCA and obtain a
model of the form

(
Wsbs

bg

)
= b =

(
Qs

Qg

)
c = Qc (3)

where Ws is a diagonal matrix of weights for each shape parameter, allowing
for the difference in units between the shape and grey models, Q is a set of
orthogonal modes and c is a vector of appearance parameters controlling both the
shape and grey-levels of the model. Since the shape and grey-model parameters
have zero mean, so does c.

Note that the linear nature of the model allows us to express the shape and
grey-levels directly as functions of c

x = x̄ + PsW−1
s Qsc , g = ḡ + PgQgc. (4)

An example image can be synthesised for a given c by generating the shape-
free grey-level image from the vector g and warping it using the control points
described by x.

For instance, Fig. 2 shows the effects of varying the first two shape model
parameters, bs1, bs2, of a model trained on a set of 72 2D MR images of the
brain, labelled as shown in Fig. 1. Figure 2 shows the effects of varying the first
two appearance model parameters, c1, c2, which change both the shape and the
texture component of the synthesised image.
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bs1 varies by ±2 s.d.s bs2 varies by ±2 s.d.s

Fig. 2. First two modes of shape model of part of a 2D MR image of the brain

c1 varies by ±2 s.d.s c2 varies by ±2 s.d.s

Fig. 3. First two modes of appearance model of part of a 2D MR image of the brain

3.2 Active Appearance Model Matching

We treat matching as an optimisation problem in which we minimise the differ-
ence between a new image and one synthesised by the appearance model.

Given a set of model parameters, c, we can generate a hypothesis for the
shape, x, and texture, gm, of a model instance. To compare this hypothesis with
the image, we use the suggested shape to sample the image texture, gs, and
compute the difference, δg = gs − gm. We seek to minimise the magnitude of
|δg|.

This is potentially a very difficult optimisation problem, but we exploit the
fact that whenever we use a given model with images containing the modelled
structure the optimisation problem will be similar. This means that we can learn
how to solve the problem off-line. In particular, we observe that the pattern in
the difference vector δg will be related to the error in the model parameters.

During a training phase, the AAM learns a linear relationship between δg
and the parameter perturbation required to correct this,

δc = Aδg. (5)

The matrix A is obtained by linear regression on random displacements from
the true training set positions and the induced image residuals (See [10] for
details).

We can use (5) in an iterative matching algorithm. Given the current estimate
of model parameters, c, and the normalised image sample at the current estimate,
gs, each iteration proceeds as follows:
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– Evaluate the error vector δg = gs − gm

– Evaluate the current error E = |δg|2
– Compute the predicted displacement, δc = Aδg
– Set k = 1
– Let c′ = c − kδc
– Sample the image at this new prediction, and calculate a new error vector,

δg′

– If |δg|2 < E then accept the new estimate, c′,
– Otherwise try at k = 0.5, k = 0.25 etc.

This is repeated until no improvement is made to the error, |δg|2, and con-
vergence is declared.

We use a multi-resolution implementation, in which we iterate to convergence
at each level before projecting the current solution to the next level of the model.
This is more efficient and can converge to the correct solution from further away
than search at a single resolution.

For example, Fig. 4 shows an example of an AAM of the central structures
of the brain slice converging from a displaced position on a previously unseen
image. The model could represent about 10000 pixels and had 30 parameters of
c. The search took about a second on a modern PC. Figure 5 shows examples
of the results of the search, with the model points found superimposed on the
target images.

4 Results of Experiments

We have applied our approach to 2D slices taken from similar positions in 28 3D
MR images of the brain. The in-slice resolution is 1mm and the between slice
resolution 1.5mm. A total of 72 slices were used, two or three from each brain
image. Ground truth for the structures of interest (ventricles, caudate nucleus
and lentiform nucleus) was annotated by hand using expert radiologist input.

A set of ‘leave-one-brain-out’ experiments were performed to test the perfor-
mance of our appoach.

We trained a model using all the examples except those from one brain, then
ran the AAM to convergence on each of the excluded slices. We measured the
quality of fit of the texture model, and the errors in the model point positions
compared to the original labelling. We missed out each brain in turn, and av-
eraged the results.. Table 1 summarises the results. It includes the results of
‘leave-all-in’ experiments for comparison, in which the model was used to search
the training set. This gives an upper bound on performance.

In addition we give the errors obtained when the model is fit directly to the
labelled points - the ‘best fit’ column. This gives a measure of the best possible
model fit.

The texture difference is given as the RMS difference between the intensities
synthesised by the model and those in the target image over the modelled region.
The units are those of grey-level. The full range of grey-levels in the image was
about 140 units, with noise of about 7 units (s.d.). Notice that in the miss-1-out
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Initial 2 iterations 6 iterations

16 iterations (converged) original

Fig. 4. Multi-resolution AAM search from a displaced position

experiments the texture error found by search is better than that when fitting
to the hand labelled points. This is because the search is able to compromise
point position in favour of reducing texture error.

The point error is given as the mean distance between corresponding model
and image label points (Pt-Pt) and as the mean distance between model points
and the labelled image boundary (Pt-Bnd). Close examination of the hand la-
belled points suggests there is noise in their placement which may contribute
considerably to the measured results.

The code was written in C++ and run on a 166MHz Pentium II under Linux.
The mean time per model match was about five seconds for a 30 parameter,
10000 pixel model. This would take around one second on a modern PC.

Table 1. Performance of AAM at matching brain model to images (± s.d.)(See Text)

Measure Miss-1-Out Leave-all-in
Search Best Fit Search Best Fit

Texture Error 12.8 (±3.1) 14.6 (±2.8) 10.9 (±2.2) 8.4 (±1.5)
Pt-Pt Error (pixels) 2.4 (±0.7) 0.9 (±0.3) 1.7 (±0.4) 0.4 (±0.07)
Pt-Bnd Error (pixels) 1.2 (±0.3) 0.6(±0.2) 0.9 (±0.2) 0.3(±0.05)
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Fig. 5. Results of AAM search. Model points superimposed on target image

4.1 Examples of Failure

Figure 6 shows two examples where the AAM has failed to locate boundaries
correctly on unseen images. In both cases the examples show more extreme shape
variation from the mean, and it is the outer boundaries that the model cannot
locate. This is because the model only samples the image under its current loca-
tion. There is not always enough information to drive the model outward to the
correct outer boundary. One solution is to model the whole of the visible struc-
ture (see below). Alternatively it may be possible to include explicit searching
outside the current patch, for instance by searching along normals to current
boundaries as is done in the Active Shape Model [12]. This is the subject of
current research. In practice, where time permits, one can use multiple starting
points and then select the best result (the one with the smallest texture error).

Fig. 6. Detail of examples of search failure. The AAM does not always find the correct
outer boundaries of the ventricles (see text)
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5 Discussion and Conclusions

We have demonstrated that a deformable anatomical atlas can be built using
statistical models of shape and appearance. Both the shape and the appearance
of the atlas can vary in ways observed in the training set. Arbitrary deformations
are not allowed. Matching to a new image involves minimising the difference
between the synthesised atlas image and the target. This can be achieved rapidly
using the Active Appearance Model matching algorithm.

The AAM may not always give optimal results, but it would be straightfor-
ward to use a general purpose optimiser (e.g. Simplex or Powell [21]) to ‘polish’
the final fit.

Though we only demonstrated on the central part of the brain, models can
be build of the whole cross-section. Figure 7 shows the first two modes of such
a model. This was trained from the same 72 example slices as above, but with
additional points marked around the outside of the skull. The first modes are
dominated by relative size changes between the structures.

c1 varies by ±2 s.d.s

c2 varies by ±2 s.d.s

Fig. 7. First two modes of appearance model of full brain cross-section from an MR
image

The appearance model relies on the existence of correspondence between
structures in different images, and thus on a consistent topology across exam-
ples. For some structures (for example, the sulci), this does not hold true. An
alternative approach for sulci is described by Caunce and Taylor [7,6].
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The approach has been demonstrated in 2D, but is extensible to 3D. The
main complications are the size of the model and the difficulty of obtaining well
annotated training data. Each mode of the texture model is the same size as an
image - if many modes are used, the model could be rather large. Obtaining good
(dense) correspondences in 3D images is difficult, and is the subject of current
research [4,5,24,15].

We hope to be able to match the models to different modalities by maximis-
ing mutual information, rather than minimising intensity errors. During search
we would form an ‘information difference’ image, measuring the areas in the
target image not well predicted by the model, and use this to update the current
parameters.

We have shown how statistical models of appearance can represent both the
mean and the modes of variation of shape and texture of structures appearing
in medical images. Such models act as deformable anatomical atlases, in which
the allowed deformation is learnt from a training set. The Active Appearance
Model algorithm gives a fast method of matching the atlas to new images.
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1 Introduction

Our aim was to investigate and further develop a system of analysis of complex
left ventricular wall kinetics. The proposed method is specifically adapted to
gated myocardial perfusion SPECT data. The unique properties of gated SPECT
data in this respect are the lack of fiduciary points, the relatively low spatial
resolution and the conservation of total counts during the cardiac cycle

In gated blood-pool studies, contrast ventriculography and echocardiography,
individual points of the ventricular wall are not immediately identified. There
may be some structures (valve plane, leaflets) which can serve as fiduciary points,
but generally the ventricular wall is identified by an edge, i.e. as the interface
between cavity and myocardium. Wall segments are identified from one moment
of the cardiac cycle to the next by the intersection between an axis and an edge
defining the wall. Motion is thus defined as the displacement of this intersection.
The axis can be defined in various ways: as originating at the center of the cavity,
as perpendicular to the long axis of the cavity, or as the normal to the edge. In all
cases the intersection between axis and edge identifies the segment and identifies
the motion. Therefore, motion unrelated to the axis cannot be detected (Fig. 1).

2 Materials and Methods

The data are gated myocardial perfusion SPECT images, consisting of eight
or sixteen isometric image volumes in a 643 format. Each image volume maps
the distribution of the tracer (99mTc–Sestamibi or Tetrofosmin) in the chest of
the patient as count rate densities during a segment of the cardiac cycle. The
images are reconstructed from 63 or 64 projection images, obtained from a dual
or triple–head scintillation camera (Anger type). Reconstruction is achieved by
filtered back-projection with a restorative band-pass filter (Buttherworth). After
the acquisition and prior to the reconstruction, the data are corrected for under-
sampling due to slight variations in the cycle length. The reconstructed images
are centered over the myocardium, zoomed and reoriented such that the long axis
becomes parallel to the z–axis of the image volume. The center of the cavity is
placed approximately at the pixel location 32,32,32. The final zoomed image
contains the myocardium as the main structure with high count rate densities.
Non-structured background has lower count rate densities, but occasional sub-
diaphragmatic high densities remain (representing intra-luminal gut activity).

A. Kuba et al. (Eds.): IPMI’99, LNCS 1613, pp. 334–339, 1999.
c© Springer-Verlag Berlin Heidelberg 1999
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Fig. 1. Tracking Intersection of Axis and edge

At the time of the acquisition the tracer has largely left the vascular system
and is located mainly in the intracellular space. The exception is that part of the
tracer that is excreted into the gut through the biliary tract. In the reconstructed
images this affects the sub–diaphragmatic count rate densities only, but in equal
fashion and degree through the eight or sixteen image volumes. For this reason
the total count rate in the images is conserved. The changes in the position of
myocardial elements during the cardiac cycle therefore affect only the spatial
distribution of the count rate densities.

The proposed method rests on two principles of which only the first can
be derived from first principle: First, the changes in the spatial distribution of
the count rate densities affect an integral function of the count rate densities
computed along any axis. Second, the actual changes can be recovered from
those integral function computed along congruent angles.

2.1 Integral Counts Analysis

The total image activity, S(t), is constant for all values of t (and all projection
directions). The integral function P (L, 0) defines the percentile activity at x =
L in time–bin 0. The location in x of the percentile P at t > 0 is found by
linear interpolation. The displacement vector D(x, t) is the function showing the
difference in location of a given percentile P between image 0 and image “t”
(Fig. 3). The values of D(x, t) are periodic over “t” for all values of x and the
value of D(x, 0) is zero for all values of x.

Fig. 2. Effect of out–of–plane motion on in–
plane analysis

Fig. 3. Computing the displacement func-
tion
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2.2 Analysis Along Multiple Congruent Angles

This derivation assumes that the analysis is performed for an integral function
defined in “x”. In this section we derive the same values, assuming that the
image has been rotated by an angle θ. As an example let θ be an angle in the
x, y planes. There is no rotation in the y, z or x, z planes. The rotated volume
has a coordinate system (x′, y′, z′). The transformation is defined by: z = z′,
y = x′ sin(θ), x = x′ cos(θ). The integral analysis is now performed in x′. The
vector D(x′, t) can be decomposed in an x and an y component. In this example
there is no z component. This approach can be expanded to 3 dimensions.

2.3 Reconstructing Three–Dimensional Motion Vectors

Three–dimensional image vectors X, Y , and Z are then reconstituted as follows:
Consider the component D(x, t) computed after the rotation θ, Φ: the vector
is re–projected in a volume D′(x′, y′, z′, t) in such a way that D′(x′, y′, z′, t)
= D(x, t). The volume D′(x′, y′, z′, t) is then rotated by −θ, −Φ and added to a
volume Dx(x, y, z, t) which was initially set to zero. The same operation produces
the vectors Dy(x, y, z, t) and Dz(x, y, z, t). The working hypothesis is that the
vector volumes Dx, Dy, and Dz contain the x, y, and z motion components of
the count rate densities, and, that the multiplicity of sampling angles provided
motion resolution at a near pixel level.

The congruent sampling, and the method of sampling, makes the measures
independent of orientation and makes no reference to a cardiac related coordinate
system. The assumption is that all motion can thus be detected and is fully
expressed in the X, Y , and Z components. Furthermore, each pixel has motion
characteristics, rather than those pixels that are at the edge or the center of the
ventricular wall. If a particular motion is judged to be of particular significance,
it can be derived a posteriori . As an example we consider radial motion and
rotational motion.

3 Results

Preliminary results address the following questions.

1. Can motion that is usually detected with a preset cardiac coordinate system
be recovered by the integral approach, which uses a posteriori coordinates?

2. Does the integral approach give some regional information, or does the in-
formation remain global?

3. Can complex motion be derived?
4. Is the method insensitive to orientation?

The motion is displayed by the phase and amplitude of the derived displacement
vector. From the displacement in X, Y , and Z we have derived motion toward
the long axis (in plane), motion towards the center of the cavity (off plane) and
angular or rotational motion (in plane). The results of the analysis are displayed
by looking at the central orthogonal slices (long axis horizontal, long axis vertical
and short axis as in Figs. 4–7).
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Fig. 4. X, Y , and
Z amplitudes

Fig. 5. X, Y , and
Z phases

Fig. 6. Cylindrical
radial, Short
axis Angular and
spherical radial
amplitudes

Fig. 7. Short
axis Angular and
spherical radial
phases

Figures 4–7 shows the amplitudes and phases of the first harmonic of the
displacement functions DX, DY and DZ, and derived motion (radial, spherical
and angular). The first three rows are the representation of the central horizontal
long axis slices. Next we show the central vertical and finally the central short
axis slices. Case A is a mathematical phantom of a shrinking cylinder. The other
columns represent 5 patient cases.

All questions can be answered positively. We can indeed recover centripetal
motion, in plane and off plane, and local or regional particularities can be de-
tected.

4 Discussion

If ventricular wall kinetics adds information to the myocardial perfusion studies
or indeed yields important clinical information by itself, one can expect that
any improvement in the definition of it would increase its clinical utility. One
possible improvement is the inclusion of complex motion or deformation anal-
ysis. Complex motion includes off–plane motion and rotational motion. Most
described methods (for the analysis of gated myocardial SPECT) cannot detect
complex motion. Our proposal addresses the problem directly. The ultimate goal
is not to develop a method that could effectively use all the information yielded
by MRI or echocardiography, but to enrich at no or little cost the information
yielded by myocardial perfusion studies.

One important feature of gated SPECT is that the data are truly three–
dimensional, isotropic and that all parts of the image are recordings of the same
cardiac cycles. The truly volumetric aspect of the data has generally not been
fully utilized, with many authors restricting the analysis to motion or deforma-
tion in a plane [15,13,12,11] or in complex combinations of planes [6,16]. We



338 M.L. Goris and R. L. Van Uitert Jr.

believe that cross plane displacement makes “in plane” analysis fundamentally
incomplete, that the polar 3D method is an improvement (Fig. 2), but that
motion detection independently of an a–priori cardiac coordinate system is the
ultimate answer.

The method is experimental and in an early phase. There is no derivation
from first principle that assures that the method should work. Specifically, we do
not know if the additive decomposition of the integral function, taken at different
spatial angles, will yield sufficiently accurate displacement vectors at the pixel
level. We are, however, able to predict which factors could have a critical effect
on the outcome. In addition, we have methods to test if motion can be effectively
characterized.

The basic assumption is that the unstructured background and the sub–
diaphragmatic structured background remain invariant during the cardiac cy-
cle. This assumption seems physiologically reasonable, but noise could produce
regional variations, which in turn could influence the integral function. In ad-
dition, the original (centered, zoomed and reoriented) image contains non–zero
pixel densities in all pixels of the cube. However, after a full rotation and map-
ping into another cube, some pixels (at the corners) cannot be mapped in the
new volume. The effect of clipping the counts (setting all count rate densities
< T equal to zero, while maintaining those > T at their original value) must
be investigated. The level of T could be defined by the functional criterion we
defined earlier [7]. Another possibility is masking. All pixels outside the largest
sphere inscribed in the image volume can be set at zero, or all pixel outside of a
mask surrounding the myocardium. Masking could be based on a segmentation
described earlier [14,2,4,9,10].

It should be mentioned at this point that one method was described [3]
which was at the same time truly three–dimensional and did not use a preset
coordinate system. The method was based on a three–dimensional matching
method, originally described by Besl [1] and later Feldmar [5]. The method was
initially utilized to match static myocardial SPECT images [2,8,9,10]. Declerck
[2] adapted the method to four dimensions. The analysis however favors some
directions and works only on endo– and epicardial surfaces.

In conclusion: Our preliminary results show that we are able to extract kinetic
information from gated myocardial perfusion SPECT images using prototype
analysis algorithms. The results also support our hypothesis that a combined
analysis of perfusion and kinetics from the same perfusion SPECT images will
enable more accurate classification of patients with a variety of perfusion defects.
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Abstract. Blood pool contrast agents for Magnetic Resonance Angiog-
raphy (MRA) have a prolonged intravascular half-life and therefore have
the potential for visualizing large anatomical regions with high reso-
lution. A potential problem is that both the arteries and veins are en-
hanced, resulting in venous overprojection in Maximum Intensity Projec-
tions (MIPs), which are most widely used for inspecting MRA datasets.
In this paper a novel approach for improved arterial visualization is intro-
duced. It is based on suppressing the major overlapping veins in MIPs.
The approach is illustrated on MRA images of the peripheral vasculature
acquired using the blood pool agent NC100150. The resulting visualiza-
tions are compared to Digital Subtraction Angiography (DSA) images.

1 Introduction

Conventional noninvasive MRA is an accepted clinical technique which facilitates
high quality depiction of the cerebral vasculature. For abdominal and peripheral
imaging, the effectiveness of conventional MRA is limited owing to some intrinsic
limitations of the technique. Especially complicated flow patterns and in-plane
flow may result in signal voids which can lead to an overestimate of a stenosis
[1].

The introduction of Gadopentetate dimeglumine as a T1 shortening contrast
agent [2] has considerably increased the clinical applicability of MRA. Since the
shortened T1 of blood provides contrast, rather than the flow dynamics, the
technique is less sensitive to flow conditions. Moreover, high contrast can be
obtained in shorter examination times, enabling breath hold sequences which
reduce motion artifacts. A shortcoming of Gadopentetate dimeglumine is its
rapid diffusion in extracellular space. This limits the imaging window to a few
minutes since the background signal increases as well.

Ultra-small SuperParamagnetic Iron Oxide (USPIO) particles are a new class
of MRI contrast agents. They were primarily designed for their T2* relaxation
properties, but also exhibit strong T1 shortening properties in blood [3], and
can therefore also be used for Contrast Enhanced (CE) MRA. The primary
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advantage of these blood pool agents is their long intravascular half-life, which
paves the way for steady state MRA. Longer examination times enable coverage
of larger anatomical regions at higher spatial resolution.

An important drawback of blood pool agents is the simultaneous enhance-
ment of arteries and veins. This can significantly hamper diagnosis of e.g. the
main arterial branches [4,5,6]. An anatomical region in which this is certainly
the case is the leg, which is highly vascularized and has arteries and veins run-
ning close to each other. Either the acquisition should be modified in order to
construct selective arterial and venous angiograms, which is nontrivial, or ret-
rospective image processing is required. In this paper we introduce one possible
approach for enhanced arterial visualization, which is based on the idea of re-
moving the most important overlapping veins, prior to performing a MIP.

2 Image Acquisition

Patients were included as a part of a Phase II study of NC100150 injection
(Nycomed Imaging AS, Oslo). Imaging was performed on a 1.5 T system (Gy-
roscan NT, Powertrak 6000, Philips Medical Systems, Best, The Netherlands),
using a gradient echo technique. Images showed strong vascular enhancement,
both in the arteries and veins. In Fig. 1 we show a coronal slice of the upper
leg/abdominal region and a corresponding MIP. Owing to the adjacency of the
major arteries and veins, the status of the arteries can not be determined from
these images, even if MIPs from different angles are reconstructed. Therefore, en-
hanced arterial visualization is considered an important step towards the clinical
use of MRA blood pool agents [4,5,6].

Fig. 1. Coronal slices in the abdominal/upper leg region (left) and the corresponding
MIP (right)
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3 Enhanced Arterial Visualization

Existing techniques for vessel enhancement and segmentation cannot straightfor-
wardly be used for blood pool MRA images. The adjacency of a large number of
small arteries and veins makes segmentation more complicated than in conven-
tional MRA images. To overcome these problems, we devised a relatively simple
technique which is limited to the automated segmentation of a small number of
the main overlapping veins, which are selected by an operator. This approach has
two main advantages. First, the algorithm is fast since it only uses local com-
putations. This distinguishes the method from approaches that first compute
all features in the image that have a vessel-like shape, which are subsequently
grouped. Results from our procedure are readily available, which is important for
clinical use. Secondly, the segmented veins are removed rather than performing
a segmentation of the arteries. Thus, the status of the arteries is judged from the
original data, which limits the chance of introducing errors in diagnosis, owing
to imperfections in the segmentation. The procedure is schematically drawn in
Fig. 2.

III

Fig. 2. Outline of the algorithm to enhance arterial visualization in MIP images. In
the images the main arteries (grey), the major veins (black) and other overlapping
venous structures (dark grey) are shown. First (I), the major venous structures are
segmented and suppressed in the MIP. Subsequently (II), a targetted MIP (grey band)
is performed, which removes most remaining overlapping vessels

The tools which are required for this procedure are (i) a reliable segmentation
tool for the veins, and (ii) an interactive tool to perform targetted MIPs in
arbitrary directions. The procedure for vessel segmentation is adapted from an
algorithm to determine the central vessel axis for the preoperative evaluation of



Enhanced Artery Visualization in Blood Pool MRA 343

patients who are scheduled for minimally invasive treatment of an abdominal
aneurysm [7] and is illustrated in Fig. 3.

Fig. 3. Schematic of vessel segmentation. The user initializes two starting points on
the central vessel axis. Segmentation is performed in a plane perpendicular to the
vessel segment which is defined by these points. The gravity point of the segmentation
becomes the new point on the vessel axis. A next point is predicted by extrapolation,
and the procedure iterates until the desired vessel segment is tracked

First, two points are selected which define a first segment of the central vessel
axis. A plane perpendicular to this segment is constructed, where the boundary
of the vessel is determined using dynamic programming. Here a transformation
into polar coordinates is made with the point on the central vessel axis as origin.
A minimal cost path is found based on the image gradient magnitude in the
direction of a ray originating from the origin:

∂L

∂r
(x, σ) =

|r.∇L(x, σ)|
|r| . (1)

Using the gradient in the direction of the ray assures that only transitions from
high signal (vessel) to low signal (background) are considered being part of the
lumen boundary. The gradient is computed by convolving with a Gaussian of
scale σ = 2 in order to be more robust to noise. Based on the estimated contour
a new point on the central vessel axis is defined by the gravity point. Based on
this point and the previous point a new point is estimated by extrapolation. The
procedure is iterated until the desired vessel segment is tracked.

4 Results

The algorithm to enhance arterial visualization has been applied to six patients
included in the study. In the left image of Fig. 4 we show a typical result of venous
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segmentation using the semi-automated tracking procedure. In this case, no user
interaction other than the initialization of the first two points was required.

Fig. 4. Venous segmentation in the upper leg and abdominal region (left), a targeted
MIP after venous suprression (middle) and the corresponding DSA image (right)

In the middle of Fig. 4 we show a MIP after the major venous structures
adjacent to the important arteries have been removed. Since other overlapping
venous structures are now relatively distant (in the original 3D data) from the
main arterial branches remaining overprojection is reduced by a targeted MIP.
Both in the DSA image and the processed MRA image a large dissection in
the right ilic artery and a stenosis can be seen, which were not visible in the
unprocessed MIP.

5 Discussion

MRA using blood pool agents has the potential for covering large anatomical
regions of interest at high resolution. However, the simultaneous enhancement
of veins and arteries hampers a quick interpretation of the images using MIPs,
and possibly limits the clinical utility of these agents.

A possible strategy, which is advantageous for a number of applications, is
the segmentation of the entire venous structure. For certain anatomical locations
with a small number of vessel structures, or for sufficiently reduced regions of
interest, this seems possible without excessive user interaction. For the entire
leg, however, it is a difficult procedure. In this paper, we investigated whether
a relatively simple procedure, which only segments the major veins which are
adjacent to the arterial branches of interest, and subsequently removes other
structures by performing targetted MIPs, yields satisfactory arterial visualiza-
tion. The method is fast, allows for user supervision and does not influence the
original data around the arteries, so that the anatomical context can still be



Enhanced Artery Visualization in Blood Pool MRA 345

assessed interactively. Results in the aortoiliac region show that the procedure
aids in diagnosis from MIPs.

There are a number of points that could be improved. Simultaneously track-
ing arteries and veins which run close along each other will avoid the chance of
including arterial voxels in the venous segmentation. Second, additional informa-
tion can be obtained during the MRA acquisition, e.g. using first pass imaging
or flow information. Developments in this area will be crucial to the clinical
applicability of blood pool agents.
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Abstract. Accurate delineation of the volumetric motion of left ventri-
cle (LV) of the heart over time from tagged MRI is an important area of
research. We have built a system that takes tagged short-axis (SA) and
long-axis (LA) image sequences as input, fits a 4D B-spline model to the
LV of the heart by simultaneously fitting knot solids to the SA and LA
frame sequences via matching 3 sequences of model knot planes to LV
tag planes for 4D tracking. The advantage of the 4D model is that 3D
material point localization and displacement reconstruction is achieved
in a single step. The generated 3D displacement fields are validated with
a cardiac motion simulator, and 3D motion fields capturing in-vivo de-
formations in a parcine model of a LV with postero-lateral myocardial
infarction are illustrated.

1 Introduction

Noninvasive techniques for assessing the dynamic behavior of the human heart
are invaluable in the diagnosis of ischemic heart disease, as abnormalities in the
myocardial motion sensitively reflect deficits in blood perfusion [9]. In MR tag-
ging, the magnetization property of selective material points in the myocardium
are altered in order to create tagged patterns within a deforming body such as
the heart muscle. The resulting pattern defines a time-varying curvilinear coor-
dinate system on the tissue. During tissue contractions, the grid patterns move,
allowing for visual tracking of the grid intersections over time. The intrinsic high
spatial and temporal resolutions of such myocardial analysis schemes provide un-
surpassed information about local deformation in the myocardium which can be
used to derive strain and deformation indices from different myocardial regions.

Previous research in analysis of tagged images includes [1,2,5,6,7]. Among
various approaches which have been proposed in the literature for analysis of
tagged images, our previous work in [4] is most closely related to this paper.
In our former paper, we proposed a B-spline solid model to concurrently track
tag lines in different image slices by implicitly defined B-spline surfaces which
align themselves with tagged points. The primary contribution of this paper is
in utilizing a knot solid to represent each pair of SA and LA frame of data and
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Fig. 1. A hyperpatch representing a small deforming cuboid enclosed by 6 tag planes

using 3 sequences of model knot planes to detect 3 sequences of LV tag planes.
Once the 4D model is able to generate a B-solid which varies continuously over
time, a 3D motion field between any two time instants is immediately available.
The advantages of the B-spline approach over previous approaches to tagged MR
image analysis are: (1) B-spline interpolation is performed over 3D space and
time. (2) The movement of each myocardial point over time can be captured very
accurately by setting the three parameters u, v, w of the model to any fractional
value. (3) Intersections of three orthogonal tag planes and their motions are
immediately available. (4) Change of strain over time can easily be computed at
all myocardial points.

2 4D B-spline Representation

The simplest and most direct geometric element to model a time-varying solid is
a hyperpatch [3]. A hyperpatch (Fig. 1) is a patch-bounded collection of points
whose coordinates are given by continuous, four-parameter, single-valued mathe-
matical functions of the form: {x = x(u, v, w, t), y = y(u, v, w, t), z = z(u, v, w, t)}
where t is the time variable. The parametric variables u, v, and w are constrained
to the interval u, v, w ∈ [0, 1] in a hyperpatch. A point (x, y, z) inside the hyper-
patch is represented by S(u, v, w, t) and at a time instant t = t?, fixing the value
of one of the parametric variables results in an isoparametric surface within
or on the boundary of the hyperpatch in terms of the other two variables, which
remain free. Many hyperpatches tightly placed together, form a solid, and each
hyperpatch shares its six faces with six neighboring hyperpatches. In the solid
representation, ranges of u, v, w are from 0 to some integer value. For instance,
u ∈ [0, 1] denotes the first array of hyperpatches in terms of the v, w param-
eters; u ∈ [1, 2] denotes the second array of hyperpatches, and so forth. The
surface determined by setting one of u, v, w to a constant integer value is called
a knot surface or a knot plane which are the delimiting surfaces of these
hyperpatches. In a 4D B-spline model, knot planes become temporal functions,
and the 3D solid captured at each knot time instant is called a knot solid. A
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tensor product 4D B-spline model is expressed as:

S(u, v, w, t) =
I∑

i=1

J∑
j=1

K∑
k=1

L∑
l=1

pijklNi(u)Nj(v)Nk(w)Nl(t) (1)

where (I × J × K × L) is the total number of model control points; Ni(u),
Nj(v), Nk(w), and Nl(t) are B-spline basis functions which blend control points
pijkl. By changing the order of B-spline summation, a more efficient approach to
computing a multi-dimensional B-spline model results. Given any time instant
t?, a 3D grid of control points is specified that determines the 3D solid at t?. To
compute the solid at t?, let us start with calculating the u = u? isoparametric
planes. This is implemented in two steps: first we calculate all points with u = u?

value along the B-spline curves, specified by each thread of control points in the
u direction. We then calculate each B-spline surface by taking these u = u?

points from the first step as control points, obtaining the u = u? isoparametric
planes. This procedure may be mathematically stated as:

S(u?, v, w, t?) =
L∑

l=1


 K∑

k=1

J∑
j=1

Nj(v)Nk(w)

(
I∑

i=1

pijklNi(u?)

)Nl(t?). (2)

Once we are able to compute the isoparametric plane, S(u?, v, w, t?), we can
obtain the entire model at time instant t? by continuously varying u?. The
advantage of this method over the tensor product method in (1) is its efficiency
in speed, bypassing the need for multiplication of large matrices whose majority
of elements are zeros (due to B-spline bases having limited spatial extent).

3 B-spline Fitting

The tag lines on LA and SA images are formed by intersecting image slices with
one or two sequences of tag planes, respectively. From the tag lines on SA and
LA frames, the B-spline model can fit each knot solid to each frame of data by
matching 3 orthogonal sequences of knot planes to 3 orthogonal sequences of
tag planes (Fig. 2). Since these tag planes deform with the myocardial tissue,
the 4D model will then automatically interpolate the volumetric deformations
of the LV over time and 3D space. We employ the Chamfer distance to build
an objective function for fitting the tag planes. The total energy for the model,
which is to be minimized, is defined as the sum of the energy of each knot solid
which is defined by the sum of the energy of each knot plane. The energy of each
knot plane is further defined as the integral of the corresponding potential over
the knot plane surface. Thus the total energy for the model can be expressed as:

E =
Tm∑
t=1

(
Um∑
u=1

∫ ∫
Cu(S(u, v, w, t))dvdw +

Vm∑
v=1

∫ ∫
Cv(S(u, v, w, t))dudw+

Wm∑
w=1

∫ ∫
Cw(S(u, v, w, t))dudv

)
(3)
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Fig. 2. Knot solids fit temporal frames of data, each including 3 orthogonal sequences
of tag lines

where we have used Cu, Cv, Cw to denote the split 4D potentials (a separate one
for each tag plane) and Um, Vm, and Wm are the maximum knot values.

Our model is based on a 4D grid of control points and the total energy of the
model is a function of all control points. Every control point is related to frames
of data and 3 sets of tag planes. Although the potential functions are split, all
knot planes are simultaneously optimized. For energy minimization, we used the
adaptive conjugate gradient descent method which shortens the step length prior
to taking a step in the search direction that passes over the minimum point. The
process halts if the step length becomes smaller than a threshold.

4 Application to Tagged Images of the LV

We adopted a quadric-quadric-quadric-quadric B-spline model to perform vali-
dations. We utilized a cardiac motion simulator [2,8] to generate a sequence of
deformed prolate spheroidal models of the LV. The tag lines in the simulated
SA and LA images were first extracted. Then the system grouped tag lines by
each tag plane and separate 4D Chamfer distance potentials were created for
each tag plane.

The simulated data included 6 frames. Each frame included 8 SA image slices,
7 LA image slices, 14 tag planes (7 horizontal and 7 vertical) intersecting SA im-
age slices, and 8 tag planes intersecting LA image slices. The fitting iteration for
all frames took about 4.86 ms per control point on a Sun Ultra 30/300 platform.
We used an 8 × 8 × 9 × 7 grid of control points. The fitting algorithm converged
in about 30 iterations. Therefore, the total fitting process approximately took
588 seconds for 6 frames of data.

An important byproduct of our approach is that at the conclusion of fitting
knot solid to frames of data, a 4D model S(u, v, w, t) is determined. Given two
solids S(u, v, w, t0) and S(u, v, w, t1), a 3D B-spline interpolated motion field is
immediately generated by employing the computation in (2):

V(u, v, w) = S1(u, v, w, t1) − S0(u, v, w, t0) (4)

The cardiac motion simulator was used to validate the accuracy of the generated
motion fields. True 3D motion fields were first generated by the simulator. The
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Fig. 3. RMS error plots between 3D ground-truth and 3D computed motion fields for
a range of parameters of k1: Radially dependent compression, k2: torsion, k3: Ellipti-
calization in LA plane, and k7: Shear in z direction

computed V by (4) was then strictly compared with the ground-truth. Figure
3 shows RMS error plots between true and computed motion fields for a range
of deformation parameters of the simulator. The method was also applied to
images collected from a parcine model of a LV at baseline and after induction of
a postero-lateral myocardial infarction (MI). Results from this experiment are
illustrated in Fig. 4. The motion fields displayed were computed from the knot
solid at frame 11 and the knot solid from frame 0 (see (4)). The akinetic areas
of the myocardium can readily be recognized from the post-MI motion fields.

5 Conclusions

We have built a system to fit and track tagged MRI data by the 4D deformable
B-spline model. The presented framework for fitting model knot solid to frames
of data by matching three orthogonal sequences of knot planes to three sequences
of tag planes for volumetric tracking is the primary contribution of this article.
After the tag lines were extracted and grouped by tag planes, 4D Chamfer dis-
tance potentials were computed and used in fitting B-spline knot solids to frames
of data. The generated 3D motion fields were validated with a cardiac motion
simulator, and methods were applied to in-vivo data sets.
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Abstract. The estimation of soft tissue deformation from 3D image se-
quences is an important problem in a number of fields such as diagnosis
of heart disease and image guided surgery. In this paper we describe a
methodology for using biomechanical material models, within a Bayesian
framework which allows for proper modeling of image noise, in order to
estimate these deformations. The resulting partial differential equations
are discretized and solved using the finite element method. We demon-
strate the application of this method to estimating strains from sequences
of in-vivo left ventricular MR images, where we incorporate information
about the fibrous structure of the ventricle. The deformation estimates
obtained exhibit similar patterns with measurements obtained from more
invasive techniques, used as a gold standard.

1 Introduction

There is a class of medical image analysis problems where the goal is the esti-
mation of the displacement field of an object or a group of objects. Examples
of such problems are left ventricular (LV) wall motion estimation [9,10,11] and
image guided surgery[4]. In most of these applications, only a relatively sparse
set of points, often called landmarks, can be reliably followed on the object from
the image data and the estimation of the displacements of remainder of the es-
timation task can be thought of as interpolation, in other words our problem is:
given the displacements of such landmarks, find the best displacements for the
rest of the region of interest. Often, however, the displacement estimates of the
landmarks are corrupted by noise. In this case, the task becomes an approxima-
tion problem, where now the goal is to estimate a displacement field that is close
to the originally estimated displacements at the landmark points, and provides
reasonable values elsewhere.
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2 Methods

We will pose this general problem in a Bayesian-Estimation framework where the
goal is to find the displacement field û which maximizes the posterior probability:

û =
arg max

u
p(u|um) =

arg max
u

(p(um|u) × p(u)
p(um)

)
(1)

where u is the output displacement field and um are the original sparse displace-
ment estimates. The prior probability of the measurements p(um) is a constant
once these measurements have been made and therefore drops out of the mini-
mization process. The first term p(um|u) will be derived from the noise model
assumed in estimating the landmark positions and the second term p(u), the
prior probability of the displacement, will be derived from a mechanical model.
For a more detailed discussion see[8].

2.1 Mechanical Model-based priors

As previously demonstrated by Christiansen et al. [2] there is a correspondence
between an internal energy function and a Gibbs-Prior. If the mechanical model
is described in terms of an internal energy function W (C, u), where C repre-
sents the material properties and u the displacement field, then we can write an
equivalent prior probability density function p(u) (see equation 1) of the Gibbs
form:

p(u) = k1 exp(−W (C, u)). (2)

We will derive the model term W by a biomechanical model; this can be de-
scribed in terms of an internal or strain energy function which depends on the
deformation of the object and its intrinsic material properties. There are differ-
ent classes of such models depending on the application; in the case of the left
ventricle we will use an anisotropic linear elastic model which will allow us to
incorporate information about the preferential stiffness of the tissue along fiber
directions[5]. If this method were to be applied to model brain deformation, one
could use a model adapted from [6].

Deformation and Strain: Consider a body B(0) which after time t moves and
deforms to body B(t). A point X on B(0) goes to a point x on B(t) and the
transformation gradient F is defined as dx = FdX. The deformation is expressed
in terms of the strain tensor ε. Because the deformations to be estimated in this
work are bigger than 5%, we use a finite strain formulation, the logarithmic
strain εL, which is defined as: ε = ln

√
F.F ′. Since the strain tensor is a 3 × 3

symmetric 2nd-rank tensor (matrix), we can re-write it in vector form as, e =
[ε11 ε22 ε33 ε12 ε13 ε23]′. This will enable us to express the tensor equations in a
more familiar matrix notation.
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Strain Energy Function: The mechanical model can be defined in terms of a
strain energy function. The simplest useful continuum model in solid mechanics
is the linear elastic one which is of the form: W = e′Ce where C is a 6×6 matrix
and defines the material properties of the deforming body. The left ventricle of
the heart is specifically modeled as a transversely elastic material to account for
the preferential stiffness in the fiber direction, using the matrix C:

C−1 =




1
Ep

−νp

Ep

−νfp

Ef
0 0 0

−νp

Ep

1
Ep

−νfp

Ef
0 0 0

−νfpEf

Ep

−νfpEf

Ep

1
Ef

0 0 0

0 0 0 2(1+νp)
Ep

0 0
0 0 0 0 1

Gf
0

0 0 0 0 0 1
Gf




(3)

where Ef is the fiber stiffness, Ep is cross-fiber stiffness and νfp, νp are the
corresponding Poisson’s ratios and Gf is the shear modulus across fibers. (Gf ≈
Ef/(2(1+νfp)). If Ef = Ep and νp = νfp this model reduces to the more common
isotropic linear elastic model. Alternatively a different form of W altogether
could be used such as the one from a Rivlin-Mooney Material Model[6].

2.2 Landmark displacement estimation

In our work, the original displacements on the outer surfaces of the myocardium
were obtained by using the shape-tracking algorithm whose details where pre-
sented in [11]. We note that other displacement data, including that from mag-
netic resonance tagging [9,10], could also be used.

The shape-tracking algorithm also produces a set of confidence measures for
each match. We model these estimates with a Gaussian noise model and generate
the term p(um|u) of equation (1) to be

p(um|u) =
1√

2πσ2
e

(u−um)2

2σ2 (4)

where σ2 is set to be the reciprocal of the confidence of the particular displace-
ment estimate. Where no displacements estimates are available the confidence
is set to zero.

2.3 Solution using the Finite Element Method

Having defined both the model p(u) and data p(um|u) portions of the problem,
we can now minimize equation (1) to find the optimal displacement field û.
Taking logarithms and differentiating with respect to the displacement field u
results in a system of partial differential equations, which we solve using the
Finite Element Method[1]. The first step in the finite element method is the
division or tessellation of the body of interest into elements; these are commonly
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tetrahedral or hexahedral in shape. Once this is done, the partial differential
equations are written down in integral form for each element, and then the
integral of these equations over all the elements is taken to produce the final set
of equations. For more information one is referred to standard textbooks such
as Bathe[1]. The final set of equations is then solved to produce the output set
of displacements.

3 Results

In this section we present results from the application of this methodology to
ten sets of cardiac MR sequences acquired from anesthetized dogs. The resulting
3D image set consists of sixteen 2D image slices per temporal frame, and sixteen
temporal 3D frames per cardiac cycle. First the dogs were positioned in the
magnet for initial imaging under baseline conditions. The left anterior descending
coronary artery was then occluded and a second set of images was acquired.
The images were pre-segmented to extract the endo- and epi-cardial boundaries
surfaces and interactively corrected using a platform specially developed for this
purpose[7]. Then points on the corresponding surfaces were tracked to generate
the input displacement data using shape-based algorithms described in [11].
The myocardium was modeled as an anisotropic linear elastic material which
was stiffer in the fiber directions[5]; shown in figure 1. The tissue was assumed
to be 3.3 times stiffer along the fiber direction, obtained by linearization of the
non-linear model from [5], and approximately incompressible.

For each frame between end-systole (ES) and end-diastole (ED), a two step
problem is posed: (i) solving equation (1) normally and (ii) adjusting the position
of all points on the endo-and epi-cardial surfaces so they lie on the endo- and epi-
cardial surfaces at the next frame using a modified nearest-neighbor technique
and solving equation (1) once more using this added constraint. This ensures
that there is no bias in the estimation of the radial strain. Figure 2 shows a
contour map of radial strain (thickening) in a long-axis section of a normal left
ventricle and in the same animal after occlusion.

Table: Radial and Circumferential Percentage Strain Changes for Normal and
Infarcted Regions.

Percentage change Radial normal Radial Infarct Circum. Normal Circum. Infact
Our Method (Average) -16.4 % -135.1% +18.9% +77.2%
Sonomicroemeters[3] +5.6 % -150.0% +15.4% +73.3%

The validation measures used were the percentage end-systolic strain change
for the radial and circumferential components between the baseline and post-
occlusion measurements. The normal and infarcted regions where defined by
post-mortem measurements. These results are compared to measurements made
by using implanted sonomicrometers, work performed by members of our re-
search team and reported in[3], which provide highly accurate strain measure-
ments by calculating relative Doppler-based displacements, and are used as a
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Fig. 1. Fiber direction in the left ventricle as defined in Guccione et al. [5]

Fig. 2. Radial Strain at end-systole in a section normal left-ventricle (left) and post-
occlusion(right) shown in an a long-axis sectional view. Normal behavior is thickening
(positive). Note the infarct region on the right which is in darker color

gold standard. The results are summarized in the table and are consistent with
the observation that in the case of infarction the tissue thins instead of thickens,
hence there is a negative change in the radial strain and it bulges out instead of
contracting, explaining the positive change in the circumferential strain. For a
more detailed discussion see a related technical report[8].

4 Conclusions

In this paper we have described a methodology for the estimation of deformation
from sequences of 3D images of individual objects, using the left ventricle of the
heart as a key example. We believe that the best approach to this problem
involves the modeling of the mechanical properties of the object explicitly in the
language of continuum mechanics, as this makes possible the incorporation of
existing theoretical and experimental research in biomechanics, and it provides
a growth path for solving more difficult problems by naturally invoking more
sophisticated/appropriate models. In this cardiac work for example, we were
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able to easily take advantage of knowledge of fiber orientation to create a model
of the heart that is anisotropic and accounts for more of the actual properties of
the tissue. In the future, we hope to use a non-linear mechanical model which
will capture the ‘hardening’ of the tissue as it is stretched. We also note that the
only part of this work that is specific to the left ventricle is the particular strain-
energy function. By substituting an appropriate matrix C in the case of a linear
elastic material or an altogether different form of W in equation (2) altogether,
this method can be used to estimate the deformation of other objects.
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Abstract. A method for non-rigidly deforming 3D PET datasets is de-
scribed. The method uses a Lagrangian motion field description and a for-
ward deformation mapping. To regularize the deformation, an anisotropic
strain energy function is used that separately models the material proper-
ties of cardiac and background tissues. The method is applied to motion
compensation in PET so that different time frames of a cardiac sequence
may be combined.

1 Introduction

In gated acquisition of cardiac Positron Emission Tomography (PET), motion
of the heart is stopped in the images by dividing the data obtained during each
cardiac cycle into a number of different time frames, or gates. An unfortunate
effect of distributing the data into many time frames is that the statistical quality
of each reconstructed volume suffers, and the individual images appear to be very
noisy. Ideally, one would like to correct the images for cardiac motion, then add
them back together to obtain a composite image with less motion blur and better
contrast to noise properties.

We describe here a deformable motion technique that allows motion com-
pensation for subsequent combination of PET datasets. A source volume repre-
senting the heart at end systole will be deformed to match a reference volume
representing the heart at end diastole. The deformed source will then be summed
with the reference to produce a composite volume with better contrast to noise
characteristics. Though a gated cardiac study typically results in some 10 - 15
gates, each representing a short portion of the cardiac cycle, this paper will just
focus on the combination of two time frames. Unique in the approach are two
aspects. First, a non-uniform regularization constraint incorporating anisotropic
strain energy is used to model the underlying cardiac tissue. Second, a forward
deformation mapping is used which insures that each voxel in a source dataset
contributes to the calculation of a deformed volume. The work is most closely
related to 3D deformable motion work based on optical flow algorithms [1,2] and
material elastic models [3,4].

2 Motion Estimation

As is the case with most 3D deformable algorithms, this algorithm is based
on two general criteria. An image matching constraint first attempts to find

A. Kuba et al. (Eds.): IPMI’99, LNCS 1613, pp. 358–363, 1999.
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a motion field that warps a source volume to best match a reference volume.
Because numerous image matching transformations exist which equally satisfy
the image matching constraint, the solution is regularized by imposing an ad-
ditional criterion constraining motion field smoothness. This latter requirement
treats the volume as a continuously stretching and bending medium that can
only deform as is consistent with elastic material models. In our smoothness
constraint formulation, we use a pre-segmented volume which masks the heart.
This enables smoothing of the motion field to be carried out differently in cardiac
tissue than is done in the adjacent tissue and blood pool.

The motion estimation framework is described as follows. Define two 3D
density fields, a source volume, f1(r), and a reference volume, f2(r), where r =
(x, y, z) represents the voxel index. A dense Lagrangian motion field is defined
as m(x, y, z) = (u(x, y, z), v(x, y, z), w(x, y, z)) and the deformed volume of f1

is defined as f̂(r) = f1(r + m). With these definitions, we can express an image
matching error term, eI(r), and an anisotropic material strain energy term [5],
eS(r), at each voxel location r, as follows:

eI(r) = γI(f2(r) − f̂(r))2 (1)

and

eS(r) =
λ

2
(ux + vy + wz)2 + µ(u2

x + v2
y + w2

z) +
µ

2
(u2

y + u2
z + v2

x + v2
z + w2

x + w2
y + 2uyvx + 2uzwx + 2vzwy) (2)

where γI is a global scalar used to alter the balance between the two error terms,
λ and µ are elasticity terms called the Lamé constants, and where derivatives of
the motion field are denoted as ux = du/dx.

It can be seen that the λ term in equation (2) penalizes non-zero divergence
and the µ term penalizes sharp discontinuities in the motion field. For highly
incompressible fields, the Poisson ratio, ν = λ/(2(λ + µ)), approaches a max-
imum of 0.5, which yields a divergence term, λ, that approaches infinity. The
Lamé constants used in equation (2) are global constants for isotropic materi-
als. Obviously, the elastic properties of the myocardium are drastically different
from the blood pool inside the ventricle, and from the adjacent lung tissue and
air space. In this formulation, we implement an anisotropic elastic model by us-
ing a segmented voxel mask to delineate voxels representing cardiac tissue, and
represent λ and µ by vector fields instead of just two global scalars. The vector
fields for each term take on two values, one value in the region labeled cardiac
tissue, and another value in the background regions. As such, separate elastic
properties can be ascribed to cardiac tissue and to adjacent regions. We assume
here that a technique is available to obtain a reasonably correct segmentation
of the cardiac tissue from the background, though it is noted that this may not
always be a trivial task, and may itself be a formidable research question in some
cases.

Though the motion field describing the volume deformation is a one-to-one
mapping in a continuous domain, implementation in a discrete domain involves
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some subtleties that are important to recognize in the deformation of PET
datasets. Past efforts [2,3,4] have used a reverse transformation to calculate
voxel values in the deformed volume. In this Eulerian formulation, the motion
vectors describe a particle’s motion with respect to its final position. To obtain
the value of each voxel in the deformed volume, f̂(r) = f1(r − m), eight voxels
from the deformation volume are sampled at the location, r − m, and weighted
according to trilinear interpolation. Such backward sampling does not guarantee
that each voxel in the source volume will contribute to the deformed volume.
We use a Lagrangian forward sampling technique which distributes each voxel
value of the source volume using normalized Gaussian weighting in a single-pass
calculation of the deformation. Though the forward sampling scheme does not
guarantee absolute conservation of total voxel intensities, it does guarantee that
every voxel in the source volume contributes to the deformation volume. Also,
the normalized Gaussian weighting of the displaced voxels prevents artifacts in
the non-uniformly sampled deformation.

The overall minimization problem is to find a motion field consistent with
elastic material properties that best matches the deformed volume to the refer-
ence volume via a minimization of:

Etot =
∑

r

[eI(r) + eS(r)] (3)

We invoke a minimization technique similar to the approach proposed by
Zhou [2], which linearizes the calculation of an optimal deformed volume by
using a Taylor series approximation. Assuming the true motion field is m, and
the current estimate is m̃, then a Taylor series approximation of f̂(r) can be
expressed in terms of a delta motion field, (δu, δv, δw) = δm = m̃ − m, as
f̂(r) = f1(r + m̃) − ∇f1(r + m̃)δm. Substituting the expression, m̃ − δm, for
m in the constraint equations results a quadratic functional in δm that can
be minimized via the calculus of variations [6]. The resulting Euler-Lagrange
equations are solved using finite differencing techniques and a conjugate gradient
method. At each step, f̂(r) is calculated and the conjugate gradient algorithm
is used to find the best δm satisfying the equations. This delta motion field
is added to the current total motion field and the procedure is repeated. For
the results presented in this paper, ten to fifteen iterations of this outer loop
were typically required to reach a overall solution. Each conjugate gradient step
usually converges quickly, and also requires some ten to twenty iterations.

3 Results

Two cardiac phantoms were used to test the algorithm. The first is a simple
model of gated emission PET consisting of a ellipsoidal building blocks forming
the human torso [7]. The second is a finite element model (FEM) based on a
parametric prolate spheroid description of a left ventricle which has been fitted
to MRI data acquired from a canine heart [8]. Included in the model is the



Forward Deformation of PET Volumes 361

Fig. 1. Ellipsoidal phantom results

incompressible nature of cardiac tissue and non-symmetric cardiac muscle fiber
orientation.

Figure 1 shows the results on the simple model. The source volume represent-
ing end systole is seen in (a). The reference volume representing end diastole is
seen as an edge map overlaid on (a). An attempt at deforming the source volume
using an isotropic strain energy function penalizing non-zero divergence (Pois-
son ratio = 0.46) shows in (b) that the non-zero divergence in the blood pool
makes it difficult for the algorithm to find the correct deformation. Relaxing the
divergence penalty allows a better match, seen in (c). However, the best match is
obtained using an anisotropic strain energy function penalizing non-zero diver-
gence and smoothness only in the cardiac tissue (d). Mean squared error (MSE)
values between the reference volume and cases (b), (c) and (d) are 1727, 1234
and 555 respectively. Image difference maps between the reference and cases (c)
and (d) are shown in (e) and (f). These further demonstrate that the anisotropic
strain energy function produces the warped volume best matching the reference.
It is noted that in order to find a suitable deformation in case (c), the image
weighting term needed to be double the value that was used for the anisotropic
case. This is troublesome, since one would not like to weight the image matching
criteria so much that physically implausible motions are estimated.

As a display of the utility of this algorithm, (g), (h) and (i) show a com-
parison of noisy versions of the phantom summed with and without motion
compensation. Obviously, if no motion compensation is done, as seen in (h),
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Fig. 2. Parametric FEM results

then blur due to the motion is induced which severely obscures image features.
By first deforming the systole volume to match the heart shape at end diastole,
and then summing (i), the contrast to noise ratio is improved over the reference
volume alone (g). This is the desired result which allows us to combine gated
PET datasets and increase image quantification without loss of resolution.

Results using the FEM are seen in Fig. 2. A 16 element model was used
to determine the shape of the left ventricle as it was passively inflated. Here
the inflated state is used as a reference volume, and the deflated state is the
source volume. Because a parametric description of the two states is available,
the “ground truth” motion vectors may be calculated which bring any two points
into correspondence. The source volume and an edge map of the reference are
seen in (a). To better visualize performance of the deformation algorithm, tex-
ture was added to the model by giving each of the 16 elements a slightly different
voxel value. Deformed volumes using isotropic strain (b) and anisotropic strain
(c) look similar; both match the reference fairly well. MSE values with respect
to the reference are 1117 and 1002 respectively, so the anisotropic model per-
forms only slightly better with respect to this measure. Comparing motion field
magnitudes of the isotropic (d) and anisotropic (e) results verses the true mo-
tion field magnitude (f) reveals that the anisotropic model is considerably more
accurate with respect to this measure. MSE values of the true magnitude vol-
ume (f) compared to (d) and (e) are 36661 and 17481 respectively. The motion
magnitude images point out how the isotropic strain model falters in the region
where image divergence is present (in the blood pool). Since there was a zero
background in this case, the motion field error in the background region does
not induce much error in the deformed volume for the isotropic case. This would
not be true in general for real PET data where voxel intensities in the blood
pool would be small, yet not negligible.
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4 Concluding Remarks

When deforming a volume to match a reference dataset, there is always a bal-
ance between the weight of the image matching constraints and the regularization
constraints. Because numerous motion fields can produce identical deformed im-
ages, it is the function of the regularization constraints to prevent physically
unrealizable motion fields. In the deformation of real PET datasets, where con-
siderable statistical noise is present, there is always the danger of weighting
the image matching terms too greatly so that uncorrelated ”hot spots” in the
datasets are matched even though they do not originate from the same segment
of cardiac tissue. The motivation for this work was to incorporate a more realis-
tic, nonuniform elastic model into the regularization constraint so that this term
could be weighted more heavily, and thus would prevent solutions with physically
implausible motion fields. Though the technique required a prior segmentation
step, because the segmentation was only used during the regularization process,
and not during the final image warping calculation, the algorithm should not
be sensitive to minor segmentation errors. The improvements shown in this pa-
per by the anisotropic model over the isotropic strain model indicate that this
more realistic model can be worth the added expense of the requirement for a
segmented cardiac volume.
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Abstract. Inspired by the discussion in neurological research about the
callosal fiber connections with respect to brain asymmetry we developed
a technique that measures distances between brain hemispheres in a non-
Euclidean, curvilinear space. The technique is a generic morphometric
tool for measuring minimal distances within and across 3-D structures.
We applied the technique for distances from the cortical gray/white mat-
ter boundary to the cross-section of the corpus callosum. The method
uses a 3-D extension of the F*-algorithm. The algorithm uses a cost ma-
trix determined by the image data. The resulting distances are mapped
to the cortical surface and differences on the two hemispheres can be visu-
ally compared. Distances were also projected back to the corpus callosum
to represent asymmetry by comparing left and right measurements. We
can present results obtained by processing 11 3-D magnetic resonance
data sets representing a normal control group.

1 Introduction

Image analysis has become a common component to study diseases of the human
body by obtaining anatomical and functional information. Since the advent of
non-invasive magnetic resonance imaging, morphometry has become increasingly
important. The new analysis methods described here are fully 3-D processing
techniques and overcome limitations of conventional slice-by-slice analysis.

This project is driven by studying schizophrenia. In schizophrenia, changes
in the morphology of various brain structures are thought to provide important
clues to the disease related brain abnormalities, but the changes are subtle and
can barely be detectable with current interactive segmentation techniques [1,2].
Quantitative measurements on postmortem brains and on anatomical structures
segmented from magnetic resonance image data corroborate the hypothesis that
the asymmetry between the brain hemispheres is reduced at first episodes of
schizophrenia [4,8]. To date, the errors in measurements are often larger than
the effect to be studied, and interesting findings often could not be confirmed by
other research groups. Therefore, it becomes necessary to provide more accurate
measurements of brain asymmetry. Bullmore et al. [3] proposed a measurement
called radius of gyration to assess cerebral asymmetry. This measurement has
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been only applied to 2-D coronal slices. Prima et al. [12] used non-linear elastic
registration to find corresponding regions in the two hemisphere. Differential op-
erators applied to the deformation field result in measures of lateral asymmetry.

Symmetry of structures under a class of spatial transformations is a well-
defined mathematical property. However, dealing with biological structures and
the inherent variability, the mathematical approach to exact symmetry is too
strict and has to be modified. Guillemaud et al. [8] segmented the manifold of
the interhemispheric fissure and determined length between the cortical surface
and the fissure along perpendicular lines emanating from the midplane. Measures
from the left and right cortical surface result in estimates of local asymmetries
and in a quantitative 2-D asymmetry map. This paper also suggested the use of a
curvilinear coordinate system of the brain directly related to brain morphology.
The encouraging results inspired the research work presented in this paper. A
more realistic simulation of white matter fiber connections, however, would have
to include information about local fiber directions, as nicely presented in [10] and
[11], for example. The search for minimum cost paths is an 3-D extension of the
F* algorithm [5] and has similarities to the interactive live-wire segmentation in
[9]. In the context of analyzing the white matter structure of the brain we also
would like to refer to Mangin et al. [7] who proposed a discrete implementation of
conservative flow systems to analyze the white matter, in particular to detect the
corpus callosum. Due to lack of space, details of implementations are generally
omitted here, but are described in [13] (full color version).

2 Optimal Path Algorithm and Asymmetry Measurement

In our proposed approach, callosal fibers are simulated by curvilinear paths of
minimal distance running inside the white matter from the white matter bound-
ary to the interhemispheric cut through the corpus callosum. We use distance
measurements propagated along trajectories determined by the graph search
algorithm F*, extended to fit our specific needs. The distances at the white mat-
ter boundary are projected back onto the corpus callosum for a comparison of
asymmetry between the two hemispheres.

The F*-algorithm used in our implementation is based on the approach of
Tenenbaum [5], where pixels or voxels of a dataset are represented by nodes
of a graph. The edges of the graphs are defined as the 8-neighborhood in 2-D
space and as the 26-neighborhood in 3-D space. The F*-algorithm enables the
calculation of a distance map from a certain point of reference (‘seed’) to any
other point in the graph. This distance map assigns a distance-value to each node
in the graph which is based on a cost function that determines the point-related
cost of a path.

To fit our needs we have implemented several extensions of the original F*
algorithm: 1) extension to 3-D space, 2) use of a seed region instead of a single
seed point to allow multiple seed regions (see Fig. 1), 3) calculation of accurate
costs for paths running along diagonals, but each dimension needs additional
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high

low

(a) (b) (c) (d)
Fig. 1. 2-D F* distance maps representing the distance of the sea route to the closest
seed point: (a) single seed point (at Barcelona) with highlighted optimal path running
to Stockholm, (b) multiple seed points, (c) seed region (border of Ireland), (d) single
seed, cost matrix penalizing optimal paths running far off the coast

(a) (b) (c)

Fig. 2. Visualization of arbitrary optimal paths based on a constant cost matrix (b)
and based on an a-posteriori probability cost matrix (c) on an 2D MRI image (a)

correction if voxel dimensions are non uniform, 4) propagation of additional
information and measurements from the seed region to all points.

The F* algorithm needs the cost function to be stored as a matrix which
represents the point-related costs for each point. The cost matrix was modeled
to force optimal paths to run less likely through certain regions using two terms
a constant distance term and a penalty-term. The penalty term assigns high
costs to points where paths should be less likely to run through (see Fig. 1). The
resulting path lengths are not measured in unit size, requiring a modification of
the F* algorithm to additionally calculate the unit size distances.

The optimal path is not an explicit result of the F* algorithm, but they
are extracted from the distance map using a steepest descent approach to trace
trajectories back to the seed points (see Figs. 2 and 3).

So far, we have calculated distances at the white matter boundary. However
such a visualization is rather unusual and requires training. More common is a
projection of attributes to the cortical surface, which also allows a comparison
between multiple brain surfaces. We have developed a method to project the
calculated distances from the gray/white matter boundary outwards to the cor-
tex through gray matter using the F* algorithm. The projection runs along the
optimal path from the white matter boundary to the cortex (see Fig. 3).

The main problem in defining asymmetry measurements is to determine cor-
respondence. Establishing correspondence between brain hemispheres is not well
defined since the brain is not strictly symmetric and depicts structures which
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(a) (b)

7.2 cm

0.0 cm (c)

Fig. 3. Application on a 3-D brain atlas. Visualization of calculated distances on the
white matter boundary (a) and as projection to the cortex (b). Visualization (c) of
arbitrary paths and corpus callosum

appear only in one hemisphere. The approach chosen in our application is to com-
pare the distances projected back to the corpus callosum along optimal paths.
Measurements projected from both sides to one point of the corpus callosum can
therefore be compared directly for asymmetry.

We define our asymmetry measurement as the difference of the mean of the
distances after averaging the distance values separately for each side. These
differences can be visualized as a 2-D difference graph or can be projected back
to the cortex for visualization.

3 Results

The proposed algorithm has been applied on 2-D datasets without symmetry
axis like maps (see Fig. 1) and mazes to test and extend the functionality of
the F* algorithm. Further 2-D tests involved datasets with symmetry axis at
the seed region, like artificial images, images of butterflies, bats, plants and 2-D-
slices of a brain atlas. The mean distance asymmetry measure was shown to be
superior to extrema or median measures. Corresponding catchment areas on the
symmetry axis showed high variability in cases when areas were hidden behind
obstacles. In such cases the asymmetry measurement turned out to be poor.

The first 3-D test has been performed on an isotropic brain atlas. Distances
and paths were calculated and visualized (Figs. 2(a-c), 3). There were significant
visual differences observed between the two hemispheres. The difference graph
of the mean was determined from asymmetry measurement and visualized (Fig.
4). Both the asymmetry graph and the distance visualization on the cortex
demonstrated that the left hemispheric paths were longer for most parts of the
brain. Compared to 2-D, we observed a lower variance of the size of catchment
areas, but the correspondence was still not solved to our satisfaction. One reason
is that the corpus callosum is small compared to the the white matter, so rather
large areas are projected onto a single point on the corpus callosum.

As further 3-D tests, datasets of 10 control patients of an Organic Amnesia
study, varying in age and sex, have been processed. Both the corpus callosum
and the brain hemispheres were segmented manually. The segmentation of the
brain tissues has been performed using statistical classification with the Bayes-
classifier. The a posteriori probabilities were used to calculate the cost matrix.
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(a) (a) (a)

0 mm 65 mm 0 1 -1.0 mm 3 mm
Fig. 4. Application on a 3-D brain atlas. Visualization of distances (a) and of nor-
malized asymmetry measurement (b) as a projection on the cortex. Areas of smaller
distance are displayed in blue. (c) Visualization of the difference graph (left minus
right) projected on the corpus callosum

(a) (b) (c) (d)

42 mm 65 mm 37 mm 84 mm
Fig. 5. Application on real 3-D datasets: Visualization of distances projected on the
cortex from superior (a) and inferior (b) viewpoints. Visualization of the correspon-
dence as projection on the cortex (c) and of the color-coded labels on a slice (d)

Distances have been visualized (see Fig. 5) and there were again significant vi-
sual differences between the two hemispheres in all datasets. The asymmetry
measurements have not yet been calculated. We observed that manual segmen-
tation of the corpus callosum is rather poor resulting in displacements from the
interhemispheric fissure as large as a few millimeters. These displacements are
of equal size as the mean differences of the distances for the atlas.

4 Conclusions and Discussion

In this paper, we have presented a new approach to measure minimum cost
paths in a non-Euclidean curvilinear space. We use such paths as a simulation
of callosal white matter fiber tracts which are of interest in current neurological
research. We also proposed a technique to calculate a rough correspondence and
an associated asymmetry measurement. Results are promising, but the corre-
spondence especially needs improvement. The method has been applied to 11
3-D datasets so far, and the implementation is stable and reliable.

The distances determined with our method are based on the city-block met-
ric with the inherent disadvantages of showing large deviations from Euclidean
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distance measurements and of non-isotropic propagation of distances in space.
Kiryati et al. [6] have addressed this issue and have proposed a correction of the
calculated distances. We plan to incorporate this correction in a future method.
Future directions of our research include the generation of a more robust mea-
surement of asymmetry, combining curvilinear distances with explicitly estab-
lished lateral correspondence between brain hemispheres.
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Abstract. A new fully automated shape learning method is presented.
It is based on clustering a shape training set in the original shape space
and performing a Procrustes analysis on each cluster to obtain a cluster
prototype and information about shape variation. As a direct applica-
tion of our shape learning method, a 17-structure shape model of brain
substructures was computed from MR image data, an eigen-shape model
was automatically derived. Our approach can serve as an automated sub-
stitute to the tedious and time-consuming manual shape analysis.1

1 Motivation

Automated learning of shape models has direct implications in medical image
interpretation. We and others have previously demonstrated the utility of incor-
porating shape in medical image segmentation and interpretation [1]. However,
training a shape-based segmentation system is mostly done manually follow-
ing a tedious and therefore impractical process. We report a novel approach to
automated learning of shape models from examples and demonstrate its utility.

We have developed a novel solution to the problem of shape reparameteriza-
tion–alignment–averaging problem. The main difference from previously reported
methods [2,3] is that the training set is first automatically clustered and those
shapes considered to be outliers are discarded. The second difference is in the
manner in which registered sets of points are extracted from each shape contour.

2 Background and Notation

A shape instance A = {sA
i }i=1..n = {(xA

i , y
A
i )}i=1..n is a set of points in the

2-D Euclidean space. A shape instance B is called aligned to a shape instance

A if the sum of squares SS(A,B) =
n∑

i=1

[(
xA

i − xB
i

)2 +
(
yA

i − yB
i

)2
]

cannot be

decreased by scaling, rotating or translating B. In this case SS(A,B) is called
Procrustes sum of squares PSS(A,B).
1 See http://web.cse.msu.edu/∼dutanico for a complete paper and a set of results.
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The Procrustes average shape of a set of shapes {Ak}k=1..m is a shape instance
near the center of the empirical distribution of Ak’s in the shape space. For a
detailed definition, properties and ways of computing an average shape see [2].

Let A = {(xA
j , y

A
j )}j=1..p and B = {(xB

k , y
B
k )}k=1..r be two shape instances.

A match matrix M = {Mj,k}j=1..p
k=1..r is defined by:

Mj,k =
{

1, if point aj corresponds to point bk,
0, otherwise.

We consider 0-1 match matrices M corresponding to symmetric one-to-one
links (point correspondences); that is, a point aj ∈ A can have at most one
corresponding point bk ∈ B, in which case the correspondence is symmetric.
The points from both sets that have no correspondence are called outliers.
Let AM and BM be the subsets of A and B matched by M and PSS(M) =
PSS(AM , BM ). We define a search criterion to be minimized over the match
matrices space as: f(M) = [PSS(M)/n+K]/n, where n is the number of links
in M and K is a constant. This functional encodes the fact that we are will-
ing to trade a q% increase in average PSS for a p% increase in the number of
correspondences. It also helps avoid the shrinking effect described in [4].

3 Problem Definition and Solution Outline

Mathematically speaking, we present a solution to the following problem: Given
a set ofm shape instances Sk = {(xk

i , y
k
i )}k=1..m

i=1..nk
, partition it into a set of clusters

and, for each shape cluster, compute a prototype (Procrustes mean shape). The
set of shape prototypes will be used as models for detection of object instances in
new images by means of deformable template segmentation. Our shape learning
method consists of the following main steps:

Algorithm 1: Shape Learning Outline

1. For each (evenly sampled) shape Sk in the training set compute a polygonal
approximation S′

k.
2. For each j, k = 1..m perform a flexible one-to-one registration (mapping) of
S′

k to Sj . If the registration succeeds, define a set Tj,k as the subset of Sj

that corresponds (was matched) to the points of S′
k, otherwise set Tj,k = ∅.

3. Compute a pseudo-distance matrix D = {dj,k}j,k=1..m

where dj,k = PSS(Tj,k, S
′
k)/|Tj,k| if Tj,k 6= ∅ or dj,k = ∞ otherwise.

4. Set the current training set equal to the original set of m shapes:
CTS = {Sk}k=1..m. While CTS 6= ∅ do
(a) Find the shape approximation S′

i0
that has the least average distance to

the shapes Sj ∈ CTS (the best fit shape to the current training set).
(b) Extract from CTS and put in a cluster all the shapes Si1 ,..,Sip to which

S′
i0

can be fit (dik,i0 < ∞).
(c) The cluster prototype is defined as the Procrustes average of Ti1,i0 ,...,

Tip,i0 . The shape variance inside the cluster is defined as the covariance
matrix of the aligned set {Tik,i0}k=1..p.
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The shape approximations computed in Step 1 of the learning algorithm have
about three times fewer points than the original shapes in order to smooth small
shape artifacts, noise and quantitation effects and are only used to extract sub-
sets of corresponding points from the original shapes, providing an easier task for
the registration algorithm and implicitly bringing together the extracted subsets
into a common parameterization frame. Indeed, if a point si0 on a polygonal
approximation S′ is registered to si1 ∈ S1, si2 ∈ S2, ..., sim

∈ Sm (S1, ..., Sm

are original shapes that form a cluster), then by transitivity, si1 , si2 , .., sim
are

correspondents on S1, .., Sm of one vertex of an average shape. This also ensures
that the shape variation present in the original data is completely preserved if
the registration process is precise.

The employed shape registration method consists of two stages: (i) Similarity
registration of two arbitrary sets of points and (ii) Non-linear registration based
on local similarity of two curves:

Algorithm 2 (Global similarity registration)

1. Set Vmin = ∞.
2. For every pair of points (aj1, aj2) ∈ A×A

For every pair of points (bk1, bk2) ∈ B ×B do steps (a) through (e)
(a) Find the similarity transformation ψ that aligns the sets {aj1, aj2} and

{bk1, bk2}.
(b) Apply ψ to all the points in B to obtain B′.
(c) For every point bk of B′, find its nearest neighbor NN(bk) in A. If the

distance between bk and NN(bk) is smaller than a threshold T (auto-
matically set equal to 10% of the scale of B) then set a correspondence
between the two. A match matrix M between A and B is constructed in
this way. Since two points from B′ can have the same nearest neighbor
in A, we enforce on M a one-to-one correspondence requirement. That
is, allow a point to be linked to its second to fifth nearest neighbor if the
first one can be assigned to a closer point in B′, and the length of the
link does not exceed T .

(d) Compute f(M).
(e) If f(M) < Vmin then Vmin = f(M), ψmin = ψ.

3. Apply ψmin to all the points in B to obtain B′.
4. For every point bk of B′, find its nearest neighbor NN(bk) in A. If the dis-

tance between bk and NN(bk) is smaller than T then set the correspondence
between the two. A match matrix M ′ between A and B is constructed in
this way and enforced to correspond to one-to-one links.

5. Find the linear transformation ψfinal that aligns the sets AM ′ and BM ′ .

We are interested not only in computing an average shape (which is robust
to slight misregistrations) but also the shape variation present in the data set
which is best described by the set of high curvature points. Since a global linear
registration does not necessarily perform a good local registration (see [4]), we
need to locally refine the results of the global registration such that corresponding
points of high curvature from the two data sets are matched together. However,
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some high-curvature points in A may not correspond to high curvature points
in B, therefore we do not enforce this requirement explicitly, but rather through
local similarity registration and monotonicity. We define the term “local” in a
topological sense according to the natural point ordering along curves A and B.
A good registration should be monotonic, that is, preserve the topologies (point
ordering) on the two shapes.

Algorithm 3 (Monotonic, local similarity-based registration)

Input: two sets of points A and B and a set M of one-to-one links between some
subset A′ of A and a subset B′ of B obtained by global similarity registration.

1. Cyclically reorder the points of A, B and the links in M such that point a1
corresponds to point b1.

2. If the number of inversions (pairs of points ai and aj corresponding to bk
and bl -in this order- such that i < j and k ≥ l) exceeds |M|/2, reverse the
ordering of the points in A.

3. Break the smallest number of links in M such that there are no more inver-
sions. (Note that we are left with a monotonic registration).

4. For i = 1..|B| do
(a) Find a topological neighborhood of bi, [bl, bl+1, ..., bi, ...br−1, br] (the ac-

tual size of the neighborhood depends on the curvature at bi, the larger
the curvature the smaller the neighborhood) such that both bl and br
have correspondences in A, let them be al′ and ar′ with l′ < r′.

(b) Perform a similarity registration between the sets [al′ , al′+1, .., ar′ ] and
[bl, bl+1, .., br].

(c) If bi is linked to a different point in A than it was before, then record
this change in M.

5. Break the smallest number of links in M such that there are no more inver-
sions.

The third step of Algorithm 1 defines a pseudo-distance matrix D of nor-
malized Procrustes sum of squares between an approximation of a shape and an
original shape from the training set. A convenient way for obtaining shape clus-
ters based on D and at the same time helpful for cluster prototype computation
is a k-means type clustering algorithm:

1. Find a seed which is closest to the data. This is done in Step 4a of Algo-
rithm 1 by finding the shape approximation S′

i0
that best fits the current training

set (based on the average distance to the rest of the shapes). S′
i0

is going to be
used as a common ground for extracting corresponding sets of points of the same
size from as many training shapes as possible.

2. Extract from the training set and put in a cluster all shapes Sj that fit to
S′

i0
(Step 4b).
This cluster extraction procedure continues until all shapes from the training

set have been assigned to a cluster. For each cluster, the cluster prototype is the
Procrustes Average of the subsets of registered points extracted from each shape
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in the cluster. The cluster variation is defined as the 2n×2n covariance matrix of
the subsets of points used to compute the prototype (n is the number of cluster
prototype points). This variation is used by the segmentation method to reject
shape deformations that have not been seen in the training set [1].

a)

b) c)

Fig. 1. The 17 neuroanatomical structures of interest (a). Procrustes average of 25
right-ventricle shapes (b) and 28 right-globus pallidus shapes (c) with the scatter of
fits overlaid. The fits of consecutive points are drawn in different shades of gray to
show the accuracy of the registration: consecutive clouds are non-overlapping

Fig. 2. A set of 11 cistern training shapes from different patients was automatically
divided into clusters (main cluster (C1) and three secondary clusters). The registration
of the best fit shape (1179) to cluster C1 is overlaid

4 Experimental Results

The shape learning method presented above was employed to design a shape
model for 17 brain structures (shown in Fig. 1a) and its performance was assessed
by a quantitative comparison to a manually-identified independent standard. The
training set consisted of observer-defined contours identified by a neuroanatomist
in 28 individual T1-weighted contiguous MR images of the human brain. Figure 2
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shows the original manual tracings and clustering results for cistern together
with the best fit shape registration to the main cluster (the sets Ti1,i0 , ..., Tip,i0

as defined in Algorithm 1). Figures 1(b) and (c) show the Procrustes averages
for the right ventricle and globus pallidus with the scatter of fits overlaid.

In order to obtain a quantitative validation of our results we used the method
employed in [3]. From each shape model, we manually selected several points that
were considered most important in defining its shape (the points with the highest
curvature) and we manually registered them to the training images. We defined
the ground truth position of these points as the Procrustes average of the manu-
ally registered points. We computed and compared the root-mean-square (rms)
distance of manually placed points from the independent standard and the rms
distance of the automatically registered points from the independent standard,
respectively. The rms distances for the right ventricle and globus-pallidus are
also shown in Figs. 1(b) and (c): for every point selected on each shape, each
distance is displayed on the same y coordinate as the ground truth point it corre-
sponds to. As a rule, the very high curvature points (the extreme upper or lower
points) are somewhat better registered manually while the intermediate points
are better placed automatically. This was expected, since it is very difficult for
a human to exactly place a point if there are no curvature or other anatomical
cues. On average, all rms errors are between 0.7 − 1.5 pixels.

5 Conclusion

A new fully automated shape learning method was presented. It is based on
clustering a shape training set in the original shape space and performing a
Procrustes analysis on each cluster to obtain a cluster prototype and information
about shape variation. A quantitative analysis of our shape registration approach
demonstrated results well comparable to those obtained by manual registration;
achieving an average rms error of about 1 pixel. Our approach can serve as
a fully valid automated substitute to the tedious and time-consuming manual
shape analysis.
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Abstract. We describe a method of pairwise 3D surface correspondence
for the automated generation of landmarks on a set of examples from
a class of shape. We show how the pairwise corresponder can be used
in an extension of an existing framework for establishing dense corre-
spondences between a set of training examples to build a 3D statistical
model. The framework relies upon additional algorithms for the produc-
tion of surface paths between vertices on a polyhedral mesh, and these
are described. An example statistical model is shown for the left lateral
ventricle of the brain.

1 Introduction

We describe a framework and a set of algorithms which may be used for the
automated landmarking of a class of shapes in 3D. These landmarked shapes
constitute a set of training examples which may be used to construct a flexible
template model, an Active Shape Model (ASM) [4]. A previous publication [2]
has described possible solutions to parts of the problem of automatic 3D model
building. Here we describe a completely automated approach which involves
extending the previous work and improving the accuracy and robustness of some
of the algorithms.

Currently, the construction of an ASM involves the manual identification of
a set of L landmarks {xi; 1 ≤ i ≤ L} for each of N training examples of a class
of shapes. Manual definition of landmarks on a shape has proved to be both
time-consuming and subjective. Hill at al have previously described a method
of non-rigid correspondence in 2D between a pair of closed, pixellated bound-
aries [5]. This pair-wise corresponder was used within a framework for automatic
landmark generation. A similar framework is the basis of the approach to 3D
automatic landmark generation described here, and consists of the the construc-
tion of a binary tree of merged shapes. Once such a tree has been produced, a
set of Lt landmark points may be identified on the root (mean) shape of the tree
and the positions of these landmarks propagated out to the Nt leaf (example)
shapes.
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2 Background

Kambhamettu and Goldgof [6] and Benayoun et al. [1] both propose methods
of surface correspondence based on the minimisation of a cost function which
involves the difference in the curvature of the surfaces. As pointed out by Tagare
et al. [9], curvature is a rigid invariant of shape and its applicability to general
non-rigid correspondence is problematic.

Christensen et al. [3] propose a method of non-rigid registration by fluid de-
formation for the matching of brain anatomy in 3D. However, this technique is
computationally expensive. Szekely et al. [8] parameterise surfaces by a heat dif-
fusion model and further optimisation. Correspondence may then be established
between surfaces but relies upon the choice of an origin position on each surface
mapping and registration of the coordinate systems of these mappings by the
computation of a rotation.

3 Polyhedral—Based Correspondence

The pair-wise correspondence algorithm comprises two stages:

1. Generation of sparse polyhedral approximations A′′ and B′′ of the input
shapes A and B by triangle decimation, for which {A′′

i } ⊂ {Ai} and {B′′
i } ⊂

{Bi}.
2. Generation of a corresponding pair of sparse polyhedra A′ and B′. This is

accomplished using a global Euclidean measure of similarity between both
the sparse polyhedron A′′ and a subset of labelled vertices from B and
between B′′ and a subset from A.

The sparse polygon generation algorithm makes use of a decimation method
described by Schroeder et al. [7]. However, we use a distance metric which pre-
serves sharp edges and thin structures. The distance metric, D, is computed
using Schroeder’s distance to mean plane measure as:

D(v0) = |d(v0) − d′(v0)| (1)

where d(v0) and d′(v0) are the signed distances of the vertex v0 to the mean
plane of the triangle loop before and after decimation i.e. d(v0) = û · (v0 − x),
see Fig. 1.

We have used a symmetric version of the Iterative Closest Point (ICP) algo-
rithm to establish correspondences of the sparse pointset {A′′

i } with the dense
pointset {Bi} and of the sparse pointset {B′′

i } with the dense pointset {Ai}. Var-
ious metrics can be used to define the closest distance between point pairs. We
weight the squared distance between points |Xi−Yj |2 by a factor of 2/(n̂Xi

·n̂Yj
)

where n̂Xi
is the unit surface normal on X at point i. This encourages the cor-

respondence of points on the surfaces which are topographically equivalent. We
label the closest points to A′′

i from B as the pointset {B′
i}, and the closest points

to B′′
i from A as the pointset {A′

i}.
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Fig. 1. Result of applying the decimation algorithm to a triangulated surface of the left
ventricle of the brain. On the left is a shaded representation of the original dense trian-
gulation with approximately 2000 vertices. On the right the same surface represented
by 200 vertices (decimated by 90%)

A single corresponding pair of sparse polyhedra must be established from
the two polyhedron/pointset pairs, (A′′, {B′

i}) and (B′′, {A′
i}). We choose the

connective description which produces the lowest error in representation, ER,
of the sparse decimated polyhedron of each shape by the sparse reconstructed
corresponding polyhedron of that shape, where

E2
R =

1
nA′′

nA′′∑

i=1

min
j

|Q(A′′
i ) − Q(A′

j)|2 +
1

nB′′

nB′′∑

k=1

min
l

|Q−1(B′′
k) − Q−1(B′

l)|2.

(2)

The reconstruction is produced by combining the connectivity description of A′′

or B′′ with the pointset {B′
i} or {A′

i} to produce a pair of matching polyhedra
with a one-to-one mapping (A′ 7→ B′).

4 Merging Shapes

Given a pair of corresponding sparse polyhedra A′ and B′ , a local surface
parameterisation is used to interpolate a dense set of vertices on each. The local
surface parameterisation is of a single sparse triangle, and is produced by a
parameterisation of the three surface paths corresponding to its three edges.

A ‘brushfire’ type distance transform algorithm is used to march the path
across the surface between dense edges of the triangulation. At each stage, the
minimisation of a cost Ci(y0) locates the best next point, xi, for the surface path
on a dense triangle edge {yi; 1 ≤ i ≤ 4} attached to y0, see Fig. 2. We consider
not just the path (a,b) which is a sparse polyhedral edge, but also the dense
polyhedral triangles t1 and t2 connected to the dense edge under consideration,
see Fig. 3.

We construct a plane normal to the surface defined by the reference point
c = (a + b)/2 and by the unit normal n̂c, where n̂c · (A1n̂1 + A2n̂2) = 0, in
which A1 and A2 are the areas of the triangles t1 and t2 respectively, and n̂1
and n̂2 are the unit normals to these triangles. The cost function of igniting an
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edge yi from edge y0 is defined for the intersection, xi, of the line segment of a
dense triangle edge with the plane:

Ci(y0) = (|a − x′
i|2 + |b − x′

i|2)/|a − b|2 (3)

where x′
i is the projection of xi on the sparse edge (a − b). This cost constrains

the surface path to lie within the line defined by a and b, thus preventing it
from looping back around the entire surface of the shape.

The connectivity of A′ and B′ are identical. Therefore, we can correspond
the individual sparse triangles of the polyhedra. These sparse traingles are split
recursively using surface paths to some depth to produce the dense triangula-
tion A′

d and B′
d. Now a densely triangulated mean shape may be generated by

averaging the geometric information of these dense triangulations to produce a
pointset {Ci} and this is combined with the connectivity from A′

d to produce a
densely triangulated polyhedron C.

5 Automated Landmarking

The pairwise corresponder described above is used to build a binary tree of
merged shapes with a single mean shape at the root and the examples from the
training set at the leaves. We produce a set of landmarks {Cl,i} ⊂ {Ci} on the
mean shape. The connectivity of these points is defined by the sparse polyhedron
Cl. These landmark points are then propagated down the branches of the tree.

At each branch of the tree, each of the landmark points can be projected
onto a triangle of the sparse version of the mean shape C′ which is the mean
of A′ and B′. The sparse triangle is then parameterised along a baseline and
a vector between the baseline and opposite vertex, see Fig. 4. The projection
e on the triangle (a, c,b) is now uniquely defined by the parameter pair (t, u).
There is a correspondence between the vertices of this sparse triangle (a, c,b)
on C′ and the vertices of a pair of sparse triangles on A′ and B′. Call the sparse
corresponding vertices on A′, (a′, c′,b′). The projection point e can therefore
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be mapped onto the sparse triangle (a′, c′,b′), by parameterising it in t at u to
give e′.

We must now reconstruct a point on the surface of A which corresponds to
the projection point e′ mapped onto a sparse triangle. We do this by constructing
surface paths using the method of section 4, again see Fig. 4. Finally we choose
the landmark on the dense surface as the vertex with smallest Euclidean distance
to the reconstruction of e′.

a

b

d
t

c
u

e

pointreconstructed

’

’
’

’
’

Fig. 4. Projected points are
reconstructed on dense sur-
faces by the parameterisation
of surface paths constructed
across the baseline and from
the opposite vertex of a sparse
triangle

1 2 mean 3 4

Fig. 5. A group of four left brain ventricle exam-
ples and their densely triangulated mean at the third
level of the tree of merged pairs used to generate a
set of eight landmarked examples

6 Results

We have generated a 3D statistical model from eight complex biological shapes
- left ventricles of the brain. These have been defined by hand as contours on a
series of 2D slices from 3D Magnetic Resonance images. A grouping of four of
the eight examples and their mean at the third level of the tree of merged shapes
are illustrated in Fig. 5. The example shapes consisted of ≈ 2000 vertices, upon
which were placed 200 landmark points. The first two modes of variation of this
model are illustrated in Fig. 6, b1 explains 43 % of the total variation, and b2
explains 16 %.

7 Conclusions

We have presented a novel method for the correspondence of two faceted (trian-
gulated) surfaces. The method is based on the production of a sparse polyhedral
representation of one shape and matching this to a sparse pointset representation
of the other. No curvature estimation of either surface is required. The only con-
trol parameter of the algorithm, the target number of vertices during decimation,
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-1.0 -0.5 0 +0.5 +1.0
1st mode of shape variation (b1)

-1.0 -0.5 0 +0.5 +1.0
2nd mode of shape variation (b2)

Fig. 6. Shape instances generated using a 3D PDM of eight left brain ventricles showing
the number of s.d.s (-1.0 to +1.0) from the mean shape. The model consists of 200 points

is not critical and be automated at the cost of decimating each surface twice.
The use of this algorithm to produce of a binary tree of merged shapes, and the
method we describe for accurate propagation of landmarks from the root to the
leaf shapes of the tree, provides a framework for the automated landmarking of
the input example shapes necessary for the production of a 3D statistical model.
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Abstract. The goal of this work is to develop an approach to shape
representation and classification that will allow us to detect and quantify
differences in shape of anatomical structures due to various disorders.
We used a robust version of skeletons for feature extraction and linear
discriminant analysis (the Fisher linear discriminant and the linear Sup-
port Vectors method) for classification. We propose a way to map the
classification results back into the image domain, interpreting shape dif-
ferences as a deformation required to bring a shape from one class to the
other. An example of analyzing corpus callosum shape in schizophrenia
is reported, as well as the results of the study of the statistical properties
of the classifier using cross validation techniques.

1 Introduction

Our goal is to build a framework for statistical shape analysis using classification
techniques applied to feature descriptors. We perform shape feature extraction
using skeletons. To make the process of skeleton extraction robust to noise and
quantization effects of segmentation, we have developed a new variation of the
traditional skeletons: fixed topology skeletons.

In this paper, we limit ourselves to linear discriminant analysis, comparing
performance of two different linear classification methods: the Fisher linear dis-
criminant and the linear Support Vectors methods. Then we present the shape
differences between the groups by constructing the shape deformation in the
image space that corresponds to the discriminant vector in the feature space.

We tested the approach on corpus callosum data for schizophrenia patients.
The results are reported in Sect. 3.

Related Work. Statistical shape modeling combines shape representation with
statistical information on how the features vary across population. Principal
Component Analysis (PCA) has been used by several authors for capturing sta-
tistical properties of the model [3,9]. It was well suited for applications in seg-
mentation and object localization, where the statistical properties of the model
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were used to restrict the space of possible deformations of the model. It has
also been used in shape analysis [4,8] to reduce the dimensionality of the model
and find a decision boundary between the classes. Bookstein [2] used the shape
features to align the outlines, but then the features (points along the outline)
were analyzed independently of each other. We attempt to use traditional clas-
sification methods directly (without going through the dimensionality reduction
step ) to find the decision boundary.

We use a novel approach to robust skeleton estimation for feature extraction.
Skeletons have been introduced in general computer vision several decades ago [1]
and have been used extensively for object recognition and localization. In medical
image analysis, a scale-space variation of skeletons was introduced and used in
various applications by Pizer and colleagues [6].

2 Shape Representation: Fixed Topology Skeletons

Skeletons provide a compact, intuitive representation of a shape that can be
used for segmentation, tracking, object recognition, etc. Their major drawback
is their high sensitivity to noise in the boundary. There have been proposed
many ways to stabilize the skeleton extraction, most of which concentrated on
heuristics for pruning the original, noisy skeleton.

For shape analysis of anatomical structures, the general shape of the object
is well known ahead of time and the deformations of interest are very small and
do not change the global shape of the structure. Fixed topology skeletons take
advantage of this fact: we fix the structure of the skeleton graph (the skeleton
topology) and optimize for the accuracy of the original shape representation over
all skeletons of that fixed structure.

Skeleton extraction. For computing the fixed topology skeleton of a shape,
we use a distance map, a function that for every point in the image is equal to
the distance from the point to the closest point on the boundary of the object.
It can be shown that the skeleton is the set of ridge points of the distance map.

We use a snake-like approach for computing the fixed topology skeleton of a
shape. The set of skeleton points defines a continuous curve that represents the
skeleton. We initialize the snake at the end-points of the traditionally defined
skeleton [1,6], and then use the distance map gradient to ”drive” the snake.
Additional regularization is required to keep the curve smooth. Formally, the
update rule is

xt+1 = σ(xt + ∇D(xt)),

where xt is the set of point coordinates on the curve at time t, ∇D is the gradient
of the distance map computed at the locations corresponding to the points of
the curve, and σ is the smoothing operator. The curve has to be resampled every
few iterations to maintain uniform distribution of the points along the curve. We
stop the iterations when the curve starts oscillating around the ridge.
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(a) Example 1 (b) Example 2 (c) Features for classification

Fig. 1. Skeleton extraction. (a) and (b) show the distance map (darker color cor-
responds to higher distance from the boundary) and the skeleton extracted for two
different cases from the data set; (c) features used for classification: curvature angle
and shape width

To find the best skeleton, we estimate skeletons for different initial pairs of
points and chose the one that describes the shape the best ([7] contains more
details on the algorithm). Figs. 1(a) and (b) show corpus callosum skeletons
computed for two different cases in our data set.

Feature extraction. Once the skeleton is computed, we sample the skeleton
curve uniformly by arc length and measure two values at every sample point
(Fig. 1c): the angle between two adjacent segments in the sampled skeleton and
the shape width at the sample point. These two features are invariant under rigid
transformations and are therefore well suited for shape description. The number
of sampling points on the skeleton determines the level of detail captured by the
feature vector.

3 Classification Results

Classification methods. We tested two different linear discriminant tech-
niques on the same data set, namely the Fisher discriminant function [5] and the
linear Support Vectors classifier [10]. Given two classes of feature vectors {x},
any linear learning method searches for weight vector w that maximizes ‘spread’
between the projected points x = wT x. The difference between different linear
techniques is in how they define spread, or separation, between the classes.

To find an optimal number of features, we use cross-validation. Since our
data set is small, we had to resort to leave-one-out cross-validation: one case
was left out of the training set and then used as a test set. Repeated for all the
cases in the data set, this yields an estimate of the generalization accuracy of
the method. We report cross-validation results later in this section.

Data. We tested our approach on corpus callosum images for two groups:
schizophrenia patients and normal controls. We used two data sets, combined
into one in our experiments (see Acknowledgments for more info). The combined
data set contains scans of 30 schizophrenia patients (SZ) and of 36 normal con-
trols (NC). We also performed testing on those data sets separately with results
very similar to those obtained with the combined data set.
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Fig. 2. Classification results based on 20 feature points: (a) separation between the
two groups when projected onto w and (b) weights (components of w) for the features
along the curve, in the posterior-to-anterior order; (c) deformation implied by the
discriminant vector, applied to the mean of NC group (top) and to an individual case
(bottom). Black corresponds to the original shape, gray indicates the result of the
deformation

Classification results. Figure 2(a) shows the results of Support Vectors clas-
sification using 20 points along the skeleton. We can see that for this number of
features, a perfect separation between the two classes was achieved. Figure 2(b)
shows the weights corresponding to the angle features (ordered from posterior to
anterior). The weights change smoothly as we move along the skeleton, and most
of the weight is concentrated in the middle part of the skeleton. This suggests
that the middle ridge is where most of the shape differences take place in this
case.

We can also provide a direct interpretation of this result in the image domain.
Since projecting onto weight vector w separates the two classes, negating the
component of any feature vector xi from the original data set along w should
bring that vector over the threshold into the other class:

x = x⊥ + (wT x)w,

x̃ = x⊥ − (wT x)w.

We can apply this operation to any data point xi in one of the classes and
then reconstruct the skeleton using the resulting feature vector x̃i. Thus linear
classification in the feature domain can be mapped into a shape deformation in
the image domain.

Figure 2(c) shows the deformation applied to two different skeletons. The
first example (top) shows a ‘mean’ normal control skeleton. It was constructed
by averaging the features at the 20 points along the skeleton and reconstructing
a skeleton from the resulting feature vector. The second example (bottom) shows
a skeleton for one of the normal control subjects with the deformation implied
by the classifier. We can see that the corpus callosum shape is more ‘bent’ for
schizophrenia group. In other words, we would have to bend the normal corpus
callosum further to make it look more like corpus callosum of a schizophrenia
patient.

Cross-validation. Figure 3(a) shows learning accuracy, that is the classification
accuracy, when the test set was the same as the training set. We can see that
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Fig. 3. Cross-validation results

the Support Vectors method outperforms the Fisher linear discriminant, which
we believe is because it makes fewer assumptions on the underlying distributions
of the classes. As the number of feature points used for classification grows, the
data becomes more separable and the accuracy improves.

Cross-validation is used to find the optimal number of feature points for be
used for shape description of corpus callosum, as well as to test the generalization
power of the classifier. Figure 3(b) shows the classification accuracy for leave-
one-out cross-validation experiment. The dotted line shows the ‘baseline’, or
the classification accuracy one would get by guessing. We can see that both
methods achieve better than guessing accuracy. The best accuracy was achieved
by Support Vectors method for 20 feature points. Thus that was reported as the
best number of points.

The classification accuracy for cross-validation is significantly lower than for
learning. There are several reasons for that. As the number of feature points
grows, the data becomes more sparse in the feature space, and thus it is easier
to separate between the classes, but we get poor generalization, as new examples
fall into previously empty regions of the feature space. Another reason for lower
testing accuracy could be that the classes are not truly separable1.

Another question that should be addressed is the number of features. It seems
that the optimal number of features is comparable with the number of cases in
the data set. But it does not mean that we are fitting a model with that many
independent parameters to the data. In fact, the features highly correlate with
their neighbors along the skeleton. Another point to confirm this is the fact that
adjacent points on the skeleton get similar weights (Fig. 2b).

4 Conclusions & Acknowledgments

We presented an approach for shape based classification of anatomical struc-
tures. It uses statistical learning techniques for investigating the differences be-
tween two groups of examples of the same anatomical structure. In this work,
1 Implying that one could not provide a reliable diagnosis of schizophrenia based on

the shape of corpus callosum alone, but only about 70% accurate estimate. But com-
bined with analysis of other structures, it might provide a significant improvement in
detecting and quantifying shape pathologies in the brain of schizophrenia patients.
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we limited ourselves to using linear classifiers. We tested two different linear
classification techniques: the Fisher linear discriminant and the linear Support
Vectors classification.

The shape representation is also a crucial component of the system. It maps
the images into points in the feature space in which the classification is per-
formed, and also provides an interpretation of the classification results in terms
of the shape deformation. We use skeletons for extracting the shape features.
They provide a robust, intuitive representation of the shape, and are capable of
capturing shape variations between the groups reported in the paper.

Based on the experimental results, we conclude that the shape of corpus
callosum is different in schizophrenia with higher curvature of the shape. The
cross-validation provided the optimal number of the feature points, as well as an
estimate of the classification accuracy on the new examples.
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Abstract. Three dimensional models of anatomical structures are cur-
rently used to aid in medical diagnosis, treatment, surgical guidance, and
surgical simulation. Limitations on the resolution of medical scans can
cause artifacts to appear in the models that do not exist in the patient’s
anatomy. The most severe artifacts occur due to the low sampling rate
between image slices of a scan. This paper describes a method of com-
bining two orthogonal scans to generate a model with higher resolution
than models created from either of the scans alone. The two scans are
first registered to each other and then a net of linked surface nodes is
initialized for each of the scans. The nodes from the two nets are then
merged and relaxed, subject to constraints set by the resolution of each
scan. This generates a smooth surface representation which stays faithful
to the original binary data.

1 Introduction

The generation of three-dimensional models of anatomical structures from med-
ical imagery is important for applications such as surgical simulation, planning,
and image-guided surgery. An internal scan typically consists of high-resolution
data in the imaging plane and significantly lower resolution between imaging
slices. The lack of high-resolution information along the scanning direction causes
aliasing or terracing artifacts in anatomical surface models, which can be dis-
tracting or misleading to surgeons. For surgical simulation, the terraces subtract
from the realism of the visualization and create very noticeable ridges when us-
ing haptics to feel the object’s surface. These terracing artifacts can be reduced
by increasing the resolution of the scan. However, for CT scans, higher resolu-
tion between imaging planes subjects patients to a higher dose of radiation. For
MR scans, longer scan times are necessary to achieve higher resolution, which
is more costly and is more difficult for the patient, who must remain absolutely
still during image acquisition.

For clinical practice, scans are usually acquired in more than one orthog-
onal direction. For example, instead of acquiring a single very high resolution
sagittal MR scan, lower resolution sagittal and axial scans may be acquired (see
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a b c d

Fig. 1. (a, b) Two MR scans of a person’s knee. Both images have high resolution
in-plane, but have about one quarter the resolution between planes. (c) A single Sur-
faceNet is built around an object and then relaxed, producing a smooth surface, free
of terracing. (d) Two nets are built from two orthogonal scans and relaxed

Fig. 1a,b). Surgeons and radiologists use information from both acquisitions for
diagnosis, surgical guidance, and treatment. Similarly, we are interested in com-
bining the information from two scans to produce three dimensional models of
internal structures that have higher resolution than models created from either
of the scans alone. The method proposed here is an extension of the Constrained
Elastic SurfaceNet described in [2], which generates models from a single scan.

2 Previous Work
Two basic methods are commonly used to fit surfaces to binary data. In the first,
the binary data is low-pass filtered, and an algorithm such as Marching Cubes
is applied, where the surface is built through each surface cube at an iso-surface
of the grey-scale data [4]. To remove terracing artifacts and reduce the number
of triangles in the model, surface smoothing and decimation algorithms can be
applied. However, because these procedures are applied to the surface without
reference to the original segmentation, they can result in loss of fine detail.

In the second general method for fitting a surface to binary data, the binary
object is enclosed by a parametric or spline surface. Control points on the surface
are moved towards the binary data in order to minimize an energy function based
on surface curvature and distance between the binary surface and the parametric
surface [5]. This approach has two main drawbacks for general applications.
First, it is difficult to determine how many control points will be needed to
ensure sufficient detail in the final model. Second, this method does not handle
complex topologies easily.

Recently, Gibson [2] introduced Constrained Elastic SurfaceNets which fit an
elastic net of nodes over the surface of a binary segmented dataset and moved
the node positions to reduce the surface curvature while constraining the net to
remain within one voxel of the binary surface. This approach produces smooth
surface models from binary segmented data that are faithful to the original
segmentation.
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3 Dual SurfaceNets

Dual SurfaceNets extend the original SurfaceNet approach by combining infor-
mation from two orthogonal volume image scans. The use of Dual SurfaceNets
requires a number of preprocessing steps [3]. First, the object of interest is seg-
mented or extracted from each of the scans. The scans are then registered into a
common coordinate frame by finding the pose that minimizes the sum of squared
differences of the smoothed segmented images.

Once segmentation and registration are performed, a SurfaceNet is initialized
for each of the models. The first step in generating a SurfaceNet is to locate cells
that contain surface nodes. A cell is defined by 8 neighboring voxels in the binary
segmented data, 4 voxels each from 2 adjacent planes. If at least one of the voxels
has a binary value that is different from its neighbors, then the cell is a surface
cell. The net is initialized by placing a node at the center of each surface cell and
linking nodes that lie in adjacent surface cells. Figure 1c illustrates the creation
of a net from a binary image.

Once defined, the SurfaceNet can be relaxed to reduce terracing artifacts
while remaining faithful to the input segmentation [2]. To relax the net, each
node is repositioned to reduce an energy measure in the links. In the examples
presented here, SurfaceNets were relaxed iteratively by considering each node,
p[i], in sequence and moving that node towards the midpoint of its linked neigh-
bors.

p̂[i] =
1

#{N (i)}
∑

j∈N (i)

p[j] (1)

where N (i) is the set of linked neighbors of point i. Defining the relaxation in
this manner without constraints will cause the net to shrink to a single point.
To remain faithful to the original segmentation, each node is constrained to lie
inside its original surface cell. This constraint favors the original segmentation
over smoothness and forces the surface to retain thin structures and cracks.

Relaxing a single SurfaceNet of an object significantly reduces the artifacts
contained in the model. However, if the resolution in the scan is low in one
direction, there may not be enough information in one scan to fully constrain the
model and remove the terraces. We therefore consider using two scans, where one
has higher resolution along the direction where the other has lower resolution, as
illustrated in Fig. 1d. To relax two models of an object together, the individual
SurfaceNets are built as described above. The two SurfaceNets, once aligned in
the same coordinate frame, are iteratively relaxed towards one another with the
constraint that each node much lie within its surface cell. In one relaxation step,
each point p[i] in the first net is updated by taking an average (weighted by
distance) of the points q[j] in the other net.

p̂[i] =

∑
j w(p[i], q[j])q[j]
∑

j w(p[i], q[j])
where w(u, v) = e

−1
2σ2 ||u−v||2 . (2)

The point p̂[i] could violate its constraint by lying outside its cell, c[i]. The new
position of the point, p′[i] is p̂[i] if it lies inside the cell and the closest point on
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the cell boundary if p̂[i] lies outside the cell. In the next iteration, the second
net is relaxed towards the first. After each full dual relaxation step, the nets are
each relaxed individually for one iteration. The individual relaxation keeps each
net smooth as they merge. The iteration progresses until the positions of some
user-defined fraction of the nodes have converged, at which time one of the two
nets is chosen to generate the final triangle model.

If the segmentation and registration were ideal, then the true surface would
always lie in the intersection of the surface cells of the two images. In this case,
the two nets would converge on the identical surface with all surface cell con-
straints satisfied. Figure 1d shows a 2D example of a surface passing through
the surface cells of two nets. In general, the surface cells of the two scans do
not overlap perfectly due to imaging, segmentation, and registration errors. We
therefore provide a means of relaxing the constraints to allow the nets to merge
more closely. After a few iterations, any point that is pulled outside its con-
straining cell cannot meet a corresponding point in the other net. This signifies
discrepancies between the two models. In these instances, the constraining cell
of every such point is dilated (preserving aspect ratio) by a small amount at the
end of the iteration, allowing those points to move closer to the other net in the
next iteration. Although the resultant net can move more than one voxel from
the segmentations, the final model is guaranteed to be between the two initial
models.

4 Results

Results of the dual relaxation are shown in Fig. 2. One scan of a femur was
acquired axially at a resolution of 0.27 mm×0.27 mm×1.00 mm. The other scan
(of the same person) was acquired sagittally (one year later) at a resolution of
0.25 mm × 0.25 mm × 1.40 mm. The femur was segmented manually from both
images1. Figures 2(a) and (b) shows the results of running Marching Cubes [4],
individual SurfaceNets [2], and Dual SurfaceNets on the images. No decimation
was performed on any of the models. Notice the terracing artifacts in the models
generated with Marching Cubes and individual SurfaceNets along the direction
that the scans were acquired. The model generated using Dual SurfaceNets on
both scans preserves the fine details in the original scans well but does not
contain the terraces.

In the second example, we consider building a model from extremely low
resolution scans. Figure 2(c) shows results of model generation from subsam-
pled versions of the original segmentations. The axial and sagittal scans were
subsampled by a factor of 4 to resolutions of 1.09 mm × 1.09 mm × 4.00 mm and
1.00 mm × 1.00 mm × 5.60 mm respectively. The model generated using Dual
SurfaceNets at the low resolution contains slightly less detail than the high reso-
lution version, but it is remarkably smooth and free of terracing artifacts, while

1 These datasets were provided by the Surgical Planning Lab of Brigham and Women’s
Hospital.
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Marching Cubes SurfaceNets Dual SurfaceNets            
(a) Surface models of the high
resolution scan of the femur.
The top two images were gen-
erated from the axial scan,
while the bottom two were
generated from the sagittal
scan, using Marching Cubes
and SurfaceNets. The larger
model, generated using Dual
SurfaceNets, combined the in-
formation from both scans

Marching Cubes SurfaceNets Dual SurfaceNets            

(b) Another view of the same
models as shown in (a). No-
tice the terracing artifacts in
the Marching Cubes and Sur-
faceNets models, which are
most visible when the view is
along the slicing direction

Marching Cubes SurfaceNets Dual SurfaceNets            
(c) Surface models of a low
resolution (subsampled) scan
of the femur. The model
generated using Dual Sur-
faceNets at the low resolu-
tion contains slightly less de-
tail than the high resolution
version, but it is free of ter-
racing artifacts and is faithful
to the original segmentations

(d) Models of the femur over-
layed on the original grayscale
data. The top row of images
are the original high resolu-
tion scans. The bottom row
of images are the subsampled
scans. The first two images in
each row are the segmenta-
tion input to the Dual Sur-
faceNets. The result of relax-
ing the nets is shown in the
third image

Fig. 2. Results of Model Generation
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remaining faithful to the original segmentations. The surface models can be
visually verified by superimposing the relaxed net on the image data. Figure 2d
shows the input segmentations to the Dual SurfaceNet algorithm and the final
result of the net. Despite the blockiness evident in all the input segmentations,
the final models are very smooth and capture the details of the femur.

5 Validation
Since three dimensional models of anatomical structures are now routinely used
by surgeons, there is a clear need to validate the process by which such models
are generated. One method of validating the result of relaxing Dual SurfaceNets
is by visual inspection. The 3D model can be superimposed onto the original
grayscale image, as shown in Fig. 2d. The borders of the model can be confirmed
by examining each slice of the image.

In SurfaceNets, each node of the model is guaranteed to lie within one voxel
of the original binary segmentation. Dual SurfaceNets can uphold the same con-
straints, but in practice these constraints need to be relaxed slightly to effectively
combine the information in both nets. The distance that a node strays from its
initialization point (the center of its cell) can be constrained during the relax-
ation. Furthermore, upon convergence, the distribution of displacements can be
analyzed to determine the goodness of the fit. For both nets of the femur data
set, over 97% of the points lie within one voxel of their starting position. There-
fore, the final model is not only very smooth, but also faithful to the input
segmentation (see [3] for more details).

The validation process is often hindered by the difficulty in obtaining ground
truth. While we do not have explicit ground truth, we generated the low resolu-
tion femur model and then compared the result with the high resolution femur
segmentation. Ideally, each point of the low resolution model should fall near the
high resolution surface. Even though the voxel extents of the axial and sagittal
scans used in generation of the nets are 4.28 mm and 5.78 mm respectively,
the majority of model points fall within one millimeter of the high resolution
model. Furthermore, 98% lie within one sub-sampled voxel of the original data
[3]. The model produced by Dual SurfaceNets on the low resolution scans is a
good estimate of the high resolution model, while true to the input images.
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Abstract. Clinical reality is full of complex images that cannot be seg-
mented automatically with current computer vision technology, requiring
intensive user intervention. In [1] and [2] we proposed a framework for
the systematic development of intelligent interactive segmentation tech-
niques that aim at repeatable and predictable results obtained via effi-
cient interaction. In this paper we apply this framework to segment the
joint space boundary of osteoarthritic ankles. The solution is based on a
heterogeneous boundary representation implemented with a new piece-
wise deformable model. User intervention is necessary only when this
model fails, being performed via specialized interactive tools. Results
obtained by a non-medical user are presented, indicating improvement
over the manual practice in terms of accuracy and repeatability.

1 Introduction

In many clinical applications, to segment means to isolate a part (object) from
the remainder of the image (background). Segmentation techniques here aim at
precise, predictable and reproducible delineation of objects of interest, being
based on prior knowledge about how these are expected to be depicted in terms
of image and geometric features. Unfortunately objects might be represented in
the image differently than expected due to conditions intrinsic to medical ap-
plications, e.g. noise, pathology and low contrast. Segmentation methods fail in
these cases, with the consequence that human intervention is often needed to
manually enhance the results obtained with automatic techniques. With current
technology, the automatic and manual parts are performed as two different and
independent procedures with possibly inconsistent outcome. [1] and [2] propose
a systematic approach, called intelligent interactive segmentation (IIS), based
on the following conception: (1) Automatic and interactive parts are unified into
one segmentation process; (2) The backbone is a steerable automatic segmen-
tation method with prior knowledge about image and geometric features; (3)
Situations when this method fails are limited and attributed to cases where the
image deviates from the prior knowledge in the segmentation model, which can
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be locally reconfigured to avoid or recover from failure; and (4) User interven-
tion is needed in case of failure to provide information used for reconfiguration,
establishing a user 7→ model feedback mechanism called intelligence.

Here we describe how this framework was used to develop an IIS method for a
complex clinical application. Sect.2 presents the application, Sect.3 describes the
new method, and Sect.4 contains an evaluation with a non-clinical experiment.

2 Clinical Application

Osteoarthritis (OA) is a joint disorder characterized by the destruction of the
articular cartilage, subchondral sclerosis, and secondary inflammation. An exper-
imental treatment called joint distraction is currently applied at the University
Medical Centre Utrecht, The Netherlands, to patients with OA in the ankle
joint (Fig.1-a), consisting of a temporary distraction of talus and tibia using an
Ilizarov external ring fixation [3]. Evaluation is done based on radiographs of
the control and OA ankles taken at fixed time intervals before and after treat-
ment. X-ray images of the ankles are acquired in standardized mortise view1 and
digitized with 256 grey levels and variable size (Fig.1-b).

A current project at the Image Sciences Institute Utrecht aims at the quan-
tification of the ankle joint space (AJS) width, amount of subchondral sclerosis
and angle of the joint to evaluate this treatment. Here manual segmentation
consists of delineating the central part of the upper and lower boundaries of
the AJS, a task that requires medical knowledge due to very low image qual-
ity resulting from the projection of concave or overlapping structures (Fig.1-b).
Currently, the boundaries are approximated by two lines connecting ten points
indicated by the user via a semi-automated procedure; we call this procedure
manual because no automatic segmentation method takes part in the process.
More accurate measurements can be obtained with a more precise boundary,
and a reduction of variation and bias can be achieved by using image data for
segmentation.

3 Intelligent Interactive Segmentation Method

The method is based on four main components: a heterogeneous model of the
AJS boundary, a piecewise deformable model (DM) implementing this model, a
list of cases when this method can fail and the appropriate user corrections, and
a visual language used for interaction (see details in [5]).

Heterogeneous Boundary Model. The AJS boundary sketched in Fig.1-c is
modeled by two open and non-intersecting curves divided in five pieces (Fig.1-d).
A study of manually segmented images and anatomical information showed that
these pieces are characterized by different combinations of image and geometric
features, leading to the segmentation model in Table 1. This model is valid for
most images, but it admits local modification as a consequence of interaction.
1 The patient stands with foot turned 20o inwards; acquisition with standard settings.
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Fig. 1. The ankle joint space. (a) Coronal dissection of a normal ankle (from [4]).
(b) Digital image of a control ankle in standardized mortise view (642 × 840 pixels).
(c) Scheme showing the boundaries of interest (plain lines), the joint space (shaded
area), and the misleading boundaries (dotted lines). (d) Model for the AJS boundary,
where circles indicate corners and rectangles indicate the edge type: white or step edges

Table 1. Segmentation model for the AJS. Image features computed with scale-
normalized local image structure detectors [6], using special versions for horizontal
edges (ω is the scale for derivatives Lx, Ly, etc.). Shape features measured by the
change of the curve’s turning angle ϕ′ [8], with vi determined from examples

Boundary Upper Boundary Features Lower Boundary Features
Part Image Shape (ϕ′) Image Shape (ϕ′)

lateral stretch ω|Lxx + Lyy| ≈ 0
√

ω
√

L2
x + L2

y ≈ 0
lateral corner ω|Lxx + Lyy| ≈ −2v1

√
ω

√
L2

x + L2
y ≈ +2v3

central stretch |Min(0,
√

ω
Lyy√
L2

x+L2
y

)| ≈ ±v2
√

ω|Ly| ≈ ±v4

medial corner ω|Lxx + Lyy| ≈ +v1
√

ω
√

L2
x + L2

y ≈ +v3

medial stretch ω|Lxx + Lyy| ≈ 0
√

ω
√

L2
x + L2

y ≈ 0

Piece-DM. The upper and lower boundaries are implemented as two indepen-
dent DMs initialized by curves sketched by the user. Since each boundary piece
is characterized by different image and shape features, homogeneous techniques
known from the literature [7] are not suited for this application. The current
implementation is based on a new DM, Piece-DM, with the following features:
(1) The boundary is represented by a cubic B-Spline curve to ensure geometric
continuity, local control, and compact representation; (2) Optimization is per-
formed with the conjugate gradients method, affecting only the position of the
B-Spline control points; and (3) The objective function (1) is implemented as a
sum of K terms with localized influence on the boundary, called pieces:

Θ[C] =
∮

t

K∑
j=1

Wj(t) Θj [C](t) dt, (1)

where Wj(t) is the weight of piece j at curve position t, and Θj is the objective
function associated with piece j, implemented as a weighted sum of terms mea-
suring the deviation of a curve segment from prior knowledge. This deviation is



Intelligent Interactive Segmentation of the Ankle Joint Space 397

Table 2. Cases in which the model fails, the possible causes, and the corresponding
segmentation model correction or tuning to obtain the desired result

Failure Cause Model Correction

1. Wrong curve Wrong initial. or deformation Modify curve
2. Unseen visual
evidence

Image intensity profile is different
from expected

Locally replace the image fea-
ture detector

3. Low or absent
visual evidence

Flat image intensity profile Keep the curve locally near the
position indicated by the user

4. Wrong visual
evidence

Another structure disturbs the
correct boundary identification

Locally reduce the weight of the
image feature

5. Deviation from
local shape

Corners are wider/narrower, or
stretches are smoother/rougher

Locally modify expected turn-
ing angle values.

computed with the Mahalanobis distance [9], i.e., it is normalized to the range
of expected values obtained from a sample data set, providing intuitive and pre-
dictable behavior. This Piece-DM is heterogeneous and flexible to accommodate
local corrections resulting from interaction, by adding or replacing pieces and
locally tuning the weights and range of expected feature values.

Cases of Failure. Failure happens when the contour deviates from expectations
in terms of image features (visual evidence) and/or local shape features. A limited
number of cases were identified as a result of the systematic analysis proposed in
[2] – see Table 2, where these are presented together with the causes for failure
and the corresponding DM correction. These cases are detected as a consequence
of interaction (see Table 3).

User-Computer Interaction. Interaction is limited to three situations: ini-
tialization, model correction or confirmation, and acceptance of the final result.
During initialization, the user adjusts a template to the image which is used
to build a Piece-DM based on the segmentation model in Table 1. The DM is
then displayed using an intuitive abstraction (Fig.2-a): an open curve for the
boundary, and arrows for the “deformation forces,” indicating the preferred di-
rection of local boundary motion resulting from optimization. The boundary is
also displayed in separate windows using other image detectors as background
(e.g. Fig.2-b), to help the identification of failure case #2 in Table 2.

This visual information enables the user to plan the next action (see Table 3),
essentially confirming or indicating the need for correction of current DM set-
tings. Confirmation activates the optimization process (if forces are still large) or
ends segmentation (if forces are small). In other situations, a case of failure from
Table 2 is determined based on the internal status, and the model is corrected
accordingly (see Table 3). Example: in Fig.2-a the boundary position is wrong,
but the forces roughly point to the right orientation; the user therefore confirms
the model, and the program optimizes it until the forces are very small (Fig.2-c).
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(a) (b) (c)

Fig. 2. Visual information showing the lower boundary and forces. (a) Boundary and
deformation forces after initialization, with the grey image as background (b) Boundary
after initialization, with the horizontal step-edge detector as background (dark areas
correspond to high response). (c) Boundary after deformation (invisible forces)

Table 3. Summary of visual conditions observed by the user (boundary position and
orientation of deformation forces), the corresponding user actions, internal conditions
analyzed automatically, and the interpretation by the program in terms of Table 2

Visual Status User Action Internal Status Program
Boundary Pos. Forces Orient. (Force Mag.) Action
wrong wrong drag curve - Failure 1
right wrong detector point new detector - Failure 2

small image force Failure 3
right wrong “freeze” curve large image force Failure 4

large shape force Failure 5
wrong right confirm large Optimize
right unseen very small End

4 Results and Discussion

An evaluation of intra-operator variation was performed as follows. Ten images
were segmented by a non-medical user, three times each, with one day and one
week interval among sessions - see qualitative results in Fig.3-a/b. The intra-
operator variation was quantified by the distance in pixels from all points in the
central piece of one curve to all the other curves. Results show agreement within
one pixel for most images, with smaller variation for the lower boundary (µup =
1.56 ± 1.62,2 µlow = 0.55 ± 0.37). This represents a significant improvement
(> 50%) over the results obtained with the manual method (µup = 3.24 ± 1.68,
µlow = 2.19 ± 1.29).

It is difficult to validate the correctness of results in this application because
the truth is not exactly known; for this purpose, evaluation with medical users
is essential. For a qualitative assessment of correction, we compared results of
the IIS method (non-medical user) to those obtained manually (medical user),
obtaining the following conclusions: (1) Interactive results agree with manual
boundaries to a large extent (e.g. Fig.3-c); (2) Agreement is bad under low visual
evidence (Fig.3-d); and (3) Agreement is better for lower boundaries (µup =
5.93 ± 4.47, µlow = 3.34 ± 2.11).

2 µup refers to the upper boundary, and µlow to the lower. Values in pixels.
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(a) (b) (c) (d)

Fig. 3. Best and worst cases for (a,b) intra-operator variability and (c,d) matching
between interactive and manual results. Lines refer to interactive results and crosses
correspond to points indicated with the manual method. (a) Best agreement (µup =
0.46, µlow = 0.13). (b) Worst agreement (µup = 5.51, µlow = 1.29). (c) Best match
(µup = 2.09, µlow = 2.34). (d) Worst match (µup = 15.21, µlow = 9.22)

5 Conclusions

Results indicate that the interactive method described here provides repro-
ducible and precise delineation of the ankle joint space boundary by means of
an efficient interaction process, with significant improvement over the manual
practice. This method was developed in four months from a strategy [2] that can
be adopted in other situations in which the segmentation task is too complex to
rely completely on an automatic method. We conjecture that interactive-steered
segmentation will be helpful in the majority of clinical applications.
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Abstract. In this paper a novel model driven segmentation approach
for thoracic MR-images is presented. The goal of this work is to coarsely,
but fully automatically localize the boundary surfaces of the heart and
lungs in thoracic MR sets. The major organs in the thorax are described
in a three–dimensional analytical model template by combining a set of
fuzzy implicit surfaces by means of Constructive Solid Geometry, and
formulating model registration as an energy minimization. The method
has been validated on 20 thoracic MR volumes from two centers (patients
and normal subjects). On average 90 % of the contour length of the heart
and lung contours was localized with sufficient accuracy (average 6 mm
positional error) to automatically provide the initial conditions for a
subsequently applied locally accurate segmentation method.

1 Introduction

Though many automated segmentation methods for thoracic Magnetic Reso-
nance image data have been described, many of these methods require at some
point user interaction in the form of a seed point, volume of interest or ini-
tial boundary model. To further automate this initial image interpretation step,
integration of prior knowledge in the form of an anatomical model is essential.

The goal of this work is to develop a hybrid anatomical knowledge represen-
tation suitable to coarsely , but fully automatically localize the heart and lung
surfaces in thoracic MR images. The model described here combines the context-
preserving properties of volume-based methods (e.g. [1]) with the compactness
of surface-based (e.g. [2,3]) models by modeling multiple organs in their spa-
tial context as a set of 3D fuzzy implicit surface templates. This template-based
approach provides a number of key benefits, which can be summarized as follows:

– though limited in flexibility, it is intrinsically three-dimensional without re-
quiring point-correspondence,

A. Kuba et al. (Eds.): IPMI’99, LNCS 1613, pp. 400–405, 1999.
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– it simultaneously captures the 3D shapes and spatial context of multiple (in
this application 6) organs in a single, closed-form energy function,

– it enables a fast, fully automatic image registration by integrating prior
knowledge about local image gradient polarity in the matching criterion.

2 Methods

2.1 Implicit Solid Modeling

Let a regular implicit surface be given in the form f(x, y, z) = c. An approxi-
mation of the Euclidean distance d(x, y, z) of a point (x, y, z) near the surface is
given by:

d(x, y, z) =
f(x, y, z) − c

‖∇f(x, y, z)‖ . (1)

From this signed distance estimate d(x, y, z), a scalar field v(x, y, z) can be de-
rived which expresses the implicit surface as a fuzzy membership function:

v(x, y, z;w) =




1, if d(x, y, z) < −w,(
1
2 − d(x,y,z)

2w

)
, if |d(x, y, z)| ≤ w,

0, if d(x, y, z) > w.

(2)

When traversing the surface along the surface normal vector, v(x, y, z;w) de-
scribes a gradual, approximately linear transition (width 2w) between the state
‘inside’ (v(x, y, z;w) = 1) to ‘outside’ (v(x, y, z;w) = 0).

However, single implicit object models are intrinsically limited in their de-
scriptive shape range. To extend the descriptive power of single implicit surfaces,
a well established framework is provided by Constructive Solid Geometry (CSG)
[4], which allows the description of a 3D object shape by decomposing it into
a Boolean combination of simpler shapes. CSG is often implemented as a tree
structure, in which the leaf nodes contain a shape descriptor of the shape prim-
itives and the internal nodes implement the Boolean set operators. All nodes
contain a transformation, which translates, rotates and scales the shape mod-
eled in that particular node with respect to the other objects in the tree.

Classically, CSG is implemented in the form of a Boolean point classification
function, which classifies a point to inside or outside of the object. By replacing
the crisp Boolean set operators by fuzzy set equivalents, CSG is applicable to
express a composite shape as a membership function. The following fuzzy set
operators were adopted from [5]:

– Complement: ∼ v(x, y, z) = 1 − v(x, y, z)
– Union: v1(x, y, z) ∪ v2(x, y, z) = max (v1(x, y, z), v2(x, y, z))
– Intersection: v1(x, y, z) ∩ v2(x, y, z) = min (v1(x, y, z), v2(x, y, z))

Note that for two primitives with equal surface gradient polarity (e.g. pointing
outward), the combined shape’s polarity is pointing outward as well.
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From v(x, y, z;w) a boundary membership functional b(x, y, z;w) can be derived,
which is maximal exactly on the boundary surface (see Fig. 1):

b(x, y, z;w) = 1 − 2|v(x, y, z;w) − 1
2
|. (3)

Fig. 1. Examples of the application of fuzzy set operators to two fuzzy implicit curves

2.2 Anatomical Thorax Model Construction

By combining a number of fuzzy implicit surfaces with continuous CSG, a coarse,
3D shape description of a moderately complex scene can be constructed in the
form of a potential function b(x, y, z;w). A set of such implicit shape templates
of the major organs in the thorax has been constructed in the following steps:

1. Data acquisition: a gated transverse MR image volume of a normal thorax
was acquired, in which the contours of the heart, both lungs, thoracic wall,
liver and spleen were drawn manually. Contours were subsampled to form
regularly tesselated 3D point meshes, which were manually subdivided into
approximately convex surface patches.

2. Implicit surface fitting: the overall shape of these point grids was modeled by
fitting an implicit surface to the point data. In this work the hyperquadric
shape models [6] of six terms were selected, mainly because hyperquadrics
compactly describe a large range of non-symmetric 3D shapes.

3. Organ model construction: for each organ the fitted primitives were grouped
into small CSG-trees, forming a three-dimensional shape template for each
organ. In the top node of each organ CSG-tree, a polarity direction was
defined for the organ surface normal based on the three-dimensional image
gradient direction of that particular organ in a typical thoracic MR volume.
For organs containing air (both lungs), the model normal vector was defined
as pointing inwards. For all other organ models (heart, liver, spleen and
thoracic surface), the model polarity was defined as pointing outwards.

4. The separate organ templates were hierarchically grouped into two scene
trees: a tree describing the lungs, heart, cardiac ventricles, liver spleen and
the thoracic outer surface and a separate tree merely describing the tissue-air
surfaces in the thorax (both lungs and the exterior thorax wall).
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2.3 Model Matching

The model–image registration is based on the transitional boundaries between
air and other tissues in thoracic volume scans for two reasons. Firstly, air is
relatively robustly automatically separable from other tissues in a thoracic MR
volume. Secondly, in a thoracic MR scan the image gradient vector in tissue-air
surfaces can be defined to point towards the air, i.e. for the lungs as pointing
inwards, and for the torso as pointing outwards.

Given a set of N points located on the transitions between tissue and air in
a thoracic MR dataset. By combining the model-contained distance information
with the image gradient direction, the following energy functional can be formu-
lated, which has a strong minimum when the tissue–air model is registered to a
feature pattern congruent to the model template shapes:

E(ϑnode) =
N∑

i=1

(1 − qi(xi, yi, zi)b(ϑnode;xi, yi, zi))
2
. (4)

ϑnode = (sx, sy, sz, tx, ty, tz, rx, ry, rz) represents the affine scaling (sx,y,z), trans-
lation (tx,y,z), and orientation (rx,y,z) parameters in a CSG node, and (xi, yi, zi)
is a candidate boundary point. The weighting function qi(xi, yi, zi) is defined
as a switch selecting feature points in which the local hyperquadric gradient
∇model(xi, yi, zi) and the image gradient ∇image(xi, yi, zi) point in the same di-
rection, within a margin ϕ.

qi(xi, yi, zi) =
{

1, if ∇image(xi, yi, zi) • ∇model(xi, yi, zi) > cos ϕ,
0, if ∇image(xi, yi, zi) • ∇model(xi, yi, zi) < cos ϕ.

(5)

The actual model-image matching is performed in the following steps:
1. Feature point detection. To detect points on the tissue–air boundaries, a

simple adaptive thresholding was implemented, based on a characteristic
‘air’ peak in the lower gray value range in the histogram of a thoracic MR
volume.

2. Initial model positioning. To initialize the matching, a fixed initial parameter
set for the top node pose and scale parameters was selected. This parameter
set positions the model in the middle of the scanner bore, aligned with its
long axis. Angle parameter ϕ in (5) was set to 60 degrees.

3. Energy minimization. The energy minimization can be formulated as a hi-
erarchical pose and scale estimation. First, E(ϑnode) is minimized for the
top node affine parameters ϑnode using a gradient descend method, there-
fore simultaneously translating, rotating and scaling the whole model until a
minimum is reached. Subsequently, the top node parameters are frozen, and
E(ϑnode) is further minimized with respect to ϑnode of one of the subtrees
for a single organ or a combination of organs. By repeating this procedure
throughout a number of tree levels, the match is refined in each matching
step. In the top node matching step, boundary width parameter w was set
to 50 mm, whereas in all subsequent refining steps for lower tree levels w
was set to 20 mm. In Fig. 2, an example is given of a matching result.
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Fig. 2. A matching result for a gated short-axis cardiac MR-set. In the top row, the
initial model is projected on three slice levels, whereas the bottom row shows the model
after matching. The displayed boundaries are 2D cross-sections through a 3D model

3 Clinical Validation and Discussion

The model matching procedure was validated on 20 thoracic volume scans rou-
tinely acquired from 17 patients with various cardiac pathologies and 3 normal
subjects. To assess the accuracy of the method for both lungs and the heart, im-
age volumes were acquired containing all these organs, in this study the so–called
localizers or scout views. To investigate the method’s dependency on the MR
imaging system, the studies were acquired at two centers using different MR–
scanners: a GE Signa-LX real-time CVMR scanner1 and a Philips Gyroscan NT
52. Image sets consisted of 27 images (9 sagittal, 9 coronal, 9 transverse). On
each image set, the model-image registration was performed fully automatically.

To quantitatively assess the accuracy of the matching results, 9 frames were
selected from each image volume by an independent observer. In all these images,
two observers manually traced the contours of the left lung, right lung and the
epicard. Two quantitative measures were calculated to express the accuracy of
the model-predicted contours. Since the model only coarsely describes thoracic
anatomy, it was expected that local details possibly drawn by the observers (ves-
sels, small local shape variations) are missed by the model. Therefore, for each
organ contour a quality measure was defined as the percentage of the contour
length correctly predicted by the model within a 20 mm margin on each side of
the organ surface. Second, for the correctly localized contour parts, the average
distance of the contours to the corresponding model surface was calculated.
1 University of Iowa Hospitals and Clinics, Iowa City, USA
2 Leiden University Medical Center, Leiden, The Netherlands
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The results of this validation study can be summarized as follows:

– In all 20 cases, the automated matching converged to a semantically correct
solution, demonstrating matching robustness with respect to initial position
under clinically realistic circumstances. The influence of large amounts of
spurious feature points generated in the low-level boundary detection step
was negligible, since only feature patterns congruent to the model template
shapes influenced the matching energy function. Furthermore, the matching
was found to be scanner- independent for image sets acquired with the body
coil of the scanner.

– On average, 90 % of the contour length of the manually drawn lung and
epicardial contours was localized within a 20 mm margin (worst case: 79%).
As expected, in cases where the observers had drawn a structure not present
in the model, these contour parts were missed by the model. A large part of
the failure rate for a contour (0-21%) could be attributed to vessel structures
in the cardiac in- and outflow tract, which were not included in the model.

– The average distance of the contour parts contained within 20 mm of the
automatically identified surfaces ranged from 4-8 mm.

– In general the results from both observers for the entire study corresponded
well, though in some cases there was a slight discrepancy.

The computation time required to match the model increases approximately
linearly with the number of images. For a scout view consisting of 27 images, the
matching procedure took 4-6 minutes on a Sun Ultrasparc 2 workstation. Initial
experiments were also performed where the model was matched to three images
(1 sagittal, 1 coronal and 1 transverse), and qualitatively only minor differences
in the matching results were visible. In these cases the matching procedure took
less than 30 seconds. Based on the presented validation, it can be concluded
that with the described anatomical modeling and matching method, a robust
estimate of the approximate location of the heart and lung surfaces in a thoracic
MR image set can be obtained fully automatically. Though the modeling method
lacks local detail, on average 90% of the contour length of the lung- and epicardial
contours was localized within 20 mm, with an average positional error of 6 mm.
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Abstract. We describe a method for labelling image structure based on
non-linear scale-orientation signatures which can be used as a basis for
robust pixel classification. The effect of normalisation of the signatures is
discussed as a means to improve classification robustness with respect to
grey-level variations. In addition, model data selection and scale normali-
sation are investigated as a means to improve the robustness of detection
with respect to the scale of structures.

1 Introduction

We are interested in the detection of structures in images. We assume that the
position of these structures is unpredictable and that they will be embedded
in a background texture. We describe an approach based on the construction
of a non-linear scale-orientation signature at each pixel. This provides a very
rich description of local structure which is robust and locally stationary. Given
this description, standard statistical classification methods can be used - we give
results for a linear classifier. To improve detection with respect to local grey-level
variation and scale change intensity and scale normalisation are investigated. The
effects of different strategies for selecting training data are also explored.

2 Scale–Orientation Signatures

A Directional Recursive Median Filter (DRMF) performs a smoothing operation
that removes (sieves) image peaks or troughs of less than a chosen size [1]. By
applying sieves of increasing size to an image and taking the difference between
the output image from adjacent size sieves, it is possible to isolate image features
of a specific size. Signatures at different positions on the same structure are
similar (local stationarity) and the interaction between adjacent structures is
minimised. The signature, Ψ(σ, θ), is a 2-D array in which the columns represent
measurements for the same orientation and the rows represent measurements for
the same scale. For typical synthetic examples of signatures see Fig. 1.

A. Kuba et al. (Eds.): IPMI’99, LNCS 1613, pp. 406–411, 1999.
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(a) (b) (c) (d)

Fig. 1. Some synthetic examples of multi-scale DRMF signatures, where the larger
four images show (a) a binary blob, (b) a binary linear structure, (c) a Gaussian
blob, and (d) a Gaussian linear structure. The twelve smaller images are the scale-
orientation signatures for the centre pixel (top), for a pixel at the extreme edge of
the structure (bottom) and for a pixel in between these two extremes (middle). In the
scale-orientation signature images, scale is on the vertical axis (with the finest scale at
the bottom) and orientation on the horizontal

3 Statistical Methods

The objective of the work is to classify pixels, that is to label each pixel as
belonging to a certain type of image structure. Since any method is likely to be
imperfect it is useful to explore a range of compromises between false negative
errors (poor sensitivity) and false positive errors (poor specificity). Detection can
be performed by thresholding a class probability image. The probability density
for an observation vector xj for a pixel of class i which is given by

p(xj |i) =
1

(2π)n/2|Ci|1/2 exp (
−δij

2
) (1)

where δij is the Mahalanobis distance to the class mean and Ci is the the
covariance matrix of class i. Applying Bayes theorem a probability image for
class i (e.g. blob) out of η classes is found by calculating, for each pixel

p(i|xj) =
p(xj |i) p(i)

∑
η p(xj |η) p(η)

. (2)

4 Signature Preprocessing

Principal component analysis can be used to obtain data generalisation and
efficiency for classification purposes, by reducing the dimensionality of the data,
instead of using the full signature information [2].

We intensity normalise signatures since there is no reason to believe that
high-contrast features are more important than those of low contrast. Indeed, it
is particularly important to detect small, low contrast lesions of characteristic
appearance. Each column in each signature is normalised independently.

We would like to treat different size features equally. A change in scale ap-
pears in the signatures as a vertical shift. The effects of such a shift can be
reduced by taking the FT of each column and using the amplitude term.
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5 Mammographic Data

The mammographic data we have used consists of 54 mammograms, of which
27 contain a spiculated lesion and the other 27 are normal mammograms from a
sequential set. The outlines of all the lesions have been annotated by an expert ra-
diologist. The sizes of the abnormalities range from 5 to 30 mm (mean=13.4 mm).

We build statistical models based on a subset of all the signatures in the
dataset. The first approach is based on a subset of the data which uses all the
signatures within the abnormalities and an equal number (150 per mammogram
in this case) randomly selected from the normal images (this will be referred
to as the basic signature dataset). This means that the subset contains a larger
number of signatures from the larger sized lesions than from the smaller ones.
In a second approach, to remove bias towards signatures from larger lesions only
150 signatures were selected from each abnormal mammogram.

6 Signature Classification — Training Data

The ROC results for the basic signature dataset are shown in Fig. 2a. These
indicate that the PCA based model has an overall better performance regardless
of the normalisation approach used. A second observation is that the FT based
normalisation on its own does not do better than classification on the original
data, but that normalisation or normalisation in combination with the FT ap-
proach provides overall better classification results. Finally, if we compare the
85% PCA based model results with the 100% based model results an overall
better classification performance is achieved by the former.
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Fig. 2. ROC results for signatures based on: (a) the basic signatures model, (b) the
150 signatures model. Here ./: 85% PCA data, 4: normalised 85% PCA data, 2: FT
of the normalised 85% PCA data, 3: FT of the 85% PCA data, 5: 100% data, ×:
normalised 100% data, ∗: FT of the normalised 100% data, and +: FT of the 100%
data

The ROC results for the model based on the data containing 150 signatures
from each mammogram are shown in Fig. 2b. Again, the 85% PCA data based
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model provides superior classification results when compared with the 100%
data based model. Also, the best classification is based on the 85% PCA based
model for which the signatures have been normalised and subsequently a FT
was taken.

7 Probability Images

Based on the results presented in Sect. 6, we have applied the derived models
for the basic signatures dataset, the 150 signature dataset, and the FT of the
normalised signatures of both these datasets to all the pixels in all the mammo-
grams. Some typical examples of probability images (see Sect. 3) are shown in
Fig. 3.

When comparing the 85% PCA and 100% models the probability images
based on the 85% PCA data produce clearer results with fewer disconnected
regions. The lesion is detected with a high probability in the models based on
the FT of the normalised signature data (with a high level of small false positive
regions).

8 Classification

Pixel classification results based on the probability images were a general con-
firmation of those results presented in Sect. 6.

Instead of performing pixel classification, the probability images can be used
for region classification which is more appropriate for the envisioned prompt-
ing environment. Normally, probability images are thresholded and regions are
grown based on the resulting binary images [1]. This is done for a number of
thresholds to obtain points on a FROC curve. However, one drawback of such an
approach is that for low threshold values large regions of the breast are detected
which are non-localised and produce misleading results.

To improve upon this approach we have segmented the probability images
prior to thresholding and the resulting regions are preserved in the subsequent
classification results. To obtain the segmentation we have found convex regions
(peaks) in the probability images (after applying a morphological smoothing).

In Fig. 4 the FROC results for the basic signature model are shown. Results
for detected lesions larger than 4 mm in diameter (Fig. 4a) and larger than
8 mm in diameter (Fig. 4b) are shown. The first observation is that the method
performs better for the larger lesions. Again there is an improved performance
for the FT of the normalised data versus the basic signature data, and for the
85% PCA data versus the 100% data.

The FROC results for the 150 signature data are shown in Fig. 5. In this
case there is a larger distinction between the detected lesion size. This means
that the performance for the larger lesions was not as good as for the smaller
lesions, whilst the results shown in Fig. 4 show not as much size dependence.
These unexpected results (as the 150 signature models were expected to be less
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(a) (b) (c)

(d) (e) (f)

Fig. 3. Example of applying the classification approach to a mammogram. (a) original
mammogram, (b) 85% PCA model based probability image, (c) 100% model based
probability image, (d) lesion annotation, (e) FT of normalised 85% PCA model based
probability image, (f) FT of normalised 100% model based probability image. The
probability images are displayed on log-scale, with the white representing 1.0 and black
representing 2 × 10−9

size dependent) might be an artifact of our new approach to obtaining FROC
curves and will need further investigation.

9 Conclusions

We have described a number of methods to improve detection of mammographic
lesions based on scale-orientation signatures. These methods involve the normal-
isation of the scale-orientation signatures. A method incorporating both inten-
sity and scale normalisation proved to be most successful in the classification of
mammographic data.

It seems that the results presented are fairly independent of the choice of
data on which the models are based (the best results are obtained for models
based on taking all signatures within the lesions into account).
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Fig. 4. FROC results for mammograms based on the basic signatures model: (a) 4 mm
and (b) 8 mm detection area, where 4: 85% PCA data, 2: FT of the normalised 85%
PCA data, 3: 100% data, and 5: FT of the normalised 100% data
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Fig. 5. FROC results for mammograms based on the 150 signatures model: (a) 4 mm
and (b) 8 mm detection area, where 4: 85% PCA data, 2: FT of the normalised 85%
PCA data, 3: 100% data, and 5: FT of the normalised 100% data

Basicly, the approach described so far is a method for the detection of blob-
like structures in mammograms (or other images). However, to reduce the num-
ber of false positive detections we are investigating a reclassification approach.
With such an approach a second statistical model would be build based on the
data which has a high probability of being a blob. This would result in a two-class
blob-model representing blobs in normal and abnormal mammograms.
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Abstract. Image transforms used to preprocess mammogram images
and highly selective microcalcification feature extraction are analyzed in
this paper. It is demonstrated that the results obtained by the proposed
method (especially at high true positive rates) exceed the specificity lev-
els of other measures for which FROC analysis is provided using the
same public (Nijmegen) database.

1 Introduction

We have based our research on the results of N. Karssemeijer, who has described
in [1,2] a method for an iso-precision scale transform of mammograms and the
clusterization of individual microcalcifications using an iterated statistical model.
During development of our algorithms we employed the images used in [2] and
made available for public use (Nijmegen database), but we have also tested
them on a larger set of mammograms digitized using our system at the National
Institute of Oncology (Budapest, Hungary).

We have found that the preprocessing step has a major impact on the detec-
tion results as is also stated in [2]. Therefore we have first compared different
image transforms in terms of their effect on the detectability of individual mi-
crocalcifications. We also investigated whether the iso-precision scale transform
can be further improved by a subsequent locally adaptive noise equalization
transform. We report on our experiments and findings in Sect. 2.

With respect to the detection of individual microcalcifications, several meth-
ods have been proposed and studied so far. In this paper we propose one single
feature which we have found to be very selective for the detection of microcalcifi-
cations. This is based on a local contrast measure we have specifically designed to
characterize microcalcifications. By using two additional measures (a compact-
ness measure and the result of a line detector) the results can be improved even
further, but we have found that the effectiveness of our algorithm is primarily
based on the high selectivity of the contrast measure with respect to microcal-
cifications. The proposed contrast measure is defined in Section 3. In the same
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section we compare our results to the results of N. Karssemeijer and others’ who
have provided FROC (free-response receiver operating characteristics) analysis
of their methods based on the Nijmegen image database. We did not implement
the statistical clusterization process described in [2]. This facilitates comparison
because most detection methods do not utilize spatial interaction models and
also in [2] the FROC analysis for the detection of individual microcalcifications
is provided.

Due to the reduced scale of this publication we only mention that the pre-
sented method for microcalcification detection and other image processing func-
tionalities are integrated into a complex system called Analogic Mammogram
Diagnostic Workstation [3] which is fully equipped for mammogram digitiza-
tion, archiving, processing and display. The system is based upon a database
handling program for handling patients’ personal and clinical data, which has
been used in everyday practice for more than 3 years at the National Institute of
Oncology (Budapest, Hungary). The system was made suitable for automated
film digitization, archiving on CDs and indexing. We have developed a general
purpose graphical interface which can be accessed from the database program
for image display, and hosts the image processing algorithms.

Our ultimate object is to integrate with our system a specific hardware tool,
the CASTLE chip [4], which is expected to be a very high-speed image processor
and is now under development at our laboratory. The chip will operate on the
principle of cellular neural networks [5].

2 Space-variant Noise Equalization

Processing or display of digitized mammogram images is usually preceded by
some transformation. A logarithmic transform of intensity values is general for
digitized film images, but several other transforms (global or adaptive) have also
been investigated so far. The iso-precision transform demonstrated by N. Karsse-
meijer in [1] and applied for noise equalization and microcalcification detection
in mammograms [2] means that the noise level is estimated as a function of the
gray-scale intensity of the original image, and a transformation is applied which
equalizes the specific noise measure. In this section we evaluate the effect of dif-
ferent image transforms on the performance of microcalcification detection. We
compare a global linear transform (LIN), logarithmic transform (LOG), adaptive
histogram equalization (AHE) [6], iso-precision transform (IPA), adaptive noise
equalization (ANE), and the succession of iso-precision transform and adaptive
noise equalization (IPA+ANE).

The difference between IPA and ANE is that while IPA uses a global estimate
of noise level for each mammogram to normalize image features, the noise level is
computed locally in case of ANE. Therefore the noise estimate for ANE has to be
chosen carefully. It has to be avoided that areas where microcalcification clusters
are to be found produce a higher noise measure only because of the presence of
microcalcifications.We have found that a statistical filter is very little correlated
with the presence of microcalcifications which replaces only local minimum val-
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ues with the closest (higher or equal) intensity value in their neighborhood. The
noise estimate is then computed from the filtered and original image difference
averaged over a 21-by-21 window.

The comparison of the different transforms is performed by determining the
number of detections made inside the marked clusters at a fixed number of
total detections for each image. This can be adjusted by the proper setting of a
contrast threshold. Here we used the local contrast measure defined in [2]. False
negative clusters (i.e., in which less than two detections were made) are also
considered in the comparison.

The comparison results for 500 detections per image are shown in Table 1. It
is clear from this list that there is no significant difference between the IPA, ANE
and IPA+ANE noise estimation techniques. Indeed, more detailed analysis shows
that some of the images perform better with the IPA transform, others with ANE
noise estimation. This is true for higher contrast thresholds (i.e., fewer objects
detected) as well. The logarithmic transform is found to be least appropriate for
microcalcification detection with the highest number of false negatives and the
lowest in-cluster/out-cluster detection ratio. The AHE transform may radically
increase contrast in darker areas of the images. Therefore the threshold level
has to be set relatively high in order to detect only 500 objects per image, and
some clusters will be missed at places where the contrast stretching was not so
extensive. The LIN transform gives the highest in-cluster/out-cluster detection
ratio, which can be explained by the fact that all the other transforms tend
to increase the contrast of darker areas, while microcalcification clusters are
most often to be found in brighter regions. However, some clusters in darker
regions will hardly be detected after this transform. If we want to obtain low
false negative rates, the best choice seems to be one of the methods based on
noise equalization (IPA, ANE, IPA+ANE). Because the look-up tables of the
IPA transform are publicly available for the images in the Nijmegen database,
in the following the IPA-transformed Nijmegen images are analyzed.

Table 1. Comparison of different preprocessing transforms using the 40 images in the
Nijmegen database. Results for linear (LIN), logarithmic (LOG) transforms, adaptive
histogram equalization (AHE), the iso-precision transform (IPA), adaptive noise equal-
ization (ANE) and the combination of the latter two (IPA+ANE) are shown. For a
fixed number of detections per image (500), we calculated the average detections inside
marked clusters and the number of missed clusters among the 104 clusters marked in
the images

LIN LOG AHE IPA ANE IPA+ANE

detected objects in each image 500 500 500 500 500 500
in-cluster detection average 95 61 76 75 72 75
total number of FN clusters 4 7 2 0 0 0
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3 FROC Analysis of a Contrast Measure for
Microcalcification Detection

The local image feature we propose for measuring the contrast of a candidate
microcalcification is computed as follows. Starting from the ‘center’ of the mi-
crocalcification, we apply a region growing algorithm which adds one pixel to
the actual set of pixels in every iteration. The ‘center’is the brightest pixel of
the region, and at each turn, the brightest pixel is added in the neighborhood of
the actual set.

During the growing process, the average gray level of pixels within the region
(min) is calculated along with the average gray level of pixels in the neighbor-
hood of the region (mout). The contrast measure is defined to be the maximum
difference min-mout during the iteration. Because the shape of microcalcifica-
tions vary a lot, this single measure may describe the contrast of this amorphous
object better than a set of standard spatial and spectral domain measures. The
quality of the proposed measure is demonstrated by FROC analysis in the next
section.

The power of the proposed local contrast measure in its ability to detect indi-
vidual microcalcifications can be analyzed by constructing FROC (free-response
receiver operating characteristic) curves [7]. We calculate the true positive frac-
tion (TPF) and false positive (FP) clusters as defined by N. Karssemeijer [2].
However, we mention that a cluster is expected to have at least 5 microcalcifi-
cations over a 1 cm2 area in [8], and others apply even higher limits.

We have found that – besides the local contrast – it is convenient to char-
acterize the microcalcifications with a normalized second order central moment
computed over a 9-by-9 window around the object, and a binary output line
detector. These measures depend on the spatial distribution of intensity levels
rather than on their contrast. In Fig. 1 we show the detection results of ex-
periments for all 40 mammograms in the Nijmegen database. The results were
obtained by using the local contrast measure (cont) and its combinations with
the second order moment (m) and the binary output of the line detector (l). The
following combined measures were formulated heuristically:

1. cont/m
2. cont-l
3. cont/m-l
As we have stated before, we did not take into consideration spatial dis-

tribution of microcalcification candidates. Therefore, comparisons have to be
performed at the level of the detection of individual microcalcifications. In Fig.
2 we compare our results to the results of N. Karssemeijer [2], D. Meersman
et al. [9], and Strickland et al. [10]. It is clear from the comparison of FROC
curves that at high true positive rates our measures for microcalcification detec-
tion are superior to the measures used by the other three methods. In the same
figure we also provide detection results if images from our own database are
used. We have digitized 315 images of 114 patients using a Cobrascan CX-312T
(RDI Inc.) X-ray film scanner at 300dpi spatial and 12 bit intensity resolution,
of which 59 images contained 75 microcalcification clusters. The FROC curve
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Fig. 1. FROC analysis. The four curves show results obtained by different combinations
of our measures: cont (o), cont/m (+), cont-l (x) and cont/m-l (*)

shown applies to these positive cases. The FP rate changes only slightly if the
rest of the images are also processed. Intensity resolution was reduced to 8 bits
after the ANE transform.

4 Conclusions

We have analyzed a set of preprocessing transforms with respect to their effi-
ciency in microcalcification detection. Based on the results shown in Table 1, we
may conclude that the iso-precision transform of intensities and the estimation
of local noise (adaptive noise equalization) have very similar effects, even if they
are performed one after the other. We have defined three local image features,
a contrast measure, a second order moment (compactness), and a line detector.
We have designed these measures specifically for characterizing microcalcifica-
tion candidates, and our results demonstrated in Figs. 1 and 2 show that they
perform better than other methods which were tested using the same image
database. The quality improvement is most striking at high true positive rates.
We also provide test results using a larger set of mammograms.
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Fig. 2. Comparison of FROC curves obtained for the detection of individual micro-
calcifications. Our results and other three results are shown based on the same image
database: Karssemeijer (o), Meersman (+), Strickland (x) and our results (*). Broken
lines show results obtained using our database
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Abstract. Quantification of regularity of cell sizes and the spatial ar-
rangement of cells in corneal endotheliums becomes of a great impor-
tance associated to stress situations such as cataract surgery, corneal
transplantation or implantation of intra-ocular lenses. A new index of
regularity of the spatial distribution of cell sizes in corneal endotheliums
is proposed. The corneal endothelium is described by means of a spatial
marked point pattern (the cell centroids marked with the cell areas). The
hypothesis of no dependency between mark and locations is tested by a
Monte Carlo test. The new index is the p-value of the test validating the
hypothesis.
Pairs of endotheliums from different eyes of the same person are com-
pared in terms of the traditional measures (density, hexagonality and
coefficient of variation) and the new index. Results show how the index
proposed can discriminate subtle morphological changes that cannot be
detected by the commonly used indices.

1 Introduction

The deepest part of the human cornea is a single layer of 400, 000 to 500, 000
cells called the corneal endothelium. Cells are 4 − 6 µm in height and 20 µm in
width, and their posterior surfaces are predominantly hexagonal when viewed
under specular microscopy. This technique is used to study ’in vivo’ the size,
shape and number of endothelial cells [8]. The normal endothelial cell density is
3000 to 3500 cells per mm2 in young adults. This number decreases by about
two thirds in elderly patients. The endothelial cell population also decreases
following stress situations such as cataract surgery, corneal transplantation and
implantation of intra-ocular lenses. When endothelial loss occurs through aging
or trauma, the endothelial response is enlargement and sliding of the existing
cells to cover the area previously occupied by the lost cells. As a result of the
spreading of the cells, their diameters double their normal size and cells lose
their hexagonal appearance. When a critical cell density is lost corneal edema
results, which leads to a pain and poor vision. Some geometrical cell models have
been proposed which contribute to the study of tissue morphogenesis. Interesting
general references are [2,5,7].
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Three quantities are commonly used to describe the corneal endothelium: cell
density, hexagonality (percentage of cells with 6 neighbors) and the coefficient
of variation of cell areas. Cell density is a size parameter (number of cells per
unit area) meanwhile the other two are measures of variability (spatial regularity
and variation of the cell areas). The goal of this paper is to analyze the spatial
distribution of cell sizes and to propose a new index that quantifies its variability.

One specular image per eye has been obtained with a specular microscope
(Topcon). A software tool provided by Topcon (Imagenet) was used in order
to process the original images. Figure 1 shows some examples. A color CCD
camera (charge coupled device, XC-711P, Sony, Tokyo, Japan) captured these
photographs of cells. The output of the camera was fed into a PIP-512/1024 video
digitizer (Matrox Electronic Systems Limited, Quebec, Canada). All images were
acquired at the same scale. Preprocessing of the original grey level images was
designed in order to obtain a labelled binary image in which each cell corresponds
with a different connected component so that they can be analyzed separately.
A software tool was developed by using Vista version 2.1. 1

Section 2 proposes a new index that measures the spatial homogeneity of
the cell areas based on the theory of marked spatial point processes. In Sect. 3
this new index is compared with the three usual indices. Finally, conclusions are
discussed in Sect. 4.

2 Describing the Corneal Endothelium

The aim of this work is to analyze the cell size distribution by taking into ac-
count the spatial arrangement of cells. We know N cells completely (i.e., non
touching the frame). The n-th cell is located by its centroid, sn, and its size is
measured by its area, Z(sn). The part of corneal endothelium under study is
described by means of the points sn’s marked with the areas Z(sn)’s. The set
{(sn, Z(sn))}N

n=1 is a marked point pattern. Different parts of the same corneal
endothelium produce different marked point patterns. From a probabilistic point
of view, it can be considered as a realization of a marked point process, i.e., a
random mechanism that produces a random set of points marked with random
values. A very good introduction to this subject can be found in [3]. Regular
areas uniformly located within the tissue means from a statistical point of view
that the (random) areas are independent of the (random) locations. A Monte
Carlo test of this null hypothesis (random locations are independent of the ran-
dom marks) is used [1,4,6].

A marked spatial point process is stationary and isotropic if its distribution
is invariant against translations and rotations of the locations sn’s. See [3]. It
has been assumed that the observed marked point patterns are realizations of
a stationary and isotropic marked point process. It can be justified by noticing
that the images are a small part of the whole endothelium (only 100 to 300
cells of the total 400000 to 500000 are observed) and the relative position of the
1 Vista is a public domain library for image processing applications developed by Art

Pope at the Department of Computer Science, University of British Columbia
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microscope and the eye is unknown. In other words, similar results would have
been obtained by taking any other portion (possibly with a different orientation)
of the endothelium. By taking this into account, it is natural to choose the mark
variogram as the functional descriptor of each marked spatial point pattern. The
mark variogram is defined as [3]:

γ(‖ h ‖) =
var(Z(s) − Z(s + h))

2
, (1)

where var(.) denotes the variance, h is a point of the 2-D Euclidean space and
‖ h ‖ is its modulus.

Let γ1(t) (t = 0, . . . , tmax) be the mark variogram estimated from the ob-
served marked point pattern, {(sn, Z(sn))}n=1,... ,N . Under the above null hy-
pothesis, a similar marked point pattern should be expected when the observed
areas are randomly interchanged among the given locations. If (πi(1), . . . , πi(N))
is a random permutation of (1, . . . , N) then a randomized marked point pattern
corresponds to {(sn, Z(sπi(n)))}n=1,... ,N . S permutations are generated (S = 99
in our examples). Let γi be the estimated mark variogram for the i-randomized
pattern (i = 2, . . . , S + 1). The question is now: Is γ1(t) similar to γi(t) with
i > 1 and t = 1, . . . , tmax? Let

γ̄i(t) =
∑
j 6=i

γj(t)
S

, and di =
∫ +∞

0
(γi(t) − γ̄i(t))2dt, (2)

for i = 1, . . . , S + 1. All rankings of d1 are equiprobable under the above null
hypothesis. If d(j) denotes the jth largest amongst di, with i = 1, . . . , S + 1,
then under the hypothesis of independence:

P (d1 = d(j)) =
1

S + 1
, j = 1, . . . , S + 1, (3)

and rejection of the null hypothesis on the basis that d1 ranks kth largest or
higher gives an exact, one-sided test with p − value k/(S + 1). The extension
to two-sided tests follows directly. The two-sided p − value is then given by the
expression:

PV =
2k

S + 1
if k ≤ S + 1

2
and

2(S − k)
S + 1

otherwise. (4)

From now on, PV is called randomized variogram index. If γ1 is similar to the
γi’s with i = 2, . . . , S then a high value p−value, PV , is expected. Lower values
of PV means that the original and the randomized spatial marked point patterns
are clearly different.

The mark variogram (equation 1) has been estimated by using:

γ̂(t) =

∑
i,j=1,... ,N ;i6=j I(t − δ <‖ si − sj ‖≤ t + δ)(Z(si) − Z(sj))2∑

i,j=1,... ,N ;i6=j I(t − δ <‖ si − sj ‖≤ t + δ)
. (5)

An edge correction was not necessary to compare the estimated variogram from
the original and the randomized marked spatial point patterns, since the same
bias is introduced for all estimations.
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3 Results

How is PV related to cell density, hexagonality and the coefficient of variation?
A population of 133 endotheliums were analyzed: 49 endotheliums correspond to
normal control cases and the other 84 images correspond to potentially patho-
logical eyes. The lowest correlation coefficients are between the density and the
other three parameters (first row of the Table 1), since it is simply the ratio
between the number of cells and the total area and does not reflect any kind of
variability of shape, size or regular spatial disposition of cells. It is important to
note the high correlation between hexagonality and the coefficient of variation
of areas, what means that these two parameters describe to some extent similar
aspects of the image. In contrast, the new index PV has lower correlations with
the hexagonality and CV.

Table 1. Correlations between density, hexagonality, CV and PV index

Hexagonality CV PV

Density 0.1269723 -0.08751652 -0.009889984
Hexagonality - -0.61856124 0.248192071
CV - - -0.134639198

Table 2. Density, hexagonality, CV and PV corresponding to the selected pairs of
corneal endotheliums. Rows labeled R (respectively L) correspond to right eye (respec-
tively left eye)

Pair Density (sq.mm) Hexagonality (%) CV (%) PV

1 (R) 3084.3 34 36.3 0.08
1 (L) 3179.8 65 35.3 0.78
2 (R) 2657.1 43 42.6 0.06
2 (L) 2527.9 44 36.8 0.00
3 (R) 3002.8 64 35.0 0.58
3 (L) 2881.7 52 31.9 0.02
4 (R) 1695.5 35 47.7 0.5
4 (L) 1927.3 37 52 0.00

A detailed analysis of 8 endotheliums presenting different pathologies is pre-
sented. These correspond to 4 patients (4 pairs of eyes). Remember that age has
a clear influence on the endothelium status.

In Fig. 1 (a and b) the endotheliums of a male aged 31 with two intraocular
lenses are shown. Table 2 (the two first rows) shows that for both right and left
eye neither densities nor CV’s are different. Only the hexagonality and the PV

index show that the left eye’s status is better that the right eye’s one.
Figure 1 (c and d) correspond to a 36 year-old patient. Both eyes have un-

dergone an intervention. Table 2 (third and fourth rows) shows similar densities,
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(c) (d)

(e) (f)

(g) (h)

Fig. 1. Pairs of corneal endotheliums. Each row corresponds to a different patient
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hexagonalities and CV’s. These values reflect an irregular status of the endothe-
lium, that is also confirmed by the PV index.

The third patient (Fig. 1 e and f) has a right eye considered as normal and
an intraocular lens in the left eye. The three usual indexes show that the status
of the right eye is lightly better, the value of PV shows clearly this difference.

The last patient (eighty four years old) is shown in Fig. 1 (g and h) whose
both eyes have had cataract surgery. The three commonly used parameters do
not permit to discriminate these two situations (Table 2). However, a visual
inspection shows that the cell patterns are quite different. This difference is
detected by the PV index (Table 2).

4 Conclusions

A new index of spatial homogeneity of endotheliums has been proposed, the
randomized variogram index, PV . Results show how this is able to detect sub-
tle morphological changes of cell dispositions that can not be detected by the
usual indices. The PV index is invariant against scale changes, translations and
rotations (in fact, robust against image distortions) and it is defined based on a
Monte Carlo test.
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Abstract. This paper describes a new ultrasonic scoring system based
on the texture characteristics of ultrasonic liver images. This system
generates an ultrasonic disease severity (UDS) score that is highly cor-
related with the computer morphometry (CM) score obtained from the
evaluation of liver fibrosis based on the biopsy specimens. Essentially,
UDS score is very similar to the CM score in the statistical presentation.
Therefore, UDS score is defined mathematically referring to CM score
as the scoring basis. As a result, UDS can faithfully reflect the disease
progression that is determined conventionally based on the evaluation
of liver fibrosis. Promising results have been obtained in experimental
studies, and it will currently undergoes extensive clinical experiments.

1 Introduction

B–mode liver sonogram, the most frequently used diagnostic ultrasonic modal-
ity, produces gray–scale images from echo signals arising from pulsed ultrasound
beams propagating through soft tissues. The ultrasonic scans are highly opera-
tor and instrument dependent because the characteristics of ultrasonic image are
closely related to the attenuation and scattering properties. Therefore, current
liver sonography is still a qualitative, or at best semi–quantitative image modal-
ity. It depends on the physician to observe certain echotexture characteristics,
such as texture coarseness, echogenicity and smoothness of inferior edge, from
the liver images and to compare them in order to diagnose the liver states [1]. For
some liver diseases, the diagnostic result does not yet produce a conclusive diag-
nosis. Therefore, physicians have to further examine with other invasive methods,
typically liver needle biopsies. Liver biopsy is the standard clinical routine for
diagnosing chronic liver diseases and for guiding and monitoring treatment, but,
there is associated morbidity (3%) and mortality (0.03%). Therefore, developing
a reliable, non–invasive and quantitative ultrasonic scoring system for evaluating
histological changes in ultrasonic liver images is highly promising in diagnosing
and monitoring chronic liver diseases.
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The key to establishing the ultrasonic scoring system is to find powerful
texture features that can reflect the progression of liver disease. From the his-
tological view, the progression of liver disease mainly reflects in the amount of
fibrosis of the liver specimens. In the last decade, Knodell’s score was widely
used to measure liver fibrosis [2]. It used only five numerical scores for staging
liver fibrosis based on the physicians observation. Obviously, it was not enough
to develop a quantitative progression index for liver disease. In [3,4], we proposed
a quantitative index, called computer morphometry (CM) score, that was more
reliable and effective than the conventional Knodell’s score for evaluating the
amount of liver fibrosis. Thus, the CM scores are used here as the criteria for
selecting powerful texture features from texture descriptors. As mentioned pre-
viously, the CM score is closely related to the progression of liver disease. Thus,
it is a good indicator to develop the ultrasonic scoring system for assessing the
ultrasonic liver images.

A powerful ultrasonic scoring system should generate the disease severity
score that matches the corresponding CM score as closely as possible. To estab-
lish the correlation between the selected texture features and the corresponding
CM score, the quadratic equations of the selected texture features are defined
mathematically based on the CM scores in the training stage. The scoring cri-
terion of assessing the ultrasonic liver image is the minimization of variation
between the observed texture features and the texture features estimated by
quadratic equations. The severity scores generated here are called ultrasonic
disease severity (UDS) score. The intervals of UDS scores in different liver states
are also determined as the standard for classification. Experiments with forty
test images demonstrate that the UDS scores generated from this system are
significantly correlated with the CM scores of corresponding biopsy specimens.
In addition, one hundred and twenty ultrasonic liver images are used to test the
classification capability. The resulting correct classification rate was as good as
86.7%. These results reveal the possibility of replacing the invasive needle biopsy
examination by the system presented here.

2 Materials and Methods

The major morphological change of the progression of chronic liver diseases is
that collagen fibers are increasingly presented in liver specimens. Therefore, the
amount of liver fibrosis is a powerful index for quantitatively assessing chronic
liver diseases. In the literature, echotexture was also reported to be very pow-
erful for evaluating diffuse liver disease [5]. Thus, if we can establish the cor-
relation between the measurements of echotexture and the amount of fibrosis
in liver specimens, sonography will become an effective and non–invasive tool
in the systematic assessment of chronic liver diseases. In [5], we found that the
co–occurrence matrix method and texture feature coding method are powerful
texture descriptors for classifying the chronic liver diseases. Therefore, these two
texture descriptors are used to establish the correlates with the pathological
fibrosis measurement.
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The disease severity of chronic liver disease is reflected by the amount of
liver fibrosis of the biopsy specimens. Therefore, it is necessary to develop an
objective system for measuring the amount of liver fibrosis. In [3], we devel-
oped an automatic image analysis system, which consisted of a microscope, a
computer–driven slide–driver, and the software for image acquisition, processing
and data analysis. The image analysis procedures included color model selection,
histogram–based normalization, clustering, moment–preserving thresholding and
a ranking filter for tissue characterization. The computerized motor driver and
the x–y directional stage were designed and installed to move specimens on an
optical microscope and to compute the fibrosis index. The system was capable
of computing the ratio of fibrous area to the complete liver tissue area as an in-
dex for assessing the amount of liver fibrosis. This index is called the computer
morphometry (CM) score. In [4] we found that the CM score was superior to the
conventional Knodell’s score for evaluating the liver fibrosis. The pathological
CM score is used for selecting powerful texture features.

In [6], we found that the changes of ultrasonic liver texture in disease are
more sensitive with features of the co–occurrence matrix being 3 or 4–pixels
apart along the angular directions of degree 0 or 90. Thus, we use the two
displacements along the two directions to obtain four co–occurrence matrices.
Sixteen texture features can be extracted from these matrices. In addition, four
texture features by texture feature coding methods are also adopted. Four tex-
ture features, that are significantly correlated to CM scores are selected as the
most powerful features for establishing the ultrasonic disease scoring system.
They are based on grey-level resolution similarity, entropy, correlation, and an-
gular second moment. Experimental results with forty samples show that the
resulting severity scores generated from this system are highly correlated with
CM score more than the ones designed by other texture features.

2.1 Ultrasonic Disease Scoring System

In the literature, the texture features were only used to construct a classifica-
tion system for clustering the three liver states. Widely used texture classifi-
cation methods including the minimum–distance classifier, Bayesian estimation,
k–nearest neighboring classifier and neural network have been reported to be use-
ful in these studies. However, they only classified test samples into three disease
states. No quantitative measurement of disease severity has yet been generated
for assessing the progression of the chronic liver disease. As mentioned above,
liver disease progression can be perceived and evaluated based on the amount
for liver fibrosis. Among conventional methods for liver fibrosis measurement,
the CM score is most reliable and accurate method [3]. Therefore, the proposed
scoring system was designed, using the corresponding CM scores. For this pur-
pose, a system of quadratic equations is used to define the correlation between
the texture features and the corresponding CM scores. The design details are
described as follows.

Forty training samples, including the ultrasonic images and corresponding
needle specimens, were used to establish the ultrasonic scoring system in the
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training stage. The selected texture features and its corresponding CM score of
the i–th training sample are evaluated and defined as 〈f1,i, f2,i, f3,i, f4,i〉 and ti.
The quadratic equations of selected texture features with respect to the corre-
sponding CM score are defined in (1).

f1,i = a1t
2
i + b1ti + c1

f2,i = a2t
2
i + b2ti + c2

f3,i = a3t
2
i + b3ti + c3

f4,i = a4t
2
i + b4ti + c4

(i = 1, 2, . . . , 40). (1)

These coefficients aj , bj , cj are determined using least square estimation based
on (2).

X = (T tT )−1T tF (2)

where

X =




aj

bj

cj


 , T =




t21 t1 1
t22 t2 1
...

...
...

t240 t40 1


 , F =




fj,1
fj,2
...

fj,40


 (j = 1, 2, 3, 4).

The quadratic equations defined in (2) are used to derive a disease severity
score for assessing the ultrasonic liver image. The resulting score is called ultra-
sonic disease severity (UDS) score. The assessment criterion of image X is based
on the minimization of the square error between the texture features of X and
the estimated texture features obtained by the quadratic equations. The square
error term is defined as (3).

SE =
4∑

j=1

[gj − (aju
2 + bju + cj)]2 (3)

where the 〈g1, g2, g3, g4〉 are the texture features of X.
Differentiating of (3) with respect to the variable u, we obtain the root u of

(4) to determine UDS such that the square error term is minimized.

2
(∑4

j=1 a2
j

)
u3 + 3

(∑4
j=1 ajbj

)
u2+(∑4

j=1 ajcj +
∑4

j=1 b2
j − 2

∑4
j=1 gjaj

)
u+(∑4

j=1 bjcj +
∑4

j=1 +
∑4

j=1 gjbj

)
= 0.

(4)

3 Experimental Results and Conclusion

In this study, we have successfully developed an ultrasonic scoring system to as-
sess the severity of the chronic liver disease. The system integrates the techniques
of texture analysis with pathological CM score measurement. In this system, all
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programs are coded in Visual C++ version 4.0 with a Pentium personal com-
puter under MS–Windows 95. The system provides user–friendly interfaces and
efficient computation for real–time clinical evaluation. Forty training samples
with ultrasonic images and corresponding needle specimens were collected from
forty patients in whom thirteen of them are normals, nineteen are chronic hep-
atitis and eight are with liver cirrhosis. These training samples were used to
select powerful texture features, and then to establish the quadratic equations
for texture features based on CM scores in the ultrasonic scoring system. The re-
sulting quadratic equations are used to derive the UDS scores of liver images for
sequential assessment. Additionally, in the conventional clinical diagnosis, physi-
cians always classify the ultrasonic liver image into one of three liver states. To
provide the standards for classification, the forty training images are also used
to determine the severity intervals of UDS score for different liver states accord-
ing to their medical records. The intervals of UDS scores in different liver states
are determined by ANOVA and correlation analysis. The results are: normal
2.8832 ± 1.668, hepatitis 5.9296 ± 1.554 and liver cirrhosis 13.8257 ± 2.632. The
thresholds of UDS for three different disease states are 4.54 (normal ∼ hepati-
tis) and 9.62 (hepatitis ∼ cirrhosis) based on normal distributions with equal
standard deviation.

Forty ultrasonic images and their corresponding needle specimens are used as
test samples to analyze the stability and accuracy of the proposed scoring system.
The accuracy of the UDS score is verified by comparing with the pathological
CM scores. The Pearson correlation coefficient between the UDS scores and CM
scores is 0.8843 (p < 0.001) This significant correlation shows that the proposed
UDS scores can faithfully reflect CM scores which is an important factor in
assessing the progression of chronic liver disease. In other words, the UDS score is
a powerful and stable index for assessing the ultrasonic liver images. The results
also reveal that the system of quadratic equations is an appropriate method for
correlating the selected texture features and the corresponding CM scores. It is
still an interesting topic to define the best correlation between texture features
and CM scores in the future such that the resulting ultrasonic system is most
effective.

In clinical diagnostic practice, the ultrasonic liver images are usually classified
into three disease states. The effective scoring system should avoid misclassifi-
cation, especially false–negative misclassification. The false–negative rate is the
probability of a misclassification such that the patients are classified as being
normal or having mild disease while the actual diagnosis is a more severe disease.
High false–negative rate represents a danger to the patients when physicians use
this scoring system. One hundred and twenty ultrasonic liver images, verified by
needle biopsy, are used to test the discrimination capability. The classification
results are listed in Table 1. From the experimental results we find that the
negative–false rate is only 8.33% and the correct classification rate is 86.7%. It
is superior to the conventional method utilized by the co–occurrence matrix or
texture feature coding method [5].
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In this paper, a quantitative ultrasonic scoring system is proposed based on
the characteristics of echotexture of liver. The system not only generates quanti-
tative indices to assess disease progression but also to classify the ultrasonic liver
images. It is shown that the proposed system has potential to become a valuable
clinical tool for liver diagnosis in the future. Several characteristics of liver tissues
have been used to evaluate the degree of diffuse parenchyma liver disease, includ-
ing the smoothness of liver surface, echogenicity, echotexture and backscattering
parameters. However, the system proposed here only uses echotexture informa-
tion. In further studies, it is an interesting topic if one can enhance this system’s
performance by integrating other features of tissue characteristics.

Table 1. The confusion matrix of forty test patients is shown. The left column indicates
the true liver states of the test samples while the upper row indicates the corresponding
classification results. Correct classification rate is 86.7%. The false–negative rate is only
8.33%

Normal Hepatitis Cirrhosis
Normal 37 2 1

Hepatitis 5 32 3
Cirrhosis 1 4 35
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Abstract. Automatic volumetric measurements of brain structures and
substructures is a prerequisite for longitudinal studies as well as stud-
ies aimed at measuring and quantifying differences between populations.
This study tests the hypothesis that a fully automatic, atlas–based meth-
od can be used for the computation of the volume encompassed by the
dura, the volume of the brain, and the volume of the cerebellum from
which indices of atrophy are estimated. The method has been tested
on normal volunteers and alcoholic patients. It has been validated both
by comparing contours obtained manually and automatically and by re-
peating the measurements on serial acquisitions. Results demonstrate
that the method is both robust and accurate, even in the presence of
large morphological differences due to severe atrophy caused by chronic
alcoholism.

1 Introduction

A number of atlas–based methods have been proposed in the recent past to
label and segment structures and substructures in medical images [1]. These
techniques involve the segmentation of a reference volume and its non–rigid reg-
istration to the volume to be segmented. Possible approaches include the use of
landmarks in which the deformation is computed based on control points and
interpolated through the remainder of the volume. But, the automatic or semi–
automatic identification of these control points remains challenging. Other tech-
niques attempt to maximize intensity similarity on a voxel–by–voxel basis. These
methods have the advantage of being fully automatic but they may be affected
by large morphological differences between brain volumes. Results reported in
the literature typically involve normal subjects or patients with pathologies that
do not drastically alter the shape of the brain, such as schizophrenia or epilepsy.
In these applications, small deformations are sufficient to warp one brain onto
the other. In contrast, the study presented herein involves chronic alcoholics with
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very severe brain atrophy. Severe atrophy considerably reduces the size of the
cerebellum and enlarges the sulci and the ventricles. This decreases the similarity
between the atlas and the subject volumes, thus challenging deformation algo-
rithms. This work tests and evaluates the robustness of an automatic method
for the computation of pre–atrophy brain volumes and the post–atrophy brain
and cerebellum volumes.

2 Methods

2.1 Data Sets

Seven normal volunteers and seven patients with a history of alcoholism were
used in theis study. Multiple 3–D magnetic resonance (MR) image volumes were
obtained of each subject. Normal subjects were scanned three times within a
period of three weeks (n=5) or within a period of 5 months (n=2). Alcoholic
subjects were admitted to a detoxification program, and the first scan was ob-
tained within 5 days of abstinence. The second scan was obtained within one
month, followed by a third scan at approximately 3 months after the first scan.
An additional image volume obtained with the same imaging parameters was
used as an atlas. All image volumes were acquired with a General Electric 1.5
Tesla Signa MR scanner using a spoiled gradient echo pulse sequence. Each vol-
ume consists of 124 sagittal slices, and each slice has dimensions of 256 × 256
pixels. Voxel dimensions were .94 × .94 × 1.3 mm3.

2.2 Image Registration

The registration algorithm consists of two major steps. First, a seven–parameter
(three rotation angles, three translation vectors, and one scaling factor) trans-
formation that brings the two volumes into global correspondence is computed.
Next, the volumes are deformed using a non–rigid transformation to bring these
two volumes into local correspondence. Both of these steps are fully automatic.
Because the method used in step (2) is also used to compute the transformation
in step (1) the local transformation method is described first. All the algorithms
used in this study were written in IDL (Interactive Data Language, Research
Systems, Inc.) and executed on a Sun Ultra 1 workstation (Sun Microsystems,
Mountain View, CA).

Local Registration: Recently, Thirion [2] presented the problem of image
matching in terms of demons (by analogy with Maxwell’s demons). This is a
general framework in which object boundaries in one image are viewed as semi–
permeable membranes. The other image, considered as a deformable grid, diffuses
through these interfaces driven by the action of effectors (the demons) situated
within the membranes. Various kinds of demons can be designed to apply this
paradigm to specific applications. In the particular case of deformations based
on voxel–by–voxel intensity similarity the demons paradigm is similar to opti-
cal flow methods. It is an independent implementation of this approach that
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has been used in this study [3]. This algorithm results in a deformation field
(i.e., a displacement vector for every voxel in the volume) that can be used to
warp one image onto the other. Global Registration: Prior to applying the de-
formation algorithm, the images to be matched are brought into approximate
correspondence using a seven–degrees–of–freedom transformation. Displacement
vectors computed as described in the previous section were used to identify a
set of points in the first image and a corresponding set of points in the second
image. These homologous points are then used to compute the global transfor-
mation. Typically, the global transformation computed with this approach is not
as accurate as one computed with other methods, such as mutual information.
However, it has the advantage of being fast and is sufficiently accurate to serve
as a reliable starting point for the deformation algorithm.

2.3 Segmentation

The atrophy indices of interest require pre– and post–atrophy brain volumes as
well as cerebellum volume. Pre–atrophy brain volumes are difficult to obtain, so
instead, the intra–dural volume was used as the reference to which brain volumes
are compared. The intra–dural volume in the atlas was determined by careful
manual delineation. Contours were outlined in each slice of the sagittal volume,
and a binary mask of the intra–dural volume was created. This same method was
repeated to obtain a binary volume of the cerebellum (both hemispheres) in the
atlas volume. The region was segmented to include the entire cerebellum region,
and individual folia were not followed. Note that the first volume also included
the cerebellum. In order to segment the intra–dural region and the cerebellum in
subject volumes, the atlas was first registered to each volume. The deformation
field was then applied to the binary atlas volumes to create intra–dural and
cerebellum masks in each individual volume.

2.4 Volume Measurements

The intra–dural brain volume of each subject is determined simply by the volume
of the mask created by projecting the atlas mask onto each individual volume.
The brain volume (white and gray matter) is obtained by thresholding the intra–
dural image to eliminate cerebrospinal fluid. The threshold value was manually
chosen in the atlas volume. In order to compensate for inter–scan intensity vari-
ations, this threshold level was automatically adjusted to the proper value for
subject volume using a histogram equalization technique. This threshold was
then applied to the segmented intra–dural images, and a brain volume was de-
termined. The cerebellum volumes were computed in the same manner as the
brain volumes, using a separate intensity threshold.

3 Results

Figure 1 illustrates qualitatively the type of results that were obtained. The
left panel shows one slice in the atlas volume. The right panel shows the slice
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with the same index in one of the patient volumes. Observe the large amount
of atrophy (enlarged sulci and ventricles and atrophied cerebellum) visible in
the patient volume. The middle row shows the slice with the same index in the
volume obtained by warping the normal brain volume onto the atrophied brain
volume. After deformation, the ventricles in the normal brain volume have been
dramatically enlarged, the thickness of the corpus callosum has been reduced,
sulci have been enlarged, and the overall shape of the head has been modified,
but the integrity of the cortical structures has been preserved. Figure 2 illus-

Fig. 1. Results of the elastic registration algorithm

trates representative results for the automatic segmentation of the cerebellum.
This figure shows one slice in each of three alcoholic subject volumes with the
cerebellar contours obtained with the automatic technique overlaid in white.
Observe the ability of the algorithm to produce accurate results even when the
shape and orientation of the cerebellum varies greatly from one volume to the
other. To evaluate our results quantitatively we differentiate between repeata-

Fig. 2. Automatic cerebellum segmentation results for three alcoholic subjects

bility and accuracy. The data set used in this study includes three acquisitions
per subjects (both for the normal and the alcoholic volunteers). This permits
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the evaluation of the consistency and repeatability of our measurements. Indeed,
changes are not expected in the volume encompassed by the dura in either the
normal or the patient population and only minor changes (if any) are expected
in the brain and cerebellar volumes for the normal population. Changes related
to abstinence may be observed both in the brain and the cerebellum volumes for
the patient population. Consistent values for structures that are not expected
to change in serial scans of the same subject are thus good indicators of the
reliability of our measurements. Accuracy has been assessed by comparing the
results obtained automatically to results obtained by manual delineation.

3.1 Repeatability

Figure 3 shows the intra–dural volumes obtained for both the normal and the
patient population. For each subject the figure shows the volume computed for
each acquisition. Space restrictions preclude the inclusion of similar figures for
the cerebellar volumes but results were comparable.

Fig. 3. Intra–dural volumes, determined automatically, for each normal and alcoholic
subject used in this study

3.2 Accuracy

For each and every volume, four slices were segmented manually (two for the
brain and two for the cerebellum). These slices were chosen by determining the
range on which the structures were visible in the image volumes and randomly
selecting two slices per structure within this range. Ranges, and therefore se-
lected slices, were different for the cerebellum and for the brain. The similarity
between contours obtained manually and contours obtained automatically were
computed using a similarity index S derived from the kappa statistic [4]. This
index varies between 0 and 1 (1 indicates perfect agreement between two con-
tours while 0 indicates no overlap) and is sensitive to both differences in size and
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structure orientation. This strategy resulted in 84 brain and cerebellum contours
for the normal population and 84 contours for the alcoholic subjects. The mean
similarity indices for the normal subjects were 0.98 for the intra–dural volume
and 0.95 for the cerebellar volume. These indices were 0.97 and 0.94 for the
alcoholic subjects.

4 Discussion

This study demonstrates that fully automatic, robust, and accurate segmenta-
tion of the whole brain and cerebellum can be accomplished using atlas–based
methods. To the authors’ knowledge, this is the first time that results have been
reported on a study involving atlas–based segmentation of brains with patholo-
gies that alter brain morphology to the extent observed in this data set. Intra–
dural volumes demonstrate the excellent repeatability of the results. Accuracy
was tested by comparing contours delineated manually and contours delineated
automatically. Arguably, manually delineated contours are not the ultimate gold
standard. But, in this case the contours were drawn by the same rater on the
atlas and on each individual slice used for the evaluation. The entire atlas was
also delineated twice and similarity indices of 0.98 and 0.96 were observed for
the intra–dural and cerebellum volumes, respectively. The average similarity in-
dices we have observed between manual and automatic delineation on the slice
selected for evaluation are therefore comparable to the intra–rater variability.
Thus, results obtained on this data set support the hypothesis that automatic
delineation is as reliable and accurate as manual delineation when the manual
segmentation is performed by a single individual.
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Abstract. Slow rotation acquisition of dynamic data has several ad-
vantages over fast rotation acquisition which is currently the method of
choice used for the acquisition of dynamic data in SPECT. Slow rota-
tion is currently not used because of error from inconsistent data. In
this work, we develop a method of reconstructing from projections that
are inconsistent in time due to being acquired during a slow acquisition.
Our method is based on a factor model of physiological data. A series
of dynamic images are reconstructed, where each reconstructed image
corresponds in time to only one projection. Such an under-determined
reconstruction is shown to be possible through utilization of a factor
model. Computer simulations are performed using simple phantoms. We
found that we are able to accurately reconstruct the dynamic sequence for
simple phantoms with temporal behavior corresponding to teboroxime-
Tc-99m heart imaging.

1 Introduction

Single Photon Emission Computed Tomography (SPECT) can be used to acquire
dynamic data. The acquisition protocol is usually based on the use of a fast
camera rotation. Such acquisitions are made only with multiple detector cameras
which have the ability to rotate quickly and acquire consecutive, complete sets
of tomographic projections. A complete set of tomographic data is acquired
over a very short period of time (approximately 10 seconds) and the resulting
number of counts in the acquired projections is very low. The tomographic sets
are reconstructed to form a series of dynamic images which are very noisy due
to low projection counts. The assumption made during reconstruction is that
radionuclide distribution remains constant during the acquisition of one set of
projections. This approximation may be unreliable, especially in the time just
after injection when changes of activity in the object are very fast. In our lab,
with a Picker 3000XP, the best temporal resolution with fast rotation was 5.7
seconds. Another important aspect of fast rotation acquisition is the amount
of computer time and disk storage needed to process a dynamic study. Each
tomographic set of projections must be stored end then reconstructed. For the
above reasons, dynamic SPECT with fast rotation is a difficult and computer
time consuming method.

There are a variety of methods in PET and SPECT which estimate kinetic
parameters directly from projections. They require prior reconstruction of to-
mographic sets in order to estimate the object boundary [2], or to estimate the
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initial set of factors through SVD analysis of reconstructed dynamic sequences
[3].

In this paper we consider a different approach to dynamic SPECT. In this
approach the acquisition of the dynamic SPECT data is similar to the standard
static acquisition of SPECT data [4]. Only a small number of rotations of the
camera is required during the scan. Such an acquisition type creates time incon-
sistencies in the projections, i.e. each projection “sees” different activity in the
object.

We propose a reconstruction technique which reconstructs a sequence of dy-
namic images from these inconsistent projections using a factor model of the
physiological images [5,6]. Each reconstructed dynamic image corresponds in
time to only 1 projection unlike in the fast rotation case where one dynamic
image corresponds to a tomographic set of projections. By using a short time
per projection, this method can provide a much better temporal resolution than
that obtained with fast rotation. The very important advantage of this method
is that it does not require a three or more detector system; it can be used with
a two detector or single detector system. Only positivity constraints are put
on the temporal or geometrical representation of the factors, and no a priori
information is used in the reconstruction.

The time activity curves (TACs) can be determined from the sequence of
reconstructed images by using region of interest (ROI) measurements or factor
analysis of dynamic structures (FADS) [6]. We used the ROI technique for the
extraction of TACs which then were used for the evaluation of the reconstruction
method presented in this paper.

We present the results of our reconstruction method from a simulation of a
simple phantom. A comparison is made between two different types of acquisition
protocols and two different reconstruction parameters.

2 Methods

The reconstruction was done by constructing a least squares objective function
where forward projection was modeled assuming a factor model of the data:

f(C,F) =
M,K∑

j,t=1

(
∑N,P

i,p=1 αji(t) · Cip · Fp(t) − Pj(t))2

Pj(t)
(1)

where Fp(t) is a value of factor p at time t and Cip is a geometrical definition of
the factor; i is a pixel index. The α is a tomographic system matrix, and Pj(t) is
the number of counts measured in bin j at projection (or time when projection
was taken) t.

The minimization of (1) will yield the values of C and F, but these values are
not physiologically meaningful since: (a) in general, the number of factors used
for the forward projection in (1), P , is different than the number of physiolog-
ical factors and (b) the results of the minimization, matrices C and F, are not
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mathematically unique. In all simulation experiments presented in this paper,
the number of factors used in the reconstruction was equal to or higher than
the number of physiological factors in the analyzed study. The physiologically
meaningful result of this method is the dynamic sequence of images which is a
result of C ·F multiplication. Although in this paper we consider only a 2D case,
this method has straightforward extension to 3D. All equations in this paper are
valid for this 3D case. The objective function was minimized by use of the con-
jugate gradient method. The non-negativity constraints were imposed on C and
F by adding to the objective function a term which penalized negative values of
these matrices.

Preliminary computer simulations were performed in order to verify the re-
construction method. A simple phantom consisting of 4 squares. These squares
corresponded to blood, myocardium, liver, and right ventricle. Their geometrical
representation is presented in Fig. 1(a) . In all simulations, uptake of Teboroxime-
Tc-99m in the myocardium was simulated using a two compartmental model [7]
with wash-out k12 = 0.4min−1 , and wash-in k21 = 0.8min−1, and fraction of
blood in the tissue fv = 0.15. Simulations were performed in 2D using 64x64
pixel images. Simulations were performed without noise and with Poisson noise
added to the projection data. The total number of counts in each sinogram for
the simulation with noise was equal to 3.8x105. Ten realizations of the noise in
the sinograms were performed. The data acquisition was performed assuming
two detector heads positioned with a relative angle of 90 deg; 183 projections
per head was simulated. Each head made a total of 3 rotations during the ac-
quisition. The projections were generated in a 64 bin matrix. Simulations with
noise were performed in 2 modes of acquisition. In the first mode, the time per
projection, 6 seconds, was the same for all projections. For the second mode,
the time per projection was 2 seconds for the first 61 projections, and it was
increased to 6 seconds for the next 61 projections, and the final 61 projections
lasted 10 seconds each. The non-uniform time per projection acquisition mode
was used to increase the temporal resolution at the beginning of the acquisition
when changes in radionuclide distribution were most rapid.

The reconstructed dynamic sequences had 183 images (the same as the num-
ber of projections), each of size 64×64 pixels. The TACs for the 4 different com-
ponents: myocardium, blood, liver, and right ventricle, were extracted from re-
gion of interest (ROI) measurements from the reconstructed dynamic sequences.
Geometrically, the ROIs were defined as the 8 × 8 squares positioned in the
center of each of the 4 components. The kinetic parameters of the simulated
uptake of teboroxime in the heart were also calculated using the RFIT fitting
program [8] from the obtained TACs. Parameters (k12, k21, fv) of the compart-
mental model, and their standard deviations, were calculated for each ROI. The
standard deviations were calculated based on the 10 realizations of noise in the
projections.
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3 Results

The results of the simulations with noise gave the exact match between the
simulated and obtained by the method curves. These results are not presented.
Figure 1 shows sinograms of the noisy square phantom. The time per projection
was 6 seconds for each projection in sinogram (b) and varied from 2 seconds to
6 seconds to 10 seconds in the three sections of sinogram (c). It is apparent from
the sinograms that for the first frames there are rapid changes of activity which
become smaller for later time frames. Different times per projection causes the
discontinuity of the sinogram seen in Fig. 1(c).

(b)

(c)

(a) (d)

Fig. 1. Simulated object (a). The sinograms for one detector obtained for uniform (b)
and non-uniform (c) temporal sampling. The reconstructed images from sinogram (b)
are presented in (d). Only 12 out of total 183 reconstructed images. Images in (d)
correspond to times marked on the sinogram (b) by arrows

The reconstructions from the sinograms in the Fig. 1(b) is presented in Fig.
1(d). Only a small number of reconstructed images is shown (there were a total of
183 reconstructed images). Images in Fig. 1(d) correspond to projections marked
by arrows on the sinogram in Fig. 1(b).
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Fig. 2. TAC obtained by ROI measurments from reconstructed series of images. The
temporal behavior of the factors corresponded uptake of Teboroxime-Tc-99m in heart.
(a) corresponds to myocardium, (b) to blood, (c) to liver, and (d) to right ventricle

Figure 2 shows the comparison between the simulated curves and the TACs
obtained using our method. The ROI curves were obtained from dynamic se-
quence reconstructions from one noise realization of the projection data. Figure
2 presents results for non-uniform temporal sampling. The values of TACs in
Fig. 2 were scaled, i.e. the values of the TAC for the projections with 2 second
duration were multiplied by 3, and values corresponding to 10 second duration
were divided by 1.67, so that all projections corresponded to 6 second duration.

Parameters of the kinetic model were calculated for each noise realization of
the data from the TACs of the myocardium and blood. The results are summa-

Table 1. Calculated kinetic parameters with standard deviations

k12 [min−1] k21 [min−1] fv

Simulated 0.40 0.80 0.15
Uniform P=4 0.399 ± 0.029 0.802 ± 0.061 0.097 ± 0.023
temporal sampling P=5 0.392 ± 0.034 0.785 ± 0.059 0.093 ± 0.023
Non-uniform P=4 0.390 ± 0.017 0.789 ± 0.034 0.128 ± 0.024
temporal sampling P=5 0.388 ± 0.021 0.780 ± 0.047 0.117 ± 0.029
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rized in Table 1. The standard deviation of wash-in and wash-out parameters
and bias of fv was decreased by using non-uniform sampling. There is no visible
difference between the reconstructions with P = 4 and P = 5.

The values of the calculated kinetic parameters agreed with simulated values
within the standard deviation. Standard deviations were calculated over multiple
noise realizations of the projection data. Use of non-uniform temporal sampling
improved the temporal resolution of the dynamic acquisitions and often improved
the precision and accuracy of kinetic parameters obtained (Table 1).

In future studies we plan to investigate the use of different methods for
minimization of the objective function. We intend to optimize the slow rotation
acquisition protocol using computer simulations with a more realistic anatomic
phantom. Finally, experimental validation of this method will be performed for
teboroxime-Tc-99m heart and MAG3-Tc-99m renal studies in animals and in
patients.
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Abstract. In nuclear medicine, simultaneous dual-isotope imaging is
used to determine the distribution of two radiotracers from a single ac-
quisition and for emission/transmission (E/T) imaging in SPECT. How-
ever, no general solution to the cross–talk problem caused by scattered
and unscattered photons has been found yet and accurate quantification
cannot be performed. We describe a general method of spectral factor
analysis (SFA) for multi–isotope acquisitions. SFA corrects for cross–talk
due to unscattered and scattered photons in planar or SPECT imaging
involving two or more radiotracers and for E/T scans. A Tc-99m/I-123
phantom study shows that quantitative accuracy is within 10% with
SFA, while errors up to 170% are observed using conventional spectral
windows.

1 Introduction

In nuclear medicine, simultaneous dual–isotope imaging is used to determine
the distribution of two imaging agents labeled with two different isotopes (e.g.,
[1,2]) and also for simultaneous emission/transmission (E/T) imaging in SPECT,
where one radioisotope is used for transmission scanning while the other is used
for the emission study [3]. The major problem with simultaneous dual–isotope
acquisition procedure is the cross–talk between the two isotopes. Photons emit-
ted by one radioisotope can be detected in the energy window dedicated to
the acquisition of photons emitted by the other and conversely. Cross–talk can
be caused by unscattered photons if the photopeaks corresponding to the two
radioisotopes partially overlap. Cross–talk is also systematically introduced by
scattered photons from the highest energy isotope which are detected in the
energy window corresponding to the lowest energy isotope. The magnitude of
cross–talk varies with the experimental conditions but it is admitted that the
resulting images are not trustworthy without some cross–talk correction [4].

There is currently no method accepted as a standard for cross–talk correc-
tion. Symmetrical and off–set energy windows are used (e.g., [1,5]) to reduce
cross–talk but do not remove it. Subtraction methods involving at least three
energy windows have also been proposed (e.g., [5,6]). However, none of these
approaches offers a reliable solution when cross–talk is caused by both scattered
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and unscattered photons. In addition, these empirical approaches need substan-
tial changes and specific calibration for each combination of isotopes.

We describe here a general method for the analysis of multi–isotope acquisi-
tions using a spectral factor analysis (SFA). SFA corrects for cross–talk due to
both unscattered and scattered photons.

2 Theory

As different radioisotopes can be distinguished by their emission energy spec-
trum, SFA analyzes the set of spectra detected in the pixels of the planar images
(or projections in SPECT), using either a list mode or a multispectral acquisi-
tion technique. For the sake of simplicity, we consider here planar imaging (the
extension to SPECT is discussed below). A planar acquisition with spectral in-
formation consists of a set of E spectral images, each image including photons
detected in a small energy interval. Xi(e) is the number of photons detected in
pixel i of image e.

The model assumes that each noise–free spectrum can be written as a linear
combination of K spectral components fk common to all pixels i, i.e.:

Xi(e) =
K∑

k=1

ak(i)fk(e) + εi(e), (1)

where ak(i) is the number of photons in pixel i distributed according to the
spectrum fk and εi(e) represents noise.

For multi–isotope imaging with R isotopes, the spectral components fk are
R scatter–free spectra fr and K − R scatter spectra. For each isotope r, the
{ar(i)} coefficients (i = 1, . . . , N , N is the number of pixels in an image) associ-
ated with the scatter–free spectrum fr give the scatter–free image of isotope r.
Solving the model consists in estimating the scatter–free and scatter spectra fk

and the associated ak(i). This is performed using SFA, derived from the latest
developments regarding factor analysis of medical image sequences [7,8]. In the
following, we briefly describe the four steps of SFA.

Data preprocessing. First, the spectra corresponding to spatial neighbor
pixels are added (e.g., using 4×4 pixel non overlapping ROIs), which is equivalent
to a coarse spatial sampling. This reduces the number of spectra to be analyzed
and increases the signal–to–noise ratio in each spectrum. Spectra corresponding
to irrelevant regions in the images are also discarded, resulting in M spectra Yi.
The model (1) can be written:

Yi(e) =
K∑

k=1

a′
k(i)fk(e) + ε′

i(e), (2)

where the {a′
k(i)}i=1,... ,M is the image (with coarse sampling) associated with

the spectrum fk and ε′
i(e) represents noise.
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Orthogonal analysis. This stage filters the spectra Yi, to estimate their
noise–free components Yi assuming these components belong to a low dimen-
sional space S (typically < 5D). S is estimated using an orthogonal decomposi-
tion adapted to the Poisson nature of the set of spectra {Yi}i=1,... ,M , namely
a correspondence analysis (CA). CA yields an orthogonal spectral basis from
which a Q–dimensional space S, spanned by the Q eigenvectors associated with
the largest Q eigenvalues of the covariance matrix decomposed by CA, is ob-
tained [9].

Oblique analysis. The oblique analysis estimates the spectra fk underlying
the model (1) assuming they belong to the subspace S. It is also assumed that
the dimension Q of S is equal to the number K of spectra underlying the physical
model. To estimate the fk, a priori knowledge pertaining to the spectra fk and to
the images a′

k must be used [7]. We know that fk(e) ≥ 0 and a′
k(i) ≥ 0 since they

represent numbers of photons. In addition, for each scatter–free spectrum fr(e) =
0 for some energy channels where there is no photopeak. Using this information,
the R scatter–free spectra fr are first located in S using the target apex–seeking
(TAS) method [10]. Next, the K −R scatter spectra fk are estimated iteratively
by minimizing the number of negative fk(e) and a′

k(i) values while taking into
account the confidence interval around each estimated fk(e) or a′

k(i) [8].
Oblique projection. An oblique projection finally determines the coeffi-

cients ak(i) of equation (1) given the original spectra Xi and the estimated spec-
tra fk [8]. The set of coefficients {ar(i)}i=1,... ,N corresponding to the scatter–free
spectrum fr gives the scatter–free image of the isotope r.

3 Material and Methods

The phantom (Fig. 1) consisted of 2 series of 9 overlapping Petri dishes (?=8.6cm,
1.3 cm thick), including various mixtures of I–123 (emission energy of 159 keV)
and Tc–99m (emission energy of 140 keV) in water (Table 1).

Fig. 1. Phantom used for the acquisition

A planar view of the phantom gave an image of 9 dishes with variable mix-
tures of Tc–99m and I–123. The total Tc–99m and I–123 activities were 23.1 and
24.8 GBq respectively. A 20 min acquisition (6.45 million counts) was performed
on a Elscint Helix gamma camera, equipped with a low energy high resolution
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collimator, using 32 spectral images (3.5 keV wide each) with a matrix 256×256
(pixel size = 1.47 mm) between 63 and 175 keV.

Table 1. Percentages of Tc–99m and I–123 activity in each dish of the phantom

dish number 1 2 3 4 5 6 7 8 9
percentage of Tc–99m 36 32 22.6 15 0 68.3 83.5 89.7 0
percentage of I–123 64 68 77.4 85 0 31.7 16.5 10.3 0

The resulting 32 images were processed using SFA: 8 × 8 pixel grouping,
TAS of the Tc–99m photopeak assuming it was zero between 63 and 126 keV
and between 154 and 175 keV and TAS of the I–123 photopeak assuming it was
zero between 63 and 143.5 keV. A scatter spectrum was estimated using non–
negativity constraints only. The SFA cross–talk free images were compared to
the Tc–99m and I–123 images obtained using “optimal” energy windows [11]: a
15% window centered on 140 keV (129.5–150.5 keV) for Tc–99m and a 154–175
keV window for I–123 (called WIN images below).

The Tc–99m and I–123 images were analyzed by drawing circular ROIs inside
each dish (?=4.5 cm). The mean number of counts inside each ROI was calcu-
lated. Using the Tc-99m (resp. I–123) image, the dish with the largest mean
number of counts NTcmax (resp. NImax) was identified and, for each dish d, the
ratio of the mean number of counts NTc-d (resp. NI-d) in the dish d to NTcmax
(resp. NImax) was determined. These ratios NTc-d/NTcmax and NI-d/NImax rep-
resent the activity ratios (AR) between different regions in the Tc–99m and
I–123 images. In each dish d, the AR NTc-d/NI-d was also determined. All AR
were compared to their true values theoretically derived given the real activity
in the dishes and the attenuation effect. As this was planar imaging, no absolute
quantitation was attempted.

4 Results

The spectra (Fig. 2) estimated using SFA and the location of the spectral win-
dows used for WIN as defined above show that, when using WIN, cross–talk in
the Tc–99m window is due to scattered photons and unscattered I–123 photons
and that some Tc–99m unscattered photons are outside the Tc–99m window.
On the other hand, cross–talk in the I–123 image is mostly due to scattered
photons. WIN I–123 window also rejects many I–123 unscattered photons.

Figs. 3a–b show the Tc–99m and I–123 AR measured in the different dishes
for the estimated Tc–99m and I–123 images. Using WIN Tc–99m image, errors
up to 81% (ROI 3) and 170% (ROI 4) were observed for low NTc-d/NTcmax values
(22.5 and 11.0% respectively). With the SFA Tc–99m image, the largest errors
observed for NTc-d/NTcmax AR were 4.4% and 5.8% for ROIs 6 and 8 where the
true AR were 73.2% and 87.8% respectively.

The differences in performance between the methods where less obvious for
the I–123 images, with errors between 1.5% (ROI 6) and 9.7% (ROI 5) for WIN,
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Fig. 2. Spectra estimated using SFA and spectral windows used in WIN

and between 0.8% (ROI 9) and 9.3% (ROI 7) for SFA. The I–123 AR measured
in cold dishes 5 and 9 were < 1.5% with SFA and they were between 4.5 and
11.8% with WIN.

Fig. 3. Relative quantitation results from the WIN and SFA Tc–99m and I–123 images

Fig. 3c shows the estimated NTc-d/NI-d AR, the WIN images yielded an
overestimation of the AR for the lowest AR and an underestimation for the
highest AR, with errors between +13.9% (ROI 4) and -9% (ROI 8). SFA images
gave errors between -1.5% (ROI 7) and +4.4% (ROI 1).

5 Discussion and Conclusion

Simultaneous dual–isotope studies are currently hindered by cross–talk prob-
lems, for which there are no satisfactory solutions yet [4]. The SFA method
offers a general solution, since it can be used a priori for any radioisotope combi-
nation, both for studies involving two radiopharmaceuticals and for E/T studies.
SFA is a data driven approach and the severity of cross–talk does not have to be
known a priori. However, as the linear model underlying SFA is quite general,
a priori knowledge must be used to find the solution appropriate to the physics
of the problem. This a priori knowledge relates to the energy range in which
the photopeaks should be zero and does not have to be extremely precise: a
change of few keV in the definition of this energy range (up to 10 in our ex-
ample) did not affect the results. SFA corrects for cross–talk due to scattered
and unscattered photons. SFA takes advantage of the Poisson nature of the data
when filtering the noise (in the orthogonal analysis) and when estimating the
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model components (in the oblique analysis). The method permits a quantitative
interpretation of the results, which is of paramount importance for E/T imag-
ing. SFA model is not stationary, i.e. it does not intrinsically assume that the
scatter spectrum has the same shape in every pixel. However, estimating at least
4 spectra is needed to make the analysis non stationary. In our example, accu-
rate results were obtained when assuming scatter stationarity (i.e. considering 3
factors only).

The challenging Tc–99m/I–123 phantom we considered showed that SFA
outperformed the method using energy windows, which is the only alternative
proposed so far for this couple of radioisotopes.

Although we gave evidence that SFA could offer a solution to the cross–talk
problem, further investigations involving other combinations of radioisotopes, in
emission/emission or E/T studies should now be conducted. So far, only planar
images have been processed, but SPECT data can be dealt with similarly using a
single SFA of the spectra corresponding to all projections, before reconstruction.
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11. Hindié, E., Mellière, D., Jeanguillaume, C., Perlemuter, L., Chéhadé, F., Galle, P.:
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Abstract. We present here a new method for cerebral activation de-
tection. This method is performed on individual activation maps of any
sort and aims at performing a multi-subject group analysis while preserv-
ing individual information and overcoming problems induced by spatial
normalisation. The analysis is made through a multi-scale object-based
description of individual maps. It is these structural descriptions which
are compared, rather than the images themselves. The comparison is
made through a graph, on which a labelling process is performed. The
label field on the graph is modelled by a Markov random field, which
allows us to introduce high-level rules of data interrogation.

1 Introduction

Understanding the neural substratum of human brain function is a growing field
of research. Due to the very noisy nature of functional images, brain activation
detection has essentially been approached so far in terms of statistical analysis
[1,2] using a common anatomical reference. Although they have been validated
in a wide range of applications, these analyses lead to some problems in terms of
localisation and/or detection with regard to anatomy. In particular, the spatial
normalisation performed to compare images from different subjects matches nor-
mally only gross features. Moreover, anatomical information is poorly handled,
and after a statistical analysis, it is generally difficult to estimate from the group
result the areas activated in individual subjects. This knowledge should help the
study of inter-subject functional and anatomical variability and would improve
localisation with regard to anatomy. We propose here a new method based on a
description of individual activation maps in terms of structure. This is followed
by the comparison of these descriptions across subjects, rather than compar-
ing directly the images at a voxel level in a stereotactic space. The method is
designed to overcome, as far as possible, the problems induced by spatial nor-
malisation [7]. After detection over a group of subjects, the method allows an
easy way to get back to the individual structures, and more generally permits
high level interrogation, and in the future more informed analysis, of functional
data sets.
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2 Methods

The method presented here is applicable to any kind of individual “activation
map”: e.g. PET or fMRI difference images, t-maps, etc. It is divided into the three
following steps. First, each individual map involved in the study is described by
its scale-space primal sketch. Second, a graph is built that matches all the primal
sketches. Finally, a labelling process is performed on the graph, which aims to
identify the objects representing functional activations and those representing
noise.

2.1 The Scale-Space Primal Sketch

The scale-space primal sketch is a representation, based on well-known prop-
erties of linear scale-space allowing the description of the 1st order structure
of an image [4]. We present its structure very briefly. For more precise details,
we invite the reader to refer to [3], or to [5] for the particular 3-dimensional
case applied to activation maps. This hierarchical multiscale description makes
explicit the behavior of objects (grey-level blobs) through the scales of a linear
scale-space. It is composed of multiscale objects (scale-space blobs) linked by bi-
furcations representing their relative behavior, as illustrated in a symbolic way
in Fig. 1. Measurements are assigned to the scale-space blobs to characterize
their geometrical features and lifetime along the scale axis.

Fig. 1. A slice of different scale levels of an activation map, the corresponding blobs,
and a symbolic representation of the scale-space primal sketch

2.2 The Comparison Graph

We want to create a comparison graph such that it contains the primal sketches
of all the subjects involved in the analysis, and such that it makes explicit all
potential repetitions of an object across subjects, while being exhaustive, but
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without taking any decision about their validity. To compare different primal
sketches we normalise them with usual procedures [6]. A longer term aim is to
build the spatial referential using subjects individual anatomy and a high-level
description of this anatomy, in terms of landmarks and identified structures [10].
The comparison graph should be a convenient framework for this purpose. The
first criterion to link two blobs belonging to two different primal sketches is the
overlap of their spatial and scale support. If it is fulfilled, we create a direct link
[b1 − b2]out1 between the two scale-space blobs b1 and b2 (Fig. 2). Since we want

induced
direct (out1)

(out2)

Fig. 2. A direct link induces additional links at finer scales

to introduce some flexibility in the position of activations, to overcome potential
normalisation problems, we have to allow close blobs to be linked even if they
have no spacial overlap. We therefore use the fact that a direct link might not
represent exactly an activation but may suggest the presence of an activation
at a finer scale. We then define induced links (out2 links) as follows. If b1 and
b2 are two blobs having no direct link between them, they have an induced link
[b1 − b2]out2 if they are “under” (in their primal sketches) two blobs c1 and c2
having a direct link [c1−c2]out1, and if they have a scale overlap (Fig. 2). Allowing
blobs without spatial overlap to be linked is a key feature of the process, since
it provides greater flexibility for overcoming spatial normalisation limitations.

2.3 The Detection Model: Use of a Markovian Random Field

Activation detection is performed using a labelling process that uses the inter-
subject comparison graph previously described. Our aim is to associate a positive
label to each activation in the graph, and a null label to the structures of non-
interest. An activation (i.e. a positive label) is associated to a spatial localisation,
and can therefore have one occurrence in each of the individual primal sketches.
The basic model we use to perform the detection is the following:
1. a blob representing an activation is likely to have high measurements;
2. two blobs representing the same activation must be linked in the graph and
have the same positive label;
3. two blobs representing the same activation are likely to have spatial supports
close to each other;
4. an activation should have only zero or one occurrence per subject.
Given the local aspect of the dependencies that are defined within the graph,
we model the label field as a Markov random field and, through a classical
maximum a posteriori process, the optimal labelling is done by minimising a
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Gibbs distribution related energy [8]. For more details, the reader should refer
to [9]. The energy is defined with potential functions on cliques of different order
in the graph. Each potential function models either one or two rules in the
above-specified model. Rule (1.) is modelled using a potential function defined
over 1st order cliques (blobs). When a blob has a positive label, the higher the
associated measurements are, the lower the potential is, following a piecewise
linear function. Rule (4.) is modelled using a function Vps, defined on each primal
sketch, and linearly increasing with the number of occurences of each positive
label in the primal sketch. Rules (2.) and (3.) are modelled by an inter primal
sketch 2nd order clique potential function. On such a clique, when the two blobs
have the same positive label, the associated potential is a function that decreases
with a measurement of similarity between the two blobs. This similarity function
is the second way, in the whole process, to overcome problems induced by spatial
normalisation. At the moment, we use an overlapping function for out1 links,
and an Euclidean distance function for out2 links. The aim, in the long term, is
to have an individual anatomy-related similarity function which somehow would
provide an improvement to spatial normalisation.

The total energy function is then minimised using a stochastic algorithm, the
Gibbs sampler with annealing [8], which is shown to provide good convergence.
After minimisation, the process produces a set of positive labels, each one repre-
senting an activation and having an occurrence in a number of primal sketches.
We therefore know the occurrence, or the absence of occurrence, of each acti-
vation for any subject. This occurrence can then be mapped on the individual
anatomy of the subject for localisation considerations.

3 Results

The process presented here has been tested on a PET motor protocol, including
10 subjects and 12 images per subject. For each subject, an individual statisti-
cal t-map was first computed using the SPM software [1], contrasting a periodic
auditory-cued right hand movement and a rest condition. A primal sketch was
then built from each of the individual maps, and the 10 primal sketches were
compared using the labelling process. A group analysis was also performed using
SPM software , and used as a reference to validate our results. Numerous acti-
vations were found at a very significant level in the group map in the expected
brain regions.

After our labelling process, several observations arise.
- All high-significance expected activations were detected, although given the
functional variability it is difficult to compare a pure group analysis with a
method that considers individual information.
- Two false positive were detected, but they were both outside the brain and
caused by border effects (easily eliminated).
- A classical threshold on the individual maps yielded poor results for every map
being, either too selective, or too noisy. This shows a crucial advantage of our
method; the detection is processed for each subject taking into account not only
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the intensity in the map but also the knowledge of other subjects maps.
- The relevance of each detected positive label was correlated with its associated
local energy. This was further confirmed by simulations. In particular, when a
positive label corresponds to no real activation, its local energy is high enough
to discriminate it from labels associated with real activations.
- Localisation accuracy is lowered by the lack of an automatic scale selection
method to represent each detected scale-space blob. Furthermore, experiments

Fig. 3. individual mapping of the primary motor activation on 3D rendering of subject
anatomy

with simulated activation maps including two different objects showed a detec-
tion rate of 100% (no false negative) for a localisation variability up to twice the
size of the objects, which shows a good resistance to inter-subject variability.
Simulations on a very large number of noise images are currently being run to
assess a precise evaluation of the error rate.

4 Conclusion

We have presented here a new method to analyse brain functional images that
considers functional activation detection at a structural level, and permits a way
of getting back to individual results after detection over a group of subjects. It
uses the power and comprehensiveness of multiscale methods to describe image
structure by looking at their whole scale-space without any a priori information
concerning scales of interest and without any “coarse-to-fine” strategy. A major
difference from classical methods is the comparison at an object level, which
permits us to introduce higher level criteria for the analysis and is a way to
overcome inter-subject variability effects. The process has proved to be able to
detect efficiently expected activations with a PET dataset. It is promising for
functional MRI studies, since fMRI provides more reliable individual maps than
PET. Further research still has to be undertaken to solve outstanding questions,
particularly concerning the choice of the optimal scale used to represent (as op-
posed to detect) a scale-space blob, since the extent of the reported activations
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depends on this scale. Secondly, a precise evaluation of the data-driven potential
functions still has to be properly investigated from the distribution of measure-
ments associated with the blobs. We showed that the spurious effects of spatial
normalisation could be reduced by means of the comparison graph and of an ap-
propriate definition of similarity between blobs from different subjects. Although
it is difficult to relate the proposed analysis to standard statistical analyses, it
is worth noting that there is some analogy with analyses using random effect
linear models. Specifically, activation detection is performed using a subject by
subject variability rather than on a scan by scan variability. Finally, we would
like to point out the fact that using a Markovian model for the detection allows
the user of such a system to interrogate the data in ways that can be designed
according to the experimental question. It is very easy to define new potential
functions in which one can introduce, for instance, a priori information about
a precise expected location, or about the search for a network of activations
instead of isolated ones. Thus, the system can explore multi-subject functional
data sets in a higher level manner than has been achieved so far.
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PhD Thesis (1998), Ecole Nationale Supérieure des Télécommunications, TSI De-
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Abstract. This paper addresses the problem of accurately mapping
echo planar image (EPI) data acquired for functional MRI studies to
conventional T1 weighted anatomical MRI. In particular here we exam-
ine the correction of spin echo image distortion resulting from magnetic
field inhomogeneity. To do this we must account for both geometric and
intensity distortions within the EPI data. This approach combines ideas
on multi-modality registration criteria, non-rigid registration and models
of geometric and intensity distortion in MR image formation. Specifically
the relationship between the geometric and intensity distortion in spin
echo EPI imaging is used to constrain the geometric correction estimate
and replaces the arbitrary smoothing energy term in non-rigid registra-
tion.

1 Introduction

The interpretation of functional magnetic resonance images (FMRI) is heav-
ily dependent on their precise anatomical location. It is common for functional
imaging studies to include an additional conventional T1 acquisition to provide
anatomical context. Current multi-modality registration methods enable many
types of functional image data to be accurately aligned with anatomical data
[14,9]. These methods generally account for differences in patient positioning
and imaged field with a global rigid or affine geometric transformation. In prac-
tice echo planar image (EPI) data used in functional imaging can exhibit se-
vere localised geometric distortion. This is particularly apparent in acquisitions
through the brain where bone or air boundaries with soft tissues result in signifi-
cant magnetic field inhomogeneities. Errors such as these can lead to mis-placing
of functional signals by many millimeters, resulting in the possible displacement
of a response into a neighbouring gyri [5].

Current approaches to accurate mapping of this data to anatomical MRI in-
volve a correction of these EPI artifacts using field mapping acquisitions [13,7,6,8]
prior to rigid alignment with anatomical MRI. This requires considerable addi-
tional imaging time and may introduce errors arising for example from flow
effects [7]. In this paper we propose the use of a direct non-rigid registration
but employing geometric constraints derived from a model of spin echo imaging
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distortion. The key step here is to use the link between geometric errors and the
resulting localised intensity distortion in spin echo EPI. This allows us to define
a direct global intensity criteria expressing the quality of the geometric match
between EPI and anatomical MRI without the need for additional smoothing
terms on the estimated warp.

2 Distortion in Spin Echo Anatomical and EPI Imaging

During the spin echo imaging process magnetic field gradients are imposed on the
patient tissues. Any variation from the assumed linear gradient results in phase
or frequency shifts in the recorded k-space signal. For conventional anatomical
T1 spin echo imaging there is a displacement error due to local magnetic field
inhomogeneity ∆Bo(x, y, z) in the phase (y), frequency (x) and slice encode (z)
directions. Briefly, from [7] and by substitution (see [1]), these displacements
from (x, y, z) to (xA, yA, zA) are described by,

xA = x +
∆Bo(x, y, z)

GxA
, (1)

yA = y, (2)

and

zA = z +
∆Bo(x, y, z)

GzA
, (3)

where GxA, GyA and GzA are the imaging gradients imposed in the respective
axes. The resulting y (phase encode) axis has no distortion, while the x (fre-
quency encode) and z (slice encode) have magnetic field related displacement
errors. For typical imaging sequences these may result [7] in pixel shifts of only
0.1mm.

For spin echo EPI functional imaging the displacements take a slightly dif-
ferent the form [7],

xF = x +
∆Bo(x, y, z)

GxF
, (4)

yF = y +
∆Bo(x, y, z)(2τramp + NT )

GyF τramp
. (5)

and

zF = z +
∆Bo(x, y, z)

GzF
. (6)

Now, in the phase encode y axis, the resulting displacement is scaled by a factor
(2τramp+NT )/τramp compared to the other axes. The factor N from the imaging
matrix results in a significant displacement, and for typical imaging parameters
[7] we have the possibility of shifts of one or more pixels.
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2.1 Intensity Distortion

Considering the general case of 3D spin echo imaging, the change in coordinate
system from true point locations (x, y, z) to displaced points at (xF , yF , zF )
result in a change in signal strength governed by the Jacobian of the distor-
tion transformation [1]. So, if we have an estimate of the geometric correc-
tion mapping between the correct anatomical space to the distorted EPI space:
Te : (x, y, z) 7→ (xF , yF , zF ), the estimate of the corresponding corrected EPI im-
age intensity value fe(x, y, z) from the distorted measured values fm(xF , yF , zF )
is given by [1],

fe(x, y, z) = fm(Te(x, y, z))/J(x, y, z). (7)

This relationship is the key to introducing geometrical constraints into the in-
tensity based correction criteria. Effectively it can be seen as a form of signal
conservation in the distortion process. As the image is compressed locally, signal
from many voxels is mapped to fewer voxels. Conversely, where the image is
expanded, signal from one voxel is mapped to many voxels.

2.2 Relative Distortion

If we assume that the rigid body rotations between the axes of the two scans
will be small (say less than 5 degrees). Then the phase, frequency encode and
slice select directions in the EPI and anatomical MR are closely aligned. If the
frequency and slice select gradients are similar (GxF ≈ GxA and GzF ≈ GzA)
then the resulting distortions will be small so that xF ≈ xA and zF ≈ zA.
This leaves displacement in the phase encode y axis. In a conventional spin echo
scan, the displacement due to the field inhomogeneity (2) is negligible. In EPI
imaging, the acquisition of multiple phase encode steps, with a single excitation
pulse, results in significant displacements along the phase encode axis.

3 Correction Criteria Using Signal Conservation Model

Entropy based multi-modality registration criteria [11,3] provide a powerful ap-
proach to spatially aligning one image with another where there is some spatial
correspondence of structure delineated by the two images. The key problem with
non-rigid registration is the need to introduce constraints on the smoothness of
the geometric transformation. This prevents unconstrained motion in regions
of the image where there are no corresponding structures, particularly in the
multi-modality case. The nature of the smoothing approach depends on the ap-
plication [4,2]. A common approach to smoothing the geometric transformation
is to include an energy term, such as Tikhonov regularlisation [12] which leads
to the optimisation of a cost function which is a combination of the intensity
similarity and the smoothness energy.
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The basic idea behind our correction approach is to use a global similarity
measure between the EPI image fe(T (x, y, z)) with estimated correction trans-
formation Te(x, y, z) and a conventional anatomical acquisition g(x, y, z), as a
measure of geometric and intensity correction.

Using the Jacobian term to modify the EPI intensities will result in bright
regions of the image being more sensitive to local changes in the transformation
estimate than darker regions. To avoid this we take logarithms of equation (7)
and derive a correction criteria between Log corrected EPI f ′ = ln(f) image
values,

f ′
e(x, y, z) = f ′

m(Te(x, y, z)) − J ′
e(x, y, z), (8)

and the original anatomical MR values g(). We maximise an entropy based
registration criteria [10] derived from mutual information [3,11] which provides
a form of image overlap invariance,

arg max
Te

{
H(g) + H(Te(f ′

e))
H(g, Te(f ′

e))

}
. (9)

The terms H(g) and H(f ′
e) are the marginal entropies of values in the anatomical

and EPI images respectively and H(g, f ′
e) is the joint entropy. All entropies are

evaluated from values in the overlap of the two modalities.

4 Experimental Registration Results

The transformation estimate between the two images is controlled by a combina-
tion of the local warp to account for distortion and the six rigid transformation
parameters determining patient positioning,

Te(x, y, z) = Tpatient(x, y, z) + T∆B0(x, y, z). (10)

In EPI field mapping techniques the measured displacement field is commonly
approximated by a low order polynomial (eg [7,8]). Here we use a cubic B-
spline to parameterise the local warp over the image volume. Registration was
initiated by first running a rigid registration to form a good starting estimate.
From this estimate, a two step process was applied iteratively, consisting of a
simple gradient ascent with respect to the local B-spline parameters followed
by a global rigid re-registration. Spline grid points with an isotropic spacing
of 15mm were used. Tri-linear interpolation was used to estimate intermediate
values in the EPI image for voxel locations in the anatomical spin echo image.
A discrete histogram of 64×64 intensity bins was used to estimate the marginal
and joint entropies in (9).

The registration algorithm was applied to correcting spin echo EPI to MRI
for a volunteer image set. Examples of the quality of the correction are provided
by the coronal slices in Fig. 1. Here the downward displacement of the temporal
lobes is recovered while in the medial portion of the brain, displacement in the
opposite direction in the same slice is also recovered.
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Fig. 1. Example coronal slices through the spin echo MR volume toward the front of
the patient with an iso-intensity contour from spin echo EPI overlayed to illustrate
spatial alignment. Initial global rigid registration estimate (left) and estimate with
non-rigid registration (right)

A second set of anatomical and functional images were acquired and for
these a set of t-maps indicating activation was then calculated. The alignment
algorithm was applied to correct one frame of spin echo EPI from this sequence
onto to a high resolution anatomical scan. This transformation was then used
to map the t-map data back to the anatomical reference. Figure 2 illustrates the
effect of the local geometric correction on the location of t-map activations.

Fig. 2. Example correction on a functional imaging study. Coronal slices through the
spin echo T1 MR anatomical image volume with t-map activation displayed as contour.
Global rigid only registration (left) and local warp with signal conservation term (right)
showing displacement of activation into gray matter

5 Discussion

In this paper we have begun to address the general problem of precisely aligning
functional MRI scans with conventional anatomical acquisitions. We have con-
centrated here on spin echo imaging acquisitions. We have used knowledge of
the image formation and distortion processes in the two MRI scans to impose
constraints on the correction estimate. In particular we have modified a common
entropy based alignment criteria using knowledge of signal conservation to en-
force geometric constraints on the correction warp. It is interesting to note that
the causes of distortions are commonly related to material boundaries within the
patient (for example soft-tissue boundaries with bone in the orbits and around
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the petrous bone [7]) which are themselves visible within the MRI acquisitions.
These boundaries therefore inherently provide local image constraints on the
alignment close to where distortions are occurring.

Overall the initial results with this approach indicate that combining MR dis-
tortion models with multi-modality registration techniques can produce precise
mapping of functional information to anatomical images, and provide a viable
alternative to field mapping techniques.
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Abstract. Point-based registration is performed by matching a set of
homologous points in two spaces. It is common to use such techniques as
an aid to navigation during neurosurgical procedures. For many years,
statistics concerning Target Registration Error (TRE) have been studied
qualitatively using numerical simulations. We present here an expression
that gives a good approximation to the distribution of TRE for any given
target and configuration of fiducial points.

1 Introduction

The point-based registration problem is as follows: given a set of homologous
points in two spaces, find a transformation that brings the points into approxi-
mate alignment. In many cases the appropriate transformations are rigid, consist-
ing of translations and rotations. Medical applications abound in neurosurgery,
for example, where the head can be treated as a rigid body [3,11,6,15,10,22,16].
The points, which we will call fiducial points, may be anatomical landmarks or
may be produced artificially by means of attached markers. In the case that
we address here, the spaces are three dimensional and may consist, for exam-
ple, of two MR volumes, a CT volume and an MR volume or PET volume, or,
in the case of image-guided neurosurgical applications, an image volume and
the physical space of the operating room itself. The rigid-body, point-based im-
age registration problem is typically defined to be the problem of finding the
translation vector and rotation matrix that produces the least-squares fit of the
corresponding fiducial points. The appropriate translation vector is simply the
mean displacement between the two point sets. The problem of determining
the rotation matrix can be easily reduced to the “Orthogonal Procrustes prob-
lem” [12,20]. Peter Schönemann published the first solution to that problem in
1966 [20]. His solution was rediscovered independently in 1983 by Golub and van
Loan [9] and again in 1987 by Arun et al. [1]. These latter solutions, unlike the
former, employ the method of Singular Value Decomposition (SVD), but they
can easily be shown to be equivalent to Schönemann’s solution [13].

The solution is unique, but can be expected to yield an imperfect registration
in the presence of errors in locating the points. Maurer et al. [18,16] suggested
three useful measures of error for analyzing the accuracy of point-based regis-
tration methods.
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1. Fiducial localization error (FLE), which is the error in locating the fiducial
points.

2. Fiducial registration error (FRE), which is the root-mean-square distance
between corresponding fiducial points after registration.

3. Target registration error (TRE), which is the distance between corresponding
points other than the fiducial points after registration.

The term “target” is used to suggest that the points are directly associated
with the reason for the registration. In medical applications they are typically
points within, or on the boundary of, lesions to be resected during surgery or
regions of functional activity to be examined for diagnostic purposes.

Much work has been done [5,14,11,6,18,16,17,4] using numerical simulations
to investigate the properties of FRE and TRE. Unknown to many of those per-
forming these simulations, Sibson [21] gave in 1979 an approximation to the
distribution of FRE. In 1998 Fitzpatrick et al. derived an equation which allows
calculation of an approximation to the root mean square value of TRE [8,7],
and agrees with the published simulations. In what follows, however, we give for
the first time an approximation to the distribution of TRE, rather than just its
expected value.

2 The Model

We make a simplifying assumption in this work: that the fiducial localization
error in one space is identically zero. This assumption does not generally hold
in real registration problems, but the derivation may easily be extended to the
case in which FLE is nonzero in both spaces.

Let N be the number of fiducials and K be the spatial dimension. In general,
we may write X as the N -by-K matrix whose rows correspond to the position
vectors of the fiducial points in one space, and Y as the N -by-K matrix rep-
resenting the fiducials in the other space. The registration problem is to find a
K-by-K orthogonal matrix, R, and a 1-by-K translation vector, t, so that the
points xiR + t are in optimal alignment with the corresponding points yi in Y .
By “optimal alignment”, we mean that rms(FRE) is minimized, i.e., R and t
are chosen to minimize

tr((Y − XR − t)t(Y − XR − t)). (1)

In this work, we assume that X is related to Y by a rigid-body transformation
representing a re-orientation of the rigid body to which the points are attached,
and a N -by-K matrix F of perturbations representing the fiducial localization
error. We assume that the elements of F are independent, zero-mean normal
variables with equal variance, i.e., that the FLE has the same distribution at
each fiducial point and in each of the coordinate directions at every point. This
assumption allows the use of a closed-form solution for the registration problem
itself, and as pointed out by Sibson [21], permits us to neglect the rigid body
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transformation relating X and Y , as FRE and TRE are independent of this re-
orientation. We note that, under these assumptions, the variance of each element
of F is equal to 〈FLE2〉/K.

We thus simplify the problem to that of registering X to Y = X +F . As the
choice of origin for X is arbitrary, we choose the centroid of X to be the origin.

3 The Distribution for the Case K = 3

Choosing coordinate axes coincident with the principal axes of the fiducial con-
figuration, and with the fiducials’ centroid as the origin, it may be shown [2]1

that

TRE2(x, y, z) ∼ 〈FLE2〉
3

(k1χ
2
1 + k2χ

2
1 + k3χ

2
1), (2)

where

k1 =
(

1/N +
x2z2

(x2 + y2)(Λ2
22 + Λ2

33)
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)
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33)
+
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33)

)
,

k3 = 1/N.

This equation provides an approximation to the true distribution of TRE2. By
taking the expected value of Eq. 2, noting that the expected value of each χ2

1
variable is 1, we have that

〈TRE2(x, y, z)〉 =
〈FLE2〉

3
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 .

(3)

This is in agreement with the expression derived in [8,7], and, as shown there,
exhibits the 1/

√
N dependence observed by Hill [11], Evans [6], and Maurer [17],

and the ellipsoidal spatial dependence observed recently by Maurer [17] and by
Darabi [4].

4 Comparison with Simulations

As we do not have access to very large numbers (“large” being of the order of
tens of thousands) of patient datasets, we must rely on numerical simulations
to check the correctness of the result given in Eq. 2. We chose four values of N
for which to perform the comparison: N = 3, 4, 10, 20. We used the same model
1 This technical report is available on the World Wide Web as

http://cswww.vuse.vanderbilt.edu/∼jayw/tre dist.ps or tre dist.pdf
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to simulate FLE and thus generate values of TRE as in our previous work [8,7],
generating fiducials within a cube of side 200 mm, targets within a cube of
side 400 mm, and FLE in each direction as a normal variable whose variance
was 3.33 mm. Using this fairly large value of FLE allows us to be conservative
with the statements we make concerning the quality of the approximation to
TRE2, as the difference between the TRE2 distribution given in (2) and the true
distribution will tend to grow with increasing FLE.

For each perturbation and registration iteration in the simulation, we output
a value of TRE. We generated an equal number of TRE values using Eq. 2 with
a random number generator [19] employed to produce samples of the chi-squared
variables. For each value of N , we produced 1,000,000 simulated TRE values and
the same number of values based on Eq. 2, which we will call “generated” values.
We compared the two distributions using the Kolmogorov-Smirnov test [19]. For
the cases N = 3 and 4, the K-S test showed a significant difference (p ≤ 0.01)
between the distributions. For N = 10 and 20, the test showed that the difference
between the distributions was not significant (p ≤ 0.05).

To explore the differences between the true and approximate distribution,
we next performed ten runs each of 1,000,000 iterations for the simulator and
generator. In the tables that follow, we show the percentage difference,
100(generated − simulated)/simulated, in rms value, median, and 95th percentile
values between the simulated and generated value for each value of N . For all
the tabulated values, the difference between the simulated and generated value
was significant (two-tailed t-test, P < 0.01).

Table 1. Simulated vs Generated rms TRE values (mm)

N Simulated (± sd) Generated (± sd) % difference
3 6.8701 (0.0026) 6.8681 (0.0037) -0.0291
4 4.6866 (0.0026) 4.6845 (0.0019) -0.0448
10 1.8552 (0.0009) 1.8547 (0.0008) -0.0270
20 1.3812 (0.0008) 1.3809 (0.0007) -0.0217

Table 2. Simulated vs Generated median TRE values (mm)

N Simulated (± sd) Generated (± sd) % difference
3 5.7220 (0.0030) 5.7358 (0.0028) 0.2412
4 3.6902 (0.0031) 3.7195 (0.0023) 0.7940
10 1.5834 (0.0006) 1.5845 (0.0010) 0.0695
20 1.1763 (0.0009) 1.1780 (0.0011) 0.1445
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Table 3. Simulated vs Generated 95th percentile TRE values (mm)

N Simulated (± sd) Generated (± sd) % difference
3 11.8465 (0.0069) 11.8167 (0.0116) -0.0298
4 8.4374 (0.0035) 8.3835 (0.0072) -0.0539
10 3.1189 (0.0033) 3.1163 (0.0013) -0.0036
20 2.3270 (0.0008) 2.3236 (0.0014) -0.0034

5 Discussion

We can see from Tables 1, 2, and 3 that the distribution given in Eq. 2 is a good
approximation to the actual distribution of TRE, for the fiducial configurations
and targets which we used. The generated values do not match the simulated
ones exactly: they tend to overestimate the median and underestimate the 95th

percentile. However, we note that for our configurations, a conservative estimate
of TRE may be generated by simply increasing the generated value by 1% at
the 95th percentile: in all cases, this gives a value which is above the 99% upper
confidence bound of the mean simulated value. This shows that the results given
by Eq. 2 are close enough to the exact values to be of use to those who wish to
gain a conservative, but fairly accurate, estimate of TRE in clinical practice.

6 Conclusion

We have derived an approximation to the distribution of TRE, and proved via
numerical simulations that the result is close enough to the exact one to be of
use for clinical estimation of expected values and confidence intervals for TRE.
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Abstract. This paper describes a fast Mutual Information (MI) method
for registering volumetric medical images. The new technique originates
from the method designed by Viola [1] wherein registration is achieved
by iteratively adjusting the relative position and orientation until the
MI between two volumetric images is maximized. In this iterative pro-
cess if n number of samples are used then there are O(n2) exponential
calculations per iteration. The method proposed in this paper reduces
the number of exponential computations by using an index table for
estimating the Gaussian density functions (GDF). The index table is
optimally pre-computed using automatic segmentation based on zero-
crossing of wavelet transform. Thus a majority of exponential computa-
tions is reduced to index-intensity comparisons. The table lookup process
is speeded up using a search mechanism based on probability priority.
The proposed method has been successfully used to register both nor-
mal and pathological MRI and CT datasets. Experimental results show
that this approach yields identical results in a fraction of time taken by
the original method. The speedup increases with the number of sam-
ples used. For example, with 50 samples the speedup is 2.73 and for 100
samples it increases to 5.5.

1 Introduction

A variety of volume registration methods is described in [6]. Most of them either
involve user-based homologus feature selection or tedious preprocessing such as
segmentation of surfaces or tissue layers. Over the last few years, approaches
based on “similarity metrics” have begun to appear and MI is one of them. MI
methods assume little about the functional relationship between the intensities
of the two images and do not require any segmentation. Hence they are popular
and useful. MI methods have been used to solve different types of registration
problems in [3,7,8].

MI is expressed as an expectation of the negative logarithm of the probability
density. In [3] the joint and marginal distributions are estimated by normaliz-
ing the joint and marginal histograms of the overlapping parts of both images.
Calculation of histograms in each iteration is prohibitively expensive. In [1] the
Parzen window method is used on a set of samples drawn from the overlapping

A. Kuba et al. (Eds.): IPMI’99, LNCS 1613, pp. 466–471, 1999.
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parts of the two images to estimate the image intensity distribution. This ap-
proach did improve the speed performance. However, if n number of samples are
used then there are O(n2) exponential calculations per iteration for the estima-
tion of GDF. This paper presents an approach which speeds up the method of
[1] using the following strategies.

– Estimation of GDF is simplified using a lookup table which is built in the
pre-processing stage. Thus a large number of exponential computations are
reduced to mere index-intensity comparisons.

– To optimize the construction of lookup table and hence pre-processing time,
the GDF is computed and stored for only a few relevant intensities. The
relevant intensities are identified using segmentation based on an automatic
thresholding method [4] that uses the zero-crossing of the wavelet transform
[5]. MI methods do not require any pre-segmentation. However, the thresh-
olding method used here is low-cost, automatic and does not require a priori
information or expert guidance.

– To speed up the table retrieval, a search scheme based on probability priority
is used.

The remaining sections are organized as follows. In Sect. 2, an overview of
the method is given. Section 3 addresses the proposed method. Section 4 has
implementation details and Sect. 5 provides the conclusion.

2 MI Method

Given a reference volume with intensities u(p) and a test volume with intensities
v(p) , Mutual information I is defined in terms of entropy and is a function of
the transformation T :

I(u(p, v(T (p)) ≡ h(u(p)) + h(v(T (p))) − h(u(p), v(T (p)),

where h(.) is the entropy of a random variable. We try to seek a transformation
T that maximizes the mutual information between these two volumetric images.
In order to seek a maximum of the MI, an approximation to its derivative can
be given as follows:

dÎ
dτ = 1

NB

∑
siεB

∑
sjεA

(vi − vj)T [Wv(vi, vj)ψ−1
v −Ww(wi, wj)ψ−1

vv ] d
dτ (vi − vj),

where A and B are the two sample sets NB is the number of samples in B,
ui ≡ u(Pi),vi ≡ v(T (Pi)), and wi = [ui, vi]T . τ is the parameter (rotation
vector and translation components) of transformation. When the optimization
is involved, we prefer to represent the rotation vector with fewer optimization
parameters in the absence of any constraints. The derivatives of intensities with
respect to rotation vector can be inferred from its antisymmetric matrix operator
[10]. The weighting factors are defined as:

Wα(si, sj) ≡ Gψα (si−sj)∑
pkεA

Gψα (si−sk)
.



468 M. Xu, R. Srinivasan, and W.L. Nowinski

G is the GDF with the covariance ψ. When s is a vector, ψ is the covariance
matrix (assumed to be diagonal). A stochastic gradient descent scheme is used to
optimize the parameters of the transformation. The registration is performed in
a coarse-to-fine manner on a hierarchy of data volumes that had been generated
by wavelet decomposition.

3 Speedup of MI method

In the process of searching for the transformation by the stochastic gradient de-
scent, a large number of exponential calculations are involved at each iteration.
For example, even for relatively small sample sizes (NA = NB = 50), there are
at least 5000 exponential computations in each iteration. The gradient of the MI
has to be updated at each iteration and hence is computationally intensive. This
can be circumvented by creating an index table before the iterative process. The
index table stores the values of the GDFs. However, if the exponential compu-
tations for all possible intensity values are performed, it requires considerable
pre-processing time. A possible solution to this bottleneck is to store the GDFs
of only a few relevant intensities. This could be done by mapping all the intensi-
ties onto a smaller range. Such ad-hoc mapping would result in inaccuracies and
information loss. We employ an automatic approach based on zero-crossing of
the wavelet transform [4] for selecting the thresholds. Thresholds are located to
the left/right of the positive/negative crossover of zero-crossing in a convolved
histogram. The representative relevant intensities is chosen as the maximum
point between the positive and negative crossovers. To ensure the validity of the
thresholds and relevant intensities across multi-levels, a coarse-to-fine adjust-
ment of the thresholds which takes advantage of multi-scale information is given
by a minimum distance criterion. The index table stores the result of the GDFs
for these relevant intensities only. In majority of cases, this table can be used
directly to get the GDF. In other words, a large number of exponent components
are reduced to mere comparisons during the table retrieval process.

Given a sample intensity ui or vi, it is also important to efficiently retrieve
the corresponding GDF value from the index table. Generally it is impossible, on
the average, to complete the search of n items in fewer than lg n comparisons by
binary search. From the histogram analysis of the intensities, it is apparent that
one or more samples occur more often than the others. This nature of distribution
can be exploited by using a search method that compares the sample with items
based on the priority of the item’s probability of occurence. This probability
priority search method is preferable since it locates a given item quickly. During
the segmentation in the pre-processing phase, the probabilities of each item can
be approximated by the area under each segment curve in the histogram.

4 Implementation and Results

The proposed method was implemented on an SGI/O2 workstation. We inves-
tigated the performance of our registration scheme by aligning 3D MR with CT
images. For the results shown in Table 1 and Table 2, MR data served as the
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Table 1. Comparison of results between original and proposed scheme

scheme Rotn vector (rad. measure) Transl. vector (mm)
rx ry rz tx ty tz

origial -0.0652 0.0321 -0.0118 5.873 -0.325 120.82
proposed -0.0647 0.0326 -0.0122 5.924 -0.317 120.01

Table 2. Timing comparison for two schemes

scheme Pre pro time samples No. Time(sec) Total Time
(sec) ( NA = NB) per itern. for 6000 itern

50 0.0172 104.18
original 0.985 80 0.0487 293.18

100 0.0746 448.58
50 0.0062 38.21

proposed 1.011 80 0.0103 62.81
15x15 table 100 0.0134 81.41

50 0.0063 39.12
proposed 1.328 80 0.0105 64.32

256x256 table 100 0.0137 83.53

reference and CT as the test data. The automatic threshold scheme partitioned
the intensity interval [0, 4096] into 15 segments. The pre-processing produced a
15×15 table. Table 1 provides a comparison between the two schemes. The results
of the proposed scheme are basically identical to that of the original method.
Table 2 compares the average computation time of the two methods, which
includes the pre-processing time and time for each iteration, on average. Fig. 1
shows the time taken by the two methods for different number of samples. It
can be seen that the speedup of the proposed approach increases with increasing
number of samples. Fig. 2 shows some examples of the final configuration of the
MR-CT registration obtained using the proposed approach.

Proposed Method

Original Method

50 60 70 80 90 10
0

11
00

Ti
me

 (s
ec)

# samples

400

300

200

500

100

Fig. 1. Graph of samples number vs time (iteration No.=6000)
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Fig. 2. Qualitative results of the proposed MI algorithm. The normal dataset used in
the first row corresponds to the one used in Table 1 and 2. Last three rows correspond
to pathological cases

5 Conclusion

We have presented a fast MI method for registering multi-modal data. The
proposed method provides identical results in a fraction of the time required by
the original method. We are in the process of integrating this algorithm into the
VIVIAN [9] neurosurgery planning system and this would help us to clinically
validate the results.

Acknowledgments

The authors would like to thank the funding agency - National Science and
Technology board and the Institution - Kent Ridge Digital Labs for their mag-
nanimous support during the course of this work.



A Fast Mutual Information Method for Multi-modal Registration 471

References

1. Viola P.: Alignment by maximization of Mutual Information. PhD dissertation,
MIT (1995)

2. Viola P., William M.W.: Alignment by maximization of Mutual Information. Proc.
5th Intl. conference on Computer Vision (1995) 16–23

3. Maes F., Collignon A., Vandermeulen D., Marchal G., Suetens P.: Multimodality
image registration by maximization of Mutual Information. IEEE Trans. Medical
Imaging 16-2 (1997) 187–198

4. Olivo, J.C. : Automatic threshold selection using the wavelet transform. Graphical
Models and Image Processing 56-3 (1994) 205–218

5. Mallat S.: Zero-crossing of a wavelet transform. IEEE Trans. Information Theory
37-4 (1991) 1019–1033

6. Maintz A.J.B., Viergever M.A.: A survey of medical image registration. Medical
Image Analysis 2-1 (1998) 1–36

7. Delia P.M., Theodore R.J, Plantec M.B. : Registration of functional magnetic
resonance imagery using mutual information. SPIE Medical Imaging (1997) 621–
630

8. Gaens T., Maes F., Vandermeulen K., Suetens P.: Non-rigid multimodal image
registration using mutual information. MICCAI ’98 proceedings (1998) 1099–1106

9. Luis S., Kockro R.A., Chua G.G: Multimodal volume-based tumor neurosurgery
planning in the Virtual Workbench. MICCAI ’98 proceedings (1998) 1007-1015

10. Ayache, N.: Artificial vision for mobile robots-Stereo-vision and multisensor per-
ception. MIT Press (1991)



Voxel Similarity Measures for 3D Serial MR
Brain Image Registration

Mark Holden1, Derek L. G. Hill1, Erika R. E. Denton2,
Jo M. Jarosz2, Tim C. S. Cox3, and David J. Hawkes1

1 Radiological Sciences and Biomedical Engineering. The Guy’s, King’s and St
Thomas’ School of Medicine, King’s College London, London SE1 9RT, U.K.

Derek.Hill@kcl.ac.uk
2 Radiology and Neuroimaging Depts, King’s College Hospital, London SE5 9RS

3 Institute of Neurology, UCL, Queen’s Square, London WC1N 3BG

Abstract. We investigated 7 different similarity measures for rigid body
registration of serial MR brain scans. To assess their accuracy we used a
set of 33 clinical 3D serial MR images, manually segmented by a radiol-
ogist to remove deformable extra-dural tissue, and also simulated brain
model data. For each measure we determined the consistency of registra-
tion transformations for both sets of segmented and unsegmented data.
The difference images produced by registration with and without seg-
mentation were visually inspected by two radiologists in a blinded study.
We have shown that of the measures tested, those based on joint entropy
produced the best consistency and seemed least sensitive to the presence
of extra-dural tissue. For this data the difference in accuracy of these
joint entropy measures, with or without brain segmentation, was within
the threshold of visually detectable change in the difference images.

1 Introduction

In this paper, we report the results of a systematic comparison of seven similarity
measures for serial MR registration. We assess the accuracy of the measures using
simulated MR brain images [2], and quantify consistency using images from a
clinical study [3]. We compare the performance of the measures on the clinical
data with, and without segmentation of extra-dural tissue. We interpret these
results in the context of a blinded visual assessment study.

2 Methods

Our clinical data is from five growth hormone deficient adults undergoing therapy
and six normal subjects [3]. Each subject was scanned 3 times at 3 monthly
intervals. An additional normal subject was scanned twice on the same day,
for assessing observer sensitivity to synthetic misregistration. All images were
axial T1 weighted 3D spoiled gradient echo with 1x1x1.8mm voxels, including
head and brain stem. A phantom was scanned to measure scaling errors [3,7].
The clinical images were manually scalp segmented by a radiologist to eliminate
deformable extra-dural tissue, using Analyze (Mayo Clinic, Rochester, MN, US).
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Simulated MR Brain Image with Added Noise and Distortion Simu-
lated data was based on the McGill full anatomical MR brain model image [2].
Two noiseless images were used, 1 with 40% RF inhomogeneity intensity distor-
tion and 1 without. Noise in a modulus MR image is Rician distributed [4]. To
simulate Rician noise a numerical complex random variable was added to each
voxel of the noiseless (real) image and then the modulus was taken to produce
a magnitude image. The random variable was constructed from 2 Gaussian dis-
tributed ones for the real and imaginary parts. The simulated Rician noise was
parameterised by measuring the mean and standard deviation of intensities of
an artefact free region of a clinical scan corresponding to air [6].

Similarity Measures and Registration Algorithm The ideal similarity
measure would have one optimum at the point of registration. Viola states that
for images that differ only by Gaussian noise, the χ2 measure is optimal; with a
linear intensity transformation the Pearson product moment measure is optimal,
and where the intensity transformation is unknown joint entropy is likely to be
optimal [11]. Two important properties of serial MR images that effect simi-
larity measures are: intensity distortion (due to RF inhomogeneity and motion
artefact) and deformation of extra-cranial tissue (approximately 20% of typi-
cal brain scans). We have implemented 3 measures used by other researchers
in serial MR: (1) mean squared difference in intensities (chi) χ2 [5]; (2) Pear-
son product-moment cross correlation (ncc) [8]; (3) ratio image uniformity (riu)
[12]. We have also implemented 4 measures proposed for other medical image
matching applications: (4) mutual information (mi) [9]; (5) normalised mutual
information (nmi) [10]; (6) entropy of the difference image (edi) [1]; (7) pattern
intensity, radius 1, σ = 10, (pi) [13]. The measures can be put into two groups:
(a) those based on entropy: mi, nmi, edi and (b) those based on correlation:
chi, ncc, pi, riu. Our algorithm optimises the measures using a multi-resolution
strategy similar to Studholme [10].

Consistency of Two Transformations For two rigid-body transformations
T1 and T2 in homogeneous form, T2T1 is the result of first applying T1 then
T2. Given two transformation estimates Ta and Tb, mapping points, p(i), from
image 1 to image 2, the difference between these transformations is the mean
voxel displacement 〈dp〉 = 1

N0

∑
∀i∈I0

| ∆(p(i)) | in the brain region I0 containing

N0 voxels. The RMS analogue is: dprms = 1
N0

√
(
∑

∀i∈I0
| ∆(p(i)) |2).

Consistency of 3 Transformations For N images there are P (N, 2) = N !
(N−2)!

possible transformations. So for 3 images there are 6 different transformations
between image pairs. If we consider 3 transformations T12,T23,T31 between
image pairs (T12 transforms image 1 into image 2) then in the absence of error,
T31T23T12 is the identity I. Registration solutions, inevitably, have some error
so: T31T23T12 = I + ∆T, i.e. ∆T = I − T31T23T12 is the error (internal in-
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consistency). Applying the error transformation to each voxel location, p(i), and
taking the modulus, the mean error over the image is: 1

N0

∑
∀i∈I0

| ∆T(p(i)) |.

Registration of Clinical Data and Measurement of Consistency All
registration was rigid body (6 degrees of freedom) and 5 resolution levels. The
search interval ranged from 4mm or degrees to 0.01mm or degrees. For all 11
subjects, the first image (baseline) was registered to the second, the second to the
third and the third to the first, giving 33 transformations for unsegmented im-
ages and 33 for images where the target was segmented. A set of 66 registrations
was performed with each similarity measure. The consistency of 33 transforma-
tion estimates obtained without segmentation and 33 with segmentation was
calculated. The triangular (internal) consistency for 11 measurements with seg-
mentation and 11 without were also determined. Each consistency measurement
was expressed as the mean, RMS, and maximum brain voxel shift (µm).

Assessment of Difference Images from Clinical Data Three sets of differ-
ence images, derived from different groups of subjects, were used during assess-
ment: the first was used to train radiologists, the second to test their abilities at
detecting misregistration, and the third for assessment of misregistration differ-
ences between data registered with or without prior segmentation. For training,
difference images were created with varying amounts of misregistration [3,7]. For
testing radiologist’s ability to detect misregistration the two consecutive scans
of the normal subject were used to eliminate the possibility of any anatomical
change in subject or scanner calibration. The second image was registered to the
first by maximising normalised mutual information [10] and transformed into
the coordinate frame of the first by sinc interpolation (radius 6). The first im-
age was then subtracted from the aligned second one to produce a difference
image which corresponded to no added misregistration. Ten increasing amounts
of misregistration were added synthetically by calculating successively scaled
down versions of the original 6D transformation (corresponding to mean voxel
shifts 50 − 500µm in 50µm steps). Difference images for the clinical study were
produced by registering the second and third images to the first by maximising
normalised mutual information (as above). For each subject the second and third
images were then transformed into the coordinate frame of the first (as above)
and the first image was subtracted to produce two difference images (2 − 1 and
3 − 1) from registration with segmented data and two from registration with
unsegmented data. Radiologists were trained to recognise different amounts of
misregistration using the training set. Then they rated the misregistration of
each randomised difference image on a 7 point scale.

Registration of Simulated Data We used the noiseless brain model image
and the noiseless brain model with 40% RF inhomogeneity from McGill Uni-
versity [2] to create four image pairs: (a) 2 identical images; (b) 2 images with
added noise; (c) 1 noiseless image with RF inhomogeneity and one without; (d)
2 images with added noise 1 with, 1 without RF inhomogeneity.
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Fig. 1. Axial planes through clinical images: non-segmented (left), segmented, differ-
ence, McGill with simulated Rician noise (right)

3 Results

Three sets of results are given: (1) Consistency measurements for transformation
estimates from registration of clinical data (segmented and not segmented) for
the 7 measures. (2) Scores from radiologists’ visual assessment of clinical differ-
ence images (segmented and not segmented). (3) Consistency measurements of
the transformation estimates obtained from registration of the simulated data
with the 7 measures. All consistency measurements correspond to the mean,
RMS, and maximum voxel displacements over the segmented brain region and
are given in µm, rounded to the nearest µm.

Registration Consistency for the 7 Similarity Measures The mean /
standard deviation of 33 measurements of the mean voxel shift (µm) for regis-
tration solutions with and without segmentation of clinical data were: 122/46
(mi), 121/48 (nmi), 164/74 (ncc), 175/76 (chi), 8429/5316 (edi), 700/1503 (pi),
880/609 (riu). The smallest mean/standard deviation of 33 measurements of
the maximum voxel shift were 223/96 (mi), 222/96 (nmi). Table 1 shows aver-
aged consistency measurements for T31T23T12 with each of the 7 measures, for
segmented and unsegmented data.

Visual Assessment of Difference Images Assessed misregistration was cor-
related with the added misregistration. For observer A the Spearman rank cor-
relation coefficient (ρ) was 0.96 for observer B, ρ was 0.79. Inter-observer agree-
ment was also tested and ρ was 0.85. These results suggest that radiologists are
sensitive to misregistration in difference images corresponding to a mean, RMS
and maximum voxel shift, over the brain, of: 195, 199, 299 µm respectively.
There was no perceived difference in perceived misregistration with and without
segmentation using the nmi measure (p=0.35).

Registration Consistency with Simulated Images Registration accuracy
was measured by comparing the transformation estimate with the identity using
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6 different starting estimates. The mean/standard deviation of voxel shift for
the 6 starting transformations for the four image pairs was (µm): (a) less than
10/3 for all measures; (b) 127/2 (chi), 135/3 (edi), 121/2 (mi), 126/2 (ncc),
137/3 (nmi), 343/23 (pi), 416/74 (riu); (c) 8/2 (chi); 39/14 (edi); 51/1 (mi);
25/5 (ncc); 43/6 (nmi); 12/1 (pi); 30/7 (riu). There was a failure for riu which
was omitted; (d) 203/3 (chi); 253/2 (edi); 163/5 (mi); 133/2 (ncc); 194/7 (nmi);
391/26 (pi); 402/57 (riu).

Table 1. Mean (standard deviation) of 11 consistency measurements (T31T23T12).
Registration without prior segmentation (left) and with prior segmentation (right)

unsegmented data segmented data
measure mean RMS max mean RMS max

chi 91 (28) 96 (31) 165 (55) 99 (31) 104 (33) 169 (62)
edi 1757 (1148) 1780 (1198) 2160 (2072) 66 (35) 69 (36) 117 (55)
mi 88 (23) 94 (26) 168 (53) 78 (29) 82 (31) 139 (59)
ncc 87 (37) 93 (40) 168 (73) 97 (25) 101 (27) 168 (63)
nmi 86 (32) 92 (35) 162 (70) 78 (29) 81 (30) 133 (57)
pi 1565 (2204) 1690 (2391) 3348 (4809) 145 (94) 154 (100) 278 (181)
riu 1221 (553) 1276 (549) 2100 (748) 258 (92) 276 (101) 531 (224)

4 Discussion and Conclusion

Table 1 shows that 4 of the 7 measures produced transformation estimates that
were consistent to within 331 µm whether or not the data was pre-segmented
and also had the best internal consistency (T31T23T12) for non-segmented data.
For the joint entropy measures the mean of the maximum inconsistency between
registrations with and without segmentation was 223 µm. The results from vi-
sual assessment of synthetically misregistered data indicated that the threshold
for detecting misregistration corresponded to a mean and maximum inconsis-
tency of about 200 and 300 µm respectively. These inconsistencies are larger
than the averaged measured mean and maximum inconsistency suggesting that
these inconsistencies are too small to be reliably detected by the visual inspec-
tion of difference images. For non-segmented data, there was little difference in
the internal consistency of transformation estimates for those measures based
on correlation (chi and ncc) and for those based on joint entropy (mi and nmi).
However, registration results with and without prior segmentation were more
self-consistent for those based on joint entropy. Results with the simulated im-
ages suggested that image noise had a significant effect on registration accuracy.
However, the highest resolution matching was done with images at the original
resolution without any filtering to reduce the impact of noise. It is possible that
low pass filtering with intensity thresholding might improve performance of some
measures. Our results show that the similarity measures based on mutual infor-
mation are the most suitable for rigid body registration of serial MR images of
the head. Using our optimisation strategy we achieve registration solutions with
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and without extra-dural tissue segmentation that are consistent to within the
threshold of observer discernibility (i.e. 200-300 µm). Our results apply under
the conditions of typical scalp deformations and small scale anatomical change.
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Abstract. Freehand 3D ultrasound imaging produces a set of irregu-
larly spaced B-scans, which are typically reconstructed on a regular grid
for visualisation and data analysis. Most standard reconstruction algo-
rithms are designed to minimise computational requirements and do not
exploit the underlying shape of the data. We investigate whether approxi-
mation with splines holds any promise as a better reconstruction method.
A radial basis function approximation method is implemented and com-
pared with three standard methods. While the radial basis approach is
computationally expensive, it produces accurate reconstructions without
the kind of visible artifacts common with the standard methods.

1 Introduction

In freehand 3D ultrasound, a position sensor is attached to a conventional ul-
trasound probe and a set of 2D B-scans are acquired, along with their relative
locations. This allows the irregularly spaced B-scans to be reconstructed into a
regular 3D voxel array for visualisation. The reconstruction step is important:
any loss of image quality, or the introduction of artifacts, should be avoided.

The literature reveals several reconstruction methods, which are all rather
simple because they were designed to minimise the time and memory require-
ments. The most common methods are voxel nearest neighbour (VNN), pixel
nearest neighbour (PNN) and distance-weighted (DW) interpolation.

VNN interpolation is easy to understand: each voxel is assigned the value
of the nearest B-scan pixel [6]. There are no parameters to set. In common with
the other reconstruction techniques, reconstruction artifacts can be observed
in slices through the voxel array, since the interpolated image is a collage of
projections from the intersected B-scans. Registration errors, including tissue
motion and sensor errors, contribute to slight misalignment of the B-scans. This
results in mismatches among the neighbouring pieces of the collage. The lines of
intersection between the pieces then become visible – see Fig. 1(a).

The two-stage PNN algorithm is the most popular reconstruction method [4].
In the first stage (bin-filling), the algorithm runs through each pixel in every B-
scan and fills the nearest voxel with the value of that pixel. Multiple contributions
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boundary

(a)

boundary

(b)

unfilled voxels

(c)

Fig. 1. Reconstruction artifacts. In (a), VNN interpolation is used to reconstruct
an examination of a neck muscle. In (b), PNN interpolation is used for an examination
of the thyroid. In (c), DW interpolation is used for an examination of the bladder

to the same voxel are usually averaged. The parameters to set at this stage are
the weights on the multiple contributions. The second stage (hole-filling) fills
any remaining gaps in the voxel array. A variety of hole-filling methods have
been used, including averaging of filled voxels in a local neighbourhood [4]. The
parameters to set at this stage are the weights of the voxels used to fill the gaps.
Artifacts can be generated by this two stage process: a slice passing through
both first stage and second stage filled voxels may show the boundary between
the bin-filled regions and the smoothed hole-filled regions — see Fig. 1(b).

Like VNN, DW interpolation proceeds voxel by voxel. Instead of using the
nearest pixel, each voxel is assigned the weighted average of some set of pixels
from nearby B-scans. The parameters to choose are the weight function and the
size and shape of the neighbourhood. The simplest approach employs a spherical
neighbourhood of radius rmax around each voxel [1]. All pixels in the sphere are
weighted by the inverse distance to the voxel and then averaged. If rmax is too
small, gaps may result, as in Fig. 1(c). Yet if rmax is too large, the voxel array
will be highly smoothed, since the effect of the weighting is quickly swamped by
the larger number of data points falling into the larger local neighbourhood.

2 Radial Basis Function Interpolation

There have been no previously published attempts at functional interpolation
of freehand 3D ultrasound data, since there are severe computational demands
to overcome. After surveying recent advancements in trivariate interpolation of
large data sets, a method was discovered that ideally suits the freehand 3D
ultrasound reconstruction problem. This method was developed by researchers
at the University of Illinois for interpolation of multivariate geographical data
sets [3]. They dubbed the method “completely regularized splines with tension”.

Consider a set of pixel values pj (j = 1. . .N) located at positions xj =
(xj , yj , zj) with respect to the voxel array. The goal is to find a spline S(x) that
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passes as close as possible to the data points and is as smooth as possible. These
two requirements can be combined in such a way that S(x) fulfills

N∑
j=1

|pj − S(xj)|2 + wI(S) = minimum. (1)

The first component is the deviation of the spline from the data points, and the
second is a smoothness function I(S). The weight w determines the relative cost
of the two components. The solution can be expressed as

S(x) = T (x) +
N∑

j=1

ajR(x,xj) (2)

where T (x) is the trend function, aj are scalar coefficients, and R(x,xj) is an
RBF (radial basis function) whose form depends on the choice of I(S).

For the 2D case, if I(S) is chosen to minimise the cost of the second deriva-
tives, the familiar thin plate spline results. If the same I(S) is used for the 3D
case, the first derivatives of the RBF become divergent at the data points. By
choosing a more general I(S), we obtain an analytic expression for the RBF with
regular derivatives of all orders [2]. This results in T (x) = a0, a constant, and

R(x,xj) =
φ3

4π

[
1
φr

erf
(

φr

2

)
− 1√

π

]
(3)

where r = |x − xj | is the distance from x to xj , and erf is the error function.
The parameter φ is a generalised tension parameter, controlling the distance
over which the point influences the resulting hypersurface. The multiplicative
constant φ3/4π can be omitted, since it can be combined with the coefficients
aj . The spline coefficients can then be found by solving the set of linear equations

a0 +
N∑

j=1

aj [R(x,xj) + δijw] = pi for i = 1 . . . m and
N∑

j=1

aj = 0 (4)

where δij is the Kronecker delta function. There are two parameters to set: φ
controls the tension, and w controls the level of approximation. The goal of
tuning the parameters is to find the optimal balance between the requirements
of obtaining small deviations from the data points and avoiding overshoots.

For computational efficiency, the RBF interpolant cannot be calculated using
all the data points of an ultrasound examination at once: the input data must
be divided into manageable segments. Individual interpolating functions are
then calculated for each segment. To ensure smooth connections among the
RBF’s of neighbouring segments, overlapping windows are used. A window is
established around each segment in such a way that it encompasses not only all
the data points in the segment but also a sufficient number of neighbouring data
points. All data points in the window are then used to calculate the RBF’s for
that segment. Since the windows overlap each other, the RBF for each segment
will closely match the neighbouring RBF’s. Full details of a novel windowing
technique suitable for use with freehand 3D ultrasound data can be found in [5].
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3 Comparison of Reconstruction Methods

A fan-shaped sweep of a human bladder was performed in vivo with a 3.75 MHz
curvilinear array probe (0.34 mm wide pixels). Since the true anatomical function
is unknown, the reconstruction methods were tested by artificially removing data
from the examination, and then evaluating their ability to predict the intensity
values in the gaps. First, a B-scan near the middle of the sweep was selected.
The voxel array (with voxels equal in size to the pixels) was aligned with this
B-scan so that pixels fell exactly onto voxels. A percentage of the pixels were
then removed randomly from the B-scan, creating gaps of various sizes. The rest
of the pixels and all other B-scans were used in the interpolation to fill the voxel
array. The values of the removed (original) pixels could then be compared with
the values of the voxels aligned with them, and an average error computed:

V =
1
M

M∑
i=1

|pi − ci| (5)

where pi is the original pixel that was removed from the reconstruction, ci is the
interpolated value of the voxel aligned with pi and M is the number of removed
pixels. A low value of V indicates a good ability to interpolate over the gaps.

The tests were performed with eight different percentages of removed data:
0%, 25%, 50%, 75%, 100%, 300%, 500% and 700%. For the 25% to 100% tests,
pixels were removed only from the selected B-scan n. The 300% test removed all
of B-scan n and all of B-scans n–1 and n+1. The 500% and 700% tests removed
B-scans n±2 and n±3 as well. The 0% test was included because a reconstruction
method may not replicate the original data points. For the 0% test alone, V was
calculated over all pixels of the selected B-scan. The eight tests were repeated
for ten different B-scans to give mean and variance estimates of V .

Typical algorithms were implemented in each of the conventional reconstruc-
tion categories and compared with the new RBF method. The hole-filling stage
of the PNN algorithm used the average of the filled voxels in a 3×3×3 neighbour-
hood. The remaining unfilled voxels were then filled by averaging originally filled
voxels in a 5×5×5 neighbourhood and so on, until all voxels were filled. This is
similar to the method described in [4]. The DW method was implemented with
an inverse distance weight within a spherical neighbourhood. rmax was set to
the smallest value which avoided gaps in the reconstructions. The RBF method
used the windowing technique described in [5]. Each segment contained at most
30 data points. The tension and approximation parameters were tuned manually
by viewing a slice of the voxel array. A low tension (φ = 25) combined with a
small amount of smoothing (w = 0.1) gave optimal results. These values fall
within the range typically used for geographic data interpolation [3].

4 Results

The results are tabulated in Table 1: examples of the interpolated images can be
found in [5]. A second experiment with different data produced similar results [5].
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Table 1. Interpolation error V . µ is the mean of V and σ is the standard deviation.
† means that the assertion µ > µRBF is statistically significant for a confidence level of
0.05. ? means that the assertion µ < µRBF is statistically significant for a confidence
level of 0.05. The assertions are tested with the paired-sample t-test statistical method

Test VNN PNN DW RBF
µ σ µ σ µ σ µ σ

0% 0.00? 0.00 0.00? 0.00 0.00? 0.00 0.96 0.03
25% 5.60† 0.39 5.01† 0.22 5.37† 0.09 3.57 0.25
50% 5.50† 0.40 5.08† 0.25 5.32† 0.09 3.85 0.31
75% 5.27† 0.50 5.19† 0.35 5.24† 0.10 4.13 0.40

100% 4.13 0.38 5.25† 0.40 5.11† 0.14 4.29 0.37
300% 6.92 0.40 7.03† 0.15 6.85† 0.12 6.69 0.19
500% 8.50† 0.23 7.80† 0.14 7.62? 0.11 7.73 0.16
700% 9.37† 0.26 8.36 0.18 8.07? 0.09 8.37 0.16

The VNN method produced sharp, detailed reconstructions. At 25%, 50%
and 75%, the nearest neighbours of the voxels came mainly from the remaining
pixels of the selected B-scan. Therefore, the interpolated image appeared as a
patchwork of irregularly shaped pieces and relatively large values of V result. For
the 100% to 700% tests, the interpolated image was formed from the projection
of pixels from the nearest B-scans. The join lines between the portions of the
projected data were indiscernible, suggesting that registration errors were small
and the images varied slowly from one B-scan to the next.

The PNN method produced more blurred reconstructions. At 25%, 50% and
75%, the gaps were filled mainly by averaging the remaining pixels in the original
B-scan. The interpolated image appeared as a patchwork again, with relatively
large values of V . The mean of V increases progressively for the 100% to 700%
tests. The reconstructions exhibited significant artifacts, especially for the 500%
and 700% tests. Visible boundaries were evident between portions filled, for
example, using a 7 × 7 × 7 neighbourhood, and portions filled using a 9 × 9 × 9
neighbourhood, because they involve different amounts of smoothing.

The DW reconstructions also exhibited artifacts. At 25%, 50% and 75%, the
reconstructions comprised voxels filled by the original data (weighted by infinity),
along with voxels in the gaps that were calculated from a weighted average of
neighbouring pixels. The interpolated image was therefore a combination of the
original pixels and smoothed data in the gaps. Apart from progressive blurring
as more data was removed, no other artifacts were apparent.

The RBF technique performed marginally better than the others. At 25%,
50% and 75%, the mean of V is considerably lower than the other methods and
the resulting interpolated data appeared the most detailed and least artificial.
This demonstrates the ability of a functional method to use the shape of the
underlying data to interpolate across the gaps. Yet at percentages of 100% and
greater, the RBF is not always significantly better than the other methods. One
of the reasons for this is that the underlying shape of the anatomical data is lost
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when the gaps become too large. Another problem is that the RBF approaches
the trend term of the interpolation function in the largest gaps. In general, the
RBF method produced no visible artifacts in the interpolated data, apart from
progressive blurring as the percentage of removed data increased.

The performance of the RBF was largely unchanged for tensions φ in the
range 10 to 25 and smoothing w in the range 0.01 to 0.1. A potential improvement
lies in the use of anisotropic tension [2], which should be high within the B-scans
to avoid overshoots, and low orthogonal to the B-scans to fill the gaps. This would
reduce the blurring in the gaps between B-scans.

The major disadvantage of the RBF technique is its considerable computa-
tional expense. However, the segmentation of the voxel array means the RBF
method is amenable to parallel processing. Since many modern ultrasound ma-
chines already have the capacity for parallel processing (the Toshiba Powervision
7000 used for these examinations contains more than 60 Pentium processors), a
practical implementation of the RBF method is not infeasible.

5 Conclusions

The RBF method performs better than the traditional reconstruction techniques,
though not remarkably so. However, many opportunities exist to exploit the
unique properties of the RBF method. For example, derivatives can be calculated
directly from the RBF’s. Accurate derivatives are often required in applications
such as visualisation, registration and segmentation. A functional representation
can also be useful for data compression and filtering. Also, since an approximat-
ing function in general misses the data points, the distance it misses them by can
be considered the predictive error. A large predictive error may be indicative of
image misalignment, so determining which regions have large predictive errors
can be useful for investigations into registration errors.
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2. Mitás̆ová, H., Mitás̆, L.: Interpolation by regularized splines with tension: I. theory
and implementation. Mathematical Geology 25 (1993) 641–655
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Abstract. Approximate entropy (ApEn) is a computable measure of
sequential irregularity that is applicable to sequences of numbers of finite
length. As such, it may be used to determine how random a sequence of
numbers is. We exploit this property to determine the relevance of image
information; to determine whether a spatial signal intensity distribution
varies in a regular fashion — and is therefore likely to be an image feature
or image texture, or is highly random — and likely to be noise. We
present an outline of two possible methodologies for creating an ApEn-
based noise filter: a modified median filter and a modified anisotropic
diffusion scheme. We show that both approaches lead to effective noise
reduction in MR images, with improved information-retaining properties
when compared with their conventional counterparts.

1 Introduction

Nonlinear geometric schemes provide elegant methods for smoothing digital im-
ages. Anisotropic diffusion [1] and its subsequent developments (see e.g. [2,3])
use the magnitude of local intensity gradients to determine object edges to be
preserved in preference to less significant gradients (assumed to be noise or
structures of little interest), which are smoothed. An alternative method for
identifying significant image information may be to determine whether the local
spatial intensity distribution is ordered or random. We have investigated the use
of approximate entropy (ApEn) [4,5,6], a finite computable measure of sequential
irregularity which is applicable to short sequences of numbers to determine local
pixel intensity regularity. We investigate using ApEn to determine whether spa-
tially fluctuating signal contains a degree of regularity — and is therefore likely
to be an image feature or texture, or is highly random — and likely to be noise.
From this, we construct effective noise reduction filters, which retain improved
levels of detail when compared with existing methods.
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2 Theory and Application

To summarise the mathematical definition of ApEn [4,5,6]: given an array of
size N and an integer m, under the conditions 0 < m ≤ N , a sequence of real
numbers u: = (u(1), u(2), . . . , u(N)), and a real number r (where r ≥ 0), let
the distance between two sub-sequences x(i) = (u(i), u(i + 1), . . . , u(i + m − 1))
and x(j) = (u(j), u(j + 1), . . . , u(j + m − 1)), be defined as d(x(i), x(j)) =
maxp=1,2,... ,m(|u(i + p − 1) − u(j + p − 1)|). Then let Cm

i (r) = {number of j ≤
(N − m + 1) such that d(x(i), x(j)) ≤ r}/(N − m + 1). Now define

Φm(r) =
1

N − m + 1

N−m+1∑

i=1

logCm
i (r) , (1)

ApEn(m, r, N)(u) = Φm(r) − Φm+1(r) . (2)

ApEn(m, r, N)(u) may be interpreted as a measure of the maximum frequency
at which number sequences within u of length m occur compared with sequences
of length m+1. High values of ApEn imply randomness; low values imply order.

We hypothesise that ApEn may be used to distinguish useful image informa-
tion (edges, textures) from noise. We modify median and anisotropic diffusion
schemes using the ApEn value derived from a local neighbourhood in a weight-
ing function for existing smoothing schemes. We reduce smoothing when ApEn
is low and allow smoothing when it is high.

All ApEn calculations use the following parameters: N = 25 (a 5 × 5 neigh-
bourhood), m = 1; r = 0. As the above definition of ApEn is for 1D sequences,
we treat the intensities within the neighbourhood as a 1D raster array of size N
for ApEn calculation. To minimise directional bias, the mean ApEn is calculated
from two 1D arrays, with data entered up/down and then left/right.

2.1 ApEn Median Filter

The transformation of an image, k, with pixel intensity Ik(x, y) to the modified
median-filtered image with intensity Ik+1(x, y) is given by

Ik+1(x, y) = ApEnk(x, y)localM(x, y)local + {1 − ApEnk(x, y)local}Ik(x, y) ,
(3)

where ApEnk(x, y)local = ApEn(m, r, N)(u) calculated within the
√

N × √
N

neighbourhood centred at (x, y) of the kth image and normalised over the whole
of the kth image; M(x, y)local is the median intensity within the neighbourhood.

Figures 1(a–d) show a comparison of the effects of the conventional and
ApEn-modified median filter. The modified filter produces sharper edges and
better preservation of detail due to ApEn being low (so restricting smoothing) in
regions dominated by structural information (e.g. tissue interfaces) and high (so
allowing smoothing) in regions of relatively constant mean intensity corrupted
by random noise (Fig. 1(b)).
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(a)

(c)

(e)

(b)

(d)

(f)

Fig. 1. (a) MR image with added Gaussian noise (SD=5). (b) ApEn distribution.
(c–f) image (a) after application of: (c) median filter (5 × 5 mask; 1 iteration); (d)
ApEn-modulated median filter (5 × 5 mask; 3 iterations); (e) anisotropic diffusion
(2 iterations); (f) ApEn-modulated anisotropic diffusion (3 iterations). Mean noise
reductions: (c) 71 %; (d) 74 %; (e) 58 %; (f) 62 %

2.2 ApEn Anisotropic Diffusion

A formulation of the 2D edge-affected anisotropic diffusion scheme is [1]

∂I(x, y, t)
∂t

= div[g(‖∇I‖)∇I] , (4)

g(‖∇I‖) = e−( ‖∇I‖
K )2

. (5)

where t is an artificial time parameter, ∇I is the local intensity gradient, g(‖∇I‖)
is an ‘edge-stopping’ function, and K, the Canny noise estimator [7], is set to
85 %. This is applied as an explicit Euler forward scheme [8], with a regular-
ising scale of 0.8 [2] and a time step of 0.25. We modify (5) by introducing
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Fig. 2. Correlation coefficient (CC) as a function of noise levels (arbitrary units).
Squares: anisotropic diffusion. Crosses: ApEn-modified anisotropic diffusion

ApEn(x, y)local as a modulating term (a similar approach to [9]), to give G:

G(‖∇I‖, ApEn(x, y)local) = e−( ‖∇I‖
K )2

ApEn(x, y)local
b
, (6)

where b is determined empirically. We use b = 1, causing G to be reduced at low
ApEn values (ordered case) relative to high ApEn values (disordered case).

Figures 1 (e) and (f) show a comparison of standard and ApEn-modified
anisotropic diffusion (the differences are less than in Figs. 1(c) and (d), as
anisotropic diffusion filters generally out-perform median filters). The unmodi-
fied filter reduces noise more than the modified scheme for a given number of
iterations, due to the retarding effect of the ApEn modulation, but retains less
detail for a given noise reduction. Further differences are seen by examining how
useful image information is preserved through iterative filtering after the appli-
cation of Gaussian noise. We do this by calculating the correlation coefficient
between the filtered images and the original noise-free image [10] (Fig. 2). The
ApEn-modified scheme retains more information for a given noise reduction, up
to what appears to be a stopping point (from experiments to date). The unmod-
ified scheme progresses to further noise reduction at the expense of information
in the image as a whole.

ApEn reduces the smoothing occurring to textural features which, although
they do not possess well-defined edges, may represent important image informa-
tion (Fig. 3). More uniform regions experience approximately the same degree
of smoothing by both the modified and unmodified schemes.

3 Conclusions

We have estimated ApEn within small image neighbourhoods, and shown differ-
ences between regions dominated by structural information and by noise (Fig.
1(b)). ApEn is then used to reduce noise by modulating the effects of existing
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(a) (b) (c)

Fig. 3. (a) Original image. (b) Smoothed with anisotropic diffusion filter (5 iterations).
(c) Smoothed with modified anisotropic diffusion filter (5 iterations)

schemes. The modified schemes are weighted towards removing spatially random
signal (noise), whilst retaining more orderly information.

ApEn differs from conventional concepts of entropy [11] as its calculation
includes steps concerning the relationship between neighbouring (or higher or-
der distances, dependent upon the choice of m) intensity values, and how often
these relationships occur, rather that relying upon a statistical description of
the histogram of all values within the region of interest. It is this point that also
makes it distinct from measures such as intensity variance. We have made pre-
liminary comparisons with filters based on the local 2D autocorrelation (adapted
from [12]) of pixel values, and found that the information retaining properties
of using ApEn are superior (data not shown).

The diffusion time (or number of iterations) required for a given noise reduc-
tion is increased by ApEn modulation, due to its retarding effect (see (3) and
(6)). We normalise ApEn(x, y) over the whole image, so with b = 1 (see (6)), the
smoothing at each step is less than or equal to that possible with the unmodified
schemes, and the stability of the original scheme [8] is not compromised. Less
image information is lost for a given noise reduction when incorporating ApEn.

The parameters used to calculate ApEn, and for weighting the modulation
(see (3) and (6)), were chosen for effectiveness of noise suppression, feature
preservation, and ease of computation. The time for computation of ApEn scales
as ≈ 2m(N − m + 1)2. We used small N , allowing relatively quick computation
and spatially localised neighbourhoods. However, there is a statistical advantage
in larger N [6], implying increased accuracy in calculated values of ApEn. The
effects of using alternative values of b, m, N , and r are left to future work.

The current pseudo-2D local ApEn calculation may potentially be developed
to a true 2D (and any other dimensionality) vector calculation of ApEn, as sug-
gested by Singer and Pincus [13]. However, initial experiments (data not shown
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here) suggest that our pseudo-2D approach is effectively rotation-invariant, jus-
tifying the application of 1D ApEn calculations in a 2D setting.

We have presented a novel framework for noise reduction in medical images.
We have applied our techniques to many medical and synthetic images (not
shown here) and have found that they consistently out-perform the unmodified
schemes. The techniques presented may have application to a range of MRI tech-
niques including quantitative studies such as functional MRI, perfusion imaging,
and diffusion tensor imaging, each of which typically suffers from low signal-to-
noise ratios. The capability of ApEn to distinguish noise from image structure
may also make it a suitable candidate for texture preserving filtering tasks.
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Abstract. One of the major drawbacks of Magnetic Resonance Imaging
(MRI) has been the lack of a standard and quantifiable interpretation
of image intensities. This causes many difficulties in image display and
analysis. We have devised a two-step method wherein all images can be
transformed in such a way that for the same protocol and body region, in
the transformed images similar intensities will have similar tissue mean-
ing. Normalized images can be displayed with fixed windows without the
need of per case adjustment. More importantly, extraction of quantitative
information about healthy organs or about abnormities, such as tumors,
can considerably be simplified. This paper introduces and compares new
variants of this normalization method that can help to overcome some
of the problems with the original method.

1 Introduction

A variety of MRI protocols (for example pulse sequences) are currently avail-
able that allow the setting up of different contrasts among the different tissues
within the same organ system. Unfortunately, one of the major difficulties with
the MRI techniques has been that intensities do not have a fixed meaning, not
even within the same protocol for the same body region obtained on the same
scanner for the same patient. This implies that MR images cannot be displayed
at preset windows; one always has to adjust the window settings per case. The
lack of a meaning for intensities also poses problems in image segmentation and
quantification. What we need is that for protocols that are the same or “close”
to each other, the resulting images should also be “close”.

Attempts have been made to calibrate MR signal characteristics at the time
of acquisition using phantoms. Postprocessing techniques that are applied to the
image data that do not have any special acquisition requirements are however
more attractive. There does not seem to have been any serious attempt to address
this problem in the past.

The method described in [1] offers a simple way of transforming the images
so that there is a significant gain in similarity of the resulting images. It is a
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two-step method consisting of a training step (executed only once for each pro-
tocol and body region) and a transformation step (executed on each image).
This new transformation results in standard scales for different protocols and
body regions. Intensities in the transformed images have meanings, and standard
window settings can be determined for different tissues. However, the original,
mode-based method is often not appropriate if the application is image segmen-
tation, where we need more accurate meaning on the normalized scale even for
relatively small ranges. This paper introduces and compares new variants of this
normalization method that can help to overcome some of the problems with the
original method.

2 Methods

Overview of the Normalization Method. We consider an image as a 3-
dimensional array of volume elements (voxels) with intensity values assigned to
each voxel. We assume that all “valid” intensities are positive integers and the
value 0 means “no measured data”. We denote the minimum and maximum
occuring intensities in an image by m1 and m2, respectively.

It is desirable to cut off the “tails” of the histogram of the image because
they often cause problems. Usually the high intensity tail corresponds to artifacts
and outlier intensities. With this in mind, let pc1 and pc2 denote the minimum
and maximum percentile values that are used to select a range of intensity of
interest (IOI). Let the actual intensity values corresponding to pc1 and pc2 in
the histogram be p1 and p2.

Based on over 20 body region/protocol combinations, we have observed
mainly two types of histograms among MR images: unimodal and bimodal. In
case of bimodal histograms, we can usually use the mode (µ) that corresponds
to the main foreground object in the image as a histogram landmark. With uni-
modal histograms the mode usually corresponds to the background so we need to
select some other landmark. This may be for example the shoulder of the hump
of the background intensities. Since most of the protocols we studied produce
bimodal histograms we will describe this case in more detail.

Our overall approach is as follows. Let the minimum and the maximum inten-
sities on the standard scale for the IOI be s1 and s2, respectively. In the training
step, the landmarks (p1j , p2j , µj) obtained from each of a set of images are
mapped to the normalized scale by mapping the intensities from [p1j , p2j ] onto
[s1, s2] linearly. Then the mean (µs) of these mapped µjs is computed. In the
transformation step, for any given image, the actual second mode µi obtained
from its histogram is matched to µs by doing two separate linear mappings: the
first from [p1i, µi] to [s1, µs] and the second from [µi, p2i] to [µs, s2].

Choosing the Standardization Parameters. Although, once the training
step is done, the corresponding transformation step is fully determined, there
are several possibilities to tailor the normalization to the specific needs of an
application. For example, s1 should not be 0 if the values below p1 need to be
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distinguished from “nothing” (i.e., value 0). Further, s2 − s1 should be large
enough not to merge neighboring intensities after the transformation. When
pc1 > 0 and/or pc2 < 100, the values in [m1i, p1i] and [p2i, m2i] may be mapped
to [s′

1i, s1] and [s2, s
′
2i], respectively, where s′

1i and s′
2i are determined by applying

the mapping in the two linear sections corresponding to [p1i, µi] to [s1, µs] and
[µi, p2i] to [µs, s2]. We refer to this scale as “open”. When all intensities in
[m1, p1] and [p2, m2] are mapped to s1 and s2, respectively, we refer to the scale
as “closed”.

Choosing the Landmarks. The choice of the actual landmark is also an im-
portant factor. The mode-based method described above works fine for several
MR protocols and several body regions but there are cases (and applications)
wherein this simple method is not appropriate. As an example, consider the
shape of the gray matter (GM), white matter (WM), and CSF distributions in
fast spin-echo (FSE) proton density (PD) brain images. Their relative locations
vary among studies and even among studies of the same patient. Figure 1 shows
some histogram shapes all of which were found in histograms of patient stud-
ies. We recall here that in FSE PD images, GM regions are brighter than WM
regions. The weakness of the mode-based method is that sometimes the mode
(the peak location) corresponds to GM intensity (Figs. 1a, 1b), and in other
cases, it corresponds to WM intenstity (Figs. 1d, 1e), or it may also correspond
to intensities that lie between real GM and WM (Fig. 1c). Therefore, when we
match the mode to a fixed location on the normalized scale, we may match
GM in some cases and WM in the others. Because of this “switching” behav-
ior, the mode-based method is often not appropriate if the application is image
segmentation, where we need more accurate meaning on the normalized scale
even for relatively small ranges. In order to eliminate the “switching” behavior,
one approach is to choose the median of the main body of the histogram as a
landmark to match. We do this on the reduced histogram (i.e., after removing
the background and the noise (high percentile)). This landmark remains consis-
tent even in cases where the histogram has two similar peaks (Figs. 1a, 1e) or
asymmetric shape (Figs. 1b, 1d). We may also use more histogram landmarks,
such as quartiles and deciles, to better define the standard histogram.

m m m m m

(a) (b) (c) (d) (e)

Fig. 1. Shapes of brain MRI histograms. For clarity, only the main body of the his-
togram (corresponding to the brain) is shown
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3 Evaluation

For the validation of the method for each protocol and body region we need to
consider the following variations in image data: (i) intra-patient (time-to-time)
variation, (ii) inter-patient variation, (iii) variations among different machines of
the same manufacturer, and (iv) variations among machines of different types.
The following sections describe the methods of evaluation that we used to ex-
amine how different kinds of variations are affected by the different variants of
the normalization. For all tests s1 = 1, s2 = 4095, pc1 = 0, and pc2 = 99.8 were
used with “closed” and “open” scale, mode- and median-based variants, using
linear segment-by-segment mapping. The training was done by using 10 different
patient studies of the particular protocol and body region.

3.1 Qualitative Comparison

We conducted qualitative comparisons for the following MRI protocols: FSE PD,
FSE T2, spin-echo (SE) PD, SE T2, T1 with Gadolinium enhancement (T1E),
and SPGR. 30 studies each of FSE PD, FSE T2 and T1E, and 10 studies each of
SE PD, SE T2 and SPGR were transformed using the corresponding “trained”
parameters. Two ways of visual comparisons were made: by displaying at fixed
gray level window settings before and after transformation, and by displaying
the binary images obtained at fixed threshold ranges. For lack of space, only the
former is illustrated below.

Images in the first row of Fig. 2 show a slice from each of three different pa-
tient studies. They are displayed at the same gray level window that was actually
set up for the first image. This window is not appropriate for the other two data
sets because they have quite different intensity ranges. In the second row, the
same slices are displayed, after normalization with the open-scale median-based
method, at a fixed “standard” brain window that we devised after examining
a few normalized images. The structures are well portrayed and the contrast is
more similar than that of the originals.

3.2 Quantitative Comparison

Two types of quantitative tests on data sets of brain obtained from three proto-
cols FSE PD, FSE T2, T1E were conducted.

Test 1: Intra-patient Variation. We used the same training data sets and
parameter configurations as for qualitative comparison. The test method for all
three protocols was the same. Two scans acquired at different time instances were
randomly selected for 15 patients. The time distance between the two scans of
the same patient varied between 1 and 6 years. For each patient, we registered
the first scan to the second via a rigid transformation based on intensity value
correlations. Because these patients had Multiple Sclerosis (MS), the lesions were
segmented [2,3] and removed for the purpose of comparison. Without this step
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Fig. 2. Images displayed at fixed gray level windows. Original FSE PD images from
different patients (first row), and after normalizing with the open-scale median-based
method (second row)

the difference between the images due to the disease whould have perhaps dis-
torted the results. The similarity of a pair of these registered, lesion-removed
images was measured by the mean squared intensity difference (normalized to
the original range of the images) NMSD. This similarity measure was computed
for every pair of images before and after normalization for the different pa-
rameter configurations. Table 1 shows that the mean value of the NMSD after
transformation is smaller than that before transformation. It also shows that us-
ing the median-based normalization the mean of NMSD is further reduced. The
mean values of NMSD for the pairs of studies were compared using the paired
t-test. The results show that the change in the means of NMSD is statistically
significant (mostly p < 0.01) for all three pairs: before and after mode-based,
before and after median-based, between mode- and median-based.

Table 1. Mean and standard deviation of NMSD before and after normalization with
the closed-scale mode-based and with the open-scale median-based method

FSE PD FSE T2 T1E
mean sd mean sd mean sd

before 0.0199 0.0177 0.0217 0.0182 0.0110 0.0074
after mode-based 0.0078 0.0102 0.0080 0.0080 0.0085 0.0072

after median-based 0.0039 0.0058 0.0036 0.0051 0.0019 0.0017

Test 2: Inter-patient Variation. For this comparison we randomly selected 12
FSE PD and 12 FSE T2 data sets from our database. All images were previously
segmented into WM, GM, CSF, and MS lesion (LS) regions. We calculated the
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statistics over the population of images for each of these regions separately. The
normalization parameters were the same as those for the other comparisons. For
each of these regions in each image i in each of these protocols, we calculated the
normalized mean intensity (NMI) by dividing the mean intensity in the region
by m2i −m1i. This was repeated for each set of the transformed images wherein
normalization was done by dividing the mean intensity in the region by s2 − s1.
The coefficient of variation of the NMI values before and after normalizations
are shown in Table 2. The table indicates that the intensities on the normalized
scale have more consistent tissue meaning than those on the original scale and
that the median-based normalization outperforms the mode-based method in
achieving similar tissue meaning of intensities.

Table 2. Coefficient of variation, expressed in %, of the NMI of different tissues in
FSE PD and T2 images

WM GM CSF LS
PD T2 PD T2 PD T2 PD T2

before 14.61 14.83 51.23 51.81 46.77 46.85 31.54 31.61
after mode-based 2.55 2.13 1.95 2.18 3.24 5.46 3.20 5.01

after median-based 1.59 2.53 1.26 1.85 2.97 5.11 2.51 5.04

4 Concluding Remarks

The proposed intensity scale normalization methods produce more similar inten-
sity meanings than the original images based on both qualitative and quantita-
tive measures. Using the open-scale variant, it is possible to set better intensity
of interest ranges while still being able to distinguish relevant information at the
ends of the scale. Intensity values in the transformed images have more consistent
meanings, tissues have better defined ranges on the median-based normalized
scale than those on the mode-based normalized scale. Quantitative tests showed
that the normalized mean squared difference between two different scans of the
same subject is reduced if the new median-based and open-scale variants are
used, and that this change is statistically significant. They also showed that the
inter-patient variation of the intensities within different tissues also decreases.
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Abstract. A method is presented for determining the intensity map-
ping between MRI images that may have been acquired using different
sequences or instruments. The method can be applied to fully elastic
matching and produces spatially localized probability functions that are
capable of representing in an efficient way strong intensity distortions
due, for instance, to the shading effect in MRI.

1 Introduction

In image matching, the correspondence between the images is evaluated using
a similarity measure which quantifies the plausibility of observing an arbitrary
feature fT in one image when feature fR is seen in the second image. In this
work, we present a measure designed for intensity values as they appear on MRI
images that may have been acquired using different sequences or scanners. The
measure takes into account partial volume voxels, adapts to spatially varying
intensity degradations, and is estimated jointly with the unknown mapping that
warps the two images into spatial register.

Various similarity measures that utilize statistical properties of the registered
images have been proposed recently and used with great success to rigidly reg-
ister multi-modal images of the same scene [1,2,3]. Maintz et al. [4] have made
a preliminary attempt to extend the mutual information measure to non-rigid
registration by using the alignment result from optimizing the measure as a first
estimate to the elastic correction of small deformations. In related work, Gee
and co-workers [5] developed a non-rigid matching technique capable of handling
large-valued deformations, in which the intensity mapping between the images
is represented as a conditional probability density that is determined simulta-
neously with the calculation of the unknown spatial transformation. Different
approaches to estimating this conditional density have been further investigated
in [6] and these are extended in the current work wherein a formal model is con-
structed that explicitly considers partial volume and position-dependent effects.
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Fig. 1. (a) A causal network for the observation model. (b) A voxel V with intensity
A at position P , composed of more than one tissue T

2 Methods

The relationship between the variables of the intensity mapping problem in image
matching can be better understood when they are displayed as a causal model [7].
The model in Fig. 1a specifies that the intensity of each voxel in the image
depends on the tissue composition within the voxel and on the voxel’s position
within the scanner volume. This model shows that the same voxel composed of
a fixed combination V of different tissue types may produce different intensities
A and B when placed in different locations or scanners P and P ′, respectively.
Fig. 1b illustrates the problem of partial volume tissue composition, in which a
single voxel V at position P may be composed of more than one tissue type T .
In this case, the intensity A assigned to the voxel will be a weighted average of
its component tissue intensities, whose values are a function of position within
the imaging volume.

Since the intensity variable A is influenced by the voxel’s partial volume
mixture V of tissue types and the position P at which the voxel is placed, the
probability that it assumes a value a is conditioned on the values of V and P . This
quantitative information is denoted as P (a|v,p), also known as an observation
or sensor model. We can state the same for intensity observations in the second
image for the matching problem, where P (b|v,p′) is the conditional probability
that a tissue mixture v produces intensity b at position p′. The goal of this work
is to determine the conditional probability relating our observation models so
that it can be used to guide the matching process.

The relationship between tissue type and partial volume composition is rep-
resented in the causal model graph by an arrow that conditions the probability
of V given a pure tissue type T . Since the proportion of tissue types in an ar-
bitrary voxel can assume any relative combination, the variable V takes on as
many discrete values. The closer this number is to the number of intensity values
displayed in the images, the more accurate our representation will be of the par-
tial volume mixtures. The conditional probability matrix P (v|t) and the prior
P (t) can be estimated using the intensity histograms obtained from a labeled
atlas.
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During the matching process, for each voxel located at p′ of known intensity
b in image B, the aim is to find its corresponding voxel in image A. To do so,
it is necessary to determine how likely it is for a voxel with intensity a placed
at position p to contain the same tissue mixture that the original voxel in B is
composed of. The problem can be stated as the determination of the probability
P (a|p, b,p′) that a voxel in image A induces intensity a given that it is placed
at position p and corresponds to intensity b at position p′ in the second image
B. Conditioning P (a|p, b,p′) on the exhaustive set of partial volume mixture
values, we have that

P (a|p, b,p′) =
∑

k

[P (a|p, b,p′, vk)P (vk|p, b,p′)].

In addition to the dependencies between the variables, the causal model in
Fig. 1 also represents the conditional independent relationships between them:
given that tissue mixture value v is known, the information about variables B
and P ′ do not contribute to our belief about the value of A. In other words, A is
conditionally independent of B and P ′ given that V is known: P (a|p, b,p′, v) =
P (a|v,p). Moreover, since A is unknown, it causes the variable V to be inde-
pendent of P : P (v|p, b,p′) = P (v|b,p′). From these independent relationships,
it follows that

P (a|p, b,p′) =
∑

k

[P (a|vk,p)P (vk|b,p′)]. (1)

Using Bayes’s formula, we have that

P (vk|b,p′) = P (b,p′|vk)P (vk)/P (b,p′),

which together with (1) leads to

P (a|p, b,p′) =
1

P (b,p′)

∑
k

[P (a|p, vk)P (b,p′|vk)P (vk)]. (2)

Using the definition of conditional probability, we have that

P (b,p′|v) = P (b|v,p′)P (p′|v), (3)

where P (p′|v) = P (p′) since P ′ is independent of V when variable B is unknown.
From (2) and (3) it follows that

P (a|p, b,p′) =
P (p′)

P (b,p′)

∑
k

[P (a|p, vk)P (b|p′, vk)P (vk)]. (4)

Finally, conditioning P (vk) on the exhaustive set of mixture values, (4) becomes

P (a|p, b,p′) =
P (p′)

P (b,p′)

∑
k

[P (a|p, vk)P (b|p′, vk)
∑

i

[P (vk|ti)P (ti)]]. (5)
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We see that P (a|p, b,p′) is an average of the product of the observation models
for each partial volume tissue mixture, weighted by its a priori probability.

In order to use (5) for MRI image matching, the models P (a|p, v) and
P (b|p′, v) are considered to be Gaussian. Specifically, the probability that a
tissue mixture vk imaged at position p produces intensity a is described by a
Gaussian distribution with mean µAkp and variance σ2

A. This model is appro-
priate for MRI images, but should be replaced with the relevant distribution in
other imaging situations. Since our probabilities are represented in practice by
tables, our method is applicable to any class of distributions. Assuming discrete
Gaussian distributions for the observation models, P (a|p, b,p′) becomes

P (p′)
P (b,p′)

∑
k


 exp− (a−µAkp)2

2σ2
A∑M−1

i=0 exp− (i−µAkp)2

2σ2
A

exp− (b−µBkp′ )2

2σ2
B∑M−1

i=0 exp− (i−µBkp′ )2

2σ2
B

∑
i

[P (vk|ti)P (ti)]




(6)

where M is the number of intensity values.
Since the variance can be assumed spatially constant and is easily deter-

mined from the image background, the only unknowns to be computed are the
mean values µAkp and µBkp′ . These values can be determined with the aid of
labeled images. Taking observation model A as an example, the value of µAkp

for each position p and tissue mixture vk can be approximated by considering
the intensity values that each tissue assumes in the neighborhood of position p.
Based on the tissue histogram computed for the region around position p and
on a prior distribution model for the tissue types with respect to the particular
acquisition protocol, the expected distribution of partial volume tissue mixtures
for the region can be determined. The tissue mixture distribution HV and the
intensity histogram HI are then matched to determine the mean intensity of the
mixture in the region around p. The purpose is to determine a function F (vk)
that will indicate the corresponding intensity for each value vk, so that

∫ F (vk)
−∞ HI(x)dx
∫ +∞

−∞ HI(x)dx
=

∫ vk

−∞ HV (x)dx
∫ +∞

−∞ HV (x)dx
. (7)

To compute the local tissue mixture mean intensities and the probability
P (a|p, b,p′), a prior model for the tissue mixtures is required. Since a single
image does not provide sufficient information to infer the partial volume tissue
composition of any voxel, the global intensity histogram for a labeled atlas is
used to estimate the prior distribution. The idea stems from the fact that in
the process of labeling the atlas into its major tissue components the expert
assigns a partial volume voxel to the pure tissue type that is most representative
of the voxel’s contents. This then is reflected in the variance of the intensity
histogram, from which a probability distribution can be obtained. In this work,
the distribution was approximated by a Gaussian model, although other models
can be used as well. The method has proven to be robust to this assumption in
the case when both images are acquired with the same protocol. Based on the
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prior model Π for tissue mixtures and the tissue histogram HT , the histogram
HV in (7) can be computed as HV (v) =

∑
i HT (ti)Π(ti, v), where the case for

a normally distributed prior with means µi and variances σ2
i for each tissue ti

implies that Π(ti, v) = (1/
√

2πσ2) exp−(v − µi)2/2σ2
i .

3 Experimental Results

The set of MRI images used as the input to the algorithms was extracted from
the Harvard Atlas [8]. The atlas was reformatted into 8-bit 256×123 horizontal
slices. All voxels not classified as gray matter, white matter, or cerebrospinal
fluid were given the gray-level value 0. In order to demonstrate the method’s
robustness to intensity distortions, a second volume was created by applying to
the atlas a multiplicative low-frequency sinusoidal signal with an amplitude of
0.2.

(a) (b)

Fig. 2. (a) Horizontal slice 124 of the Harvard Atlas. (b) Horizontal slice 129 of the
noisy version of the atlas

-

?

1 255 IB

1

255

IA(a) (b)

Fig. 3. (a) Result of warping slice 124 (image A) to match slice 129 (image B). (b)
Inferred global probability map P (IB |IA)

The method was evaluated using slice 124 (image A) of the original atlas and
slice 129 of the noisy version of the atlas (image B)—see Fig. 2. The result of
deforming slice 124 of image A to match noisy slice 129 of image B is shown in
Fig. 3a, with the inferred global probability map P (IB |IA) depicted in Fig. 3b.
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The probabilities are displayed in gray scale so that the largest in each column
appears white. The grid dimensions are proportional to the contribution of each
intensity value in the image histograms. As can be seen, the deformed image is
similar to the target image B but correctly exhibits the distribution of intensity
values found in image A.

4 Conclusion

A method is presented for determining the intensity mapping between MRI im-
ages that may have been acquired using different sequences or scanners. The
mapping is estimated directly from the image data, explicitly models partial
volume voxels and spatially varying intensity degradations, and is computed
jointly with the unknown spatial transformation in an iterative matching al-
gorithm. The importance of the method is two-fold: it is a tool to model the
instruments used in the acquisition step so that more effective data processing
techniques can be developed. For the important problem of image matching,
the method makes possible a principled approach to likelihood modeling or the
construction of similarity metrics. A poor model of the intensity mapping for
the image pair to be registered may lead to false matches, regardless of the prior
constraints employed and will bias all subsequent morphological analyses.
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