
Complex Systems and Clouds

Complex Systems and Clouds
A Self-Organization and Self-Management Perspective

Dan C. Marinescu
Computer Science Department
University of Central Florida
Orlando, FL, USA

AMSTERDAM • BOSTON • HEIDELBERG • LONDON
NEW YORK • OXFORD • PARIS • SAN DIEGO

SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO
Morgan Kaufmann is an imprint of Elsevier

Morgan Kaufmann is an imprint of Elsevier
50 Hampshire Street, 5th Floor, Cambridge, MA 02139, United States

Copyright © 2017 Elsevier Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or
mechanical, including photocopying, recording, or any information storage and retrieval system,
without permission in writing from the publisher. Details on how to seek permission, further
information about the Publisher’s permissions policies and our arrangements with organizations such as
the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our website:
www.elsevier.com/permissions.

This book and the individual contributions contained in it are protected under copyright by the
Publisher (other than as may be noted herein).

Notices
Knowledge and best practice in this field are constantly changing. As new research and experience
broaden our understanding, changes in research methods, professional practices, or medical treatment
may become necessary.

Practitioners and researchers must always rely on their own experience and knowledge in evaluating
and using any information, methods, compounds, or experiments described herein. In using such
information or methods they should be mindful of their own safety and the safety of others, including
parties for whom they have a professional responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume
any liability for any injury and/or damage to persons or property as a matter of products liability,
negligence or otherwise, or from any use or operation of any methods, products, instructions, or ideas
contained in the material herein.

Library of Congress Cataloging-in-Publication Data
A catalog record for this book is available from the Library of Congress

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library

ISBN: 978-0-12-804041-6

For information on all Elsevier publications
visit our website at https://www.elsevier.com/

Publisher: Todd Green
Acquisition Editor: Brian Romer
Editorial Project Manager: Lindsay Lawrence
Production Project Manager: Priya Kumaraguruparan
Cover Designer: Matthew Limbert

Typeset by SPi Global, India

www.elsevier.com/permissions
https://www.elsevier.com/

To Vera Rae and Luke Bell.

PREFACE

In 2003, IBM researchers formulated the autonomic computing challenge.
A decade and more than 8,000 papers, 200 conferences, and 200 patents
later, a few small- or medium-scale systems were the signs of success of the
autonomic computing movement [137]. In the mean time we kept building
systems with increasingly larger numbers of components interacting with
each other in intricate ways.

The first cloud computing services were introduced a decade ago. In
2006, Amazon Web Services (AWS) started offering storage and computing
services, S3 and EC2. The number of Cloud Service Providers (CSPs) has
increased year after year, as larger numbers of individuals and large organi-
zations have enthusiastically joined the cloud computing user community. A
decade later, the most powerful processors with large cache and memory and
attached GPU co-processors, storage arrays, interconnected by a hierarchy
of networks populate the cloud computing infrastructure of many CSPs.

The complexity of computer clouds is undeniable and yet, their design
is based on traditional, mostly deterministic hierarchical management. The
time has come to ask if the elusive goal of self-organization and self-
management can be achieved for large-scale systems such as computer
clouds. The best place to start looking for an answer is to understand what
are the defining attributes of a complex system.

The first chapter of the book covers complex systems. After a brief
review of the evolution of thinking about systems consisting of an ensem-
ble of components, we analyze nondeterminism, nonlinearity, and phase
transitions in complex systems. A range of topics pertinent to complexity,
such as self-organization, self-organized criticality, power law distributions,
computational irreducibility, and quantitative characterization of complexity
are then covered. Cybernetics and the interdisciplinary nature of complexity
are the last topics of the chapter.

Nature is a good place to look for ideas regarding complex systems and
the second chapter is dedicated to nature-inspired algorithms and systems.
Disciplines such as evolutionary computation, neural computation, artificial

xi

xii Preface

immune systems, swarm intelligence, and Ant Colony Optimization (ACO)
draw from nature their inspiration for new problem-solving techniques. Cel-
lular automata, epidemic algorithms, genetic algorithms, ACO algorithms,
swarm intelligence, DNA computing, quantum information processing, and
membrane computing are then presented. A discussion of the scope and
the limitations of nature-inspired algorithms and of realistic expectations
from DNA computing and quantum information processing concludes
the chapter.

The third chapter is dedicated to managing the complexity of cyber-
physical systems. Most large-scale systems are cyber-physical systems
integrating computation, communication, sensing, and physical processes.
Cyber-physical systems are now ubiquitous and their undeniable complexity
is caused by a set of factors reviewed in the first sections of the chap-
ter, which also discusses how software has pushed the limits of system
composability. Challenges specific to large-scale cyber-physical systems,
autonomic computing, and scalable system organizations are the topics
of the next sections. The discussion of virtualization by aggregation and
coalition formation is followed by a survey of cooperative games for
coalition formation. An in-depth analysis of a self-organization protocol for
very large sensor networks concludes the chapter.

The fourth chapter covers computer clouds. Computer clouds have
altered our thinking about computing and we first provide a down-to-
earth view of the new paradigm and present the cloud delivery models.
The hierarchical organization of the cloud infrastructure, consisting of
multiple warehouse-scale computers is discussed next. Cloud elasticity,
the effects of over-provisioning on costs and energy consumption, and
existing Cloud Resource Management (CRM) policies and mechanisms
for implementing these policies are analyzed. Alternative CRMs based
on market mechanisms, such as auctions and server coalitions are then
introduced. Combinatorial auctions allow access to packages of resources
for applications with a complex workflow.

The last chapter analyzes cloud self-organization and Big Data applica-
tions in science and engineering. Computational science and engineering
applications exacerbate the shortcomings of existing CRM for Big Data
applications. Significant enhancements of cloud infrastructure have been
noticeable since 2010, when a comparison between the performance of
HPCC applications on supercomputers and AWS instances was reported.

Preface xiii

Nevertheless, the 2016 AWS does not provide the best environment for
data-intensive applications exhibiting fine grain parallelism. The relatively
high latency and low bandwidth of a cloud interconnect are partially
responsible for this state of affairs. The analysis of the tensor network
contraction, an application in the area of condensed matter physics, reveals
that a better CRM could alleviate some of performance problems due
to the architectural limitations. Simulation results show that the solution
proposed, a reservation system based on coalition formation and combi-
natorial auctions, can guarantee spatial and temporal locality thus, reduce
the communication overhead. The system is application-centric, resources
allocated match exactly the needs of an application, rather than providing a
limited menu of instances.

Time is the critical ingredient for self-organization and adaptation in
nature. It took millions of years for biological species to adapt to natural
conditions. It seems thus, hopeless to believe that a man-made system can
self-organize, manage, and repair itself. But time can be compressed, as the
rate of events that change the state in computer clouds and other large-scale
systems is extremely high. This means that sophisticated learning algorithms
could identify in days, weeks, or months patterns of interactions with the
environment and use this knowledge to adapt and optimize the performance
of the system. The research of Dan Marinescu is partially supported by
the NSF CCR grant 1525943 “Is the Simulation of Quantum Many-Body
Systems Feasible on the Cloud?”.

CHAPTER 11
Complex Systems

Informally, we say that a system or a phenomenon is complex if its behavior
cannot be easily described and understood [121]. Biological systems shaped
by evolution, physical phenomena such as turbulence, the mixture of
biology and social components involved in spreading of infectious diseases,
and man-made systems such as the Large Hadron Collider (LHC) exhibit
elements of complexity.

Complex systems are difficult to model, thus it is difficult to study them
and understand the laws governing their evolution. A complex system
is characterized by intricate interactions among its components and the
emergence of novel properties that cannot be inferred from the study of the
individual system components. The behavior of a complex system is subject
to statistical laws which affect the individual system components, as well as
the interactions among them.

We review philosophical concepts related to the nature and scope of knowl-
edge and the defining attributes of complexity, including nondeterminism,
self-similarity, emergence, nonlinearity, and phase transitions. We analyze
the interactions of a complex system with the environment. In this chapter,
we discuss fractal geometry, Power Law distributions, self-organized criti-
cality, and quantitative characterization of complexity. We conclude with a
discussion of the interdisciplinary nature of complexity studies.

1.1 THE THINKING ON COMPLEX SYSTEMS THROUGH
THE CENTURIES

Abstract questions about systems consisting of an ensemble of components
have preoccupied the minds of humans since antiquity. Plato, a student
of Socrates, and Aristotle’s mentor, laid the very foundations of Western
philosophy and science. He founded one of the earliest known schools in
Athens, the Academy. In The Republic, Plato introduces the concept of
“level of knowledge,” ranging from total ignorance to total knowledge. Plato
was influenced by Pythagoras in believing that abstract thinking represents
Complex Systems and Clouds. http://dx.doi.org/10.1016/B978-0-12-804041-6.00001-3
Copyright © 2017 Elsevier Inc. All rights reserved. 1

http://dx.doi.org/10.1016/B978-0-12-804041-6.00001-3

2 Complex Systems and Clouds

the basis for philosophical thinking and sound theses in science, as well as
morals. In A History of Western Philosophy, Bertrand Russel argues that
Pythagoras should be considered the most influential Western philosopher.

Aristotle, in Metaphysics, Book H states “. . . the totality is not, as it were,
a mere heap, but the whole is something besides the parts . . . ,” i.e., the whole
is other than the sum of the parts. Zino of Eleea, a Greek philosopher living
in the 5th century BC, is famous for his paradoxes. One of his paradoxes
was that a distance of any length could be divided into an infinite number
of shorter segments, therefore covering the distance required traversing an
infinite number of shorter segments taking an infinite amount of time; we
obviously do cross distances in finite time! Aristotle’s answer was that a
length was first and foremost a whole.

The philosophy of science has always been that the world can be
understood by discovering the properties of its simple building blocks.
The traditional scientific method, based on analysis, isolation, and the
gathering of complete information about a phenomenon, is a reflection of the
reductionist principle. The Greek philosopher Leucippus of Miletus thought
the material world is composed of tiny indivisible particles called atoms.1
Democritus (c.460–371 BC), a disciple of Leucippus, was inspired by his
mentor’s book, The Greater World System and he refined and extended the
concept.

The atomic theory of Democritus states that matter is composed of atoms
separated by empty space through which the atoms move and that atoms are
solid, homogeneous, indivisible, and unchangeable. Some 2500 years later,
we are still struggling to better understand the properties of the visible
physical matter which accounts for only 4% of the universe. We know even
less about the dark matter and the dark energy, which represent 23% and
73%, respectively, of the universe.

Classical mechanics, formulated by Newton and further developed by
Laplace and others, was accepted as the foundation for all scientific
disciplines until the beginning of the 20th century. Epistemology is a
branch of philosophy concerned with the nature and scope of knowledge.
Newtonian epistemology is based on the principle of analysis formulated
by the French mathematician and philosopher Descartes, who laid the

1In Greek the prefix “a” means “not” and the word “tomos” means cut.

Complex Systems 3

foundation of 17th century rationalism. According to this principle, also
called reductionism, to understand a complex phenomenon one has to
identify its components and understand their properties and if these compo-
nents are also complex, the reduction process should be applied recursively
until reaching the simplest, or atomic, components with well understood
properties.

Newtonian epistemology is based on a reflection-correspondence view
of knowledge and on sound philosophical monisms including materialism,
reductionism, and determinism. Newtonian epistemology had a pervasive
influence on scientific thinking for several centuries, not only because its
basic paradigm is compelling by its simplicity, coherence, and apparent
completeness, but also due to the fact that it is largely in agreement with
intuition and common sense.

More precise reflections of the reality of newer theories, such as special
and general relativity and quantum mechanics lack this simplicity and
intuitive appeal and are sometimes questioned. For example, the EPR para-
dox is a thought experiment in quantum mechanics proposed by Einstein,
Podolsky, and Rosen in 1935. This thought experiment claims to show
that the wave function does not provide a complete description of physical
reality, thus, the Copenhagen interpretation2 is unsatisfactory. John Stewart
Bell contributed important ideas to the philosophy of science, showing
that local hidden variables cannot reproduce the quantum measurement
correlations that quantum mechanics predicts, and that carrying forward
EPR’s analysis leads to the famous Bell’s theorem and Bell’s inequality [24].

Newtonian epistemology cannot accept creation and novelty. During
the first decades of the 20th century, philosophers such as Bergson and
Whitehead realized that the whole has properties that cannot be inferred
from the properties of the parts. The term “holism” is defined by Jan Smuts
as “the tendency in nature to form wholes that are greater than the sum of
the parts through creative evolution” [213].

Causality is a fundamental principle embraced by scientists and philoso-
phers alike in their quest to understand the world. The belief that every
event has a cause, the determinism, is also critical to the process of thought
and gathering knowledge. Downward causation is the belief that even if

2Copenhagen interpretation is an explanation of quantum mechanics principles formulated
in the mid-1920s by Niels Bohr and Werner Heisenberg.

4 Complex Systems and Clouds

we have complete information about the parts of a system, as well as
about the environment, the “ensemble” can enforce constraints on the parts
and have an unpredictable evolution. Downward causation is related to
emergence and self-organization.

1.2 THE MANY FACETS OF COMPLEXITY

There is no universally accepted definition of complexity; typically, the
concept is conveyed by particular examples. Systems with a very large
number of components, such as the human brain with more than 100 billion
neurons, are examples of complex systems. The space shuttle,3 a modern
fighter jet, a multicore processor with several billion transistors,4 or the
Internet with more than 1 billion hosts as of January 2014, are examples
of complex man-made systems. Arguably, one of the most complex system,
to date is LHC, the particle accelerator, together with its seven particle
detectors at CERN in Geneva. Data recorded by the LHC detectors fill
around 100,000 dual-layer DVDs each year and led to the discovery of the
Higgs boson, and provided new insights into the structure of the matter.
Computer clouds are also complex systems consisting of millions of servers.
Clouds deliver the computing cycles and the storage, allowing analysis of
large data sets such as those produced by LHC.

Percolation, the movement and filtering of fluids through porous mate-
rials, and turbulence, the violent flow of a fluid, are examples of complex
phenomena occurring in nature. Some of these phenomena, such as turbu-
lence, are not fully understood in spite of significant progress in the field
of fluid dynamics and their importance in the design of systems critical for
modern society. It is reported that on his deathbed, Werner Heisenberg, one
of the pioneers of quantum mechanics and the author of the Uncertainty
Principle, declared that he had two questions for God: “Why relativity and
why turbulence?” Heisenberg said “I really think that He may have an
answer to the first question” [92].

3“The main elements of the space shuttle . . . are assembled from more than 2.5 million parts,
230 miles of wire, 1040 valves and 1440 circuit breakers.” (Columbia Accident Investigation
Board, Report, vol. I, pp. 14, August 2003, at www.nasa.gov/columbia/caib/html/report.html.
4As of 2014 Intel’s 15-core Xeon Ivy Bridge had the highest transistor count in a
commercially available CPU, more than 4.3×109 transistors. A 5.4×109 transistor chip built
with 28 nm technology has one of the highest transistor counts of any chip ever produced.

www.nasa.gov/columbia/caib/html/report.html

Complex Systems 5

A side-by-side comparison of generic attributes of simple and complex
systems shows that complex systems are nonlinear, operate far from
equilibrium, are intractable at the component level, exhibit different patterns
of behavior at different scales, require a long history to draw conclusion
about their properties, exhibit complex forms of emergence, are affected by
phase transitions, and scale well. In contrast, simple systems are linear,
operate close to equilibrium, are tractable at a component level, exhibit
similar patterns of behavior at different levels, relevant properties can be
inferred based on a short history, exhibit simple forms of emergence, are not
affected by phase transitions, and do not scale well.

Natural sciences, including chemistry, molecular biology, neuroscience,
and physics, study different aspects of complexity and complex phenomena.
For example, self-organized criticality discussed in Section 1.8 was an
important discovery in statistical physics in the second half of the 20th
century [22]. Bak et al. analyzed mechanisms supporting natural complexity,
and the spontaneous emergence of complexity from simple local interac-
tions. They concluded that [21] “the complexity observed in nature does not
depend on fine details of the system, several model parameters could have
ample variations without affecting the emergence of critical behavior.”

Complexity plays a role whenever we model intricate processes in fields
such as economics, meteorology, psychology, earthquake prediction, or
sociology. Friedrick Hayek, a philosopher and Nobel prize economist, and
Karl Popper, both associated with the Austrian school of economics, made
significant contributions to the understanding of complexity in economics.
More recently, Paul Krugman, the 2008 winner of the Nobel Prize in
Economic Sciences for his contributions to New Trade Theory and New
Economic Geography, analyzed the application of self-organization in
economy [142].

Ludwig von Bertalanffy, who initiated the study of open systems, stresses
that: “It is necessary to study not only parts and processes in isolation, but
also to solve the decisive problems found in organization and order unifying
them, resulting from dynamic interaction of parts, and making the behavior
of the parts different when studied in isolation or within the whole” [36]. The
patterns of the interactions between the components of a complex system
can be stable over longer periods of time or short-lived [49].

The concept of emergence describes phenomena characteristic of com-
plex systems and is related to self-organization [104]. Emergence is the

6 Complex Systems and Clouds

formation of larger entities, patterns, and regularities through interactions
among smaller and/or simpler entities that themselves do not exhibit such
properties. Emergence has been discussed since the time of Aristotle. Aldous
Huxley observed [123]: “now and again there is a sudden rapid passage to
a totally new and more comprehensive type of order or organization, with
quite new emergent properties, and involving quite new methods of further
evolution.”

Emergent behavior is increasingly harder to predict as the number of sys-
tem components and the complexity of interactions among them increase.
Emergence is often associated with positive feedback. Positive feedback
amplifies changes in the behavior of individual components and favors the
formation of new patterns of behavior. On the other hand, negative feedback
tends to stabilize the system behavior and makes emergence less likely.

In 1948, Warren Weaver observed that there is a conceptual distinction
between organized and disorganized complexity [246]. Correlated relations
between the parts and emergence, the fact that the entire system can manifest
properties that cannot be inferred from the study of the individual parts,
are at the core of organized complexity. On the other hand, disorganized
complexity is characteristic of systems and phenomena when the number
of variables is very large and the variables have an erratic or unknown
behavior. In spite of the behavior of the individual variables, the system
as a whole possesses certain orderly and analyzable average properties.

The properties of an entire system characterized by disorganized com-
plexity can be understood by using probability and statistical methods. The
study of disorganized complexity was triggered at the beginning of the
20th century by life sciences, including biology, and now has applications
in many fields. For example, although a life insurance company does not
have any knowledge of how long a particular individual will live, it has
dependable knowledge of the average lifetime of individuals.

Complexity can be measured by the total number of properties of an
object or phenomenon detected by an observer. Complexity can also be
associated with the probability of a state vector of a physical system.
In network theory, complexity reflects the connectivity among the nodes.
In software engineering, complexity measures the interactions between
system components. Several measures of system complexity are discussed
in [173].

Complex Systems 7

In theoretical computer science, computational problems are classified
according to their inherent difficulty reflected by the resources necessary to
solve them. The time complexity of a problem equals the number of steps
used by the most efficient algorithm to solve an instance of the problem,
as a function of the size of the input, and the space complexity measures
the amount of the memory used by the algorithm. The study of complexity
is not limited to computer science and fields such as artificial intelligence,
artificial life, or evolutionary computing.5

Conceptually, there is no limit to the number of cores, processors,
clusters, and collections of clusters linked together by a hierarchy of
networks that can be operating in concert under the control of sophisticated
software. Such complex systems are now an integral part of the critical
infrastructure of the society and require a different thinking about system
design and implementation.

1.3 LAWS OF NATURE, NONDETERMINISM,
AND COMPLEX SYSTEMS

The basic laws of physics are expressed by simple mathematical formulas.
For example, Newton’s Second Law states that a = f

m , the acceleration
a of an object as produced by a net force f is directly proportional to the
magnitude of the force, and inversely proportional to the mass m of the
object. The ideal gas law, the equation of state of a hypothetical ideal gas is
expressed as pV = nRT where p is the pressure, V is the volume, n is the
amount (in moles), R is the ideal gas constant, and T is the temperature of the
gas; this law is a good approximation of the behavior of many gases under
many conditions. The thermodynamic entropy, S is given by the equation
S = kBΩ with kB the Boltzman’s constant and Ω the number of micro-states
of the system.

Some of the systems described by the laws of physics can be con-
sidered “ordered” assemblies of large number of atoms and molecules,
while others are random collections of atoms; crystals are an example
of ordered assemblies, while gasses form random, disorganized systems.
The ideal gas law relates macroscopic quantities, such as temperature and

5Evolutionary computing is a subfield of computational intelligence using algorithms
inspired by Darwin’s theory of evolution to solve global optimization problems.

8 Complex Systems and Clouds

pressure. The temperature reflects the kinetic energy of the ensemble of gas
molecules but gives no indication of the kinetic energy, or the movement
of individual molecules. Explaining in detail natural phenomena based on
the fundamental laws of physics is a hopeless endeavor due to the large
variability of the systems and the phenomena in nature.

Complex systems are characterized by a large variability and this makes
it impossible to condense the detailed observations of individual compo-
nents into crisply formulated laws. The theory explaining the behavior of
complex systems must be statistical, ergo, unable to describe the behavior
of individual system components.

Abstraction is a technique for managing system complexity; it establishes
the level of detail we want to represent in a model of the system. It is very
hard to construct a model of a complex system, making the study of such
systems even more challenging. It is even harder to construct a tractable
model of a complex system, the state space is so large that traditional
methods of investigation, whether analytical or numerical simulation, are
impractical.

It has been observed that the existence of stable intermediate forms in
chemistry and biology has a powerful effect on the evolution of complex
forms. Herbert Simon made an interesting observation relating problem-
solving by humans to intermediary forms in biological evolution: “cues
signaling progress play the same role in the problem-solving process that
stable intermediate forms play in the biological evolutionary process” [210].
As a practical example on how cues reduce the complexity of problem-
solving, consider the problem of opening a safe with 10 dials, each one
with 100 settings. A trial-and-error strategy has to examine 10100 possible
combinations. If, on the other hand, a click is heard once a dial is set and
the corresponding setting is identified, the number of trials is dramatically
reduced to an average of 10 × 50 = 500.

It has long been accepted that a legitimate way to relate empirical obser-
vations with theory is by predicting the statistics of the phenomena, rather
than determining the specific outcome of an experiment. As Democritus
observed more than 2000 years ago, “Everything existing in the universe
is the fruit of chance and necessity.”

Nondeterminism is critical for understanding the behavior of complex
systems. Nondeterminism is at the heart of physical reality models. In
quantum mechanics the Heisenberg inequality states that we cannot possibly

Complex Systems 9

simultaneously determine the momentum, as well as the position of a
quantum particle with arbitrarily high precision. In computer science, a
nondeterministic algorithm is an algorithm that, as opposed to a determin-
istic algorithm, even for the same input, can exhibit different behaviors on
different runs.

Complexity science is an interdisciplinary discipline devoted to the
study of complex systems. The variability of complex organization
precludes the possibility that any large number of detailed observations
of nature can be condensed into simple laws similar to the laws
of physics. It is thus understandable that complexity science cannot
explain any detailed fact in nature, but the study of complex systems
has stimulated the development of new scientific theories. The study
of complex biological, chemical, or physical phenomena led to the
development of new disciplines, such as the theory of evolution, bifurcation,
and catastrophe theory,6 the theory of cellular automata, and fractal
geometry.

Important ideas regarding evolution and the selection of biological
systems were formulated in the middle of the 19th century by Charles
Darwin [67]. More recently, Dawkins [68] and Gould made important
contributions to the theory of evolution. Gould and Eldredge [97] formu-
lated the thesis that evolution is a chaotic process with long periods of
equilibrium, followed by bursts of dramatic changes. The study of chemical
systems by Prigogine and his group led to the concept of dissipative
structures encountered in systems far from thermodynamical equilibrium.
Such systems tend to self-organize by exporting entropy to the environment
[177, 189].

Modern studies of complex systems are based on nonlinear dynamics,
statistical physics, and network theory. There are countless applications of
nonlinear dynamics in science and engineering of deterministic systems: in
physics, celestial mechanics, geophysics, physiology, neurophysiology, and
many other areas. Many systems in nature are nonlinear and chaos theory
studies nonlinear systems highly sensitive to initial conditions. In a chaotic
system, even a minute change in the initial conditions can have dramatic
effects over time [63, 65]. Chaos theory has applications in meteorology, but
also in sociology, physics, engineering, economics, biology, and philosophy.

6The French mathematician René Thom in the 1960s, and Christopher Zeeman in the 1970s,
developed the catastrophe theory [221, 241].

10 Complex Systems and Clouds

For example, the weather exhibits chaotic behavior. Catastrophe theory
considers cases where an extended stable equilibrium can be identified with
the minimum of a smooth, well-defined potential function. It analyzes points
where the first, as well as one or more higher derivatives of the potential
function, are zero.

Statistical physics introduced new ideas about prediction, formulated
solutions to multibody problems in terms of ensembles, and promoted the
study of discrete models, such as cellular automata. The study of critical
phenomena is based on the scaling hypothesis and scaling laws relating the
critical-points exponents.7 The universality of critical behavior expresses
the fact that exponents and scaling functions are the same in the vicinity of
the critical point for systems in the same universality class. It follows that
one may choose to study the most tractable system in a universality class
and expect the results to hold for the other systems in the same class [12].

Network theory plays an important role in understanding complex
systems. The study of networks was initiated by the famous mathematician
Leonhard Euler. His famous Königsberg bridge puzzle [79] was formulated
as: “In the town of Königsberg in Prussia there is an island, called Kneiphoff,
with the two branches of the river Pregel flowing around it. There are seven
bridges, a, b, c, d, e, f, and g, crossing the two branches. The question is
whether a person can plan a walk in such a way that he will cross each
of these bridges once, but not more than once. [. . .] On the basis of the
above I formulated the following very general problem for myself: Given
any configuration of the river and the branches into which it may divide, as
well as any number of bridges, to determine whether or not it is possible to
cross each bridge exactly once.”

Euler distinguished odd from even nodes based on the number of links
directly connected to the node and showed that: (a) the sum of degrees of
the nodes of a graph is even; (b) every graph must have an even number of
odd nodes; (c) if the number of odd nodes is greater than 2, no Euler walk
exists; (d) if there are no odd nodes, Euler walks can start at an arbitrary
node. He concluded that all four nodes in the Königsberg bridge are odd,
thus there was no solution to his puzzle. The contributions to graph theory
by Paul Erdös [78], as well as scale-free networks [29, 30] and Small World
networks [244], are discussed in Section 3.7.

7Critical exponents describe the behavior of physical systems near continuous phase
transitions. It is generally believed that critical exponents do not depend on the details of
the physical system, and therefore are universal.

Complex Systems 11

1.4 SELF-SIMILARITY: FRACTAL GEOMETRY

The laws of physics describing ordered systems such as solids, where atoms
are organized in a lattice, are based on translational symmetry. Translational
symmetry is the invariance of the equations describing the system under
either continuous or discrete translations. The distance between the atoms in
an atomic lattice or the mean free path for gases represent a characteristic
length scale. The assumption of a characteristic length scale is a basic
concept in physics, chemistry, biology, and other disciplines.

By contrast, complex systems are characterized by a new type of invari-
ance, the self-invariance, also called self-similarity [106]. Self-similarity
means that an object is either exactly, or approximately similar to a part
of itself; the object looks about the same at any scale. Fractals are infinitely
complex patterns that are self-similar across different scales. Fractals are
recursive, the process leading to their construction gets repeated indefinitely.

The idea of fractals can be traced to the study of continuous, but not
differentiable functions, and the seminal work of famous 19th century
mathematicians Bernard Bolzano, Bernhard Riemann, and Karl Weierstrass.
Fractal geometry was developed by Benoit Mandelbrot [154] who coined
the term “fractal” from the Latin word “fractus” meaning “broken” or
“fractured.” According to Mandelbrot, “Clouds are not spheres, mountains
are not cones, coastlines are not circles, and bark is not smooth, nor does
lightning travel in a straight line.” Fractals describe the objects in nature,
such as clouds, mountains, coastlines, or trees, better than the Euclidian
geometry (see Fig. 1.1).

Fig. 1.1 Fractals describe, better than Euclidian geometry shapes, encountered in nature
such as clouds, mountains, and coastlines.

12 Complex Systems and Clouds

The dimension of a fractal, M(bL), is a real number b showing how
detail in a fractal pattern changes with the scale at which it is measured.
For example, given a line segment of size L when we divide it in two
M(1

2L) = 1
2M(L); for an L × L square M(1

2L) = 1
22 M(L); for an L × L × L

cube M(1
2L) = 1

23 M(L). The fractal dimension d is given by Eq. (1.1)

M(b × L) = bdM(L). (1.1)

An example of fractals, the Sierpinski gasket, is generated using the
following rules: (1) start with an equilateral triangle and divide it in four
equal triangles; (2) leave the center triangle in place; (3) repeatedly apply
rules (1) and (2) to every other triangle. Self-similarity is an isotropic
property, the change of scale is the same in every direction in space as we can
see in Fig. 1.2. The dimension of the Sierpinski gasket is given by Eq. (1.2)

M
(

1
2

L
)

= 1
3

M(L) and M
(

1
2

L
)

= 1
2

d
M(L) ⇒ d = log 3

log 2
= 1.585.

(1.2)

An attractor is a set of numerical values toward which a dynamic system
tends to evolve, for a wide variety of initial system conditions. Attractors
are critical elements in the theory of self-organization of Ashby [17]. There
is a close relationship between fractals and chaotic systems which exhibit
fractal attractors.

Fig. 1.2 Sierpinski gasket. Self-similarity is an isotropic property, the change of scale is the
same in every direction in space.

Complex Systems 13

Fractals have applications in medicine to model heartbeat dynamics or
Alzheimer’s plaque, in economics to model stock market dynamics, in
biology to model DNA molecules, in technology to model the Internet,
and for image compression. The recursive formalism for fractal description
facilitates numerical simulation.

1.5 POWER LAW DISTRIBUTIONS: ZIPF’S LAW

There are many instances of phenomena where large events are rare, but
small ones are quite common and there is no typical size of the events.
For example, according to the Gutenberg-Richter Law, there are few large
earthquakes, but many small ones. For 10 earthquakes of magnitude 6 on
the Richter scale there are 100 of magnitude 5, and some 1000 of magnitude
4. We cannot talk about a typical earthquake magnitude! The population
rankings of cities in various countries follow the same rules, there are a
few with a large population and many small ones. Talking about a typical
population size of a city makes no sense, either.

Mandelbrot counted the number of months with a given cotton price
variation and observed that the price variations are scale-free, meaning there
is no typical size of the variations. When looking at the coastal map of
Norway, one ponders “how long is a typical fjord?” There is no answer
to this question; the map shows a hierarchical structure of fjords, with fjords
within fjords, and fjords within fjords within fjords. The phenomena of fjord
creation are scale-free.

In 1949, George Kingsley Zipf, a professor of statistics at Harvard
University, observed that the log-log plot of rank versus frequency of many
phenomena is a straight line with slope near unity and formulated the so-
called Zipf’s Law [242]. Zipf counted the frequency of words in James
Joyce’s Ulysses and in a collection of newspapers. He plotted the frequency
of the English words versus their rank and noticed that the frequency of
occurrence of the words “the,” “I,” and “say” ranked 1, 10, and 100 was
9%, 1%, and 0.1%, respectively. Zipf’s Law predicts that given N elements,
the frequency of elements of rank k, f(k; γ , N), is

f(k; γ , N) = k−γ∑N
i=1 i−γ

. (1.3)

14 Complex Systems and Clouds

Zipf’s Law holds if the number of occurrences of each element are
independent and identically distributed random variables with Power Law
distribution p(f) = αf(−1− 1

γ
). The simplest case of the Zipf’s Law states that

the size of the kth largest occurrence of the event is inversely proportional
to its rank

f(k) ≈ k−γ , with γ ≈ 1. (1.4)

It follows immediately that

log f(k) ≈ −γ log k, (1.5)

thus the exponent γ is the slope of the straight line (Fig. 1.3A).

(A) (B)

Fig. 1.3 (A) Zipf’s Law: log-log plot of rank versus frequency; the size versus the number
of avalanches in the sandpile model [22], discussed in Section 1.8. (B) Example of Pareto
chart showing the causes of overheating in an internal combustion engine. https://upload.
wikimedia.org/wikipedia/commons/6/6a/Pareto_analysis.svg.

Instead of asking what the kth largest event is, the Italian economist
Vilfredo Pareto8 asked how many events are greater than x. Pareto’s law
is formulated in terms of the cumulative distribution function (CDF), i.e.,
the number of events larger than x is an inverse power of x:

P[X > x] ≈ x−k. (1.6)

For example, in terms of income distribution, Pareto’s Law says that there
are a few multibillionaires, but most people have a modest income.

A Power Law distribution gives the number of events of magnitude
exactly x rather than the number of events with a magnitude greater than x.

8In 1896, Pareto published the paper “Cours d’economie politique” in connection with
population and wealth. He noticed that 80% of Italy’s land was owned by 20% of the
population.

https://upload.wikimedia.org/wikipedia/commons/6/6a/Pareto_analysis.svg
https://upload.wikimedia.org/wikipedia/commons/6/6a/Pareto_analysis.svg

Complex Systems 15

The Power Law distribution is the probability distribution function (PDF)
associated with the CDF given by Pareto’s Law

P[X = x] ≈ x−(k+1) = x−a, (1.7)

where a = 1 + k and k is the Pareto distribution shape parameter. A
Pareto chart contains both bars and a line graph; the individual values
are represented in descending order by bars, and the cumulative total is
represented by the line (Fig. 1.3B).

The authors of [9] report on the diameter of the World Wide Web. They
used the data collected by a robot which constructed a database of URLs
and determined the probabilities Pout(k) and Pin(k) that a document has k
outgoing and incoming links, respectively. Their analysis shows that both
probabilities follow a Power Law over several orders of magnitude. The
link distribution is different from the Poisson distribution predicted by the
classical theory of random graphs and by the bounded distribution found
in random network models. This distribution shows that the probability of
finding documents with a large number of links is significant. The network
connectivity is dominated by highly-connected web pages.

1.6 EMERGENCE, NONLINEARITY, AND PHASE TRANSITIONS

Emergence is generally understood as a property of a system not predictable
from the properties of individual system components. Emergent structures
occur in nature, e.g., the shapes of hurricanes are emergent structures. The
growth of crystals can lead to emerging structures, or the random motion of
water molecules can give rise to complex orderly structures.

The number of interactions between the components of a system in-
creases exponentially with the number of system components, and implicitly
creates the conditions for subtle types of behavior, including emergence.
Emergence is often a product of particular patterns of interaction, e.g.,
positive feedback allows local variations to grow into global patterns.
Emergence may be related to dual-phase evolutions; during the first phase,
patterns form or grow, and during the second, these patterns are either
refined, or removed.

Goldstein defined emergence as: “the arising of novel and coherent
structures, patterns, and properties during the process of self-organization in
complex systems.” He identified several characteristics of emergence [96]:

16 Complex Systems and Clouds

• Radical novelty—emergent features are not predictable from lower
components.

• Coherence—emergent properties maintain a sense of identity and coher-
ence over time.

• Global level—emergent phenomena occur at a global level.
• Dynamical evolution—emergent phenomena arise as a complex system

evolves over time. Emergence is associated with new attractors in
dynamical systems.

• Ostensive—the nature of complex systems implies that emergent phe-
nomena will be different to some degree from previous ones.

There is a distinction between weak emergence and strong emergence.
The former describes new properties due to interactions at an elemental
level. Such properties cannot be determined by an a priori analysis, but
by observing or simulating the system. The latter describes properties
irreducible to the system’s constituent parts, properties representing the
direct causal action of the high-level system upon its components. Though
the very existence of strong emergence seems to invoke some form of
magic, a class of physical systems that exhibits noncomputable macroscopic
properties has been reported [101].

Traditional physics has studied order and complete randomness, but
emergent structures appear somewhere in the middle, and have eluded
traditional physics. Crutchfield attributes this to the fact that [64] “there
are not physical principles that define and dictate how to measure natural
structure.” Holland distinguishes between authentic emergent phenomena
and “serendipitous novelty,” such as the play of light on leaves in a
breeze [119]. Interestingly enough, emergent behavior is used to explore
the origins of novelty, creativity, and authorship in literature, art, history,
and linguistics.

The argument that emergent behavior decreases the entropy of the system
and violates the second law of thermodynamics, ignores the fact that open
systems extract information and order out of the environment.

Linear systems satisfy the superposition principle. This principle states
that the response of a linear system caused by two or more stimuli is the
sum of the responses caused by each stimulus acting alone. If input i1
produces response r1 and input i2 produces response r2, then input i1 + i2
should produce response r1 + r2. Many physical systems can be modeled as
linear systems. In mathematics, a linear function f(x) satisfies additivity or
superposition and homogeneity expressed as:

Complex Systems 17

f(x + y) = f(x) + f(y) and f(αx) = αf(x). (1.8)

Nonlinearity characterizes phenomena when there is a disproportionate
relationship between cause and effect. A nonlinear system does not satisfy
the superposition principle.

Nonlinear phenomena are harder to study and the nonlinear equations
describing such phenomena are more difficult to solve. For example, the
Navier-Stokes equations describe the motion of viscous fluid and are used
to model the weather, ocean currents, water flow in a pipe, and air flow
around an airplane wing. The Boltzmann transport equation describes the
behavior of a thermodynamic system not in a thermodynamic equilibrium,
e.g., when the random transport of particles of a fluid with a temperature
gradient causes heat to flow from hotter regions to colder ones. More
generally, the equation describes the change of a macroscopic quantity in
a thermodynamic system, such as energy, charge, or particle number.

General relativity expressed by the Einstein field equations describes the
curvature of spacetime directly related to the energy and the momentum
of matter and radiation. General relativity presents a unified description
of gravity as a geometric property of space and time, and is the simplest
theory of gravitation consistent with all experimental data. The Einstein field
equations are nonlinear and very difficult to solve.

There are many other types of nonlinear behavior, including chaos
which describes systems with unpredictable behavior or systems oscillating
between multiple stable states with unstable points between the stable
points, or the so-called multistability. There are also solitons caused by
cancellation of nonlinear and dispersive effects in the medium.

In complex systems, the relation between cause and effect is often
unpredictable; small causes could have large effects, and large causes could
have small effects. This phenomenon is caused by feedback, the results of
an action or transformation are fed back and affect the system’s behavior.
Negative feedback negatively affects the causes that trigger the action, while
positive feedback reinforces these causes.

A fair number of nested or otherwise related positive and negative
feedback loops affect the state of a complex system. For example, in the
case of the stock market, the number of stocks bought and sold depends
upon the price and the price depends on how many stocks are bought and
sold. An increase in price has a negative effect on the demand thus, the
price will eventually fall, but, at the same time, it stimulates the appetite for

18 Complex Systems and Clouds

speculation, making the stocks more attractive to the buyers. Eventually, the
Nash equilibrium is reached.

Avalanche phenomena could occur in a packet-switched9 networks
without congestion control mechanisms. When the network load increases,
routers with limited buffer space start dropping packets, the senders do not
receive acknowledgments, time out, and resend packets, and eventually the
network ceases to transport packets. Similar phenomena could occur in com-
puter systems when processor scheduling algorithms fail to detect thrashing
and take adequate measures. For example, two memory-intensive processes
could generate a large rate of page faults and cause frequent context switch-
ing, preventing competing processes or threads from making progress.

Minor faults could trigger an unforeseen and undesirable chain of events
and cause a complex system, such as the cloud infrastructure of a Cloud
Service Provider (CSP) to collapse. Such a sequence of events led to the
failure of Amazon Web Services (AWS) on June 30, 2012 at 11:21 PM,
when a severe thunderstorm caused the North Virginia site to go down.
Several companies, including Netflix, Instagram, and Pinterest, as well as a
large number of individual AWS users, were affected by this outage.

Avalanche phenomena pose a serious threat to large concentrations
of resources contributing to the critical infrastructure of the society. The
financial crisis of 2007–2008 threatened the collapse of large financial
institutions. The “too big to fail” theory asserting that the failure of large
financial institutions would be catastrophic was then used to justify the
intervention of the government. Mechanisms for early detection of such
phenomena should be included in the initial design of such systems to
ensure graceful degradation, rather than total collapse.

The concept of phase transition comes from the field of thermodynamics
and describes the transformation, often discontinuous, of a system from
one phase/state to another, as a result of an often relatively small change
in the environment. Examples of phase transitions in physical systems
are: freezing, transition from liquid to solid and its reverse, melting;
deposition, transition from gas to solid and its reverse, sublimation; and
ionization, transition from gas to plasma and its reverse, recombination.

Phase transitions often involve a symmetry breaking process. For
example, cooling of a fluid into a crystalline solid breaks continuous

9A packet-switched network carries data as suitably sized blocks called packets transmitted
through via a shared medium.

Complex Systems 19

translation symmetry. Each point in the fluid has the same properties,
but each point in a crystal does not have the same properties. In
thermodynamics, a critical state is one in which phase boundaries vanish.
For example, the liquid-vapor critical point designates conditions when a
liquid and its vapor coexist.

Two types of phase transitions exist. During a first-order phase tran-
sition, a system either absorbs or releases a fixed amount of energy per
volume, while the temperature of the system remains constant as heat is
added; in this “mixed-phase regime,” some parts of the system complete the
transition and others do not. Continuous phase transitions are characterized
by a divergent susceptibility, an infinite correlation length, and a Power-Law
decay of correlations near criticality.

Phase transitions have been observed in ad hoc wireless networks. The
authors of [141] show that there exists a critical level of radio transmission
power for all nodes. Above this level, the multihop network formed by
n nodes randomly located in an area, has a very high probability to be
connected. Below the critical level, the probability that the network is
connected is nearly zero. The most efficient operating point for the system
is just to the right of this transition point.

1.7 OPEN SYSTEMS AND THE ENVIRONMENT

An isolated physical system does not exchange matter, energy, or informa-
tion with its environment; thus, an isolated system has a limited supply of
energy. A closed physical system exchanges energy, but not matter with the
environment.

In contrast, an open system interacts with its environment transferring,
matter, energy, and/or information through the boundary separating it from
its environment. An open system is receptive to new information. The theory
of open systems was formulated in the mid-1950s by the biologist Ludwig
von Bertalanffy [36].

Living systems are open to exchange matter, energy, and information,
while in thermodynamically closed systems the entropy only increases.
Complex systems interact with their environment, therefore, they are open
systems. For example, living systems have to exchange matter and energy
with the environment in order to survive.

20 Complex Systems and Clouds

Open systems are analyzed in [132]. The author stresses that open
systems evolve as cycles of events and have several defining properties:

• they import energy from the environment;
• they transform the resources available to them;
• they export some resources to the environment;
• they generate negative entropy;
• they have a negative feedback loop to maintain a steady-state;
• they dynamically achieve homeostasis;
• they strive to achieve differentiation and specialization;
• they include mechanisms for integration and coordination; and
• they enjoy equifinality.

Homeostasis describes the successful survival of an organism, and
equifinality means that a given end state can be reached by many potential
means [36].

Open systems are classified in several categories in the order of their
complexity [40]:

1. systems comprising static structures, e.g., crystals;
2. simple dynamic systems with predetermined motions, e.g., clocks or the

solar system;
3. systems capable of self-regulation with an externally prescribed target,

the cybernetic systems, e.g., a thermostat;
4. systems capable of self-maintenance through exchange of resources with

the environment, e.g., a cell;
5. blueprint-growth systems, e.g., systems reproducing through seeds or

eggs;
6. systems with a detailed awareness of their environment, e.g., animals;
7. self-consciousness systems, e.g., humans;
8. social systems groups sharing a common order and culture; and
9. transcendental systems—“absolutes and inescapable unknowables.”

The concept of open systems has many applications, not only in natural
sciences, but also in social sciences and economics. In computing, an open
system supports a combination of interoperability, portability, and open
software standards. The idea of open computer systems, initially referred
to systems based on Unix, in contrast to the proprietary systems of vendors
such as IBM, HP, or Microsoft.

Complex Systems 21

1.8 SELF-ORGANIZATION AND SELF-ORGANIZED CRITICALITY

Self-organization is the spontaneous emergence of global coherence out
of local interactions. The behavior of many systems seems chaotic and
unpredictable, but a closer analysis discovers self-organization. Positive
feedback sometimes amplifies random fluctuations and generates different
forms of self-organization in physical, chemical, biological, robotic, social,
and cognitive systems. This point of view reflects the principle of “order
from noise,” formulated in 1960 by Heinz von Foerster [229].

Self-organization could open a new era in the design and implemen-
tation of large-scale computing systems and networks [166, 178]. Self-
organization is prevalent in nature [199], for example, molecular self-
assembly, self-assembly of monolayers, and the formation of liquid and
colloidal crystals and many other examples in chemistry. Spontaneous
folding of proteins and other bio-macromolecules, the formation of lipid
bilayer membranes, thermal convection of fluids, chemical oscillation,
and crystallization are manifestations of self-organization in nature. The
flocking behavior of different species, the creation of structures by social
animals, and animal swarming are manifestation of self-organization of
biological systems. Ecosystems are examples of systems where individuals
have competing interests and conflicts are inherent, but still some form of
equilibrium is reached.

An interesting question addressed by the 1977 Nobel laureate in Chem-
istry, Ilya Prigogine, is how self-organization can be reconciled with the
second law of thermodynamics, which states that the entropy of a system can
never decrease. Prigogine studied dissipative structures such as the Benard
cells which exhibit dynamic self-organization and are examples of systems
far-from-equilibrium. Benard cells are ordered hexagonal convection cells,
or atomic-molecular structures that spontaneously form in viscous mediums,
such as silicon oil or whale oil, when placed on a hot plate and heated
past a bifurcation point into the turbulent flow regime. Such open systems
continuously generate entropy and export it to the environment. The system
circumvents the second law of thermodynamics by exporting its excess
entropy; living organisms are examples of dissipative systems [177].

According to W. Ross Ashby, a deterministic dynamic system will auto-
matically evolve towards a state of equilibrium that can be described in
terms of an attractor in a cluster of surrounding states [17]. Ashby believes
that at the core of the concept of organization lies conditionality: “. . . as

22 Complex Systems and Clouds

soon as the relation between two entities A and B becomes conditional in
C’s value or state, then a necessary component of organization exists . . . The
presence of organization between variables is equivalent to the existence of
a constraint in the product-space of probabilities.”

Recently discovered, self-organized criticality is the spontaneous emer-
gence of complexity from simple local interactions. A classical example of
self-organized criticality is a sandpile modeled as a cellular automaton on a
square lattice [22]. Call z(x, y) the height of the pile at cell (x, y) of the lattice.
The sand pile at cell (x, y) collapses and dispenses sand to all neighboring
cells when z ≥ K, with K a critical value. The grains of sand leave the system
if the cell is at the boundary. This process is modeled by three transitions

z(x, y) → z(x, y) − K,
z(x ± 1, y) → z(x ± 1, y) + 1,
z(x, y ± 1) → z(x, y ± 1) + 1.

(1.9)

The order in which the transitions occur at the same cell and different
cells is arbitrary. This model describes an “Abelian sandpile,” as additions
corresponding to successive topplings are commutative. A cascade of
transitions occur at cell (x, y) until

z(x, y) < K. (1.10)

The measurement begins when this minimally stable state occurs. The height
z(x, y) is increased by one, the value of the random perturbation, and the
resulting avalanche are evaluated. Fig. 1.4 shows the evolution of a two-
dimensional sandpile [22]. When a cell collapses, the height of its four

Fig. 1.4 The evolution of a two-dimensional 5 × 5 sandpile when the critical value is K = 4.
The initial state is shown by the diagram in the top left corner. In the next 8 diagrams of
the pile, we follow a sequence of 9 cell toppling events, starting with a grain of sand falling
to the center cell of the sandpile. The cells that have toppled are the 8 dark ones in the last
diagram of pile in the second row.

Complex Systems 23

neighboring cells at N, S, E, and W increases by one unit and the height
of the cell becomes zero.

All cells affected by the avalanche are members of a cluster of size s.
D(s) is the cluster distribution. Simulations for two- and three-dimensional
piles show that D(s) fits the Power Law

D(s) ≈ s−τ (1.11)

with τ ≈ 0.98 for a two-dimensional lattice of size 50 × 50, and τ ≈ 1.35
for a three-dimensional lattice of size 20 × 20 × 20. For small values of s,
the distribution D is affected by the spacing of the lattice; for large values of
s, D is affected by the system size.

The distribution of fluctuation lifetimes

s(t) ≈ tτ+γ (1.12)

was calculated assuming

D(t) = s
t
D(s(t))

ds
dt

≈ t−(γ+1)τ+2γ = t−α (1.13)

with γ describing how the cluster grows.

An interesting observation related to self-organized criticality is:
“. . . evolution cannot be seen as a drive towards more and more fit species
despite the fact that each of the steps that constitute evolution may improve
the fitness” [22] and reflects the fact that “fitness” is not invariant, it may
change as a period of stability during which little or no evolutionary change
in a lineage is replaced by another stasis. This observation may explain why
sometimes genetic algorithms are not as effective as expected [152].

1.9 CYBERNETICS

The word Cybernetics comes from the Greek word, kybernetes, meaning
rudder, pilot, a device used to steer a boat, or to support human governance.
This word was first used by Plato in Alcibiades I10 to signify the governance
of people. In the 1830s, the French physicist Ampere used it to describe

10The first Alcibiades is a dialog between Alcibiades and Socrates attributed to Plato.
Alchibiades was an aristocrat and a prominent Athenian orator, politician and general
involved in the Peloponnesian War.

24 Complex Systems and Clouds

the science of civil government. Norbert Wiener defined cybernetics as “the
study of control and communication in the animal and the machine” [248].

Cybernetics is concerned with concepts at the core of understanding
complex systems such as learning, cognition, adaptation, emergence, com-
munication, and efficiency. Cybernetics has been influenced by and, in turn,
has applications in fields as diverse as psychology and control theory, phi-
losophy and mechanical engineering, architecture and evolutionary biology,
or social sciences and electrical engineering.

There is little wonder that philosophers and scientists have different
definition of cybernetics. Cybernetics is “the art of creating equilibrium
in a world of constraints and possibilities,” according to the philosopher
Ernst von Glasersfeld. The famous mathematician Andrey Nikolaevich
Kolmogorov defines cybernetics as the “science concerned with the study
of systems of any nature which are capable of receiving, storing, and
processing information so as to use it for control.”

Other remarkable definitions of cybernetics are: “The art of steers-
manship: deals with all forms of behavior in so far as they are regular,
or determinate, or reproducible: stands to the real machine—electronic,
mechanical, neural, or economic—much as geometry stands to real object
in our terrestrial space; offers a method for the scientific treatment of
the system in which complexity is outstanding and too important to be
ignored,” by the famous psychiatrist and pioneer of cybernetics, William
Ross Ashby. It is also “the science and art of understanding,” according
to the biologist Humberto Maturana, known for creating concepts such
as structural determinism and structure coupling. Several other definitions
of cybernetics can be found at the site of the American Association of
Cybernetics, http://www.asc-cybernetics.org/foundations/history.htm.

In recent years, scientists have shown some reluctance to use the term
cybernetics because the discipline covers a very broad range of concepts
and applications in so many areas of human endeavor. Nevertheless, core
concepts of cybernetics, such as feedback are essential for understanding
complex systems, simply because such systems have to adapt their behavior
based on feedback from the environment they operate in. Two feedback
loops allow the system to learn and to adapt; one, used frequently, makes
small adjustments and enables learning, while the other, used less frequently,
senses the need to replace obsolete information with new information,
thus enabling adaptation. According to Ashby [17], learning implies that
a system discovers patterns of successful behavior in the environment

http://www.asc-cybernetics.org/foundations/history.htm

Complex Systems 25

it operates in and repeats successful actions, while avoiding unsuccessful
ones. Adaptation means that the system learns a new pattern of behavior
after recognizing that the environment has changed and the old pattern is no
longer successful.

Ashby defines a machine as a system whose internal state, together with
the state of the environment, dictates the next state. The regulator is the
element controlling the evolution of the system, and it can do so by using the
feedback to assess how far the system deviates from a prescribed behavior,
and by reacting to disturbances of its environment. The regulator must
have information linking cause and effect in the system environment. The
repertoire of actions required by the feedback should reflect the variety of
the perturbations; this is the Ashby’s Law of the requisite variety [17]. Faced
with an unforeseen sequence of events, we have the option to increase the
variety in the regulator, or reduce the variety in the system being regulated.
Based on these principles, we expect that an isolated dynamic system
obeying unchanging laws will adapt to its environment. As a corollary, it
follows that only the ensemble consisting of the system and its environment
can be rightfully called self-organizing.

Heinz von Forster, along with McCulloch, Wiener, Ashby, and von
Neumann, are considered the founders of cybernetics. In an interview at
Stanford University, Heinz von Forster talks about his quantum theory
of memory, “I can’t remember whether Caesar came before Augustus or
after Augustus. . . So I thought I would make myself a table, a historical
table. . . I observed that the closer to the present you came, the more
densely filled the paper was with data; conversely, the further you went
back the thinner the table. . . The best way to represent such data is to
plot it logarithmically. Every decade, or every power of ten, covers the
same distance and that means that, as you go further back into the past,
ten years are as big as one year, and then one hundred years are as big
as ten year, etcetera. . . ” (http:http://web.stanford.edu/group/SHR/4-2/text/
interviewvonf.html). This observation could be useful in compressing the
past history of an adaptive system and giving a larger weight to a more
recent set of events.

1.10 QUANTITATIVE CHARACTERIZATION OF COMPLEXITY:
ENTROPY

Qualitative, as well as quantitative, characterization of phenomena and
entities is common to all scientific disciplines, so it seems appropriate to

http: http://web.stanford.edu/group/SHR/4-2/text/interviewvonf.html
http: http://web.stanford.edu/group/SHR/4-2/text/interviewvonf.html

26 Complex Systems and Clouds

address the question of quantitative measures of complexity. Disciplines
such as computer science, systems engineering, biology, finance, or game
theory, have developed their own measures of complexity. These measures
reflect answers to questions such as: How difficult is it to describe the system
or the organization of the system? How difficult is it to create a model of the
system?

The first quantitive characterization of a system complexity, sometimes
called abstract complexity, can be formulated only in terms of its structure.
If we consider a system with n components forming S substructures, the
degree of complexity could be measured as D = S/n. Then, the abstract
complexity of the system depends on the degree of complexity and the
cardinality of the set of substructures, and can be expressed as

C = D × S = S2

n
. (1.14)

Consider a hierarchical structure of n elements and L levels. The number of
substructures at levels 0, 1, . . . L − 1, are respectively

S0 = n, S1 = N1, . . . , SL−1 = NL−1. (1.15)

Then the abstract complexity of the entire structure can be expressed as

CL =
L−1∏
i=1

Ci = N2
1

n
× N2

2
N1

× · · · × N2
L−2

NL−3
× N2

L−1
NL−2

= NL−1

n

L−1∏
i=1

Ni. (1.16)

We have to accept that the quantitative characterization of a system’s
complexity is more challenging. It has to reflect all factors contributing
to complexity, including: the number of components, the diversity of the
components, the interaction patterns among the components, how far can
the system be from equilibrium, how extensive should the knowledge of the
system’s history be to give us some understanding of its behavior, and what
type of feedback, what is its intensity, and how is it applied in time?

Typically, we operate with a model of a system and quantify aspects
of this model as a proxy for the complexity of the system. For example,
we can measure the actual amount of information needed to describe the
system [34], the number or the types of the components [169], a measure
of the interactions among the system components, or a combination of these
metrics.

Complex Systems 27

The entropy and the Kolmogorov complexity discussed in this section,
the fractal dimension mentioned in Section 1.3, and the Fisher information11

are expressed as the number of bits. The entropy is a measure of the lack of
information about the state of a system.

We briefly discuss thermodynamic entropy, Shannon entropy, and von
Neumann entropy. Thermodynamic entropy is a measure of the number
of specific ways in which the individual atoms and molecules, i.e., the
micro-states, which comprise the macroscopic state of the system may be
arranged. It is a measure of disorder in the system defined by Boltzman as

S = kB ln Ω , (1.17)

with kB the Boltzmann’s constant and Ω the number of micro-states of the
system.

Shannon entropy measures the surprise caused by the occurrence of an
event. Consider an event which happens with probability p; we wish to quan-
tify the information content of a message communicating the occurrence of
this event, and we impose the condition that the measure should reflect the
“surprise” brought by the occurrence of this event. An initial guess for a
measure of this surprise would be 1/p, such that the lower the probability
of the event, the larger the surprise. But this simplistic approach does not
resist scrutiny; the surprise should be additive. If an event is composed of
two independent events which occur with probabilities q and r, then the
probability of the event should be p = qr, but we see that

1
p

�= 1
q

+ 1
r

. (1.18)

On the other hand, if the surprise is measured by the logarithm of 1/p, then
the additivity property is obeyed

log
1
p

= log
1
q

+ log
1
r

. (1.19)

All logarithms are in base 2 unless stated otherwise. Given a discrete
probability distribution with

∑
i pi = 1 we see that the uncertainty is in

fact equal to the average surprise

11The Fisher information is a way of measuring the amount of information that an observable
random variable X carries about an unknown parameter θ upon which the probability of
X depends. The Fisher-information matrix is used to calculate the covariance matrices
associated with maximum-likelihood estimates.

28 Complex Systems and Clouds

∑
i

pi log
1
pi

. (1.20)

The entropy is a measure of the uncertainty of a single random variable X be-
fore it is observed, or the average uncertainty removed by observing it [60].
This quantity is called entropy due to its similarity to the thermodynamic
entropy. The Shannon entropy of a random variable X with a probability
density function pX(x) is

H(X) = −
∑

x
pX(x) log pX(x). (1.21)

The entropy of a random variable is a positive number. Indeed, the probabil-
ity pX(x) is a positive real number between 0 and 1 therefore, log pX(x) ≤ 0
and H(X) ≥ 0. Let X be a binary random variable and p = pX(x = 1) be the
probability that the X takes the value 1; then the entropy of X is

H(p) = −p log p − (1 − p) log(1 − p). (1.22)

If the logarithm is in base 2, then the binary entropy is measured in bits.
The entropy has a maximum of one bit when p = 1/2, and goes to zero
when p = 0 or p = 1; intuitively, we expect the entropy to be zero when the
outcome is certain, and reach its maximum when both outcomes are equally
possible.

Shannon channel source coding theorem establishes the limits to possible
data compression and gives an operational meaning of the Shannon entropy.

There is a relationship between thermodynamics and Shannon entropy.
When the N molecules of the system are grouped together in m micro-states
depending on their energy, then the number of bits required to label the
individual micro-states is

Q = H(p1, p2, . . . , pm), (1.23)

with H(p1, p2, . . . , pm) the Shannon entropy of a system with m states. If ni
is number of molecules in state i then pi = ni/N is the probability of the
system being in state i.

The von Neumann entropy of a quantum system with the density
matrix ρ,

S(ρ) = −tr [ρ log ρ] (1.24)

is equal to the Shannon entropy if the system is prepared in a maximally
mixed state, a superposition state where all pure states are equally likely.

Complex Systems 29

Another measure of complexity is the relative predictive efficiency
defined as e = E/C where E is the excess entropy and C is the sta-
tistical complexity [65]. The excess entropy measures the complexity of
the stochastic process, and can be regarded as the fraction of historical
information about the process that allows us to predict the future behavior
of the process. The statistical complexity reflects the size of the model of the
system at a certain level of abstraction.

Complexity could be related to the description of a system and may
consist of structural, functional, and, possibly, other important properties of
the system [45]. The question of how to measure the descriptive complexity
of an object was addressed by Kolmogorov [139].

The Kolmogorov complexity KV(s) of a string s with respect to the
universal computer V , is defined as the minimal length over all programs
ProgV that print s and halt

KV(s) = min[Length(s)] over all Prog: V(ProgV) = s. (1.25)

The intuition behind Kolmogorov complexity is to provide the shortest
possible description of any object or phenomena. Gell-Mann argues that
the Kolmogorov complexity has a fundamental flow; it is never known if a
more efficient compression scheme exists or will be discovered in the future,
leading to a shorter description of the object or phenomenon [89].

1.11 COMPUTATIONAL IRREDUCIBILITY

There are systems whose behavior is repetitive, or can be expressed by a
straightforward interaction of a relatively small number of easy-to-describe
components. In this case, there are shortcuts that allow us to reduce the
computational effort to model such systems, and we say that the behavior of
such systems is computationally reducible. So the natural question is if there
are shortcuts that allow us to describe the behavior of complex systems in a
simple way, and thus, to create simple models and simplify the simulation
of such systems.

In his book, A New Kind of Science, Stephen Wolfram [250] introduced
computational irreducibility to describe systems for which it is not possible
to describe their behavior in a simple way, and thus, to find shortcuts
for a program simulating the behavior of such systems. Computational

30 Complex Systems and Clouds

irreducibility implies that there are cases where theoretical predictions are
not possible and there are normally computationally irreducible phenomena.
Wolfram conjectured that there is no easy theory for any behavior that seems
complex.

Shortly after the introduction of the concept of computational irre-
ducibility, it was shown in [125] that some computationally irreducible
elementary cellular automata have properties that are predictable, therefore
their properties are computationally reducible. These cellular automata can
emulate reducible cellular automata by coarse-graining. This is the case of a
universal cellular automaton described by rule 110.

A result confirming Wolfram’s conjecture is discussed in [162]. The
dynamic behavior of a system can be modeled as the trajectory of the system
in the phase space. A phase space is an abstraction where each possible state
of the system is represented by a unique point. Each dimension of the phase
space represents a degree of freedom of the system. Individual trajectories
have different probabilities, with some of them more likely than others.

In [162] it is shown that for a complex system, the highly probable
trajectories in the phase space are dominant. The paper analyzes random
walks in fully connected finite state machines, and shows that the cardinality
of the set of highly probable trajectories is very large; its lower bound is
exponential in the number of states traversed by the random walk, and in an
expression of system entropy (see Fig. 1.5).

P(Sk1
)P(Sk2

)...P(Skn
)P(sk)

m

i
pi log piH(S)

1

S={S1, S2,...Sm}

Random walks Atypical

Typical

States

(Sk1
, Sk2 ,..., Skn

)sk

log P(σ) 1
n

s :| H(S) | d

log P(s)
1
n

s :| H(S) | d

Fig. 1.5 In fully connected finite state machines the cardinality of the set of highly probable
trajectories is very large, its lower bound is exponential in the number of states traversed
by the random walk and in an expression of system entropy. From D.C. Marinescu, High
probability trajectories in the phase space and system complexity, Complex Syst. 22 (3)
(2013) 233–246.

Complex Systems 31

1.12 THE INTERDISCIPLINARY NATURE OF COMPLEXITY

The interdisciplinary nature of complexity is reflected by the scientists
who made major contributions to the field; papers authored by biologists,
chemists, physicists, mathematicians, computer scientists, economists, and
others, introduced seminal ideas for the study of complexity [112, 153,
243, 251]. The idea that physical, biological, chemical, social, economic,
linguistic, and any other systems and their properties should be viewed
as wholes, not as collections of parts, is the main theme of Holism and
Evolution, a book written by the South African statesman Ian Smuts in
1926 [213].

Charles Darwin [67] is the creator of the theory of evolution. More
recently, Richard Dawkins [68] made important contributions to the theory
of evolution, and Stephen Gould and Niles Eldredge formulated the thesis
that evolution is a chaotic process with long periods of equilibrium followed
by bursts of dramatic changes [97]. Sir Julian Sorell Huxley was a British
scientist proponent of natural selection, a leading figure in the mid-20th
century modern evolutionary synthesis, and in ethics in science [123]. Karl
Ludwig von Bertalanffy was an Austrian biologist, one of the founders of
general systems theory [36].

Ilya Prigogine was a Belgian physical chemist and Nobel Laureate noted
for his work on dissipative structures, complex systems, and irreversibility
[177, 189]. Self-similarity was investigated by Shlomo Havlin [106] and
fractal geometry was developed by Benoit Mandelbrot [154]. George Kings-
ley Zipf formulated the so-called Zipf’s Law [242], based on the observation
that the log-log plot of rank versus frequency of many phenomena is a
straight line with slope near unity. The study of networks was initiated by
Leonard Euler [79]. Paul Erdös made seminal contributions to graph theory
[78]. More recent contributions to networks theory are due to R. Albert and
A.-L. Barabási for the study of complex networks and their applications
[9–11, 29, 30], and to D.J. Watts and S.H. Strogatz for the Small Worlds
networks [244].

James Crutchfield worked in nonlinear dynamics, and studied critical
phenomena and phase transitions, chaos, and pattern formation [63–65].
Self-organized criticality was introduced by Per Bak et al. [21]. An extensive
discussion of this phenomena is presented in Bak’s book How Nature
Works [22].

32 Complex Systems and Clouds

Herbert Simon’s research in cognitive science, computer science, phi-
losophy of science, sociology, and political science, led to fundamental
ideas regarding the decision-making process and contributed to better
understanding of complex systems [209, 210]. John Holland, a computer
science professor at the University of Michigan, was a pioneer in genetic
algorithms and chaos theory who wrote several books on chaos theory
[118, 119]. Warren Weaver coauthored with Claude Shannon the seminal
paper “The Mathematical Theory of Communication,” published in 1949,
and developed the philosophical implications of Shannon’s theory. He also
noted the distinction between organized and disorganized complexity [246].

Norbert Wiener’s book Cybernetics: Or Control and Communication
in the Animal and the Machine [248], along with the seminal work of
W. Ross Ashby, “Principles of Self-organizing Systems” [17], are required
readings for those interested in cybernetics. Much is due to James Goldstein
for his studies of emergence [96]; the distinction between strong and
weak emergence is discussed in [101]. Applications of self-organization in
economics are presented in [142].

The manner in which nature works has inspired algorithms for solving
complex problems. A deeper understanding of the structure of matter has
triggered the search for new ways of computing. These are the topics
discussed in the next chapter.

CHAPTER 22
Nature-Inspired Algorithms and Systems

Richard Feynman believed that computing and physics and, particularly,
quantum mechanics, are in a symbiotic relationship [82]. In 1998, Leonard
Adleman expressed his conviction that “Biology and computer science—
life and computation—are related. I am confident that at their interface great
discoveries await those who seek them. . . ” [7]. A significant number of
research results in quantum and DNA computing have proven that the two
visionary scientists were right.

The study of insect and animal behavior, immunology, molecular biology,
genetics, the study of the nervous system, and of the human brain are only
a few disciplines that have inspired new problem-solving techniques and
principles for systems design and implementation. Evolutionary computing
is inspired by Darwin’s theory of evolution, and membrane computing draws
its inspiration from the organization of cells where different components
interact through permeable cellular walls.

Neural computation attempts to emulate the brain [120], and amorphous
computing draw their ideas from morphogenesis, investigated by Alan
Turing at the beginning of the 1950s [224]. The behavior of groups of
insects, birds, and animals is the source of ideas for swarm intelligence, and
self-replication led to the development of cellular automata. The study of
the natural immune system inspired the study of artificial immune systems.

We wish to understand the laws governing complex systems in nature and,
whenever feasible, apply the lessons learned in designing and building
increasingly more complex man-made systems. Bio-inspired computing and
organic computing are two areas driven by the desire to apply lessons
learned from nature to system design. Bio-inspired computing aims to model
the living phenomena using computers, and, at the same time, improve
the use of computers though modeling the behavior of living organisms.
Organic computing assumes that we shall soon be surrounded by networks
of intelligent systems aware of their environment through arrays of sensors,
and capable of acting by using sets of actuators, and that such systems will
self-organize to optimize their activities.
Complex Systems and Clouds. http://dx.doi.org/10.1016/B978-0-12-804041-6.00002-5
Copyright © 2017 Elsevier Inc. All rights reserved. 33

http://dx.doi.org/10.1016/B978-0-12-804041-6.00002-5

34 Complex Systems and Clouds

Natural computing is a generic name for disciplines, such as evolutionary
computation, neural computation, artificial immune systems, swarm intel-
ligence, and Ant Colony Optimization, that draw their inspiration for the
development of new problem-solving techniques from nature. There are
also disciplines that employ natural elements, such as DNA, molecules,
membranes, or quantum systems to compute, and disciplines that use
computers to synthesize natural phenomena that are also part of the natural
computing landscape [131]. In this chapter we review seminal ideas in these
fields and their potential applications to challenging computational problems
and to self-management in large-scale systems.

2.1 CELLULAR AUTOMATA

Cellular automata are spatially and temporally finite-state discrete compu-
tational systems composed of a finite set of cells evolving in parallel at
discrete time steps. Cellular automata are abstract structures that can be used
as general models of complexity. They can also be used for the study of
nonlinear dynamics.

Cellular automata are inspired by self-reproducing/self-replicating liv-
ing organisms. Under favorable circumstances, viruses and bacteriophage
particles, viruses that infect and replicate within a bacteria, can reproduce
themselves. The same principle applies to the multiplication of nucleic acid
complexes in chromosomes. Knowing that self-reproducing properties of
nucleic acid depend on its highly complex structure, we should expect
that a man-made, self-replicating, system should be rather complex. Self-
replication allows not only the division of a cell, but also the growth and
repair of a complete organism.

Cellular automata can be specified in mathematical terms and can be
implemented in physical structures. Only local interactions can be modeled
with cellular automata; the state of a cell is updated by taking into account
the states of the cells in its neighborhood. Cellular automata can compute
functions and solve algorithmic problems and, with suitable rules, can
emulate a universal Turing machine.

The idea of cellular automata is credited to Stan Ulam and John von
Neumann, who collaborated during their work on Project Manhattan at
Los Alamos. Ulam was studying crystal growth and von Neumann was
interested in self-replicating systems. John von Neumann, one of the greatest
minds of the 20th century, introduced in the early 1940s the von Neumann

Nature-Inspired Algorithms and Systems 35

cellular automata, and its logical follow-up, the von Neumann Universal
Constructor [236]. The deceptively simple thought-experiments using these
concepts led to the idea of self-replication.

John von Neumann’s cellular automaton deals exclusively with the flow
of information. Its 2-D physical space is theoretically infinite and homo-
geneous. The cells are identical, they have the same internal architecture,
and the same connections with their neighbors. The state, determined by the
values in the cell internal memory, distinguishes a cell from its neighbors.
Replication involves the creation of an exact clone and is a special case of
growth.

We briefly describe the construction, the translation, the copy, and the
self-replication of von Neumann’s cellular automaton [155]. Initially, the
system has a cluster of five 29-state cells. At time step t = 1, constructor C
transforms a 1-D description of the machine M, d(M), into a 2-D description
generated at time step t = 2 using rule #1

t = 1 t = 2
C O → C M O

d(M) d(M)

(2.1)

with O an empty symbol. The constructor needs d(M), a tape describing the
machine M. Self-replication implies the existence of a tape describing the
constructor, including its own description. To remove an infinite regression
d(C[d(C[d . . .) von Neumann split the construction in two steps:

1. a translation carried out by a translator T able to build any computing
machine, M, given a tape containing its description, m;

2. a transcription mechanism carried out by a copier C, able to realize a copy
of the contents of the tape, i.e., the description of any computing machine,
including the description of the constructor itself with its empty tape.

The translation is done according to rule # 2

t = 1 t = 2
T O → T M O
m m

(2.2)

Rule #3 prescribes how to build two computing machines, M1 and M2 from
a concatenated description m1m2:

36 Complex Systems and Clouds

t = 1 t = 2
T O → T M1 O

m1m2 m1m2 ∅
M2

(2.3)

Rule #4 describes the process carried out by copier C
t = 1 t = 2

m O → m m O
C

(2.4)

Rule #5 describes the process carried out by copier C to apply the concate-
nated description m1m2 of two computing machines M1 and M2

t = 1 t = 2
m1m2 O → m1m2 m1m2 O
C

(2.5)

Finally, rule #6 allows self-replication by combining rule #3 and rule #5 and
using the combined translator-copier T C with its description tc

t = 1 t = 2 t = 3 t = . . .

T O T T O T T T O
tc O → tc tc O → tc tc tc O → . . .

C C C C C C
(2.6)

A self-replicator consistent with this description was implemented in
2004 [155].

The elegance and subtlety of von Neumann’s idea is inescapable. Only
several years later, in 1953, Crick and Watson published their discovery
of the double-helix, the structure formed by double-stranded molecules of
nucleic acids, such as DNA. The double-helix elucidated the mechanism by
which genetic information is stored and copied in living organisms [62].

The Game of Life, invented by John H. Convey in 1970, gave a new
impetus to the study of cellular automata [87]. The game models the effect
of under-population, over-population, survival, and reproduction. Cells in an
infinite two-dimensional orthogonal grid can be in one of two states, alive or
dead. Each cell interacts with its eight adjacent cells and, at each time step,
the following transitions occur:

• A live cell with fewer than two live neighbors dies—under-population.
• A live cell with more than three live neighbors dies—over-population.

Nature-Inspired Algorithms and Systems 37

• A live cell with two or three live neighbors lives—survival.
• A dead cell with exactly three live neighbors becomes a live cell—

reproduction.

The classification of cellular automata is due to Stephen Wolfram [249].
Cellular automata are now used for traffic modeling, structural design, and
even music composition. Analytical methods based on lattice-gas cellular
automata are used in fluid dynamics studies. Stochastic cellular automata
model physical processes characterized by a large set of parameters. Other
applications of cellular automata are in the study of urban growth, pattern
recognition, and statistical mechanics.

2.2 EPIDEMIC ALGORITHMS

Epidemic algorithms provide effective ways to spread information in large-
scale systems when individual systems/nodes have only limited knowledge
of the network topology and the capabilities of other nodes. Epidemic
algorithms mimic the process of spreading an infectious disease in nature.
Such algorithms are easy to implement and guarantee information delivery
in heterogeneous environments. The Game of Life is one of the most popular
examples of epidemic algorithms.

An epidemic algorithm requires that each member of a population of size
n is to be in one of the following states at time t:

Susceptible—the individual is susceptible to some stimulus; a living
organism can be infected; a node can get information from its neighbors
in a distributed system;
Infective—the individual has been infected and is capable of spreading
the infection; it has some information and it will spread it to its
neighbors, in a distributed system;
Recovered/Removed—the individual is immune to infection and does
not spread it; in a distributed system, the node knows the information
and does not transmit it to its neighbors.

Several classes of epidemic algorithms are known: Susceptible-Infective
(SI), Susceptible-Infective-Susceptible (SIS), and Susceptible-Infective-
Removed (SIR). We shall now only use the language of infectious disease-
spreading, the translation to information dissemination is straightforward.

38 Complex Systems and Clouds

In SI, almost all members of the population are infected and each individual
remains infected until the entire population is infected.

The population can be represented by a randomly chosen directed graph
G = (V, E) where V, the set of nodes represents the population and E, the
set of directed edges represents the contacts within a given round. The graph
changes as each node chooses β, the set of communication partners in each
round. The chance to get infected is equal to the number of incoming edges
of the node. pz, the probability of a node to have no incoming edges in one
round, thus, not to get infected, is 4−β ≤ pz ≤ e−β for β ≤ n − 1/2 [42].

Unlike SI, the individual members of the population in SIS are able
to stop spreading the disease before the entire population is infected, but
recovered members can become infective again. The number of infective
individuals in a population of size n in round t is

ninf(t) = 1 − p

1 +
(

1−p×n
(ninf(0)−1

) × n (2.7)

with p = nrem/ninf, the ratio of recovered versus infective individuals per
round [42].

Recovered individuals remain recovered in SIR. For instance, an indi-
vidual who did not spread the disease in the last r rounds, stops spreading
that specific information by assuming that the entire population is already
infective. Mathematical modeling of this case is rather difficult.

2.3 GENETIC ALGORITHMS

Evolution has been an inspiration for a long time for solving optimization
problems and, in particular, for genetic algorithms. Genetic algorithms,
often abbreviated as GAs, are heuristics for finding exact or approximate
solutions to optimization problems when an exhaustive search is unfeasible.
To realize the dramatic increase of the search space, consider a scheduling
problem where we have N tasks and M machines and (N, M) increase. When
(N, M) = (10, 5) there are 9.8×106 possible solutions; this number increases
to 1.0 × 1020 and then to 1.92 × 1035 for problems of size (20, 10) and
(30, 15), respectively.

The basic steps of the GA are: (1) generate a population of solutions,
(2) assign a fitness to each solution, and (3) create a new generation by
selecting the most fit solutions and then breeding them. Breeding involves

Nature-Inspired Algorithms and Systems 39

crossovers and mutations with a low probability. The algorithm stops when
a sufficiently good solution has been found. GAs are easily parallelizable
and have application in many fields, from economics to robotics, physics,
chemistry, bioinformatics, computer science, and manufacturing.

The canonical GA described by John Holland in a seminal work pub-
lished in 1975 [117], starts with a population encoded as a binary string of
length L. The evaluation function f is a measure of performance relative to
a set of parameters, and the fitness function transforms such an evaluation
into an allocation of reproductive opportunities [247]. The measure fi/f̄ is
used for the selection process, the decision of how many copies of the string
i, if any, are included in the intermediate population; in this expression, f̄ is
the average evaluation of all strings. Selection is followed by recombination
when crossovers between random strings are carried out.

For example, given the strings 10110011101011001101 and aababb-
baaabbaaabbabb with a and b the binary values 0 and 1, we randomly choose
a recombination point after the 8 leftmost symbols and the crossover leads
to the following offsprings

10110011 ∧ 101011001101
⇒ 10110011aabbaaabbabb & aababbba101011001101.

aababbba ∧ aabbaaabbabb

After recombination, mutations change bit values with probability p.

John Holland explained in [117] how a genetic algorithm carries out
the search by sampling hyperplane partitions of a search space. Each L-bit
string, a “chromosome” or a “genotype” in GA terminology, is represented
by a vertex of an L-dimensional hypercube. An L-bit string containing the
symbol *, which has the usual meaning, a wild card, is called a schemata
and represents a hyperplane in the hypercube representation.

Consider, for example, a hypercube of dimension L = 3 and a second
one of dimension L = 4 embedding the first, as in Fig. 2.1. We see that the
inner hypercube, the one of dimension L = 3, corresponds to the hyperplane
1 ∗ ∗∗; the outer hypercube of dimension L = 4 corresponds to 0 ∗ ∗∗ and
the string ∗0 ∗ ∗ corresponds to the front planes of both hypercubes. The
order of a hyperplane is the number of bits in the hyperplane description.
All three hyperplanes in our example are of order 1, the hyperplane ∗01∗ is
of order 2, while the hyperplane 01 ∗ 1 is of order 3.

40 Complex Systems and Clouds

Fig. 2.1 Hypercube interpretation of GA search. A hypercube of order L can be constructed
using 2L vertices labeled with L-bit binary numbers and connecting two vertices by an edge
whenever the Hamming distance of their labels is 1. An L-bit string containing the symbol *
represents a hyperplane. A genetic algorithm searches by sampling hyperplane partitions of
a search space [117]. Shown are a hypercube of dimension L = 3 and its embedding into a
hypercube of dimension L = 4.

Population-based search represents the core idea of GAs. Indeed, a
set of sample points provides information about many hyperplanes and
low-order hyperplanes are sampled by numerous points in the population
[247]. Holland argues that “many hyperplanes are evaluated in parallel each
time a single string is evaluated . . . the cumulative effects of evaluating a
population provides statistical information about any particular subset of
hyperplanes. . . . the true fitness of the hyperplane partition corresponds to
the average fitness of all strings that lie in that hyperplane partition. The
genetic algorithm uses the population as a sample for estimating the fitness
of that hyperplane partition” [247].

It can be argued that random mutations in local search heuristics mimic
asexual evolution and work well in many cases. The contrast between
local search and GAs which mimic sex-based evolution deserves to be
investigated to understand why genetic algorithms have rarely produced
better results than other approaches [183]. It turns out that natural selection
is not as effective for improving the fitness of a population as scientists have
believed for a long time.

Nature-Inspired Algorithms and Systems 41

In a recent paper [152] with the suggestive title “A Mixability Theory
of the Role of Sex in Evolution” the authors report extensive simulation
results showing that natural selection under sex is not a good optimizer of
fitness, instead it promotes another quality of the genotype called mixability.
Mixability could be informally described as “genetic tolerance,” as it reflects
the ability of forming viable combination with other genes. The conclusion
of [152] is that GAs are most suitable for problems when the objective we
wish to optimize is unknown, fuzzy, or time varying.

2.4 ANT COLONY OPTIMIZATION

Ant Colony Optimization (ACO) is a metaheuristic1 for solving hard
combinatorial optimization problems introduced in [74]. The biological
inspiration of ACO is that ants find the shortest path from their nest to a
source of food using pheromone trails, chemicals left on the ground marking
the path for other ants to follow.

Stigmergy2 is a phenomenon observed in social insects; it describes a
process when individuals leave in the environment a trace stimulating the
actions of other members of the population. Subsequent actions reinforce
and build on each other, leading to the spontaneous emergence of coherent,
apparently systematic activity. Stigmergy is a form of self-organization.

A combinatorial optimization problem, P = (S, Ω , f), is an optimization
problem where S is a search space over a set of discrete decision variables
containing a finite set of possible solutions, Ω is a set of constraints
among the discrete set of decision variables, and f is an objective function
f : S �→ R+ that assigns a positive cost value to each solution. The goal is to
find within a reasonable amount of time, either a solution of minimum cost
value, or a good enough approximate solution [182].

The concise presentation of the ACO algorithm in this section uses the
notations in [75, 76]. Given a set of discrete variables Xi, i = 1, . . . , n, with
values vj

i ∈ Di = {v1
i , . . . , v|Di|

i } the elements of the search space S are full

1A metaheuristic is a high-level procedure to generate or select a heuristic providing a
sufficiently good solution to an optimization problem. A metaheuristic sample is a search
space too large to be completely sampled and it is particularly useful when we have
incomplete or imperfect information and limited computation resources.
2The word stigmergy is derived from two Greek words, stigma meaning sign or maker, and
ergon meaning builder.

42 Complex Systems and Clouds

assignments. In these assignments, each variable Xi has a value vj
i assigned

from its domain Di. The set of feasible solutions SΩ is given by the elements
of S that satisfy all the constraints in the set Ω . A solution s∗ ∈ SΩ is called
a global optimum iff (s∗) ≤ f(s), ∀s ∈ SΩ . Solving a global optimization
problem means finding a solution s∗ ∈ S∗

Ω where S∗
Ω ⊆ SΩ is the set of all

globally optimal solutions.

The critical component of the ACO is the pheromone model. This model
is used to probabilistically generate solutions by assembling them from a fi-
nite set of components. The model consists of a vector T whose components
are pheromone trail parameters, Ti ∈ T . The pheromone trail parameters are
usually associated with pheromone values τi. An ACO algorithm updates
the pheromone values using previously generated solutions aiming to direct
the search to regions of the search space containing high quality solutions.

The metaheuristics consists of an initialization phase and two scheduled
activity phases executed repeatedly

Set parameters; initialize pheromone trails;
BeginScheduleActivities

ConstructAntSolutions;
UpdatePheromone

EndScheduleActivities

An optional, problem-specific phase, involving centrally controlled ac-
tivities which cannot be implemented by individual ants, is sometimes
performed after the first phase.

Solution construction. A solution component cij is the instantiated
decision variable Xi = vj

i and C is the set of all possible solution components.
A pheromone trail value τij is associated with each cij. We define the graph
GC(V, E) where either the vertices V, or the edges E, are associated with the
solution components C and allow the ants to move from vertex to vertex
along the edges of this graph and deposit pheromones either along the edges
or on the vertices. The next groups of ants use the pheromone values to
incrementally construct a solution.

The solutions are constructed starting with sp = ∅. Constructing solu-
tions corresponds to a path selection on the graph GC(V, E). The set N (sp)
corresponds to the allowed paths for the partial solution sp. The probability
update rule is

Nature-Inspired Algorithms and Systems 43

p(cij|sp) = τα
ij · η

β
ij∑

cil∈N (sp) τ α
il η

β

il

, ∀cij ∈ N (sp). (2.8)

In this expression, τα
ij represent pheromone values, η

β
ij are heuristic values

associated with component cij, and α, β are positive real numbers, the
weights of pheromone and heuristic values, respectively.

Pheromone updating. This process aims to amplify the pheromone
values corresponding to good solutions and lower them for bad solutions.
The intensity of a pheromone changes in time, pheromone values decrease
due to evaporation with evaporation rate 0 ≤ ρ ≤ 1, and are intensified for
good solutions. The pheromone update rule is

τij ← (1 − ρ) · τij + ρ ·
∑

s∈Supd|cij∈s
F(s) (2.9)

with Supd the set of solutions used for the update and F : S �→ R+ a fitness
function, with the property

f(s) ≤ f(s′) ⇒ F(s) ≥ F(s′), ∀s �= s′ ∈ S. (2.10)

The AS algorithm. There are several variants of ACO algorithms with
different probabilistic rules, including the Ant System (AS) [74] which
assumes a population of m artificial ants. In this case the pheromone
update is

τij ← (1 − ρ) · τij + ρ ·
m∑

k=1
Δτ k

ij . (2.11)

The quantity of the pheromone left on edge (i, j) by the kth ant is a function
of Lk, the tour length of this ant

Δτ k
ij =

{
1
Lk

if ant k used edge (i, j) in its last tour,
0 otherwise.

(2.12)

Given the partial solution sp
k for ant k, call N (sp

k) the set of components that
do not belong to this partial solution. The transition probability of ant k to
traverse the edge (i, j) under the rule of AS is

p(cij|sp
k =

⎧⎪⎨
⎪⎩

τα
ij ·ηβ

ij∑
cil∈N (s p

k)
τα

il η
β
il

if j ∈ N(sp
k),

0 otherwise.
(2.13)

44 Complex Systems and Clouds

In this expression τα
ij represent pheromone values, η

β
ij = 1/dij are heuristic

values with dij the length of components cij, and α, β are positive real
numbers, the weights of pheromone and heuristic values, respectively.

Several adaptations of the ACO algorithms are discussed in the literature
[74, 111] including the traveling salesman problem (TSP) and bin packing.
TSP, discussed next, has numerous applications, ranging from computing
optimal delivery routes, to machine scheduling, network optimization, and
protein folding.

An n city TSP adaptation assumes that each one of the m ants builds
its own tour starting from a randomly selected city and while the tour is
completed, deposits the pheromone on each visited city. An ant maintains
a tabu list, B, the list of those already visited, and chooses the next town
function of the distance and the amount of pheromone on the selected link
to the town. A version of the rule in Eq. (2.8) is used

p(ij) = τij · η
β
ij∑

g�∈B τigη
β
ig

, (2.14)

where the heuristic, called in this case visibility, chooses the nearest town,
ηij = 1/dij. The pheromone update rule is

τij = ρ · τij + Δτij with Δτij =
m∑

k=1
Δk

ij. (2.15)

The pheromone contribution of ant k is

Δτ k
ij =

{
Q
Lk

if ant k used edge (i, j) in its last tour,
0 otherwise.

(2.16)

with Q a constant. In the first step, the pheromone intensities on all links
are set and each ant k initializes its tabu list Bk with the randomly selected
starting city. Then each ant moves from city to city following the probability
rule given by Eq. (2.14). After crossing n links, the tabu lists Bk, 1 ≤ k ≤ m
are full and Lk and Δk

ij are computed. The shortest path is saved, tabu lists
are reset, and the next iteration is carried out. The process stops when the
tour counter reaches maximum or until all ants make the same tour.

Nature-Inspired Algorithms and Systems 45

2.5 SWARM INTELLIGENCE

Swarm intelligence is a form of collective intelligence observed in some col-
lections of organisms, such as flocks of birds, schools of fish, ant colonies,
herds of bisons, or packs of wolves [39]. Swarms of organisms display
abilities not shown by individuals. The collective intelligence emerges from
individual experiences of the members of the organization combined with
their ability to communicate with one another.

The collective intelligence is the result of simple rules easily followed by
the individual members of the swarm. For example, the need for cohesion
requires individual members to stay in close proximity to one another and,
at the same time, to avoid conflicts or collisions with other members of the
group; whenever the group moves, all the members of the group should
move together.

Particle swarm optimization (PSO) algorithms [133] are applicable when
the cardinality of the set of participants is limited to a few thousands and
all individuals collaborate to optimally achieve a common objective. Such
algorithms are robust, asynchronous, do not require a central control, and
can be parallelized with relative ease. PSO algorithms are easy to implement
and only a few parameters of the model are required.

A population of random solutions is generated during an initialization
phase of a PSO algorithm. Then the search for optimal solutions, called par-
ticles, is carried out by updating generations. Unlike in genetic algorithms,
there are no crossover or mutation evolution operators in this evolution.
A fitness function evaluates the individual fitness values of all particles
to identify the particle(s) with optimal trajectory. Then all particles flow
through the problem space, tracing the trajectory of the current optimum
particle(s).

The high-level description of the algorithm presented next follows the
notations used in [111, 133]. We assume n particles with positions X(i) ∈
R

m, and velocities V(i) ∈ R
m, i ∈ {1, n} in a space with m dimensions. The

fitness function f : Rm → R is used to determine XLocalOpt(i), the optimal
position of particle i ∈ {1, n}, and the global optimum XGlobalOpt. Three
parameters, w, a, and b are used in the following high-level description of
the algorithm

46 Complex Systems and Clouds

1. Generate random vectors R and Q with R(i), Q(i) ∈ U[0, 1] and i ∈ {1, n}.
2. Update velocity and position of each particle (◦ is a scalar product of two

vectors)
V(i) ← wV(i) + a × R ◦ (XLocalBest(i) − X(i)

+ b × Q ◦ (XGlobalOpt − X(i))
X(i) ← X(i) + V(i).

(2.17)

3. Find local and global optima; for a minimization problem

Local minima : XLocalOpt ← X(i) if f(X(i)) < f(XLocalOpt(i)).
(2.18)

Global minima : XGlobalOpt ← xi if f(X(i)) < f(XGlobalOpt).
(2.19)

For a maximization problem the updates are carried out if
f(X(i)) > f(XLocalOpt(i)) and f(X(i)) > f(XGlobalOpt), respectively.

Swarm intelligence has applications in robotics and modeling of social
systems. Swarm intelligence is also used for routing in communication
networks and in searching for the optimal organization structure in industrial
engineering. Other applications of swarm intelligence are in data mining,
clustering algorithms, pattern recognition, and space exploration [115].

2.6 DNA COMPUTING

Rather than drawing inspiration from biology and using biological processes
as a metaphor, deoxyribonucleic acid (DNA) computing proposes to actually
use biological material, rather than silicon, for the implementation of
computer gates and circuits. This is particularly tempting because living
organisms process information in parallel, are nondeterministic, and capable
to deal with complex stimuli.

DNA is the hereditary material residing in the nucleus of every cell3
of almost all organisms, including humans. The hereditary information is
encoded using a four-letter alphabet, embodied by the four chemical bases:
adenine (A), guanine (G), cytosine (C), and thymine (T). Units called DNA
base pairs are formed by A paired with T, and C paired with G. To each base,
are also attached a sugar molecule and a phosphate molecule. Nucleotides

3There is also a small amount of mitochondrial DNA.

Nature-Inspired Algorithms and Systems 47

consisting of a base, sugar, and phosphate are arranged in two long strands
that form a double helix. When a cell divides, a DNA strand serves as a pat-
tern, allowing each new cell to inherit an exact copy of the old cell’s DNA.

The analogy between information-encoding biopolymers and a Turing
machine, or a finite automata scanning a data tape is inescapable and has in-
spired several designs for DNA computers. The energy efficiency of a DNA
computer is 2 × 1019 operation per Joule, nine orders of magnitude higher
than that of classical computers. DNA capacity for information storing is
also off the scale, 5 grams of DNA contain 1021 bases. The speed of a DNA
processor is in the range of 500–5000 pairs/second, but the slow speed is
compensated for by the massive parallelism possible with DNA circuits.

Several commercially available enzymes are used to carry out the basic
operations required by a DNA computer: nuclease—enzyme capable of
cleaving the phosphodiester bonds4 between the nucleotide subunits of
nucleic acids; ligase—enzyme capable of catalyzing the joining of two
large molecules by forming a new chemical bond; polymerase—enzyme
that catalyzes the formation of a long-chain molecule by linking smaller
molecular units, as nucleotides with nucleic acids; exonuclease—enzyme
capable of detaching the terminal nucleotide from a nucleic acid chain.

The transformation of the DNA necessary to carry out the operations
of a DNA computer are: cutting, linking, replication, and destruction. The
enzymes used to carry out these operations are: restriction endonuclease,
ligase, polymerase, and exonuclease, respectively.

In a seminal paper, Leonard Adleman reported in 1994 the results
of an experiment when a small graph was encoded in DNA molecules
and the “computations” were carried using standard protocols for DNA
manipulation. He reports solving a 7-point Hamiltonian path problem [6].

A directed graph G has a Hamiltonian path between two vertices
vin and vout iff there exists a directed path consisting of one-way edges
e1, e2, . . . , en from vin to vout in which each edge is traversed exactly
once. The directed Hamiltonian path problem has been proven to be NP
complete. A nondeterministic algorithm for solving this problem consists of
the following steps:

4The phosphodiester bond is the linkage between the 3′ carbon atom of one sugar molecule in
one nucleotide and the 5′ carbon atom of a sugar molecule in another nucleotide, deoxyribose
in DNA, and ribose in RNA are the pentose monosaccharides molecules.

48 Complex Systems and Clouds

1. generate random paths through the graph;
2. keep only those paths which begin with vin and end with vout;
3. if the graph has n vertices, then keep only those paths which enter exactly

n vertices;
4. keep only those paths which enter all of the vertices of the graph at least

once; and
5. if any paths remain, a Hamiltonian path between vin and vout exists.

In the implementation described in [6], each one of the five steps
processed the product of the previous one. In Step 1 each vertex of the
graph is associated with a random 20-mer5 sequence of DNA [6]. In Step
2 the product is amplified by polymerase chain reaction (PCR)6 and only
DNA fragments corresponding to paths starting at vin and ending at vout are
selected. In Step 3 the product is run on an agarose gel to measure the length
of DNA molecules. The smaller molecules travel faster in an electric field
and, as a result of the electrophoresis process, DNA fragments with 30 base
pairs are isolated.

Each vertex was encoded as 6 base pairs and there were 5 vertices
between vin and vout thus, only DNA fragments with 30 base pairs were
selected. Then the product is PCR amplified and in Step 4 it was affinity
purified using a biotin avidin magnetic beads system to select DNA
fragments corresponding to paths entering each vertex exactly once. Finally,
the product is PCR amplified, run on a gel, and sequenced in Step 5.

The complexity of the Hamiltonian path increases exponentially with
the number of vertices of the graph. The amount of DNA for a graph
with 200 vertices is larger than the mass of the Earth [111]. Moreover, as
the length of the strands increases, the statistical errors grow significantly,
more operations are necessary, more DNA is used, and the cost of the
experiments increases. Applications of DNA computing to combinatorial
problems proves to be challenging.

A DNA-based simulation of Boolean circuits is discussed in [179]. The
inputs, and the AND and the OR gates are encoded as DNA sequences and the
operations on them are carried out by standard techniques, such as ligations,

5“-mer,” from Greek “meros,” meaning “part,” specifies the length of an oligonucleotide.
6In PCR a single copy or a few copies of a piece of DNA is amplified to generate millions
of copies of the DNA sequence. PCR alternates between separating DNA into single strands
using heat and conversion into double strands using primer and polymerase reactions.

Nature-Inspired Algorithms and Systems 49

separations by size, amplifications, cleavage, and detection by size. The
runtime slowdown of large semi-bounded fan-in7 Boolean circuits8 is
proportional with the logarithm of the maximum fan-out of the circuit and
the space complexity is proportional with the product of the circuit size and
the maximum fan-out. The size of a Boolean circuit is given by the number
of gates and the depth is the length of the longest directed path in it.

A programmable molecular computing machine composed of enzymes
and DNA molecules was announced in 2002 [32]. The hardware consists of
a restriction nuclease and ligase. The software and the input are encoded by
double-stranded DNA and programming amounts to choosing appropriate
software molecules. The system processes the input molecule via a sequence
of restriction, hybridization, and ligation cycles, and creates an output
molecule that encodes the result.

A polynomial-time DNA computing solution for the bin-packing prob-
lem based on a sticker model is presented in a 2009 paper [196]. The
solution involves the set of biological operations known as the Adleman-
Lipton model:

• extract—given a test tube T and a sequence S, generate two tubes:
+(T; S) with all the sequences in T that had S as a subsequence, and
−(T,S) with the remaining sequences of T;

• merge—given T1 and T2, generate a new tube with the content of both;
• detect—given T return the logic value yes if there is at least a DNA

molecule in it, and no otherwise;
• discard—discard tube T;
• amplify—given T, amplify(T, T1, T2) produces two identical copies of T,

as test tubes T1 and T2 and then empty T;
• append—given T and a sequence S, append(T,S) affixes S at the end of

each sequence in T.

An enhanced language on a multiset of finite strings over the alphabet
{A, C, G, T} consisting of four operations, combine, separate, set, and clear,
is used to express the algorithm.

7Fan-in is the number of inputs a gate can handle and the fan-out of a logic gate output is the
number of gate inputs it can connect to.
8A semi-bounded fan-in Boolean circuit with n inputs is a direct acyclic graph with labeled
nodes and 2n nodes with in-degree zero.

50 Complex Systems and Clouds

A research group from CalTech reported in 2011, results related to the
manufacturing of nucleic-acid-based integrated circuits [190]. The authors
use a “seesaw” gate that makes use of a reversible strand displacement.
Seesawing is the reversible reaction that exchanges the activity of DNA
signals, allowing signal amplification and signal isolation. A pair of seesaw
gates can perform AND or OR operation, sufficient for universal Boolean
function evaluation.

2.7 QUANTUM INFORMATION PROCESSING SYSTEMS

Quantum is a Latin word meaning “some quantity.” In physics it is used with
the same meaning as the word discrete in mathematics; it refers to a quantity
or variable that can take only sharply defined values, as opposed to a
continuously varying quantity. Quantum mechanics is a mathematical model
of the physical world. This model allows us to specify states, observables,
measurements, and the dynamics of quantum systems. Quantum computing
and quantum information theory are concerned with the transmission and
processing of quantum states and the interactions of quantum information
with the “classical” one. Classical information is carried by physical pro-
cesses obeying the laws of classical physics. Classical physics does not use
the quantization paradigm and includes classical mechanics and relativity.

Quantum computers are stochastic systems because the state of a quan-
tum system is uncertain and therefore, a certain probability is associated
with any possible state the system can be in. The output states of a stochastic
engine are random: the label of the output state cannot be discovered.
All we can do is to label a set of pairs consisting of an output state of
an observable (a characteristic or attribute of the system) and a measured
value of that observable. In quantum mechanics, we say that each pair
consists of an eigenstate of a Hermitian operator and its eigenvalue. The
following presentation is based on [156, 160].

Qubits. A quantum bit, called a qubit, is a quantum system used to store
information. As opposed to a classical bit, which can be in one of the two
states 0 and 1, a qubit can exist in a continuum of states. Moreover, we can
measure the value of a bit with certainty and without affecting its state, while
the result of measuring a qubit is nondeterministic and the measurement
alters its state. While a classical bit can be in one of two states, 0 or 1, the
qubit can be in states |0〉, and |1〉 called computational basis states and also
in any state that is a linear combination of these states. This phenomenon is
called superposition. Mathematically, the state, |ψ〉, of a qubit is represented

Nature-Inspired Algorithms and Systems 51

0

1

0

1

(A) (B)

Superposition states

Basis (logical) state 1

Basis (logical) state 0

One bit One qubit

0

1
Possible states of one qubit before

the measurement
The state of the qubit after

the measurement

p1

p0

Fig. 2.2 (Left) Bit versus qubit. The state of a qubit can be represented as a vector from
the origin to a point on the Bloch sphere. A qubit can be in a basis state, |0〉 or |1〉, or in
a superposition state |ψ〉 = α0|0〉 + α1|1〉 with |α0|2 + |α1|2 = 1. A bit can be in one of
two states, 0 or 1. (Right) A measurement forces a qubit in a superposition state to one of
the two basis states, |0〉 with probability p0 = |α0|2 and |1〉 with probability p1 = |α1|2,
respectively.

as a vector in a two-dimensional complex vector space. The Bloch sphere
is a geometrical representation of the state of a qubit. Fig. 2.2 illustrates the
difference between classical and quantum information.

Consider now a system consisting of n particles whose individual states
are described by vectors in the two-dimensional vector space. In classical
physics, the individual states of particles combine through the Cartesian
product. The possible states of the quantum system of n particles form a
vector space of 2n dimensions; given n bits, we can construct 2n n-tuples
and describe a system with 2n states. Individual state spaces of n particles
combine quantum mechanically through the tensor product. If X and Y are
vectors, then their tensor product X ⊗ Y is also a vector, and its dimension is
dim(X) × dim(Y). For example, if dim(X) = dim(Y) = 10, then the tensor
product of the two vectors has dimension 100.

The state space of a quantum system having n qubits has 2n dimensions.
There are 2n basis states forming a computational basis and there are
superposition states resulting from the superposition of basis states. The

52 Complex Systems and Clouds

catch is that even though one quantum bit, a system with 21 basis states,
can be in one of infinitely many superposition states, when the qubit is
measured, the measurement changes the state of the quantum system to one
of the two basis states. From one qubit we can only extract a single classical
bit of information. In quantum systems, the amount of parallelism increases
exponentially with the size of the system, thus it increases exponentially with
the number of qubits. This means that the price paid for an exponential
increase in the power of a quantum computer is a linear increase in the
amount of matter and space needed to build the larger quantum computing
engine. Adding a single qubit doubles the power of a quantum computer. For
example, a quantum computer with 11 qubits has twice the computational
power of a quantum computer with 10 qubits.

Quantum gates. The quantum circuit model expresses the transfor-
mations required by a quantum computation as a sequence of quantum
gates [72]. A quantum gate is the quantum analog of a classic gate, it
performs one or more logical transformations. A quantum gate is reversible,
while classical gates with the exception of the NOT gate are not reversible.
The transformation carried out by a quantum gate is expressed by an
operator. For example, the most important one-qubit quantum gates are:

1. I—the identity gate leaves a qubit unchanged

I =
(

1 0
0 1

)
. (2.20)

2. X or NOT gate transposes the components of a qubit

σx = X =
(

0 1
1 0

)
. (2.21)

3. Y gate multiples the input qubit by i and flips the two components of
the qubit

σy = Y =
(

0 −i
i 0

)
. (2.22)

4. Z gate changes the phase, flips the sign, of a qubit

σz = Z =
(

1 0
0 −1

)
. (2.23)

5. Hadamard gate H

H = 1√
2

(
1 1
1 −1

)
. (2.24)

Nature-Inspired Algorithms and Systems 53

The transformation matrices of the first four gates, I, X, Y, and Z are
the identity matrix I and the Pauli matrices σx, σy, σz, respectively. The
output |ϕ〉 of these gates for a given input |ψ〉 = α0|0〉 + α1|1〉 is shown
next.

|ϕ〉 = I|ψ〉 =
(

1 0
0 1

) (
α0
α1

)
=

(
α0
α1

)
or |ϕ〉 = α0|0〉 + α1|1〉.

(2.25)

|ϕ〉 = σx|ψ〉 =
(

0 1
1 0

) (
α0
α1

)
=

(
α1
α0

)
or |ϕ〉 = α1|0〉 + α0|1〉.

(2.26)

|ϕ〉 = σy|ψ〉 =
(

0 −i
i 0

) (
α0
α1

)
= i

(−α1
α0

)
or |ϕ〉 = −iα1|0〉+iα0|1〉.

(2.27)

|ϕ〉 = σz|ψ〉 =
(

1 0
0 −1

) (
α0
α1

)
=

(
α0

−α1

)
or |ϕ〉 = α0|0〉−α1|1〉.

(2.28)

|ϕ〉 = H|ψ〉 = 1√
2

(
1 1
1 −1

) (
α0
α1

)
or |ϕ〉 = α0√

2
(|0〉+|1〉)+ α1√

2
(|0〉−|1〉).

(2.29)

The Hadamard gate, H, when applied to a pure state, |0〉 or |1〉, creates a
superposition state,

|0〉 �→ 1√
2
(|0〉 + |1〉) and |1〉 �→

(
1√
2

)
(|0〉 − |1〉). (2.30)

It follows that the transformation of a qubit |x〉, with x = 0 or x = 1, carried
out by a Hadamard gate can be expressed as

|x〉 �→ 1√
2

(|0〉 + (−1)x|1〉) . (2.31)

CNOT is a two-qubit gate with two inputs, the control qubit, |ψ〉 and the
target qubit, |ϕ〉. The two outputs are the control qubit and the target qubit.
The classical equivalent of a quantum CNOT gate is the XOR gate: its output is
the sum modulo two (⊕) of its two inputs. The target output of the classical
CNOT gate is equal to the target input if the control input is 0, and flipped
if the control input is 1. Flipping a classical bit a means complementing it,
transforming it to ā: if a = 0, it becomes 1 and vice versa. Flipping a qubit

54 Complex Systems and Clouds

|ψ〉 = α0|0〉 + α1|1〉 results in |ϕ〉 = α1|0〉 + α0|1〉, where the projections
on the two basis vectors are swapped.

Informally, the operation of the CNOT quantum gate is described as
follows: the control input is transferred directly to the control output of the
gate. The target output qubit is equal to the target input qubit if the control
input is |0〉 and it is flipped if the control input is |1〉. The input and the
output qubits of a CNOT quantum gate can be represented as vectors in a
four-dimensional Hilbert space H4. If

|ψ〉 = α0|0〉 + α1|1〉 |ϕ〉 = β0|0〉 + β1|1〉. (2.32)

then the input vector of the quantum CNOT gate is the tensor product of the
two vectors

|VCNOT〉 = |ψ〉 ⊗ |ϕ〉 =
(

α0
α1

)
⊗

(
β0
β1

)
=

⎛
⎜⎜⎝

α0β0
α0β1
α1β0
α1β1

⎞
⎟⎟⎠ . (2.33)

The components of the input vector are transformed by the CNOT quantum
gate as follows

|00〉 �→ |00〉 |01〉 �→ |01〉 |10〉 �→ |11〉 |11〉 �→ |10〉. (2.34)

The transformation matrix GCNOT of the CNOT quantum gate can be written
as a sum of outer products of the basis vectors [156]

GCNOT = |00〉〈00| + |01〉〈01| + |11〉〈10| + |10〉〈11| =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎟⎠ .

(2.35)

Two qubits can be in a superposition state of close coupling with each other,
in an intimately fused state known as an entangled state, a state with no
classical analogy. Entanglement is the exact translation of the German term
Verschränkung, used by Schrödinger, who was the first to recognize this
quantum effect. It means that the state of a two-particle quantum system
cannot be written as a tensor product of the states of the individual particles.
The state of an entangled system cannot be decomposed into contributions
of individual particles.

Implementation of quantum information processing systems. The
implementation efforts for quantum information processing systems are
guided by a set of five requirements for quantum computers and two

Nature-Inspired Algorithms and Systems 55

for transfer of information formulated by DiVincenzo in 2000 [73] and
reformulated in 2010 for systems with low level of decoherence.

1. The physical system has well-characterized qubits and is scalable. The
embodiment of a qubit is a quantum two-level system, such as the two
spin states of a spin-1/2 particle, or the ground and some excited state of
an atom, or the vertical and horizontal polarization of a single photon.
The qubits can be in superposition states and/or entangled states and
these unique quantum mechanical characteristics are associated with the
enormous computational power of quantum computing devices. These
characteristics can be effective only if the qubits are well isolated
from the environment; the process of decoherence due to the possible
interaction with the environment must be very slow.

The physical parameters of a well-characterized qubit must be accu-
rately known and include: the internal Hamiltonian (it determines the
energy eigenstates of the qubit); the presence of other states of the physi-
cal qubit besides the two characteristic (basis) states and the couplings
among them; the interactions with other qubits; and the couplings to
external fields that might be used to manipulate the qubit. In general, the
qubit has other (higher) energy levels than the two basis states and the
probability of the transitions to such states from the characteristic states
must be very low and under the control of the physical system.

Some of the proposed qubit implementations are based in atomic
physics, such as pairs of energy levels of ions confined in a linear
electromagnetic trap [50], Zeeman-degenerate ground states used in the
NMR approach [59], or atomic energy levels of neutral atoms [41, 127].
Other qubits are implemented as the position of atoms in a trap or lattice,
the presence or absence of a photon in an optical cavity, or the vibrational
quanta of trapped electrons, ions, or atoms.

Some of the physical implementations based on solid state, such as
impurities in solids and the quantum dots, take advantage of the fact that
they have well-characterized discrete energy levels that can be controlled
through the manufacturing processes. The qubits in solid-state systems
include spin states or charge states of quantum dots, quantized states of
superconductive devices, localized Cooper-pair charge.

2. The physical system must be able to have the state of the qubits initialized
to a known low-entropy state, such as |000 . . .〉, as in classical computa-
tion. The initial state of the qubits can be prepared by “cooling,” which
can be either natural cooling (when the state of interest is the ground
state of the qubit Hamiltonian), or by projecting the system into the state
of interest through the appropriate measurement. The natural cooling

56 Complex Systems and Clouds

method is used in the case of electron spin resonance techniques: the
electrons are placed in a strong magnetic field and their spins are allowed
to align with it while interacting with a heat bath (natural thermalization).
The state projection method is associated with laser cooling techniques
which are applied to cooling ion states to near the ground state in a
trap [50], and are usually accompanied by fluorescence detection used
to measure the state of these ions (state projection). The cooling times
by state projection could be much shorter than by natural relaxation.
The state initialization time becomes an important factor, if this time is
relatively long compared with the gate operation time, and/or repeated
initialization is required by say, quantum error correction.

3. The decoherence times of the physical system implementing the qubit
must be much longer than the quantum gate operation time. The deco-
herence of a quantum system is due to thermodynamically irreversible
interactions with the environment; it represents the principal mechanism
for the transition from quantum to classical behavior. The evolution of
a quantum system in contact with its environment is characterized by
various decoherence times; each decoherence time is related to a different
degree of freedom of the system.

The decoherence times relevant for a quantum computer are associ-
ated with the degrees of freedom that characterize the physical qubits;
they also depend on the specifics of the qubits’ couplings to these degrees
of freedom. For example, the decoherence time of the spin of an impurity
in a perfect semiconductor depends on its location, whether it is in the
bulk of the solid, or near the surface of the device, and how close it is to
the structures used to manipulate its quantum state [73]. The decoherence
times must be long enough to allow the quantum system to evolve
undisturbed until the computation is complete. No physical system can
be completely free of decoherence, but decoherence times of the order of
(104 − 105) × (gate operation time) are considered acceptable for fault-
tolerant quantum computation,9 in which case the error probabilities are
lower than a critical threshold. The reality is that quantum systems with
long decoherence times of the order mentioned above are relatively hard
to find.

4. A physical system as the embodiment of a quantum computer must have
available a “universal” set of quantum logic gates. A quantum computer
executes a sequence of unitary transformations U1, U2, U3, . . . , Un, as

9Gate operation time, the time for the execution of an individual quantum gate represents the
clock time of a quantum computer.

Nature-Inspired Algorithms and Systems 57

specified by a quantum algorithm, with each transformation acting on
one, two, or, at most three, qubits. All these unitary operations are
implemented by a “universal” set of quantum gates; a convenient set of
universal quantum gates contains one two-qubit gate plus a set of one-
qubit gates.

5. The physical system must have a qubit-specific measurement capability.
At the end of a computation, the result is read out by specific measuring
qubits. The measurement represents an interaction between qubits and
the measurement apparatus and this is an irreversible process. Realistic
measurements of quantum systems are expected to have very low
quantum efficiencies (�100%); the probability of obtaining a certain
value for an output qubit as a result of one measurement is very low.
The efficiency of a measurement of a quantum computer output could be
“increased” either by rerunning the computation for a number of times, or
by copying the value of a single read-out qubit10 to several ancilla qubits
using CNOT gates and measuring each of them.

6. The system must have the ability to interconvert stationary and flying
qubits. The term “flying qubits” refers to the physical qubits that are
transmitted from place to place while the “stationary qubits” represent
the physical qubits for reliable local computation. The qubits encoded
either in the polarization or in the spatial wave function of photons are
the preferred flying qubits at this time. The light transmission through
optical fibers is a well-developed technology and reliable enough for the
transmission of qubits, even at relatively long distance. Qubits unloading
from the quantum computer into a transmission system, and loading them
up through a reversed process presents technical difficulties.

7. The flying qubits must be transmitted between specified locations without
affecting their state. The preservation of the photon quantum state during
transmission through optical fibers or through atmosphere has been the
main concern of many experiments in quantum cryptography [122], but
not of quantum computing yet.

General criteria for systems with low level decoherence. The original
criteria of DiVincenzo cannot be easily applied to some of the new
emerging concepts; they can be rephrased [145] into three more general
criteria based on the assumption that these can be achieved if the
decoherence is kept at a small enough level. These new criteria are
(i) scalability, (ii) universal logic, and (iii) correctibility.

10The state of a qubit cannot be copied, but the value of a qubit in a given basis can be copied.

58 Complex Systems and Clouds

Scalability is achieved by adding new, well-characterized qubits.
Universal logic criterion requires the system to have a finite set of control
operations. In the case of qubits, the set of universal logic gates may
include nearly analogue single-qubit gates (such as spin-qubit arbitrary
rotations) and any digital two-qubit entangling logic operation, such as
the CNOT gate. Correctability requires that any quantum error correction
protocol devised for any physical implementation should be able to
maintain the desired state of the system by eliminating unwanted entropy
introduced from the environment into the quantum computer, while
adding/dropping qubits required by encoding/decoding operations. That
can be done through a combination of efficient state initialization and
measurement.

2.8 MEMBRANE COMPUTING

Membranes play an important role in the biochemical processes in living
organisms. A cell is separated from its environment by a membrane, the
nucleus of a cell where the genetic material resides is surrounded by
a membrane, and various regions of a cell where specific biochemical
processes take please are also surrounded by membranes. The transfer of
molecules from one region of a cell to another is controlled by membranes
and, often the chemical reactions that take place in a cell are catalyzed by
proteins bounded on the membranes. The transport of molecules from lower
to higher concentrations is also controlled by membranes.

Membrane computing (MC) is biologically inspired; it is a generalization
of DNA computing, but it is a computational rather than a biological model.
In MC, transformation rules allow objects encapsulated into compartments
defined by membranes to evolve. In this evolution compartments commu-
nicate among themselves and with the environment. The structure of a
P-system, as MC is named after its inventor, Gheorghe Paun, could be a
hierarchical arrangement of membranes, as in a cell, or a net of membranes
as in a tissue or a neural net. A membrane can be viewed as an abstraction,
a separator of two regions of the Euclidean space, a finite “inside” and an
infinite “outside,” able to communicate among themselves [185].

Chemicals are modeled by symbols, or by strings of symbols, collec-
tively called objects. A region defined by a membrane can contain other
symbols or strings or other membranes. A P-system has one outer mem-
brane, called the skin membrane, and a hierarchical relationship governing
all its membranes under the skin membrane (see Fig. 2.3).

Nature-Inspired Algorithms and Systems 59

(A) (B)

Fig. 2.3 (A) A membrane structure with 11 regions, each one surrounded by its own
membrane. The membrane of the outer structure, structure 1, separates the structure from its
environment. (B) The tree description of the membrane structure.

MC works with multisets, sets of objects whose multiplicities matter,
to model biochemical processes in a cell where concentration, the number
of molecules, is important. As customary in genetics, MC adopts a string
representation of multisets, e.g., aaabbc → accccc is another representation
for the transformation a3b2c → ac5 and means that three copies of a, two
copies of b, and one copy of c are transformed in one copy of a and five
copies of c. This transformation could represent a cellular chemical reaction
in which b behaves as a catalyst and to produce five molecules of c and one
molecule of a we need three molecules of a, two molecules of the catalyst,
and one molecule of c.

Formally, a P-system of degree m is a construct of the form [184]

Π = (O, C, μ, w1, w2, . . . , wm, R1, R2, . . . Rm, io), (2.36)

where:

1. O is a finite and nonempty alphabet of objects,
2. C ⊂ O is a set of catalysts,
3. μ is a membrane structure, consisting of m membranes, 1, 2, . . . , m,
4. w1, w2, . . . , wm are strings over O representing multisets of objects in the

regions 1, 2, . . . , m of the membrane structure,
5. R1, R2, . . . , Rm are finite sets of evolution rules associated with the

regions 1, 2, . . . , m of the membrane structure, and
6. io is either one of the labels 1, 2, . . . , m and then the respective region

is the output region of the system, or it is 0, and then the result of a
computation is collected in the environment of the system.

60 Complex Systems and Clouds

In P-systems rules and objects are chosen nondeterministically and par-
allelism occurs naturally mimicking the fact that a chemical reaction takes
place for all molecules of two chemicals when the reaction can occur. Three
types of local rules, each associated with a region of the membrane drive the
evolution of the objects, multiset rewriting, communication, and membrane
handling rules. There are also rules for cooperation between regions indicat-
ing the target of objects produced by a rule, e.g., here, in, out indicating that
the object (a) remains in the same region, (b) moves to a randomly chosen
directly lower membrane, and (c) moves into the region surrounding the
membrane, respectively. For example, the rule aaabbc → accccc could be
specified as aaabbc → (a, here)(c, out)(c, here), (c, in), (c, here)(c, here).
Such rules are executed in parallel whenever the number of objects allow it.

2.9 CAN THERE BE A DEUS EX MACHINA IN COMPUTING?

According to the Merriam Webster Dictionary Deus Ex Machina is “a
character or thing that suddenly enters the story in a novel, play, or movie,
and solves a problem that had previously seemed impossible to solve.” In
Greek tragedies actors playing characters sent by Gods to solve hopelessly
lost causes were brought to the stage by mechanical contraptions; this is the
origin of the expression Deus Ex Machina. The ploy was used since ancient
times by writers from Euripides to Shakespeare, and then to H.G. Wells11

to introduce in their plays or novels minor miracles allowing the good and
light to triumph over the bad and darkness.

Unquestionably, there is no Deus Ex Machina in science,12 the progress
of the plot is deliberate and strenuous with small steps in pushing forward
the frontier of human knowledge; no miracles are ever present! Time
and over again new theories that seemed far fetched, counterintuitive

11After Jason abandons Medea and their two children she kills her children; Euripides saves
Medea in his play by sending a chariot commission by the Sun God to take her to a safe
place in Athens. In Pericles and several other plays, Shakespeare introduces a character who
breaks the flow of action and rewrites the ending of the play. Wells brings in bacteria to kill
the Martians who triumphed over humanity in the War of the Worlds.
12Sensational discoveries are reported from time to time only to be debunked sooner or
later. In recent years reports of cold fusion were discredited as the results reported could not
be replicated. Starting in the Middle Ages perpetual motion devices were proposed and, in
spite of the fact that the Second Law of Thermodynamics shows that perpetual motion is not
possible, inventors do not seem to be deterred in their search for a perpetuum mobile.

Nature-Inspired Algorithms and Systems 61

and abstract, prove to be more refined and accurate reflections of the
physical reality, rather than bursts of miracles. Quantum mechanics and
general relativity theory whose predictions regarding gravitational waves
were recently confirmed by elaborate experiments, are perfect examples of
such disruptive theories.

As Moore’s Law is approaching its inevitable end-of-life moment,
quantum computing and, to a lesser extent DNA computing, have raised
high expectations that soon we will be able to compute incredibly faster
and with minimal energy costs and, at the same time, find effective ways to
store large volumes of information. Quantum information processing seems
to offer a magical solution for the future of computing and communication.
Indeed, quantum key distribution protocols can ultimately guarantee secure
communication and has already been demonstrated over distances of a few
hundred kilometers. On the other hand, though considerable progress has
been made in several technologies such as quantum dots, trapped ions in
a cavity, or NMR, an experimental quantum computer with thousands of
qubits is probably years away.

There is no better source of inspiration on managing complexity than
nature; therefore, the investigation of complex structures and complex
phenomena in nature is extremely valuable and helpful in understanding the
challenging faced by man-made systems. None of the concepts discussed
in this chapter provides magical and universally applicable solutions for
the design and implementation of complex computing and communication
systems. What we observe in nature must be adapted to the environment of
a particular application. Consider, for example, epidemic algorithms used to
disseminate topological information in communication networks. To limit
the overhead due to such messages the life-time or number of hops traveled
by each message must be limited.

Rather than replicating processes in nature we should discover useful
analogies and shape them for particular applications. Take for example the
selection process in the evolution of species. Time is the critical ingredient
for self-organization and adaptation in nature. It took millions of years
for biological species to adapt to natural conditions; only the members
of a species with desirable traits survived and passed their genes to their
descendants. It seems thus, hopeless to allow a man-made system to self-
organize, manage, and repair itself, unless we understand that the time can
be compressed as suggested by Heinz von Forester, see Section 1.9.

62 Complex Systems and Clouds

The rate of events that change the state in computer clouds and other
large-scale systems is extremely high. This gives us the opportunity of
embedding sophisticated learning algorithms in the systems to determine
the essential characteristics of the environment after shorter periods of time.
Knowledge accumulated in hours, days, or weeks can then be used to adapt
to the environment and optimize the performance of the system. Of course,
this applies only to ergodic processes,13 but we have no reasons to believe
that we are dealing with nonergodic processes for most systems of interest
such as computer clouds.

Selecting the markers of adaptation is at the heart of evolution, as we
have seen in Section 2.3. New ideas introduced by mixability theory [152]
challenge the traditional concept of fitness. Profits and energy consumption
seem to be good indicators of fitness for computer clouds. The choice
of adaptation mechanisms is very challenging and it seems that market
mechanisms are likely to fare better than the ones inspired by nature, as
we shall see in the last chapter of this book.

2.10 MAJOR CONTRIBUTIONS AND FURTHER READINGS

John von Neumann is known not only for his work in self-replicating
systems [236], but also for seminal contributions to game theory [237], com-
puter architecture [233], reliability theory [235], ergodic theory [231, 232],
and quantum mechanics [234].

Richard Feynman got the Noble Prize in Physics in 1965 for contribu-
tions to quantum electrodynamics. He is known for the Feynman diagrams,
the Feynman Lectures on Physics, participation to the Manhattan Project
and the investigation of the Challenger disaster, and also for his wit. He
was the first to conclude that quantum systems cannot be exactly simulated
with classical computers [80] and 3 years later he suggested that a computer
exploiting the physical properties of quantum systems could be built [81].
In the late 1980s he played an important role in the development of a
massively parallel computer, the Connection Machine. He once said “For
a successful technology, reality must take precedence over public relations,

13A stochastic process is ergodic if the statistical properties of a set of realizations of the
process can be deduced from a single, sufficiently long, random sample of the process.

Nature-Inspired Algorithms and Systems 63

for nature cannot be fooled.” The Feynman Lectures on Computation [82]
were published in 1996.

Leonard Adleman is known for his pioneering work on DNA computing
[6, 7]. He got the Turing Award in 2002 for the 1978 RSA encryption system
named after its creators Rivest, Shamir, and Adleman [193].

Rolf Landauer [146], Charles Bennett [33–35], David Deutsch [41, 71],
Peter Shor [205–208] as well as experimentalists such as David DiVincenzo
[72, 73], Ignacio Cirac and Peter Zoller [50, 51] have major contribution to
the field of quantum computing. Books such as [156, 160, 175] cover the
field.

Genetic algorithms were introduced in 1975 by John Holland [117].
A widely cited reference on GA is the comprehensive tutorial [247]. Ant
optimization algorithms were proposed in the dissertation of Marco Dorigo
[74] and further developed in [75, 76]. Swarm intelligence is analyzed in
[53, 133]; more information at http://www.particleswarm.info/. MC was
proposed by Gheorghe Paun in 1998 [184]. A book [185] and several
conferences are dedicated to P-systems.

A 2007 survey of the field of natural computing is presented by [131] and
a series of lectures on the same topic is available at [111]. Insights useful for
understanding epidemic algorithms are provided by [42].

Next chapter is focused on how to manage complexity of large-scale
cyber-physical systems.

http://www.particleswarm.info/

CHAPTER 33
Managing Complexity of Large-Scale
Cyber-Physical Systems

A large-scale system1 has a very large number of interconnected hardware
components running under a complex software system. Large-scale systems
are now ubiquitous. The Internet is an example of a large-scale system that
has become critical for the economic and social infrastructure of the modern
society. The Internet connects more than one billion hosts and consists
of millions of routers interconnected by communication links and running
under sophisticated communication software. Large-scale sensor networks
introduced in Section 3.11 are another example of complex systems.
Computer clouds discussed in Chapters 4 and 5 are also complex systems
with millions of multicore, multithreaded processors interconnected by a
hierarchy of networks. The software stack distributed on all components
enables such complex systems to operate reliably and effectively.

3.1 CYBER-PHYSICAL SYSTEMS

Most large-scale systems are cyber-physical systems integrating computa-
tion, communication, sensing, and physical processes. For several decades,
we have designed and built systems with an increasingly larger numbers of
components interacting with one another in intricate ways. In this section we
examine the technological developments and the forces pushing integration
of complex cyber-physical systems in the critical infrastructure of the
society.

Breakthroughs in virtually all computing and communication technolo-
gies have made possible the design and implementation of increasingly
more complex computing and communication systems. We have witnessed
the unprecedented pace of evolution in processor architecture and solid-
state technologies, optical storage technologies, wireless and fiber optics

1The term Ultra-Large-Scale system ULS is also used; a ULS is a “software intensive
systems with unprecedented amounts of hardware, lines of source code, numbers of users,
and volumes of data.”

Complex Systems and Clouds. http://dx.doi.org/10.1016/B978-0-12-804041-6.00003-7
Copyright © 2017 Elsevier Inc. All rights reserved. 65

http://dx.doi.org/10.1016/B978-0-12-804041-6.00003-7

66 Complex Systems and Clouds

Sensors
digital cameras

(2000s)

Disseminate

COLLECT

Communicate
Store

Process

Microprocessors (1980s)
Multicore microprocessors

(2000s)

Milestones in information
Processing

Boolean algebra (1854)
Digital computers (1940s)
Information theory (1948)

Fiber optics (1990s)
Wireless (2000s)

World Wide Web (1990s)
Google, YouTube (2000s)

Optical storage
High density solid-state

(1990s)
Spintronics (2000s)

Fig. 3.1 Our ability to process, store, communicate, collect, and disseminate information
due to breakthroughs in several technologies have enabled the design and implementation of
increasingly more complex systems.

communication, sensors, and software (see Fig. 3.1). Advances in each
of these areas increased the pressure for technological innovations, either
directly or indirectly, in related areas.

The microprocessor technology put pressure on storage and communi-
cation technologies which, in turn, led to today’s Internet. Sensors are now
ubiquitous and enable the collection of large volumes of data. Every day,
we generate 2.5 quintillion bytes of data, so much that 90% of all data in
the world has been created in the last 2 years alone, according to [124].

Managing Complexity of Large-Scale Cyber-Physical Systems 67

The World Wide Web and social networks allow information collected
by cameras embedded in our mobile devices, or generated by other data
sources, to be stored and shared world-wide.

This evolution process continues to this day and it is unlikely to slow
down any time soon [216]. Some of the forces pushing this evolution are il-
lustrated in Fig. 3.2. The use of computing systems in virtually every area of
human endeavor has reinforced the need for interconnectivity which, in turn,
has hastened the support of mobile devices. Interconnectivity and mobility
demand a continuous transformation of the Internet and the development of
a vast array of wireless and cellular networks. The communication systems
run under the control of real-time software.

Complexity of computing
and communication systems

New
components

New
applications

Interconnectivity +
mobility, embedded

devices

Physical
constraints

Larger segment of
population using

the systems

Optimization of
resource

consumption

Timing
constraints

Fig. 3.2 Factors contributing to an ever increasing complexity of cyber-physical systems and
the interactions among them.

The need to minimize power consumption is particularly critical for
mobile devices with limited power reserves. It is also critical for large
data centers, whose power consumption represents an increasingly larger
fraction of the energy consumption in developed countries; such centers are
expected to reduce energy consumption and shrink their carbon footprint.
The constraints imposed by the laws of physics, such as heat dissipation and
finite speed of light, make it harder and harder to increase the clock rate of
processors.

Smaller and more energy efficient system components have become
available and are embedded in many systems. Timing and physical

68 Complex Systems and Clouds

constraints force us to increase the complexity of the software. Real-time
software controls the behavior of multifunctional mobile devices such as the
smartphones. Embedded microprocessors optimize the fuel consumption of
cars and increase the energy efficiency of home appliances and of heating
and cooling systems. To facilitate easier access to information technology
for an increasingly larger segment of the world population, intelligence is
built into the systems increasing the complexity of the system software.

Virtualization adds to the complexity of the system software. Resource
virtualization abstracts the underlaying resources and simplifies their use,
isolates users from one another, and supports replication which, in turn,
increases the elasticity of the system. Virtualization is a critical aspect
of cloud computing [214], equally important for the providers and the
consumers of cloud services.

Virtualization simulates the interface to a physical object by any one of
four means:

1. Multiplexing—create multiple virtual objects from one instance of a
physical object. For example, a processor is multiplexed among a number
of processes, or threads.

2. Aggregation—create one virtual object from multiple physical objects.
For example, a number of physical disks are aggregated into a RAID
system.

3. Emulation—construct a virtual object from a different type of a physical
object. For example, a physical disk emulates Random Access Memory.

4. Multiplexing and emulation. Examples: virtual memory with paging
multiplexes real memory and disk, and a virtual address emulates a real
address; the TCP protocol emulates a reliable bit pipe and multiplexes a
physical communication channel and a processor.

In 1992, Gordon Bell suggested the need of computing for the masses
[31] and indeed, computer clouds have revolutionized the manner in which
individuals, as well as organizations large and small, compute and store their
data. Anyone with a credit card could use resources previously available
only to those with access to supercomputers, or to the data centers of large
organizations.

New applications take advantage of the new technological developments.
For example, one of the fastest growing areas of cloud computing applica-
tions is data analytics, the process of extracting useful information from

Managing Complexity of Large-Scale Cyber-Physical Systems 69

massive amounts of raw data. Data stored on computer clouds is accessible
to hundreds of millions of mobile device users. The software stack of cloud
servers is more complex in order to support resource virtualization, as well
as effective and secure resource sharing.

It did not take a long time until vehicular clouds using onboard comput-
ing resources of vehicles became part of the conversation [16]. The concept
of Smart Cities has captured the imagination of those concerned with life in
large metropoles. In a smart city, large numbers of sensors and communica-
tion and computing systems work in concert to reduce pollution, minimize
energy consumption, optimize city traffic, and prevent catastrophic failures
of the distribution systems for water, gas, and electricity.

Cyber-physical systems based on technologies such as smart grids, smart
homes, intelligent transportation, and smart cities allow direct integration
of the physical world into computer-based systems, and lead to improved
efficiency, accuracy, and economic benefit. The Internet of Things (IoT) is a
global network of physical objects with embedded sensors and actuators.
It is forecast that 6.4 billion connected things will be in use worldwide
in 2016 and will reach 20.8 billion by 2020. In 2016, 5.5 million new
things will get connected every day and their number will increase 30%
in 2016 compared to the previous year (http://www.gartner.com/newsroom/
id/3165317, accessed on January 2016).

Complex systems are now a critical element of the societal infrastructure
and challenge our ability to build efficient and dependable large-scale
systems. The complexity of the elements of the critical infrastructure is
undeniable, yet their design was and still is, based on the traditional, mostly
deterministic, system organization, and resource management.

3.2 SYSTEM COMPOSABILITY AND THE ROLE OF SOFTWARE

Composability is a system design principle focused on the relationships
among system components. Composability of analog systems is limited by
the laws of physics. Noise, power dissipation, and heat removal are some of
the factors limiting the composability of analog systems.

Software has pushed the limit of composability of digital systems [194].
Software complexity is a function of the scale of the system, and thus,
software complexity of a large-scale system is extreme. The question we

http://www.gartner.com/newsroom/id/3165317
http://www.gartner.com/newsroom/id/3165317

70 Complex Systems and Clouds

examine next is how to assess software complexity. Software engineering
uses several measures for software complexity. Cyclomatic complexity is a
measurement of the extent of the control flow in the source code; the more
conditional the logic, the more difficult to understand a piece of code is.
Another measure, the Halstead volume, relates to the data flow; it quantifies
the amount of information in the source code, how many variables are used,
how often they are used, how many operators, how many functions, and
how many variables they use. Yet another, more empirical measure is the
maintainability index which measures the number of lines of code and how
well commented the code is. This measure is based on the assumption that
the larger the number of lines of code, the more difficult it is for a human to
fully understand the code.

While these measures of software complexity may be useful for a
sequential code, concurrency adds a new dimension to software complexity.
Concurrent code is difficult to write, verify, and debug. Race conditions,
deadlocks, and other synchronization anomalies, are only some of the prob-
lems faced when debugging concurrent code. Real-time adds yet another
dimension to software complexity. The code for real-time systems has to
be carefully crafted; moreover, it is designed for a particular hardware, and
cannot be ported to a different one. Our use of the term software complexity
implies all the elements mentioned above.

Communication among the components of large-scale systems is critical.
In fact, computing and communication are deeply intertwined, whether the
ultimate function of the system is computing, as in the case of computer
clouds, communication, as in the case of the Internet, or sensing, as in
the case of sensor networks. In a communication system, the routers are
software-controlled, real-time, dedicated computer systems. The effective-
ness of packet-switched networks depends on the ability of routers to
effectively process very large numbers of data packets every second. In a
computer cloud, a hierarchy of communication networks allow servers to
communicate with one another and to give an end-user the impression of an
infinite pool of resources. At the present time, the latency and the bandwidth
of the interconnection networks of a computer cloud are an important factor
limiting the performance of Big Data applications.

The autonomic computing initiative has encouraged research on
self-management and self-organization. Some of the research has lead
to industrial products; this is the case of the self-management via utility
function [136]. The critical test for the viability of self-management and

Managing Complexity of Large-Scale Cyber-Physical Systems 71

self-organization concepts and ideas is scalability. Unfortunately, few
of the existing research results in autonomic computing can be applied
to large-scale systems. Many of the existing proposals require intensive
communication among system components and, when applied to large-scale
systems, their effectiveness drops dramatically.

Practical means to support self-organization and self-management could
lead to more efficient and more reliable large-scale systems. To contrast the
manner in which self-organization and self-management can be approached,
we discuss two cases, self-organization of a very large sensor network in
Section 3.11 and a cloud reservation system based on coalition formation
and combinatorial auctions in Chapter 5. In the first case the emphasis is
on communication, how a very large number of sensors without a MAC
address or any other built-in identity can communicate with one another and
organize themselves as a system capable to collect and process sensed data.
The cloud reservation system is a primitive form of self-organization. The
history-based approach allows autonomous servers to organize themselves
in coalitions based on information from previous combinatorial auctions. In
time, this information is increasingly more accurate and the system is able
to better predict the needs of the cloud user community.

3.3 MANAGING COMPLEXITY

A recent textbook on principles of computer systems design [194] devotes
its first chapter to system complexity and to the means to manage complex-
ity, including modularity, layering, and hierarchical organization. Layering
and hierarchy have been present in social systems since ancient times.
For example, the Spartan Constitution, called Politeia, describes a Dorian
society based on a rigidly layered social system and a strong military. Nowa-
days, in a modern society, we are surrounded by organizations structured
hierarchically.

Modularity is a technique to build a systems from a set of interacting
components assembled and tested independently. Modularity has been used
extensively since the industrial revolution for building every imaginable
product, from weaving looms to steam engines, from watches to automo-
biles, and from electronic devices to airplanes. Individual modules are often
made of subassemblies; for example, the power train of a car includes
the engine assembly, the gear box, and the transmission. In computer
architecture, pipelined processors have multiple functional units.

72 Complex Systems and Clouds

Modularity can reduce the cost for the manufacturer and for the con-
sumers. The same module may be used by a manufacturer in multiple
products; to repair a defective product, a consumer only replaces the mod-
ule causing the malfunction, rather than the entire product. Modularity
encourages specialization, as individual modules can be developed by
experts with deep understanding of a particular field. It also supports
innovation; it allows a module to be replaced with another one, possibly
a more performant one, without affecting the rest of the system.

Since the early days of computing large programs have been split into
modules, each one with a well-defined functionality. Modules with related
functionalities have then been grouped together into numerical, graphical,
statistical, and many other types of libraries. A strong requirement for
modularity is to clearly define the interfaces between modules and enable
the modules to work together.

Layering is a particular form of modularity when the functions of the
system are ensured by modules with a well-defined communication pattern;
logically, the modules are stacked on top of one another and each module,
except the top and the bottom one, communicate only with the one above
and the one below it. This restrictive communication pattern simplifies the
design of the interfaces of each module and makes testing and debugging
the system easier. Layering helps us in dealing with complicated problems
when we have to separate concerns that prevent us from making optimal
design decisions. To do so, we define layers that address each concern and
design clear interfaces between the layers.

Communication protocols are layered. The TCP/IP network architecture
accommodates a variety of physical communication channels that carry
electromagnetic, optical, or acoustic signals, thus, there is the need for a
physical layer whose function is to transport physical signals. The next
concern is how to transport frames consisting of a number of bits, rather
than signals, between two nodes linked to one another by a communication
channel, thus, the need for a data link layer. The Internet is a network
of networks; data packets have to traverse a set of networks and a chain
of intermediate routers from the source to the destination; the concern of
the network layer is to forward the data packets from one intermediate
node to the next. The source, as well as the recipient of information, are
outside the network and they are not interested in how the information
crosses the network, but want the information to reach its destination
unaltered; the transport layer is responsible for data segments delivery from

Managing Complexity of Large-Scale Cyber-Physical Systems 73

the source to the destination. Finally, the information sent and received has
a meaning only in the context of an application and this is the function of the
application layer. Layering gives us insights into where to place the basic
mechanisms for error control, flow control, and congestion control in the
protocol stack.

Layering could also affect the performance; it could prevent optimiza-
tions. Then the rigorous communication patterns demanded by layering are
sacrificed in favor of performance. For example, cross-layer communication
allows wireless applications to take advantage of information available at
the Media Access Control (MAC) sublayer of the data link layer.

There are systems for which it is difficult to envision a layered organi-
zation because of the complexity of the interactions among the individual
modules. Consider, for example, a typical operating system with well-
defined functional components:

• Processor management responsible for processor virtualization, schedul-
ing, interrupt handling, execution of privileged operations and system
calls, and multithreading.

• Virtual memory management responsible for translating virtual addresses
to physical addresses.

• Multilevel memory management responsible for transferring storage
blocks between different memory levels, most commonly between pri-
mary and secondary storage.

• I/O responsible for transferring data between the primary memory, I/O
devices, and network interfaces.

There are multiple interactions among these components, therefore it
seems unlikely that a strictly layered OS organization is feasible. An
interesting question with practical implications for the future development
of computing clouds is if a layered software architecture for computer clouds
can be designed. One could argue that it may be too early for such an
endeavor, that we need time to fully understand how to better organize a
cloud infrastructure and we need to gather data to support the advantages of
one approach over another.

Hierarchical organization. Herbert Simon defines a hierarchic system
[210] as follows: “By a hierarchic system, or hierarchy, I mean a system
that is composed of interrelated subsystems, each of the latter being, in
turn, hierarchic in structure until we reach some lowest level of elementary
subsystem.”

74 Complex Systems and Clouds

We can distinguish two types of interactions in a hierarchically organized
system, interactions among the subsystems and interactions within the
subsystems. Typically, these interactions often are of different orders of
magnitude. According to Herbert Simon, nearly decomposable systems
have two properties [209]: “(a) in a nearly decomposable system, the
short-run behavior of each of the component subsystems is approximately
independent of the short-run behavior of the other components; (b) in the
long run, the behavior of any one of the components depends in only an
aggregate way on the behavior of the other components.”

Hierarchical organization is a common approach to accommodate the
complexity of many large-scale social, economical, computer, and com-
munication systems. Hierarchical organization restricts the communication
pattern between the system components; the system is organized as a tree. In
a hierarchical organization, information about the state of the system flows
from the leaves toward the root of the tree; management decisions flow in
a reverse pattern, from the top to the bottom. Typically, each node manages
the subtree rooted at that node. In practice, a more involved communication
pattern may exist, a child node may have multiple parents.

Many large-scale computing systems are organized hierarchically; in
each cluster, a leader is responsible for monitoring and controlling the
activity of the cluster nodes and interacts with other cluster leaders to
achieve common system objectives. Such an organization is more efficient
as communication delays are shorter and the overhead for resource manage-
ment is lower.

Layering and hierarchical organization have their own problems, could
negatively affect the society, impose a rigid structure and affect social
interactions, increase the overhead of activities, and prevent the system from
acting promptly when such actions are necessary. In the case of computing
and communication systems, layering typically affects performance.

3.4 CHALLENGES SPECIFIC TO LARGE-SCALE SYSTEMS

The computing and communication infrastructure is increasingly more
complex as new technologies become available and require the software to
support new functions and to interact with an increasingly more demanding

Managing Complexity of Large-Scale Cyber-Physical Systems 75

environment. For example, support for mobility is now ubiquitous due to
advances in wireless communication and cellular networks. Advances in
sensor technology led to the ability to collect vast amounts of data and,
in turn, the need for processing these data poses significant challenges to
computer clouds. Another challenge is the integration in large-scale systems
of an the increasingly growing population of embedded systems.

Several factors affect the complexity of modern computing and commu-
nication systems:

1. The rapid pace of technological developments and the availability of
relatively cheap and efficient new system components such as multicore
processors, sensors, retina displays, and high-density storage devices.
The introduction of new technologies rapidly changes both the systems
and the environment they operate in and often forces the system de-
signers to further increase software complexity to accommodate the new
technology.

Retina displays increase the power consumption and force the system
designers to compensate this increase by reducing the power consump-
tion of other system components. The replacement of mechanical disk
drives with solid-state drives considerably reduces the access time and
the power consumption and increases the system reliability; it requires
new software and, at the same time, invites the development of new
applications.

IBM announced recently the successful development of the 7 nm
(nanometers) technology expected to replace in the next few years the
14 nm, the highest density technology used today. This new solid-state
technology will be used for the production of processors and memory
chips. Processors have dramatically increased their processing power.
Increasing the density of transistors on a chip enabled the development of
multicore processors, as well as the implementation of sophisticated ar-
chitectural enhancements supporting Instruction Level Parallelism (ILP).
The Instructions per Cycle (IPC) has increased steadily due to techniques
such as pipelining, dynamic instruction scheduling, and speculative
execution.

The power dissipation of processors increases with the clock rate;
for the current solid-state technologies, this increase is proportional to
the clock rate to the power of two or three, i.e., when the clock rate
doubles, the energy dissipation could increase as much as eight times.

76 Complex Systems and Clouds

Heat removal becomes problematic and this has forced the manufacturers
to transition to multicore processors rather than increasing the clock rate.2

2. New technologies required by large-scale systems are developed at a
different pace. This reality can only be accommodated by increasing
the system complexity and, in particular, the complexity of the software
controlling the system. But the software development technologies have
not kept pace with the needs of large-scale systems, especially in the area
of AI support.

There are other significant discrepancies, e.g., the processing power of
modern processors had increased faster than the ability to communicate
effectively. Thus, the performance of large-scale computing systems
has not been able to take full advantage of the throughput of modern
processors. Now processors in the same rack of a cloud infrastructure are
connected by 10 Gbps Ethernet (10 GE). It is expected that 100 GE will
replace them in the coming years. The multiple layers of the software
stack of TCP/IP-based communication architecture is also a limiting
factor of the communication speed for sensor and mobile applications.

3. We are now faced with a paradigm shift in software development.
To exploit the computing power of multicore processors we have to
rely on parallel software, which is difficult to implement and debug.
This transition is necessary to exploit task-level parallelism rather than
rely solely on ILP. Embedded systems are now ubiquitous and require
concurrent, real-time software.

There are additional elements of computing and communication systems
reflecting phenomena specific to complex systems [1]:

• The behavior of the systems is controlled by phenomena that occur at
multiple scales/levels. As levels form or disintegrate, phase transitions
and/or chaotic phenomena may occur.

• Systems have no predefined bottom level; it is never known when a lower
level phenomena will affect how the system works.

• Systems are entangled with their environment. A system depends on its
environment for its persistence, therefore, it is far from equilibrium. The
environment is man-made and the selection required by the evolution can
either result in innovation, or generate unintended consequences, or both.

2For example, Intel released Pentium 4 chips clocked at 3.6 GHz in 2006; at the end of
2013 the fastest Intel Haswell Core i7 CPUs ran at 3.9 GHz. Haswell is a microarchitecture
developed by Intel aiming to optimize the energy consumption; it is based on a 22 nm process.

Managing Complexity of Large-Scale Cyber-Physical Systems 77

Other aspects of complexity are side-effects of the organization, manage-
ment, and the operations of the systems, or of unrealistic assumptions about
the system models:

• Abstractions of the system useful for a particular aspect of the design may
have unwanted consequences at another level.

• Systems are expected to function simultaneously as individual systems
and as groups of systems (systems of systems) [168].

• Typically, the systems are both deployed and under development at the
same time.

A conclusion is that the design of large-scale systems should be focused
on high-level policies rather than on the mechanisms for the implementation
of the policies. This would allow the system to be more resilient to
changes in the technologies and the environment. The policies should
favor cooperation between autonomous entities and assume that individual
components follow high-level policies, but make their decisions based on
local information, rather than insisting on centralized or distributed control.
Autonomy of individual components is critical due to the size of the system.

3.5 AUTONOMIC COMPUTING

The management and control of large-scale systems is extremely challeng-
ing. As the system complexity grows due to technological advances and un-
der pressure from the user community, the system becomes unmanageable,
less reliable due to the very large number of components, less secure, and
more difficult to maintain due to the complexity of the software. These facts
were recognized and, in early 2000, IBM advanced the idea of autonomic
computing [85, 134].

The 2003 autonomic computing manifesto [134] proposed embedding
complexity in the system infrastructure. Since then, a significant body of
research was devoted to autonomic computing. Over 8,000 papers, nearly
200 conferences, and some 200 issued patents and more than 100 pending
patents, are some of the results of a decade-long research effort in this
field [137]. Some of these efforts have resulted in commercial products,
such as the Tivoli software produced by IBM Cloud and Smarter Infras-
tructure Division. Some of the traits of autonomic computing, including
self-optimization, self-configurations, and continuous monitoring, appear in
database management systems (DBMS) such as DB2 [69]. DB2 supports
disaster recovery and autonomic index determination.

78 Complex Systems and Clouds

Autonomic systems are expected to make decisions on their own based
on high-level policies; such systems attempt to optimize their state and to
adapt to changing conditions of the environment and of the internal state of
the system. Four aspects of autonomic computing are identified in [134]:

1. Self-configuration—automated configuration of components and systems
follows high-level policies, the entire system adjusts automatically and
seamlessly.

2. Self-optimization—the components and systems continually seek oppor-
tunities to improve their own performance and efficiency.

3. Self-healing—the system automatically detects, diagnoses, and repairs
localized software and hardware problems.

4. Self-protection—the system automatically defends against malicious
attacks or cascading failures. It uses early warning to anticipate and
prevent systemwide failures.

The goal of autonomic computing is to manage complexity, reduce cost
of ownership, and enhance the quality of the software. Complexity should
be managed by exploiting technological advances, including those in several
areas of Artificial Intelligence. Autonomic computing requires software and
hardware capable to ensure that the system is self-aware and, at the same
time, aware of the environment [181]. The systems should be able to monitor
and analyze internal events, as well as events caused by the interaction
between the environment and the system. Machine-learning techniques,
feedback control, planning and optimization techniques are some of the
means to support system awareness.

An autonomic system should be supported by policy-based management
and effective negotiations between system components. A policy defines the
high-level objective driving the response of the system to internal changes
of state and to changes in the environment. Different mechanisms for the
implementation of policy-based management for large-scale systems exist,
see Section 4.6.

A policy can specify the action to be taken or can define a goal state
to be reached. In both cases, it is necessary to know the current state of
the system as well as the state to be reached. Knowing with any degree
of accuracy the global state of a large-scale system is a very challenging
proposition. Equally challenging is the determination of the path leading to
a desirable state.

Managing Complexity of Large-Scale Cyber-Physical Systems 79

The concept of utility is based on the principle of rational choice, i.e., a
component of a complex system will choose the most beneficial course of
action. Policies based on utility seem suitable for large-scale systems. The
utility is a real number measuring the system’s benefit of being in a certain
state. For a system with a very large number of autonomous components,
each one of the components is able to accurately determine its state and
its utility. Determining the utility of the entire system requires a global
resource manager tasked to collect information from all system components
filtered by objective analyzers and then determine the course of action. The
decision-making process involves an upwards flow of utility information
followed by downwards flow of decisions.

This is the case of the Tivoli Intelligent Orchestrator (TIO) where the
objective analyzers process utility information from groups of nodes [136].
This form of self-management is unlikely to be effective for systems with
millions of components with rapidly changing states. The information used
by the objective analyzers and by the global resource manager will inher-
ently be obsolete. A significant fraction of the communication bandwidth
of the system will be used in the process. In Chapter 5, we discuss the
results of a simulation experiment comparing hierarchic control with market
mechanisms. The results confirm that monitoring the states of individual
system components does not always effectively support self-management.

The scalability of TIO self-management is questionable. According to
[136]: “. . . Models are essential for relating higher-level metrics to lower-
level system control parameters. In our data center example, we were able to
tap into a queuing model that could predict what would happen if the amount
of resource changed.” Developing such models for large-scale systems is
extremely challenging.

The decisions made by self-management must take into account, not
only changes in the internal system configuration, but also the interactions
with the environment [2, 5]. Some of these interactions affect the system
resources, others reflect the service demands placed by the user community.
Changes in the internal system configuration are due to predictable phe-
nomena, such as individual server failures, or to unpredictable ones, such
as power failures affecting a number of servers. Maintaining a history of
such events helps in determining the failure rate and the actions to be taken
in each case. This approach reflects the principle of embedding complexity

80 Complex Systems and Clouds

in the system itself. Complex phenomena require a long history, thus, the
self-management system should be able to learn and improve in time.

Service-level agreements (SLA) should spell out the interactions with
the users which are part of the system environment. For example, the SLA
should specify the type of workload. Rapid varying workloads, such as those
generated by transaction processing systems, are more difficult to handle
than batch processing.

3.6 SCALABLE SYSTEM ORGANIZATION

Scalability is a critical concern as the systems are increasingly more
complex, e.g., social networks such as Facebook are projected to reach one
billion users in several years. Today’s computer networks connecting hun-
dreds of millions of computers, computer clouds with millions of servers, the
future smart power grid infrastructure expected to have a very large number
of nodes including customers, power generators, and transmission lines, are
only a few examples of systems expected to have properties invariant to the
scale of the system, in other words, to be scale-free.

Graphs are mathematical structures used to model pairwise relations
between objects and to study system organization. Several models of graphs
have been investigated starting with the Erdös-Rény model [78], where
the number of vertices is fixed and the edges connecting vertices are
created randomly. This model produces a homogeneous network with an
exponential tail; connectivity follows a Poisson distribution peaked at the
average degree k̄ and decaying exponentially for k � k̄.

An evolving network, where the number of vertices increases linearly
and a newly introduced vertex is connected to m existing vertices according
to a preferential attachment rule, is described by Barabási and Albert in
[9, 10, 29]. Regular graphs, where a fraction of edges are rewired with
a probability p, have been proposed by Watts and Strogatz and called
small worlds networks [244]. Networks whose degree distribution follows
a Power Law are called scale-free networks. The four graph models are
sometimes abbreviated as: ER (Erdös-Rény), BA (Barabási-Albert), WS
(Watts-Strogatz), and SF (scale-free) models, respectively. We use the terms
networks, nodes, and links when we discuss a physical system and the terms
graphs, vertices, and arcs when we discuss the model of a system.

Managing Complexity of Large-Scale Cyber-Physical Systems 81

In a scale-free organization, the probability p(k) that an entity interacts
with k other entities decays as a Power Law discussed in Section 1.5

p(k) ≈ k−γ , (3.1)

with γ a constant and k a positive integer. This probability is independent of
the type and the function of the system, the identity of its constituents, and
the relationships between them.

Fig. 3.3 A scale-free network is nonhomogeneous; the majority of the vertices of a graph
model of a scale-free network have a low degree and only a few vertices are connected to a
large number of edges; the majority of the vertices are directly connected with the vertices
with the highest degree.

The graph of a scale-free network is nonhomogeneous, there are a few
vertices with a high degree of connectivity and the majority of the vertices
are only connected with few other vertices. In addition to scalability, scale-
free networks have a significant number of other highly desirable properties
discussed later in this section.

The degree distribution of scale-free networks follows a Power Law;
we only consider the discrete case when the probability density function
is p(k) = af(k) with f(k) = k−γ and the constant a is a = 1/ζ(γ , kmin) thus,

p(k) = 1
ζ(γ , kmin)

k−γ . (3.2)

82 Complex Systems and Clouds

In this expression kmin is the lowest degree of any node, and in our discussion
we assume that kmin = 1; ζ is the Hurvitz zeta function3

ζ(γ , kmin) =
∞∑

n=0

1
(kmin + n)γ

=
∞∑

n=0

1
(1 + n)γ

. (3.3)

The high connectivity nodes of a scale-free network play the important
role of hubs in communication and networking, a fact that can be exploited
when designing efficient search algorithms [4].

Fig. 3.3 shows the graph of a scale-free network. The average distance
d between the N nodes, also referred to as the diameter of the scale-free
network, scales as ln N; in fact it has been shown that when kmin > 2 a
lower bound on the diameter of a network with 2 < γ < 3 is ln ln N [56].

A number of studies have shown that scale-free networks have
remarkable properties, such as: (a) robustness against random failures [30];
(b) favorable scaling [9, 10]; (c) resilience to congestion [95];
(d) tolerance to attacks [223]; and (e) small diameter [56] and small average
path length [29].

The moments of a Power Law distribution play an important role in
the behavior of a network. It has been shown that the giant connected
component (GCC) of networks with a finite average vertex degree and
divergent variance can only be destroyed if all vertices are removed; thus,
such networks are highly resilient against faulty constituents [54, 55].
These properties make scale-free networks very attractive for intercon-
nection networks in many applications, including social systems [174],
peer-to-peer systems, and sensor networks [147, 159].

Another important property is that the majority of the nodes of a scale-
free network are directly connected with the nodes of higher degree (see
Fig. 3.3). For example, in a network with N = 130 nodes and m = 215
links, 60% of the nodes are directly connected with the five nodes with the
highest degree, while in a random network fewer than half, 27%, have this
property [10]. Thus, the nodes of a scale-free network with a degree larger
than a given threshold T could assume the role of “core nodes” and assume

3The Hurvitz zeta function ζ(s, q) = ∑∞
n=0

1
(q+n)s for s, q ∈ C and Re(s) > 1 and Re(q) >

0. The Riemann zeta function is ζ(s, 1).

Managing Complexity of Large-Scale Cyber-Physical Systems 83

management functions; the other nodes assume the role of computational
and storage servers. This partition is autonomic; moreover, most of the
server nodes are at distance one, two, or three from a core node which could
gather more accurate state information from these nodes and with minimal
overhead. In the next example if klim = 4 then 92.5% of the nodes are
servers.

As an example, consider the case γ = 2.5 and the minimum node
degree, xmin = 1; we first determine the value of the zeta function
ζ(γ , xmin) and approximate ζ(2.5, 1) = 1.341 thus, the distribution function
is p(k) = k−2.5/1.341 = 0.745 × (1/k2.5), where k is the degree
of each node. The probability of nodes of degree k > 10 is:
Prob(k > 10) = 1 − Prob(k ≤ 10) = 0.015. This means that at most 1.5%
of the total number of nodes will have more than 10 links connected to them;
we also see that 92.5% of the nodes have degree 1, 2, or 3. Table 3.1 shows
the number of nodes of degrees 1 to 10 for a very large network, N = 108.

3.7 COMPLEX NETWORKS

Complex networks are ubiquitous. The nervous system, the Internet, and
social networks are examples of complex networks. The study of complex
networks focuses on three preeminent aspects, the small-worlds nature,
clustering, and degree-distribution of such networks [11]. In this section we
focus on the first two aspects.

Small-Worlds. In 1998, Watts and Strogatz published in the journal
Nature an algorithm to produce graphs with short average path length
l and high clustering C, two defining properties of graphs describing

Table 3.1 A Power-Law Distribution With Degree γ = 2.5; the Probability p(k),
and Nk, the Number of Nodes With Degree k, When the Total Number of
Vertices Is N = 108

k p(k) Nk k p(k) Nk

1 0.745 74.5 × 106 6 0.009 0.9 × 106

2 0.131 13.1 × 106 7 0.006 0.6 × 106

3 0.049 4.9 × 106 8 0.004 0.4 × 106

4 0.023 2.3 × 106 9 0.003 0.3 × 106

5 0.013 1.3 × 106 10 0.002 0.2 × 106

84 Complex Systems and Clouds

“small-worlds” [244]. This model is also known as Six Degrees, the title of
the popular science book written by Watts. The “six degrees of separation”
concept attributed to Milgram [170] is the most popular example of small
worlds.4 Next we present the Watts-Strogatz algorithm. We are given:

1. N—the desired number of nodes.
2. K—the mean degree, an even integer satisfying the condition

N � K � ln(N) � 1. (3.4)

3. 0 ≤ β ≤ 1—a parameter which controls the shape of the graph.

The two limits, β = 0 and β = 1 correspond to a regular lattice and to an
Erdös-Rényi random graph G(n, p) with n = N and p = NK

2(N
2)

, respectively.

Two steps are required to construct an undirected graph with N nodes and
NK
2 edges:

• Step 1: construct a regular ring lattice, a graph with N nodes each
connected to K neighbors, K/2 on each side. If the nodes are labeled
n0, . . . , nN−1, there is an edge (ni, nj) if and only if

0 < |i − j| mod
(

N − 1 − K
2

)
≤ K

2
. (3.5)

• Step 2: for every node ni = n0, . . . , nN−1 take every edge (ni, nj) with
i < j and rewire it with probability β by replacing (ni, nj) with (ni, nk).
Node nk is chosen with uniform probability from all possible values
avoiding:
1. self-loops, k �= i, and
2. link duplication; no edge (ni, nk′) with k′ = k is allowed.

Properties of small-worlds are discussed in [25]. The number of
nonlattice edges introduced by the Watts-Strogatz algorithm is about β NK

2 .
The average path length depends on the value of the parameter β, l = l(β)

and decreases fast when β → 1 and the graph resembles a random graph.
The average path length for β = 0 and β = 1 is

l(0) = N
2K

� 1 and l(1) = ln N
ln K

. (3.6)

4Milgram concluded that there was a chain of acquaintances connecting most pairs of people.

Managing Complexity of Large-Scale Cyber-Physical Systems 85

Clustering. The clustering coefficient quantifies the tendency of the
nodes of a complex graph to cluster together. This tendency is best exempli-
fied by social networks where clusters of friends are present. If the ki nearest
neighbors of node ni are part of the cluster there would be Ni = ki(ki − 1)/2
edges between them. The clustering coefficient of node i is

Ci = Ei
Ni

= 2Ei
ki(ki − 1)

(3.7)

with Ei the actual number of edges between these ki nodes. For example, the
clustering coefficient C of a small-worlds network depends of the value of β:

C(0) = 3(K − 2)

4(K − 1)
, C(1) = K

N
and C → C(1) when β → 1.

(3.8)

Empirical data confirm the existence of scale-free organization in
complex networks. The power grid of the Western US has some 5,000
nodes representing power generating stations; in this scale-free network
γ ≈ 4. When the scale-free network is generated using the preferred
attachment model [29] and when γ ≈ 3, then the larger the number of
nodes, the better it approximates the theoretical distribution.

Networks with a Power-Law distribution of node degrees may appear
naturally in social networks and other virtual organizations. Such orga-
nizations are inherently heterogeneous, there are a few highly connected
individuals and a very large number of individuals with few connections.
Though sometimes the statistics used to identify the organization of a system
as scale-free are questionable, several instances of virtual organizations, as
well as man-made systems, seem to enjoy this type of organization.

For example, the collaborative graph of movie actors where links are
present if two actors were ever cast in the same movie follows the Power
Law with γ ≈ 2.3 [244]. The average degree in the network of movie actors
with 225, 226 nodes is k̄ = 61, the average path length is l = 3.65, and
the clustering coefficient is C = 0.79, while the average path length and
the clustering coefficient of a random graph of the same size and average
degree are lrand = 2.99 and Crand = 0.00037, respectively [11]. We see that
the average path length is close to that of a random graph with the same size
and average degree, while its clustering coefficient is more than 100 times
higher than a random graph.

86 Complex Systems and Clouds

Recent studies indicate that γ ≈ 3 for the citation of scientific papers.
A study of the papers in Medline5 carried out in 2001 reported results
regarding co-authorship in life sciences [174]. The average degree in the
network of authors with 1,520,251 nodes is k̄ = 18.1, the average path
length is l = 4.4, and the clustering coefficient is C = 0.066, while the
average path length and the clustering coefficient of a random graph of the
same size and average degree are lrand = 4.91 and Crand = 1.1 × 10−5,
respectively [11]. This network, as well as similar networks of scientists
in other fields, show a small average path length but a high clustering
coefficient.

3.8 VIRTUALIZATION BY AGGREGATION: COALITION
FORMATION

Virtualization by aggregation is the process of combining a set of physical
resources into a single logical resource; this process aims to increase some
capability of the system, e.g., the processing power, the processing speed, or
the reliability. For example, Redundant Array of Independent Disks (RAID)
combines multiple physical disk drives into a single logical unit to increase
both the access speed and reliability by replicating the data on multiple
physical disks. Some applications running on computer clouds may need
resources that cannot be provided by a single server.

Informally, a coalition is a group of agents who cooperate to achieve
a well-defined goal and expect to be rewarded for their accomplishments.
An impressive array of real-world applications in several areas including
economics, political, social, and computer science, motivate the vast body
of research in coalition formation.

The emergence of robotics, sensor networks, computational grids, and
computer clouds have amplified the interest in coalition formation when
the agents are different embodiments of computer systems involved in task-
oriented activities. There are several reasons for the coalition formation for
task-oriented activities:

• The agents do not have enough resources to carry out the task on their
own and need to combine their resources. This is the case of Big Data

5Medline is the bibliographic database of the U.S. National Library of Medicine with more
than 22 million references to journal articles in life sciences.

Managing Complexity of Large-Scale Cyber-Physical Systems 87

cloud applications when only coalitions of multiple servers can supply
the computing cycles and storage demanded by the application.

• The task requires agents, or coalitions of agents, with complementary
abilities, as no agent or coalition has all the required expertise, and thus,
they need to work in concert. This is the case when multiple CSPs join
forces to create a cloud federation, or when the cloud infrastructure is
required to carry out computations with a complex workflow and each
phase requires a coalition with resources of different types or quantities.

A coalition could last for an extended period of time, or for a relatively
short time; coalition stability is very important for the former, while the
efficiency of coalition formation is critical for the latter. A coalition could
be homogeneous or heterogeneous; in the first case, the agents are identical
and perform similar tasks, in the second they are specialized to carry out
different tasks required by a complex activity.

The need for cooperation and coalition formation arises in electronic
markets, as well as in task-oriented domains. A combinatorial coalition
formation problem related to electronic markets is discussed in [149]. The
paper assumes that a seller has a price schedule for each item. The larger
the quantity requested, the lower the price a buyer has to pay for each item;
thus, buyers can take advantage of price discounts by forming coalitions.

A similar assumption is adopted by the authors of [148] who investigate
systems where the negotiations among deliberate agents are not feasible due
to the scale of the system. The paper proposes a macroscopic model and
derives a set of differential equations describing the evolution in time of
coalitions with a different number of participants. The results show that a
low rate of leaving agents allows a coalition to achieve a steady state.

Coalition formation has been studied extensively over the years, see
for example [129, 180]; more recent references are [8, 98, 176]. A vast
literature is devoted to task-oriented coalition formation [148, 149, 200].
An interesting analysis of coalition formation with spatial and temporal con-
straints when the agents are robots is presented in [192]. Different aspects
of resource management in computer grids, including load balancing, job-
allocation, and scheduling, as well as revenue sharing when agents form
coalitions or virtual organizations are analyzed in [44, 108, 138, 187, 219,
240]. Grid resource allocation is modeled as cooperative games [138] or
noncooperative games [187]. Resource co-allocation is presented in [240].

88 Complex Systems and Clouds

Game theory provides the theoretical foundations of both topics covered
in this chapter, coalition formation and combinatorial auctions. Game theory
is a discipline pioneered by John von Neumann, who in 1927 published
a seminal paper, “Theory of Parlor Games,” including the proof of the
Minmax theorem. His book first published in 1944 [237] addressed the
question of coalition stability and introduced the concept of stable set, also
called the Neumann-Morgenstern solution.

A coalitional game is a pair G = (A, v), with A a set of players/agents
and v a real-valued function associated with each coalition C ∈ A.
The worth of a coalition, v(C) ∈ R, quantifies the benefits obtained by
the players collaborating with one another. Coalition formation requires
solutions to two problems: (a) the decision process for joining a coalition;
(b) the policies and mechanisms for reward sharing among the members of
a coalition.

The agents could play a noncooperative or a cooperative game when
the goal is to optimize a common objective function. We shall only discuss
Transferable Utility (TU) games. Utility is transferable if players can
losslessly transfer utility to one another; this is possible only if a common
currency equally valued by all agents exists. An example of a TU game is a
voting game when a majority vote decides between two alternatives; if there
are n = 2k + 1 agents and all vote, then the value of the winning coalition
in this game is

v(C) =
{

1 if |C| > k,
0 otherwise.

(3.9)

We now present the definitions of frequently used terms in coalition
games. Consider a set A of agents Ai with n = |A|; a coalition C is a
nonempty set of A. The entire set A is called the grand coalition.

A coalition structure is a partition of the set of all agents into disjoint,
nonempty coalitions S = {C1,C2, . . . ,Cm}; thus

m⋃
i=1

|Ci| = n and i �= j ⇒ Ci
⋂

Cj = ∅. (3.10)

Call �(A) the set of all possible partitions of A. π(i) ∈ �(A) means that
coalition agent Ai belongs to partition π . Subsets of coalitions are called
blocks.

Managing Complexity of Large-Scale Cyber-Physical Systems 89

Given two partitions πi, πj ∈ �(A) we say that πi is a refinement of πj if
any block of πi is contained in a block of πj and write πi ≤ πj. The algebraic
structure [�(A), ≤] is a lattice6 called the partition lattice of A. An example
of a partition lattice when n = 4 is given in Fig. 3.4.

The value v(i) of agent Ai ∈ A, measures the intrinsic worth of the
agent. The valuation/characteristic function v(C) measures the value of
coalition C. Given ∀(Ci,Cj) ∈ A, Ci ∩ Cj = ∅ we distinguish several types
of coalitions:

• Additive when v(Ci ∪ Cj) = v(Ci) + v(Cj).
• Superadditive when v(Ci ∪ Cj) ≥ v(Ci) + v(Cj).
• Subadditive when v(Ci ∪ Cj) ≤ v(Ci) + v(Cj).

A related quantity is the payoff. The payoff x(i) of agent Ai ∈ A measures
the benefit the agent has from joining the coalition; x(C) measures the payoff
of coalition C, where

x(C) =
∑

∀Ai∈A
x(i). (3.11)

The pair (x,C) is the payoff configuration for C ∈ S.

An agent Ai ∈ A is rational when joining a coalition C improves her
worth, i.e., its payoff is larger or equal to its valuation, x(i) ≥ v(i). Group
rationality is defined as

x(C) ≥ v(C), ∀C ∈ �(A). (3.12)

The payoff distribution shows how the coalition worth is shared among the
coalition members; if x(i) is the payoff of agent Ai ∈ A, then the payoff
distribution is the vector x = (x(1), x(2), . . . , x(n)). A payoff distribution
where no agent can improve its payoff without lowering the payoff of
another agent is the Pareto optimal.

When x(A) = v(A) the payoff distribution covers the entire grand
coalition and the payoff is said to be efficient. A payoff distribution
efficient and rational for all agents is called an imputation. The excess,
e(C, x) = v(C)−x(C), corresponding to a payoff distribution x(C) measures

6A lattice is an algebraic structure consisting of a partially ordered set when every pair of
elements have unique supremum and infimum, or least-upper and greatest-lower bounds,
respectively. For example, the natural numbers form a lattice with Least Common Multiple
(LCM) and Greatest Common Divisor (GCD) the supremum and the infimum, respectively.

90 Complex Systems and Clouds

the total amount the agents gain or lose by forming a coalition C. When the
excess is positive, e(C, x) > 0, the agents are motivated to leave their current
coalitions and to form a new coalition C

When the utility of an agent depends on the identity of the members of
the coalition the coalition is called hedonic. Given a coalition structure S

the preferences of agent Ai are represented by a transitive, complete, and
reflexive relation over the set of coalitions Ck ∈ S denoted as �i. The
preference of agent Ai is additively separable if there exists a real-valued
function v : A → R such that given any two partitions πj, πk

πj �i πk ⇔
∑
Al∈πj

vi(l) ≥
∑
Al∈πk

vi(l). (3.13)

Agents Ai ∈ A rank all coalitions in �(A) via the relations �i and �i.
When the condition C �i πk, ∀Ai ∈ A is satisfied all agents in C prefer
being in coalition C than being in partition πk; we say that coalition C blocks
partition πk. As an example consider three agents a, b, c with the following
preference relations

1 ab �a ac �a a �a abc
2 bc �b ab �b b �b abc
3 ac �c bc �c c �c abc

(3.14)

It is easy to see that there is no core stable partition in this cyclic game,
as all possible coalitions, abc, ab, ac, bc, a, b, c, are blocked:

1 ⇒ a blocks abc
1 ⇒ ab blocks ac, a
2 ⇒ bc blocks ab, b
3 ⇒ ac blocks bc, c

(3.15)

A partition π is core stable if there is no blocking coalition C. The core
of the game (A, v) includes all payoff distributions x ∈ Rn when x is a
group rational imputation. An equivalent definition of the core is as the set
of payoff distributions when the excess is not positive thus,

e(C, x) ≤ 0, ∀C ∈ A. (3.16)

Super additivity is implicitly assumed when the core is defined. The concept
of core helps us analyze the stability of a coalition; a payoff distribution
is in the core when no agent or group of agents reject the current payoff
distribution and are willing to form other coalitions. Note that the core can

Managing Complexity of Large-Scale Cyber-Physical Systems 91

be empty as illustrated by the example in Eqs. (3.15) and (3.16). The stability
of hedonic coalitions is analyzed in [38].

A formula for a fair payoff distribution was proposed by Shapley in
1953 [201]. The Shapley value rewards agent Ai with payoff φi

φi =
∑

C⊆(A−Ai)

|C|!(n − |C| − 1)!
n! (v(C ∪ {Ai}) − v(C)) (3.17)

with the sum extended over all coalitions not including agent Ai. The
Shapley value given by Eq. (3.17) is the unique one satisfying the following
three axioms

• A1: Symmetry—two agents should have equal rewards if they have
identical contributions

∀(Ai �= Aj), Ai /∈ C, Aj /∈ C v(C ∪ Ai) = v(C ∪ Aj) ⇒ xi = xj.
(3.18)

• A2: Rationality—agent Ai should enter coalition C only if it is granted at
least the worth of the singleton, v({i)}. Reciprocally, agent Ai should be
accepted in coalition C only if it adds to the value of the coalition more
than v({i}).

• A3: Additivity—if two agents get the payoffs x and y for two character-
istic functions v and w, respectively, then their payoff should be (x + y)
when the characteristic function is (v + w).

Interesting problems are posed by a voting game mentioned earlier.
Formally, a game (A, v) is called a voting game when the characteristic
function satisfies the following three conditions

v =
{

1 for winning coalitions
0 otherwise

;

v(A) = 1 and ∀(Ci ⊆ Cj) ∈ A ⇒ v(Ci) ≤ v(Cj). (3.19)

The last condition, often referred to as monotonicity, expresses the require-
ment that the addition of agents to coalition C does not change the outcome
of the voting process from winning to losing.

A voting game is a weighted voting game (A, v, w, q) if

1. w(w1, w2, . . . , wn) is a vector with wi the weight of agent Ai,

2. v(C) = 1 iff
∑

Ai∈C wi ≥ q with q a given threshold.

92 Complex Systems and Clouds

A weighted voting game is represented as [q : w1, w2, . . . , wn]. One answer
to the question of how to measure the impact, or the power of agent Ai in
a weighted voting game is given by the Shapley-Shubik power index [202],
closely related to the Shapely value and expressed as

φi = 1
n!

∑
Aipivot∈C

(m − 1)!(n − m)! with m = |C|. (3.20)

The sum in Eq. (3.20) is over the coalitions for which agent Ai plays a
pivotal role, in other words, it changes the final outcome of the voting.
For example, given three agents a, b and c and the weighted voting game
[5; 3, 2, 1], the list of all possible coalitions given in Eq. (3.21) shows also
the pivot as the underlined element

abc bac cab
acb bca cba (3.21)

Then n! = 6 and φa = φb = 3/6 = 1/2 and φc = 0. Another example given
in [217] discusses a four agent, a, b, c, d, weighted voting game [6; 4, 3, 2, 1];
then φa = 5/12, φb = φc = 3/12 and φd = 1/12.

The Banzhaf index introduced by Penrose and often referred to as
Banzhaf-Coleman is given by

βi = ci∑n
k=1 ck

(3.22)

with ci the number of times voter i is critical.

3.9 COOPERATIVE GAMES FOR COALITION FORMATION

There are many instances when individual agents work together towards a
common goal rather than being driven by their personal interest. This is true
in the case of social activities and is also true for the autonomous servers of
a cloud infrastructure. In Chapter 5 we present a reservation system based
on coalition formation and combinatorial auctions. Coalitions are formed to
create large pools of resources for Big Data applications. The common goal
is to maximize the revenue of the cloud service provider.

Task-oriented coalition formation is often NP hard [99]. When all agents
have the same ability to perform a single task, the problem is similar to the
set partitioning problem, while in the case of agents able to perform multiple
tasks the problem resembles the set covering problem [203].

Managing Complexity of Large-Scale Cyber-Physical Systems 93

Coalition formation as a cooperative game. The coalition formation is
modeled as a cooperative game where the goal of all agents is to maximize
the reward due to the entire set of agents. We consider a set of R servers
{s1, s2, . . . , sR}, located in the same rack. In this case a coalition Ci is a
nonempty subset of R.

{s1}{s2}{s3}{s4}

{s1}{s2}{s3,s4}

L4

L3

L2

L1

{s1}{s2,s3,s4} {s2}{s1,s3,s4}

{s1,s2,s3,s4}

{s3}{s1,s2,s4} {s4}{s1,s2,s3} {s1,s4}{s2,s3} {s1,s2}{s3,s4} {s1,s3}{s2,s4}

{s1}{s3}{s2,s4} {s1}{s4}{s2,s3} {s2}{s3}{s1,s4} {s2}{s4}{s1,s3} {s3}{s4}{s1,s2}

Fig. 3.4 A lattice with four levels L1, L2, L3, and L4 shows the coalition structures for a set
of four servers, s1, s2, s3, and s4. The number of coalitions in a coalition structure at level Lk
is equal to k.

Fig. 3.4 shows a lattice representation of the coalition structures for
a set of four servers s1, s2, s3, and s4. This lattice has four levels, L1,
L2, L3, and L4 containing the coalition structures with 1, 2, 3, and 4
coalitions, respectively. In general, the level k of a lattice contains all
coalition structures with k coalitions; the number of coalitions structures
at level k for a population of N agents is given by the Sterling Number of
Second Kind:

S(N, k) = 1
k!

k∑
i=0

(−1)i
(

k
i

)
(k − i)N. (3.23)

In the case illustrated in Fig. 3.4 N = 4 and the number of coalition
structures at levels L1 − L4 are 1, 7, 6, 1, respectively.7 The total number
of coalition structures with N agents is called the Bell number

7For N = 5 and N = 6 the Stirling Numbers of the Second Kind are respectively
1, 15, 25, 10, 1 and 1, 31, 90, 65, 15, 1.

94 Complex Systems and Clouds

B(N) =
N∑

k=0
S(N, k) =

N∑
k=0

1
k!

k∑
i=0

(−1)i
(

k
i

)
(k − i)N. (3.24)

The number of coalition structures increases exponentially with the number
of agents. For example, for N = 40, a typical number of servers in a rack,
the logarithm of the number of coalition structures is close to 1035 and
S(40, 14) = 3.58598722556218034914285541034.

Searching for the optimal coalition structure C is computationally chal-
lenging due to the size of the search space. The first step for determining the
optimal coalition structure is to assign a value v reflecting the utility of each
coalition. The second step is the actual coalition formation.

3.10 CYBER-PHYSICAL SYSTEMS AND THEIR
SELF-ORGANIZATION SAGA

Complexity and self-organization have preoccupied the minds of the pio-
neers of computing, Turing [224] and von Neumann [235, 236]. The essence
of self-organization is captured by Alan Turing’s observation “Global order
can arise from local interactions” [224].

Exploiting self-organization in the design and implementation of large-
scale cyber-physical systems proves to be extremely challenging.

Self-organization implies that all individual components of a system
respond to local stimuli, that there is a division of labor among the
components, and the entire system adapts to reach common goals efficiently
[57]. This implies that goal(s) must be defined, and the system interaction
with the environment must be specified: there are stimuli/inputs, and the
system produces some output. Each component has an internal state and
this state changes as a function of the input and of the information about the
states of other components. All units contribute to achieving the system’s
goal, no subset of units can achieve the goal, only the entire system as a
whole can. Last, but not least, the system adapts and in time it achieves its
goals more efficiently.

The design of all computing and communication systems aim to en-
sure robustness and graceful performance degradation when components
fail. For example, routing in packet-switched networks is designed to
maintain connectivity even when communication links and switches fail.

Managing Complexity of Large-Scale Cyber-Physical Systems 95

Communication protocols at the data link and transport layer transform
error-prone communication channels into error-free ones.

A self-organizing system responds to changes of the environment
through adaptation, anticipation, and robustness; the system reacts to
changes in the environment, predicts changes, and reorganizes itself
to respond to them, or is robust enough to sustain a certain level of
perturbations. Self-organization and self-management of a man-made
system imply that there is no centralized control and individual components
organize and manage themselves to provide a function consistent with
global system policies.

Consider, for example, the organization of the traffic lights in a large
metropolis [88]. The system could be centralized, sensors placed in the
vicinity of traffic lights send traffic data to a computer system which then
uses a global optimization algorithm to minimize the waiting time of the
vehicles to reduce pollution, and then sets up the traffic lights accordingly.
In a self-organizing system, there is no central computer and each traffic
light receives information from sensors in its proximity; the light turns red
when there are only a few cars in the direction it controls and green when
the converse is true. There is a negative feedback, if it stays on red for an
extended period of time, the number of waiting cars increases and the light
has to turn green. Multiple traffic lights are affected by the traffic flow in the
direction they control thus have to coordinate their behavior.

Practical implementation of self-organization and self-management is
challenging. Very few of the large-scale systems designed in recent years
could claim some form of self-organization or self-management. This is in
itself proof of the challenges faced by the designers of such systems. Some
of these challenges are:

• The absence of a technically suitable definition of self-organization, a
definition that could hint at practical design principles for self-organizing
systems and quantitative evaluation of the results. Marvin Minsky [171]
and Murray Gell-Mann [89] have discussed the limitations of core con-
cepts in complex system theory, such as emergence and self-organization.
The same applies to autonomic computing, there is no indication of how
to implement any of the four principles and how to measure the effects of
their implementation.

• A quantitative characterization of complex systems and of self-
organization and self-management is extremely difficult. We can

96 Complex Systems and Clouds

only assess the effectiveness of a particular self-organization or self-
management algorithm/protocol indirectly, based on some of the
measures of system effectiveness, e.g., the savings in cost or energy
consumption. We do not know how far from optimal a particular
algorithm is.

• Large-scale systems exhibit the essential aspects of complexity; it is
inherently difficult to control complex systems.

As pointed out in Chapter 1, complex systems: are nonlinear; operate far
from equilibrium; are intractable at the component level; exhibit different
patterns of behavior at different scales; require a long history to draw
conclusions about their properties; scale well; exhibit complex forms of
emergence; and are affected by phase transitions. For example, a faulty error
recovery mechanism in the case of a power failure took down Amazon’s
East Coast Region cloud operations in 2013.

In contrast, simple systems are linear, operate close to equilibrium, are
tractable at the component level, exhibit similar patterns of behavior at
different levels, relevant properties can be inferred based on a short history,
exhibit simple forms of emergence, are not affected by phase transitions,
and do not scale well.

3.11 SELF-ORGANIZATION OF SENSOR NETWORKS

To illustrate that self-organization of cyber-physical systems is feasible, we
now discuss a self-organizing sensor network. A sensor network consists of
spatially distributed autonomous devices equipped with a radio transceiver
or other wireless communication device, a micro-controller, a power source,
and sensors which monitor temperature, sound, vibration, pressure, motion,
chemical pollutants, radiation, or other physical characteristics of the envi-
ronment. The software running on the nodes of a sensor network includes a
network stack communicating with a middleware layer running on top of a
real-time operating system.

Very-large sensor networks. We discuss self-organization principles to
very large-scale sensor networks with applications in the area of climate
changing, environment monitoring, or forest fire prevention. Typical ap-
plications could be studies of the temperature at the polar cap, of the sol
humidity in a forest, or of the tremors in an earthquake prone or in a volcanic
region. The area to be monitored by such applications is rather large, e.g.,
1 mile2, and for a density of 2 sensors per 100 ft2 the total number of sensors

Managing Complexity of Large-Scale Cyber-Physical Systems 97

is about 5 × 105. The sensors should be able to operate with their power
reserves for a year or more. The maintenance, as well as the operation of the
network, must be as inexpensive as possible.

The sensors are dropped from an aircraft or planted by a specialized de-
vice and are stationary or experience very limited mobility. An unmanned
aircraft flies over the area and collects the information at predetermined
time intervals. A more futuristic scenario involves sensors and actuators
built into the variable geometry wing of a stratospheric aircraft. In a science
fiction scenario, bio sensors attached to the molecules of a drug used for
the treatment of a patient monitor the interaction of these molecules with
the cells of the patient.

Energy efficiency is a major concern for mobile devices as they have
limited power reserves and are able to recharge only after extended periods
of time [107, 109, 252]. Communication among the mobile nodes is more
energy-intensive than either computing or sensing; the energy to transmit
1 kB of data at a distance of 100 m is equal to the energy required by a
processor using the year 2000 solid-state technology to execute 107 instruc-
tions [215]. The laws of physics limit the ability of new communication
and energy storage technologies to match the sharp reduction of energy
consumption per instruction we have witnessed throughout the last decades;
we expect that communication efficiency will continue to be an important
design goal for sensor networks.

The Organization, Routing, and Mobility (ORM) management of ad-hoc
networks aim to maximize the throughput and minimize the delay, while the
main objective of the ORM in a sensor network is to extend the lifetime
of the network. A sensor network could have several orders of magnitude
more nodes than a traditional ad hoc network and for economical reasons its
nodes must be inexpensive. Even though technological advances translate
into higher processing rates and storage capacity at lower costs, the nodes
of future wireless sensor networks will be required to collaborate in order to
accomplish any meaningful task.

Berkeley Motes and PicoNode, UCLA sensor nodes, and MIT AMPs
are some of the devices used in sensor networks. For example, the MICA
mote uses an 8-bit micro-controller with 128 kilobytes of flash memory and
runs an operating system known as TinyOS [239]. Its radio has a range of
several hundred feet and can transmit approximately 40,000 bits per second;
it consumes less than 1 μA when it is off, 10 mA when it receives, and
25 mA when it transmits.

98 Complex Systems and Clouds

Self-organizing Sensor Network (SFSN) protocol. The self-organization
strategy supported by the SFSN protocol guarantees that every node is
connected with a limited number of nodes [159]. This means that a sensor
σi, 1 ≤ i ≤ N is able to construct a proximity set, P(σi), of neighboring
sensors it communicates with. The network is scale-free, |P(σi)| ≤ μ,
regardless of the number N of sensors in the network; σi maintains a limited
amount of state information regarding the sensors in P(σi). For example,
the proximity set of sensor a, P(a), in Fig. 3.5 consists of a subset of sensors
in the range of a; a must also be in the range of the sensors in P(a). The
quantities μ, M and η, ν, κ in Figs. 3.5 and 3.6, respectively, are constants
selected at the time the network is planned; see Table 3.2 for a summary of
notations.

The reciprocal of event εk during the self-organization phase is the event
εk̄ during an activity phase; the reciprocal index is k̄ = κ −k−1. Reciprocal

a

Pseudo-Id (b) Counter

Counter

Counter

EventList

EventList

EventList

Proximity set of sensor a

Sensor a

Pseudo-Id (c)

Pseudo-Id (k)

k = 10

M = 8

d

c
b

i

h

gf
e

k j

Fig. 3.5 The sensors b, c, d, . . . , i, j, k are in the proximity set of sensor a, P(a), with μ =
|P(a)| = 10. The entry for each sensor in P(a) consists of a unique pseudo identityPid,
an EventList, and a Counter ≤ M, the actual number of items in EventList. Each item in
the EventList gives the index of the event when the sensor will wake up to receive and then
transmit during the activity phase.

Managing Complexity of Large-Scale Cyber-Physical Systems 99

Time

Self-organization
phase

Second epoch

First activity phase Last activity phase

Third epoch

41 2 5 6

41 2 5 6

h h+ 1

k + 6 2k ku+ 1 h=k (u + 1)k + 1k

2h 2h+ 1 3h

First epoch

Self-organization
phase

Second epoch

First activity phase Last activity phase

Third epochFirst epoch

Fig. 3.6 Epochs, phases, and events. The number of events in an epoch is η and the number
of events in a phase is κ . Each epoch consists of one self-organization phase followed by ν

activity phases. Thus, η = κ(ν + 1).

events occur in reverse order, if k1 ≤ k2 then k̄2 ≤ k̄1 and εk̄2
�→ εk̄1

. The
ordering of events is 1 �→ 2 �→ 3 . . . �→ κ − 1 �→ κ during the self-
organization phase and κ̄ �→ κ − 1 �→ . . . �→ 3̄ �→ 2̄ �→ 1̄ during an
activity phase.

During the self-organization phase, a sensor σi assumes a globally unique
pseudo-identity, Pid(σi). Initially, the Pid of each sensor is set to zero.
Pid(σi) = k, if during the self-organization phase σi successfully transmits
during slot (k − 1), possibly after a set of collisions, and wins the right
to be the only sensor allowed to transmit at the beginning of slot k. The
Pid is included in every message sent by σi during the self-organization
phase to ensure that the proximity set does not grow beyond the limit
imposed, |P(σi)| ≤ μ and also that σi does not appear multiple times in
any proximity set P(σj). The Pid is available during the activity phase, but
not used now.

The time evolution of the network consists of several epochs, each one
starting with a self-organization (set-up) phase followed by a number ν

of activity (steady-state) phases (Fig. 3.6); the names of the phases are
suggestive. We use the term event to describe a communication event, the
transmission of a message at the beginning of a time slot; the index k of
the event εk occurring at time tk, the beginning at slot k, reflects the order
of the event: if k1 ≤ k2 then εk1 �→ εk2 (εk1 before εk2). All phases consist
of the same number of events, κ . We can refer to an event by its global
index, its index within an epoch, and its index within a phase, as in Fig. 3.7.
The index k of εk is a global pointer into a random sequence of frequencies
and time slots.

100 Complex Systems and Clouds

Table 3.2 The Notations Used for SFSN Protocol
Description

σi a sensor in the batch

P(σi) proximity set of σi

μ maximal cardinality of the proximity set

μactual actual cardinality of the proximity set

N total number of sensors

M maximum number of events in EventList

κ number of events in a phase

ν number of activity phases

η number of events in one epoch

γ transmission range

ρ average sensor density

θ standard deviation of sensor density

εk kth event during the self-organization phase

εk̄ reciprocal event of εk during an activity phase

ϕ parameter for synchronization

ζ average nr. of sensors receiving a transmission

λk carrier frequency in slot k

ξ
λk
j hopping frequency around λk

Et
o energy for transmission during self-organization

Er
o energy for reception during self-organization

Et
a energy for transmission during activity

Er
a energy for reception during activity

Eeff energy efficiency of sensor network

ω expected number of collisions in a CRI

δ the duration of a micro-slot

Δ = nδδ the duration of a slot, nδ = O(103)

The steps required by an informal high-level description of the self-
organization algorithm are:

1. A specially configured node called the sink, initiates the self-organization
process at the time t1 of the first event ε1 and requests to be included in
the proximity set of one of the nodes in its vicinity and assumes a Pid of 1.

Managing Complexity of Large-Scale Cyber-Physical Systems 101

Global index

Epoch index

Phase index

i is the index of
the event in the
self-organization
phase of epoch q

i is the index of the
event in the activity
phase r of epoch q

i

i

i i

i mod h

(i mod h) mod k

(q x h) + i

(r x k) + i

(q x h) + (r x k) + i

Fig. 3.7 Global, epoch, and phase indices of an event. If i is the global index then the epoch
index is (i mod η) and the phase index is [(i mod η) mod κ]. If i is the index of an event
in the self-organization phase of epoch q, then its phase index is i, and the global index is
(q × η + i). If i is the index of an event in the rth activity phase of epoch q then its phase
index is (r × κ + i), and the global index is (q × η + r × κ + i).

2. Multiple sensors receive the request and decide whether to respond
or not; if more than one responds, a Collision Resolution Algorithm
(CRA) is used and eventually sensor σi transmits successfully in the
slot triggered by event ε1 and wins the right to transmit at time t2 of
the second event, ε2. Then σi assumes a Pid of 2, includes the sink in
its proximity set, P(2), and records that during the activity phases must
wake-up at reciprocal event 1̄ to receive a transmission from the sink and
then transmit at reciprocal event 2̄ to a member of its own proximity set.
At the time of the second event ε2, the role of the sink is played by σi
which sends a request to join the proximity set of one of its neighbors.
Eventually, a sensor σj accepts; then σj assumes a Pid of 3 and includes
σi in its proximity set, P(3). Later, when σj receives another request
from σi ∈ P(3) it records only the index of the event in the EventList
corresponding to Pid = 2.

3. The process continues and eventually the sink responds to a request from
a sensor σk and includes σk in P(1). Recall that the sink has a Pid of 1
and each sensor assumes as Pid the index of the first event when it sends
a request to join a proximity set.

4. The self-organization phase ends after κ events and an activity phase
starts. During the activity phase, σi wakes up at the time of the events
in its EventList to receive from one of the members of its proximity set
and then transmit in the next slot to σj such that σi ∈ P(σj). At the end of
each activity phase the sink reports to an external monitor.

102 Complex Systems and Clouds

In SFSN networks the total energy consumption during the self-
organization and the ν activity phases are, respectively, Eo = ωκ(Et

o + Er
o)

and Ea = νκ(Et
a + Er

a), with ω > 1 a factor depending upon the average
number of collisions in a Collision Resolution Interval (CRI). The energy
efficiency of the scheme is given by the following expression:

Eeff = Ea
Eo

= ν(Et
a + Er

a)

ω(Et
o + Er

o)
. (3.25)

We expect the energy for sending and receiving short control messages
during the self-organization phase to be orders of magnitude lower than the
one required for transmission during the activity phase, e.g., (Et

a + Er
a) >

103(Et
o + Er

o) then Eeff > 103ν/ω; thus, to increase the efficiency we
should increase the number of activity phases and minimize the number of
collisions.

The model of the scale-free sensor network. The model we propose is
based upon the following assumptions:

1. The inexpensive sensors have “genetic information” including a random
number generator, seeds, and other network parameters. During the
fabrication process, the seeds are randomly chosen and the set of seeds is
burned-in the read-only memory of all sensors in the batch. The sensors
are tamper-proof, thus, it is unlikely to learn the genetic information by
disassembling a sensor. The seeds αq, 1 ≤ q ≤ 3 are used as follows:
α1 to determine a random sequence of events occurring at time slots ti;
α2 to determine a random sequence of carrier frequencies λi; and α3 to
determine a random hopping frequency ξ

λi
j for each carrier frequency λi.

The genetic material also includes: κ , the number of events in one phase
and ν, the number of activity phases, as well as μ, the cardinality of
the proximity set, M, the cardinality of the event index list used to
keep track of transmission and receiving events, and ϕ, a parameter for
synchronization.

2. The average transmission range of a sensor is γ and we expect to have
on average ρ sensors per unit of the area covered by the network.

3. The network is dense; this means that ζ = π × γ 2 × ρ, the average
number of sensors that are able to receive the transmission of a sensor is
at least ζ ≥ p×μ with p a small integer, 4 ≤ p ≤ 6 and μ the cardinality
of the proximity sets.

4. The sink Σ has a larger power reserve and transmission range. It links
the sensor network with the outside world and communicates with an

Managing Complexity of Large-Scale Cyber-Physical Systems 103

external controller (a satellite, a drone, or even a stationary device) to
report relevant information. For now, we assume a unique sink, but fault-
tolerance requires backup sinks that can take over if the original sink
fails. Initially, all sensors are synchronized to the sink.

5. The sensors are reactive in terms of communication. A sensor responds
to a successful transmission of another sensor after evaluating two fitness
functions f and g; only if the value of the fitness function exceeds a certain
threshold the sensor is allowed to transmit. This threshold depends on
several parameters, including the strength of the incoming signal and the
power reserve of the sensor. The fitness function and the determination
of the threshold are fairly complex subjects and are not discussed in this
section.

6. A sensor dwells ϕ micro-seconds on each frequency in a hopping
sequence. When a sensor wakes up at the time of the event εi, its master
clock is in one of the time slots ti−1, ti, or ti+1. Each sensor knows the
frequencies λi−1, λi, and λi+1 on which the sender will dwell in the time
slots ti−1, ti, and ti+1. A strategy to allow synchronization in the presence
of clock drift is: tune in, cyclically, to λi−1, λi, and λi+1 spending ϕ/3
time units on each of them.

The expected duration of an epoch is application-dependent and it is
controlled by η, the number of events per epoch. Some of the factors that
affect the choice of η are: the duration of the deployment, the expected
life-time of individual sensors, the intensity of communication during the
deployment, and the frequency of topological changes. An epoch could last
minutes for an intense and dynamic application when new sensors are added
frequently and the life-time of sensors is very limited because they deplete
their power at a high rate, e.g., monitoring and control of a forest fire. An
epoch could be of the order of days, or even months for a low-intensity
application with a relatively stable topology, e.g., long-term monitoring
of volcanic activity. The expected duration of an epoch can be controlled
by scaling the random numbers dictating the timing of events, e.g., using
seconds, minutes, hours, and so on, as units of time.

An integrated Medium Access Control (MAC) and self-organization
algorithm. There are two basic classes of strategies for sharing a com-
munication channel: scheduled and nonscheduled multiple access. Both
strategies are represented among the Medium Access Control (MAC) layer
protocols for ad hoc and sensor networks. Among the strategies based
upon scheduled access we mention: Code Division Multiplexing (CDMA)
which employs spread-spectrum technology and a special coding scheme

104 Complex Systems and Clouds

(where each transmitter is assigned a code) to allow multiple users to be
multiplexed over the same physical channel; Time-Division Multiple Access
(TDMA) divides access by time, while Frequency-Division Multiple Access
(FDMA) divides it by frequency.

Several MAC-layer protocols for ad hoc networks avoid, or reduce
collisions. A nonexhaustive list of such protocols includes: Medium Access
Collision Avoidance (MACA) which uses Request to Transmit and Clear
to Transmit (RTS/CTS) messages to avoid the hidden node problem [128];
Power Aware Multi Access protocol with Signaling for Ad Hoc Networks
(PAMAS) which use one channel for control packets and one channel
for data packets; Carrier Sense Medium Access with Collision Avoidance
(CSMA/CA).

The SMACS (Self-organizing Medium Access Control for Sensor Net-
works) protocol [215] uses a TDMA-like frame combined with FDMA
CDMA to avoid interference among nodes. The organized channel access
method used by SMACS and SFSN protocols can be traced back to several
papers [23, 91] which propose to form a hierarchical structure to localize
groups of nodes and make the channel assignment easier.

Several other TDMA-based MAC protocols for sensor networks have
been proposed, including WLC12-5 [188]. Sensor MAC (S-MAC) is a
protocol inspired by PAMAS and implemented over Berkeley Motes [252].
The nodes listen and sleep periodically; the radio is set to sleep during
transmissions of other nodes. Neighboring nodes form virtual clusters to
auto-synchronize on sleep schedules. The protocol divides long messages
into small segments and transmits all segments back to back; it uses
RTS/CTS once per message but ACK for each segment. The energy savings
are 2.5 times larger than for IEEE 802.11.

To increase the algorithm efficiency, the number of collisions experi-
enced by a sensor when it transmits should be minimized and a sensor
should be idle as long as feasible. Thus, it is highly desirable to integrate
the MAC protocol/algorithm with the algorithm for self-organization which
determines the schedule for communication. This requirement precludes the
use of one of the existing MAC algorithms; we decided to adapt a known
CRA and integrate it with our self-organization scheme.

A fair number of CRAs for random multiple access are extensively
analyzed in the literature [83]. The basic idea of the algorithms is to split

Managing Complexity of Large-Scale Cyber-Physical Systems 105

recursively the set of nodes involved in a collision on a multiple-access
channel until the cardinality of the set is equal to one and a single node
successfully transmits. This splitting is based upon the ternary channel
feedback, “Success,” “Collision,” or “Idle Slot.” Blocking algorithms forbid
new nodes to join the set of nodes involved in a collision; newcomers have
to wait until the original collision was resolved and only then transmit.
Nonblocking algorithms allow newcomers to join a game in progress. The
Stack Algorithm also known as CTM (Capetanakis-Tsybakov-Mihailov)
[225], Fig. 3.8A, is nonblocking.

The model of the multiaccess channel suitable for a sensor network is
slightly more complicated than the one considered by traditional CRAs.
First, the transmission frequency changes, and, most importantly, not all
sensors involved in a collision are able to hear the channel feedback. The
transmission range of the sensors is normally distributed around γ . It is thus
possible that two sensors b and c both transmit in response to a request
from sensor a, but they are outside of the reception range of each other, a
phenomenon encountered in wireless networks and called the hidden node
problem [128]. The version of the stack algorithm (Fig. 3.8B) differs from
the original CTM algorithm in several ways:

1. The algorithm is executed only during the self-organization phase when
collisions may occur.

2. During the self-organization phase, the duration of a slot is Δ = nδδ with
δ the duration of a micro-slot and nδ = O(103). The time tk of the event
εk is the starting time of slot k and of its first micro-slot. The time between
two consecutive events is determined by the random number generator,
and should be at least Δ (tk+1 − tk ≥ Δ). We expect a collision in slot k
to be resolved well before the event εk+1 as (nδ = O(103)).

3. Only one sensor is allowed to transmit in the first micro-slot of a slot: the
sink transmits during the first slot; the “winner” of a collision resolution
contest during slot (k − 1), transmits in slot k.

4. The micro-slots are grouped in pairs. Collisions may occur only in the
even micro-slots of a slot. Odd micro-slots are collision-free and used
by the sensor which initiated the CRI to broadcast the channel feedback.
This allows us to address the hidden node problem. Indeed, two sensors
b and c may be in the range of sensor a and may attempt to responding
to a in micro-slot 2k, but they may be out of each other’s range. To solve
this problem, a will broadcast in micro-slot 2k + 1 the channel feedback
and in this case report a collision.

106 Complex Systems and Clouds

Transmission
in micro-slot 1

of slot k

In case of collision at
stack level 0 a sensor

remains at stack level 0
with probability p and
moves to stack level 1
with probability (1-p)

The channel feedback in a
micro-slot is: collision (C) or
no collision (NC)

In case of collision (C) at
stack level k a sensor
moves to stack level (k+1)
with probability 1, (C/1)

In case of no collision (NC)
at stack level k a sensor
moves to stack level (k-1)
with probability 1, (NC/1)

λi

λiξ1

λiξ2

λiξ3

λiξk

λiξk

The frequency used in the first micro-slot
of slot i is li. In the next micro-slots we
use the hopping frequencies

iλ
ξk

Slot k Slot (k+1)

 Sensor a “ wins”the CRI in micro-slot 6 of slot k and the right to transmit alone in the
first micro-slot of slot (k+1);then it conveys the channel feedback in odd micro-slots,
3, 5, 7, and 9. Collisions may occur only in even micro-slots; sensor b “wins” the CRI
in the 8-th micro-slot of slot (k+1)and will transmit in micro-slot 1 of slot (k+2)

1 3 52 4

Slot (k+2)

6 1 3 52 4 6 7 8 9 1 2 3

(A)

(B)

Fig. 3.8 (A) The stack collision resolution algorithm. Each sensor creates a virtual stack and
once involved in a collision updates the stack based upon the channel feedback (collision/no-
collision). Only sensors at stack level 0 are allowed to transmit during the collision resolution
period. (B) Modified stack algorithm. The original sender conveys the channel feedback.
In this case, sensor a transmits successfully in the 6th micro-slot of slot k and invites
other sensors to transmit. Multiple sensors including b respond to the invitation; collisions
involving sensor b occur in the micro-slots 2, 4 and 6 of slot (k + 1); finally, in micro-slot 8
sensor b is the only one allowed by the algorithm to transmit. Sensor a conveys the channel
feedback in micro-slots 3, 5, 7, and in micro-slot 9 of slot (k + 1) it announces that sensor
b was successful and has won the right to transmit undisturbed in the first micro-slot of slot
(k + 2).

Managing Complexity of Large-Scale Cyber-Physical Systems 107

5. The algorithm is blocking, only the sensors involved in the initial
collision are allowed to compete.

6. Each sensor involved in a collision maintains a counter of the micro-
slots involved to determine the hopping frequency used to transmit in
any micro-slot.

The algorithm is distributed in time and space; each sensor involved
in a transmission maintains a virtual stack and updates it according to the
channel feedback (Fig. 3.8A). The splitting algorithm guarantees that only
one sensor can respond successfully in a CRI thus, the Pid of a sensor is
unique. Only sensors at stack level 0 are allowed to transmit in any even
micro-slot; initially, all sensors wishing to transmit in the second micro-slot
of the slot k use frequency λk and set their stack level to 0. If there is a
successful transmission (this happens when only one sensor transmits), then
the CRI terminates after the sensor which transmitted in the first micro-slot
announces the winner. If there is no transmission, one of the sensors sends
a ReqToForward message in response to an “Idle Slot” channel feedback
using the hopping frequency ξ

λk
1 .

When multiple sensors transmit in one micro-slot, a collision occurs
and all sensors update their stack as follows: remain at stack level 0 with
probability ps and move to stack level 1 with probability (1 − ps). It is
likely that the cardinality of the set of sensors at stack level 0, allowed to
transmit during the next pair of micro-slots will be smaller; these sensors
use the first hopping frequency ξ

λi
1 . The process continues; if a new collision

occurs in the next pair of micro-slots, all sensors at stack level zero repeat
the splitting process, while those at stack level 1 move to stack level 2 with
probability one.

Self-organization phase. The role of the self-organization phase is to
(a) allow all sensors to construct their proximity sets; and (b) establish the
communication pattern between a sensor and the members of its proximity
set during all activity slots.

Knowing the index k of the event εk does not mean that we know the time
tk of occurrence of the event. The times tk are random, but all sensors can
determine them, as they share the seeds for the random number generators
used to calculate the times tk.

During the self-organization phase, three types of messages are ex-
changed: ReqToJoin (RtJ), ReqToForward (RtF), and AcceptToJoin (AtJ).
ReqToJoin expresses the desire of the sender to join the proximity set of

108 Complex Systems and Clouds

one of its neighbors; ReqToForward signals that no neighbor is willing to
accept the sender to join its proximity set and one of them forwards the
message to others to keep the organization process going. A ReqToForward
always contains the Pid of the originator of a ReqToJoin message, rather
than the Pid of the sensor forwarding the message. An AcceptToJoin is sent
in response to a ReqToJoin. Sensor σj uses two fitness functions fj and gj
do determine how to respond to a successful transmission of a ReqToJoin
from σi. fj determines whether it should respond with an AcceptToJoin and
gj determines whether it should respond with a ReqToForward.

When σi includes in its proximity set a sensor with Pid=Isender it
also creates a counter of events when it has received messages from it,
Count(Isender), as well as an event index list EventList(Isender), of size at
most M (Fig. 3.5).

It follows that the storage requirements for control information for each
sensor are: μ(2 + M) integers (Fig. 3.5). The self-organization algorithm
followed by sensor σi with proximity set P(σi) and fitness functions fi and
gi when σi observes a successful transmission in the slot of εk from Isender
is shown in Algorithm .

Occasionally, no sensor receiving a ReqToJoin is willing to respond
(Fig. 3.9). In this example, sensor b responds to a ReqToJoin from a with
an AcceptToJoin and a joins P(b) in slot k and b sends its own ReqToJoin
in the first micro-slot of slot (k + 1). After noticing an empty micro-slot in
slot (k + 1) sensor c which has its proximity set full, sends a ReqToForward
which reaches sensor d; then d sends an AcceptToJoin and b joins P(d).
Next d sends a ReqToJoin in slot (k + 2) answered by e and the process
continues, d joins P(e) and so on. This strategy allows the self-organization
to continue even when sensors have their proximity sets full.

Activity phase. During an activity phase, the sensors carry out their
monitoring function and report partial results. The schedule of events for
each sensor, namely the slots when it transmitted successfully during the
self-organization phase is known, and this knowledge allows each sensor to
determine the slots during the activity phase when they have to wake-up to
receive information and then transmit.

The event εk in an activity phase is the reciprocal of the event εk in the
self-organization phase; if sensor σi transmitted in the first micro-slot of slot
k during the self-organization phase then it will be scheduled to wake-up
and receive in slot k − 1 and then transmit in slot k where k − 1 = κ − k.

Managing Complexity of Large-Scale Cyber-Physical Systems 109

Algorithm 3.1 The self-organization algorithm followed by sensor σi
with proximity set P(σi)

if fi returns True when receiving a message in one of the micro-slots of
event k then

if Isender ∈ P(σi) then
if Count(Isender) ≥ M then

if (gi return True) and (no transmission at the first micro-slot
of event k + 1) then

broadcast RtF message at the second micro-slot of event
k + 1

end
else

if messageType is RtJ then
Count(Isender) = Count(Isender) + 1 insert k in
EventList(Isender)

end
transmit an AtJ message in the next micro-slot of slot k and
follow the CRA if transmission is successful then

add Isender to P(σi), increment Count(Isender), insert k
in EventList(Isender) broadcast RtJ message at the first
micro-slot of event k + 1

end
end

else if Isender /∈ P(σi) then
if |P(σi)| ≥ μ then

if (gi return True) and (no transmission at the first micro-slot
of event k + 1) then

broadcast RtF message at the second micro-slot of event
k + 1

end
else

transmit an AtJ message in the next micro-slot of event k and
follow the CRA if transmission is successful then

add Isender to P(σi), increment Count(Isender), insert k
in EventList(Isender) broadcast RtJ message at the first
micro-slot of event k + 1

end
end

end

110 Complex Systems and Clouds

else if fi returns False when receiving an incoming message then
if (gi return True) and (no transmission at the first micro-slot of
event k + 1) then

broadcast RtF message at the second micro-slot of event k + 1
end

end

The algorithm followed by sensor σi in the activity phase consists of the
following steps:

• Compute the index of reciprocal events for all events included in the
EventList for all members of P(σi).

a sends RtJ
b sends AtJ
b wins CRA
a → P(b)

b sends RtJ

c sends RtF
d sends AtJ
d wins CRA
b → P(d)

d wakes-up
e transmits b transmits a transmits

d sends RtJ
e sends AtJ
e wins CRA
d → P(e)

e sends RtJ
f sends AtJ
f wins CRA
e → P(f)

f sends RtJ
g sends AtJ
g wins CRA
f → P(g)

g sends RtJ
h sends AtJ
h wins CRA
g → P(h)

b wakes-up
c transmits

a wakes-upe wakes-up
f transmits

f wakes-up
g transmits

Fig. 3.9 Handling of ReqToForward during the self-organization and activity phases. During
the self-organization phase sensor b responds to a ReqToJoin from a with an AcceptToJoin
and a joins P(b) in slot k and sends its own ReqToJoin in the first micro-slot of slot (k + 1).
After noticing an empty micro-slot in slot (k + 1) sensor c which has its proximity set
full, sends a ReqToForward which reaches sensor d; then d sends an AcceptToJoin and b
joins P(d). Next d sends a ReqToJoin in slot (k + 2) answered by e. During the activity
phases sensors f, e, d, c, b, and a transmit in slots k + 5, k + 4, k + 3, k + 2, k + 1, and k,
respectively, and the members of their respective proximity sets wake-up.

Managing Complexity of Large-Scale Cyber-Physical Systems 111

• Construct an ordered list of reciprocal events.
• Determine the time of the next event when the sensor must wake up.

Wake up and receive at that time. Compute the time of the next event and
transmit at that time. Increment the count of events.

• Repeat the previous step until all reciprocal events, at most μ × M of
them, have been exhausted.

In the example in Fig. 3.9, during the self-organization phase the sensors
a, b, c, d, e, f, and g transmit in slots k, k + 1, k + 2, k + 3, k + 4, and k + 5,
respectively. During the activity phases sensors f, e, d, c, b, and a transmit
in slots k + 5 = κ − k + 4, k + 4 = κ − k + 3, k + 3 = κ − k + 2,
k + 2 = κ − k + 1, k + 1 = κ − k, and k = κ − k − 1, respectively,
and the members of their respective proximity sets wake-up.

3.12 FURTHER READINGS ON LARGE-SCALE SYSTEMS AND
SELF-ORGANIZATION

Alan Turing’s seminal paper from 1952 [224] and John von Neumann’s
work on self-reproduced systems [235] provide insights in the self-
organization process. Marvin Minsky [171] and Murray Gell-Mann [89, 90]
have analyzed in depth the problems posed by self-organization of man-
made systems.

The role of software as the “glue” for system composability is analyzed
in [194] and system complexity metrics is discussed in [173]. Herbert
Simon’s contributions to the study of hierarchical organization are presented
in [209, 210]. Autonomic computing principles have been formulated at
IBM [134] and applied to the design of several systems, such as DB2
[69]. An analysis of the successes and problems faced by the autonomic
computing movement can be found in [136, 137].

Theoretical studies of networks included the Erdös-Rény model [78],
more recent work of Barabási and Albert in [9, 10, 29] and the discovery
of Small-Worlds networks by Watts and Strogatz [244]. The “six degrees of
separation” concept [170] is the most popular example of small-worlds. The
properties of scale-free networks have been investigated in [54–56], [95],
[223] and others.

Self-organization and its relation with coalition formation is discussed
in [211]. Self-organization and its applications to computer systems are

112 Complex Systems and Clouds

discussed in [93, 102, 103, 113, 114, 130]. Communication protocols used
in mobile ah-hoc networks and in sensor networks are analyzed in [128].

The next chapter covers computer clouds, the challenges of resource
management in systems consisting of millions of servers, current solutions,
and self-management ideas for clouds.

CHAPTER 44
Computer Clouds

More than half a century ago, at the centennial anniversary of MIT, John
McCarthy, the 1971 Turing Award recipient for his work in Artificial
Intelligence, prophetically stated: “. . . If computers of the type I have ad-
vocated become the computers of the future, then computing may someday
be organized as a public utility, just as the telephone system is a public
utility. . . The computer utility could become the basis of a new and important
industry.” The McCarthy’s prediction is now a technological and social
reality.

In utility computing the hardware and the software resources are concen-
trated in large data centers and the users pay as they consume comput-
ing, storage, and communication resources. While utility computing often
requires a cloud-like infrastructure, the focus of cloud computing is on
the business model for providing computing services. Major IT companies
such as Amazon, Google, IBM, Microsoft, Oracle, and others have been
providing cloud computing services since 2006 when Amazon Web Services
(AWS) services were offered for the first time.

The number of Cloud Service Providers (CSPs), the range of services
offered by CSPs, and the number of cloud users have increased dramatically
during the last few years. For example, in 2006 the EC2 (Elastic Cloud
Computing) was the first service provided by AWS; 5 years later, in 2012,
AWS was used by businesses in 200 countries. Another AWS service, S3
(Simple Storage Service), introduced also in 2006, has surpassed two trillion
objects and routinely runs more than 1.1 million peak requests per second.
The Elastic MapReduce has launched 5.5 million clusters since the start
of the service in May 2010 (ZDNet 2013).

The infrastructure for supporting cloud services is continually growing. A
recent posting on ZDNet reveals that in January 2012, EC2 was made up
of 454,600 servers. When one adds the number of servers supporting other
AWS services, then the total number of Amazon systems dedicated to cloud
computing is much larger. An unofficial estimation puts the number of
Complex Systems and Clouds. http://dx.doi.org/10.1016/B978-0-12-804041-6.00004-9
Copyright © 2017 Elsevier Inc. All rights reserved. 113

http://dx.doi.org/10.1016/B978-0-12-804041-6.00004-9

114 Complex Systems and Clouds

servers used by Google in January 2012 close to 1.8 million; this number
was expected to be close to 2.4 million by the early 2013.

Computer clouds are not usually considered to be cyber-physical systems,
i.e., integrations of computation, networking, and physical processes, even
though cloud applications as data streaming and cloud-based gaming have
real-time constraints and may involve physical processes. It is not incon-
ceivable that the range of cloud applications will, sooner rather than later,
include cyber-physical systems, ubiquitous components of the Internet of
Things. Applications in traffic management in smart cities, optimal energy
management in smart power grids, carbon-emission and pollution control,
or out-patient monitoring in health-care systems could also become part of
the computing cloud ecosystem.

It seems obvious that managing such a complex infrastructure operating
in a dynamic environment requires new thinking; traditional methods very
successful for clusters and other small-scale assembly of systems cannot
possibly be good enough. Self-organization seems to be one of the more
promising alternatives to traditional, deterministic management mechanisms
based on centralized or distributed control. How can self-organization be
applied to computer clouds and why has it not been already implemented
more than a decade after the autonomic computing manifesto? These are
some of the questions addressed in this chapter.

4.1 A DOWN-TO-EARTH VIEW OF CLOUDS

Many CSPs are large IT companies actively involved in the development of
new computing, storage, and communication technologies for many years.
These companies use the latest technologies for their cloud infrastructure
and motivate the other CSPs to follow suit. It is thus, fair to say that cloud
computing is driven by the most recent advances in the field of computing
and communication.

We now take a closer look at the defining attributes of the new philosophy
for delivering computing services. Some of these attributes reflect the
attractions of the new model for service delivery, others for the organization
of the infrastructure which ensures the success of the business model. These
attributes are:

• Cloud computing uses Internet technologies to offer elastic services.
• The resources used for cloud services are metered and the users are

charged only for the resources they used.

Computer Clouds 115

• The maintenance and the security are ensured by service providers.
• Economy of scale allows CSPs to operate more efficiently due to

specialization and centralization.
• To reduce maintenance costs, the cloud infrastructure typically uses the

same family of hardware and similar software.
• Cloud computing is cost-effective due to resource multiplexing; lower

costs for the service provider are passed on to the cloud users.
• The application data is stored closer to the site where it is used in a device-

and location-independent manner.

The term “elastic computing” refers to the ability of dynamically ac-
quiring computing resources and supporting a variable workload. A CSP
maintains a massive infrastructure to support elastic services. Such a
massive infrastructure requires a large initial investment, periodic updates
of the servers and of the network components, and last, but not least, high
electric bills and large maintenance costs, see Section 4.5.

Data replication increases reliability and security. Keeping the data close
to the sites where it is needed lowers communication costs and the access
time. Resource multiplexing can increase the average server utilization; the
peak demands for CPU, memory, and I/O of several applications running on
the same server typically occur at different times and lead to higher average
server utilization.

Software and hardware homogeneity was typical for cloud infrastructure
until recently. In the last few years, servers with attached co-processors such
as GPUs (Graphic Processing Units) and FPGAs (Field-Programmable Gate
Arrays) have been added to multicore processors. GPUs are particularly
useful for multimedia applications, computational science, and engineering
applications relying heavily on vector processing. Some of the servers use
processors with multimedia extensions, e.g., AVX-5121 to support vector
processing. Increased cloud heterogeneity adds to the challenges faced by
the Cloud Resource Management (CRM) system.

The ownership of the cloud infrastructure and the access to cloud services
differ for public, private, hybrid, and community clouds. The infrastructure
of public clouds is owned by an organization selling cloud services and
it is made available to the general public and to large organizations.

1AVX-512 expands Advanced Vector Extension (AVX) to 512-bit support utilizing a new
EVEX prefix encoding proposed by Intel in July 2013 and first supported by Intel with the
Knights Landing processor scheduled to ship in 2015.

116 Complex Systems and Clouds

The infrastructure of private clouds is owned and operated solely by one
organization and offers services only to the members of this organization.
The organization could be a company, a research facility, or any other
large institution with significant computing needs and sufficient resources
to maintain the computing and communication infrastructure. Hybrid clouds
consists of two or more private and public clouds sharing a set of common
standards to support data and application portability. Lastly, the infrastruc-
ture of community clouds is shared by several organizations and supports a
specific community of users.

Our discussion is focused on public clouds which offer services to a large
user community. This is a pure form of utility computing where users have
access to as much resources as they need and pay only for the resources
they have consumed. This computing paradigm is extremely attractive for
individual users. It is also attractive for large organizations as it frees them
from maintaining their own IT infrastructure, a very costly proposition.

Fig. 4.1 presents the defining attributes, the resources, and the organi-
zation of the cloud infrastructure, as well as the cloud delivery models
discussed in Section 4.2. The cloud infrastructure is distributed across
multiple data centers. Resource virtualization discussed in Section 4.3
supports a more effective server sharing by allowing application migration,

Delivery models

Infrastructure as a Service (IaaS)

Software as a Service (SaaS)

Platform as a Service (PaaS)

Deployment models

Private cloud

Hybrid cloud

Public cloud

Community cloud

Defining attributes

Massive infrastructure

Accessible via the Internet

Utility computing. Pay-per-usage

Elasticity

Cloud computing

Resources

Networks

Compute and storage servers

Services

Applications

Infrastructure
Distributed infrastructure

Resource virtualization

Autonomous systems

Fig. 4.1 Cloud computing: delivery models, deployment models, defining attributes, re-
sources, and organization of the infrastructure. From D.C. Marinescu, Cloud Computing:
Theory and Practice, Morgan Kaufmann, Waltham, MA, 2013.

Computer Clouds 117

and a better isolation of applications sharing a server. At the same time,
virtualization negatively affects application performance and security and
increases the complexity of the system software.

Cloud computing has changed the thinking about computing as discussed
in Section 4.3. Still, major challenges for cloud computing exist in the
area of security and resource management. In spite of low cost access to a
large pool of computing resources, cloud computing requires a leap of faith;
individuals and companies are sometimes reluctant to trust others with their
data and proprietary information.

4.2 CLOUD DELIVERY MODELS

A cloud delivery model specifies the capabilities offered to users and the ap-
plications supported. There are three basic cloud delivery models, Software
as a Service (SaaS), Platform as a Service (PaaS), and Infrastructure as a
Service (IaaS).

SaaS clients use applications supplied by the service provider. SaaS does
not allow any control of the cloud platform or the infrastructure. PaaS users
can deploy consumer-created or acquired applications using programming
languages and tools supported by the CSP. IaaS allows a more sophisticated
user to deploy and run arbitrary software, including operating systems and
applications. The internal organization of the cloud infrastructure is different
for the three delivery models.

Fig. 4.2 represents the organization and the structure of the three
delivery models, SaaS, PaaS, and IaaS, according to the Cloud Security
Alliance (https://cloudsecurityalliance.org/). The system software for the
IaaS delivery model is the most complex, but offers the highest degree of
user flexibility and is useful for application developers, as well as users
of existing applications. Its main appeal is access to a very large pool of
computing resources needed for Big Data applications. On the other hand,
SaaS does not require any computing skills. Many SaaS applications are
online transaction processing systems (OLTP). Some store user information
and have to use additional precautions to guard against unauthorized access.
This is the case of email, banking, and other commercial applications.

SaaS—applications are supplied by the CSP. The applications are acces-
sible from various client devices through a thin client interface, such as a
web browser (e.g., web-based email). The user does not manage or control
the underlying cloud infrastructure including network, servers, operating

https://cloudsecurityalliance.org/

118 Complex Systems and Clouds

Facilities

Hardware
C

ore
connectivity

A
bstraction

API

Facilities

Hardware

Data Metadata

Applications

API

Presentation

Facilities

Hardware

C
ore

connectivity

C
ore

connectivity

A
bstraction

A
bstraction

API API

Integration and
middleware

Integration and
middleware

Fig. 4.2 The structure and the organization of the three delivery models, SaaS, PaaS, and
IaaS [161]. SaaS services are accessed by using a thin client. PaaS supports applications
designed and built under strict control of the CSP. IaaS offers a user-friendly and flexible
access to computing resources. From D.C. Marinescu, Cloud Computing: Theory and
Practice, Morgan Kaufmann, Waltham, MA, 2013.

systems, storage, or even individual application capabilities, with the possi-
ble exception of limited user-specific application configuration settings.

SaaS includes enterprise services such as workflow management, group-
ware and collaborative, supply chain, communications, digital signature,
customer relationship management (CRM), desktop software, financial
management, geo-spatial, and search. Another group of SaaS are Web
2.0 applications such as: metadata management, social networking, blogs,
wiki services, and portal services. The most likely candidates for SaaS are
applications when:

• Many competitors use the same product, such as email.
• Periodically there is a significant peak in demand, such as billing and

payroll.

Computer Clouds 119

• There is a need for the web or mobile access, such as mobile sales
management software.

• There is only a short-term need, such as collaborative software for a
project.

PaaS delivery model is used for consumer-created or acquired
applications using programming languages and tools supported by the
provider. The end-user does not manage or control the underlying cloud
infrastructure including network, servers, operating systems, or storage. The
end-user has control over the applications at run time and, possibly, on the
configuration of the execution environment. Such services include session
management, device integration, sandboxes, instrumentation and testing,
contents management, knowledge management, and Universal Description,
Discovery, and Integration (UDDI), a platform-independent, Extensible
Markup Language (XML)-based registry providing a mechanism to register
and locate web service applications.

PaaS is not particularly useful when the application must be portable,
when proprietary programming languages are used, or when the underlying
hardware and software must be customized to improve the performance of
the application. Its major application areas are in software development
when multiple developers and users collaborate and the deployment and
testing services are automated.

IaaS offers the ability to provision processing, storage, networks, and
other fundamental computing resources; the consumer is able to deploy
and run arbitrary software, which can include operating systems and
applications. The consumer does not manage or control the underlying cloud
infrastructure, but has control over operating systems, storage, deployed
applications, and possibly limited control of some networking compo-
nents, e.g., host firewalls. Services offered by this delivery model include:
server hosting, web servers, storage, computing hardware, operating sys-
tems, virtual instances, load balancing, Internet access, and bandwidth
provisioning.

The IaaS cloud computing delivery model has a number of characteris-
tics such as: the resources are distributed and support dynamic scaling, it
is based on a utility pricing model and variable cost, and the hardware is
shared among multiple users. This cloud computing model is particularly
useful when the demand is volatile and a new business needs computing
resources and it does not want to invest in a computing infrastructure, or
when an organization is expanding rapidly.

120 Complex Systems and Clouds

4.3 HOW CLOUDS CHANGED OUR THINKING ABOUT
COMPUTING

The infrastructure of computer clouds uses the latest computing and com-
munication technology and, as expected, had a profound impact on both the
hardware and the software developments in recent years. Our computing
systems have evolved from single processors, to multiprocessors, to multi-
core multiprocessors, clusters, and now Warehouse-scale Computers (WSC)
controlled by increasingly more complex software stacks.

Built with inexpensive off-the-shelf components to deliver cheap com-
puting cycles, the millions of servers operating in today’s data centers are
capable of delivering the computing power necessary to solve problems that
previously could only be solved by large supercomputers assembled from
expensive, one-of-a-kind components. The scale of the cloud infrastructure,
combined with the relatively low mean-time to failure of the off-the-shelf
components used to assemble a WSC, make the task of ensuring reliable
services quite challenging.

At the same time, long-running cloud services require a very high
degree of availability. For example, a 99.99% availability means that the
services can only be down for less than 1 hour/year. Only a fair level of
hardware redundancy combined with software support for error detection
and recovery can ensure such a level of availability [110]. Software helps
integrate a very large number of system components and contributes to
the challenge of ensuring efficient and reliable operation as discussed in
Section 3.2.

New services, which hide from the end-user some of the intricacies
of parallel and distributed computing, facilitate access to cloud resources.
For example, to deal with Big Data applications, new AWS services such
as Map-Reduce and Elastic BeanStalk provide automatic support for
concurrent execution and automate the execution of complex workflows.

Processor virtualization, running multiple independent instances of one
or more Operating Systems (OS), pioneered by IBM in the early 1970s,
was revived for computer clouds. Running multiple Virtual Machines
(VMs) allows multiple applications to better share the resources of a server
and achieve a better processor utilization. The instantaneous demands for
resources of the applications running concurrently are likely to be different
or complement each other, and the idle time of the server is reduced.

Computer Clouds 121

This form of processor virtualization by multiplexing is beneficial for
both users and CSPs. Cloud users appreciate virtualization because it allows
a better isolation of applications from one another than the traditional
process sharing model. Another advantage is that an application developer
can chose to develop the application in a familiar environment and under
the OS of her choice. Virtualization also provides more freedom for the
system resource management because VMs can be easily migrated. The VM
migration proceeds as follows: the VM is stopped, its state is saved as a file,
the file is transported to another server, and the VM is restarted.

On the other hand, virtualization contributes to increased complexity
of the system software and has undesirable side effects on application
performance and security. Processor sharing is now controlled by a new
layer of software, the Virtual Machine Monitor (VMM), also called a
hypervisor. It is often argued that a VMM is a more compact software with
only a few hundred thousand lines of code versus the million lines of code
of a typical OS, thus, it is less likely to be faulty. Unfortunately, though the
footprint of the VMM is small, the server must run a management OS. For
example, Xen, the VMM used by AWS and others, starts initially Dom0, a
privileged domain that starts and manages the DomU unprivileged domains.
Dom0 runs the Xen management toolstack, is able to access the hardware
directly, and provides Xen virtual disks and network access for guests.

Sharing has a negative effect on the application performance. System
calls cannot be executed by the OS of a VM, but are trapped and executed
only under the control of the VMM. Sharing has multiple effects on security.
One of the more severe effects is that OS security patches cannot be applied
to a VM archived as a file; when activated, the old version of OS will run.
To make matters even worse, if the archived file is infected by a virus, then
the virus will spread to other servers when the VM is activated.

Clouds support computing services for the masses. Anyone can have at
her fingertips the massive computing infrastructure of the AWS, while only
a few highly qualified individuals working on very important problems in
science and engineering had access to supercomputers in the past. Moreover,
a large segment of the population uses cloud services for electronic mail, or
for data streaming. Indeed, several years ago, Netflix partnered with AWS
to deliver content to millions of movie viewers.

Anyone with little or no knowledge about computing should be able
to use SaaS cloud services; this is expected, the same way as few users

122 Complex Systems and Clouds

Software as a Service (SaaS)

Platform as a Service (PaaS)

Infrastructure as a Service (IaaS)

Fig. 4.3 Challenges posed by the three cloud delivery model and the control of cloud
resources [161]. At the base of the pyramid, IaaS, is the most challenging, but offers the
user the highest degree of control over cloud resources. The user is allowed to develop her
own application and run it under the OS of her choice, provided that the OS is supported by
the ISP. At the top of the pyramid SaaS is the least challenging, but does not offer any control
over cloud resources, the user has access to a running application developed and installed by
the CSP. From D.C. Marinescu, Cloud Computing: Theory and Practice, Morgan Kaufmann,
Waltham, MA, 2013.

of the telephone system are experts in fiber optic communication or few
drivers of cars with internal combustion engines understand the laws
of thermodynamics. On the other hand, cloud computing poses serious
challenges to software developers of applications using the IaaS cloud
delivery model, e.g., AWS.

When we increased the computing power available to applications, at
every step along the way we have also increased the complexity of the
system, as well as that of the application software. Often, a cloud user is
encouraged to develop new algorithms for data partitioning and concurrent
processing. Fig. 4.3 allegorically depicts the three cloud delivery models
and challenges they pose.

The software developers for cloud applications are faced with massive
amounts of data and the need to process it in parallel to reduce the computing
time. One of the greatest challenges is to optimize the application execution
time without actually knowing the precise location where the instance or
instances of the application run. The actual assignment of an instance is
controlled by an automated component of the CRM system. This lack of
transparency allows the system to optimize its overall performance, but at a
price the users have to pay.

Cloud computing is a social and economic reality built on the belief that
large-scale systems can deliver computing and storage services cheaply and
operate securely and reliably. None of the components of this trust vector

Computer Clouds 123

are fully supported by existing clouds; security incidents occur, data has
been compromised, and cloud computing sites have been down for shorter
or longer periods of time. Due to the scale of the system and the size of
the user population, any security breach has devastating effects; the down
time of a cloud infrastructure could affect millions of users. To ensure that
computing clouds do not become victims of their own success, we should
expect transformational changes in this field. One of these transforma-
tional changes could be application of self-organization principles to cloud
computing.

4.4 HIERARCHICAL ORGANIZATION: WAREHOUSE-SCALE
COMPUTERS

Cloud computing had an impact on the architecture of large-scale systems.
The Warehouse-Scale Computers [27, 110] form the backbone of the cloud
infrastructure of Google, Amazon, and other CSPs. WSCs are hierarchically
organized systems with 50,000–100,000 processors capable of exploiting
request-level and data-level parallelism.

Request-level parallelism is typical for transaction-oriented systems
designed to support a very large user population, as well as requests rates
of million transactions per second. Many interactive cloud applications
such as email and a wide range of mobile applications, are based on
the SaaS delivery model. Transactions are a form of request-response
communication where a client generates the request, the request travels
to the cloud, the cloud responds, and the response travels back to the client.
Data-level parallelism is exploited by another important class of cloud
applications. Data analytics and other batch applications based on the IaaS
and PaaS delivery models process very large volumes of data. The data is
partitioned in blocks which are then processed in parallel, see, for example,
the Map-Reduce service [161] supported by AWS and others. The ability to
effectively process both interactive and batch applications is critical for the
cloud infrastructure.

At the heart of a WSC is a hierarchy of networks which connect the
system components, servers, racks, and cells/arrays, together as in Fig. 4.4.
Typically, a rack consists of 48 servers interconnected by a 48 port, 10
Gbps Ethernet (GE) switch. In addition to the 48 ports, the GE switch has
two to eight uplink ports connecting a rack to a cell. Thus, the level of
oversubscription, the ratio of internal to external ports, is between 48/8 = 6
and 48/2 = 24. This has serious implications on the performance of an

124 Complex Systems and Clouds

Fig. 4.4 The organization of a WSC with N cells, R racks, and S servers per rack.

application; two processes running on servers in the same rack have a much
larger bandwidth and lower latency than the same processes running on
servers in different racks.

The next component is a cell, sometimes called an array, consisting of
a number of racks. The racks in a cell are connected by an array switch,
a rather expensive communication hardware with a cost two orders of
magnitude higher than that of the rack switch. The cost is justified by the
fact that the bandwidth of a switch with n ports is of the order n2 therefore,
to support a 10 times larger bandwidth, for 10 times as many ports, the cost
increases by a factor of 102. An array switch can support up to 30 racks.

WSCs support both interactive and batch workloads. The communication
latency and the bandwidth within a server, a rack, and a cell are different,
thus, the execution time and the costs for running an application is affected
by the volume of data, the placement of data, and by the proximity of
instances. For example, the latency, the bandwidth, and the capacity of the
memory hierarchy of a WSC with 80 servers/rack and 30 racks/cell is shown
in Table 4.1 based on the data from [27].

Computer Clouds 125

Table 4.1 The Memory Hierarchy of a WSC

Location DRAM Disk

type Latency Bandwidth Capacity Latency Bandwidth Capacity

Local 0.1 20,000 16 10,000 200 2,000

Rack 100 100 1040 11,000 100 160,000

Array 3,000 10 31,200 12,000 10 4,800,000

The latency in microseconds, the bandwidth in MB/sec, and the capacity in GB.
From L.A. Barossso, J. Clidaras, U. Hözle, The Datacenter as a Computer: An Introd-
uction to the Design of Warehouse-Scale Machines, second ed., Morgan & Claypool,
2013.

The DRAM latency increases by more than three orders of magnitude,
while the bandwidth decreases by a similar factor. The latency and the
bandwidth of the disks follow the same trend, but the variation is less
dramatic. To put this in perspective, the memory-to-memory transfer of
1,000 MB takes 50 msec within a server, 10 seconds within the rack, and
100 seconds within a cell, while the transfers between disks take 5, 10, and
100 seconds, respectively.

WSCs, though expected to supply cheap computing cycles, are by no
means inexpensive; the cost of a WSC is of the order of $150 million, but the
cost-performance is what makes them appealing. The capital expenditures
for a WSC include the costs for servers, for the interconnect, and for the
facility. A case study reported in [110] shows a capital expenditure of
$167,510,000, including $66,700,00 for 45,978 servers, $12,810,000 for an
interconnect with 1,150 rack switches, 22 cell switches, 2 layer 3 switches,
and 2 border routers. In addition to the initial investment, the operation cost
of the cloud infrastructure including the cost of energy is significant. In this
case study the facility is expected to use 8 MW.

4.5 ENERGY CONSUMPTION, ELASTICITY,
AND OVER-PROVISIONING

Cloud energy consumption is a complex subject extensively discussed in
the literature [3, 15, 26, 28, 161, 230]. Some of the problems posed by the
optimization of cloud energy consumption discussed in [165] are presented
next.

The costs for maintaining the cloud computing infrastructure are sig-
nificant. A large fraction of these costs are for data center heating and
cooling, and for powering the servers and the interconnection networks.

126 Complex Systems and Clouds

It was predicted that by 2012 up to 40% of the budget of IT enterprise
infrastructure would be spent on energy. While most of the power for
large data centers, including cloud computing data centers, comes from
power stations burning fossil fuels such as coal and gas, in recent years the
contribution of solar, wind, geothermal, and other renewable energy sources
has steadily increased.

Energy efficiency, the work done per Joule of energy affects the cost of
cloud services. The energy costs are passed down to the users of cloud
services and differ from one country to another and from one region to
another. For example, the costs for cloud computing services in two AWS
regions, US East and South America are, respectively: upfront for a year
$2,604 versus $5,632 and hourly $0.412 versus $0.724. Higher energy and
communication costs are responsible for the significant difference in this
example; the energy costs for the two regions differ by about 40%.

Cloud elasticity and over-provisioning. One of the main appeals of
the utility computing is cloud elasticity. Elasticity means that additional
resources are guaranteed to be allocated when an application needs them
and these resources will be released when they are no longer needed. The
user ends up paying only for the resources actually used.

Elasticity is based on over-provisioning and on the assumption that there
is an effective admission control mechanism. Another assumption is that the
likelihood of all running applications dramatically increasing their resource
consumption at the same time is extremely low. This assumption is realistic,
though we have seen cases when a system is overloaded due to concurrent
access by large crowds, e.g., the phone system in the case of a catastrophic
event such as an earthquake. A possible solution is to request cloud users to
specify in their service request the type of workloads and to pay for access
accordingly, e.g., a low rate for slow varying and a high rate for workloads
with sudden peaks.

Over-provisioning means that a CSP has to invest in a larger infrastruc-
ture than the typical cloud workload warrants. It follows that the average
cloud server utilization is low [3, 37, 161]; the low server utilization neg-
atively affects the common measure of energy efficiency, the performance
per Watt of power, and the ecological impact of cloud computing. Over-
provisioning is not economically sustainable [47].

Reduction of energy consumption thus, of the carbon footprint of cloud
related activities, is increasingly more important for the society. Indeed,

Computer Clouds 127

more and more applications run on clouds and cloud computing uses more
energy than many other human-related activities. Reduction of the carbon
footprint of large data centers can only be achieved through a comprehensive
set of technical efforts. The hardware of the cloud infrastructure has to be
refreshed periodically and new and more energy efficient technologies have
to be adopted; the resource management software has to pay more attention
to energy optimization.

Energy proportional systems and server utilization. In an ideal world,
the energy consumed by an idle system should be near zero and should
grow linearly with the system load. In real life, even systems whose power
requirements scale linearly, when idle, use more than half the power they use
at full load [3]. Indeed, a 2.5 GHz Intel E5200 dual-core desktop processor
with 2 GB of RAM consumes 70 W when idle and 110 W when fully loaded;
a 2.4 GHz Intel Q6600 processor with 4 GB of RAM consumes 110 W when
idle and 175 W when fully loaded [28].

An energy-proportional system is one when the amount of energy
used is proportional to the load of the system. Different subsystems of
a computing system behave differently in terms of energy efficiency;
while many processors have reasonably good energy-proportional profiles,
significant improvements in memory and disk subsystems are necessary.
The processors used in servers consume less than one-third of their peak
power at very low load and have a dynamic range of more than 70% of
peak power; the processors used in mobile and/or embedded applications
are better in this respect.

The dynamic power range of other components of a system is much
narrower [26]: less than 50% for DRAM, 25% for disk drives, and 15%
for networking switches. The power consumption of such devices is: 4.9 kW
for a 604.8 TB, HP 8100 EVA storage server, 3.8 kW for the 320 Gbps Cisco
6509 switch, 5.1 kW for the 660 Gbps Juniper MX-960 gateway router [28].
A number of proposals have emerged for energy proportional networks; the
energy consumed by such networks is proportional with the communication
load. For example, a data center network based on a flattened butterfly
topology is more energy and cost-efficient [3].

Energy use and ecological impact of large data centers. The metric
used to evaluate the energetic efficiency of a WSC or of a datacenter is the
power utilization effectiveness (PUE). PUE is the ratio of the total power
utilized by the facility over the power used by the IT equipment.

128 Complex Systems and Clouds

A conservative estimation of the electric energy used now by the
Information and Communication Technology (ICT) ecosystem is about
1,500 TWh of energy, 10% of the electric energy generated in the entire
world. This includes energy used for manufacturing electronic components
and computing and communication systems, for powering, heating, and
cooling IT systems, and for recycling and disposing of obsolete IT equip-
ment. ICT energy consumption equals the total electric energy used for
illumination in 1985 and represents the total electric energy generated in
Japan and Germany.

The energy consumption of large-scale data centers and their costs for
energy used for computing and networking and for cooling are significant
now and are expected to increase substantially in the future. In 2006, the
6,000 data centers in the United States reportedly consumed 61 × 109 kWh
of energy, 1.5% of all electricity consumption in the country, at a cost of
$4.5 billion [230]. The predictions were dire: the energy consumed by the
data centers in the United States was expected to double from 2006 to 2011;
peak instantaneous demand was expected to increase from 7 GW in 2006 to
12 GW in 2011, requiring the construction of 10 new power plants. The en-
ergy consumption of data centers and the network infrastructure is predicted
to reach 10,300 TWh/year in 2030, based on 2010 levels of efficiency [230].

According to Moore’s Law, the number of transistors on a chip thus,
the computing power of microprocessors doubles approximately every 1.5
years. A recent study [140] reports that electrical efficiency of computing
doubles also about every 1.5 years. Thus, performance growth rate and
improvements in electrical efficiency almost cancel each out. It follows that
the energy use for computing scales linearly with the number of computing
devices.

The power consumption required by different types of human activities is
partially responsible for the greenhouse gas emissions. The greenhouse gas
emission due to the data centers is estimated to increase from 116 megatons
of CO2 in 2007 to 257 megatons in 2020 due primarily to increased
consumer demand [230].

Energy-aware application scaling. Scaling is the process of allocating
additional resources to a cloud application in response to a request consistent
with the SLA. We distinguish two scaling modes, horizontal and vertical
scaling. Horizontal scaling is the most common mode of scaling on a cloud;
it is done by increasing the number of Virtual Machines (VMs) when the

Computer Clouds 129

load of applications increases and reducing this number when the load
decreases. Load balancing is critical for this mode of operation. Vertical
scaling keeps the number of VMs of an application constant, but increases
the amount of resources allocated to each one of them. This can be done
either by migrating the VMs to more powerful servers, or by keeping the
VMs on the same servers, but increasing their share of the server capacity.
The first alternative involves additional overhead; the VM is stopped, a
snapshot of the state of the VM is taken, the file is migrated to a more
powerful server, and the VM is restarted at the new site.

The alternative to the wasteful resource management policy when the
servers are always on, regardless of their load, is to develop energy-aware
load balancing and scaling policies. Such policies combine dynamic power
management with load balancing and attempt to identify servers operating
outside their optimal energy regime, and decide if and when they should be
switched to a sleep state or what other actions should be taken to optimize
the energy consumption.

Energy optimization is an important policy for Cloud Resourced
Management (CRM), but it cannot be considered in isolation, it has to
be coupled with admission control, capacity allocation, load balancing,
and quality of service. Existing mechanisms cannot support concurrent
optimization of all the policies. Mechanisms based on a solid foundation,
such as control theory are too complex and do not scale well, those based
on machine learning are not fully developed, and the others require a model
of a system with a dynamic configuration operating in a fast-changing
environment. We believe that the most likely to succeed are market-based
mechanisms discussed in Section 4.8.

4.6 CLOUD RESOURCE MANAGEMENT POLICIES
AND MECHANISMS

The policies for CRM can be loosely grouped into five classes: (1) admission
control; (2) capacity allocation; (3) load balancing; (4) energy optimization;
and (5) quality of service (QoS) guarantees.

The explicit goal of an admission control policy is to prevent the system
from accepting workload in violation of high-level system policies [102]. A
system should not accept additional workload if this would prevent it from
completing work already in progress or contracted. Limiting the workload
requires some knowledge of the global state of the system.

130 Complex Systems and Clouds

Capacity allocation means to allocate resources for individual instances.
An instance is an activation of a service on behalf of a cloud user. Locating
resources subject to multiple global optimization constraints requires a
search in a very large search space. Capacity allocation is more challenging
when the state of individual servers changes rapidly.

Load balancing and energy optimization are correlated and affect the
cost of providing the services; they can be done locally, but global load
balancing and energy optimization policies encounter the same difficulties
as the capacity allocation [144]. Quality of service (QoS) is probably the
most challenging aspect of resource management and, at the same time,
possibly the most critical for the future of cloud computing.

Resource management policies must be based on a disciplined approach,
rather than ad hoc methods. The basic mechanisms for the implementation
of these policies are:

Control theory. Control theory uses the feedback to guarantee system
stability and to predict transient behavior [144], but can be used only to
predict local, rather than global behavior; applications of control theory to
resource allocation are covered in [77]. Kalman filters have been used for
unrealistically simplified models as reported in [130].

Machine learning. A major advantage of machine learning techniques is
that they do not need a performance model of the system. This technique
could be applied for coordination of several autonomic system managers as
discussed in [135].

Utility-based. Utility-based approaches require a performance model and
a mechanism to correlate user-level performance with cost [136].

Market mechanisms. Auction models, such as the one discussed in [218],
cost-utility models, or macroeconomic models are an intriguing alternative
and have been the focus of research in recent years.

To our knowledge, none of the optimal or near-optimal methods to
address the five classes of policies scale up, thus, there is a need to
develop novel strategies for resource management in a computer cloud.
Typically, these methods target a single aspect of resource management,
e.g., admission control, but ignore energy conservation; many require very
complex computations that cannot be done effectively in the time available
to respond.

Computer Clouds 131

Performance models required by some of the methods are very complex,
analytical solutions are intractable, and the monitoring systems used to
gather state information for these models can be too intrusive and unable
to provide accurate data. Many techniques are concentrated on system
performance in terms of throughput and time in system, but they rarely
include energy trade-offs or QoS guarantees. Some techniques are based
on unrealistic assumptions; for example, capacity allocation is viewed as an
optimization problem, but under the assumption that servers are protected
from overload.

Virtually all mechanisms for the implementation of the resource man-
agement policies require the presence of a few systems which monitor and
control the entire cloud, while the large majority of systems run applications
and store data; some of these mechanisms require a two-level control, one at
the cloud level and one at the application level. The strategies for resource
management associated with IaaS, PaaS, and SaaS will be different, but in
all cases the providers are faced with large fluctuating loads.

In some cases, when a spike can be predicted, the resources can be
provisioned in advance, e.g., for Web services subject to seasonal spikes.
For an unplanned spike, the situation is slightly more complicated. Auto-
scaling can be used for unplanned spike loads provided that: (a) there is a
pool of resources that can be released or allocated on demand and (b) there
is a monitoring system which allows a control loop to decide in real time
to reallocate resources. Auto-scaling is supported by PaaS services, such as
Google App Engine. Auto-scaling for IaaS is complicated due to the lack
of standards; the Open Cloud Computing Interface (OCCI), an organization
within Open Grid Forum (OGF) is involved in the definition of virtualization
formats and APIs for IaaS. Challenges and opportunities for automated
resource allocation in computer clouds are also discussed in [151, 220].

4.7 CLOUD RESOURCE MANAGEMENT SYSTEMS

In this section we review existing CRM systems used by several CSPs.
Google uses systems such as Borg [226] and Omega [197] for cluster
management in its cloud infrastructure. Amazon and Google support the
creation of Docker-based containers which allow cloud users to run their
applications in a resource-isolated manner.

132 Complex Systems and Clouds

Docker is an open-source, lightweight containerization platform that
automates the process of deploying applications [14, 94]. Docker containers
wrap up a software module in a complete filesystem that contains everything
it needs to run: code, runtime, system tools, system libraries. This guarantees
that it will always run the same, regardless of the environment it is running
in. Containers have similar resource isolation and allocation benefits as
VMs, but a different architectural approach allows them to be much more
portable and efficient.

Kubernetes, is a system developed at Google for managing containerized
applications across a cluster of nodes [143]. Twitter’s infrastructure is
managed by Mesos [116]. A storage management system used by VMware
is described in [228].

A 12,000-server Google cluster, managed with the Borg system, achieves
aggregate CPU utilization of 25–35% and aggregate memory utilization
of 40% [70]. The aggregate CPU utilization of systems using Mesos
is consistently below 20%, even though reservations reach up to 80%
of system capacity. The Qasar system developed at Stanford University
improves resource utilization in a 200-server EC2 cluster by 47% [70].

Existing systems can manage clusters with tens of thousands servers
but the challenges outlined earlier in this chapter persist and motivate the
search for effective and scalable policies and mechanisms for CRM [43, 46,
84, 150, 167, 176, 195, 245]. To respond to the needs of increasingly more
complex applications consisting of multiple phases and requiring workflow
management, CSPs are already offering workflow management services
such as AWS Simple Workflow Management (SWS) and Elastic Bean
Stock (EBS).

4.8 MARKET MECHANISMS FOR CLOUD RESOURCE
MANAGEMENT

Many countries in the world enjoy a free-market economy where prices
are based on unrestricted competition among independent suppliers and
consumers of goods and services. Suppliers aim to maximize their profits
and consumers look for the best quality at the lowest price. It was John
Nash, who in 1951 established an important theoretical result for market
economics, the Nash equilibrium [180]. Nash equilibrium states that in
noncooperative games, a stable state occurs when no player has an incentive

Computer Clouds 133

to deviate from her strategy after considering the choices of her opponents.
This stable state may, or may not, exist and is different from a global optimal
state. Noncooperative games model interactions in a market economy.

Market mechanisms are scalable and self-regulating. When the demand
exceeds the supply, the price increases and when the supply is larger than the
demand, the price of goods and services decrease. It is thus, not surprising
that the application of market mechanisms to computer resource allocation
has been researched since the early 1960s when large timeshared systems
such as Multics [58] were designed. Initially, the goal of market mechanisms
was to maximize the utilization of scarce computing resources. For many
years the research continued to be focused on global optimization of system-
centric metrics such as mean average job completion time, throughput, and
system utilization [48].

The evolution of computing infrastructure from single timeshared sys-
tems to clusters, to grids, and now to clouds, increased progressively the
level of resource sharing and broadened the scope of research in this area.
The increased quantity of resources, the increased number of users, the
broader spectrum of applications, all point out to more complex demands for
market mechanisms. Cloud applications have different requirements, some
applications have higher priorities than the others, users are willing to pay
different prices for services, and resource management policies have to ad-
dress complex social policies [204]. The interest in the application of market
mechanisms for resource management in computer systems is illustrated by
a substantial body of research including [48, 157, 158, 163, 204, 212, 218].

The following discussion is pertinent to IaaS cloud delivery model,
where the user has some degree of control over the resources and to a
lesser extent, to the PaaS cloud delivery model. All SaaS applications are
supported by the CSP, the only choice a user has is to use or not use a
particular application.

Market mechanisms should optimize not only system centric measures,
but also user value. Utility computing and, implicitly cloud computing,
have a clear advantage in this respect because the system does not have
to infer what is the social value of resource consumption or whether an
application is more valuable than another. The utility for the user is reflected
by the price she agrees to pay for services. To ensure a fair market for a
large user community, a cloud should offer different types of services at
different prices.

134 Complex Systems and Clouds

Market mechanisms pose their own challenges to system designers. To
avoid the tragedy of the commons [105] when one application’s use of
resources prevents others from running, the markets mechanisms should
ensure performance isolation, a nontrivial, but necessary requirement.
Occasionally, the demand could exceed the supply thus, admission control
is also necessary to limit the access to services. Last, but not least, users may
request packages of resources of different types and use them concurrently,
or at different times.

When resources are independently controlled, as in the case of most
computer grids, resource allocation leads to large combinatorial problems.
The allocation of computer resources such as CPU cycles, primary memory,
and secondary storage has to be balanced, but the balance differs from
application to application. There are also limitations of the current system
design that make integration of market mechanisms harder, such as the lack
of user authentication and the kernel support for resource isolation.

A very difficult problem is predicting the resources required by a specific
run. This is true for a newly developed application, as well as for an old
one. The same application may use very different amounts of resources
depending on the size of the input data. Practice shows that it is difficult to
calibrate the resource needs based on the results of a test run. Changing
the input data size may alter the execution flow, affect the spatial and
temporal locality of the code, and increase the cache misses, as well as
the I/O and communication intensity. The solutions to this problem adopted
by computer clouds are elasticity and over-provisioning with the negative
consequences discussed in Section 4.5.

Misestimation of application needs has negative consequences for reser-
vations systems and it is even worse in the case of reservations based
on bidding schemes. An underbid could increase the amount of resources
needed to complete the task, the time to completion, and also the cost,
because the application has to be rerun. An overbid also increases the
cost, but there are means to address this problem as we shall see shortly.
Periodic checkpointing is recommended in the case of long running batch
workloads to ensure that any unplanned event such as a system failure or
forced termination when the allotted time has expired, does not lead to a
total waste of resources already consumed.

A major concern is how to allow cloud users to express their preferences
regarding the five broad classes of CRM policies discussed in Section 4.6
and the relationships among them. This is an important area that should

Computer Clouds 135

receive more attention in the future. Achieving a good balance between
accuracy of the specifications and user involvement, between the desire to
offer multiple alternative and simplicity is a difficult task. An intelligent
Graphics User Interface (GUI) should offer defaults based on history data
on user preferences and application previous runs.

Market mechanisms have some advantage over the other mechanisms
discussed in Section 4.6; they do not require a model of the system, are
scalable, and last, but not least, do not require accurate information about the
global state of the system. It is generally accepted that distributed systems
which maintain state information are neither scalable nor robust; this is the
reason why most Internet services are delivered by stateless servers. We
have also known for some time that collecting state information consumes a
significant share of system resources and that system management decisions
based on obsolete state information are far from optimal. This knowledge
is critical for the communication and computing infrastructure built around
the Internet. In contrast, resource management in cloud computing is still
based on hierarchical control models where state information is maintained
at several levels.

We have also known that assembling large collections of systems each
with a small, but finite probability of failure, requires novel design principles
to guarantee system availability. New strategies, policies and mechanisms
to implement these policies are necessary to: allow cloud servers to operate
more efficiently; reduce costs for the CSPs; provide an even more attractive
environment for cloud users; and support some form of interoperability.
The pressure to provide new services, better manage cloud resources, and
respond to a broader range of application requirements is increasing, as more
US Government Agencies are encouraged to use cloud services.2

The choice of market mechanisms to support CRM policies is driven
by the desire to support simple and effective means to implement them.
Auctions seem well suited because they offer a straightforward manner
to balance the demand and the supply. The next decision is who should
participate at these auctions, who should represent the producers and
the consumers. The physical organization of the cloud infrastructure and
the accuracy of state information are the deciding factors for the choice
of producers. In a hierarchic cloud organization, only the servers know

2See, for example, the November 6, 2014 memorandum “The DoD Cloud Way Forward”
which stresses the need for the DoD to increase its use of cloud services.

136 Complex Systems and Clouds

precisely their state, the state information at higher levels of hierarchy is
obsolete. Thus the servers, or as we shall see later, coalitions of servers
should be able to place bids for service.

The consumers of services are cloud users or their proxies. Proxies have
several advantages over direct user participation. Typically, auctions are
organized periodically thus, the time when a service request is made and
the time when the auction is conducted are different and requesting user’s
presence is undesirable. In addition, proxies can negotiate on behalf of users
by combining specific options with history data about the application and
past services. At the completion of the service the proxy can also negotiate
returning the excess resources to the CSP.

Reservation systems are ubiquitous in many instances where a large
population of clients compete for limited resources. Reservations allow a
client to choose optimal packages and support efficient access to pools of
resources, guarantee access, avoid overcommitting, and reduce the waiting
time to service. Reservation systems have been used successfully by CSPs
for some time in combination with spot resource allocations.

4.9 CLOUD FEDERATIONS AND SERVER COALITIONS

In large-scale systems, coalition formation supports more effective use of
resources, as well as convenient means to access these resources [172]. It
is therefore not surprising that coalition formation for computational grids
has been investigated in the past. There is also little surprise that the interest
in coalition formation migrated in recent years from computational grids to
CRM. The interest in grid computing is fading away, while cloud computing
is widely accepted today and its adoption by more and more institutions and
individuals seems to be guaranteed at least for the foreseeable future.

Two classes of applications of cloud coalitions are reported in the
literature:

1. Coalitions among CSPs for the formation of cloud federations. A cloud
federation is an infrastructure allowing a group of CSPs to share re-
sources; the goal is to balance the load and improve system reliability.

2. Coalitions among the servers of a data center. The goal is to assemble a
pool of resources larger than the ones available from a single server. This
topic will be discussed in depth in Section 5.3.

Computer Clouds 137

In recent years the number of CSPs has increased significantly. The
question if they should cooperate to share their resources led to the idea of
cloud federations, groups of CSPs who have agreed on a set of common
standards and are able to share their resources. The infrastructure of
individual CSPs consists of a hierarchy of networks and millions of servers
thus, a cloud federation would indeed be a very complex system.

The vast majority of ongoing research in this area is focused on game-
theoretic aspects of coalition formation for cloud federations [46, 167, 176],
while coalitions among the servers of a single cloud has received little
attention in the past [164]. This is likely to change due to the emerging
interest in Big Data cloud applications which require more resources than
a single server can provide. To address this problem, sets of identically
configured servers able to communicate effectively among themselves form
coalitions with sufficient resources for data- and computationally intensive
problems.

Cloud coalition formation raises a number of technical, as well as
nontechnical problems. Cloud federations require a set of standards. The
cloud computing landscape is still evolving and an early standardization
may slowdown and negatively affect the adoption of new ideas and tech-
nologies. At the same time, CSPs want to maintain their competitive
advantages by closely guarding the details of their internal algorithms and
protocols.

Reaching agreements on a set of standards is particularly difficult when
the infrastructure of the members of the group is designed to support
different cloud delivery models, see Section 4.2. For example, it is hard to
see how the IaaS could be supported by either SaaS or PaaS clouds. Thus, in
spite of the efforts coordinated by the National Institute of Standards (NIST),
the adoption of inter-operability standards supporting cloud federations
seems a rather distant possibility.

We have seen in Section 4.7 that resource management in one cloud is
extremely challenging therefore, dynamic resource sharing among multiple
cloud infrastructures seems infeasible at this time. Communication between
the members of a cloud federation would also require dedicated networks
with low latency and high bandwidth.

All these challenges make cloud federations a very appealing research
area. A stochastic linear programming game model for coalition formation

138 Complex Systems and Clouds

is presented in [176]; the authors analyze the stability of the coalition
formation among CSPs and show that resource and revenue sharing are
deeply intertwined. An optimal VM provisioning algorithm ensuring profit
maximization for CSPs is introduced in [46].

A cloud federation formation described as a hedonic game and focused
on the stability and the fairness of the game is discussed in [167]. The profit
maximization for each federation is formulated as an integer programming
problem (IP) and the game is augmented with a preference relation over the
set of federations. The paper assumes that the VMs contributed by each CSP
to a federation are characterized by a subset a of attributes from the set of the
attributes A, a ∈ A, including the number of cores, the amount of memory
and of secondary storage. The integer programming problem for CSP Ci in
federation F is formulated as

max
∑

Ci∈F

n∑

j=1
ni,j(pj − ci,j), (4.1)

subject to the set of conditions
n∑

j=1
qa

j ni,j ≤ Ai, ∀a ∈ A and
∑

Ci∈F
ni,j = rj, (4.2)

where ni,j is the number of VMs of type j, pj is the price for a VM running
an instance of type j, ci,j is the cost of an instance of type j provided by Ci,
qa

j is the quantity of resource of type a in a VM of type j, Ai is the total
amount of resource of type a offered by Ci, and rj is the number of VMs of
type j requested. The paper adopts a payoff division based on the Banzhaf
value [167].

Though of considerable theoretical interest, applications of game theory
to the formation of cloud federation may not lead to practical realizations
very soon. We have already mentioned that the development of interop-
erability standards faces major business as well as technical challenges.
There is also another practical problem; the cloud users would expect that
a federation would eliminate the negative consequences of vendor lock-in
and, in particular, the impossibility to access their data in the case of a major
event which takes down a cloud data center. But replicating data on multiple
data centers could be prohibitively expensive.

Coalition formation based on cooperative games is another area of
research. An algorithm to find optimal coalition structures in cooperative

Computer Clouds 139

games by searching through a lattice like the one in Fig. 3.4, was introduced
by [198]. A more refined algorithm is described in [191]; in this algorithm
the coalition structures are grouped according to the so-called configurations
reflecting the size of the coalitions.

4.10 AUCTIONS: CONCEPTS, RULES, AND ENVIRONMENTS

An auction is a public sale where the goods or services are sold to the
highest bidder. A combinatorial auction is one where a buyer requires
simultaneous access to a package of goods or, as is the case discussed in
this chapter, a package of services. The bidders could be individuals, groups
of individuals, organizations, corporations, robots, sensors, or autonomous
servers in a large-scale system.

Auctions address fundamental questions in economics, the most im-
portant being who should get the goods offered and at what price. The
environment where auctions are conducted and in particular, the size of the
populations of sellers and buyers, the type and number of items auctioned,
the private information shared among the participants, determine the type of
auction and the rules of a particular auction. An auction is characterized by
efficiency and the revenue it brings.

Among the numerous applications of auctions are: the auctioning of
airport takeoff and landing slots, spectrum licensing by the Federal Commu-
nication Commission (FCC), and industrial procurement. In Chapter 5 we
discuss auctions involving two distinct set of bidders, cloud users bidding
for services and cloud servers bidding to provide services.

Auction theory has been one of the most intensively studied area of
economics in the last half century. In 1961 Vickrey used game theory
methods to study the dynamics of auctions [227]; this seminal paper marks
the beginning of the auction theory.3 In the private value model introduced
in [227], each bidder has its own value for every package of goods and
has no knowledge about the values of any other bidder; the individual values
do not depend on the private information of other bidders. The paper shows
that when each bidder pays the social opportunity cost of his winnings rather
than his own bid, then truthful bidding is a dominant strategy.

3Vickrey got the Nobel prize for economics in 1996 for his contributions to the theory of
incentives under asymmetric information; he died 3 days after the prize was announced.

140 Complex Systems and Clouds

The Vickrey-Clark-Groves (VCG) is an extension of the original Vickrey
auction when bidders simultaneously submit sealed bids for the items they
desire. The highest bid wins, but the winner pays the amount of the second-
higher bid. It is obvious that a bidder does not have any incentive to bid
anything else but the value she intends to pay. It is relatively easy to
prove4 that in a VCG auction, truthful reporting is a dominant strategy and
optimizes the total value obtained as a result of the auction.

We now introduce several concepts from auction theory and refer to the
auction participants as agents. First, auctions are strategic games, in other
words, the choices of an agent are affected by the choices of the other
participants in the game. A strategy is dominant if it allows an agent to
gain a larger payoff than any other strategy, regardless of the choices made
by other agents.

Price discovery allows all agents to gauge the eventual price an item will
be auctioned at for multiple rounds auctions. The deposit is the amount of
funds an agent wishing to participate at an auction is required to place with
the auctioneer. The reserve price is the minimum price the seller is willing
to accept for an item being auctioned. This price is only known to the seller,
it is not made public.

Opportunity cost measures the benefits obtained by an agent who has two
options and chooses one over the other. For example, the opportunity cost
of getting an advanced degree requiring four years of study is the amount of
money the student would have gotten should she have worked for four years
instead. The social opportunity cost is the cost from the standpoint of all
members of a society, rather than the cost of the individual placing the bid.

Utility, cost, revenue, and expenditure are important concepts in econ-
omy. Marginal utility, cost, revenue, or expenditure are concepts used in
auction theory to describe the effect when the quantity increases by one
unit. They are contrasted with their global counterparts; both marginal and
global measures are function of the quantity of goods. The relation between
total and marginal is the same for all these measures of economic activity.

The marginal utility is the rate at which total utility increases as quantity
increases; it is the slope of the total utility curve, thus, it is high when the
total utility increases sharply, negative when it decreases, and zero when it

4For the proof see, for example, page 19 of [61].

Computer Clouds 141

is constant. For example, the marginal utility of a service quantified by the
number of vCPUs measures the increase in utility when instead of say 5
vCPUs the cloud user is allocated 6 vCPUs.

The principle of declining marginal utility reflects the fact that increasing
the quantity leads to lower and lower increases of the marginal utility.
Unfortunately, utility cannot be measured; what we can measure is the
marginal value, e.g., what we gain when we use 6 vCPUs instead of 5. Goods
are complementary when a set of them has a higher value than the sum of
the individual value of the goods in set; for example, the value of a pair of
socks is larger than the value of the left sock plus the value of the right one.

The first type of auction we discuss is the simultaneous ascending
auction (SAA) developed in 1994 for FCC spectrum licensing and used
since in the United States and abroad. In this auction all items are auctioned
at the same time and the agents are allowed to bid on any item or on sets of
items. The bidding terminates when none of the participating agents raises
the bid for any item. Then, the highest bidder acquires an item or a set of
items at the price of the bid.

The advantage of this scheme is its efficiency. An effective price
discovery allows the agents to develop early in the auction the sense of what
the final price for each item might be. Most such auctions allow the agents
to withdraw their bids and thus, limit their exposure. The main disadvantage
of SAA is that package bidding is not supported and agents may win some
of the items in the set they desire, but not all.

The typical rules governing most auctions including the SAA are :

1. Activity rule—requires the agents to bid consistently. For example,
agents desiring to acquire large quantities of goods at the end of
the auction, thus, bidders in the last rounds when the prices are higher,
are required to bid for large quantities at the beginning of the auction,
when the prices are lower. This monotonicity in quantity rule increases
the effectiveness of price discovery in SAA and other auctions.

2. Minimum bid increment rule—allows an auction to proceed efficiently
rather than drag on for a long time; bid increments in the range 5–20%
are typical.

3. Stopping rule—necessary to give the agents enough flexibility to pursue
their strategy and eventually withdraw their bids.

142 Complex Systems and Clouds

4. Withdraw rule—specifies the conditions high bidders can withdraw their
bid, typically subject to a withdraw penalty. There are additional penalties
for withdrawing the highest bid. In such cases the second highest bidder
is not responsible for her bid as she might have placed bids for other
items instead. Often, the penalty for withdrawing the highest bid is the
difference between the bid and the final sale prices of the items.

5. Payment rule—usually a refundable deposit is required before bidding
and a final payment is due after the conclusion of the auction for the
items won.

6. Bid information rule—typically full transparency is required; all agents
are informed about the identity of all participating agents and the size of
their deposits.

7. Quantity cap rule—limits the quantity of items an agent may win.

An alternative activity rule based on consumer theory is the Revealed
Preference Rule (RP). Consider two instances in time, t1 < t2, and the
corresponding prices, p(t1), p(t2) and x1, x2, respectively, the size of the
packages demanded by a particular agent. The corresponding values of
the packages are v(x1) and v(x2), respectively. Then a sincere bidder prefers

x1 to x2 when v(x1) − p(t1) · x1 ≥ v(x2) − p(t2) · x1

and
x2 to x1 when v(x2) − p(t2) · x2 ≥ v(x1) − p(t1) · x2.

(4.3)

Adding the two inequalities we obtain the RP rule

(p(t1) − p(t2)) · (x2 − x1) ≤ 0. (4.4)

4.11 COMBINATORIAL AUCTIONS: THE CLOCK-PROXY AUCTION

Auctions in which participants can bid on combinations of items or packages
are called combinatorial auctions; such auctions provide a relatively simple,
scalable, and tractable solution to cloud resource allocation [19, 238]. For
example, the airways spectrum in the United States is auctioned by the
FCC and communication companies bid for licenses. A package consists
of multiple licenses; the quantities in these auctions are the bandwidth
allocated times the population covered by the license. Individual bidders
choose to bid for packages during the proxy phase and pay the prices they
committed to during the clock phase. Two recent combinatorial auction

Computer Clouds 143

algorithms are the Simultaneous Clock Auction and the Clock Proxy Auction
[20]; the algorithm introduced in [218] is called Ascending Clock Auction.

Package bidding assumes that a seller offers N different types of items.
A buyer bids for packages of items. A package is a vector of integers
Z = {z1, z2, . . . , zN } which indicates the quantity of each item in the
package; the price of items is given by M = {m1, m2, . . . , mN }. Package
bidding can be traced back to generalized Vickrey auctions based on the
Vickrey-Clarke-Groves mechanisms [52, 100].

In an ascending package auction (APA) there are K participants iden-
tified by an index, k = 0 is the seller and k = 1, 2, . . . ,K are the buyers
[18]. Each buyer has a valuation vector vi = (νi(z), z ∈ [0,M]) where
νk(z) represents the value of package z to the bidder k. In an ascending
package auction, all bids are firm and a bid cannot be reduced or withdrawn.
The auctioneer identifies after each round the set of the bids that maximize
the total price, the provisional winning bids. The auction ends when a new
round fails to elicit new bids; then the provisional winning bids become the
winners of the auction.

A bidder can be deterred from bidding for the package she really desires
by the threat that competitors could drive prices up; this would threaten the
equilibrium of an ascending package auction. This problem does not exist
in ascending proxy auctions when each bidder instructs a proxy agent to bid
on her behalf [18]. The proxy accepts as input the bidder’s valuation profile
and bids following a “sincere strategy.”

In an APA the bidders pass the information about quantities of items
and prices to proxies which iteratively summit package bids designed to
maximize the profits of the bidders. The auctioneer chooses as provisional
winners the bids that maximize the revenue for the suppliers of the items.
The process stops when the proxies do not submit new bids.

Clock auctions are combinatorial auctions designed for auctioning re-
lated items. In clock auctions the auctioneer announces prices for individual
items and the agents specify the quantities of individual items they desire at
the current price. When the demand for an item increases, so does its price
until there is no excess demand (see Fig. 5.7). On the other hand, when the
offering exceeds the demand, the price decreases [18]. The process stops
when there are no more items with excess demand.

144 Complex Systems and Clouds

The clock proxy auction starts with a clock phase with multiple rounds
until there is no excess demand for any of the items being auctioned.
Next the agents pass to the proxy the information on items, quantities, and
prices. During the proxy phase, the process continues as described above.
During the clock phase, the cost of the package is computed as the sum
of products of quantity and price per unit, the so-called linear pricing
and the monotonicity in quantity rule applies. In practice, clock auctions
use discrete rounds rather than continuous-time rounds. In such auctions
the size of the bid increments is important. Large increments shorten the
duration of the auction but introduce inefficiencies as well as the potential
for gaming the system. The technique of intra-round bids allows a discrete-
time clock auction to benefit from virtually all nice properties of continuous-
time auctions.

This technique works as follows: the auctioneer defines end-of-round
prices and the bidders express their price vectors in the range from start-
of-the round to the end-of-the round prices. If during the round, which can
last a relatively long time, tens of minutes, there is an excess supply for
some item, the round ends with the current prices, otherwise the round ends
with the end-of-round prices proposed by the auctioneer.

The clock phase ends when there is no excess demand for any of the items
being auctioned and produces the information about all packages and the
prices bid for each one of them throughout this phase. At the end of the clock
phase, a significant excess supply for many items may exist and a strategy
for maximizing the revenues could exploit this information. For example,
one can find the position of the clock when the revenue was maximal and
use the corresponding prices as the starting prices for the proxy phase.

4.12 FURTHER READINGS ON CLOUDS AND CLOUD RESOURCE
MANAGEMENT

The interest in cloud computing is reflected by a very large number of
publications covering different aspects of computer clouds. Existing CRM
systems are presented [14, 94, 116, 143, 197, 226, 228].

CRM and economic models are discussed in [5, 47, 77, 86, 103,
126, 151, 161, 163, 165, 167, 176, 186, 195, 245]. Multiple aspects of
cloud energy consumption are analyzed in [3, 15, 26, 28, 161, 165, 230].
Over-provisioning, server utilization, and their economic impact are
discussed in [3, 37, 47, 161].

Computer Clouds 145

Coalition formation is covered in [172] and game-theoretic aspects of
coalition formation for cloud federations are analyzed in [46, 167, 176].
A fair number of papers are dedicated to auctions [19, 20, 218, 227, 238].

The next chapter is focused on CRM for Big Data applications in
science and engineering and the need for user-centric policies for resource
allocation. Results of simulation experiments for market-oriented policies
based on coalition formation and combinatorial auctions are reported.

CHAPTER 55
Cloud Self-Organization and Big Data
Applications

From the early days of cloud computing it was evident that computer clouds
provide an ideal environment for many enterprise applications. The success
of cloud computing stimulated the interest in the new paradigm and, as a
result, the pace of the development of the infrastructure and cloud services
accelerated. In the second decade of the new millennium, more and more
applications migrated to clouds, with the notable exception of Big Data
scientific and engineering applications.

According to Gartner Research, “Big Data is high volume, high velocity,
and/or high variety information assets that require new forms of processing
to enable enhanced decision-making, insight discovery, and process opti-
mization” (http://www.gartner.com/it-glossary/big-data/). Big Data applica-
tions demand massive computing resources including CPU cycles, primary
and secondary storage, and network bandwidth. Only computer clouds and
powerful supercomputers can supply such resources.

Existing data show that mobile applications, data analytics, and many Big
Data enterprise applications perform well on the cloud as they exploit
request-level parallelism. These applications take advantage of the low cost
for cloud services. At the other end of the spectrum are applications in com-
putational sciences, discussed in Section 5.1, computational finance, and
computational engineering. The data-level parallelism of such applications
is often fine-grained and they do not perform well on clouds.

It is likely that faster communication, more powerful processors, and new
Cloud Resource Management (CRM) policies addressing the problems
discussed in Section 4.7 will support a broader range of Big Data cloud
applications. None of these improvements alone is sufficient and adopting
all of them would significantly add to the costs of the cloud infrastruc-
ture. Indeed, faster interconnection networks are very expensive and they
represent a significant fraction of a supercomputer cost. Such changes will
also require extensive experimentation with new policies and mechanisms
implementing the policies, a difficult proposition because it is infeasible to
Complex Systems and Clouds. http://dx.doi.org/10.1016/B978-0-12-804041-6.00005-0
Copyright © 2017 Elsevier Inc. All rights reserved. 147

http://www.gartner.com/it-glossary/big-data/
http://dx.doi.org/10.1016/B978-0-12-804041-6.00005-0

148 Complex Systems and Clouds

experiment with systems on this scale. These facts alone might suggest that
major changes in CRM should not be expected soon.

Scalability is a major challenge for autonomic computing and for the
existing CRM policies. Big Data cloud applications and, in particular,
applications in computational sciences and engineering, exacerbate these
challenges, as we see in Section 5.2 in the discussion of tensor network
contraction (TNC) with applications to condensed-matter physics. The
performance of the TNC application, and possibly many others, is likely
to be limited, not only by the relatively high latency and low bandwidth
of cloud interconnection networks, but also by resource bundling, the fact
that resources are offered in packages of predetermined configurations that
may, or may not match the needs of the application. This should motivate
the research community to investigate alternative cloud management for Big
Data scientific applications, such as the ones discussed in this chapter.

The questions addressed in this chapter are: Can existing CRM policies
and mechanisms for implementing these policies support an effective envi-
ronment for the increasingly broader spectrum of applications migrating to
clouds? Are there alternative mechanisms for CRM that can perform better
than the ones in use nowadays? How do we evaluate new CRM policies
and mechanisms and stimulate a smooth migration of research results to
practice?

Providing convincing answers to these questions is far from trivial. The
cloud computing landscape is very diverse and very dynamic, thus, we
have to accept some compromises. Supporting elasticity and other desirable
features of cloud computing will inevitably lead to suboptimal resource
utilization and higher power consumption.

Market-oriented solutions give effective answers to some of the explicit
goals of autonomic computing and self-management. Such solutions are
scalable, adaptive, react to changes in the environment, and balance the
supply and demands dynamically. A self-organized system based on market-
oriented policies and mechanisms could have desirable properties such as
high resource utilization and increased energy efficiency, while presenting a
user-friendly cloud computing environment.

The discussion of alternative mechanisms for resource allocation for Big
Data applications is focused on a reservation system based on server
coalitions and combinatorial auctions. The model assumes a hierarchical

Cloud Self-Organization and Big Data Applications 149

organization of the cloud infrastructure and autonomous servers that
cooperate to respond to the service requests of a large user community.

5.1 BIG DATA APPLICATIONS IN SCIENCE AND ENGINEERING

It should not be surprising that applications in computational physics,
chemistry, biology, astrophysics, nanotechnology, civil engineering,
computer-aided design, and many other areas of science and engineering
do not perform well on clouds. These applications are CPU-, memory-,
and I/O-intensive and run efficiently on systems with low-latency, high-
bandwidth interconnection networks available on the most powerful
supercomputers [222].

Clouds built with off-the-shelf components offer a cost-effective alter-
native to computing and it would be beneficial to make cloud computing
an attractive choice for scientific and engineering applications. Overcoming
the high cost and the limited availability of supercomputers would accelerate
the discovery process in many areas of science and would also led to more
aggressive designs of advanced systems.

In this section we discuss the astounding progress made by the infrastruc-
ture for cloud computing during the past few years. We also contemplate the
difficult road ahead in the quest to allow applications in computational sci-
ences and engineering that process data sets, ranging in size from petabytes
to exabytes and beyond, to run efficiently on clouds. Such applications
require:

1. An infrastructure with fast interconnects, faster processors, and high per-
formance storage systems. Faster processors alone will only exacerbate
the imbalance between computing and communication bandwidth.

2. Guaranteed access to large pools of resources for extended periods of
time.

3. Support for complex workflows with specific resource demands for each
phase of the workflow [86].

4. A fault-tolerant environment for long-running applications.
5. Stable and effective system software, including resource management.

A study carried out in the early days of cloud computing [126] reports on
the results of a comparison of several supercomputers with the Amazon Web
Services (AWS), vintage 2009–10. This study used the high performance
benchmark discussed next.

150 Complex Systems and Clouds

High Performance Computing Challenge (HPCC). HPCC is a suite
of seven synthetic benchmarks: three targeted synthetic benchmarks which
quantify basic system parameters that individually characterize the compu-
tation and communication performance; four complex synthetic benchmarks
which combine computation and communication and can be considered
simple proxy applications. These benchmarks are:

• DGEMM—measures the floating point performance of a processor/core
and the results are close to the theoretical peak performance of the
processor, the memory bandwidth is not a factor and the code is cache
friendly;

• STREAM—measures the memory bandwidth;
• HPL—a dense linear system in double precision arithmetic;
• FFTE—measures the floating point rate of execution of double precision

complex one-dimensional Discrete Fourier Transforms;
• PTRANS—parallel matrix transpose, tests the total communications ca-

pacity of the interconnection network; and
• RandomAccess—measures the rate of integer random updates of memory

(GUPS).

Table 5.1 The Results of the Measurements Reported in [126]

System DGEMM STREAM Latency Bndw HPL FFTE PTRANS RandAcc

(Gflops) (GB/s) (μs) (GB/s) (Tflops) (Gflops) (GB/s) (GUP/s)

Carver 10.2 4.4 2.1 3.4 0.56 21.99 9.35 0.044

Frankl 8.4 2.3 7.8 1.6 0.47 14.24 2.63 0.061

Lawren 9.6 0.7 4.1 1.2 0.46 9.12 1.34 0.013

EC2 4.6 1.7 145 0.06 0.07 1.09 0.29 0.004

From K.R. Jackson, L. Ramakrishnan, K. Muriki, S. Canon, S. Cholia, J. Shalf, H.
Wasserman, N.J. Wright, Performance analysis of high performance computing
applications on the Amazon Web services cloud, in: Proceedings of IEEE Second
International Conference on Cloud Computing Technology and Science, 2010,
pp. 159–168.

Supercomputers versus AWS vintage 2010. The systems used for the
comparison with cloud computing in [126] are:

1. Carver—a 400 node IBM iDataPlex cluster with quad-core Intel
Nehalem processors running at 2.67 GHz and with 24 GB of RAM

Cloud Self-Organization and Big Data Applications 151

(3 GB/core). A single Quad Data Rate IB link connects each node to
a fat-tree network and a global two-dimensional mesh.

2. Franklin—a 9,660-node Cray XT4; each node has a single quad-core
2.3 GHz AMD Opteron processor with 8 GB of RAM (2 GB/core). Each
processor is connected through a 6.4 GB/s bidirectional HyperTransport
interface to the interconnect via a Cray SeaStar-2 ASIC. The SeaStar
routing chips are interconnected in a tridimensional torus topology, where
each node has a direct link to its six nearest neighbors.

3. Lawrencium—a 198-node (1,584 core) Linux cluster; a compute node
is a Dell Poweredge 1950 server with two Intel Xeon quad-core 64 bit,
2.66 GHz processors with 16 GB of RAM (2 GB/core). A compute node
is connected to a Dual Data Rate InfiniBand network configured as a fat
tree with a 3:1 blocking factor. Codes were compiled using Intel 10.0.018
and Open MPI 1.3.3.

The EC2 instance was a m1.large with four Elastic Compute Units
(ECUs), two virtual cores with two ECUs each, and 7.5 GB of memory.
In 2010 AWS used ECUs to measure the processor performance and in
2014 switched to the now ubiquitous vCPU. An ECU was approximately
equivalent to a 1.0–1.2 GHz 2007 Opteron or 2007 Xeon processor. The
nodes were connected with Gigabit Ethernet (GE).

The results in Table 5.1 give us some ideas about the characteristics of
scientific applications likely to run efficiently on computer clouds. We see
that communication intensive applications are significantly affected by the
increased latency and lower bandwidth.

The 2016 AWS and scientific Big Data applications. The AWS infras-
tructure has benefited from new technologies and it is probably the most
attractive and cost-effective cloud computing environment for scientific
applications [13]. AWS offers several types of instances targeting different
classes of applications:

• T2—provide a baseline CPU performance and the ability to exceed the
baseline;

• M4 and M3—provide a balance of compute, memory, and network
resources;

• C4—use high performance processors and have the lowest price/compute
performance;

• R3—are optimized for memory-intensive applications;

152 Complex Systems and Clouds

• G2—target graphics and general-purpose GPU applications;
• I2—are storage optimized; and
• D2—deliver high disk throughput.

Each instance packages a different combination of processors, memory,
storage, and network bandwidth. The number of vCPUs, as well as the type
of processor, its architecture, and clock speed are different for different
instance types. A vCPU is a virtual processor assigned to one virtual
machine; AWS does not specify if a vCPU corresponds to a core of a
multicore processor, though this is likely. The amount of memory per vCPU
is the same for low- and high-end instances. The memory is sometimes
measured in Gibibytes, 1 GiB = 230 bytes or 1,073,741,824 bytes while 1 GB
= 109 bytes.

The processors used by instances in Table 5.2 are Intel Xeon E5-
2670 v3 running at 2.5 GHz for M4 instances, Intel Xeon E5-2666 v3
running at 2.9 GHz for C4 instances, and E5-2670 for G2. The first two
processors support Advanced Vector Extensions AVX and AVX2. The two
are extensions to the x86 ISA; the width of the SIMD register file is
increased from 128 to 256 bits. The NVIDIA GPUs, for G2 instances each
has 1,536 CUDA cores and 4 GB of video memory.

AVX2 has several additional features: expansion of most vector integer
SSE and AVX instructions to 256 bits; three-operand general-purpose
bit manipulation and multiply; three-operand fused multiply-accumulate
support; gather support, enabling vector elements to be loaded from noncon-
tiguous memory locations; DWORD and QWORD-granularity any-to-any
permutes; and vector shifts.

Several operating systems, including Apple OS, Linux, Windows,
FreeBSD, OpenBSD, and Solaris support AVX. Recent releases of the
GCC compiler support AVX. Unfortunately, there are no recent benchmarks
comparing the performance of systems on the top 500 list with some of the
2016 AWS instances presented in Table 5.2, see https://aws.amazon.com/
ec2/instance-types/.

The floating point performance of C4 instances is impressive. For
example, a c4.8xlarge instance with 2 Intel Xeon E5-2666 v3 processors
running at 3.50 GHz, 18 cores, and 36 threads, with 32 KB x 9 L1 instruction
and data caches, 256 KB x 9 L2 cache, 26.3 MB L3 cache, and 60 GB
main memory delivers more than 61 Gflops from a multicore configuration
according to http://browser.primatelabs.com/geekbench3/1694602 (see
Fig. 5.1).

https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/
http://browser.primatelabs.com/geekbench3/1694602

Cloud Self-Organization and Big Data Applications 153

Table 5.2 The Resources Offered by M4, C4, and G2 AWS
Instances; the Number of vCPUs, the Amount of Memory, the
Data Rates for Disk Access, and the Cost Per Hour
Instance vCPU Memory EBS Throughput Cost
Type (GiB) (Mbps) ($/h)

m4.large 2 8 450 0.12

m4.xlarge 4 16 750 0.239

m4.2xlarge 8 32 1,000 0.479

m4.4xlarge 16 64 2,000 0.958

m4.10xlarge 40 160 4,000 2.394

c4.large 2 3.75 500 0.105

c4.xlarge 4 7.5 750 0.209

c4.2xlarge 8 15 1,000 0.419

c4.4xlarge 16 30 2,000 0.838

c4.8-xlarge 36 60 4,000 1.675

g2.2xlarge 8 15 – 0.65

g2.4xlarge 32 60 – 2.60

SGEMM
Singlecore

Multicore

Singlecore

Singlecore

Multicore

Multicore

Singlecore

Multicore

SGEMM

DGEMM

DGEMM

SFFT

SFFT

DFFT

DFFT

4519
12.7 Gflops

199.4 Gflops

5.63 Gflops

3.47 Gflops

97.5 Gflops

58.6 Gflops

3.07 Gflops

55.3 Gflops

71215

3833

66373

3290

55603

3368

60677

Fig. 5.1 The performance of a c4.8xlarge AWS instance.

The performance of G2 instances with attached GPUs is even more
impressive. Results reported in [66] show the performance of CUDA 7.0
for several libraries including cuFFT, cuBLAS, cuSPARSE, cuSOLVER,
cuRAND, and cuDNN. For example, cuBLAS supports all 152 standard routines
and distributed computations across multiple GPUs with out-of-core stream-
ing to CPU and no upper limits on matrix size supporting more than 3 Tflops
in single precision and more than 1 Tflops in double precision (see Fig. 5.2).

154 Complex Systems and Clouds

Fig. 5.2 The performance of CUDA 7.0 for several BLAS library routines. CUDA, CUDA
7.0 performance report, http://on-demand.gputechconf.com/gtc/2015/webinar/gtc-express-
cuda7-performance-overview.pdf (accessed April 2016).

5.2 A CASE STUDY: TENSOR NETWORK CONTRACTION ON AWS

To illustrate the problems posed by Big Data, we discuss an application in
the area of condensed matter physics and analyze different options offered
by 2016 vintage AWS for running the application. M4 and C4 seem to be the
best choices for applications such as TNC.

Tensor contraction. In linear algebra the rank R of an object is given
by the number of indices necessary to describe its elements. A scalar has
rank 0, a vector a = (a1, a2, . . . , an) has rank 1 and n elements, a matrix
A = [aij], 1 ≤ i ≤ n, 1 ≤ j ≤ m has rank 2 and n × m elements

A =

⎡
⎢⎢⎢⎣

a11 a12 . . . a1m
a21 a22 . . . a2m

...
an1 an2 . . . anm

⎤
⎥⎥⎥⎦ . (5.1)

Tensors have rank R ≥ 3; the description of tensor elements is harder.
For example, consider a rank 3 tensor B = [bjkl] with elements
bjkl ∈ R

2×2×2. The eight elements of this tensor are: {b111, b112, b121, b122}
and {b211, b212, b221, b222}. We can visualize the tensor elements as the
vertices of a cube where the first group of elements are in the plane j = 1
and j = 2, respectively. Similarly, the tensor elements {b111, b211, b112, b212}
and {b121, b221, b122, b222} are in the planes k = 1 and k = 2, respectively,
while {b111, b121, b211, b221} and {b112, b122, b212, b222} are in the planes
l = 1 and l = 2, respectively.

http://on-demand.gputechconf.com/gtc/2015/webinar/gtc-express-cuda7-performance-overview.pdf
http://on-demand.gputechconf.com/gtc/2015/webinar/gtc-express-cuda7-performance-overview.pdf

Cloud Self-Organization and Big Data Applications 155

Tensor contraction is the summation over repeated indices of the two
tensors or of a vector and a tensor. Let C be the contraction of two arbitrary
tensors A and B. The rank of the tensor resulting after contraction is

R(C) = R(A) + R(B) − 2. (5.2)

For example, when A = [aij], B = [bjkl] and we contract over j we obtain
C = [cikl] with

cikl =
∑

j
aijbjkl. (5.3)

The rank of C is R(C) = 2 + 3 − 2 = 3. Tensor C has 8 elements

c111 = ∑2
j=1 a1jbj11 = a11b111 + a12b211 c121 = ∑2

j=1 a1jbj21 = a11b121 + a12b221

c212 = ∑2
j=1 a2jbj12 = a21b112 + a22b212 c222 = ∑2

j=1 a2jbj22 = a21b122 + a22b222

c112 = ∑2
j=1 a1jbj11 = a11b112 + a12b212 c122 = ∑2

j=1 a1jbj21 = a11b122 + a12b222

c211 = ∑2
j=1 a2jbj11 = a21b111 + a22b211 c221 = ∑2

j=1 a2jbj21 = a21b121 + a22b221

(5.4)

Tensor networks and Tensor Network Contraction (TNC). A tensor
network is defined as follows: let [A1], . . . , [An] be n tensors with index sets
x(1), . . . , x(n) where each {x(i)} is a subset of {x1, . . . , xN} with N very large.
We assume that the “big” tensor [A]{x1,...,xN} can be expressed as the product
of the “smaller” tensors [A1], . . . , [An]

[A]{x1,...,xK} = [A1]{x(1)} . . . [An]{x(n)}. (5.5)

We wish to compute the scalar

ZA =
∑

{x1,...,xN}
[Ai]{x1,...,xN} . (5.6)

For example, N = 7 and n = 4 and the index set is {x1, x2, . . . , x7} for
the TNC in Fig. 5.3. The four “small” tensors and their respective subsets of
the index set are

[A1]{x1,x2,x5}, [A2]{x2,x3,x4}, [A3]{x3,x4,x6}, and [A4]{x5,x6,x7}. (5.7)

The “big” tensor [A] is the product of the four “small” tensors

[A]{x1,x2,x3,x4,x5,x6,x7} = [A1]{x1,x2,x5}⊗[A2]{x2,x3,x4}⊗[A3]{x3,x4,x6}⊗[A4]{x5,x6,x7}.
(5.8)

156 Complex Systems and Clouds

Fig. 5.3 The ordering of tensor contraction when the index set is {x1, x2, . . . , x7} and the
four “small” tensors are [A1]{x1,x2,x5}, [A2]{x2,x3,x4}, [A3]{x3,x4,x6}, and [A4]{x5,x6,x7}. Tensors
[B] and [C] are the results of contraction of [A2], [A3], and [A4], [B], respectively.

To calculate ZA we first contract [A2] and [A3] and the result is tensor [B]
[B]{x2,x6} =

∑
x3

∑
x4

[A2]{x2,x3,x4} ⊗ [A3]{x3,x4,x6}. (5.9)

Next we contract [B] and [A4] to produce [C]
[C]{x2,x5,x7} =

∑
x6

[B]{x2,x6} ⊗ [A4]{x5,x6,x7}. (5.10)

Finally, we compute

Z{x1,x7} =
∑
x2

∑
x5

[A1]{x1,x2,x5} ⊗ [C]{x2,x5,x7}. (5.11)

TNC is CPU and memory intensive. If the tensor network has an arbitrary
topology, TNC is considerably more intensive than in the case of a regular
topology, e.g., a 2-D lattice.

An example of TNC. We now discuss the case of an application where
the tensors form a 2-D, L × L rectangular lattice. Each tensor in the interior
of the lattice has four indices each one running from 1 to D2, while outer
tensors have only three indices, and the ones at the corners have only two.
The resulting tensors form a product of vectors (top and bottom tensors) and
matrices (interior tensors) with vertical orbitals running from 1 to D2L. The
space required for TNC can be very large, we expect parameter values as
large as D = 20 and L = 100. This is a Big Data application, 20200 is a very
large number indeed!

Cloud Self-Organization and Big Data Applications 157

Fig. 5.4 illustrates the generic TLC algorithm for L = 8. The first
iteration of the computation contracts the left-most (1L) and the right-most
columns (1R) of the tensor network. The process continues until we end up
with the “big” vector after L/2 = 4 iterations. The left and right contractions
(1L, 2L, and 3L) and (1R, 2R, and 3R) are mirror images of one another and
are carried out concurrently.

Fig. 5.4 Contraction when L = 8 and we have an 8 × 8 tensor network. The first iteration
contracts columns 1 and 2 and columns 7 and 8, see 1L and 1R boxes. During the second it-
eration the two resulting tensors are contracted with columns 3 and 6, respectively, as shown
by 2L and 2R boxes. During the third iteration the new tensors are contracted with columns
4 and 5, respectively, as shown by the 3L and 3R boxes. Finally, during the fourth iteration
the “big” vector is obtained by contracting the two tensors produced by the third iteration.

TNC algorithm for condensed matter physics. In quantum mechanics,
vectors in an n-dimensional Hilbert space describe quantum states, and
tensors describe transformation of quantum states. TNC has applications
in condensed-matter physics and our discussion is focused only on the
algorithmic aspects of the problem.

The algorithm for TNC should be flexible, efficient, and cost-effective.
Flexibility means the ability to run problems of different sizes, with a range
of values for D and L parameters. An efficient algorithm should support
effective multithreading and optimal use of available system resources.

158 Complex Systems and Clouds

The notations used to describe the contraction algorithms for tensor
network T are:

• N(i)—number of vCPUs for iteration i; N = 2 for all iterations of Stage
1, while the number of vCPUs for Stage 2 may increase with the number
of iterations;

• m—the amount of memory available on the vCPU of the current instance;
• T (i) = [T (i)

j,k]—version of the [T] after the ith iteration;
• L(i)—the number of columns of [T] at iteration i;
• T (i)

j,k —tensor in row j and column k of T (i); T1
j,k = Tj,k;

• T (i)
k —column k of T (i);

• C(T (i)
k , Tj), i > 1—contraction operator applied to columns T (i)

k and Tj
in Stage 1;

• V(T (Lcol))—vertical contraction operator applied to the “big tensor”
obtained after Lcol column contractions;

• μ—amount of memory for Tj,k, a tensor of the original T;
• μ(i)—storage for a tensor T (i)

j,k created at iteration i;
• Imax—maximum number of iterations for Stage 1 of the TNC algorithm.

The generic contraction algorithm for a 2-D tensor network with Lrow rows
and Lcol columns, T = [Tj,k], 1 ≤ j ≤ 2Lrow, 1 ≤ k ≤ 2Lcol is an extension
of the one in Fig. 5.4. TNC is an iterative process, at each iteration two pairs
of columns are contracted concurrently. During the first iteration, the two
pairs of columns of T, (1, 2), and (2L, 2L − 1) are contracted. At iterations
2 ≤ i ≤ L the new tensor network has L(i) = L−2i columns. The contraction
is applied to pairs of columns. The two columns resulting from the left and
right contractions of the leftmost and rightmost columns at iteration (i − 1)

are now columns 1 and L(i). They are contracted with columns 2 and L(i)−1,
respectively.

The TNC algorithm is organized in multiple stages with different AWS
instances for different stages. Small to medium size problems need only the
first stage to produce the results and use low-end instances with 2 vCPUs,
while large problems must feed the results of the first stage to a second one
running on more powerful AWS instances. A third stage may be required
for extreme cases when the size of one tensor exceeds the amount of vCPU
memory, some 4 GB at this time. The three stages of the algorithm are now
discussed.

• Stage 1. An entire column of T (i) can be stored in the vCPU memory and
successive contraction iterations can proceed seamlessly when

Cloud Self-Organization and Big Data Applications 159

Lrow
(

2μ + μ(i−1) + μ(i)
)

< m. (5.12)

This is feasible for the first iterations of the algorithm and for relatively
small values of Lrow. Call Imax the largest value of i which satisfies
Eq. (5.12).

Use a low-end M4 or C4 instance with 2 vCPUs, N = 2. The
computation runs very fast with optimal use of the secondary storage and
network bandwidth. Each vCPU is multithreaded, multiple threads carry
out the operations required by the contraction operator C while one thread
reads the next column of the original tensor network, T in preparation for
the next iteration.

• Stage 2. After a number of iterations, the condition in Eq. (5.12) is
no longer satisfied and the second phase should start. Now an iteration
consists of partial contractions when subsets of column tensors are
contracted independently. In this case the number of vCPUs is N > 2.

• Stage 3. As the amount of space needed for a single tensor increases and
the vCPU memory cannot store a single tensor

μi > m. (5.13)

In this extreme case we use several instances with the largest number of
vCPUs, e.g., either M4.10xlarge or C4.10xlarge.

5.2.1 Stage 1 TNC Algorithm
The algorithm is a straightforward implementation of the generic TNC
algorithm:

1. Start an instance with N = 2, e.g., C4.large
2. Read input parameters, e.g., Lrow, Lcol
3. Compute Imax
4. First iteration

a. vCP1—read T1 and T2, apply C(T1, T2); start reading T3
b. vCP2—read TLcol and TLcol−1, apply C(TLcol , TLcol−1), start reading

TLcol−2
5. Iterations 2 ≤ i ≤ min[Imax, Lcol]. The column numbers correspond to

the contracted tensor network with L(i)
col = Lcol − 2(i − 1) columns

a. vCP1—apply C(T (i)
1 , T2); start reading T3

b. vCP2—apply C(T (i)
L(i)

col
, TL(i)

col−1); start reading TL(i)
col−2

6. If Lcol ≤ Imax carry out vertical compression of the “big tensor”
and finish

160 Complex Systems and Clouds

a. Apply V(T(Lcol))

b. Write result
c. Kill the instance

7. Else prepare the data for the Stage 2 algorithm
a. vCPU1—save T (i)

i
b. vCPU2—save T (i)

Lcol−i
c. Kill the instance

5.2.2 Stage 2 TNC Algorithm
This stage starts with a tensor network T (Imax) with 2(Lcol − Imax) columns
and Lrow rows. Multiple partial contractions will be done for each column
of T (Imax) during this stage.

The number of vCPUs for the instance used for successive iterations may
increase. Results of a partial iteration have to be saved at the end of the
partial iteration. The parameters for this phase are:

• μ
(i)
pc—the space per tensor required for partial contraction at iteration i

μ(i)
pc = μ + μ(i−1) + μ(i) (5.14)

partial contraction increases the space required by each tensor
• Cpc

(
T (i)

k , Tj, s
)

—partial contraction operator applied to segment s of

columns T (i)
k and Tj in Stage 2

• n(i)
r —number of rows of a column segment for each partial contraction at

iteration i given by

n(i)
r =

⌈
m

μ
(i)
pc

⌉
(5.15)

• p(i)—number of partial contractions per column at iteration i

p(i) =
⌈

Lrow

n(i)
r

⌉
(5.16)

The total number of partial contractions at iteration i is 2p(i)

• The number of vCPUs for iteration i is

N(i) = 2p(i) (5.17)

• L(i)
col—the number of columns at iteration i of Stage 2

• IMax = Lcol − Imax—the number of iterations of Stage 2 assuming that
Stage 3 is not necessary

Cloud Self-Organization and Big Data Applications 161

• Apc
(
T i

k,p(i)

)
—assembly operator for the p(i) segments resulting from

partial contraction of column k at iteration i

Stage 2 TNC consists of the following steps:

1. For i = 1, IMax
a. Compute μpc, n(i)

r , p(i), N(i)

b. If N ≤ 40 start an instance with N = N(i); else start multiple
C4.10xlarge instances to run concurrently all partial contractions

c. For j = 1, p(i)

– vCPUj

• Read T (i)
1,j and T2,j and apply Cpc

(
T (i)

1,j , T2,j
)

• Store the result T (i+1)
1,j

– vCPUj+p(i)

• Read T (i)
L(i)

col,j
and TL(i)

col−1,j and apply Cpc

(
T (i)

L(i)
col,j

, TL(i)
col−1,j

)
• Store the result T (i+1)

L(i)
col,j

d. Assemble partial contractions
– vCPU1

• Apply Apc
(
T i

1 , p(i))
• Store the result T (i+1)

1
– vCPU2

• Apply Apc

(
T i

L(i)
col

, p(i)
)

• Store the result T (i+1)

L(i+1)
col

2. If i < IMax proceed to next iteration, i = i + 1; else
a. Apply VT (IMax)

b. Write TNC result
c. Kill the instance

5.2.3 Stage 3 TNC Algorithm
The algorithm is similar with the one for Stage 2, but now a single tensor is
distributed to multiple vCPUs.

An analysis of the memory requirements for TNC. Let us assume that
we have L tensors per column and each tensor has dimension D. Consider
the leftmost, or equivalently the rightmost column, and note that the number
of bonds differs for different tensors, the top and the bottom tensors have

162 Complex Systems and Clouds

2 bonds and the other L − 1 have 3 bonds, so the total number of elements
in this column is

N (0)
1 = 2D2 + (L − 2)D3. (5.18)

The top and bottom tensors of the next column have three bonds and the
remaining L − 2 have four bonds, thus the total number of elements in the
second column is

N (0)
2 = 2D3 + (L − 2)D4. (5.19)

After contraction the number of elements becomes

N (1)
1 = 2D3 + (L − 2)D5. (5.20)

Each tensor element requires two double precision floating point numbers
thus, the amount of memory needed for the first iteration is

M(1) = 2 × 8 × [D2 + (L − 2)D3 + 2D3 + (L − 2)D4 + 2D3 + (L − 2)D5]
= 16 × [2D3 + (L − 2)D4 + 2D2(1 + D) + (L − 2)D3(1 + D2)].

(5.21)

The amount of memory needed for iterations 2 and 3 are

M(2) = 16 × [2D3 + (L − 2)D5 + 2D3 + (L − 2)D4 + 2D4 + (L − 2)D7]
= 16 × [2D3 + (L − 2)D4 + 2D3(1 + D) + (L − 2)D5(1 + D2)]

(5.22)

and

M(3) = 16 × [2D4 + (L − 2)D7 + 2D3 + (L − 2)D4 + 2D5 + (L − 2)D9]
= 16 × [2D3 + (L − 2)D4 + 2D4(1 + D) + (L − 2)D7(1 + D2)].

(5.23)

It follows that the amount of memory for iteration i is
M(i) = 16 × [2D3 + (L − 2)D4 + 2Di+1(1 + D) + (L − 2)D2i+1(1 + D2)].

(5.24)
When D = 20 and L = 100 the amount of memory for the first iteration is

16 × [2 × 203 + 98 × 204 + 2 × 202 × (1 + 20) + 98 × (203 + 205)]
= 5, 281, 548, 800 bytes. (5.25)

This example shows why only the most powerful systems with ample
resources can be used for TNC. It also shows that an application has to adapt,
the best it can, to the packages of resources provided by the CSP, while in

Cloud Self-Organization and Big Data Applications 163

a better world an application-centric view should prevail, and the system
should assemble and offer precisely the resources needed by an application
neither more nor less.

5.3 SERVER COALITIONS, COMBINATORIAL AUCTIONS,
AND BIG DATA

A main advantage of computer clouds is that their infrastructure benefits
from the latest hardware and software technologies. We have seen in
Section 5.1 that cloud servers now use the most powerful processors with
large caches and ample main memories and run sophisticated software
capable of masking hardware failures. It is thus, the time to analyze if
CRM policies can be adapted to the needs of high-impact applications.
In this section we start our discussion of alternative CRM policies and
their potential effect on Big Data applications in computational science and
engineering.

Many existing and future cloud applications are likely to need computing
cycles, main memory, disk space, and other resources well beyond those
provided by a single server thus, the need for assembling coalitions of
servers offering sufficient resources for data-intensive applications. At this
time, Cloud Service Providers (CSPs) support a limited number of instances
with a different number of vCPUs that may, or may not, match application
needs.

Market mechanisms, such as coalition formation and combinatorial
auctions can be very effective for the implementation of CRM policies
for data-intensive applications. The case study presented in Section 5.2
is a perfect illustration of the need for alternative CRM of Big Data
applications. The reservation system discussed in this chapter addresses
the challenges posed by such applications. A reservation system based on
coalition formation and combinatorial auctions achieves two objectives:
coalitions of servers supply the resources demanded by the applications and
combinatorial auctions deliver packages of coalitions, one coalition for each
phase of the application workflow.

Two strategies for coalition formation are presented next. The first strat-
egy, History-Based (HB) uses feedback and learning from past behavior, as
shown in Fig. 5.5. HB exploits information from past auctions to determine
the size of the coalitions formed in each rack. Then the coalitions selected
based on historic data compete to satisfy the current user needs for service. It

164 Complex Systems and Clouds

Fig. 5.5 A protocol with two stages; feedback about past values of individual coalitions is
used to determine the value of individual coalition structures as shown in Section 5.4.

is very likely that over time, patterns of behavior will develop and it is ben-
eficial to use information about coalitions that were successful in past auc-
tions to drive the process of coalition formation as discussed in Section 5.4,
and this would benefit a History-Based (HB) coalition formation process.

The second strategy, called Just-in-Time (JST), is intuitive and straight-
forward, server coalitions are formed based on customer needs expressed at
the time of the auction. JST implementation consists of several steps:

1. Examine the service requests and determine the type of servers and the
size of the coalitions.

2. Send directives down the hierarchical structure of a WSC on the type of
servers and the sizes matching the needs.

3. Servers form coalitions matching the service requests.
4. Coalitions compete for service requests.
5. Unsatisfied service requests are submitted again.

One is probably inclined to believe that JST coalition formation is
a better choice because it seems more natural to respond to the current
needs, rather than anticipate the needs. A counterargument is that in JST
the two processes, the coalition formation and the combinatorial auctions
are independent, thus, the goal of providing packages involving multiple
coalitions is likely to involve additional overhead.

There are other reasons to be concerned about the effectiveness of
JST coalition formation which requires information about the current state
of the servers. Cloud data centers consist of multiple WSCs each with
hundreds of thousands of servers interconnected by a hierarchy of networks.
CRM policies relaying on state information collected through a monitoring
process is rather inefficient compared with a trivial bidding process [163].
This motivates us to investigate market models for resource management
based on coalition formation, but why combinatorial auctions?

Cloud Self-Organization and Big Data Applications 165

A combinatorial auction is a market where the participants can place bids
for packages of goods or services. Combinatorial auctions allow cloud users
to acquire packages consisting of coalitions of servers with different types
and amounts of resources. Combinatorial auctions are desirable because
different phases of an application may require systems with different
configurations or systems supporting different functions.

For example, the ubiquitous MapReduce applications illustrate the need
for coalition formation and combinatorial auctions: coalitions of servers
with attached GPUs are optimal for the computationally intensive Map
phase, and coalitions of servers with solid-state secondary storage would
be best for the Reduce phase. The two types of coalitions must be acquired
at the same time; the results produced during the Map phase by the first
coalitions should be stored during the Reduce phase on the systems in the
second coalitions.

5.4 HISTORY-BASED RACK-LEVEL COALITION FORMATION

The organization of the cloud infrastructure should support a flexible
environment. The resource management system should allocate resources in
packages determined by the actual application needs, rather than providing
a limited set of predefined packages. This objective can be best achieved
by market-based self-organization and self-management mechanisms which
are more efficient, agile, and user-friendly than the ones relying on hierar-
chical resource management.

The coalition formation process discussed next is based on concepts re-
lated to cooperative games presented in Section 3.8. A rack is homogeneous,
all servers have the same architecture and identical configuration and are
indistinguishable from one another. Rather than being selfish, the goal of all
servers in a rack is to cooperate with one another and bring in a maximum
benefit to the CSP. The homogeneity assumption simplifies considerably the
search for an optimal coalitions structure (CS).

Spatial locality constrains. Communication is critical for the perfor-
mance of a parallel application with a complex workflow, therefore mapping
computations to processors should be very high on the priority list of
any CRM system. The coalition members should be able to effectively
communicate with one another and this condition should be of utmost
concern for the coalition formation algorithms.

166 Complex Systems and Clouds

The infrastructure of cloud data centers is hierarchically structured and
the communication latency among the servers in a rack is lower and the
bandwidth is larger than communication with servers in another rack.
The coalition formation should ensure spatial locality to minimize the
communication overhead among the members of a coalition; it is therefore
desirable to form coalitions among the tens of servers in the same rack
of a WSC.

A rack consists of N powerful multicore servers capable of providing
sufficient computing cycles, as well as, primary and secondary memory
for virtually all Big Data applications. A rack is homogeneous as all
servers have identical configurations. This realistic assumption simplifies
considerably the complexity of the search for an optimal coalition structure
as the servers are indistinguishable from one another.

Coalition lifetime and payoff distribution. In the applications dis-
cussed in the literature, coalitions have a rather long lifetime and coalition
stability is of primary concern. This is not the case for the HB coalitions. The
cloud model assumes slotted time and auctions organized at the beginning
of each allocation slot. The coalitions have a short-lifetime; a coalition
participates at an auction and, if successful, the coalition persists for the
duration of the contract.

If a coalition is not successful during the auction organized in the current
slot, the members are free to act alone. Some coalition members of an
unsuccessful coalition may decide to offer their services for the current slot
on the spot market, others may decide to stay idle for the current time slot
and join a new coalition in the next allocation slot. Joining a coalition is not
a long-term commitment, it is for a short time, and it is an ad hoc process.

The value of a coalition also reflects the length of time the coalition was
active in response to a successful auction. The value attributed to a coalition
of n servers is distributed equally among the members of the coalition. The
value of a package of several coalitions auctioned successfully is divided
among the coalitions based on the resource supplied by each one of them.

An algorithm for rack-level coalition formation. The S servers in a
rack have a unique SId and are organized in a logical ring, SIdi−1 and SIdi+1

are the predecessor and, respectively, the successor of SIdi; SIdS and SId2

are the predecessor and, respectively, the successor of SId1.

Cloud Self-Organization and Big Data Applications 167

Each server maintains a coalition success record, R = {n, p, pm} with n
the coalition size, p the probability of success, and pm the probability that m
copies of a coalition of size n were successful at an auction. All servers have
the same information therefore, these records are identical. The probability
of success p is the ratio of instances when a coalition consisting of n servers
from this rack was matched with a service request and the number of
instances this coalition size was offered but the bid was unsuccessful. When
the system starts, R = ∅ and the coalition sizes are randomly selected.

At the beginning of allocation slot k the role of rack leader is assumed by
the server with SIdj, j = k mod S. The rack leader communicates with the
servers in the rack and with the WSC admission control process A which
matches service requests with the set of coalitions proposed by all racks.
The functions of the rack leader are:

1. Collect bids from servers ready to participate in coalition formation at the
beginning of allocation slot k.

2. Select the set of coalitions most likely to be successful.
3. Send to A the set of proposed coalitions including the service type

provided by the rack.
4. Receive from A the set of successful coalitions if any.
5. Form coalitions if the set of successful coalitions is not empty.
6. Broadcast data including: the set of proposed coalitions, the set of

successful coalitions, and the servers in each coalition.
7. Get a confirmation that its successor in the ring is ready to assume the

role of rack leader at the next allocation slot.

To select the set of coalitions most likely to be successful, the rack leader
first determines the set of available servers Nk and then selects the clusters
sizes ni in the order of their probability of success such that the condition
expressed by Eq. (5.26) is satisfied.

∑
i

ni ≤ Nk. (5.26)

If this set does not include all Nk available servers then clusters of size one
or two are added. For example, if Nk = 19 and the clusters of sizes 3, 5, 6
have the largest probability of success then the list of coalitions proposed is
L = {1, 1, 1, 2, 3, 5, 6}.

168 Complex Systems and Clouds

A rack leader with SIdj conducts the coalition formation process as
follows:

1. Order the set of successful coalitions based on the coalitions with
the probability of success. Use the coalition size to break ties, larger
coalitions being preferred.

2. Order the set of available servers based on their SId and the relative
distance between them. For example, SIdj+4 is placed before SIdj+7.

3. Allocate servers to coalitions based on the two ordered sets.

When the proposed coalition list is L{1, 1, 1, 2, 3, 5, 6}, the ordered success-
ful coalition list is S = {3, (6, 1)}, and the available servers are at distance
D = {3 − 5, 9 − 17, 20, 24 − 28} from the current rack leader with SIdj, then
the coalitions will be

C1 = {SIdj+3, SIdj+4, SIdj+5}.
C2 = {SIdj+9, SIdj+10, SIdj+11, SIdj+12, SIdj+13, SIdj+14}.
C3 = {SIdj+15}.

(5.27)

5.5 A COMBINATORIAL AUCTION PROTOCOL

Several combinatorial auctions protocols discussed in Section 4.11 have
been analyzed, but none is a good choice for CRM. In traditional applica-
tions of combinatorial auctions, the bidders are the consumers of resources,
while in this particular application, there are two distinct competitions, one
initiated by the providers and the other one by the consumers of services.

The protocol presented in this section primarily targets reservation
systems for the IaaS cloud delivery model represented by AWS. Reservation
and spot allocations are now offered by many CSPs. Reservations guarantee
access for long-running enterprise applications, while spot allocations are
used primarily by individual users for software development. This is the
case of AWS where reservations are more costly than spot allocation.

The protocol is inspired by the clock-proxy auction [20]. This auction
seems most suitable for cloud computing environments with a large popula-
tion of both buyers and sellers. The clock-proxy auction has two phases:

1. A clock phase when the price discovery takes place.
2. A proxy phase, when the bids for packages are entertained.

Cloud Self-Organization and Big Data Applications 169

Packages of services. The resources auctioned by the combinatorial
auction protocol are supplied by coalitions of servers in different racks; the
cloud users request packages of resources. The protocol supports auctioning
packages consisting of combinations of services in one or more time slots.

The items sold are services advertised by coalitions of autonomous
servers and the bidders are the cloud users. Each service is character-
ized by:

1. A type describing the resources offered and the conditions for service.
2. The time slots when the service is available.

A service S offered by a coalition is described by a relatively small number
of attributes, {a1, a2, . . . , ai, . . .}. Each attribute ai can take a number of
distinct values, vi = {vi,1, vi,2, . . .}. The first attribute is the coalition size or,
equivalently, the number of vCPU provided. Other attributes could be the
type of service, e.g., CPU-intensive, memory-intensive or data-intensive,
the architecture, e.g., “32-bit” or “64-bit,” the “server model,” e.g., “vN”
(von Neumann), “DF” (data-flow), or “vN-GPU” (vN with graphics
co-processor).

Fig. 5.6 Auctions At and A
s conducted at times t and s, respectively. τ t

0 and τ s
0 are the start

of the first allocation slots, ASt
1 and ASs

1 of the two auctions. The number of slots auctioned
in each case are κ t and κs, respectively.

Terms used to describe the auction. An allocation slot (AS) is a
period of fixed duration, e.g., 1 hour, that can be auctioned. An auction,
A

t, is organized at time t if there are pending reservation requests which
require immediate attention. Fig. 5.6 shows two consecutive auctions at
times t and s; during the first slot of auction A

t new reservation requests are
received and the allocation slot ASt

2 is not fully covered; this slot becomes
ASs

1 for As.

170 Complex Systems and Clouds

Call S t the set of services the clients want to reserve during auction A
t

S t = {St
1, St

2, . . . , St
νt} with St

i = [SId, (aj, vj,k)]. (5.28)

A reservation bundle, αt
i,j ⊂ S t, is the set of services requested by client

i in slot j of auction A
t

αt
i,j = {(St

i,j,1, rt
i,j,1), (S

t
i,j,2, rt

i,j,2), . . .}. (5.29)

with rt
i,j,l a measure of the quantity; for example, if the attribute is “service

intensity” the quantity is the number of vCPUs.

An advertised bundle, β t
k,j ⊂ S t, is the set of services offered by coalition

k in slot j of auction A
t

β t
k,j = {(St

k,j,1, qt
k,j,1, pt

k,1), (S
t
k,j,2, qt

k,j,2, pk,2), . . .} (5.30)

with qt
k,j,l a measure of the quantity of service l and pk,l the price per

hour established by coalition k for service St
l. A package, P t

i is a set of
reservations for services requested by client i for slots j1, j2, . . . during
auction A

t.

P t
i = {αt

i,j1 , αt
i,j2 , . . .}. (5.31)

The clock phase. Fig. 5.7 illustrates the basic idea of a clock phase:
the auctioneer announces prices and the bidders indicate the quantities they
wish to buy at the current price. When the demand for an item increases, so
does its price until there is no excess demand; on the other hand, when the
offering exceeds the demand, the price decreases.

During the clock phase of auction A
t the price discovery is done for

each time slot and for each type of service; a clock runs for each one
of the κ t slots and for each one of the νt services. Next the clock phase
for service St

l in slot j is discussed. Assume that there are n coalitions
C = {C1,C2, . . . ,Cn} offering the service and m service requests from
clients D = {D1,D2, . . . ,Dm}.

A clock auction starts at clock time t = 0 and at price per unit of service
for Sl

p0
l = min

Ck
{pk,l}. (5.32)

Cloud Self-Organization and Big Data Applications 171

Call C0 the available capacity at this price and D0 the demand for service St
l

offered at price p0
l in slot j

C0 =
n∑

k=1
qt

k,j,l and D0 =
m∑

i=1
rt

i,j,l. (5.33)

If C0 < D0 the clock c advances and the next price per unit of service is

p1
l = p0

l + I (5.34)

with I the price increment decided at the beginning of auction. There is an
ample discussion in the literature regarding the size of the price increment; if
too small, the duration of the clock phase increases, if too large, it introduces
incentives for gaming the auction [20].

The process is repeated at the next clock value starting with the new
price. The clock phase for service St

l and slot j terminates when there is no
more demand.

Auctioneer

C1

C2

Cn

pc+ I

D1

D2

Dm

r t
m,j,l

r t
2,j,l

r t
i,j,l qt

k,j,lr t
1,j,l

qt
n,jl

qt
2,j,l

qt
1,j,l

∑ ∑>

c

Fig. 5.7 The clock phase for service St
l and slot j. The starting price is p0

l given by Eq. (5.32).
The clock advances and the price increases from pc to pc + I when the available capacity at
that price given by Eq. (5.33) is exhausted; the demand is given by Eq. (5.33).

The proxy phase. In a traditional clock-proxy auction, the bidders do not
bid directly, they report the price and the quantity of each item in the package
they desire to a proxy. Then the proxy bids in an ascending package auction.

172 Complex Systems and Clouds

The proxy phase of the auction consists of multiple rounds. The auction
favors bids for long runs of consecutive slots for services provided by the
same coalition. This strategy is designed to exploit temporal and spatial
locality and minimize the overhead for resource allocation, and reduce
communication, as well as the execution time.

The auction starts with the longest runs and the lowest price per slot and
proceeds with increasingly shorter runs and diminished incentives. Once
a run of consecutive slots is the subject of a provisional winning bid, all
shorter runs of slots for that particular service are removed from the coalition
offerings.

During the first round, only the longest run of consecutive slots for each
one of the services offered by the participating coalitions is auctioned and
only bidders that have committed to any of the slots of the run are allowed
to bid. The price per slot for the entire run is the lowest price for any slot of
the run the bidder has committed to during the clock phase of the auction.
If there are multiple bids for services, St

l the provisional winner is the one
providing the largest revenue for the coalition offering the service.

If κ t
l is the longest run of consecutive slots for service St

l auctioned in the
first round then, in the second round, a shorter run of κ t

l −1 slots is auctioned.
The price for the entire run equals the second lowest price for any slot of the
run the bidder has committed to during the clock phase of the auction times
the number of the time slots in the run.

The length of the consecutive slot runs auctioned decreases and the
incentives diminish after each round. The preliminary rounds end with the
auction of a single slot for each service. At the end of the preliminary round,
each bidder is required to offer the price for the slot committed to during
the clock phase. Fig. 5.8 depicts a plausible snapshot at the end of the
preliminary rounds of the proxy phase when four services S1,S2,S3, and
S4, are offered and shows the provisional winners for service S4.

During the final round, the bidders reveal the packages they want to
reserve; these packages include only the provisional winners from the
preliminary slots. Once all provisional winning bids for services in a
reservation request are known, the auctioneer chooses the package that best
matches the consumer’s needs and, at the same time, maximizes the profit
for the CSP. The coalition for a reservation request consists of the set of
coalitions that provide the services in the winning package.

Cloud Self-Organization and Big Data Applications 173

Allocation slots

Service S1

Service S2

Service S3

Service S4

1 2 3 4 5 6 7 8 9 11 13 1412 15 16 17 18

Auction time

C9 C13
C6 C1 C11 C7 C9

Fig. 5.8 A snapshot at the end of the preliminary rounds of the proxy phase when there are
four services offered and the auction covers 18 allocation slots. Dotted lines represent the
quantity of service with provisional winners. Only the provisional winners for S4 are shown,
the clients are labeled as C9, C13, C6, C1, C11, C7, and C9.

In this auction all bids are firm, they cannot be withdrawn. The auction
is monotonic, the length of runs of consecutive slots auctioned decreases
continually; this guarantees that the auction eventually terminates. Linear
pricing guarantees that the price of any package can be computed with ease.

Effectiveness metrics. The effectiveness of the protocol is captured by
several metrics:

1. The customer satisfaction index—percentage of reservation requests
fully or partially satisfied in each allocation slot.

2. The service mismatch index—percentage of services requested but not
offered in each allocation slot.

3. The service success index—percentage of services successfully auc-
tioned.

4. The capacity allocation index—percentage of the capacity offered but
not auctioned in each allocation slot.

5. The overbidding factor—percentage of slots with a provisional winner
that have not been included in any package.

6. The temporal fragmentation index—percentage of services successfully
auctioned in nonconsecutive slots given all services successfully auc-
tioned.

7. The additional profit index—percentage of additional profit of coalitions
involved in the auction, the difference of the actual price obtained at
the auction and the price demanded by the coalition relative to the price
demanded by the coalition.

174 Complex Systems and Clouds

Limitations and vulnerabilities. The protocol is fairly complex and
has at least one vulnerability. A bidder may be the provisional winner of
services in slots not included in its winning package; such services will
remain unassigned during the current auction. A solution is to penalize
excess bidding activity and charge the bidder a percentage of the costs for
these services. Another alternative is to include in a reservation request a set
of “substitute services” for a service Si. Then, during the last round of the
proxy phase, the auctioneer could try to match services having provisional
winners with unsatisfied requests for services.

The capacity offered, but not auctioned, in each slot is available for spot
allocation thus, it has the potential to be used, rather than being wasted.
The capacity of a coalition left uncommitted at the end of the auction A

t

for ASt
1, the first slot of the auction (see Fig. 5.8), is then available for spot

allocation at a price equal to pk,l, while the free capacity in slots starting
with ASt

2 can be offered at the next auction if this auction takes place before
the beginning of the slot. This capacity is measured by the spot allocation
opportunity index.

5.6 EVALUATION OF CLOUD POLICIES AND MECHANISMS

The question we address now is how to experiment with new cloud policies
and mechanisms implementing these policies. Experimentation with a
realistic cloud infrastructure is not feasible as such systems cannot be shut
down, reconfigured, and their behavior and performance under new policies
cannot be thoroughly investigated. Analytical studies are unrealistic due to
the scale and the complexity of the system.

It is always tempting to conduct experiments on a testbed system, but
there is no guarantee, in fact it is unlikely, that the results will hold for
a large-scale system. New phenomena and different system behavior is
expected when a system scales up, as we have seen in Chapters 1 and 3.
As pointed out in [27] “. . . the WSCs are a new class of large-scale machines
driven by new and rapidly evolving sets of workloads. The size alone
makes them difficult to experiment with, or to simulate effectively. . . ”

One expects to learn useful lessons from the successful methodology
used for the development of other complex, man-made systems designed
to perform under different operating conditions. This is the case of modern
microprocessors, aircraft, or space exploration systems. In all these cases

Cloud Self-Organization and Big Data Applications 175

a new system is designed sometimes from scratch, based on the lessons
learned from past developments and after a thorough analysis of the
individual system components and their ability to work together.

For example, the development of a new processor with several bil-
lion gates goes through a rigorous process. This process starts with the
development of detailed performance, power consumption, and reliability
models. The next step is to experiment with the model. Simulators such
as Simple Scalar (http://www.simplescalar.com/) and timing analysis tools
have been widely used by the industry and research groups for years.
Benchmarks (https://www.spec.org/benchmarks.html) used as input to the
simulator allow us to predict the performance for different workloads.

Applying these ideas to computer clouds is far from trivial. While we can
model in great detail the operation of an individual server, the interactions
among the set of servers is what gives the cloud infrastructure its flexibility
and power and require an analysis of the system as a whole. Moreover,
a model useful for understanding the effect of new CRM policies is even
more complex because the model should also describe the interactions of
the infrastructure with an environment consisting of a large population of
users, rather than describing the infrastructure in isolation. Unfortunately,
detailed models of a cloud environment are yet to be developed.

It is extremely challenging to capture the dynamic interaction of in-
dividual servers in a model, then test several policies and mechanisms
under different workloads. It is also not helpful that the organization
of the infrastructure of existing systems, their policies, and the internal
mechanisms for resource management are rather opaque. The CSPs are
reluctant to disclose the inner working of their infrastructure, thus, it is
not feasible to compare new policies and mechanisms with existing ones.
This hinders not only the investigation of alternative CRM policies, but also
standardization and efforts for supporting cloud interoperability.

A realistic alternative is to develop high-level (rather than detailed)
models of the cloud infrastructure, conduct simulation experiments using
these models, and draw qualitative conclusions from the simulation results.
Such models must be carefully crafted and avoid details that unnecessarily
complicate the simulation, or make it infeasible. The goal should be to
identify trends and determine the effect of different model parameters to
gain insights based on a qualitative, rather than a quantitative analysis of
the simulation results.

http://www.simplescalar.com/
https://www.spec.org/benchmarks.html

176 Complex Systems and Clouds

An important step of model development is the identification of perfor-
mance metrics likely to be affected by a new policy. Once these metrics
are identified, the model should capture the processes affecting each one of
them and quantify their effects.

The simulation models should exploit homogeneity whenever feasible.
For example, assuming that all severs in a rack of a WSC are identical
reduces the complexity of the simulation model and it is realistic, as it
reflects the practice of current system architecture. These principles are
applied in the analysis of market mechanisms based on coalition formation
and combinatorial auctions for CRM discussed in this chapter.

The next three sections discuss simulation studies. The first simulation
experiments compare hierarchical control with market-based policies for
CRM. The second compares HB coalitions and JST coalitions, and the third
covers experiments with an algorithm for combinatorial auctions.

5.7 HIERARCHICAL CONTROL VERSUS MARKET MECHANISMS

Hierarchical control in large-scale systems is ubiquitous. A distributed hier-
archical management scheme seems a natural choice for a cloud infrastruc-
ture given the hierarchical topology of WSC networks. This motivates the
choice of comparing the hierarchical control with the market mechanisms as
reported in [163] and discussed in this section.

Hierarchical control means that decisions are made at different levels
of the hierarchy of a cloud infrastructure similar to the one presented in
Section 4.4. The decision process at each level of the hierarchy must be
based on information about the state of the system components at the
levels below it. The state information required by hierarchical control is
collected periodically by a monitoring process and communicated to the
decision agents.

Some of the desirable properties and the problem posed by the appli-
cation of market mechanisms to CRM, discussed in Section 4.8, deserve
to be further investigated. From the wide range of choices for the market
mechanisms, a simple bidding scheme is chosen. In this scheme individual
servers offer services and the decision process at the WSC level attempts
to match service requests to services offered by the system. A qualitative
analysis of hierarchical control and market mechanisms in a hierarchically
organized computer cloud is presented next.

Cloud Self-Organization and Big Data Applications 177

A simulation experiment. The simulation experiments are conducted
on the Amazon cloud using c3.8xlarge1 EC2 instances. It is challenging to
simulate systems with 4–8 WSCs efficiently, the execution time for each one
of the simulation experiments reported in this section is about 24 hours, and
each simulation requires 5–6 days wall clock time.

It is important to understand how the scale and the load of the system, as
well as several other parameters of the resource management system affect
the ability of the cloud infrastructure to respond to service requests. An
important measure of the effectiveness of a resource management system
is the communication complexity expressed by the number of messages at
each level of an interconnection infrastructure.

The communication latency increases and the bandwidth of the inter-
connection infrastructure decreases from the rack to the cell and then to
the WSC level. We expect the communication complexity of a hierarchical
resource management system to be dominated by monitoring and by the
effort for locating a server capable to process a service request.

The simulation model assumes a time-slotted system. A service request
is characterized by three parameters:

1. Service type.
2. Service duration—expressed as a number of time slots.
3. Service intensity—expressed as the number of vCPUs.

The system size, the system load, the service time, the total number of
service types supported by the system, and the number of service types
supported by a server affect the system performance. From the broad set
of system performance metrics the following are the most relevant:

• The number of messages exchanged at the three levels of system hierar-
chy, rack, cell, and WSC for mapping the service requests. These numbers
reflect the overhead of the request processing process.

• The ability of the system to balance the load, measured as the coefficient
of variation (the variance versus the average) of the system load per
allocation slot.

• The rejection ratio, the ratio of service requests rejected because no server
able to match the service type, the service intensity, and the service
duration demanded by the clients could be found, to the total number
of requests.

1Compute-optimized instance with 32 vCPU and 60 GiB memory.

178 Complex Systems and Clouds

The system configuration is derived from the data in [27] and the
parameters of the simulation model have been chosen as realistic as possible.
The experiments were conducted with two system configurations, 4 and
8 WSCs. A WSC has the following configuration: 24 cells, 100 racks per
cell, 40 servers in each rack, and 4 processors per server. Thus, a WSC has
88,000 servers and 352,000 processors. All servers have the same capacity,
10 vCPUs.

The simulation environment is flexible. A configuration file describes the
system infrastructure, the network speed, the server load, and the parameters
of the model. For example, the system configuration for the high initial load
case is:

% System configuration
static const int serverNum = 40;

static const int cpuNum = 4;
static const int rackNum = 100;
static const int cellNum = 25;
static const int WSCsNum = 4;
static const int servers_capacity =100;
% Network speeds and load parameters

static const int interRackSpeed = 1;
static const int intraRackSpeed = 10;
static const int MIN_LOAD = 80;
static const int MAX_LOAD = 85;

% Model parameters
static const int NUMBER_OF_TYPES = 100;
static const int vCPU_MAX_REQUES = 800;
static const int vCPU_MIN_REQUEST =10;
static const int vCPU_PER_SERVER = 10;
static const int MAX_SERVICE_TIME = 10;
static const int MONITORING_PERIOD = 10;
static const int SIMULATION_DURATION = 200;
static const int TYPES_FOR_SERVER = 5;
static const int TYPES_FOR_REQUEST = 5;
static const int RACK_CAP = serverNum * servers_capacity;
static const int CLUS_CAP= rackNum * RACK_CAP;
static const int WSC_CAP= clusterNum * CLUS_CAP;
static const int SYSTEM_CAP= WSCsNum * WSC_CAP;

Cloud Self-Organization and Big Data Applications 179

The amount of resources in a service request has a broad range, between
10 and 800 vCPUs, while a single server can provide 10 vCPUs. The
spectrum of service types offered is quite large, initially 500 types and then
reduced to 100.

The time is slotted and a batch of service requests with a random
distribution of the service time, type, and intensity arrive in each slot. The
individual service requests are randomly assigned to one of the WSCs.
Practical considerations regarding simulation costs and time to get the
results have limited the duration of simulation to 200 allocation slots.

Several simulation experiments with different system parameters are
presented. In the first experiment the attributes of service requests are
uniformly distributed and the ranges are: 1–100, 1–10, and 10–800 for
service type, service time, and service intensity, respectively. A server
supports 5 different service types randomly selected from a total of 500
possible service types. The monitoring interval is 10 allocation slots; for
later experiments it will increase to 20 and then to 50 allocation slots. In
a second experiment the effects of changing the parameters of the system
model are investigated when:

1. Doubling the number of WSCs from 4 to 8; this gives an indication of
the scalability of the model.

2. Increasing the average system load from about 20% to about 80% gives
an indication about the robustness of the system and its ability to perform
well under stress.

3. Reducing the number of requested service types from 500 to 100; we
want to study the impact of the service diversity.

4. Reducing the number of types of services offered by each server from
5 to 2, though the more types of services, the more flexible the server
configuration should be.

5. Changing the distribution of the service time from (1 − 10) to (1 − 20)

time slots. The larger the range of the service time the broader the range
of applications able to use the cloud infrastructure.

6. Increasing the monitoring interval for hierarchical control from 20 to 50
time slots; the monitoring interval is expected to have an effect on the
quality of information used by load balancers.

Hierarchical control. In each time slot incoming service requests are
randomly assigned to one of the WSCs. Each WSC periodically collects
data from the cells, which in turn collect data from racks, which collect data
from individual servers.

180 Complex Systems and Clouds

The communication complexity for this monitoring process increases
linearly with the size of the system. The more frequent the monitoring at
each level, the more accurate the information is, but the larger the volume
of data and the interference with the “productive communication,” commu-
nication initiated by running applications. The communication bandwidth at
each level is limited and when the system load increases the communication
latency is likely to increase significantly, as many applications typically
exchange large volumes of data.

The simulation model assumes that load balancers at each level monitor
the system they control. When a request is assigned to a WSC, the load
balancer directs it to the cell with the lowest reported load and the process
repeats itself at the cell level. The cell load balancer directs the request to
the rack with the lowest reported load, which in turn directs it to server with
the lowest reported load.

If the server rejects the request, the rack load balancer redirects the
request to the server with the next lower load. If the rack cannot satisfy
the request, it informs the cell load balancer, which in turn, redirects the
request to the rack with the next lowest reported average load. The request
is rejected if none of the cells of the WSC are able to find a server able to
satisfy the type, duration, and intensity of the service request.

The simulation is conducted for two average initial system loads: low,
around 20% and high, around 80% of the system’s capacity. The total
number of service requests for 4 WSCs and for low and high initial system
load is around (12 − 17) × 106 and (42 − 57) × 106, respectively. In each
case we show: (1) the number of WSCs; (2) the average initial and final
system load for low and high load; (3) the initial and final coefficient of
variation γ of the load; (4) the rejection ratio (RR); the number of messages
for monitoring and control per service request at (5) WSC level; (6) cell
level; and (7) rack level.

Simulation results for hierarchical control. The results of the first sim-
ulation experiment, Table 5.3, show that the rejection ratio, the coefficient of
the variation of the final load, and the average number of messages required
to map a service request to a server are more than three fold larger in the
case of higher load; indeed, 7.1/2.2 = 3.22, 0.183/0.057 = 3.22, and
984/276 = 3.2, respectively. At higher load, more requests are rejected,
load balancing is less effective, and the overhead for mapping a request
is considerably higher. The increase in the number of messages means a

Cloud Self-Organization and Big Data Applications 181

Table 5.3 Hierarchical Control—The Simulation Results for a System Configuration
With 4 WSCs
WSCs Initial/Final Initial/Final RR # of Service WSC Cell Rack

Load (%) (γ) (%) Requests (Msg/Req) (Msg/Req) (Msg/Req)

4 22.50/19.78 0.007/0.057 2.2 14,335,992 0.98 3.18 271.92

78.50/82.38 0.004/0.183 7.1 57,231,592 1.01 10.16 973.15

8 22.50/19.26 0.006/0.049 1.9 31,505,482 0.98 3.18 271.92

78.50/81.98 0.005/0.213 8.7 94,921,663 1.01 11.36 1071.75
Shown are: the average initial and final system load for the low and high load; the initial
and final coefficient of variation γ of the load; the rejection ratio (RR); and the average
number of messages for monitoring and control per service request at WSC, cell, and
rack level.

Table 5.4 Hierarchical Control: (Top Half) the Number of Service Types Is Reduced
From 500 to 100; (Bottom Half) the Number of Service Types Offered by a Server Is
Reduced From 5 to 2
WSCs Initial/Final Initial/Final RR # of Service WSC Cell Rack

Load (%) (γ) (%) Requests (Msg/Req) (Msg/Req) (Msg/Req)

4 22.50/21.15 0.003/0.051 1.9 16,932,473 1.00 3.53 337.34

82.50/67.18 0.003/0.109 7.2 42,034,225 1.00 11.15 1097.00

8 22.50/22.13 0.008/0.055 5.4 38,949,889 1.00 4.22 470.35

82.50/81.63 0.006/0.155 4.2 84,914,877 1.00 10.72 1038.96

4 22.50/21.15 0.003/0.051 1.7 17,341,885 0.99 3.22 276.34

82.50/74.27 0.006/0.059 14.6 52,206,014 1.00 12.12 1255.40

8 22.50/16.27 0.006/0.035 1.3 37,750,971 0.99 3.18 268.27

82.50/74.55 0.007/0.081 2.9 99,686,943 1.00 10.77 1036.64
All other parameters are identical to the ones for the experiment with results in Table 5.3.

substantial increase in the communication costs and also a longer waiting
time before a request enters the service.

Doubling the size of the system does not affect the statistics for the
same average system load. For example, when the initial average load is
22.50% the average number of messages exchanged per service request is
the same at the three levels of the hierarchy for both system configurations.
The rejection ratio varies little, 2.2% versus 1.9% and 7.1% versus 8.7% for
4 and 8 WSCs, respectively.

Table 5.4 (Top half) presents the results after reducing the total number
of service request types from 500 to 100. A reduction of the rejection ratio

182 Complex Systems and Clouds

and of the number of messages at high load for the larger configuration of
8 WSCs compared to the case in Table 5.3 is noticeable. Also, the rejection
ratio decreases from 7.4% to 4.2% for configurations with 4 and 8 WSCs,
respectively.

When the number of service types offered by a server is reduced from 5
to 2 and the system configuration changes from 4 to 8 WSCs the rejection
rate decreases, see Table 5.4 (Bottom half). The reduction from 14.6 to 2.9
can be attributed to the fact that an incoming service request is randomly
assigned to one of the WSCs; the larger the number of WSCs, the less likely
is for the request to be rejected. The number of messages at the rack level is
considerably larger for the smaller system configuration at high load, 1255
versus 973 in the first case presented in Table 5.3.

Table 5.5 Hierarchical Control: (Top Half) The Service Time Is Uniformly
Distributed in 1–20 instead of 1–10 Allocation Slots; (Bottom Half) The Monitoring
Interval Is Increased From 10 to 50 Reservation Slots
WSCs Initial/Final Initial/Final RR # of Service WSC Cell Rack

load (%) γ (%) Requests Msg/Req Msg/Req Msg/Req

4 22.50/22.41 0.005/0.047 0.20 12,352,852 1.00 3.13 261.11

82.50/80.28 0.003/0.063 2.10 43,332,119 1.00 3.41 1108.12

8 22.50/22.77 0.005/0.083 1.30 25,723,112 1.00 3.11 236.30

82.50/79.90 0.005/0.134 4.10 88,224,546 1.00 10.63 1029.56

4 22.50/21.07 0.003/0.033 1.00 12,335,103 0.99 3.21 270.07

82.50/83.46 0.007/0.080 1.80 51,324,147 1.01 10.87 1040.63

8 22.50/19.16 0.005/0.030 1.30 29,246,155 1.00 3.37 304.88

82.50/84.12 0.002/0.041 2.30 93,316,503 1.00 3.66 1005.87

All other parameters identical to the ones for the experiment with results in Table 5.3.

Next, the monitoring interval is set to 20 allocation slots and the service
time is uniformly distributed in the range 1–20 allocation slots. The results
in Table 5.5 (Top half) show that the only noticeable effect is the reduction
of the rejection rate.

In the following experiment, the monitoring interval is extended from
10 to 50 allocation slots. The service time is uniformly distributed in the
range 1–10 allocation slots; even when the monitoring interval was 10

Cloud Self-Organization and Big Data Applications 183

allocation slots, this interval is longer than the average service time thus,
the information available to load balancers at different levels is obsolete.

The results in Table 5.5 (bottom half) show that increasing the monitoring
interval to 50 slots has little effect for the 4 WSC configuration at low load,
but it reduces substantially the rejection ratio and increases the number
of messages at high load. For the 8 WSC configuration, increasing the
monitoring interval reduces the rejection ratio at both low and high load,
while the number of messages changes only slightly.

Total load distribution for each time slots
Load

26

23

20

17

14
0 50 100 150

Time slot

Lo
ad

 p
er

ce
nt

ag
e

200

Total load distribution for each time slots

Load

90

80

70

60

50

Time slot

Lo
ad

 p
er

ce
nt

ag
e

0 50 100 150 200

Load distribution on WSCs
Initial load

23.00

22.85

22.70

22.55

Lo
ad

 p
er

ce
nt

ag
e

22.40
0 2 4 6 8

WSC ID

Final load
Load distribution on WSCs

Initial load Final load

83

82

Lo
ad

 p
er

ce
nt

ag
e

81

79
0 2 4 6

WSC ID

8

80

Fig. 5.9 Hierarchical control for a cloud with 8 WSCs. The monitoring interval is 20
allocation slots and the service time is uniformly distributed in the range 1–20 allocation
slots. The initial average system load: (left) 20%; (right) 80% of system capacity. (Top) Time
series of the average WSC load. (Bottom) Initial and final average WSC load.

Fig. 5.9 (top) shows the time series of the average system load for the
low and the high initial load, respectively for the case in Table 5.3 when
the monitoring interval is 20 time slots and the service time is uniformly
distributed in the 1–20 slots range and there are 8 WSCs. The system
workload has significant variations from slot to slot; for example, at high
load the range of the average system load is from 58% to 85% of the system

184 Complex Systems and Clouds

capacity. Fig. 5.9 (bottom) shows the initial and the final load distribution
for the 8 WSCs; the imbalance among WSCs at the end of the simulation is
in the range of 1 − 2%.

The results of the five simulation experiments are consistent, they
typically show that at high load, the number of messages, and thus the
overhead for request mapping increases three- to four-fold, at both cell and
rack level and for both system configurations, 4 and 8 WSCs.

Simulation of a market model. In this resource management model,
all servers of a WSC bid for service. A bid consists of the service type(s)
offered and the available capacity of the bidder.

The overhead is considerably lower than that of the hierarchical control;
there is no monitoring, and the information maintained by each WSC
consists only of the set of unsatisfied bids at any given time. The servers
are autonomous and act individually; there is no collaboration among
them. Note that self-organization and self-management require agents to
collaborate with each other.

At the beginning of an allocation slot, servers with available capacity
above a threshold τ place bids. The bids are then collected by each WSC.
A bid is persistent, if not successful in the current allocation slot it remains
in effect until a match with a service request is found. This strategy to reduce
the communication costs is justified because successful bidding is the only
way a server can increase its workload.

One of the objectives of the investigation is the effectiveness of the
bidding mechanism for lightly and heavily loaded system, around 20% and
80% average system load, respectively. The thresholds for the two cases are
different, τ = 30% for the former and τ = 15% for the latter. The choice for
the lightly loaded case is motivated by the desire to minimize the number
of messages; a large value of τ , e.g., 40% would lower the rejection ratio
but increase the number of messages. Increasing the threshold, e.g., using a
value τ = 20%, would increase dramatically the rejection rate in the case
of heavily loaded system; indeed, few servers would have 20% available
capacity when the average system load is 80%.

Simulation results for the market model. The measurements reported
for the hierarchic control are repeated under the same conditions as those for
hierarchical control for a fair comparison; only bidding replaces monitoring
and hierarchical control. The same performance indicators are used:

Cloud Self-Organization and Big Data Applications 185

Table 5.6 Market Model: Simulation Results for a System Configuration With 4
WSCs
WSCs Initial/Final Initial/Final RR # of Service WSC Cell Rack

Load (%) (γ) (%) Requests (Msg/Req) (Msg/Req) (Msg/Req)

4 22.50/23.76 0.007/0.067 0.22 15,235,231 0.002 0.011 0.987

82.50/80.32 0.004/0.115 5.44 63,774,913 0.003 0.042 4.155

8 22.50/22.47 0.006/0.033 0.18 30,840,890 0.002 0.011 0.987

82.50/81.30 0.005/0.154 7.23 89,314,886 0.003 0.054 5.761

Shown are the initial and final system load for the low and high load, the initial and final
coefficient of variation γ of the load, the rejection ratio (RR), and the average number of
messages for monitoring and control per service request at WSC, cell, and rack level.

Table 5.7 Market Model: (Top) The Number of Service Types Is Reduced From 500
to 100; (Center) The Number of Service Types Offered by a Server Is Reduced From
5 to 2; (Bottom) The Service Time Is Uniformly Distributed in the Range of 1–20
Instead of 1–10 Allocation Slots
WSCs Initial/Final Initial/Final RR # of Service WSC Cell Rack

Load (%) (γ) (%) Requests (Msg/Req) (Msg/Req) (Msg/Req)

4 22.50/22.3 0.004/0.050 0.18 15,442,372 0.002 0.011 0.987

82.50/79.88 0.004/0.098 6.01 56,704,224 0.002 0.059 5.968

8 22.50/23.0 0.007/0.049 0.3 31,091,427 0.002 0.011 0.987

82.50/80.91 0.009/0.127 5.81 85,322,714 0.003 0.051 5.845

4 22.50/20.94 0.007/0.056 0.1 15,295,245 0.002 0.011 0.987

82.50/77.83 0.008/0.133 10.1 49,711,936 0.003 0.063 6.734

8 22.50/22.33 0.007/0.063 0.02 31,089,191 0.002 0.011 0.987

82.50/78.18 0.008/0.142 3.61 71,873,449 0.002 0.059 6.098

4 22.50/23.31 0.002/0.064 2.27 13,445,186 0.001 0.011 0.988

82.50/84.05 0.007/0.101 3.75 57,047,343 0.002 0.042 6.329

8 22.50/18.93 0.007/0.038 2.94 28,677,012 0.001 0.011 0.988

82.50/85.13 0.008/0.072 4.38 88,342,122 0.002 0.029 4.078

communication complexity, the efficiency of load balancing, and the
rejection ratio. The results are shown in Tables 5.6 and 5.7.

The simulation results show a significant reduction of the communication
complexity, more than two orders of magnitude in case of the market-

186 Complex Systems and Clouds

oriented mechanism. For example, at low average load the average number
of messages per reservation request at the rack level is 0.987, Tables 5.6
and 5.7, versus 271.92, Table 5.3 for 4 and 8 WSCs.

At high average load, the average number of messages for the market
model and the hierarchical model, respectively, are: 4.155 versus 973.14 for
the 4 WSC case and 5.761 versus 1071.75 for the 8 WSC case. A second
observation is that when the average load is 20% of the system capacity,
the communication complexity is constant, 0.987, for both configurations,
4 and 8 WSCs, regardless of the choices of simulation parameters. At high
average load, the same value is confined to a small range, 4.078–6.734.

The organization is scalable, the results for 4 and for 8 WSCs differ only
slightly. This is expected because of the distributed scheme where each WSC
acts independently, it receives an equal fraction of the incoming service
requests and matches them to the bids placed by the servers it controls.

The average rejection ratio at low average load decreases, see Tables 5.6
and 5.7. On the other hand, the rejection rate increases when the range of
the service time increases from the 1–10 to 1–20, see Table 5.7 (bottom).
This effect is most likely due to the fact that requests with a large service
time arriving during later slots do not have time to complete during the 200
allocation slots covered by the simulation.

At high average system load, the average rejection ratio is only slightly
better for market-based versus hierarchical control. Lastly, the market-based
mechanism performs slightly better than hierarchical control in terms of
slot-by-slot load balancing, the coefficient of variation of the system load
per slot is γ ≤ 1.115.

The number of different service types offered by the cloud and the
number of services supported by individual servers, do not seem to affect
the performance of the system see Table 5.7 (top) and (center).

Fig. 5.10 (top) shows time series of the average system load for the
low and the high initial load, respectively. The actual system workload has
relatively small variations from slot to slot; for example, at high load, the
range of the average system load ranges from 77% to 82% of the system
capacity. Fig. 5.10 (bottom) shows the initial and the final load distribution;
the imbalance among the eight WSCs at the end of the simulation is in the
21–23% range at low load and in the 80–80.1% range at high load.

Cloud Self-Organization and Big Data Applications 187

Load
Total load distribution for each time slots

26

22

18

14

Lo
ad

 p
er

ce
nt

a
ge

10
0 50 100 150 200

Time slot

Total load distribution for each time slote

Load

Lo
ad

 p
er

ce
nt

a
ge

83

81

79

77

75
0 50 100 150

Time slot

200

Initial load Final load
Load distribution on WSCs

24.4

23.3

22.2

21.1

Lo
ad

 p
er

ce
nt

ag
e

20.0
0 2 4 6 8

WSC ID

Initial load Final load

Load distribution on WSCs

82.8

82.1

81.4

80.7

Lo
ad

 p
er

ce
nt

ag
e

80.0
0 2 4 6 8

WSC ID

Fig. 5.10 Market model. A cloud with 8 WSCs, the monitoring interval is 20 allocation slots
and the service time is uniformly distributed in the range 1–20 allocation slots. The initial
average system load is: (left) 20%; (right) 80% of system capacity. (Top) time series of the
average load. (Bottom) initial and final average load.

The results show that market-based policy performs well at high system
load and this is extremely important. The average server utilization based on
existing CRM policies reported in the literature is rather low. A policy that
allows servers to operate effectively under heavy load is highly desirable.

The results of the simulation experiments discussed in this section
confirm our intuition that monitoring required by a hierarchical resource
management adds a significant overhead for resource management in a
large-scale system and cannot provide accurate information about the state
of system resources. We can only draw qualitative conclusions from the
simulation experiments, the performance of the market mechanisms is
significantly better for critical performance metrics than the results of
hierarchical control and this effect is noticeable for experiments with
different sets of parameter models.

188 Complex Systems and Clouds

5.8 HISTORY-BASED VERSUS JUST-IN-TIME COALITIONS

The results of a simulation experiment comparing the two strategies for
coalition formation, HB and JST are reported in [164] and in [253] and
reviewed in this section. The simulation is based on a simple model when a
service request specifies the type of service, the service duration, and service
intensity expressed as the number of vCPUs. For each service type, only
racks offering that service form coalitions, provided that the autonomous
servers in the rack have sufficient available capacity.

The system model. In the HB strategy, described in Section 5.3, a rack
leader uses historic information about past successful coalitions in a window
of w auctions to suggest the size of the coalitions that the servers in the rack
join, provided that their available capacity allows participation in a coalition.
Once the coalitions are formed, all racks of a WSC independently bid for
services requested in that allocation slot. An auction takes place and the
racks hosting successful coalitions are informed. Then this information is
passed to the servers and the service starts.

In the JST strategy, service requests are dispatched to a WSC where
they are analyzed to determine the service type and the desired coalition
size for each. This information is then broadcast to the racks of the WSC
where an attempt is made to dynamically create appropriate coalitions. Rack
leaders initiate the coalition formation process, and finally, the information
about newly formed coalitions is passed to the combinatorial auction system.
The algorithm for JST coalition formation is similar to the one for the
HB strategy. The only difference is that the coalition sizes are now the
ones demanded by the service request rather than those determined by past
activity.

The combinatorial auction protocol. The protocol is based on the clock
algorithm discussed in Section 5.5. The auctioneer announces prices and the
bidders indicate the quantities they wish to buy at the current price. Then the
auctioneer adjusts the prices based on the current demand. In our simulation,
after coalition formation, coalitions start bidding on the service request and
the auctioneer analyzes these bids and prioritizes them based on the prices
they offered.

Several criteria drive the decisions of the auctioneer when selecting the
coalitions for the packages required by the work-flow. These decisions are
based on the price discovered during the clock phase. The implementation
of the auction is based on a hierarchical decision making process.

Cloud Self-Organization and Big Data Applications 189

The decision factors in priority order are:

1. the coalition size—the larger the coalition size, the higher the priority;
2. the requested service duration—the longest duration has the highest

priority;
3. the rack load—the lower the rack load, the higher the priority; and
4. the cell load—the lower the cell load, the higher the priority.

If two coalitions with the same size and same duration, but with different
rack load levels bid for a request, priority is given to the coalition from the
rack with lower load. This decision process aims to balance the load on racks
and cells.

Simulation experiments. Several simplifications are necessary to simu-
late a cloud infrastructure with several WSCs:

1. Auctions are organized periodically and the time between two consecu-
tive auctions is called an allocation slot.

2. A service request should specify the service duration as an integer
number of slots.

3. The communication complexity is measured by the number of messages;
this approximation avoids a detailed timing analysis of the communica-
tion delays, which would require modeling contention at different levels
of the network hierarchy.

4. For practical reasons, the simulation is conducted for only 500 allocation
slots. A longer history would lead to more accurate predictions of the size
of successful coalitions for each service type, thus, we expect the results
to improve in time for the HB strategy.

The choice of the system configuration is guided by data from the
literature [27]. The simulated system consists of 4 WSC, each one with
25 cells; each cell has 100 racks and each rack has 40 servers. The server
capacity, measured by the number of vCPU, is uniformly distributed in the
range of 10–50 vCPU.

Sensible choices to describe the workload include: the number of
coalitions in each package of services in a client’s request, the number of
different service types provided by the system, service intensity measured by
the number of vCPU requested, and service duration. Each coalition request
specifies the service type, the service duration, and the service intensity
expressed as the number of vCPU. The last parameter is used to determine
a sensible coalition size. Service requests are generated continually and all

190 Complex Systems and Clouds

service requests, arriving after an auction has begun, wait to participate in
the next auction.

The system offers 20 different service types. A request for service
specifies the service type, intensity, and duration. The service intensity is
uniformly distributed in the range 10–500 vCPUs and the service duration
is uniformly distributed in the range 5–25 allocation slots. The number of
coalitions in a package is uniformly distributed in the interval 5–25.

Simulation results. Figs. 5.11 and 5.12 display time series of the number
of coalitions requested, coalitions successful during the auctions, as well as,
the success ratio for two initial system loads, 20% and 80%, respectively,
when all services are taken into account. It is rather difficult to control the
average system load and we only report the initial system load. The duration
of the simulation is 500 allocation slots and each bin shows the average
over 10 of them. The mean and the variance of the three simulation results,
the numbers of coalitions requested and coalitions formed, and the success
ratios are summarized in the left columns of Table 5.8.

The average number of successful coalitions decreases when the load
increases, about 16% for HB and about 7% for JST. This difference is not
reflected in the success ratios of the two strategies; as we shall see next, it
is most likely a sign that HB better reflects the internal state of the system
than JST.

The coalition formation success ratio varies only slightly with the load.
When the initial average system load increases from about 20% to 80% the
success ratio decreases only slightly for HB, from 68% to 66% and increases
slightly for JST, from 66% to 67%. This is remarkable and shows that both
market-based strategies are robust and indicate a much higher resource
utilization than the average one reported for existing systems.

Table 5.9 shows the communication complexity at the low and high
average initial system load for the two strategies HB and JST. We differ-
entiate between messages exchanged at the rack level and those exchanged
at higher levels of the network hierarchy (cell and WSC), where contention
for network access is more intense.

As expected, the total number of messages for the HB strategy decreases
significantly with the load, from about 47 × 106 to 20 × 106; as the load
increases, fewer servers are available for coalition formation. The situation
is reversed for JST, and we notice a sharp increase from about 21 × 106

to 37 × 106. This is expected because the coalition formation process is

Cloud Self-Organization and Big Data Applications 191

0 10 20 30 40 50
0

2

(A) (B)

(C) (D)

(E) (F)

4

6

8

10

12
x 104

→ Time

N
um

be
r

of
 r

eq
ue

st
ed

 c
oa

lit
io

ns

0 10 20 30 40 50
0

2

4

6

8

10

12
x 104

 → Time

N
um

be
r

of
 r

eq
ue

st
ed

 c
oa

lit
io

ns

0 10 20 30 40 50
0

2

4

6

8

10

12
x 104

→ Time

N
um

be
r

of
 s

uc
ce

ss
fu

l c
oa

lit
io

ns

0 10 20 30 40 50
0

1

2

3

4

5

6

7

8

9

10
x 104

→ Time

N
um

be
r

of
 s

uc
ce

ss
fu

l c
oa

lit
io

ns

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

→ Time

S
uc

ce
ss

 r
at

io

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

→ Time

S
uc

ce
ss

 r
at

io

Fig. 5.11 Time series of the number of coalitions requested, successful, and the success ratio
at 20% initial system load for all service types. Strategies for coalition formation: HB (A)
requested, (C) successful, and (E) success ratio; JST (B) requested, (D) successful, and (F)
success ratio.

driven by the external service requests. Note that in the case of JST, 70% of
all messages exchanged at high load are at the cell and WSC level, where
contention for communication bandwidth is considerably higher.

192 Complex Systems and Clouds

0 10 20 30 40 50
0

2

4

6

8

10

12
x 104

→ Time → Time

N
um

be
r

of
 r

eq
ue

st
ed

 c
oa

lit
io

ns

0 10 20 30 40 50
0

1

2

3

4

5

6

7

8

9

10
x 104

N
um

be
r

of
 r

eq
ue

st
ed

 c
oa

lit
io

ns

0 10 20 30 40 50
0

1

2

3

4

5

6

7

8

9

10
x 104

 → Time

N
um

be
r

of
 s

uc
ce

ss
fu

l c
oa

lit
io

ns

0 10 20 30 40 50
0

1

2

3

4

5

6

7

8

9
x 104

→ Time

N
um

be
r

of
 s

uc
ce

ss
fu

l c
oa

lit
io

ns

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

→ Time

S
uc

ce
ss

 r
at

io

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

→Time

S
uc

ce
ss

 r
at

io

(A) (B)

(C) (D)

(E) (F)

Fig. 5.12 Time series of the number of coalitions requested, successful, and the success ratio
at 80% initial system load for all service types. Strategies for coalition formation: HB (A)
requested, (C) successful, and (E) success ratio; JST (B) requested, (D) successful, and (F)
success ratio.

In HB, the coalition formation process is driven by the internal state:
only servers with available capacity participate in coalition formation and
subsequently in the combinatorial auctions, while in the case of JST the
process is driven by external factors. At low load, the number of rack-

Cloud Self-Organization and Big Data Applications 193

Table 5.8 Statistical Results for the Two Coalition Formation Strategies, HB and JST,
for Two Different Initial Loads, 20% and 80%
Method Initial Stats Requested Successful SR Requested Successful SR Two

Load All All All Two Types Two Types Types

HB 20% Mean/ 93,648.96/ 64,805.99/ 68% 11,991.71/ 7124.12/ 60%
Std 7691.05 10,134.88 0.09 1076.32 1101.33 0.09

80% Mean 79,882.37/ 54,192.35/ 66% 10,421.61/ 5957.67/ 57%
Std 6540.43 9786.67 0.09 1037.72 1149.43 0.08

JST 20% Mean/ 83,194.86/ 55,565.27/ 66% 10,689.07/ 6068.37/ 57%
Std 8445.98 9787.62 0.09 881.93 1035.98 0.09

80% Mean 74,572.12/ 51,381.41/ 67% 9672.03/ 5690.32/ 59%
Std 6602.59 9699.45 0.09 924.87 1128.16 0.09

The mean and the variance of the number of coalitions requested and the number of
successful coalitions chosen during the auctions, and the success ratio (SR). Results are
shown for: (left) all types of service requests; (right) two randomly chosen types.

Table 5.9 Communication Complexity of HB and JST for All Service Types
and Two Different System Initial Loads, 20% and 80%

Method Load Nr Nt SRr SRt SCFr SCFt

HB 20% 18,823,492 46,824,480 201 500 290 722

80% 6,299,012 19,970,590 79 250 116 368

JST 20% 8,129,402 20,798,714 98 250 146 374

80% 14,241,563 37,286,059 191 500 277 725
Number of messages: Nr, at rack level; Nt, at all level; SRr, per service request at
rack level; SRt, per service request at all levels; SCFr, per successful coalition
formation at rack level; and SCFt, per successful coalition formation at all levels.

level messages per either service request, or successful coalition formation,
is almost twice larger for HB than for JST, e.g., 201 versus 98 and 290
versus 146, respectively, see Table 5.9. At high load the situation is reversed
79 versus 191 and 116 versus 277. The same observation applies to the
total number of messages per service request and per successful coalition
formation. At low load the ratios for HB and JST are 500 versus 250 and
722 versus 374, respectively. At high load the ratios are 250 versus 500 and
368 versus 725.

Fig. 5.13 presents the life-time of coalitions for all service requests when
the initial load is 20% and 80% of system capacity, for the HB and LST
reservation systems, respectively. This life-time of a successful coalition
reflects the duration of the corresponding service request.

194 Complex Systems and Clouds

8 10 12 14 16 18 20 22 24 26
1.15

1.16

1.17

1.18

1.19

1.2

1.21

1.22 x 104

Number of slots

N
um

be
r

of
 s

uc
ce

ss
fu

l c
oa

lit
io

ns

8 10 12 14 16 18 20 22 24 26
1.05

1.06

1.07

1.08

1.09

1.1

1.11
x 104

Number of slots

N
um

be
r

of
 s

uc
ce

ss
fu

l c
oa

lit
io

ns

8 10 12 14 16 18 20 22 24 26
1.01

1.02

1.03

1.04

1.05

1.06

1.07
x 104

Number of slots

N
um

be
r

of
 s

uc
ce

ss
fu

l c
oa

lit
io

ns

8 10 12 14 16 18 20 22 24 26
9500

9600

9700

9800

9900

10,000

10,100

10,200

Number of slots

N
um

be
r

of
 s

uc
ce

ss
fu

l c
oa

lit
io

ns

(A) (B)

(C) (D)

Fig. 5.13 Histograms of coalition lifetime. Average initial load 20% of system capacity: (A)
HB; (B) JST. Average initial load 80% of system capacity: (C) HB; (D) JST.

Lastly, two particular types of service are randomly selected to study their
behavior. The results, summarized on the right-hand side of Table 5.8, show
that indeed the number of requests, as well as, the number of successful
coalitions is about one-tenth of the total number of the corresponding entries
for all service requests. Fig. 5.14 shows time series of the success ratios for
the two randomly selected service types.

5.9 ANALYSIS AND EVALUATION OF THE PROXY PHASE

The results of simulation experiments to gain some insight into the proxy
phase of the clock-proxy auction of the protocol are presented next. The
system we evaluate requires the description of the environment in which the
auction takes place, the reservation requests, and the services offered:

Cloud Self-Organization and Big Data Applications 195

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
Success ratio for two service types

 → Time

S
uc

ce
ss

 r
at

io

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Success ratio for two service types

→ Time

S
uc

ce
ss

 r
at

io

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Success ratio for two service types

→ Time

S
uc

ce
ss

 r
at

io

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Success ratio for two service types

→ Time

S
uc

ce
ss

 r
at

io

(A) (B)

(C) (D)

Fig. 5.14 Time series of the success ratio for two randomly selected service types. The initial
load is : (top) 20%; (bottom) 80%. Two strategies for coalition formation: (A) and (C) HB;
(B) and (D) JST.

1. The environment elements: n—the number of coalitions offering services
in this round; m—the number of clients; and κ—the number of slots
auctioned.

2. The package j requested by client i: αn
i —the number of services in the

package; the slots desired by the service Sk, ordered by the length of the
run of consecutive slots; rk,j—the intensity of service Sk in slot j; pi,j—the
price per unit of service for slot j if client i was a provisional winner of
that slot during the clock phase.

3. The service Sk provided by coalition Ck includes: γk—the largest run of
consecutive slots for each offered service Sk; the profile of the service
Sk—the slots offered ordered by the length of consecutive slots, when it
is available; qk,j—the quantity of service Sk offered in slot j; and pk—the
price per unit of service offered by coalition Ck.

For simplicity, it is assumed that a coalition offers one service only and
the number of services is ν < n. It is also assumed that all platforms have

196 Complex Systems and Clouds

a maximum capacity of 100 vCPUs and that qk,j, the quantity of service
Sk offered for auction, and rk,j, the quantity of Sk requested in slot j, are
the same for all the slots of an offered/requested run. The number of slots
auctioned is fixed, κ = 50.

The range and the distribution of parameters for the protocol evaluation
are chosen to represent typical cases. The parameters of the simulation are
random variables with a uniform distribution. The parameters and their
ranges are:

1. The number of coalitions and clients requesting reservations, n and m,
respectively; the interval is [200–250].

2. The number of services offered and requested ν; the interval is [10–20].
3. The number of clients bidding for each service in a given slot; the interval

is [0–4].
4. The capacity offered for auction for a service in a given slot; the interval

is [60–90] vCPUs.
5. The services offered by a coalition; the interval is [1–ν].
6. The number of consecutive slots a service is offered in; the interval is

[1–κ].
7. The number of services in the package requested by a client; the interval

is [1–3].
8. The number of consecutive slots of the services in the package requested

by a client; the interval is [1–κ].

The slots are randomly chosen when the client is the provisional winner.
The evaluation process consists of the following steps:

1. Initialization.
2. Preliminary rounds. Carry out γ preliminary rounds with

γ = maxk γk.
• Auction κ1 slots of service S1, κ2 slots of service S2, and so on, in the

first preliminary round.
• Identify the first slot of each run and the reservation request that best

matches the offer.
• Identify the provisional winners if such matches exist and remove the

corresponding runs from the set of available runs. A match exists if the
run consists of the same number of slots or if one slot is longer than
requested and if the capacity offered is at least the one required by the
reservation request. For services without a match, remove the last slot,
add both the shorter run and the last slot to the list of available runs.

• Continue this process until only single slots are available.

Cloud Self-Organization and Big Data Applications 197

3. Final round. In this round the following actions are carried out:
• Identify the packages for each client and if multiple packages exist

determine the one which best matches the request.
• Compute the cost for the winning package for each client.

Fig. 5.15(A–F) shows several performance metrics including the cus-
tomer satisfaction index, the service mismatch index, the auction success
ratio, the spot opportunity index, the temporal fragmentation index, and the
capacity allocation index. The simulation covers 50 time slots.

The 5% confidence intervals for the mean of all performance metrics
are computed for 25 batches, each one of 200 realization of each random
variable. The simulation times are 6.4 s for 2,000 runs and 11.7 s for
5,000 runs. The confidence intervals are rather tight; this indicates that the
performance of the protocol is relatively stable for the range of parameters
explored in this evaluation.

The auction success rate is high, typically above 80%. The initial low
auction success rate is an artifact of the decision to randomly select the
service startup time. The spot allocation opportunity index is correlated
with the auction success rate and shows that a significant fraction of the
capacity is available for spot allocation. This result is correlated with the
one in Fig. 5.15(F) which shows that on average, some 50% of the server
capacity is not allocated by the reservation system and it is available for the
spot market.

A reservation system covering 50% of the server capacity is probably
the most significant result; it shows that self-management based on auctions
can drastically improve server utilization. We live in a world of limited
resources and cloud over-provisioning is not sustainable either economically
or environmentally.

The service mismatch index is fairly high, typically in the 50% range and
it is above 60% in a few slots. The customer satisfaction is correlated with
the service mismatch and typically is in the region of 50%. In a realistic sce-
nario, when coalitions maintain statistics regarding the services offered and
avoid offering services unlikely to be demanded by the cloud users, the ser-
vice mismatch would not affect the performance of the algorithm. Temporal
fragmentation, though rather low, is undesirable. The overbidding factor
64 ± 2.93% is another indication that the protocol needs to be finely tuned.

Self-organization cannot occur instantaneously in an adaptive system and
this simple observation has important consequences. It is critical to give

198 Complex Systems and Clouds

0 10 20 30 40 50
 0%

10%

20%

30%

40%

50%

60%

70%

 →Time

S
at

is
fie

d
vs

. t
ot

al
 n

um
be

r
of

 r
eq

ue
st

s

0 10 20 30 40 50
 0%

 5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

 → Time

S
er

vi
ce

s
no

t o
ffe

re
d

bu
t r

eq
ue

st
ed

0 10 20 30 40 50
 0%

 10%

 20%

 30%

 40%

 50%

 60%

 70%

 80%

 90%

100%

 →Time

A
uc

tio
n

su
cc

es
s

ra
tio

0 10 20 30 40 50
 0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

 →Time

S
po

t a
llo

ca
tio

n
op

po
rt

un
ity

 in
de

x

0 10 20 30 40 50
 0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

→Time

T
em

po
ra

l f
ra

gm
en

ta
tio

n
in

de
x

0 10 20 30 40 50
 0%

10%

20%

30%

40%

50%

60%

 → Time

C
ap

ac
ity

 a
llo

ca
te

d
by

 th
e

au
ct

io
n

(A) (B)

(C) (D)

(E) (F)

Fig. 5.15 Proxy phase of an auction with 50 time slots. Performance metrics: (A) customer
satisfaction; (B) service mismatch; (C) auction success; (D) spot allocation opportunity; (E)
temporal fragmentation; (F) capacity allocation.

autonomous cloud platforms, interconnected by a hierarchy of networks,
the time to form coalitions in response to services demanded. Thus,
self-management requires an effective reservation system and our results
indicate that the reservation protocol is working well.

Cloud Self-Organization and Big Data Applications 199

5.10 SOFTWARE ORGANIZATION FOR A RESERVATION
SYSTEM

This section presents a software organization for a cloud reservation system
for Big Data applications. The software implements the algorithms for
the HB coalition formation and the combinatorial auctions introduced
earlier in this chapter. The reservation system supports a primitive form of
self-organization and self-management. Indeed, no monitoring is involved,
the information about available resources flows from the bottom to the top,
from the individual servers to the WSCs, where service requests are matched
to a set of available coalitions.

The software organization reflects the WSC organization presented in
Section 4.4 and illustrated in Fig. 4.4 and assumes that all servers in a rack
have the same architecture and identical configuration, but the servers in
different racks may have a different architecture and configuration. The
racks are homogeneous, while a WSC is a heterogeneous collection of
different racks.

CRM—cloud resource management

CM
Configuration
management

RH
Request
handler

EM
Event

management

PM
Power

management

Rack 1

Hard

S&R

Hard

S&R

Rack 2

Hard

S&R

Hard

S&R

Rack 500

Hard

S&R

Hard

S&R

Fig. 5.16 The software organization for a reservation system using history-based coalition
formation and combinatorial auctions. All servers in a rack run the S&R control system
responsible for coalition formation. Global functions are provided by the CRM running on
dedicated servers.

The software for the reservation system includes the Server and Rack
(S&R) control system and the CRM system (see Fig. 5.16). The S&R control
system is responsible for coalition formation and resource management at
the rack level.

A rack leader manages the coalition formation process in each rack. The
role of rack leader is passed from one server to the next to balance the load

200 Complex Systems and Clouds

and to ensure some degree of fault-tolerance. The rack leader may or may
not be included in any coalition. Selection of a rack leader can be done au-
tomatically to avoid a communication-intensive election process. For exam-
ple, when the server IDs are {1, 2, . . . , j, . . . , S} then in slot k the role of rack
leader can be automatically assigned to the server with ID j = k mod S.

The coalition formation process involves several steps:

1. Ranking of coalitions most likely to succeed based on historic perfor-
mance data;

2. Assignment of available servers to coalitions according to their bids; and
3. Sharing information about successful coalitions after an auction.

To reduce communication complexity, all servers maintain a list of
successful coalitions in previous auctions. This list is ordered according to
the revenues brought in by the coalitions with the same number of servers.
The coalition with the largest number of servers is placed before the others
in case of a tie. The list could be extended to include the most likely
combinations of successful coalitions.

For example, such a list could be R = {6(75), 11(40), 8(43), . . . , 2(97),
1(198)}. Data gathered after previous auctions showed that coalitions of
6 servers from the rack were successful 75 times and brought the largest
revenue, while coalitions of 1 server were successful 198 times and brought
the least amount of revenue for the rack.

At the beginning of a slot, the rack leader receives bids from the Na
servers which are not members of an active coalition and then chooses the
coalition set to compete for service packages in the current allocation slot.
For example, if Na = 27 this set could be C = {6, 11, 8, 2}. The leader ranks
the bids based on the revenue reported by each bidder and assigns the first 6
servers to the first coalition, then the next 11 servers to the second coalition
and so on. Finally, after the auction, the leader broadcasts the information
about successful coalitions, e.g., {6, 8} and verifies that the leader for the
next allocation slot is ready to carry out its duties.

The CRM includes a large number of components including the Config-
uration Management System (CMS), the Request Handler System (RHS),
the Event Management (EM) system, and the Power Management System
(PMS). The CMS describes the organization of the entire infrastructure
including the number of WSCs, the cells in each WSC, the racks in each cell,
and the architecture and configuration of individual servers in each rack.

Cloud Self-Organization and Big Data Applications 201

Racks with identical servers have an identical rack-description record. The
CMS includes a network-configuration file with a detailed description of the
interconnect fabric. The CMS also supports the Health Monitoring Center
(HMC) tasked to provide data about the performance and state of all system
components. Another component of the CMS is the System Administrator
Access (SAA) system which supports privileged system access for system
administrators.

The Request Handler System has multiple functions, some supporting
an application-centric environment, and others implementing the market-
oriented mechanisms for resource allocation. Its main components are:

1. Client Access Console (CAC),
2. Intelligent Concierge (IC),
3. Blueprint Interpreter (BPI),
4. Admission Control System (ACS),
5. Combinatorial Auction Management System (CAMS),
6. Spot Allocation System (SAS),
7. Task Management System (TMS),
8. Workflow Management System (WMS),
9. Error Recovery System (ERS), and

10. Accounting System (AS).

The Client Access Console supports a set of high-level services for
cloud users. CAC allows users to create and manage an account, request
services, list all active instances, monitor the execution of running instances,
gather performance data for active instances, terminate an instance, report
on storage utilization, and get accounting data. The Intelligent Concierge
aims to improve the user experience. The Intelligent Concierge collects
history data, builds user profiles, suggests blueprints for different activities,
supports workflow definition, profiles applications, and suggests alternatives
for application optimization.

The role of the Blueprint Interpreter is to parse a blueprint, a request
for service expressed in a Service-oriented Description Language, and
generate the internal format of a service request. The blueprint can specify a
specific service, e.g., MapReduce, or it can describe the characteristics of the
application such as CPU intensive, data intensive, memory intensive and let
the system identify the type of instance best suited for the application. The
blueprint can also specifies the workflow of the application and the package
of services. The internal format includes the service description, the service
duration, and the service intensity for each service in the package.

202 Complex Systems and Clouds

The Admission Control System uses the internal format produced by BPI
to create: (i) SRA—a list of service requests to participate at the auction
organized at the beginning of the next allocation slot and (ii) SRSA—a list
of service requests for spot allocation. The Combinatorial Auction Man-
agement System implements the combinatorial auction algorithm. CAMS
gathers the bids from different coalitions and attempts to match them with
the service requests in SRA. After an auction, the SAS invites bids for
spot allocation from servers in unsuccessful coalitions and matches them
to service requests in the SRSA.

The Task Management System starts an instance and supervises its
execution. The Error Recovery System interacts with the TMS and restarts
the instance, if the error is due to hardware failure, or activates the error
recovery procedure specified by the blueprint. The Accounting System
records the resources used by all instances and generates accounting records
for system users.

The Event Management is a distributed event processing system. All
system software components use the publish-subscribe paradigm to interact
with the EM. Event logs are maintained by the EM and used whenever
compliance issues occur. Last, but not least, the task of Power Management
System is to minimize power consumption. This means to keep servers
operating in an optimal mode as discussed in [186], turn servers to a sleep
mode whenever the system load is low and wake them up whenever the load
increases.

5.11 AN INTEGRATED STRATEGY FOR CLOUD SOFTWARE
DEVELOPMENT

Once a model of the system has been thoroughly analyzed, the next step
is the development of system software. The software development is a
complex process requiring multiple iterations; the insights gained after
each iteration should lead to changes of system components and overall
better system performance. Such insights can only be gained through the
simulation of the system behavior, therefore, a first objective is to develop a
simulation environment for investigating the behavior of a realistic system
subject to realistic working conditions.

The simulation software should implement as accurately as possible
the algorithms and protocols for all system components and should allow
the simulation of different system configurations. Another challenge is to

Cloud Self-Organization and Big Data Applications 203

conduct simulation with a realistic workload. Initially, a synthetic workload
can be used, but more realistic results can only be obtained using trace
data gathered from runs on a small-scale system. Therefore, the second
objective is to conduct experiments on a testbed system and collect trace
data. At this stage, two difficult problems arise: first, ensuring that the
testbed operates in a manner consistent with the system model; second,
scaling up the simulation results.

The implementation should progress from the model development, to
high-level description of the software and then translation of the high level
system description to: (i) software for the testbed system and (ii) simulation
software. This solution ensures compatibility between the software for
system simulation, the software running on the testbed system, and the final
product, the software for a realistic cloud infrastructure. Fig. 5.17 illustrates
this process; it shows testbed experiments running realistic applications and
generating trace date for the simulation of a realistic a cloud infrastructure
with a realistic workload.

The simulated cloud infrastructure is generated using as input: (i) a
configuration file describing the organization of a rack, the number of

High level description
of CRM and S&R

HD—hardware
description

TD—trace data

CF—configuration
file

AWS
simulation

Fig. 5.17 The integration of system simulation, software development for the testbed system,
and the development of code for the management of a large-scale physical cloud.

204 Complex Systems and Clouds

racks, and the number of cells; (ii) a hardware description file containing
detailed data about the architecture and the configuration of each server.
The interconnection network must also be described by the hardware
configuration file; it typically consists of a hierarchy of Gigabit Ethernet
(GE) networks and rack and cell switches, and border routers.

The scale of the simulated system is limited, as the simulation
environment must keep track of the state of all servers and of the
interconnection network. While it may be feasible to simulate a system
with 50,000–100,000 servers, the simulation of a cloud with 108 servers
seems unrealistic at this time. One of the most difficult tasks is to simulate
communication among the servers within the rack, among the racks of a
cell, and among the cells of a WSC.

The trace data generated on the testbed system is used as input to multiple
simulated instances to create a realistic workload. The volume of trace data
collected for realistic applications running over extended periods of time
is likely to be of the order of terabytes, or possibly petabytes, thus, such
simulations can only be carried on the most powerful instances available
from AWS. If the architecture and the configuration of servers used to collect
trace data is identical with that of simulated servers, then the simulated
execution of an application simply advances the simulated time based on
the events in the trace file.

The simulation is data-intensive and can be distributed over a set of
instances, each one simulating a cell with tens of racks and thousands
of servers. The simulation of resource management is communication-
intensive and challenging. The instances simulating different cells must
communicate with the simulated admission control system running on a
separate instance. This instance accepts simulated service requests and
matches them with the bids provided by server coalitions. The simulated
operation of the S&R module operating at server level should implement
the algorithm discussed in Section 5.10.

5.12 FINAL THOUGHTS ON SELF-ORGANIZATION AND
SELF-MANAGEMENT

Self-organization and self-management offer an appealing alternative to
existing cloud resource management policies; they have the potential to
significantly alter the cloud computing landscape. So far, pragmatic means
for the adoption of self-organization principles for large-scale computing

Cloud Self-Organization and Big Data Applications 205

and communication systems have eluded us. A main reason for this state of
affairs is that self-management has to be coupled with some mechanisms for
cooperation; these mechanisms should allow autonomous servers to act in
concert towards global system goals. Cooperation means that individual sys-
tems have to partially surrender their autonomy. Striking a balance between
autonomy and cooperation is a challenging task, it requires a fresh look at
the mechanics of self-organization and the practical means to achieve it.

Practical implementation of cloud self-organization is challenging for
several reasons, including the absence of a technically suitable definition
of self-organization, a definition that could hint to practical design princi-
ples for self-organizing systems and quantitative evaluation of the results.
Computer clouds exhibit the essential aspects of complexity and controlling
complex systems is inherently difficult.

The investigation reported in this chapter started with a realistic model
of the cloud infrastructure, the hierarchical organization reported in [27]
which seems inherently tied to hierarchical control. First, the hierarchical
control based on monitoring was compared with a market model in which
the servers of a WSC place bids for service requests and found out that the
latter is much more effective than the hierarchical control [163].

In the simple market model the servers act individually, rather than
cooperating with each other, a fundamental aspect of self-organization. But
cooperation is clearly needed because individual servers may not be able to
supply the resources demanded by many data-intensive application. Thus,
it was concluded that servers have to form coalitions to offer larger pools
of resources. At the same time, it seemed obvious to us that complex
applications with multiple phases would require packages of resources
offered by different coalitions.

Algorithms for coalition formation based on combinatorial auctions are
at the heart of the cloud ecosystem discussed in this chapter. Auctions have
been successfully used for resource management in the past. Auctions do
not require a model of the system, while traditional resource management
strategies do. The auction-based protocol is scalable, and the computations
can be done efficiently, though the computational algorithms involved are
often fairly complex.

We end now where we started, attempting to answer the question if self-
organization and self-management are feasible in large-scale, cyber-physical
systems. An important step is to accept that the systems cannot be examined

206 Complex Systems and Clouds

in isolation. The systems have to adapt to the environment and this can
only be done by learning the patterns of events and interactions with the
environment over a period of time. Fortunately, the rate of events generated
by the environment is very high, thus, the history of events and the responses
to these events could be compressed. While initially the system may perform
suboptimally, after days, weeks, maybe months, the system should be able
to accumulate enough knowledge and avoid to be surprised by changes of
the environment.

To assess the quality of system responses, it is necessary to have a clear
and easily implementable definition of utility. This is extremely challenging
in most cases because the utility measures the impact of a system action
on the global system state. Determining accurately the state of a large-scale
system after each event is not feasible. The only solution is to periodically
assess the system state and correlate the set of events and the system’s
actions leading to that state with previous observations. A large database of
events, actions, and system state can then be used by a reinforced learning
algorithm to guide the future system behavior. The auction system discussed
in this chapter avoids these hard problems as individual servers bid for
services.

BIBLIOGRAPHY

[1] R. Abbott. “Complex systems engineering: putting complex systems to work,” Complexity,
13(2):10–11, 2007.

[2] B. Abrahao, V. Almeida, J. Almeida, A. Zhang, D.Beyer, and F. Safai. “Self-adaptive SLA-
driven capacity management for Internet services.” Proc. IEEE/IFIP Network Operations &
Management Symposium (NOMS06), pp. 557–568, 2006.

[3] D. Abts, M. Marty, P. M. Wells, P. Klausler, and H. Liu. “Energy proportional datacenter
networks.” Proc. Int. Symp. Comp. Arch. (ISCA10), pp. 238-247, 2010.

[4] L. A. Adamic, R. M. Lukose, A. R. Puniyami, and B. A. Huberman. “Search in power-law
networks.” Phys. Rev. E, 64(4):046135, 2001.

[5] B. Addis, D. Ardagna, B. Panicucci, and L. Zhang. “Autonomic management of cloud service
centers with availability guarantees.” Proc. IEEE 3rd Int. Conf. on Cloud Computing, pp. 220–
227, 2010.

[6] L. Adleman. “ Molecular computations of solutions to combinatorial problems.” Science,
266:1021–1024, 1994.

[7] L. Adleman. “Computing with DNA.” Scientific American, 279(2):54–61, 1998.

[8] S. Airiau and W. Jamroga. “Coalitional games.” European Agent Systems Summer School, EASSS
2009, http://www.di.unito.it/~argo/easss09.pdf, pp. 265–288, 2009.

[9] R. Albert, H. Jeong, and A.-L. Barabási. “The diameter of the world wide web.” Nature, 401:130–
131, 1999.

[10] R. Albert, H. Jeong, and A.-L. Barabási. “Error and attack tolerance of complex networks.”
Nature, 406:378–382, 2000.

[11] R. Albert and A-L. Barabási. “Statistical mechanics of complex networks.” Reviews of Modern
Physics, 72(1):48–97, 2002.

[12] L. A. N. Amaral and J.M. Ottino. “Complex networks.” Eur. Phys. J. B, 38:147–162 (2004)

[13] “Amazon elastic compute cloud.” http://aws.amazon.com/ec2/ (Accessed April 2016).

[14] Amazon Docker. http://aws.amazon.com/docker (Accessed May 2015).

[15] D. Ardagna, B. Panicucci, M. Trubian, and L. Zhang. “Energy-aware autonomic resource
allocation in multi-tier virtualized environments.” IEEE Trans. on Services Computing, 5(1):2–
19, 2012.

[16] S. Arif, S. Olariu, J. Wang, G. Yan, W. Yang and I. Khalil. “Datacenter at the airport: Reasoning
about time-dependent parking lot occupancy.” IEEE Trans. on Parallel and Distributed Systems,
23(11):2067–2080, 2012

[17] W. R. Ashby. “Principles of self-organizing system.” Principles of Self-Organization: Trans-
actions of the University of Illinois Symposium, H. Von Foerster and G. W. Zopf, Jr. (Eds.),
Pergamon Press, London, UK, pp. 255–278, 1962.

[18] L. Ausubel and P. R. Milgrom. “Ascending auctions with package bidding.” Frontiers of
Theoretical Economics, 1(1):1–42, 2002.

[19] L. Ausubel and P. Cramton. “Auctioning many divisible goods.” Journal European Economic
Assoc., 2(2-3):480–493, 2004.

207

http://www.di.unito.it/~argo/easss09.pdf
http://aws.amazon.com/ec2/
http://aws.amazon.com/docker

208 Bibliography

[20] L. Ausubel, P. Cramton, and P. Milgrom. “The clock-proxy auction: a practical combinatorial
auction design.” Chapter 5, in Combinatorial Auctions, P. Cramton, Y. Shoham, and R. Steinberg,
Eds. MIT Press, 2006.

[21] P. Bak, C. Tang, and K. Weisenfeld. “Self-organized criticality.” Phys. Rev. A, 38:364–374, 1988

[22] P. Bak. How Nature Works; The Science of Self-organized Criticality. Springer Verlag, New York,
1996.

[23] D. J. Baker and A. Ephemides. “The architectural organization of a mobile radio network via a
distributed algorithm.” IEEE Trans. Comm, 11:1694–1701, 1981.

[24] J. S. Bell. newblock Speakable and Unspeakable in Quantum Mechanics. Cambridge University
Press, Cambridge, UK, 1987.

[25] A. Barrat and M. Weight. “On the properties of small-worlds network models.” European
Physical Journal B, 13(3):547–560, 2000.

[26] L. A. Barosso and U. Hölzle. “The case for energy-proportional computing.” IEEE Computer,
40(2):33–37, 2010.

[27] L. A. Barossso, J. Clidaras, and U.Hözle. The Datacenter as a Computer; an Introduction to the
Design of Warehouse-Scale Machines. (Second Edition). Morgan & Claypool, 2013.

[28] J. Baliga, R.W.A. Ayre, K. Hinton, and R. S. Tucker. “Green cloud computing: balancing energy
in processing, storage, and transport.” Proc. IEEE, 99(1):149–167, 2011.

[29] A-L. Barabási and R. Albert. “Emergence of scaling in random networks,” Science, 286:509–512,
1999.

[30] A-L. Barabási, R. Albert, and H. Jeong. “Scale-free theory of random networks; the topology of
World Wide Web.” Physica A, 281:69–77, 2000.

[31] G. Bell. “Massively parallel computers: why not parallel computers for the masses?” Proc. 4-th
Symp. on Frontiers of Massively Parallel Computing, pp. 292–297, 1992.

[32] Y, Benenson, B. Gil, U Ben-Dor, R. Adar, and E Shapiro. “An autonomous molecular computer
for logical control of gene expression.” Nature, 429(6990):423–429, 2004.

[33] C. H. Bennett. “Dissipation, information, computational complexity, and the definition of
organization.” in Emerging Syntheses in Science, Pines D. (Ed.), Addison-Wesley, Redwood City
CA, pp. 215–233, 1985.

[34] C. H. Bennett. “On the nature and origin of complexity in discrete, homogeneous, locally-
interacting systems.” Foundations of Physics, 16(6):585–592, Springer, 1986

[35] C. H. Bennett. “Notes on Landauer’s principle, reversible computation and Maxwell’s Demon.”
Studies in History and Philosophy of Modern Physics, 34:501-520, 2003.

[36] L. Von Bertalanffy. General System Theory: Foundations, Development, Applications. Penguin
University Books, 1956.

[37] M. Blackburn and A. Hawkins. “Unused server survey results analysis.”
www.thegreengrid.org/media/WhitePapers/Unused%20Server%20Study_WP_101910_v1.ashx?
lang=en (Accessed December 2013).

[38] A. Bogomolnaia and M. O. Jackson. “The stability of hedonic coalition structures.” Games and
Economic Behavior, 38(2):201–230, 2002.

[39] E. Bonabeau, M. Dorigo, and G Theraulez. Swarm Intelligence: From Natural to Artificial
Systems. Oxford University Press, Oxford, UK, 1999.

[40] K. E. Boulding. “General systems theory; the skeleton of science.” Management Science, 2:197–
208, 1956.

[41] G. K. Brennen, C. M. Caves, P. S. Jessen, and I. H. Deutsch. “Quantum logic gates in optical
lattices.” Phys. Rev. Lett., 82(5):1060–1063, 1999.

Bibliography 209

[42] N. F. Britton. Essential Mathematical Biology. Springer Verlag, New York, NY, 2004.

[43] D. Bruneo. “A stochastic model to investigate data center performance and QoS in IAAS cloud
computing systems.” IEEE Trans. on Parallel and Distributed Systems, 25(3):560–569, 2014.

[44] T. E. Carroll and D. Grosu. “Formation of virtual organizations in grids: a game-theoretic
approach.” Concurrency and Computation: Practice and Experience, 22(14):1972–1989, 2010.

[45] G. J. Chaitin. “On the length of programs for computing binary sequences.” J. Assoc. Comp.
Mach. 13:547–569, 1966.

[46] S. Chaisiri, B. Lee, and D. Niyato. “Optimization of resource provisioning cost in cloud
computing.” IEEE Trans. on Services Computing, 5(2):164–177, 2012.

[47] V. Chang, G. Wills, and D. De Roure. “A review of cloud business models and sustainability.”
Proc. IEEE Cloud Computing, pp. 43–50, 2010.

[48] B. N. Chun and D. E. Culler “Market-based proportional resource sharing for clusters.” Technical
Report, U. C. Berkeley, 2000.

[49] P. Cilliers. “Boundaries, hierarchies and networks in complex systems.” Int. J. of Innovation
Management, 5(2):135–147, 2001.

[50] J. I. Cirac and P. Zoller. “Quantum computation with cold trapped ions.” Phys. Rev. Lett.,
74(20):4091–4094, 1995.

[51] J. I. Cirac and P. Zoller. “A scalable quantum computer with ions in an array of microtraps.”
Nature, 404:579–581, 2000.

[52] E. H. Clarke. “Multipart Pricing of Public Goods.” Public Choice, IX:13–33, 1971.

[53] M. Clerc and J. Kennedy. “The particle swarm - Explosion, stability, and convergence in a
multidimensional complex space.” IEEE Transactions on Evolutionary Computation, 7(1):
58–73, 2002.

[54] R. Cohen, K. Erez, D. ben-Avraham, and S. Havlin. “Resilience of the Internet to random
breakdowns.” Phys. Rev. Lett., 85: 4626, 2000. Also arXiv:cond-mat/0007048.

[55] R. Cohen, K. Erez, D. ben-Avraham, and S. Havlin. “Breakdown of the Internet under intentional
attack.” Phys. Rev. Lett., 86:3682, 2001. Also arXiv:cond-mat/0010251.

[56] R. Cohen and S. Havlin. “Scale-free networks are ultrasmall.” Phys. Rev. Lett., 90(5):058701,
2003.

[57] T. C. Collier and C. Taylor. “Self-organization in sensor networks,“ Journal of Parallel and
Distributed Computing, 64(7):866–873, 2004.

[58] F. J. Corbato. “On building systems that will fail.” Turing Award Lecture 1991, http://larch-www.
lcs.mit.edu:8001/~corbato/turing91/

[59] D. G. Cory, A. F. Fahmy, and T. F. Havel. “Ensemble quantum computing by NMR spectroscopy.”
Proc. National Academy of Science, 94(5):1634–1639, 1997.

[60] T. M. Cover and J. A. Thomas. Elements of Information Theory (Second Edition), Wiley-
Interscience, Hoboken, NJ, 2006.

[61] P. Cramton, Y. Shoham, and R. Steinberg, Eds., Combinatorial Auctions, MIT Press, Boston, MA,
2006.

[62] F. Crick and J.D. Watson “The complementary structure of deoxyribonucleic acid.” newblock
Proc. of Royal Society of London Series A, 223:80–96, 1954.

[63] J. P. Crutchfield, J. D. Farmer, N. Packard, and R. Shaw. “Chaos.” Scientific American, 255(6):
46–57, 1986.

[64] J. P. Crutchfield. “The calculi of emergence: computation, dynamics, and induction.” Physica D:
Nonlinear Phenomena, 75(1–3):11–54, 1994.

http://larch-www.lcs.mit.edu:8001/~corbato/turing91/
http://larch-www.lcs.mit.edu:8001/~corbato/turing91/

210 Bibliography

[65] J. P. Crutchfield and J. P. Shalizi. “Thermodynamic depth of causal states: objective complexity
via minimal representation,” Phys. Rev. E, 59:275–283, 1999.

[66] CUDA “CUDA 7.0 performance report.” http://on-demand.gputechconf.com/gtc/2015/webinar/
gtc-express-cuda7-performance-overview.pdf, May 2015 (Accessed April 2016).

[67] C. Darwin. The Origin of Species by Means of Natural Selection or the Preservation of Favored
Races in the Struggle for Life. Penguin Classics,1985 (first published in 1859).

[68] R. Dawkins. The Selfish Gene. (2nd edition), Oxford University Press, Oxford, UK, 1989.

[69] IBM DB2. http://www-01.ibm.com/software/data/db2/.

[70] C. Delimitrou and C. Kozyrakis. “Quasar: Resource-efficient and QoS-aware cluster manage-
ment.” Proc. ASPLOS14, pp. 127–144, 2014.

[71] D. Deutsch. “Quantum theory, the Church-Turing principle and the universal quantum computer.”
Proc. of the Royal Society London A, 400:97–117, 1985.

[72] D. P. DiVincenzo. “Quantum gates and circuits.” Phil. Trans. Royal Soc. London A, 454:261–276,
1998, Also, Proc.: Mathematical, Physical and Engineering Sciences, Vol. 454, No. 1969, Quan-
tum Coherence and Decoherence (January 1998), pp. 261–276 Also, Preprint, arxiv.org/quanth-
ph/9705009, May, 1997.

[73] D. P. DiVincenzo. “The physical implementation of quantum computation.” Fortschritte der
Physik, 48(9-11):771–783, 2000.

[74] M. Dorigo. “Optimization, learning and natural algorithms.” PhD thesis, Politecnico di Milano,
1992.

[75] M. Dorigo and C. Blum. “Ant colony optimization theory: A survey.” Theoretical Computer
Science, 344:243–278, 2005.

[76] M. Dorigo. “Ant colony optimization.” Scholarpedia, 2(3)1461, 2007. Also http://www.
scholarpedia.org/article/Ant_colony_optimization (Accessed December 2015).

[77] X. Dutreild, N. Rivierre, A. Moreau, J. Malenfant, and I. Truck. “From data center resource
allocation to control theory and back.” Proc. IEEE 3rd Int. Conf. on Cloud Computing, pp. 410–
417, 2010.

[78] P. Erdös and A. Rényi. “On random graphs.” Publicationes Mathematicae, 6:290–297, 1959.

[79] L. Euler. “Solutio problematis ad geometriam situs pertinentis.” Commentarii Academiae Scien-
tiarum Petropolitanae, 8, pp. 128–140, 1741. See also http://eulerarchive.maa.org/pages/E053.
html. (Accessed December 2015).

[80] R. Feynman. “Simulating physics with computers.” Int. J. Theoretical Physics, 21(6/7):467–488,
1982.

[81] R. Feynman. “Quantum mechanical computers.” Optics News, 11:11–46, 1985.

[82] R. Feynman. Lecture Notes on Computation. Addison-Wesley, Reedings, MA,1996.

[83] R. Gallagher. “A perspective on multiaccess channels,” IEEE Trans. Inf. Theory, IT 31(2):124-
142, 1985.

[84] A. Gandhi, M. Harchol-Balter, R. Raghunathan, and M.Kozuch. “AutoScale: dynamic, robust
capacity management for multi-tier data centers.” ACM Trans. on Computer Systems, 30(4):1–
26, 2012.

[85] A. G. Ganek and T. A. Corbi. “The dawning of the autonomic computing era.” IBM Systems Jour-
nal, 42(1):5-18, 2003.Also, https://www.cs.drexel.edu/~jsalvage/Winter2010/CS576/autonomic.
pdf.

[86] J. O. Gutierrez-Garcia and K. M. Sim. “Self-organizing agents for service composition in cloud
computing.” Proc. 2nd IEEE Int. Conf. on Cloud Computing Technology and Science, pp. 59–66,
2010.

http://on-demand.gputechconf.com/gtc/2015/webinar/gtc-express-cuda7-performance-overview.pdf
http://on-demand.gputechconf.com/gtc/2015/webinar/gtc-express-cuda7-performance-overview.pdf
http://www-01.ibm.com/software/data/db2/
http://www.scholarpedia.org/article/Ant_colony_optimization
http://www.scholarpedia.org/article/Ant_colony_optimization
http://eulerarchive.maa.org/pages/E053.html.
http://eulerarchive.maa.org/pages/E053.html.
https://www.cs.drexel.edu/~jsalvage/Winter2010/CS576/autonomic.pdf
https://www.cs.drexel.edu/~jsalvage/Winter2010/CS576/autonomic.pdf

Bibliography 211

[87] M. Gardner. “The fantastic combination of John Conwey’s new solitary game Life.” Scientific
American, 223:120–123, 1970.

[88] C. Gershenson. “Design and control of self-organizing systems.” Ph. D. Dissertation, Vrije
Universiteit Brussels, Belgium, 2007.

[89] M. Gell-Mann. “Simplicity and complexity in the description of nature.” Engineering and
Science, Caltech, LI(3):3–9, 1988.

[90] M. Gell-Mann. The Quark and the Jaguar: Adventures in the Simple and the Complex. W.H.
Freeman Publishers, San Francisco, 1994.

[91] M. Gerla and J.T. Tsai. “Multicluster, mobile, multimedia radio networks.” Wireless Networks,
pp. 255–265, 1995.

[92] J. Gleick. Chaos. Making a New Science. Viking, New York, NY, 1987.

[93] D. Gmach, J. Rolia, and L. Cerkasova. “Satisfying service-level objectives in a self-managed
resource pool.” Proc. 3rd. Int. Conf. on Self-Adaptive and Self-Organizing Systems, pp. 243–253,
2009.

[94] Google Docker. https://cloud.google.com/container-engine (Accessed May 2015).

[95] K. I. Goh, B. Kahang, and D. Kim. “Universal behavior of load distribution in scale-free
networks.” Physical Review Letters, 87:278701, 2001.

[96] J. Goldstein. “Emergence as a construct: history and issues.” Emergence: Complexity and
Organization, 1(1):49–72, 1999.

[97] S. J. Gould and N. Eldredge. “Punctuated equilibria: the tempo and mode of evolution reconsid-
ered.” Paleobiology, 3(2):115–151, 1977.

[98] M. Grabisch, Y. Funaki. “A coalition formation value for games in partition function form.”
European Journal of Operational Research, Elsevier, pp.175–185, 2012.

[99] G. Greco, E. Malizia, L. Palopoli, and F. Scarello. “On the complexity of the core over coalition
structures.” Proc 22 Int. Joint Conf. on Artificial Intelligence, pp. 216–221, 2011.

[100] T. Groves. “Incentives in teams.” Econometrica, 41:617–631, 1973.

[101] M. Gu, C. Weedbrook, A. Perales, and M. A. Nielsen. “More reality is different.” Physics D;
Nonlinear Phenomena, 238(9-10):835–839, 2009.

[102] V. Gupta and M. Harchol-Balter. “Self-adaptive admission control policies for resource-sharing
systems.” Proc. 11th Int. Joint Conf. Measurement and Modeling Computer Systems (SIGMET-
RICS’09), pp. 311–322, 2009.

[103] J. O. Gutierrez-Garcia and K.- M. Sim. “Self-organizing agents for service composition in cloud
computing.” Proc IEEE 2nd Int. Conf. on Cloud Computing Technology and Science, pp. 59–66,
2010.

[104] J. D. Halley and D. A. Winkler. “Classification of emergence and its relation to self-organization,”
Complexity, 13(5):10–15, 2008.

[105] G. Hardin. “The tragedy of the commons.” Science, 162:1243-1248, 1968.

[106] S. Havlin. “Lecture notes on complex systems.” http://havlin.biu.ac.il/course1.php (Accessed
October 2015).

[107] T. He, J. Stankovic, C. Lu, and T. Abdelzaher. “SPEED: A real-time routing protocol for
sensor networks.“ Proc. Int. Conf. on Distributed Computing Systems, p.46, Providence, RI,
2003.

[108] L. He and T. R. Ioerger. “Forming resource-sharing coalitions: a distributed resource allocation
mechanism for self-interested agents in computational grids.” Proc. ACM Symp. on Applied
Computing, pp. 84–91, 2005.

https://cloud.google.com/container-engine
http://havlin.biu.ac.il/course1.php

212 Bibliography

[109] W. Heinzelman, A. Chandrakasan, and H. Balakrishnan. “Energy efficient communication
protocol for wireless microsensor networks.“ Proc. Hawaii Int. Conf. System Sciences, Hawaii,
2000.

[110] J. L. Hennessy and D. A. Patterson. Computer Architecture - A quantitative Approach (Fifth
Edition). Morgan Kaufmann, Waltham, MA, 2012.

[111] M. Herrmann. “Lectures on natural computing.” http://www.inf.ed.ac.uk/teaching/courses/nat/,
2010 (Accessed October 2015).

[112] F. Heylighen. “Publications on complex, evolving systems: a citation-based survey.” Complexity
2 (5):31–36, 1997.

[113] F. Heylighen. “The science of self-organization and adaptivity.” Knowledge Management,
Organizational Intelligence and Learning, and Complexity in: The Encyclopedia of Life Support
Systems, EOLSS, pp. 253–280, 1999.

[114] F. Heylighen and C. Gershenson. “The meaning of self-organization in computing”, IEEE
Intelligent Systems, May/June, 18(4):72–75, 2003.

[115] M. Hinchey, R. Sterritt, C. Rouff, J. Rash, W. Truszkowski. “Swarm-based space exploration.”
ERCIM News 64:26, 2006.

[116] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A.D. Joseph, R. Katz, S. Shenker, and
I. Stoica. “Mesos: A platform for fine-grained resource sharing in the data center.” Proc. 8th
USENIX Symp. on Networked Systems Design and Implementation, pp. 295–308 2011.

[117] J. H. Holland. Adaptation In Natural and Artificial Systems. University of Michigan Press, Ann
Arbor, MI, 1975.

[118] J. H. Holland. Hidden Order: How adaptation builds complexity. Addison-Wesley, Reading, MA,
1996.

[119] J. H. Holland. Emergence: from Chaos to Order. Addison- Wesley, Reading, MA, 1998.

[120] J. Hopfield. “Neural networks and physical systems with emergent collective computational
abilities.” Proc. National Academy of Science, 79:2554–2558, 1982.

[121] A. W. Hübler. “Understanding complex systems,” Complexity, 12(5):9–1, 2007.

[122] R. J. Hughes, G. I. Morgan, and C. G. Peterson. “Quantum key distribution over a 48 km long
optical fibre network.” J. of Modern Optics, 47:533–547, 2000.

[123] J. S Huxley and T. H. Huxley. Evolution and Ethics. The Pilot Press, London, UK, 1947.

[124] IBM Corporation. “Bringing big data to the enterprise.” http://www-01.ibm.com/software/data/
bigdata/what-is-big-data.html (Accessed April 2016).

[125] N. Israeli, and N. Goldenfeld. “Computational irreducibility and the predictability of complex
physical systems.” Phys. Rev. Lett. 92:074105, 2004.

[126] K. R. Jackson, L. Ramakrishnan, K. Muriki, S. Canon, S. Cholia, J. Shalf, H. Wasserman,
N. J. Wright. “Performance analysis of high performance computing applications on the Amazon
Web services cloud.” Proc. IEEE Second Int. Conf. on Cloud Computing Technology and Science,
pp. 159–168, 2010.

[127] D. Jaksch, H.-J. Briegel, J. I. Cirac, and P. Zoller. “Entanglement of atoms via cold controlled
collisions.” Phys. Rev. Lett., 82(9):1975–1978, 1999.

[128] M. Joa-Ng. “Spread spectrum medium access protocol with collision avoidance using controlled
time of arrival.” Telecomunication Systems, 18(1-3):169–19, 2001.

[129] J. P. Kahan and A. Rapoport. Theories of Coalition Formation. Lawrence Erlbaum Associates,
1984.

http://www.inf.ed.ac.uk/teaching/courses/nat/
http://www-01.ibm.com/software/data/bigdata/what-is-big-data.html
http://www-01.ibm.com/software/data/bigdata/what-is-big-data.html

Bibliography 213

[130] E. Kalyvianaki, T. Charalambous, and S. Hand. “Self-adaptive and self-configured CPU resource
provisioning for virtualized servers using Kalman filters.” Proc. 6th Int. Conf. Autonomic Comp.
(ICAC2009), pp. 117–126, 2009.

[131] L. Kari and G. Rozenberg. “The many facets of natural computing.” Comm. ACM, 51:(10):72–83.

[132] D. Katz and R. L. Kahn. The Social Psychology of Organizations. Wiley, New York, NY, 1966.

[133] J. Kennedy and R. Eberhart. “Particle swarm optimization.” Proc. IEEE Int. Conf. Neural
Networks, IEEE Press, pp.1942–1948, 1995.

[134] J. O . Kephart and D. M. Chase. “The vision of autonomic computing.” Computer, 36(1):41–50,
2003.

[135] J. O. Kephart, H. Chan, R. Das, D. Levine, G. Tesauro, F. Rawson, and C. Lefurgy. “Coordinating
multiple autonomic managers to achieve specified power-performance tradeoffs.” Proc. 4th Int.
Conf. Autonomic Computing (ICAC2007), pp. 100-109, 2007.

[136] J. O. Kephart and R. Das. “Achieving self-management via utility functions.” IEEE Internet
Computing, 11(1):40-48, 2007.

[137] J. O. Kephart. “Autonomic computing, the first decade.” Int. Conf. on Autonomic Computing,
http://www3.cis.fiu.edu/conferences/icac2011/files/Keynote_Kephart.pdf, 2011 (Accessed July
2015).

[138] S. U. Khan and I. Ahmad. “A cooperative game theoretical technique for joint optimization of
energy consumption and response time in computational grids.” IEEE Trans. on Parallel and
Distributed Systems, 20(3):346–360, 2009.

[139] A. N. Kolmogorov. “Three approaches to the quantitative definition of information.” Problemy
Peredachy Informatzii, 1:4-7, 1965.

[140] J. G. Koomey, S. Berard, M. Sanchez, and H. Wong. “Implications of historical trends in the
energy efficiency of computing.” IEEE Annals of Computing, 33(3):46-54, 2011.

[141] B. Krishnamachari, S. B. Wicker, and R. Bejar. “Phase transition phenomena on wireless ad-hoc
networks.” Proc. IEEE Globecom01, pp. 2921–2925, 2001.

[142] P. R. Krugman. The Self-organizing Economy. Blackwell Publishers, New York, NY, 1996.

[143] Kubernets. https://cloud.google.com/container-engine/docs/tutorials (Accessed May 2015).

[144] D. Kusic, J. O. Kephart, N. Kandasamy, and G. Jiang. “Power and performance management
of virtualized computing environments via lookahead control.” Proc. 5th Int. Conf. Autonomic
Comp. (ICAC2008), pp. 3–12, 2008.

[145] T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien. “Quantum
Computers.” Nature, 464:4552, 2010.

[146] R. Landauer. “Irreversibility and heat generation in the computing process.” IBM Journal of
Research and Development, 5:183-191, 1961.

[147] D. S. Lee, K. I. Goh, B. Kahng, and D. Kim. “Evolution of scale-free random graphs: Potts model
formulation.” Nuclear Physics B., 696:351–380, 2004.

[148] K. Lerman and O. Shehory. “Coalition formation for large-scale electronic markets.” Proc.
ICMAS 2000 - 4th Int. Conf on Multiagent Systems, pp. 167–174, 2000.

[149] C. Li and K. Sycara. “Algorithm for combinatorial coalition formation and payoff division in
an electronic marketplace.” Proc. AAMAS02 - First Joint Int. Conf. on Autonomous Agents and
Multiagent Systems, pp. 120–127, 2002.

[150] H. Li, C. Wu, Z. Li, and F. Lau. “Profit-maximizing virtual machine trading in a federation of
selfish clouds.” Proc. IEEE INFOCOM, pp. 25–29, 2013.

http://www3.cis.fiu.edu/conferences/icac2011/files/Keynote_Kephart.pdf
https://cloud.google.com/container-engine/docs/tutorials

214 Bibliography

[151] H C. Lim, S. Babu, J. S. Chase, and S. S. Parekh. “Automated control in cloud computing:
challenges and opportunities.” Proc. First Workshop on Automated Control for Datacenters and
Clouds,, ACM Press, pp. 13–18, 2009.

[152] A. Livnat, C. Papadimitriou, J. Dushoff, and M. W. Friedman. “A mixability theory for the role
of sex in evolution.” Proc. Natl. Acad. Sci. USA, 105(50):19803–19808, 2008.

[153] J. Machta. “Complexity, parallel computation, and statistical physics,” Complexity, 11(5):46–64,
2006.

[154] B. B. Mandelbrot. The Fractal Geometry of Nature. Freeman Publishers, New York, NY,1983.

[155] D. Mange, A. Stauffer, L. Peparaolo, and G. Tempesti. “A macroscopic view of self-replication.”
Proc. of the IEEE, 92(12):1929–1945, 2004.

[156] D. C. Marinescu and G. M. Marinescu. Approaching Quantum Computing. Prentice Hall, Upper
Saddle River, NJ, 2005.

[157] D. C. Marinescu, X. Bai, L. Bölöni, H. J. Siegel, R. E. Daley, and I-J. Wang. “A macroeconomic
model for resource allocation in large-scale distributed systems.” Journal of Parallel and
Distributed Computing, 68:182–199, 2008.

[158] D. C. Marinescu, H. J. Siegel, and J. P. Morrison. “Options and commodity markets for computing
resources,” In Market Oriented Grid and Utility Computing, R. Buyya and K. Bubendorf, Eds.,
Wiley, New York, NY, ISBN: 9780470287682, pp. 89–120, 2009.

[159] D. C. Marinescu, C. Yu, and G. M. Marinescu. “Scale-free, self-organizing very large sensor
networks.” Journal of Parallel and Distributed Computing, 50(5):612–622, 2010.

[160] D. C. Marinescu and G. M. Marinescu. Classical and Quantum Information. Academic Press,
New York, NY, 2012.

[161] D. C. Marinescu. Cloud Computing; Theory and Practice. Morgan Kaufmann, Waltham, MA,
2013.

[162] D. C. Marinescu. “High probability trajectories in the phase space and system complexity.”
Complex Systems, 22(3):233–246, 2013.

[163] D. C. Marinescu, A. Paya, J. P. Morrison, and P. Healy. “Distributed hierarchical control versus an
economic model for cloud resource management.” http://arXiv:.org/pdf/1503.01061.pdf, 2015.

[164] D. C. Marinescu, A. Paya, and J. P. Morrison. “Coalition formation and combinatorial auctions;
applications to self-organization and self-management in utility computing.” http://arXiv:.org/
pdf/1406.7487.pdf, 2015.

[165] D. C. Marinescu. “Cloud energy consumption.” Encyclopedia of Cloud Computing, Chapter 25,
Wiley, New York, NY,2016.

[166] von der Marlsburg, C. “Network Self-organization.“ In An Introduction to Neural and Electronic
Networks. S. Zonetzer, J. L. Davis, and C.Lau (Eds.), pp. 421–432, Academic Press, San Diego,
CA, 1995.

[167] L. Mashayekhy, M.M.Nejad, and D.Grosu. “Cloud federations in the sky: formation game and
mechanisms.” IEEE Trans. on Cloud Computing, 3(1):14–27, 2015.

[168] M. W. Mayer. “Architecting principles for system of systems.” Systems Engineering, 1(4):267–
274, 1998.

[169] D. W. McShea. “ Metazoan complexity and evolution: Is there a trend?” Evolution 50:477–492,
1996.

[170] S. Milgram. “Behavioral study of obedience.” Journal of Abnormal and Social Psychology, 67(4):
371–378, 1963.

[171] M. Minsky. Computation: Finite and Infinite Machines. Prentice Hall, New York, 1967.

http://arXiv:.org/pdf/1503.01061.pdf
http://arXiv:.org/pdf/1406.7487.pdf
http://arXiv:.org/pdf/1406.7487.pdf

Bibliography 215

[172] I. Müller, R. Kowalczyk, and P. Braun. “Towards agent-based coalition formation for service
composition.” Proc. IEEE/WIC/ACM Int. Conf. on Intelligent Agent Technology, pp. 73-80, 2006.

[173] J. K. Navlakha. “ A survey of system complexity metrics.” The Computer Journal, 30(3):233–
239, 1987.

[174] M. E. J. Newman. “The structure of scientific collaboration networks.” Proc. Nat. Academy of
Science, 98(2):404–409, 2001.

[175] M. A. Nielsen and I. L. Chuang. Quantum Computing and Quantum Information. Cambridge
University Press, Cambridge, UK, 2000.

[176] D.Niyato, A.Vasilakos, and Z.Kun. “Resource and revenue sharing with coalition formation of
cloud providers: Game theoretic approach.” Proc. IEEE/ACM Intl. Symp. on Cluster, Cloud and
Grid Comp., pp. 215–224, 2011.

[177] G. Nicolis and I. Prigogine. Exploring Complexity. Freeman Publishers, New York, NY, 1989.

[178] P-A. Noël, C. D. Brummitt, and R. M. D’Souza. “Controlling self-organizing dynamics on
networks using models that self-organize.” Phys. Rev. Lett. 111, 078701, 2013.

[179] M. Ogihara and A. Ray. “Simulating Boolean circuits on a DNA computer.” Algorithmica,
25:239–250, 1999.

[180] M. J. Osborne and A. Rubinstein. A Course in Game Theory. MIT Press, Boston, MA, 1994.

[181] A. Padovitz, A. Zaslavsky, S. W. Loke. “Awareness and agility for autonomic distributed systems:
platform-independent publish-subscribe event-based communication for mobile agents.” Proc.
14th Int. Workshop on Database and Expert Systems Applications (DEXA?03), pp. 669–673,
2003.

[182] C.H. Papadimitriou, K. Steiglitz. Combinatorial Optimization - Algorithms and Complexity.
Dover Publications, New York, NY, 1982.

[183] C. H. Papadimitriou. “Computational insights and the theory of evolution.” http://web.stanford.
edu/class/ee380/Abstracts/120425-slides.pdf (Accessed December 2015).

[184] Gh. Paun. “Computing with membranes.” Journal of Computer and System Sciences, 61(1):108–
143, 2000.

[185] G. Paun. Membrane Computing: An Introduction. Springer Verlag, Heidelberg, 2002.

[186] A. Paya and D. C. Marinescu. “Energy-aware load balancing and application scaling
for the cloud ecosystem.” IEEE Trans. on Cloud Computing, Vol. PP, Issue 99, DOI:
10.1109/TCC.2015.2396059, 2015.

[187] S. Penmatsa and A. T. Chronopoulos. “Price-based user-optimal job allocation scheme for grid
systems.” Proc. Parallel & Distributed Processing Symp., pp. 8–16, April 2006.

[188] V. Phua, A. Datta, R. Cardell-Oliver. “A TDMA-based MAC protocol for industrial wireless
sensor network applications using link state dependent scheduling.” Proc Globecom, pp. 1–6,
2006.

[189] I. Prigogine and I. Stengers. Order out of Chaos. Bantam Books, New York, 1984.

[190] L. Qian and E. Winfree. “Scaling up digital circuit computations with DNA strand displacement
cascades.” Science, 332(6034):1196–1201, 2011.

[191] T. Rahwan, S. D. Ramchurn, N. R. Jennings, and A. Giovannucci. “An anytime algorithm for
optimal coalition structure generation.” Journal of Artificial Intelligence Research, 34:521–567,
2009.

[192] S. D. Ramchurn, M. Polukarov, A. Farinelli, C. Truong, and N. R. Jenkings. “Coalition formation
with spatial and temporal constraints.” Proc. 9th Int. Conf. on Autonomous Agents and Multiagent
Systems (AAMAS 2010), pp. 1181–1188, 2010.

http://web.stanford.edu/class/ee380/Abstracts/120425-slides.pdf
http://web.stanford.edu/class/ee380/Abstracts/120425-slides.pdf

216 Bibliography

[193] R. Rivest, A. Shamir, and L Adleman. “A method for obtaining digital signatures and public-key
cryptosystems.” Communications of the ACM, 21(2):120–126, 1978.

[194] J. H. Saltzer and M. F. Kaashoek. Principles of Computer System Design. Morgan Kaufmann,
Burlington, MA, 2009.

[195] N. Samaan. “A novel economic sharing model in a federation of selfish cloud providers.” IEEE
Trans. on Parallel and Distributed Systems, 25(1):12–21, 2014.

[196] C. A. A. Sanches and N. Y. Soma. “A polynomial-time DNA computing solution for the Bin-
Packing Problem.” Applied Mathematics and Computation, 215:2055–2062, 2009.

[197] M. Schwarzkopf, A. Konwinski, M. Abd-El-Malek, and J. Wilkes. “Omega: flexible, scalable
schedulers for large compute clusters.” Proc. EuroSys13, pp. 351–364, 2013.

[198] T. W. Sandholm, K. S. Larson, M. Andersson, O. Shehory, and F. Tohm. “Coalition structure
generation with worst case guarantees.” Artificial Intelligence, 111(1-2):209–238, 1999.

[199] P. Schuster. “Nonlinear dynamics from Physics to Biology. Self-organization: An old paradigm
revisited.” Complexity, 12(4):9–11, 2007.

[200] S. Sen and P. S. Dutta. “Searching for optimal coalition structures.” Proc. ICMAS 2000 - 4th Int.
Conf on Multiagent Systems, pp. 287–295, 2000.

[201] L. S. Shapley. “A value for n-person games.” In Contributions to the Theory of Games, volume
II, H.W. Kuhn and A.W. Tucker, Eds. Annals of Mathematical Studies, Princeton University Press,
28:307–317.1953.

[202] L. S. Shapley and M. Shubik. “A method for evaluating the distribution of power in a committee
system.” American Political Science Review, 48 (3):787–792, 1954.

[203] O. Shehory and S. Kraus. “Methods for task allocation via agent coalition formation.” Artificial
Intelligence, 101(1-2):165âĂŞ-200, 1998.

[204] J. Shneidman, C. Ng, D. C. Parkes, A. AuYoung, A. C. Snoeren, A. Vahdat, A., and B. Chun.
“Why markets could (but don’t currently) solve resource allocation problems in systems.” Proc.
10th Conf. on Hot Topics in Operating Systems, 2005.

[205] P. W. Shor. “Algorithms for Quantum Computation: Discrete Log and Factoring.” Proc., 35
Annual Symp. on Foundations of Computer Science, IEEE Press, Piscataway, NJ, pp. 124–134,
1994.

[206] P. W. Shor. “Scheme for Reducing Decoherence in Quantum Computer Memory.” Phys. Rev. A,
52(4):2493–2496, 1995.

[207] P. W. Shor. “Fault-Tolerant Quantum Computation.” 37th Annual Symp. on Foundations of
Computer Science, IEEE Press, Piscataway, NJ, 56–65, 1996.

[208] P. W. Shor. “Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a
Quantum Computer.” SIAM J. of Computing, 26:1484–1509, 1997.

[209] H. Simon and A. Ando. “Aggregation of variables in dynamic systems.” Econometrica, 29:111–
138, 1961.

[210] H. Simon. “The architecture of complexity.” Proc. American Phil. Soc. 106(6):467–482, 1962.

[211] M. Sims, C. V. Goldman, and V. Lesser. “Self-organization through bottom-up coalition forma-
tion.” Proc. Int. Conf. on Autonomous Agents and Multi Agent Systems, pp. 867–874, 2003.

[212] R. G. Smith. “The contract net protocol; high-level communication and control in a distributed
problem solver.” IEEE Trans. on Computers, Vol. C 29(12):1104–1114, 1980.

[213] J. Smuts. Holism and Evolution. MacMillan, New York, NY, 1926.

[214] B. Snyder. “Server virtualization has stalled, despite the hype.” http://www.infoworld.com/print/
146901 (Accessed December 2013).

http://www.infoworld.com/print/146901
http://www.infoworld.com/print/146901

Bibliography 217

[215] K. Sohrabi, J. Gao, V. Ailawadhi, and G. Pottie.“ “Protocols for self-organisation of a wireless
sensor network.“ IEEE Personal Communications, 7(5):16–27, 2000.

[216] I. Sommerville, D. Cliff, R. Calinescu, J, Keen, T. Kelly, M. Kwiatowska, J. McDermid, and
R. Paige. “Large-scale IT complex systems.” Communications of the ACM, 55(7):71–77, 2012.

[217] P. D. Straffin. “Game Theory and Strategy.” New Mathematical Library, vol 36, The Mathematical
Association of America, Washington, 1993.

[218] M. Stokely, J. Winget, E. Keyes, C. Grimes, and B. Yolken. “Using a market economy to provision
compute resources across planet-wide clusters.” Proc. Int. Parallel and Distributed Processing
Symp. (IPDPS 2009), pp. 1–8, 2009.

[219] R. Subrata, A. Y. Zomaya, and B. Landfeldt. “Game-theoretic approach for load balancing in
computational grids.” IEEE Trans. on Parallel and Distributed Systems, 19(1):66–76, 2008.

[220] G. Tesauro, N. K. Jong, R. Das, and M. N. Bennani. “A hybrid reinforcement learning approach to
autonomic resource allocation.” Proc. Int Conf. on Autonomic Computing, ICAC-06, pp. 65–73,
2006.

[221] R. Thom. Structural Stability and Morphogenesis: An Outline of a General Theory of Models.
Reading, MA: Addison-Wesley, ISBN 0-201-09419-3, 1989.

[222] “Top 500 supercomputers.” http://top500.org/featured/top-systems/ (Accessed January 2016).

[223] Z. Toroczkai and K. E. Bassler. “Jamming is limited in scale-free systems.” Nature, 428:716,
2004.

[224] A.M. Turing. “The chemical basis of morphogenesis.” Philosophical Transactions of the Royal
Society of London Series B, 237:37–72, 1952.

[225] B. Tsybakov and N. Vvedenskaya. “Random multiple access stack algorithms.” Prob. Inform.
Trans. 16:230–241, 1980.

[226] A. Verma, L. Pedrosa, M. R. Korupolu, D. Oppenheimer, E. Tune, and J Wilkes. “Large-scale
cluster management at Google with Borg.” Proc. EuroSys15, pp. 124–139, 2015.

[227] W. Vickrey. “Counterspeculations, auctions, and competitive sealed tenders.” The Journal of
Finance, 16(1):8–37, 1961.

[228] VMware. “VMware vSphere Storage Appliance.” https://www.vmware.com/files/pdf/techpaper/
VM-vSphere-Storage-Appliance-Deep-Dive-WP.pdf (Accessed August 2015).

[229] H. Von Foerster. “On self-organizing systems and their environments.” In Self-organizing systems,
M.C. Yovits and S. Cameron (eds.), Pergamon Press, London, UK, pp. 31–50, 1960.

[230] S. V. Vrbsky, M. Lei, K. Smith, and J. Byrd. “Data replication and power consumption in data
grids.” Proc IEEE Int. Conf. on Cloud Computing Technology and Science, pp. 288–295, 2010.

[231] J. von Neumann. “Proof of the quasi-ergodic hypothesis.” Proc. Natl. Acad. Sci. USA, 18(1):
70–82, 1932.

[232] J. von Neumann. “Physical applications of the ergodic hypothesis.” Proc. Natl. Acad. Sci. USA,
18(3):263–266, 1932.

[233] J. von Neumann. “First draft of a report on the EDVAC.” https://web.archive.org/web/
20130314123032/http://qss.stanford.edu/~godfrey/vonNeumann/vnedvac.pdf, 1945 (Accessed
November 2015).

[234] J. von Neumann. Mathematical Foundations of Quantum Mechanics. Princeton University Press,
Princeton, NJ, 1953.

[235] J. von Neumann. “Probabilistic logic and synthesis of reliable organisms from unreliable
components.” In Automata Studies, C. E. Shannon and J. McCarthy, Editors. Princeton University
Press, Princeton, NJ, 1956.

http://top500.org/featured/top-systems/
https://www.vmware.com/files/pdf/techpaper/VM-vSphere-Storage-Appliance-Deep-Dive-WP.pdf
https://www.vmware.com/files/pdf/techpaper/VM-vSphere-Storage-Appliance-Deep-Dive-WP.pdf
https://web.archive.org/web/20130314123032/http://qss.stanford.edu/~ godfrey/vonNeumann/vnedvac.pdf
https://web.archive.org/web/20130314123032/http://qss.stanford.edu/~ godfrey/vonNeumann/vnedvac.pdf

218 Bibliography

[236] J. von Neumann. “Fourth University of Illinois Lecture.” Theory of self-reproduced automata,
A. W. Burks, Editor. 66, University of Illinois Press, Urbana, IL, 1966.

[237] J. von Neumann and O. Morgenstern. Theory of Games and Economic Behavior. Wiley, New
York, NY, 1967 (original edition 1944).

[238] S de Vries and R. Vohra. “Combinatorial auctions; a survey.” INFORMS Journal of Computing,
15(3):284–309, 2003.

[239] “Crossbow,” http://www.xbow.com.

[240] H-J. Zhang, Q-H. Li, and Y-L. Ruan. “Resource co-allocation via agent-based coalition formation
in computational grids.” Proc Second Int. Conf. on Machine Learning and Cybernetics,, pp. 1936–
1940, 2003.

[241] E.C. Zeeman. “Catastrophe theory.” Scientific American, 234(4):65–70, 75–83, 1976.

[242] G. K. Zipf. Human Behavior and the Principle of Least Effort: An Introduction to Human Ecology.
Addison-Wesley, Reading, MA,1949.

[243] M. M. Waldrop. “Complexity: The Emerging Science at the Edge of Order and Chaos.” Simon &
Schuster, New York, NY, 1992.

[244] D. J. Watts and S. H. Strogatz. “Collective-dynamics of small-world networks,” Nature, 393:440–
442, 1998.

[245] G. Wei, A. Vasilakos, Y. Zheng, and N. Xiong. “A game-theoretic method of fair resource
allocation for cloud computing services.” The Journal of Supercomputing, 54(2):252–269, 2010.

[246] W. Waver. “Science and complexity.” American Scientist, 36:536–547, 1948.

[247] D. Whitley. “A genetic algorithm tutorial.” Statistics and Computing, 4:65–85, 1994.

[248] N. Wiener. Cybernetics: Or Control and Communication in the Animal and the Machine. M.I.T.
Press, Boston, MA, 1961.

[249] S. Wolfram. Cellular Automata and Complexity: Collected Papers. Addison-Wesley, Reading
MA, 1994.

[250] S. Wolfram. A New Kind of Science. Wolfram Media, Champaign, IL, 2002.

[251] D. H. Wolpert and W. Macready. “Using self-dissimilarity to quantify complexity,” Complexity,
12(3):77–85, 2007.

[252] W. Ye, J. Heidemann, and D. Estrin. “An energy efficient MAC protocol for wireless sensor
networks .“ Proc. IEEE Infocom 2002. New York, June 2002.

[253] D. C. Marinescu, A. Paya, and J. P. Morrison. “A cloud reservation system for Big Data
applications.” IEEE Trans. on Parallel and Distributed Systems, Vol. PP, Issue 99, DOI:
10.1109/TPDS.2016.2594783, 2016.

http://www.xbow.com

INDEX

Note: Page numbers followed by f indicate figures and t indicate tables.

A
Adleman-Lipton model, 49
AmazonWeb Services (AWS)

instance types, 151–152
vs. supercomputers, 150–151
tensor network contraction (TNC)

for condensed matter physics, 157
generic contraction algorithm, 158
generic TLC algorithm, 157–159
tensor contraction, 154–155
tensor networks, 155

Ant colony optimization (ACO), 41–44
AS algorithm, 43–44
combinatorial optimization problem, 41
pheromone model, 42
pheromone update rule, 43
solution construction, 42
stigmergy, 41
traveling salesman problem (TSP), 44

Ant system (AS) algorithm, 43–44
Auctions

combinatorial, 139–144

B
Big Data scientific and engineering applications

AVX2, 152
AWS, 151–152
cloud system

integrated strategy, 202–204
software organization, 199–202

combinatorial auction, 165
advertised bundle, 170
allocation slot (AS), 169
clock phase, 170, 171f
clock-proxy auction, 168–169
effectiveness, 173
limitations and vulnerabilities, 174
packages of services, 169
proxy phase, 171–172, 173f
reservation bundle, 170

HB and JST
coalition formation process, 192–193
combinatorial auction protocol, 188–189
communication complexity, 190
service types, 194
simulation experiments, 189
simulation results, 190
system model, 188

HPCC, 150
performance of CUDA 7.0, 153
proxy phase, 194–198
rack-level coalition formation

algorithm, 166
lifetime and payoff distribution, 166
spatial locality constrains, 165

server coalitions
history-based (HB), 163–164
just-in-time (JST), 164

supercomputers vs. AWS vintage 2010,
150–151

Bio-inspired computing, 33

C
Capetanakis-Tsybakov-Mihailov (CTM)

algorithm, 104–105
Causality, 3–4
Cellular automata, 34–37

Convey’s Game of Life, 36–37
self-reproducing/self-replicating, 34
von Neumann, 34–35

Classical mechanics, 2–3
Cloud(s)

auctions
combinatorial auction, 139, 142–144
concepts, 140
marginal utility, 140–141
opportunity cost, 140
price discovery, 140
simultaneous ascending auction (SAA),

141–142
Vickrey-Clark-Groves (VCG), 140

cloud coalition, 136–139
cloud computing, 116–117, 116f

challenges, 122, 122f
hypervisor, 121
processor virtualization, 120–121
sharing, 121

cloud federations, 137–138
community clouds, 115–116
CRM systems (see Cloud resource management

(CRM) systems)
delivery models

Infrastructure as a Service (IaaS), 119
Platform as a Service (PaaS), 119
Software as a Service (SaaS), 117–119

elastic computing, 115

219

220 Index

Cloud(s) (Continued)
elasticity, 126
energy consumption, 125–126
energy efficiency, 125
energy-proportional system, 127
homogeneity, 115
hybrid clouds, 115–116
large-scale data centers

energy consumption, 128
power utilization effectiveness (PUE), 127

overprovisioning, 126
private clouds, 115–116
public clouds, 115–116
scaling

horizontal and vertical, 128–129
load balancing and scaling policies, 129

service delivery, attributes, 114–115
Warehouse-Scale Computers

data-level parallelism, 123
hierarchy of networks, 123–124
interactive and batch workloads, 124
memory hierarchy, 124, 125t
request-level parallelism, 123

Cloud computing, 116–117, 116f. See also Clouds
challenges, 122, 122f
hypervisor, 121
processor virtualization, 120–121
sharing, 121

Cloud resource management (CRM) systems
Docker, 132
Kubernetes, 132
policies

admission control, 129
auto-scaling, 131
capacity allocation, 130
control theory, 130
load balancing and energy

optimization, 130
machine learning techniques, 130
market mechanisms, 130, 132–136
performance models, 131
quality of service (QoS), 130
utility-based approaches, 130

Cloud self-management, 204–206
Cloud self-organization, 204–206
Coalition formation, 192–193
Combinatorial auctions, 139

ascending package auction (APA), 143
clock auctions, 143

intra-round bids technique, 144
linear pricing, 144

clock proxy auction, 142–143
package bidding, 143
simultaneous clock auction, 142–143

Complexity. See Complex systems
Complexity science, 9
Complex systems

abstraction, 8
characterization, 1

complexity science, 9
computational irreducibility, 29–30
cybernetics, 23–25
disorganized complexity, 6
dissipative structures, 9
emergence, 5–6, 15–16
interdisciplinary nature, 31–32
Large Hadron Collider (LHC), 4
laws of physics, 7–8
natural sciences, 5
network theory, 10
in network theory, 6
nondeterminism, 8–9
nonlinear dynamics, 9–10, 17
open system, 19–20
organized complexity, 6
percolation, 4
phase transition, 18–19
quantitative characterization

abstract complexity, 26
Kolmogorov complexity, 29
relative predictive efficiency, 29
Shannon entropy, 27–28
thermodynamic entropy, 27
von Neumann entropy, 28

self-organization, 21–22
self-organized criticality, 22–23
self-similarity

attractor, 12
description, 11
fractals, 11
Sierpinski gasket, 12

space complexity, 7
statistical physics, 10
through centuries, 1–4
time complexity, 7
Zipf’s law, 13–15, 14f

Composability
cyclomatic complexity, 69–70
Halstead volume, 69–70
maintainability index, 69–70
scalability, 70–71
software complexity, 69–70

Computational irreducibility, 29–30
Configuration Management System (CMS),

200–201
Cybernetics

adaptation, 24–25
definition, 23–24
feedback, 24–25
learning, 24–25
machine, 25
regulator, 25

Cyber-physical systems
energy efficiency, 67–68
factors contributing, 67f
Internet of Things (IoT), 69
of Smart Cities, 69
virtualization, 68

Index 221

D
Data-level parallelism, 147
Deoxyribonucleic acid (DNA) computing,

46–50
Determinism, 3–4
Downward causation, 3–4

E
EC2 (Elastic Cloud Computing), 113
Emergence, 5–6

emergent structures, 15
Goldstein definition, 15–16
superposition principle, 16–17
traditional physics, 16
weak and strong, 15–16

Epidemic algorithms, 37–38
classes, 37–38
infective, 37
recovered/removed, 37
susceptible, 37

Epistemology, 2–3

F
Fractal geometry, 11
Fractals, 11

G
Genetic algorithms (GAs), 38–41

basic steps, 38–39
evaluation function, 39
fitness function, 39
mixability, 41
order of a hyperplane, 39
population-based search, 40
schemata, 39

H
Hidden node problem, 105–107
Hierarchical control

qualitative analysis, 176
simulation experiments, 179–181

communication complexity, 177
results, 180–181
service request, 177
system configurations, 178
with system parameters, 179
system performance, 177–178
with 8 WSC configuration, 183–184,

183f
High performance computing challenge

(HPCC), 150
History-Based (HB)

coalition formation process, 192–193
combinatorial auction protocol,

188–189
communication complexity, 190
service types, 194
simulation experiments, 189
simulation results, 190

system model, 188
Holism, 3
Hypervisor, 121

J
Just-in-Time (JST)

coalition formation process, 192–193
combinatorial auction protocol, 188–189
communication complexity, 190
service types, 194
simulation experiments, 189
simulation results, 190
system model, 188

K
Kolmogorov complexity, 29
Königsberg bridge puzzle, 10

L
Large-scale cyber-physical systems

autonomic computing
aspects, 78
concept of utility, 79
goals of, 78
policy-based management, 78
service-level agreements (SLA), 80
Tivoli Intelligent Orchestrator (TIO), 79
traits, 77

challenges, 74–77
coalitions, 92–94
complexity management

hierarchical organization, 73–74
layering, 72–73
modularity, 71
nearly decomposable system, 74

complex networks
clustering coefficient, 85
six degrees of separation, 83–84
Watts-Strogatz algorithm, 83–84

scalability
graph models, 80
scale-free network, 81, 81f, 82

self-organization
activity phase, 108
blocking and nonblocking algorithms,

104–105
designers challenges, 95–96
goal(s), 94
hidden node problem, 105–107
MAC-layer protocols, 103–104
scale-free sensor network, 102–103
self-organization phase, 107
self-organizing sensor network (SFSN)

protocol, 98, 100t
S-MAC protocols, 104
stack collision resolution algorithm, 106f
of very-large sensor networks, 96–97

virtualization by aggregation, 86–92
Level of knowledge, 1–2

222 Index

M
Market mechanisms, cloud

bidding mechanism, 184
cloud with 8 WSCs, 186, 187f
rejection ratio, 186
results, 184–185
with 4 WSCs configuration, 185t

Membrane computing (MC), 58–60
Multistability, 17

N
Natural computing, 34
Nature-inspired algorithms

ACO
AS algorithm, 43–44
combinatorial optimization

problem, 41
pheromone model, 42
pheromone update rule, 43
solution construction, 42
stigmergy, 41
traveling salesman problem

(TSP), 44
cellular automata

Convey’s Game of Life, 36–37
self-reproducing/self-replicating, 34
von Neumann, 34–35

Deus Ex Machina, 60–62
DNA computing, 46–50
epidemic algorithms

classes, 37–38
infective, 37
recovered/removed, 37
susceptible, 37

genetic algorithms (GAs)
basic steps, 38–39
evaluation function, 39
fitness function, 39
mixability, 41
order of a hyperplane, 39
population-based search, 40
schemata, 39

membrane computing, 58–60
quantum information processing systems

implementation efforts,
54–58

quantum gates, 52–53
qubits, 50–51

swarm intelligence, 45–46
Newtonian epistemology, 3
Nondeterminism, 8–9
Nonlinearity

avalanche phenomena, 18
Boltzmann transport equation, 17
feedback, 17
general relativity, 17
Navier-Stokes equations, 17
types, 17

O
Open systems

classification, 20
homeostasis, 20

Organic computing, 33
Organized and disorganized complexity, 6

P
Particle swarm optimization (PSO) algorithms, 45
Percolation, 4
Phase transition

in ad hoc wireless networks, 19
continuous phase transitions, 19
first-order phase transition, 19
in physical systems, 18
symmetry breaking process, 18–19

Power law distribution, 13–15, 14f
P-system, 58–60

Q
Quantitative characterization of complex systems

abstract complexity, 26
Kolmogorov complexity, 29
relative predictive efficiency, 29
Shannon entropy, 27–28
thermodynamic entropy, 27
von Neumann entropy, 28

Quantum information processing systems, 50–58
implementation efforts, 54–58
quantum gates, 52–53
qubits, 50–51

R
Reductionism, 2–3
Request Handler System (RHS), 200–201
Request-level parallelism, 147

S
Self-organization

activity phase, 108
blocking and nonblocking algorithms, 104–105
designers challenges, 95–96
goal(s), 94
hidden node problem, 105–107
MAC-layer protocols, 103–104
scale-free sensor network, 102–103
self-organization phase, 107
self-organizing sensor network (SFSN)

protocol, 98, 100t
S-MAC protocols, 104
stack collision resolution algorithm, 106f
of very-large sensor networks, 96–97
virtualization by aggregation, 86–92

Self-similarity, 11–13
Shannon entropy, 27–28
Space complexity, 7
Stigmergy, 41
Swarm intelligence, 45–46

Index 223

T
Tensor network contraction (TNC)

for condensed matter physics, 157
generic contraction algorithm, 158
generic TLC algorithm, 157–159

stage 1, 158–160
stage 2, 159–161
stage 3, 159, 161–163

tensor contraction, 154–155
tensor networks, 155

Thermodynamic entropy, 27
Time complexity, 7
Translational symmetry, 11

U
Utility computing, 113

V
Virtual machine monitor (VMM),

121
von Neumann entropy, 28

W
Watts-Strogatz algorithm, 83–84

Z
Zipf’s law, 13–15, 14f

	Front Matter
	Copyright
	Dedication
	Preface
	Complex Systems
	Nature-Inspired Algorithms and Systems
	Managing Complexity of Large-Scale Cyber-Physical Systems
	Computer Clouds
	A Down-to-Earth View of Clouds
	Cloud Delivery Models
	How Clouds Changed Our Thinking About Computing
	Hierarchical Organization: Warehouse-Scale Computers
	Energy Consumption, Elasticity, and Over-provisioning
	Cloud Resource Management Policies and Mechanisms

	Index

