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Preface

The present volume is an English translation of the Japanese mathematics book
“Gröbner Dojo” (Kyoritsu Shuppan Co., Ltd., September 2011). The dojo is a
Japanese traditional term, which represents, in general, the place for the training
of the judo, an Olympic sport. Our book “Gröbner Dojo” invites the reader to the
Gröbner world, a fascinating research area of mathematics, where three aspects
of Gröbner bases, viz., theory, application and computation, are linked effectively
and systematically. A beginner including a first year graduate student can learn the
ABC’s of Gröbner bases from “Gröbner Dojo.” In addition, “Gröbner Dojo” can be
a how-to book for users of Gröbner bases such as scientists engaging in statistical
problems as well as engineers being active in industrial society. This is the reason
why we select the term dojo for the title of our book.

An idea of Gröbner bases was apparently studied by Francis Sowerby Macaulay
in 1927; he succeeded in finding a combinatorial characterization of the Hilbert
functions of homogeneous ideals of the polynomial ring. Later, current definition
of Gröbner bases was independently introduced by Heisuke Hironaka in 1964 and
Bruno Buchberger in 1965. However, after the discovery of the notion of Gröbner
bases by Hironaka and Buchberger, no activity had been done for about twenty
years. A first breakthrough was done by David Bayer and Michael Stillman in
the middle of 1980s, who created the computer algebra system Macaulay with the
help of Gröbner bases. In 1995 the second breakthrough was achieved by Bernd
Sturmfels, who discovered the fascinating relation between regular triangulations
of convex polytopes and Stanley–Reisner ideals of initial ideals of toric ideals.
Furthermore, the third breakthrough arose in 1998 when Persi Diaconis and Bernd
Sturmfels demonstrated an exciting application of Gröbner bases to algebraic
statistics.

With these backgrounds, in October 2008, the JST1 CREST2 Hibi project started
toward the progress of theory and application of Gröbner bases together with the

1Japan Science and Technology Agency.
2Core Research for Evolutional Science & Technology.
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development of their algorithms. The publication of “Gröbner Dojo” was already
announced in the original research plan of the project.

“Gröbner Dojo” is a comprehensive textbook to learn algebraic statistics based
on Gröbner bases. First, in Chap. 1, starting from Dickson’s Lemma, a classical
result in combinatorics, we explain the division algorithm, Buchberger criterion and
Buchberger algorithm. Then the theory of elimination follows and toric ideals are
introduced. In addition, the basic theory of Hilbert functions is discussed. Moreover,
the historical background of Gröbner bases is surveyed.

Chapter 2 is a warming-up drill for learning the basic ideas of using mathematical
software. We choose the mathematical software environment named “MathLibre.”
It is a collection of mathematical software and free documents. MathLibre is a kind
of Live Linux system. Linux is a system compatible with UNIX, a traditional OS
for specialists. Many mathematical research systems are developed on UNIX. The
basic usages and fundamental ideas of UNIX are introduced.

Chapter 3 discusses how to compute various objects related to Gröbner bases
explained in Chap. 1. After introducing fundamental tools for efficient Gröbner basis
computation, we illustrate fundamental computations related to Gröbner bases by
using Macaulay2, SINGULAR, CoCoA and Risa/Asir.

In writing Chaps. 1–3, we do not assume that the reader is familiar with theory
and computation of Gröbner bases. If the reader has an experience of handling
Gröbner bases, then these chapters may be skipped partly. On the other hand, since
the latter Chaps. 4–6 are written independently, after reading the former Chaps. 1–3,
the reader can read Chaps. 4–6 in any order.

Chapter 4 is devoted to algebraic statistics. This field was initiated by the work
of Diaconis and Sturmfels in 1998 and the work of Pistone and Wynn in 1996, both
applying Gröbner basis theory to statistics. Since then the field has been developing
rapidly with providing challenging problems to both statisticians and algebraists.

Chapter 5 plays the introduction to two fascinating rainbow bridges between
the world of Gröbner bases and that of convex polytopes. One is the big theory
of Gröbner fans and state polytopes. The other is the reciprocal relation between
initial ideals of toric ideals and triangulations of convex polytopes.

Recently, Gröbner bases of rings of differential operators turn out to be useful
to numerical evaluations of a broad class of normalizing constants in statistics. The
method is called the holonomic gradient method, which is a rapidly growing area
in algebraic statistics. Chapter 6 is a self-contained exposition to invite readers to
these topics. Nobuki Takayama, the author of Chap. 6, thanks Professor Francisco
Castro-Jiménez for providing useful comments to a draft of Chap. 6.

Finally, Chap. 7 provides a collection of rich problems and their answers by
utilizing various software systems, such as Risa/Asir, 4ti2, polymake, R, and so on.
Chapter 7 complements Chaps. 4–6, and is helpful for readers to understand how to
use software systems to study or apply Gröbner bases.
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Chapter 1
A Quick Introduction to Gröbner Bases

Takayuki Hibi

Abstract Neither specialist knowledge nor extensive investment of time is required
in order for a nonspecialist to learn fundamentals on Gröbner bases. The purpose
of this chapter is to provide the reader with sufficient understanding of the theory
of Gröbner bases as quickly as possible with the assumption of only a minimum of
background knowledge. In Sect. 1.1, the story starts with Dickson’s Lemma, which
is a classical result in combinatorics. The Gröbner basis is then introduced and
Hilbert Basis Theorem follows. With considering the reader who is unfamiliar with
the polynomial ring, an elementary theory of ideals of the polynomial ring is also
reviewed. In Sect. 1.2, the division algorithm, which is the framework of Gröbner
bases, is discussed with a focus on the importance of the remainder when performing
division. The highlights of the fundamental theory of Gröbner bases are, without
doubt, Buchberger criterion and Buchberger algorithm. In Sect. 1.3 the groundwork
of these two items are studied. Now, to read Sects. 1.1–1.3 is indispensable for being
a user of Gröbner bases. Furthermore, in Sect. 1.4, the elimination theory, which
is effective technique for solving simultaneous equations, is discussed. The toric
ideal introduced in Sect. 1.5 is a powerful weapon for the application of Gröbner
bases to combinatorics on convex polytopes. Clearly, without toric ideals, the results
of Chaps. 4 and 5 could not exist. The Hilbert function studied in Sect. 1.6 is
the most fundamental tool for developing computational commutative algebra and
computational algebraic geometry. Section 1.6 supplies the reader with sufficient
preliminary knowledge to read Chaps. 5 and 6. However, since the basic knowledge
of linear algebra is required for reading Sect. 1.6, the reader who is unfamiliar with
linear algebra may wish to skip Sect. 1.6 in his/her first reading. Finally, in Sect. 1.7,
the historical background of Gröbner bases is surveyed with providing references
for further study.

T. Hibi (�)
Department of Pure and Applied Mathematics, Graduate School of Information Science
and Technology, Osaka University, Toyonaka, Osaka 560-0043, Japan
e-mail: hibi@math.sci.osaka-u.ac.jp

T. Hibi (ed.), Gröbner Bases: Statistics and Software Systems,
DOI 10.1007/978-4-431-54574-3__1, © Springer Japan 2013
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2 T. Hibi

1.1 Polynomial Rings

The polynomial ring and the ring of integers are the origin of commutative algebra.
If we imagine the theory of Gröbner bases to form a theatrical play, then the stage is
the polynomial ring and the first act starts with Dickson’s Lemma. After Dickson’s
Lemma, the Gröbner basis is introduced and then Hilbert Basis Theorem follows.

1.1.1 Monomials and Polynomials

Let Q, R and C denote the set of rational, real and complex numbers, respectively.
Throughout Chap. 1, the notationK stands for one of Q, R and C.

A monomial in the variables x1; x2; : : : ; xn is a product of the form

nY

iD1
x
ai
i D xa11 xa22 � � �xann ;

where each ai is a nonnegative integer. Its degree is
Pn

iD1 ai . For example, the
degree of x32x5x

2
6 is 6. In particular 1 .D x01x

0
2 � � �x0n/ is a monomial of degree 0.

A term is a monomial together with a nonzero coefficient. For example,�5x33x5x8x29
is a term of degree 7 with �5 its coefficient. A constant term is the monomial 1
together with a nonzero coefficient.

A polynomial is a finite sum of terms. For example,

f D �5x21x2x23 C
2

3
x2x

3
4x

2
5 � x33 � 7

is a polynomial with 4 terms. The monomials appearing in f are

x21x2x
2
3 ; x2x

3
4x

2
5; x

3
3 ; 1

and the coefficients of f are

�5; 2
3
; �1; �7:

The degree of a polynomial is defined to be the maximal degree of monomials which
appears in the polynomial. For example, the degree of the above polynomial f is 6.
With an exception 0 is regarded as a polynomial, but the degree of 0 is undefined.
If the degree of all monomials appearing in a polynomial is equal to q, then the
polynomial is called a homogeneous polynomial of degree q. For example,

�7x21x3 C
3

5
x2x4x5 � x34 C x1x3x5

is a homogeneous polynomial of degree 3.
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Let KŒx1; x2; : : : ; xn� denote the set of all polynomials in the variables
x1; x2; : : : ; xn with coefficients in K . If f and g are polynomials belonging to
KŒx1; x2; : : : ; xn�, then the sum f C g and the product fg can be defined in the
obvious way. With emphasizing that KŒx1; x2; : : : ; xn� possesses the structure of
the sum and the product, we say that KŒx1; x2; : : : ; xn� is the polynomial ring in n
variables overK .

1.1.2 Dickson’s Lemma

Let Mn denote the set of monomials in the variables x1; x2; : : : ; xn. When we deal
with monomials, we often use u; v and w instead of

Qn
iD1 x

ai
i unless confusion

arises.
We say that a monomial u D Qn

iD1 x
ai
i divides v D Qn

iD1 x
bi
i if one has ai � bi

for all 1 � i � n. We write u j v if u divides v.
Let M be a nonempty subset of Mn. A monomial u 2 M is called a minimal

element of M if the following condition is satisfied: If v 2 M and v j u, then
v D u.

Example 1.1.1. (a) Let n D 1. Then a minimal element of a nonempty subset M
of M1 is unique. In fact, if q is the minimal degree of monomials belonging to
M , then the monomial xq1 is a unique minimal element of M .

(b) Let n D 2 and M a nonempty subset of M2. Then the number of minimal
elements of M is at most finite. To see why this is true, suppose that u1 D
x
a1
1 x

b1
2 ; u2 D x

a2
1 x

b2
2 ; : : : are the minimal elements of M with a1 � a2 � : : :.

If ai D aiC1, then either ui or uiC1 cannot be minimal. Hence a1 < a2 < : : :.
Since ui cannot divide uiC1, one has bi > biC1. Thus b1 > b2 > : : :. Hence the
number of minimal elements of M is at most finite, as desired.

Problem 1.1.2. Given an integer s > 0, show the existence of a nonempty subset
M �M2 with exactly s minimal elements.

Example 1.1.1(b) will turn out to be true for every n � 1. This fact is called
Dickson’s Lemma, which is a classical result in combinatorics and which can be
proved easily by using induction. On the other hand, however, Dickson’s Lemma
plays an essential role in the foundation of the theory of Gröbner bases. It guarantees
that several important algorithms terminate after a finite number of steps.

Theorem 1.1.3 (Dickson’s Lemma). The set of minimal elements of a nonempty
subset M of Mn is at most finite.

Proof. We work with induction on the number of variables. First of all, it follows
from Example 1.1.1 that Dickson’s Lemma is true for n D 1 and n D 2. Let n > 2
and suppose that Dickson’s Lemma is true for n � 1. Let y D xn. Let N denote
the set of monomials u in the variables x1; x2; : : : ; xn�1 satisfying the condition that
there exists b � 0 with uyb 2 M . Clearly N ¤ ;. The induction hypothesis says
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that the number of minimal elements ofN is at most finite. Let u1; u2; : : : ; us denote
the minimal elements ofN . Then by the definition ofN , it follows that, for each ui ,
there is bi � 0 with uiybi 2 M . Let b be the largest integer among b1; b2; : : : ; bs .
Moreover, given 0 � c < b, we define a subset Nc of N by setting

Nc D fu 2 N W uyc 2 M g:

Again, the induction hypothesis says that the number of minimal elements of Nc is
at most finite. Let u.c/1 ; u

.c/
2 ; : : : ; u

.c/
sc denote the minimal elements of Nc . Then we

claim that a monomial belonging to M can be divided by one of the monomials
listed below:

u1yb1 ; : : : ; usybs

u.0/1 ; : : : ; u
.0/
s0

u.1/1 y; : : : ; u
.1/
s1 y

� � �
u.b�1/
1 yb�1; : : : ; u.b�1/

sb�1
yb�1

In fact, for a monomial w D uye 2 M , where u is a monomial in
x1; x2; : : : ; xn�1, one has u 2 N . Hence if e � b, then w is divided by one of
u1yb1 ; : : : ; usybs . On the other hand, if 0 � e < b, then, since u 2 Ne, it follows
that w can be divided by one of u.e/1 y

e; : : : ; u.e/se y
e . Hence each minimal element of

M must appear in the above list of monomials. In particular, the number of minimal
elements of M is at most finite, as required. ut

1.1.3 Ideals

For the sake of the reader who is unfamiliar with the polynomial ring, we briefly
review an elementary theory of ideals of the polynomial ring. In order to simplify
the notation, we abbreviate the polynomial ringKŒx1; x2; : : : ; xn� as KŒx�.

The zero point of a polynomial f D f .x1; x2; : : : ; xn/ is a point .a1; a2; : : : ; an/
belonging to the space

Kn D f.a1; a2; : : : ; an/ W a1; a2; : : : ; an 2 Kg

such that

f .a1; a2; : : : ; an/ D 0:
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Given a subset V � Kn, we write I.V / for the set of those polynomials f 2
KŒx� such that f .a1; a2; : : : ; an/ D 0 for all points .a1; a2; : : : ; an/ belonging to V .
Clearly

• If f 2 I.V /; g 2 I.V /, then f C g 2 I.V /;
• If f 2 I.V /; g 2 KŒx�, then gf 2 I.V /.

With considering the above properties on I.V /, we now introduce the notion of
ideals of the polynomial ring.

A nonempty subset I ofKŒx� is called an ideal ofKŒx� if the following conditions
are satisfied:

• If f 2 I; g 2 I , then f C g 2 I ;
• If f 2 I; g 2 KŒx�, then gf 2 I .

Example 1.1.4. The ideals of the polynomial ring KŒx� .D KŒx1�/ in one variable
can be easily determined. Let I � KŒx� be an ideal with at least one nonzero
polynomial and d the smallest degree of nonzero polynomials belonging to I . Let
g 2 I be a polynomial of degree d . Given an arbitrary polynomial f 2 I , the
division algorithm of KŒx�, which is learned in the elementary algebra, guarantees
the existence of unique polynomials q and r such that f D qg C r , where either
r D 0 or the degree of r is less than d . Since f and g belong to the ideal I , it
follows that r D f �qg also belongs to I . If r ¤ 0, then r is a nonzero polynomial
belonging to I whose degree is less than d . This contradict the choice of d . Hence
r D 0. Thus

I D f qg W q 2 KŒx� g:

Problem 1.1.5. Let ff� W � 2 �g be a nonempty subset of KŒx� D
KŒx1; x2; : : : ; xn�. Then show that the set of polynomials of the form

X

�2�
g�f�;

where g� 2 KŒx� is 0 except for a finite number of �’s, is an ideal of KŒx�.

The ideal of Problem 1.1.5 is called the ideal generated by ff� W � 2 �g and is
written as

hff� W � 2 �gi:

Conversely, given an arbitrary ideal I � KŒx�, there exists a subset ff� W � 2
�g of KŒx� with I D hff� W � 2 �gi. The subset ff� W � 2 �g is called a
system of generators of the ideal I . In particular, if ff� W � 2 �g is a finite set
ff1; f2; : : : ; fsg, then hff1; f2; : : : ; fsgi is abbreviated as

hf1; f2; : : : ; fsi:
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A finitely generated ideal is an ideal with a system of generators consisting of a
finite number of polynomials. In particular, an ideal with a system of generators
consisting of only one polynomial is called a principal ideal. Example 1.1.4 says
that every ideal of the polynomial ring in one variable is principal. However,

Problem 1.1.6. Show that the ideal hx1; x2; : : : ; xni of KŒx1; x2; : : : ; xn� with n �
2 cannot be a principal ideal.

Now, a monomial ideal is an ideal with a system of generators consisting of
monomials.

Lemma 1.1.7. Every monomial ideal is finitely generated. More precisely if I is
a monomial ideal and if fu� W � 2 �g is its system of generators consisting of
monomials, then there exists a finite subset fu�1 ; u�2 ; : : : ; u�sg of fu� W � 2 �g such
that I D hu�1 ; u�2 ; : : : ; u�s i.
Proof. It follows from Theorem 1.1.3 that the number of minimal elements of the
set of monomials fu� W � 2 �g is at most finite. Let fu�1; u�2 ; : : : ; u�s g be the set
of its minimal elements. We claim I D hu�1 ; u�2 ; : : : ; u�s i. In fact, each f 2 I can
be expressed as f DP

�2� g�u�, where g� 2 KŒx� is 0 except for a finite number
of �’s. Then, for each � with g� ¤ 0, we choose u�i which divides u� and set h� D
g�.u�=u�i /. Thus g�u� D h�u�i . Hence f can be expressed as f D Ps

iD1 fiu�i
with each fi 2 KŒx�. ut

Let I be a monomial ideal. A system of generators of I consisting of a finite
number of monomials is called a system of monomial generators of I .

Lemma 1.1.8. Let I D hu1; u2; : : : ; usi be a monomial ideal, where u1; u2; : : : ; us
are monomials. Then a monomial u belongs to I if and only if one of ui ’s divides u.

Proof. The sufficiency is clear. We prove the necessity. A monomial u belonging to
I can be expressed as u DPs

iD1 fiui with each fi 2 kŒx�. Let fi DPsi
jD1 a

.i/
j v

.i/
j ,

where 0 ¤ a
.i/
j 2 K and where each v.i/j is a monomial. Since u D Ps

iD1 fiui DPs
iD1.

Psi
jD1 a

.i/
j v

.i/
j /ui ; there exist i and j with u D v.i/j ui . In other words, there is

ui which divides u, as desired. ut
A system of generators of a monomial ideals does not necessarily consist of

monomials. For example, fx21 C x32 ; x22g is a system of generators of the monomial
ideal hx21; x22i.
Corollary 1.1.9. Among all systems of monomial generators of a monomial ideal,
there exists a unique system of monomial generators which is minimal with respect
to inclusion.

Proof. Lemma 1.1.7 guarantees the existence of a system of monomial generators
of a monomial ideal I . If it is not minimal, then removing redundant monomials
yields a minimal system of monomials generators.

Now, suppose that fu1; u2; : : : ; usg and fv1; v2; : : : ; vt g are minimal systems of
monomial generators of I . It follows from Lemma 1.1.8 that that, for each 1 � i �
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s, there is vj which divides ui . Similarly, there is uk which divides vj . Consequently,
uk divides ui . Since fu1; u2; : : : ; usg is minimal, one has i D k. Thus ui D vj . Hence
fu1; u2; : : : ; usg � fv1; v2; : : : ; vt g. Since fv1; v2; : : : ; vt g is minimal, it follows that
fu1; u2; : : : ; usg coincides with fv1; v2; : : : ; vt g, as required. ut

1.1.4 Monomial Orders

Recall that a partial order on a set ˙ is a relation� on˙ such that, for all x; y; z 2
˙ , one has

(i) x � x (reflexivity);
(ii) x � y and y � x) x D y (antisymmetry);

(iii) x � y and y � z) x � z (transitivity).

A partially ordered set is a set ˙ with a partial order � on ˙ . It is custom to
write a < b if a � b and a ¤ b. A total order on ˙ is a partial order � on ˙ such
that, for any two elements x and y belonging to ˙ , one has either x � y or y � x.
A totally ordered set is a set ˙ with a total order � on ˙ .

Example 1.1.10. (a) Let T be a nonempty set and BT the set of subsets of T . If A
and B belong to BT , then we define A � B if A � B . It turns out that �
is a partial order on BT . This partial order is called a partial order ordered
by inclusion. We say that the partially ordered set BT is a boolean lattice.
In particular if T is a finite set Œd � D f1; 2; : : : ; d g, then BŒd � is called the
boolean lattice of rank d .

(b) Let N > 0 be an integer and DN the set of divisors ofN . If a and b are divisors
of N , then we define a � b if a divides b. Then � is a partial order on DN ,
which is called a partial order by divisibility. The partially ordered set DN is
called a divisor lattice. If p1; p2; : : : ; pd are prime numbers with p1 < p2 <

� � � < pd and if N D p1p2 � � �pd , then the divisor lattice DN coincides with the
boolean lattice BŒd �.

Recall thatKŒx� D KŒx1; x2; : : : ; xn� is the polynomial ring in n variables overK
and Mn is the set of monomials in the variables x1; x2; : : : ; xn. A monomial order1

on KŒx� is a total order <2 on Mn such that

(i) 1 < u for all 1 ¤ u 2Mn;
(ii) if u; v 2Mn and u < v, then uw < vw for all w 2Mn.

Example 1.1.11. (a) Let u D xa11 xa22 � � �xann and v D xb11 xb22 � � �xbnn be monomials.
We define the total order<lex on Mn by setting u <lex v if either (i)

Pn
iD1 ai <Pn

iD1 bi , or (ii)
Pn

iD1 ai D
Pn

iD1 bi and the leftmost nonzero component of

1A monomial order is also called a term order(ing).
2Some authors prefer � to <.
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the vector .b1 � a1; b2 � a2; : : : ; bn � an/ is positive. It follows that <lex is
a monomial order on KŒx�, which is called the lexicographic order on KŒx�
induced by the ordering x1 > x2 > � � � > xn.

(b) Let u D x
a1
1 x

a2
2 � � �xann and v D x

b1
1 x

b2
2 � � �xbnn be monomials. We define the

total order <rev on Mn by setting u <rev v if either (i)
Pn

iD1 ai <
Pn

iD1 bi ,
or (ii)

Pn
iD1 ai D

Pn
iD1 bi and the rightmost nonzero component of the vector

.b1 � a1; b2 � a2; : : : ; bn � an/ is negative. It follows that <rev is a monomial
order onKŒx�, which is called the reverse lexicographic order3 onKŒx� induced
by the ordering x1 > x2 > � � � > xn.

(c) Let u D xa11 xa22 � � �xann and v D xb11 xb22 � � �xbnn be monomials. We define the total
order <purelex on Mn by setting u <purelex v if the leftmost nonzero component
of the vector .b1 � a1; b2 � a2; : : : ; bn � an/ is positive. It follows that <purelex

is a monomial order on KŒx�, which is called the pure lexicographic order on
KŒx� induced by the ordering x1 > x2 > � � � > xn.

Let � D i1i2 � � � in be a permutation of Œn� D f1; 2; : : : ; ng. How can we define
the lexicographic order (or the reverse lexicographic order) induced by the ordering
xi1 > xi2 > � � � > xin? First, given a monomial u D xa11 xa22 � � �xann 2Mn, we set

u� D xb11 xb22 � � �xbnn ; where bj D aij :

Second, we introduce the total order <�lex (resp. <�rev) on Mn by setting u <�lex v

(resp. u <�rev v) if u� <lex v
� (resp. u� <rev v

� ), where u; v 2Mn. It then follows
that <�lex (reps. <�rev) is a monomial order on KŒx�. The monomial order <�lex (reps.
<�rev) is called the lexicographic order (resp. reverse lexicographic order) on KŒx�
induced by the ordering xi1 > xi2 > � � � > xin .

Unless otherwise stated, we usually consider monomial orders satisfying

x1 > x2 > � � � > xn:

Problem 1.1.12. Let n D 3 and x1 D x; x2 D y; x3 D z. List the 21 monomials
of degree 5 with respect to <lex and <rev, respectively.

Example 1.1.13. Fix a nonzero vector w D .w1;w2; : : : ;wn/ with each wi � 0.
Let < be a monomial order on KŒx�. We then define the total order <w on Mn as
follows: If u D xa11 xa22 � � �xann and v D xb11 xb22 � � �xbnn are monomials, then we define
u <w v if either (i)

Pn
iD1 aiwi <

Pn
iD1 biwi , or (ii)

Pn
iD1 aiwi D

Pn
iD1 biwi and

u < v. It follows that <w is a monomial order on KŒx�.

Problem 1.1.14. Show that the total order <w of Example 1.1.13 is a monomial
order on KŒx�.

We conclude this subsection with discussing (simple, but) indispensable lemmata
on monomial orders on the polynomial ring KŒx�.

3A reverse lexicographic order is also called a graded reverse lexicographic order(ing).
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Lemma 1.1.15. Let < be a monomial order on KŒx�. Let u and v be monomials
with u ¤ v and suppose that u divides v. Then u < v.

Proof. Let w be a monomial with v D wu. Since u ¤ v, one has w ¤ 1. The
definition of monomial orders says that 1 < w. Hence, again, the definition of
monomial orders says that 1 � u < w � u. Thus u < v, as desired. ut
Lemma 1.1.16. Let < be a monomial order on KŒx�. Then there exists no infinite
descending sequence of the form

u0 > u1 > u2 > � � � ;

where u0; u1; u2; : : : are monomials.

Proof. Suppose on the contrary that such an infinite descending sequence exists. Let
M D fu0; u1; u2; : : :g. Theorem 1.1.3 then guarantees that the number of minimal
elements of M is at most finite. Let ui1 ; ui2 ; : : : ; uis be the minimal elements of M ,
where i1 < i2 < � � � < is . Now, if j > is, then uj must be divided by one of the
minimal elements. Let, say, uik divide uj . Then Lemma 1.1.15 says that uik < uj .
However, since j > is � ik , it follows uik > uj and a contradiction arises. ut

1.1.5 Gröbner Bases

We are now in the position to introduce the notion of Gröbner bases. However,
before studying Gröbner bases, it is required to discuss initial ideals of ideals of the
polynomial ring.

We fix a monomial order < on the polynomial ring KŒx� D KŒx1; x2; : : : ; xn�.
Given a nonzero polynomial

f D a1u1 C a2u2 C � � � C atut
of KŒx�, where 0 ¤ ai 2 K and where u1; u2; : : : ; ut are monomials with

u1 > u2 > � � � > ut ;

the support of f is the set of monomials appearing in f . It is written as supp.f /.
The initial monomial of f with respect to < is the largest monomial belonging to
supp.f / with respect to <. It is written as in<.f /. Thus

supp.f / D fu1; u2; : : : ; ut g

and

in<.f / D u1:
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Example 1.1.17. Let n D 4 and f D x1x4 � x2x3. Then supp.f / D fx1x4; x2x3g.
One has in<lex.f / D x1x4 and in<rev.f / D x2x3.
Problem 1.1.18. Let f and g be nonzero polynomials of KŒx�. Show that
in<.fg/ D in<.f / � in<.g/. In particular if w is a monomial, then in<.wg/ D
w � in<.g/.

Let I be an ideal of the polynomial ringKŒx� with I ¤ h0i. The monomial ideal
generated by fin<.f / W 0 ¤ f 2 I g is called the initial ideal of I with respect to
< and is written as in<.I /. In other words,

in<.I / D hfin<.f / W 0 ¤ f 2 I gi:

In general, however, even if I D hff�g�2�i, it is not necessarily true that in<.I /
coincides with hfin<.f�/g�2�i.
Example 1.1.19. Let n D 7. Let f D x1x4 � x2x3; g D x4x7 � x5x6 and I D
h f; g i. Then in<lex.f / D x1x4, in<lex.g/ D x4x7. Let h D x7f � x1g D x1x5x6 �
x2x3x7. Since h 2 I , it follows that in<lex.h/ D x1x5x6 2 in<lex.I /. However,
x1x5x6 62 hx1x4; x4x7i. Hence hx1x4; x4x7i ¤ in<lex.I /.

Now, Lemma 1.1.7 says that the monomial ideal in<.I / is finitely generated.
Thus there exists a finite subset

fin<.f1/; in<.f2/; : : : ; in<.fs/g

of fin<.f / W 0 ¤ f 2 I g which is a system of monomial generators of in<.I /.

Definition 1.1.20. We fix a monomial order < on the polynomial ring KŒx� D
KŒx1; x2; : : : ; xn�. Let I be an ideal of the polynomial ring KŒx� with I ¤ h0i.
Then a Gröbner basis of I with respect to< is a finite set fg1; g2; : : : ; gsg of nonzero
polynomials belonging to I such that fin<.g1/; in<.g2/; : : : ; in<.gs/g is a system of
monomial generators of the initial ideal in<.I /.

A Gröbner basis exists. This follows from the argument just before Defini-
tion 1.1.20. However, a Gröbner basis cannot be unique. In fact, if fg1; g2; : : : ; gsg is
a Gröbner basis of I , then any finite subset of I nf0gwhich contains fg1; g2; : : : ; gsg
is again a Gröbner basis of I .

Corollary 1.1.9 says that the monomial ideal in<.I / possesses a unique minimal
system of monomial generators. We say that a Gröbner basis fg1; g2; : : : ; gsg of I is
a minimal Gröbner basis of I if fin<.g1/; in<.g2/; : : : ; in<.gs/g is a minimal system
of monomial generators of in<.I / and if the coefficient of in<.gi / coincides with
1 for all 1 � i � s. A minimal Gröbner basis exists. However, a minimal Gröbner
basis may not be unique. For example, if fg1; g2; g3; : : : ; gsg, where s > 1, is a
minimal Gröbner basis of I with in<.g1/ < in<.g2/, then fg1; g2 C g1; g3; : : : ; gsg
is again a minimal Gröbner basis of I .
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1.1.6 Hilbert Basis Theorem

A fundamental theorem to be necessary for the development of the ideal theory of
the polynomial ring is the Hilbert Basis Theorem, which guarantees that every ideal
of the polynomial ring is finitely generated.

Theorem 1.1.21. A Gröbner basis of an ideal of the polynomial ring is a system of
generators of the ideal.

Proof. Let I be an ideal of KŒx� and fg1; g2; : : : ; gsg a Gröbner basis of I with
respect to a monomial order <. Then

in<.I / D hin<.g1/; in<.g2/; : : : ; in<.gs/i
We claim I D hg1; g2; : : : ; gsi.

Let 0 ¤ f 2 I . Since in<.f / 2 in<.I /, there exist a monomial w together with
1 � i � s such that in<.f / D w � in<.gi /. Problem 1.1.18 says that in<.f / D
in<.wgi /. Let ci be the coefficient of in<.gi / in gi and c the coefficient of in<.f / in
f . Let f .1/ D cif �cwgi 2 I . If f .1/ D 0, then f D .c=ci /wgi 2 hg1; g2; : : : ; gsi.

Let f .1/ ¤ 0. Then in<.f .1// < in<.f /. In the case that f .1/ ¤ 0, the same
technique as we used for f can be applied to f .1/ and we obtain f .2/ 2 I .
If f .2/ D 0, then f .1/ belongs to hg1; g2; : : : ; gsi and f 2 hg1; g2; : : : ; gsi. If
f .2/ ¤ 0, then in<.f .2// < in<.f .1//. In general, if f .k�1/ ¤ 0, then the same
technique as we used for f can be applied to f .k�1/ and we obtain f .k/ 2 I .
If f .k/ D 0, then f .k�1/; f .k�2/; : : : ; f .1/ belong to hg1; g2; : : : ; gsi and f 2
hg1; g2; : : : ; gsi. If f .k/ ¤ 0, then in<.f .k// < in<.f .k�1//.

Now, suppose that f .k/ ¤ 0 for all k � 1. Then the infinite sequence

in<.f / > in<.f .1// > � � � > in<.f .k�1// > in<.f .k// > � � �
arises. However, Lemma 1.1.16 rejects the existence of such a sequence. In other
words, there is q > 0 with f .q/ D 0, as desired. ut

Since a Gröbner basis is a finite set, Theorem 1.1.21 yields the so-called Hilbert
Basis Theorem.

Corollary 1.1.22 (Hilbert Basis Theorem). Every ideal of the polynomial ring is
finitely generated. More precisely, given a system of generators ff� W � 2 �g of an
ideal I of KŒx�, there exists a finite subset of ff� W � 2 �g which is a system of
generators of I .

Proof. Theorem 1.1.21 guarantees that every ideal of the polynomial ring is finitely
generated. Let I D hff� W � 2 �gi be an ideal of KŒx� and ff1; f2; : : : ; fsg a
system of generators of I consisting of a finite number of polynomials. Then, for
each 1 � i � s, there exists an expression of the form fi D P

�2� h
.i/

� f�, where

h
.i/

� 2 KŒx� is 0 except for a finite number of �’s. Let

�i D f� 2 � W h.i/� ¤ 0 g:
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Then the finite set

ff� W � 2 [siD1�i g
is a system of generators of I . ut
Example 1.1.23. Let n D 10 and I the ideal of KŒx1; x2; : : : ; x10� generated by

f1 D x1x8 � x2x6; f2 D x2x9 � x3x7; f3 D x3x10 � x4x8;
f4 D x4x6 � x5x9; f5 D x5x7 � x1x10:

We claim that there exists no monomial order < on KŒx1; x2; : : : ; x10� such that
ff1; f2; : : : ; f5g is a Gröbner basis of I with respect to <.

Suppose on the contrary that there exists a monomial order < on
KŒx1; x2; : : : ; x10� such that G D ff1; f2; : : : ; f5g is a Gröbner basis of I with
respect to <. First, routine computation says that each of the five polynomials

x1x8x9 � x3x6x7; x2x9x10 � x4x7x8; x2x6x10 � x5x7x8;
x3x6x10 � x5x8x9; x1x9x10 � x4x6x7

belongs to I . Let, say, x1x8x9 > x3x6x7. Since x1x8x9 2 in<.I /, there is g 2 G
such that in<.g/ divides x1x8x9. Such g 2 G must be f1. Hence x1x8 > x2x6.
Thus x2x6 62 in<.I /. Hence there exists no g 2 G such that in<.g/ divides x2x6x10.
Hence x2x6x10 < x5x7x8. Thus x5x7 > x1x10. Continuing these arguments yields

x1x8x9 > x3x6x7; x2x9x10 > x4x7x8; x2x6x10 < x5x7x8;

x3x6x10 > x5x8x9; x1x9x10 < x4x6x7

and

x1x8 > x2x6; x2x9 > x3x7; x3x10 > x4x8;

x4x6 > x5x9; x5x7 > x1x10:

Hence

.x1x8/.x2x9/.x3x10/.x4x6/.x5x7/ > .x2x6/.x3x7/.x4x8/.x5x9/.x1x10/:

However, both sides of the above inequality coincide with x1x2 � � �x10. This is a
contradiction.

Problem 1.1.24. Let n D 8 and I D hf1; f2; f3i an ideal of KŒx1; x2; : : : ; x8�,
where

f1 D x2x8 � x4x7; f2 D x1x6 � x3x5; f3 D x1x3 � x2x4:
Show that there exists no monomial order < on KŒx1; x2; : : : ; x8� such that
ff1; f2; f3g is a Gröbner basis of I with respect to <.
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1.2 Division Algorithm

In Example 1.1.4, the division algorithm in one variable plays an important role.
We now provide a more general algorithm for the case of more than one variable.

1.2.1 Division Algorithm

The division algorithm plays a fundamental role in the theory of Gröbner bases.
In order to aid understanding of the proof of Theorem 1.2.1, the reader may wish to
read Example 1.2.3.

Theorem 1.2.1 (The Division Algorithm). We work with a fixed monomial order
< on the polynomial ring KŒx� D KŒx1; x2; : : : ; xn� and with nonzero polynomials
g1; g2; : : : ; gs belonging to KŒx�. Then, given a polynomial 0 ¤ f 2 KŒx�, there
exist f1; f2; : : : ; fs and f 0 belonging to KŒx� with

f D f1g1 C f2g2 C � � � C fsgs C f 0 (1.1)

such that the following conditions are satisfiedW
• If f 0 ¤ 0 and u 2 supp.f 0/, then none of the initial monomials in<.gi /, 1 � i �
s, divides u. In other words, if f 0 ¤ 0, then no monomial u 2 supp.f 0/ belongs
to the monomial ideal hin<.g1/; in<.g2/; : : : ; in<.gs/i.

• If fi ¤ 0, then

in<.f / � in<.figi /:

Definition 1.2.2. The right-hand side of (1.1) is said to be a standard expression
of f with respect to g1; g2; : : : ; gs and f 0 a remainder of f with respect to
g1; g2; : : : ; gs .

Proof (of Theorem 1.2.1). Let I D hin<.g1/; in<.g2/; : : : ; in<.gs/i. If no monomial
u 2 supp.f / belongs to I , then the desired expression can be obtained by setting
f 0 D f and f1 D f2 D � � � D fs D 0.

Now, suppose that a monomial u 2 supp.f / belongs to I and write u0 for the
monomial which is biggest with respect to < among the monomials belonging to
supp.f /\ I . Let, say, in<.gi0/ divide u0 and w0 D u0=in<.gi0 /. We rewrite

f D c0
0c

�1
i0

w0gi0 C h1;

where c0
0 is the coefficient of u0 in f and ci0 is that of in<.gi0 / in gi0 . Then

in<.w0gi0 / D w0 � in<.gi0/ D u0 � in<.f /:
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If either h1 D 0 or if h1 ¤ 0 and no monomial u 2 supp.h1/ belongs to I , then
f D c0

0c
�1
i0

w0gi0 C h1 is a standard expression of f with respect to g1; g2; : : : ; gs
and h1 is a remainder of f .

If a monomial u 2 supp.h1/ belongs to I and if u1 is the monomial which is
biggest with respect to < among the monomials belonging to supp.h1/ \ I , then

u1 < u0

In fact, if a monomial u with u > u0 .D in<.w0gi0 // belongs to supp.h1/, then u
must belong to supp.f /. This is impossible. Moreover, since the coefficient of u0 in
f coincides with that in c0

0c
�1
i0

w0gi0 , it follows that u0 cannot belong to supp.h1/.
Let, say, in<.gi1/ divide u1 and w1 D u1=in<.gi1 /. Again, we rewrite

f D c0
0c

�1
i0

w0gi0 C c0
1c

�1
i1

w1gi1 C h2;

where c0
1 is the coefficient of u1 in h1 and ci1 is that of in<.gi1 / in gi1 . Then

in<.w1gi1/ < in<.w0gi0 / � in<.f /:

Continuing these procedures yields the descending sequence

u0 > u1 > u2 > � � �
Lemma 1.1.16 thus guarantees that these procedures will stop after a finite number
of steps, say N steps, and we obtain an expression

f D
N�1X

qD0
c0
qc

�1
iq

wqgiq C hN ;

where either hN D 0 or, in case of hN ¤ 0, no monomial u 2 supp.hN /
belongs to I . Moreover, for each 1 � q � N � 1, one has

in<.wqgiq / < � � � < in<.w0gi0/ � in<.f /:

Thus, by letting
Ps

iD1 figi D
PN�1

qD0 c0
qc

�1
iq

wqgiq and f 0 D hN , we obtain a

standard expression f DPs
iD1 figi C f 0 of f , as desired. ut

Example 1.2.3. Let <lex denote the lexicographic order on KŒx; y; z� induced by
x > y > z. Let g1 D x2 � z; g2 D xy � 1 and f D x3 � x2y � x2 � 1. Each of

f D x3 � x2y � x2 � 1 D x.g1 C z/ � x2y � x2 � 1
D xg1 � x2y � x2 C xz � 1 D xg1 � .g1 C z/y � x2 C xz � 1
D xg1 � yg1 � x2 C xz � yz � 1 D xg1 � yg1 � .g1 C z/C xz � yz � 1
D .x � y � 1/g1 C .xz � yz � z � 1/
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and

f D x3 � x2y � x2 � 1 D x.g1 C z/ � x2y � x2 � 1
D xg1 � x2y � x2 C xz � 1 D xg1 � x.g2 C 1/� x2 C xz � 1
D xg1 � xg2 � x2 C xz � x � 1 D xg1 � xg2 � .g1 C z/C xz � x � 1
D .x � 1/g1 � xg2 C .xz � x � z � 1/

is a standard expression of f with respect to g1 and g2, and each of xz� yz� z� 1
and xz � x � z � 1 is a remainder of f .

Example 1.2.3 shows that in the division algorithm a remainder of f is, in
general, not unique. However,

Lemma 1.2.4. If a finite set fg1; g2; : : : ; gsg consisting of polynomials belonging to
KŒx� is a Gröbner basis of the ideal I D hg1; g2; : : : ; gsi, then, for any polynomial
0 ¤ f 2 KŒx�, a remainder of f with respect to g1; g2; : : : ; gs is unique.

Proof. Suppose that each of the polynomials f 0 and f 00 is a remainder of f
with respect to g1; : : : ; gs . Let f 0 ¤ f 00. Since 0 ¤ f 0 � f 00 2 I , the
initial monomial w D in<.f 0 � f 00/ belongs to in<.I /. On the other hand, since
w belongs to either supp.f 0/ or supp.f 00/, it follows that w cannot belong to
hin<.g1/; in<.g2/; : : : ; in<.gs//i. However, since fg1; : : : ; gsg is a Gröbner basis,
the initial ideal in<.I / coincides with hin<.g1/; in<.g2/; : : : ; in<.gs/i. This is a
contradiction. ut
Corollary 1.2.5. Suppose that a finite set fg1; g2; : : : ; gsg consisting of polynomi-
als belonging to KŒx� is a Gröbner basis of the ideal I D hg1; g2; : : : ; gsi of KŒx�.
Then a polynomial 0 ¤ f 2 KŒx� belongs to I if and only if a unique remainder of
f with respect to g1; g2; : : : ; gs is 0.

Proof. In general, if a remainder of a polynomial 0 ¤ f 2 KŒx� with respect to
g1; g2; : : : ; gs is 0, then f belongs to the ideal I D hg1; g2; : : : ; gsi.

Now, suppose that 0 ¤ f 2 KŒx� belongs to I and that a standard expression
of f with respect to g1; g2; : : : ; gs is f D f1g1 C f2g2 C � � � C fsgs C f 0. Since
f 2 I , one has f 0 2 I . If f 0 ¤ 0, then in<.f 0/ 2 in<.I /. Since fg1; g2; : : : ; gsg
is a Gröbner basis of I , one has in<.I / D hin<.g1/; in<.g2/; : : : ; in<.gs/i.
However, since f 0 is a remainder, in<.f 0/ 2 supp.f 0/ cannot belong to
hin<.g1/; in<.g2/; : : : ; in<.gs/i. This is a contradiction. ut

1.2.2 Reduced Gröbner Bases

We work with a fixes monomial order < on the polynomial ring KŒx� D
KŒx1; : : : ; xn�. A Gröbner basis fg1; g2; : : : ; gsg of an ideal ofKŒx� is called reduced
if the following conditions are satisfied:

• The coefficient of in<.gi / in gi is 1 for all 1 � i � s;
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• If i ¤ j , then none of the monomials belonging to supp.gj / is divided by
in<.gi /.

A reduced Gröbner basis is a minimal Gröbner basis. However, the converse is,
of course, false.

Theorem 1.2.6. A reduced Gröbner basis exists and is uniquely determined.

Proof. (Existence) Let fg1; g2; : : : ; gsg be a minimal Gröbner basis of an ideal
I of KŒx�. Then fin<.g1/; in<.g2/; : : : ; in<.gs/g is a unique minimal system of
monomial generators of the initial ideal in<.I /. Thus, if i ¤ j , then in<.gi / cannot
be divided by in<.gj /.

First, let h1 be a remainder of g1 with respect to g2; g3; : : : ; gs . Since in<.g1/ can
be divided by none of in<.gj /, 2 � j � s, it follows that in<.h1/ coincides with
in<.g1/. Thus fh1; g2; : : : ; gsg is a minimal Gröbner basis of I and each monomial
belonging to supp.h1/ can be divided by none of in<.gj /, 2 � j � s.

Second, let h2 be a remainder of g2 with respect to h1; g3; : : : ; gs . Since in<.g2/
can be divided by none of in<.h1/.D in<.g1//; in<.g3/; : : : ; in<.gs/, it follows that
in<.h2/ coincides with in<.g2/ and fh1; h2; g3; : : : ; gsg is a minimal Gröbner basis
of I with the property that each monomial belonging to supp.h1/ can be divided
by none of in<.h2/; in<.g3/; : : : ; in<.gs/ and each monomial belonging to supp.h2/
can be divided by none of in<.h1/; in<.g3/; : : : ; in<.gs/.

Continuing these procedures yields polynomials h3; h4; : : : ; hs and we obtain a
reduced Gröbner basis fh1; h2; : : : ; hsg of I .

(Uniqueness) If fg1; g2; : : : ; gsg and fg0
1; g

0
2; : : : ; g

0
t g are reduced Gröbner bases

of I , then fin<.g1/; in<.g2/; : : : ; in<.gs/g and fin<.g0
1/; in<.g

0
2/; : : : ; in<.g

0
t /g are

minimal system of monomial generators of in<.I /. Lemma 1.1.9 then says that
s D t and, after rearranging the indices, we may assume that in<.gi / D in<.g0

i / for
all 1 � i � s .D t/. Let, say gi � g0

i ¤ 0. Then in<.gi � g0
i / < in<.gi /. Since

in<.gi �g0
i / belongs to either supp.gi / or supp.g0

i /, it follows that none of in<.gj /,
j ¤ i , can divide in<.gi � g0

i /. Hence in<.gi � g0
i / 62 in<.I /. This contradict the

fact that gi � g0
i belongs to I . Hence gi D g0

i for all 1 � i � s. ut
We write Gred.I I</ for the reduced Gröbner basis of an ideal I of KŒx� with

respect to a monomial order <.

Corollary 1.2.7. Let I and J be ideals of KŒx�. Then I D J if and only if
Gred.I I</ D Gred.J I</.

1.3 Buchberger Criterion and Buchberger Algorithm

The highlights of the theory of Gröbner bases must be Buchberger criterion and
Buchberger algorithm. A Gröbner basis of an ideal is its system of generators. It is
then natural to ask: Given a system of generators of an ideal, how can we decide
whether they form its Gröbner basis or not? The answer is Buchberger criterion,
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which also yields an algorithm called Buchberger algorithm. Starting from a system
of generators of an ideal, the algorithm supplies the effective procedure to compute
a Gröbner basis of the ideal. The discovery of the algorithm is the most important
achievement of Buchberger.

1.3.1 S -Polynomials

Let, as before, KŒx� D KŒx1; : : : ; xn� denote the polynomial ring overK . We work
with a fixed monomial order < on KŒx� and, for simplicity, omit the phrase “with
respect to <”, if there is no danger of confusion.

The least common multiple lcm.u; v/ of two monomials u D x
a1
1 x

a2
2 � � �xann and

v D xb11 xb22 � � �xbnn is the monomial xc11 x
c2
2 � � �xcnn with each ci D maxf ai ; bi g.

Let f and g be nonzero polynomials ofKŒx�. Let cf be the coefficient of in<.f /
in f and cg that of in<.g/ in g. Then the polynomial

S.f; g/ D lcm.in<.f /; in<.g//

cf � in<.f / f � lcm.in<.f /; in<.g//

cg � in<.g/ g

is called the S -polynomial of f and g.
In other words, the S -polynomial of f and g can be obtained by canceling the

initial monomials of f and g. For example, if f D x1x4�x2x3 and g D x4x7�x5x6,
then with respect to <lex one has

S.f; g/ D x7f � x1g D x1x5x6 � x2x3x7;
and with respect to <rev one has

S.f; g/ D �x5x6f C x2x3g D x2x3x4x7 � x1x4x5x6:

We say that f reduces to 0 with respect to g1; g2; : : : ; gs if there is a standard
expression (1.1) of f with respect to g1; g2; : : : ; gs with f 0 D 0.

Lemma 1.3.1. Let f and g be nonzero polynomials of KŒx� and suppose that
in<.f / and in<.g/ are relatively prime, i.e., lcm.in<.f /; in<.g// D in<.f /in<.g/.
Then S.f; g/ reduces to 0 with respect to f; g.

Proof. To simplify the notation, we assume that each of the coefficients of in<.f /
in f and in<.g/ in g is 1. Let f D in<.f /Cf1 and g D in<.g/Cg1. Since in<.f /
and in<.g/ are relatively prime, it follows that

S.f; g/ D in<.g/f � in<.f /g

D .g � g1/f � .f � f1/g
D f1g � g1f
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We claim that in<.f1/in<.g/ cannot coincides with in<.g1/in<.f /. In fact, if
in<.f1/in<.g/ D in<.g1/in<.f /, then, since in<.f / and in<.g/ are relatively
prime, it follows that in<.f / divides in<.f1/. However, since in<.f1/ < in<.f /,
this is impossible. Let, say, in<.f1g/ < in<.g1f /. Then in<.S.f; g// D in<.g1f /.
Hence S.f; g/ D f1g�g1f is a standard expression of S.f; g/ with respect to f; g
with a remainder 0. Thus S.f; g/ reduces to 0 with respect to f; g. ut

1.3.2 Buchberger Criterion

We now come to the most important theorem in the theory of Gröbner bases.

Lemma 1.3.2. Let w be a monomial and f1; f2; : : : ; fs polynomials with in<.fi / D
w for all 1 � i � s. Let g D Ps

iD1 bifi with each bi 2 K and suppose that
in<.g/ < w. Then there exist cjk 2 K with

g D
X

1�j; k�s
cjkS.fj ; fk/:

Proof. Let ci be the coefficient of w D in<.fi / in fi . Then
Ps

iD1 bici D 0. Let
gi D .1=ci /fi . Then

S.fj ; fk/ D gj � gk; 1 � j; k � s:
Hence

sX

iD1
bifi D

sX

iD1
bi cigi

D b1c1.g1 � g2/C .b1c1 C b2c2/.g2 � g3/
C.b1c1 C b2c2 C b3c3/.g3 � g4/
C � � � C .b1c1 C � � � C bs�1cs�1/.gs�1 � gs/
C.b1c1 C � � � C bscs/gs:

Since
Ps

iD1 bi ci D 0, it follows that

sX

iD1
bifi D

sX

iD2
.b1c1 C � � � C bi�1ci�1/S.fi�1; fi /;

as desired. ut

Theorem 1.3.3 (Buchberger Criterion). Let I be an ideal of the polynomial ring
KŒx� and G D fg1; g2; : : : ; gsg a system of generators of I . Then G is a Gröbner
basis of I if and only if the following condition is satisfiedW

.?/ For all i ¤ j; S.gi ; gj / reduces to 0 with respect tog1; g2; : : : ; gs:
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Proof. (“Only If”) Suppose that a system of generators G D fg1; g2; : : : ; gsg is
a Gröbner basis of I . Since the S -polynomial S.gi ; gj / of gi and gj belongs to
the ideal hgi ; gj i. In particular, S.gi ; gj / 2 I . Since G is a Gröbner basis of I ,
Corollary 1.2.5 guarantees that S.gi ; gj / reduces to 0with respect to g1; g2; : : : ; gs ,
as required.

(“If”) Let G D fg1; g2; : : : ; gsg be a system of generators of I which satisfies
the condition .?/.

(First Step) If a nonzero polynomial f belongs to I , then we write Hf for the
set of sequences .h1; h2; : : : ; hs/ with each hi 2 KŒx� such that

f D
sX

iD1
higi : (1.2)

Since G D fg1; g2; : : : ; gsg is a system of generators of I , it follows that
Hf is nonempty. We associate each sequence .h1; h2; : : : ; hs/ 2 Hf with the
monomial

ı.h1;h2;:::;hs / D maxfin<.higi / W higi ¤ 0g:
Then

in<.f / � ı.h1;h2;:::;hs /: (1.3)

Now, among all of the monomials ı.h1;h2;:::;hs / with .h1; h2; : : : ; hs/ 2 Hf , we
are especially interested in the monomial

ıf D min
.h1;h2;:::;hs /2Hf

ı.h1;h2;:::;hs /:

Then the inequality (1.3) says that

in<.f / � ıf :

In the following discussion, we will assume that the monomial ı.h1;h2;:::;hs / arising
from the equality (1.2) coincides with ıf .

(Second Step) Suppose for a while that in<.f / D ıf . Then, in the right-
hand side of the equality (1.2), there is higi ¤ 0 with in<.f / D
in<.higi /. In particular in<.f / belongs to the monomial ideal generated by
in<.g1/; in<.g2/; : : : ; in<.gs/.

Hence, if we can prove that in<.f / D ıf for any nonzero polynomial f 2 I ,
then

in<.I / D hin<.g1/; in<.g2/; : : : ; in<.gs/i

and G turns out to be a Gröbner basis of I .
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(Third Step) Now, suppose that there is a nonzero polynomial f 2 I with
in<.f / < ıf . If we can get a contradiction, then our proof finishes.

We rewrite the right-hand side of the equality (1.2) as

.]/ f D
X

in<.higi /Dıf
higi C

X

in<.hi gi /<ıf

higi

D
X

in<.higi /Dıf
ci � in<.hi /gi C

X

in<.hi gi /Dıf
.hi � ci � in<.hi //gi

C
X

in<.hi gi /<ıf

higi ;

where ci 2 K is the coefficient of in<.hi / in hi . The first equality is clear. The
second equality is the consequence of the simple rewriting

hi D ci � in<.hi /C .hi � ci � in<.hi //:
A crucial fact is that every monomial u belonging to the support of

X

in<.higi /Dıf
.hi � ci � in<.hi//gi C

X

in<.hi gi /<ıf

higi

satisfies u < ıf . Hence, the hypothesis that in<.f / < ıf guarantees that

in<

 
X

in<.hi gi /Dıf
ci � in<.hi /gi

!
< ıf :

However, since in<.higi / D ıf , one has

in<.in<.hi /gi / D ıf :
It then follows from Lemma 1.3.2 that, by using those S -polynomials

S.in<.hj /gj ; in<.hk/gk/

with in<.hj gj / D in<.hkgk/ D ıf and cjk 2 K , we can rewrite the first sum in the
right-hand side of the second equality of .]/ as follows:

X

in<.hi gi /Dıf
ci � in<.hi /gi D

X

j;k

cjkS.in<.hj /gj ; in<.hk/gk/: (1.4)

Since in<.hj gj / D in<.hkgk/ D ıf , it follows that

S.in<.hj /gj ; in<.hk/gk/ D .1=bj /in<.hj /gj � .1=bk/in<.hk/gk;
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where bj is the coefficient of in<.gj / in gj . Here each monomial u belonging to the
support of S.in<.hj /gj ; in<.hk/gk/ satisfies u < ıf .

Let

ujk D ıf =lcm.in<.gj /; in<.gk//:

Then

ujkS.gj ; gk/

D ujk

�
lcm.in<.gj /; in<.gk//

bj � in<.gj / gj � lcm.in<.gj /; in<.gk//

bk � in<.gk/ gk

�

D ıf
�

1

bj � in<.gj /gj �
1

bk � in<.gk/gk
�

D in<.hj /

bj
gj � in<.hk/

bk
gk

D S.in<.hj /gj ; in<.hk/gk/:

By using the equality (1.4), there exists an expression of the form

X

in<.hi gi /Dıf
ci � in<.hi /gi D

X

j;k

cjkujkS.gj ; gk/; cjk 2 K (1.5)

with

in<.ujkS.gj ; gk// < ıf :

The condition .?/ guarantees the existence of an expression of S.gj ; gk/ of the form

S.gj ; gk/ D
sX

iD1
p
jk
i gi ; in<.p

jk
i gi / � in<.S.gj ; gk//; (1.6)

where pjki 2 KŒx�. Combining (1.6) with (1.5) yields

X

in<.hi gi /Dıf
ci � in<.hi /gi D

X

j;k

cjkujk

 
sX

iD1
p
jk
i gi

!
: (1.7)

We rewrite the right-hand side of the equality (1.7) as
Ps

iD1 h0
i gi . Then

in<.h0
i gi / < ıf :
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Finally, by virtue of (1.7) together with the second equality of .]/, it turns out that
there exists an expression of f of the form

f D
sX

iD1
h00
i gi ; in<.h00

i gi / < ıf :

The existence of such an expression contradicts the definition of ıf , as desired. ut
In applying Buchberger’s criterion it is not always necessary to check whether all

S -polynomials S.gi ; gj / with i ¤ j reduce to 0 with respect to g1; : : : ; gs . In fact,
Lemma 1.3.1 says that if in<.gi / and in<.gj / are relatively prime, then S.gi ; gj /
reduces to 0 with respect to gi ; gj . Thus in particular S.gi ; gj / reduces to 0 with
respect to g1; g2; : : : ; gs . Hence we only check those S -polynomials S.gi ; gj / with
i ¤ j such that in<.gi / and in<.gj / possess at least one common variable.

Corollary 1.3.4. If g1; : : : ; gs are nonzero polynomials belonging toKŒx� such that
in<.gi / and in<.gj / are relatively prime for all i ¤ j , then fg1; : : : ; gsg is a
Gröbner basis of I D hg1; : : : ; gsi.
Example 1.3.5. Let n D 7 and consider the reverse lexicographic order <rev. Let
f D x1x4 � x2x3; g D x4x7 � x5x6 and I D hf; gi. Then, since in<rev.f / D x2x3
and in<rev.g/ D x5x6 are relatively prime, it follows that ff; gg is a Gröbner basis
of I with respect to <rev.

Example 1.3.6. Let f D x1x4 � x2x3; g D x4x7 � x5x6 and I D h f; g i.
Example 1.1.19 shows that ff; gg cannot be a Gröbner basis of I with respect to
the lexicographic order<lex. On the other hand, If h D S.f; g/ D x1x5x6�x2x3x7,
then ff; g; hg is a Gröbner basis of I with respect to <lex. To see why this is true,
we must check the criterion .?/ for S.f; g/, S.g; h/ and S.f; h/. First, S.f; g/ D h
reduces to 0 with respect to h. Since in<lex.g/ and in<lex.h/ are relatively prime,
S.g; h/ reduces to 0 with respect to g; h. Moreover, since

S.f; h/ D x5x6f � x4h D x2x3x4x7 � x2x3x5x6 D x2x3g;
it follows that S.f; h/ reduces to 0 with respect to g.

1.3.3 Buchberger Algorithm

One of the advantages of Buchberger criterion is that it yields an algorithm, called
Buchberger algorithm, which supplies a procedure for computing a Gröbner basis
of an ideal I of KŒx� from a system of generators of I .

• Let I be an ideal of the polynomial ring KŒx� and G D fg1; g2; : : : ; gsg its
system of generators. If each S -polynomial S.gi ; gj /, 1 � i < j � s, reduces
to 0 with respect to g1; g2; : : : ; gs , then Buchberger criterion guarantees that G is
a Gröbner basis of I .
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• Otherwise there is S.gi ; gj / with nonzero remainder gsC1. It follows from the
definition of a remainder that none of in<.gi / divides in<.gsC1/. Hence the
monomial ideal

hin<.g1/; in<.g2/; : : : ; in<.gs/i
is strictly contained in the monomial ideal

hin<.g1/; in<.g2/; : : : ; in<.gs/; in<.gsC1/i:

• Since S.gi ; gj / 2 I , it follows that gsC1 2 I . Now, replace G with

G 0 D G [ fgsC1g;
which is a system of generators of I with a redundant polynomial gsC1. We then
apply Buchberger criterion to G 0. If each S.gi ; gj /, 1 � i < j � s C 1, reduces
to 0 with respect to g1; g2; : : : ; gs; gsC1, then Buchberger criterion guarantees
that G 0 is a Gröbner basis of I .

• Otherwise there is S.gk; g`/ with nonzero remainder gsC2 and

hin<.g1/; in<.g2/; : : : ; in<.gs/; in<.gsC1/i

is strictly contained in

hin<.g1/; in<.g2/; : : : ; in<.gs/; in<.gsC1/; in<.gsC2/i:

• Again, the remainder gsC2 belongs to I . We thus apply Buchberger criterion to

G 00 D G 0 [ fgsC2g;
which is a system of generators of I with redundant polynomials gsC1 and gsC2.

• By virtue of Theorem 1.1.3, it follows that the above procedure will terminate
after a finite number of steps, and a Gröbner basis of I can be obtained.

• In fact, if the above procedure will eternally persist, then there exists a strictly
increasing infinite sequence of monomial ideals

hin<.g1/; : : : ; in<.gs/i � hin<.g1/; : : : ; in<.gs/; in<.gsC1/i
� � � � � hin<.g1/; : : : ; in<.gs/; in<.gsC1/; : : : ; in<.gsCk/i � � � �

Theorem 1.1.3 says that the set of minimal elements of the set of monomials

M D fin<.g1/; : : : ; in<.gs/; in<.gsC1/; : : :g

is finite. If

in<.gi1 /; in<.gi2 /; : : : ; in<.giq /; i1 < i2 < � � � < iq;
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are the minimal elements of M , then for all j > iq one has

hin<.gi1 /; in<.gi2/; : : : ; in<.giq /i
D hin<.g1/; in<.g2/; : : : ; in<.giq /; in<.giqC1/; : : : ; in<.gj /i;

which is a contradiction.

The reader may have observed that the basic fact which guarantees that the above
procedure terminates after a finite number of steps is again Theorem 1.1.3. The
above algorithm which, starting from a system of generators of I , enables us to find
a Gröbner basis of I is said to be Buchberger algorithm.

Example 1.3.7. We follow Example 1.1.23. Let n D 10 and I D hf1; f2; f3; f4; f5i
the ideal of KŒx1; x2; : : : ; x10�, where

f1 D x1x8 � x2x6; f2 D x2x9 � x3x7; f3 D x3x10 � x4x8;
f4 D x4x6 � x5x9; f5 D x5x7 � x1x10:

In Example 1.1.23 it is shown that there exists no monomial order< such that F D
ff1; f2; f3; f4; f5g is a Gröbner basis of I . In what follows, by using Buchberger
algorithm, we compute a Gröbner basis of I with respect to the lexicographic order
as well as that with respect to the reverse lexicographic order.

(lexicographic order) The initial monomials of f1; f2; f3; f4; f5 are

x1x8; x2x9; x3x10; x4x6; x1x10;

respectively. Recall that if in<lex.fi / and in<lex.fj / with i ¤ j are relatively prime,
then S.fi ; fj / reduces to 0. Thus the S -polynomials which we must check are

S.f1; f5/ D x10f1 C x8f5 D x5x7x8 � x2x6x10;
S.f3; f5/ D x1f3 C x3f5 D x3x5x7 � x1x4x8:

One has

S.f3; f5/ D �x4f1 � x2x4x6 C x3x5x7
D �x4f1 � x2f4 � x2x5x9 C x3x5x7
D �x4f1 � x2f4 � x5f2;

which reduces to 0. On the other hand, S.f1; f5/ itself is a remainder with respect
to f1; f2; f3; f4; f5. Thus, letting

f6 D x5x7x8 � x2x6x10;
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we consider F 0 D ff1; f2; f3; f4; f5; f6g to be a system of generators of I (with a
redundant polynomial f6) and apply Buchberger criterion to F 0. Since in<lex.f6/ D
x2x6x10, the S -polynomials which we must check are

S.f2; f6/ D x6x10f2 C x9f6 D x5x7x8x9 � x3x6x7x10
D x7.x5x8x9 � x3x6x10/ D x7.�x6f3 � x4x6x8 C x5x8x9/
D �x7.x6f3 C x8f4/;

S.f3; f6/ D x2x6f3 C x3f6 D x3x5x7x8 � x2x4x6x8
D x8.x3x5x7 � x2x4x6/ D x8.�x2f4 � x2x5x9 C x3x5x7/
D �x8.x5f2 C x2f4/;

S.f4; f6/ D x2x10f4 C x4f6 D x4x5x7x8 � x2x5x9x10
D x5.x4x7x8 � x2x9x10/ D x5.�x10f2 � x3x7x10 C x4x7x8/
D �x5.x10f2 C x7f3/;

S.f5; f6/ D �x2x6f5 C x1f6 D x1x5x7x8 � x2x5x6x7
D x5x7f1:

Each of them reduces to 0. Thus F 0 is a Gröbner basis of I with respect to the
lexicographic order.

(reverse lexicographic order) The initial monomials of f1; f2; f3; f4; f5 are

x2x6; x3x7; x4x8; x4x6; x5x7;

respectively. Thus the S -polynomials which we must check are

S.f1; f4/ D �x4f1 � x2f4 D x2x5x9 � x1x4x8;
S.f2; f5/ D �x5f2 � x3f5 D x1x3x10 � x2x5x9;
S.f3; f4/ D �x6f3 � x8f4 D x5x8x9 � x3x6x10:

Since

S.f1; f4/ D x1f3 C x2x5x9 � x1x3x10;
its remainder is �S.f2; f5/. Thus, letting

f6 D x2x5x9 � x1x3x10;
f7 D x5x8x9 � x3x6x10;

we consider F 00 D ff1; f2; f3; f4; f5; f6; f7g to be a system of generators of I and
apply Buchberger criterion to F 00. The initial monomials of f6 and f7 are x2x5x9
and x5x8x9, respectively. Thus the S -polynomials which we must check are
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S.f1; f6/ D �x5x9f1 � x6f6 D x1x3x6x10 � x1x5x8x9
D x1.x3x6x10 � x5x8x9/ D �x1f7;

S.f3; f7/ D �x5x9f3 � x4f7 D x3x4x6x10 � x3x5x9x10
D x3x10.x4x6 � x5x9/ D x3x10f4;

S.f5; f6/ D x2x9f5 � x7f6 D x1x3x7x10 � x1x2x9x10
D x1x10.x3x7 � x2x9/ D �x1x10f2;

S.f5; f7/ D x8x9f5 � x7f7 D x3x6x7x10 � x1x8x9x10
D x10.x3x6x7 � x1x8x9/ D x10.�x6f2 C x2x6x9 � x1x8x9/
D �x10.x6f2 C x9f1/:

Each of them reduces to 0. Thus F 00 is a Gröbner basis of I with respect to the
reverse lexicographic order.

Problem 1.3.8. By using Buchberger algorithm, compute a Gröbner basis of the
ideal of Problem 1.1.24 with respect to the lexicographic order as well as that with
respect to the reverse lexicographic order.

1.4 Elimination Theory

The reader might be familiar with the elimination technique which can be used for
solving simultaneous equations, say,

(
2x C y D 3
x C 3y D 4

The elimination theorem generalizes the above simple elimination technique. It is a
fascinating result which demonstrates the power of Gröbner bases.

1.4.1 Elimination Theorem

Let KŒx� D KŒx1; x2; : : : ; xn� be the polynomial ring and write Bi1i2���im for the
subset of KŒx� consisting of those f 2 KŒx� such that each monomial belonging to
supp.f / is a monomial in the variables xi1 ; xi2 ; : : : ; xim , where 1 � i1 < i2 < � � � <
im � n. Thus

Bi1i2���im D KŒxi1 ; xi2 ; : : : ; xim �:
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If f and g belong to Bi1i2���im , then the sum and the product of f and g again belong
to Bi1i2���im . Thus Bi1i2���im itself is the polynomial ring.

A monomial order < on KŒx� can be naturally induce the monomial order <0
on Bi1i2���im . More precisely, for monomials u and v belonging to Bi1i2���im , one has
u <0 v if and only if u < v inKŒx�. Unless confusion arises, the monomial order<0
on Bi1i2���im induced by a monomial order < on KŒx� will be also written as <.

In general, if I is an ideal of KŒx�, then I \ Bi1i2���im is an ideal of Bi1i2���im . It is
then natural to ask, for given a Gröbner basis G of I , whether G \ Bi1i2���im is a
Gröbner basis of I \ Bi1i2���im or not.

Theorem 1.4.1 (The Elimination Theorem). Let< be a monomial order onKŒx�
and G a Gröbner basis of an ideal I of KŒx� with respect to <. Suppose that

.|/ For eachg 2 G ; one has g 2 Bi1i2���im if in<.g/ 2 Bi1i2���im:

Then G \ Bi1i2���im is a Gröbner basis of I \ Bi1i2���im with respect to < on Bi1i2���im .

Proof. What we must prove is that the initial ideal in<.I \ Bi1i2���im/ of the ideal
I \ Bi1i2���im is generated by

fin<.g/ W g 2 G \ Bi1i2���img:

Let u be a monomial belonging to in<.I \ Bi1i2���im/. Then there is 0 ¤ f 2 I \
Bi1i2���im with in<.f / D u. Since f 2 I , one has u 2 in<.I /. Now, since G is a
Gröbner basis of I , there is g 2 G such that in<.g/ divides u. Since u 2 Bi1i2���im and
since in<.g/ divides u, it follows that in<.g/ 2 Bi1i2���im . Hence the condition .|/
guarantees that g belongs to Bi1i2���im . Consequently, for any monomial u belonging
to the initial ideal in<.I \ Bi1i2���im/, there is g 2 G \ Bi1i2���im such that in<.g/
divides u. Hence in<.I \ Bi1i2���im/ is generated by fin<.g/ W g 2 G \ Bi1i2���img, as
desired. ut
Corollary 1.4.2. Let <purelex denote the pure lexicographic order on KŒx� and

B�p D KŒxp; xpC1; : : : xn�:

Let G be a Gröbner basis of an ideal I ofKŒx�with respect to<purelex. Then G\B�p
is a Gröbner basis of I \ B�p with respect to <purelex.

Proof. We must prove the condition .|/ of Theorem 1.4.1 is satisfied. If g 2 G and
if its initial monomial in<purelex.g/ belongs to B�p, then in<purelex.g/ is a monomial
in the variables xp; xpC1; : : : xn. Hence by the definition of the pure lexicographic
order <purelex it follows that each monomial belonging to the support of g is a
monomial in xp; xpC1; : : : xn. Thus g 2 B�p , as desired. ut

As one of the typical applications of Corollary 1.4.2, we discuss the problem of
computing the intersection of ideals.
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Let, in general, I and J be ideals of the polynomial ring KŒx�. Then the sum
I C J and the intersection I \ J are defined as follows:

I C J D ff C h I f 2 I; h 2 J g;
I \ J D ff 2 KŒx� I f 2 I; f 2 J g:

Then both I C J and I \ J are ideals of KŒx�. Let ff1; f2; : : :g be a system of
generators of I and fh1; h2; : : :g that of J . Then

ff1; f2; : : : ; h1; h2; : : :g

is a system of generators of I CJ . However, to find a system of generators of I \J
is rather difficult.

With adding a new variable t to KŒx�, we consider the polynomial ring

KŒt; x� D KŒt; x1; x2; : : : ; xn�

in n C 1 variables. If I and J are ideals of KŒx�, then we introduce ideals tI and
.1 � t/J of KŒt; x� as follows:

tI D hftf I f 2 I gi;
.1 � t/J D hf.1� t/f I f 2 J gi:

Then

Lemma 1.4.3. As ideals of KŒx� one has

I \ J D .tI C .1 � t/J / \KŒx�:

Proof. Let f 2 KŒx� belong I \J . Since f 2 I one has tf 2 tI , and since f 2 J ,
one has.1 � t/f 2 .1 � t/J . Hence f D tf C .1 � t/f 2 tI C .1 � t/J .

On the other hand, if a polynomial f .x/ 2 KŒx� belongs to tI C .1 � t/J , then
there exist fi 2 I , f 0

j 2 J and hi ; h0
j 2 KŒt; x� such that

f .x/ D t
X

i

fi .x/hi .t; x/C .1� t/
X

j

f 0
j .x/h

0
j .t; x/:

Letting t D 0 one has f D P
j f

0
j .x/h

0
j .0; x/ 2 J , and letting t D 1 one has

f DPi fi .x/hi .1; x/ 2 I . Hence f 2 I \ J , as required. ut
Let <purelex be the pure lexicographic order on the polynomial ring KŒt; x� D

KŒt; x1; x2; : : : ; xn� induced by the ordering t > x1 > x2 > � � � > xn. Let I and J
be ideal of KŒx�. If ff1; f2; : : :g is a system of generators of I and fh1; h2; : : :g that
of J , then a system of generators of the ideal tI C .1 � t/J of KŒt; x� is

ftf1; tf2; : : : ; .1 � t/h1; .1 � t/h2; : : :g:
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Now Buchberger algorithm gives a Gröbner basis G of tI C .1 � t/J with respect
to <purelex. Corollary 1.4.2 then guarantees that

G 0 D f g 2 G I t does not appear in g g

is a Gröbner basis of .tI C .1� t/J / \KŒx�. Hence Lemma 1.4.3 says that G 0 is a
Gröbner basis of I \J with respect to the pure lexicographic order onKŒx� induced
by x1 > x2 > � � � > xn. Thus in particular G 0 is a system of generators of I \ J .

Example 1.4.4. Let n D 2. Let I D hx2i and J D hxyi be ideals of KŒx; y�.
We compute I \ J . We apply Buchberger algorithm to the system of generators
ftx2; .1 � t/xyg of the ideal tI C .1 � t/J of KŒt; x; y�. The S -polynomial of tx2

and .1�t/xy is x2y. We then apply Buchberger criterion to the system of generators
ftx2; .1� t/xy; x2yg of tI C .1� t/J . The S -polynomial of tx2 and x2y is 0. The
S -polynomial of .1� t/xy and x2y is x2y. Thus ftx2; .1� t/xy; x2yg is a Gröbner
basis of tI C .1 � t/J . Hence I \ J D hx2yi.
Example 1.4.5. Let n D 1. Let I D hx.x � 1/i and J D hx3i be ideals of KŒx�.
In order to compute I \ J , Buchberger algorithm can be applied to the system of
generators ftx.1 � x/; .1 � t/x3g of the ideal tI C .1 � t/J of KŒt; x�. A routine
computation shows that

ftx.1� x/; .1 � t/x3; .t � x2/x; x5 � x3; x4 � x3g

is a Gröbner basis of tI C .1� t/J . In particular the initial ideal of tI C .1� t/J is
hx4; txi. Hence the reduced Gröbner basis of tI C .1� t/J is f.t � x2/x; x4 � x3g.
Thus I \ J D hx4 � x3i.
Problem 1.4.6. Let n D 3. Compute the intersection I \J of the ideals I D hxy2i
and J D hyz; z3i of KŒx; y; z�.

1.4.2 Solving Simultaneous Equations

Corollary 1.4.2 provides a powerful technique for solving simultaneous equations.
Recall that a zero point of a polynomial f 2 KŒx� D KŒx1; x2; : : : ; xn� is a point
.a1; a2; : : : ; an/ belonging to the space

Kn D f.a1; a2; : : : ; an/ W a1; a2; : : : ; an 2 Kg

with

f .a1; a2; : : : ; an/ D 0:
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Let V.f / denote the set of zero points of f . If I is an ideal ofKŒx�, then V.I / � Kn

is defined by setting

V.I / D
\

f 2I
V .f /:

Lemma 1.4.7. Let ff1; f2; : : : ; fsg be a system of generators of an ideal I ofKŒx�.
Then

V.I / D
s\

iD1
V .fi /:

Proof. Clearly V.I / � \siD1V .fi /. Let .a1; a2; : : : ; an/ 2 Kn belong toTs
iD1 V .fi /. Let f 2 I and f D Ps

iD1 gi fi , where each gi 2 KŒx�. Since
fi .a1; a2; : : : ; an/ D 0, one has f .a1; a2; : : : ; an/ D 0. Thus .a1; a2; : : : ; an/ 2
V.f /. This is true for all f 2 I . It then follows that .a1; a2; : : : ; an/ 2 V.I /. ut
Corollary 1.4.8. Let ff1; f2; : : : ; fsg and fg1; g2; : : : ; gt g be systems of generators
of an ideal I of KŒx�. Then the set of solutions of the simultaneous equations

f1 D f2 D � � � D fs D 0
and that of

g1 D g2 D � � � D gt D 0
coincide.

Example 1.4.9. We solve the simultaneous equations
8
ˆ̂<

ˆ̂:

x C y D 3
y C z D 5
x C z D 4:

(1.8)

In the elementary algebra, adding three equations yields xCyC z D 6. Hence, say,
x D .x C y C z/ � .y C z/ D 1. Thus the solution is .x; y; z/ D .1; 2; 3/.

Now, we solve the simultaneous equations (1.8) in the language of Gröbner bases.
Let n D 3 andKŒx1; x2; x3� D KŒx; y; z�. Let

f1 D x C y � 3; f2 D y C z � 5; f3 D x C z � 4
and

I D hf1; f2; f3i:
By using Buchberger algorithm, we compute a Gröbner basis of I with respect to
<purelex. Since the initial ideals of f1; f2; f3 are x; y; x, respectively, we only check
S.f1; f3/ D f1�f3 D y� zC1. Its remainder with respect to f1; f2; f3 is�2zC6.
Let f4 D z � 3 and apply Buchberger criterion to ff1; f2; f3; f4g. It then turns out
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that ff1; f2; f3; f4g is a Gröbner basis of I . Since it is not minimal, after removing,
say, f3, one has a minimal Gröbner basis

G D fx C y � 3; y C z � 5; z � 3g:
Now, in order to solve the simultaneous equations (1.8), Corollary 1.4.8 says that
we may solve the simultaneous equations

8
ˆ̂<

ˆ̂:

x C y � 3 D 0
y C z� 5 D 0
z � 3 D 0:

(1.9)

To solve the simultaneous equations (1.9) is easy. The third equation says that z D 3.
Then the second equation gives y D 2. Finally, from the first equation, one has
x D 1.

This is the advantage of Corollary 1.4.2. In fact, if I \KŒz� ¤ h0i, then G \KŒz�
is a Gröbner basis of I \KŒz�. In particular, since G \KŒz� ¤ ;, it follows that G
contains a polynomial belonging toKŒz�. It is z� 3. In other words, an equation in z
can be obtained. In the next step, if I \KŒy; z� ¤ h0i, then G \KŒy; z� is a Gröbner
basis of I \KŒy; z�. In particular, since G \KŒy; z� ¤ ;, it follows that G contains
a polynomial belonging to KŒy; z�. It is y C z � 5. In other words, an equation in y
and z is obtained.

Problem 1.4.10. Compute a Gröbner basis of the ideal

h3y C 4z� 7; 3x C 5y � 7z� 10; �x � y C 2zC 3i
of KŒx; y; z� with respect to <purelex and solve the simultaneous equations

8
ˆ̂<

ˆ̂:

3y C 4z D 7
3x C 5y � 7z D 10
�x � y C 2z D �3:

Example 1.4.11. We compute a Gröbner basis of the ideal

I D hx2 C y C z � 1; x C y2 C z � 1; x C y C z2 � 1i

of KŒx; y; z� with respect to <purelex and solve the simultaneous equations

8
ˆ̂<

ˆ̂:

x2 C y C z D 1
x C y2 C z D 1
x C y C z2 D 1:

(1.10)

The reduced Gröbner basis Gred.I I<purelex/ of I with respect to <purelex is
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fx C y C z2 � 1; yz2 C z4 � z2

2
; y2 � y � z2 C z; z6 � 4z4 C 4z3 � z2g:

Instead of solving the simultaneous equations (1.10), we may solve the following
simultaneous equations

8
ˆ̂̂
<̂

ˆ̂̂
:̂

x C y C z2 D 1
yz2 C z4�z2

2
D 0

y2 � y � z2 C z D 0
z6 � 4z4 C 4z3 � z2 D 0:

(1.11)

Corollary 1.4.2 says that Gred.I I<purelex/ \ KŒz� is the reduced Gröbner basis
of I \ KŒz�. Thus, if I \ KŒz� ¤ h0i, then a polynomial in the variable z
belongs to Gred.I I<purelex/. Such a polynomial arises by eliminating x and y in
the simultaneous equations (1.10). It is routine to solve the simultaneous equations
(1.11). Since

z6 � 4z4 C 4z3 � z2 D z2.z� 1/2.z2 C 2z � 1/ D 0;
one has

z D 0; 1;�1˙p2:
Problem 1.4.12. Find all the solutions of the simultaneous equations (1.11).

Example 1.4.13. Computing the reduced Gröbner basis of the ideal

I D hx2 C y2 C z2 � 4; x2 C 2y2 � 5; xz � 1i
of KŒx; y; z� with respect to <purelex, we solve the simultaneous equations

8
ˆ̂<

ˆ̂:

x2 C y2 C z2 D 4
x2 C 2y2 D 5
xz D 1:

(1.12)

The reduced Gröbner basis Gred.I I<purelex/ is

fx C 2z3 � 3z; y2 � z2 � 1; 2z4 � 3z2 C 1g:
Thus, in order to solve simultaneous equations (1.12), we may solve the following
simultaneous equations

8
ˆ̂<

ˆ̂:

x C 2z3 � 3z D 0
y2 � z2 D 1
2z4 � 3z2 D �1:

(1.13)

From the third equation, it follows that
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z2 D 3˙p9 � 8
4

D 1; 1
2
:

Hence

z D ˙1; ˙1=p2:

Problem 1.4.14. Find all the solutions of the simultaneous equations (1.13).

Problem 1.4.15. Compute the reduced Gröbner basis of the ideal

hx2 C 2y2 � y � 2z; x2 � 8y2 C 10z� 1; x2 � 7yzi

with respect to <purelex and find all the solutions of the simultaneous equations

8
ˆ̂<

ˆ̂:

x2 C 2y2 � y � 2z D 0
x2 � 8y2 C 10z D 1
x2 � 7yz D 0:

1.5 Toric Ideals

Toric ideals are indispensable for the application of Gröbner bases to, e.g., algebraic
statistics (Chap. 4) and convex polytopes (Chap. 5). This section is devoted to the
study on the foundation of toric ideals.

1.5.1 Configuration Matrices

Let A D .aij / 1�i�d
1�j�n

be a d � n matrix and

aj D

2

6664

a1j
a2j
:::

adj

3

7775 ; 1 � j � n

the column vectors of A.
Let Z denote the set of integers and write Zd�n for the set of d � n matrices

A D .aij / 1�i�d
1�j�n

with each aij 2 Z.

The inner product of vectors a D Œa1; a2; : : : ; ad �
> and b D Œb1; b2; : : : ; bd �

>,
where> stands for the transpose, belonging to Rd is defined to be
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a � b D
dX

iD1
aibi :

A matrix A D .aij / 1�i�d
1�j�n

2 Zd�n is called a configuration matrix if there exists

c 2 Rd such that

aj � c D 1; 1 � j � n:

Example 1.5.1. (a) Given a matrix A 2 Z.d�1/�n, we write A0 2 Zd�n for the
matrix which is obtained by adding the raw vector Œ1; 1; : : : ; 1� to A as the d th
raw. Then A0 is a configuration matrix. In fact, if c D Œ0; 0; � � � ; 0; 1�> 2 Rd ,
then aj � c D 1 for each column vector aj of A0.

(b) Suppose that the sum of each column of a matrix A 2 Zd�n is constant, say,Pd
iD1 aij D k. If c D Œ1=k; 1=k; � � � ; 1=k�> 2 Rd , then aj � c D 1 for each

column vector aj of A. Thus A is a configuration matrix.

1.5.2 Binomial Ideals

A binomial belonging to KŒx� D KŒx1; x2; : : : ; xn� is a polynomial of the form
u � v, where u and v are monomials of the same degree belonging to KŒx�. A
binomial ideal is an ideal of KŒx� generated by binomials. Corollary 1.1.22 says
that a binomial ideal possesses a system of generators consisting of a finite number
of binomials.

Theorem 1.5.2. Let I be a binomial ideal ofKŒx�. Then the reduced Gröbner basis
of I with respect to an arbitrary monomial order on KŒx� consists of binomials.

Proof. In general, if f and g are binomials, then their S -polynomialS.f; g/ is again
a binomial. It then follows from the argument done in the proof of Theorem 1.2.1
that a remainder of a binomial with respect to several binomials can be chosen as
a binomial. Thus, applying Buchberger algorithm to a system of generators of a
binomial ideal I consisting of a finite number of binomials, a minimal Gröbner
basis G D fg1; g2; : : : ; gsg, where each gi is a binomial, of I can be obtained.

Let gi D ui � vi , where ui and vi are monomials with ui D in<.gi /. Recall that
G is reduced if vi cannot be divided by uj for i ¤ j . Suppose that G is not reduced
and, say, v2 is divided by u1. Let v2 D wu1, where w is a monomial. We then replace
g2 with g0

2 D g2Cwg1 .D u2�wv1/. Let g0
2 D u2�v0

2. Then fg1; g0
2; g3; : : : ; gsg is a

minimal Gröbner basis of I consisting of binomials with v0
2 .D wv1/ < .wu1 D/ v2.

Thus, after a finite number of steps, the reduced Gröbner basis of I consisting of
binomials arises. ut
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1.5.3 Toric Ideals

Given a configuration matrix A 2 Zd�n, write KerZA for the set of column vectors
b 2 Zn with Ab D 0, where 0 is the zero vector of Rd . That is to say,

KerZA D f b 2 Zn W Ab D 0 g:

Lemma 1.5.3. If a column vector b D Œb1; b2; : : : ; bn�
> 2 Zn belongs to KerZA,

then

b1 C b2 C � � � C bn D 0:

Proof. Since A is a configuration matrix, there is c 2 Rd with aj � c D 1 for all
column vectors aj of A. Since Ab D 0, one has

Pn
jD1 bjaj D 0. Thus

0

@
nX

jD1
bj aj

1

A � c D
nX

jD1
bj .aj � c/ D

nX

jD1
bj D 0;

as desired. ut
Now, given a column vector

b D

2
6664

b1
b2
:::

bn

3
7775

belonging to KerZA, we introduce the binomial fb 2 KŒx� defined by

fb D
Y

bi>0

x
bi
i �

Y

bj <0

x
�bj
j :

Since Lemma 1.5.3 guarantees that the degree of
Q
bi>0

x
bi
i coincides with that

of
Q
bj <0

x
�bj
j , it follows that fb is, in fact, a binomial. For example, if b D

Œ2;�3; 0; 1�>, then fb D x21x4 � x32 .
Let A 2 Zd�n be a configuration matrix. The binomial ideal

IA D hf fb W b 2 KerZA gi

of KŒx� is called the toric ideal of A.

Corollary 1.5.4. The reduced Gröbner basis Gred.IAI</ of a toric ideal IA consists
of binomials.
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Given a configuration matrix, which is even simple, to compute its toric ideal is,
in general, rather difficult.

Example 1.5.5. We compute the toric ideal IA of the configuration matrix

A D

2

664

0 1 1 0 1

0 1 0 1 1

0 0 1 1 1

1 1 1 1 1

3

775 :

Since b D Œ1;�1;�1;�1; 2�> belongs to KerZA, the binomial fb D x1x25 �x2x3x4
belongs to IA. In fact, it turns out that IA D hx1x25 � x2x3x4i. To see why this is
true, in the vector space Q5, we study the simultaneous linear equations

2

664

0 1 1 0 1

0 1 0 1 1

0 0 1 1 1

1 1 1 1 1

3

775

2
666664

z1
z2
z3
z4
z5

3
777775
D

2

664

0

0

0

0

3

775 :

The space of its solution is

f rŒ1;�1;�1;�1; 2�> W r 2 Q g:

Hence

KerZA D fmŒ1;�1;�1;�1; 2� W m 2 Zg:

Thus

f.x1x25/m � .x2x3x4/m W m D 1; 2; : : :g

is a system of generators of IA. However, since

.x1x
2
5/
m � .x2x3x4/m D .fb C x2x3x4/m � .x2x3x4/m 2 hfbi;

it follows that IA D hfbi.
Problem 1.5.6. Compute the toric ideal of the configuration matrix

2
664

1 0 0 1

1 1 0 0

0 1 1 0

0 0 1 1

3
775 :
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1.5.4 Toric Rings

The definition of toric ideals in the previous subsection has an advantage which does
require no special knowledge of commutative algebra. In this subsection, however,
we study toric ideals in the language of commutative algebra.

Let t1; t2; : : : ; td be variables. Let A D .aij / 1�i�d
1�j�n

2 Zd�n be a configuration

matrix. To each column vector

aj D

2

6664

a1j
a2j
:::

adj

3

7775 ;

we associate the monomial

taj D ta1j1 t
a2j
2 � � � tadjd

with allowing negative powers. If f D f .x1; x2; : : : ; xn/ 2 KŒx�, then we define
�.f / by setting

�.f / D f .ta1 ; ta2 ; : : : ; tan/:

In other words, �.f / is a rational function in t1; t2; : : : ; td obtained by substituting
tai for each xi in f . Let

KŒA� D f�.f / W f 2 KŒx� g:

Then in KŒA� the sum and the product can be naturally defined. We say that KŒA�
is the toric ring of A.

Example 1.5.7. The toric ring of the configuration matrix

2

4
1 0 �1
0 1 �1
1 1 1

3

5

is the set of all rational functions obtained by replacing x1; x2; x3 of f D
f .x1; x2; x3/ belonging to KŒx1; x2; x3� with t1t3; t2t3; t�11 t�12 t3, respectively.

Lemma 1.5.8. If monomials u; v 2 KŒx� satisfies �.u/ D �.v/, then u and v has
the same degree.

Proof. Let u D Qn
jD1 x

cj
j and v D Qn

jD1 x
dj
j . Then �.u/ D Qn

jD1 tcj aj and

�.v/ D Qn
jD1 tdj aj . Hence, if �.u/ D �.v/, then

Pn
jD1 cj aj D Pn

jD1 djaj .
Then, by using the technique appearing in the proof of Lemma 1.5.3, one hasPn

jD1 cj D
Pn

jD1 dj . ut
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Lemma 1.5.9. The toric ideal IA � KŒx� of a configurationA coincides with

hf f 2 KŒx� W �.f / D 0 gi:

Proof. (First Step) We show that the ideal hf f 2 KŒx� W �.f / D 0 gi is a
binomial ideal. Write f 2 KŒx� for f DPt

iD1 fi , where fi 2 KŒx�, such that

• if monomials u and v belong in supp.fi /, then �.u/ D �.v/;
• if u 2 supp.fi / and v 2 supp.fj / with i ¤ j , then �.u/ ¤ �.v/.
Now, we write fi D Psi

jD1 cij uij , where 0 ¤ cij 2 K and where each uij is
a monomial. Since �.uij / D �.uik/ for all j and k, it follows that �.fi / D
.
Psi

jD1 cij /�.ui1/. Hence

�.f / D
tX

iD1

0

@
siX

jD1
cij

1

A�.ui1/:

Recall that �.ui1/ ¤ �.ui 01/ if i ¤ i 0. Thus, if �.f / D 0, then
Psi

jD1 cij D 0

for all 1 � i � t . Since ci1 D �Psi
jD2 cij , it follows that

fi D
siX

jD2
cij .uij � ui1/:

Since �.uij � ui1/ D �.uij / � �.ui1/ D 0, Lemma 1.5.8 says that the degree
of uij and that of ui1 coincide. Hence the ideal hf f 2 KŒx� W �.f / D 0 gi is
generated by those binomials u � v with �.u/ D �.v/.

(Second Step) If f D Qn
jD1 x

cj
j �

Qn
jD1 x

dj
j is a binomial, then

�.f / D
nY

jD1
tcj aj �

nY

jD1
tdj aj :

Thus

�.f / D t
Pn
jD1 cj aj � t

Pn
jD1 dj aj :

Hence �.f / D 0 if and only if

nX

jD1
cj aj �

nX

jD1
djaj D 0:

In other words, one has �.f / D 0 if and only if
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2

6664

c1
c2
:::

cn

3

7775 �

2

6664

d1
d2
:::

dn

3

7775 2 KerZA:

Hence a binomial belongs to the binomial ideal hf f 2 KŒx� W �.f / D 0 gi if
and only if it belongs to the toric ideal IA.

ut
In order to define the toric ring, we employ monomials with allowing negative

powers. However, we can avoid negative powers.

Lemma 1.5.10. Given a configuration matrix A D Œa1; a2; : : : ; an� 2 Zd�n, there
is a 2 Zd such that the matrix

B D Œa1 C a; a2 C a; : : : ; an C a�

is a configuration matrix with nonnegative entries. Moreover, the toric ideal IA of
A coincides with the toric ideal IB of B .

Proof. Since A is a configuration matrix, there is c 2 Rd with aj � c D 1 for each
1 � j � n. Choose an adequate vector a 2 Zd such that each entry of the matrix
B is a nonnegative integer. We may assume that a � c ¤ �1. (In fact, if a � c D �1,
then, for a vector a0 2 Zd with nonnegative components, one has .aC a0/ � c ¤ �1.)
Let

r D 1

1C a � c :

Then

.aj C a/ � rc D 1; 1 � j � n:
Thus the matrix B 2 Zd�n is a configuration matrix.

Now, if a vector b D Œb1; b2; : : : ; bn�
> 2 Zn satisfies b1 C b2 C � � � C bn D 0,

then

Bb �Ab D .b1 C b2 C � � � C bn/a D 0:

Thus Lemma 1.5.3 says that IA D IB , as required. ut
A technique based on Corollary 1.4.2 to compute the toric ideal of a configuration

matrix is now introduced.
Let A D Œa1; a2; : : : ; an� 2 Zd�n be a configuration matrix each of whose entries

is nonnegative. Let

KŒx; t� D KŒx1; x2; : : : ; xn; t1; t2; : : : ; td �
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be the polynomial ring in .nC d/ variables and define the ideal JA ofKŒx, t� by

JA D hx1 � ta1 ; x2 � ta2 ; : : : ; xn � tani:

Lemma 1.5.11. The toric ideal IA � KŒx� of A is equal to the intersection of the
ideal JA � KŒx; t� andKŒx�, i.e.,

IA D JA \KŒx�:

Proof. If a polynomial f D f .x1; x2; : : : ; xn/ 2 KŒx� belongs to IA,
then �.f / D 0. Thus f .ta1 ; ta2 ; : : : ; tan/ D 0. Then, since

f ..x1 � ta1 /C ta1 ; .x2 � ta2 /C ta2 ; : : : ; .xn � tan/C tan/ 2 JA;

it follows that f 2 JA \KŒx�. Hence IA � JA \KŒx�.
On the other hand, if a polynomial f D f .x1; x2; : : : ; xn/ 2 KŒx� belongs to JA,

then there exist polynomials g1; g2; : : : ; gn belonging to KŒx; t� such that

f .x1; x2; : : : ; xn/ D g1.x; t/.x1 � ta1/C � � � C gn.x; t/.xn � tan/:

Then �.f / D f .ta1 ; ta2 ; : : : ; tan/ D 0. Thus f 2 IA. Hence JA \KŒx� � IA. ut
Let <purelex denote the pure lexicographic order on KŒx; t� induced by the

ordering

t1 > t2 > � � � > td > x1 > x2 > � � � > xn
and compute the reduced Gröbner basis Gred.JAI<purelex/ of JA with respect to
<purelex. Corollary 1.4.2 then guarantees that Gred.JAI<purelex/\KŒx� is the reduced
Gröbner basis of IA with respect to <purelex. In particular Gred.JAI<purelex/ \ KŒx�
is a system of generators of IA.

Example 1.5.12. By using the above technique, we compute the toric ideal of the
configuration matrix

A D
�
0 1 2 3

1 1 1 1

�
:

Let KŒx; t� be the polynomial ring in the variables x1; x2; x3; x4; t1; t2 and <purelex

the pure lexicographic order onKŒx; t� induced by the ordering

t1 > t2 > x1 > x2 > x3 > x4:

The reduced Gröbner basis Gred.JAI<purelex/ of the ideal

JA D hx1 � t2; x2 � t1t2; x3 � t21 t2; x4 � t31 t2i
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of KŒx; t � with respect to <purelex is

fx2x4 � x23 ; x1x4 � x2x3; x1x3 � x22 ; t2 � x1; t1x3 � x4; t1x2 � x3; t1x1 � x2g:

Thus it follows from Corollary 1.4.2 that

fx2x4 � x23 ; x1x4 � x2x3; x1x3 � x22g

is the reduced Gröbner basis of the toric ideal IA with respect to <purelex.

Problem 1.5.13. Imitating the discussion of Example 1.5.12, compute a system of
generators of the toric ideal of the configuration matrix

A D
2

4
4 0 0 2 1 1

0 4 0 1 2 1

0 0 4 1 1 2

3

5 :

1.6 Residue Class Rings and Hilbert Functions

After the foundation of residue class rings of the polynomial ring is studied,
Macaulay’s theorem on initial ideals follows and Hilbert functions are introduced.

1.6.1 Residue Classes and Residue Class Rings

Let KŒx� D KŒx1; x2; : : : ; xn� be the polynomial ring in n variables over K and I
an ideal of KŒx� with I ¤ KŒx�. Given a polynomial f 2 KŒx�, we write Œf � for

f C I D ff C g W g 2 I g .� KŒx�/:

Since 0 2 I , it follows that f D f C 0 2 f C I . Thus f 2 Œf �. We call Œf � a
residue class ofKŒx� modulo I . In particular I D Œ0� is a residue class. In addition,
one has Œf � D I if and only if f 2 I .

Lemma 1.6.1. Let f and g be polynomials belonging to KŒx�. If Œf � \ Œg� ¤ ;,
then Œf � D Œg�.
Proof. Let h 2 Œf � \ Œg�. Then there exist f1; g1 2 I with h D f C f1 D g C g1.
Since f � g D g1 � f1 2 I , one has .g1 � f1/C I D I . Hence

f C I D g C .g1 � f1/C I D g C ..g1 � f1/C I / D g C I;

as desired. ut



42 T. Hibi

Lemma 1.6.2. Let f and g be polynomials belonging to KŒx�. Then the following
conditions are equivalentW

(i) Œf � D Œg�I
(ii) g 2 Œf �I

(iii) f � g 2 I .

Proof. Suppose (i). Since g 2 Œg�, one has g 2 Œf �. Thus (ii) follows. Suppose
(ii). There is h 2 I with g D f C h. Hence f � g D �h 2 I . Thus (iii) follows.
Finally, suppose (iii). If f � g 2 I , then

f C I D .g C .f � g//C I D g C ..f � g/C I / D gC I:

Thus (i) follows. ut
Let Œf � and Œg� be residue classes. Then we define Œf �C Œg� by setting

Œf �C Œg� D fp C q W p 2 Œf �; q 2 Œg�g (1.14)

and Œf �Œg� by setting

Œf �Œg� D fpq W p 2 Œf �; q 2 Œg�g: (1.15)

Lemma 1.6.3. If Œf � and Œg� are residue classes, then

Œf �C Œg� D Œf C g�; Œf �Œg� � Œfg�:

Proof. Since I C I D I , it follows that

Œf �C Œg� D .f C g/C .I C I / D .f C g/C I D Œf C g�:

Since f I D ff h W h 2 I g � I and I 2 D fpq W p; q 2 I g � I , it follows that

Œf �Œg� D fg C f I C gI C I 2 � fg C I D Œfg�;

as desired. ut
Corollary 1.6.4. Let Œf �; Œf0�; Œg� and Œg0� be residue classes. If Œf � D Œf0� and
Œg� D Œg0�, then

Œf C g� D Œf0 C g0�; Œfg� D Œf0g0�:

Proof. The right-hand side of the definition (1.14) is the set of the sum of each
element belonging to Œf � and each element belonging to Œg�. The right-hand side of
the definition (1.15) is the set of the product of each element belonging to Œf � and
each element belonging to Œg�. Hence if Œf � D Œf0�; Œg� D Œg0�, then it is clear that
Œf �C Œg� D Œf0�C Œg0� and Œf �Œg� D Œf0�Œg0�.
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Lemma 1.6.3 says that Œf �C Œg� D Œf C g� and Œf0�C Œg0� D Œf0 C g0�. Thus
one has Œf C g� D Œf0 C g0�.

Lemma 1.6.3 says that Œf �Œg� � Œfg� and Œf0�Œg0� � Œf0g0�. Thus in particular
Œfg� \ Œf0g0� ¤ ;. Hence, by using Lemma 1.6.1, one has Œfg� D Œf0g0�. ut

Problem 1.6.5. Deduce Corollary 1.6.4 from Lemma 1.6.2.

The residue class decomposition of KŒx� modulo I is a set of residue classes
fT� W � 2 �g of KŒx� modulo I such that

• if � ¤ �, then T� \ T� D ;;
• KŒx� D S�2� T�.

Lemma 1.6.1 says that the residue class decomposition of KŒx� modulo I exists
uniquely. It is denoted byKŒx�=I . If we choose an element f� of each residue class
T�, then Lemma 1.6.2 says that T� D Œf��. Hence

KŒx�=I D fŒf�� W � 2 �g:
We then call ff� W � 2 �g a complete system of representatives of the residue class
decomposition of KŒx� modulo I .

Lemma 1.6.3 guarantees that if T�; T� 2 KŒx�=I , then there exist a unique � 2 �
and a unique � 2 � such that

T� C T� D T�; T�T� � T�:
Thus we can define the sumCKŒx�=I and the product �KŒx�=I in KŒx�=I by setting

T� CKŒx�=I T� D T�; T� �KŒx�=I T� D T�:

Example 1.6.6. Let I D hx2CxC1i be an ideal of the polynomial ringKŒx� in one
variable. Let f .x/ 2 KŒx� and divide f .x/ by x2 C x C 1. Let q.x/ be its quotient
and axCb its remainder, where a; b 2 K . Thus f .x/ D .x2CxC1/q.x/C.axCb/.
Since .x2 C x C 1/q.x/ 2 I , it follows that

f .x/C I D .ax C b/C ..x2 C x C 1/q.x/C I / D .ax C b/C I
Thus Œf .x/� D Œax C b�. Since the degree of each nonzero polynomial belonging
to I is bigger than or equal to 2, for residue classes Œax C b� and Œa0x C b0�, where
a; b; a0; b0 2 K , one has .axCb/�.a0xCb0/ 2 I if and only if axCb D a0xCb0.
It then follows from Lemma 1.6.2 that if ax C b ¤ a0x C b0, then Œax C b� ¤
Œa0x C b0�. Let Ta;b D Œax C b�. Then fTa;b W a; b 2 Kg is the residue class
decomposition ofKŒx�modulo I . In other words, faxCb W a; b 2 Kg is a complete
system of representatives of the residue class decomposition of KŒx� modulo I .
In order to compute the sum CKŒx�=I and the product �KŒx�=I , we must find residue
classes Tc;d and Tc0;d 0 such that

Ta;b C Ta0;b0 D Tc;d ; Ta;b � Ta0;b0 � Tc0;d 0 :
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Lemma 1.6.3 says that

Tc;d D Œ.aC a0/x C .b C b0/� D TaCa0;bCb0 ; Tc0;d 0 D Œ.ax C b/.a0x C b0/�:

Thus the remainder obtained by dividing

.ax C b/.a0x C b0/ D aa0x2 C .ab0 C a0b/x C bb0

by x2C xC 1 is c0xC d 0. For example, in order to compute T1;�1 �KŒx�=I T2;3, since
the remainder obtained by dividing .x � 1/.2xC 3/ D 2x2 C x � 3 by x2 C x C 1
is �x � 5, one has T1;�1 �KŒx�=I T2;3 D T�1;�5.

Example 1.6.7. Apart from the discussion of the residue class decomposition of the
polynomial ring, we briefly explain the residue class decomposition of the set of
integers. Fix an integer n > 0 and write Ti , where i D 0; 1; : : : ; n� 1, for the set of
those integers q such that i is the remainder obtained by dividing q by n. Thus

Ti D fi C na W a 2 Zg:

If i ¤ j , then Ti \ Tj D ;. Moreover,

Z D
n�1[

iD0
Ti

Now, we define Ti C Tj and Ti � Tj by setting

Ti C Tj D faC b W a 2 Ti ; b 2 Tj g;

Ti � Tj D fab W a 2 Ti ; b 2 Tj g:

It then follows that there exist a unique k and a unique ` such that

Ti C Tj D Tk; Ti � Tj � T`:

In fact, k is the remainder obtained by dividing i C j by n and ` is the remainder
obtained by dividing ij by n. Thus in the finite set Zn D fT0; T1; : : : ; Tn�1g, we can
define the sumCZn and the product �Zn by setting

Ti CZn Tj D Tk; Ti �Zn Tj D T`:

The reader can understand the similarities between the residue class decomposition
of KŒx�, which is explained in Example 1.6.6, and that of Z.
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Let I be an ideal of KŒx� and fg1; g2; : : : ; gsg the reduced Gröbner basis of I
with respect to a monomial order onKŒx�. Let f 2 KŒx� and f 0 a unique remainder
of f with respect to g1; g2; : : : ; gs . Since f � f 0 2 I , it follows that the residue
class Œf � coincides with Œf 0�. If g0 is the remainder of g 2 KŒx� and if f 0 ¤ g0, then
f 0 � g0 62 I . Thus Œf 0� ¤ Œg0�. In fact, since f � f 0 2 I and g � g0 2 I , it follows
that .f � g/� .f 0 � g0/ 2 I . Thus if f 0 � g0 2 I , then f � g 2 I . Corollary 1.2.5
then says that the remainder of f � g is 0. Since f 0 � g0 is the remainder of f � g,
one has f 0 � g0 D 0.

In other words, if ff� W � 2 �g is the set of those f 0 2 KŒx� such that f 0
can be obtained as the remainder of a polynomial belonging to KŒx� with respect
to g1; g2; : : : ; gs , then ff� W � 2 �g is a complete system of representatives of the
residue class decomposition of KŒx�=I .

In KŒx�=I D fŒf�� W � 2 �g, the computation of the sum CKŒx�=I and
the product �KŒx�=I can be achieved with imitating the technique explained in
Example 1.6.6. In general, if �; � 2 �, then f�Cf� can be obtained as a remainder,
but f�f� is not necessarily obtained as a remainder. Thus

Œf��CKŒx�=I Œf�� D Œf� C f��;

Œf�� �KŒx�=I Œf�� D Œ.f�f�/0�;
where .f�f�/0 is the remainder of f�f�.

Example 1.6.8. Let n D 7. The residue class decomposition of KŒx1; x2; : : : ; x7�
by the ideal I D hf; gi, where f D x1x4 � x2x3 and g D x4x7 � x5x6, is studied.
Recall from Example 1.3.5 together with Example 1.3.6 that ff; gg is the reduced
Gröbner basis of I with respect to the reverse lexicographic order <rev and that
ff; g; hg, where h D x1x5x6 � x2x3x7, is the reduced Gröbner basis of I with
respect to the lexicographic order<lex. With using each of<rev and<lex, each of the
monomials x1x7 and x24 can be obtained as a remainder. Now, .x1x7/.x24/ can be a
remainder with using <rev, but cannot be a remainder with using <lex. In fact, since

.x1x7/.x
2
4/ D .f � x2x3/.g � x5x6/ D .g � x5x6/f � x2x3g C x2x3x5x6;

the remainder of .x1x7/.x24/ is x2x3x5x6. Hence if we use <rev, then

Œx1x7� �KŒx�=I Œx24 � D Œx1x24x7�:
If we use <lex, then

Œx1x7� �KŒx�=I Œx24 � D Œx2x3x5x6�:
However, the product �KŒx�=I depends only on I and is independent from a monomial
order. In fact, since

x1x
2
4x7 � x2x3x5x6 D x1x4g C x5x6f 2 I;
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one has Œx1x24x7� D Œx2x3x5x6�. Consequently, if we employ the set of remainders
with respect to (the polynomials belonging to) the reduced Gröbner basis as a
complete system of representatives of the residue class decomposition, then it occurs
that different monomial orders yield different complete systems of representatives.

The sum CKŒx�=I and the product �KŒx�=I in KŒx�=I are analogues of those in
KŒx�. With emphasizing the algebraic structure with the sum and the product, we
call KŒx�=I the residue class ring of KŒx� modulo I .

1.6.2 Macaulay’s Theorem

In this subsection, with assuming that the reader is familiar with linear algebra, we
introduce Macaulay’s theorem on initial ideals.

Fix a monomial order < on KŒx� D KŒx1; x2; : : : ; xn�. Let I be an ideal of KŒx�
with I ¤ KŒx� and in<.I / the initial ideal of I with respect to <. A monomial
w 2 KŒx� is called standard with respect to in<.I / if w 62 in<.I /.

Let fT� W � 2 �g be the residue class decomposition ofKŒx�modulo I . If a 2 K
and T� is a residue class, then the scalar product a T� is defined by Œa� �KŒx�=I T�.
Then the residue class ring KŒx�=I is a vector space over K with the sum CKŒx�=I
and the scalar product.

Theorem 1.6.9 (Macaulay). Fix a monomial order< onKŒx� D KŒx1; x2; : : : ; xn�.
Let I be an ideal ofKŒx�with I ¤ KŒx� and in<.I / the initial ideal of I with respect
to <. Then

B D fŒw� 2 KŒx�=I W w is a monomial with w 62 in<.I /g
is a K-basis of the vector space KŒx�=I over K .

Proof. Let Gred.I I</ D fg1; g2; : : : ; gsg denote the reduced Göbner basis of I
with respect to < and ff� W � 2 �g the set of those polynomials f 0 2 KŒx�
such that f 0 can be obtained as the remainder of a polynomial f with respect to
g1; g2; : : : ; gs . Let KŒx�=I D fŒf�� W � 2 �g. Since f� is a remainder, it follows
that each monomial belonging to the support of f� ¤ 0 is standard. Let f� D
a1w1C a2w2C � � �C atwt , where each wi is a standard monomial and each ai 2 K .
Then in KŒx�=I one has

Œf�� D a1Œw1�C a2Œw2�C � � � C af Œwt �:
Hence KŒx�=I is spanned by B overK .

Now, we show that B is linearly independent. Let u1; u2; : : : ; u` be standard
monomials with u1 < u2 < � � � < u` and b1; b2; : : : ; b` nonzero elements belonging
to K . Suppose that

b1Œu1�C b2Œu2�C � � � C b`Œu`� D Œ0�:
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Then Œ
P`

iD1 biui � D Œ0�. Thus
P`

iD1 biui 2 I . Hence the initial monomial u` ofP`
iD1 biui belongs to in<.I /. This contradict the fact that u` is standards. ut
In general, an ideal I of KŒx� is called a 0-dimensional ideal if the dimension

of the vector space KŒx�=I over K is finite. By virtue of Theorem 1.6.9 an ideal
I � KŒx� is 0-dimensional if and only if the number of standard monomials with
respect to in<.I / is finite.

1.6.3 Hilbert Functions

We now turn to the discussion of the residue class ring of KŒx� D KŒx1; x2; : : : ; xn�
modulo an ideal generated by homogeneous polynomials. A homogeneous ideal is
an ideal which is generated by homogeneous polynomials.

Lemma 1.6.10. Let f 2 KŒx� be a polynomial of degree d and

f D f .0/ C f .1/ C � � � C f .d/;

where each f .j / 2 KŒx� is a homogeneous polynomial of degree j . Suppose that f
belongs to a homogeneous ideal I of KŒx�. Then each f .j / belongs to I .

Proof. Suppose that I is generated by homogeneous polynomials g1; g2; : : : ; gs .
Let di be the degree of gi . If f 2 I , then there exist polynomials h1; h2; : : : ; hs
with

f D h1g1 C h2g2 C � � � C hsgs: (1.16)

Each hk can be expressed as

hk D h.0/k C h.1/k C � � � C h.ek/k ;

where ek is the degree of hk and h.j /k is a homogeneous polynomial of degree j .
Comparing the homogeneous polynomials of degree j appearing in the both sides
of the equality (1.16), it follows that

f .j / D
sX

iD1
h
.j�di /
i gi :

Hence f .j / 2 I , as desired. ut
Lemma 1.6.11. The reduced Gröbner basis of a homogeneous ideals of KŒx� with
respect to a monomial order consists of homogeneous polynomials.
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Proof. If f and g are homogeneous polynomials, then its S -polynomial S.f; g/ is
again a homogeneous polynomial. On the other hand, the division algorithm says
that a remainder f 0 of a homogeneous polynomial f with respect to homogeneous
polynomials g1; g2; : : : ; gs is again a homogeneous polynomial. Then Buchberger
algorithm guarantees that a homogeneous ideal possesses a Gröbner basis consisting
of homogeneous polynomials. Now, the required result follows immediately from
the proof of Theorem 1.2.6. ut

Let I be a homogeneous ideal of KŒx� D KŒx1; x2; : : : ; xn� and fg1; g2; : : : ; gsg
the reduced Gröbner basis of I with respect to a monomial order. Let, as before,
f f� W � 2 � g denote the set of those polynomials f 0 2 KŒx� such that f 0 can be
obtained as the remainder of a polynomial f 2 KŒx� with respect to g1; g2; : : : ; gs .
We recall that f f� W � 2 � g is a complete system of representatives of the residue
class decomposition of KŒx� modulo I .

Given an integer j � 0, we write .KŒx�=I /j for the subspace

f Œf�� 2 KŒx�=I W f� is a homogeneous polynomial of degree j g

of the vector spaceKŒx�=I .

Lemma 1.6.12. If i ¤ j , then

.KŒx�=I /i \ .KŒx�=I /j D fŒ0�g:

Proof. Let �; � 2 �. Let f� be a homogeneous polynomial of degree i and f� that
of degree j . If Œf�� D Œf��, then f� � f� 2 I . Since I is a homogeneous ideal, it
follows from Lemma 1.6.10 that f� 2 I and f� 2 I . Hence Œf�� D Œf� � D Œ0�, as
desired. ut
Lemma 1.6.13. The residue class ring KŒx�=I is the direct sum

KŒx�=I D
1M

jD0
.KŒx�=I /j

of the subspaces .KŒx�=I /j with j D 0; 1; 2; : : : as a vector space overK . In other
words, each element Œf�� of KŒx�=I can be expressed uniquely of the form

Œf�� D
1X

jD0
Œf�j �;

where Œf�j � 2 .KŒx�=I /j is Œ0� except for a finite number of j ’s.

Proof. Write f� of the form

f� D f .j1/

� C f .j2/

� C � � � C f .jd /

� ; j1 < j2 < � � � < jd ;
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where f .ji /

� is a homogeneous polynomial of degree ji . Since f� is a remainder

with respect to g1; g2; : : : ; gs , it follows that each f .ji /

� is again a remainder. Thus

Œf
.ji /

� � 2 .KŒx�=I /ji . Hence in KŒx�=I one has

Œf�� D Œf .j1/

� �C Œf .j2/

� �C � � � C Œf .jd /

� �:

Suppose that Œf�� possesses another expression

Œf�� D Œf�k1 �C Œf�k2 �C � � � C Œf�ke �; k1 < k2 < � � � < ke;

where Œf�k` � 2 .KŒx�=I /k` . Then in KŒx�=I one has

Œf
.j1/

� C f .j2/

� C � � � C f .jd /

� � D Œf�k1 C f�k2 C � � � C f�ke �:

It then follows from Lemma 1.6.2 that

.f
.j1/

� C f .j2/

� C � � � C f .jd /

� /� .f�k1 C f�k2 C � � � C f�ke /

belongs I . Since I is a homogeneous ideal, by using Lemma 1.6.10, if ji D k`,
then f .ji /

� � f�k` 2 I . Then in KŒx�=I one has Œf .ji /

� � D Œf�k` �. In particular if

ji 62 fk1; k2; : : : ; keg, then f .ji /

� 2 I . Hence in KŒx�=I one has Œf .ji /

� � D Œ0�. ut
Lemma 1.6.14. As a K-basis of .KŒx�=I /j , we can choose

Bj D fŒw� 2 KŒx�=I W w is a monomial of degree j with w 62 in<.I /g:

In particular, the vector space .KŒx�=I /j is of finite dimension.

Proof. In the proof of Theorem 1.6.9, assuming f� is a homogeneous polynomial
of degree j , it follows that the subspace .KŒx�=I /j is spanned by Bj . Since B is
linearly independent, its subset Bj is again linearly independent. ut

Let H.KŒx�=I I j / denote the dimension of the vector space .KŒx�=I /j over K .
We say that the function H.KŒx�=I I j /, j D 0; 1; 2; : : :, is the Hilbert function of
KŒx�=I . In particular, since I ¤ KŒx�, one hasH.KŒx�=I I 0/ D 1.

Theorem 1.6.15. Let < be a monomial order on KŒx� and I ¤ KŒx� a homoge-
neous ideal of KŒx�. Then the Hilbert function H.KŒx�=I I j / of KŒx�=I is equal to
the number of standard monomials of degree j with respect to in<.I /.

Proof. The result follows immediately from Lemma 1.6.14. ut

Example 1.6.16. Let n D 2. We compute the Hilbert function of the residue class
ring KŒx; y�=I of KŒx; y� modulo the ideal I D hx2 C y2; x3i. Since in<lex.I / D
hx2; xy2; y4i, the standard monomials with respect to in<lex.I / are

1; x; y; xy; y2; y3:
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Thus the sequence fH.KŒx; y�=I I i/g1iD0 is

1; 2; 2; 1; 0; 0; 0; : : :

and I is a 0-dimensional ideal.

Corollary 1.6.17. Let < be a monomial order on KŒx� and I ¤ KŒx� a homo-
geneous ideal of KŒx�. Then the Hilbert function of KŒx�=I coincides with that of
KŒx�=in<.I /.

Proof. In general, since in<.I / D in<.in<.I //, it follows that a monomial w 2
KŒx� is standard with respect to in<.I / if and only if w is standard with respect to
in<.in<.I //. Theorem 1.6.15 says that H.KŒx�=I I j / coincides with the number of
standard monomials of degree j with respect to in<.I /. Hence H.KŒx�=I I j / D
H.KŒx�=in<.I /I j / for all j , as desired. ut
Example 1.6.18. Again, we study the ideal I D hf; gi, where f D x1x4�x2x3 and
g D x4x7�x5x6, ofKŒx1; x2; : : : ; x7� and compute the Hilbert function ofKŒx�=I .
By virtue of Theorem 1.6.15, the computation of the Hilbert function results in
enumerating the standard monomials. A monomial order can be chosen arbitrarily.
We work with a reverse lexicographic order. Its advantage is that the initial ideal is
relatively simple. Now, since in<rev.I / D hx2x3; x5x6i, a monomial of degree j

w D xa11 xa22 � � �xa77 ; a1 C a2 C � � � C a7 D j
is standard with respect to in<rev.I / if and only if w can be divided by neither x2x3
nor x5x6. Thus the standard monomials of degree j are

x
a1
1 x

1Ca3
3 x

a4
4 x

1Ca6
6 x

a7
7 ; a1 C a3 C a4 C a6 C a7 D j � 2;

x
a1
1 x

1Ca3
3 x

a4
4 x

1Ca5
5 x

a7
7 ; a1 C a3 C a4 C a5 C a7 D j � 2;

x
a1
1 x

1Ca2
2 x

a4
4 x

1Ca6
6 x

a7
7 ; a1 C a2 C a4 C a6 C a7 D j � 2;

x
a1
1 x

1Ca2
2 x

a4
4 x

1Ca5
5 x

a7
7 ; a1 C a2 C a4 C a5 C a7 D j � 2;

x
a1
1 x

a4
4 x

1Ca6
6 x

a7
7 ; a1 C a4 C a6 C a7 D j � 1;

x
a1
1 x

a4
4 x

1Ca5
5 x

a7
7 ; a1 C a4 C a5 C a7 D j � 1;

x
a1
1 x

1Ca3
3 x

a4
4 x

a7
7 ; a1 C a3 C a4 C a7 D j � 1;

x
a1
1 x

1Ca2
2 x

a4
4 x

a7
7 ; a1 C a2 C a4 C a7 D j � 1;

x
a1
1 x

a4
4 x

a7
7 ; a1 C a4 C a7 D j:

A routine work shows that the number of these monomials is

4

 
j C 2
j � 2

!
C 4

 
j C 2
j � 1

!
C
 
j C 2
j

!
: (1.17)

Hence the Hilbert functionH.KŒx�=I In/ coincides with the formula (1.17).
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Problem 1.6.19. By enumerating the standard monomials with respect to the initial
ideal in<lex.I /, compute the Hilbert functionH.KŒx�=I In/ of Example 1.6.18.

1.7 Historical Background

In this section, we will briefly survey the historical background of Gröbner bases
and provide some fundamental references.

In the middle of 1960s, the Gröbner basis was introduced independently by
Hironaka [14] and Buchberger [5]. Hironaka came up with the idea of standard
bases in the process of solving the outstanding problem in algebraic geometry, the
resolution of singularities of algebraic varieties. On the other hand, Buchberger
created Gröbner bases for his dissertation for which the research topic had been
given by his advisor Wolfgang Gröbner. The topic seems to be the problem of
creating a technique which enables us to find explicitly a set of monomials which
is a K-basis of the residue class ring of the polynomial modulo a 0-dimensional
ideal. Hironaka’s standard bases work in the local ring, while Buchberger’s Gröbner
bases work in the polynomial ring. There is no essential difference between the idea
of standard bases and that of Gröbner bases. However, it must be an obvious fact
that Buchberger criterion and Buchberger algorithm opened the fascinating research
area called computer algebra in the modern algebra.

Looking further back in the history, the idea of Gröbner bases with respect
to the reverse lexicographic order already appeared in the famous paper [15] by
Macaulay in 1927. Macaulay studied the problem of finding a characterization
of the Hilbert functions of residue class rings of the polynomial ring modulo
homogeneous ideals. Macaulay discovered the fundamental fact that the Hilbert
function of the residue class ring of a homogeneous ideal coincides with that
of its initial ideal (Corollary 1.6.17). It then follows that his original problem
resulted in the enumerative problem on counting monomials, which we discussed in
Example 1.6.18. Macaulay’s work stimulated the study on enumerative combina-
torics on monomials and promoted the birth of the active area called commutative
algebra and combinatorics, which originated in Stanley’s work [24]. See [13, 25].

After the pioneer works of Hironaka and Buchberger, Gröbner bases had not
been in the limelight for about 20 years. However, a turning point occurred in the
middle of 1980s, when David Bayer and Michael Stillman developed the computer
software, named Macaulay, which has a great influence on commutative algebra
and algebraic geometry. Since Gröbner bases were indispensable for developing the
software Macaulay, Gröbner bases became common knowledge for researchers on
commutative algebra and algebraic geometry. This can be the first breakthrough in
the progress of Gröbner bases.

The entry of Gröbner bases into the world of applied mathematics was achieved
by Conti and Traverso [6], where an algebraic algorithm to solve problems of integer
programming by means of Gröbner bases is proposed. Conti–Travelso algorithm is
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studied in, e.g., [8]. We briefly discuss Conti–Travelso algorithm by using a simple
example. Let Z�0 denote the set of nonnegative integers. We consider the problem
on integer programming of the standard type

minfc � z W Az D b; z 2 Z5�0g;

where z D Œz1; z2; z3; z4; z5�>, c D Œ0; 1; 0; 1; 1�, b D Œ25; 34; 18�>, and where

A D
2

4
1 1 1 1 1

0 1 2 1 0

0 0 1 2 1

3

5 :

In other words, the problem is to find a vector z 2 Z5�0 with Az D b which
minimizes c � z. The vector c is called a cost vector and a vector z satisfying
the condition Az D b is called a feasible solution. A feasible solution z which
minimizes c � z is called an optimal solution. For the sake of convenience we assume
that the matrix A is a configuration matrix and each component of c is nonnegative.
The toric ideal of A is

IA D hx2x25 � x21x4; x2x4 � x3x5; x22x5 � x21x3i:

By using the cost vector c we introduce the monomial order <c, which is discussed
in Example 1.1.13. The reduced Gröbner basis of IA with respect to <c is

G D fx3x35 � x21x24; x2x25 � x21x4; x2x4 � x3x5; x22x5 � x21x3g:

We then choose an arbitrary feasible solution, say, Œ1; 10; 10; 4; 0�> and associate
it with the monomial w D x1x

10
2 x

10
3 x

4
4 . The remainder of w with respect to the

binomials belonging to G is x71x
17
3 x5. It then turns out that the vector Œ7; 0; 17; 0; 1�>

associated with x71x
17
3 x5 is one of the optimal solutions.

Toric ideals were spread rapidly under the great influence of Sturmfels [26].
As one of the effective techniques to compute the dimension of the solution
space of a hypergeometric equation, Gel’fand et al. [11] introduced the notion of
regular triangulations. In [26] it is shown that the Stanley–Reisner ring of a regular
triangulation is just the radical ideal of the initial ideal of a toric ideal. As a result,
toric ideals turned out to be a bridge between the theory of monomial ideals [12]
and the theory of triangulations of convex polytopes, and the algebraic theory of
triangulations of convex polytopes was developed quickly. This can be the second
breakthrough in the progress of Gröbner bases. In this algebraic frame of convex
polytopes, one of the most important results is the discovery of an example of a
convex polytope for which neither any triangulation the number of whose simplices
is smallest nor any triangulation the number of whose simplices is biggest is regular
[18]. We refer the reader to Chap. 5 for the topics on toric ideals, Gröbner bases and
convex polytopes.
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In commutative algebra, in connection with so-called Koszul algebras, a toric
ideal generated by quadratic binomials is important. If a toric ring is Koszul, then its
toric ideal is generated by quadratic binomials. In addition, if the toric ideal of a toric
ring possesses a Gröbner basis consisting of quadratic binomials, then the toric ring
is Koszul. With considering this background, to find a non-Koszul toric ring whose
toric ideal is generated by quadratic binomials as well as to find a Koszul toric ring
whose toric ideal possesses no Gröbner basis consisting of quadratic binomials had
been a pending problem. Both examples were constructed independently by Ohsugi
and Hibi [19] and Roos and Sturmfels [22].

The study of Gröbner bases in the ring of differential operators started gradually
in the 1980s. A dramatic breakthrough was done by Oaku [16,17], where, based on
Buchberger algorithm, new and effective algorithms on D-modules were created.
Since regular triangulations originated in the study of hypergeometric equations,
the algebraic development of toric ideals naturally had the great influence on the
study of hypergeometric equations. The textbook [23] published in 2000, in which
the authors focus distinguished results on algorithms on D-modules together with
computational and algebraic results on toric ideals, established a new method on the
study of hypergeometric equations and succeeded in making a new trend for further
research on hypergeometric equations.

An epoch-making application of Gröbner bases to statistics is originated in the
paper [9] by Diaconis and Sturmfels. In the examination of a statistical model, when
we achieve Markov chain Monte Carlo method, to find a Markov basis is required.
In [9], it is shown that a Markov basis corresponds to a system of generators of
the toric ideal arising from a statistical model. Hence the technique explained in
Example 1.5.12 enables us to find a Markov basis of a statistical model. Later the
new and exciting research area called algebraic statistics was born and it has been
developing rapidly. This can be the third breakthrough in the progress of Gröbner
bases. Algebraic statistics supplies commutative algebra with new problems [2,21].
Conversely, toric ideals studied in commutative algebra supply algebraic statistics
with new statistical models [3,20]. The interrelationship between algebraic statistics
and commutative algebra is worth studying hardly. We refer the reader to Chap. 4
for the detailed study on algebraic statistics.

As standard textbooks on Gröbner bases, we recommend [1,4,7]. In the frame of
commutative algebra, the generic initial ideal is indispensable, which is extensively
studied in [10, 12].
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Chapter 2
Warm-Up Drills and Tips for Mathematical
Software

Tatsuyoshi Hamada

Abstract In Chap. 1, we studied the basic theory of Gröbner bases. Our goal is to
use mathematical software to further our research. In this chapter, we will begin with
warm-up drills in order to learn the basic ideas necessary for using mathematical
software. We will use MathLibre, a mathematical software environment. It is a
collection of mathematical software and free documents which form a kind of Live
Linux system. The Linux operating system is compatible with UNIX, and many
mathematical research systems have been developed on a UNIX system. It is thus
important to know the command line interface, Emacs editor, and the fundamental
ideas of the UNIX environment. If you are already familiar with this environment,
you can skip this chapter; otherwise, please try and enjoy the world of MathLibre.

2.1 Using MathLibre

We now introduce MathLibre, a mathematical software execution environment.
MathLibre is a kind of Linux operating system that boots from a DVD. Linux is
a UNIX-compatible computer environment used for education and research. Math-
Libre includes over 100 mathematical software systems that have been developed
all over the world. Once MathLibre has been booted, the mathematical software is
immediately available for anyone to try.
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2.1.1 How to Get MathLibre

In the following, we will assume the computer environment is a PC with a Microsoft
Windows operating system. MathLibre [4] is an open-source project that can be
downloaded from the Internet.1 The DVD-R has about four gigabytes of data, and
it will take over 30 min to download it. It contains the ISO image file, which, when
burned to a DVD, will produce a DVD-bootable version of MathLibre. On your
computer, please double-click the icon for the DVD drive; we will find some folders
and files in the Explorer window. If there is only one file on the DVD, then it is
necessary to reconfigure the DVD burning software and rewrite the ISO image.

2.1.2 How to Boot and Shut Down MathLibre

After successfully making and rebooting the MathLibre DVD, we can find the
penguin icon. Press the Enter key and, after a display of the boot-sequence
messages, the desktop environment of MathLibre will be displayed. In some cases,
it will reboot Windows; if this is the case, the BIOS settings need to be reconfigured.
When a PC is rebooted, the message “BIOS Setup” is briefly displayed. After
pressing the correct function key, usually <F2> or <F8>, we can find the “Boot”
menu in the BIOS configuration. By changing the order of booting, we can boot
from a DVD or a USB storage device. If you are not familiar with computers, consult
a specialist for help.

If you are using an Apple MacOS X computer with an Intel CPU, you can boot
from the DVD by using the “C” key.

2.1.3 Various Mathematical Software Packages

MathLibre includes many mathematical software packages, such as CoCoA,
GeoGebra, gfan, KSEG, Macaulay2, Maxima, Octave, Polymake, R, Risa/Asir,
Singular, surfex, Sage, and others. The applications introduced in this book show
only a subset of the mathematical abilities of MathLibre.

Select the Math menu from the start menu at the bottom left-hand side of the
screen, as you would do for Windows Start. Alternatively, double click the “Math
Software” icon; there is a collection of start-up icons for mathematical software
and a “MathLibre Start” button, which leads to an HTML file that contains short
introductions and links to the developers of the various software packages.

1http://www.mathlibre.org/.

http://www.mathlibre.org/
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2.2 File Manager

In this section, we introduce some of the basic management of files in MathLibre.

If you click on the PCManFM icon in the bottom panel (the lxpanel), a list of
files and folders will be displayed. This is the file manager, PCManFM. It is a tool
for moving, removing, and duplicating files and folders. It can also be used to start
applications (Fig. 2.1).

In the MathLibre Live system, /home/user is our home directory and user
is our username. The home directory is a special folder in which we can freely
make files and folders. Linux’s directory and Windows’ folder have almost the
same meaning. In a Linux environment such as MathLibre, the files and folders
are in a tree structure, such as the one shown in Fig. 2.2. In the figure, the folders
are represented by circles. The root of the tree structure is the root directory, and
it is represented by a slash mark /. Unlike Windows, there is no concept of C

Fig. 2.1 PCManFM

Fig. 2.2 Tree structure of MathLibre
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Fig. 2.3 Tree structure of MathLibre with PCManFM

or D drives. All files and directories exist under the root directory. There are,
however, multiple subdirectories branching from the root directory. A slash mark
/ is used to indicate the path connecting the directory with a subdirectory. This
creates the path of file systems. According to this rule, the home directory can
be seen as a subdirectory user of the subdirectory home in the root directory
/. We represent the location of the directory of interest from the root directory.
We call this representation the absolute pathname. Selecting “View! Side Panel
! Directory Tree” of the PCManFM menu displays the directory tree structure in
the side panel of the PCManFM window, as shown in Fig. 2.3.

Usually, the home directory /home/user is represented by a tilde ~. When
booting from the MathLibre DVD, a home directory is made on the main memory
of the PC. Please note that all the files in the home directory are removed when
the PC is shut down, but you can save your files on a USB flash drive. First, select
“Copy” from the menu, then select “View ! Side Panel ! Place”. Next, select
the location where you wish to save the file (either the hard disk drive or a USB
flash drive), right click, and select “Paste”. To move the file, choose “Cut” instead
of “Copy”. Alternatively, open two windows of PCManFM, and then you can drag
and drop the target file.

2.2.1 New Folder

To organize work files, you may create a new folder (directory), which is a kind of
file. To do so, select “Create New: : :! Folder:” from the context menu. You will
see the message, “Enter a name for the newly created folder:”. Type in the desired
name and click the OK button. Note that allowable characters for file and folder
names include letters, numbers, . (period), - (hyphenation), and _ (underline).
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Fig. 2.4 Leafpad

2.2.2 New Text File

When using mathematical software, it is often convenient to save commands or
scripts in a text file. A text file is structured as a sequence of lines of electronic text.2

To create a new text file, in the context menu of PCManFM, select “Create New: : :
! Blank File”. The message “Enter a name for the newly created file:” will be
displayed. Type in the name for the new file and click the OK button; a blank text
file with 0 bytes of data will be created.

Double click on the newly created file to launch MathLibre’s default text editor,
Leafpad. Leafpad is similar to Notepad of Windows; it is very simple and can be
used easily by anyone. Besides Leafpad, MathLibre contains other editors. Emacs
and vim are popular text editors for UNIX users. Emacs is not only an editor, but also
an environment for developing and computing. A lot of mathematical software uses
the Emacs interface, and in Sect. 2.6, we will introduce the Emacs with MathLibre.

Exercise 2.2.1. Make a text file add.txt. As shown in Fig. 2.4, type the charac-
ters 1C 2 and then click on the “Enter” key. Save this file to the home directory.

2.3 Terminal

Using MathLibre, we can take advantage of mathematical software that has been
developed around the world. In order to explore special research software, it is
helpful to know how to operate Linux, one of the UNIX-derived systems. It uses a
traditional method in which a command is input to the terminal by using a keyboard.
We will use the GNOME Terminal application. To begin, we launch the terminal

by single-clicking the third icon. When we open the terminal, we will see the
following:
� �

user@debian:~$
� �

2Text files have an important role in UNIX. If you want to learn more about it, we recommend
[2, 3].
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We call the phrase “user@debian:�$” the prompt. In the prompt, “~” is a
special symbol that indicates the home directory/home/user that we created with
PCManFM. Type a command after the prompt and then press Enter; the command
will be executed with the program shell. If the command has output, it will be
displayed on the terminal.

In this book, we will sometimes omit the prompt and represent it with only
$ or #. These prompts represent the general user mode and the system adminis-
tration mode, respectively. Since the system administration mode is unnecessary for
using mathematical software, please work in the general user mode.

2.3.1 Files and Directories

To obtain information about files and directories, use the command ls, which is an
abbreviation of the word “list”. In the following, we can see the directory Desktop
and text file add.txt which were made in an earlier exercise.
� �

user@debian:~$ ls
Desktop add.txt
� �

On the actual screen, directories are represented in blue and files are shown in
white. If we want to know more about a file, for example, its date or size, enter
the command with the “long” option: “-l”.
� �

user@debian:~$ ls -l
drwxr-xr-x 2 user user 4096 2011-01-29 11:14 Desktop
-rw-r--r-- 2 user user 4 2011-01-29 11:14 add.txt
� �

To facilitate our work, we will make the working directory in our home directory.
The command for making a directory is mkdir, which is an abbreviation of “make
directory”.
� �

user@debian:~$ mkdir tutorial
� �

After the command mkdir, type in the new directory name; in this case, it is
tutorial. The new name is the argument of the command mkdir. It is a
distinctive feature of the terminal that there is no message when we have made
a new directory. To verify the existence of a directory, use the command ls or
PCManFM.
� �

user@debian:~$ ls
Desktop add.txt tutorial
� �

At any time, the directory that we are working with is called the current working
directory. The current working directory is represented with one period “.”. When
we launch the terminal, the current working directory is the home directory. The
command for changing the current working directory is cd, which is an abbreviation
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Fig. 2.5 Parent and child
directories

of “change directory”. After typing in the command, type in the argument (the name
of the directory to which you want to move), and then execute the command.
� �

user@debian:~$ cd tutorial
user@debian:~/tutorial$
� �

It should be noted that the current working directory ˜/tutorial is included in
the prompt. ˜/tutorial is a subdirectory of our home directory, and it is also
called a child directory. If a directory contains a child directory, we call it a parent
directory, and we represent it with a double period “..”. Therefore, this command
will move from a child directory to its parent directory:
� �

user@debian:~/tutorial$ cd ..
user@debian:~$
� �

For example, if the starting point, the current working directory, is our home
directory /home/user, then using the absolute pathname will move us to the
directory /usr/local:
� �

user@debian:~$ cd /usr/local
user@debian:/usr/local$
� �

On the other hand, using the symbols for parent directory “..” and path /, we can
represent it like this (Fig. 2.5):
� �

user@debian:~$ cd ../../usr/local
user@debian:/usr/local$
� �

The location relative to our current working directory is called the
../../usr/local relative pathname. Whether to use the relative pathname or
the absolute pathname depends on the situation.

Using the command cd with no argument is a way to return quickly to our home
directory.
� �

user@debian:/usr/local$ cd
user@debian:~$
� �

And with “cd - ”, we can quickly go back to the previous directory.
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� �

user@debian:~/Desktop$ cd
user@debian:~$ cd -
user@debian:~/Desktop$
� �

2.3.2 Text Files

There are several commands for displaying text files: cat, more, less, and lv.
In this section, we introduce cat and less. If we set the text file name as the
argument of cat, the contents of the text file are displayed on the terminal. For
example, we will display the file which we made in Exercise 2.2.1.
� �

user@debian:~$ cat add.txt
1+2
� �

There is no problem when displaying a small file like add.txt, but if we want to
display a large file on the terminal, we will not be able to read it because the contents
will be streaming past. It is better to use the command less for displaying large
files. As an example, here is the file /etc/passwd.
� �

user@debian:~$ less /etc/passwd
root:x:0:0:root:/root:/bin/bash
daemon:x:1:1:daemon:/usr/sbin:/bin/sh
bin:x:2:2:bin:/bin:/bin/sh
...
� �

The command less is useful, and it allows us to choose our position in the contents
by using the space key and the cursor. We can search forward with / and backward
with ?. To end the display, enter q. We can read manuals with the man command;
this is important when learning Linux commands.

For example, to read the manual description of the command less, enter the
following:
� �

user@debian:~$ man less
� �

2.3.3 Input and Output

The command bc is a standard calculation tool in Linux. By using bc and the text
file “add.txt”, we can calculate the sum:
� �

user@debian:~$ bc < add.txt
3
� �
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In this situation, the less-than sign < is called a redirection. In UNIX systems, a
redirection allows us to choose a text file as input. Using the greater-than sign as a
redirection > allows us to output the result to a text file.
� �

user@debian:~$ bc < add.txt > answer.txt
user@debian:~$ ls
Desktop answer.txt add.txt
user@debian:~$ cat answer.txt
3
� �

With the output redirection >, we can use cat to make a new file. Note that ^D
means to simultaneously press the D key and the Ctrl key, Ctrl+D . It indicates the
end of the input data.
� �

user@debian:~$ cat > multi.txt
3*4
^D
user@debian:~$ ls
Desktop answer.txt add.txt multi.txt
user@debian:~$ cat multi.txt
3*4
user@debian:~$ bc < multi.txt
12
� �

2.3.4 Character Codes

In the previous subsection, when we input characters to text files, it is recognized
as bit data and interpreted using The American Standard Code for Information
Interchange (ASCII), a character encoding system that was originally based on
the English alphabet. Using a standard tool of UNIX, od, we can examine how
the characters are treated in a computer. The command od is an abbreviation
of “octal dump”. Octal is the base-8 number system, which uses the digits
0 to 7; a dump is an exact copy of the data as it is held in the computer.
In the following table, we list the binary, octal, decimal, and hexadecimal equiv-
alents for the numbers one to sixteen. The binary number system uses only
two symbols, {0, 1}. The octal system uses {0, 1, 2, 3, 4, 5, 6, 7},
decimal uses {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, and hexadecimal uses
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, b, c, d, e, f}.

Using the command od with a qualifier, we can also display the contents of the
file in hexadecimal. For example, suppose we wish to build a text file ABC.txt that
contains only the three characters “ABC” and then observe it with a hexadecimal
dump. We can do so, as follows. First, use cat to create a text file, using the Enter
key and Ctrl+D to finish editing.
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Binary Octal Decimal Hexadecimal
0 0 0 0
1 1 1 1

10 2 2 2
11 3 3 3

100 4 4 4
101 5 5 5
110 6 6 6
111 7 7 7

1000 10 8 8
1001 11 9 9
1010 12 10 a
1011 13 11 b
1100 14 12 c
1101 15 13 d
1110 16 14 e
1111 17 15 f

10000 20 16 10
: : : : : : : : : : : :

� �

user@debian:~$ cat > ABC.txt
ABC
^D
� �

We can then display the hexadecimal dump by using the command od.
� �

user@debian:~$ od -Ad -tx1 ABC.txt
000000 41 42 43 0a
000004
� �

What is listed here is the information recorded as ASCII code in the storage
device. Note that the file name “ABC.txt” is not included in the file itself. The six
digits on the left side provide the decimal address of one byte of the stored data.
Memory addresses from 000000 up to 000003 are allocated for the data in the
file ABC.txt. Since the data is represented in hexadecimal notation, that corresponds
to ’A’=41, ’B’=42, ’C’=43. A single two-digit number written in hexadecimal
equals 1 byte (= 8 bits). The last two-digit number, 0a, is the control code for
LF, which stands for LineFeed. The letters of the English alphabet, numerals, and
symbols are each represented by 1 byte in binary. For example, ’A’ is 01000001;
it is represented by eight digits in binary. If we use hexadecimal, ’A’ is 41. Binary
notation is cumbersome for humans to read, so in many cases, data is represented in
hexadecimal. One obvious convenience of using hexadecimal is that four digits of
binary correspond to a single digit of hexadecimal.

Exercise 2.3.1. Use the command man ascii on the terminal to find the ASCII
code.
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2.4 How to Write Mathematical Documents

When using MathLibre to create a document (such as a research paper) that contains
mathematical formulas, we use the TEX system. TEX is a typesetting system designed
and mostly written by Donald E. Knuth, who is a famous mathematician and
computer scientist.

In this book, we will introduce LATEX, which is widely used in mathematical
communities. It was originally written by Leslie Lamport, and the current version
is LATEX 2". We can make a PDF file from TEX source code by using the command
pdflatex. Because it is suitable for the construction of mathematical documents
and for structural descriptions, and is not limited to mathematics, it is widely used
for writing papers and books. For example, this book was written using LATEX 2".

In order to create a PDF file from LATEX 2" source code, we need the following
typesetting process:

TeX sourcecode

pdflatex

��
PDF file

In this section, we will use the terminal.

2.4.1 Writing a TEX Document

We need a tool with which to create and edit TEX source code. In this case, we will
use the Emacs text editor, and will launch it from the terminal. If you are not familiar
with Emacs, you can use another text editor, such as Leafpad.

First, we will create a file of TEX source code with the name “sample.tex”.
Adding & at the end of command allows us to execute Emacs as a background job.
That is, we can continue to use the terminal while Emacs is executing.
� �

user@debian:~$ emacs sample.tex &
� �

We next write four lines in sample.tex,
� �

\documentclass{article}
\begin{document}
Hello LaTeX
\end{document}
� �

LATEX commands always start with backslash \. After editing the file sample.tex,
we save the file and exit Emacs. For more information on how to use Emacs, see
Sect. 2.6.
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2.4.2 Making a PDF File

A PDF file can be created by typesetting the source file sample.tex with the
command pdflatex.
� �

user@debian:~$ pdflatex sample.tex
This is pdfTeX, Version 3.1415926-2.4-1.40.13
(TeX Live 2012/Debian) restricted \write18 enabled.
...
� �

The pdflatex command creates three new files: sample.aux, sample.log, and
sample.pdf.

To view the PDF file, sample.pdf, we use the command evince.
� �

user@debian:~$ evince sample.pdf &
� �

Only the sentence “Hello LaTeX” will be displayed because it is the only thing
between \begin{document} and \end{document}. We embed the special
TEX command in our source code. Note that LATEX is a kind of markup language.

After setting up the printer, we can print our file by using the File menu.
Alternatively, you can move the PDF file to the another environment, such as
Windows or MacOS.

2.4.3 Brief Introduction to TEX Source Code

The first line of TEX source code, \documentclass{}, is the command that
reads the settings for the file. For writing a LATEX document, we start with the
following command.

Listing 2.1 TEX source code
� �

\documentclass[options]{class}
� �

In the sample, the document class is article and the default paper size is
letterpaper. We can change the options; the paper can be other sizes, such as
legalpaper or a4paper, and there are other document classes, such as the standard
one, report, as well as book, letter, and slides. To create a presentation file, use
beamer, and for a poster session, use a0poster. With the appropriate LATEX options,
we can create many styles of documents. The lines starting and ending points of the
document are \begin{document} and \end{document}, respectively, and
the lines in between are called the document environment.

Listing 2.2 TEX source code
� �

\documentclass[options]{class}
\begin{document}
............................
.....creating documents.....
............................
\end{document}
� �
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This is the basic style of LATEX 2" source code.
With \begin{} and \end{}, we can create various typesettings.

Listing 2.3 TEX source code
� �

\begin{environment name}
...
\end{environment name}
� �

There are environment names for many common usages, such as “equation” for
mathematical formulas and “itemize” for list structures. For more detail, please
refer, for example, to Wikibooks.3

2.4.4 Math Formulas

LATEX 2" is good for describing mathematical formulas. When we create a math-
ematical object in TEX source code, we set the beginning and end points in our
document. For example, we want to create the following:

Listing 2.4 PDF view

x2 C y2 C z2 � 4 D 0 (2.1)

We can produce this by using the equation environment, as follows.

Listing 2.5 TEX source code
� �

\begin{equation}
x^2+y^2+z^2-4=0

\end{equation}
� �

The equation number is automatically added, unless we add an asterisk *, as shown.

Listing 2.6 TEX source code
� �

\begin{equation*}
x^2+y^2+z^2-4=0

\end{equation*}
� �

Or we can abbreviate it:

Listing 2.7 TEX source code
� �

\[
x^2+y^2+z^2-4=0

\]
� �

We can use $$...$$ instead of \[...\], but this is not recommended because it
can make it difficult to see the start and end points. Similarly, to write mathematical
characters and equations in our documents, we can use \( and \) or $...$, but
for the same reason as above, it is better to use \( and \).

3http://en.wikibooks.org/wiki/LaTeX/.

http://en.wikibooks.org/wiki/LaTeX/
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Fig. 2.6 Centroid of a triangle

Listing 2.8 PDF view

Using x1; x2 , and x3 , we c o n s i d e r t h e po l ynom i a l x21 C 3x1x2 � x23 .

Listing 2.9 TEX source code
� �

Using \(x_{1}, x_{2}\), and \(x_{3}\),
we consider the polynomial \(x_{1}^2+3x_{1}x_{2}-x_{3}^2\).
� �

Exercise 2.4.1. Edit sample.tex with Emacs. Write a formula in the equation envi-
ronment between \begin{document} and \end{document}. Next, typeset
it with pdflatex and then check the PDF file with the evince viewer.

2.4.5 graphicx Package

There are some additional packages for LATEX 2", for example, the graphicx package,
which lets us embed into our document a graphic file with a PDF, PNG (Portable
Network Graphics), or JPEG (Joint Photographic Experts Group) format. As an
example, use the following TEX source code Listing 2.10 to embed the graphics file
centroid.png.

The command for embedding a graphics file is
\includegraphics[options]{graphics filename}, and the com-
mand \caption{} is for naming the graphic file in the document. The figure
environment is for determining the location of the figure (Fig. 2.6).

Listing 2.10 TEX source code
� �

\documentclass{jsarticle}
\usepackage{graphicx}
\begin{document}
......
\begin{figure}[htbp]
\centering
\includegraphics[height=4cm]{centroid.png}
\caption{Centroid of a triangle}
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\end{figure}
......
\end{document}
� �

In this section, we presented an introduction to the basic idea of typesetting on the
terminal; it is very similar to compiling the source code of a program. In MathLibre,
there are many TEX editing environments. We can select from Kile,4 TeXstudio,5

TeXworks,6 and Texmaker.7 There are advantages and disadvantages to each of these
environments.

2.5 Various Math Software Systems

There are so many mathematical software systems in MathLibre that it can be
confusing. In this section, we deviate slightly from the primary topic of this book
because we want you to enjoy mathematical software. We therefore introduce
dynamic geometry software, which allows us to create and manipulate geometric
constructions with a simulated compass and ruler. It is very popular for educational
use.

When I first encountered this, I misunderstood and thought that it was a tool for
only elementary geometry. However, as I used the software to create geometrical
objects, I began to see interesting applications for the function of drawing trajec-
tories and the construction of recursive methods. I believe that this software has
potential for helping us visualize various mathematical ideas. In MathLibre, there
is a lot of dynamic geometry software because I like it. One of them includes the
automatic proof assistant system that uses the method of Wu and Gröbner bases.
This is not covered in this book, but if you are interested in this topic, you can refer
to [1].

2.5.1 KSEG

One of the basic dynamic geometry software systems is KSEG.8 This open-source
software was written in the C++ programming language by Ilya Baran. Using
KSEG, we can deform, rotate, and move geometrical objects while maintaining
their properties. We can measure the distance between two points and the angles
of a triangle, and then perform calculations with them. With a function for creating
the locus of restricted objects, we can draw various geometric curves. We can make
Koch and dragon curves by using a recursive method.

4http://kile.sourceforge.net/.
5http://texstudio.sourceforge.net.
6http://www.tug.org/texworks/.
7http://www.xmlmath.net/texmaker/.
8http://www.mit.edu/~ibaran/kseg.html.

http://kile.sourceforge.net/
http://texstudio.sourceforge.net
http://www.tug.org/texworks/
http://www.xmlmath.net/texmaker/
http://www.mit.edu/~{}ibaran/kseg.html
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Fig. 2.7 KSEG window

Fig. 2.8 KSEG menu

2.5.1.1 How to Start KSEG

From the start menu, click on the Math software submenu and select KSeg .
Alternatively, to launch from the terminal, enter kseg. The following KSEG
window will be displayed.

There are menus at the top of the window, and button icons right below them.
The pictures on the icon buttons indicate their functions (Figs. 2.7 and 2.8).

KSEG has only four main types of function.

1. Draw a point by right clicking.
2. Select points, lines, and circles by left clicking. (They can be selected by using

the shift key and rectangle selection.)
3. Create a geometrical object by using a menu or button.
4. Delete geometrical objects using the Ctrl+Del keys.
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Fig. 2.9 Right clicking the
appropriate position

Fig. 2.10 Right clicking the
other place

Fig. 2.11 Selecting two
points with Shift key

For example, we need two points in order to draw a segment. To create them,
right click on two places on the KSEG screen. After selecting these two points,
create a segment using the menu “New ! Segment” or the button of “Segment”,
Figs. 2.9–2.12.

In a similar way, we can create a “Line” or a “Half line”. If we select two points
and click the “Circle” button, we create a circle centered at the first point and going
through the second point, Figs. 2.13–2.16.
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Fig. 2.12 Selecting “New !
Segment”

Fig. 2.13 Right clicking the
appropriate position

Fig. 2.14 Right clicking the
other place

2.5.1.2 Creating a Triangle

Creating three points and using rectangle selection is a convenient way to create a
triangle, Figs. 2.17–2.20.
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Fig. 2.15 Selecting two
points with the Shift key

Fig. 2.16 Selecting “New !
Circle”

Fig. 2.17 Drawing three
points for creating a triangle

2.5.1.3 Centroid of a Triangle

We can find the locations of the various centers of a triangle with KSEG. In this
subsection, we will explain how to draw the centroid. After we draw the centroid,
we can drag the points of the triangle to see its dynamic deformation, Figs. 2.21–
2.36. Determining the location of the circumcenter, the orthocenter, and the centers
of the incircle and excircle of a triangle are left as exercises for the reader.
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Fig. 2.18 Dragging the
mouse around the three points

Fig. 2.19 Three points are
selected

Fig. 2.20 Selecting “New !
Segment”
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Fig. 2.21 Drawing a triangle

Fig. 2.22 Selecting an edge
of the triangle

Fig. 2.23 “New !
Midpoint”
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Fig. 2.24 Selecting a vertex
and the midpoint with the
Shift key

Fig. 2.25 Selecting “New !
Segment”

Fig. 2.26 After the same step
for the other two points
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Fig. 2.27 Selecting two
medians in the triangle

Fig. 2.28 Selecting “New !
Crosspoint”

Fig. 2.29 Selecting a vertex
and centroid
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Fig. 2.30 “Measure !
Distance”

Fig. 2.31 Measuring the
centroid and the midpoint

Fig. 2.32 Selecting the
longer one
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Fig. 2.33 “Measure !
Calculate”

Fig. 2.34 Moving the cursor
to the end of line, pushing x

y

Fig. 2.35 Selecting the
shorter one
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Fig. 2.36 Clicking “OK”

The centroid is exactly two-thirds of the way along each median. We can check
this property with the function “Measure”.

For more information, see the KSEG help document. There are samples on the
KSEG web page and on the MathLibre DVD. In the KSEG help file, go to “File!
Copy as Construction” to find out how to construct geometrical objects.

Exercise 2.5.1. Use KSEG to draw the centers of a triangle.

Exercise 2.5.2. Consider several ways to use KSEG to draw conic sections.

Exercise 2.5.3. Use KSEG to draw Koch curves.

KSEG supports various formats for exporting graphics. From the menu, choose
“File! Export to Image”; you can then choose one of the following formats: BMP,
JPEG, PBM, PGM, PNG, PPM, XBM, and XPM. PDFLATEX supports PNG and
JPEG formats.

2.5.2 GeoGebra

KSEG is excellent for drawing geometrical objects, but it does not support drawing
the graphs of functions. We therefore introduce GeoGebra, dynamic mathematical
software that can draw graphs. GeoGebra is open source and was first developed by
Markus Hohenwarter when he was a graduate student at the University of Salzburg.
He is now a professor at the University of Linz. GeoGebra was developed by an
international team, and it has became popular all over the world. Much mathematical
software is written in the C or C++ language, but GeoGebra was developed in
Java. In general, software written in Java has the advantage of being easy to move
to a variety of environments, such as Windows, Mac, and UNIX. GeoGebra is
mathematical education software, and so this flexibility is important.9 In this section,
we will discuss the basic operations and investigate the trajectories of the vertex of
a parabola.

9A disadvantage is that software developed in Java may be slower than that developed in C or C++.
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Fig. 2.37 GeoGebra window

2.5.2.1 GeoGebra Basics

To launch GeoGebra, select the icon from the start menu. To execute it from
the terminal, enter the command geogebra. With KSEG, we first create the points
and the select the geometrical object to be created from a menu. With GeoGebra;
however, we first select the geometrical object and then change to drawing mode.
For example, if we want to draw a point in the GeoGebra window, we first click the

icon for Point . We then create a new point by clicking the appropriate position on

the window. To create a circle, first chose the Circle icon . There are four methods
for drawing a circle: “Circle with Center through Point” (the default), “Circle with
Center and Radius”, “Compass”, and “Circle through Three Points”. Select one of
these methods by clicking the small triangle in the right bottom of the icon. There
are some differences between the interfaces of KSEG and GeoGebra, but both of
them are good software systems for dynamic geometry (Fig. 2.37).

We can enter a command to the Input Bar, draw the graph of a function, draw the
tangent line, or calculate the integral.

First, though, we will draw some points, lines, triangles, and circles. Click the
“Move” icon, and then you can use the cursor to freely move the geometrical objects.
When we move a circle, the changes in the equation of the circle are displayed on
the left side of the window Fig. 2.38.

2.5.2.2 Graph of a Function

We can draw a graph by typing the function into the Input bar of GeoGebra. Type
in y=x^2 and press the Enter key to draw the parabola y D x2.
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Fig. 2.38 Geometrical object with GeoGebra

Fig. 2.39 Parabola with GeoGebra

The parabola is automatically named c by GeoGebra. The function Vertex[]
will show the vertex of the conic. The argument of the Vertex[] function is
the name of the conic. In this case, we input Vertex[c] and press Enter. The
vertex namedA is on the origin .0; 0/, and by clicking the cursor icon, we can move
the parabola. As we move it, we can observe the changes in the vertex A and the
equation c of the parabola (Fig. 2.39).
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2.5.2.3 Slider of GeoGebra

Suppose we have the following problem: “What is the trajectory of the vertex A of
the parabola y D x2 � 2ax C 1 when we change the value of the constant a?”

Slider is a convenient tool for solving this problem.

1. Click the icon of “Slider”.
2. Click the appropriate point of the graphics area.
3. The small new window shows the default data of the Slider function; click the

Apply button.
4. Type y=x^2-2*a*x+1 in the Input Bar and press Enter.
5. Type Vertex[c] in the Input Bar and again press Enter.
6. Click the Move icon and change the value of the slider.
7. Observe the vertex.

2.5.2.4 Trace On

To follow the changes in the vertex A, we can use a feature called “Trace On”.

1. Right click the vertex A.
2. Select the check box of “Trace On”.
3. Move the slider and observe the state of the vertex A.

Note that the trace is also a parabola.

2.5.2.5 Creating a Graphics File

GeoGebra also supports exporting to various file formats. As an example, this is
how to export to a PNG file (Fig. 2.40):

1. Create a figure with GeoGebra.
2. Select from the menu File! Export! Graphic View as Picture (png, eps): : :
3. Select Portable Network Graphics (png).
4. Press the Save button.
5. Save the file with a suitable name to an appropriate directory.

GeoGebra supports exporting as a dynamic web page in Java Applet and Javascript.
There is a community site for collecting educational materials for GeoGebra:
GeoGebraTube.10 It is easy to upload files from the application to this archive.
GeoGebra also interfaces with the TEX system. It is able to export PGF/Tikz source
code; this is a TEX macro package for embedding graphics into TEX source code.

10http://www.geogebratube.org/.

http://www.geogebratube.org/
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Fig. 2.40 Taylor Polynomial
with GeoGebra

By typesetting with the command pdflatex, we can produce a document with
embedded graphics.

Exercise 2.5.4. Using GeoGebra, draw a graph of the function f .x/ D sin.x/ C
sin.2x/.

Exercise 2.5.5. Select a point A on the graph of the function f .x/ D sin.x/ C
sin.2x/, and draw a graph of the second-degree Taylor polynomial on A.

Exercise 2.5.6. Make a slider of 1 � a � 5 with the increment equal to 1. Draw a
graph of the Taylor polynomial on A with degree a.

2.5.2.6 GeoGebra with Risa/Asir

By combining GeoGebra with other software, we can display the result of a Gröbner
basis. Consider the polynomials x2Cy2�a and xy�b of the two variables x and y.
In this case, a; b 2 R are constants. We can draw the graph of the implicit function.
We can create a and b with Slider, and we can choose the range of default values
of a and b. After making the two sliders, input the equation x^2+y^2-a=0. It is
a circle, and we can change its radius. We can input x*y-b=0, a hyperbola. Click
on the icon for Intersect Two Objects, and select the circle and the hyperbola. When
the default value of the sliders are a D 1; b D 1, the circle and the hyperbola do
not intersect. The result of this operation is “A undefined” because the solution of
this system of equations is a complex number. If we change the value so that a D 2,
there are two intersects, and when a is greater than 2, then are four cross points,
which are displayed as real solutions.

Set a D 4. GeoGebra supports rounding, so select “Option! Rounding! 4
Decimal Places”. The coordinates of the four intersection points are
.0:5176; 1:9319/; .�0:5176;�1:9319/; .�1:9319;�0:5176/, and .1:9319; 0:5176/
(Fig. 2.41).
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Fig. 2.41 Four intersection points with GeoGebra

We will calculate the Gröbner basis by using a computer algebra system,
Risa/Asir.11 It is launched in a similar way to the previous programs. To execute
it from a terminal, enter openxm fep asir. To learn more about the uses of
Risa/Asir, please see the “Risa/Asir Drill Book”[6].

As an example, here are the commands nd_gr and pari, in Risa/Asir.
� �

[1371] G=nd_gr([x^2+y^2-a,x*y-b],[x,y],0,2);
[y^4-a*y^2+b^2,-b*x-y^3+a*y]
[1372] pari(roots,base_replace(G[0],[[a,4],[b,1]]));
[ -1.931851652578136573 -0.5176380902050415246
0.5176380902050415246 1.931851652578136573 ]
� �

Using the command

nd_gr(Polynomial List, Variable List, P, Order),

we can compute the Gröbner basis of G[0]=y^4-a*y^2+b^2,
G[1]=-b*x-y^3+a*y. In this example, the argument for Order is 2, which is the
lexicographical order (refer Corollary 1.4.2). With the command
pari(Roots, polynomial), we can calculate the roots of the polynomial.
In this case, we solved the polynomial G[0] with a D 4; b D 1. This result gives
the y coordinates of the four intersects. We see it nearly coincides with the results
of GeoGebra.

11http://www.math.kobe-u.ac.jp/Asir/asir.html.

http://www.math.kobe-u.ac.jp/Asir/asir.html
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Fig. 2.42 surfex

To see this Gröbner basis, we only need to input the result, y^4-a*y^2+b^2=0
and -b*x-y^3+a*y=0, to the Input Bar of GeoGebra.

We can draw it with the function ifplot of Risa/Asir. The commands surf and
Sage are able to draw implicit functions.

Exercise 2.5.7. Let f .x; y/ be a polynomial of degree n, and let g.x; y/ be a
polynomial of degree m. Assume that f and g are relatively prime. At most, how
many intersections of f D g D 0 are there? Try to determine the number with the
help of Geogebra.12

2.5.3 Surf Family

surf was written by Stephan Endrass. It is a tool for drawing real algebraic geometry.
With it, we can create beautiful graphics of plane algebraic curves, algebraic
surfaces, and hyperplane sections of surfaces. surf supports a macro language that
is very similar to the C language, but surfex and surfer have been released, and they
have interactive interfaces. Using surfex and surfer, we can observe the graphics
of surfaces from a dynamically changing viewpoint. All of these are included in
MathLibre, but we will introduce surfex. When surfex is launched, these windows
are displayed: The main window has the following four buttons (Fig. 2.42):

12Answer: mn (Bezout theorem).
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Fig. 2.43
Figure 2.45 + Fig. 2.46

add param. creating a parameter slider,
add eqn. creating a surface that represents an implicit function,
add curve creating a curve as an intersection of surfaces,
add pt. creating a point.

There is already an example polynomial x3 C y3C z3C 1� 0:25.xC yC zC 1/3,
which is called the Cayley cubic, and its surface is displayed in the small window.
There are two small windows, one is the “triangulated view” and the other is the
“raytraced surface”. To change the viewpoint of the display, drag on image in
the “triangulated view” window. We can change the colors of surfaces by using
the “opts” button. There is also a transparency mode, which is very helpful for
observing the intersection of surfaces. The resolution of the graphic can be changed
by configuring the parameter of “preview quality” in the main window; the best
graphics are when the value is set to 1. There are some buttons in the main window,
one of which is the camera icon, which captures the graphics in JPEG format. Using
surfex with Example 1.4.11 from the first section, we create the following pictures.
Because of the difference in the dimensions, it is little bit difficult to see with printed
pictures, but we note Fig. 2.43 is similar to Fig. 2.44. All the surfaces in the figure
are created by the original polynomials; to reduce complexity, the surfaces from the
Gröbner basis have been set to transparent (Figs. 2.45 and 2.46).

2.5.4 Maxima

In this section, we introduce a general purpose system for computer algebra,
Maxima. Maxima is the descendant of MACSYMA, which has a long history and
is written in the Lisp language. MACSYMA was developed at MIT for a research
project on artificial intelligence. In this book, we also introduce other research
systems: CoCoA, Macaulay2, Risa/Asir, and Singular. These recent systems have
been developed mainly for mathematics research. In the 1970s and 1980s, MAC-
SYMA supported the Risch algorithm for indefinite integrals; it was commercialized
by the company Symbolics [5]. Maxima was developed by William Schelter and
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Fig. 2.44 Implicit functions with GeoGebra

Fig. 2.45 Intersection curves
with the original polynomials

is based on a 1982 version of MACSYMA; it later became open source. In 2001,
Schelter passed away while traveling in Russia, but Maxima is now continuously
maintained by a team of developers.13 Maxima supports many operations, including
factoring; solving algebraic, differential, and integral equations; manipulating lim-
its, series, matrices; and drawing graphs.

We can launch Maxima either from the menu or by enteringmaxima, xmaxima,
or wxmaxima to the terminal. As shown here, we launch Maxima from the terminal.

13http://maxima.sourceforge.net/.

http://maxima.sourceforge.net/
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Fig. 2.46 Intersection curves
with Gröbner basis

� �

user@debian:~$ maxima

Maxima 5.27.0 \url{http://maxima.sourceforge.net}
using Lisp GNU Common Lisp (GCL) GCL 2.6.7 (a.k.a. GCL)
Distributed under the GNU Public License. See the file COPYING.
Dedicated to the memory of William Schelter.
The function bug_report() provides bug reporting information.
(%i1)
� �

(%i1) is the interactive prompt for Maxima, after which a command or function
can be entered, followed by a semicolon. To quit the program, enter quit();

When learning Maxima, describe() is an important function. For
example, entering the command describe(factor); will display the help
documents for the function factor(). The command describe(string)
is equivalent to describe(string, exact). If such an item exists, it will
find one with the exact same title (case-insensitive) as string. The command
describe(string, inexact) finds all help documents for items that
contain string in their titles. Note that following the interactive prompt with
? foo (with a space between ? and foo) is equivalent to describe(foo,
exact), and ?? foo is equivalent to describe(foo, inexact). There is
a lot of documentation for Maxima in MathLibre and on the Internet.

2.5.4.1 Output of TEX Source Code

TEX is an excellent typesetting system, but it can be difficult for complicated
mathematical formulas. Thus, it would be helpful to have mathematical software
produce output that is formatted as TEX source code. In fact, there are several
mathematical software systems that can do this; in this section, we will show how
to do it using the function tex() in Maxima (Fig. 2.47).
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Fig. 2.47 Displayed with evince

Listing 2.11 tex() of Maxima
� �

(%i1) integrate(1/(x^3+1),x);
2 x - 1

2 atan(-------)
log(x - x + 1) sqrt(3) log(x + 1)

(%o1) - --------------- + ------------- + ----------
6 sqrt(3) 3

(%i2) tex(%o1);
$$-{{\log \left(x^2-x+1\right)}\over{6}}+{{\arctan \left({{2\,x-1
}\over{\sqrt{3}}}\right)}\over{\sqrt{3}}}+{{\log \left(x+1\right)
}\over{3}}\leqno{\tt (\%o1)}$$

(%o2) (\%o1)
(%i3)
� �

Inputting the command after Maxima’s interactive prompt (%i1), allows us to
calculate the indefinite integral of the function f .x/ D 1=.x3 C 1/. The result of
the computation can be referenced to as (%o number).

2.5.4.2 Working Record of a Calculation

We can save the result of a computation by using redirection, but we can also save
the entire work record to a text file by using the UNIX command script on the
terminal. In the following example, we use Maxima, but the method is the same for
any other mathematical software which is executed from the terminal.
� �

user@debian:~$ script
Script started, file is typescript
user@debian:~$ maxima

Maxima 5.27.0 \url{http://maxima.sourceforge.net}
using Lisp GNU Common Lisp (GCL) GCL 2.6.7 (a.k.a. GCL)
Distributed under the GNU Public License. See the file COPYING.
Dedicated to the memory of William Schelter.
The function bug_report() provides bug reporting information.
(%i1) integrate(1/(x^3+1),x);

2 x - 1
2 atan(-------)
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log(x - x + 1) sqrt(3) log(x + 1)
(%o1) - --------------- + ------------- + ----------

6 sqrt(3) 3
(%i2) quit();
user@debian:~$ exit
Script done, file is typescript
user@debian:~$ ls
Desktop typescript
user@debian:~$
� �

When we execute the command scriptwith no arguments, the working record
is saved to the file typescript. If we specify the file name in the argument as
follows, it will be saved in the specified file.
� �

user@debian:~$ script logfile.txt
Script started, file is logfile.txt
� �

The text editor Emacs can be used to view the working record and to alter it to try
different approaches (ref. Sect. 2.6).

2.5.5 R

R is a programming language and environment for statistics and graphics.14 It is
very similar to the S language and statistical calculation environment, although R
and S were developed independently. R is open source and has grammar similar to
the S language. To execute R, enter R to the terminal.
� �

user@debian:~$ R

R version 2.15.1 (2012-06-22) -- "Roasted Marshmallows"
Copyright (C) 2012 The R Foundation for Statistical Computing
ISBN 3-900051-07-0
Platform: x86_64-pc-linux-gnu (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
We are welcome to redistribute it under certain conditions.
Type ’license()’ or ’licence()’ for distribution details.

R is a collaborative project with many contributors.
Type ’contributors()’ for more information and
’citation()’ on how to cite R or R packages in publications.

Type ’demo()’ for some demos, ’help()’ for on-line help, or
’help.start()’ for an HTML browser interface to help.
Type ’q()’ to quit R.

>
� �

14http://www.r-project.org/.

http://www.r-project.org/
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The interactive prompt for R is >. There are various ways to execute R, for
example Rcommander, Rkward, and RStudio. They can be found on the start menu
or by entering the commandRcmdr, rkward, or rstudio. R can also be executed
in the text editor Emacs, as with other mathematical software systems.

2.5.6 Sage

Sage is a free open-source mathematics software system. It combines the power of
many existing open-source packages, such as Maxima, PARI, R, Singular, and surf,
into a common Python-based interface. The lead developer of Sage is William Stein,
a professor at the University of Washington. There are large communities of Sage
developers and users all over the world. This software supports a huge range of
mathematics, including basic algebra, calculus, from elementary to very advanced
number theory, cryptography, numerical computation, commutative algebra, group
theory, combinatorics, graph theory, exact linear algebra, and much more. To run
Sage on MathLibre, select “Math ! SAGE” from the start menu. The message
shown below will appear in the new terminal window. The notebook is a browser-
based interface for Sage, and in this system, it will start automatically.
� �

----------------------------------------------------------------------
| Sage Version 5.7, Release Date: 2013-02-19 |
| Type "notebook()" for the browser-based notebook interface. |
| Type "help()" for help. |
----------------------------------------------------------------------

Please wait while the {\it Sage Notebook\/} server starts...
Setting permissions of DOT_SAGE directory so only you can read and write it.
The {\it notebook\/} files are stored in: sage_notebook.sagenb
� �

Before proceeding further, it is necessary to enter and confirm a password.
� �

Please choose a new password for the {\it Sage}\/ Notebook ’admin’ user.
Do _not_ choose a stupid password, since anybody who could guess our password
and connect to our machine could access or delete our files.
NOTE: Only the hash of the password you type is stored by {\it Sage}.
You can change our password by typing notebook(reset=True).

Enter new password:
Retype new password:
� �

A new window of the Iceweasel15 web browser will open with Sage notebook
(Fig. 2.48). We can create a new worksheet by clicking on “New Worksheet”
(Fig. 2.49).

For example, we can change the name of a worksheet; here, it is “ex1”. We can
then integrate a function. When we click the check box of “Typeset”, the typeset
formula in Fig. 2.50 will be displayed.

To see how to draw the curve of an implicit function, we can find an example in
the Help file. We can use Singular and surf for to plot a curve using Sage (Fig. 2.51).

15Iceweasel is Firefox, rebranded.
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Fig. 2.48 Sage notebook

Fig. 2.49 New Worksheet

� �

s = singular.eval
s(’LIB "surf.lib";’)
s("ring rr0 = 0,(x1,x2),dp;")
s("ideal I = x1^3 - x2^2;")
s("plot(I);")\\
� �

2.6 Emacs

Knowledge of the text editor Emacs can be considered a fundamental skill that
will be useful in many ways. Emacs has a long history, but it is still popular with
professional users. It is unusual in that someone who learned how to use Emacs 30
years ago can still use it in the same way now. TEX and UNIX are also classics in
the same way. Emacs can be hard to learn at first, but once learned, it is an excellent
and indispensable tool. Many software systems incorporate aspects of Emacs; for
example, some of Emacs key bindings are used for terminals.
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Fig. 2.50 integrate() in Sage

Fig. 2.51 Singular and surf in Sage

In this book, we perform computations using text files that contain commands or
scripts of mathematical software. We need a text editor for these files, and Emacs,
once learned, allows our work to proceed smoothly. For using some mathematical
software, such as the programming language Lisp, we can use Emacs as an
environment.



2 Warm-Up Drills and Tips for Mathematical Software 95

When we are using computers, inputting characters with a keyboard or drawing
with a mouse, we typically are not aware that these manipulations involve reading
data from, or writing data to, a buffer on the memory drive.

The official name of Emacs is “GNU Emacs”. It was developed by Richard
Stallman, who proposed the idea of free software. It was developed and published
by the FSF (Free Software Foundation) and is available for free.

2.6.1 Starting Emacs

In this section, we will introduce only a small subset of the many features of Emacs.
If you are already familiar with Emacs, you can skip this section.

If you want to learn Emacs thoroughly, there are many specialized books to help
you do so. For an introduction, however, open the terminal, move to the directory
that contains a tutorial that we made, ~/tutorial, and execute Emacs.
� �

user@debian:~$ cd tutorial
user@debian:~/tutorial$ emacs
� �

In this example, we call Emacs without arguments.
When we execute Emacs, a welcome message is displayed. The most important

thing is how to quit Emacs, which can be done by using the mouse to select “File!
Quit” from the menu. It is also possible to quit by typing and entering C-x C-c.
This is the abbreviation for typing “x” and “c” while pressing the “Ctrl” key.

After booting Emacs, press the “q” key, and the following will be displayed.
� �

;; This buffer is for notes you don’t want to save, and for Lisp evaluation.
;; If you want to create a file, visit that file with C-x C-f,
;; then enter the text in that file’s own buffer.
� �

This is an area called a buffer, which is used for short memos and executing Lisp
code. It shows that the command for saving a file is C-x C-f. If we want to use
a mouse, we can select “File! Visit New File. . . ”. If we are familiar with the text
editor of Windows or MacOS, we can use Emacs by clicking the menu interface.
In order to demonstrate the full capability of the original Emacs, however, we should
use only the keyboard. At first, it is sufficient to use Emacs with only the graphical
user interface, but it is best to become familiar with other capabilities presented in
textbooks and trying them for yourself (Fig. 2.52).16

Here we show how to use Emacs. We will create a file named “emacs.txt”. First,
we need to prepare the buffer for the file; the command for this is C-x C-f.
� �

Find file: ~/tutorial/
� �

16Emacs always uses the Ctrl key, and so it would be better to change the keyboard layout and set
the key to the immediate left of “A” as a Ctrl key.
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Fig. 2.52 Initial message of Emacs

This is called the echo area. In the echo area, type the following and press Enter.
� �

Find file: ~/tutorial/emacs.txt
� �

We have now prepared the buffer for creating the file ~/tutorial/emacs.txt.
We can find New file in the echo area, and please input the following.
� �

Emacs is a screen editor.
� �

After typing the sentence, make a new line by pressing the Enter key. We operate
Emacs with the “Ctrl” and “Meta” keys. The abbreviation C-x means to press the
“x” key along with the “Ctrl” key. For example, the command C-x o means press
“x” with the “Ctrl” key and release the finger from the “Ctrl” key and press “o”. The
command M-x means press the “x” key along with the “Meta” key. “Meta” keys,
however, were found on earlier computers but not on modern PCs; instead, use the
“Alt” key. Alternatively, press the “Esc” key, release it, and press the “x” key.

We now want to save the data of the buffer named “emacs.txt” to a file. The
command to save a file is C-x C-s. When we enter this command, the following
message is displayed in the echo area.
� �

Wrote /home/user/tutorial/emacs.txt
� �

We have now saved the data from the buffer to the directory “tutorial” in our home
directory. To quit Emacs, input the command C-x C-c.
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We can check for the created file as follows.
� �

user@debian:~/tutorial$ ls emacs.txt
emacs.txt
� �

We can find out the size of this file as follows.
� �

user@debian:~/tutorial$ ls -l emacs.txt
-rw-r--r-- 1 user user 26 2009-09-14 10:34 emacs.txt
� �

We can view the contents of this file as follows.
� �

user@debian:~/tutorial$ cat emacs.txt
Emacs is a screen editor.
user@debian:~/tutorial$
� �

Finally, using the command emacs with the file name as an argument, we can
edit this file.
� �

user@debian:~/tutorial$ emacs emacs.txt
� �

When we open this file with Emacs, the contents will be displayed.

2.6.2 Cut and Paste

As an example, we will now edit the buffer and change the word “screen” to “text”.
When we open the file, the character “E” at the beginning of the line should be
blinking. If we input a character, it will be displayed in this location. This blinking
part indicates the location of the cursor, which we can move by using the arrow keys.
We can also use the Ctrl key to move the cursor: Using C-f to move the cursor to
the character “n” of the word “screen”, remove the word “screen” with the BS key,
then enter “text”. The buffer is now edited, and we will see the following.
� �

Emacs is a text editor.
� �

At this point, the cursor is in the position of the character “t” at the end of the word
“text”.

2.6.3 Editing Multiple Lines

We can edit multiple lines, as follows. Move the cursor to the next line with the
command C-n. After the word “editor”, there will be a control character indicating
a new line. After moving the cursor key, we can now edit the next line.
� �

Emacs is a text editor.
Emacs is a computer environment.
� �
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C-f

C-n

C-b

C-p

C-a C-e

Key binding function
C-f forward-char
C-b backward-char
C-p previous-line
C-n next-line
C-a beginning-of-line
C-e end-of-line

Fig. 2.53 Cursor moving of Emacs

The features of Emacs are implemented using the Emacs Lisp programming
language. The input of characters and moving of the cursor are realized by calling
Lisp functions. To explicitly call a Lisp function using its name, input M-x, which
opens a mini buffer in the echo area. Enter the function name.
� �

M-x
� �

For example, if we input M-x forward-char, the cursor moves to the next
character. Just to move the cursor, it is bothersome to input a function name; thus,
these functions are usually assigned to shortcut keys. We call this binding the keys.
At first, we may use the cursor keys, but it is more efficient to keep our hands on the
keyboard. Below is a table of Emacs key bindings for moving the cursor (Fig. 2.53).

All of the file operations that were introduced in this section have key bindings
with Lisp functions.

Key binding Function
C-x C-c Save-buffers-kill-emacs
C-x C-f Find-file
C-x C-s Save-buffer
M-x Execute-extended-command

Exercise 2.6.1. Input another sentence.
� �

Emacs is a text editor.
Emacs is a computer environment.

At its core is an interpreter for Emacs Lisp,
a dialect of the Lisp programming language
with extensions to support text editing.
� �

After completing changes, we can save the buffer to a file. The command is
C-x C-s.
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Exercise 2.6.2. With C-p, move the cursor to the third line and insert a new line.
� �

Emacs is a text editor.
Emacs is a computer environment.
Emacs is the extensible, customizable editor.
At its core is an interpreter for Emacs Lisp,
a dialect of the Lisp programming language
with extensions to support text editing.
� �

We will focus on the mode line, which corresponds to the current line number.

Exercise 2.6.3. Move the cursor, and check the line number.

Not all editing operations are assigned to key bindings. For example, the function
for displaying the line number is “what-line”; input M-x what-line, and the line
number is displayed in the echo area. In order to move to a specified line number,
there is a Lisp function “goto-line”. When we execute the following command,
� �

M-x goto-line
� �

we will see
� �

Goto line:
� �

in the echo area; input the desired number and press Enter to move the cursor to that
line.

Exercise 2.6.4. Using the Lisp function “goto-line”, move to the fifth line. Now,
using the Lisp function “what-line”, display the current line number in the echo
area.

Exercise 2.6.5. Execute the command C-x C-c without saving a file. What is the
message in the echo area?

In this situation, the following message may be displayed.
� �

Save file /home/user/tutorial/emacs.txt? (y, n, !, ., q, C-r or C-h)
� �

This happens when there is an edited buffer which has not yet been saved. If you
want to save it, enter y; if you do not want to save it, enter n. For now, save this file
by entering y.

2.6.4 Remove Again

Again use Emacs to open the text file “emacs.txt”.
� �

user@debian:~/tutorial$ emacs emacs.txt &
� �

The position of the cursor is on the first character of the first line, E. To remove
the character under the cursor, we can use the Emacs command C-d. Enter C-d, to
remove the character E.
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Exercise 2.6.6. Remove the word “Emacs” with C-d.

To remove a single line, use the command C-k. This key binding will remove
all the text from the position of the cursor to the end of the line. When used with
the key binding C-a, which moves the cursor to the beginning of the line, we can
quickly remove a line.

Key binding Function
BS Backward-delete-char
C-d Delete-char
C-k Kill-line

What should you do to remove multiple lines?

2.6.5 Point, Mark, and Region

In Emacs, the words “point”, “mark”, and “region” have special meanings.

Concept Meaning
Point The position between the previous character and the current position of the cursor
Mark a Unique point that the user can save to the buffer
Region The area between the positions of point and mark

For example, here the cursor is located on the indefinite article a,
� �

Emacs is a computer environment.
Emacs is the extensible, customizable, self-documenting, real-time editor.
� �

The point is located between the blank space “ ” and a. We will set the mark at this
point; the command for setting the mark is C-SPC, where SPCmeans the space bar.
We now move the cursor to the character “t” of the definite article the.
� �

Emacs is a computer environment.

Emacs is t he extensible, customizable, self-documenting, real-time editor.
� �

The region is now as shown here.
� �

a computer environment.
Emacs is
� �

In MathLibre, the specified region is displayed with a yellow background. In another
environment, the mark and region may be invisible. In that case, input C-x C-x
twice to find the position of mark. There is another choice, the LISP function
“transient-mark-mode”, which changes the mode of the region displayed.
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When you have verified the region, now try to remove it. The command for
removing it is C-w. The removed region will be saved to a buffer called the “kill
ring”. We can now reinsert the region that was saved to the kill ring by using the
commandC-y. There is also a command for duplicating the region, M-w. Generally,
deleting a region or line C-w and C-k is called “cut”; duplicating the characters with
M-w is called “copy”, and inserting characters with C-y is called “paste”. Moving
text is called “cut & paste”, and duplicating text is called “copy & paste”.

By the way, the kill ring is in the shape of a ring. Using M-y after the command
C-y obtains the previous elements in order.

Key binding Function
C-w Kill-region
M-w Kill-ring-save
C-y Yank
M-y Yank-pop

2.6.6 Undo, Redo, and Etc.

If a mistake is made when entering a key or calling a function, it can be canceled
with the command C-g. This is a very important and useful command.

In the following table, we summarize the Emacs Lisp functions which will be
necessary in addition to the features described in this section. Emacs can be operated
with a mouse, but it is faster and easier if only the keyboard is used.

Key binding Function
C-g Quit
C-x i Insert-buffer
C-x C-w Write-file
C-s isearch-forward
C-r isearch-backward
M-% Query-replace
C-x o Other-window
C-x u Advertised-undo
C-_ Undo

When the command M-x help-with-tutorial is entered, a basic introduc-
tion of Emacs will be displayed. You should read it.
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2.6.7 Command and Shell

We introduced Emacs as a text editor. At this point, we will introduce the extended
features that use the Lisp language and show how it can be used as a computer
environment.

In Sect. 2.3, we entered various commands. We can also use a variety of
commands with Emacs. If we enter M-!, “Shell command:” will be displayed in
the echo area. We can now execute a command. For example, after executing M-!
and entering ls, a list of the files in the current working directory will be displayed.

If we want to input commands exclusively, we can execute the shell in Emacs.
The command to change to the shell mode is M-x shell. We will then see the
prompt of the shell and can use it in a way similar to the terminal. For example, we
can move the cursor and copy and paste regions.

In addition, MathLibre also contains a file manager (M-x dired), the Tower of
Hanoi (M-x hanoi), Goban (M-x gomoku), and Tetris (M-x tetris). All of
these are implemented using the Emacs Lisp language.

2.6.8 Math Software Environment

Some mathematical software systems can be used with Emacs. We summarize the
commands in the following table. When we use software in Emacs, it is very similar
to using the shell on Emacs. Executing mathematical software on the terminal
is easy and simple, but using a system on Emacs may be convenient because of
the various features of Emacs. In particular, the computer algebra system Maxima
contains a Lisp package named imaxima; this package allows us to elegantly typeset
our results, Fig. 2.54.

Maxima M-x imaxima
Macaulay2 M-x M2
Singular M-x singular
R M-x R

2.7 Other Ways of Booting MathLibre

When we boot MathLibre from a DVD, some think it is too slow and noisy.
We would like to recommend the use of a virtual machine, which is a software-
implemented version of hardware that runs at the applications layer of the operating
system. A virtual machine can emulate the computer architecture of Windows,
MacOS X, or Linux.
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Fig. 2.54 M-x imaxima

Here are two the virtual machines which can be freely downloaded: VMware
Player of VMware, Inc. and VirtualBox of the Oracle Corporation. VMware Player
is an application for Windows and Linux; MacOS X users can buy a commercial
product, VMware Fusion. VirtualBox is an open-source product that can be used on
Windows, MacOS X, and Linux.

Currently, there are some virtual machine image files of MathLibre for VMware
Player that can be downloaded from http://www.math.kobe-u.ac.jp/vmkm/. These
commands shown in the image files support a persistent home directory, which can
be used for daily work. In September 2009, we hosted a JST CREST Gröbner school
at Kobe University; it was for graduate students who wanted to learn about Gröbner
bases and mathematical software. We used a virtual machine as the standard
computer environment and can thus recommend it as an everyday environment for
research.

2.7.1 Various Virtual Machines

Here are some virtual machines for related project. KNOPPIX/Math was a project
for archiving mathematical software and free documents in KNOPPIX, another Live
Linux. MathLibre is a direct descendant of KNOPPIX/Math. All of them are for
VMware Player. If you use Windows, you will have to install the VMware Player;
for MacOS, install VMware Fusion. These virtual machines are compressed and
must be extracted.

VMware/KNOPPIX/Math 2008 This is a virtual machine for “knxm
2008-kobe.iso”. It is the latest version of KNOPPIX/Math with a KDE desktop
and a multi-lingual environment.

VMware/Knoppix/Math 2010(en) This is a virtual machine for KNOP-
PIX/Math 2010. You will also need the ISO image of “knoppix_v6.2.1-math-
dvd-icms2010-20100730-en.iso”

http://www.math.kobe-u.ac.jp/vmkm/
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Small VM/KM These are the small virtual machines lenny-ox and etch-ox.
These are old Debian distributions with the OpenXM package. They contain
Risa/Asir as a sample application.

MathLibre 2013 This is the most recent virtual machine for MathLibre 2013.
You will also need to download the ISO image of MathLibre 2013.

2.7.2 Making a USB-Bootable MathLibre

This is a third way to boot MathLibre. We are currently experimenting with
implementing a shell script that makes MathLibre bootable from a USB device.
A USB flash drive is a very convenient and economic device. With a USB-bootable
version, when we want to create a mathematical software environment for our
students, we can copy it to bootable devices and redistribute them. It takes about
20 min to copy the operating system and applications onto a USB device.

1. Boot with MathLibre DVD.
2. Connect a USB flash drive that has over 8 GB of memory.
3. Execute the following command.

� �

user@debian:~$ sudo mkusbmath
� �

4. View the list of USB devices.
� �

-----------------------------------------------------------
mkusbmath: shell script for making USB bootable MathLibre
-----------------------------------------------------------

Please select the target device from the following list:

/dev/sdb usb-Generic-_SD_MMC_058F63626420-0:0
/dev/sdc usb-Generic-_Compact_Flash_058F63626420-0:1
/dev/sdd usb-Generic-_SM_xD_Picture_058F63626420-0:2
/dev/sde usb-Generic-_MS_MS-Pro_058F63626420-0:3
/dev/sdf usb-ELECOM_MF-LSU2_eb972e623b2081-0:0

Please input your target device (ex. /dev/sdc) :
� �

5. Chose /dev/sdf, input “/dev/sdf”, and press Enter.
� �

/dev/sdf
Unmounting the mounted partitions.

We’ve selected the device: /dev/sdf

By the following operation,
all files in /dev/sdf will be !!!REMOVED!!!.

It takes over 20 minutes for making,
would you start this operation? (y/n)
� �
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6. If you input y, then all the files in the flash drive will be removed. If that is OK,
please input “y” and press Enter.
� �

y
You’re copying OS image to /dev/sdf
1.3GB at 112.1MB/s eta: 0:00:22 34 [====== ]

� �

7. The process will take more than 15 min. You will see a progress bar; it may take
a few minutes after reaching 100 %.

8. After the copying is completed, a persistent home directory is automatically
created.
� �

We’ve finished copying OS image.
We’re making persistent volume.
� �

9. The following message is displayed when the procedure is completed.
� �

We’ve finished making persistent volume.
You’ve got an USB bootable MathLibre.
� �

MathLibre was developed using the Debian Live system.17 Debian GNU/Linux is
a Linux distribution, and it uses the APT system to manage packages. We can install
additional Debian packages with the command apt-get. To install additional
packages, we have to update the resource database. To do this, we have to change to
administration mode by using the command sudo.
� �

user@debian:~$ sudo apt-get update
� �

The command sudo executes a command as another user. For example, if we want
to add another general purpose computer algebra system, “axiom”, we input the
following command.
� �

user@debian:~$ sudo apt-get install axiom
� �

Note that all packages that are required by the specified package will also be
retrieved and installed.

2.7.3 How to Install MathLibre to an Internal Hard Disk

Beginning with MathLibre 2013, the installation of MathLibre to an internal hard
disk is supported. The install menu can be found while booting, Fig. 2.55; when
the “Install” or “Graphical install” menus are selected, we can install MathLibre as
well as ordinary Debian distributions. There is an manual for installing the Debian
Project.18

17http://live.debian.net/.
18http://www.debian.org/releases/stable/installmanual.

http://live.debian.net/
http://www.debian.org/releases/stable/installmanual
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Fig. 2.55 MathLibre boot
menu
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Chapter 3
Computation of Gröbner Bases

Masayuki Noro

Abstract In Chap. 1, we presented the theoretical foundation of Gröbner bases,
and many of our computations were carried out by hand. When we want to apply
Gröbner bases to practical problems, however, in most cases, we will need the help
of computers. There are many mathematical software systems which support the
computation of Gröbner bases, but we will often encounter cases which require
careful settings or preprocessing in order to be efficient. In this chapter, we explain
various methods to efficiently use a computer to compute Gröbner bases. We also
present some algorithms for performing operations on the ideals realized by Gröbner
bases. These operations are implemented in several mathematical software systems:
Singular, Macaulay2, CoCoA, and Risa/Asir. We will illustrate the usage of these
systems mainly by example.

In this chapter, we explain how to compute various objects related to Gröbner
bases, which were explained in Chap. 1. In Sect. 3.1, we explain the fundamental
tools necessary for the efficient computation of Gröbner bases. You do not have to
understand the details of the proofs in order to use Gröbner bases as a computational
tool. However, homogenization is useful in various situations, and it is helpful to
understand the principles behind it. In Sect. 3.2, we introduce the most popular
software systems for computing Gröbner bases: Macaulay2, Singular, and CoCoA.
Sections 3.3–3.5 describe various applications of Gröbner bases, and for each
topic, we give examples using the above three systems. Section 3.6 describes how
to use Risa/Asir for computations related to Gröbner bases. Finally, in Sect. 3.7,
we introduce a new primary ideal decomposition algorithm, and we present its
implementation in Macaulay2.
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Most of the theoretical background for understanding this chapter was presented
in Chap. 1. Using the functions related to Gröbner bases for practical applications,
however, also requires knowledge of the use of finite fields. A finite field is a
finite set in which addition, subtraction, multiplication, and division by a nonzero
element are defined, and they are often used as coefficient fields for polynomial
rings. A typical example is the set of all residue classes modulo a prime p, in
other words, the set of all the remainders modulo p. This finite field is denoted
by Fp. The Buchberger algorithm works for ideals in polynomial rings over finite
fields. A Gröbner basis computation over Fp does not cause intermediate coefficient
swells, which often happens with computations over Q. It is instructive to observe
the behavior of an algorithm by computing various examples.

Lists are another important concept when using mathematical software systems.
A list is a sequence of data, and since a list itself is considered to be data, a list can be
recursively structured data. Results returned by computations related to Gröbner
bases are often structured data represented by lists. If a list is returned, then it must
be processed in order to extract the information contained. Usually the method for
processing a list depends on the system being used; consult the appropriate manual.

3.1 Improving the Efficiency of the Buchberger Algorithm

The Buchberger algorithm introduced in Sect. 1.3.3 can be described as the follow-
ing procedure.

Algorithm 3.1.1 (Buchberger0.F /).

Input: a set of polynomials F D ff1; : : : ; flg
Output: a Gröbner basis G of hF i
D  fff; gg j f; g 2 F If ¤ gg
G  F

while ( D ¤ ; ) do
C D ff; gg  an element of D
D  D n fC g
h a remainder of S.f; g/ on division by G
if h ¤ 0 then
D  D [ fff; hg j f 2 Gg
G  G [ fhg

endif
end while
return G

In this algorithm, if a nonzero remainder h is generated, then pairs of h and all
elements of G are added to D, and h is added to G. Therefore you might expect
thatD would continue to grow with each iteration. But in reality, the remainders all
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eventually become 0, and the execution terminates. When the algorithm terminates,
all the S polynomials are reduced to 0 and G is a Gröbner basis of hF i. The output
G is constructed by adding many polynomials to the input F , and, in general, it
will be redundant. The reduced Gröbner basis defined in Sect. 1.2.2 can be obtained
from a minimal Gröbner basis constructed from G.

Algorithm 3.1.2 (MinimalGB.G/).

Input: a Gröbner basis G of hGi
Output: a minimal Gröbner basis of hGi
Gm  ;
while G ¤ ; do

g  an element of G
G  G n fh 2 G j in<.g/ j in<.h/g
if fh 2 G j in<.h/ j in<.g/g D ; then Gm  Gm [ fgg

end while
return Gm

Algorithm 3.1.3 (ReducedGB.G/).

Input : a minimal Gröbner basis G of hGi
Output : the reduced Gröbner basis of hGi
R ;
while G ¤ ; do

g  an element of G
G  G n fgg
r  a remainder of g on division by R [G
c  the coefficient of in<.r/ in r
R R [ fr=cg

end while
return R

Algorithm 3.1.1 is the most primitive form of the Buchberger algorithm, and it is
not efficient on computers. In particular, it has the following serious drawbacks:

1. If the remainder of an S polynomial on division by G is not 0, then the number
of elements in D increases by the number of elements in G.

2. The selection of the pair C affects the computational efficiency.

In order to overcome these difficulties, several criteria for eliminating unnecessary
S polynomials and several strategies for selecting the S -pairs have been proposed.
We will explain the most popular strategy for each of these. In the following section,
R D KŒx1; : : : ; xn�.
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3.1.1 Elimination of Unnecessary S-Pairs

Definition 3.1.4. For monic polynomials f1; : : : ; fm 2 R, we set Ti D in<.fi /,
Tij D LCM.Ti ; Tj / (i ¤ j ). Let .e1; : : : ; em/ be the standard basis of Rm, and set

Sij D Tij
Ti
ei � Tij

Tj
ej (i ¤ j ). For monomials t1; : : : ; tm, the expression t1e1 C � � � C

tmem is said to be T -homogeneous if there exists a monomial t such that t D tiTi
for i D 1; : : : ; m.

Remark 3.1.5. S D fSij j 1 � i < j � mg is a T -homogeneous basis of
syz.T1; : : : ; Tm/ (see Sect. 3.5.3).

Under this definition, the Buchberger criterion is refined as follows:

Theorem 3.1.6. Suppose that f1; : : : ; fm are monic. Then F D ff1; : : : ; fmg is a
Gröbner basis of hF i if and only if

Sij 2 S 0 ) S.fi ; fj / mod F D 0

for a subset S 0 of S D fSij j 1 � i < j � mg such that S 0 is a basis of
syz.T1; : : : ; Tm/.

Problem 3.1.7. Prove Theorem 3.1.6 by modifying the proof of the Buchberger
criterion in Sect. 1.3.3.

This theorem states that it is not necessary to reduce all the S polynomials in order
to check that a polynomial set F is a Gröbner basis. Instead, it is only necessary
to reduce the S polynomials created from a basis S 0 of syz.T1; : : : ; Tm/. We now
introduce a well-known method for choosing such a basis.

Lemma 3.1.8. For Tijk D LCM.Ti ; Tj ; Tk/ (1 � i < j < k � m),

Tijk

Tij
Sij C Tijk

Tjk
Sjk C Tijk

Tki
Ski D 0:

Corollary 3.1.9. If there exists k such that Tij D Tijk , then hSi D hS n fSij gi.
In order to use this corollary to eliminate unnecessarySij ’s, we define an appropriate
total ordering in S . We then eliminate Sij if Sij is the largest among Sij ; Sjk; Ski
with respect to this total ordering and Tij D Tijk holds. A possible such ordering is
the order of processing Sij , that is, Sij > Skl if Sij is processed after Skl . This is the
one proposed by Buchberger. A more systematic method was proposed by Gebauer
and Möller [4] and is widely used. In this method, the following total ordering	 is
defined.

Sij 	 Skl , Tij < Tkl or .Tij D Tkl and .j < l or .j D l and i < k///

It is convenient to introduce the following three properties of .fi ; fj ; fk/ (i < j ).
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Definition 3.1.10.

Fk.i; j /, k < i and Tjk D Tij
Mk.i; j /, k < j and Tk j Tij and Tjk ¤ Tij
Bk.i; j /, k > j and Tk j Tij and Tik ¤ Tij and Tjk ¤ Tij

Problem 3.1.11. Check that these properties give the condition that Sij is the
largest among Sij ; Sjk; Ski with respect to 	. (We note that t j s implies t 	 s.)
Theorem 3.1.12. We define a subset S 0 of S by

S 0 D fSij j Fk.i; j /;Mk.i; j /; Bk.i; j / do not hold for any kg:
Then S 0 is a basis of syz.T1; : : : ; Tm/.

According to this theorem, we can eliminate Sij fromD if one ofFk.i; j /,Mk.i; j /,
or Bk.i; j / holds for some k. Furthermore, according to Lemma 1.3.1, we can
eliminate Sij such that Tij D TiTj or equivalently GCD.Ti ; Tj / D 1.

3.1.2 Strategies for Selecting S-Pairs

We now give an example which shows that, in the Buchberger algorithm, the
strategy of selecting the S pairs affects the computational efficiency.

Example 3.1.13. Consider an ideal in F32003Œx; y; z; u�:

I D h3zx3 C x2 C 3y � 2; x4 � yx � y; 3x � 2zy2 C uz � 2;�2x2 C uy2i:
If we compute a Gröbner basis with respect to the lexicographic ordering such that
x > y > z > u, one selection strategy (strategy 1) gives only 169 intermediate
bases but another selection strategy (strategy 2) gives 1,465 intermediate bases.

Buchberger proposed the following strategy.

Definition 3.1.14 (Normal Selection Strategy). Select the pair fromD which has
the smallest Tij with respect the term ordering. This strategy is called the normal
(selection) strategy.

We can use the normal strategy to efficiently compute a Gröbner basis with respect
to a graded term ordering. However, we note that the computation using the normal
strategy is often inefficient if the term ordering is not graded. In fact, strategy
2 in Example 3.1.13 is the normal strategy. In this case, it was known that the
homogenization, which will be explained in Sect. 3.1.3, is useful for the efficient
computation of Gröbner bases. On the other hand, it is possible that homogenization
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may increase the computational costs because it increases the number of variables.
In order to achieve the effect of homogenization without actual homogenization,
Giovini et al. proposed the sugar selection strategy.1

Definition 3.1.15 (Sugar Selection Strategy). LetF be a set of input polynomials.
We define the sugar s.f / of a polynomial f which is created from F as follows:

1. For f 2 F , s.f / D tdeg.f /, where tdeg.f / denotes the total degree of f .
2. s.f C g/ D MAX.s.f /; s.g//.
3. s.mf / D tdeg.m/C s.f /.
An S pair is then selected by the normal strategy from those S pairs whose sugar is
the smallest.

The sugar strategy is used in most implementations of the Buchberger algorithm,
and it behaves well with both graded and nongraded orderings. We note that, in the
example above, strategy 1 is the sugar strategy.

3.1.3 Homogenization

Sometimes the Buchberger algorithm with the sugar strategy causes unnecessary
intermediate coefficient swells over Q (see Sect. 3.2.4). In this case, it may be
possible to avoid this by performing an actual homogenization.

Definition 3.1.16 (Homogenization). For f 2 R, f ¤ 0, we define the homoge-
nization f h 2 RŒx0� D KŒx0; : : : ; xn� by

f h D xtdeg.f /
0 f .x1=x0; : : : ; xn=x0/:

For a term ordering< inR, we define the homogenization<h to be the term ordering
in RŒx0� such that for t; s 2 R

xi0t <
h x

j
0 s, iC tdeg.t/ < j C tdeg.s/ or .iC tdeg.t/ D j C tdeg.s/ and t < s/:

For a homogeneous polynomial h 2 RŒx0�, we define the dehomogenization by
hjx0D1 D h.1; x1; : : : ; xn/.
The following is clear from the definition of <h.

Proposition 3.1.17. For f D c1t1 C � � � C cmtm 2 R (tm < � � � < t1), if f h D
c1x

i1
0 t1 C � � � C cmxim0 tm then xim0 t

h
m < � � � < x

i1
0 t1. For a homogeneous polynomial

h D c1x
i1
0 t1 C � � � C cmxim0 tm 2 RŒx0� such that xim0 t

h
m < � � � <h xi10 t1, we have

tm < � � � < t1.

1The name “sugar” comes from [5]. The sugar strategy was first implemented in CoCoA.
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Theorem 3.1.18. For F D ff1 : : : ; fmg � R, let Gh D fg1; : : : ; glg be a Gröbner
basis of hF hi (F h D ff h

1 ; : : : ; f
h
m g) with respect to <h consisting of homogeneous

polynomials. Then G D fg1jx0D1; : : : ; gl jx0D1g is a Gröbner basis of hF i with
respect to <.

Problem 3.1.19. Prove Theorem 3.1.18.

3.1.4 Buchberger Algorithm (an Improved Version)

We now present a version of the Buchberger algorithm which incorporates the
improvements described above.

Algorithm 3.1.20 (BuchbergerCore.F /).

Input: a sequence of polynomials F D .f1; : : : ; fl /
Output: a Gröbner basis of hF i
D  ;
form D 1 to l do

D  UpdatePairs.D; F;m/

end for
m l

while ( D ¤ ; ) do
Dmin D ffi; j g 2 D j s.S.fi ; fj // is minimal g
C D fi; j g  an element of Dmin such that Tij is minimal with respect to

the term ordering
D  D n fC g
h a remainder of S.fi ; fj / on division by ff1; : : : ; fmg
if h ¤ 0 then
F  .f1; : : : ; fm; h/

m mC 1
D  UpdatePairs.D; F;m/

endif
end while
return F

Algorithm 3.1.21 (UpdatePairs.D; F;m/).

Input: a set of pairs of indicesD, a sequence of polynomials F D .f1; : : : ; fm/
Output: a set of pairs created from F after eliminating unnecessary pairs
D  ffi; j g 2 D j Bm.i; j / does not holdg
N  ffi; mg j i D 1; : : : ; m � 1; Fk.i;m/ does not hold for any kD1; : : : ; i�1 }
N  ffi; mg 2 N jMk.i;m/ does not hold for any k D 1; : : : ; m � 1 (k ¤ i/ }
N  ffi; mg 2 N j GCD.Ti ; Tm/ ¤ 1}
returnD [N
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Algorithm 3.1.22 (Buchberger.F;H/).

if H D 1 then
Gh  BuchbergerCore.F h/

G  Ghjx0D1
else
G  BuchbergerCore.F /

endif
G  MinimalGB.G/

G  ReducedGB.G/
return G

An ideal generated by homogeneous polynomials is called a homogeneous ideal, so
F h in Algorithm 3.1.22 is a homogeneous ideal. If a set of input polynomials con-
sists of homogeneous polynomials, then all the S polynomials and their remainders
are homogeneous and the sugar coincides with the total degree. In this case, we may
assume that the specified term ordering is graded and the sugar strategy coincides
with the normal strategy. Suppose that we execute Algorithm 3.1.20 for a set of
homogeneous polynomials.

Definition 3.1.23. In Algorithm 3.1.20, we set

Dd D ffi; j g 2 D j tdeg.Tij / D d g; Fd D ffi 2 F j tdeg.fi / � d g:

Proposition 3.1.24. Let G be the output of Algorithm 3.1.20. If Dd D ; holds in
Algorithm 3.1.20, then Fd D fg 2 G j tdeg.g/ � d g:
Proof. IfDd D ;, then, for each of the S polynomials and their remainders created
after that point, its total degree is greater than d . Therefore Fd is stable until the
termination of the algorithm.

Proposition 3.1.25. Let G be the output of Algorithm 3.1.20. We set

Sd D fa remainder of S.fi ; fj / on division by Fd j fi; j g 2 Dd g

for Dd at the point of Dd�1 D ;. We take the set of all monomials .tD; : : : ; t1/ of
total degree d (D D dimK Rd , tD > tD�1 > � � � > t1) as an ordered K-basis of
Rd D ff 2 R j f is homogeneous and tdeg.f / D d g: Suppose that we obtain a
basis S 0

d of SpanK.Sd/ by applying Gaussian elimination to Sd with respect to this
K-basis. Then S 0

d [ Fd D fg 2 G j tdeg.g/ � d g:
Proof. We show that a remainder of S.fi ; fj / on division by S 0

d [ Fd is 0 for
fi; j g 2 Dd . Let r 2 Sd be a remainder of S.fi ; fj / on division by Fd . Since
S 0
d D fg1; : : : ; gkg (in<.g1/ > � � � > in<.gk/) is a basis of SpanK.Sd/, r can be

written as r D c1g1 C � � � C ckgk (c1; : : : ; ck 2 K). Then r � c1g1 � � � � � ckgk is a
remainder of r on division by S 0

d , and it is equal to 0.
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Based on this proposition, we can replace old basis elements with their remainders
on division by new basis elements when we execute Algorithm 3.1.20 for a
homogeneous ideal. Fd becomes a reduced polynomial set by this procedure, and it
may reduce the computational costs in the subsequent remainder computations.

3.2 Using Macaulay2, SINGULAR, and CoCoA

In this section, we illustrate the fundamental use of Macaulay2[6], SINGULAR[3],
and CoCoA[2], which are all available in KNOPPIX/Math.2 We recommend
running Macaulay2 and SINGULAR in Emacs. See Chap. 2 for details of Emacs.

3.2.1 Getting Started

In KNOPPIX/Math, all systems can be started from the Math Software icon in
the panel, the

p
x Math submenu in the main menu, or a terminal emulator.

3.2.1.1 Macaulay2

If you start Macaulay2 from the Math menu, it runs in a buffer of Emacs (Fig. 3.1).
If you type M2 in a terminal emulator, then Macaulay2 runs in the terminal
emulator. In this case, various facilities provided by the Emacs environment will
not be available.3 Therefore, it is convenient to run Macaulay2 in Emacs if you
are familiar with Emacs. You can also use Macaulay2 in GNU TEXmacs. The
viewHelp command invokes a web browser, and the documentation page will
then be displayed (Fig. 3.2). You will find useful information at

Macaulay 2->getting started->a first Macaulay 2 session.

Information on individual commands is available from the index.

3.2.1.2 SINGULAR

If you start ESingular from the Math menu or type ESingular into a terminal
emulator, SINGULAR will run in a buffer of Emacs (Fig. 3.3). If you type help in

2The versions discussed here of Macaulay2, Singular, and CoCoA are 1.4, 3.1.2, and 4.7.5,
respectively. They were all executed on a KNOPPIX/Math virtual machine, and the computing
time is not accurate.
3Only command line editing is available.
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Fig. 3.1 Macaulay2

Fig. 3.2 Macaulay2 help browser

ESingular, then the manual is displayed as an Emacs info screen (Fig. 3.4). If you
run Singular in a terminal emulator, the help command invokes a web browser,
and the manual is displayed in the browser.
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Fig. 3.3 SINGULAR

Fig. 3.4 SINGULAR help

3.2.1.3 CoCoA

If you start CoCoA from the Math menu or type xcocoa in a terminal emulator,
CoCoA runs in its own GUI (Fig. 3.5). If you type cocoa in a terminal emulator,
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Fig. 3.5 CoCoA (xcocoa)

it runs in the terminal emulator. The lower part of the GUI is used for input. Enter
Ctrl+Enter to execute commands, and the result will be displayed in the upper
part. Computations in CoCoA-4 are performed in the program itself, but they are
often slow. In such cases, you can call CoCoAServer, which is a wrapper of
the CoCoA-5 core, CoCoALib[1]. In order to use CoCoAServer, you have to
invoke CoCoAServer (usually /usr/local/cocoa-4.7/CoCoAServer)
in advance.4 To display the help file, enter Help->Contents in the GUI
(Fig. 3.6).

3.2.2 Packages, Libraries, and Files

In each system, you can use a file to input commands instead of typing them from
a keyboard. In the following, “a file” is restricted to mean a file created by a user,
and “a package” (“a library”) means one provided by a system. To read or write a
file, you have to specify the pathname, which locates the file in the system. If you
start a system from a terminal emulator, the pathname may be relative to the current
directory at the time when the system was started. For instance, the file abc in the
current directory would be specified by "abc", and the file abc in the subdirectory

4If you are using CoCoA-5, you do not have to do this.
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Fig. 3.6 CoCoA help

pqr of the current directory would be specified by "pqr/abc". If a system is
invoked from the menu, then the current directory is set to the home directory of the
user.

3.2.2.1 Macaulay2

To read commands from a file, use load. To read a package, use loadPackage.
To write data to a file, use filename<<. In the following example, a new file out is
created, a list L is converted to a character string, the string with a newline character
is written to the file, and the file is closed.

Listing 3.1 Macaulay2: reading a package and writing to a file
� �

i1 : loadPackage "Normaliz";
i2 : load "normaliz-example";
i3 : L

2 2 3 2 2
o3 = {ideal (x , x*y, y , z , x*z , y*z ),...}
o3 : List
i4 : "out"<<toString(L)<<endl<<close;
� �
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3.2.2.2 SINGULAR

To read a file, use < filename. To read a library, use LIB. There are two ways
to write data to a file: one is write(":w filename",...), and the other is
write("MPfile:w filename",...). The former writes data in a readable
form, but the structure of the data is lost; the result is a list separated by commas.
If you want to preserve the structure of the data, use the latter command; then to
read it, use read("MPfile:r filename").

Listing 3.2 SINGULAR: reading a library and reading and writing to a file
� �

> LIB "primdec.lib";
// ** loaded /usr/share/Singular/LIB/primdec.lib (12508,...)
// ** loaded /usr/share/Singular/LIB/general.lib (12231,...)
> <"primdec-example";
> write(":w asciiout",p);
> write("MPfile:w binaryout",p);
> def pp=read("MPfile:r binaryout");
� �

3.2.2.3 CoCoA

To read a file or a package, use Source. In order to read a package in the CoCoA
package directory, enter CocoaPackagePath() followed by/before the file
name of the package. Note that a package is loaded automatically when calling a
function in the package provided by CoCoA. If you are using the GUI, the content of
a file can be read in the buffer by entering File->Open, and you can edit it before
executing it by entering Ctrl+Enter. To write data to a file, use OpenOFile
and Print On.

Listing 3.3 CoCoA: reading a package and reading and writing to a file
� �

Source "gb-example";
G;
D:=OpenOFile("out");
Print G On D;
Close(D);
� �

3.2.3 Rings, Term Orderings, and Polynomials

In Macaulay2, SINGULAR, and CoCoA, it is necessary to declare a base ring before
starting a computation. A term ordering is specified with the base ring. Below, we
explain how to define the typical term orderings: a graded reverse lexicographic
ordering (grevlex), a lexicographic ordering (lex), and a block (or elimination)
ordering (see Sect. 3.3.1).
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3.2.3.1 Macaulay2

QQ and ZZ/p denote Q and Fp D Z=pZ, respectively, and these can be set as
coefficient fields. The default term ordering is grevlex, and MonomialOrder is
used to specify a different term ordering. An example is QQ[x,y,z,Monomial
Order=>Lex], which declares a polynomial ring with a lex ordering such that x >
y > z. Another example is ZZ/37[x,y,z,u,v,MonomialOrder=>{2,3}],
which declares a polynomial ring with a block ordering such that fx; yg 

fz; u; vg and the grevlex ordering is applied to each block (see Definition 3.3.1).
Indeterminates, which are not declared in the base ring, are not allowed. Each
polynomial belongs to a base ring, and if operands of a computation belong to
different base rings, it is necessary to apply map. We note that in Macaulay2,
variables do not have a defined type and can hold any object.

Listing 3.4 Macaulay2: declaration of a base ring and input of polynomials
� �

i1 : R=QQ[x,y,z];
i2 : f=(x+y+z)^2

2 2 2
o2 = x + 2x*y + y + 2x*z + 2y*z + z
o2 : R
i3 : g=y+u
stdio:3:4:(1):[0]: error: no method for binary operator
+ applied to objects:
-- y (of class R)
-- + u (of class Symbol)

i4 : S=QQ[x,y,z,u]
i5 : f+u
stdio:5:2:(1):[0]: error: expected pair to have a method
for ’+’
i6 : h=(map(S,R))(f);
i7 : h+u

2 2 2
o7 = x + 2x*y + y + 2x*z + 2y*z + z + u
o7 : S
� �

3.2.3.2 SINGULAR

Use ring to declare a base ring. The coefficient field is specified by the character-
istic. That is, 0 denotes the field of rationals, and a prime p (p < 32767) denotes
Fp. Some examples of ring declarations are shown below.

• grevlex ordering
ring r=0,(x,y,z),dp;

• lex ordering
ring r=0,(a,b,c),lp;



122 M. Noro

• block ordering
ring r=32003,(u,v,w,x),(dp(2),dp(2));

(dp(2),dp(2))means that fu; vg 
 fw; xg and grevlex is applied to each
block.

Listing 3.5 SINGULAR: declaration of a base ring and input of polynomials
� �

> ring r=0,(x,y,z),dp;
> poly f=(x+y+z)^2;
> poly g=f+u;

? ‘u‘ is not defined
? error occurred in or before STDIN line 4: ‘poly g=f+u;‘
? expected poly-expression. type ’help poly;’

> ring s=0,(x,y,z,u),dp;
> poly h=imap(r,f);
> h+u;
x2+2xy+y2+2xz+2yz+z2+u
� �

As in Macaulay2, imap must be applied if the operands of a computation belong to
different base rings. In SINGULAR, the type of a variable must be declared before
it is used.

3.2.3.3 CoCoA

A base ring is declared by Use, QQ denotes the field of rationals, and ZZ/(p)
denotes Fp (p is a prime less than 32767). The default term ordering is grevlex.
Other term orderings can be specified as follows.

• lex ordering
Use QQ[x,y], Lex;

• elimination ordering
Use QQ[x,y,z,u], Elim(x..y);

The latter example declares an elimination ordering that eliminates fx; yg. Enter the
Ord command to display the details of the term ordering.

Listing 3.6 CoCoA: declaration of a base ring and input of polynomials
� �

Use R::=QQ[x,y,z];
F:=(x+y+z)^2;
F+u;
ERROR: Undefined indeterminate u
CONTEXT: F + u
-------------------------------
Use S::=QQ[x,y,z,u];
B:=BringIn(F);
B+u;
x^2 + 2xy + y^2 + 2xz + 2yz + z^2 + u
-------------------------------
Use U::=QQ[x[1..5]],Elim(x[1]..x[3]);
Ord(U);
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Mat([
[1, 1, 1, 0, 0],
[0, 0, 0, 1, 1],
[0, 0, 0, 0, -1],
[0, 0, -1, 0, 0],
[0, -1, 0, 0, 0]

])
� �

In CoCoA, an indeterminate is represented by a single lowercase letter. It can
be followed by indices. A variable begins with an uppercase letter. BringIn
corresponds to map in Macaulay2 and imap in SINGULAR. In the example above,
we see from the matrix defining the elimination ordering that it is not a block
ordering.

3.2.4 Computation of Gröbner Bases

We now explain how to compute Gröbner bases in each of these systems. The
following is the cyclic-7 (C7) ideal, which is often used as a benchmark for Gröbner
basis computations. It sometimes causes intermediate coefficient swells over Q.

Example 3.2.1 (cyclic-7).

C7 D hc0 C c1 C c2 C c3 C c4 C c5 C c6;
c0c1 C c1c2 C c2c3 C c3c4 C c4c5 C c5c6 C c6c0;
c0c1c2 C c1c2c3 C c2c3c4 C c3c4c5 C c4c5c6 C c5c6c0 C c6c0c1;
c0c1c2c3 C c1c2c3c4 C c2c3c4c5 C c3c4c5c6 C c4c5c6c0 C c5c6c0c1 C c6c0c1c2;
c0c1c2c3c4 C c1c2c3c4c5 C c2c3c4c5c6 C c3c4c5c6c0 C c4c5c6c0c1 C c5c6c0c1c2
Cc6c0c1c2c3;
c0c1c2c3c4c5 C c1c2c3c4c5c6 C c2c3c4c5c6c0 C c3c4c5c6c0c1 C c4c5c6c0c1c2
Cc5c6c0c1c2c3 C c6c0c1c2c3c4;
c0c1c2c3c4c5c6 � 1i

3.2.4.1 Macaulay2

In Macaulay2, an ideal is generated by the command ideal. Use the command
gb to compute a Gröbner basis. The result is returned as a Gröbner basis object.
The generating set can be obtained as a matrix by using the command gens.
In the following example, we compute the Gröbner basis for cyclic-7 with respect
to a grevlex ordering. Many possible switches are available for controlling the
computations, but the computation finished quickly without requiring them. In this
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example, the generating set was obtained as a 1�209matrix by using the command
gens. The i -th element can be obtained by the command g_i. Note that the index
i starts at 0.

Listing 3.7 Macaulay2: Gröbner basis computation
� �

i1 : R=QQ[c0,c1,c2,c3,c4,c5,c6];
i2 : I=ideal(c0+c1+c2+c3+c4+c5+c6,...);
o2 : Ideal of R
i3 : G=gb I;
i4 : g=gens G;

1 209
o4 : Matrix R <--- R
i5 : g_0
o5 = | c0+c1+c2+c3+c4+c5+c6 |

1
o5 : R
� �

3.2.4.2 SINGULAR

In SINGULAR, an ideal is generated by substituting a list of polynomials for a
variable that is declared to be an ideal. Use the command groebner to compute
a Gröbner basis. The result can be obtained by declaring an ideal variable and
then substituting the result for the variable. The generators are obtained by entering
the variable followed by an index; the index starts at 1. In the following example,
we compute a Gröbner basis for cyclic-7 over F32003. SINGULAR quickly computes
Gröbner bases over finite fields, but it is often slower over the field of rationals. This
is thought to be caused by the unnecessary coefficient swells.

Listing 3.8 SINGULAR: Gröbner basis computation
� �

> ring r=32003,(c0,c1,c2,c3,c4,c5,c6),dp;
> ideal i=c0+c1+c2+c3+c4+c5+c6,...;
> ideal g=groebner(i);
> g[1];
c0+c1+c2+c3+c4+c5+c6
> g[2];
c1^2+c1*c3-c2*c3+c1*c4-c3*c4+c1*c5-c4*c5+2*c1*c6+...
� �

3.2.4.3 CoCoA

In CoCoA, an ideal is generated by the command Ideal, and a Gröbner basis
is computed by the command GBasis (the reduced Gröbner basis is computed
by ReducedGBasis). Computing Gröbner bases is very slow in general, and
we recommend the use of the command GBasis5 (or ReducedGBasis5) after
starting CoCoAServer.
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Listing 3.9 CoCoA: starting CoCoAServer
� �

noro@ubuntu:~ /usr/local/cocoa-4.7/CoCoAServer
------[ Starting CoCoAServer on port 49344 (0xc0c0) ]------

Provides operations defined in the following libraries:
CoCoALib-0.9931 (frobby)
CoCoALib-0.9931 (groebner)
CoCoALib-0.9931 (combinatorics)
CoCoALib-0.9931 (approx)

� �

Even when using GBasis5, coefficient swells may occur when the input ideals
are nonhomogeneous. For example, it takes a very long time to compute the
Gröbner basis for cyclic-7, but GBasis5 runs very fast if the input polynomials
are homogenized in advance. To homogenize, use the command Homogenized.

Listing 3.10 CoCoA: Gröbner basis computation
� �

Use QQ[a,b,c,d,e,f,g,t];
I := Ideal(
abcdefg-1,
abcdef+bcdefg+cdefga+defgab+efgabc+fgabcd+gabcde,
abcde+bcdef+cdefg+defga+efgab+fgabc+gabcd,
abcd+bcde+cdef+defg+efga+fgab+gabc,
abc+bcd+cde+def+efg+fga+gab,
ab+bc+cd+de+ef+fg+ga,
a+b+c+d+e+f+g
);
H:=Homogenized(t,Gens(I));
HG:=ReducedGBasis5(Ideal(H));
-- CoCoAServer: computing Cpu Time = 16.9891
DHG := Subst(HG,t,1);
G := ReducedGBasis5(Ideal(DHG));
-- CoCoAServer: computing Cpu Time = 149.265
� �

For the Gröbner basis HG obtained for the homogenized input, a (nonreduced)
Gröbner basis DHG of I is obtained by substituting 1 for t in DHG. Finally, we obtain
the reduced Gröbner basis of I by applying the command ReducedGBasis5
to DHG.5

3.2.5 Computation of Initial Ideals

The set of initial monomials of the elements in a Gröbner basisG of an ideal I � R
(R D KŒx1; : : : ; xn�) generates the initial ideal in<.I / of I .

5This takes a very long time.
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3.2.5.1 Macaulay2

In Macaulay2, the initial monomial of a polynomial is called the lead monomial, and
it is extracted by using the command leadMonomial. To extract the coefficient
and term of the lead monomial, use the commands leadCoefficient and
leadTerm, respectively. The initial ideal is obtained if we apply the command
leadTerm to an ideal. In this case, the Gröbner basis is computed automatically.

Listing 3.11 Macaulay2: computation of initial ideal
� �

i1 : R=QQ[x,y,z];
i2 : I=ideal(x^2*y^2-z^2,x^3-y*z^2,x^2*z^4-y^2);
o2 : Ideal of R
i3 : J=ideal leadTerm I

3 2 2 3 2 5 6 2 4
o3 = ideal (x , x y , y z , y , z , x z )
o3 : Ideal of R
� �

3.2.5.2 SINGULAR

When the commandlead is applied to an ideal, it simply returns the ideal generated
by the initial monomials of the generators of the ideal. Therefore, it is necessary to
explicitly compute a Gröbner basis of the ideal before applying lead.

Listing 3.12 SINGULAR: computation of initial ideal
� �

> ring r=0,(x,y,z),dp;
> ideal i=x^2*y^2-z^2,x^3-y*z^2,x^2*z^4-y^2;
> lead(i);
_[1]=x2y2
_[2]=x3
_[3]=x2z4
> ideal g=groebner(i);
> lead(g);
_[1]=x3
...
_[6]=x2z4
� �

3.2.5.3 CoCoA

The command LT automatically computes a Gröbner basis before finding the initial
monomials.

Listing 3.13 CoCoA: computation of initial ideal
� �

Use R::= QQ[x,y,z];
I:=Ideal(x^2*y^2-z^2,x^3-y*z^2,x^2*z^4-y^2);
LT(I);
Ideal(x^3, x^2y^2, x^2z^4, y^3z^2, z^6, y^5)
� �
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3.2.6 Computation of Quotient and Remainder

An immediate application of the remainder computation is to test whether a
polynomial f belongs to an ideal I . This can be done by checking the remainder of
f on division by a Gröbner basis of I with respect to any term ordering. If we have
a Gröbner basis of an ideal J , then we can test whether I � J holds for the two
ideals. In the examples below, we compute the remainder to check whether some
power of f belongs to an ideal I . Note that we cannot use this method to show that
no power of f belongs to I . See Sect. 3.3.3 for how to check this by computing a
Gröbner basis.

3.2.6.1 Macaulay2

Using Macaulay2, it is possible to compute the quotient and the remainder when a
polynomial is divided by a Gröbner basis or a matrix.

• remainder.f; g/ returns the remainder r of f on division by g.
• quotient.f; g/ returns the quotient r of f on division by g.
• quotientRemainder.f; g/ returns .q; r/ for the quotient q and the remain-

der of f on division by g.

The input f is a matrix, and g is a Gröbner basis or a matrix. If g is a Gröbner
basis, then 0 is returned as the quotient. If g is a matrix, then q and r such that
gq C r D f are returned. For example, if g is a row vector .g0; : : : ; gl /, then q
is a column vector t .q0; : : : ; ql / such that q0g0 C � � � C qlgl C r D f , where the
remainder is r .

Listing 3.14 Macaulay2: computation of quotient and remainder
� �

i1 : R=QQ[x,y,z];
i2 : I=ideal(x^4*y^2+z^2-4*x*y^3*z-2*y^5*z,x^2+2*x*y^2+y^4);
o2 : Ideal of R
i3 : G=gb I;
i4 : g=gens G;

1 3
o4 : Matrix R <--- R
i5 : f=y*z-x^3;
i6 : remainder(matrix{{f}},G)
o6 = | -x3+yz |

1 1
o6 : Matrix R <--- R
i7 : remainder(matrix{{f^2}},G)
o7 = | 2x2y3z+2x3yz+2y2z2+2xz2 |

1 1
o7 : Matrix R <--- R
� �
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Listing 3.15 Macaulay2: computation of quotient and remainder (continued)
� �

i8 : remainder(matrix{{f^3}},G)
o8 = 0

1 1
o8 : Matrix R <--- R
i9 : qr=quotientRemainder(matrix{{f^3}},g);
o9 : Sequence
i10 : q=qr_0;

3 1
o10 : Matrix R <--- R
i11 : g*q
o11 = | -x9+3x6yz-3x3y2z2+y3z3 |

1 1
o11 : Matrix R <--- R
i12 : g*q-f^3
o12 = 0
� �

In this example, f 3 2 I is obtained by computing the remainders of f , f 2, and f 3

from division by a set of generators of I .
We can check whether two ideals are identical by using the command

remainder. For this purpose, we can also use the operator ==. When J==I
is executed, Gröbner bases of both ideals are automatically computed, and their
equivalence is checked. To check for ideal membership or ideal inclusion, use the
command isSubset.

Listing 3.16 Macaulay2: ideal inclusion
� �

i1 : R=QQ[x,y,z];
i2 : I=ideal(x*y^2-z^2,x^2*z-x^2,y^2*z^2-x^3);
o2 : Ideal of R
i3 : isSubset(ideal(x^2*z-x^2),I)
o3 = true
i4 : J=ideal(y^4,z^2*y^2,z^4,-y^2*x+z^2,z^2*x,x^2);
o4 : Ideal of R
i5 : isSubset(I,J)
o5 = true
� �

In this example, the first isSubset checks x2z � x2 2 I . Since isSubset
requires ideals for its arguments, the polynomial x2z � x2 is passed as a principal
ideal. The second isSubset is a test of I � J . We note that it is not necessary to
explicitly compute a Gröbner basis in order to test for inclusion.

3.2.6.2 SINGULAR

• The command reduce(f; I ) returns the remainder of f on division by the
generating set of an ideal I .

If the given generating set is not a Gröbner basis, the remainder may not be 0
even if f 2 I .

• The command division(f; I ) returns the quotient and the remainder modulo
an ideal I .
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This command automatically computes a Gröbner basis of I , and the
remainder is computed by using the Gröbner basis. The quotient is computed for
the original generating set of I . The third element of the returned result is the
multiplier for computing a remainder for the case that the ordering is not a term
ordering, and this is equal to 1 for a term ordering.

Listing 3.17 SINGULAR: computation of quotient and remainder
� �

> ring r=0,(x,y,z),dp;
> ideal i=x^4*y^2+z^2-4*x*y^3*z-2*y^5*z,x^2+2*x*y^2+y^4;
> poly f=y*z-x^3;
> reduce(f,i);
// ** i is no standard basis
-x3+yz
> reduce(f^3,i);
// ** i is no standard basis
-x9+3x6yz-3x3y2z2+y3z3
> division(f^3,i);
[1]:

_[1,1]=x3y2+2x4+y3z
_[2,1]=-x7+2x3y3z+3x4yz+2y4z2-2x2z2

[2]:
_[1]=0

[3]:
_[1,1]=1

� �

The command reduce can be applied to an ideal, and we can check I D J by
checking that both reduce(I; J ) and reduce(J; I ) consist of only 0.

3.2.6.3 CoCoA

• The command NF(f; I ) returns the remainder of f modulo an ideal I .
This command automatically computes a Gröbner basis and returns the

remainder on division by the Gröbner basis.
• The command DivAlg(f; l) returns the quotient and the remainder of f on

division by a list of polynomials l . The quotient is returned as a list. If the
polynomial list l is not a Gröbner basis, the remainder may not be 0 even if
f 2 I .

Listing 3.18 CoCoA: computation of quotient and remainder
� �

Use R::=QQ[x,y,z];
I:=Ideal(x^4*y^2+z^2-4*x*y^3*z-2*y^5*z,x^2+2*x*y^2+y^4);
F:=y*z-x^3;
NF(F^3,I);
0
-------------------------------
QR:=DivAlg(F^3,Gens(I));
QR;
Record[Quotients := [0, 0],
Remainder := -x^9 + 3x^6yz - 3x^3y^2z^2 + y^3z^3]
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-------------------------------
QR:=DivAlg(F^3,GBasis(I));
QR;
Record[Quotients := [-4xy^2z^2 - 2x^2z^2, -2xyz, -x^3 - yz],
Remainder := 0]
� �

3.3 Operations on Ideals by Using Gröbner Bases

In this section, we introduce algorithms for realizing various operations for ideals
by using Gröbner bases. In many systems, most of these operations are provided
as a single command. Understanding of the methods, however, may allow you to
perform this more efficiently. We set R D KŒx1; : : : ; xn�.

3.3.1 Elimination Ordering

In many operations on ideals, it is necessary to eliminate variables. A term ordering
satisfying the condition in Theorem 1.4.1 is called an elimination ordering, and it
can be used to eliminate variables. A lex ordering is a typical elimination ordering,
but because it is not efficient, its use should be avoided as far as possible. In many
cases, a term ordering called a block ordering (a product ordering) is sufficient.

Definition 3.3.1 (A Block Ordering). Suppose that term orderings <Y and <Z
are given on KŒY � and KŒZ�, respectively, for two sets of indeterminates Y , Z
(Y \Z D ;). We define a term ordering< on KŒX� (X D Y [Z) by

tY tZ < sY sZ , tY <Y sY or .tY D sY and tZ <Z sZ/

for tY ; sY 2 KŒY � and tZ; sZ 2 KŒZ�: Then < is an elimination ordering on KŒX�.
We call < the block ordering (product ordering) such that Y 
 Z.

For an ideal I in KŒX� (X D Y [ Z, Y \ Z D ;), a generating set of IZ D
I \KŒZ� is given by GZ D G \ KŒZ� for a Gröbner basis G with respect to any
elimination ordering < such that Y 
 Z. Furthermore GZ is a Gröbner basis of
IZ with respect to <0 which is the restriction of < to KŒZ�. For this purpose, we
recommend the use of a block ordering or an elimination ordering similar to a block
ordering (see Sect. 3.2.3.3). As an example, we will compute I \ QŒz� for an ideal
I D hx2 � z; xy � 1; x3 � x2y � x2 � 1i � QŒx; y; z�.

3.3.1.1 Macaulay2

We compute a Gröbner basis G of I with respect to a block ordering such that
fx; yg 
 fzg and then apply a grevlex ordering to each block. Then Gz, a
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Gröbner basis of IÂě cap QŒz�, is extracted from G. In order to compute Gz, use
the command selectInSubring. The command selectInSubring.i;m/
returns the matrix that consists of those columns ofmwhose variables do not belong
to the first i blocks of the block ordering.

Listing 3.19 Macaulay2: Gröbner basis computation of an elimination ideal
� �

i1 : R=QQ[x,y,z,MonomialOrder=>{2,1}];

i2 : I=ideal(x^2-z,x*y-1,x^3-x^2*y-x^2-1);
o2 : Ideal of R
i3 : G=gens gb I;

1 3
o3 : Matrix R <--- R
i4 : Gz=selectInSubring(1,G)
o4 = | z3-3z2-z-1 |
� �

3.3.1.2 SINGULAR

Letm be the product of variables in a variable set Y . A generating set of I\KŒXnY �
can be computed by using the commandeliminate(I;m). Any term ordering can
be set for the base ring.

Listing 3.20 SINGULAR: Gröbner basis computation of an elimination ideal
� �

> ring r=0,(x,y,z),dp;
> ideal i=x^2-z,x*y-1,x^3-x^2*y-x^2-1;
> eliminate(i,x*y);
_[1]=z3-3z2-z-1
� �

3.3.1.3 CoCoA

The command Elim(v; I ) computes the ideal I \KŒX n v� for the set of variables
X of the base ring. Any term ordering can be set. The input v is a variable or a list
of variables, such as Œx; y�, x::z.

Listing 3.21 CoCoA: Gröbner basis computation of an elimination ideal
� �

Use R::=QQ[x,y,z];
I:=Ideal(x^2-z,x*y-1,x^3-x^2*y-x^2-1);
Elim(x..y,I);
Ideal(-1/2z^3 + 3/2z^2 + 1/2z + 1/2)
� �

In each system, a Gröbner basis computation with respect to an elimination
ordering is used to compute an elimination ideal. This is done according to a setting
determined by each system, and it may cause a difficulty with the computations.
Frequently, homogenization can be applied to overcome this difficulty. As an
example, we compute I \QŒd; e� in CoCoA for



132 M. Noro

I D h4a3 C 3cb2a2 � aC 2;�3ca3 C 3c2a2 � aC 3cb4 C c3;
�6a2 C .�3c3 � 4/aC 3; .4cb2 � 1/a2 C .db C c/aC b4;
2a3 � 3a2 C .�d2 � 2e/b C 3i:

If we apply the built-in command Elim5, it will continue to run for several minutes;
so instead, we will try homogenization.

Listing 3.22 CoCoA: Computation of an elimination ideal via homogenization
� �

Use R::=QQ[a,b,c,d,e,t];
I:=Ideal(4*a^3+3*c*b^2*a^2-a+2,-3*c*a^3+3*c^2*a^2-a+3*c*b^4+c^3,
-6*a^2+(-3*c^3-4)*a+3,(4*c*b^2-1)*a^2+(d*b+c)*a+b^4,
2*a^3-3*a^2+(-d^2-2*e)*b+3);
H:=Homogenized(t,Gens(I));
J:=Ideal(H);
E:=Elim5(a..c,J);
-- CoCoAServer: computing Cpu Time = 34.3644
-------------------------------
DE:=Subst(E,t,1);
G:=ReducedGBasis5(Ideal(DE));
-- CoCoAServer: computing Cpu Time = 0.5099
� �

The computation successfully terminates within 35 s.
Gröbner bases with respect to an elimination ordering can be applied to compute

Gröbner bases over rational function fields.

Theorem 3.3.2. Let ff1; : : : ; flg � KŒX; Y � be a set of generators of an ideal
I � K.Y /ŒX�. For J D hf1; : : : ; fli � KŒX; Y �, a Gröbner basis of J with respect
to an elimination ordering< such that X 
 Y is a Gröbner basis of I with respect
to a term ordering <0 which is the restriction of < to K.Y /ŒX�.

Problem 3.3.3. Show Theorem 3.3.2.

A Gröbner basis over a rational function field can be computed by using the
Buchberger algorithm, but this requires polynomial GCD computations in order
to reduce fractions; this can be expensive. If we apply Theorem 3.3.2, it is not
necessary to compute polynomial GCDs. Instead, the number of S polynomials will
increase. It is hard to predict which method will be most efficient for a particular
input ideal.

3.3.2 Sum, Product, and Intersection of Ideals

For ideals I D hAi and J D hBi in R, the sets of generators of the sum
I C J D ff C g j f 2 I; g 2 J g and the product IJ D hffg j f 2 I; g 2 J gi
are A [ B and fab j a 2 A; b 2 Bg, respectively. But these sets of generators
are not necessarily Gröbner bases even if A and B are Gröbner bases. In order
to determine the Gröbner bases of these ideals, it is necessary to compute them.
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Lemma 1.4.3 shows that the intersection of ideals can be obtained by computing
an elimination ideal. The intersection of ideals I1; I2; : : : is obtained by executing
the command intersect.I1; I2; : : :/ in Macaulay2 and SINGULAR and by
intersection.I1; I2; : : :/ in CoCoA. Here we show an example in Macaulay2.
In this example, we compute the primary decomposition (see Sect. 3.7) of a binomial
ideal I, and we then check that the intersection of all components coincides with I.

Listing 3.23 Macaulay2: intersection of ideals
� �

i1 : R=QQ[a,b,c,d,e,f,g,h,i];
i2 : I=ideal(e*a-d*b,f*b-e*c,h*d-g*e,i*e-h*f);
o2 : Ideal of R
i3 : PD=primaryDecomposition(I);
i4 : J=intersect(PD)
o4 = ideal (f*h - e*i, e*g - d*h, c*e - b*f, b*d - a*e)
o4 : Ideal of R
i5 : I==J
o5 = true
� �

3.3.3 Radical Membership Test

Let I be an ideal, and let f be a polynomial. If f 2 I , then f vanishes on
V.I /, the zero set of I , but the converse does not hold in general. If K is an
algebraically closed field, then f vanishes on V.I / if and only if f 2 pI (Hilbert’s
Nullstellensatz).

Definition 3.3.4. For an ideal I � R, we define the radical
p
I of I by

p
I D ff 2 R j f m 2 I for some positive integermg

p
I is an ideal in R.

Theorem 3.3.5. For an ideal I � R and f 2 R, the following are equivalent.

1. f 2 pI .
2. RŒt�I C htf � 1i D KŒx1; : : : ; xn; t �.
3. The reduced Gröbner basis ofRŒt�I Chtf �1i with respect to any term ordering

is equal to f1g.
Problem 3.3.6. Show Theorem 3.3.5. (It is easy to show 1:) 2: To show 2:) 1:,
write 1 as an element of RŒt�I C htf � 1i and substitute 1=f for t .)

Using this theorem, f 2 pI can be checked by computing a Gröbner basis of
RŒt�I C htf � 1i. Note that we can apply any term ordering, but usually grevlex is
used.

In the following example, we check f 2 pI in Sect. 3.2.6 by using the method
explained here.
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3.3.3.1 Macaulay2

Listing 3.24 Macaulay2: radical membership test
� �

i1 : R=QQ[t,x,y,z];
i2 : I=ideal(x^4*y^2+z^2-4*x*y^3*z-2*y^5*z,x^2+2*x*y^2+y^4);
o2 : Ideal of R
i3 : f=y*z-x^3;
i4 : gens gb (I+ideal(t*f-1))
o4 = | 1 |
� �

Since the reduced Gröbner basis of RŒt�I C htf � 1i is f1g, f 2 pI holds.

3.3.3.2 SINGULAR

Listing 3.25 SINGULAR: radical membership test
� �

> ring r=0,(t,x,y,z),dp;
> ideal i=x^4*y^2+z^2-4*x*y^3*z-2*y^5*z,x^2+2*x*y^2+y^4;
> poly f=y*z-x^3;
> ideal j=t*f-1,i;
> groebner(j);
_[1]=1
� �

Since the reduced Gröbner basis of RŒt�I C htf � 1i is f1g, f 2 pI holds.

3.3.3.3 CoCoA

Listing 3.26 CoCoA: radical membership test
� �

Use R::=QQ[x,y,z];
I:=Ideal(x^4*y^2+z^2-4*x*y^3*z-2*y^5*z,x^2+2*x*y^2+y^4);
F:=y*z-x^3;
IsInRadical(F,I);
True
-------------------------------
MinPowerInIdeal(F,I);
3
� �

A built-in function IsInRadical is available. Furthermore, for a polynomial f 2p
I , the commandMinPowerInIdeal computes the minimalm such that f m2I .

3.3.4 Ideal Quotient and Saturation

Definition 3.3.7 (Ideal Quotient). For ideals I; J � R, we define the ideal
quotient I W J by I W J D ff j fJ � I g: For J D hf i, we write I W J as
I W f .
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The following theorem is an easy consequence of the definition.

Theorem 3.3.8. 1. If J D hg1; : : : ; gl i, then I W J D
l\

iD1
.I W gi /.

2. I W g D .I \ hgi/=g.

.I \ hgi/=g is an ideal generated by the quotients of the generators of I \ hgi on
division by g. Therefore, I W J is obtained by computing the intersections of the
ideals.

Definition 3.3.9 (Saturation). For ideals I; J � R, the saturation I W J1 is

defined by I W J1 D
1[

mD1
.I W Jm/. For J D hf i, we write I W J1 as I W f 1.

Theorem 3.3.10. 1. If J D hg1; : : : ; gl i, then I W J D
l\

iD1
.I W g1

i /.

2. I W g1 D .I C htg � 1i/\ R.

Problem 3.3.11. Show Theorem 3.3.10 by using Sect. 3.3.3.

According to this theorem, I W J1 can be computed from the intersection of the
ideals followed by elimination. In the next example, we will compute I W xk D .I W
xk�1/ W x recursively for I D hx4 � y5; x3 � y7i � QŒx; y� until I W xk becomes
stable; we will then check that it coincides with I W x1.

3.3.4.1 Macaulay2

The ideal quotient I W J and the saturation I W J1 for ideals I; J are computed by
the commands quotient.I; J / and saturate.I; J /, respectively.

Listing 3.27 Macaulay2: ideal quotient and saturation
� �

i1 : R=QQ[x,y];
i2 : I=ideal(x^4-y^5,x^3-y^7);
o2 : Ideal of R
i3 : I1=quotient(I,x);
o3 : Ideal of R
i4 : I2=quotient(I1,x);
o4 : Ideal of R
i5 : I1==I2
o5 = false
i6 : I3=quotient(I2,x);
o6 : Ideal of R
i7 : I2==I3
o7 = false
i8 : I4=quotient(I3,x);
o8 : Ideal of R
i9 : I3==I4
o9 = true
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i10 : J=saturate(I,x);
o10 : Ideal of R
i11 : I3==J;
o11 = true
� �

3.3.4.2 SINGULAR

I W J is computed by the command quotient.I; J /. I W J1 is computed by
sat.I; J /, which is defined in elim.lib. sat(I; J ), and which returns a pair
I W J1 and the smallest integerm such that I W J1 D I W Jm.

Listing 3.28 SINGULAR: ideal quotient and saturation
� �

> ring r=0,(x,y),dp;
> ideal i=x^4-y^5,x^3-y^7;
> LIB "elim.lib";
...
> list s=sat(i,x);
> s;
[1]:

_[1]=xy2-1
_[2]=y5-x4
_[3]=x5-y3

[2]:
3

> ideal g3=quotient(i,x^3);
> g3=groebner(g3);
> g3;
g3[1]=xy2-1
g3[2]=y5-x4
g3[3]=x5-y3
> size(reduce(g3,s[1]));
0
> size(reduce(s[1],g3));
0
� �

The command size returns the number of nonzero elements in a list. The above
result shows that g3 coincides with s[1].

3.3.4.3 CoCoA

I W J and I W J1 are computed by the commands Colon(I; J ) and I:J,
Saturation(I; J ), respectively. Both functions accept only an ideal as the second
argument.

Listing 3.29 CoCoA: ideal quotient and saturation
� �

Use R::=QQ[x,y];
I:=Ideal(x^4-y^5,x^3-y^7);
I:Ideal(x^3);
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Ideal(xy^2 - 1, y^5 - x^4, x^5 - y^3)
-------------------------------
Colon(I,Ideal(x^3));
Ideal(xy^2 - 1, y^5 - x^4, x^5 - y^3)
-------------------------------
Saturation(I,Ideal(x));
Ideal(xy^2 - 1, y^5 - x^4, x^5 - y^3)
� �

3.3.5 Computation of a Radical

As seen in Sect. 3.3.3, the test for radical membership is performed by computing
a Gröbner basis. However, the computation of the radical of an ideal is not an
easy task. In this section, as an application of an operation on ideals, we outline
an algorithm for computing radicals.

Definition 3.3.12 (The Squarefree Part of a Polynomial). Let f D f
n1
1 � � �f nl

l

(n1; : : : ; nl � 1) be the irreducible factorization of a polynomial f . We call the
product f1 � � �fl the squarefree part of f .

Theorem 3.3.13 (Seidenberg). Let K be a perfect field, and let I be a zero-
dimensional ideal in KŒx1; : : : ; xn� (see Sect. 3.4.1). Let fi (i D 1; : : : ; n) be the
squarefree part of the generator of I \KŒxi �. Then

p
I D I C hf1; : : : ; fni.

Definition 3.3.14 (Extension and Contraction). Let I be an ideal in KŒX�. For
U � X , an ideal in K.U /ŒX nU � generated by I is denoted by I e and is called the
extension of I toK.U /ŒX nU �. For an ideal J inK.U /ŒX nU �, an ideal J \KŒX�
in KŒX� is denoted by J c and is called the contraction of J to KŒX�.

Theorem 3.3.15. Let J be an ideal inK.U /ŒX nU �. Suppose that a Gröbner basis
G D fg1; : : : ; glg � KŒU �ŒX n U � D KŒX� of J with respect to a term ordering
<1 on X nU is given. Let hi 2 KŒU � be the leading coefficient of gi with respect to
<1, and let f be the squarefree part of LCM.h1; : : : ; hl /. Then J c D QJ W f 1 for
QJ D hGi � KŒX�.

Problem 3.3.16. Show Theorem 3.3.15.

Corollary 3.3.17. Let <1, <2 be term orderings on X n U , U , respectively, and
let < be the block ordering defined by <1 and <2 such that .X n U / 
 U . Let
G D fg1; : : : ; glg be a Gröbner basis of an ideal I � KŒX� with respect to <.
Let hi 2 KŒU � be the leading coefficient of gi with respect to <1, and let f be the
squarefree part of LCM.h1; : : : ; hl /. Then I ec D I W f 1.

Definition 3.3.18 (Maximal Independent Set). Let I be an ideal in KŒX�.
A subset U � X satisfying the following conditions is called a maximal
independent set of I .

1. U is an independent set, that is, KŒU �\ I D f0g.
2. KŒU [ fxg� \ I ¤ f0g for any x 2 X n U .
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Remark 3.3.19. 1. The largest number of elements of a maximal independent set
of I is equal to the Krull dimension dim I .

2. A subset U � X such that in<.I / \ KŒU � D f0g (strongly independent set)
is an independent set. If the term ordering is graded, then the largest number
of elements of a strongly independent set is equal to dim I . Thus a maximal
independent set is computed by using in<.I /.

Theorem 3.3.20. If I W f 1 D I W f s then I D .I W f s/ \ .I C hf si/.
Problem 3.3.21. Show Theorem 3.3.20.

Theorem 3.3.22. Let I be an ideal in KŒX�, and let U � X be a maximal
independent set for I . Then f in Corollary 3.3.17 satisfies f … I and

p
I Dp

I e
c \pI C hf i:

Problem 3.3.23. Show Theorem 3.3.22.

Algorithm 3.3.24 (Radical.I /).

Input: an ideal I in KŒX�
Output: the radical of I
if I D KŒX� then returnKŒX�
U  a maximal independent set of I
f  a polynomial such that I ec D I W f 1 (computed by Corollary 3.3.17)
QJ  pI e (computed by Theorem3.3.13; I e has dimension zero)
J  QJ c (computed by Theorem 3.3.15)
J 0  Radical.I C hf i/
return J \ J 0

Since f … I , I C hf i is strictly larger than I and this algorithm terminates by the
Noetherian property. The output is equal to

p
I by Theorem 3.3.22.

3.4 Change of Ordering

When using the Buchberger algorithm to compute a Gröbner basis with respect to
a term ordering, the computation often gets stuck because there are too many inter-
mediate basis elements or because their coefficients are too large. This phenomenon
typically happens when using the Buchberger algorithm to compute a lex Gröbner
basis. To avoid this difficulty, we can apply a change of ordering (basis conversion).
In this method, we first compute a Gröbner basis for an input ideal and with respect
to some other term ordering. Then use the computed Gröbner basis to compute
one with respect to the target ordering. The fact that the input is also a Gröbner
basis can be used to speed up the computation of the subsequent Gröbner basis.
There are several methods for changing the ordering. Of these, we will introduce
the FGLM algorithm for zero-dimensional ideals and the Hilbert-driven algorithm
for homogeneous ideals.
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3.4.1 FGLM Algorithm

Theorem 3.4.1. For an ideal I � R D KŒX�, the following are equivalent:

1. dim I D 0.
2. R=I is finite dimensional as a K-vector space.
3. A Gröbner basis G of I contains gi such that in<.gi / D x

mi
i for each xi (i D

1; : : : ; n);
4. VK.I / is a finite set for the algebraic closure K of K .
5. For each xi (i D 1; : : : ; n), I contains a univariate polynomial of xi .

Definition 3.4.2 (Zero-Dimensional Ideal). An ideal I � R is called a zero-
dimensional ideal if it satisfies the conditions in Theorem 3.4.1.

A zero-dimensional ideal represents a system of algebraic equations for which the
zero set is finite. If we have a lex Gröbner basis of a zero-dimensional ideal, then we
can solve the corresponding system of equations by using the method in Sect. 1.4.2.
However, it is often difficult to compute a lex Gröbner basis by directly applying
the Buchberger algorithm. The FGLM algorithm uses linear algebra to compute a
Gröbner basis G1 of a zero-dimensional ideal I with respect to the target ordering
(e.g., lex ordering) starting from a Gröbner basis G0 of I with respect to a term
ordering (e.g., grevlex ordering).

For a term ordering <, the set of all monomials outside in<.I / is called the
standard monomial set and is denoted by SM<.I /. By the definition of a Gröbner
basis, SM<.I / forms aK-basis ofR=I . In particular, if I is zero-dimensional, then
SM<.I / is a finite set, because R=I is a finite-dimensional K-vector space. In the
FGLM algorithm, we seek the elements in the standard monomial set SM<1.I /with
respect to the target term ordering<1 in increasing order with respect to<1. In order
to do this, we need two operations:

1. Find the minimal monomial with respect to <1 in a set of monomials.
2. Decide whether I contains a K-linear sum of given monomials. Compute it if it

exists.

The algorithm is shown below. In the algorithm, NF<.f; F / denotes the remainder
of f on division by a Gröbner basis F .

Algorithm 3.4.3 (the FGLM algorithm).

Input: a Gröbner basis F of a zero-dimensional ideal I with respect to <
Output: a Gröbner basis of I with respect to <1
G  ;; h 1; B  fhg; H  ;
do

N  fu j h <1 u andm 6 j u for all m 2 H g
if N D ; then return G

(1) h1  the minimal monomial in N with respect to <1
(2) E  NF<.h1; F /C

X

t2B
atNF<.t; F /
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if there exist at 2 K.t 2 B/ such that E D 0 then

G  G [ fh1 C
X

t2B
at tg; H  H [ fh1g

else B  fh1g [ B
h h1

end do

Steps (1) and (2) in the algorithm correspond to the above operations 1 and 2,
respectively. In Step (2), we obtain a system of linear equations of at by equating
the coefficient of each monomial in E to 0. A solution of the system of equations
gives a K-linear sum of fh1g [ B in I . In Step (1), we know that the number of
candidates for h1 is finite, because of the following proposition.

Proposition 3.4.4. In (1), h1 2 x1B [ � � � [ xnB .

We will not prove Proposition 3.4.4 or the correctness of Algorithm 3.4.3. The
FGLM algorithm is implemented in most systems. The algorithm requires only com-
puting the remainder and solving systems of linear equations. Therefore, its proof
is left as an instructive exercise. We note that we have presented Algorithm 3.4.3
primarily to aid understanding of the essence of the FGLM algorithm. From the
viewpoint of efficiency, some improvements are necessary.

We now apply the FGLM algorithm to the example in Sect. 3.3.1.3 in SINGU-
LAR. Some coefficients in the lex Gröbner basis of this example are more than
105000, and it is difficult to use the Buchberger algorithm because of the coefficient
swells.

Listing 3.30 SINGULAR: FGLM
� �

> timer=1;
> option(redSB);
> ring r=0,(a,b,c,d,e),dp;
> ideal i= 4*a^3+3*c*b^2*a^2-a+2,-3*c*a^3+3*c^2*a^2-a
+3*c*b^4+c^3,-6*a^2+(-3*c^3-4)*a+3,(4*c*b^2-1)*a^2
+(d*b+c)*a+b^4,2*a^3-3*a^2+(-d^2-2*e)*b+3;
> ideal g=groebner(i);
//used time: 57.31 sec
> ring s=0,(a,b,c,d,e),lp;
> ideal j=fglm(r,g);
//used time: 32.55 sec
� �

To compute a grevlex Gröbner basis, the option redSB is specified, because the
command fglm in SINGULAR requires a reduced Gröbner basis as an input. The
computing time of the lex Gröbner basis is shorter than that for the grevlex basis.
But if we try to compute the lex basis by using the Buchberger algorithm, it will get
stuck because of the coefficient swells. We note that the command stdfglm in the
library standard.lib will execute this entire example.
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3.4.2 Hilbert-Driven Algorithm

The FGLM algorithm can only be applied to zero-dimensional ideals. Here, we
introduce the Hilbert-driven algorithm, which can be applied to any homogeneous
ideal. If we apply the homogenization, the Hilbert-driven algorithm can be applied
to any ideal. See [8] Sect. 5.3 for details.

We set Rd D ff 2 R j f is homogeneous and tdeg.f / D d g. As explained
in Sect. 1.6, the Hilbert function H.R=I I d/ for a homogeneous ideal I is given
by a Gröbner basis with respect to any term ordering. Section 3.1 tells us that too
many unnecessary S -pairs may make the Buchberger algorithm inefficient. Suppose
that we apply the Buchberger algorithm to a homogeneous ideal in increasing order
with respect to the total degree of the S -polynomials (see Sect. 3.1.3). If the number
of those monomials in Rd which are not divisible by the initial monomial of any
intermediate basis element is equal to the value of H.R=I I d/, then it means that
we have obtained a K-basis of .R=I /d and that the remaining S polynomials of the
total degree d will be reduced to 0. We can eliminate unnecessary S -pairs in this
way, which is called the Hilbert-driven algorithm.

All three of the systems discussed here implement the Hilbert-driven algorithm.
In SINGULAR, the command stdhilb (defined in standard.lib) computes
the Hilbert function of an input ideal and executes the Hilbert-driven algorithm for
computing a Gröbner basis with respect to the target ordering. If the input ideal is
not homogeneous, it is automatically homogenized.

Listing 3.31 SINGULAR: the Hilbert-driven algorithm
� �

> ring r=0,(a,b,c,d,e,f,g),(dp(3),dp(4));
> timer=1;
> option(prot);
> ideal i=-3*a^2+2*f*b+3*f*d,(3*g*b+3*g*e)*a-3*f*c*b,
-3*g^2*a^2-c*b^2*a-g^2*f*e-g^4,e*a-f*b-d*c;
> ideal j=stdhilb(i);
compute hilbert series with slimgb in ring (0),
(a,b,c,d,e,f,g,@),(dp(8),C)
weights used for hilbert series: 1,1,1,1,1,1,1,1
slimgb in ring (0),(a,b,c,d,e,f,g,@),(dp(8),C)
CC2M[1,1](2)C3M[1,1](2)4M[2,2](5)C5M[5,4](14)C6M[11,5](19)...
NF:118 product criterion:36, ext_product criterion:11
std with hilb in (0),(a,b,c,d,e,f,g,@),(dp(3),dp(4),dp(1),C)
[255:5]2(34)s(33)s3s(34)s4(36)s(38)ss(39)s(42)--s5(44)s(45)...
...
26(10)---shhhhhh27(5)shhhhh28(4)-shhh29-shhh30-shhhhhhh
product criterion:453 chain criterion:41711
hilbert series criterion:912
//used time: 63.30 sec
dehomogenization
simplification
imap to ring (0),(a,b,c,d,e,f,g),(dp(3),dp(4),C)
� �
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In this example, a Gröbner basis of an elimination ideal is computed by using the
Hilbert-driven algorithm. Information about the computation will be displayed if
the option prot is specified: the grevlex Gröbner basis is computed by slimgb,
a variant of the Buchberger algorithm, then the Hilbert function is computed and
unnecessary S -pairs are removed by using the Hilbert function. In the displayed
information, h means that an S -pair was removed by the Hilbert function. For
example, 30-shhhhhhh at following execution of std with hilb shows that
all remaining S -pairs of sugar = 30 are known to be unnecessary after obtaining the
basis element indicated by s. If we apply the usual Buchberger algorithm to this
example, we will find that it takes a very long time to reduce the S -polynomials
removed in the Hilbert-driven algorithm.

3.5 Computation of Gröbner Bases for Modules

The ideas of a Gröbner basis and the Buchberger algorithm are easily extended to
modules over a polynomial ring. In this section, we introduce term orderings and
extend the Buchberger algorithm for modules. We set R D KŒx1; : : : ; xn�.

3.5.1 Term Orderings for Modules

We consider a free module Rm and its submodule. Let e1; : : : ; em be the standard
bases of Rm. Then an element f 2 Rm is written as

f D c1t1ei1 C � � � C cl tl eil ; (3.1)

where t1; : : : ; tl are monomials inR and c1; : : : ; cl 2 Knf0g. We call tei a monomial
in Rm for a monomial t 2 R.

Definition 3.5.1 (Term Ordering inRm). A term ordering inRm is a total ordering
< in the set of all monomials in Rm satisfying the following conditions:

1. For all monomials u; v 2 Rm and t 2 R, u < v implies tu < tv.
2. For all monomials t 2 R and u 2 Rm, u � tu.

Remark 3.5.2. The condition 2 in Definition 3.5.1 can be replaced by

For all monomials t 2 R and all i D 1; : : : ; m; ei � tei :

Definition 3.5.3 (Typical Term Orderings for Modules). Let < be a term order-
ing in R. We define two term orderings in Rm extending<.

1. TOP (Term Over Position) extension of <
tei <TOP sej , t < s or .t D s and i > j /.



3 Computation of Gröbner Bases 143

2. POT (Position Over Term) extension of <
tei <POT sej , i > j or .i D j and t < s/.

When we write f 2 Rm (f ¤ 0) as (3.1) and t1ei1 > t2ei2 > � � � > tleil , we call
t1ei1 the initial monomial of f and denote it by in<.f /.
Dickson’s lemma also holds for sets of monomials in Rm. Thus any submodule of
Rm generated by a set of monomials is finitely generated.

Definition 3.5.4. For a submoduleM ofRm, fg1; : : : ; gkg �M is called a Gröbner
basis of M with respect to a term ordering < if it satisfies hfin<.f / j f 2 M gi D
hin<.g1/; : : : ; in<.gk/i:
Since division also terminates in Rm, the remainder of an element in M on division
by a Gröbner basis of M is equal to 0. Therefore, a Gröbner basis of M generates
M over R.

Problem 3.5.5. For ideals I D hf1; : : : ; fl i and J D hg1; : : : ; gmi in R, we set

M D
��
f1

0

�
; : : :

�
fl

0

�
;

�
g1

g1

�
; : : :

�
gm

gm

��
� R2:

Let G be a Gröbner basis of M with respect to the POT extension <POT of a term
ordering< in R. ThenG0 D fg 2 R j .0; g/ 2 Gg is a Gröbner basis of I \J with
respect to <.

3.5.2 Buchberger Algorithm for Modules

In order to compute a Gröbner basis of a submodule of Rm, we extend the idea of
an S polynomial to a pair of elements in Rm.

Definition 3.5.6 (S Polynomial in a Module). For f; g 2 Rm n f0g, let in<.f / D
tei and in<.g/ D sej be the initials of f and g, respectively, and let cf and cg be
their coefficients in f and g, respectively. We define S.f; g/ as follows:

1. If i ¤ j , then S.f; g/ D 0;
2. If i D j , then S.f; g/ D .LCM.t; s/=cf t/ � f � .LCM.t; s/=cgs/ � g.

Theorem 3.5.7. For a submodule M of Rm, G D fg1; : : : ; gkg � M n f0g is a
Gröbner basis of M if and only if the remainder of S.gi ; gj / on division by G is
equal to 0 for all i , j .

By this theorem, a Gröbner basis of a submodule M can be computed by the
Buchberger algorithm. We note that it is possible to apply the argument in Sect. 3.1.1
to eliminate the unnecessary S pairs.
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3.5.3 Computation of Syzygy

The most fundamental operation on modules is to compute their syzygies.

Definition 3.5.8. Let M be an R module. For f1; : : : ; fm 2M ,

f.h1; : : : ; hm/ 2 Rm j h1f1 C � � � C hmfm D 0g

is called the syzygy module of .f1; : : : ; fm/, and it is denoted by syz.f1; : : : ; fm/.

For f1; : : : ; fm 2 Rl , we set M D hf1; : : : ; fmi. It is not easy to compute a set
of generators of the syzygy module for a general input set. But if ff1; : : : ; fmg is a
Gröbner basis of M , then a set of generators of syz.M/ is obtained by computing
the remainder.

Theorem 3.5.9. Suppose that G D ff1; : : : ; fmg � Rl is a Gröbner basis of
M D hGi, and S.fi ; fj / D ui fi � uj fj (ui ; uj 2 R) is written as

S.fi ; fj / D
mX

kD1
hijkfk; in<.hijkfk/ � in<.S.fi ; fj //

(k D 1; : : : ; m). If we define sij 2 Rm by

sij D ui ei � uj ej �
mX

kD1
hijkek;

then S D fsij j 1 � i; j � m, S.fi ; fj / ¤ 0g is a set of generators of syz.G/.

Remark 3.5.10. The above S is a Gröbner basis of syz.G/ with respect to a special
term ordering called the Schreyer ordering in Rm (Schreyer’s theorem).

Two methods are known for computing the syzygy module for a general vector
.f1; : : : ; fm/ 2 Rl .
Algorithm 3.5.11 (cf. [5] Chap. 5, Sect. 3).

Input: F D .f1; : : : ; fm/, fi 2 Rl (i D 1; : : : ; m)
Output: a set of generators of syz.F /
G D .g1; : : : ; gt / a Gröbner basis of hF i
C  a .t;m/ matrix such that tG D C � tF
D  an .m; t/ matrix such that tF D D � tG
S D fs1; : : : ; sug  a generating set of syz.G/
fr1; : : : ; rmg  the set of row vectors of Im �DC ,

where Im is the identity matrix of size m
return fs1C; : : : ; suC; r1; : : : ; rmg
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A set of generators of syz.G/ can be computed by Theorem 3.5.9.D consists of the
quotients of the elements in F on division byG. To computeC , it is necessary in the
Buchberger algorithm to maintain not only the remainders but also the quotients, and
the computational cost will increase. We note that the output of Algorithm 3.5.11 is
not always a Gröbner basis of syz.F /.

Algorithm 3.5.12 (cf. [5] Exercise 15 in Chap. 5, Sect. 3).

Input: F D .f1; : : : ; fm/, fi 2 Rl (i D 1; : : : ; m), a term ordering<
Output: a Gröbner basis of syz.F / with respect to <POT

.e1; : : : ; em/ the standard basis of Rm

ui  .fi ; ei / 2 Rl ˚Rm D RlCm (i D 1; : : : ; m)
QG  a Gröbner basis of hu1; : : : ; umi with respect to <POT

S  fh 2 Rm j .0; h/ 2 QGg
return S

Problem 3.5.13. Show that Algorithm 3.5.12 outputs a Gröbner basis of syz.F /
with respect to <POT.

In Algorithm 3.5.12, it is necessary to compute a Gröbner basis for a module even
if F is a set of generators of an ideal, and the cost of computing the Gröbner basis
may be large. However, it is not necessary to maintain the quotients, and the output
will be a Gröbner basis with respect to <POT. Furthermore, if we set

G D fg 2 Rl j g ¤ 0 and .g; h/ 2 QG for some hg D fg1; : : : ; gt g;
C D a .t;m/ matrix whose i -th row is hi for .gi ; hi / 2 QG;

then G is a Gröbner basis of hF i and tG D C � tF .

3.6 Computation in Risa/Asir

Macaulay2, SINGULAR, and CoCoA have been developed with the same design,
a base ring with a term ordering is explicitly set, and the algorithms are applied to
objects belonging to the base ring. The design of the software system Risa/Asir[9]
is different from these three systems, and its usage is also different. Therefore, we
explain it in a separate section.

3.6.1 Starting Risa/Asir

If you start Risa/Asir from the KNOPPIX/Math menu, then a terminal emulator is
opened and openxm fep asir is executed. If you start Risa/Asir from a terminal
emulator, then execute openxm fep asir because asir itself does not provide
line editing.
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3.6.2 Help Files and Manuals

To display the help files for a command, enter help("function"). To search
the manual, enter Math-Doc-Search on the desktop. Enter helph() to open a web
browser and display the manual.

3.6.3 Reading and Writing Files

In order to read a user program file or a library file, use load. This function searches
the directories listed in the environment variable ASIRLOADPATH. The value of
this variable is displayed by executing openxm env from a shell. The command
output("file") redirects the output to a file until output() is executed.
These inputs and outputs are all in human-readable format but another format is
possible. With bsave(Data,"file"), the output data can be saved to a binary
file which can then be read by using the command bload("file"). Although
only one dataset can be specified, it is possible to encapsulate multiple datasets in
a list.

3.6.4 Polynomials

In Asir, an indeterminate is represented by a string that begins with a lowercase letter
and is followed by letters, numbers, and the symbol _. If a polynomial contains an
indeterminate, it is converted to an internal recursive form by using the ordering of
indeterminates maintained in the system. A newly introduced indeterminate is put at
the end of the list. Coefficients are assumed to be rational numbers. In this system,
polynomials can be added, subtracted, and multiplied, provided that the ordering
of the indeterminates is unchanged. When executing a computation related to a
Gröbner basis, the term ordering should be specified. This feature may be annoying
to users who are accustomed to the other three systems, but it is convenient for
changing term orderings for the same inputs or for introducing new variables.

Listing 3.32 Input of polynomials
� �

[1518] F=(x+y+z)^2;
x^2+(2*y+2*z)*x+y^2+2*z*y+z^2
[1519] G=F+u;
x^2+(2*y+2*z)*x+y^2+2*z*y+z^2+u
� �

In Asir, polynomials are maintained in a recursive representation. In this repre-
sentation, a polynomial is represented as a univariate polynomial with respect to a
main variable, and its coefficients are polynomials which do not contain the main
variable. When we execute a computation related to a Gröbner basis, it is convenient
to represent a polynomial as a sum of monomials. This representation is called a
distributed representation. In Asir, the conversion between two representations may
be done implicitly or explicitly.
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3.6.5 Term Orderings

In Asir, a term ordering is specified by a pair: a variable ordering and term-ordering
type. A variable ordering is a list of indeterminates, and it determines the index
of each variable in the exponent vector of a monomial. For example, if a variable
ordering is given by Œx; y; z; u; v;w�, xaybzcudvewf is represented by the vector
.a; b; c; d; e; f /. For a variable ordering for n variables, we can set the following
term-ordering types.

• Simple Term-ordering type
This is given by an integer. 0, 1, and 2 represent grevlex, glex, and lex,

respectively.
• Block-ordering type

This is given by a list ŒŒO1; n1�; ŒO2; n2�; : : : ; ŒOl ; nl ��. The variable list is
divided into l blocks (n1 C � � � C nl D n), and a simple term-ordering type
Oi is applied to the i -th block. A typical one is ŒŒ0; n1�; Œ0; n2��, which is used to
eliminate the first n1 variables.

• Matrix-ordering type
This is given by an m � n integer matrix M . For nonnegative integer vectors

e D .e1; : : : ; en/, f D .f1; : : : ; fn/, the ordering is defined by

e > f , the topmost nonzero element of M.e � f / is positive:

In order for M to define a term ordering, it must satisfy the following
conditions:

– Me D 0, e D 0 for all integer vectors e.
– The topmost nonzero element of each column ofM is positive.

The term-ordering type can be set by the command dp_ord. It can be also specified
as an argument of certain functions.

Listing 3.33 Conversion to distributed representation
� �

[1532] F=x^2*y+y^3*z+x*z+x+1;
y*x^2+(z+1)*x+z*y^3+1
[1533] dp_ord(0)$
[1534] DF0=dp_ptod(F,[x,y,z]);
(1)*<<0,3,1>>+(1)*<<2,1,0>>+(1)*<<1,0,1>>+(1)*<<1,0,0>>
+(1)*<<0,0,0>>
[1535] dp_ord(2)$
[1536] DF2=dp_ptod(F,[x,y,z]);
(1)*<<2,1,0>>+(1)*<<1,0,1>>+(1)*<<1,0,0>>+(1)*<<0,3,1>>
+(1)*<<0,0,0>>
[1537] G=F+u;
y*x^2+(z+1)*x+z*y^3+u+1
[1538] DG=dp_ptod(G,[u,x,y,z]);
(1)*<<1,0,0,0>>+(1)*<<0,2,1,0>>+(1)*<<0,1,0,1>>+(1)*<<0,1,0,0>>
+(1)*<<0,0,3,1>>+(1)*<<0,0,0,0>>
[1539] dp_ht(DG);
(1)*<<1,0,0,0>>
� �
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In this example, polynomials F, G are explicitly converted to distributed rep-
resentations by the command dp_ptod. DF0 is sorted according to a grevlex
ordering by dp_ord(0), and DF2 is sorted according to a lex ordering by
dp_ord(2). Since DG is sorted according to a lex ordering in which u is the
largest, the initial monomial of DG is <<1,0,0,0>>. Commands dp_ht, dp_hc,
and dp_hm return the initial monomial, the coefficient of the initial monomial,
and the initial monomial with its coefficient, respectively. Arithmetic operations
between polynomials with distributed representations only produce correct results
if they were created according to the same term ordering.

3.6.6 Computation of Gröbner Bases

In this section, we explain how to compute Gröbner bases in Asir. Functions related
to Gröbner basis are defined in the libraries gr and noro_pd.rr, which must be
loaded before these functions can be used. In Asir, an ideal is represented by a list
of polynomials. The base ring for computing a Gröbner basis is determined by the
arguments given to the following functions:

• nd_gr.P list; V list; Char;Ord/
P list is a list of polynomials representing an ideal. This function executes the
Buchberger algorithm over a polynomial ring KŒV list � with the term ordering
specified by a variable ordering V list and an ordering typeOrd , whereK D Q

if Char D 0 andK D FChar if Char is a prime. It returns the reduced Gröbner
basis of hP listi. The output is a list of polynomials.

• nd_gr_trace.P list; V list;Homo;P rime;Ord/
This is a function for efficient Gröbner basis computation over the rationals.
Shortcuts that use a finite field are applied. Set P rime to 1 (see the manual for
other settings). If Homo is set to 1, the homogenization explained in Sect. 3.1.3
is applied. The output is the same as that for Homo D 0, but the computation
with Homo D 1 avoids intermediate coefficient swells.6

Listing 3.34 Gröbner basis computation in Asir
� �

[1517] load("cyclic")$
[1527] C=cyclic(7);
[c6*c5*c4*c3*c2*c1*c0-1,...]
[1528] V=vars(C);
[c0,c1,c2,c3,c4,c5,c6]
[1529] nd_gr(C,V,31991,0)$
...
2.303sec + gc : 0.07sec(2.429sec)
[1530] nd_gr(C,V,0,0)$
(stopped after 5 minutes)

6If it is known that no coefficient swells will occur, then the homogenization is unnecessary.
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[1530] G=nd_gr_trace(C,V,1,1,0)$
...
25.84sec + gc : 7.833sec(34.56sec)
[1531] G[0];
(((238539226659020007130662*c6*c4-...
[1532] length(G);
209
� �

In this example, the reduced Gröbner basis of cyclic-7 (Example 3.2.1) was
computed over F31991 and Q. The first nd_gr was executed over a finite field,
and it terminated in 2 s. The second nd_gr was executed over Q, and it became
stuck due to coefficient swells. When nd_gr_trace with Homo D 1 is applied,
it terminated in 25 s. The output is a list of polynomials which generates the input
ideal. The i -th element of a list G can be obtained by GŒi� (i starts with 0).

3.6.7 Computation of Initial Ideals

To compute initial ideals in Asir, it is first necessary to compute a Gröbner basis.
To take the initial of a polynomial, it is necessary to convert it to a distributed
representation and then apply dp_ht. Next, apply dp_dtop to convert it to a
recursive representation. If the ideal is zero-dimensional, the standard monomial
set can be obtained by dp_mbase.

Listing 3.35 Computation of initial ideal in Asir
� �

[1517] B=[x^2*y^2-z^2,x^3-y*z^2,x^2*z^4-y^2];
[y^2*x^2-z^2,x^3-z^2*y,z^4*x^2-y^2]
[1518] V=[x,y,z]$
[1519] G=nd_gr(B,V,0,0);
[z^4*x^2-y^2,-y^4+z^6,-y^2*x+y^5,-z^2*x+z^2*y^3,
y^2*x^2-z^2,x^3-z^2*y]
[1520] D=map(dp_ptod,G,V)$ H=map(dp_ht,D)$
[1521] [1522] map(dp_dtop,H,V);
[z^4*x^2,z^6,y^5,z^2*y^3,y^2*x^2,x^3]
[1523] map(dp_dtop,dp_mbase(H),V);
[z^5*y^2*x,z^4*y^2*x,z^5*y*x,z^5*y^2,z*y^4*x,z^3*y*x^2,...]
[1524] length(@@);
52
� �

3.6.8 Computation of the Remainder

Use p_nf or p_true_nf to compute remainders. The former returns a polynomial
with integer coefficients which is an integer multiple of the remainder. This is used
for checking whether the remainder is 0. The latter returns a list Œnum; den� such
that num is the polynomial returned by p_nf and num=den is the true remainder.
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Listing 3.36 Computation of remainders
� �

[1517] B=[u2*u0-2*u2+3,(2*u1-1)*u0^2-u0-2*u2,2*u1^3+u2+4]$
[1518] V=[u0,u1,u2]$
[1519] G=nd_gr(B,V,0,0);
[10*u2^4+126*u2^3+637*u2^2+(586*u1-907)*u2-816*u0^2-...]
[1520] Q=p_nf(u0^5+u1^5+u2^5,G,V,0);
2851262910*u2^3+30078832770*u2^2+(22194374760*u1-...
[1521] QR=p_true_nf(u0^5+u1^5+u2^5,G,V,0);
[2851262910*u2^3+30078832770*u2^2+...,35373600]
� �

3.6.9 Elimination

As stated in Sect. 3.3.1, the elimination ideal IY D I \KŒY � for an ideal I � KŒZ�
(Z D X [Y ,X \Y D ;) can be computed from a Gröbner basis with respect to an
elimination ordering. We recommend using nd_gr_trace with homogenization
for computations over the rationals. Use noro_pd.elimination to extract a
Gröbner basis of IY from a Gröbner basis of I , with respect to an elimination
ordering.

In the following example, we compute a Gröbner basis of an ideal generated by
B with respect to an elimination ordering such that fu0; u1g 
 fu2g, and we use
noro_pd.elimination to extract a univariate polynomial of u2 in the Gröbner
basis.

Listing 3.37 Computation of an elimination ideal
� �

[1664] B=[u2*u0-2*u2+3,(2*u1-1)*u0^2-u0-2*u2,2*u1^3+u2+4]$
[1665] V=[u0,u1,u2]$
[1666] G1=nd_gr_trace(B,V,1,1,[[0,2],[0,1]])$
[1667] noro_pd.elimination(G1,[u2]);
[8*u2^9+72*u2^8+292*u2^7-2036*u2^6-198*u2^5+20682*u2^4-...]
� �

3.6.10 Computation of Minimal Polynomials

For an ideal I , the computation of I \ KŒz� is a special case of elimination. The
general method can be applied to this computation, but another efficient method is
applicable if I is a zero-dimensional ideal. The command minipoly defined in
gr computes a nonzero polynomial m.t/ 2 QŒt � of the minimal degree, such that
m.f / 2 I for a zero-dimensional ideal I � QŒX� and f 2 QŒX�. The polynomial
m.t/ is a generator of an ideal .QŒX; t �I CQŒX; t �.f � t// \QŒt �, and it is unique
up to a constant factor. We call m.t/ the minimal polynomial of f modulo I .

In the following example, we use minipoly to compute the minimal polyno-
mial of u7 modulo an ideal katsura-7. The argument G is a Gröbner basis of the
ideal with respect to a term ordering represented by .V; 0/. The result is returned as
a univariate polynomial of the last argument.
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Listing 3.38 Computation of minimal polynomial
� �

[1518] load("katsura")$
[1522] B=katsura(7)$
[1523] V=[u0,u1,u2,u3,u4,u5,u6,u7]$
[1524] G=nd_gr_trace(B,V,1,1,0)$
[1525] minipoly(G,V,0,u7,t)$
[1526] deg(@@,t);
128
� �

3.6.11 Change of Orderings for Zero-Dimensional Ideals

The command tolex defined in gr computes the reduced Gröbner basis of an
ideal with respect to a lex ordering. The input ideal has to be given by a Gröbner
basis with respect to some term ordering. A modified version of Algorithm 3.4.3 is
implemented. The target variable ordering can be specified in the last argument.

Listing 3.39 Computation of a lex Gröbner basis by change of ordering
� �

[1524] G=nd_gr_trace(katsura(7),V=[u0,u1,u2,u3,u4,u5,u6,u7]
,1,1,0)$
3.27sec + gc : 1.067sec(4.524sec)
[1525] G2=tolex(G,V,0,V)$
316.4sec + gc : 98.52sec(442.8sec)
� �

3.6.12 Ideal Operations

We introduce the operations on ideals that are defined in noro_pd.rr. All
commands assume that the inputs are ideals over the rationals. If an option mod=p
is given, the computation is performed over Fp .

3.6.12.1 Intersection of Ideals

Use noro_pd.ideal_intersection to compute the intersection of two ide-
als. Use noro_pd.ideal_list_intersection to compute the intersection
of ideals given in a list.

Listing 3.40 Intersection of ideals
� �

[1640] B=[g*a-f*b,h*b-g*c,i*c-h*d,j*d-i*e,l*f-k*g,m*g-l*h,
n*h-m*i,o*i-n*j]$

[1708] V=[a,b,c,d,e,f,g,h,i,j,k,l,m,n,o]$
[1709] G=nd_gr(B,V,0,0)$
[1710] PD=noro_pd.syci_dec(B,V)$
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[1711] length(PD);
4
[1712] map(length,PD);
[10,5,3,1]
[1713] for(I=0,T=[1];I<4;I++)

for(J=0,L=length(PD[I]);J<L;J++)
T=noro_pd.ideal_intersection(T,PD[I][J][0],V,0);

[1649] gb_comp(T,G);
1
� �

In this example, noro_pd.syci_dec computes the primary decomposition of an
ideal and it is checked that the intersection of the computed components coincides
with the initial ideal (see Sect. 3.7). The result of the decomposition is given as a list
ŒPD0; PD1; PD2; PD3�, and each PDi is a list consisting of ŒQij ; Pij � such that
Qij is a Pij -primary component of the ideal that was input.

3.6.12.2 Radical Membership Test

As explained in Sect. 3.3.3, radical membership can be tested by computing a Gröb-
ner basis of RŒt�I C htf � 1i or by using noro_pd.radical_membership.
If f 2 pI , the latter command returns 0; otherwise, it returns a list consisting
of a Gröbner basis of RŒt�I C htf � 1i with respect to a grevlex ordering and an
indeterminate representing t .

Listing 3.41 Radical membership test
� �

[1665] B=[(x+y+z)^50,(x-y+z)^50]$
[1666] V=[x,y,z]$
[1667] F=y$
[1668] cputime(1)$
0sec(1.907e-06sec)
[1669] noro_pd.radical_membership(F,B,V);
0
0.2267sec(0.2502sec)
[1670] nd_gr(cons(t*F-1,B),cons(t,V),0,0);
[1]
0.21sec(0.285sec)
� �

3.6.12.3 Ideal Quotient and Saturation

To compute an ideal quotient by a polynomial, use noro_pd.colon. To compute
an ideal quotient by an ideal, use noro_pd.ideal_colon. To compute a
saturation by a polynomial, use noro_pd.sat. To compute a saturation by an
ideal, use noro_pd.ideal_sat.
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Listing 3.42 Ideal quotient and saturation
� �

[1640] B=[(x+y+z)^50,(x-y+z)^50]$
[1641] V=[x,y,z]$
[1642] noro_pd.sat(B,y,V);
[1]
[1643] noro_pd.colon(B,y^98,V);
[-x-z,-y]
[1644] noro_pd.ideal_colon(B,[(x+y+z)^49,(x-y+z)^49],V);
[-y^49*x-z*y^49,-y^50,-x^2-2*z*x+y^2-z^2]
[1645] noro_pd.ideal_sat(B,[(x+y+z)^49,(x-y+z)^49],V);
[1]
� �

3.7 An Example of Programming in Macaulay2

So far, we have illustrated fundamental computations related to Gröbner basis using
Macaulay2, SINGULAR, CoCoA, and Risa/Asir. In this section, as a practical appli-
cation, we implement a new primary decomposition algorithm using Macaulay2.

3.7.1 Primary Decomposition of Ideals

Let R D KŒX� D KŒx1; : : : ; xn� be an n-variate polynomial ring over a field K .

Definition 3.7.1. 1. A proper ideal P of R is called a prime ideal if

fg 2 P implies f 2 P or g 2 P:

2. A proper ideal Q of R is called a primary ideal if

fg 2 Q implies f 2 Q or g 2 pQ:

3. If Q is a primary ideal, then P D pQ is a prime ideal. In this case, Q is called
a P -primary ideal, and P is called the associated prime ideal of Q.

Theorem 3.7.2. 1. A proper ideal I of R is represented as I D Q1 \ � � � \Ql by
a finite number of primary ideals Q1; : : : ;Ql .

2. If the
p
Qi ’s are distinct and

\

j¤i
Qj 6�Qi (i D 1; : : : ; l), then

fpQ1; : : : ;
p
Qlg D f

p
I W f j f 2 R;pI W f is a prime idealg:

In particular, the
p
Qi ’s are uniquely determined by I .
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Definition 3.7.3. The expression of I by the Qi ’s in Theorem 3.7.2 is called a
primary decomposition of I , and each Qi is called a primary component. If the
condition in statement 2 is satisfied, the decomposition is called minimal and the
prime ideal

p
Qi is called an associated prime of I . The set of all associated primes

of I is denoted by Ass.I /. If an associated prime is minimal with respect to inclu-
sion, it is called a minimal associated prime. A primary component corresponding to
a minimal associated prime is called an isolated primary component. A non-isolated
primary component is called an embedded primary component.

If Q1 and Q2 are P -primary, then Q1 \ Q2 is also P -primary. Thus we obtain
a minimal primary decomposition from any primary decomposition by combining
components having the same associated prime into one component and eliminating
redundant components with respect to inclusion. If an ideal I is a radical ideal, that
is,
p
I D I , then its minimal primary decomposition consists of prime ideals.

Theorem 3.7.4.
In a minimal primary decomposition of a proper ideal I of R, the set of all isolated
components of I is uniquely determined.

Several algorithms are known for computing a primary decomposition of an ideal
I . Recently, we have found another algorithm (Kawazoe-Noro 2011) [7], and it
can decompose several examples which are difficult to decompose when using the
existing algorithms. We will explain the new algorithm briefly and implement it in
Macaulay2.

3.7.2 SYCI Algorithm

Assuming that we are given an algorithm MinimalAssociatedP rimes.I / for
computing the prime decomposition of

p
I for an ideal I , we present the SYCI

algorithm for computing the minimal primary decomposition.
MinimalAssociatedP rimes.I / can be realized by replacing the computation

of the radical of a zero-dimensional ideal by the prime decomposition of the radical
in Algorithm 3.3.24. The prime decomposition of a zero-dimensional radical ideal
can be realized by the irreducible factorization of multivariate polynomials.

Definition 3.7.5. For ideals I , Q such that I � Q, an ideal J is called a saturated
separating ideal for .I;Q/ if I D Q \ .I C J / and

p
I W Q D pI C J .

If
p
I W Q D hf1; : : : ; fli, then, for a sufficiently large m, J D .

p
I W Q/m or

J D hf m1 ; : : : ; f m
l i are saturated separating ideals. In the latter case, we can choose

the powerm individually for each fi as follows:

Algorithm 3.7.6 (SaturatedSeparatingIdeal.C; I;Q/).

Input: ideals I;Q such that I � Q
Output: a saturated separating ideal J for .I;Q/
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S  a set of generators of
p
I W Q

J D f0g
for each f 2 S n pI do

j  0

do j  j C 1 while Q \ .I C J C hf j i/ ¤ I
J  J C hf j i

end for
return J

Algorithm 3.7.6 terminates and outputs a saturated separating ideal.
We write the operation I ec in Corollary 3.3.17 as I ecU to indicate explicitly a

subset U � X .

Algorithm 3.7.7 (P rimaryDecompositionSYCI.I /).

Input: an ideal I � R
Output: a minimal primary decomposition .QL1;QL2; : : : ;QLl/ of I

QLi D .Qi1; : : : ;Qini /; Qij is a primary component of I
i  1; Q0  R

do
PLi D fPi1; : : : ; Pini g  MinimalAssociatedP rimes.I W Qi�1/
for j D 1 to ni do

Uij  a maximal independent set for Pij
fij  an element of .

\

k¤j
Pik/ n Pij

Rij  Qi�1 \ .I W f 1
ij /

ec
Uij

Jij  SaturatedSeparatingIdeal.Rij ;Qi�1; Pij /
Qij  .Rij C Jij /ecUij

end for
QLi D fQi1; : : : ;Qini g
Qi  Ri1 \ � � � \Rini
If Qi D I then return .QL1; : : : ;QLi /
i  i C 1

end do

In Algorithm 3.7.7, the following statements hold.

1. PLi consists of all minimal elements with respect to inclusion in Ass.I /n.PL1[
� � � [ PLi�1/. An element P 2 PLi is called an associated prime of level i .

2. Qij is a Pij -primary component of I , and the output is a minimal primary
decomposition.

3. Qi is the intersection of all primary componentsQ such that the level of
p
Q is

not greater than i . Qi is independent of a minimal primary decomposition.
4. For any Pij -primary componentQ,Rij D Qi�1\Q, andRij is determined only

by Pij .
5. PLi can be computed without computing Jij and Qij .
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3.7.3 Implementation in Macaulay2

Below are the functions necessary for implementing Algorithm 3.7.7.

Listing 3.43 Find a polynomial of the smallest total degree
� �

mindeg = (L) -> (
f := L#0; df := degree f;
scan(L, g -> if degree g < df then (f = g; df = degree g));
return f

)
� �

This function returns a polynomial of the smallest total degree in a given
list L. In Macaulay2, a function is defined by .arg1; : : : ; argl / -> .e1I : : : I em/,
and its name is given by =. In this form, ei denotes an expression, and the value
of the last expression gives the value of the function. The command return
completes the execution of the function and returns the value. The command
scan.list; f unction/ applies f unction to each element of list ; it corresponds
to the “for” statement in the C language. A substitution can be performed by writing
a=b or a:=b. In the former case, the variable a is regarded as a global variable,
and if it has not yet been declared before the substitution, it is generated. The latter
statement initializes a local variable. To simply declare a local variable, use local.
The i -th element of a list L is specified by L#i, where the index i starts with 0.
The length of a list is given by #L.

Listing 3.44 Compute the set of all generators of P1 not belonging to P2
� �

nonmember = (P1,P2) -> (
return select(first entries gens P1,f->not isSubset(ideal f,P2));
)
� �

This function returns the set of all generators ofP1 not belonging toP2. The function
entries returns a list consisting of the rows of a matrix. In the output, each row
is also converted to a list. The command gens applied to an ideal returns a row
vector (1 � m matrix). Thus, entries in the above function returns a list with
one element, and first returns the element, that is, the list of generators. Finally,
the function select.list; f unction/ returns the subset of list which consists of
the elements that yield true when f unction is applied.

Listing 3.45 Compute the squarefree part of a polynomial
� �

squarefree = (f) -> value apply(factor f, i -> i#0)
� �

The command factor returns the irreducible factorization as a P roduct object.
This is a kind of list consisting of .factor;mult iplici ty/. The command
apply.list; f unction/ applies f unction to each element of list and returns a
list of the results. The operation i->i#0 outputs the first element of a list. In the
above function, the input list of apply is a P roduct object, and the output is also
returned as a P roduct object. Thus, the squarefree part of the input polynomial is
returned in a factored form. Finally, the function value expands the polynomial.
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Listing 3.46 Computation of a set of separators
� �

separator = (I,PP) -> (
R := ring I;
S := new MutableList;
scan(toList(0..#PP-1),i->S#i=1_R);
scan(toList(0..#PP-1),i->
scan(toList(0..#PP-1),j->

if i != j then
S#j = lcm(S#j,squarefree(mindeg(nonmember(PP#i,PP#j)))))

);
return S

)
� �

This function outputs a set ff1; : : : ; flg such that fi 2 .
\

j¤i
Pj / n Pi (i D 1; : : : ; l)

for a list of mutually disjoint primes PP D fP1; : : : ; Plg. Each fi is called a
separator. If sij 2 Pi n Pj for i; j (i ¤ j ), then the squarefree part of

Y

j¤i
sij

can be used as a separator fi . A M utableList is used for the S which holds the
intermediate values of the separators. This type of list is convenient when rewriting
its elements.

Listing 3.47 Computation of ideals which are minimal with respect to inclusion
� �

removeRedundantComps = (L) -> (
if #L == 1 then return L;
S := new MutableList from L;
for i from 0 to #L-1 do (

if S#i == 0 then continue;
for j from 0 to #L-1 do (

if j == i or S#j == 0 then continue;
if S#i == S#j or isSubset(S#i,S#j) then S#j = 0

)
);
return toList(select(S,i -> i!=0))

)
� �

This function outputs the list of those ideals in an input list which are minimal with
respect to inclusion. We use the input list to initialize a M utableList S , and an
ideal in S is replaced by 0 if it contains another ideal. The remaining ideals are
then packed into a list. The function toList converts any type of list into the most
generic type.

Listing 3.48 Prime decomposition of
p
I W J

� �

colonMinimalPrimes = (I,J) -> (
local K,PL,S;
R := ring I; L := {};
for f in first entries mingens J do (

if f==1 then K=I else K=I:f;
if K != ideal(1_R) then L = append(L,K)

);
L = removeRedundantComps(L); P := {};
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for K in L do (
S = apply(first entries gens K,f->squarefree(f));
PL = minimalPrimes ideal mingens gb ideal S;
P = join(PL,P)

);
return removeRedundantComps(P)

)
� �

If J D hf1; : : : ; fli, then I W J D
l\

iD1
.I W fi /. Since any set of generators

of J suffices to compute
p
I W J , we reduce the number of generators of J by

applying mingens to ff1; : : : ; flg. After we apply removeRedundantComps
to the list of I W fi ’s to reduce the number of ideals to decompose, we apply
minimalPrimes to each ideal in L, and we obtain a list P of prime components
of
p
I W J . Finally, we apply removeRedundantComps to P to remove any

redundant components.

Listing 3.49 Computation of a saturated separating ideal
� �

saturatedSeparatingIdeal = (C,I,Q,Rad) -> (
local fi;
S := nonmember(C,Rad);
if intersect(I+ideal S,Q) == I then return S;
I1 := I;
SSI := {};
for f in S do (
fi = f;
while (intersect(Q,I1+ideal fi) != I) do (fi=fi*f);
I1 = I1+ideal fi;
SSI=append(SSI,fi)

);
return ideal SSI

)
� �

This function executes Algorithm 3.7.6 if
p
I is passed as the argumentRad .

Listing 3.50 Computation of I ecU
� �

load "PrimaryDecomposition/Shimoyama-Yokoyama.m2";
myextract = (I,Y) -> (

R := ring I;
if #Y == 0 then f = 1_R
else f := flattener(I,Y#0);
if f != 1_R then return saturate(I,f)
else return I

)
� �

To compute I ecU , we need the LCM f of the leading coefficients of the elements
in a Gröbner basis G � KŒU �ŒX n U � D KŒX� of an ideal I in K.U /ŒX n
U �. This can be computed by the command flattener, which is defined in
Shimoyama-Yokoyama.m2 . I ecU is equal to I W f 1.
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Listing 3.51 Primary ideal decomposition
� �

sycidec = (I) -> (
local PLi,QLi,RLi,Si,Ci,Yi,Ti;
R := ring I; Qi := ideal(1_R); QL := {};
for i from 1 do (
PLi = colonMinimalPrimes(I,Qi);
Si = separator(I,PLi);
Ci = apply(Si,f->saturate(I,f));
Yi = apply(PLi,P->independentSets(P,Limit=>1));
RLi = apply(Ci,Yi,

(c,y)->intersect(Qi,ideal gens gb myextract(c,y)));
if i == 1 then ( Rad := intersect(PLi); QLi = RLi )
else (

Ti = apply(PLi,RLi,
(p,r)->r+saturatedSeparatingIdeal(p,r,Qi,Rad));

QLi = apply(Ti,Yi,(t,y)->ideal gens gb myextract(t,y))
);
QL = append(QL,QLi); Qi = intersect(RLi);
if Qi == I then return QL

)
)
� �

This function implements Algorithm 3.7.7. In the program, Qi corresponds to
Qi�1 in the algorithm. The function independentSets outputs a list of all the
maximal independent sets for the input ideal. If the option Limit=>1 is given, a
list with a single element is returned. The element is a product of indeterminates
and it represents a maximal independent set. It is necessary to pass

p
Rij to

saturatedSeparatingIdeal, but it is always equal to
p
I , and we can use

Rad D pI computed at i D 0.
After reading the file syci.m2, which contains all the functions defined here by

load, we are ready to compute the primary ideal decomposition.

Listing 3.52 An example of primary decomposition
� �

i1 : load "syci.m2";
i2 : R=QQ[a,b,c,d,e,f,g,h,i,j,k,l,m,n,o];
i3 : I=ideal(g*a-f*b,h*b-g*c,i*c-h*d,j*d-i*e,l*f-k*g,m*g-l*h,

n*h-m*i,o*i-n*j);
o3 : Ideal of R
i4 : timing (p=sycidec(I);)
o4 = -- 1.95582 seconds
i5 : #p
o5 = 4
i6 : apply(p,i->#i)
o6 = {10, 5, 3, 1}
o6 : List
i7 : intersect(apply(p,intersect))==I
o7 = true
i8 : apply(join(p#1,p#2,p#3),isPrimary)
o8 = {true, true, true, true, true, true, true, true, true}
o8 : List
� �
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In this example, we obtained ten isolated components and nine embedded
components. We can check that the result actually gave a decomposition of I
by applying intersect. By applying isPrimary, we can check that each
component is a primary ideal. In this example, the execution of sycidec
terminated in 2 s, but it would take 20 h if we had used the built-in function
primaryDecomposition.

3.8 Additional Problems

Problem 3.8.1. Let H D h2zxC 3zy; 2x2uC zx2 C zx; zxu � 2zxi, I D h2zx2 C
3zyx; 4zx2 � 9zy2; 2x3u C zx3 C zx2;�zx2u C 2zx2; 2x3u C 3yx2ui, and J D
hy2; x3; 4x2u � 3zy; zx2; yx2; zxuC 3zy; z2ui be ideals in QŒx; y; z; u�.

1. Examine the inclusion relations for H , I , and J .
2. Examine the inclusion relations for V.H/, V.I /, and V.J /.

Problem 3.8.2. Let I D h3x2yz2C 3zC .�2xC 2/yC 2x; 3yz5C .�xy2C 2/z�
2y4 C 2y; xy3z3 � 2yz2 � z� 2y C x2i be an ideal in QŒx; y; z�.

1. Show that I is zero-dimensional.
2. Compute dimQ QŒx; y; z�=I .
3. Show that the reduced Gröbner basis of I with respect to the lex order x > y > z

is of the form fg0.z/; x � g1.z/; y � g2.z/g.
Problem 3.8.3. Set ˛ D 3 15 and ˇ D 5 13 .

1. Compute the minimal polynomial of ˛ C ˇ over Q. (Compute I \ QŒz� for an
ideal I D hx5 � 3; y3 � 5; z� .x C y/i � QŒx; y; z�.)

2. Represent 1
˛Cˇ by a polynomial of ˛, ˇ over Q. (Compute a Gröbner basis of

an ideal J D h.x C y/t � 1; x5 � 3; y3 � 5i in QŒx; y; t � with respect to an
elimination ordering such that ftg 
 fx; yg.)

3.9 Answers to Problems

Problem 3.1.7 S.gj ; gk/ in the proof of Theorem 1.3.3 can be replaced by a
linear sum of the S -polynomials created from Spq 2 S 0 which have monomial
coefficients. Then the proof can be applied as is by using (1.6) for the S -
polynomials.

Problem 3.1.11 Suppose that Fk.i; j / holds for some k < i . Then we have Tjk D
Tij and Tijk D Tij , which imply Sij D Sjk C Tij

Tki
Ski . We can thus conclude that

Ski 	 Sij and Sjk 	 Sij by the definition of 	. The other cases can be checked
similarly.
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Problem 3.3.3 Let G � KŒX; Y � be a Gröbner basis of J with respect to <.
Then clearly G � I . If f 2 I , then hf 2 J for some h 2 KŒY �. Then there
exists g 2 G such that in<.g/ j in<.hf /. Since < is an elimination order such
that X 
 Y , if we set in<.g/ D tX tY and in<.hf / D sXsY (tX ; sX 2 KŒX�,
tY ; sY 2 KŒY �), then tX and sX are the initials of g and f with respect to <0
in K.Y /ŒX�, respectively, and tX j sX . Hence G is a Gröbner basis of I with
respect to <0.

Problem 3.3.6 If f 2 pI , there exists a positive integer m such that f m 2 I .
Then we have 1 D .1 � tmf m/ C tmf m D .1 � tf /.tm�1f m�1 C � � � C
1/ C tmf m 2 h1 � tf i C RŒt�I . Conversely, if 1 2 RŒt�I C h1 � tf i, there
exist f1; : : : fl 2 I , a1.t/; : : : ; al .t/ 2 RŒt�, and b.t/ 2 RŒt� such that 1 D
a1.t/f1C� � �Cal .t/fl Cb.t/.1� tf /. By setting t D 1=f , we have an equation
1 D a1.1=f /f1 C � � � C al.1=f /fl in the quotient field of R. If we clear the
denominators by multiplying by f m such that f ma1.1=f /; : : : ; f

mal .1=f / 2 R,
we have f m D .f ma1.1=f //f1C� � �C .f mal .1=f //fl , which implies f m 2 I .

Problem 3.3.16 If h 2 J c , then the remainder of h on division by G is equal to
0. Let .a1; : : : ; al / (ai 2 K.U /ŒX n U �) be the quotient of the division. Then
we have h D a1g1 C � � � C algl , and the denominators of the ai ’s are all power
products of h1; : : : ; hl . Thus f mh 2 QJ for a sufficiently large m, and h 2 QJ W
f 1. Conversely, if h 2 QJ W f 1, there exists a positive integer m such that
f mh 2 QJ , which implies h 2 J \KŒX� D Hc .

Problem 3.3.21 It is clear that I � .I W f s/ \ .I C hf si/. If h 2 I W f s and
h 2 I C hf si, hf s 2 I and h D a C bf s for some a 2 I , b 2 R. Then we
have hf s D af s C bf 2s 2 I and bf 2s 2 I . Then I W f 2s D I W f 1 D I W f s

implies b 2 I W f s . Thus we obtain bf s 2 I and h D aC bf s 2 I .
Problem 3.3.23 If we take an integer s such that I ec D I W f 1 D I W f s , we

have I D .I W f 1/ \ .I C f s/ D I ec \ .I C f s/ by Theorem 3.3.20, thusp
I D pI ec \pI C f s . Then

p
I ec D pI e \ R D pI ec and

p
I C f s Dp

I C hf i imply
p
I ec \pI C f s D pI ec \pI C hf i.

Problem 3.5.5 We first show G0 � I \ J . For h 2 G0,
�
0

h

�
2 M implies that

there exist ci ; dj 2 R such that

�
0

h

�
D P

i ci

�
fi

0

�
CP

j dj

�
gj

gj

�
: Since

P
i cifi D �

P
j dj gj and h D P

j dj gj , we have h 2 J and h 2 I . We next
show that G0 is a Gröbner basis of I \ J with respect to <. If h 2 I \ J , then

there exist ci ; dj 2 R such that h D P
i ci fi D

P
j dj gj . Then

P
i ci

�
fi
0

�
�

P
j dj

�
gj
gj

�
D
 

0

�Pj dj gj

!
D
�
0

�h
�

implies v D
�
0

h

�
2 M . Thus there

exists w D
�
h1
h2

�
2 G such that in<POT.w/ j in<POT.v/. By the definition of <POT,

h1 D 0, and we have h2 2 G0. Since in<.h2/ j in<.h/, G0 is a Gröbner basis of
I \ J .
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Problem 3.8.1 1. By computing the Gröbner bases of the given ideals and
checking the inclusion, it is proved that I � J , I ¤ J , I � H , I ¤ H ,
and there is no inclusion relation between J and H .

2. The result of part 1 implies V.J / � V.I /, V.H/ � V.I /. Furthermore, we
conclude V.I / D V.H/, V.H/ ¤ V.J / from the radical membership test.

Problem 3.8.2 1. A Gröbner basis of I with respect to a grevlex ordering< such
that x > y > z contains elements whose initials are x7, y7, and z7. Thus I is
zero-dimensional.

2. The initial ideal in<.I / is hx7; y6x; y7; zy6; z2y5; z3x4; z4x3; z7; yx5; y2x4;
y4x2; zx5; zyx4; z3y2x; z3y3; z4yx; z5x; z5y; zy3x; z2yx2i, and the standard
monomial set is fx6; y3x3; y5x; y6; zy2x3; zy5; z2x4; z2y4; z3x3; z4x2; z4y2; z6;
x5; yx4; y2x3,y3x2; y4x; y5; zx4; zyx3; zy2x2; zy4; z2x3; z2y2x; z2y3; z3x2; z3

yx; z3y2; z4x,z4y; z5; x4; yx3; y2x2; y3x; y4; zx3; zyx2; zy2x; zy3; z2x2; z2yx;
z2y2; z3x; z3y; z4; x3; yx2; y2x; y3; zx2; zyx; zy2; z2x; z2y; z3; x2; yx; y2;
zx; zy; z2; x; y; z; 1g: The number of elements in this set is 66. Thus
dimQ QŒx; y; z�=I D 66.

3. The result of computation shows that the reduced Gröbner basis is of the form
fg0.z/; x � g1.z/; y � g2.z/g. We note that the coefficients in g1, g2 are rather
large, and it may take a long time, depending on the method of computation.

Problem 3.8.3 1. The minimal polynomial m.z/ of ˛ C ˇ is obtained as m.z/ 2
QŒz� such that I \ QŒz� D hm.z/i for I D hx5 � 3; y3 � 5; z � .x C y/i.
The result is m.z/ D z15 � 25z12 � 9z10C 250z9 � 1350z7� 1250z6C 27z5 �
10125z4 C 3125z3 � 1350z2 � 5625z� 3152:

2. Q.˛; ˇ/ D QŒ˛; ˇ� implies that 1
˛Cˇ can be represented by a polynomial

g.˛; ˇ/ of ˛, ˇ overQ. Then we have .xCy/g.x; y/ � 1 mod hx5�3; y3�5i.
Since t � g.x; y/ 2 J for J D h.x C y/t � 1; x5 � 3; y3 � 5i, the reduced
Gröbner basis of J with respect to an elimination order such that ftg 
 fx; yg
contains an element t�g.x; y/. The result is g.x; y/ D 1

3152
..�15y2C125yC

9/x4 C .�125y2 � 9y C 75/x3 C .9y2 � 75y C 625/x2 C .75y2 � 625y �
45/x C 625y2 C 45y � 375/:
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Chapter 4
Markov Bases and Designed Experiments

Satoshi Aoki and Akimichi Takemura

Abstract Markov bases first appeared in a 1998 work by Diaconis and Sturmfels
(Ann Stat 26:363–397, 1998). In this paper, they considered the problem of
estimating the p values for conditional tests for data summarized in contingency
tables by Markov chain Monte Carlo methods; this is one of the fundamental
problems in applied statistics. In this setting, it is necessary to have an appropriate
connected Markov chain over the given finite sample space. Diaconis and Sturmfels
formulated this problem with the idea of a Markov basis, and they showed that it
corresponds to the set of generators of a well-specified toric ideal. Their work is very
attractive because the theory of a Gröbner basis, a concept of pure mathematics, can
be used in actual problems in applied statistics. In fact, their work became one of the
origins of the relatively new field, computational algebraic statistics. In this chapter,
we first introduce their work along with the necessary background in statistics. After
that, we use the theory of Gröbner bases to solve actual applied statistical problems
in experimental design.
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4.1 Conditional Tests of Contingency Tables

4.1.1 Sufficient Statistics

In this chapter, we consider qualitative data analyses. Qualitative data can be
expressed in categories such as {Yes, No}, and they commonly result from such
things as questionnaires in which respondents choose an answer from several
options, or clinical trials where the responses are difficult to quantify. The random
variables in this chapter are discrete, and for the variables and their frequencies,
we will consider various statistical models. We will use capital letters (such as
X ) to represent random variables and lower-case letters (such as x) to represent
observations. Qualitative data are often summarized in contingency tables. To match
the context of contingency tables, we will consider only random variables that
are limited to nonnegative integers values f0; 1; 2; : : :g. We will use a bold letter
to represent a vector or a multidimensional variable, and an index to denote each
variable. For example, to denote a three-dimensional random variable, we will write
X D .X1;X2;X3/. We will write

X D .Xij / D .X11; : : : ; X1J ; : : : ; XI1; : : : ; XIJ /

to represent IJ random variables in an I �J table (i.e., an I �J contingency table).
These are common notational conventions in the context of contingency tables.

The joint probability function of X is written as p.x/ D Pr.X D x/, and p.x/
is usually characterized by a parameter. The aim of statistical inference is to use
observations to estimate or to test a hypothesis about this parameter. In statistical
inference, the concept of sufficient statistics plays an important role.

Definition 4.1.1 (Sufficient Statistic). Let T .X/ D .T1.X/; : : : ; Tk.X// be a
function ofX , i.e., a statistic, and let � D .	1; : : : ; 	�/ be a parameter. T is called a
sufficient statistic for � if the conditional probability function of X for a given T ,

p.x j t/ D Pr.X D x j T .X/ D t/;

does not depend on � .

To better understand the concept of a sufficient statistic, consider the following
simple example.

Example 4.1.2 (Estimating and Testing a Hypothesis Using a Sufficient Statistic).
It is well known that the center of gravity of a common die is slightly biased, and
the probabilities of the faces are not equal. To verify this, we roll a die n times and
count the number of times a particular face (say, the face 1) occurs.

This experiment is described as follows. We are interested in the true probability
of the face 1 of a particular die, which we denote by the parameterp. The experiment
of rolling this die n times can be represented by random variables, as follows:
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Xi D
�
1; if 1 appears in the i th rolling,
0; if 1 does not appear in the i th rolling

for i D 1; : : : ; n. The result of this experiment is that we obtain values for the
random variables X1; : : : ; Xn. Finally, we assume that the n rolls of this die are
conducted independently. The above assumption is summarized as “X1; : : : ; Xn
are independent Bernoulli random variables with success probability p”. The joint
probability function of X D .X1; : : : ; Xn/ is

p.x/ D
nY

iD1
pxi .1 � p/1�xi D pt .1 � p/n�t ;

where t D x1 C � � � C xn. On the other hand, T D X1 C � � � C Xn, the random
variable that represents the total number of times the face 1 resulted in the n rolls,
follows the binomial distribution Bin.n; p/ with the probability function

p.t/ D
 
n

t

!
pt .1 � p/n�t ; t D 0; 1; : : : ; n:

We see that the joint conditional probability function of X for fixed T D t is
given as

p.x j t/ D p.x/

p.t/
D 1 

n

t

! ;

which does not depend on the parameter p. Thus, T is a sufficient statistic for p, by
definition.

The meaning of a sufficient statistic is explained as follows. If we know the value of
T , then knowingX provides no further information about p; therefore, knowing T
is sufficient for the inference of p. In the above experiment, we lose the information
about the sequence of the t occurrences of 1 and the n� t occurrences of 2; : : : ; 6 if
we obtain only t instead of x D .x1; : : : ; xn/. We can see, however, that information
about the sequence is not necessary for the inference of p. Some frequently used
statistical methods for the inference of p are as follows.

• The point estimation (maximum likelihood estimation) of p is given by Op D t

n
.

• The conventional 95% confidence interval of p is given by

Op � 1:96
r Op.1 � Op/

n
� p � Op C 1:96

r Op.1 � Op/
n

:
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• One of the test statistics for the hypothesis

H0 W p D p0 .p0 D 1=6; for example/
H1 W p ¤ p0

is given by . Op � p0/
,r

p0.1 � p0/
n

. (The two-sided test of the level 100˛%

can be conducted by comparing this value to the two-sided 100.1�˛=2/% point
of the standard normal distribution.)

We can see from the confidence interval above, for example, that we would need to
roll a die more than a million times in order to obtain an estimate of the third decimal
place of Op. Although the design of the sample size is another important topic in
statistical theory, we will not give it further consideration here. From the above, we
see that the natural estimates and test statistics of p are constructed only in terms of
the observed value of the sufficient statistic t . It is important to note that estimates
and test statistics based on sufficient statistic are optimal in the appropriate ways.
Although we have omitted the theoretical background for these, it can be found in
[18, 19].

To obtain a sufficient statistic for each problem, we must derive a conditional
probability function from the definition. Fortunately, there is a theorem that allows
us to avoid this somewhat cumbersome calculation.

Theorem 4.1.3 (Factorization Theorem). T is a sufficient statistic for � if and
only if the probability distribution of X is factored as

p.x;�/ D h.x/g.T .x/;�/: (4.1)

Proof. We only consider the case of discrete random variables. Suppose that the
probability function p.x;�/ is factored as (4.1). Then the probability function of
T .x/ is written as

Pr.T D t/ D
X

xWT .x/Dt
p.x;�/ D

X

xWT .x/Dt
h.x/g.T .x/;�/ D g.t;�/

X

xWT .x/Dt
h.x/:

Therefore, we have

Pr.X D x j T D t/ D Pr.X D x;T D t/
Pr.T D t/ D g.t;�/h.x/

g.t; �/
X

yWT .y/Dt
h.y/

D h.x/
X

yWT .y/Dt
h.y/

;

and we see that T is a sufficient statistic for � . Conversely, suppose that T is a
sufficient statistic for � . Because Pr.T D t/ is a function of t and � , we write
Pr.T D t/ D g.t;�/. From the definition of a sufficient statistic, we can also write
Pr.X D x j T D t/ D h.x/. Then we have

p.x;�/ D Pr.T D t/ Pr.X D x j T D t/ D g.t;�/h.x/;
which is the factorization (4.1). �
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From the factorization theorem, we can directly derive a sufficient statistic from the
probability function. Note that the factorization theorem also holds for continuous
cases. For the proof, see Corollary 1 in Sect. 2.6 of [18].

We now give another definition.

Definition 4.1.4 (Exponential Family). p.x;�/ belongs to a (k-parameter) expo-
nential family if

p.x;�/ D h.x/ exp

0

@
kX

jD1
Tj .x/
j .�/ � c.�/

1

A : (4.2)

For a probability function in the exponential family, we see from the factorization
theorem that .T1; : : : ; Tk/ is a k-dimensional sufficient statistic. In fact, the distri-
butions treated in this chapter belong to the exponential family. Specifically, the
problem considered in this chapter is a testing hypothesis

H0 W � D .0; : : : ; 0/
H1 W � ¤ .0; : : : ; 0/

for the parameter � in the exponential family, where we consider the transform
� $ .�; /. Here, our concern is focused on �, and we are not interested in  ,
which is called a nuisance parameter.

We have now given the necessary definitions, and in the next section, we will
consider examples with contingency tables.

4.1.2 2 � 2 Contingency Tables

A contingency table is a cross-classified table of frequencies. For example, consider
a questionnaire with ten questions. If there are Ii choices for question i , i D
1; : : : ; 10, the reply for each respondent is one of the I1 � � � � � I10 combinations
of choices. If we count the frequency for each of these combinations of choices,
we can produce a I1 � � � � � I10 table of frequencies. This is an example of a
10-way contingency table. In the first half of this chapter, we consider data that is
summarized in contingency tables. Contingency tables with 2 axes, called two-way
contingency tables, can be described by simple statistical models. In this section,
we consider the simplest two-way case, 2� 2, i.e., there are only two levels for each
axis.

In the following, we introduce three typical examples of 2�2 contingency tables
and consider natural statistical models. The aim of this section is to show that the
sufficient statistics for the three models are written in the same form.

Example 4.1.5 (The Case of Independent Binomial Distributions). To investigate
the contribution of smoking to the risk for stomach cancer, 20 patients with stomach
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Table 4.1 Smoking
experiences of stomach
cancer patients and healthy
people (imaginary data)

Smoking Nonsmoking Total

Cases 14 6 20
Controls 56 44 100

cancer (cases) and 100 healthy people (controls) were asked whether they had ever
smoked. The result of this research is summarized in Table 4.1. We then ask, is there
a relation between smoking and stomach cancer?

Table 4.1 is an example of a 2 � 2 contingency table. A natural model for these
data is

X1 � Bin.n1; p1/; X2 � Bin.n2; p2/; X1??X2;

where X1 and X2 are random variables that represent smoking cases and smoking
controls, respectively. Here Bin denotes a binomial distribution, and ?? denotes
independence. The parameters p1 and p2 are the probability of smoking of cases
and controls, respectively. Note that the sample sizes n1 and n2 are fixed.

The observations and corresponding probabilities are summarized as follows.

Observations Smoking Nonsmoking Total
Cases x1 n1 � x1 n1

Controls x2 n2 � x2 n2

Probabilities Smoking Nonsmoking Total
Cases p1 1 � p1 1

Controls p2 1 � p2 1

(4.3)

The joint probability function ofX D .X1;X2/ is the product of two independent
binomial distributions given by

p.x/ D
 
n1

x1

! 
n2

x2

!
p
x1
1 .1 � p1/n1�x1px22 .1 � p2/n2�x2 ;

x1 D 0; 1; : : : ; n1; x2 D 0; 1; : : : ; n2:
(4.4)

Now consider the natural statistical model for this experiment. The aim of this
research is to reveal whether there is a significant difference in the smoking
experience of the cases and controls. (The relation between lung cancer and smoking
may be obvious. However, the relation between stomach cancer and smoking is
not so clear.) From Table 4.1, we see that the smoking ratio of cases (14=20) is
higher than that of the controls (56=100), and thus we might want to conclude that
“there is a significant difference”. However, there is another possibility that we need
to consider: there is no true relation and the (false-positive) result was observed
by chance. We can answer this question by a testing hypothesis. In the testing
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hypothesis, the assertion that we want to reject is treated as the null hypothesis (or
null model). In this example, the null hypothesis is “there is no true relation between
the stomach cancer and smoking”; this is also the natural statistical model in which
we are interested.

In general, the null model is expressed as a manifold in the parameter space. The
parameter space in this example is the two-dimensional square

f.p1; p2/ j 0 � p1; p2 � 1g;
and the null model is the line segment p1 D p2 within it. Following the conventions
for a testing hypothesis, we write the null model as H0 and write the alternative
model as H1. Then we have

H0 W p1 D p2
H1 W p1 ¤ p2: (4.5)

Expression (4.5) is simple. However, we will prepare another expression for later
use. Consider the parameter transform

 D log
p2

1 � p2 ; � D log
p1.1 � p2/
p2.1 � p1/ (4.6)

for a two-dimensional parameter .p1; p2/, where we assume 0 < p1; p2 < 1. This
is a one-to-one transform. Then the null model and the alternative model can be
written in terms of . ; �/ as

H0 W � D 0
H1 W � ¤ 0: (4.7)

Note that expressions (4.5) and (4.7) are equivalent. We also note that although (4.7)
looks more complicated than (4.5), it is a natural form in the exponential family
setting or when this is extended to higher-dimensional problems. In fact, � is called
a log odds ratio of stomach cancer and smoking, and it is frequently used in medical
statistics. Some readers who like to gamble, such as betting on horse racing, may be
familiar with the term “odds”. In this problem, p1=.1�p1/ and p2=.1�p2/ are the
odds of smoking for stomach cancer patients and healthy people, respectively.

Now we investigate the relation between the new parameter and the exponential
family. From the inverse transform of (4.6),

p1 D e�C 

1C e�C ; p2 D
e 

1C e ;

we have

p.x/ D
 
n1

x1

! 
n2

x2

!
exp

	
.x1 C x2/ C x1� � n1 log.1C e C�/� n2 log.1C e /



:

(4.8)
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Table 4.2 Which party is
supported and voting
intention (imaginary data)

Ruling Opposition Total

Voting 22 43 65
Nonvoting 14 21 35
Total 36 64 100

The expression (4.8) can also be obtained by setting

x D .x1; x2/; � D . ; �/; h.x/ D
 
n1

x1

! 
n2

x2

!
;

T1.x/ D x1 C x2; T2.x/ D x1; 
1.�/ D  ; 
2.�/ D �;
c.�/ D n1 log.1C e C�/C n2 log.1C e /

in the general form of an exponential family (4.2), i.e., we see that the model of
independent binomial distributions belongs to an exponential family. Note also that
x1C x2 and x1 are sufficient statistics for the parameters  and �, respectively, and
under the null model � D 0, is the only parameter for which the sufficient statistic
is x1 C x2. Recall that n1 and n2 are fixed. In the 2 � 2 table of observations (upper
table of (4.3)), the sum of the first column, x1C x2, is the sum of smokers. If we fix
x1 C x2, the sum of the second column (the sum of nonsmokers) is also fixed.

Example 4.1.6 (The Case of a Multinomial Distribution). Table 4.2 is a result of a
survey of the political views of 100 young people. They were asked

(1) Which of parties (ruling or opposition) do you support?
(2) Will you vote in the next election?

We wish to know, is there a relation between which party an individual supports and
their intent to vote?

Table 4.2 is another example of a 2 � 2 contingency table, and it has a different
structure from the one in Example 4.1.5. In Table 4.2, only the total sum 100 is
fixed, whereas two row sums are fixed in Example 4.1.5. In this situation, it is
natural to assume a four-dimensional random variable X D .X11; X12; X21; X22/

that follows a multinomial distribution M.n; .p11; p12; p21; p22//. Here,Xij and pij
are the random variable and the probability, respectively, for the reply of which
party is supported and if the person intends to vote. (We treat i D 1; 2 as (Voting,
Nonvoting) and j D 1; 2 as (Ruling, Opposition).) When placed into 2 � 2 tables,
we have the following.

Observation Ruling Opposition Total Probability Ruling Opposition Total
Voting x11 x12 Voting p11 p12
Nonvoting x21 x22 Nonvoting p21 p22

Total n Total 1
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The joint probability function of X D .X11; X12; X21; X22/ is

p.x/ D nŠ

x11Šx12Šx21Šx22Š
p
x11
11 p

x12
12 p

x21
21 p

x22
22 ;

p11 C p12 C p21 C p22 D 1; x11 C x12 C x21 C x22 D n:
(4.9)

As we did in Example 4.1.5, we consider a natural statistical model. In this case, our
aim is to consider the influence of which party is supported on the intention to vote.
Therefore, we are interested in the null model, “there is no relation between which
party is supported and voting intention”. In the context of two-way contingency
tables, this model is called an independence model or independence hypothesis
between the rows and columns. One of the common expressions of this null model is
as follows. As in Example 4.1.5, we consider a one-to-one parameter transformation
between p D .p11; p12; p21; p22/ and . 1;  2; �/ in the region that pij > 0 for all
i; j :

 1 D log
p12

p22
;  2 D log

p21

p22
; � D log

p11p22

p12p21
: (4.10)

We can then express the model as

H0 W � D 0
H1 W � ¤ 0:

This is the same expression as (4.7) in Example 4.1.5. Under the null hypothesis
� D 0, the ratios of which party is supported is the same for both the voter and the
nonvoter (p11=p12 and p21=p22, respectively), for example, and the rows (voting
intention) and columns (which party is supported) are selected independently.
We can now write the joint probability function based on the new parameter. The
inverse transform of (4.10) is

p11 D e 1C 2C�

1C e 1 C e 2 C e 1C 2C�
p12 D e 1

1C e 1 C e 2 C e 1C 2C�
p21 D e 2

1C e 1 C e 2 C e 1C 2C�
p22 D 1

1C e 1 C e 2 C e 1C 2C� :

Substituting this into (4.9), we have

p.x/ D nŠ

x11Šx12Šx21Šx22Š
exp

�
.x11 C x12/ 1 C .x11 C x21/ 2 C x11�

�n log.1C e 1 C e 2 C e 1C 2C�/� :
(4.11)
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Table 4.3 Numbers of defective products
under various conditions of heating time and
catalyst (imaginary data)

Catalyst A Catalyst B

Long 5 12
Short 7 6

We see that the multinomial distribution again belongs to the exponential family.
From (4.11), we also see that .X11 C X12;X11 C X21/ is a sufficient statistic for
the parameter . 1;  2/ under the null hypothesis � D 0. Because the total sum n

is fixed in this example, fixing the sufficient statistic under the null hypothesis is
equivalent to fixing the row sums and the column sums in the 2 � 2 table.

Example 4.1.7 (The Case of a Poisson Distribution). Consider a manufacturing
process in a factory for which you wish to determine how to reduce the number
of defective products. To investigate this, you could use various combinations of
heating time (long or short) and catalyst (A or B), and then count the number
of defectives manufactured under each condition. The results are summarized in
Table 4.3. Which length of heating time and which catalyst is most desirable?

Table 4.3 is another type of 2�2 table. Unlike Examples 4.1.5 and 4.1.6, no column
sums or row sums are fixed at the start. We may simply choose (Long, Catalyst A)
as the desirable combination since it has the smallest number of defective products.
However, another interpretation of Table 4.3 leads to choosing (Short, Catalyst A)
if we ignore an interaction effect of (Long, Catalyst A), because the total number
of defective products for the Short heating time .7 C 6 D 13/ is smaller than that
for the Long heating time .5C 12 D 17/. Such a consideration leads to a statistical
model with the null hypothesis, “there is no interaction effect between the heating
time and which catalyst is used”. A natural model for Table 4.3 is the independent
Poisson distribution:

Xij � Po.�ij /; i; j D 1; 2; Xij are independent; �ij > 0;

where Xij is a random variable for the number of defective products for the level
.i; j /. Here we write i D 1; 2 as heating time (Long, Short) and j D 1; 2 as catalyst
(Catalyst A, Catalyst B). �ij is the expected value of the number of defective
products for the level .i; j /, i.e., E.Xij / D �ij . We summarize this notation in
the following 2 � 2 table.

Observation Expected value
Catalyst A Catalyst B Catalyst A Catalyst B

Long x11 x12 Long �11 �12
Short x21 x22 Short �21 �22
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The joint probability function of X D .X11; X12; X21; X22/ is

p.x/ D
2Y

iD1

2Y

jD1

�
xij
ij e

��ij

xij Š
; xij D 0; 1; 2; : : : : (4.12)

In this example, the parameter .�11; �12; �21; �22/ is four-dimensional. Here, we
define a transform

 0 D log�22;  1 D log
�12

�22
;  2 D log

�21

�22
; � D log

�11�22

�12�21
:

The meaning of this new parameter is seen from the inverse transform

�11 D e 0C 1C 2C�; �12 D e 0C 1; �21 D e 0C 2; �22 D e 0 : (4.13)

First, similar to Examples 4.1.5 and 4.1.6, the null hypothesis, “there is no
interaction effect between the heating time and the catalyst”, is expressed as � D 0.
Under this null hypothesis,  1 can be written as

 1 D log
�12

�22
D log

�11

�21
;

which represents the common (i.e., independent of catalyst) effect of setting the
heating time to Long. Similarly,  2 represents the common (i.e., independent of the
heating time) effect of using Catalyst A. These effects are called the main effects for
the heating time and the catalyst, respectively. � is called a two-factor interaction
effect between the heating time and the catalyst.

Substituting (4.13) into (4.12), we have

p.x/ D 1

x11Šx12Šx21Šx22Š
exp ..x11 C x12 C x21 C x22/ 0
C.x11 C x12/ 1 C .x11 C x21/ 2 C x11�
�.e 0C 1C 2C� C e 0C 1 C e 0C 2 C e 0/� :

(4.14)

We see that (4.14) is an exponential family, and

.X11 CX12 CX21 CX22;X11 CX12;X11 CX21/
is a sufficient statistic for the parameter . 0;  1;  2/ under the null model H0 W
� D 0. As in Examples 4.1.5 and 4.1.6, fixing a value to the sufficient statistic is
equivalent to fixing a value to the row sums and the column sums.

Now we have seen three examples of 2�2 tables. In these examples, the assumed
probability functions and null hypotheses differ according to the sampling schemes,
as follows.
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Probability functions Null models of interest

Example 4.1.5 Independent Binomial Common proportions
Example 4.1.6 Multinomial Independent rows and columns
Example 4.1.7 Independent Poisson No two-factor interaction

However, with appropriate transformations of the parameters, the null hypotheses
can all be written as

H0 W � D 0: (4.15)

Also note that the sufficient statistic for the parameter under the null hypothesis
coincides with the row sums and column sums of the 2�2 tables. In the next section,
we consider tests of the null hypothesis (4.15) that are based on the sufficient
statistic for the parameter of “no interest”. We note that there is an advantage in
that we need not consider differences of sampling schemes. Such an advantage is
valid not only for general two-dimensional contingency tables but also for higher-
dimensional contingency tables.

As the last topic of this section, we give another definition.

Definition 4.1.8 (Saturated Models). A model for which the number of parame-
ters and the dimensionality of the data are the same is called a saturated model.

There are no assumptions about the probability structure of a saturated model.
In the three examples in this section, the dimensions of a saturated model would be
dim.p1; p2/ D 2 for Example 4.1.5, dim.p11; p12; p21; p22/ D 3 for Example 4.1.6
(because of the constraint

P
pij D 1), and dim.�11; �12; �21; �22/ D 4 for

Example 4.1.7. In this chapter, we focus on testing a hypothesis of the form

H0 : Submodel of the saturated model
H1 : Saturated model.

4.1.3 Similar Tests

In this section, we consider testing the hypothesis

H0 W � D .0; : : : ; 0/; (4.16)

where the parameter is expressed as � D . ;�/ by some transform. In the three
examples of 2�2 tables in the previous section, the dimension of �was one, and the
dimensions of was different for each problem. , is called a nuisance parameter.

Generally, the testing procedure

T .x/ � c H) H0 is rejected
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for some test statistics T .X/ of significance level ˛ must satisfy some condition for
the type I error, i.e.,

Pr.T .X/ � c j H0 is true/ � ˛ (4.17)

for a given level of significance ˛. For the null hypothesis (4.16), (4.17) is written as

sup
 

Pr.T .X/ � c j � D . ; .0; : : : ; 0/// � ˛: (4.18)

However, in general, it is difficult to evaluate the left-hand side of (4.18) or to seek
tests that are powerful under (4.18). Therefore, it is a common approach to consider
a class of similar tests.

Definition 4.1.9 (Similar Tests). A test is similar if the type I error Pr.T .X/ �
c j H0 is true/ does not depend on the nuisance parameter.

To construct similar tests, one approach is to use the conditional distribution that
fixes the sufficient statistic for the nuisance parameter. We will explain this approach
for the case of 2 � 2 tables.

Similar Tests for 2 � 2 Contingency Tables (Fisher’s Exact Tests)

We can write the three 2 � 2 tables from the previous section in the form

x11 x12 x1�
x21 x22 x2�
x�1 x�2 x��

where we use the dot notation (�) to represent the sum with respect to the index.
Because we have seen that the sufficient statistics for the nuisance parameter are the
row sums and column sums, we will consider the conditional probability function
that fixes them. We write it as the one variable function of x11 as

p.x11 j x��; x1�; x�1; �/ D 1

C.�/

exp.�x11/

x11Š.x1� � x11/Š.x�1 � x11/Š.x�� � x�1 � x1� C x11/Š ;
(4.19)

where C.�/ is the normalizing constant defined by

C.�/ D
min.x1�;x�1/X

yDmax.0;x1�Cx�1�x��

/

exp.�y/

yŠ.x1� � y/Š.x�1 � y/Š.x�� � x�1 � x1� C y/Š : (4.20)

The summation in (4.20) is the sum with respect to all the values of x11 for fixed
row sums and column sums. Equation (4.19) is called a generalized hypergeometric
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distribution. Note that some textbooks call the conditional distribution for general
I � J tables (cf. (4.30) of Sect. 4.1.4, for example) the generalized hypergeometric
distribution. In this book, we call the conditional probability function (4.19) the gen-
eralized hypergeometric distribution. The normalizing constant of the generalized
hypergeometric distribution does not have a closed-form expression. However, to
evaluate the significance probability in an actual test, it is sufficient to use the
conditional probability function under the null model. Substituting � D 0 into
(4.19), we have

p.x11 j x��; x1�; x�1; � D 0/ D

 
x1�
x11

! 
x�� � x1�
x�1 � x11

!

 
x��
x�1

! : (4.21)

Equation (4.21) is called a hypergeometric distribution.

Proposition 4.1.10. Substituting � D 0 into (4.19) yields (4.21).

Proof. Comparing (4.20) and (4.21), we want to show the relation

min.x1�;x�1/X

yDmax.0;x1�Cx�1�x��

/

 
x1�
y

! 
x�� � x1�
x�1 � y

!
D
 
x��
x�1

!
: (4.22)

The right-hand side is the number of ways to choose x�1 balls from among x�� balls.
Imagine these x�� balls are painted in two colors, i.e., x1� red balls and x���x1� white
balls. Then the number of red balls y in the selected x�1 balls satisfies the condition

max.0; x1� C x�1 � x��/ � y � min.x1�; x�1/:

Because

 
x1�
y

! 
x�� � x1�
x�1 � y

!
is the number of ways to choose y red balls and x�1 � y

white balls from x�� balls, we have (4.22). �
Because (4.21) does not depend on the nuisance parameter, we can construct

similar tests by evaluating the upper probability of a test statistic based on this
conditional probability function. In the case of a one-sided test,

H0 W � D 0
H1 W � > 0;

the natural testing procedure is

X11 � c H) Reject H0;
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and the significance probability (p value) is given by

p value D Pr.X11 � x11 j H0/ D
min.x1�;x�1/X

xDx11
p.x j x��; x1�; x�1/:

Calculating this value and comparing it with the given significance level ˛ D 0:05,
for example, we can test the null hypothesis as

p value � 0:05 H) Reject H0:

This testing procedure is called Fisher’s exact test.
Perform Fisher’s exact test for the data in Example 4.1.5.

Example 4.1.11 (Example 4.1.5, Continued). Using the values in Table 4.1, we
have

p.x11 j 120; 20; 70/D

 
20

x11

! 
100

70 � x11

!

 
120

70

! :

Based on this hypergeometric distribution, the p value of the observation x11 D 14
is calculated as

p value D
20X

xD14
p.x j 120; 20; 70/D 0:1818: (4.23)

Therefore, with the significance level ˛ D 0:05, the p value is not significant, and
H0 cannot be rejected. We cannot conclude from Table 4.1 that the probability of
smoking is higher for stomach cancer patients than it is for healthy people.

As seen in the above example, to test a hypothesis, we first must define the null
hypothesis, the alternative hypothesis, the test statistics, and the significance level.
After that, the only remaining task is to calculate the p value, i.e., the probability
that the test statistic is equal to or more extreme than the observed value under the
null hypothesis. This calculation can be performed by Markov bases (or Gröbner
bases) in [11].

It may be difficult to calculate (4.23) by hand. We used the software R for the
previous example. The source code and the output are as shown below.

> data <- matrix(c(14,6,56,44),2,2,byrow=T)
> data

[,1] [,2]
[1,] 14 6
[2,] 56 44
> fisher.test(data,alternative="greater")

Fisher’s Exact Test for Count Data
data: data
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Table 4.4 Result of
examinations of geometry
and probability

GeometrynProbability 5 4 3 2 1� Total

5 2 1 1 0 0 4
4 8 3 3 0 0 14
3 0 2 1 1 1 5
2 0 0 0 1 1 2
1� 0 0 0 0 1 1
Total 10 6 5 2 3 26

p-value = 0.1818
alternative hypothesis: true odds ratio is greater than 1
95 percent confidence interval:
0.697064 Inf

sample estimates:
odds ratio

1.824451

4.1.4 I � J Tables

As the last topic of Sect. 4.1, we extend 2 � 2 tables and consider general I � J
tables. As with 2 � 2 tables, there are several sampling schemes, such as “I
rows follow independent multinomial distributions”, “the set of all entries follow
one multinomial distribution”, or “each entry follows an independent Poisson
distribution”. However, as with 2 � 2 tables, we can treat these cases in the same
way when considering conditional probability functions. Here, we consider the case
of one multinomial distribution as a whole.

Example 4.1.12 (Example of a Two-Way Contingency Table). Consider an example
where 26 students take examinations in both geometry and probability. For both
subjects, the students are placed into five categories according to their scores, as
shown in Table 4.4.

Table 4.4 is an example of a 5 � 5 contingency table. In this example, it is natural
to consider a multinomial distribution with the total number of students fixed at
n D 26:

p.x/ D nŠ

5Y

iD1

5Y

jD1
xij Š

5Y

iD1

5Y

jD1
p
xij
ij ;

5X

iD1

5X

jD1
pij D 1;

5X

iD1

5X

jD1
xij D n;

(4.24)

where xij and pij are the frequency and the occurrence probability for the .i; j /
cell (i.e., the geometry score is i and the probability score is j ), respectively. The
dimension of the saturated model is IJ � 1 D 24.
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For this pij , a model of interest may be an independence model between the rows
and the columns. In fact, Table 4.4 shows a positive correlation between the two
scores. We want to judge the null hypothesis that “there is no actual correlation, and
the observed positive correlation was obtained by chance”. To construct a similar
test, we consider a parameter transformation. Extending the relation (4.10) for the
multinomial case of a 2 � 2 table, we consider the transform

8
ˆ̂̂
<̂

ˆ̂̂
:̂

 1i D log
piJ

pIJ
; i D 1; : : : ; I � 1;

 2j D log
pIj

pIJ
; j D 1; : : : ; J � 1;

�ij D log
pij pIJ

piJ pIj
; i D 1; : : : ; I � 1; j D 1; : : : ; J � 1:

(4.25)

With p�� D 1, (4.25) is uniquely solved for positive pij , and we have the inverse
transform

8
ˆ̂̂
ˆ̂̂
<̂

ˆ̂̂
ˆ̂̂
:̂

pij D pIJ e 1iC 2jC�ij ; i D 1; : : : ; I � 1; j D 1; : : : ; J � 1;
piJ D pIJ e 1i ; i D 1; : : : ; I � 1;
pIj D pIJ e 2j ; j D 1; : : : ; J � 1;

pIJ D
2

41C
I�1X

iD1
e 1i C

J�1X

jD1
e 2j C

I�1X

iD1

J�1X

jD1
e 1iC 2jC�ij

3

5
�1

:

(4.26)

The dimension of the saturated model is

.I � 1/C .J � 1/C .I � 1/.J � 1/ D IJ � 1:

Rewriting pIJ D e 0 , we have the expression

logpij D  0 C  1i C  2j C �ij ; (4.27)

which is known as a log-linear model. The log-linear model is one of the traditional
models in statistical theory. The parameter of the log-linear model is relatively clear,
and this is one of its merits. For (4.27), the conventional terminology is

•  1i is a main effect of the level i of the factor 1 (a main effect of the score i of
geometry),

•  2j is a main effect of the level j of the factor 2 (a main effect of the score j of
probability),

• �ij is an interaction effect of the level .i; j / of the factors 1; 2 (an interaction
effect of the level .i; j / of geometry and probability).

The hypothesis of the independence of rows and columns,

H0 W pij D pi �p�j for all .i; j /; (4.28)
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is written as

H0 W �ij D 0 for all .i; j /: (4.29)

Proposition 4.1.13. Equations (4.29) and (4.28) are equivalent.

Proof. Assume pij D pi �p�j for all i; j . It is easy to check that substitution of this
into �ij in (4.25) yields zero. Conversely, assume (4.29). From (4.26), we have

pi � D
J�1X

jD1
pij C piJ D pIJ e 1i

0

@1C
J�1X

jD1
e 2j

1

A ; i D 1; : : : ; I � 1;

p�j D
I�1X

iD1
pij C pIj D pIJ e 2j

 
1C

I�1X

iD1
e 1i

!
; j D 1; : : : ; J � 1:

From these and (4.26), we have

pi �p�j D p2IJ e 1iC 2j
0

@1C
I�1X

iD1
e 1i C

J�1X

jD1
e 2j C

I�1X

iD1

J�1X

jD1
e 1iC 2j

1

A D pij

for i D 1; : : : ; I �1; j D 1; : : : ; J �1. The cases of i D I or j D J can be proved
in a similar way. �

From Proposition 4.1.13, we see that the nuisance parameters for the null model
(4.29) are f 1i g and f 2j g.
Proposition 4.1.14. The multinomial distribution (4.24) belongs to the exponential
family. The sufficient statistic for the nuisance parameter under the null hypothesis
(4.29) are the row sums and the columns sums fxi �g and fx�j g.
Proof. Note that

IY

iD1

JY

jD1
p
xij
ij D pnIJ

2

4
I�1Y

iD1

J�1Y

jD1

�
pij

pIJ

�xij
3

5
"
I�1Y

iD1

�
piJ

pIJ

�xiJ#
2

4
J�1Y

jD1

�
pIj

pIJ

�xIj
3

5 :

By this relation and (4.26), we have an expression for the multinomial distribution
of the I � J table as
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p.x/ D nŠ

IY

iD1

JY

jD1
xij Š

IY

iD1

JY

jD1
p
xij
ij

D nŠpnIJ
IY

iD1

JY

jD1
xij Š

exp

0

@
I�1X

iD1
xi � 1i C

J�1X

jD1
x�j  2j C

I�1X

iD1

J�1X

jD1
xij �ij

1

A :

This corresponds to the general form of the exponential family (4.2) with

h.x/ D nŠ

IY

iD1

JY

jD1
xij Š

;

c.�/ D �n logpIJ D n log

0

@1C
I�1X

iD1
e 1i C

J�1X

jD1
e 2j C

I�1X

iD1

J�1X

jD1
e 1iC 2jC�ij

1

A :

We also see that the sufficient statistics for the nuisance parameters 1i and  2j are
xi � and x�j , respectively, under the null hypothesis (4.29). �

We consider constructing a similar test for the conditional probability function,
given the row and the column sums.

Proposition 4.1.15. The conditional probability function, given the row sums and
the column sums, for the multinomial distribution under the null hypothesis (4.29) is

p.x j xi �; x�j ; �ij D 0/ D

 
IY

iD1
xi �Š
!0

@
JY

jD1
x�j Š

1

A

x��Š
IY

iD1

JY

jD1
xij Š

: (4.30)

Proof. As we saw in the proof of the factorization theorem (Theorem 4.1.3), for
the probability function p.x/ D h.x/g.T .x/;�/ of a discrete random variable
X , the conditional probability function of X given T D t is obtained as the
normalized h.x/, in such a way that summing h.x/ with respect to all x satisfying
T .x/ D t equals 1. Therefore, from Lemma 4.1.14, we have the conditional
probability function, given the row sums and the column sums, under the null
hypothesis as
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p.x j xi �; x�j ; �ij D 0/ D
0

@
IY

iD1

JY

jD1

1

xij Š

1

A
,0

@
X

y

IY

iD1

JY

jD1

1

yij Š

1

A ;

where
X

y

is the sum with respect to all y D fyij g satisfying yi � D xi �; y�j D x�j

for all i; j . Therefore we only need to show that

0

@
X

y

IY

iD1

JY

jD1

1

yij Š

1

A D x��Š
 

IY

iD1
xi �Š
!0

@
JY

jD1
x�j Š

1

A

: (4.31)

Comparing the coefficient of ux�1

1 � � � ux�J

J in the relation

.u1C � � � C uJ /
x1�.u1C � � � C uJ /

x2� � � � � � .u1C � � � C uJ /
xI � D .u1C � � � C uJ /

x
�� ;

we have

X

yWy
�jDx

�j

x1�Š
y11Š � � �y1J Š � � � � �

xI �Š
yI1Š � � �yIJ Š D

x��Š
x�1Š � � �x�J Š

:

This yields (4.31). �

We will show another proof, based on combinatorics, in Example 4.1.20.
Note that the arguments above are similar to the case of 2�2 tables. In the case of

2 � 2 tables, we can directly compare them using similar tests (Fisher’s exact tests)
that are based on the hypergeometric distribution. However, because the conditional
probability function is multidimensional in the case of general I �J tables, we have
to consider the use of test statistics. An appropriate choice of test can be based on
a consideration of the power of the test. As stated above, we consider that nuisance
parameters exists in � D . ;�/, and the alternative hypothesis is the saturated
model, i.e.,

H0 W � D 0
H1 W � ¤ 0: (4.32)

A test where the saturated model is the alternative hypothesis is called a goodness-
of-fit test. Representative goodness-of-fit tests are the chi-square goodness-of-fit test

�2.x/ D
X

i

X

j

.xij �mij /
2

mij

� c˛ ) Reject H0

and the (twice log) likelihood ratio test

G2.x/ D 2
X

i

X

j

xij log
xij

mij

� c˛ ) Reject H0;
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where m D .mij / is a fitted value under the null hypothesis H0 (or the maximum
likelihood estimate of the expected frequency). Because E.Xij / D npij for the
multinomial distribution,m is given by

mij D n Opij :
Here Opij is the maximum likelihood estimate of pij under H0, which is obtained by
maximizing the log-likelihood

L D ConstC
X

i;j

xij logpij

under the constraint � D .0; : : : ; 0/. The fitted value for the independence model of
two-way contingency tables is given by

mij D xi �x�j
x��

:

This gives an estimate of the parameter as a function of the sufficient statistics
under the model. This fact holds in general. In fact, the fitted value can be obtained
as a nonnegative table that fits the model completely and for which the sufficient
statistics have the same values as do the observations. Such a table is uniquely
determined. The iterative scaling procedure is a method for calculating the fitted
values.

Example 4.1.16 (Example 4.1.12, Continued). The fitted value under the null
hypothesis of independence for Table 4.4 is calculated as follows.

5 4 3 2 1� Total

5 1.54 0.92 0.77 0.31 0.46 4
4 5.38 3.23 2.69 1.08 1.62 14
3 1.92 1.15 0.96 0.38 0.58 5
2 0.77 0.46 0.38 0.15 0.23 2
1� 0.38 0.23 0.19 0.08 0.12 1
Total 10 6 5 2 3 26

The goodness-of-fit test statistic is calculated as

�2.xo/ D
X

i

X

j

.xoij �mij /
2

mij

D .2 � 1:54/2
1:54

C � � � C .1 � 0:12/2
0:12

D 25:338;

where xo indicates the observed frequencies.

Once the value of the test statistic is calculated, we only have to judge whether
it is significantly large (i.e., the p value is less than or equal to the significance
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level ˛). For example, is the value 25:338 in Example 4.1.16 significantly large for
rejecting H0? This evaluation of the significance is based on the probability function
of the test statistic under H0. There are three strategies for calculating the p values,
as follows.

(a) Use the asymptotic distribution of the test statistic.
(b) Exactly calculate the p value.
(c) Estimate the p value by using the Monte Carlo method.

Though the aim of this chapter is to consider strategy (c), we will consider each
strategy in order.

(a) Using the Asymptotic Distribution of the Test Statistics.

Although the distributions of test statistics are complicated in general, the asymp-
totic distributions of some test statistics are known. Here by the term asymptotic,
we consider the limit with respect to the sample size as n ! 1 under some
regularity conditions based on the central limit theorem. In fact, the goodness-of-
fit test statistics and the likelihood ratio test statistics have the same asymptotic
distribution.

Theorem 4.1.17. The goodness-of-fit test statistics and the (twice log) likelihood
ratio test statistics for the test of (4.32) asymptotically follow the �2 distribution
with dim� degree of freedom under H0.

In the theorem, dim� is the number of elements in � that can vary freely, which
also equals the difference between the dimensions of the manifolds of the statistical
models H0 and H1. Refer to [10] or [24] for the proof of this theorem.

In Theorem 4.1.17, we consider the asymptotic distribution for n!1 as
nxi �
n

o

and
nx�j
n

o
are fixed. Because of the simplicity of strategy (a), it is effective to rely on

the asymptotic theory at the first stage of the analysis, even if we will also consider
strategies (b) or (c). One of the disadvantages of strategy (a) is that there might not
be a good fit with the asymptotic distribution. For example, it is doubtful that we
can apply the asymptotic result of n ! 1 to the data of Table 4.4, because the
sample size is only n D 26. Besides, it is well known that the fit of the asymptotic
distribution becomes poor for some types of data with relatively large sample sizes.
One of these types is sparse data, and we note that Table 4.4 has many zero entries.
Another problematic type of data is that for which the row sums and column sums
are unbalanced. See [14] for an example for fitting the asymptotic distribution.

Example 4.1.18 (Example 4.1.16, Continued). Because Table 4.4 is a 5 � 5 table,
the degrees of freedom is dim� D .5 � 1/.5 � 1/ D 16. Therefore, to test at
the significance level ˛, we compare the observed goodness-of-fit�2.xo/ D 25:338
with the upper 100˛ percent point of the �2 distribution with 16 degrees of freedom.
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If we set ˛ D 0:05, the upper 5 percent point of �216 is 26:30, and we cannot
reject H0.

The asymptotic tests are easy to conduct using R , as follows.

> data <- matrix(c(2,1,1,0,0,8,3,3,0,0,0,2,1,1,1,0,0,0,1,1,0,
0,0,0,1), byrow=T,ncol=5)

> data
[,1] [,2] [,3] [,4] [,5]

[1,] 2 1 1 0 0
[2,] 8 3 3 0 0
[3,] 0 2 1 1 1
[4,] 0 0 0 1 1
[5,] 0 0 0 0 1
> res <- chisq.test(data)
Warning message:
in: chisq.test(data)

Chi-squared approximation may be incorrect
> res

Pearson’s Chi-squared test

data: data
X-squared = 25.3376, df = 16, p-value = 0.06409
> qchisq(0.95,16)
[1] 26.29623
> round(res$expected,2)

[,1] [,2] [,3] [,4] [,5]
[1,] 1.54 0.92 0.77 0.31 0.46
[2,] 5.38 3.23 2.69 1.08 1.62
[3,] 1.92 1.15 0.96 0.38 0.58
[4,] 0.77 0.46 0.38 0.15 0.23
[5,] 0.38 0.23 0.19 0.08 0.12

(b) Exact Calculation of the p Value

As with Fisher’s exact tests, it is very desirable to calculate the exact p value for
the actual situation and for a finite sample size. The exact probability function of
the test statistics is derived from the probability function ofX under H0, as follows.
Recall that the probability function forX under the independent model of an I � J
table is the multinomial hypergeometric distribution (4.30):

p.x j xi �; x�j ;� D 0/ D

 
IY

iD1
xi �Š
!0

@
JY

jD1
x�j Š

1

A

x��Š
IY

iD1

JY

jD1
xij Š

.D h.x//: (4.33)
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The support of this probability function is the set of tables that have the same row
sums and column sums as in the observed table xo. We write it as

F D
n
x

ˇ̌
ˇ xi � D xoi �; x�j D xo�j ; xij 2 f0; 1; 2; : : :g

o
: (4.34)

The exact p value of the chi-square goodness-of-fit test statistic is

p D Pr.�2.x/ � �2.xo/ j H0 is true/ D
X

x2F

g.x/h.x/;

g.x/ D
�
1; if �2.x/ � �2.xo/;
0; otherwise:

It is very desirable to calculate the p value in this way. The disadvantage of this
strategy is the possible lack of computational feasibility. In fact, as was estimated
by [13], for example, the cardinality of F becomes huge as the sample size or the
size of the tables increases, and an exact calculation becomes infeasible.

Example 4.1.19 (Example 4.1.18, Continued). We will calculate the exact p value
for the goodness-of-fit test for Table 4.4. The multinomial hypergeometric distribu-
tion in this case is

h.x/ D .4Š14Š5Š2Š1Š/ .10Š6Š5Š2Š3Š/

26Š

5Y

iD1

5Y

jD1

1

xij Š

and there are 229,174 elements in

F D

8
ˆ̂̂
ˆ̂̂
<̂

ˆ̂̂
ˆ̂̂
:̂

x D .xij /

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

x11 x12 x13 x14 x15 4

x21 x22 x23 x24 x25 14

x31 x32 x33 x34 x35 5

x41 x42 x43 x44 x45 2

x51 x52 x53 x54 x55 1

10 6 5 2 3 26

9
>>>>>>>=

>>>>>>>;

:

For each element x in F , we calculate the value of �2.x/, accumulate the value
h.x/ for �2.x/ � 25:338, and finally obtain the exact p value 0:0609007. The
conclusion is the same as that of strategy (a), i.e., we cannot reject H0 at the
significance level ˛ D 0:05.
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(c) Estimate the p Value by Using the Monte Carlo Method

So far, we have seen two strategies for obtaining a p value: asymptotic evaluation
and exact calculation. It is best to calculate the exact p value if this is possible.
Even if the sample size is large and an exact calculation is infeasible, asymptotic
evaluation can be effective if there is a good fit with the asymptotic distribution. But
there is a problem when the sample size is too large for an exact calculation, and
the fit of the asymptotic distribution is poor due to sparseness or unbalanced row
sums or column sums. In these cases, the Monte Carlo method can be effective.

The Monte Carlo method estimates the p value as follows. The p value we
want to estimate is given by p D P

x2F g.x/h.x/, where h.x/ is the conditional
probability function under H0. This value is estimated as Op D PN

tD1 g.xt /=N by
the samples x1; : : : ;xN from h.x/. This is an unbiased estimate of the p value.
We can set N according to the performance of our computer. As an advantage of
the Monte Carlo method, we can also estimate the variance of the estimate. For
example, Op ˙ 1:96p Op.1 � Op/=N is a conventional 95% confidence interval of p.
Another advantage of the Monte Carlo method is that we can apply this method
to arbitrary test statistics, in contrast to the exact calculation of strategy (b), which
may not be feasible for some test statistics. For some test statistics, various efficient
algorithms are known for calculating exact p values; one such is the network
algorithm by Mehta and Patel [20] for the generalized Fisher’s exact test of I � J
tables. However, for complicated test statistics, the exact calculation is difficult.
Such a dependence on the test statistics does not exist with the Monte Carlo
method. The only problem is how to generate samples from the null distribution.
The difficulty thus depends on the null distribution. First, we present the simple
case of the multinomial hypergeometric distribution.

Example 4.1.20 (Generating Samples from the Multinomial Hypergeometric Distri-
bution). We can generate samples from the multinomial hypergeometric distribu-
tion (4.30) by using the urn model. First, prepare x�� balls. Write the numbers from
1 to I on the balls so that xi � balls are labeled i , i D 1; : : : ; I , and put them into
an urn. Next, prepare J boxes. Pick balls from the urn one by one and at random
(without seeing the labels), and put them into the boxes so that x�j balls are in the
box labeled j , for j D 1; : : : ; J . After all the balls have been removed from the urn,
let xij denote the number of the balls labeled i in the box labeled j . Then x D fxij g
is a sample from the multinomial hypergeometric distribution.

Proposition 4.1.21. x obtained by the method described in Example 4.1.20
follows the multinomial hypergeometric distribution (4.30).

Proof. The probability of occurrence of x is given by

p.x/ D Number of permutations of x�� balls coinciding with x

Number of permutations of x�� balls
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for x�� balls where xi � balls are labeled i for i D 1; : : : ; I . The denominator of
this probability is the number of permutations when we ignore the boxes, and it is
given by

x��Š
, 

IY

iD1
xi �Š
!
:

The numerator of this probability is the product of the number of permutations of
x�j balls in the box labeled j for j D 1; : : : ; J , given by

JY

jD1

 
x�j Š

, 
IY

iD1
xij Š

!!
:

The ratio of these values coincides with the multinomial hypergeometric distribu-
tion (4.30). �

In a similar manner, we can easily generate samples for some specific null
distributions. However, such a direct sampling is difficult in general, especially
for the distribution where the normalizing constant does not have a closed-form
expression. For these cases, we consider Markov chain Monte Carlo methods (often
abbreviated as MCMC methods).

In a Markov chain Monte Carlo method, we construct a Markov chain with the
stationary distribution as the null distribution. Here, we consider a Markov chain
over the finite conditional sample space F . Let the elements of F be numbered as

F D fx1; : : : ;xsg: (4.35)

We write the null distribution as

� D .�1; : : : ; �s/
according to (4.35). By standard notation, we treat � as a row vector. We now write
the transition probability matrix of the Markov chain fZt ; t D 0; 1; 2; : : :g over F
as Q D .qij /, i.e., we define

qij D Pr.ZtC1 D xj j Zt D xi /:
� is called a stationary distribution if it satisfies

� D �Q:
� is the eigenvector from the left of Q with the eigenvalue 1. The stationary
distribution uniquely exists if the Markov chain is irreducible (i.e., connected in this
case) and aperiodic. Therefore, we will consider connected and aperiodic Markov
chains. Under these conditions, starting from an arbitrary state Z0 D xi , the
distribution of Zt for large t is close to the stationary distribution �. Therefore,
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if we can construct a Markov chain with the target stationary distribution �, then
by running a Markov chain and discarding a large number t of initial steps (called
burn-in steps), we can consider ZtC1; ZtC2; : : : to be samples from the stationary
distribution � . Then, the problem becomes how to construct a connected, aperiodic
Markov chain with the stationary distribution as the null distribution over F .
Among these conditions, the condition for the stationary distribution can be solved
easily. Once we can construct an arbitrary connected chain over F , we can easily
modify the stationary distribution to the given null distribution � as follows.

Theorem 4.1.22 (Metropolis–Hastings Algorithm). Let � be a probability dis-
tribution on F . Let R D .rij / be the transition probability matrix of a connected,
aperiodic, and symmetric Markov chain over F . DefineQ D .qij / by

qij D rij min

�
1;
�j

�i

�
; i ¤ j;

qi i D 1 �
X

j¤i
qij :

(4.36)

Then Q satisfies � D �Q.

This result is a special case of [15], and the symmetry assumption (rij D rj i ) can
be removed relatively easily. In this chapter, we only consider symmetricR, and the
simple statement of the above theorem is sufficient for our purpose.

Proof (Theorem 4.1.22). It suffices to show that the above Q is reversible in the
following sense:

�iqij D �j qj i : (4.37)

In fact, under the reversibility

�i D �i
sX

jD1
qij D

sX

jD1
�j qj i ;

and we have � D �Q. Now, (4.37) clearly holds for i D j . For i ¤ j , we have

�iqij D �irij min

�
1;
�j

�i

�
D rij min

�
�i ; �j

�
;

and therefore (4.37) holds if rij D rj i . �

An important advantage of the Markov chain Monte Carlo method is that it does
not require the explicit evaluation of the normalizing constant of the stationary
distribution �. We only need to know � up to a multiplicative constant. In fact,
in (4.36), the stationary distribution � only appears in the form of ratios of its
elements �i=�j , and the normalizing constant is canceled. With the Metropolis–
Hastings algorithm, the remaining problem is to construct an arbitrary connected
and aperiodic Markov chain over F . This problem is solved by the Gröbner basis
theory in Sect. 4.2.
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4.2 Markov Basis

4.2.1 Markov Basis

In Sect. 4.1, we introduced the Markov chain Monte Carlo method for evaluating
p values of various statistical models for the data summarized in contingency
tables. In this approach, we consider constructing a connected Markov chain over
a given sample space, which is defined from the sufficient statistics of the nuisance
parameters. In general, this is a difficult problem. First, we will formalize the
problem below.

Hereafter, we will treat a contingency table x as a column vector. For example,
in the case of a I � J two-way contingency table, the frequency vector x D
.x11; : : : ; xIJ /

0 is an IJ � 1 column vector.1 Let t D Ax denote the sufficient
statistic for the nuisance parameter, which will be fixed in the similar tests. Here A
is an integer matrix. There are several ways to define the matrix A. For example,
in the case of an independence model of 2 � 3 tables, where t is the row sums and
column sums, A can be either

0
BBBBB@

1 1 1 0 0 0

0 0 0 1 1 1

1 0 0 1 0 0

0 1 0 0 1 0

0 0 1 0 0 1

1
CCCCCA

(4.38)

or

0

BB@

1 1 1 1 1 1

1 1 1 0 0 0

1 0 0 1 0 0

0 1 0 0 1 0

1

CCA :

Specifically, the vector space spanned by the rows of A is essential for defining A.
In this section, we will not further consider the definition ofA. For example, we will
permit redundant (linearly dependent) rows in A, as in (4.38). We assume only the
following.

Assumption 4.2.1. .1; : : : ; 1/ is in the row space of A.

By this assumption, the matrix A becomes a configuration matrix, as defined in
Sect. 1.5. For a given configuration matrix A and a sufficient statistic t, we define
the state space of the Markov chain by

Ft D fx j Ax D t; element of x 2 f0; 1; 2; : : :gg:

1In this chapter, we use 0 to denote the transpose.
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We call Ft a t-fiber. We have already used the symbol F for the state space in
(4.34) and (4.35) of Sect. 4.1. We specified the sufficient statistic in those definitions.
Note that, by Assumption 4.2.1, all the frequency vectors x D .xi / in the same
t-fiber have the same sample size

P
i xi . We now consider the construction of a

connected Markov chain over the t-fiber containing the observation xo. For this
purpose, we define

M .A/ D Ker.A/ \ Zp

D fz j Az D 0; element of z 2 f0;˙1;˙2; : : :gg:

M .A/ is the set of integer vectors for which the zero vector is a fixed sufficient
statistic. Here p is the number of cells in the contingency table, which is also the
number of columns of A. We call an element in M .A/ a move for A. If A is clear
from context, we simply write M D M .A/. In the notation of Sect. 1.5, we can
also write M .A/ D KerZA. For each move z D fzig, we define its positive part
zC D fzC

i g and its negative part z� D fz�
i g by

zC
i D max.zi ; 0/; z�

i D max.�zi ; 0/:

Thus we have z D zC � z�. We call
P

i zC
i D

P
i z�
i the degree of a move z. We

construct a Markov chain from elements in M . To consider the connectivity of the
chain, we give the following definition.

Definition 4.2.2 (Mutually Accessibility). Let B � M .A/. x;y.¤ x/ 2 FAx

is mutually accessible by B � M if there exist N > 0; zj 2 B, and "j 2
f�1; 1g; j D 1; : : : ; N , satisfying the following two conditions.

y D x C
NX

jD1
"j zj ; (4.39)

x C
nX

jD1
"j zj 2 FAx ; n D 1; : : : ; N: (4.40)

The meaning of Definition 4.2.2 is explained as follows. Equation (4.39) shows
that y can be reached from x by N steps by adding or subtracting elements in B
to/from x. On the other hand, (4.40) shows that all the states from x to y are in the
state space FAx . Because Az D 0 for z 2M .A/, it is obvious that Ax D A.x˙ z/
holds. Therefore the case x ˙ z 62 FAx occurs if some element becomes negative
in x ˙ z. We say x and y are mutually accessible by B if we can choose a route
from x to y by the elements in B without causing negative entries along the way.
Obviously, the notion of mutual accessibility is symmetric and transitive. Allowing
a zero move 0 2 M .A/ also yields reflexivity. Therefore, mutual accessibility by
B is an equivalence relation and each Ft is partitioned into disjoint equivalence
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classes by moves of B � M . We call these equivalence classes B-equivalence
classes of Ft . We now define a Markov basis.

Definition 4.2.3 (Markov Basis [11]). B �M .A/ is a Markov basis for A if Ft

itself is a B-equivalence class for arbitrary t.

M .A/ itself is an obvious (infinite) Markov basis for A. We are interested in
constructing a Markov basis with a simple structure and which a finite subset of
M .A/. How difficult this will be depends on the structure of A. In Sect. 4.2.2, we
show two examples of a Markov basis, one with a simple structure and the other
with a complicated structure.

Once a Markov basis has been obtained, it is easy to construct a connected and
symmetric Markov chain over the t-fiber containing any observation xo, i.e., FAxo .
One simple method is the following. For each state x of the chain, randomly choose
an element of z 2 B and a sign " 2 f�1;C1g, move to x C "z if x C "z 2
Ft , and remain at x if x C "z 62 Ft ; we now have a connected and symmetric
Markov chain. Applying the Metropolis–Hastings algorithm of Theorem 4.1.22 to
this simple procedure, we have the following algorithm to evaluate p values.

Algorithm 4.2.4.
Input: Observationxo, Markov basis B, Number of stepsN , configuration matrixA,

null distribution f .�/, test statistics T .�/, (we set t D Axo)
Output: Estimate of the p value
Variables: obs, count, sig, x, xnext
Step 1: obs D T .xo/, x D xo, count D 0, sig D 0
Step 2: Choose z 2 B randomly. Choose " 2 f�1;C1g with probability 1=2.
Step 3: If x C "z 62 Ft , then xnext D x, and go to Step 5. If x C "z 2 Ft ,
then let u be a uniform random number between 0 and 1.

Step 4: If u � f .x C "z/
f .x/

, then xnext D x C "z and go to Step 5. If u >

f .x C "z/
f .x/

, then xnext D x and go to Step 5.

Step 5: If T .xnext / � obs, then sig D sigC 1
Step 6: x D xnext , count D countC 1
Step 7: If count < N , then go to Step 2.

Step 8: The estimate of the p value is
sig

N
.

In the above algorithm, Step 2 corresponds to the transition probability matrix
R D frij g in Theorem 4.1.22. In Step 2, the statement “Choose z 2 B randomly”
does not mean that we have to choose z 2 B according to the uniform distribution
over B. In fact, we can use any distribution for which all the elements in B are in the
support. For the condition rij D rj i , we choose the sign " such that the alternatives
have equal probability 1=2. We note an important point: In Step 5, we evaluate the
value of the test statistic even if xnext D x in Steps 3 and 4. It is necessary to
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include such a “reject” step in order to attain a stationary distribution (and to obtain
the unbiased estimate of the p value).

Algorithm 4.2.4 is very simple, and various improvements are possible. For
example, grouping several steps of Algorithm 4.2.4 into a single step would speed
up the convergence to the stationary distribution. This can be achieved as follows.

Algorithm 4.2.5.
Modify Steps 2, 3 and 4 in Algorithm 4.2.4, as follows.
Step 2: Choose z 2 B randomly.
Step 3: Let I D fn j x C nz 2 Ftg.
Step 4: Choose xnext from fx C nz j n 2 I g according to the probability

pn D f .x C nz/
X

n2I
f .x C nz/

:

Note that in both Algorithms 4.2.4 and 4.2.5, the null distribution f .�/ appears
in the form of a ratio. Hence, we do not need to compute a normalizing constant
for f .�/, as was discussed in Sect. 4.1. Because the computation of normalizing
constants is often difficult, this is an important advantage of the Markov chain Monte
Carlo method.

4.2.2 Examples of Markov Bases

We now present two examples of Markov bases. The first example is a Markov
basis for the independence model of the two-way contingency tables of Sect. 4.1.4.
We consider I � J tables. The frequency vector is x D .x11; : : : ; xIJ /

0, xij 2
f0; 1; 2; : : :g, and the sufficient statistic is the row sums and column sums. Let A be
the corresponding configuration matrix. The Markov basis for A is as follows.

Theorem 4.2.6 (Markov Basis for the Independence Model of an I � J Table).
A Markov basis for the independence model of an I � J table is constructed as the

set of

 
I

2

! 
J

2

!
moves fzi1i2j1j2 j 1 � i1 < i2 � I; 1 � j1 < j2 � J g defined by

zi1i2j1j2 D fzij g; zij D
8
<

:

C1; .i; j / D .i1; j1/; .i2; j2/;
�1; .i; j / D .i1; j2/; .i2; j1/;
0; otherwise:

(4.41)

Proof. Let B be the set of moves defined by (4.41). We offer a proof by
contradiction. Suppose that B is not a Markov basis. Then there exists a fiber
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x 2 Ft and two elements x;y 2 Ft such that we cannot move from x to y
by the moves of B. Let

Nx D fy 2 Ft j we cannot move from x to y by moves of Bg:

Then Nx is not empty by assumption, and x�y is a nonzero move for any y 2 Nx .
For z D .zij / 2M , let jzj DPI

iD1
PJ

jD1 jzij j denote its 1-norm. Define

y� D arg min
y2Nx

jx � y j: (4.42)

y� is one of the closest elements of Ft that cannot be reached from x by B. We
have

jx � y�j D min
y2Nx

jx � y j:

Now let w D x � y�, and consider the signs of the elements of w. Because w
contains a positive element, let wi1j1 > 0. Then, because w is a move, there exist
j2 ¤ j1 with wi1j2 < 0 and i2 ¤ i1 with wi2j1 < 0. Hence for y� D .y�

ij /, we have
y�
i1j2

> 0 and y�
i2j1

> 0. Then

y� C zi1i2j1j2 2 Ft

holds. Because y�Czi1i2j1j2 can be reached from y� by B, we have y�Czi1i2j1j2 2
Nx . Now we check the value of jx � .y� C zi1i2j1j2/j.
• If wi2j2 > 0, then jx � .y� C zi1i2j1j2/j D jx � y�j � 4 holds.
• If wi2j2 � 0, then jx � .y� C zi1i2j1j2/j D jx � y�j � 2 holds.

Therefore for both cases, we have jx � .y� C zi1i2j1j2/j < jx � y�j. However, this
contradicts the minimality of y� in (4.42). �

In the case of the independence model for I � J tables, the minimum degree of
the moves is 2. Hence Theorem 4.2.6 states that the set of moves with the minimum
degree constitutes a Markov basis. In [1], a move with the minimum degree is called
a basic move, and in [12], a move of degree 2 is called a primitive move. In addition,
it is shown in [12] that the set of the primitive moves constitutes a Markov basis if
the null model belongs to the class of so-called decomposable models. The indepen-
dence model for two-way contingency tables is one of the decomposable models.

The above is an example where the set of the basic moves becomes a Markov
basis. However, it is known that, in general, a Markov basis has a complicated
structure. As an example of such a case, we now consider a I � J � K three-
way contingency table. For the frequency vector x D .x111; : : : ; xIJK/

0; xijk 2
f0; 1; 2; : : :g, the sufficient statistic is defined as the set of two-dimensional marginal
totals fxij �g; fxi �kg; fx�jkg. A corresponding configuration matrix A can be given,
for example, by
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A D
0

@
10
I ˝EJ ˝ EK
EI ˝ 10

J ˝ EK
EI ˝ EJ ˝ 10

K

1

A ;

where En denotes an n � n identity matrix, 1n D .1; : : : ; 1/0 denotes the
n-dimensional vector consisting of 1s, and ˝ is the Kronecker product. This
configuration arises in the testing problem of the null hypothesis that there is no
three-factor interaction:

H0 W .˛ˇ�/ijk D 0; for all i; j; k;

in the log-linear model

logpijk D �C ˛i C ˇj C �k C .˛ˇ/ij C .˛�/ik C .ˇ�/jk C .˛ˇ�/ijk: (4.43)

(Here we assume that the dimension of the parameter coincides with the dimension
of fpijkgwith appropriate constraints.) The nuisance parameter for this null model is

�; ˛i ; ˇj ; �k; .˛ˇ/ij ; .˛�/ik ; .ˇ�/jk

and the sufficient statistics for them are the two-dimensional marginal totals
xij �; xi �k; x�jk . The conditional probability function for given two-dimensional
marginal totals under the null hypothesis is given by

p.xijk j fxij �g; fxi �kg; fx�jkg;H0/ D C�1
IY

iD1

JY

jD1

KY

kD1

1

xijkŠ

C D
X

y2FAx

0

@
IY

iD1

JY

jD1

KY

kD1

1

yijkŠ

1

A :

In this case, the normalizing constant C cannot be written in an explicit form, and
hence a direct sampling is difficult. On the other hand, the hypothesis that there
is no three-factor interaction (4.43) is considered first in the analysis of three-way
contingency tables. Therefore, it is valuable for applications if we obtain a Markov
basis for this problem. In this problem, the basic move (the degree is 4) is defined by

zijk D
8
<

:

C1; .i; j; k/ D .i1; j1; k1/; .i1; j2; k2/; .i2; j1; k2/; .i2; j2; k1/;
�1; .i; j; k/ D .i1; j1; k2/; .i1; j2; k1/; .i2; j1; k1/; .i2; j2; k2/;
0; otherwise

(4.44)

for i1 ¤ i2; j1 ¤ j2; k1 ¤ k2. This is a natural extension of the basic move of two-

way contingency tables,
C1 �1
�1 C1 , to the three-way tables. Interestingly, if I; J;K �

3, the Markov chain constructed from the basic move is not connected except for
some special fibers.
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Example 4.2.7 (Markov Basis for the Model for a 3 � 3 � 3 Contingency Table
Where the Null Hypothesis Is That There Is No Three-Factor Interaction). This is
an example of the I D J D K D 3 case where the set of basic moves is not a
Markov basis. We write the 3 � 3 � 3 table x D fxijkg as three 3 � 3 tables for
i D 1; 2; 3 as

x111 x112 x113

x121 x122 x123
x131 x132 x133

x211 x212 x213

x221 x222 x223
x231 x232 x233

x311 x312 x313

x321 x322 x323
x331 x332 x333

:

Consider the case that the fixed two-dimensional marginal totals fxij �g; fxi �kg; fx�jkg
are common and given as

2 1 1

1 2 1

1 1 2

:

We display this fiber as follows.

x111 x112 x113 2

x121 x122 x123 1

x131 x132 x133 1

2 1 1 4

x211 x212 x213 1

x221 x222 x223 2

x231 x232 x233 1

1 2 1 4

x311 x312 x313 1

x321 x322 x323 1

x331 x332 x333 2

1 1 2 4

2 1 1 4

1 2 1 4

1 1 2 4

4 4 4 12

(The right-most table shows the marginal table fx�jkg.) In this case, there are #Ft D
18 elements in the t-fiber as follows.

1 W
2 0 0

0 1 0

0 0 1

0 1 0

1 1 0

0 0 1

0 0 1

0 0 1

1 1 0

2 W
2 0 0

0 1 0

0 0 1

0 1 0

1 0 1

0 1 0

0 0 1

0 1 0

1 0 1

3 W
2 0 0

0 1 0

0 0 1

0 1 0

0 1 1

1 0 0

0 0 1

1 0 0

0 1 1

4 W
2 0 0

0 1 0

0 0 1

0 0 1

1 1 0

0 1 0

0 1 0

0 0 1

1 0 1

5 W
2 0 0

0 0 1

0 1 0

0 1 0

1 1 0

0 0 1

0 0 1

0 1 0

1 0 1

6 W
2 0 0

0 0 1

0 1 0

0 0 1

0 2 0

1 0 0

0 1 0

1 0 0

0 0 2

7 W
1 1 0

1 0 0

0 0 1

1 0 0

0 2 0

0 0 1

0 0 1

0 0 1

1 1 0

8 W
1 1 0

1 0 0

0 0 1

1 0 0

0 1 1

0 1 0

0 0 1

0 1 0

1 0 1

9 W
1 1 0

1 0 0

0 0 1

0 0 1

0 2 0

1 0 0

1 0 0

0 0 1

0 1 1

10 W
1 1 0

0 0 1

1 0 0

1 0 0

0 2 0

0 0 1

0 0 1

1 0 0

0 1 1

11 W
1 1 0

0 0 1

1 0 0

0 0 1

1 1 0

0 1 0

1 0 0

0 1 0

0 0 2

12 W
1 0 1

1 0 0

0 1 0

1 0 0

0 2 0

0 0 1

0 1 0

0 0 1

1 0 1
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Fig. 4.1 Transition graph
obtained from the set of basic
moves

13 W
1 0 1

1 0 0

0 1 0

0 1 0

0 1 1

1 0 0

1 0 0

0 1 0

0 0 2

14 W
1 0 1

0 1 0

1 0 0

1 0 0

0 1 1

0 1 0

0 1 0

1 0 0

0 0 2

15 W
1 0 1

0 1 0

1 0 0

0 1 0

1 1 0

0 0 1

1 0 0

0 0 1

0 1 1

16 W
1 0 1

0 1 0

1 0 0

0 1 0

1 0 1

0 1 0

1 0 0

0 1 0

0 0 2

17 W
0 1 1

1 0 0

1 0 0

1 0 0

0 2 0

0 0 1

1 0 0

0 0 1

0 1 1

18 W
0 1 1

1 0 0

1 0 0

1 0 0

0 1 1

0 1 0

1 0 0

0 1 0

0 0 2

For these 18 elements, the transition graph for the set of basic moves of degree
4 is shown in Fig. 4.1. As we see in Fig. 4.1, state 6 is isolated, and there are two
equivalence classes in Ft . It is easily checked that adding (or subtracting) any basic
move to (or from) state 6 will produce a negative entry.

Although there are only 18 elements in this fiber, a similar problem also occurs
for larger datasets. For example, consider the t-fiber defined by the two-dimensional
marginal totals

xij � D xi �k D x�jk D n; i; j; k D 1; 2; 3;

where n is any integer. The cardinality of this t-fiber increases rapidly as n increases.
However, for any n, an element such as

n 0 0

0 n 0

0 0 n

0 n 0

0 0 n

n 0 0

0 0 n

n 0 0

0 n 0

is an isolated equivalence class with a single element.
These two examples show that the Markov basis for this problem must contain

moves of a larger degree, such as
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C1 �1 0

�1 0 C1
0 C1 �1

�1 C1 0

C1 0 �1
0 �1 C1

0 0 0

0 0 0

0 0 0

: (4.45)

In fact, the Markov basis for the problem of a 3 � 3 � 3 table is constructed as the
set of the basic moves and the degree 6 moves of (4.45).

In Example 4.2.7, we consider the Markov basis for models of three-way contin-
gency tables for which there is no three-factor interaction. In this problem, the
structure of the Markov basis becomes more complicated if the size of the tables
is large. For example, with 3 � 3 � 4 tables, the set of basic moves, the degree 6
moves of (4.45), and the degree 8 moves constitute a Markov basis. For 3 � 3 � 5
tables, we need to include the degree 10 moves, and so on. See [1] for details on
the Markov bases of 3 � 3 � K contingency tables. The 4 � 4 � 4 problem has
been intensively studied by computational algebraists (in about 2003; see [17] for
details). The structure of the Markov basis for general I � J �K tables has not yet
been determined.

4.2.3 Markov Bases and Ideals

An algorithm for calculating Markov bases for a givenA was first presented in [11].
We summarize it in this section.

Let u D fu1; : : : ; upg denote a set of indeterminates, and consider the polynomial
ring kŒu� D kŒu1; : : : ; up� over a field k. Here, p corresponds to the number of cells
in the contingency tables. For the case of I � J tables, we have p D IJ . The table
x corresponds to the monomial ux D ux11 � � � uxpp . For example, for 3 � 3 tables, if
we write the indeterminates u D fu1; : : : ; u9g as u D fu11; : : : ; u33g, the table

x D
2 0 1

1 1 0

0 1 2

corresponds to the monomial

ux D u211u13u21u22u32u
2
33:

We let an integer array z correspond to the binomial uzC � uz�

, in which both the
positive and negative parts are included. For the example of a 3�3 table, the integer
array
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z D
2 �1 0
1 0 1

�1 �2 1
(4.46)

corresponds to the binomial

uz D uzC � uz� D u211u21u23u33 � u12u31u
2
32:

Note that the example of z in (4.46) is not a move for a configuration ofAwhen using
the independence model. In fact, any integer array can correspond to a binomial.
Here we consider the set of the binomials corresponding to the elements in M .A/.
The binomial ideal in kŒu� generated by this set of binomials,

IA D hfuzC � uz�

; z 2M .A/gi;

is the toric ideal of the configurationA defined in Sect. 1.5.
The main theorem of [11] states that a Markov basis is characterized as a set of

generators of the toric ideal IA.

Theorem 4.2.8 (Theorem 3.1 of [11]). B D fz1; : : : ; zLg � M .A/ is a Markov

basis for A if and only if fuzC

i � uz�

i ; i D 1; : : : ; Lg generates IA.

Proof. Write F D fuzC

i � uz�

i ; i D 1; : : : ; Lg.
(Sufficiency) We assume that B D fz1; : : : ; zLg is a Markov basis for A and show
f 2 hF i for arbitrary f 2 IA. Because IA is a toric ideal, it is sufficient to assume
that f is a binomial. Write f D ux � uy . Because B is a Markov basis, x;y.2
FAx/ are mutually accessible by B. Therefore, we have

y D x C
SX

jD1
"j zij ; x C

sX

jD1
"j zij 2 FAx; 1 � s � S:

We now use induction on S . Let min.x;y/ denote the vector of the element-wise
minimum of x;y. First, in the case of S D 1, because y D x C zi1 or y D x � zi1
holds, f D ux�uy is written as f D �umin.x;y/.uzC

i1 �uz�

i1 / or f D umin.x;y/.uzC

i1 �
uz�

i1 /, i.e., f 2 hF i holds. Next, suppose S > 1 and assume that the theorem holds
up to S � 1. If we write

y D x C
SX

jD1
"j zij D x C

S�1X

jD1
"j zij

„ ƒ‚ …
x0

C"S ziS D x0 C "SziS ;

we have ux � ux
0

;ux
0 � uy 2 hF i from the assumption, which yields
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f D ux � uy D .ux � ux
0

/C .ux0 � uy/ 2 hF i :

(Necessity) We assume IA D hF i and show arbitrary x;y.¤ x/ 2 FAx are
mutually accessible by B. Write a Gröbner basis of IA as fg1; : : : ; gM g. Because
ux � uy 2 IA D hg1; : : : ; gM i, the binomial ux � uy can be written as

ux � uy D
X

j

cjuvj gij ;

where ij is one of 1; : : : ;M for each j . Note that, in general, cjuvj is a monomial
in kŒu� and cj 2 k. However, the right-hand side represents division by a Gröbner
basis. Recall that each step of a division algorithm is a procedure of eliminating an
initial term by multiplying monomials with the coefficientC1 or �1. Therefore, we
can assume that cj is C1 or �1 regardless of the field k, providing that we allow
overlapping on the right-hand side. From g1; : : : ; gM 2 IA D hF i and the fact that
each element of a Gröbner basis is obtained by computing S -polynomials from each
pair of elements of the set of generators, we have

gj D
X

`

d`uw` .uzC

i` � uz�

i` /;

where d` is C1 or �1. From these considerations, the binomial ux � uy can be
written as

ux � uy D
SX

jD1
"juhj .u

zC

ij � u
z�

ij /; (4.47)

where each "j is C1 or �1 if we allow overlapping. We again use induction on the
S of (4.47). For the case of S D 1, (4.47) shows that we can move from x to y
by zi1 , i.e., we can move from x to y by adding �zi1 if "1 D 1, and by adding zi1
if "1 D �1. Next, assume that S > 1 and that (4.47) holds up to S � 1. Because
(4.47) is an identity, some of the 2S terms derived from expansion of the right-hand

side equal ux . In other words, ux D "juhj u
zC

ij or ux D �"juhj u
z�

ij holds for some
j . Without loss of generality, we can write ux D uhSuz�

iS ; "S D �1. In this case,
x � z�

iS
is a nonnegative vector. Therefore, xC ziS is also a nonnegative vector, and

we have xC ziS D hS C z�
iS
C ziS D hS C zC

iS
. After subtracting "SuhS .uzC

iS � uz�

iS /

from each side of (4.47), we have
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right hand D
S�1X

jD1
"juhj .u

zC

ij � u
z�

ij /

left hand D ux � uy � "SuhS .uzC

iS � uz�

iS /

D uhS uzC

iS � uy

D uhSCzC

iS � uy

D uxCziS � uy ;

i.e., from the assumption of the induction, we see that x C ziS and y are mutually
accessible. From the result of the case S D 1, we see that x and x C ziS are
also mutually accessible. Therefore, we have proved that x and y are mutually
accessible. �

In the above proof, an important point is that the statements are proved by
induction on S . In the proof of sufficiency, S represents the number of steps
required, as in Definition 4.2.2. However, in the proof of necessity, S in (4.47) is
the number of terms when ux � uy is expressed as a combination of the elements
of a set of generators, and does not equal the number of steps from x to y. In other
words, (4.47) is not obtained as a simple rewriting of the transition from x to y .
In this sense, Theorem 4.2.8 shows a nontrivial result.

To calculate a Markov basis for a given A, we can use the elimination theory
of Theorem 1.4.1. For this purpose, treat the configuration matrix A as a d � p
matrix, and prepare indeterminates v D fv1; : : : ; vd g for the sufficient statistic t.
The relation t D Ax can be expressed by the homomorphism


A W kŒu�! kŒv�

uj 7! v
a1j
1 v

a2j
2 : : : v

adj
d :

We then have the following.

Proposition 4.2.9. The toric ideal IA for the configurationA is given as

IA D ff 2 kŒu� j 
A.f / D 0g:

This proposition is stated as Lemma 1.5.9 in Chap. 1. We show an example of 
A.

Example 4.2.10. For the independence model of a 3 � 3 table,

z D
2 �2 0

�1 0 1

�1 2 �1

is a move for the configuration matrixA and corresponds to the binomial u211u23u
2
32�

u212u21u31u33. On the other hand, if we let v D .r1; r2; r3; c1; c2; c3/, then 
A is
written as
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A.uij / D ricj ; 1 � i; j � 3:

For the binomial corresponding to z, we can check that


A.u211u23u
2
32 � u212u21u31u33/

D 
A.u211/
A.u23/
A.u232/� 
A.u212/
A.u21/
A.u31/
A.u33/
D .r1c1/2.r2c3/.r3c2/2 � .r1c2/2.r2c1/.r3c1/.r3c3/
D 0;

and u211u23u
2
32 � u212u21u31u33 2 IA holds.

Using the elimination theory, we can give an algorithm for computing the
Gröbner basis of IA, as follows.

Corollary 4.2.11 (Theorem 3.2 of [11]). Define an ideal of kŒu; v� as

I�
A D h�
A.ui /C ui ; i D 1; : : : ; pi � kŒu; v�:

Then we have IA D I�
A \ kŒu�. Therefore, for the reduced Gröbner basis G� of I�

A

for any term order satisfying fv1; : : : ; vd g � fu1; : : : ; upg, G� \ kŒu� is a reduced
Gröbner basis of IA.

We have already stated Corollary 4.2.11 as Lemma 1.5.11 in Chap. 1. By this
corollary, we can obtain a generator of IA as its Gröbner basis, and we have a
Markov basis as the set of moves corresponding to the Gröbner basis.

4.3 Design of Experiments and Markov Basis

In this section, as an example of an application of Gröbner bases, we consider
the design of experiments. The design of experiments is an important field in
applied statistics, and since the beginning of the field of algebraic statistics, it
has also been connected to computational algebra. The first statistical paper in
which Gröbner basis theory was used [22], considered the problem of the design
of experiments. The term “computational algebraic statistics” first appeared in the
textbook [23]. If we regard the work [11] on Markov bases as one of the founding
studies of computational algebraic statistics, then we should also consider [22] to be
a founding study. For more information on early works in this field, see the survey
paper [5].

In this section, we consider the design of experiments as one of the applications
of the Markov chain Monte Carlo method, i.e., we will use the Markov chain Monte
Carlo method to estimate a p value for experimental data. As is shown in [7], we
can use formalization that is similar to the case of contingency tables provided that
the experimental data consists of nonnegative integers.
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Table 4.5 Design and
number of defects x for
the wave-soldering
experiment [9]

Run A B C D E F G x

1 C1 C1 C1 C1 C1 C1 C1 69
2 C1 C1 C1 �1 �1 �1 �1 31
3 C1 C1 �1 C1 C1 �1 �1 55
4 C1 C1 �1 �1 �1 C1 C1 149
5 C1 �1 C1 C1 �1 C1 �1 46
6 C1 �1 C1 �1 C1 �1 C1 43
7 C1 �1 �1 C1 �1 �1 C1 118
8 C1 �1 �1 �1 C1 C1 �1 30
9 �1 C1 C1 C1 �1 �1 C1 43
10 �1 C1 C1 �1 C1 C1 �1 45
11 �1 C1 �1 C1 �1 C1 �1 71
12 �1 C1 �1 �1 C1 �1 C1 380
13 �1 �1 C1 C1 C1 �1 �1 37
14 �1 �1 C1 �1 �1 C1 C1 36
15 �1 �1 �1 C1 C1 C1 C1 212
16 �1 �1 �1 �1 �1 �1 �1 52

4.3.1 Two-Level Designs

In this section, we consider two-level factorial designs. We start with an example.

Example 4.3.1 (Wave-Soldering Experiment). We will consider the data from [9],
which consists of the number of defects arising in a wave-soldering process for
attaching components to an electric circuit card. In Chap. 7 of [9], the following
seven factors for wave-soldering process are considered.

A: Prebake condition
B: Flux density
C: Conveyer speed
D: Preheat condition
E: Cooling time
F: Ultrasonic solder agitator
G: Solder temperature

These seven factors are each coded into two levels. For example, the two levels of
factor B are {high density, low density}; for factor C, {high speed, low speed}; and
similarly for the other factors. For simplicity, we denote the two levels as f�1;C1g.
There are 27 D 128 combinations of levels, and in the experiment presented in [9],
the number of defects were observed in 16 of these combinations. Although three
observations (for three circuit cards) were reported for each combination of levels,
we use the rounded average of the three observations, as in [7]. Table 4.5 shows the
summarized data.
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One of the aims of this type of experiments is to seek the optimal combination of the
levels. For the wave-soldering data, we want to decide which levels for each factor
will minimize the soldering defects. However, the solution to this problem is not
obvious, for two reasons.

(i) Out of 27 D 128 cases, there are only 16 observations in Table 4.5. Therefore,
we have to guess the number of defects for the combinations of levels not
observed.

(ii) It is natural to consider that the observations contain errors. Therefore the
number of defects in Table 4.5 should be treated as one realization of some
random variables.

Concerning the second reason, we may say the following about Table 4.5.

• The combination of levels for run 8 seems good because the number of defects
(30) is minimized.

• The number of defects between run 8 and run 2 differs by only one. However,
there are four factors, B, C, E, and F, that differ in level between these two runs.
Which levels are desirable for these factors? Or, is the influence of some or all of
these factors negligible?

• For factor C, the total number of defects for the C1 level (308) is much smaller
than that for the �1 level (1; 067). It seems, therefore, that the influence of factor
C is not negligible.

• On the other hand, for the factor D, there are only small differences between the
total number of defects forC1 (651) and �1 (766). We note, however, that factor
D was �1 in the two best runs, 2 and 8. Is this significant?

To answer these questions, we need to fit a statistical model, such as we considered
in Sect. 4.1.

In Sect. 4.3.2, we will first ignore reason (i) above and consider a design that
includes all the combinations of levels; this is called a full factorial designs.
Following this, in Sect. 4.3.3, we will consider fractional factorial designs, such
as we see in Table 4.5.

4.3.2 Analysis of Full Factorial Designs

In full factorial designs of p two-level factors, there are k D 2p runs. The design
matrixD is a k �p matrix in which the .i; j /th element ofD is the level of the j th
factor in run i . We write the j th column of D as dj .

Example 4.3.2 (Wave-Soldering Experiment as a Four-Factor Full Factorial
Design). We will use the wave-soldering experiment data again, this time as
an example of a full factorial design. Because we are considering a full factorial
design, for simplicity, we will ignore factors E, F, and G, and only consider the four
factors A, B, C, and D. Therefore, the design matrix is as follows.
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D D

0

BBBBBBBBBBBBBBBBBBBBBBBBBBBB@

C1 C1 C1 C1
C1 C1 C1 �1
C1 C1 �1 C1
C1 C1 �1 �1
C1 �1 C1 C1
C1 �1 C1 �1
C1 �1 �1 C1
C1 �1 �1 �1
�1 C1 C1 C1
�1 C1 C1 �1
�1 C1 �1 C1
�1 C1 �1 �1
�1 �1 C1 C1
�1 �1 C1 �1
�1 �1 �1 C1
�1 �1 �1 �1

1

CCCCCCCCCCCCCCCCCCCCCCCCCCCCA

D �d1 d2 d3 d4
�

The observations of a full factorial design of p two-level factors can be treated as 2p

p-way contingency tables. For example, with p D 4, the observations are treated as
the realization of the 2p-dimensional random vector

X D .X1111; X1112; X1121; X1122; : : : ; X2222/0:
Note that we write the factor levels as 1; 2, not �1; 1, according to the notation used
with contingency tables. We can now consider the conditional tests for evaluating
the fitting of statistical models, as we saw in Sect. 4.1. We present it below in detail.

First, it is natural to assume independent Poisson distributions for this type of
data. This is written as

Xabcd � Po.�abcd /; a; b; c; d D 1; 2; independent;

where�abcd D E.Xabcd / is the parameter of the expected value. For this parameter,
we consider the log-linear model as

log�abcd D 
 C ˛a C ˇb C �c C ıd C .˛ˇ/ab C .˛�/ac C .˛ı/ad
C.ˇ�/bc C .ˇı/bd C .�ı/cd C .˛ˇ�/abc C .˛ˇı/abd
C.˛�ı/acd C .ˇ�ı/bcd C .˛ˇ�ı/abcd :

(4.48)

This is a one-to-one transform from the saturated model with appropriate con-
straints, which we define as

P
a ˛a D � � � D

P
d ıd D 0P

a.˛ˇ/ab D
P

b.˛ˇ/ab D � � � D
P

c.�ı/cd D
P

d .�ı/cd D 0P
a.˛ˇ�/abc D

P
b.˛ˇ�/abc D � � � D

P
d .ˇ�ı/bcd D 0P

a.˛ˇ�ı/abcd D � � � D
P

d .˛ˇ�ı/abcd D 0:
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Then, because each factor has two levels, each parameter has one degree of freedom.
For example, .˛ˇ/ab , the two-factor interaction effect from the combination of levels
.a; b/ for the factors A and B , can be written as

.˛ˇ/11 D .˛ˇ/22 D  AB; .˛ˇ/12 D .˛ˇ/21 D � AB
with the constraint

X

a

.˛ˇ/ab D
X

b

.˛ˇ/ab D 0:

Similar expressions are also possible for the main effects, the three-factor interaction
effects, and the four-factor interaction effect. Write the constant term 
 as  0.
Denote ˇ an element-wise product of two vectors. We also write dab D da ˇ db ,
dabc D da ˇ db ˇ d c , and d1234 D d1 ˇ d2 ˇ d3 ˇ d4 for the columns of the
design matrix D D .d1; : : : ;d4/. Then (4.48) can be written as follows.

log� DM (4.49)

log� D .log�1111; log�1112; : : : ; log�2221; log�2222/
0

 D . 0;  A;  B; AB;  C ;  AC ;  BC ;  ABC ;
 D; AD; BD; CD; ABD; ACD; BCD; ABCD/

0

M D .1;d1;d2;d12;d3;d13;d23;d123;d4;d14;d24;d34;d124;d134;d234;d1234/;

where 1 D .1; : : : ; 1/0 is the k � 1 column vector consisting of 1s. The matrixM is
called a covariate matrix. In this example,M is written as

M D

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1�1�1�1�1�1�1�1�1
1 1 1 1�1�1�1�1 1 1 1 1�1�1�1�1
1 1 1 1�1�1�1�1�1�1�1�1 1 1 1 1

1 1�1�1 1 1�1�1 1 1�1�1 1 1�1�1
1 1�1�1 1 1�1�1�1�1 1 1�1�1 1 1

1 1�1�1�1�1 1 1 1 1�1�1�1�1 1 1

1 1�1�1�1�1 1 1�1�1 1 1 1 1�1�1
1�1 1�1 1�1 1�1 1�1 1�1 1�1 1�1
1�1 1�1 1�1 1�1�1 1�1 1�1 1�1 1

1�1 1�1�1 1�1 1 1�1 1�1�1 1�1 1

1�1 1�1�1 1�1 1�1 1�1 1 1�1 1�1
1�1�1 1 1�1�1 1 1�1�1 1 1�1�1 1

1�1�1 1 1�1�1 1�1 1 1�1�1 1 1�1
1�1�1 1�1 1 1�1 1�1�1 1�1 1 1�1
1�1�1 1�1 1 1�1�1 1 1�1 1�1�1 1

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCA

; (4.50)

which is a Hadamard matrix of order 16.
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Proposition 4.3.3. M 0x is the sufficient statistic for the parameter .

Proof. Substituting (4.49) into the probability function of X , we have

2Y

aD1

2Y

bD1

2Y

cD1

2Y

dD1

�
xabcd
abcd e

��abcd
xabcd Š

D
 

2Y

aD1

2Y

bD1

2Y

cD1

2Y

dD1

1

xabcd Š

!
exp

 
2X

aD1

2X

bD1

2X

cD1

2X

dD1
.xabcd log�abcd � �abcd /

!

D
 

2Y

aD1

2Y

bD1

2Y

cD1

2Y

dD1

1

xabcd Š

!
exp

 
 0M 0x �

2X

aD1

2X

bD1

2X

cD1

2X

dD1
�abcd

!
:

Then, by the factorization theorem,M 0x is the sufficient statistic for  . �

Now we define a null model (H0). H0 is a submodel of the saturated model, which
we specify by setting some parameters to zero, on the left-hand side of the log-linear
model (4.49). We will usually consider the following class of submodels.

Definition 4.3.4 (Hierarchical Models). A model is called a hierarchical model if,
for each interaction term in the model, all the lower-order interaction terms included
in the term are also contained in the model.

For example, the hierarchical models including  ABC also include the lower-order
terms

 A; B; C ;  AB;  AC ;  BC :

It is natural to restrict our consideration to the hierarchical models in view of
the interpretation of the parameters. For example, when we consider the two-
factor interaction effect  AB of the factors A and B, we should assume that each
main effect  A; B exists; otherwise, the interpretation of  AB becomes difficult.
Conversely, we may say that a two-factor interaction effect is defined as an effect
that cannot be explained taking separately each of the main factor effects.

Once we restrict our consideration to the class of hierarchical models, we can
specify each hierarchical model concisely by using its generating set, i.e., the set
of maximal interaction terms it contains. For example, “the model ABC=ABD”
means the model consisting of the three-factor interaction effect for the factors A,
B, and C; the three-factor interaction effect for the factors A, B, and D; and each of
the main and two-factor interaction effects included in these. To evaluate the fit of
the model, we use a goodness-of-fit test for the null hypothesis

H0 W  CD D  ACD D  BCD D  ABCD D 0: (4.51)

The degrees of freedom of the model and the degrees of freedom of the test statistic
are calculated as in Sect. 4.1. For example, the degree of freedom of the model
ABC=ABD is .16 � 1/ � 4 D 11, and the degree of freedom of the test statistic
is 4.
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Example 4.3.5 (Calculation by R). We used R to perform the test of (4.51) for
the wave-soldering experiment data with four factors. In R, a function glm of the
generalized linear model is available; as a default, it gives the value of the likelihood
ratio. We use this function as follows.

> data4 <- read.table("data4.txt", header=T)
> data4

A B C D x
1 1 1 1 1 69
2 1 1 1 -1 31
3 1 1 -1 1 55
4 1 1 -1 -1 149
5 1 -1 1 1 46
6 1 -1 1 -1 43
7 1 -1 -1 1 118
8 1 -1 -1 -1 30
9 -1 1 1 1 43
10 -1 1 1 -1 45
11 -1 1 -1 1 71
12 -1 1 -1 -1 380
13 -1 -1 1 1 37
14 -1 -1 1 -1 36
15 -1 -1 -1 1 212
16 -1 -1 -1 -1 52
> data4.glm <- glm(x~A+B+C+D+A*B+A*C+A*D+B*C+B*D+A*B*C+A*B*D,

data4,family="poisson")
> summary(data4.glm)

Call:
glm(formula = x ~ A + B + C + D + A * B + A * C + A * D + B *

C + B * D + A * B * C + A * B * D, family =
"poisson", data = data4)

Deviance Residuals:
1 2 3 4 5 6 7 8

4.015 -4.037 -3.298 2.476 -2.080 2.746 1.503 -2.463
9 10 11 12 13 14 15 16

4.821 -3.131 -2.617 1.279 -2.446 3.450 1.196 -2.133

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 4.182653 0.034131 122.546 < 2e-16 ***
A -0.072021 0.034131 -2.110 0.03485 *
B 0.142381 0.034131 4.172 3.03e-05 ***
C -0.517643 0.031613 -16.374 < 2e-16 ***
D 0.020120 0.030598 0.658 0.51083
A:B -0.001776 0.034131 -0.052 0.95850
A:C 0.212262 0.031613 6.714 1.89e-11 ***
A:D 0.089063 0.030598 2.911 0.00361 **
B:C -0.069127 0.031613 -2.187 0.02877 *
B:D -0.442261 0.030598 -14.454 < 2e-16 ***
A:B:C 0.018033 0.031613 0.570 0.56838
A:B:D 0.146741 0.030598 4.796 1.62e-06 ***
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---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 1021.25 on 15 degrees of freedom
Residual deviance: 135.02 on 4 degrees of freedom
AIC: 255.19

Number of Fisher Scoring iterations: 5

>
> fitted(data4.glm)

1 2 3 4 5 6
40.78947 59.21053 83.21053 120.78947 61.58650 27.41350

7 8 9 10 11 12
102.41350 45.58650 18.61224 69.38776 95.38776 355.61224

13 14 15 16
53.93769 19.06231 195.06231 68.93769

>
> 1-pchisq(135.02, 4)
[1] 0
>
> qchisq(0.95, 4)
[1] 9.487729

From this output, we see that the value of the likelihood ratio test statistic
(135:02) is much larger than 9:487729, the upper 5% point of the asymptotic
�2 distribution with four degrees of freedom. In fact, the asymptotic p value is
practically 0. From these results, we can conclude that the fit of the model is poor,
and thus at least some of the four terms of (4.51) are important.

In the above example, we considered the null model (4.51) just as an illustration,
and it turned out that it was a meaningless model. However, in actual data analysis,
we should select models more carefully. In this example, we should first consider
the hypothesis

H0 W  ABCD D 0:
If this null hypothesis is not rejected, then we next consider the following
hypotheses.

H0 W  ABC D  ABCD D 0

H0 W  ABD D  ABCD D 0

H0 W  ACD D  ABCD D 0
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H0 W  BCD D  ABCD D 0
From the results of these four, we select the best models, i.e., models that are not
rejected and for which the p value is large. We then consider whether we can set
additional terms equal to zero. Such a procedure is an example of model selection.
When selecting a model, the significance level for each test is set to be relatively
large, such as ˛ D 0:20, compared to the usual testing hypothesis.

Example 4.3.6 (Model Selection Using R). With the same data as used in
Example 4.3.5, we consider selecting a model by setting the higher-order terms
to zero. (Such a procedure is called a stepwise method.) The following results are
based on the likelihood ratio statistic, and its asymptotic p values are calculated by
using R. First, the hypothesis

H0 W  ABCD D 0
is not significant since the likelihood ratio is 0:026with one degree of freedom; p D
0:87. Then we assume ABCD D 0 and obtain the modelABC=ABD=ACD=BCD.
From the four models, which set each of the three-factor interaction terms to be zero,
the model

H0 W  ABC D  ABCD D 0

is the best of these, since the likelihood ratio is 0:204 with two degrees of
freedom; p D 0:90. Therefore we may assume  ABC D 0 and obtain the model
ABD=ACD=BCD. From the three models, which set each of the remaining three-
factor interaction terms to be zero, the model

H0 W  ABC D  ACD D  ABCD D 0
is the best of these, since the likelihood ratio is 0:485 with three degrees of
freedom; p D 0:92. Therefore we may assume  ACD D 0 and obtain the model
AC=ABD=BCD. As the next step, we consider three models by setting each of
 ABD; BCD , and  AC to be zero. The best model is

H0 W  ABC D  ACD D  ABD D  ABCD D 0:
(The likelihood ratio is 8:446 with four degrees of freedom; p D 0:077.) However,
we should note here the relatively small p value. As the next step, we consider four
models by setting each of  AB; AC ;  AD , and  BCD to be zero. The best model is

H0 W  AB D  ABC D  ACD D  ABD D  ABCD D 0;
and we have the model AC=AD=BCD. (The likelihood ratio is 8:449 with five
degrees of freedom; p D 0:13.) The next step yields poorly fitting models. In fact,
the model with the largest p value is

H0 W  AB D  AD D  ABC D  ACD D  ABD D  ABCD D 0;
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for which the likelihood ratio is 21:56 with six degrees of freedom; p D 0:0014.
Obviously it is unreasonable to assume AD D 0. As a result, considering the drastic
increase of the likelihood ratio values when assuming  ABD D 0 for the model
AC=ABD=BCD, it is reasonable to select the model AC=ABD=BCD, with an
alternative candidate, AC=AD=BCD, as a more simple model.

In Examples 4.3.5 and 4.3.6, we evaluated p values by using asymptotic
distributions. We should make a similar consideration as in Sect. 4.1.

• It is easiest to rely on asymptotic theory. However, this may result in a poor fit
for some types of data.

• We want to calculate the exact p value if possible. However, the problem of
computational feasibility occurs for larger datasets.

• If the exact calculation is difficult, the Markov chain Monte Carlo method is
useful.

For the observed data xo, the conditional probability function of X given the
sufficient statistics is

p.x jM 0x DM 0xo/ D C.M 0xo/
kY

iD1

1

xi Š
;

where C.M 0xo/ is the normalizing constant defined by

C.M 0xo/�1 D
X

x2FM 0xo

 
kY

iD1

1

xi Š

!
;

FM 0xo D fx jM 0x DM 0xo; x 2 f0; 1; 2; : : :gkg:
In other words, we treat the transpose of the covariate matrix M as the configura-
tion matrix, and calculate a Markov basis for M 0 that connects the fiber FM 0xo .

4.3.3 Analysis of Fractional Factorial Designs

Obviously, if we ignore the cost of experiments, the full factorial design is the best
design. However, the number of runs becomes huge if the number of factors is large,
and it is difficult to conduct the experiments in actual situations. In particular, when
each run is expensive, it is important to reduce the number of runs. One efficient
strategy to reduce the number of runs is to restrict the experiment to only those
runs for which the combinations of levels satisfy an aliasing relation (or a defining
relation ). This is called a regular fractional factorial design. In a regular fractional
factorial design, the number of the runs is a 1=2q fraction of the full factorial design,
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where q is the number of independent aliasing relations, as explained below. The
regular fractional factorial design is known to be very efficient in the sense that it
has various desirable statistical properties. The only drawback is that the number of
the runs is restricted to the form 2p�q . In this section, we consider conditional tests
for the data obtained from regular fractional factorial designs.

Example 4.3.7 (Defining Relation of the Wave-Soldering Experiment). In Table 4.5,
there are 16 runs, which is 1=8 of the full factorial design of 7 two-level factors.
These 16 combinations of the levels are chosen by the relation

ABDE D ACDF D BCDG D 1: (4.52)

For example, the design of Table 4.5 is constructed by choosing

• the levels of the factor E as the product of the levels of A;B;D,
• the levels of the factor F as the product of the levels of A;C;D,
• the levels of the factor G as the product of the levels of B;C;D,

in addition to the full factorial design for the four factors A;B;C , andD. A relation
such as (4.52) is called a defining relation or an aliasing relation.

In general, there are k D 2p�q runs in a regular fractional factorial design of p two-
level factors with q independent aliasing relations. Such designs are called 2p�q
fractional factorial designs. The design of Table 4.5 is a 27�3 fractional factorial
design.

For fractional factorial designs, we define a k � p design matrix D for which
the components are fC1;�1g. Recall that dj is the j th column of D. The design
matrix for Table 4.5 is given as

D D

0

BBBBBBBBBBBBBBBBBBBBBBB@

C1 C1 C1 C1 C1 C1 C1
C1 C1 C1 �1 �1 �1 �1
C1 C1 �1 C1 C1 �1 �1
C1 C1 �1 �1 �1 C1 C1
C1 �1 C1 C1 �1 C1 �1
C1 �1 C1 �1 C1 �1 C1
C1 �1 �1 C1 �1 �1 C1
C1 �1 �1 �1 C1 C1 �1
�1 C1 C1 C1 �1 �1 C1
�1 C1 C1 �1 C1 C1 �1

:::

�1 �1 �1 C1 C1 C1 C1
�1 �1 �1 �1 �1 �1 �1

1

CCCCCCCCCCCCCCCCCCCCCCCA

D �d1 � � � d7
�
:

As for full factorial designs, we can define the model matrix M from the design
matrix D and express the log-linear model as (4.49). Here, we should ask whether
all the parameters are estimable in the model. The estimability of a parameter is
judged from the defining relation (4.52).
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Example 4.3.8 (Estimability of the Parameters for the 27�3 Fractional Factorial
Design). Carefully consider the defining relation for the 27�3 fractional factorial
design, in Table 4.5. Multiplying the terms of (4.52) under the condition that the
values are �1 orC1, we have

ABDE D ABFG D ACDF D ACEG D BCDG D BCEF D DEFG D 1:
(4.53)

For the 8.D 2q/ monomials in (4.53), their index vectors constitute a vector space
over GF.2/. Such a characterization always holds in general. In the context of the
design of experiments, the eight monomials in (4.53) (other than 1) are called
defining contrasts, and the minimum number of the word lengths of the defining
contrasts is called the resolution. The resolution is traditionally expressed by a
Roman numeral. Therefore, this example is a design of resolution IV. Now we
consider the estimability of the parameters of (4.53).

First, multiplying (4.53) by A, we have

A D BDE D BFG D CDF D CEG D ABCDG D ABCEF D ADEFG:
(4.54)

This relation shows that the main effect of the factor A and the three-factor
interaction effect of the factors B;D;E are not simultaneously estimable. We say
that these two effects are confounded with each other. In fact, in the design matrix
D, d2 ˇ d4 ˇ d5, the element-wise product of the three columns d2;d4;d5,
coincides with d1. By similar considerations for (4.54), we see that at most
one of the following can be included in the model: the main effect of A, the
three-factor interaction ofB;D;E, the three-factor interaction ofB;F;G, the three-
factor interaction of C;D;F , the three-factor interaction of C;E;G, the five-factor
interaction of A;B;C;D;G, the five-factor interaction of A;B;C;E; F , and the
five-factor interaction of A;D;E; F;G.

Similarly, multiplying (4.53) by AB , we have

AB D DE D FG D BCDF D BCEG D ACDG D ACEF D ABDEFG:
(4.55)

From this relation, we see that two-factor interactions of A;B , D;E, and F;G are
confounded with each other, and therefore at most one of them can be included in
the model.

Considering these confounding relations, we should construct a covariate matrix
so that all the parameters in the model are estimable. For example, the parameters
of the model AC=BD=E=F=G, i.e., the model with seven main effects and the 2
two-factor interactions of AC and BD, are simultaneously estimable because AC
and BD are not confounded. The covariate matrix for this model is given by
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M D

0

BBBBBBBBBBBBBBBBBBBBBBBBBB@

C1 C1 C1 C1 C1 C1 C1 C1 C1 C1
C1 C1 C1 C1 �1 �1 �1 �1 C1 �1
C1 C1 C1 �1 C1 C1 �1 �1 �1 C1
C1 C1 C1 �1 �1 �1 C1 C1 �1 �1
C1 C1 �1 C1 C1 �1 C1 �1 C1 �1
C1 C1 �1 C1 �1 C1 �1 C1 C1 C1
C1 C1 �1 �1 C1 �1 �1 C1 �1 �1
C1 C1 �1 �1 �1 C1 C1 �1 �1 C1
C1 �1 C1 C1 C1 �1 �1 C1 �1 C1
C1 �1 C1 C1 �1 C1 C1 �1 �1 �1

:::

C1 �1 �1 �1 C1 C1 C1 C1 C1 �1
C1 �1 �1 �1 �1 �1 �1 �1 C1 C1

1

CCCCCCCCCCCCCCCCCCCCCCCCCCA

D

0

BB@

C1
::: D d1 ˇ d3 d2 ˇ d4
C1

:

1

CCA

On the other hand, the parameters of the model

AB=DE=C=F=G

are not simultaneously estimable, because AB and DE are confounded.

Remark 4.3.9. Pistone and Wynn [22] shows the correspondence between these
confounded relations and ideal membership problems in polynomial rings. See [22]
or [5] for details.

Remark 4.3.10. Following the standard procedures for the design of experiments,
we should choose fractional factorial designs with high resolution. This strategy is
based on the concept that interaction effects with lower degree are more important
than those with higher degree. For designs of resolution IV, for example, because the
main effect is confounded with the three-factor interaction effect, we can estimate
each of the main effects if we ignore the three-factor interaction effects. It is similar
for designs of resolution V: because the two-factor interaction effect is confounded
with the three-factor interaction effect, we can estimate each of the main effects and
the two-factor interaction effect if we ignore the three-factor interaction effects. One
interpretation of the resolution is that it is a criterion for evaluating designs as if all
the factors were equally important.

There are k D 16 parameters in the saturated model of the 27�3 design, and the
covariate matrix for the saturated model is the Hadamard matrix (4.50). However,
the interpretation of the saturated model is not unique. In fact, both

ABC=AD=BD=CD=AG=EF and
ABCD
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are examples of hierarchical models with estimable parameters, and can thus be
considered to be interpretations of the saturated model.

Once we have constructed the covariate matrix, our testing procedure is similar
to that for the full factorial design. We treatM 0 as the configuration matrix, obtain a
Markov basis forM 0, and generate samples from the fiber FM 0xo for the observation
xo. Then we can use the Markov chain Monte Carlo method to evaluate the fitting
of the null model specified by M .

4.4 Research Topics

We conclude by presenting some research topics related to the material in this
chapter. The following problems are very difficult and have not yet been completely
solved.

4.4.1 Topics with Markov Bases for Models without
Three-Factor Interactions for Three-Way Contingency
Tables

As the last topic of Sect. 4.2.2, we considered Markov bases for models without
three-factor interactions for three-way contingency tables. The structure of the
Markov bases for 3 � 3 � K tables is shown in [1], and we summarize this in
Table 4.6. One of the interesting results in Table 4.6 is the that the minimal Markov
basis can be constructed by the four types of the moves with degrees 4; 6; 8, and 10
for 3 � 3 �K tables for anyK � 5. In fact, such an upper bound on the degrees in
the minimal Markov basis exists for general I � J � K problems. In other words,
there exists a positive integer m such that all the elements in the minimal Markov
basis for the model with no three-factor interactions for the I � J � K tables are
included in the I � J � m tables (Corollary 2 of [25]). Santos and Sturmfels [25]
calls this m the Markov complexity and evaluates the upper bound of m. However,
it seems that the upper bound of m given in [25] is not so tight. For example, for
3 � 3 �K tables, we see in Table 4.6 that the Markov complexity is m D 5, while
the upper bound of m, as given by Santos and Sturmfels [25], is 9. Of course, if we

Table 4.6 Minimal Markov
bases of for the model with no
three-factor interactions for
3� 3�K contingency tables

3� 3� 3 Basic move of degree 4 Move of degree 6
3� 3� 4 Basic move of degree 4 Move of degree 6

Move of degree 8
3� 3�K Basic move of degree 4 Move of degree 6
.K � 5/ Move of degree 8 Move of degree 10
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know the upper bound of the Markov complexity, it is sufficient to calculate Gröbner
bases up to the degree. Therefore, the contribution of [25] is substantial.

Problem 4.4.1. Solve the Markov complexity m for I D 3; J D 4 tables, and
classify the elements in the minimal Markov basis for 3 � 4 �m tables.

This problem is approached in [2] using an elementary method similar to [1], and it
is concluded that “it is sufficient to consider up to 3 � 4 � 8 tables and the unique
minimal Markov basis is constructed as 20 kinds of moves with the degree up to
16.” However, the proof for these results is not given in [2], and it is possible that
this is not correct.2

Another related topic is the uniqueness of the minimal Markov bases. Here, we
call a Markov basis minimal if there is no proper subset that is also a Markov basis.
For the results on the minimality of Markov bases, see [26] or [5]. The minimal
Markov basis always exists, but it is not always unique.3

For the Markov basis for the model with no three-factor interactions for three-
way contingency tables, it has been shown that a unique minimal Markov basis
exists for 3 � 3 � K and 4 � 4 � 4 tables, and is conjectured in [2] to exist for
3� 4�K tables. However, the uniqueness of the minimal Markov basis for general
cases has not yet been determined.

Problem 4.4.2. Investigate the uniqueness of the minimal Markov basis for the
model with no three-factor interactions for three-way contingency tables. Prove that
the unique minimal Markov basis always exists, or give a counterexample.

4.4.2 Topics Related to the Efficient Algorithm
for a Markov Basis

In Sect. 4.2.3, we derived a Markov basis as a reduced Gröbner basis of the ideal
IA. However, as is stated in Theorem 4.2.8, a Markov basis is a set of generators of
the configurationA and is not necessarily a Gröbner basis. Therefore, it will be very
useful if we can find a way to more efficiently calculate Markov bases (i.e., some
way that does not use the elimination theory of Corollary 4.2.11). In particular,
when the ideal IA has a symmetry structure, there is a possibility that we can
develop methods for computing Markov bases efficiently by using this symmetry.
For example, the elementary method used in [1] directly derives a minimal set of
generators, not a Gröbner basis, by considering the symmetry of the contingency
tables; in particular, it considers the symmetry about the permutation of levels and

2In fact, another conjecture given in [2], “the unique minimal Markov basis for 4 � 4 � 4 table
is constructed as 14 kinds of moves with the degree up to 14”, includes one mistake, and it was
corrected to be “15 kinds of moves with the degree up to 14” by Hemmecke and Malkin [16].
3Here, we define minimality by ignoring the indeterminacy of the signs of the elements of a Markov
basis.
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the permutation of axes with the same levels. For example, with the Markov basis
for 3 � 3 � 3 tables, if we know that the move corresponding to the binomial

u111u122u212u221 � u112u121u211u222

is needed for a minimal Markov basis, it is obvious from symmetry of Markov bases
that the moves corresponding to the binomials

ui1j1k1ui1j2k2ui2j1k2ui2j2k1 � ui1j1k2ui1j2k1ui2j1k1ui2j2k2

for i1 ¤ i2; j1 ¤ j2; k1 ¤ k2 are also included in the minimal Markov basis.
In [3, 4], the symmetry of the contingency tables, i.e., the invariant structure of

the contingency tables under permutations of levels or permutation of axes with the
same levels, is formalized as a group action, and the concept of an “invariant Markov
basis” is defined as the invariant set of moves for this group action. Similarly, we
can consider the invariant set or the minimal invariance set of generators of the
ideals. In general, a minimal invariant set of generators is larger than a minimal set
of generators.

Problem 4.4.3. Develop efficient algorithms to compute the minimal invariant
generating sets.

In the above discussion, we emphasized the minimality of Markov bases.4

Though the minimality is an important concept in considering the structure of a
Markov basis, minimal Markov bases are not always desirable due to the speed
of convergence of Markov chains. In fact, higher-degree moves are expressed as
the sum of lower-degree moves, which corresponds to several steps of the chain
occurring at once. Obviously, a Markov chain with such higher-degree moves has
rapid convergence.

Problem 4.4.4. For a given Markov basis, evaluate the speed of converging to the
stationary distribution. Determine the characteristics of a Markov basis that quickly
convergences to the stationary distribution, and then develop a method for deriving
such a basis.

4.4.3 Topics on Modeling Experimental Data

In Sect. 4.3, we considered models that reflected an aliasing relation and evaluated
the fit of such a model for designs with two-level factors. The essential point was
to define the covariate matrix M so that the columns of M become the coefficient
vectors of the sufficient statistics for the parameters. On the other hand, Aoki and

4See [26] or [8] for the minimality of the Markov bases.
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Takemura [6] proposed a method for defining M for the designs of three-level
factors with multiple degrees of freedom for each factor effect.

Problem 4.4.5. Extend the theory in Sect. 4.3 to the designs of factors with
different numbers of levels.

Once we have defined the covariate matrix M , we can follow the arguments for
analyzing contingency tables in a similar way, by treating M 0 as the configuration
matrix. The configuration matrixM is constructed from the design matrixD in view
of the models to be tested. On the other hand, there are various results on the
structure of the fractional factorial designs (such as various types of optimality)
in the theory of the design of experiments. We refer to [21] as a relatively recent
textbook. The relations between these results and the structure of the ideal IM 0 are
largely unknown at present.

Problem 4.4.6. Discuss the relationship between the structure of the designD and
the ideal IM 0 .
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Chapter 5
Convex Polytopes and Gröbner Bases

Hidefumi Ohsugi

Abstract Gröbner bases of toric ideals have applications in many research areas.
Among them, one of the most important topics is the correspondence to trian-
gulations of convex polytopes. It is very interesting that, not only do Gröbner
bases give triangulations, but also “good” Gröbner bases give “good” triangulations
(unimodular triangulations). On the other hand, in order to use polytopes to study
Gröbner bases of ideals of polynomial rings, we need the theory of Gröbner fans and
state polytopes. The purpose of this chapter is to explain these topics in detail. First,
we will explain convex polytopes, weight vectors, and monomial orders, all of which
play a basic role in the rest of this chapter. Second, we will study the Gröbner fans
of principal ideals, homogeneous ideals, and toric ideals; this will be useful when
we analyze changes of Gröbner bases. Third, we will discuss the correspondence
between the initial ideals of toric ideals and triangulations of convex polytopes,
and the related ring-theoretic properties. Finally, we will consider the examples of
configuration matrices that arise from finite graphs or contingency tables, and we
will use them to verify the theory stated above. If you would like to pursue this
topic beyond what is included in this chapter, we suggest the books [2, 7].

5.1 Convex Polytopes

When we say “polytopes,” you may imagine three-dimensional ones, such as cubes
and tetrahedrons. In Chap. 5, however, we will discuss “polytopes” that are not
necessarily three-dimensional. In Sect. 5.1, we present the minimum requirements
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about convex polytopes that will be used in Chap. 5. If you are interested in the
details of this discussion, please refer to Ziegler’s famous textbook [12] on convex
polytopes.

In Chap. 5, we will let Z�0 be the set of nonnegative integers and let Q�0 be the
set of nonnegative rational numbers.

5.1.1 Convex Polytopes and Cones

A subset P � Qd is said to be convex if, for each ˛; ˇ 2 P , the line

ft˛ C .1 � t/ˇ W t 2 Q; 0 � t � 1g

which connects two points is contained in P . First, we define several convex sets
(convex polytopes, polyhedral convex cones, and polyhedrons) which will later play
important roles. For a finite subset X D f˛1; : : : ; ˛ng of Qd , let

CONV.X/ WD
(

nX

iD1
ri˛i W 0 � ri 2 Q;

nX

iD1
ri D 1

)
� Qd ;

which we will call the convex hull of X . A nonempty subset P of Qd is called a
convex polytope if there exists a finite subset X � Qd such that P D CONV.X/.
On the other hand, the set

Q�0 X WD
(

nX

iD1
ri˛i W 0 � ri 2 Q

)
� Qd

is called a polyhedral convex cone generated by X . A nonempty subset C � Qd is
called a cone if, for any finite subsetX of C , we have Q�0X � C . Every polyhedral
convex cone generated by a finite set is a cone. In Ziegler’s textbook [12] on convex
polytopes, the following proposition [12, Theorem 1.3] is introduced.

Proposition 5.1.1 (Main Theorem for Cones). LetC � Qd be a cone. Then, there
exists a finite set X � Qd such that C D Q�0 X if and only if C is the intersection
of finitely many linear closed half-spaces.

Example 5.1.2. For a finite set X D fŒ1; 1�>; Œ1; 4�>; Œ4; 1�>g � Q2, the convex
sets are CONV.X/ and Q�0 X , as shown in Fig. 5.1.

A (convex) polyhedron is the intersection of finitely many (not necessarily linear)
closed half-spaces of Qd . In other words, a polyhedron is the set of solutions to
a system of linear inequalities (with rational coefficients). By Proposition 5.1.1,
a polyhedral cone is a polyhedron. Given two polyhedrons P , Q � Qd , the
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Fig. 5.1 CONV.X/ and Q
�0 X

Minkowski sum of P and Q is defined by P CQ D fpC q 2 Qd W p 2 P; q 2
Qg � Qd . For example, if P and Q are convex polytopes, then P C Q is also a
convex polytope.

Proposition 5.1.3. LetX1;X2 � Qd be finite sets and let Y D fx1Cx2 W xi 2 Xig.
Then, CONV.Y / D CONV.X1/C CONV.X2/ holds.

We can prove Proposition 5.1.3 by using the definition of the convex hull; try this
as an exercise. The following proposition follows from Proposition 5.1.1. (See [12,
Theorem 1.2].)

Proposition 5.1.4 (Main Theorem for Polyhedrons). A set P � Qd is a polyhe-
dron if and only if there exists a finite set X , Y � Qd such that P D CONV.X/C
Q�0 Y . (In fact, any Q�0 Y satisfying this condition is unique.)

Example 5.1.5. For a polyhedron P D fŒx; y� 2 Q2 W x � 0; y � 0; x C 3y �
4; 3x C y � 4g, we have P D CONV.X/C Q�0 Y for X D fŒ0; 4�; Œ1; 1�; Œ4; 0�g,
Y D fŒ0; 1�; Œ1; 0�g. (Drawing the figure of this example is left as an exercise.)

Finally, we introduce the main theorem [12, Theorem 1.1] for convex polytopes.

Proposition 5.1.6 (Main Theorem for Convex Polytopes). A set P � Qd is a
convex polytope if and only if it is a bounded polyhedron.

5.1.2 Faces of Convex Polytopes

For a polyhedron P � Qd and a vector w 2 Qd , the set

FACEw.P / WD fu 2 P W w � u � w � v for all v 2 P g
is called a face of P (with respect to w). In particular, by considering w D 0, P
itself is a face of P . In addition, we regard the empty set ; as a face of P . A point
˛ in a polyhedron P is called a vertex of P if f˛g is a face of P . The dimension
of a convex polytope P � Qd is the dimension of the subspace of Qd spanned by
fx � ˛ W x 2 P g � Qd , where ˛ 2 P is any fixed point. We denote the dimension
of P by dimP .
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Example 5.1.7. Let P be a cube. Then, P is a three-dimensional convex polytope
which has 6 two-dimensional faces, 12 one-dimensional faces (edges), and 8 zero-
dimensional faces (vertices).

A convex polytope P is called a simplex if P has dimP C 1 vertices. In other
words, a simplex is a convex polytope that has the least number of vertices of all the
convex polytopes with the same dimension. Note that every face of a simplex is a
simplex.

Example 5.1.8. A simplex of dimension 0 is a point. A simplex of dimension 1 is a
line segment. A simplex of dimension 2 is a triangle. A simplex of dimension 3 is a
tetrahedron.

We now introduce several basic propositions about vertices and faces.

Proposition 5.1.9. For a set X D f˛1; : : : ; ˛ng � Qd and w 2 Qd , let

� D max.w � ˛i W 1 � i � n/;
Xw D f˛i 2 X W w � ˛i D �g:

Then, FACEw.P / D CONV.Xw/ holds for the convex hull P D CONV.X/. In
particular, FACEw.P / is a convex polytope, and P has only finitely many faces.

Proof. First, we show � D max.w � ˛ W ˛ 2 P/. Let ˛ 2 P . Then, we have

˛ D
nX

iD1
ri˛i .0 � ri 2 Q;

nX

iD1
ri D 1/:

If we take the inner product with the vector w, then

w � ˛ D
nX

iD1
ri .w � ˛i / �

nX

iD1
ri� D �

holds. Hence, � D max.w � ˛ W ˛ 2 P/.
By changing indices if necessary, we may assume that Xw D f˛1; : : : ; ˛`g. Let

ˇ 2 CONV.Xw/. Then,

ˇ D
X̀

iD1
si˛i .0 � si 2 Q;

X̀

iD1
si D 1/:

If we take the inner product with the vector w, then

w � ˇ D
X̀

iD1
si .w � ˛i / D

X̀

iD1
si� D �
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holds. Hence, ˇ belongs to FACEw.P /. Thus, we have CONV.Xw/ � FACEw.P /.
Conversely, let � 2 FACEw.P /. Then, w � � D �. Moreover, since � 2 P , we have
� D Pn

iD1 ti˛i .0 � ti 2 Q;
Pn

iD1 ti D 1/. If we take the inner product with the
vector w, then � D w � � DPn

iD1 ti .w � ˛i / holds. However, since

w � ˛i
� D � .i D 1; 2; : : : ; `/
< � .i D `C 1; : : : ; n/;

we have ti D 0 for all i D ` C 1; : : : ; n. Thus, � D P`
iD1 ti˛i 2 CONV.Xw/.

Hence, FACEw.P / � CONV.Xw/ holds. Therefore, FACEw.P / D CONV.Xw/,
and FACEw.P / is a convex polytope. Moreover, since the finite set X has only
finitely many subsets, P has only finitely many faces. �

Proposition 5.1.10. Let V be the vertex set of a convex polytope P . Then, V is a
finite set, and we have P D CONV.V /.

Proof. First, we choose a finite set X which is minimal among the sets satisfying
P D CONV.X/. We will show that X is equal to V . Since V � X follows
immediately from Proposition 5.1.9, it is enough to show that X � V . However,
since a strict proof of this is very complex, here, we will just present a sketch.

For ˛ 2 X , let Y D X n f˛g and P 0 D CONV.Y /. By an appropriate choice of
the set X , we have P 0 ¨ P and ˛ 2 P nP 0. Let ˇ be one of the points in P 0 which
is the closest to ˛. Let w D ˛ � ˇ. It then follows that, for any � 2 Y , we have
w � ˛ > w � � . Hence, FACEw.P / D f˛g. Thus, X � V , as desired. �

Proposition 5.1.11. Let F D FACEw.P / be a face of a convex polytope P , and let
F 0 D FACEw0.F / be a face of convex polytope F . Then, F 0 is a face of P . More
precisely, for a sufficiently small " > 0, we have F 0 D FACEwC"w0.P /.

Proof. Suppose that a finite set X satisfies P D CONV.X/. Let � D max.w � ˛ W
˛ 2 X/, Xw D f˛ 2 X W w � ˛ D �g, �0 D max.w0 � ˛ W ˛ 2 Xw/, and
Xw;w0 D f˛ 2 Xw W w0 � ˛ D �0g. Let " be a real number satisfying the condition

0 < " <
min.� � w � ˇ W ˇ 2 X n Xw/

2max. j�0 � w0 � ˇj W ˇ 2 X n Xw/
:

(If the denominator is 0, then we let 0 < " < 1, and we do not need to consider
Case 3.) By Proposition 5.1.9, we have F D CONV.Xw/ and F 0 D CONV.Xw;w0/.
Moreover, for any ˛ 2 Xw;w0 , it follows that .wC "w0/ � ˛ D �C "�0. Hence, it is
enough to show that, for ˛ 2 Xw;w0 and ˇ 2 X n Xw;w0 , we have .w C "w0/ � ˛ >
.wC "w0/ � ˇ.

Case 1. ˇ 2 Xw nXw;w0 :

.wC "w0/ � .˛ � ˇ/ D w � .˛ � ˇ/C "w0 � .˛ � ˇ/
D 0C ".�0 � w0 � ˇ/
> 0:
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Case 2. ˇ … Xw and w0 � .˛ � ˇ/ � 0:

.wC "w0/ � .˛ � ˇ/ D w � .˛ � ˇ/C "w0 � .˛ � ˇ/
� w � .˛ � ˇ/
> 0:

Case 3. ˇ … Xw and w0 � .˛ � ˇ/ < 0:

.wC "w0/ � .˛ � ˇ/ D w � .˛ � ˇ/C "w0 � .˛ � ˇ/

> w � .˛ � ˇ/C w � .˛ � ˇ/
2 jw0 � .˛ � ˇ/jw

0 � .˛ � ˇ/

D 1

2
w � .˛ � ˇ/

> 0:

Thus, for ˛ 2 Xw;w0 and ˇ 2 X n Xw;w0 , we have .wC "w0/ � .˛ � ˇ/ > 0, and
hence .wC "w0/ � ˛ > .wC "w0/ � ˇ holds. �

The following proposition holds for the Minkowski sum on faces of polytopes.

Proposition 5.1.12. For convex polytopes P1; : : : ; Ps � Qd , let P D Ps
iD1 Pi .

Then, for w 2 Qd , we have FACEw.P / DPs
iD1 FACEw.Pi /.

Proposition 5.1.13. For convex polytopes P1; : : : ; Ps � Qd , let P D Ps
iD1 Pi .

If FACEw.P / is a vertex of P , then the expression

FACEw.P / D p1 C � � � C ps .pi 2 Pi/

is unique. (More precisely, FACEw.Pi / D pi for all 1 � i � s.)
Proposition 5.1.14. For convex polytopes P1; : : : ; Ps � Qd , let P D Ps

iD1 Pi .
Then, for w;w0 2 Qd , the following conditions are equivalent:

(i) FACEw.P / D FACEw0.P /;
(ii) For all 1 � i � s, FACEw.Pi / D FACEw0.Pi /.

Proof. By Proposition 5.1.12, (ii) H) (i) is trivial. Hence, we will show (i) H)
(ii). Suppose that condition (i) holds, and that, for some 1 � i � s, FACEw.Pi / ¤
FACEw0.Pi /. By replacing the role of w and w0 if necessary, we may assume
that there exists a vertex v of FACEw.Pi / such that v … FACEw0.Pi /. Then,
there exists u such that FACEu.FACEw.Pi // D fvg. Let u0 be a vector such that
FACEu0.FACEu.FACEw.P /// is a vertex. Then, by condition (i), we have

FACEu0.FACEu.FACEw.P /// D FACEu0.FACEu.FACEw0.P ///:



5 Convex Polytopes and Gröbner Bases 229

Thus, by Proposition 5.1.13, it follows that

FACEu0.FACEu.FACEw.Pi /// D FACEu0.FACEu.FACEw0.Pi ///:

Thus, the left-hand side equals fvg, and the right-hand side does not contain v. This
is a contradiction. �

Let @P denote the boundary of a convex polytope P , and let P n @P denote the
interior of P . Note that here by “interior” we mean the so-called “relative interior.”
For example, for a triangleP in three-dimensional space, @P is the union of its three
edges. (If you are interested in the details, then please refer to Lemmas 2.8, 2.9, and
the surrounding text in [12].) In general, the following holds.

Proposition 5.1.15. Let f˛1; : : : ; ˛ng be the vertex set of a convex polytope
P � Qd . Then, ˛ 2 Qd belongs to the interior P n @P of P if and only if ˛
is expressed as

˛ D
nX

iD1
ri˛i .0 < ri 2 Q;

nX

iD1
ri D 1/:

If the dimension of a face F of a convex polytope P � Qd equals dimP � 1,
then F is called a facet of P . The boundary of a convex polytope is described by its
facets, as follows.

Proposition 5.1.16. For a convex polytope P � Qd , let � be the set of all faces of
P (which is different from P ), and let�0 be the set of all facets of P . Then, we have

@P D
[

F2�
F D

[

F 02�0

F 0:

A convex polytope P is said to be integral if all the vertices of P are integer
vectors. For a configuration matrix A D Œa1; : : : ; an�, we call CONV.A/ WD
CONV.fa1; : : : ; ang/ the convex hull of A. Then, CONV.A/ is an integral convex
polytope. For an integral convex polytope P D CONV.A/, the dimension of P is
equal to dimP D rank A � 1.

Example 5.1.17. For the configuration matrix

A D
2

4
0 1 0 1 1

0 0 1 1 �1
1 1 1 1 1

3

5 ;

the convex hull CONV.A/ ofA is the quadrangle shown in Fig. 5.2. Since rankA D
3, the dimension of CONV.A/ is equal to 2.
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Fig. 5.2 CONV.A/ in
Example 5.1.17

5.1.3 Polyhedral Complices and Fans

A finite set � of polyhedrons of Qd is called a complex if the following conditions
are satisfied:

(i) If F 0 is a face of F 2 �, then F 0 2 �.
(ii) If F;F 0 2 �, then F \ F 0 is a face of F and a face of F 0.

In particular, for a complex�,

• If every polyhedron in � is a polyhedral convex cone, then� is called a fan.
• If every polyhedron in � is a convex polytope, then � is called a polyhedral

complex.
• If every polyhedron in � is a simplex, then � is called a simplicial complex.

Given a polyhedron P � Qd and its face F ,

NP .F / WD fw 2 Qd W FACEw.P / D F g
is called a normal cone of F in P . With respect to the dimension, we have
dim NP .F / D d � dimF . Let

N .P / WD
n

NP .F / W F is a face of P
o

be the set of the closure of the normal cones of a polyhedron P . Since, for faces F
and F 0 of a polyhedron P , we have

F 0 is a face of F ” NP .F / is a face of NP .F 0/;

it follows that N .P / is a fan. This fan is called a normal fan of P .

5.2 Initial Ideals

In this section, we introduce some basic facts, such as those on weight vectors,
which will be needed later. In Chap. 1, we presented several monomial orders (e.g.,
the lexicographic order). It is known that every monomial order can be represented
by a weight vector. We assume that none of the ideals that appear in this section are
zero ideals.
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5.2.1 Initial Ideals

First, we introduce two useful propositions about initial ideals.

Proposition 5.2.1. Fix a monomial order <. If ideals I; J � KŒx� satisfy I ¨ J ,
then we have in<.I / ¨ in<.J /.

Proof. Suppose that ideals I; J � KŒx� satisfy I ¨ J . Then, we have in<.I / �
in<.J /. We now assume that in<.I / D in<.J / holds. Let G � I be a Gröbner basis
of I with respect to <. Then, in<.I / D in<.J / is generated by fin<.g/ W g 2 G g.
Moreover, since I � J holds, we have G � J , and hence G is a Gröbner basis of
J with respect to <. Thus, by Theorem 1.1.21, G is a set of generators of both I
and J . Therefore we have I D J , but this contradicts the assumption I ¨ J . Thus,
in<.I / ¨ in<.J /. �

Proposition 5.2.2. If monomial orders <, <0, and an ideal I � KŒx� satisfy
in<.I / � in<0.I /, then we have in<.I / D in<0.I /.

Proof. Suppose that in<.I / � in<0.I / holds. Then, the set of all standard
monomials with respect to in<0.I / is included in the set of all standard monomials
with respect to in<.I /. By Theorem 1.6.2, since each of two sets is a basis of
KŒx�=I , the two sets coincide. Thus, we have in<.I / D in<0.I /. �

5.2.2 Weight Vectors and Monomial Orders

Fix a nonnegative vector w D Œw1; : : : ;wn� 2 Qn. For any polynomial

.0 ¤/ f D
mX

iD1
cixai 2 KŒx� .0 ¤ ci 2 K/;

the initial form inw.f / of f is the sum of all terms ci xai of f such that the inner
product w � ai is maximal. For any ideal I of KŒx�, the initial form ideal inw.I / is
defined by

inw.I / WD hinw.f / W 0 ¤ f 2 I i :

Note that, in general, the initial form ideal is not necessarily a monomial ideal.
On the other hand, as introduced in Example 1.1.13 of Chap. 1, if we define an
order <w by

xa >w xb , either w � a > w � b or w � a D w � b and xa > xb

for a nonnegative vector w 2 Qn and a monomial order < on KŒx�, then <w is a
monomial order on KŒx�.



232 H. Ohsugi

Proposition 5.2.3. For an ideal I � KŒx�, a nonnegative vector w 2 Qn, and a
monomial order <, we have in<.inw.I // D in<w.I /. In particular, if inw.I / is a
monomial ideal, then inw.I / D in<w.I / holds.

Proof. By the definition of a monomial order <w, for any nonzero polynomial
f 2 I , we have in<.inw.f // D in<w.f /. Hence, monomial ideals in<.inw.I //

and in<w.I / are generated by the same set of monomials. �

Corollary 5.2.4. For a nonnegative vector w 2 Qn, let G be a Gröbner basis of an
ideal I � KŒx� with respect to a monomial order <w. Then, finw.g/ W g 2 G g is a
Gröbner basis of inw.I / with respect to <.

Proposition 5.2.5. For an ideal I � KŒx� and a nonnegative vector w;w0 2 Qn,
we have inw0.inw.I // D inwC"w0.I / for a sufficiently small " > 0.

Proof. First, we prepare a tie-breaking monomial order <. Let <0 denote the
monomial order <w0 , and let G be the reduced Gröbner basis of I with respect
to the monomial order <0

w. By Corollary 5.2.4, finw0.inw.g// W g 2 G g is a Gröbner
basis of inw0.inw.I // with respect to <. By the same argument given in the proof of
Proposition 5.1.11, for a sufficiently small " > 0, inw0.inw.g// D inwC"w0.g/ holds
for all g 2 G . Thus, we have inw0.inw.I // � inwC"w0.I /. We assume inw0.inw.I // ¨
inwC"w0.I /, and deduce a contradiction. Then, by Proposition 5.2.1, the initial ideals
of these ideals with respect to < satisfy in<.inw0.inw.I /// ¨ in<.inwC"w0.I //.
By Proposition 5.2.3, we have

in<.inw0.inw.I /// D in<0.inw.I // D in<0

w
.I /;

in<.inwC"w0.I // D in<wC"w0

.I /;

and hence in<0

w
.I / ¨ in<wC"w0

.I /. This contradicts Proposition 5.2.2. Thus, we have
inw0.inw.I // D inwC"w0.I /. �

If we fix an ideal, it is known that every monomial order can be represented by a
weight vector. In order to prove this important fact, we use Farkas’ Lemma. There
are several propositions which are equivalent to Farkas’ Lemma. Here, we adopt
Farkas’ Lemma II [12, Proposition 1.8]. (Please see [12] for more details.)

Lemma 5.2.6 (Farkas’ Lemma II). For a p � q matrix A and z 2 Qp, one and
only one of the following two conditions holds.

(i) There exists a column vector x 2 Q
q
�0 such that Ax D z.

(ii) There exists a row vector c 2 Qp such that cA 2 Q
q
�0 and c � z < 0.

Proposition 5.2.7. Let < be a monomial order on KŒx�, and let I be an ideal of
KŒx�. Then, there exists a nonnegative integer vector w 2 Zn�0 such that in<.I / D
inw.I /.

Proof. Let fg1; : : : ; gsg be a Gröbner basis of I with respect to <. For each gk , let

xa.k/0 ; xa.k/1 ; : : : ; xa.k/ik be monomials appearing in gk , and let in<.gk/ D xa.k/0 . We now
define a subset C of Qn�0 by
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C D fw 2 Qn�0 W w � .a.k/0 � a.k/` / > 0 for 1 � k � s; 1 � ` � ikg:

In order to prove C ¤ ;, we use Farkas’ Lemma II. Let B be the matrix whose row
vectors are fa.k/0 �a.k/` W 1 � k � s; 1 � ` � ikg. If C D ; holds, then there exists
no nonnegative row vector w 2 Qn�0 such that B w is a positive vector. Then, for
the matrix A D Œ �B j E � (E is an identity matrix) and z D Œ�1; : : : ;�1�>, there
exist no nonnegative column vectors w and v such that

A

�
w
v

�
D �BwC v D z:

(Note that at least one component of the left-hand side is nonnegative.) Hence,
by Farkas’ Lemma II, there exists a row vector c such that cA D Œ�cB j c� is a
nonnegative vector and c � z < 0. Since c is a nonnegative vector, c � z < 0 implies
that the sum of all components is positive, and hence, in particular, c is not a zero
vector. Thus, there exists a set � D f�.k/` 2 Z�0 W 1 � k � s; 1 � ` � ikg ¤ f0g
such that

�
sX

kD1

ikX

`D1
�
.k/

` .a
.k/
0 � a.k/` / 2 Zn�0:

This means that
sY

kD1

ikY

`D1
.xa.k/` /�

.k/

` is divided by
sY

kD1

ikY

`D1
.xa.k/0 /�

.k/

` . By Lemma 1.1.15,

we have

sY

kD1

ikY

`D1
.xa.k/` /�

.k/

` �
sY

kD1

ikY

`D1
.xa.k/0 /�

.k/

` :

On the other hand, since in<.gk/ D xa.k/0 , it follows that xa.k/` < xa.k/0 for all 1 �
k � s; 1 � ` � ik. When these are all multiplied together, a property of monomial
orders implies

sY

kD1

ikY

`D1
.xa.k/` /�

.k/
` <

sY

kD1

ikY

`D1
.xa.k/0 /�

.k/
` :

(Note that since � ¤ f0g, equality cannot hold.) This is a contradiction. Thus, we
have C ¤ ;.

We now choose a vector w 2 C \ Zn.� Zn�0/. Then, for all 1 � k � s, we

have inw.gk/ D xa.k/0 D in<.gk/. Since the initial ideal in<.I / is generated by these
monomials, it follows that in<.I / � inw.I /. Then, the initial ideals of these ideals
satisfy
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in<.I / D in<.in<.I // � in<.inw.I // D in<w.I /:

By Proposition 5.2.2, in<.I / D in<w.I /. Thus, by Proposition 5.2.1, we have
in<.I / D inw.I /. �

5.2.3 Universal Gröbner Bases

For an ideal I � KŒx�, a finite set is called a universal Gröbner basis of I if it is a
Gröbner basis of I with respect to any monomial order. By the following theorem,
a universal Gröbner basis always exists.

Theorem 5.2.8. Let I � KŒx� be an ideal. Then, there exists only finitely many
initial ideals for I .

Proof. Suppose that the set ˙0 D fin<.I / W < is a monomial order g of all initial
ideals of I is an infinite set. We choose a nonzero polynomial f1 2 I . Then, since f1
has only finitely many monomials, there exists a monomialm1 appearing in f1 such
that ˙1 D fM 2 ˙0 W m1 2 M g is an infinite set. Then, there exists a monomial
order < such that m1 2 in<.I / 2 ˙1. If hm1i D in<.I /, then by Proposition 5.2.2,
we have ˙1 D fin<.I /g. This contradicts the assumption that˙1 is infinite. Hence,
hm1i ¨ in<.I /. Thus, there exists a nonzero polynomial f2 2 I such that no
monomial in f2 belongs to hm1i. Since f2 has only finitely many monomials, there
exists a monomial m2 in f2 such that ˙2 D fM 2 ˙1 W m2 2 M g is an infinite
set. Then, by Proposition 5.2.2 and by using a similar argument as before, it follows
that there exists a monomial order < such that hm1;m2i ¨ in<.I / 2 ˙2. Thus,
there exists a nonzero polynomial f3 2 I such that no monomial in f3 belongs
to hm1;m2i. By repeating such arguments, we have an infinite ascending chain of
monomial ideals

hm1i ¨ hm1;m2i ¨ hm1;m2;m3i ¨ � � � :

Let J be a monomial ideal of KŒx� generated by fmk W 0 < k 2 Zg.
By Lemma 1.1.7, J is generated by a finite set fm�1; : : : ; m�s g. Let � D
max.�1; : : : ; �s/. Since J D hm1;m2; : : : ; mki for all k � �, this contradicts
the above infinite ascending chain. �

Corollary 5.2.9. For any ideal I � KŒx�, there exists a universal Gröbner basis
of I .

Proof. Let G< be the reduced Gröbner basis of I with respect to a monomial
order <. Then, by Theorem 5.2.8, the union

[

<Wmonomial order

G<
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is a finite set. Moreover, since this set contains the reduced Gröbner basis with
respect to an arbitrary monomial order, it is a Gröbner basis of I with respect to an
arbitrary monomial order. �

In Sturmfels lecture [9], the Gröbner basis which is the union of all the reduced
Gröbner bases and appears in the above proof is called the universal Gröbner basis.
Therefore, in this book, we will call a universal Gröbner basis which is the union of
all the reduced Gröbner bases of an ideal I , the universal Gröbner basis of I .

5.3 Gröbner Fans and State Polytopes

In this section, we introduce the Gröbner fan GF.I / and the state polytope State.I /,
which characterize the possible initial ideals of a given ideal I .

5.3.1 Gröbner Fans of Principal Ideals

As a principal ideal, we consider the ideal I D hf i � KŒx1; x2� generated by

f D x61 C x51x2 C 3x21x22 C x1x32 C x1 C x22 :

Since in<.I / D hin<.f /i holds for any monomial order <, ff g is a universal
Gröbner basis of I . Which monomial ideals may be the initial ideal of I ? In
this case, although six monomials appear in f , the number of initial ideals of
I is not six. In fact, by Lemma 1.1.15, for any monomial order <, we have
x1x

3
2 > x1; x1x

3
2 > x

2
2 ; and hence neither x1 nor x22 is equal to in<.f /. In addition,

any monomial order< satisfies exactly one of x1 > x2 and x2 > x1. If x1 > x2, then
x51x2 > x41x

2
2 > x21x

2
2 . If x2 > x1, then x1x32 > x21x

2
2 . Thus, x21x

2
2 cannot be equal

to in<.f /. On the other hand, each of other three monomials is equal to in<.f / for
some <. In fact,

w1 D Œ1; 0� H) inw1 .f / D x61
w2 D Œ0; 1� H) inw2 .f / D x1x32
w3 D Œ2; 3� H) inw3 .f / D x51x2

hold. Is it possible to more easily reach these conclusions? In order to do so, we
observe the set of exponent vectors of monomials appearing in f :

fŒ6; 0�; Œ5; 1�; Œ2; 2�; Œ1; 3�; Œ1; 0�; Œ0; 2�g � Z2:

The convex hull of this set is the pentagon shown in Fig. 5.3. This polytope is
called the Newton polytope of f , and denoted by New.f /. Then, the normal fan
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1 2 3 4 5 6 7

1

2

3

4Fig. 5.3 Newton polytope
of f

Fig. 5.4 Normal fan

of New.f / is shown in Fig. 5.4. The intersection of this normal fan with the first
quadrant consists of three regions:

fŒx; y� 2 Q2 W 0 � y � xg;
fŒx; y� 2 Q2 W 0 � x � y � 2xg;
fŒx; y� 2 Q2 W 0 � 2x � yg:

This is called the Gröbner fan of the ideal I .
For a general principal ideal I D hf i, it is defined as follows. For any

polynomial

.0 ¤/ f D
mX

iD1
cixai 2 KŒx� .0 ¤ ci 2 K/;

the Newton polytope of f is defined by

New.f / D CONV.fa1; : : : ; amg/:

Then, the intersection of the normal fan N .New.f // of the Newton polytope
New.f / and Qn�0 is called the Gröbner fan of I , and denoted by GF.I /. By the
same argument as in the above example, we have the following fact.

Proposition 5.3.1. Let I D hf i � KŒx� be a principal ideal. Then, for positive
vectors w;w0 2 Qn, inw.I / D inw0.I / if and only if w and w0 belong to the interior
of the same polyhedral cone in GF.I /.
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We now present two useful propositions about Newton polytopes.

Proposition 5.3.2. For nonzero polynomials f; g 2 KŒx�, we have New.f � g/ D
New.f /C New.g/.

Proof. Let f D Pm
iD1 cixai .0 ¤ ci 2 K/ and g D P`

jD1 djxbj .0 ¤ dj 2 K/.
Then, since

f � g D
mX

iD1

X̀

jD1
cidjxaiCbj 2 KŒx�;

we have

New.f � g/ D CONV.fai C bj W i D 1; 2; : : : ; m; j D 1; 2; : : : ; `g/:

Thus, by Proposition 5.1.3, the assertion holds. �
Proposition 5.3.3. For a nonzero polynomial f 2 KŒx� and a nonnegative vector
w 2 Qn, we have FACEw.New.f // D New.inw.f //.

Proof. For a polynomial f D Pm
iD1 cixai .0 ¤ ci 2 K/, let X D fa1; : : : ; amg,

� D max.w � ai W 1 � i � m/, and Xw D fai 2 X W w � ai D �g. Then,
by the definition of the initial form, we have inw.f / D P

ai2Xw
cixai . Thus, by

Proposition 5.1.9, we have

FACEw.New.f // D FACEw.CONV.X// D CONV.Xw/ D New.inw.f //;

as desired. �

5.3.2 Gröbner Fans and State Polytopes of Homogeneous
Ideals

Recall that an ideal is called a homogeneous ideal if it is generated by homogeneous
polynomials (Sect. 1.6.3). Originally, as introduced in [9, Chap. 2], the Gröbner
fan was defined for an arbitrary ideal. However, since arguments may become
complicated if we do not assume that the ideals are homogeneous, in this section
we will study only homogeneous ideals (with respect to an ordinary grading).

When we defined the initial form inw.f / of a polynomial f , we assumed that the
weight vector w was nonnegative. That is because, if w has a negative component,
then the order <w defined by a monomial order < does not satisfy one of the
conditions of the definition of monomial orders, i.e., “1 is the smallest monomial.”
However, we can define “the sum of the terms whose inner product is maximal”
even if the vector has a negative component. If we assume an ideal is homogeneous,
then we have the following useful property.
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Proposition 5.3.4. Let I � KŒx� be a homogeneous ideal. Then, for any vector
w 2 Qn, there exists a nonnegative vector w0 2 Qn�0 such that inw.I / D inw0.I /.

Proof. For any vector w 2 Qn, w0 D wC.�; : : : ; �/ is nonnegative for a sufficiently
large � > 0. We will show that inw.I / D inw0.I /.

By Lemma 1.6.10, any polynomial 0 ¤ f 2 I is represented by homogeneous
polynomialsgi 2 I as f D g1C� � �Cgr . Then, there exist fk1; : : : ; kt g � f1; : : : ; rg
such that inw.f / D inw.gk1/C � � �C inw.gkt /. Since each gkj 2 I is homogeneous,
it follows that inw.gkj / D inw0.gkj / 2 inw0.I /. Hence, we have inw.f / 2 inw0.I /.
Thus, inw.I / � inw0.I / holds. The proof of the converse inclusion, inw.I / 

inw0.I /, is similar. �

For a homogeneous ideal I � KŒx� and a vector w 2 Qn, we define

C Œw� WD fw0 2 Qn W inw0.I / D inw.I /g
and call it a Gröbner cone. We now show that this is, in fact, a cone.

Proposition 5.3.5. For a nonnegative vector w 2 Qn�0 and a monomial order<, let
G be the reduced Gröbner basis of I with respect to a monomial order <w. Then,
we have

C Œw� D fw0 2 Qn W inw0.g/ D inw.g/ for all g 2 G g:

Proof. (
) Suppose that the vector w0 belongs to the set of the right-hand side.
Then, by Corollary 5.2.4, we have

inw.I / D hinw.g/ W g 2 G i D hinw0.g/ W g 2 G i � inw0.I /:

By Proposition 5.2.3, their initial ideals satisfy

in<w.I / D in<.inw.I // � in<.inw0.I // D in<w0

.I /:

Then, by Proposition 5.2.2, in<w.I / D in<w0

.I /. By Proposition 5.2.1, it follows
that inw.I / D inw0.I /. Thus, we have w0 2 C Œw�.

(�) Suppose that w0 belongs to C Œw�. By Corollary 5.2.4, finw.g/ W g 2 G g is
a Gröbner basis of inw.I / .D inw0.I // with respect to <. Assume that there exists
g 2 G such that inw.g/ ¤ inw0.g/. Since inw0.g/ 2 inw0.I / holds, there exists
g0 2 G such that in<.inw.g

0// D in<w.g
0/ divides in<.inw0.g// D in<w0

.g/. If
g ¤ g0, then it contradicts the hypothesis that G is the reduced Gröbner basis of I
with respect to <w. Hence, we have g D g0. Thus, in<w.g/ divides in<w0

.g/. By a
property of monomial orders, it follows that in<w0

.g/ D in<w.g/.
By the hypothesis, h D inw.g/ � inw0.g/ is a nonzero polynomial belonging

to inw.I / .D inw0.I //. However, since g belongs to the reduced Gröbner basis,
any monomial other than the initial monomial in<w.g/ does not belong to in<w.I /.
Thus, any monomial appearing in h does not belong to in<w.I /. This contradicts
in<.h/ 2 in<.inw.I // D in<w.I /. �
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We can express Proposition 5.3.5 in terms of polytopes, as follows.

Corollary 5.3.6. Work with the same assumption as in Proposition 5.3.5. Let Q �
Qn be a convex polytope defined by

Q D
X

g2G

New.g/ D New

0

@
Y

g2G

g

1

A :

Then, we have C Œw� D NQ.FACEw.Q//.

Proof. Applying in order Propositions 5.3.5, 5.3.3, and 5.1.14, we have

w0 2 C Œw�
” inw.g/ D inw0.g/ for all g 2 G

” New.inw.g// D New.inw0.g// for all g 2 G

” FACEw.New.g// D FACEw0.New.g// for all g 2 G

” FACEw

0

@
X

g2G

New.g/

1

A D FACEw0

0

@
X

g2G

New.g/

1

A

” w0 2 NQ.FACEw.Q//:

�

By Corollary 5.3.6, since C Œw� is the normal cone of a convex polytope, its
closure C Œw� is a convex polyhedral cone. For a homogeneous ideal I , a set

GF.I / WD
n
C Œw� W w 2 Qd

o

of convex polyhedral cones is called the Gröbner fan of I . We now show that this is
a fan.

Proposition 5.3.7. For a homogeneous ideal I , GF.I / is a fan.

Proof. First, we prove the following fact:

If w0 2 C Œw�, then C Œw0� is a face of C Œw�.

Suppose that w0 belongs to C Œw�. Since C Œw� is a cone, for a sufficiently small
" > 0,

"wC .1 � "/w0 D w0 C ".w �w0/

belongs to C Œw�. Let v D w � w0. Then, by Proposition 5.2.5, we have

inw.I / D inw0C"v.I / D inv.inw0.I //:
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Let <0 denote the monomial order <v. Then, the initial ideal of inw.I / with respect
to the monomial order <0 satisfies

in<0

w
.I / D in<0

w0

C"v
.I / D in<0

w0

.I /:

Let G be the reduced Gröbner basis of I with respect to <0
w. Then, since the initial

ideals coincide, G is the reduced Gröbner basis of I with respect to both<0
w0C"v and

<0
w0

. (Note that the reduced Gröbner basis is unique for each monomial order, and a
finite set of binomials of an ideal is the reduced Gröbner basis if and only if the initial
monomials of elements form a minimal set of generators of the initial ideal and the
non-initial monomial of each element does not belong to the initial ideal. Thus, the
reduced Gröbner basis is completely determined by the initial ideal.) Let Q � Qn

be a convex polytope defined byQ DPg2G New.g/. Then, by Corollary 5.3.6, we
have

C Œw� D C Œw0 C "v� D NQ.FACEw0C"v.Q//

C Œw0� D NQ.FACEw0.Q//:

Moreover, by Proposition 5.1.11, since FACEw0C"v.Q/ D FACEv.FACEw0.Q//,
it follows that FACEw0C"v.Q/ is a face of FACEw0.Q/. Hence, C Œw0� is a face of
C Œw�. By using this fact, we will show that GF.I / satisfies conditions (i) and (ii) in
the definition of complices (fans).

Condition (i): For a face F ¤ ; of the closure C Œw�, let w0 2 F n @F . Since
w0 2 C Œw�, by the argument above, it follows that C Œw0� is a face of C Œw�. By
Corollary 5.3.6, C Œw� belongs to the normal fan. Hence, the intersection of its face
F and C Œw0� is a face of F and a face of C Œw0�. However, since w0 belongs to the
interior of F and the interior of C Œw0�, by (the polyhedral convex cone version of)
Proposition 5.1.16, F D F \ C Œw0� D C Œw0� 2 GF.I / for a face F \ C Œw0�
containing w0.

Condition (ii): Suppose that the intersection F D C Œw� \ C Œw0� of the closure
C Œw� and C Œw0� is not empty. Since F is the intersection of polyhedral cones, it
is a polyhedral cone. For each w00 2 F , C Œw00� is a face of C Œw� and a face of
C Œw0�. Thus, in particular, we have C Œw00� � F . It then follows that there exist
w1; : : : ;ws 2 F such that F D C Œw1� [ � � � [ C Œws�. (Note that there exist only
finitely many faces in a polyhedral cone C Œw�.) We assume that s is minimal among
such expressions. If wi 2 C Œwj � holds for some 1 � i ¤ j � s, then we have
C Œwi � � C Œwj �, and henceC Œwi � is redundant in the above expression for F . Thus,
for any 1 � i ¤ j � s, we have wi … C Œwj �. Assume that s � 2. Since

Ps
iD1 1

s
wi

does not belong to any C Œwi �, it does not belong to F . This contradicts that F is a
polyhedral cone. Therefore, s D 1. Thus, F D C Œw1� is a face of C Œw� and a face
of C Œw0�. �

We now present a concrete way to construct the state polytope State.I / which
was introduced in [9, Chap. 2]. Let KŒx�r denote the set of all homogeneous
polynomials of degree r (and the zero polynomial). If M D fxa1 ; : : : ; xamg is the set
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of all monomials in KŒx� of degree r , then KŒx�r is an m-dimensional vector space
over K with a basis M . For a homogeneous ideal I � KŒx�, let Ir D I \ KŒx�r .
Then, Ir is a subspace of KŒx�r . For a homogeneous ideal I , an integer r > 0, and
a monomial order <, we define

s.I;r;</ WD
X

xa 2 in<.I /r

a 2 Zn;

Stater .I / WD CONV.fs.I;r;</ W < is a monomial order g/:
Moreover, let D be the maximal degree of elements of a (the) universal Gröbner
basis of a homogeneous ideal I , and let State.I / be the Minkowski sum

State.I / WD
DX

rD1
Stater .I /:

If a homogeneous ideal I is a principal ideal, then the state polytope equals the
Newton polytope, which was introduced in the previous section.

Proposition 5.3.8. Let I be a principal ideal generated by a homogeneous polyno-
mial f 2 KŒx� of degree D. Then, we have State.I / D New.f /.

Proof. Since I is a principal ideal, ff g is a universal Gröbner basis. For a monomial
order <, we have in<.I / D hin<.f /i. Hence, for each 1 � r < D, it follows that
in<.I /r D f0g. Let in<.f / D xa. Then, we have s.I;D;</ D fag. Thus,

State.I / D StateD.I /

D CONV.fa W < is a monomial order ; in<.f / D xag/
D CONV.fa W w 2 Qn; inw.f / D xag/
D CONV.fa W w 2 Qn; FACEw.New.f // D fagg/
D New.f /

holds. �

In order to study general homogeneous ideals, we now present an important
lemma.

Lemma 5.3.9. For a homogeneous ideal I � KŒx�, an integer r > 0, and a vector
w 2 Qn, we have FACEw.Stater .I // D Stater .inw.I //.

Proof. Suppose that a vector w 2 Qn is sufficiently generic. This means that inw.I /

is a monomial ideal and that FACEw.Stater .I // is a vertex.
Let fxa1 ; : : : ; xamg be the set of all monomials in KŒx� of degree r . By changing

indices if necessary, we may assume that fxa1 ; : : : ; xamg\ inw.I /r D fxa1 ; : : : ; xa`g.
Then, we have

Stater .inw.I // D fa1 C � � � C a`g D fs.I;r;w/g:
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Let G be the reduced Gröbner basis of I with respect to a monomial order w. By
considering the standard form of each monomial in fxa1 ; : : : ; xa`g with respect to G ,
it follows that, for each i D 1; 2; : : : ; `, there exists cij 2 K such that

gi D xai �
mX

jD`C1
cij xaj 2 Ir ;

where inw.gi / D xai and w � ai > w � aj for all 1 � i � ` < j � m satisfying
cij ¤ 0. Moreover, it then follows that any element of Ir is a linear combination of
g1; : : : ; g`. Thus, g1; : : : ; g` is a basis of Ir (as a K-vector space). In particular, we
have ` D dimK.Ir / .� m/.

The vertex FACEw.Stater .I // coincides with s.I;r;<0/ with respect to a monomial
order <0. Let xaj1 ; : : : ; xaj` denote the set of all monomials in in<0.I /r . (We note
that it has ` monomials since ` D dimK.Ir /.) By an argument similar to the one
used above, for each k D 1; 2; : : : ; `, there exist bkj 2 K such that

hk D xajk �
X

j…fj1;:::;j`g
bkj xaj 2 Ir ;

where h1; : : : ; h` form a basis of Ir (as a K-vector space). Let C D Œcij � and
B D Œbij �. Then, by considering a change of basis from g1; : : : ; g` to h1; : : : ; h`,
the matrix M D 


E` �C
�

is transformed into a matrix for which the j1; : : : ; j`-th
columns form the identity matrix, and the other columns form �B by row elemen-
tary transformations. Thus, the j1; : : : ; j`-th columns of the matrixM D Œmij � form
a nonsingular matrix, and hence there exists a permutation � on f1; : : : ; `g such thatQ`
kD1 m�.k/jk ¤ 0. Ifm�.k/jk ¤ 0, then each xajk .1 � k � `/ appears in g�.k/, and

we have w�a�.k/ � w�ajk . Thus, it follows that w�.a1C� � �Ca`/ � w�.aj1C� � �Caj`/.
Since the face with respect to w is the vertex aj1 C � � � C aj` , the assertion of the
lemma, s.I;r;w/ D a1 C � � � C a` D aj1 C � � � C aj` D s.I;r;<0/; holds.

Second, we prove the assertion for a general vector w 2 Qn which is not
necessarily generic. We consider another generic vector w0 2 Qn. By using the
argument above for generic vectors, for sufficiently small " > 0, we have

FACEw0.FACEw.Stater .I /// D FACEwC"w0.Stater .I //

D Stater .inwC"w0.I //

D Stater .inw0.inw.I ///

D FACEw0.Stater .inw.I ///:

Hence, FACEw.Stater .I // and Stater .inw.I // have the same vertices. Thus, they are
the same convex polytopes. �
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Corollary 5.3.10. Let I be a homogeneous ideal I , and let < and <0 be monomial
orders. If in<.I /r ¤ in<0.I /r holds, then we have s.I;r;</ ¤ s.I;r;<0/.

Theorem 5.3.11. For a homogeneous ideal I � KŒx�, the normal fan of the
polytope State.I / � Qn equals the Gröbner fan. (A convex polytope is called the
state polytope if its normal fan coincides with the Gröbner fan.)

Proof. In order to prove that the Gröbner fan GF.I / equals the normal fan
N .State.I //, it is enough to show that the maximal faces of the two fans coincide.
This is equivalent to saying that, for any generic vectors w, w0 2 Qn,

inw.I / D inw0.I /” FACEw.State.I // D FACEw0.State.I //

holds.
Suppose that inw.I / D inw0.I / holds. By Lemma 5.3.9, it then follows that

FACEw.State.I // D FACEw

 
DX

rD1
Stater .I /

!

D
DX

rD1
FACEw.Stater .I //

D
DX

rD1
Stater .inw.I //:

Hence, we have FACEw.State.I // D FACEw0.State.I //.
On the other hand, assume that FACEw.State.I // D FACEw0.State.I // holds.

Then, by the above formula, we have

FACEw

 
DX

rD1
Stater .I /

!
D FACEw0

 
DX

rD1
Stater .I /

!
:

Since vectors w, w0 2 Qn are generic, both sides of this are vertices. Thus, by
Proposition 5.1.13,

FACEw .Stater .I // D FACEw0 .Stater .I //

for all r D 1; 2; : : : ;D. By the argument in Proof of Lemma 5.3.9, this means
that, for all r D 1; 2; : : : ;D, we have s.I;r;w/ D s.I;r;w0/. Thus, by Corollary 5.3.10,
inw.I /r D inw0.I /r for all r D 1; 2; � � � ;D. Since the degree of each element of a
minimal set of generators of initial ideals inw.I / and inw0.I / is less than or equal to
D, we have inw.I / D inw0.I /. �



244 H. Ohsugi

5.4 State Polytopes of Toric Ideals

In the previous sections, we mainly considered general ideals. In this and later
sections, we will study toric ideals. For toric ideals, there are interesting algorithms
for computing such things as universal Gröbner bases or state polytopes.

5.4.1 Circuits and Graver Bases

Recall that the universal Gröbner basis is the union of all reduced Gröbner bases
and a Gröbner basis with respect to any monomial order. For a configuration matrix
A, let UA denote the universal Gröbner basis of the toric ideal IA. We now introduce
two sets CA and GrA which approximate UA.

For a nonzero polynomial f 2 KŒx�, let VAR.f / denote the set of all variables
appearing in f . An irreducible binomial f in the toric ideal IA of a configuration
matrix A is called a circuit if VAR.f / is minimal among the binomials in IA. For a
configuration matrix A, let CA be the set of all circuits of IA.

A binomial xu � xv belonging to the toric ideal IA of a configuration matrix A
is said to be primitive if there exists no other binomial xu0 � xv0

in IA such that xu0

divides xu and xv0

divides xv. For a configuration matrix A, we call GrA, the set of
all primitive binomials of IA, the Graver basis of IA.

Proposition 5.4.1. For a configuration matrix A, we have CA � UA � GrA.

Proof. First, we show that CA � UA. Suppose that a binomial f D xu � xv

is a circuit. By changing indices if necessary, we may assume that VAR.xu/ D
fxr ; xrC1; : : : ; xsg and VAR.xv/ D fxsC1; xsC2; : : : ; xng, where 1 � r � s < n.
Let G be the reduced Gröbner basis of IA with respect to a pure lexicographic
order <purelex induced by the ordering x1 > � � � > xn. Since the universal Gröbner
basis is the union of reduced Gröbner bases, it is enough to show that f 2 G .
By the definition of a pure lexicographic order, in<purelex.f / D xu 2 in<purelex.IA/.

Hence, there exists g D xu0 � xv0 2 G such that in<purelex.g/ D xu0

divides xu.

Then, we have VAR.xu0

/ � fxr ; xrC1; : : : ; xsg. Since xu0

>purelex xv0

, it follows that
VAR.xv0

/ � fxr; xrC1; : : : ; xng. Hence, VAR.g/ � VAR.f /. Since f is a circuit,
we have VAR.g/ D VAR.f /. On the other hand, w D �0

n.u � v/� �n.u0 � v0/ D
Œ0; : : : ; 0; �00

r ; : : : ; �
00
n�1; 0� belongs to KerZ.A/ since it is an integer combination of

u � v D Œ0; : : : ; 0; �r ; : : : ; �n� and u0 � v0 D Œ0; : : : ; 0; �0
r ; : : : ; �

0
n� belonging to

KerZ.A/. If w ¤ 0, then we have VAR.h/ ¨ VAR.f /, where h 2 IA is the binomial
corresponding to w. This contradicts the hypothesis that f is a circuit. Hence, w is
zero. Since the binomial f is irreducible, u0 � v0 is an integral multiple of u � v.
However, since xu0

divides xu, we have f D g 2 G .
Next, we will show that UA � GrA. Suppose that a binomial f D xu � xv

belongs to the reduced Gröbner basis G of IA with respect to a monomial order <,
and that the initial monomial of f is xu. We now assume that there exists a binomial
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g D xu0 � xv0 2 IA with g ¤ f such that xu0

divides xu and xv0

divides xv. If the
initial term of g is xv0

, then it contradicts the hypothesis that G is reduced. Hence,
the initial term of g is xu0

. Since the binomial f belongs to the reduced Gröbner
basis, its initial monomial xu belongs to a minimal set of generators of in<.IA/.
Thus, we have xu D xu0

. Then, g � f D xv � xv0

is a homogeneous binomial
belonging to IA. Since xv0

divides xv, we have xv D xv0

. Thus, f D g, which is a
contradiction. �

Since any Gröbner basis generates the ideal, we immediately have the following.

Corollary 5.4.2. For a configuration matrix A, the toric ideal IA is generated by
the Graver basis GrA.

5.4.2 Upper Bounds on the Degree

In this section, we introduce upper bounds on the degrees of circuits and elements of
the Graver basis. Even though the bounds are only approximate, it follows that the
Graver basis is a finite set. (This can be proved by using Lawrence liftings, which
are presented in the next section.) In order to simplify the description of the upper
bounds, in this section, we will assume that any configuration matrix A 2 Zd�n
satisfies rank.A/ D d . (Then, we have d � n.) This assumption is not unnatural.
If rank.A/ < d , then, by deleting some rows of A, we can obtain a configuration
matrix whose kernel is KerZ.A/ and which satisfies the hypothesis. We also assume
that the columns of A are different from each other. First, since it is not useful to
study a configuration matrix whose toric ideal is zero, we present the following
lemma.

Lemma 5.4.3. Suppose that a configuration matrix A 2 Zd�n satisfies rank.A/ D
d (and hence d � n). Then, we have the following.

(i) 2 � d < n” IA ¤ f0g;
(ii) 2 � d D n � 1” There exists a binomial f ¤ 0 such that IA D hf i.
Proof. First, if d D 1, then we have n D 1 since A is a configuration matrix. Then,
IA D f0g, and hence (i) and (ii) hold when d D 1. We now assume that d � 2. Let
V D fb 2 Qn W Ab D 0g. Then, since dimQ V D n � d and KerZA D V \ Zn, it
follows that

d < n” dimQ V > 0” KerZA ¤ f0g” IA ¤ f0g;

and that

d D n � 1” dimQ V D 1
” There exists 0 ¤ u 2 Zn such that KerZA D f˛u W ˛ 2 Zg
” There exist a binomial f ¤ 0 such that IA D hf i :
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Thus, we have (i) and (ii). �

Next, we discuss an upper bound for the degree of circuits. For a configuration
matrix A D Œa1; : : : ; an� 2 Zd�n, let

D.A/ WD max. j detŒai1 ; : : : ; aid � j W 1 � i1 < � � � < id � n /:

Then, we have the following.

Theorem 5.4.4. For a configuration matrix A 2 Zd�n, let f 2 CA. Then, VAR.f /
consists of at most d C 1 elements, and we have deg.f / � 1

2
.d C 1/D.A/.

Proof. By changing indices if necessary, we may assume that VAR.f / D
fx1; : : : ; xrg.

First, in order to prove that VAR.f / consists of at most d C 1 elements, we
assume that r � d C 2. Let B D Œa1; : : : ; ar�1� 2 Zd�.r�1/. Since rank.B/ � d , it
follows that .r � 1/� rank.B/ � .d C 1/� d D 1. Thus, KerZB ¤ f0g, and hence
IB possesses a binomial g. However, since g belongs to IA and satisfies VAR.g/ �
fx1; : : : ; xr�1g ¨ VAR.f /, this contradicts that f is a circuit. Therefore, VAR.f /
consists of at most d C 1 elements.

Next, let B 0 D Œa1; : : : ; ar � 2 Zd�r . Since the rank of the configuration
matrix A is d , adding column vectors of A to B 0, we may assume that the
rank of B 00 D Œa1; : : : ; adC1� 2 Zd�.dC1/ will be equal to d (changing indices
if necessary). Then, by Cramer’s rule, fu 2 Qn W B 00u D 0g is a one-
dimensional subspace spanned by the vector w 2 Zn whose j -th component is
.�1/j detŒa1; : : : ; aj�1; ajC1; : : : ; adC1�. Hence, if f D xu � xv, then there exists
m 2 Q such that u � v D mw. Then, we have 1

m
.u � v/ D w 2 Zn. Since f is

irreducible, it follows that 1
m
2 Z. Thus, the absolute value of the i -th component of

u � v is less than or equal to the absolute value of the i -th component of w. On the
other hand, since the absolute value of each component of w is less than or equal to
D.A/, each component of u and v is less than or equal to D.A/. Moreover, since
VAR.f / consists of at most d C 1 elements, the number of nonzero components of
at least one of u and v is at most 1

2
.d C 1/. Since the degree of the binomial f is

the sum of the components of u (and v), we have deg.f / � 1
2
.d C 1/D.A/. �

Example 5.4.5. For the configuration matrix

A D
2

4
0 1 0 1

0 0 1 1

1 1 1 1

3

5 ;

the toric ideal IA is a principal ideal generated by f D x1x4 � x2x3, and f is a
(unique) circuit. Then, we have

1

2
.d C 1/D.A/ D 1

2
� 4 � 1 D 2 D deg.f /:
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Lemma 5.4.6. Let A 2 Zd�n be a configuration matrix. Then, for any binomial
xu � xv of the toric ideal IA, there exists a circuit xu0 � xv0 2 CA such that

VAR.xu0

/ � VAR.xu/; VAR.xv0

/ � VAR.xv/:

Proof. If two monomials xu and xv of a binomial have a common factor, then
the binomial obtained by removing it belongs to IA. Hence, we may assume that
VAR.xu/ \ VAR.xv/ D ;. Moreover, by Lemma 5.4.3 (i), we may assume that
2 � d < n. (In particular, we have n � 3.)

We will prove this by using induction on the number n of the columns of a
configuration matrix A. First, if n D 3, then d D 2 by the hypothesis. Hence,
d D n � 1 and by Lemma 5.4.3(ii), it is trivial that the assertion holds. Next, we
assume that the assertion holds if the number of columns is at most n � 1, and
we will show that the assertion holds for a configuration matrix A 2 Zd�n. Let
VAR.xu � xv/ D fxi1 ; : : : ; xir g. If r < n, then by deleting redundant rows from
B D Œai1 ; : : : ; air �, it reduces to the case where the number of columns is at most
n� 1. Thus, we may assume that r D n. Let g D xu0 � xv0 2 CA be a circuit. (Since
a circuit is irreducible, VAR.xu0

/ \ VAR.xv0

/ D ; holds.) By changing indices of
the variables if necessary, we may assume that u � v D Œ˛1; : : : ; ˛n� 2 Zn and
u0�v0 D Œˇ1; : : : ; ˇn� 2 Zn satisfy ˛1ˇ1 > 0. We define a rational number ı > 0 by

ı D min

�
˛i

ˇi
W 1 � i � n; ˛iˇi > 0

�
:

For a suitable integerm > 0,

m
�
.u � v/� ı.u0 � v0/

� D Œ�1; : : : ; �n�

belongs to KerZA, and ˛i�i � 0 for all 1 � i � n. If Œ�1; : : : ; �n� D 0, then g
satisfies the assertion of this lemma. Hence, we may assume that Œ�1; : : : ; �n� ¤ 0.
Suppose that ı D ˛j =ˇj . Since �j D 0, the number of variables appearing in the
binomial

h D
Y

�i>0

x
�i
i �

Y

�j <0

x
��j
j 2 IA

is at most n � 1. By the hypothesis of induction, there exists xu00 � xv00 2 CA such
that

VAR.xu00

/ � VAR

0

@
Y

�i>0

x
�i
i

1

A ; VAR.xv00

/ � VAR

0

@
Y

�j <0

x
��j
j

1

A :

Since ˛i�i � 0 holds for all 1 � i � n, it follows that
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VAR.xu00

/ � VAR

0

@
Y

�i>0

x
�i
i

1

A � VAR.xu/

VAR.xv00

/ � VAR

0

@
Y

�j <0

x
��j
j

1

A � VAR.xv/:

�

Lemma 5.4.7. Let A 2 Zd�n be a configuration matrix. Then, for any irreducible
binomial f D xu � xv of the toric ideal IA of A, there exist at most n � d circuits

xu1 � xv1 ; : : : ; xuN � xvN

such that

xmu D
NY

iD1
xmiui ; xmv D

NY

iD1
xmivi

hold for some natural numbersm;m1; : : : ; mN .

Proof. By Lemma 5.4.6, there exists a circuit xu1 � xv1 2 CA such that

VAR.xu1 / � VAR.xu/; VAR.xv1 / � VAR.xv/:

Then, u� v D Œ˛1; : : : ; ˛n� 2 Zn and u1 � v1 D Œˇ1; : : : ; ˇn� 2 Zn satisfy ˛iˇi � 0
for all 1 � i � n. We define ı > 0 by

ı D min

�
˛i

ˇi
W 1 � i � n; ˛iˇi > 0

�
:

For a suitable integerm0 > 0,

m0 ..u � v/� ı.u1 � v1// D Œ�1; : : : ; �n�

belongs to KerZA, and ˛i�i � 0 holds for all 1 � i � n. If Œ�1; : : : ; �n� D 0,
then the assertion of this lemma holds. Hence, we assume that Œ�1; : : : ; �n� ¤ 0.
If ı D ˛j =ˇj , then we have �j D 0. Thus, the number of variables appearing in the
binomial

Y

�i>0

x
�i
i �

Y

�j <0

x
��j
j 2 IA
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is less than the number of variables appearing in f . We replace f with this binomial
and continue the same process. (The process terminates in a finite number of steps
since the number of variables decreases.) For some natural numbersm;m1; : : : ; mN ,
we have

m.u� v/ D m1.u1 � v1/C � � � CmN.uN � vN /:

Since the number of variables is reduced at each step, it follows that vectors u1 �
v1; : : : ;uN � vN belonging to the n�d -dimensional subspace fb 2 Qn W Ab D 0g
of Qn are linearly independent over Q. Thus, we have N � n � d , and it follows
that at most n � d circuits xu1 � xv1 ; : : : ; xuN � xvN satisfy

xmu D
NY

iD1
xmiui ; xmv D

NY

iD1
xmivi :

�
Theorem 5.4.8. Let A 2 Zd�n be a configuration matrix, and let f 2 GrA. Then,
we have

deg.f / � 1

2
.d C 1/.n � d/D.A/:

Proof. By Theorem 5.4.4, we may assume that f is not a circuit. Applying
Lemma 5.4.7 to a primitive binomial f D xu � xv, working with the same notation
as in Lemma 5.4.7, we have

u D
NX

iD1

mi

m
ui ; v D

NX

iD1

mi

m
vi :

If mi
m
� 1 for some i , then xui divides xu, and xvi divides xv. This contradicts that

f 2 GrA n CA. Hence, mi
m
< 1 for all i . Thus, by Theorem 5.4.4, we have

deg.f / �
NX

iD1

mi

m
deg.xui � xvi /

<

NX

iD1
deg.xui � xvi /

�
NX

iD1

1

2
.d C 1/D.A/

D 1

2
N.d C 1/D.A/

� 1

2
.d C 1/.n� d/D.A/;

as desired. �
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Since f appearing in Example 5.4.5 is a circuit, f is, in particular, primitive.
Note that for the degree inequality of Theorem 5.4.8, this f satisfies equality.
By Theorem 5.4.8, we immediately have the following.

Corollary 5.4.9. For a configuration matrix A, the Graver basis GrA is a finite set.

Corollary 5.4.10. For a configuration matrix A, the Graver basis GrA is a
universal Gröbner basis.

5.4.3 Lawrence Liftings

In this section, we introduce Lawrence liftings, which provide an algorithm for
computing Graver bases. The Lawrence lifting of a configuration matrix A 2 Zd�n
is the configuration matrix

�.A/ WD
�
A O

En En

�
2 Z.dCn/�2n;

whereEn is the n�n identity matrix andO is the d �n zero matrix. Then, we have

KerZ.�.A// D
��

b
�b

�
W b 2 KerZ.A/

�
:

Hence, between two toric ideals

IA � KŒx� D KŒx1; : : : ; xn�

I�.A/ � KŒx; y� D KŒx1; : : : ; xn; y1; : : : ; yn�
we have the following:

xuyv � xvyu 2 I�.A/ ” xu � xv 2 IA

xuyv � xvyu 2 Gr�.A/ ” xu � xv 2 GrA

I�.A/ D hxuyv � xvyu W xu � xv 2 IAi :

Theorem 5.4.11. Let A be a configuration matrix. Then, for the toric ideal of the
Lawrence lifting �.A/ of A, the following sets coincide (up to scalar multiples).

(i) The Graver basis Gr�.A/.
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(ii) The universal Gröbner basis U�.A/.
(iii) The reduced Gröbner basis G< of I�.A/ with respect to a monomial order <.
(iv) A minimal set F of binomial generators of I�.A/.

Proof. First, we will show that, for any minimal set F of binomial generators of
I�.A/, Gr�.A/ D F . Suppose that a binomial f D xuyv � xvyu 2 I�.A/ belongs to
the Graver basis Gr�.A/. Let F be a minimal set of binomial generators of I�.A/.
We can write

f D h1f1 C � � � C hsfs .hi 2 KŒx; y�; fi 2 F /:

Then, (allowing for multiplication by a scalar, if necessary,) there exists fi D
xu0

yv0 � xv0

yu0 2 F such that xu0

yv0

divides xuyv. However, by changing the roles
of x and y, it follows that xv0

yu0

divides xvyu. Since f is primitive by assumption,
it follows that f D fi 2 F . Thus, we have Gr�.A/ � F . On the other hand,
by Corollary 5.4.2, since Gr�.A/ is a set of generators and F is a minimal set of
generators, it follows that Gr�.A/ D F .

Thus, in particular, a minimal set of binomial generators of I�.A/ is unique.
Hence, F � G<. By Proposition 5.4.1, up to scalar multiples, we have F � G< �
U�.A/ � Gr�.A/. Thus, by Gr�.A/ D F , it follows that the four sets coincide. �

By this theorem, we can, in general, compute the Graver basis GrA of the toric
ideal IA of a configuration matrix A. That is, if a set of generators (a Gröbner
basis) of I�.A/ is computed, then GrA is obtained by substituting 1 for each yi .
For example, we can compute a set of generators of the toric ideal I�.A/ by
Lemma 1.5.11, that is,

I�.A/ D hx1 � tc1 tnC1; : : : ; xn � tcnt2n; y1 � tnC1; : : : ; yn � t2ni \KŒx; y�
D hx1 � tc1y1; : : : ; xn � tcnyn; y1 � tnC1; : : : ; yn � t2ni \KŒx; y�
D hx1 � tc1y1; : : : ; xn � tcnyni \KŒx; y�

(with the same notation tai D tci

tb
as in Lemma 1.5.11).

5.4.4 Computations of State Polytopes

For a toric ideal, we can compute the Graver basis GrA which contains the universal
Gröbner basis UA. We now provide an algorithm that uses this to compute the state
polytopes of toric ideals.

A vector b 2 Zn is called a Gröbner degree if there exists a binomial xu�xv 2 UA

such that Au D Av D b. If a vector b 2 Zn is a Gröbner degree, then a polytope

Fiber.b/ WD CONV.fu 2 Zn�0 W Au D bg/

is called a Gröbner fiber .
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Theorem 5.4.12. For a configuration matrix A,

P D
X

b W Gröbner degree

Fiber.b/

is the state polytope of IA, in the sense that, for vectors w;w0 2 Qn, inw.IA/ D
inw0.IA/ if and only if FACE�w.P / D FACE�w0.P /.

Proof. By a property of universal Gröbner bases, for any monomial order <,
in<.IA/ is generated by

[

b W Gröbner degree

fxu 2 in<.IA/ W Au D bg:

In addition, for each Gröbner degree b, fxu … in<.IA/ W Au D bg consists of one
element xv such that xv < xu holds for all xu 2 in<.IA/ (Au D b). Thus, for two
generic vectors w;w0 2 Qn,

inw.IA/ D inw0.IA/

”fxu 2 inw.IA/ W Au D bg D fxu 2 inw0.IA/ W Au D bg
for all Gröbner degrees b

”fxu … inw.IA/ W Au D bg D fxu … inw0.IA/ W Au D bg
for all Gröbner degrees b

” FACE�w.Fiber.b// D FACE�w0.Fiber.b//

for all Gröbner degrees b

” FACE�w.P / D FACE�w0.P /

holds. (The last “”” follows from Proposition 5.1.13.) �

5.5 Triangulations of Convex Polytopes and Gröbner Bases

The purpose of this section is to introduce the nice correspondence between Gröbner
bases of toric ideals and triangulations of convex polytopes.

5.5.1 Unimodular Triangulations

In the remaining sections of this chapter, we will often regard a configuration matrix
A D Œa1; : : : ; an� as a setA D fa1; : : : ; ang. Let� be a collection of simplices whose
vertices belong to a configuration matrix A. Then,� is called a covering of A if



5 Convex Polytopes and Gröbner Bases 253

Fig. 5.5 Two triangulations
in Example 5.5.1

CONV.A/ D
[

F2�
F

holds. In addition, if a covering � of a configuration matrix A is a simplicial
complex, then it is called a triangulation of A. Note that we do not call it a
“triangulation of CONV.A/.” This is because the vertices of each simplex in
a triangulation must belong to A. It is possible that two different configuration
matrices A and B satisfy CONV.A/ D CONV.B/, but a triangulation of A is not
necessarily a triangulation of B .

For a configuration matrix A D Œa1; : : : ; an� 2 Zd�n, let

ZA D
(

nX

iD1
ziai W zi 2 Z

)
� Zd :

Let B � fa1; : : : ; ang be the vertex set of a maximal simplex � 2 � in a covering
(triangulation)� of A.

Definition I. The normalized volume of � is defined by VOL.�/ WD ŒZA W ZB�,
that is, the index of a subgroup ZB in a group ZA.

For readers who are not familiar with groups, we provide another definition,
using minors, which was introduced in the textbook by Thomas [11].

Definition II. Suppose that the rank of a configuration matrix A 2 Zd�n is equal
to d . Let ı be the greatest common divisor of all d � d minors of A. Then, the
normalized volume of � is defined by VOL.�/ WD j det.B/j=ı.

Using the Hermite normal form, it can be proved that the two definitions are
equivalent. Using the same notation as above, we have j det.B/j D ŒZd W ZB� and
ı D ŒZd W ZA�.

A covering (triangulation) � of A is said to be unimodular if the normalized
volume of any maximal simplex in � is equal to 1.

Example 5.5.1. Let A be the configuration matrix in Example 5.1.17. Then, we
have ZA D Z3. In Fig. 5.5, the figure on the left-hand side (three triangles and their
edges and vertices) and the figure on the right-hand side (two triangles and their
edges and vertices) are both triangulations of A. The normalized volume of each
maximal simplex in these triangulations is computed by
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ZA D Zfa1; a2; a4g D Zfa1; a2; a5g D Zfa1; a3; a4g

ZA D Zfa1; a3; a5g; ŒZA W Zfa3; a4; a5g� D 2:

It thus turns out that the figure on the left-hand side is unimodular and the one on
the right is not. (As an exercise, try computing the minors.)

Example 5.5.2. A configuration matrix

A D
�
0 2 3

1 1 1

�

satisfies ZA D Z2. It is easy to see that A has no unimodular covering
(triangulation).

5.5.2 Regular Triangulations

For a configuration matrix A D Œa1; : : : ; an� 2 Zd�n and a vector w D
Œw1; : : : ;wn� 2 Qn, let �w be the set of all convex polytopes CONV.fai1 ; : : : ; air g/
satisfying the following condition:

There exists c 2 Qd such that

�
aj � c D wj j 2 fi1; : : : ; irg;
aj � c < wj j … fi1; : : : ; irg:

It is known that, if w is sufficiently generic, then �w is a triangulation of A. (For
example, if w D 0, then we have CONV.A/ 2 �w. Although the word “generic” is
ambiguous, this means that we exclude such an exceptional vector.) A triangulation
� of a configuration matrix A is said to be regular if there exists w 2 Qd such that
� D �w. A regular triangulation �w corresponds to the set of lower faces of the
convex hull of the configuration obtained by lifting the configuration matrix A into
the next dimension with the height vector w. By multiplying w by a suitable integer,
we may assume that w D Œw1; : : : ;wn� 2 Zn. We define the configuration matrix

OA D
�

a1 � � � an
w1 � � � wn

�
2 Z.dC1/�n:

Then,�w is the projection of the set of all faces of CONV. OA/with respect to normal
vectors whose last component is negative. Note that this normal vector is equal to
Œc;�1�, where c is the vector in the definition of regular triangulations. (Please refer
to [12, Definition 5.3] and the surrounding text for details.)
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Fig. 5.6 Regular triangulations

Fig. 5.7 Regular and
nonregular triangulations

Example 5.5.3. For the configuration matrix

A D
�
0 1 2 3

1 1 1 1

�

in Example 1.5.12, the left- and right-hand side figures in Fig. 5.6 are regular
triangulations ofAwith respect to w D Œ1; 0; 0; 1� and w0 D Œ1; 0; 0; 0�, respectively.

Example 5.5.4. For the configuration matrix

A D
2

4
4 0 0 2 1 1

0 4 0 1 2 1

0 0 4 1 1 2

3

5

in Exercise 1.5.13, we consider two triangulations � and �0 in Fig. 5.7. Since the
triangulation � for the figure on the left-hand side satisfies � D �w for w D
Œ3; 2; 1; 0; 0; 0�, it is a regular triangulation. On the other hand, we will show that the
triangulation �0 for the figure on the right-hand side is a nonregular triangulation.
Suppose that, for the triangulation�0, there exists a vector w0 D Œw0

1; : : : ;w
0
6� 2 Q6

such that �0 D �w0 . Note that, for column vectors a1; : : : ; a6 of a configuration
matrix A, the equalities

a1 C 4a5 D a2 C 4a4 (5.1)

a2 C 4a6 D a3 C 4a5 (5.2)

a3 C 4a4 D a1 C 4a6 (5.3)
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hold. The triangulation�0 contains

�1 D CONV.fa1; a2; a5g/; �2 D CONV.fa2; a3; a6g/; �3 D CONV.fa1; a3; a4g/:

Let ci 2 Q3 be a vector corresponding to �i and take the inner product of ci with
each of the sides in (5.i ). By the definition of �w0 , it follows that

w0
1 C 4w0

5 < w0
2 C 4w0

4

w0
2 C 4w0

6 < w0
3 C 4w0

5

w0
3 C 4w0

4 < w0
1 C 4w0

6:

However, by adding all of these together, we have

w0
1 C w0

2 C w0
3 C 4w0

4 C 4w0
5 C 4w0

6 < w0
1 C w0

2 C w0
3 C 4w0

4 C 4w0
5 C 4w0

6;

which is a contradiction. Thus,�0 is a nonregular triangulation.

5.5.3 Initial Complices

Recall the definition of radical ideals given in Sect. 3.3.3. For an ideal I � KŒx�,p
I WD ff 2 KŒx� W f m 2 I for a natural numbermg is called the radical of I .

The radical
p
I is an ideal which contains I . For a monomial m D x

a1
1 � � �xann , the

squarefree part ofm is defined by
p
m D Qai>0

xi . In particular, if I is a monomial
ideal, then we have the following.

Proposition 5.5.5. Let I � KŒx� be an ideal generated by monomialsm1; : : : ; ms .
Then, we have

p
I D ˝pm1; : : : ;

p
ms

˛
.

Proof. First, we will show that
p
I 
 ˝pm1; : : : ;

p
ms

˛
. For eachmi D xa11 � � �xann ,

let a D max.a1; : : : ; an/. Since mi 2 I divides
p
mi

a, we have
p
mi

a 2 I . Hence,p
mi belongs to

p
I . Thus, the ideal generated by

p
m1; : : : ;

p
ms is contained inp

I .
Second, we will show that

p
I � ˝p

m1; : : : ;
p
ms

˛
. Suppose that a nonzero

polynomial f 2 pI does not belong to
˝p
m1; : : : ;

p
ms

˛
. By deleting some

terms if necessary, we may assume that any monomial in f does not belong to˝p
m1; : : : ;

p
ms

˛
. Since f 2 pI , there exists a natural number m such that

f m 2 I . Hence, there exists an expression f m D Ps
iD1 himi (hi 2 KŒx�).

Thus, any monomial in f m is divided by some mi . Fix a monomial order <.
Then, in<.f m/ D .in<.f //m is divided by some mi . Since in<.f / is divided
by
p
mi , this is a contradiction. Therefore,

p
I � ˝p

m1; : : : ;
p
ms

˛
and hencep

I D ˝pm1; : : : ;
p
ms

˛
. �
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A monomialm is said to be squarefree ifm is equal to
p
m. By Proposition 5.5.5,

for a monomial ideal I , I D pI holds if and only if I has a minimal set of
generators consisting of squarefree monomials.

For a configuration matrix A D Œa1; : : : ; an� 2 Zd�n and a monomial order <,

�.in<.IA// WD
8
<

:CONV.B/ W B � fa1; : : : ; ang;
Y

ai2B
xi …

p
in<.IA/

9
=

;

is called the initial complex. By the following theorem, for any configuration matrix
and any monomial order, it follows that the initial complex is a triangulation.

Theorem 5.5.6. Let A 2 Zd�n be a configuration matrix, and let < be a monomial
order. If w 2 Qn satisfies in<.IA/ D inw.IA/, then we have �.in<.IA// D �w.

Proof. Let A D Œa1; : : : ; an� be a configuration matrix. Suppose that in<.IA/ D
inw.IA/.

First, we will show that �.in<.IA// 
 �w. Suppose that CONV.B/ 2 �w for
B D fai1 ; : : : ; air g. Then, by definition, there exists c 2 Qd such that

�
aj � c D wj j 2 fi1; : : : ; irg;
aj � c < wj j … fi1; : : : ; irg:

We assume that xi1 � � �xir 2
p

in<.IA/. Then, there exists a natural number s such
that xsi1 � � �xsir 2 in<.IA/. Hence, there exists a monomial xv … in<.IA/ such that
f D xsi1 � � �xsir � xv 2 IA. Let v D .v1; : : : ; vn/. Since f 2 IA, it follows that
sai1 C � � � C sair D v1a1 C � � � C vnan. If vj D 0 for all j … fi1; : : : ; irg, then B
is linearly dependent. This contradicts the fact that CONV.B/ is a simplex. Thus,
there exists j … fi1; : : : ; irg such that vj ¤ 0. Taking the inner products of both
sides of sai1 C � � � C sair D v1a1 C � � � C vnan with the vector c, by the hypothesis
on c, we have swi1 C � � � C swir D v1a1 � c C � � � C vnan � c < v � w. Therefore,
inw.f / D xv 2 in<.IA/, which is a contradiction. Thus, xi1 � � �xir …

p
in<.IA/, and

hence CONV.B/ 2 �.in<.IA//.
Second, we will show that �.in<.IA// � �w. Suppose that CONV.B/ 2

�.in<.IA// for B D fai1 ; : : : ; air g. Then, we have xi1 � � �xir …
p

in<.IA/. Suppose
that CONV.B/ … �w. Let

˛ D 1

r

rX

kD1
aik 2 CONV.A/:

Since�w is a triangulation of CONV.A/, there exists B 0 D faj1; : : : ; ajsg such that
CONV.B 0/ 2 �w and

˛ D 1

r

rX

kD1
aik D

sX

`D1
�`aj`
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for some 0 < �` 2 Q (1 � ` � s). Note that, since CONV.B/ … �w, it follows that
B ¤ B 0. By multiplying these two equations for ˛ by a suitable positive integer, we
have

rX

kD1
�aik D

sX

`D1
ı`aj`

(0 < �; ı` 2 Z). Taking the inner product of each side of this with a vector c
corresponding to CONV.B 0/, B ¤ B 0 implies that

rX

kD1
�wik >

rX

kD1
�aik � c D

sX

`D1
ı`wj` :

Moreover, by the definition of toric ideals,

f D
rY

kD1
x
�
ik
�

sY

`D1
x
ı`
j`

satisfies 0 ¤ f 2 IA. By the above inequality, we have inw.f / D Qr
kD1 x

�
ik
2

inw.IA/. This contradicts the first hypothesis xi1 � � �xir …
p

in<.IA/. �

Using this theorem with respect to the prime decomposition introduced in
Chap. 3, we have the following corollary.

Corollary 5.5.7. Let A 2 Zd�n be a configuration matrix. Suppose that inw.IA/ is
a monomial ideal with respect to a vector w 2 Qn. Then, we have the following:

p
inw.IA/ D hxi1 � � �xis W CONV.ai1 ; : : : ; ais / … �wi

D
\

�2�w

hxi W ai is not a vertex of �i :

Moreover, a “good” initial ideal corresponds to a “good” triangulation.

Theorem 5.5.8. For a configuration matrixA 2 Zd�n and a monomial order<, the
regular triangulation�.in<.IA// is unimodular if and only if

p
in<.IA/ D in<.IA/.

Proof. Suppose that a regular triangulation �.in<.IA// is unimodular. We assume
that a squarefree monomial xi1 � � �xir belongs to

p
in<.IA/. We consider an element

rX

kD1

1

r
aik

of CONV.A/. Then, since�.in<.IA// is a triangulation ofA, there exists a maximal
simplex CONV.B/ 2 �.in<.IA// with a vertex set B D faj1; : : : ; ajsg such that
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rX

kD1

1

r
aik D

sX

`D1
�`aj` ;

where 0 � �` 2 Q. Since�.in<.IA// is a unimodular triangulation, we have ZB D
ZA. Thus,

sX

`D1
r�`aj` D

rX

kD1
aik 2 ZA D ZB;

and hence it follows that
Ps

`D1 r�`aj` 2 ZB . Since CONV.B/ is a simplex, B
is linearly independent. Thus, we have r�` 2 Z. Moreover, since xi1 � � �xir 2p

in<.IA/, fai1 ; : : : ; air g is not a subset of B . Hence, we have

0 ¤ xi1 � � �xir �
sY

`D1
x
r�`
j`
2 IA:

However, since CONV.B/ 2 �.in<.IA//, we have
Qs
`D1 x

r�`
j`
… in<.IA/. Thus,

xi1 � � �xir 2 in<.IA/ holds. Therefore, we have
p

in<.IA/ D in<.IA/.
Conversely, suppose that

p
in<.IA/ D in<.IA/ with respect to a monomial

order <. For a maximal simplex � 2 �.in<.IA//, let V� be the vertex set of � .
By Corollary 5.5.7, hxi W ai … V� i appears in the prime decomposition of in<.IA/.
This implies that 
.in<.IA// D hxi W ai … V�i holds for the homomorphism

 W KŒx� �! KŒfxi W ai … V�g� defined by


.xi / D
�
1 if ai 2 V� ;
xi if ai … V� :

Let V D A n V� . Since xi 2 
.in<.IA// holds for each ai 2 V , there exists
0 ¤ fi 2 IA such that

fi D xi
Y

aj2V�
x

u
.i /
j

j �
nY

kD1
x
v
.i/

k

k

in<.fi / D xi
Y

aj2V�
x

u
.i /
j

j :

By the definition of toric ideals, it follows that

FV D
Y

ai2V

0

@xi
Y

aj2V�
x

u
.i /
j

j

1

A �
Y

ai2V

nY

kD1
x
v
.i/
k

k ¤ 0
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belongs to IA. Moreover, by the definition of monomial orders, the initial monomial
of FV is the first term. If

Q
ai2V xi divides the second monomial of FV , it follows

that

Y

ai2V

Y

aj2V�
x

u
.i /
j

j �
Q

ai2V
Qn
kD1 x

v
.i/
k

kQ
ai2V xi

¤ 0

belongs to IA. Moreover, by the definition of monomial orders, its initial monomial
is the first monomial. Hence,

Q
aj2V� xj belongs to

p
in<.IA/. This contradicts

that � belongs to �.in<.IA//. Thus, the second monomial of FV is not divided
by
Q

ai2V xi , and hence there exists ai1 2 V such that the second monomial of FV
is not divided by xi1 . Next, let V1 D V n fai1g. Then, by considering the same thing
for the element

FV1 D
Y

ai2V1

0

@xi
Y

aj2V�
x

u
.i /
j

j

1

A �
Y

ai2V1

nY

kD1
x
v
.i/

k

k ¤ 0

of IA, it follows that there exists ai2 2 V1 such that the second term of FV1 is not
divided by xi2 . By repeating this process, we eventually obtain

FVN�1 D xiN
Y

aj2V�
x

u
.iN /
j

j �
nY

kD1
x
v
.iN /

k

k ¤ 0;

where the second term of FVN�1 is not divided by any xi (ai 2 V ).
Therefore, with respect to the pure lexicographic order .xi1 > xi2 > � � � >

xiN / on KŒfxi W ai … V�g�, the initial monomial of each 
.fi/ is xi .
Thus, by Lemma 1.3.1, f
.f1/; : : : ; 
.fN /g is a Gröbner basis of the ideal
h
.f1/; : : : ; 
.fN /i with respect to this pure lexicographic order. Since the reduced
Gröbner basis is fxi � 1 W ai 2 V g, there exist uj ; vk 2 Z�0 such that

xi
Y

aj2V�
x

uj
j �

Y

ak2V�
x
vk
k 2 IA

for each i with ai 2 V . By the definition of toric ideals, we have

ai C
X

aj2V�
ujaj D

X

ak2V�
vkak:

Hence, by transposition,

ai D
X

ak2V�
vkak �

X

aj2V�
ujaj 2 ZV� :

Thus, ZA D ZV� , and we have VOL.�/ D 1. �
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Fig. 5.8 Two triangulations

Example 5.5.9. For the configuration matrix

A D

2

664

0 1 1 0 1

0 1 0 1 1

0 0 1 1 1

1 1 1 1 1

3

775

in Example 1.5.5, the toric ideal is IA D hf i, where f D x1x
2
5 � x2x3x4.

In this case, for any monomial order, ff g is a minimal Gröbner basis. Note that
there exist two kinds of initial ideals. Suppose that monomial orders <1 and <2
satisfy in<1.f / D x1x

2
5 and in<2.f / D x2x3x4, respectively. Then, we have

in<1.IA/ D
˝
x1x

2
5

˛
,
p

in<1.IA/ D hx1x5i, and in<2.IA/ D hx2x3x4i D
p

in<2.IA/.
Hence,�.in<1.IA// is not unimodular, and its maximal simplices are

CONV.A n fa1g/;CONV.A n fa5g/:
On the other hand,�.in<2.IA// is unimodular and its maximal simplices are

CONV.A n fa2g/;CONV.A n fa3g/;CONV.A n fa4g/:
See Fig. 5.8.

5.5.4 Secondary Polytopes and State Polytopes

For a regular triangulation� of a configuration matrixA D Œa1; : : : ; an� 2 Zd�n , let
�i D f� 2 � W � is a maximal simplex, and ai is a vertex of �g. In addition, let

'�.ai / D
X

�2�i
VOL.�/ 2 Z;
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and define a vector '� 2 Zn by

'� D .'�.a1/; : : : ; '�.an// 2 Zn:

Then, a convex polytope˙.A/ is defined by

˙.A/ D CONV.f �'� W � is a triangulation of Ag/:

On the other hand, for a regular triangulation�, we define

C� D fw 2 Qn W �w D �g:

Theorem 5.5.10. Let A 2 Zd�n be a configuration matrix of rank d . Then, the
normal cone of ˙.A/ at each vertex �'� coincides with C�. (In fact, dim˙.A/ D
n � d .)

Proof. Let P denote the convex hull CONV.A/ of a configuration matrix A. For a
triangulation � of A and a vector w D Œw1; : : : ;wn� 2 Qn, we define a piecewise
linear function gw;� on P by gw;�.ai / D wi for each simplex � 2 �. More
precisely, for a simplex � with the vertex set fai1 ; : : : ; air g, and for any point ˛
in � , there exists a unique expression

˛ D
rX

kD1
�kaik .0 � �k 2 Q;

rX

kD1
�k D 1/:

Then, we define gw;�.˛/ DPr
kD1 �kwk .

Let � D �w be the regular triangulation. We will show that, for each regular
triangulation�0 of A, we have

gw;�.x/ � gw;�0.x/ for all x 2 P:

For any x 2 P , there exists a simplex � 2 � with its vertex set fai1 ; : : : ; air g such
that

x D
rX

kD1
�kaik .0 < �k 2 Q;

rX

kD1
�k D 1/:

If � 2 �0, then we have gw;�.x/ D gw;�0 .x/. Thus, we may assume that � … �0.
Then, there exists a simplex � 0 2 �0 whose vertex set is faj1; : : : ; ajsg such that

x D
sX

kD1
�0
kajk .0 < �0

k 2 Q;

sX

kD1
�0
k D 1/:
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Let c be a vector corresponding to the simplex � 2 �. (Please refer to the definition
of regular triangulations�w.) We then have

gw;�.x/ D
rX

kD1
�kwik D

rX

kD1
�kaik � c D

sX

kD1
�0
kajk � c <

sX

kD1
�0
kwjk D gw;�0.x/:

Hence, for any regular triangulation�0 of A, we have

Z

x2P
gw;�.x/dx �

Z

x2P
gw;�0.x/dx;

and equality holds if and only if � D �0. For any regular triangulation�0 of A, we
have

Z

x2P
gw;�0.x/dx D

X

�2M.�0/

Z

x2�
gw;�0.x/dx

D
X

�2M.�0/

VOL.�/ � gw;�0

0

@ 1
d

X

ai2V�
ai

1

A

D
X

�2M.�0/

VOL.�/ � 1
d

X

ai2V�
gw;�0.ai /

D 1

d

nX

iD1
wi

X

�2M.�0/; ai2V�
VOL.�/

D 1

d
w � '�0 ;

where M.�0/ is the set of all maximal simplices of �0, and V� is the set of all
vertices of a simplex � . It then follows that w � '� � w � '�0 . Thus, w � .�'�/ �
w � .�'�0/; and hence�'� is a vertex of a convex polytope˙.A/ with respect to w.

�

A convex polytope ˙.A/ is called the secondary polytope of A. By Theo-
rem 5.5.6, we have the following theorem.

Theorem 5.5.11. For a configuration matrix A, the secondary polytope ˙.A/ is
a Minkowski summand of the state polytope State.IA/. That is, there exists an
expression State.IA/ D ˙.A/C � � � .

The normal fan N .˙.A// of the secondary polytope ˙.A/ is called the
secondary fan. The above theorem is stated in terms of fans, as follows:

Corollary 5.5.12. For a configuration matrix A, the Gröbner fan is a refinement of
the secondary fan.
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Note that, for the unimodular configurations which will be introduced in the next
section (Sect. 5.6), the secondary polytope and the state polytope coincide, and the
secondary fan and the Gröbner fan coincide.

5.6 Ring-Theoretic Properties and Triangulations

Although we will add definitions and further details below, we begin by stating that,
for a configuration matrix A, the following conditions are well known:

(i) Any triangulation of A is unimodular;
(ii) Any reverse lexicographic triangulation of A is unimodular;

(iii) A has a unimodular regular triangulation;
(iv) A has a unimodular triangulation;
(v) A has a unimodular covering;

(vi) KŒA� is normal.

Then, (i) ) (ii) ) (iii)) (iv)) (v)) (vi) holds, but the converse of each of
them is false in general.

In this section, we introduce these ring-theoretic properties for configuration
matrices related to triangulations and Gröbner bases.

5.6.1 Lexicographic Triangulations and Unimodular
Configurations

First, although it is almost trivial, we study the configuration matrices which are the
base cases for an inductive construction of lexicographic and reverse lexicographic
triangulations.

Proposition 5.6.1. Let A be a configuration matrix. Suppose that CONV.A/ is
a simplex and that A is the vertex set of CONV.A/. Then, there exists only one
triangulation of A, and it is the set of all faces of CONV.A/.

Next, we study lexicographic triangulations. A triangulation� of a configuration
matrix A 2 Zd�n is called a lexicographic triangulation if we have � D
�.in<lex.IA// for a lexicographic order <lex induced by an ordering xi1 > � � � >
xin of variables. (It is also sometimes called a “placing triangulation” in the
literature.) Since toric ideals are homogeneous ideals, there is no difference between
lexicographic orders and pure lexicographic order for such ideals. It is known that
every lexicographic triangulation can be computed recursively, as follows. Here,
in the assertion of Proposition 5.6.2, “CONV.B/ is visible from a1” means that,
for any ˛ 2 CONV.B/, the line segment `˛ with end points ˛ and a1 satisfies
`˛ \ CONV.A n fa1g/ D f˛g.
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Proposition 5.6.2. For a configuration matrix A 2 Zd�n, let �lex.A/ be a
lexicographic triangulation with respect to a lexicographic order <lex induced by
an ordering x1 > � � � > xn of variables. If a1 2 CONV.A n fa1g/, then we have

�lex.A/ D �lex.A n fa1g/:
In addition, if a1 … CONV.A n fa1g/, then we have

�lex.A/ D �lex.A n fa1g/ [ �

� D
8
<

:CONV.fa1g [ B/ W
B � A n fa1g
CONV.B/ 2 �lex.A n fa1g/
CONV.B/ is visible from a1

9
=

; :

Proof. By Corollary 1.4.2, we have in<lex.IA/ \ KŒx2; : : : ; xn� D in<lex.IAnfa1g/.
Hence, for any monomialm which is not divided by x1, we have

m … in<lex.IA/” m … in<lex.IAnfa1g/:

Thus, for any squarefree monomialm0 which is not divided by x1, we have

m0 …pin<lex.IA/” m0 …
q

in<lex.IAnfa1g/:

Therefore, the set of all simplices in�lex.A/ whose vertex set does not contain a1 is
equal to �lex.A n fa1g/.

On the other hand, suppose that �lex.A/ possesses a simplex � whose vertex set
is fa1g [ B (where B � A n fa1g). Since CONV.B/ 2 �lex.A/, by the above fact,
we have CONV.B/ 2 �lex.A n fa1g/. If a1 2 CONV.A n fa1g/, then there exists
a natural number i1 such that f D x

i1
1 � xi22 � � �xinn belongs to IA and such that

in<lex.f / D x
i1
1 . Then, we have x1 2

p
in<lex.IA/. This contradicts � 2 �lex.A/.

Thus, a1 … CONV.A n fa1g/. Let ˛ 2 CONV.B/, and let `˛ denote the line passing
through ˛ and a1. Suppose that there exists ˛0 such that

˛ ¤ ˛0 2 `˛ \ CONV.A n fa1g/:

Then, ˛0 is expressed as

˛0 D r1a1 C
X

ak2B
rkak D

nX

`D2
s`a`

.0 < r1 2 Q; 0 � rk; s` 2 Q; r1 C
X

ak2B
rk D

nX

`D2
s` D 1/:
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Hence, there exists a natural number p1 such that

g D xp11
Y

ak2B
x
pk
k �

nY

`D2
x
q`
`

belongs to IA and such that in<lex.g/ D x
p1
1

Q
ak2B x

pk
k . Thus, we have

x1
Q

ak2B xk 2
p

in<lex.IA/. This contradicts that � 2 �lex.A/. Therefore,
CONV.B/ is visible from a1, and hence � belongs to �.

Conversely, let � 2 �. That is, suppose that the vertex set of � is fa1g [ B
and that CONV.B/ 2 �lex.A n fa1g/ is visible from a1. We will now assume � …
�lex.A/ and deduce a contradiction. First, by the definition of an initial complex,
we have x1

Q
ai2B xi 2

p
in<lex.IA/. Hence, there exists a natural number m such

that xm1
Q

ai2B x
m
i 2 in<lex.IA/. Thus, there exists a binomial

f D xm1
Y

ai2B
xmi �

nY

jD1
x
mj
j

belonging to IA such that in<lex.f / D xm1
Q

ai2B x
m
i . By the definition of the

lexicographic order, we have m � m1. Thus, removing xm11 from f , it follows
that

f 0 D xm�m1
1

Y

ai2B
xmi �

nY

jD2
x
mj
j

is a binomial belonging to IA and satisfies in<lex.f
0/ D x

m�m1
1

Q
ai2B x

m
i . If m �

m1 D 0, then
Q

ai2B xi 2
p

in<lex.IA/. This contradicts CONV.B/ 2 �lex.A n
fa1g/ � �lex.A/. Thus, m�m1 > 0. Since f 0 2 IA, it follows that

.m �m1/a1 C
X

ai2B
mai D

nX

jD2
mjaj :

Let r D deg.f 0/ .DPn
jD2 mj /. Then,

m �m1

r
a1 C

X

ai2B

m

r
ai D

nX

jD2

mj

r
aj :

However, since the left-hand side belongs to the interior of � and the right-hand
side belongs to CONV.A n fa1g/, this contradicts the hypothesis that CONV.B/ is
visible from a1. Thus, we have � 2 �lex.A/. �



5 Convex Polytopes and Gröbner Bases 267

A configuration matrix A is said to be unimodular if all triangulations of A are
unimodular. Here, “all triangulations” means, of course, all regular triangulations
and all nonregular triangulations. However, it will be turn out that it is enough to
consider only the lexicographic triangulations.

Theorem 5.6.3. For a configuration matrix A 2 Zd�n, the following conditions are
equivalent.

(i) A is a unimodular configuration matrix.
(ii) Any regular triangulation of A is unimodular.

(iii) Any lexicographic triangulation of A is unimodular.
(iv) The normalized volume of any maximal simplex all of whose vertices belong

to A is equal to 1.
(v) For an arbitrary f 2 CA, any monomial appearing in f is squarefree.

If rank.A/ D d , then the following is also equivalent to the above.

(vi) All nonzero d � d minors of A have the same absolute value.

Proof. By definition, it is trivial that (iv) H) (i) H) (ii) H) (iii). Let � be
a maximal simplex with the vertex set fai1 ; : : : ; air g, for which the normalized
volume is greater than or equal to 2. For any j … fi1; : : : ; irg, let <lex be a
lexicographic order induced by the ordering xj > xi1 > � � � > xir of variables.
By Proposition 5.6.2, we have � 2 �lex.A/, and hence �lex.A/ is not unimodular.
Thus, we have (iii) H) (iv).

Suppose that all monomials appearing in each circuit are squarefree. Assume
that a binomial g D xu � xv 2 IA is primitive. Then, by Lemma 5.4.6, there exists
a circuit f D xu0 � xv0 2 CA such that VAR.xu0

/ � VAR.xu/; VAR.xv0

/ �
VAR.xv/. By assumption, xu0

and xv0

are squarefree monomials. Hence, xu0

divides
xu, and xv0

divides xv. However, since g is primitive, it follows that f D g. By
Proposition 5.4.1, we have CA D GrA. Hence, CA is a Gröbner basis with respect to
any monomial order. Since all monomials appearing in each circuit are squarefree,p

in<.IA/ D in<.IA/ with respect to any monomial order <. By Theorem 5.5.8,
this is equivalent to condition (ii). Thus, we have (v) H) (ii).

Suppose that there exists a circuit f 2 CA having a monomial xu which is
not squarefree. By the argument in the proof of Proposition 5.4.1, there exists a
lexicographic order <lex such that xu appears in the minimal set of generators of
in<lex.IA/. Since the lexicographic triangulation�lex.A/ is not unimodular, we have
(iii) H) (v).

Therefore (i)–(v) are equivalent.
Assume rank.A/ D d . Then, by Definition II of the normalized volume, we have

(iv)” (vi). Therefore (i)–(vi) are equivalent. �

We have shown the following fact in the above proof.

Corollary 5.6.4. If a configuration matrix A is unimodular, then CA D UA D GrA.
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5.6.2 Reverse Lexicographic Triangulations and Compressed
Configurations

A triangulation � of a configuration matrix A 2 Zd�n is called a reverse
lexicographic triangulation if � D �.in<rev.IA// with respect to a reverse
lexicographic order <rev induced by the ordering xi1 > � � � > xin of variables.
(This is sometimes called a “pulling triangulation” in the literature.) As in the
case of lexicographic triangulations, every reverse lexicographic triangulation can
be computed recursively, as follows.

Proposition 5.6.5. For a configuration matrix A 2 Zd�n, let �rev.A/ be a reverse
lexicographic triangulation with respect to a reverse lexicographic order <rev

induced by the ordering x1 > � � � > xn of variables. Then, the set of all maximal
simplices belonging to �rev.A/ is

[

A02FCTn

˚
CONV.fang [ B/ W CONV.B/ is a maximal simplex of �rev.A

0/
�
;

where

FCTn D
�
A0 � A W There exists a facet F of CONV.A/

such that an … F; A0 D F \A
�
:

Proof. Based on Proposition 5.6.1, we will prove this by induction on the number n
of the columns of a configuration matrix A. First, we show that, if an … B � A and
the vertex set of CONV.B/ is B , then we have

CONV.B/ 2 �rev.A/” CONV.fang [ B/ 2 �rev.A/:

Since the triangulation �rev.A/ is a complex, “(H” is trivial. In order to prove
“H)”, we assume that B D fai1 ; : : : ; air g satisfies both the above condition
and the condition CONV.B/ 2 �rev.A/. Suppose that a squarefree monomial
xi1 � � �xir xn belongs to

p
in<rev.IA/. Then, there exists a natural numberm such that

xmi1 � � �xmir xmn 2 in<rev.IA/. Hence, there exists a monomial xb such that the initial
monomial of xmi1 � � �xmir xmn � xb 2 IA is xmi1 � � �xmir xmn . However, by the definition
of the reverse lexicographic order, xmn divides xb. Thus, the initial monomial of
xmi1 � � �xmir � xb=xmn 2 IA is xmi1 � � �xmir . This contradicts CONV.B/ 2 �rev.A/.

Therefore, since xi1 � � �xir xn …
p

in<rev.IA/, it follows that CONV.fang [ B/ 2
�rev.A/.

By this fact, an is a vertex of any maximal simplex of �rev.A/. Let
fai1 ; : : : ; air ; ang be the vertex set of a maximal simplex � 2 �rev.A/, and
let B D fai1 ; : : : ; air g and � 0 D CONV.B/. Since � 0 2 �rev.A/, we have
xi1 � � �xir …

p
in<rev.IA/. By a property of reverse lexicographic orders, it follows

that
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x
u1
i1
� � �xur

ir
� xb 2 IA) xn … VAR.xb/:

Let ˛ 2 � 0. Then, there exists an expression

˛ D
rX

kD1
�kaik .0 � �k 2 Q;

rX

kD1
�k D 1/:

If ˛ belongs to the interior of CONV.A/, then, by Proposition 5.1.15, there exists
an expression

˛ D
nX

`D1
ı`a` .0 < ı` 2 Q;

nX

`D1
ı` D 1/:

However, by

rX

kD1
�kaik D

nX

`D1
ı`a`;

there exists xu1
i1
� � �xur

ir
� xb 2 IA such that xn 2 VAR.xb/, which is a contradiction.

Hence, � 0 belongs to a facet F of CONV.A/. If F contains an, then the dimension
of � is equal to the dimension of F , and hence this contradicts that � is a maximal
simplex. By the hypothesis of induction,� 0 belongs to�rev.F\A/. Thus,B satisfies
the condition in the assertion of the proposition.

Conversely, suppose that B satisfies the assertion of the proposition. Let �F be
a triangulation of F obtained by restricting the triangulation �rev.A/ to F . Then,
from the fact shown above, we have �F � �rev.F \ A/. Since both of them are a
triangulation of F , it follows that�F D �rev.F \A/. Thus, CONV.B/ 2 �rev.F \
A/ D �F � �rev.A/; and hence CONV.fang [ B/ 2 �rev.A/. �

A configuration matrixA is said to be compressed if, for any ordering xi1 > � � � >
xin of n variables of KŒx�, the reverse lexicographic triangulation �.in<rev.IA// of
A with respect to the reverse lexicographic order <rev induced by this ordering is
unimodular. The following theorem is due to Sullivant [10].

Theorem 5.6.6. For a configuration matrix A D Œa1; : : : ; an� 2 Zd�n, let P D
CONV.A/. Then, the following conditions are equivalent.

(i) A is compressed.
(ii) For any facet F D FACEw.P / of P , fa1 �w; : : : ; an �wg consists of exactly two

elements.
(iii) There exists a configuration matrix B 2 Zd�n such that IA D IB and

CONV.B/ is the intersection of a d -dimensional unit cube and an affine
subspace.
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5.6.3 Normality of Toric Rings

In general, a configuration matrix A satisfies Z�0A � ZA \ Q�0A. The toric ring
KŒA� is said to be normal if it satisfies Z�0A D ZA \ Q�0A. Originally, the
formal definition of normal rings is “The integral domain KŒA� is called normal
if it is integrally closed in its field of fractions.” However, we employ an equivalent
condition (see [9, Proposition 13.5]) as a definition since this one may be difficult
to understand for readers not familiar with the theory of commutative rings.

With respect to the normality of the toric ringKŒA�, the existence of unimodular
triangulations and unimodular coverings of A plays an important role.

Theorem 5.6.7. If a configuration matrix A has a unimodular covering, then the
toric ring KŒA� is normal.

Proof. Let ˛ 2 ZA \ Q�0A. Then, it is enough to show that ˛ 2 Z�0A. First, by
˛ 2 Q�0A, there exists an expression

˛ D
nX

iD1
riai .0 � ri 2 Q/:

Since Z�0A contains the zero vector, we may assume that ˛ is not the zero vector.
Let r DPn

iD1 ri .¤ 0/. Then,

1

r
˛ D

nX

iD1

ri

r
ai

belongs to CONV.A/. By assumption, A has a unimodular covering. Hence, there
exists a maximal simplex � of normalized volume 1 for which the vertices belong
to A and such that 1

r
˛ 2 � . Let V� D fai1 ; : : : ; aid g be the vertex set of � . Then,

there exists an expression

1

r
˛ D

dX

kD1
skaik ;

where 0 � sk 2 Q and
Pd

kD1 sk D 1. Multiplying both sides by r , we have

˛ D
dX

kD1
rskaik :

On the other hand, since the normalized volume of � is equal to 1, it follows that
˛ 2 ZA D ZV� . Hence, there exists an expression

˛ D
dX

kD1
zkaik ;

where zk 2 Z. Since � is a simplex, 0 � rsk D zk 2 Z for all k. Thus, ˛ 2 Z�0A.
�
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Corollary 5.6.8. Let A be a configuration matrix. If there exists a monomial order
< such that in<.IA/ is generated by squarefree monomials, then the toric ringKŒA�
is normal.

Below, in Example 5.7.7, we will see that the converse of Corollary 5.6.8 does not
hold in general. On the other hand, if any minimal set of generators has an element
without squarefree monomials, then it is trivial that the hypothesis of Corollary 5.6.8
does not hold. In such a case, the following proposition says that the toric ring is not
normal.

Proposition 5.6.9. Let A be a configuration matrix. If there exists a minimal set of
binomials generators of the toric ideal IA of A which contains a binomial having
no squarefree monomials, then KŒA� is not normal.

Proof. Suppose that a binomial

f D x2i
nY

kD1
x

uk
k � x2j

nY

kD1
x
vk
k 2 IA

without squarefree monomials appears in a minimal set of binomial generators of
IA. Since f belongs to IA, we have

2ai C
nX

kD1
ukak D 2aj C

nX

kD1
vkak:

By transforming this equation, we have

ZA 3 ai � aj C
nX

kD1
ukak D

nX

kD1

uk C vk
2

ak 2 Q�0A:

If KŒA� is normal, then this vector belongs to Z�0A D ZA \ Q�0A. Hence, there
exist nonnegative integers w1; : : : ;wn such that

ai � aj C
nX

kD1
ukak D

nX

`D1
w`a`:

Thus, by

ai C
nX

kD1
ukak D aj C

nX

`D1
w`a`;

it follows that g D xi
Qn
kD1 x

uk
k � xj

Qn
`D1 x

w`
` belongs to IA. Then, h D

xi
Qn
`D1 x

w`
` � xj

Qn
kD1 x

vk
k also belongs to IA. Hence, f is expressed as f D

xig C xj h, where the degrees of g and h are both lower than that of f . This
contradicts that f appears in a minimal set of generators. Thus,KŒA� is not normal.

�
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Theorem 5.6.10. For a configuration matrix A and its Lawrence lifting �.A/, the
following conditions are equivalent.

(i) A is a unimodular configuration matrix.
(ii) �.A/ is a unimodular configuration matrix.

(iii) KŒ�.A/� is normal.

Proof. By Theorem 5.6.7, we have (ii) H) (iii). As in the case of Graver bases,
with regard to set of circuits, it follows that

xuyv � xvyu 2 C�.A/ ” xu � xv 2 CA:

Thus, by Theorem 5.6.3, we have (i)” (ii).
In order to show (iii)H) (i), we assume thatA is not a unimodular configuration

matrix. By the argument above, there exists a binomial f in C�.A/ without
squarefree monomials. By Proposition 5.4.1 and Theorem 5.4.11, f belongs to a
minimal set of generators of I�.A/. Hence, by Proposition 5.6.9, KŒ�.A/� is not
normal. �

5.7 Examples of Configuration Matrices

In order to illustrate the above discussion, we show below some configuration
matrices that arise from finite graphs and contingency tables.

5.7.1 Configuration Matrices of Finite Graphs

In this section, as examples of convex polytopes, we now consider edge polytopes
arising from finite graphs. Since several properties of toric rings and toric ideals of
edge polytopes are described in terms of graphs, this is a very useful example for
better understanding the various concepts.

Let G be a finite graph on the vertex set f1; 2; : : : ; d g. We assume that G has
no loops and no multiple edges. Let E.G/ D fe1; : : : ; eng be the edge set of G.
For each edge e D fi; j g 2 E.G/ of G, let �.e/ WD ei C ej 2 Zd . Let AG be a
configuration matrix whose column vectors are f�.e/ W e 2 E.G/g � Zd . Then,
the convex hull CONV.AG/ of AG is called the edge polytope of G.

Example 5.7.1. LetG be the graph with six vertices and ten edges shown in Fig. 5.9.
Then, the corresponding configuration matrix is
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Fig. 5.9 Wheel with six
vertices

AG D

2

66666664

1 1 1 1 1 0 0 0 0 0

1 0 0 0 0 1 0 0 0 1

0 1 0 0 0 1 1 0 0 0

0 0 1 0 0 0 1 1 0 0

0 0 0 1 0 0 0 1 1 0

0 0 0 0 1 0 0 0 1 1

3

77777775

2 Z6�10:

We now present some graph-theory terminology. A sequence � D .ej1; : : : ; ejr /
of edges of a finite graphG is called a walk of length r if � satisfies

ej1 D fi1; i2g; ej2 D fi2; i3g; : : : ; ejr D fir ; irC1g:

In addition,

• If i1; : : : ; irC1 are distinct vertices, then � is called a path.
• If irC1 D i1, then � is called a closed walk of length r . A closed walk of even

length is called an even closed walk .
• If irC1 D i1 and i1; : : : ; ir (r � 3) are distinct, then � is called a cycle of length
r . A cycle of odd length is called an odd cycle. A cycle of even length is called
an even cycle.

A finite graphG is said to be connected if, for any two vertices i and j ofG, there
exists a walk from i to j . From now on, we always assume that G is a connected
graph. If the vertex set V of a finite graphG is partitioned into V D V1 [V2, where
V1 \ V2 D ;, and each edge of G joins a vertex in V1 and a vertex in V2, then G is
called a bipartite graph. It is known that a finite graph G is a bipartite graph if and
only if G has no odd cycles.

Proposition 5.7.2. Let G be a finite connected graph. Then, we have

dim.CONV.AG// D
�
d � 2 G is a bipartite graph,
d � 1 otherwise.
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Given an even closed walk � D .ej1; : : : ; ej2r /, it is easy to see that

f� D
rY

kD1
xj2k�1

�
rY

kD1
xj2k

belongs to IAG . For edge polytopes, circuits and binomials of the Graver basis of
the corresponding toric ideal can be characterized in terms of graphs.

Proposition 5.7.3. Let G be a finite connected graph. Then, a binomial f belongs
to CAG if and only if there exists an even closed walk � with f D f� satisfying one
of the following.

(i) � is an even cycle.
(ii) � consists of two odd cycles having exactly one common vertex.

(iii) � consists of two odd cycles having no common vertex and a path which joins
a vertex of one cycle to a vertex of the other cycle.

Among the even closed walks appearing in Proposition 5.7.3, only even closed
walks of type (iii) correspond to binomials with a nonsquarefree monomial. Thus,
we have the following as a corollary.

Corollary 5.7.4. Let G be a finite connected graph. Then, AG is a unimodular
configuration matrix if and only if any two odd cycles ofG have a common vertex. In
particular, if G is a bipartite graph, then AG is a unimodular configuration matrix.

For example, for the graph in Example 5.7.1, the corresponding configuration
matrix is unimodular.

Proposition 5.7.5. Let G be a finite connected graph. If a binomial f 2 IAG is
primitive, then there exists an even closed walk � of G such that f D f� and
satisfies one of the following.

(i) � is an even cycle.
(ii) � consists of two odd cycles having exactly one common vertex.

(iii) � consists of two odd cycles having no common vertex and a walk which joins
a vertex of one cycle to a vertex of the other cycle.

It is also known that the normality of edge polytopes is characterized by the
following condition.

Theorem 5.7.6 ([3, 8]). Let G be a finite connected graph. Then, the following
conditions are equivalent.

(i) KŒAG� is normal.
(ii) AG has a unimodular covering.

(iii) For any two odd cycles C and C 0 of G without common vertices, there exists
an edge of G which joins a vertex of C to a vertex of C 0.
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Fig. 5.10 Graph for
Example 5.7.7

An edge polytope with certain valuable properties has been discovered, as shown
below; no convex polytopes other than edge polytopes with the same property have
yet been found.

Example 5.7.7 ([4]). Let G be the graph with 10 vertices and 15 edges shown in
Fig. 5.10. Then, G has the following properties.

(i) For any monomial order <, we have
p

in<.IAG/ ¤ in<.IAG /.
(ii) AG has unimodular triangulations (however, none of them is regular).

(iii) Any triangulation of AG having the fewest maximal simplices is nonregular.

Among the above properties, (ii) and (iii) have been verified using the Puntos
program developed by J.A. De Loera.

5.7.2 Configuration Matrices of Contingency Tables

In this section, we study configuration matrices which arise from the models with no
n-way interactions that were introduced in Chap. 4. The configuration matrix arising
from the model of an n-way r1 � r2 � � � � � rn contingency table (r1 � r2 � � � � �
rn � 2) with no n-way interactions is the configuration matrix Ar1r2���rn , for which
the columns are the set of all vectors

e.1/i2i3���in ˚ e.2/i1i3���in ˚ � � � ˚ e.n/i1i2���in�1
;

where each ik belongs to f1; 2; : : : ; rkg and e.k/i1���ik�1ikC1 ���in is a unit coordinate vector
of Rr1���rk�1rkC1 ���rn . For example,
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A32 D

2
666664

1 1 1 0 0 0

0 0 0 1 1 1

1 0 0 1 0 0

0 1 0 0 1 0

0 0 1 0 0 1

3
777775
; A222 D

2

666666666666666666664

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

3

777777777777777777775

:

We now present two basic and important propositions.

Proposition 5.7.8. A configuration matrix Ar1r2���rn2 is isomorphic to the Lawrence
lifting of a configuration matrix Ar1r2���rn .

In general, for a configuration matrix A and its subconfiguration matrix B ,KŒB�
is called a combinatorial pure subring [6] of KŒA� if there exists a face F of
CONV.A/ such that B D A \ F . For example, if KŒB� D KŒA� \ KŒti1 ; : : : ; tis �
holds, thenKŒB� is a combinatorial pure subring ofKŒA�. IfKŒB� is a combinatorial
pure subring of KŒA�, then it is known that major ring-theory properties, such as
normality, are inherited.

Proposition 5.7.9. If a configuration matrix Ar1r2���rn and a configuration matrix
As1s2���sn satisfy si � ri for all 1 � i � n, then KŒAs1s2 ���sn � is a combinatorial pure
subring of KŒAr1r2���rn �.

Since the configuration matrix A333 is not unimodular, by Theorem 5.6.10, we
have the following.

Proposition 5.7.10. A configuration matrix Ar1r2���rn is unimodular if and only if
either n D 2 or r3 D 2 holds.

For compressed configurations, Sullivant [10] proved the following proposition.

Proposition 5.7.11. A configuration matrix Ar1r2���rn is compressed if and only if it
satisfies one of the following.

(i) n D 2,
(ii) n � 3 and r3 D 2,

(iii) n D 3 and r2 D r3 D 3.

By using Proposition 5.7.9, we have the following proposition.

Proposition 5.7.12 ([5]). If a configuration matrix Ar1r2���rn satisfies one of the
following, then KŒAr1r2���rn � is not normal.
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(i) n � 4 and r3 � 3,
(ii) n D 3 and r3 � 4,

(iii) n D 3, r3 D 3, r1 � 6, and r2 � 4.

By the above results, the remaining configurations whose properties are unknown
are only A553, A543, and A433. These examples became targets for developers of
software. Finally, using the software programs 4ti2 and Normaliz2.5, it was
verified that KŒA553� is normal (see [1]). Therefore, by Proposition 5.7.9, it follows
that KŒA543� and KŒA433� are normal. Summarizing these results, the classification
is as follows.

Type of contingency tables Ring-theoretic properties
r1 � r2 or r1 � r2 � 2� � � � � 2 Unimodular

r1 � 3� 3 Compressed, but not unimodular
4� 4� 3 Normal

5� 5� 3, 5� 4� 3 but not compressed
otherwise, i.e.,
n � 4 and r3 � 3 Not normal
n D 3 and r3 � 4

n D 3, r3 D 3, r1 � 6 and r2 � 4

Classification is almost complete; however, it is not yet known, for example,
whether A553 has a unimodular triangulation.
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Chapter 6
Gröbner Basis for Rings of Differential
Operators and Applications

Nobuki Takayama

Abstract We introduce the theory and present some applications of Gröbner bases
for the rings of differential operators with rational function coefficients R and for
those with polynomial coefficientsD.

The discussion withR, in the first half, is elementary. In the ring of polynomials,
zero-dimensional ideals form the biggest class, and this is also true in R. However,
in D, there is no zero-dimensional ideal, and holonomic ideals form the biggest
class. Most algorithms for D use holonomic ideals.

As an application, we present an algorithm for finding local minimums of
holonomic functions; it can be applied to the maximum-likelihood estimate.
The last part of this chapter considers A-hypergeometric systems; topics covered
in other chapters will reappear in the study of A-hypergeometric systems. We have
provided many of the proofs, but some technical proofs in the second half of this
chapter have been omitted; these may be found in the references at the end of this
chapter.

6.1 Gröbner Basis for the Ring of Differential Operators
with Rational Function Coefficients R

A rational expression in x1; : : : ; xn can be expressed as f=g where f , g are
polynomials in x1; : : : ; xn with complex number coefficients and g 6D 0. Since
1 is a polynomial, any polynomial can be regarded as a rational expression by
setting g D 1. The field of rational expressions in n variables is denoted by
C.x1; : : : ; xn/. The operations of addition, subtraction, multiplication, and division
can be performed in this field. Although in some discussions, the coefficient field C

N. Takayama (�)
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e-mail: takayama@math.kobe-u.ac.jp

T. Hibi (ed.), Gröbner Bases: Statistics and Software Systems,
DOI 10.1007/978-4-431-54574-3__6, © Springer Japan 2013

279

mailto:takayama@math.kobe-u.ac.jp


280 N. Takayama

may be replaced with the field of rational numbers or any field of characteristic 0,
for simplicity, we will assume that the coefficient field is C throughout this chapter.
Let a.x/ D a.x1; : : : ; xn/ be a rational expression. We define the multiplication of
differential operators @i and a.x/ by

@ia.x/ D a.x/@i C @a.x/

@xi
: (6.1)

We define that @i and @j commute. These rules, the associative law, and the
distributive law can be extended to the sums and products of differential operators.
The rational expressions in n variables, the differential operators @1; @2; : : : ; @n, and
these rules generate a ring, which is called the ring of differential operators with
rational function coefficients and denoted by Rn:

Rn D C.x1; : : : ; xn/h@1; : : : ; @ni: (6.2)

When it is not necessary to specify the number of variables n, it can be omitted.
We denote f0; 1; 2; : : :g by N0.

Any element ofR can be expressed in the form
P

˛2E a˛.x/@˛ , where, the @i for
each of the terms are collected to the right-most position. Here, @˛ denotes the multi-
index notation @˛ D @

˛1
1 � � � @˛nn , and E is a finite subset of Nn

0 . For the multi-index
˛, we define j˛j by ˛1 C � � � C ˛n.

In order to aid understanding, here is an example of a calculation in R:

@21x
2
1x

2
2 D x22@1.@1x21/ D x22@1.x21@1 C 2x1/ D x22@1.x21@1/C x22@1.2x1/
D x22.x21@21 C 2x1@1/C x22.2x1@1 C 2/ D x21x22@21 C 4x1x22@1 C 2x22:

The ringRn can be regarded as an infinite-dimensional vector space over the field
C.x1; : : : ; xn/. When we considerRn as a vector space, we ignore the multiplication
structure of Rn, and instead look only at the structures of addition and scalar
multiplication by rational expressions from the left. For example, in the case of
n D 2, the basis of the linear vector space ofR2 is the set f1; @1; @2; @21; @1@2; @22; : : :g.
In some contexts, Rn is primarily regarded as a vector space.

An element of R acts on a function f as

a.x/@˛x � f .x/ D a.x/
@j˛jf

@x
˛1
1 � � � @x˛nn

: (6.3)

In order to distinguish between multiplication in R and action to a function by an
element of R, we denote the second operation by the symbol �. However, we will
omit � if no confusion would arise. It is known that

.pq/ � f D p � .q � f / (6.4)
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holds for p; q 2 R. In other words, when action to a function by two elements in
R is performed, the same result is obtained if the multiplication first takes place
between the two elements in R, followed by action to the function, or if one acts to
the function and then the second acts to the result. The multiplication relation in R
(6.1) is defined so that the above identity holds.

This is an intuitive introduction to action to functions by elements in R. To state
this rigorously, we define a map R � F ! F by (6.3), where F is the additive
group of the smooth functions. It satisfies the axioms of the action described in
Sect. 6.7, but since we will focus on the computational aspects of R, the proof is
omitted.

Theorem 6.1.1. Set n D 1. When k > 0, we define Œ˛�k D ˛.˛�1/ � � � .˛�kC1/.
When k D 0, we set Œ˛�0 D 1. We denote x1 by x, and @1 by @x . Then, we have

@˛xa.x/ D
X̨

kD0

1

kŠ

@ka

@xk
Œ˛�k@

˛�k
x : (6.5)

Proof. We prove this by induction on ˛. When ˛ D 1, this is just the definition
of multiplication. We denote by a.k/.x/ the k-th derivative of a.x/. Since we have
@˛xa.x/ D @x.@˛�1

x a.x//, we obtain

@˛xa.x/ D @x
˛�1X

kD0

1

kŠ
a.k/Œ˛ � 1�k@˛�1�k

x

by the induction hypothesis. The expression on the right-hand side can be
rewritten as

˛�1X

kD0

1

kŠ
a.kC1/Œ˛ � 1�k@˛�.1Ck/

x C
˛�1X

kD0

1

kŠ
a.k/Œ˛ � 1�k@˛�k

x :

Collecting the coefficients of a.k/@˛�k
x , we can see that the coefficient is equal to

1
.k�1/Š Œ˛ � 1�k�1 C 1

kŠ
Œ˛ � 1�k . This can be simplified to 1

kŠ
Œ˛ � 1�k�1.k C .˛ � 1�

kC1// D 1
kŠ
Œ˛�k . Here, 0Š D 1. We note that the collection of the coefficients should

be carefully performed on the border values of k D 0 and k D ˛ � 1. We suggest
that the reader carefully considers the results at the borders.

In the above theorem, we note that the expression˛.˛�1/ � � � .˛�kC1/@˛�k
x can

be written as @k�˛

@�k
j�!@x . In other words, differentiating the polynomial �˛ by � for

k-times, and replacing � by @, we obtain the expression Œ˛�k@˛�k
x . This expression

will be used in the theorem below.
The case for a general n can be proved analogously (see the introductory book

by Oaku [26, Proposition 2.5, p. 55] and [29, Theorem 1.1.1, p. 3]).
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Theorem 6.1.2 (Leibniz Formula). Let p, q be polynomials in x1;: : : ; xn; @1;: : : ; @n,

and the @ are collected to the right-most position in each term. We set kŠ D
k1Š � � �knŠ for a multi-index k. We have

p.x; @/q.x; @/ D
X

k

1

kŠ

@jkjp.x; �/
@�k

@jkjq.x; �/
@xk

j�!@ : (6.6)

Here, the replacement of the commutative variable � by @ is done after collecting �
to the right-most position in each term. We note that the right-hand side is a finite
sum.

Until the end of the next proposition, we will assume that x is a single variable.
We denote by 	x the operator x@x . The operator 	x is called the Euler operator. The
Leibniz formula is useful, and the following identities for the Euler operators are
also useful for computations in R.

Proposition 6.1.3. Let b.	x/ be a polynomial in 	x . Then, the following identities
hold:

1. b.	x/ � xn D b.n/xn;
2. xk@kx D 	x.	x � 1/ � � � .	x � k C 1/;
3. @kxb.	x/ D b.	x C k/@kx;
4. xkb.	x/ D b.	x � k/xk .

Let 	 be a monomial order in the ring of polynomials CŒ�1; : : : ; �n� (see
Sect. 1.1.4); we call this a term order (we do this to be consistent with the
terminology of the book [29]). The term order in the ring of polynomials naturally
induces an order 	 in Rn. In other words, we define the order as

a.x/@˛ 	 b.x/@ˇ , �˛ 	 �ˇ: (6.7)

We note that elements in C.x1; : : : ; xn/ are regarded as coefficients. Consider
f 2 R. We expand f so that the @ are collected to the right-most position in each
term. Assume that the leading term of the expanded f by the order 	 is a˛.x/@˛ .
We define the 	-initial term of f by

in�.f / D a˛.x/�˛ 2 C.x1; : : : ; xn/Œ�1; : : : ; �n�: (6.8)

Here, C.x1; : : : ; xn/Œ�1; : : : ; �n� is the ring of polynomials in �1; : : : ; �n with rational
function coefficients. Note that the coefficient of the initial term has been normalized
to 1 in the previous chapters, but we do not do that here. Two elements which are
not necessarily monomials are compared by their initial terms.

We now fix a term order for the sequence. The theory of Gröbner bases for R
with a term order is analogous to that for the ring of polynomials. We will provide
a sketch of this, and we suggest that the reader develop the proofs to the claims by
referring to the analogous proofs for the ring of polynomials. We note that important
constructions in D, which is the ring of differential operators with polynomial
coefficients, require non-term orders, and they are no longer analogous to the case
of the ring of polynomials. Some of these, for example, the integration algorithm,
will be discussed further below.
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We assume that ˛i � ˇi , 1 � i � n hold for a˛.x/�˛ , aˇ.x/�ˇ . When they hold,
we say that the term a˛.x/�

˛ divides aˇ.x/�ˇ . Note that the expressions a˛.x/ and
aˇ.x/ are regarded as coefficients, and they are ignored when determining if one
expression divides another. The following algorithm is an R analog of the division
algorithm for the ring of polynomials, that was provided in Theorem 1.2.1.

Algorithm 6.1.4. NormalForm.f;G/
Input: f 2 R, G D fg1; : : : ; gmg � R
Output: The normal form r 2 R (which is also called a remainder) and the multi-
quotient q1; : : : ; qm where the following relations hold: (a) f D Pm

iD1 qigi C r ;
(b) f � qigi ; and (c) the monomial in�.gi / does not divide any term of r j@!� .

1. r  0, qi  0.
2. Call the procedure wNormalForm.f;G/. Let r 0; q0

1; : : : ; q
0
m be the outputs of

the procedure.
3. f  r 0 � in�.r 0/j�!@ , r  r C in�.r 0/j�!@ , qi  qi C q0

i . If f D 0 holds,
then return r; q1; : : : ; qm, else go to 2.

When we make the replacement of � ! @, the variables � are collected on the right
of each term.

Algorithm 6.1.5. (wNormalForm.f;G/) (weak normal form)

1. r  f , qi  0.
2. If there exists in�.gi / which divides in�.r/,

rewrite r  r � c.x/@ˇgi and rewrite qi  qi C c.x/@ˇ .
Here, c.x/@ˇ is chosen so that in�.r/ � c.x/�ˇ in�.gi / D 0 holds.
If no in�.gi / exists which divides the initial term of r , then return r; q1; : : : ; qm.

3. Go to 2.

A non-empty subset I of R is called a left ideal of R when it satisfies the
following two conditions:

1. For any f; g 2 I , f � g 2 I holds;
2. For any f 2 I and any r 2 R, rf 2 I holds.

If the condition rf 2 I in the second condition is replaced by the condition f r 2 I ,
the set I is called a right ideal.

Example 6.1.6. We derive the normal form of f D @1@
3
2 by g1 D @1@2 C 1 and

g2 D 2x2@
2
2 � @1 C 3@2 C 2x1 with the (graded) reverse lexicographic order (the

initial terms are underlined).

@1@
3
2 � @22g1 D �@22

�@22 C
1

2x2
g2 D 1

2x2
.�@1 C 3@2 C 2x1/ DW f �:

The normal form is f � and the multi-quotient is q1 D @22, q2 D � 1
2x2

.
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When g D NormalForm.f;G/ holds, we sometimes denote it by

f �!� g by G:

The arrow indicates the division algorithm, which rewrites f as g. In this sense,
division is often called reduction. Each step of the division f �qg D r is denoted by

f ! r by g:

Let I be a subset of R. The symbol in�.I / denotes the set fin�.f / j f 2 I g or
the ideal generated by the set. In most cases, the symbol denotes the ideal, but in
some contexts, it denotes the set.

Definition 6.1.7. Let I be a left ideal in R. When G D fg1; : : : ; gmg is a set of
generators of I and satisfies the condition

in�.I / D hin�.g1/; : : : ; in�.gm/i;

the set G is called a Gröbner basis of I with respect to the order 	.

The existence of a Gröbner basis for a given left ideal can be proved by Dickson’s
lemma (Lemma 1.1.3).

Assume that in�.gi / D a.x/�u, in�.gj / D b.x/�v . Define the integer vector
c by

c D .max.u1; v1/; : : : ;max.un; vn//;

and define the S -polynomial (S -differential operator) of gi and gj by

sp.gi ; gj / D @c�ugi � a.x/
b.x/

@c�vgj :

Note that a.x/ and b.x/ are coefficients. The S -polynomial is obtained by canceling
the initial terms of gi and gj . We may modify the definition of the S -polynomial as

sp.gi ; gj / D b.x/@c�ugi � a.x/@c�vgj :

With these definitions, the following theorem holds.

Theorem 6.1.8. Let G be a set of generators of a left ideal I in R. If
sp.gi ; gj / �!� 0 by G holds for any pair gi and gj of elements of G, then
the set G is a Gröbner basis of I .

The proof is analogous to the case of the ring of polynomials (the Theorem 1.3.3
(Buchberger’s criterion)) under our definition of the normal form and the S -
polynomial. The Buchberger algorithm is analogous to the case of the ring of
polynomials.
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Example 6.1.9. We set n D 2, and we use the notation x1 D x; x2 D y. Let 	 be
the graded lexicographic order such that @x � @y . Set f1 D @2x C y2, f2 D @2y C x2.
Here, the underlined terms are the 	-initial terms. Consider the left ideal I of R
generated by f1; f2. Let us derive a Gröbner basis for I . It follows from

sp.f1; f2/ D @2yf1 � @2xf2 D y2@2y C 4y@y C 2 � .x2@2x C 4x@x C 2/

that

sp.f1; f2/ D �x2@2x C y2@2y � 4x@x C 4y@y
! y2@2y � 4x@x C 4y@y C x2y2 by f1

! �4x@x C 4y@y by f2:

Set f3 D x@x � y@y . Then, we have

sp.f3; f1/ D @xf3 � xf1 !� 0 by ff1; f2; f3g

and

sp.f3; f2/ D @2yf3 � x@xf2 !� 0 by ff1; f2; f3g:

Therefore, the set ff1; f2; f3g is a Gröbner basis. The reduced Gröbner basis is
ff2; f3g.

We note that criterion 1 given in Lemma 1.3.1, which claims that the
S -polynomial is reduced to 0 if the initial terms are relatively prime, holds only in
the ring of polynomials and not in R. Here is a counterexample; if this lemma holds
in R, the S polynomial of f1 and f2 is reduced to 0, and consequently ff1; f2g is a
Gröbner basis; this contradicts our previous calculation.

The following theorem can be shown analogously to that for the case of the ring
of polynomials.

Theorem 6.1.10. Let G be a Gröbner basis of a left ideal I in R.

1. The normal form r of f 2 R byG is unique (see Lemma 1.2.4 for the uniqueness
of the remainder for the division algorithm).

2. The necessary and sufficient condition that f belongs to I is that the normal
form of f by G is 0 (see Corollary 1.2.5, the ideal membership problem).

3. The standard monomials of G form a vector space basis of R=I over the field
C.x1; : : : ; xn/ (see Theorem 1.6.9, Macaulay’s theorem).

Here, we take a standard monomial to mean a monomial @˛ which is obtained by
replacing � by @ for a monomial �˛ which does not belong to the ideal in�.I /.

When the quotient space R=I is a finite-dimensional vector space over C.x/,
the left ideal I is called a 0-dimensional ideal. Let G be a Gröbner basis of I with
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respect to 	. The necessary and sufficient condition that I is a 0-dimensional ideal
is that the number of standard monomials for in�.G/ is finite.

The following theorem holds as an analog to the elimination theorem 1.4.1 for
the ring of polynomials; both the proof and the elimination algorithm are also
analogous.

Theorem 6.1.11. If I is a 0-dimensional ideal in R, then, for any i , we have

I \ C.x1; : : : ; xn/h@ii 6D f0g:

The converse also holds.

The intersection I \ C.x1; : : : ; xn/h@i i is a left ideal in the ring of differential
operators in one variable with coefficients in C.x1; : : : ; xn/, which is a principal
ideal domain. It is generated by a single element. The generator can be regarded as
a linear ordinary differential operator with respect to the variable xi with parameters
x1; : : : ; xi�1; xiC1; : : : ; xn.

6.2 Zero-Dimensional Ideals inR and Pfaffian Equations

LetG be a Gröbner basis of a 0-dimensional ideal I inR. Assume that the monomial
@ˇ is a standard monomial with respect to the basis G. An expression of the form
c.x/@ˇ , 0 6D c.x/ 2 C.x1; : : : ; xn/ is called a (nonmonic) standard monomial.
Let S D fs1 D 1; s2; : : : ; srg be a set of linearly independent nonmonic standard
monomials, and assume that r D ]S D dimC.x1;:::;xn/ R=I . In other words, the set
S is a vector space basis of R=I . When a function f .x/ of the variables x1; : : : ; xn
is a solution of any operator of I , the function f is called a solution of I . In other
words, when ` � f D 0 holds for any ` 2 I , f is a solution of I . When ` � f D 0,
we say that f is annihilated by `, and when ` � f D 0 holds for any ` 2 I , we say
that f is annihilated by I . If the left ideal I is generated by `1; : : : ; `p, the condition
` � f D 0 for any ` 2 I is equivalent to `i � f D 0, i D 1; : : : ; p. Let f be a
solution of I . We set Q D .sj � f j j D 1; : : : ; r/T . The normal form of @i sj by G
can be written as

P
k c

i
jksk . Here, cijk is an element of C.x1; : : : ; xn/. Let Pi be an

r � r square matrix of which the .j; k/-th entry is cijk . Since we have ` � f D 0,
` 2 I , the following identities hold:

@Q

@xi
D PiQ; i D 1; : : : ; n: (6.9)

This system is called a Pfaffian system or a Pfaffian system of equations. The zero
set of the least common multiple of the denominator polynomials of cijk is called
the singular locus of the Pfaffian system.
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Example 6.2.1. Set n D 1, and set I D h@2x � xi. For any term order, we have
a Gröbner basis G D f@2x � xg. We may assume that S D f1; @xg. The normal
form of @x1 D @x is @x , and the normal form of @x@x is x D x � 1. Then, we

have P1 D
�
0 1

x 0

�
. In the case of n D 1, I is a left ideal generated by an ordinary

differential operator, and the transformation to a Pfaffian system is nothing but the
well-known transformation of an ordinary differential equation of higher order to a
system of first-order ordinary differential equations.

Example 6.2.2. Let us derive a Pfaffian system by using the Gröbner basis of
Example 6.1.9. We have

@x !� .y=x/@y by G

@x@y !� �xy C .1=x/@y by G

@y !� @y by G

@2y !� �x2 by G:

Then, setting Q D .f; @y � f /T , we have

@Q

@x
D
�
0 y=x

�xy 1=x
�
Q;

@Q

@y
D
�
0 1

�x2 0
�
Q:

Note that if we set f D cos.xy/, the vector-valued functionQ satisfies the Pfaffian
system.

Theorem 6.2.3. For the Pfaffian system (6.9), the relation

@Pi

@xj
C PiPj D @Pj

@xi
C PjPi (6.10)

holds for any i; j .

Proof. The proof of the general case uses complicated indices. In order to make the
idea of the proof clear, we will first show the theorem for the case of n D 2, r D 2.
We denote by cik` the .k; `/-th element of Pi . It is a rational expression. It follows
from the definition of Pi that the relations

@1

�
s1
s2

�
D P1

�
s1
s2

�
D
�
c111 c

1
12

c121 c
1
22

��
s1
s2

�
mod I

@2

�
s1
s2

�
D P2

�
s1
s2

�
D
�
c211 c

2
12

c221 c
2
22

��
s1
s2

�
mod I
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hold in R22. Here, the expression

�
a1
a2

�
D
�
b1
b2

�
mod I indicates componentwise

congruence, i.e., a1�b1 2 I and a2�b2 2 I . Multiply both sides of the first identity
by @2, and multiply both side of the second identity by @1. Since they are equal, the
relation

@2

�
c111 c

1
12

c121 c
1
22

��
s1

s2

�
D @1

�
c211 c

2
12

c221 c
2
22

��
s1

s2

�
mod I

holds in R22. When c is a rational expression, it follows from the multiplication rule
@i c D @c

@xi
C c@i in R that we obtain the identity

 
@c111
@x2

@c112
@x2

@c121
@x2

@c122
@x2

!�
s1

s2

�
C
�
c111 c

1
12

c121 c
1
22

�
@2

�
s1

s2

�

D
 
@c211
@x1

@c212
@x1

@c221
@x1

@c222
@x1

!�
s1
s2

�
C
�
c211 c

2
12

c221 c
2
22

�
@1

�
s1
s2

�
mod I:

A matrix presentation of this identity is

@P1

@x2

�
s1

s2

�
C P1@2

�
s1

s2

�
D @P2

@x1

�
s1

s2

�
C P2@1

�
s1

s2

�
mod I:

By using @2

�
s1
s2

�
D P2

�
s1
s2

�
mod I , @1

�
s1
s2

�
D P1

�
s1
s2

�
mod I , we obtain

@P1

@x2

�
s1

s2

�
C P1P2

�
s1

s2

�
D @P2

@x1

�
s1

s2

�
C P2P1

�
s1

s2

�
mod I:

If the relation

@P1

@x2
C P1P2 � @P2

@x1
� P2P1 D 0

does not hold, then there exists a linear dependence among s1; s2 in mod I . Since
there is no dependence among standard monomials in mod I , then we obtain the
above identity.

We now consider the case of general n and r . Multiplying both sides of @i sk DP
` c

i
k`s` mod I by @j , we obtain

@j @i sk D
X

`

@j c
i
k`s` D

X

`

@cik`
@xj

s` C
X

`

cik`@j s`:
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Rewriting @j s`, we obtain

@j @i sk D
X

`

@cik`
@xj

s` C
X

`

cik`

X

m

c
j

`msm mod I:

Exchanging the roles of i and j , we obtain

@i@j sk D
X

`

@c
j

k`

@xi
s` C

X

`

c
j

k`

X

m

ci`msm mod I:

Since the right-hand sides of both identities agree, we can obtain the conclusion by
utilizing the linearly independent property of sm in the vector space R=I .

6.3 Solutions of Pfaffian Equations

In this section, we prove the existence of solutions of a Pfaffian system. The
theorem is proved by construction; thus the proof provides a method for constructing
solutions. However, this method consists of infinite steps and these solutions are
expressed as series of terms. We can obtain approximate solutions by performing a
finite number of steps.

In order to avoid complicated indices, we consider the case of two variables; the
general case is analogous. Let A andB each be an r�r matrix-valued formal power
series. We will assume that they can be expressed as

A D
X

.p;q/2N20

Apqx
pyq

B D
X

.p;q/2N20

Bpqx
pyq:

Here, Apq and Bpq are r � r matrices for which the elements are complex numbers.
The set running the indices p; q is omitted when it is clear in context. Two indices
may be separated by a comma, such as in ApC1;q . We note that a rational function
(expression) f=g can be expanded into a power series if g.0/ 6D 0.

In order to follow our proof, it is sufficient to consider that a formal power
series is one that can be calculated as a polynomial with infinitely many terms.
To understand our proof rigorously, please refer to textbooks on the theory of
complex analysis [1, 15].

Theorem 6.3.1. We assume that the integrability condition

@A

@y
C AB D @B

@x
C BA
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holds. Let C be an r � r constant matrix. Then, there exists a unique matrix-valued
formal power series F in x; y satisfying

@F

@x
D AF; @F

@y
D BF;F.0; 0/ D C: (6.11)

Moreover, if the series A and B converge at the origin, then the power series F
converges at the origin.

Remark. Any column vector of the matrix F is a solution of the Pfaffian system.

Proof. Set F D P
Fm;nx

myn. From the Pfaffian system, we have recurrence
relations (difference equations) for Fm;n where F0;0 D C is the initial condition.
Indices are separated by commas, as in Fm;n; the comma can be omitted if no
confusion would arise. We now derive these recurrence relations. Note that the
relations x@xxmyn D mxmyn and y@yxmyn D nxmyn hold. Multiplying both sides
of @xF D AF by x, we have x@xF D xAF . From the above relation, we have

x@xF D
X

mFm;nx
myn:

On the other hand, we have

xAF D x
	X

Ap;qx
pyq


 	X
Fr;sx

rys



D
X

m;n2N20

xmC1yn
X

pCrDm;qCsDn
Ap;qFr;s:

Comparing the coefficients of xmC1yn, we obtain the recurrence relation

.mC 1/FmC1;n D
X

pCrDm;qCsDn
Ap;qFr;s: (6.12)

From @yF D BF , we analogously obtain the recurrence relation

.nC 1/Fm;nC1 D
X

pCrDm;qCsDn
Bp;qFr;s: (6.13)

Exercise. Derive the relation (6.13), specifying the computations in detail.
Note that the recurrence relations are overdetermined. For example, there are

two ways to determine F1;1: use F0;0 to determine F1;0 by using (6.12) and then
determine F1;1 by using (6.13), or use F0;0 to determine F0;1 by using (6.13) and
then determine F1;1 by using (6.12). To prove the existence of a solution, we must
show that both ways give the same F1;1. This can be shown by using the integrability
condition.
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Exercise. If the integrability condition does not hold, we may have two possible
values of F1;1, which implies that no solution exists. Give an example of a pair A;B
for which this happens.

In order to prove the existence of a solution, we utilize a reduction of the Pfaffian
system. The outline of our proof is as follows.

1. Set F D .E � xmynQm;n/G, and derive a Pfaffian system for G, whereE is the
identity matrix and Qm;n is a constant matrix to be determined later.

2. Prove that the Pfaffian system for G also satisfies the integrability condition.
Hint 1: We denote by 0 differentiation with respect to a variable. For square
matrices P and Q, we have .PQ/0 D P 0Q C PQ0. Assume Q is the inverse
matrix of P . Then, we have .P�1/0 D �P�1P 0P�1. Hint 2: Use the new
variable H D E � xmynQm;n, .m; n/ 6D .0; 0/ to avoid messy computations.
Utilize the fact that Hxy D Hyx , which means that changing the order of
differentiation does not change the output. Hint 3: Let the inverse matrix H beP
Rmnx

myn, derive a recurrence to determine Rmn, and prove that there exists
an inverse matrix H expressed as a formal power series. Moreover show that
R00 D E and Rij D 0, .0 < i C j < mC n/.

3. Choose suitable constant matrices Qm;n such that the composite of the transfor-
mations of the form in item 1 translates the Pfaffian system into the trivial system
@xF D 0; @yF D 0.

We now begin our proof.

1. Let H D E � xmynQm;n where E is the identity matrix and Qm;n is an
undetermined constant matrix. Set F D HG, and substitute HG for F in
the Pfaffian system. Then, we have HGx D .AH � Hx/G, HGy D .BH �
Hy/G, where Gx and Gy are partial derivatives of G with respect to x and y,
respectively, and Hx and Hy are partial derivatives of H with respect to x and
y, respectively. Multiplying both sides by H�1, we obtain

Gx D H�1.AH �Hx/G; Gy D H�1.BH �Hy/G:

2. We leave as exercises the computation of the inverse of H and the proof that the
Pfaffian for G satisfies the integrability condition.

3. Assume that the matrixA is expressed asA DPn A0ny
nCxm�1P

n Am�1;nynC
O.xm/. Since we have H�1 D E C xmynQm;n C O.x2m/ and Hx D
�mxm�1ynQm;n, we obtain the identity

H�1.AH �Hx/ D
X

n

A0ny
nCxm�1X

n

Am�1;nyn�mxm�1ynQm;nCO.xm/:

Hence, if we choose Qm;n such that mQm;n D Am�1;n, then the coefficient of
xm�1yn inH�1.AH �Hx/, which will be called a new A, can be made to equal
0. We make an analogous computation for the y direction. Assume that the matrix
B is expressed as B DPm Bm0x

m C yn�1P
m Bm;n�1xm CO.yn/. We have
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H�1.BH �Hy/ D
X

m

Bm0x
mCyn�1X

m

Bm;n�1xm�nxmyn�1Qm;nCO.yn/:

We will call H�1.BH �Hy/ a new B . If we choose Qm;n such that nQm;n D
Bm;n�1 holds, then we can make the coefficient of xmyn�1 of the new B equal
to 0.

Repeating the substitution F D HG and the construction of H , we update
the matrix A. After infinite repetitions, we finally obtain an A such that A.y/ DP

n A0ny
n holds. Set F D exp.xA.y//G, and derive a Pfaffian system for G.

Replace G with F , and the new Pfaffian system can be written as Fx D 0, Fy D
BF . We apply the integrability condition, and obtain Bx D 0, which means that B
depends only on y. We apply an analogous transformation for Fy D B.y/F . After
infinite repetitions of this type of transformation, we finally obtain the equation
Fy D B00F . Since these transformations have the form H D E � ynQ0n,
the equation Fx D 0 retains this form under the transformation. In conclusion,
we obtain the trivial Pfaffian system Fx D 0; Fy D 0 by the transformation
F D exp.yB00/G. The solution of the trivial Pfaffian system is a constant matrix.
Multiplying the constant matrix by the composite of the transformation matrices
H ’s, we obtain a solution of the original Pfaffian system.

It is suggested that the reader complete the proof sketched above. Completing the
details after hearing a sketch allows for a deeper understanding than is obtained by
simply reading a proof; this is especially true for theorems on power series.

Uniqueness follows from the recurrence relations.
Exercise. Give an example of a pair A and B which satisfies the integrability
condition, and determine a power series solution.

We have proved the unique existence of the power series solution. We now
prove the convergence of the matrix-valued power series solution. In order to prove
convergence, we need to use the elementary theory of complex analysis (see, e.g.,
[1] or [15]). For a matrix C D .cij /, we define the norm of C by jC j D maxjcij j.
This notation can be confused with that for the determinant, but in this proof, we will
use only the norm. We have the estimate jC1C2j � r jC1jjC2j for r � r matrices Ci .

We will prove that the series
P jFpqjjxjpjyjq converges when jxj; jyj < � for

sufficiently small �. Here, by the convergence of
P jFpq jjxjpjyjq , we mean that the

partial sum
P

pCq<N jFpq jjxjpjyjq converges when N !1.
Since A and B are matrix-valued convergent power series, there exist

positive numbers C and ˛ such that jApq j; jBpq j � C˛pCq . We note thatP
pq C˛

pCqxpyq D C
.1�˛x/.1�˛y/ holds. The constant matrices Fm;n are determined

by (6.12) and (6.13), and we have the inequality

.mC 1/jFmC1;nj �
X

pCrDm;qCsDn
r jApq jjFrsj:
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(The index r in the expression does not mean the matrix size; it is used to avoid
messy indices.) Consider the sequence fm;n determined by

.mC 1/fmC1;n D rC
X

pCrDm;qCsDn
˛pCq

 
p C q
p

!
frs

.nC 1/fm;nC1 D rC
X

pCrDm;qCsDn
˛pCq

 
p C q
p

!
frs:

If we set f0;0 D jF00j, we have the estimation jFmnj � fmn. Now, we consider the
system of differential equations

@f

@x
D rC

.1 � ˛x � ˛y/f;
@f

@y
D rC

.1 � ˛x � ˛y/f:

The series solution of this system is
P
fmnx

myn. Note that the solution is a constant
multiple of the function .1 � ˛x � ˛y/�rC=˛ . Expanding it as a Taylor series, we
obtain an estimation of jFmnj, and consequently, we can prove the convergence
of our formal series solution. This method of constructing the series fm;n, which
bounds the norm of Fm;n from above, is called the method of majorant series. We do
not try to estimate fm;n directly, but rather estimate it by solving a simple system of
differential equations. This method can be applied to several problems.

In the numerical analysis of F , we usually use the finite difference method to
obtain approximate values, as follows. Let hx and hy be sufficiently small positive
numbers. Note that we have the system @x�F D AF , @y�F D BF . Since the partial
derivative @x � F is approximated by .F.x C hx; y/� F.x; y// =hx and the partial
derivative @y � F is approximated by

�
F.x; y C hy/� F.x; y/

�
=hy , we have

F.x C hx; y/ D F.x; y/C hxA.x; y/F.x; y/;
F.x; y C hy/ D F.x; y/C hyB.x; y/F.x; y/:

Here, the symbol D indicates that the left- and right-hand sides are approximately
equal. The left-hand sides are the values of F at .x C hx; y/ and .x; y C hy/,
respectively. On the other hand, the right-hand sides are expressed in terms of only
the value of F at .x; y/. In summary, the values of F at .x C hx; y/ and .x; y C
hy/ are approximately determined by the value of F at .x; y/. By repeating this
procedure, we can use an initial value of F to determine approximate values of F at
several points. This method of obtaining approximate values of F is called the finite
difference method.

Theorem 6.3.2. Assume that matrix valued functions A and B are holomorphic
on the closed domain E D Œax; bx� � Œay ; by�. Let the initial value of F at
.ax; ay/ 2 E be F0;0. Take sufficiently small positive numbers hx and hy and
determine a sequence Fm;n by the recurrences
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FmC1;n D Fm;n C hxA.mhx; nhy/Fm;n;
Fm;nC1 D Fm;n C hyB.mhx; nhy/Fm;n;

where the second recurrence is applied, followed by the first one. Set M C 1 D
b.bx � ax/=hxc and N C 1 D b.by � ay/=hyc. Suppose that the function F.x; y/
is a solution of the Pfaffian system satisfying F.0; 0/ D F0;0. Then there exists a
constant C which does not depend on hx; hy , such that the estimation

jF.mhx; nhy/ � Fm;nj � Cmax.hx; hy/

holds for any m and n satisfying 0 � m �M , 0 � n � N .

This theorem says that when hx and hy converge to 0, then the approximate solution
found by the finite difference method converges to a solution of the Pfaffian system.

Proof. The solution F is holomorphic on E; in particular, the derivatives Fxx D
@2x � F and Fyy D @2y � F , are continuous. Without loss of generality, we may
assume ax D 0 � x � bx and bx D 0 � y � by . In other words, we assume
that the domain E is defined by these inequalities, and the initial value is given at
the point .x; y/ D .0; 0/. We denote AF by g1.x; y; F / and BF by g2.x; y; F /.
Note that gi is a vector-valued function. We define the norm jvj of an r-dimensional

vector v as
q
v21 C � � � C v2r . Since the matrix-valued functionsA andB do not have

singularities in E , there exists a constant Li such that the inequality

jgi .x; y; F / � gi .x; y;G/j � Li jF �Gj

holds for any .x; y/ 2 E and any vector F;G. This property is called the Lipschitz
continuity of gi . Set xm D mhx and yn D nhy . When F is a solution, we denote
by fmn the value of F at .x; y/ D .xm; yn/; i.e., fmn D F.xm; yn/. We denote by
Fmn the sequence determined by the finite difference method. The value ofFmn may
depend on the choices made when applying the recurrence relations, as explained
above. We fix the choices by determining F0n from F00 by recurrence with respect
to n, and then determining Fmn by recurrence with respect to m.

When we need to clearly distinguish between two indices, we will separate them
by a comma, as in FmC1;n. Consider the Taylor expansion of F with respect to x:

fmC1;n D F.xmChx; yn/ D F.xm; yn/CFx.xm; yn/hxC 1
2
Fxx.xmC	hx; yn/h2x:

Here, 	 satisfies 0 < 	 < 1. Rewriting the right-hand side by using the Pfaffian
system, we obtain

fmC1;n D fmn C g1.xm; yn; fmn/hx C 1

2
Fxx.xm C 	hx; yn/h2x:
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On the other hand, the sequence satisfies

FmC1;n D Fm;n C hxg1.xm; yn; Fmn/:

From these two identities, we obtain a recurrence for the error

fmC1;n�FmC1;n

D fmn�FmnC.g1.xm; yn; fmn/�g1.xm; yn; Fmn//hxC1
2
Fxx.xmC	hx; yn/h2x:

We obtain the following estimate of the error from the existence of a constant M 0
such that

ˇ̌
1
2
Fxx.xm C 	hx; yn/

ˇ̌ �M 0 holds onE and from the Lipschitz continuity
of g1:

jfmC1;n � FmC1;nj � jfmn � Fmnj C L1 jfmn � Fmnj hx CM 0h2x:

Recursively applying this estimate, we obtain

jfmC1;n � FmC1;nj
� .1C L1hx/mC1 jf0n � F0nj C .1C .1CL1hx/C � � � C .1CL1hx/m/M 0h2x

� .1C L1hx/mC1
�
jf0n � F0nj C M 0hx

L1

�
:

Analogously, we have

jfm;nC1 � Fm;nC1j � .1C L2hy/nC1
�
jfm0 � Fm0j C M 00hy

L2

�
:

In particular, we have

jf0;nC1 � F0;nC1j � M 00hy
L2

.1C L2hy/nC1:

From these two estimates, we have

jfm;n � Fm;nj � .1C L1hx/m
�
M 00hy
L2

.1C L2hy/n C M 0hx
L1

�
:

Note that when .x; y/ 2 E , we have m � bx=hx and n � by=hy . We then can
obtain the estimate .1 C L1hx/m � .1C L1bx=m/m � eL1bx and .1 C L2hy/n �
eL2by . Summarizing these estimates, we finally obtain the conclusion

jfmn � Fmnj �
�
eL1bx eL2by

M 00

L2
C eL1bx M

0

L1

�
max.hx; hy/:
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Tip 1 When the finite difference method gives overdetermined recurrence relations,
in general, the values of Fmn depend on the order in which the relations are
applied. Finding good system of recurrence relations which satisfy the compatibility
condition (or the difference analog of the integrability condition) is currently a very
active topic of research in the theory of integrable systems.

Below, we will apply Pfaffian systems to the holonomic gradient descent; for that,
we will need a system of the form (6.14), which is called an inhomogeneous
Pfaffian system. When Ui 6D 0, the zero function F D 0 is not a solution of the
inhomogeneous system. The following theorem gives a condition for the existence
of a solution of the inhomogeneous Pfaffian system.

Theorem 6.3.3. Let Ui be a vector-valued function which is holomorphic at
the origin. The matrix-valued holomorphic function Pi satisfies the integrability
condition (6.10) around the origin. The necessary and sufficient condition that the
system

@F

@xi
D PiF C Ui ; i D 1; : : : ; n (6.14)

has a matrix-valued holomorphic solution F , such that F.0/ D E , is that

PiUj C @Ui

@xj
D PjUi C @Uj

@xi
(6.15)

holds for any pair of i and j .

Proof. Assume that there exists a matrix-valued solution. Differentiate (6.14) by xj .
Replace i by j in (6.14) and differentiate it by xi . We obtain two identities. The
left-hand sides of both identities are now equal, and so the right-hand sides are
equal. Apply relation (6.10), and we obtain condition (6.15). Hence, this condition
is necessary.

We now show that this condition is sufficient. Let Q be an invertible matrix-
valued function (we assume that the inverse is also holomorphic at the origin), and
letG be a new dependent vector. SubstituteF D QG in the system, and we obtain a
system forG asQiGCQGi D PiQGCUi . Here, we use the abbreviated notation
Qi D @Q

@xi
, Gi D @G

@xi
. The new system is expressed as

Gi D .Q�1PiQ �Q�1Qi /G CQ�1Ui :

We can regard the function .Q�1PiQ � Q�1Qi/ as a new Pi and Q�1Ui as a
new Ui . We want to show the following identity:

.Q�1PiQ�Q�1Qi /Q
�1UjC@.Q

�1Ui /
@xj

D .Q�1PjQ�Q�1Qj /Q
�1UiC@.Q

�1Uj /
@xi

:

(6.16)
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Here, we use the abbreviation Uij D @Ui
@xj

. (Note that Uij D Uji does not

necessarily hold.) The left-hand side of (6.16) is .Q�1PiQ � Q�1Qi/Q
�1

Uj �Q�1QjQ
�1Ui CQ�1Uij D Q�1PiUj �Q�1QiQ

�1Uj �Q�1QjQ
�1Ui C

Q�1Uij . The right-hand side of (6.16) is Q�1PjUi � Q�1QjQ
�1Ui �

Q�1QiQ
�1Uj C Q�1Uj i . It follows from the condition (6.15) that the left- and

right-hand sides agree. Thus, we see that the new system for G also satisfies
condition (6.15). By construction of transformation matrices Q that is analogous
to the homogeneous case (the proof of Theorem 6.3.1), we can finally translate the
system into the form @F

@xi
D Ui . Here, we note that the identity @Ui

@xj
D @Uj

@xi
holds for

any i and j . The famous Poincaré Lemma claims that there exists a solution F for
this system. In order to prove it, we use Stokes’ theorem. More precisely, for a path
Cx which connects the origin and x, we define F by the integral

R
Cx

Pn
iD1 Uidxi .

By Stokes’ theorem, the vector-valued function F does not depend on the choice
of path Cx. The reader is asked to prove that the function F is holomorphic and
satisfies the system. Another way of proving the existence of the solution of the
simplified system is to derive the series expansion of F from the series expansion
of Ui .

Tip 2 For simplicity, we assume r D 1. In this case, Pi is a scalar-valued function.
It follows from the integrability condition (6.10) that the set G D f@i � Pi j i D
1; : : : ; ng is a Gröbner basis in R with the graded lexicographic order. In fact,
we have

sp.@i � Pi ; @j � Pj /
D @j .@i � Pi /� @i .@j � Pj /

D � @Pi
@xj
� Pi@j C @Pj

@xi
� Pj @i

D �Pi .@j � Pj /C Pj .@i � Pi/:

If we introduce ei D @i � Pi , then we have

.@j � Pj /ei � .@i � Pi/ej D 0 (6.17)

from the above expressions for S polynomials. From the discussion in Sect. 3.5.3,
we can see that these are generators of the syzygies of G. Let us replace ei in (6.17)
formally by �Ui . Then, we obtain

@Ui

@xj
� PjUi D @Uj

@xi
� PiUj :

This is the condition (6.15) for the existence of a solution to the inhomogeneous
system. A generalization of this observation is one of the foundations of the theory
of D modules.
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In order to create an algorithm for the construction of a series solution of
the system (6.14), it is more useful to determine the coefficients of the series
expansion by recurrence, rather than by following the construction of the proof.
These recurrence relations form an overdetermined system, but the existence of a
solution was ensured by our theorem, and the overdetermined system is consistent.
We consider this method for the case of two variables. Let

F D
1X

i;jD0
Fij x

i yj :

Here, Fij is an r-dimensional vector of complex numbers. The .1; 1/ degree of xiyj

is defined by ord.1;1/.xiyj / D i C j . We also set the .1; 1/ degree of Fij to i C j .
We will determine Fij degree by degree. For k D 1; 2, we assume that Pk and Uk
are expanded as

Pk D
1X

i;jD0
P k
ij x

i yj

Uk D
1X

i;jD0
U k
ij x

i yj :

Since @F
@x
D P1

i;jD0 iFij xi�1yj holds, by comparing the coefficients of xiyj ,
we have

.i C 1/FiC1;j D
X

sCuDi;tCvDj
P 1
stFuv C U 1

ij (6.18)

.j C 1/Fi;jC1 D
X

sCuDi;tCvDj
P 2
stFuv C U 2

ij : (6.19)

Set m D i C j C 1. The .1; 1/ degree of Fuv on the right-hand side is less than or
equal to m � 1. On the other hand, the .1; 1/ degree of the FiC1;j on the left-hand
side is m; the .1; 1/ degree of Fi;jC1 is also m. Hence, if we obtain the value of
F00, the coefficient Fij is determined from those of less degree. The coefficient Fm0
is determined only from (6.18), and that of F0m only from (6.19); however, other
coefficients for which the .1; 1/ degree is m may be determined by (6.18) or (6.19).
Recurrence relations form an overdetermined system. By virtue of the existence
theorem, the coefficients are uniquely determined without dependence on the order
of recurrence.

In order to perform this algorithm on a computer, it is necessary to retain the
coefficients Fuv that are computed. Thus, if we want to compute coefficients of high
degree or to evaluate the series efficiently and precisely, further development may
be necessary, depending on the situation.
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Tip 3 When the matrix-valued functions Pi and Ui are not holomorphic, it is
important in both theory and applications to describe the local solutions of the
Pfaffian system. Several cases of this situation have been studied. When the singular
locus crosses normally, and Pi has a first-order pole, a method for constructing
solutions was given in [35]. The problem of an efficient method, however, does
not seem to be well studied. Higher-order poles are currently being studied. Note
that a search in the mathsci-net for the book [19] yields several active studies.
In [18], Majima discusses attempts to construct solutions. This direction will be
important, and the author expects future advances of the computational study of
Pfaffian systems.

6.4 Holonomic Functions

The function defined by the series

X

ˇ2Nn0

cˇ.x � a/ˇ; cˇ 2 C; .x � a/ˇ D
nY

iD1
.xi � ai /ˇi (6.20)

which is absolutely convergent at a 2 Cn is called a holomorphic function at
x D a. We note, for those readers who are not familiar with complex analysis, that
holomorphic functions have several useful properties. For instance, by regarding
infinite series as polynomials with infinitely many terms, the sums, products, and
differentials of holomorphic functions can be obtained by computing the sums,
products, and differentials of the series; this method is called formal computation
(see, e.g., [1, 15], and the references cited therein).

We are given a holomorphic function f at x D a in Cn. When there exists a 0-
dimensional ideal I inR and the function f is a solution of I , (in other words, when
L � f D 0 holds for any L 2 I ) f is a holonomic analytic function. When f is a
distribution and is a solution of a holonomic ideal defined in Sect. 6.8, the function is
called a holonomic distribution. We will simply call a holonomic analytic function
a holonomic function.

The following theorem says that a holonomic function, which is defined as a
series around the point a, can be extended to a broader domain. The proof requires
several theorems from complex analysis, and so we will not prove it here.

Theorem 6.4.1. Let f be a holonomic function. There exists a polynomial p such
that the function f can be analytically continued to the universal covering space
of Cn n V.p/. The polynomial p is a divisor of the least common multiple of
the denominator polynomials of the coefficient matrices Pi ’s of a Pfaffian system
associated with the function f .

The analytic set V.p/ is called the singular locus of the holonomic function f .
The zero set of the least common multiple is called the singular locus of the Pfaffian
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system. In Example 6.5.4, presented later, the set y D 0 is the singular locus of the
Pfaffian system, although the solution does not have singularities, and so p D 1.
Thus, in general, the singular locus of the holonomic function and the singular
locus of the Pfaffian system do not agree. The theory of D-modules will help us
to understand this gap.

Tip 4 Analytic continuation is one of the most important and exciting ideas in
complex analysis. Exercise: Explain how analytic continuation along a circle
around the origin changes the function

p
x to �px.

A remarkable property of holonomic functions is that the integral of a holo-
nomic function is again a holonomic function. This property will be presented in
Theorem 6.10.14, but first we present some examples of holonomic functions.

Example 6.4.2. The polynomials and rational expressions (with complex coeffi-
cients) are holonomic functions. Let f be a rational expression. We denote by fi
the differential @f

@xi
. For 1 � i � n, we have @i � fi=f 2 R. These generate a

0-dimensional left ideal in R, and f is annihilated by these operators.

Example 6.4.3. Let h be a rational expression. Then, the function cos.h/ is a
holonomic function. Set hii D @2h

@x2i
. The function cos.h/ is annihilated by @2i �

hii
hi
@i C .hi /2 2 R for 1 � i � n, and these operators generate a 0-dimensional left

ideal.

Example 6.4.4. The function 1
sin x is not a holonomic function because it has

singularities at x D 2�k, k 2 Z. If the function 1
sinx were a holonomic function,

then by the above theorem, the singular points would be finite. Therefore, this
function is not a holonomic function.

We note that the notion of holonomic functions was introduced by Zeilberger,
who gave exciting applications of them to special function identities and combina-
torial identities [36].

Tip 5 A goal of the study of holonomic functions is to be able to manipulate and
understand holonomic functions as we do polynomials and trigonometric functions.
Readers will be able to suggest new problems using holonomic functions by keeping
this goal in mind.

6.5 Gradient Descent for Holonomic Functions

There are several applications for Gröbner bases in R. To illustrate, in this section
we present an application of approximating a local minimum of a holonomic
function g. This is a new method that was introduced in [21] to solve problems
in statistics.

Following [22], we consider the recurrence relation

z.kC1/ D z.k/ C akd .k/ k D 0; 1; 2; : : : : (6.21)
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Here, fz.k/g is a sequence in Rn such that g.z.k// converges to a local minimum of
the function g. The number ak 2 R>0 is called the step length, and the vector d .k/

is called the search direction. In many optimization algorithms, the search direction
has the following form

�H�1
k rg.z.k//: (6.22)

Here,H�1
k is an n�nmatrix. When the matrixHk is the identity matrix, the method

for finding a local minimum by this sequence is called the method of gradient
descent, and when the matrix is the Hessian matrix of g, it is called Newton’s
method.

For a holonomic function g, the gradient rg and the Hessian Hk of g have the
following “good” expressions in terms of a Gröbner basis. Let I be a 0-dimensional
ideal in R D Rn which annihilates the function g. Assume that the dimension of
the vector space of R=I over the field of the rational expressions is r . We fix a term
order and obtain a Gröbner basis B of the ideal I . Let S D fs1; : : : ; srg be a set of
(nonmonic) standard monomials of the basis, which is a vector-space basis of R=I .
Define a vector of functionsG as G D .s1 � g; : : : ; sr � g/T .

Lemma 6.5.1. 1. Let
Pr

jD1 aij sj be the normal form of @i D @=@zi expressed by
the Gröbner basis B . Here, aij 2 C.z1; : : : ; zn/. Let A be a matrix for which the
.i; j /-th entry is aij . Then, the gradient of G can be expressed as

rg.z.k// D A.z.k//G.z.k//:

2. Let
P

k uijksk be the normal form of @i@j expressed by the Gröbner basis B .
Here, uijk 2 C.z1; : : : ; zn/. Then, the Hessian of g is expressed as

@2g

@zi @zj
.z.k// D .uij1.z.k//; : : : ; uijr .z.k///G.z.k//:

Note that aij ; .j D 1; : : : ; r/ agrees with the first row of the matrix Pi of the
Pfaffian equation (6.9).

Proof. Since the relations @i �Pj aij sj 2 I and I � g D 0 hold, we have @i � g DP
sj2S aij .sj � g/. Thus, we obtain (1). Statement (2) can be shown analogously.

Let p0 be the polynomial for the singular locus of a Pfaffian system associated
with the holonomic function g, and let E be a simply connected domain in Rn n
V.p0/. We assume that the sequence z.k/ stays in the domain E .

Algorithm 6.5.2 (Holonomic Gradient Descent).

1. Compute a Gröbner basis of the left ideal I in R. Find the set S of the standard
monomials of the Gröbner basis.

2. Compute the matrix Pi in the Pfaffian equation (6.9) by using the normal form
algorithm, the Gröbner basis, and S .
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3. Compute the normal form of @i by using the Gröbner basis, and obtain the matrix
.aij / to express the gradient of g.

4. Take a point z.0/ as a starting point. Numerically evaluate the vector-valued
function G at the point z D z.0/. Define the approximate value as NG. Set k D 0.

5. Numerically evaluate .aij .z.k/// NG. The value is an approximation of the gradient
� Qg D rg at z.k/. If a stopping condition of the loop is satisfied (for instance
Qg D 0), then stop the loop.

6. Let z.kC1/ D z.k/ C ak Qg. (Move to the new evaluation point z.k/ C ak Qg.)
7. Approximately evaluate G at z D z.kC1/ by numerically solving the Pfaffian

system (6.9). Let NG be the approximate value. Increase k by 1. Go to the step 5.

In step 6, the number ak is the step length; its size should be determined by standard
recipes for the gradient descent method. The simplest step length is ak D "

j Qgj , where
" is a sufficiently small positive number. In order to numerically solve the Pfaffian
system in the step 7, we use the finite difference and series expansion methods that
were explained in Sect. 6.3. Methods that use the Pfaffian system to evaluate the
vector-valued function G are called holonomic gradient methods.

Example 6.5.3. Here is an example for the case n D 1. We consider the function
g.x/ D exp.�x C 1/ R1

0
exp.xt � t3/dt , which satisfies the differential equation

.3@2x C 6@x C .3 � x// � g D exp.�x C 1/. A method to derive this equation by
a computer or in an algorithmic way will be explained in Example 6.10.12. Define
S D f1; @xg as a set of standard monomials. Then, we have the inhomogeneous
Pfaffian system

dG

dx
D
�

0 1

.�3C x/=3 �2
�
G C

�
0

exp.�x C 1/=3
�
:

The gradient is expressed as rg D G2 D
�
0 1
�
G. Here, G2 denotes the second

element of the vector G. We evaluate G.0/ D .g.0/; g0.0//T using a numerical
integration algorithm and obtain NG.0/ D .2:427;�1:20/T . In the closed interval
E D Œ0; 5�, we apply the fourth-order Runge–Kutta method and the holonomic
gradient descent method by putting Hk D 1, hk Qg D �0:1. Then, we find an
approximate local minimum g.3:4/ D 1:016 at the point x D 3:4. The graph of the
function g.x/ is illustrated in Fig. 6.1. The gradient descent method in one variable
can be viewed as Euler’s method for solving an ordinary differential equation.

In the example above, we used an inhomogeneous ordinary differential equation.
We note that the gradient vector can also be obtained by using a Gröbner basis in
the general case of inhomogeneous systems of linear differential equations. This is a
generalization of Lemma 6.5.1. Suppose that the 0-dimensional ideal I is generated
by `1; : : : ; `m. The target holonomic function g satisfies the inhomogeneous system
of linear differential equations `i � g D ui . Let B be a Gröbner basis, and let
S D fs1; : : : ; srg be the set of the standard monomials. As in the lemma, we obtain
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Fig. 6.1 Graph of g.x/ (solid line)

P
aij sj by computing the normal form of @i by using the Gröbner basis B . Then,

there exist cik 2 R satisfying @i�P aij sj DPk c
i
k`k. Applying this to the function,

we obtain an expression of the gradient

@i � g D
X

aij sj � g C
X

k

cikui

in terms of G and ui .

Example 6.5.4. An example when n D 2. A holonomic function f satisfies the
system of linear partial differential equations

L1 � f D L2 � f D 0;L1 D y@x � x@y; L2 D @x@y C 4xy
and takes approximate values f D 0:7120, @y � f D �1:9660 at x D y D 1:4.
We will find a local minimum of f by using the holonomic gradient descent
method, starting from this point. We translate this system into a Pfaffian system,
then we compute a Gröbner basis in R with the graded lexicographic order, such
that @x � @y . We then calculate the S -polynomial of L1, L2 as

@yL1 � yL2 D y@x@y C @x � x@2y � y@x@y � 4xy2 D �x@2y C @x � 4xy2:
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Set this element to L3. We can see that the set fL1;L2; L3g is a Gröbner basis. The
set f1; @yg is the set of standard monomials. We can now translate the system into
the Pfaffian system. Set

P D
�

0 x=y

�4xy 0

�
;Q D

�
0 1

�4y2 1=y
�
; F D

 
f
@f

@y

!
:

Then, we obtain the Pfaffian system

@F

@x
D PF; @F

@y
D QF:

Since the normal form of @x is x
y
@y , the gradient is �rf D .�xF2=y;�F2/. Here,

F2 denotes the second element of the vector F .
It follows from �rf D .�xF2=y;�F2/ and the initial value of f that the

approximate value of �rf at .x; y/ D .1:4; 1:4/ is d D .1:9660; 1:9660/. The
evaluation point is thus moved in the direction of d by the holonomic gradient
descent. By moving the point by d � 0:01, the new evaluation point .x; y/ becomes
.1:4197; 1:4197/, and the approximate value ofF at this point is .0:6300;�2:2051/.
We repeat this procedure until the condition jd1j < 0:1, jd2j < 0:1 is satisfied.
The iterations are stopped at .x; y/ D .1:7685; 1:7685/, and we obtain F D
.�0:9996;�0:09865/; thus, an approximate local minimum is located at �0:997.

In fact, the function f of this example is� cos.x2Cy2/. A graph of this function
on Œ1:4; 3:4� � Œ1:4; 3:4� is shown as Fig. 6.2. We note that in order to obtain a local
minimum, the holonomic gradient descent method uses only differential equations
of f and an initial value. This method is useful when f cannot be expressed in
terms of special functions. Research problem: This function has a local minimum at
x D y D 0. How do we find this point?

6.6 Gröbner Bases in the Ring of Differential Operators
with Polynomial Coefficients D

The ring of differential operators with polynomial coefficients D has a finer
structure than the ring with rational function coefficients R, and we thus need
more complicated algorithms for constructing in D. Our goal is to present the
theory of the D-module integration algorithm. We will assume that readers are
familiar with quotient spaces by equivalence classes and abstract linear algebra. For
quotient spaces, we refer the reader to Sect. 1.6.1 or introductory books on modern
mathematics. More advanced algebra is necessary for the study of D than that for
R, and we will cover this in the following sections.

We consider a noncommutative polynomial ring

Dn D Chx1; : : : ; xn; @1; : : : ; @ni
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which is generated by x1; : : : ; xn; @1; : : : ; @n with the following relations and
properties:

1. The associative and distributive laws hold;
2. xixj D xj xi ; @i @j D @j @i , @ixj D xj @i (1 � i 6D j � n);
3. @ixi D xi @i C 1 (1 � i � n).

By virtue of these, in monomials, we can collect all the @i ’s onto the right-hand side.
For example, we have @21x1 D @1.@1x1/ D @1.x1@1C1/ D .@1x1/@1C@1 D .x1@1C
1/@1 C @1 D x1@

2
1 C 2@1. It is important to prove that these rules are consistent.

Intuitively speaking, the rule @ixi D xi@i C 1 comes from the well-known Leibniz
rule @

@xi
.xif / D xi @f@xiC @xi

@xi
f , where f is a function and @i is regarded as the partial

differential operator with respect to the variable xi . Since the relation comes from
the Leibniz rule, we can expect that these rules for Dn are consistent. In order to
give a rigorous proof, we define Dn as a subring of EndC.CŒx1; : : : ; xn�/ generated
by xi , @i . See, e.g., [12, Chap. 1] for details.

The ring of differential operators Dn is called the Weyl algebra, and it is often
denoted by An. Below, we will omit the subscript n of Dn if to do so will not cause
confusion.

Let u; v 2 Rn be n-dimensional real vectors. When the relation ui C vi � 0

holds for any i , the pair of vectors .u; v/ is called the weight vector in the ring of
differential operatorsD. We put

ord.u;v/.x
˛@ˇ/ D u � ˛ C v � ˇ
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for a weight vector .u; v/. Here, the symbols u � ˛ and v �ˇ denote the inner product
of u and ˛ and the inner product of v and ˇ, respectively.

For p DP.˛;ˇ/2E c˛;ˇx˛@ˇ 2 D, we define the .u; v/ degree or .u; v/ order by

ord.u;v/.p/ D max.˛;ˇ/2E ord.u;v/.x˛@ˇ/:

When the inequality ui C vi > 0 holds for any i , we define

in.u;v/.p/ D
X

.˛;ˇ/2E;˛�uCˇ�vDm
c˛;ˇx

˛�ˇ; m D ord.u;v/.p/: (6.23)

For p 2 D, we call the polynomial in.u;v/.p/ the .u; v/ initial term of p. Here,
the variables xi and �j are commutative, and in.u;v/.p/ is an element of the ring
of polynomials CŒx; ��. It follows from the condition ui C vi > 0 and the Leibniz
rule that p does not necessarily need to be a normally ordered expression (the form
where the @’s are collected onto the right-most position of each monomial as in p
above) in order to define in.u;v/.p/. The polynomial in.u;v/ is aD analog of the initial
form defined in Chap. 5 and is not necessarily a monomial.

We next assume that the relation ui C vi D 0 holds for any i . For p DP
.˛;ˇ/2E c˛;ˇx˛@ˇ 2 D, we define the initial term as

in.u;v/.p/ D
X

.˛;ˇ/2E;˛�uCˇ�vDm
c˛;ˇx

˛@ˇ; m D ord.u;v/.p/: (6.24)

Note that the operator @i is not replaced by �i , and the initial term in.u;v/.p/ is again
an element of D. Note that all terms in the relation @ixi D xi@i C 1 have the .u; v/
degree 0 under the condition ui C vi D 0.

The mixed case of ui C vi D 0 and uj C vj > 0 is not used in the book; for a
consideration of this case, refer to [29].

In this chapter, an element of the form c˛ˇx
˛@ˇ , c˛ˇ 2 C is called a monomial in

D. The constant c˛ˇ is called the coefficient of the monomial. If the order satisfies
the condition of Lemma 1.1.16, it is called a well-order. (Note that we ignore the
coefficients of the monomials when comparing them with this order. For example,
the monomials @i and 2@i have equal order.) A well-order 	 among monomials
of D that satisfies the following is called the term order in D: (1) 1 	 xi @i ; and
(2) if x˛@ˇ � xa@b , then x˛Cs@ˇCt � xaCs@bCt holds for any xs@t . For example,
the (pure) lexicographic order is a term order. The term order in this chapter is a
D analog of the monomial order in the ring of polynomials that was defined in
Sect. 1.1.4. We note that the term “monomial order” is used with a different meaning
in [29], which is one of standard textbooks for Gröbner bases inD. In order to avoid
confusion and to be consistent with [29], we call the above order the term order.

Let .u; v/ be a weight vector, and let 	 be a term order. We define an induced
order 	.u;v/ by
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x˛@ˇ 	.u;v/ x˛0

@ˇ
0

(6.25)

, u � ˛ C v � ˇ < u � ˛0 C v � ˇ0

or .u � ˛ C v � ˇ D u � ˛0 C v � ˇ0

and x˛@ˇ 	 x˛0

@ˇ
0

/:

(6.26)

This order refines the partial order defined by .u; v/. We define the initial monomial
(leading monomial) ofp in�.u;v/ .p/ by the largest monomial with respect to the order
	.u;v/ in the polynomial obtained by replacing @i by �i in p. Note that the coefficient
of an initial monomial in R is a rational expression of x, and the coefficient of an
initial monomial in D is an element of C. In the following, when we say p 	.u;v/ q
for p; q 2 D, we mean that in�.u;v/ .p/ 	.u;v/ in�.u;v/ .q/.

Weight vectors in which either ui or vi takes a negative value play an important
role in the theory of Gröbner bases for the ring of differential operatorsD. The order
	.u;v/ is not necessarily a well-order. When the inequality ui ; vi � 0 holds for any
i , the order 	.u;v/ is a term order and consequently is a well-order.

Example 6.6.1. We set n D 2 and .u; v/ D .0; 0; 1; 1/. Let � be the lexicographic
order such that @1 � @2 � x1 � x2. When the fi ’s are nonzero monomials in x1; x2,
we have

f1.x1; x2/@1 �.u;v/ f2.x1; x2/@2 �.u;v/ f3.x1; x2/:

We set n D 2 and .u; v/ D .�1;�1; 1; 1/. Let � be the lexicographic order such
that @1 � @2 � x1 � x2. Set 	i D xi@i . When the fi ’s are nonzero monomials in
two variables, we have

f1.	1; 	2/@1 �.u;v/ f2.	1; 	2/ �.u;v/ f3.	1; 	2/x1:

We note that there exists an infinite descending sequence

1 �.u;v/ x1 �.u;v/ x21 �.u;v/ x31 �.u;v/ � � �

and so this order is not a well-order.

Example 6.6.2. Here are some examples of frequently used weight vectors .u; v/:

1. .0; 1/ where u D .0; 0; : : : ; 0/, v D .1; 1; : : : ; 1/.
2. .1; 1/ where u D .1; 1; : : : ; 1/, v D .1; 1; : : : ; 1/.
3. .�w;w/ for w 2 Rn.

Let G be a subset of D. We denote by in�.G/ the set fin�.g/ j g 2 Gg.
The left ideal generated by in�.G/ in CŒx; �� is denoted by hin�.G/i and is a
monomial ideal. When G is a left ideal in D and no confusion arises, we may



308 N. Takayama

omit the symbols h; i. We denote by in.u;v/.G/ the set fin.u;v/.g/ j g 2 Gg. The ideal
hin.u;v/.G/i lies in CŒx; �� when ui C vi > 0, or in D when uC v D 0. When G is
a left ideal and no confusion arises, we may omit the symbols h; i.

Let I be a left ideal inD, and let	 be a term order inD or an order	.u;v/ defined
by the weight vector .u; v/. A finite subset G of D is called a Gröbner basis of I
with respect to 	 when the set G generates I and the relation hin�.G/i D in�.I /
holds.

When the order 	 is a well-order, Gröbner bases can be obtained in a way
analogous to the cases of the ring of polynomials andR. When we perform divisions
and compute S polynomials, we multiply monomials to cancel initial terms, and
these monomials must be multiplied from the left. Almost all the fundamental
properties that were presented in Chap. 1 also hold here. It is left as an exercise
to prove them rigorously in the case of D. If you need guidance, we refer you to
[26, 29]. To clarify the meaning of the analogy, we give the definition of the S
polynomial. When in�.f / D axp�q , and in�.g/ D a0xp0

�q
0

, we define r and c by

r D .max.p1; p0
1/; : : : ;max.pn; p0

n//; c D .max.q1; q0
1/; : : : ;max.qn; q0

n//;

and define the S polynomial of f and g as

sp.f; g/ D xr�p@c�qf � a

a0 x
r�p0

@c�q0

g:

We have called this a “polynomial”, but, strictly speaking, it is a differential
operator.

In the integration algorithm explained below, we will use the order 	.u;v/ for a
weight vector satisfying uC v D 0. This is not a well-order, as we have seen, and
we cannot use the Gröbner basis method for term orders.

Example 6.6.3. Set n D 1 and .u; v/ D .�1; 1/. We apply the normal form
algorithm for x by x C x2. This algorithm does not stop since

x ! x � .x C x2/ D �x2 ! �x2 C x.x C x2/ D x3 ! � � � :

We thus present a method that uses a homogenized Weyl algebra

D.h/
n D CŒh�hx1; : : : ; xn; @1; : : : ; @ni

to obtain Gröbner bases for orders which are not term orders. In a homogenized
Weyl algebra, multiplication is defined by the relation

@ixi D xi @i C h2:

The new variable h commutes with xi and @i and is called the homogenization
variable. The order 	.u;v/ in D naturally induces an order in D.h/, as follows.
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x˛@ˇh� 	.u;v/ x˛0

@ˇ
0

h�
0

(6.27)

, u � ˛ C v � ˇ C � < u � ˛0 C v � ˇ0 C � 0

or .u � ˛ C v � ˇ C � D u � ˛0 C v � ˇ0 C � 0

and x˛@ˇ 	.u;v/ x˛0

@ˇ
0

/:

(6.28)

Suppose that p 2 D is written as p D P
.˛;ˇ/2E c˛ˇx˛@ˇ . Set m D

max.˛;ˇ/2E j˛j C jˇj. We define the homogenization of p as H.p/ DP
c˛ˇ x

˛@ˇhm�j˛j�jˇj . The elementH.p/ is homogeneous in x; @, and h. It follows
from the multiplication rule that the product of homogeneous polynomials
(operators) is also homogeneous.

Consider monomials of the form x˛@ˇh� . When m is fixed, the number of
monomials satisfying j˛jCjˇjC� D m is finite. Then, if the input is homogeneous,
the normal form algorithm stops for any weight vector .u; v/ in D. Thus, if we
restrict the input to only homogeneous elements, we can obtain Gröbner bases in
D.h/. (It is left as an exercise to prove this rigorously.)

We can obtain Gröbner bases in D with respect to an order which is not a well-
order by utilizing the homogenized Weyl algebra.

Theorem 6.6.4. Let F be a set of generators of a left ideal I in D. Let G.h/ be a
Gröbner basis in D.h/ for the homogenized input H.f /; f 2 F with respect to the
order 	.u;v/. Set G D fgjhD1 j g 2 G.h/g. Then the following properties hold.

1. Any element p of I has a standard representation in terms of G. In other words,
there exists ci 2 D such that

p D
X

gi2G
cigi ; p �.u;v/ cigi

holds.
2. hin�.u;v/.G/i D in�.u;v/ .I /.
3. hin.u;v/.G/i D in.u;v/.I /.

Proof. (1) Since the homogenized element H.f /, f 2 F belongs to the left ideal
generated byG.h/, the polynomial (operator)f belongs to the left ideal generated by
G. Since the polynomial p is an element of the ideal generated by F , it is expressed
as p D P

gi2G digi . For gi 2 G, the corresponding homogeneous element in G.h/

is denoted by H 0.gi /. Set Qp D P
gi2G h

eiH.di /H
0.gi /. Here, hei is chosen so

that all the terms in the sum have the same total degree. Hence, the polynomial Qp
belongs to the left ideal generated byG.h/. Since the polynomial Qp is homogeneous,
it has the standard representation Qp DP

gi2G QciH 0.gi /, Qp �.u;v/ QciH 0.gi /, and the
total degrees of Qp and QciH 0.gi / agree. Since the total degrees are equal, the order
relations hold if we set h D 1. Therefore, we have p �.u;v/ Qci jhD1gi .

Statement (2) follows from (1).
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(3) We note that since 	.u;v/ is not a well-order, statement (3) is not trivial.
Suppose that the equality does not hold. Then there exists a polynomial p 2 I such
that in.u;v/.p/ 62 hin.u;v/.G/i. It follows from the definition of the order 	.u;v/ that
in�.in.u;v/.p// D in�.u;v/ .p/ holds. Since	 is a well-order, there exists a polynomial
p such that in�.in.u;v/.p// is minimal with respect to the term order 	 among
p satisfying the “not-in” condition. We denote it by p. It follows from (2) that
there exists in�.u;v/ .gi /, gi 2 G which divides in�.u;v/ .p/. Take a monomial c 2 D
which annihilates the initial monomial of p, and consider p0 D p � cgi 6D 0. It is
again an element of I . When ord.u;v/.p0/ < ord.u;v/.p/, the relations in.u;v/.p/ D
in.u;v/.cgi / D in.u;v/.c/ in.u;v/.gi / 2 hin.u;v/.G/i hold. Then, the .u; v/ degrees of
p and p0 agree. When it holds, we have in.u;v/.p0/ D in.u;v/.p/ � in.u;v/.cgi / 62
hin.u;v/.G/i. This contradicts the minimality of in�.u;v/ .p/.

The Buchberger criterion presented in Theorem 1.3.3 can be applied when the
	.u;v/ is a well-order. In order to apply it for non-well-orders, one way is to use
it in D.h/ and show that a set is a Gröbner basis by the theorem above. The ideal
membership problem cannot be solved for non-well-orders with the normal form
algorithm (for the membership problem, refer to Lemma 1.2.4). This is because the
normal form algorithm (the division algorithm) does not necessarily stop. We need
a tangent cone algorithm to solve the ideal membership problem. For more on this
topic, refer to [6].

Finally, we generalize the notion of the left ideal in D and orders in D to a
subset of the r direct product of D, which is denoted by Dr . When a subset L of
Dr satisfies the following, it is called a left submodule of Dr : (1)DL � L; and (2)
p � q 2 L for any p; q 2 L. When r D 1, a left submodule of D is a left ideal
of D.

Let ei be an element ofDr such that the i the component of ei is 1 and the other
components are 0. The set fe1; : : : ; erg is a basis of Dr as a D-free module. Let
.u; v/ be a weight vector in D, let w D .w1; : : : ;wr / be a vector of integers, and let
	 be a term order in D. From these, we define an order 	.u;v;w/ in Dr as

x˛@ˇei 	.u;v;w/ x˛0

@ˇ
0

ej (6.29)

, u � ˛ C v � ˇ C wi < u � ˛0 C v � ˇ0 C wj

or .u � ˛ C v � ˇ C wi D u � ˛0 C v � ˇ0 C wj and i < j /

or .u � ˛ C v � ˇ C wi D u � ˛0 C v � ˇ0 C wj and i D j
and x˛@ˇ 	 x˛0

@ˇ
0

/:

(6.30)

For .u; v/ and w, we define the order (degree) by

ord.u;v;w/.x˛@ˇei / D u � ˛ C v � ˇ C wi :

We call w a shift vector.
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Example 6.6.5. We illustrate the definition by an example. We consider the case of
n D 1; r D 2, .u; v/ D .0; 1/, and w D .0; 0/.
1. We have .@2; 0/ �.u;v;w/ .0; @/, because the order ord.u;v;w/ of the left-hand side

is larger than that of the right-hand side.
2. We have .@; 0/ 	.u;v;w/ .0; @/, because the values of ord.u;v;w/ of both sides agree.

The left-hand side is @e1, the right-hand side is @e2, and 1 < 2 holds.

When .u; v/ D .0; 0/ and w D 0, the order 	.u;v;w/ is called the POT order.
Note that in Sect. 3.5.3, the case of i > j instead of i < j is called the POT order.
In other words, the order of indices is reversed in this chapter.

Tip 6 These orders are essential for several of the cohomology groups when they
are computed by utilizing Gröbner bases in D [25, 27]. We use only the POT order
in the integration algorithm in this chapter.

6.7 Filtrations and Weight Vectors

In the theory ofD-modules, filtrations of modules are used as key structures. As will
be seen in the following sections, several weight vectors are used as the foundation
for algorithms forD-modules. We will begin by discussing the idea of modules and
summarizing the fundamental facts for filtrations and weight vectors. We will use
the ideas of modules and filtrations only for proving that the integration algorithm is
correct (Theorems 6.10.8 and 6.10.11); those readers who do not need to understand
the proof may skip all of this section except for the explanation of weight vectors.

First, we define modules. A left module M over D (a left D-module M ) is an
additive group for which an action D is defined. By “an action of D on M ”, we
mean a map

D �M 3 .p;m/ 7! m0 2M
which satisfies the following conditions (m0 is denoted by pm):

1. 1m D m, m 2M ;
2. p.qm/ D .pq/m, p; q 2 D, m 2M ;
3. .p C q/m D pmC qm, p; q 2 D, m 2M ;
4. p.mCm0/ D pmC pm0, p 2 D, m;m0 2 M .

Example 6.7.1. Let I be a left ideal in D. The additive group M D D=I can be
regarded as a left D module by a natural action of D. Let us explain what we mean
by a natural action. Assume m 2 D, and let Œm� D mC I be the equivalence class
of m. The class Œm� is an element of M . For p 2 D, we define the (natural) action
p on Œm� by pŒm� D Œpm� 2 M . When Œm0� D Œm�, then p.m �m0/ 2 I because
m � m0 2 I . Hence, we have Œpm0� D Œpm�. This implies that our definition of
the action is well defined. It is left as an exercise to show the four conditions listed
above.
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We now define a filtration ofD and left modules overD. For any integer i , we are
given an additive subgroup FiD ofD that satisfies the following four conditions:

1. FiD � FiC1D;
2.
S
FiD D D;

3. .FiD/.FjD/ � FiCjD;
4. 1 2 F0D.

The set fFiDg is called a filtration of D, and we denote it by .D; F /. The symbol
FiD might be confused with the product of Fi andD, but FiD is a symbol. In order
to avoid confusion, we sometimes will write it as Fi .D/.

Let M be a left D-module. For any integer i , we are given an additive subgroup
FiM of M that satisfies the following three conditions:

1. FiM � FiC1M ;
2.
S
FiM DM ;

3. .FiD/.FjM/ � FiCjM .

The set fFiM g is called a filtration of M , and we denote it by .M;F /. We may
denote FiM by Fi .M/. If we have FiD D 0 for any i < 0 and there exists i0 � 0
such that FiM D 0 holds for any i � io, then .D; F /, .M;F / is called a filtration
bounded from below . (We may relax the condition forFiD such that, for sufficiently
small i , we have FiD D 0. For simplicity, we will assume FiD D 0 for i < 0.)
When a filtration bounded from below satisfies the following two conditions, it is
called a good filtration.

1. The subgroup FiM is finitely generated over F0D.
2. There exists a constant ko such that k0 � 0 holds, and for any nonnegative

integers i and k � k0, the relation FiD FkM D FiCkM holds.

The role of filtrations in the theory of D-modules is analogous to the role of
weight vectors in algorithms with Gröbner bases. In fact, when a weight vector is
given, we can define an associated filtration. Let .u; v/ be an integer weight vector
of D. For an integerm, we define the C-vector space FmD by

FmD D fp 2 D j ord.u;v/.p/ � mg:

Then, we have .FiD/.FjD/ � .FiCjD/, because we have ord.u;v/.pq/ D
ord.u;v/.p/ ord.u;v/.q/ from the Leibniz formula.

Tip 7 When u � 0 and v � 0 hold, we have FmD D 0 for m < 0. Let Gm D
FmD=Fm�1D. Then we have GiGj � GiCj , and D is equipped with the structure
of a graded algebra. The ring D can be regarded as an infinite-dimensional vector
space over C. This vector space can be studied as a collection of finite-dimensional
vector spaces with the structure of the graded algebra. When we change the weight
vector which definesGm, we obtain a different structure ofD as a graded algebra.
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Example 6.7.2. Let w D .1; 0; : : : ; 0/. The filtration defined by the weight vector
.�w;w/ is called the Kashiwara–Malgrange filtration or the V -filtration with respect
to x1.

Tip 8 For the same ring, the theory of spectral sequences can use several different
structures as the graded algebra. The theory and algorithms for Gröbner fans, which
lie in the space of the weight vectors, sometimes play roles that are analogous to
those of spectral sequences [29, Theorem 1.4.12, Sect. 2.2].

For an integer weight vector .u; v/, let .D; F / be the filtration on D defined by
.u; v/. Let I be a left ideal of D. We consider the left D-module M D D=I . Let
FmM D .FmD/=..FmD/ \ I /.
Theorem 6.7.3. 1. FmM is a C-vector space.
2. When u � 0 and v � 0 hold, the pair .D; F /; .M;F / is a good filtration.

It is easy to prove these statements from the relevant definitions.

Example 6.7.4. Let n D 2. We consider a left ideal I generated by x1; x2. We define
the filtration FmD by the weight vector .u; v/ D .1; 1; 1; 1/. The set fx1; x2g is a
Gröbner basis with respect to the weight vector .u; v/. Any monomial of @1; @2 is a
standard monomial with respect to this Gröbner basis. It follows from Lemma 1.2.4
and theD-analog of Theorem 1.6.9 that we can show that the set f@i1@j2 j v � .i; j / D
i C j � mg is a basis of the C-vector space Mm D .FmD/=..FmD/ \ I /. More
precisely, we have

M0 D F0=.F0 \ I / D C � 1
M1 D F1=.F1 \ I / D C � 1C C � @1 C C � @2
M2 D : : :

(here, Fm D FmD).

Let L be a left submodule of Dr , and let M D Dr=L be the left D-module
defined by L. Let .u; v/ be a weight vector with nonnegative integer entries, and let
w be an integer vector of length r , which we will call a shift vector. Define

.Dr/k D fp 2 Dr j ord.u;v;w/.p/ � kg
FkM D .Dr/k=.L\ .Dr/k/:

Let .D; F / be the filtration defined by the weight vector .u; v/. Then we have
.FmD/.FkM/ � FmCkM . This is a filtration of the D-module M . Thus, when
a weight vector and a shift vector .u; v;w/ are given, we can define a filtration on a
left D-module of the formDr=L.

When the D-module M admits a good filtration, M is finitely generated over
D D Dn. In other words, there exist finite elements mi 2 M , i D 1; : : : ; p, and
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M can be expressed as M DPp
iD1 Dnmi . Let us show an example of a D-module

which is not finitely generated. We can regardDn as a left Dn�1-module. An action
is defined by the multiplication of differential operators. Since the infinite number
of elements xin@

j
n , i; j D 0; 1; 2; : : : are generators of the left Dn�1-module Dn, it

is not finitely generated. However, Dn is finitely generated when we regard it as a
left Dn-module. In fact, Dn is generated by 1 2 Dn. We will regard Dn as a left
Dn�1-module in the integration algorithm.

6.8 Holonomic Systems

The Hilbert function for a homogeneous ideal was introduced in Sect. 1.6.3, and we
can use it to measure the “size” of an ideal. We need the Hilbert function in order to
define and study holonomicD-modules.

Let S D CŒy1; : : : ; ym� be the ring of polynomials in m variables. Let J be an
ideal of S which is not necessarily homogeneous. The initial ideal in1.J / for the
weight vector 1 D .1; : : : ; 1/ is a homogeneous ideal. The Hilbert function of this
ideal is denoted byH.S=in1.J /I i/. In this chapter, we call the sum

h.S=J I k/ D
kX

iD0
H.S=in1.J /I i/; (6.31)

the Hilbert polynomial of J (or S=J ).

Theorem 6.8.1. When k is sufficiently large, the function h.S=J I k/ is a polyno-
mial in k.

It follows from Theorem 1.6.15 that the number of standard monomials for which
the degree is less than or equal to k is the value of the Hilbert polynomial at k.
This number can be expressed in terms of a sum of binomial coefficients when k
is sufficiently large. These coefficients are polynomials in k, and we have already
proved Theorem 6.8.1. It is left as an exercise to provide a detailed proof (for this,
we refer the reader to Sect. 5.2 and the surrounding text in [7]).

The degree of the Hilbert polynomial of J is called the Krull dimension of J ,
and we denote it by dimJ . When the Krull dimension is d , the Hilbert function can
be written as h.S=J I k/ D p

dŠ
kd CO.kd�1/. In the asymptotic form of the Hilbert

polynomial, we denote p by degree .J /. The 0-dimensional ideals are characterized
as the ideals for which the Hilbert polynomials are constants; that is, the ideals for
which the Krull dimension is 0 are called 0-dimensional ideals.

We now return to considering the ring of differential operators. When a left ideal
I of Dn satisfies dim in.0;1/.I / D n, the left idea I is called a holonomic ideal.
The ideal in.0;1/.I / is called a characteristic ideal of I . As we will see in the
next theorem, holonomic ideals are the largest ideals or the ideals for which the
characteristic ideals are minimal with respect to their Krull dimensions.
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Theorem 6.8.2. If I 6D D, then we have

dim in.0;1/.I / � n:

This inequality follows from Theorems 6.8.5 and 6.8.6, presented below.
We now define holonomicD-modules.

Definition 6.8.3. Let M be a finitely generated left Dn-module. Let .Dn; F / be
the filtration on Dn associated with the weight vector .1; 1/; this is called the
Bernstein filtration. Assume that there exists a good filtration FiM on M . Under
this assumption, and for sufficiently large k, the vector space dimension dimC FkM

can be expressed as a polynomial. When M D 0 or the degree of the polynomial is
n, the leftDn moduleM is called a holonomic leftDn-module. This definition does
not depend on the choice of a good filtration [11, 12].

Let I be a holonomic ideal. We set M D D=I . If FkM D .FkD/=..FkD/\ I /,
then it is a good filtration onM . From Theorem 6.8.6, presented below, we have the
following theorem.

Theorem 6.8.4. A left ideal I is a holonomic ideal if and only if the leftD-module
M D D=I is a holonomic left D-module.

Holonomic ideals and holonomicD-modules are related as in the theorem. When
a left submodule L of the free module Dr is given, and Dr=L is a holonomic left
D-module, in order to avoid confusion, we never say that L is a holonomic
submodule, as in the case of left ideals.

Theorem 6.8.5 (Bernstein Inequality). We fix a filtration of D by the weight
vector .1; 1/ D .1; 1; : : : ; 1/. Let M 6D 0 be a left D-module, and let .M;F / be
a good filtration. We denote by h.k/ the dimension of FkM as a C-vector space.
When k is sufficiently large, the function h.k/ is a polynomial in k, and the degree
of h.k/ is greater than or equal to n.

Proof. The following clever proof is called Joseph’s proof. We assume that
F0M 6D 0, FiM D 0, (i < 0). We consider the C-linear map

� W FiD 3 P 7! .m 7! Pm/ 2 HomC.FiM;F2iM/: (6.32)

We use induction on i to show that the map � is injective. When i D 0, it is clearly
injective because FiD D C. Proving that � is injective is equivalent to claiming
that if P 6D 0, then �.P / 6D 0 (i.e., �.P / is not a 0-linear map). Thus, alternatively,
we may prove PFiM 6D 0. Suppose that x1 is contained in in.1;1/.P /. Since we
have ŒP; @1� D P@1 � @1P 2 Fi�1D, then by the induction hypothesis, there exists
m 2 Fi�1M such that .P@1 � @1P /m 6D 0 holds. Since we have @1m 2 FiM , m 2
Fi�1M � FiM , the relations P@1m D 0 and Pm D 0 contradict ŒP; @1�m 6D 0;
one of them is not 0. We can make analogous arguments for the other variables, and
we thus conclude that � is injective.
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Since the map � is injective, we have the following inequality for the dimensions:

dimC FiD � dimCHomC.FiM;F2iM/ D .dimCFiM/.dimCF2iM/ D h.i/h.2i/:

Therefore, we have
 
2nC i
2n

!
� h.i/h.2i/;

which implies that the degree of h.i/ with respect to i is greater than or equal to n.

A research problem: WhenM is a holonomicD-module and an operatorP 2 D
is given, determine an algorithm that finds all them 2M that are annihilated by P .

Theorem 6.8.6. The Krull dimension of in.0;1/.I / agrees with that of in.1;1/.I /.
In particular, the left ideal I is a holonomic ideal if and only if the Krull dimension
of in.1;1/.I / is n.

In order to prove this theorem, we need a proof of the existence of a Gröbner fan.
Since the proof is very long, we omit it, but refer the reader to [29, Theorem 1.4.12,
Sect. 2.2]. From this theorem, we can prove Theorem 6.8.2 (see [29, p. 65]). We note
that, in Björk’s [3] standard textbook on D-modules, there is a proof that uses
spectral sequences.

We now consider the problem of determining if a given left ideal I is holonomic.
By computing a Gröbner basis with the order 	.1;1/, we find a set of generators
of in.1;1/.I /. The Krull dimension of this ideal can be obtained by constructing its
Hilbert polynomial, and we can then determine if a given ideal is holonomic. Prior
to the Buchberger algorithm, there was no general method for determining this.

Example 6.8.7. Below are some examples of holonomic ideals. The proof that they
are holonomic is left as an exercise.

1. Let I be a left ideal generated by @1; : : : ; @n. The ideal I is a holonomic ideal
of Dn.

2. Let I be a left ideal generated by x1; : : : ; xn. The ideal I is a holonomic ideal
of Dn.

3. Let I be a left ideal in D2 D Chx; y; @x; @yi generated by the operators L1;L2
in Example 6.5.4. The ideal I is a holonomic ideal of D2.

6.9 Relationship Between D and R

Theorem 6.9.1. Let I be a holonomic ideal in D. Then the left ideal RI in R is a
0-dimensional ideal.

Proof. Let .D; F / be the filtration on D by the weight vector .1; 1/. We consider
the C-linear map
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�k W FkD \Chx1; : : : ; xn; @i i 3 p 7! Œp� 2 FkD=..FkD/ \ I /: (6.33)

The dimension of the right-hand side as a vector space over C is h.k/ D m
nŠ
kn C

O.kn�1/, by the definition of the holonomic ideal. The dimension of the left-hand
side as a vector space is

�
nC1Ck
nC1

� D O.knC1/. When k becomes large, the dimension
of the left-hand side becomes strictly larger than that of the right-hand side, and
we thus have ker�k 6D 0. This implies Chx1; : : : ; xn; @i i \ I 6D 0. For each i ,
we take from it a nonzero element

Pmi
jD0 aij .x/@

j
i . This is an ordinary differential

operator of xi with parameters .x1; : : : ; xi�1; xiC1; : : : ; xn/. This expression yields
dimC.x/R=.RI/ � Qn

iD1 mi < C1, and thus we have the zero dimensionality
of RI .

Theorem 6.9.2. Let J be a zero-dimensional ideal of R. Then the left ideal J \D
of D is a holonomic ideal.

Proof. We present only a sketch of the proof. Let s1; : : : ; sm be the standard
monomials of a Gröbner basis of J in R. There exists a polynomial p.x/ such
that

p@i sj D
X

pkij sk; pkij is a polynomial

by modJ\D. By using this relation, we can define a structure for the left holonomic
D-module in CŒx; 1=p� ˝CŒx� D=.J \ D/. Since D=.J \ D/ is a sub D-module
of this holonomic D-module, we conclude that it is a holonomic D-module. For
further details, see the appendix of [31]. See also [28].

A set of generators of a left ideal I of R is not necessarily a set of generators
of J \ D as the ideal in D (see Example 6.10.13). The left ideal J \D is called
the Weyl closure of J . An algorithm for obtaining a set of generators of the Weyl
closure was given by Tsai [34]. Some constructions are possible with only the
computation of a Gröbner basis for zero-dimensional ideals in R, but there are
constructions which require holonomic ideals as inputs. A typical example of these
is the integration algorithm with a D-module, which will be discussed in the next
section. The computation of the Weyl closure for J \D requires extensive computer
resources, and it is often a bottle neck for such constructions.

The computation of a Gröbner basis in R is sometimes slow because it requires
the computation of rational functions. In such cases, it is often more efficient to
obtain a Gröbner basis by performing the computations inD and using the following
theorem.

Theorem 6.9.3. Let 	 be a block order in D satisfying @ � x. The Gröbner basis
G of I in D with respect to the order 	 is a Gröbner basis of RI in R with respect
to the order 	0. Here the order 	0 is defined by @˛ 	0 @ˇ , @˛ 	 @ˇ .

Proof. Let p be an element of RI . Multiplying a polynomial f from the left, we
assume that fp D P

i cigi , gi 2 G; ci 2 D. Since fp 2 I , we may assume that
the expression above is a standard representation. In other words, we may assume
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fp � cigi . When we assume in�.fp/ D c˛ˇx
˛�ˇ , the leading term of p in R by

the order	0 is a polynomial multiple of �ˇ because	 is a block order. Consider the
leading terms of ci and gi with respect to 	. Then, by a property of the block order,
we have @ˇ �0 cigi . Therefore the setG is a Gröbner basis ofRI with respect to	0.
Example 6.9.4. Below is an example of using Risa/Asir with asir-contrib to
compute a Gröbner basis in D for Example 6.1.9; for details, refer to Sect. 7.4
and [24].

F=[dx^2+y^2,dy^2+x^2];
dp_gr_print(1);
/* Computing a Groebner basis by the block order

given in the theorem. */
G=nd_weyl_gr(F,[x,y,dx,dy],0,poly_r_omatrix(2));
/* Get the initial term by the matrix [[0,0,1,1],[0,0,0,-1]],

which defines the order. */
G1=map(poly_in_w,G,[x,y,dx,dy],[0,0,1,1]);
G2=map(poly_in_w,G1,[x,y,dx,dy],[0,0,0,-1]);

/* Result */
[x*dx,dy^2,y*dy*dx,dx^2]

6.10 Integration Algorithm

We now introduce the integral of a left holonomic D-module. We begin with a
theorem which leads us to the idea of an integral of a D-module. We consider a
functionK.x; y/ of the variables x; y, and we assume that K is smooth.

Theorem 6.10.1. If there exist differential operators ` 2 D1 D Chy; @yi and `1 2
D2 D Chx; y; @x; @yi such that



`.y; @y/C @x`1.x; y; @x; @y/

� �K D 0

holds, then we have

` �
Z b

a

K.x; y/dx C Œ`1 �K�ba D 0:

In particular, if Œ`1 �K�ba D 0, then we have a differential equation ` �R b
a K.x; y/dx D 0 that is satisfied by the definite integral of K . Here, Œ`1 �K�ba

denotes .`1 �K/jxDb � .`1 �K/jxDa.

Proof. We have
R b
a



`.y; @y/C @x`1.x; y; @x; @y/

� � Kdx D 0. Therefore, by
exchanging the integral and the differentiation and by applying the fundamental
theorem of calculus, we have `.y; @y/ �

R b
a K.x; y/dx C

R b
a @x � .`1 �K/dx D 0.

Suppose that K satisfies Œ`1 �K�ba D 0 for any operator `1 2 D2. Let I be the
left ideal ofD2 that annihilates the functionK.x; y/. Then, any element `.y; @y/ of
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the left ideal .I C @xD2/ \D1 in D1 can be written as `2 � @x`1, `2 2 I , and, by
the above theorem, ` annihilates the definite integral of K.x; y/ with respect to y.

Example 6.10.2. We set K.x; y/ D exp.� y
2
x2/, a D �1, b D C1. We have

.@yCx2=2/�K D 0 and .@xCxy/�K D 0. Eliminating x2, we obtain an operator
y.@y C x2=2/ � x.@x C xy/=2 D y@y � x@x=2 which annihilates K . The right-
hand side can be written as y@y � @xx=2C 1=2. Since we have ŒxK.x; y/=2�ba D 0,

the integral
R b
a
K.x; y/dx satisfies y@y C 1=2. By using the algorithm given in this

section, we can prove that .I C @xD2/ \ D1 is generated by y@y C 1=2 when
I D h@y C x2=2; @x C xyi.

The integral
R1

�1 K.x; y/dx can be regarded as a normalizing constant of the
(unnormalized) normal distributionK with a parameter y. For theK in the example,
it is easy to see by solving the differential equation that the function defined by
the integral is a constant multiple of the function y�1=2. The term normalizing
constant is used in statistics. We consider a nonnegative function p.y; t/ in t

with a parameter y. For the integral Z.y/ D R1
�1 p.y; t/dt , the function p.y;t/

Z.y/

is nonnegative, and its integral with respect to t on R is 1. This function is a
probability density function. The function Z.y/ normalizes the integral to 1 and
is called a normalizing constant. When t is discrete, the corresponding sum is called
the normalizing constant.

Let I be a left ideal of Dn. The left ideal

.I C @nDn/\Dn�1

inDn�1 is called the integration ideal with respect to the variable xn of I . In the note
after Theorem 6.10.1, we showed that operators of the integration ideal with respect
to the variable x can be regarded as differential equations satisfied by the integral
with the parameter y. Are there sufficiently many such operators in the integration
ideal? The answer is yes, as we will see in the next theorem. The purpose of
this section is to prove the following theorem and to provide an algorithm for the
construction of the integration ideal.

Theorem 6.10.3. If I is a holonomic ideal in Dn, then the integration ideal .I C
@nDn/\Dn�1 is a holonomic ideal in Dn�1 D Chx1; : : : ; xn�1; @1; : : : ; @n�1i.

We begin with some preparatory claims before proving this theorem.
The following claim was shown as Theorem 6.6.4 in (3). It is the foundation of

the integration algorithm, and we paraphrase it here.

Theorem 6.10.4. Let G be a Gröbner basis of a left ideal I of D with respect to
the order 	.u;v/. Then the set fin.u;v/.g/ j g 2 Gg is a set of generators of the ideal
in.u;v/.I /.

The b-function is of key importance for proving the properties of integration
ideals and for the integration algorithm. Intuitively speaking, we will see that we



320 N. Takayama

can use the roots of b-functions to reduce questions on infinite-dimensional vector
spaces to questions on finite-dimensional vector spaces.

Definition 6.10.5. Let .�w;w/ be a weight vector. The set

in.�w;w/.I / \CŒw1	1 C � � � C wn	n�

is the ideal in the ring of polynomials CŒw1	1 C � � � C wn	n� of one variable. This
ideal is principal and is generated by the monic element b.s/, s D w1	1C� � �Cwn	n.
This polynomial b.s/ is called the b-function of I with respect to the weight vector
.�w;w/.

Example 6.10.6. Let n D 2 and .�w;w/ D .0;�1; 0; 1/. Set L1 D x2 � x21 and
L2 D 2x1@2 C @1. We consider the left ideal I D hL1;L2i. (Note: This ideal
annihilates the delta function ı.x2 � x21/.) Let 	 be the (pure) lexicographic order
satisfying @1 � x1 � @2 � x2. The S polynomial of L1;L2 by the order 	.�w;w/ is
2@2L1Cx1L2 D x1@1C2x2@2C2. We denote it byL3. The S polynomial ofL2 and
L3 is @1L2 � 2@2L3 D �4x2@22 � 6@2 C @21. The initial term in.�w;w/ of this element
is �4x2@22 � 6@2. Multiplying x2 from the left and rewriting the operator in terms
of the Euler operator 	2, we obtain �2	2.2	2 C 1/. Therefore, a monic polynomial
which divides s.s C 1=2/ is the b-function. We can use the algorithm (presented
below) for computing the b-function to prove that b.s/ D s.s C 1=2/.
Theorem 6.10.7. When the left ideal I is holonomic, there exists a nonzero
b-function for any weight vector .�w;w/.

Proving this theorem requires additional preparation; we omit it here but refer the
interested reader to [29, Theorems 5.1.2, 5.1.3].

Once existence has been proved, the computation can be performed as follows.
Compute a Gröbner basis G of I with the order 	.�w;w/. The set G0 D in.�w;w/.G/

is a Gröbner basis of in.�w;w/.I / with the order 	. Set p D w1	1 C � � � C wn	n.
Let the ci ’s be undetermined coefficients. Compute the normal form of c0 C c1p C
c2p

2C� � �Ccm�1pm�1Cpm by using the Gröbner basisG0. Setting the coefficients
of the standard monomials appearing in the normal form to 0, we obtain a system of
linear equations for the undetermined coefficients ci . Take the minimal m such that
the system has a nontrivial solution. Then, the polynomial c0C c1sC� � �C sm is the
b-function b.s/. For details, see Sect. 3.4.1 and [23].

If I is not holonomic, the b-function does not always exist. In order to determine
if it exists, and, if it does, to obtain it, we compute the intersection of an ideal and a
subring. See, e.g., [25, 27, Algorithm 4.6].

The left Dn�1-module Dn=.I C @nDn/ is called the integration module of the
left Dn-moduleDn=I with respect to the variable xn.

Theorem 6.10.8. If the left Dn-module Dn=I is holonomic, then the integration
moduleDn=.I C @nDn/ is a holonomicDn�1-module.
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Since Dn�1=.Dn�1 \ .I C @nDn// is a submodule of Dn=.I C @nDn/ (use the
POT order, explained below, to prove this), then we have Theorem 6.10.3 from this
theorem. We now prove this theorem.

Proof. Let VkD be the set of the elements of Dn for which the order by
.0; : : : ; 0; 1I 0; : : : ; 0;�1/ is less than or equal to k (the set of elements for
which ord.�w;w/, w D .0; : : : ; 0;�1/ is less than or equal to k). Below, we
will denote Dn by D, except when we want to emphasize the number of
variables n. From Theorem 6.10.7, there exists a b-function b.s/ which satisfies
b.�@nxn/ 2 V�1D C I . Multiplying xkn from the left, we have xknb.�xn@n � 1/ D
b.�.xn@n � k/� 1/xkn D b.�@nxn C k/xkn (see Proposition 6.1.3), and we have

b.k/xkn 2 Vk�1D C I C @nD
from b.�@nxn C k/ � b.k/ 2 @nD. It follows from this inclusion that if k0 is
the maximal integral root of b.s/ D 0 and k > k0, then xkn can be expressed in
terms of an element in Dn�1x0n C � � � CDn�1xk0n modulo I C @nD. Therefore, the
integration module M 0 D Dn=.I C @nDn/ is a quotient module of Dk0C1

n�1 and, in
particular, is a finitely generated left Dn�1-module. This construction is also a key
step in the algorithm. When k0 < 0 or there exists no integral solution, we have
1 2 V�1D C I C @nD D I C @nD, and then D=.I C @nD/ D 0. In the following,
we will consider the case where k0 is a nonnegative integer.

Let M D Dn=I . The map

@n W M 3 m 7�! @nm 2M
is a morphism of left Dn�1-modules. The integration module can also be expressed
as M 0 D M=@nM .

Let .Dn; F / be the filtration on Dn defined by the weight vector .1; 1; : : : ; 1/.
Suppose that the map @n is injective. The filtration Fk.M/ WD .FkDn/=.I \
.FkDn// is a good filtration. Since the D-module M is holonomic, the dimen-
sion is asymptotically dimC Fk.M/ D m

nŠ
kn C O.kn�1/. Let Fk.M=@nM/ D

Fk.M/=.@nM \ Fk.M//. It is then a filtration of the Dn�1-module M=@nM .
Since it is finitely generated Dn�1-module, it is a good filtration. Since we have
@nFk�1.M/ � Fk.M/, we can evaluate the dimension from the injectivity of @n as
dimC Fk.M=@nM/ � m

nŠ
kn� m

nŠ
.k�1/nCO.kn�2/. Simplifying the right-hand side,

we obtain m
.n�1/Šk

n�1 C O.kn�2/. Therefore, we conclude that M 0 is a holonomic
Dn�1-module.

Suppose that the map @n is not injective. Let N D fp 2 M jThere exists k such
that@knp D 0g. Then we can prove N � @nM . We can also prove that N is a left
Dn-module. These proofs will be presented below. Let NM D M=N . TheDn-module
NM is also holonomic. Since the map

@n W NM 3 m 7�! @nm 2 NM
is injective and we haveM=@nM ' NM=@n NM , we are done.
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We now prove thatN is a leftDn-module. Since variables other than xn commute
with @n, we may show that when m 2 N , we have xnm 2 N . Suppose @knm D 0,
k > 0. Then, we have @kC1

n xnm D @n.@knxn/m D @n.xn@kn C k@k�1
n /m D 0. Hence,

we have xnm 2 N .
We now prove that N � @nM . It follows from the Leibniz formula that

@knx
k
n D

kX

iD0

1

.k � i/Š .k.k � 1/ � � � .i C 1//
2xin@

i
n

holds in D. We set the coefficient to 1 when i D k. Moreover, we have xin@
i
n D

	n.	n � 1/ � � � .	n � i C 1/, and then there exists a differential operator `i such that
xin@

i
n D .@nxn � 1/ � � � .@nxn � i/ D @n`i C .�1/i i Š. Take m 2 N , and suppose

@knm D 0. It follows from the formula above that

@knx
k
nm D

k�1X

iD0

1

.k � i/Š .k.k � 1/ � � � .i C 1//
2@n`imC ckm:

Here, we have ck DPk�1
iD0 1

.k�i /Š .k.k � 1/ � � � .i C 1//2.�1/i i Š. Since we can show
that ck is not 0, we concludem 2 @nM .

It is left as a research problem to determine an algorithm for constructing N in
the above proof.

The Fourier transformation

F W xn 7! �@n; F W @n 7! xn

is a ring isomorphism of Dn. Let M be a holonomic D-module. Since it is finitely
generated, there exists a submoduleL ofDr0 satisfyingM ' Dr0=L. Set F .L/ as
the Fourier transforms of the elements ofL. We define F .M/ byDr0=F .L/. Since
theDn�1-moduleM=xnM is isomorphic to F�1.F .M/=@nF .M//, we conclude,
based on the theorem proved above, thatM=xnM is a left holonomicDn�1-module.

Let I be a left ideal ofD. The left ideal .I C xnD/\Dn�1, which lies in Dn�1,
is called the restriction ideal of I to xn D 0. The restriction ideal and the integration
ideal are Fourier transforms of each other. Note that the Fourier transforms of the
elements of @nDn are xnDn. Let us explain it more precisely. When f1; : : : ; fm are
generators of I , we find L1; : : : ; Lm0 such that Dk0

n�1=.Dn�1L1 C � � � CDn�1Lm0/

is isomorphic to the restriction moduleDn=.hF .f1/; : : : ;F .fm/i C xnDn/. Then,
the integration module Dn=.I C @nDn/ is isomorphic to Dk0

n�1=.Dn�1F�1.L1/C
� � � CDn�1F�1.Lm0//.

Since the procedures for computing integration modules and restriction modules
are transformations of each other, we will describe the procedure for computing
restriction modules in the case of two variables. We let x D x1 and y D x2. The
case of n variables is analogous.
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Algorithm 6.10.9 (Restriction Algorithm).

1. Compute a Gröbner basis of I with respect to .�w;w/ D .0;�1; 0; 1/. We set
the basis fg1; : : : ; gpg.

2. For i satisfying 0 � i � mj , write @iygj in the form

X

s

`ijs.x; @x/@
s
y C y.� � � /:

We move all the terms containing y to y.� � � /. The determination of mj will be
explained later. When mj < 0 holds, we exclude gj .

3. Set s0 to the maximum value of s that appears in the above procedure. Set the
free basis of Chx; @xis0C1 as e0 D 1; e1 D @y; e2 D @2y; : : : ; es0 D @s0y .

4. We eliminate es0 ; � � � ; e1 from
P

s `
i
js.x; @x/es by the POT order satisfying

es0 � � � � � e0. The elements obtained by the elimination are generators of the
restriction ideal.

The constantmj is determined as follows.

1. Let b.	y/ be the generator of in.�w;w/.I /\ CŒ	y� where 	y D y@y .
2. If b.s/ D 0 has no nonnegative integral root, then the restriction ideal agrees

with the whole ring and we stop.
3. Let r0 be the maximal nonnegative integral root of b.s/ D 0.
4. Put

mj D r0 � ord.0;�1;0;1/.gj /:

Let L be the submodule of Ds0C1
1 generated by

P
s `

i
js.x; @x/es. We will prove that

the leftD1-moduleDs0C1
1 =L is isomorphic to the restriction moduleD2=.ICyD2/

as a left D1-module.

Example 6.10.10 (Continuation of Example 6.10.2). The operators OL1 D @xCy2=2
and OL2 D y@y � 2 C xy2 annihilate the function y2 exp.�xy2=2/. We apply the
Fourier transformation y 7! �@y , @y 7! y with respect to the variable y to these
operators. The results are L1 and L2, which can be written as L1 D @x C .1=2/@2y
and L2 D �@yy � 2Cx@2y D �y@y � 3Cx@2y . Let I be the left ideal generated by

L1 and L2. Taking the weight vector .�w;w/ D .0;�1; 0; 1/, we will compute the
restriction ideal for y D 0. Let us compute a Gröbner basis with the order 	.�w;w/.

We have sp.L1; L2/ D xL1�.1=2/L2 D x@xC.1=2/y@yC3=2 D x@xC3=2C
y.@y=2/. Call this element L3. We can show that the set fL1;L2; L3g is a Gröbner
basis.

The b-function is s.s�1/, and we have .m1;m2;m3/ D .0; 0; 1/. We remove the
terms of the form y.� � � / from

x@x C 3=2C y.@y=2/
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and

@y.x@x C 3=2C y.@y=2// D .x@x C 2/@y C y.@2y=2/:
Let L be the submodule of D2

1 D D1e0 C D1e1 generated by .x@x C 3=2/e0 and
.x@xC2/e1. The moduleD2=L is the restriction module. Eliminating e1 by the POT
order, then we obtain x@x C 3=2. This operator annihilates the differentiation of the
normalizing constant for the normal distribution with respect to x. In other words, it
annihilates the function @

@x

R1
�1 K.x; y/dy, which is a constant multiple of x�3=2.

Theorem 6.10.11. Algorithm 6.10.9 outputs the restriction module and the restric-
tion ideal.

Proof. We set n D 2 and omit .�w;w/ in the symbol ord.�w;w/. We may assume
r0 � 0. Supposep 2 ICxnD. Applying the first part of the proof of Theorem 6.10.8
to the case of the restriction module, we may assume ord.p/ � r0. We show that the
expression p D P

cj gj C xnr , cj ; r 2 Dn can be reduced to an expression of the
same form satisfying ord.r/ � r0 C 1. In other words, we can decrease the degree
of r (the order ord.�w;w/.r/) so that it is less than or equal to r0 C 1. We note that
b.	n/ D cI C q, cI 2 I , ord .q/ � �1. We decompose r as r D r 0 C r 00, where
r 0 is the sum of the .�w;w/ homogeneous terms which have the highest degree
(order). Let the degree be k. We have r 0b.	n/ D b.	nC k/r 0 D b.@nxn � 1C k/r 0.
Expanding b at k � 1 as a Taylor series, we have

b.@nxn C k � 1/� b.k � 1/ D axn; ord .a/ � 1:
Therefore, we have

b.k � 1/r 0 D b.@nxn C k � 1/r 0 � axnr 0

D r 0b.	n/� axnr 0

D r 0b.	n/� a.xnr/C axn.r � r 0/

D r 0cI C r 0q � a.p �
X

cj gj /C axn.r � r 0/:

In the last expression, the degree of the elements which do not belong to I is min.k�
1; ord.ap//. Hence, we can decrease the degree of r to r0 C 1. Thus, we can have r
satisfying p � xnr 2 I , ord.p � xnr/ � r0.

We show that p�xnr has a standard representation by modxnD. In other words,
we show that there exist cj ’s satisfying

p � xnr D
X

cj gj modxnD

and

ord.cj gj / � r0; cj 2 D:
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We divide the p � xnr by the gj ’s. We choose the multi-quotients so that ord
decreases by 1 or more after one division. Since our order is not a well-order, this
division does not necessarily stop. However, if we repeat the division procedure until
the degree of the remainder r is less than or equal to �1, then the remainder will
be divided by xn. We have thus shown the existence of the standard representation
of the form above. Since cj can be written as cj D Pmj

iD0 cj i .x; @x/@in C xn Qcj , we
have completed the proof. (Note cj i 2 Dn�1. See also [26, Theorem 5.9, p. 154].)

We are ready to derive the differential equation in Example 6.5.3 algorithmically.

Example 6.10.12. The function exp.xy �y3/ is annihilated by OL1 D @x �y, OL2 D
@y � .x � 3y2/. Applying the Fourier transformation with respect to y, we obtain
L1 D @x C @y , L2 D y � .x � 3@2y/. Compute a Gröbner basis with the weight
vector .0;�1; 0; 1/. The output is L1;L2, L3 D 3@2x � x C y. The b-function is
s. Therefore, the restriction module is D1=D1.3@

2
x � x/, and the restriction ideal is

generated by .3@2x � x/. Define a function a by

a.x/ D
Z C1

0

exp.xy � y3/dy:

From L3, the function a.x/ satisfies the differential equation

.3@2x � x/a.x/ � 1 D 0:

This is because Œexp.xy � y3/�C1
0 D �1. As we have seen, the restriction/inte-

gration algorithm can be used to derive differential equations satisfied by definite
integrals with parameters.

When an input for the restriction/integration algorithm is a set of generators of
the zero-dimensional ideal of R, the algorithm does not always work, as seen in the
following example.

Example 6.10.13. Let I be the left ideal inD3 generated by .x3 � y2z2/2@x C 3x2,
.x3 � y2z2/2@y � 2yz2, and .x3 � y2z2/2@z � 2y2z. The left ideal I annihilates the
function exp.1=.x3�y2z2//. The idealRI is a 0-dimensional ideal inR. The degree
of the Hilbert polynomial of I from the Bernstein filtration is 4, and so I is not a
holonomic ideal. We cannot apply the integration algorithm to I with respect to the
variable @y because the b-function does not exist.

Let g be a holonomic function annihilated by a holonomic ideal I � D D Dn.
Let a and b be numbers. We assume that the intersection of the singular locus of g
and (xn D a or xn D b) is an algebraic set for which the dimension is at most n�2.
Under this assumption, the restriction of g to xn D a; b is a holonomic function of
n � 1 variables. The 0-dimensional ideals Rn�1 generated by the restriction ideals
.I C .xn � a/Dn/ \ Dn�1 or .I C .xn � b/Dn/ \ Dn�1 are strictly smaller than
Rn�1. Under the above assumptions, we have the following theorem.
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Theorem 6.10.14. Assume that the integral

Qg.x1; : : : ; xn�1/ D
Z b

a

g.x1; : : : ; xn/dxn

has finite values in the neighborhood of a point .x1; : : : ; xn�1/ D c0. Then, the
function Qg is a holonomic function in n � 1 variables.

Proof. This follows from the assumption that the function Qg is a holomorphic
function defined in the neighborhood of c0. It is sufficient to show that it is
annihilated by a 0-dimensional ideal in Rn�1. Take a set of generators f`ig of
.I C @nDn/ \ Dn�1. From Theorem 6.10.3, the set f`ig generates a holonomic
ideal in Dn�1. Adding the generators and reordering the index, we assume that the
first n � 1 generators `i , i D 1; : : : ; n � 1 are ordinary differential operators with
respect to xi (variables other than xi appear as parameters). For `i , there exists
an element ri of Dn such that `i C @i ri 2 I . For this decomposition, we have
`i � Qg D Œri � g�xnDb

xnDa. Since derivatives, sums, and products of holonomic functions
are holonomic (the proof is left as an exercise), we can show from the assumption
that the function on the right-hand side gi D Œri � g�xnDb

xnDa is a holonomic function in
n�1 variables. Thus, there exists an ordinary differential operatorpi with respect to
xi , and pi �gi D 0 holds. Finally, we have .pi`i /� Qg D 0. Here, the operatorpi`i is
the ordinary differential operator with respect to the variable xi ; then the operators
pi`i , i D 1; : : : ; n � 1 generate a 0-dimensional ideal in Rn�1 that annihilates the
function Qg.

Our way to introduce the theory ofD-modules follows Chap. 5 of the textbook by
Hotta [11]. We have presented algorithms for constructing several of the necessary
objects. Various researches have revisited the theory of D-modules with a view
to determining computational methods. One of the remarkable discoveries is the
restriction and integration algorithm found by Oaku [25], and we recommend his
introductory book on the subject [26]. In the theory of D-modules, the notions
of restriction and the integration of modules play a central role, and they lead to
algorithms for several objects. For these constructions, it is best to refer to the
original papers, such as [27]. As an area of future research, the book [12] could
be reexamined from an algorithmic point of view.

The main purpose of this chapter is to explain a new application of the algorithms
forD-modules. We are now ready to explain the holonomic gradient descent method
for definite integrals with parameters.

6.11 Finding a Local Minimum of a Function Defined
by a Definite Integral

As an application of Gröbner bases in R, we explained above a method for finding
a local minimum of a holonomic function. We have provided a method to derive
a system of differential equations for a definite integral with parameters by using
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the integration algorithm. A combination of these two methods gives a general
method for finding a local minimum of a function defined by a definite integral
of a holonomic function.

Let us sketch our method with an example in which the integral can be expressed
in terms of an elementary function.

Example 6.11.1. (Parameter estimation of the normal distribution by the maximal
likelihood estimate)
We set

g.x;m; ˇ/ D e� ˇ
2 .x�m/2:

When real numbers Xi , i D 1; : : : ; n are given, we want to find m and ˇ which
minimize the function

f .m; ˇ/ D
	Y

g.Xi ;m; ˇ/

�1=n �

Z 1

�1
g.x;m; ˇ/dx:

This problem is explained in all introductory textbooks in statistics, so we will
just explain it briefly here. When we set the normalizing constant as Z.m; ˇ/ DR1

�1 g.x;m; ˇ/dx, the function g

Z
is a probability density function with respect to

x with parametersm and ˇ. Letm and ˇ be unknown parameters of the distribution;
we want to estimate them from the observed data X1; : : : ; Xn. The maximal likeli-
hood estimate takes a parameter vector which maximizes the likelihood functionQn
iD1

g.Xi /

Z
. The n-root of the reciprocal of the function is f .m; ˇ/, and we want to

find m and ˇ which minimize f . Standard statistics books consider the logarithm
of the likelihood function and minimize it by regarding it as a quadratic function of
the parameters. We will solve it by the holonomic gradient descent method, which
can be applied to a broad class of problems.

The function g.x;m; ˇ/ satisfies the system of differential equations

@g

@m
D ˇ.x �m/g;

@g

@̌
D � .x �m/

2

2
g;

@g

@x
D �ˇ.x �m/g:

We have

	Y
g.Xi ;m; ˇ/


�1=n D exp.
ˇ

2n

nX

iD1
.Xi �m/2/:

We will call this functionD. The functionD satisfies
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@D

@m
D
�
ˇm � ˇ

n

X
Xi

�
D;

@D

@̌
D
�
1

2n

X
.Xi �m/2

�
D:

Applying the integration algorithm with respect to the variable x for the system of
differential equations for g, we can see that the normalizing constant G.m; ˇ/ DR1

�1 g.x;m; ˇ/dx is annihilated by 2ˇ@ˇ C 1 and @m. In other words, we have

.2ˇ@ˇC 1/ �G D 0 and @m �G D 0. In fact, we haveG D
p
2�p
ˇ

, which is a famous
exercise in calculus.

The Pfaffian system satisfied by G D R1
�1 g.x;m; ˇ/dx is

@mG D 0; ˇ@ˇG D �1
2
G:

Then, the Pfaffian system satisfied by DG is

@m.DG/ D .@mD/G CD.@mG/ D
�
ˇm � ˇ

n

X
Xi

�
.DG/; (6.34)

@ˇ.DG/ D .@ˇD/G CD.@ˇG/

D
�
1

2n

X
.Xi �m/2 � 1

2ˇ

�
.DG/: (6.35)

In the general algorithms for the holonomic gradient descent method, we first
evaluate an approximate value of DG at a point and then find a local minimum by
using the system of differential equations (6.34) and (6.35). In this problem, we can
conclude that

ˇm � ˇ
n

X
Xi D 0; 1

2n

X
.Xi �m/2 � 1

2ˇ
D 0

is r.DG/ D 0, by examination. This condition determines the values of m and ˇ.
These are well-known expressions for the average (mean) and the variance of given
data.

It is not necessary to use this method for the normal distribution, but we want
to emphasize that this method works even when the integral cannot be expressed in
terms of elementary functions.

The next example is nontrivial, and it illustrates that the holonomic gradient
descent method can be applied to a broad class of normalizing constants.

Example 6.11.2. This example is a continuation of Examples 6.5.3 and 6.10.12.
We consider the unnormalized distribution g.x; t/ D exp.xt � t3/ on t 2 Œ0;C1/.
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exp(3.4t-t^3)

Fig. 6.3 Graph of exp.3:4t � t 3/

Here, x is a parameter of the distribution. The normalizing constant is a.x/ DR C1
0

g.x; t/dt . As we have seen in Example 6.10.12 of the integration algorithm,
the normalizing constant satisfies the differential equation .3@2x � x/a.x/ � 1 D 0.
Assume we are given data Ti , i D 1; : : : ; n and let

f .x/ D
	Y

g.x; Ti /

�1=n �

Z 1

�1
g.x; t/dt:

We want to find the value of x which locally minimizes f . The expression
.
Q
g.x; Ti //

�1=n can be rewritten as

exp

�
�x

Pn
iD1 Ti
n

C
Pn

iD1 T 3i
n

�
:

We assume that the average of the data
�Pn

iD1 Ti
�
=n and

�Pn
iD1 T 3i

�
=n are both

equal to 1. The problem is to find a local minimum of f .x/ D exp.�x C 1/a.x/
and the corresponding x. We can derive a differential equation for f .x/ from that
for a.x/: it is the differential equation of Example 6.5.3. We apply the holonomic
gradient descent method to this equation, and find that the parameter value x D 3:4
gives an approximate local minimum. In fact, the graph of exp.3:4t � t3/ has a peak
around t D 1 (see Fig. 6.3).
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Let I and J be 0-dimensional ideals in R. Suppose that the function f is a
solution of I and that the function g is a solution of J . Then the partial derivative
@˛ � .fg/ can be expressed as a linear combination over C.x/ of terms of the form
.@ˇ � f /.@� � g/, where the @ˇ’s are standard monomials with respect to a Gröbner
basis of I , and the @� ’s are standard monomials with respect to a Gröbner basis
of J . This leads us to a method for deriving a 0-dimensional ideal that annihilates
the product function fg. We can then apply the holonomic gradient descent method
to definite integrals of functions with parameters of the form exp.polynomial/. The
general method described above for constructing differential equations of products
is usually not efficient. We thus need a more efficient method. In the example above,
it is more efficient if we first derive separate Pfaffian systems for the normalizing
constant a.x/ and exp.�x C 1/, and then derive a Pfaffian system for the product
exp.�x C 1/a.x/.

We offer one more comment about efficiency. In the example above, we applied
the holonomic gradient descent method to an inhomogeneous differential equation.
The rank of a.x/ is higher for a homogeneous differential equation than for
an inhomogeneous one, and so it is more efficient to use an inhomogeneous
differential equation, if possible. A general algorithm for deriving inhomoge-
neous differential equations is discussed in [20].

We note that an application of the Fisher–Bingham distribution on a sphere
is discussed in [21] and subsequent papers (e.g., [17]). It is no longer of only
theoretical interest. It is not possible to derive Pfaffian systems for the n-dimensional
Fisher–Bingham distribution by computing Gröbner bases, because of the high
computational complexity; thus the Pfaffian systems are computed “by hand” or
by a mathematical insight. This is analogous to the derivation of a Markov basis
“by hand” when applying the MCMC statistical test. The study of normalizing
constants for systems of differential equations is an exciting research area, and it is
analogous with the study of Markov bases in view of developments in combinatorics
and commutative algebra. It is an important open problem to reexamine various
statistical distributions in view of the holonomic gradient method and the holonomic
gradient descent method, as we did for the Fisher–Bingham distributions. See
[9, 16, 30, 33] for recent research achievements.

6.12 A-Hypergeometric Systems

Previous chapters of this book discussed toric ideals and their applications to statis-
tics. Another interesting application of toric ideals is that of A-hypergeometric sys-
tems, which uses the ring of differential operators D. The A-hypergeometric
system is a system of differential equations of the normalizing constant of the
A-distribution [10]. There are a many attractive topics inA-hypergeometric systems,
but we only present some introductory topics. An understanding of complex analysis
is necessary for a thorough understanding of this section (see, e.g., [1, 15]), but we
will present things so that the basic ideas can be understood without it.
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Let A be a d � n matrix with integer entries. We denote by ai the i -th column
vector of A. We assume that the ai ’s generate the lattice Zd over Z. In other words,
we assume

Pn
iD1 Zai D Zd . Let ˇ D .ˇ1; : : : ; ˇd / 2 Cd be a parameter vector. We

will use the following symbols to denote the set of nonnegative integers, negative
integers, and nonpositive integers, respectively: Z�0 D N0 D f0; 1; 2; 3; : : :g,
Z<0 D f�1;�2;�3; : : :g, and Z�0 D f0;�1;�2;�3; : : :g.

The main problem of the previous sections was to find differential equations
satisfied by a definite integral with parameters. In this section, we consider the
integral

Z

C

exp.
nX

iD1
xi t

ai /t�ˇ�1dt: (6.36)

Here, we define tai D Qd
jD1 t

aj i
i , t�ˇ�1 D Qd

jD1 t
�ˇj �1
j and dt D dt1 � � �dtd .

A function of the form t
�ˇj�1
j appears in this integral. When ˛ is a complex

number, we define z˛ by exp.˛ log z/. When ˛ and z are positive real numbers, this
is a power function. The complex function log z is multivalued, so its behavior is
complicated. For example, the formula .zw/˛ D z˛w˛ does not hold in general, and
a constant factor appears depending on the choice of the branch of log z.

The simplest integral of the form (6.36) is
R C1
0

exp.�xt/t˛�1dt; where d D
n D 1. When x > 0 and ˛ > 0, this integral can be expressed in terms of the Gamma
function as x�˛� .˛/ by the change of variable xt D s. The Gamma function is
defined by the integral

� .˛/ D
Z C1

0

exp.�s/s˛�1ds:

This integral converges when Re˛ > 0, and it is analytically continued in the
domain ˛ 2 C n Z�0. The � function may be the most special of the special
functions. For instance, consider the n-dimensional sphere, which is one of the most
fundamental objects in mathematics. Its volume is expressed in terms of � and a
value of the � function. Elementary properties of the � function are explained in
textbooks on calculus, and its properties as a complex function are explained in
textbooks on complex analysis (e.g., [1]). Moreover, there are books about the �
function that have been written by notable mathematicians, which implies that the
subject is both exciting and deep. We now present some formulas for the � function,
which are necessary to show the elementary properties of hypergeometric series.

� .˛ Cm/ D � .˛/.˛/m;
where .˛/m D ˛.˛ C 1/ � � � .˛ Cm � 1/ is the Pochhammer symbol;

� .1 � z/ D �

sin.�z/� .z/
(reflection formula):
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The system of linear differential equations that is satisfied by the integral
(6.36) is the A-hypergeometric system, defined in Definition 6.12.1 below. Here,
the domain of the integration C is a rapidly decaying twisted cycle in general.
This new and exciting research topic is discussed by Esterov and Takeuchi [4].
See also [29, p. 221] for more elementary cases. We note that the differential
operators appearing in the system are elements of the integration ideal for
exp.

Pn
iD1 xi tai /t�ˇ�1.

Definition 6.12.1 ([5]). The following system of linear differential equations is
called the A-hypergeometric system or the GKZ hypergeometric system.

.Ei � ˇi / � f D 0; where Ei � ˇi D
nX

jD1
aij xj @j � ˇi ; .i D 1; : : : ; d /

�u � f D 0; where �u D
Y

fi j 1�i�n;ui >0g
@

ui
i �

Y

fj j 1�j�n;uj <0g
@

�uj
j

and u 2 Zn runs over u satisfying Au D 0; u 6D 0:

It follows from the definition of �u that the set �u generates the toric ideal IA
in the ring of polynomials CŒ@1; : : : ; @n�. The left ideal in D generated by Ei � ˇi ,
i D 1; : : : ; d , �u 2 IA is denoted by HA.ˇ/ and is called the A-hypergeometric
ideal or the GKZ hypergeometric ideal.

The operator xj @j will be written as 	j . The operator 	j is called the Euler
operator, and E in the symbol Ei stands for Euler.

Example 6.12.2. When A D
0

@
1 1 1 1

0 1 0 1

0 0 1 1

1

A, we have a1 D
0

@
1

0

0

1

A, a2 D
0

@
1

1

0

1

A, a3 D
0

@
1

0

1

1

A, and a4 D
0

@
1

1

1

1

A. The integral (6.36) can be written as

Z

C

exp.x1t1 C x2t1t2 C x3t1t3 C x4t1t2t3/t�ˇ1�11 t
�ˇ2�1
2 t

�ˇ3�1
3 dt1dt2dt3:

Example 6.12.3. The A-hypergeometric ideal HA.ˇ/ for Example 6.12.2 is gener-
ated by

	1 C 	2 C 	3 C 	4 � ˇ1
	2 C 	4 � ˇ2
	3 C 	4 � ˇ3
@1@4 � @2@3:
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In most articles on A-hypergeometric systems, there are few discussions on
integral representations at the initial point, and they begin with the left ideal
HA.ˇ/. We introduce integral representations in this section in order to motivate
the introduction of A-hypergeometric systems and to understand their properties
intuitively. We will discuss the construction of series solutions to HA.ˇ/ in the
remainder of this section.

Let C be a cone in Rn, and let C � be the dual cone. We denote the integral points
in C � by C � \ Zn.

Example 6.12.4. Let n D 4, and let

C D R�0.1; 0; 0; 0/C R.1; 1; 0; 0/C R.0; 0; 1; 1/

CR.1; 0; 1; 0/C R.0; 1; 0; 1/:

The dual cone is C � D R�0.1;�1;�1; 1/. We note that the vector .1;�1;�1; 1/ is
orthogonal to the generating vectors ofC , except for the first one. The set of integral
points in the cone C � \ Zn is Z�0.1;�1;�1; 1/.

We denote by CŒC � \ Zn� the set of the formal series for which the support is
C � \ Zn. Any element of this set can be written as

X

k2C�\Zn

ckx
k; ck 2 C;

where xk DQn
iD1 x

ki
i .

Example 6.12.5. In the case of the previous example, this series can be expressed

as
P1

mD0 cm
	
x1x4
x2x3


m
in terms of the generator of C � \ Zn.

Let � be an n-dimensional real vector. We denote by x�CŒC �\Zn� the set of the
formal series

P
k2C�\Zn ckx

�Ck (where ck 2 C) for which the support is �C .C �\
Zn/. We call it the series with support on a dual cone (shifted by �).

Let w 2 C \ Zn be a weight vector, and let f 2 x�CŒC � \ Zn� be a series
with support on a dual cone. We denote by startw.f / the sum of the terms of f for
which w degrees w � .�Ck/ are a minimum, and we call this the starting term of f .
The definition of the starting term can be generalized to the case that � is a complex
number. For more on this topic, see [29, Sect. 2.5].

Theorem 6.12.6. Let w 2 C \ Zn be a weight vector, and let ` 2 D a differential
operator. Suppose that the series f 2 x�CŒC � \ Zn� has support on the dual cone
of C and is a solution of `. Then, the staring term of f satisfies the following
differential equation

in.�w;w/.`/ � startw.f / D 0: (6.37)



334 N. Takayama

This theorem is fundamental to the application of the theory of Gröbner basis
to the analysis of series solutions of differential equations. It is important for
characterizing the dominant part of a solution of a system of differential equations.
For example, the dominant part of the function f D x2 CP1

kD3 xk near x D 0

is x2. The graph of f near x D 0 is approximated by that of x2. The starting term
when w D .1/ is x2. In general, the dominant part of the series f which has support
on the dual cone is startw.f /, and it is characterized by the .�w;w/ initial term of
the operator `.

Proof. Replace xi by twi xi and @i by t�wi @i . Here, t is a new indeterminate that
commutes with xj and @j . The result of replacing ` and f independently and then
applying the new ` to the new f is the same as the result of applying ` to f and
then doing the replacement for the series ` � f . In particular, we have

.in.�w;w/.`/t
p C o.tp// � .startw.f /tq C o.tq// D 0:

This is an identity with respect to t , and we conclude the proof by comparing the
lowest degree coefficients of t .

Example 6.12.7. Let f D x1x2x3

	
1C 1

2
x1x4
x2x3



, and let w D .0; 0; 0; 1/. For the

operator ` D x3@3Cx4@4�1, we have in.�w;w/.`/ D `. We have startw.f / D x1x2x3
and ` � f D 0, and in this case, it is easy to confirm the identity of the theorem.
Take ` D @1@4 � @2@3. Then in.�w;w/.`/ D @1@4 and ` � f D 0. We can see that
@1@4 � x1x2x3 D 0.

It follows from the theorem that we may find generators of the left ideal
J D in.�w;w/.HA.ˇ// in D to determine the starting terms of series solutions with
support on the dual cone of the A-hypergeometric system HA.ˇ/. Let us find a set
of generators. It is easy to see Ei � ˇi 2 J , inw.IA/ � J . Conversely, we have the
following theorem.

Theorem 6.12.8. If ˇ is generic, then the operators Ei � ˇi , .i D 1; : : : ; d /,
inw.IA/ generate in.�w;w/.HA.ˇ//.

We can prove this theorem by using the Buchberger criterion in D.h/; see [29,
Theorem 3.1.3] (the proof there is only sketched, and we should apply the criterion
in D.h/ for a rigorous proof).

We introduce the A-hypergeometric series to use the starting term to determine
the higher-order terms with respect to w. Let � D .�1; : : : ; �n/ be a vector in Cn,
and let u D .u1; : : : ; un/ an integer vector. We decompose u into two vectors, uC
and u�, which have disjoint supports and nonnegative components. They satisfy
u D uC � u� and uC; u� 2 Zn�0, and the support of uC and that of u� are disjoint.
For example, we can decompose .1;�1;�1; 1/ as .1; 0; 0; 1/� .0; 1; 1; 0/.

For p 2 Zn�0, we define a falling factorial as

Œ��p D
Y

i Wpi>0
�i .�i � 1/ � � � .�i � pi C 1/:
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When all the pi are 0, we define it to be equal to 1. We have the following identities:

Œ��u
�

DQi Wui<0
Q�ui
jD1 .�i � j C 1/

ŒuC ��u
C

DQi Wui>0
Qui
jD1 .ui C �i � j C 1/ D

Q
i Wui >0

Qui
jD1 .�i C j /:

For example, when � D .�1; �2; 0; �4/ and u D .�2; 2; 2;�2/, we have Œ��u
�

Œ�Cu�u
C

D
�1.�1�1/�4.�4�1/
.�2C2/.�2C1/2Š . When � 2 .C n Z<0/n, we note that Œu C ��u

C

6D 0 holds. Let

L D Ker.Zn
A! Zd / D fk 2 Zn jAk D 0g.

Theorem 6.12.9. Suppose that the vector � satisfies � 2 .C n Z<0/n, and A� D ˇ.
Then, the denominators of the formal series


� WD
X

u2L

Œ��u
�

Œ�C u�u
C

� x�Cu (6.38)

are not 0, and the formal series satisfies the A-hypergeometric system HA.ˇ/.

We note that the series is determined by IA; we determine the coefficients of x�Cu

step by step from the starting x� so that the series is a solution of @p � @q 2 IA.
Tip on how to remember the expression of the series. To this author, this looks like
a sailboat: The expression Œ� C u�u

C

looks like the centerboard beneath the boat.
Although it can be easy to remember important expressions while proving them,
mnemonics like this can aid remembering them later.

Proof. The components of � are not negative integers, the components of u are
integers, and the denominator Œ�C u�u

C

is not 0.
We note 	i �x�Cu D .�i Cui /x�Cu. FromA� D ˇ, Au D 0, we have .Ei �ˇi /�

x�Cu D 0, and thus .Ei � ˇi / � 
� D 0 holds.
Assume @p � @q 2 IA. Here, we have supp.p/ \ supp.q/ D ; (supp.p/ D

fi jpi 6D 0g). We note the formulas @p � x�Cu D Œ� C u�px�Cu�p , @q � x�Cu0 D
Œ� C u0�qx�Cu0�q . When we take u; u0 such that u � p D u0 � q, it is sufficient to
show that

Œ�C u�p
Œ��u

�

Œ�C u�u
C

D Œ�C u0�q
Œ��u0

�

Œ�C u0�u0

C

:

We need to check this for several cases.

1. When .u�p/i D .u0�q/i � 0, we have ui ; u0
i � 0 becausepi ; qi � 0. Therefore,

we have .u�/i D 0 D ..u�p/�/i D ..u0�q/�/i . Note .uC/i D ui , Œ�i �.u
�

/i D 1.
We will omit the subscript i in the following. We have Œ�Cu�p=Œ�Cu�u D Œ�Cu�
p�u�p D Œ�Cu�p�.u�p/

C

. In summary, we have Œ�Cu�p
Œ��u

�

Œ�Cu�u
C

D Œ��u�p
�

Œ�Cu�p�.u�p/
C

.

We can make an analogous discussion for u0 � q and obtain the conclusion.
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2. When .u�p/i D .u0�q/i < 0 and ui < 0, u0
i < 0, we have a support on i only for

u�. We do not consider the denominator and omit the subscript i . We can see that

Œ�C u�pŒ��u
�

D Œ��.u�p/
�

. Therefore, we have Œ�C u�p
Œ��u

�

Œ�Cu�u
C

D Œ��u�p
�

Œ�Cu�p�.u�p/
C

.

The discussion for u0 � q is analogous.
3. The other cases can be checked analogously. For details, see [29, Proposi-

tion 3.4.1].

When there is no negative integer component in �, the series 
� can be expressed
in terms of the � function. This series was introduced by Gel’fand et al. [5]. Let
� .uC�C1/ DQn

iD1 � .uiC�iC1/. Here, if there exists i such that uiC�i 2 Z<0,
we set 1=� .uC �C 1/ D 0. Under this setting, the identity

1

� .�C uC 1/ D
Œ��u

�

Œ�C u�u
C

1

� .�C 1/

holds for u 2 L and � 2 .C n Z<0/n. Define

˚� WD
X

u2L

1

� .uC �C 1/x
�Cu: (6.39)

We have ˚� D 1
� .�C1/
� if there is no negative integer component �i . This can be

easily proved by using

� .˛ Cm/ D � .˛/.˛/m; � .˛ �mC 1/ D � .˛ C 1/.�1/m=.�˛/m:

When some �i is a negative integer, these series are different. For example, if �i D
�1 and ui D 1, then we have Œui C �i �ui D 0 and 
� cannot be defined, but we have
� .ui C �i C 1/ D 1.

The series 
� and ˚� are called A-hypergeometric series. Let us construct series
solutions of HA.ˇ/ in terms of the A-hypergeometric series 
� or ˚�. We will
use the Gröbner bases of toric ideals. Let IA be the toric ideal associated with the
matrix A. For simplicity, we will assume that IA is homogeneous in the sequel. Let
w 2 Zn be a generic weight vector with respect to IA. The cone C Œw� introduced in
Proposition 5.3.7 is called the Gröbner cone for the weight w. Since w is generic,
the dimension of the closure C of the Gröbner cone for w is n. LetG be the reduced
Gröbner basis of IA with the order 	w. Since w is generic, the initial form ideal
inw.IA/ is a monomial ideal in CŒ@1; : : : ; @n�. From Theorems 6.12.6 and 6.12.8,
solutions of the following system of differential equations are starting terms of series
solutions for which the support is on the dual cone of C :

.Ei � ˇi / � s D 0; i D 1; : : : ; d;
` � s D 0; ` 2 inw.G/:
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For simplicity, we assume that the solution s can be expressed as x�. The vector �
is a solution of the following system of algebraic equations:

A� D ˇ;
nY

iD1
�i .�i � 1/ � � � .�i � ei C 1/ D 0; @e D

nY

iD1
@
ei
i 2 inw.G/: (6.40)

We call the solutions � the fake exponents. It is known that when there is no
degenerate solution of the system of algebraic equations (6.40), any solution s is
a linear combination over C of solutions of the form x� [29, Sect. 2.3].

Example 6.12.10. A continuation of Examples 6.12.2 and 6.12.3. Take a weight
vector w D .0; 0; 0; 1/. The initial form ideal inw.IA/ of IA D h@1@4 � @2@3i is
generated by @1@4. In order to obtain the fake exponents, we solve (6.40). We may
solve the system of algebraic equations

A� D ˇ; �1�4 D 0

for �. It has the two solutions

.0; ˇ1 � ˇ3; ˇ1 � ˇ2; ˇ2 C ˇ3 � ˇ1/ and .ˇ1 � ˇ2 � ˇ3; ˇ2; ˇ3; 0/:

We consider the second fake exponent. We note L D Z.1;�1;�1; 1/. When no
component of the fake exponent is a negative integer, the series 
� can be written as

x
ˇ1�ˇ2�ˇ3
1 x

ˇ2
2 x

ˇ3
3

1X

mD0
cm

�
x1x4

x2x3

�m
:

Here, we set cm D Œˇ2�mŒˇ3�m
Œˇ1�ˇ2�ˇ3Cm�mŒm�m . The sum is taken only overm � 0, because if

the fourth component of L is negative, then Œ��u
�

=Œ�Cu�u
C

is 0. The series solution
˚�, which is expressed in terms of � functions, is

x
ˇ1�ˇ2�ˇ3
1 x

ˇ2
2 x

ˇ3
3

1X

mD0
c0
m

�
x1x4

x2x3

�m
; (6.41)

where we set c0
m D 1

� .ˇ1�ˇ2�ˇ3CmC1/� .ˇ2�mC1/� .ˇ3�mC1/� .mC1/ . These series can be
expressed in terms of the Gauss hypergeometric series.

Theorem 6.12.11 ([5, 29, Theorem 3.4.2]). Let w be a generic weight vector, and
let � be a fake exponent standing for w. If � 2 .C n Z<0/n holds, then the series 
�
is a formal solution ofHA.ˇ/, and its support is on �C .C �\L/. In particular, we
have startw.
�/ D x�.
Proof. Let C be the closure of the Gröbner cone of IA that contains w as a point
in its interior. We will prove by contradiction that if u satisfies Œ��u

�

6D 0, then u
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belongs to C �. Let � be a subset of f1; : : : ; ng. There exists a � which satisfies
the following conditions. (1) If i 62 � , then �i 2 N0. (2) The set � appears in the
regular triangulation obtained by the weight w. We denote by N� the complement
of � . Suppose ui < 0. If i 2 N� and �i C ui � 0, then Œ�i ��ui 6D 0. Therefore,
when u lies in the support of 
�, the inequality �i C ui � 0, i 62 � holds. Let
L0 D fu 2 L j �i C ui � 0; i 62 �g. The set L0 includes the support of 
�.

We will prove by contradiction that L0 � w � 0. Suppose that there exists an
element u of L0 such that w � u < 0 holds. We define vectors u� and a, which have
nonnegative components, by u� i D �min.ui ; 0/ (i 2 �), u� i D 0 (i 62 �), ai D �i
(i 62 �), ai D 0 (i 2 �). The operator @aCu� � @aCu�Cu is an element of IA. Here,
by our assumption, the underlined term is the leading term. However, since we have
supp.u�/ � � , the monomial @aCu� does not belong to inw.IA/. Here, we use the
fact that � is a fake exponent. This is a contradiction, and we have w � u � 0. We can
easily show that if w � u D 0, then u D 0. The last part of the proof is only sketched.
In order to prove it rigorously, we need to use the notion of standard pairs and their
properties; see [29, Sects. 3.2, 3.4].

Example 6.12.12. We consider

A D

0

BB@

1 1 1 1 1 1

0 0 0 1 1 1

0 1 0 0 1 0

0 0 1 0 0 1

1

CCA

and construct series solutions. The toric ideal IA is generated by f@2@6�@3@5; @1@6�
@3@4; @1@5 � @2@4g. A Gröbner basis of IA for w D .8; 2; 0; 30; 20; 14/ is

G D f@2@4 � @1@5; @3@4 � @1@6; @3@5 � @2@6g:
The underlined terms are generators of the initial ideal with respect to w. Therefore,
the fake exponents are solutions of

A� D ˇ; �2�4 D �3�4 D �3�5 D 0:
The system of equations �2�4 D �3�4 D �3�5 D 0 are equivalent to �4 D �5 D
0 or �3 D �4 D 0 or �2 D �3 D 0. This can be shown by the primary ideal
decomposition. If two �i ’s are determined, the other �j ’s are uniquely determined by

A� D ˇ. There are three solutions, which are in the following format:

�
�1 �2 �3

�4 �5 �6

�
:

They are:

�.1/ D
�
ˇ1 � ˇ3 � ˇ4 ˇ3 ˇ4 � ˇ2

0 0 ˇ2

�
;

�.2/ D
�
ˇ1 � ˇ3 � ˇ4 ˇ3 C ˇ4 � ˇ2 0

0 ˇ2 � ˇ4 ˇ4

�
;

�.3/ D
�

ˇ1 � ˇ2 0 0

ˇ2 � ˇ3 � ˇ4 ˇ3 ˇ4

�
:
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The lattice L has the same format as �, and it is generated by the following vectors:

b.1/ D
��1 0 1

1 0 �1
�
; b.2/ D

�
0 �1 1

0 1 �1
�
:

When ˇ is generic, the series 
�.i/ is a solution. This is an example of the Appell
function F1.

Thus, we have seen that series solutions can be obtained by computing a Gröbner
basis of a toric ideal. In Sect. 5.5, we proved that a Gröbner basis of a toric ideal
gives a regular triangulation. Gel’fand et al. [5] constructed series solutions from
regular triangulations, but their method is not intuitive. On the other hand, our
method is natural in the sense of solving the principal part in.�w;w/.IA/ andEi �ˇi ,
and then extending solutions of the principal part to solutions of the original system.
Regular triangulations appear since the principal part contains the initial ideal of the
toric ideal.

When the toric ideal IA is homogeneous and the parameter ˇ is generic, we
can show that the series solutions we have constructed span the solution space
on a translate of a secondary cone [29, Theorems 2.4.9, 2.5.16, 3.13]. When the
toric ideal IA is homogeneous and ˇ is not generic, we have solutions containing
logarithmic functions. A method of constructing vol.A/ D degree .IA/ many
solutions is described in Sect. 3.5 of [29], but it is an open problem when IA is not
homogeneous. Series solutions are interesting mathematical objects, and they also
have applications to the numerical evaluation of hypergeometric functions and to the
drawing of graphs of hypergeometric functions (which are of particular interest to
the author). For example, Example 7.4.14 uses a series solution to solve the problem
of finding a local minimum of a function.

As the last topic of this chapter, we provide an algorithm that uses the Gröbner
bases of toric ideals to output the terms of the A-hypergeometric series (6.38) in the
order defined by the weight w. Let G be a Gröbner basis of IA with respect to a
generic weight vector w.

Theorem 6.12.13. We can regard the elements of G as generators of L D ker.A W
Zn ! Zd /. In other words, the Gröbner basis is a set of generators of the lattice L
over Z (see the proof, below, for how this can be regarded as generators).

Proof. Let u � v be an element of L where u; v 2 Nn
0 . Since @u � @v 2 IA, there

exists an element @u0 � @v0

of G such that @a@u0 D @u. Here, the underlined terms
are the leading term with the order 	w. We identify this element of G and u0 � v0
below. The reduction of @u � @v by @u0 � @v0

represents the following rewriting of
vectors:

.u� v/ � ..u0 C a/� .v0 C a// D .v0 C a/� v:

The remainder by the reduction is @v
0Ca � @v . Since a is canceled, the last vector is

an expression of .u � v/ � .u0 � v0/. The procedure of the reduction is written as
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@u � @v D
X

@u0 �@v0 2G
@a.@u0 � @v0

/:

Here, @u0 � @v0

appears more than once. The number of appearances is equal to the
number of coefficients of u0 � v0 when u � v is expressed in terms of a Gröbner
basis. In particular, u� v can be expressed as a linear combination of elements ofG
with nonnegative coefficients.

Let us illustrate this proof with an example. When G D f.1; 1;�1;�1/g, we reduce
.2; 2;�2;�2/ by G (we denote @i by xi in the sequel):

.x21x
2
2 � x23x24/;

u‚ …„ ƒ
.2; 2; 0; 0/�

v‚ …„ ƒ
.0; 0; 2; 2/

! x1x2x3x4 � x23x24 by x1x2.x1x2 � x3x4/;
u�v‚ …„ ƒ

.2; 2;�2;�2/ D
u0�v0

‚ …„ ƒ
.1; 1;�1;�1/C

aCv0

‚ …„ ƒ
.1; 1; 1; 1/�

v‚ …„ ƒ
.0; 0; 2; 2/

a D .1; 1; 0; 0/; u0 D .1; 1; 0; 0/; v0 D .0; 0; 1; 1/

! 0 by x3x4.x1x2 � x3x4/;
new u�v‚ …„ ƒ

.1; 1;�1;�1/ D
new u0�v0

‚ …„ ƒ
.1; 1;�1;�1/C.0; 0; 0; 0/

new a D .1; 1; 0; 0/; new u D .1; 1; 1; 1/; new v D .0; 0; 2; 2/
new u0 D .1; 1; 0; 0/; new v0 D .0; 0; 1; 1/:

Theorem 6.12.14. We have

C � \ L D
X

g2G
Z�0g:

Here, when g D @u � @v , Z�0g means Z�0.u� v/.
Proof. Let u� v be an element of C �\L. Here, we assume u; v 2 Z�0. Let w 2 C
be a weight vector in the interior ofC , and we assume w�u > w�v. We reduce @u�@v
with the order	w byG, and finally it is reduced to 0. As in the proof of the previous
theorem, we identify the binomials and vectors. With this identification, u�v can be
expressed as a linear combination of elements of G with nonnegative coefficients.
Then, the left-hand side is included in the right-hand side of the conclusion. The
opposite inclusion follows from the definition of C and g 2 L.

By virtue of this theorem, the points of the support of a hypergeometric series are
output in the order determined by w. In general, this method gives redundant results,
which must be removed.
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Example 6.12.15. This is a continuation of Example 6.12.12. The vectors b.1/,
b.2/, and

b.3/ D
��1 1 0

1 �1 0
�

expressesC �\L as
P3

iD1 Z�0b.i/. This expression has a redundancy. For example,
we have b.1/ D b.2/C b.3/. In order to express the hypergeometric series associated
with �.1/, we need only b.1/ and b.2/. For the series for �.2/, we need only b.2/ and
b.3/. For the series for �.3/, we need only b.1/ and b.3/.

We now use this theorem to provide an algorithm for constructing the hypergeomet-
ric series

P
u2L

Œ��u
�

Œ�Cu�u
C

x�Cu up to a given w order u � w.

In a preparation, we first give a method for enumerating all the pairs of
nonnegative integers .m1; : : : ; ms/ satisfying

sX

iD1
pimi � N

for a given integer pi � 1 and a nonnegative integer N . Expanding the polynomial
.1C x1tp1 C � � � C xstps /N , we obtain

X

m0Cm1C���CmsDN

N Š

m0Šm1Š � � �msŠ
x
m1
1 � � �xmss t

Ps
iD1 mipi :

Since pi � 1, what we wish to enumerate are the exponents .m1; : : : ; ms/ of x,
which appear as coefficients of a power of t and for which the order is less than
or equal to N . This method can be easily implemented using computer algebra
systems. We note that this is simply the enumeration of the feasible points of integer
programs. Then, there are existing algorithms that we can use (see Sect. 1.7 for
historical notes, and Examples 7.2.4 and 7.2.5). Although the method above is not
efficient when N is large, it works well for small N and is easy to implement.

Let G D fg1; : : : ; gsg be a Gröbner basis of IA. With our definitions, the
binomial gi can be expressed as ŒuC; u��. When we need to specify i , we denote
it by Œu.i/C ; u.i/� �. Here, we have uCw > u�w. Put uCw � u�w as pi . Then, elements
of C � \ L for which w is of an order less than or equal to N , are written as

X
mi.u

.i/
C � u.i/� /:

Here,mi includes all of the solutions of
P
mipi � N , and if there are redundancies,

they need to be removed. For this purpose, we list all the elements
P
mi.u

.i/
C �

u.i/� / of C � \ L for which the degrees
P
mipi are equal, and then we remove

the redundant ones. Thus, we have an algorithm that generates the hypergeometric
series.
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6.13 Notes

In the previous section, we explained the construction of series solutions for
A-hypergeometric systems. We used the initial ideal inw.IA/, which determines
the starting term of the series solution. In other words, the first approximate
solutions are obtained by inw.IA/. Therefore, several properties of inw.IA/ which
were discussed in Chap. 5 control the properties of the hypergeometric series (for
details, see [29]). We did not discuss the related elementary topics or history of the
Gauss hypergeometric series; interested reader are referred to the chapters on the
hypergeometric function in [2, 8, 13, 14], all of which begin with elementary topics
and build up to current research topics. Research on A-hypergeometric systems has
advanced significantly since [29], which was published in 2000. A survey of recent
research on A-hypergeometric systems is found in [32].

In Chap. 4, we studied the enumeration of contingency tables and the MCMC
method. Contingency tables appear in hypergeometric series. For example, we
consideredA in Example 6.12.12. For the integral representation (6.36) of a solution
for ˇ D .5; 3; 2; 2/, we make the change of variables t1f D �s (f will be defined
below), and we can see that the integral is formally equal to a constant multiple of

Z

C 0

f
ˇ
1 t

�ˇ2�1
2 t

�ˇ3�1
3 t

�ˇ4�1
4 dt2dt3dt4; f D x1Cx2t3Cx3t4Cx4t2Cx5t2t3Cx6t2t4

because t1 D �sf �1 and dt1 D �f �1ds. Let C 0 be the direct product of the
circles centered at the origin in the complex plane with radius ti , where i D 2; 3; 4.
From the residue theorem, this integral is a constant multiple of the coefficient of
t
ˇ2
2 t

ˇ3
3 t

ˇ4
4 of the polynomial f ˇ1 of the t variables. We can easily show that the

integral satisfies the A-hypergeometric system for ˇ. The coefficient is

30.0; 0; 2; 1; 2; 0/C 120.0; 1; 1; 1; 1; 1/C 60.1; 0; 1; 0; 2; 1/
C 30.0; 2; 0; 1; 0; 2/C 60.1; 1; 0; 0; 1; 2/;

where the vector .k1; k2; k3; k4; k5; k6/ represents xk D Q
x
ki
i . If we rewrite the

vectors in the format

�
k1 k2 k3
k4 k5 k6

�
, then they are the 2 � 3 contingency tables for

which the row and column sums are .2 D 5� 3; 3I 1; 2; 2/ (see Example 7.2.4). Let
us generalize this example. For givenA and ˇ, which have only nonnegative integer

components, we consider the distribution jkjŠxk
k1Š���knŠ =Z.ˇI x/ with a parameter vector

x, where k runs over the integer vectors with nonnegative components satisfying
Ak D ˇ. Here, Z.ˇI x/ is the normalizing constant defined by

Z.ˇI x/ D
X

k2Nn0 WAkDˇ

jkjŠxk
k1Š � � �knŠ : (6.42)
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The normalizing constant Z.ˇI x/ satisfies the A-hypergeometric system and is a
special case of the A-hypergeometric series studied in this chapter [29, p. 131].
Thus, the multiple hypergeometric distribution studied in Sect. 4.1.4 assists in the
study of the hypergeometric series.

We started with the ring of differential operators, which looks unrelated to the
topics in the other chapters. However, we have come to a happy ending with
connections between several topics.

About 24 years ago, the author remembers that Prof. I.M. Gel’fand introduced
the A-hypergeometric system and said that if we continued to study this topic
and related areas, we would be able to write many volumes of research books.
He also told us that combinatorial and computational mathematics would become
increasingly important in the future. His predictions are being realized, such as by
this book.

Unfortunately, there is little feedback from hypergeometric systems to the com-
binatorics of IA and algebraic statistics. The holonomic gradient descent method,
presented in this chapter, may be a first step in such feedback. The author hopes that
there will be successful advances in this direction, leading to a sequel of this book.
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Abstract There are two aspects to the study of Gröbner bases: theory and
computation. For problems which are difficult to solve by theoretical approaches,
it may be possible to obtain solutions by computation, using either brute force or
more elegant methods. On the other hand, for problems for which the computational
methods are difficult, it may be possible to obtain solutions by a combination of
theoretical insight and calculations. This is one of the attractions of Gröbner bases.
Chapters 4–6 emphasized the theoretical aspect. In this chapter, we present problems
and answers which utilize various software systems. It is our hope that readers
will perform the calculations on these software systems while studying this chapter.
Following these problems and their answers, we provide easy exercises which will
help the reader to understand how to use these software systems to study or apply
Gröbner bases. We will use computer algebra systems, statistical software systems,
and some expert systems for polytopes and toric ideals; this covers several areas
related to the theory and applications of Gröbner bases.
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7.1 Software

Software

In this chapter, we will use many of the software packages shown in Table 7.1.
Sections 3.2 and 3.6 explained the use of Macaulay2, Singular, and Risa/Asir. Refer
to the examples in this chapter for the use of other software packages, such as
4ti2, Gfan, LattE, polymake, and TOPCOM, which are all command-line interface
software packages. The statistical software package R was introduced in Chap. 4.
To start R, use the command R in the shell; to quit R, use the command q() while
in R.

Listing 7.1 Starting and quitting R
� �

$ R
R version 2.4.0 Patched (2006-11-25 r39997)
Copyright (C) 2006 The R Foundation for Statistical Computing
.... omitted
> q();
Save workspace image? [y/n/c]: n
� �

Versions

Table 7.1 shows the versions of software which are used in this chapter. We will use
these when examining the behavior of programs and sample codes when solving the
examples.

Displays of Input and Output

In order to save space, we will modify the display of program input and output in
the following way:

• remove diffuse spaces and blank lines,
• wrap lines,
• reformat,
• add comments.

Table 7.1 Software versions Software Versions Software Versions

4ti2 1.3.2 Polymake 2.9.9
Gfan 0.4 R 2.4
Kan/sm1 3.050615 Risa/Asir 20110330
LattE 1.2 Singular 3-1-2
Macaulay2 1.4 TOPCOM 0.16.2
Maple 14.00 – –
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How to Get the Program Files

The program files used in the following examples and exercises are available at

http://www.math.kobe-u.ac.jp/OpenXM/Math/dojo-en/.

7.2 Markov Bases and Designed Experiments

This section includes examples and exercises for Chap. 4, “Markov bases in
designed experiments”. The goals of this section are the computation of Markov
bases, the estimation of p values, the enumeration of the nonnegative integer
solutions for a system of linear inequalities, and the computer selection of statistical
models for designed experiments. We use the statistical software package R [18], the
computer algebra system Risa/Asir [15], the software package for computing toric
ideals 4ti2 [26], and the software package for enumerating lattice points LattE [3].

Software Command(or Function) Computation

Asir (toric.rr) gr_w(Id, VL, W) Gröbner basis w.r.t. <w

toric_ideal(A) Generators for a toric ideal IA
(Elimination methods by GB )

Asir (Asir-Contrib) poly_toric_ideal(A) Generators for a toric ideal IA
(Use 4ti2, fast computation)

Asir (ipp_one.rr) ipp_one(A,B) Compute a nonnegative integer solu-
tion x for Ax D B

Asir (alias-2.rr) Compute aliasing relations by Gröb-
ner basis

4ti2 markov Markov basis for a toric ideal IA

LattE count Count the number of lattice points in a
polytope

R (metropolis.r) metropolis Random sampling by MCMC
R (2x3mcmc.r) c2x3mcmc MCMC for an independence model of

2� 3 table
R (5x5mcmc.r) c5x5mcmc MCMC for an independence model of

5� 5 table
R (cov1_mcmc.r) cov1_mcmc MCMC for a fractional design
R (cov2_mcmc.r) cov2_mcmc MCMC for a fractional design

C Program enumerate_fiber Enumerate the nonnegative integer
(enumerate_fiber.c) solutions for linear equations

http://www.math.kobe-u.ac.jp/OpenXM/Math/dojo-en/
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7.2.1 Conditional Tests of Contingency Tables (Sect. 4.1)

Example 7.2.1. We consider the following 2 � 2 contingency table.

Smoking Nonsmoking Total

Cases 3 1 4
Controls 2 4 6

Total 5 5 10

1. Let the null hypotheses beH0: “there is no true relation between the diseases and
smoking”. Calculate the probability p.x/ D 1

Z
1

x11Šx12Šx21Šx22Š
for the data above,

where Z is the normalizing constant.
2. Evaluate the p value of the following test: X11 � c H) H0 is rejected.

Answer. 1. x can be taken from one of the five cases:

4 0

1 5
;
3 1

2 4
;
2 2

3 3
;
1 3

4 2
;
0 4

5 1
:

Their probabilities are, respectively,

1

42
;
10

42
;
20

42
;
10

42
;
1

42
:

2. The observed value of x11 is 3. Therefore, the p value is

p value D Pr.X11 � 3/ D 10

42
C 1

42
D 11

42
D 0:261:

Since the p value > 0:05, H0 is not rejected.

Exercise. Perform the same calculations using R (use the command fisher.
test).

Example 7.2.2. Let x1; x2; x3 2 fC1;�1g be discrete random variables. The joint
probability function of X D .x1; x2; x3/ is

p.x1; x2; x3/ D exp.0:2.x1x2 C x2x3 C x1x3//
Z

;

where

Z D
X

.x1;x2;x3/2fC1;�1g3
exp.0:2.x1x2 C x2x3 C x1x3//
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is the normalizing constant. Generate random samples from the distribution
p.x1; x2; x3/ by using the Markov chain Monte Carlo method. Moreover, check
that the relative frequency for each of the eight points fC1;�1g3 approaches
p.x1; x2; x3/. (Please refer to [10, p.8].)

Answer. The following shows the application of the Markov chain Monte Carlo
method to this example.

1. Initialize x D .x1; x2; x3/.
(For example, set x .�1;�1;�1/.)

2. Randomly select a variable xi from fx1; x2; x3g.
Set x0  .x1; x2; x3/. Replace xi with �xi in .

3. r  p.x0/

p.x/ .
4. Take a random numberR from the uniform distribution from 0 to 1.
5. If r > R, then xnext  x0;

else xnext  x.
6. Get xnext as a sample.
7. x xnext

Go to step 2.

The file metropolis.r is a sample program implemented using R.

Listing 7.2 R: executing metropolis.r
� �

> source("metropolis.r")
metropolis(number of samples, initial value)
e.g. metropolis(10000, c(-1,-1,-1))
> metropolis(10000, c(-1,-1,-1))
[1] -1 -1 -1 <- output sample values
[1] -1 -1 -1
...
[1] 1 -1 -1
[1] 2127 957 923 987 918 934 924 2230 <- frequency
experimental values
[1] 0.2127 0.0957 0.0923 0.0987 0.0918 0.0934 0.0924 0.2230
exact values
[1] 0.21294838 0.09568387 0.09568387 0.09568387 0.09568387 0.09568387
0.09568387 0.21294838
� �

Exercise. Let x1; x2; x3; x4 2 fC1;�1g be discrete random variables. The joint
probability function of X D .x1; x2; x3; x4/ is

p.x1; x2; x3; x4/ D exp.0:2.x1x2 C x1x3 C x2x4 C x3x4//
Z

;

where Z is the normalizing constant. Generate random samples from the distribu-
tion p.x1; x2; x3; x4/ by using the Markov chain Monte Carlo method. (Please refer
to the 2 � 2 square-lattice model of Ising [10, p. 16].)

x0
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7.2.2 Markov Basis (Sect. 4.2)

Example 7.2.3. Use the Gröbner basis method to derive a 2�3 contingency table for
which the row sums are 6 and 3 and the column sums are 2; 3, and 4. In other words,

compute a nonnegative integer solution forAx D b, whereA D

0
BBBBB@

1 1 1 0 0 0

0 0 0 1 1 1

1 0 0 1 0 0

0 1 0 0 1 0

0 0 1 0 0 1

1
CCCCCA

and

b D

0
BBBBB@

6

3

2

3

4

1
CCCCCA

.

Answer. Here, we explain the solution by using the Gröbner basis for a toric ideal.
Of course, since this problem is small, we can compute the solution without using
the Gröbner basis.

To obtain the toric ideal IA, we compute the intersection

IA D hx1 � t1t3; x2 � t1t4; x3 � t1t5; x4 � t2t3; x5 � t2t4; x6 � t2t5i \QŒx�:

Please refer to Lemma 1.5.11 or Corollary 4.2.11. To compute the intersection, we
compute the Gröbner basis G of the ideal

I D hx1 � t1t3; x2 � t1t4; x3 � t1t5; x4 � t2t3; x5 � t2t4; x6 � t2t5i
with respect to the monomial order < satisfying t1; : : : ; t5 > x1; : : : ; x6. The
elements G \ QŒx1; : : : ; x6� generate IA. The remainder of the monomial tb when
divided by the Gröbner basis G corresponds to a nonnegative solution. In this case,
the Gröbner basis G is

G D h � x2x6 C x3x5;�x1x6 C x3x4;�x1x5 C x2x4;�t4x6 C t5x5;�t4x3 C t5x2;

� t3x6 C t5x4;�t3x5 C t4x4;�t3x3 C t5x1;�t3x2 C t4x1;�t1x6 C t2x3;

� t1x5 C t2x2;�t1x4 C t2x1; x6 � t2t5; x3 � t1t5; x5 � t2t4; x2 � t1t4;

x4 � t2t3; x1 � t1t3i;

and the remainder of tb D t61 t
3
2 t
2
3 t
3
4 t
4
5 when divided by G is �x21x32x3x36 . The

monomial corresponds to the nonnegative solution .2; 3; 1; 0; 0; 3/
The above computation, performed using Risa/Asir, is shown below.

Listing 7.3 Risa/Asir: computing the Gröbner basis
� �

[1356] Id=[x1-t1*t3,x2-t1*t4,x3-t1*t5,x4-t2*t3,x5-t2*t4,x6-t2*t5];
[1357] VL=[t1,t2,t3,t4,t5,x1,x2,x3,x4,x5,x6];
[1358] G=nd_gr(Id,VL,0,[[0,5],[0,6]]); <- compute the Groebner basis
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[-x2*x6+x3*x5,-x1*x6+x3*x4,-x1*x5+x2*x4,-t4*x6+t5*x5,-t4*x3+t5*x2,
-t3*x6+t5*x4,-t3*x5+t4*x4,-t3*x3+t5*x1,-t3*x2+t4*x1,-t1*x6+t2*x3,
-t1*x5+t2*x2,-t1*x4+t2*x1,x6-t2*t5,x3-t1*t5,x5-t2*t4,x2-t1*t4,
x4-t2*t3,x1-t1*t3]

[1360] p_nf(t1^6*t2^3*t3^2*t4^3*t5^4, G, VL, 0); <- compute the remainder
-x1^2*x2^3*x3*x6^3
� �

The function nd_gr computes the Gröbner basis, and the function p_nf computes
the remainder. (For details, please refer to Sects. 3.6.6 and 3.6.8.) The argument
[[0,5],[0,6]] of nd_gr is a block-type order which indicates the monomial
order satisfying t1; : : : ; t5 > x1; : : : ; x6. (For details, please refer to Sect. 3.6.5)

The Risa/Asir program ipp_one.rr uses a Gröbner basis to compute a
nonnegative integer solution for a system of linear equations.

Listing 7.4 Risa/Asir: computing a nonnegative integer solution using ipp_one.rr
� �

[1367] load("ipp_one.rr");
[1372] A=[[1,1,1,0,0,0],[0,0,0,1,1,1],[1,0,0,1,0,0],[0,1,0,0,1,0],
[0,0,1,0,0,1]];
[1373] B=[6,3,2,3,4];
[1374] ipp_one(A,B); <- Compute a nonnegative integer solution for Ax = B
[2,3,1,0,0,3]
� �

Exercise. Use the Gröbner basis method to derive a 4 � 4 contingency table for
which the row sums are 3; 4; 5, and 6 and the column sums are 3; 5; 5, and 5.

Example 7.2.4. We consider 2�3 contingency tables for which the row and column
sums are fixed. In other words, we consider a system of linear equations Ax D b,
where

A D

0
BBBBB@

1 1 1 0 0 0

0 0 0 1 1 1

1 0 0 1 0 0

0 1 0 0 1 0

0 0 1 0 0 1

1
CCCCCA
;

and b is a vector.

1. Compute a Markov basis for the matrix A by computing generators of the toric
ideal IA.

2. Compute a Markov basis for the matrix A by using the software package 4ti2.
3. Compute all of the nonnegative integer solutions x � 0 for Ax D t, where

t D .2; 3I 1; 2; 2/0. In other words, enumerate t-fiber Ft.

Answer. 1. We compute the generators of the toric ideal IA by using a method
similar to that of Example 7.2.3. We can obtain generators

f�x2x6 C x3x5;�x1x6 C x3x4;�x1x5 C x2x4g

for IA. The set of the vectors corresponding to these binomials is a Markov basis
for A (Theorem 4.2.8). A Markov basis for A is
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f.0;�1; 1; 0; 1;�1/; .�1; 0; 1; 1; 0;�1/; .�1; 1; 0; 1;�1; 0/g:

Here is the above computation performed using Risa/Asir program
toric.rr.

Listing 7.5 Risa/Asir: computing a toric ideal using toric.rr
� �

[1367] load("toric.rr");
[1385] toric_ideal([[1,1,1,0,0,0],[0,0,0,1,1,1],[1,0,0,1,0,0],
[0,1,0,0,1,0],[0,0,1,0,0,1]]);
ideal :
[x6-t1*t4,x5-t1*t3,x4-t1*t2,x3-t0*t4,x2-t0*t3,x1-t0*t2,
t0*t1*t2*t3*t4*t5-1]
gb :
[-x2*x6+x3*x5,-x1*x6+x3*x4,-x1*x5+x2*x4,-t3*x6+t4*x5,-t3*x3+t4*x2,
-t2*x6+t4*x4,-t2*x5+t3*x4,-t2*x3+t4*x1,-t2*x2+t3*x1,t5*x1*x5*x6-t1,
t5*x1*x2*x6-t0,t4*t5*x1*x5-1,-t4*t5*x1*x2*x6+x3,t3*t4*t5*x1*x4-t2]

[-x2*x6+x3*x5,-x1*x6+x3*x4,-x1*x5+x2*x4] <- generators for the toric ideal
� �

The function toric_ideal(A) computes generators for the toric ideal IA.
The algorithm in this function is the elimination method using the Gröbner basis,
which is explained in Example 7.2.3. This algorithm is not very efficient, and it
is not practical for solving large problems. In Example 7.2.7, we will treat a large
problem.

2. Below, we will compute a Markov basis, using the software package 4ti2.
We make the following input file cont2x3 corresponding to the matrix A. The
first row 5 6 gives the numbers of rows and columns of the matrix; the following
rows are the matrix elements.

Listing 7.6 4ti2: input file cont2x3
� �

5 6
1 1 1 0 0 0
0 0 0 1 1 1
1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1
� �

We execute the 4ti2 command markov to compute a Markov basis.

Listing 7.7 Executing the 4ti2 command markov
� �

$ markov cont2x3
...skip
Size: 3, Time: -0.00 / 0.01 secs. Done.
Total Time: 0.02 secs.
� �

The 4ti2 outputs a Markov basis in the file cont2x3.mar.

Listing 7.8 4ti2: output file cont2x3.mar
� �

3 6
0 -1 1 0 1 -1
1 -1 0 -1 1 0
1 0 -1 -1 0 1

� �

The first row provides the numbers of vectors in the Markov basis and variables,
and the following rows are vectors in the Markov basis. These vectors correspond
to the binomials x3x5 � x2x6; x1x5 � x2x4; x1x6 � x3x4 which generate the toric
ideal IA.
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Risa/Asir has the function poly_toric_ideal which uses 4ti2 to
compute a Gröbner basis for a toric ideal.

Listing 7.9 Risa/Asir: computing a toric ideal using poly_toric_ideal
� �

[1532] poly_toric_ideal([[1,1,1,0,0,0],[0,0,0,1,1,1],[1,0,0,1,0,0],[0,1,
0,0,1,0],[0,0,1,0,0,1]], [x1,x2,x3,x4,x5,x6]);
-------------------------------------------------
4ti2 version 1.3.2, Copyright (C) 2006 4ti2 team. <- call 4ti2
... skip
4ti2 Total Time: 0.00 secs.
[-x1*x6+x3*x4,-x1*x5+x2*x4,-x2*x6+x3*x5]
� �

The computer algebra systems Macaulay2 and Singular also use 4ti2 to compute
toric ideals. (Macaulay2 : FourTiTwo.m2, Singular : sing4ti2.lib)

3. We now compute a nonnegative integer solution x � 0 for Ax D t. We use a
method similar to that of Example 7.2.3.

Listing 7.10 Risa/Asir: computing a nonnegative integer solution using ipp_one.rr
� �

[1367] load("ipp_one.rr");
[1372] A=[[1,1,1,0,0,0],[0,0,0,1,1,1],[1,0,0,1,0,0],[0,1,0,0,1,0],
[0,0,1,0,0,1]];
[1375] B=[2,3,1,2,2];
[1376] ipp_one(A,B);
[1,1,0,0,1,2]
� �

We obtained the solution x D .1; 1; 0; 0; 1; 2/0. By adding the elements of the
Markov basis to x or subtracting the elements of the Markov basis from x,
we obtain the elements in the fiber. For these elements, we perform similar
computations: t-fiber is

Ft D f.0; 1; 1; 1; 1; 1/0; .0; 2; 0; 1; 0; 2/0; .1; 1; 0; 0; 1; 2/0; .1; 0; 1; 0; 2; 1/0;
.0; 0; 2; 1; 2; 0/0g:

Exercise. Let

A D

0
BBBBBBB@

1 1 1 0 0 0 0 0 0

0 0 0 1 1 1 0 0 0

0 0 0 0 0 0 1 1 1

1 0 0 1 0 0 1 0 0

0 1 0 0 1 0 0 1 0

0 0 1 0 0 1 0 0 1

1
CCCCCCCA

; t D

0
BBBBBBB@

3

3

3

3

3

3

1
CCCCCCCA

:

Enumerate the t-fiber Ft. In other words, enumerate all the 3�3 contingency tables
for which the row and column sums are each equal to 3.

Example 7.2.5. A Markov basis B for a configuration A and a vector xo are given.
Write a program implementing the following algorithm for enumerating all the
elements in the fiber FAxo .
(Algorithm enumerating all the elements in the fiber FAxo)
Input: Markov basis B and vector xo

Output: All the elements in the fiber FAxo
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1. Active fxog, Fiber fxog
2. While Active¤ 


a. u (an element in Active), Active Active nfug
b. For each element v D vC � v� in B

i. If u� vC � 0 and u � v … Fiber, then
Active Active [fu� vg, Fiber Fiber [fu � vg

ii. If u� v� � 0 and uC v … Fiber, then
Active Active [fuC vg, Fiber Fiber [fuC vg

3. Output Fiber.

This algorithm is not efficient. For a more efficient algorithm, please see [22,
Algorithm 5.7].

Answer. The C program enumerate_fiber.c implements the above algorithm
and enumerates all the elements in the fiber. This program needs the input files
start.txt and markov.txt. We write an element in the fiber to the file
start.txt and a Markov basis to markov.txt. The format of the input file
for this program is similar to that used with 4ti2.

The following example calculates the fiber of a 2 � 3 contingency table. Let

A D

0
BBBB@

1 1 1 0 0 0

0 0 0 1 1 1

1 0 0 1 0 0

0 1 0 0 1 0

0 0 1 0 0 1

1
CCCCA
; xo D

0

BBBBBB@

0

1

1

1

1

1

1

CCCCCCA
;B D

8
ˆ̂̂
ˆ̂̂
<

ˆ̂̂
ˆ̂̂
:

0

BBBBBB@

0

�1
1

0

1

�1

1

CCCCCCA
;

0

BBBBBB@

1

�1
0

�1
1

0

1

CCCCCCA
;

0

BBBBBB@

1

0

�1
�1
0

1

1

CCCCCCA

9
>>>>>>=

>>>>>>;

:

We enumerate all the elements in the fiber. This is a solution using C program
enumerate_fiber to solve Example 7.2.4 (3). First, we make the input files
start.txt and markov.txt.

Listing 7.11 C program enumerate_fiber: Input file start.txt
� �

1 6
0 1 1 1 1 1 <- an element in the fiber
� �

Listing 7.12 C program enumerate_fiber: Input file markov.txt
� �

3 6 <- the numbers of vectors in the Markov basis and variables
0 -1 1 0 1 -1 <- vectors in the Markov basis
1 -1 0 -1 1 0
1 0 -1 -1 0 1

� �

Below, we show how to execute the program enumerate_fiber.

Listing 7.13 Executing the C program enumerate_fiber
� �

$ enumerate_fiber start.txt markov.txt
n_move : 1, msize : 6
start_v : <- start element in the fiber
0 1 1 1 1 1

n_move : 3, msize : 6
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move : 3 6 <- moves
0 -1 1 0 1 -1
1 -1 0 -1 1 0
1 0 -1 -1 0 1

0 0 2 1 2 0
.... skip
count: 5
fiber :
0 1 1 1 1 1 <- enumerates elements in the fiber
0 0 2 1 2 0
1 0 1 0 2 1
1 1 0 0 1 2
0 2 0 1 0 2
� �

Exercise. 1. Implement the above algorithm using another programming language,
such as R or Risa/Asir.

2. Implement a more efficient algorithm for enumerating all the elements in the
fiber. (Please refer to [22, Algorithm 5.7].)

Example 7.2.6. We consider a 3 � 4 contingency table whose .1; 1/; .2; 2/; .3; 3/;
.3; 4/ elements are structural zeros,

Œ0� � � �
� Œ0� � �
� � Œ0� Œ0�

:

We assume that
(
pij D pipj .i; j / ¤ .1; 1/; .2; 2/; .3; 3/; .3; 4/
pij D 0 .i; j / D .1; 1/; .2; 2/; .3; 3/; .3; 4/ :

The sufficient statistics are the row and column sums.

1. What is a configurationA for this contingency table?
2. Compute the toric ideal IA for the configuration A, by using the elimination

method. (Please refer to Corollary 4.2.11 or Lemma 1.5.11.)

Answer. 1. Let xij be the .i; j /-th element in the contingency table. The rows and
columns in the configuration A correspond to

.x1�; x2�; x3�; x�1; x�2; x�3; x�4/ and .x12; x13; x14; x21; x23; x24; x31; x32/:

The configuration A is thus

A D

0

BBBBBBBBB@

1 1 1 0 0 0 0 0

0 0 0 1 1 1 0 0

0 0 0 0 0 0 1 1

0 0 0 1 0 0 1 0

1 0 0 0 0 0 0 1

0 1 0 0 1 0 0 0

0 0 1 0 0 1 0 0

1

CCCCCCCCCA

:
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2. From the configuration A, we make the ideal

I�
A D hu1 � v1v5; u2 � v1v6; u3 � v1v7; u4 � v2v4; u5 � v2v6;

u6 � v2v7; u7 � v3v4; u8 � v3v5i:

In order to obtain the intersection I�
A \ QŒu1; : : : ; u8�, we compute a Gröbner

basis of I�
A with respect to a monomial order satisfying v1; : : : ; v7 > u1; : : : ; u8.

Listing 7.14 Risa/Asir: computing the Gröbner basis
� �

[1659] Polys = [u1-v5*v1,u2-v6*v1,u3-v7*v1,u4-v4*v2,u5-v6*v2,u6-v7*v2,
u7-v4*v3,u8-v5*v3];
[1660] VL=[v1,v2,v3,v4,v5,v6,v7,u1,u2,u3,u4,u5,u6,u7,u8];
[1661] GB=nd_gr(Polys, VL, 0, [[0,7],[0,8]]);
[-u6*u2+u5*u3,-u7*u6*u1+u8*u4*u3,-u7*u5*u1+u8*u4*u2,v7*u5-v6*u6,
v7*u2-v6*u3,v7*u1-v5*u3,v6*u1-v5*u2,-v7*u8*u4+v5*u7*u6,
-v6*u8*u4+v5*u7*u5,v5*u7-v4*u8,v7*u4-v4*u6,v6*u4-v4*u5,v3*u4-v2*u7,
v3*u6*u1-v2*u8*u3,v3*u5*u1-v2*u8*u2,v3*u1-v1*u8,v2*u3-v1*u6,
v2*u2-v1*u5,v7*v3*u4-u7*u6,v7*v3*u1-u8*u3,u6-v7*v2,u3-v7*v1,
v6*v3*u4-u7*u5,v6*v3*u1-u8*u2,u5-v6*v2,u2-v6*v1,u8-v5*v3,u1-v5*v1,
u7-v4*v3,u4-v4*v2]

� �

The argument[[0,7],[0,8]] of the functionnd_gr indicates the monomial
order satisfying v1; : : : ; v7 > u1; : : : ; u8. For details, please see Sect. 3.6.5. The
polynomials whose variables are u in the above output GB are

fu3u5 � u2u6; u3u4u8 � u1u6u7; u2u4u8 � u1u5u7g:

These polynomials generate the toric ideal IA and correspond to the tables

8
<

:

Œ0� 0 �1 1

0 Œ0� 1 �1
0 0 Œ0� Œ0�

;

Œ0� �1 0 1

1 Œ0� 0 �1
�1 1 Œ0� Œ0�

;

Œ0� �1 1 0

1 Œ0� �1 0

�1 1 Œ0� Œ0�

9
=

; :

This set is a Markov basis for A.

Exercise. 1. For the same contingency table, enumerate all the tables for which the
row sums are 3; 3, and 2 and the column sums are 2; 2; 2, and 2.

2. We consider a 3 � 4 contingency table for which the .1; 1/; .1; 3/; .2; 2/; .2; 4/;
.3; 1/; .3; 3/ elements are structural zeros,

Œ0� � Œ0� �
� Œ0� � Œ0�
Œ0� � Œ0� �

:

For this table, compute the configurationA and a Markov basis for A.

Example 7.2.7. We consider a 3 � 3 � 3 contingency table with the fixed two-
dimensional marginal totals fxij �g; fxi �kg; fx�jkg.



7 Examples and Exercises 357

1. Find a configuration A for this contingency table.
2. For the configuration A, compute the toric ideal IA by using the elimination

method. (Please refer to Corollary 4.2.11 or Lemma 1.5.11.)
3. Compute a Markov basis for the configuration A by using 4ti2.
4. Enumerate all the contingency tables with xij � D 2; xi �k D 2; x�jk D 2. In other

words, enumerate all the elements in the fiber Ft, where t D .2; 2; : : : ; 2/0.
Answer. 1. Let xijk be the .i; j; k/-th element in the contingency table. The

columns and rows in the configurationA correspond to

.x111; x112; x113; x121; x122; x123; x131; x132; x133; x211; x212; x213; x221; x222; x223;

x231; x232; x233; x311; x312; x313; x321; x322; x323; x331; x332; x333/

and

.x11�; x12�; x13�; x21�; x22�; x23�; x31�; x32�; x33�; x1�1; x1�2; x1�3; x2�1; x2�2; x2�3;

x3�1; x3�2; x3�3; x�11; x�12; x�13; x�21; x�22; x�23; x�31; x�32; x�33/:

The configuration A is

Listing 7.15 4ti2: input file 3x3x3cont
� �

27 27
1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1
1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1
1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1
� �

2. From the configuration A, we make the ideal

I�

A D hu1 � v19v10v1; u2 � v20v11v1; u3 � v21v12v1; u4 � v22v10v2; u5 � v23v11v2;

u6 � v24v12v2; u7 � v25v10v3; u8 � v26v11v3; u9 � v27v12v3; u10 � v19v13v4;

u11 � v20v14v4; u12 � v21v15v4; u13 � v22v13v5; u14 � v23v14v5; u15 � v24v15v5;

u16 � v25v13v6; u17 � v26v14v6; u18 � v27v15v6; u19 � v19v16v7; u20 � v20v17v7;

u21 � v21v18v7; u22 � v22v16v8; u23 � v23v17v8; u24 � v24v18v8; u25 � v25v16v9;

u26 � v26v17v9; u27 � v27v18v9i:
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To obtain the toric ideal IA, we eliminate the variables v from the ideal. However,
because the ideal has many variables, this computation may be very slow. This
algorithm is very inefficient for large problems.

3. By using the 4ti2 command markov, it only takes a few seconds to obtain a
Markov basis with 81 elements. For more information about algorithms using
4ti2, please see [8].

Listing 7.16 Executing the 4ti2 command markov
� �

$ markov cont3x3x3
... skip
Size: 81, Time: 0.00 / 0.00 secs. Done.

4ti2 Total Time: 0.00 secs.
� �

Listing 7.17 4ti2: output file 3x3x3cont.mar
� �

81 27
-1 0 1 1 -1 0 0 1 -1 0 0 0 0 0 0 0 0 0 1 0 -1 -1 1 0
0 -1 1

-1 0 1 1 -1 0 0 1 -1 1 0 -1 -1 1 0 0 -1 1 0 0 0 0 0 0
0 0 0

....
1 0 -1 0 0 0 -1 0 1 0 0 0 0 0 0 0 0 0 -1 0 1 0 0 0
1 0 -1

� �

4. An element in the fiber Ft is

0 0 2

0 2 0

2 0 0

2 0 0

0 0 2

0 2 0

0 2 0

2 0 0

0 0 2

:

By using this element and the Markov basis, we can enumerate all the elements
in the fiber; see Example 7.2.5. We can then obtain the 132 elements in the fiber.

Exercise. We consider the 3 � 3 � K contingency table (K D 4; 5; 6; 7; 8) with
the fixed two-dimensional marginal totals fxij �g; fxi �kg, and fx�jkg. What are the
configurations fore these tables? Use 4ti2 to compute the toric ideals for the
configurations.

Example 7.2.8. We consider the t-fiber

Ft D f.xij / j xij 2 N; x1� D 5; x2� D 15; x�1 D 5; x�2 D 5; x�3 D 10g:

Elements in the fiber are the 2 � 3 contingency tables with marginal frequen-
cies t D .5; 15I 5; 5; 10/0. Generate samples in the fiber from the distribution
1
Z

1
x11Šx12Šx13Šx21Šx22Šx23Š

, by using the Markov chain Monte Carlo method. Here Z is
the normalizing constant defined by

Z D
X

x2Ft

1

x11Šx12Šx13Šx21Šx22Šx23Š
:

Evaluate the expected value of 2x11 C x12.
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Answer. A Markov basis for a 2 � 3 contingency table is

B D
(
1 �1 0
�1 1 0

;
1 0 �1
�1 0 1

;
0 1 �1
0 �1 1

)
:

The following algorithm generates samples in the fiber Ft from the distribution
f .x/ D 1

Z

Q
i;j

1
xij Š

by using the Markov chain Monte Carlo method. (Please see
Algorithm 4.2.4.)

1. Choose an element x in the fiber Ft.
e  0.

2. Randomly choose an element z 2 B [ .�B/.
3. If all the components of xC z are nonnegative, then r  f .xCz/

f .x/ ,
else r  0.

4. Let R be a random number selected from the uniform distribution between 0
and 1.

5. If r > R, then xnext  xC z,
else xnext  x.

6. Output a sample xnext.
e  eC ( 2x11 C x12 of xnext ).

7. x xnext.
Go to step 2.

8. Output the expected value e= (number of samples) .

The R program 2x3mcmc.r implements this algorithm. Here, we implement
Algorithm 4.2.4, but Algorithm 4.2.5 is more efficient. We run the program
2x3mcmc.r as follows. The exact expected value is 15=4 D 3:75.

Listing 7.18 R: the result of 2x3mcmc.r
� �

> source("2x3mcmc.r")
c2x3mcmc(n, burnin, initial data)
e.g. c2x3mcmc(10000, 10000, c(0,5,0,5,0,10))
> c2x3mcmc(10000, 10000, c(0,5,0,5,0,10))
[1] 2 1 2 3 4 8 <- sample
[1] 1 2 2 4 3 8
....
[1] 0 0 5 5 5 5
[1] 0 0 5 5 5 5
average
[1] 3.7485
� �

Exercise. Implement Algorithm 4.2.5, and solve the above problem.

Example 7.2.9. We consider the 5 � 5 contingency table in Example 4.1.12.
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Geometry=Probability 5 4 3 2 1 Total

5 2 1 1 0 0 4
4 8 3 3 0 0 14
3 0 2 1 1 1 5
2 0 0 0 1 1 2
1 0 0 0 0 1 1

Total 10 6 5 2 3 26

Let the null hypothesis be H0: the geometry and probability scores are
independent.

1. Enumerate all the elements in the t-fiber Ft, where t D .4; 14; 5; 2; 1; 10; 6;

5; 2; 3/0.
2. Calculate the exact p value by using the previous results.
3. Estimate the p value by using the Markov chain Monte Carlo method.

Answer. 1. We can obtain a Markov basis for this model by using Theorem 4.2.6.
We can enumerate all the elements in the t-fiber Ft by using the given data

xo D .2; 1; 1; 0; 0; 8; 3; 3; 0; 0; 0; 2; 1; 1; 1; 0; 0; 0; 1; 1; 0; 0; 0; 0; 1/0

and the Markov basis. As Example 7.2.5, we use the program enumerate_
fiber, and we put the data xo in the input file start.txt.

Listing 7.19 C program enumerate_fiber: Input file start.txt
� �

1 25
2 1 1 0 0 8 3 3 0 0 0 2 1 1 1 0 0 0 1 1 0 0 0 0 1
� �

We write a Markov basis in the input file move.txt.

Listing 7.20 C program enumerate_fiber: Input file move.txt
� �

100 25
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 -1 0 0 0

-1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 -1 0 0 0 -1
1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 -1 0 0 -1
0 1

..... <- Markov basis for independence model of 5x5 table
� �

We execute the program enumerate_fiber as follows.

Listing 7.21 Executing the C program enumerate_fiber
� �

$ enumerate_fiber start.txt move.txt > fiber.txt
n_move : 1, msize : 25
start_v :
2 1 1 0 0 8 3 3 0 0 0 2 1 1 1 0 0 0 1 1 0 0 0 0
1

n_move : 100, msize : 25
move : 100 25
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 -1 0 0 0 -1
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1
..... skip
count : 229174
fiber :
� �

The program outputs the file fiber.txt, which includes all the elements in
the fiber. The format of the output file is similar to that of 4ti2.

Listing 7.22 C program enumerate_fiber: output file fiber.txt
� �

229174 25
2 1 1 0 0 8 3 3 0 0 0 2 1 1 1 0 0 0 1 1 0 0 0 0 1
2 1 1 0 0 8 3 3 0 0 0 2 1 2 0 0 0 0 0 2 0 0 0 0 1
... skip
� �

We now explain how to use the software program LattE. LattE can count the
number of integer solutions for a system of linear inequalities. We make the
following input file.

Listing 7.23 LattE: input file 5x5cont_latte
� �

10 26
4 -1 -1 -1 -1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0

14 0 0 0 0 0 -1 -1 -1 -1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0
5 0 0 0 0 0 0 0 0 0 0 -1 -1 -1 -1 -1 0 0 0 0 0 0 0 0
0 0
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 -1 -1 -1 -1 0 0 0
0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 -1 -1
-1 -1

10 -1 0 0 0 0 -1 0 0 0 0 -1 0 0 0 0 -1 0 0 0 0 -1 0 0
0 0
6 0 -1 0 0 0 0 -1 0 0 0 0 -1 0 0 0 0 -1 0 0 0 0 -1 0
0 0
5 0 0 -1 0 0 0 0 -1 0 0 0 0 -1 0 0 0 0 -1 0 0 0 0 -1
0 0
2 0 0 0 -1 0 0 0 0 -1 0 0 0 0 -1 0 0 0 0 -1 0 0 0 0
-1 0
3 0 0 0 0 -1 0 0 0 0 -1 0 0 0 0 -1 0 0 0 0 -1 0 0 0
0 -1

linearity 10 1 2 3 4 5 6 7 8 9 10
nonnegative 25 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
23 24 25

� �

The first row 10 26 gives the size of the matrix. Each row in the matrix
indicates an inequality or an equality. The first column is the constant term, and
the subsequent columns are the coefficients of the variables. For example, the
first row

4 -1 -1 -1 -1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

represents the equality

4 � x1 � x2 � x3 � x4 � x5 D 0:
The option linearity indicates which rows are equalities. In this case, all
the rows are equalities. The option nonnegative represents which variables
are nonnegative. In this case, all the variables are nonnegative. We use the LattE
command count to count the elements in the fiber.
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Listing 7.24 Executing the LattE command count
� �

$ count 5x5cont_input
This is LattE v1.0 beta. (September 17, 2002)
Revised version. (Aug 1, 2003)
....

***** Total number of lattice points: 229174 ****

Computation done.
Time: 102.518 sec
� �

LattE outputs the number of the elements in the fiber, which is 229174. This
result is equal to the result of enumerate_fiber.

2. We will compute
X

x2Ft; �2.x/�25:3376
xh.x/ D 0:0609007;

where h.x/ D .4Š14Š5Š2Š1Š/.10Š6Š5Š2Š3Š/

26Š

Q5
iD1

Q5
jD1 1

xij Š
.

3. We will execute the Markov chain Monte Carlo method as Example 7.2.8. The
algorithm is as follows.

1. x (given data).
c  0.
�2  �2.x/.

2. Randomly choose an element z 2 B [ .�B/.
(Here, B is a Markov basis for the 5 � 5 table.)

3. If all components of xC z are nonnegative, then r  f .xCz/
f .x/ ,

else r  0.
(Here, f .x/ D 1

Z
1

˘i;j xij Š
, Z is the normalizing constant.)

4. Let R be a random number from the uniform distribution between 0 and 1.
5. If r > R, then xnext  xC z,

else xnext  x.
6. Output a sample xnext.

If �2.xnext/ � �2, then c  c C 1.
7. x xnext.

Go to step 2.

When the algorithm is completed, c
(number of samples) is the estimate of the p value.

The R program 5x5mcmc.r implements this algorithm.

Listing 7.25 R: result of 5x5mcmc.r
� �

> source("5x5mcmc.r")
c5x5mcmc(n, burnin, initial data)
e.g. c5x5mcmc(10000, 10000, c(2,1,1,0,0,8,3,3,0,0,0,2,1,1,1,0,0,0,1,1,0,
0,0,0,1))
> c5x5mcmc(10000, 10000, c(2,1,1,0,0,8,3,3,0,0,0,2,1,1,1,0,0,0,1,1,0,0,
0,0,1))
X-squared
25.33762

.... skip
[1] 2 0 1 0 1 7 2 4 1 0 1 3 0 0 1 0 0 0 1 1 0 1 0 0 0
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.... skip
[1] 1 1 2 0 0 7 1 3 1 2 1 3 0 1 0 1 1 0 0 0 0 0 0 0 1

approximate p value
[1] 0.0639
� �

Since the p value > 0:05, H0 is not rejected.

Exercise. We consider the 5 � 5 contingency table Let null hypothesis be H0: the

Geometry=Probability 5 4 3 2 1 Total

5 2 0 2 0 2 6
4 0 2 0 2 0 4
3 0 0 2 0 2 4
2 0 0 0 2 0 2
1 0 0 0 0 2 2

Total 2 2 4 4 6 18

scores of Geometry and Probability are independent of each other. Compute the
exact p value and estimate the p value.

7.2.3 Design of Experiments and Markov Basis (Sect. 4.3)

Example 7.2.10. We consider the data in Table 4.5, which is a 27�3 fractional
factorial design chosen by the aliasing relation ABDE D ACDF D BCDG D I .

Run A B C D E F G Defects
1 1 1 1 1 1 1 1 69
2 1 1 1 �1 �1 �1 �1 31
3 1 1 �1 1 1 �1 �1 55
4 1 1 �1 �1 �1 1 1 149
5 1 �1 1 1 �1 1 �1 46
6 1 �1 1 �1 1 �1 1 43
7 1 �1 �1 1 �1 �1 1 118
8 1 �1 �1 �1 1 1 �1 30
9 �1 1 1 1 �1 �1 1 43
10 �1 1 1 �1 1 1 �1 45
11 �1 1 �1 1 �1 1 �1 71
12 �1 1 �1 �1 1 �1 1 380
13 �1 �1 1 1 1 �1 �1 37
14 �1 �1 1 �1 �1 1 1 36
15 �1 �1 �1 1 1 1 1 212
16 �1 �1 �1 �1 �1 �1 �1 52

We evaluate the fit of the hierarchical model AC=BD=E=F=G with the
following procedure.

1. Find a covariate matrixM for the model.
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2. Evaluate the fitted value .m1; : : : ; m16/ for the model.
3. For the given data of defects y D .y1; : : : ; y16/, evaluate the log-likelihood ratio:

G.y/ D 2
16X

iD1
yi log

yi

mi

:

Moreover, compare G.y/ with the upper 5% point of the �2 distribution with 6
degrees of freedom.

4. Find a Markov basis for the matrix M 0.
5. Estimate the p value by using the Markov chain Monte Carlo method.

Answer. 1. In the hierarchical model AC=BD=E=F=G, the main effects are
A;B;C;D;E; F;G and the two-factor interaction effects are AC;BD. There-
fore, the covariate matrix is

M D .1; dA; dB; dC ; dD; dE; dF ; dG; dAC ; dBD/:

The following is the input file format for 4ti2. We note that this matrix represents
the transpose matrix M 0.
Listing 7.26 4ti2: input file covariate_mat1
� �

10 16
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1
1 1 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1
1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1
1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1
1 -1 1 -1 -1 1 -1 1 -1 1 -1 1 1 -1 1 -1
1 -1 -1 1 1 -1 -1 1 -1 1 1 -1 -1 1 1 -1
1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 1 1 -1
1 1 -1 -1 1 1 -1 -1 -1 -1 1 1 -1 -1 1 1
1 -1 1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 1

� �

2. We will use R to compute the fitted value. First, we make the following input file:

Listing 7.27 R: input file 2_7-3.dat
� �

A, B, C, D, E, F, G, x
1, 1, 1, 1, 1, 1, 1, 69
1, 1, 1, -1, -1, -1, -1, 31
1, 1, -1, 1, 1, -1, -1, 55
1, 1, -1, -1, -1, 1, 1, 149
1, -1, 1, 1, -1, 1, -1, 46
1, -1, 1, -1, 1, -1, 1, 43
1, -1, -1, 1, -1, -1, 1, 118
1, -1, -1, -1, 1, 1, -1, 30

-1, 1, 1, 1, -1, -1, 1, 43
-1, 1, 1, -1, 1, 1, -1, 45
-1, 1, -1, 1, -1, 1, -1, 71
-1, 1, -1, -1, 1, -1, 1, 380
-1, -1, 1, 1, 1, -1, -1, 37
-1, -1, 1, -1, -1, 1, 1, 36
-1, -1, -1, 1, 1, 1, 1, 212
-1, -1, -1, -1, -1, -1, -1, 52
� �

and execute the following commands in R (please refer to Example 4.3.5)



7 Examples and Exercises 365

Listing 7.28 R: computing the fitted value
� �

> dat<-read.table(file="2_7-3.dat", header=T, sep=",")
> dat.glm<-glm(x~A+B+C+D+E+F+G+A*C+B*D, dat, family=poisson)
> fitted(dat.glm)

1 2 3 4 5 6
64.52677 47.25345 53.14603 151.07960 30.42595 46.79383

7 8 9 10 11 12
115.24100 32.53337 49.42430 46.13193 70.90290 360.53502

13 14 15 16
35.18867 30.25510 232.14438 51.41770

� �

3. G.y/ D 19:09271 and �20:05.6/ D 12:59159.
4. Executing the command markov covariate_mat1, we obtain a Markov

basis consisting of 23 generators.
5. We will perform the Markov chain Monte Carlo method, as in Example 7.2.8.

To calculate the p value, in each step, if G.x/ � 19:09271 for the sample x,
we increase the counter c. At the end of the sampling, c

(number of samples) is the
estimated p-value. The following is a summary of the algorithm.

1. x (given data).
Initialize counter c  0.
Set the log-likelihood ratio G  G.x/.

2. Randomly choose an element z from the set B [ .�B/.
(Here, B is a Markov basis of the matrix M 0.)

3. If all components of xC z are nonnegative, then r  f .xCz/
f .x/ ;

else r  0.
(Here, f .x/ D 1

Z
1

˘i;j xij Š
and Z is the normalizing constant.)

4. Take a random number R from the uniform distribution from 0 to 1.
5. If r > R, then xnext  xC z;

else xnext  x.
6. If G.xnext/ � G, then c  c C 1.
7. x xnext.

Go to step 2.

The file cov1_mcmc.r is an example of the implementation of this algo-
rithm using R.

Listing 7.29 R: result of cov1_mcmc.r
� �

> source("cov1_mcmc.r")
cov1_mcmc(n, burnin)
e.g. cov1_mcmc(10000, 10000)
> cov1_mcmc(10000, 10000)
likelihood ratio stat :

1
19.09271
[1] 69 32 54 149 45 43 118 31 44 45 71 379 37 35 213 52
... <- output samples
[1] 64 39 51 154 34 52 117 30 44 45 79 367 41 31 221 48

n <- number of samples
[1] 10000
count <- counter c
[1] 31
estimate of p-value
[1] 0.0031
� �
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Exercise. Evaluate the fit of the hierarchical model AB=AC=BD=E=F=G for the
same data as in Example 7.2.10.

Example 7.2.11. Enumerate all the aliasing relations for the 27�3-fractional facto-
rial design in Example 4.3.7 with the following procedure.

Each of the factors A;B;C;D;E; F , and G have two levels fC1;�1g, and they
satisfy the relation ABDE D ACDF D BCDG D 1 (4.52). We consider the ideal

I D hA2 � 1; B2 � 1; C 2 � 1;D2 � 1;E2 � 1; F 2 � 1;G2 � 1;
ABDE � 1;ACDF � 1; BCDG � 1i:

In this design, the two-factor interaction effects AB and FG are confounded; this
means that AB � FG 2 I . In order to check this condition, we can check that the
normal form (remainder) is equal to 0 whenAB�FG is divided by a Gröbner basis
G of I with respect to any term order < (ideal membership problem).

Answer. Let us use Risa/Asir to check the aliasing relation for the two two-factor
interactions AB;FG and AC;BD, using the Gröbner basis method.

Listing 7.30 Risa/Asir: check the aliasing relation
� �

[1361] Id=[a^2-1,b^2-1,c^2-1,d^2-1,e^2-1,f^2-1,g^2-1,a*b*d*e-1,
a*c*d*f-1,b*c*d*g-1];
[1362] VL=[a,b,c,d,e,f,g];
[1364] GB=nd_gr(Id,VL,0,0); <- Groebner basis GB of Id
[a^2-1,-b*a+g*f,b^2-1,-c*a+g*e,-c*b+g*d,c^2-1,-d*a+f*c,d*b-g*c,-g*b+d*c,
d^2-1,-e*a+g*c,-e*b+f*c,-g*a+e*c,e*d-g*f,e^2-1,-f*a+g*b,-g*a+f*b,f*d-g*e,
g*d-f*e,f^2-1,g^2-1]
[1365] p_nf(a*b-f*g, GB, VL, 0); <- normal form of a*b-f*g by GB
0 <- AB and FG are confounded
[1367] p_nf(a*c-b*d, GB, VL, 0); <- normal form of a*c-b*d by GB
g*c-g*e <- AC and BD are not confounded
� �

We can enumerate the aliasing relations by classifying the set of monomials

fAi1Bi2C i3Di4Ei5F i6Gi7 j i1; : : : ; i7 2 f0; 1gg

by using the normal form with respect to the Gröbner basis G of I . The file
alias-2.rr is a program for Risa/Asir which uses this method to enumerate
the relations.

Listing 7.31 Risa/Asir: enumeration of the aliasing relations using alias-2.rr
� �

[1351] load("alias-2.rr");
[a^2-1,b^2-1,c^2-1,d^2-1,e^2-1,f^2-1,g^2-1,e*d*b*a-1,f*d*c*a-1,
g*d*c*b-1]
....
[[g*f*c,g*e*b,g*d*a,f*e*a,f*d*b,e*d*c,c*b*a,g*f*e*d*c*b*a],
[f*c,e*b,d*a,g*f*e*a,g*f*d*b,g*e*d*c,g*c*b*a,f*e*d*c*b*a],
[g*a,f*b,e*c,g*f*d*c,g*e*d*b,f*e*d*a,d*c*b*a,g*f*e*c*b*a],
[g*b,f*a,d*c,g*f*e*c,g*e*d*a,f*e*d*b,e*c*b*a,g*f*d*c*b*a],
[g*c,e*a,d*b,g*f*e*b,g*f*d*a,f*e*d*c,f*c*b*a,g*e*d*c*b*a],
[g*d,f*e,c*b,g*f*c*a,g*e*b*a,f*d*b*a,e*d*c*a,g*f*e*d*c*b],
[g*e,f*d,c*a,g*f*c*b,g*d*b*a,f*e*b*a,e*d*c*b,g*f*e*d*c*a],
[g*f,e*d,b*a,g*e*c*b,g*d*c*a,f*e*c*a,f*d*c*b,g*f*e*d*b*a],
[a,g*f*b,g*e*c,f*d*c,e*d*b,g*f*e*d*a,g*d*c*b*a,f*e*c*b*a],
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[b,g*f*a,g*d*c,f*e*c,e*d*a,g*f*e*d*b,g*e*c*b*a,f*d*c*b*a],
[c,g*e*a,g*d*b,f*e*b,f*d*a,g*f*e*d*c,g*f*c*b*a,e*d*c*b*a],
[d,g*f*e,g*c*b,f*c*a,e*b*a,g*f*d*b*a,g*e*d*c*a,f*e*d*c*b],
[e,g*f*d,g*c*a,f*c*b,d*b*a,g*f*e*b*a,g*e*d*c*b,f*e*d*c*a],
[f,g*e*d,g*b*a,e*c*b,d*c*a,g*f*e*c*a,g*f*d*c*b,f*e*d*b*a],
[g,f*e*d,f*b*a,e*c*a,d*c*b,g*f*e*c*b,g*f*d*c*a,g*e*d*b*a],
[1,g*f*e*d,g*f*b*a,g*e*c*a,g*d*c*b,f*e*c*b,f*d*c*a,e*d*b*a]]

� �

Each element of the output list represents an aliasing relation. For example, the ninth
element

[a,g*f*b,g*e*c,f*d*c,e*d*b,g*f*e*d*a,g*d*c*b*a,f*e*c*b*a]

represents the aliasing relation (4.54):

A D BFG D CEG D CDF D BDE D ADEFG D ABCDG D ABCEF:

Exercise. Enumerate all the aliasing relations for the 24�1 fractional factorial design
of four factors with two levels f�1; 1g chosen by the relation ACD D 1.

7.3 Convex Polytopes and Gröbner Bases

This section includes examples and exercises for Chap. 5, “Convex polytopes and
Gröbner bases”. The goals of this section are to use a computer to compute
various objects of a polytope, the Gröbner fan of a toric ideal, various bases of
a configuration matrix, and the triangulations of a polytope. The software used
in this section includes the computer algebra system Risa/Asir [15], the program
for studying polytopes polymake [6], the program for computing triangulations

Software Command (or function) Computation

polymake polymake FACETS Facets of a convex polytope
polymake VERTICES Vertices of a convex polytope
polymake VERTICES_IN_FACETS Vertices in facets

Asir(toric.rr) gr_w(Id, VL, W) Gröbner basis w.r.t. <w

toric_ideal(A) Generators for a toric ideal IA
(Elimination methods by GB)

Asir(Asir-Contrib) poly_toric_ideal(A) Generators for a toric ideal IA
(Use 4ti2, fast computation)

Gfan gfan All reduced Gröbner bases
groebner_cone Max dim. cones of the Gröbner fan

4ti2 groebner Gröbner basis of IA
circuits All circuits of IA
graver Graver basis of IA

TOPCOM points2alltriangs All triangulations of A
points2triangs -regular All regular triangulations of A
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TOPCOM [19], the program for computing various bases for a toric ideal 4ti2 [26],
and the program for computing the Gröbner fan Gfan [11].

7.3.1 Convex Polytopes (Sect. 5.1)

Example 7.3.1. Let the set of points X D fŒ1; 0�; Œ0; 1�g, and let the polyhedral
convex cone P D Q�0X .

1. Compute the faces Fi WD FACEwi .P / with respect to the following weight
vectors wi 2 Q2:

w1 D Œ1; 1�;w2 D Œ�1;�1�;w3 D Œ�1; 0�;w4 D Œ0;�1�;w5 D Œ0; 0�:

2. For each face Fi , compute the normal cone NP .Fi /.

Answer. By definition, we obtain the following result (Fig. 7.1).

1. • F1 D FACEw1 .P / D ;
• F2 D FACEw2 .P / D fŒ0; 0�g
• F3 D FACEw3 .P / D Œ0; 1� �Q�0
• F4 D FACEw4 .P / D Œ1; 0� �Q�0
• F5 D FACEw5 .P / D P

2. • NP .F1/ D fŒw1;w2� j w1 > 0 or w2 > 0g
• NP .F2/ D fŒw1;w2� j w1 < 0;w2 < 0g
• NP .F3/ D fŒw1; 0� j w1 < 0g
• NP .F4/ D fŒ0;w2� j w2 < 0g
• NP .F5/ D fŒ0; 0�g

Exercise. Let the convex polytope be P D CONV.fŒ0; 0�; Œ0; 1�; Œ1; 0�; Œ1; 1�g/, and
let the weight vectors be

w1D Œ0; 0�;w2D Œ�1; 0�;w3 D Œ1; 0�;w4 D Œ0;�1�;w5 D Œ0; 1�;w6 D Œ�1;�1�;
w7 D Œ�1; 1�;w8 D Œ1;�1�;w9 D Œ1; 1�:

Compute the faces Fi WD FACEwi .P / and its normal cones NP .Fi /.

Example 7.3.2. Compute the vertices of the convex polytope

P D fŒx11; x12; x21; x22� 2 Q4 j x11; x12; x21; x22 � 0;
x11 C x12 D 1; x21 C x22 D 1; x11 C x21 D 1; x12 C x22 D 1g

by using the software program polymake. This convex polytope is called the
Birkhoff polytope P.2/ and is related to two-dimensional contingency tables.
Please refer to [25, Example 0.11].
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Fig. 7.1 Faces and normal cones of P

Answer. In order to use the software program polymake, we prepare the following
input file birkhoff2.p, which defines the convex polytope P .

Listing 7.32 Polymake: input file birkhoff2.p
� �

INEQUALITIES
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 -1 -1 0 0

-1 1 1 0 0
1 0 0 -1 -1

-1 0 0 1 1
1 -1 0 -1 0

-1 1 0 1 0
1 0 -1 0 -1

-1 0 1 0 1
� �

In the first row, we write INEQUALITIES, which indicates that we will use linear
inequalities to define a convex polytope. The subsequent rows indicate the linear
inequalities defining the convex polytope. The first column is the constant term, and
the following columns are the coefficients of the variables in the linear inequality.
In this case, we set the variables to be x11; x12; x21, and x22. For example, the sixth
row 1 -1 -1 0 0 indicates the linear inequality 1�x11�x12 � 0. The eighth row
1 0 0 -1 -1 and the ninth row -1 0 0 1 1 indicate the linear inequalities
1� x21 � x22 � 0 and 1� x21 � x22 � 0, respectively, and they combine to give the
linear equation 1 � x21 � x22 D 0.

In order to obtain the vertices of the convex polytopeP , we execute the following
command.
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Listing 7.33 Polymake: computing the vertices
� �

$ polymake birkhoff2.p VERTICES
VERTICES
1 1 0 0 1
1 0 1 1 0
� �

The output gives the vertices of the convex polytope P . For example, the sec-
ond row 1 1 0 0 1 gives the vertex Œ1; 0; 0; 1�. Here, we skip the 1 in the
first column, and we obtain the vertices Œ1; 0; 0; 1� and Œ0; 1; 1; 0�, and P D
CONV.fŒ1; 0; 0; 1�; Œ0; 1; 1; 0�g/. We write the vertices as 2� 2 tables,

1 0
0 1

and

0 1
1 0

. Note that, in these tables, for each row and each column, the number 1

appears only once. These matrices are permutation matrices of size 2.

Exercise. We consider the Birkhoff polytope

P.d/ D
8
<

:Œxij �1�i;j�d 2 Qd
2 j xij � 0;

dX

kD1
xik D 1;

dX

kD1
xkj D 1 for 1 � i; j � d

9
=

; :

Compute the vertices of the Birkhoff polytopes P.3/ and P.4/. What are the
vertices of the Birkhoff polytopes P.d/? For more about the Birkhoff polytopes,
please refer to [21, Theorem 8.6].

Example 7.3.3. We consider the convex polytope

P D CONV.fŒ1; 2; 3�; Œ1; 3; 2�; Œ2; 1; 3�; Œ2; 3; 1�; Œ3; 1; 2�; Œ3; 2; 1�g/:
What are the linear inequalities defining the convex polytope P ? We will compute
the linear inequalities by using the software program polymake. The convex
polytope is called the permutahedron ˘2. For more about permutahedrons, please
refer to [25, Example 0.10].

Answer. This example is the reverse transformation of the previous example.
In order to use the software program polymake, we prepare the following input
file permutation2.p which defines the convex polytope P .

Listing 7.34 Polymake: input file permutation2.p
� �

POINTS
1 1 2 3
1 1 3 2
1 2 1 3
1 2 3 1
1 3 1 2
1 3 2 1
� �

In the first row, we write POINTS to indicate that we will input the points. The
points are written in the following rows, as follows: we write 1 in the first column
and the coordinates of points in the following columns. For example, the second
row 1 1 2 3 represents the point Œ1; 2; 3�.
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In order to obtain the linear inequalities defining the convex polytope, we execute
the following command.

Listing 7.35 Polymake: computing the facets
� �

$ polymake permutation2.p FACETS
FACETS
-1 0 1 0
-3 1 1 0
-1 1 0 0
3 0 -1 0
5 -1 -1 0
3 -1 0 0
� �

This output gives the linear inequalities defining the convex polytope. For example,
the third row -3 1 1 0 indicates the linear inequality �3 C x1 C x2 � 0. After
computation, the following result is in the file permutation2.p.

Listing 7.36 Polymake: a part of the file permutation2.p
� �

<property name="AFFINE_HULL">
<m>

<v>-6 1 1 1</v>
</m>

</property>
� �

This -6 1 1 1 means that the linear equation �6 C x1 C x2 C x3 D 0 exists in
the linear inequalities defining the convex polytope. So we can obtain

P D fŒx1; x2; x3� j � 1C x2 � 0;�3C x1 C x2 � 0;�1C x1 � 0;
3 � x2 � 0; 5 � x1 � x2 � 0; 3 � x1 � 0; x1 C x2 C x3 D 6g:

We can draw the convex polytope shown in Fig. 7.2.

Exercise. We consider the permutahedron

˘d�1 D CONV.fŒ�.1/; : : : ; �.d/� j � 2 Sd g/:
Here Sd is the symmetric group of degree d . Compute the linear inequalities
defining the permutahedrons˘3 and˘4.

Example 7.3.4. By using the software program polymake, determine whether the
convex polytopes

P1 D CONV.fŒ1; 0; 0�; Œ0; 1; 0�; Œ0; 0; 1�; Œ�1;�1;�1�g/;
P2 D CONV.fŒ�1; 0; 0�; Œ0; 1; 0�; Œ0; 0; 1�; Œ1;�1; 1�g/

include the origin.

Answer. In order to obtain the linear inequalities defining the convex polytope P1,
we prepare the following file.
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Listing 7.37 Polymake: input file ip_p1.p
� �

POINTS
1 1 0 0
1 0 1 0
1 0 0 1
1 -1 -1 -1
� �

We execute the following command to compute the linear inequalities for the convex
polytope.

Listing 7.38 Polymake: computing the facets
� �

$ polymake ip_p1.p FACETS
FACETS
1 -1 -1 -1
1 -1 -1 3
1 -1 3 -1
1 3 -1 -1
� �

From this output, the convex polytope P1 is defined by

P1 D fŒx1; x2; x3� j 1 � x1 � x2 � x3 � 0; 1 � x1 � x2 C 3x3 � 0;
1 � x1 C 3x2 � x3 � 0; 1C 3x1 � x2 � x3 � 0g:

Substituting the origin Œx1; x2; x3� D Œ0; 0; 0� into the above, every one of these
linear inequalities becomes 1 > 0. Thus, the origin is an internal point of this convex
polytope.

We compute the convex polytope P2 using the same method as the one we used
for P1.
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Listing 7.39 Polymake: input file ip_p2.p
� �

POINTS
1 -1 0 0
1 0 1 0
1 0 0 1
1 1 -1 1
� �

Listing 7.40 Polymake: computing the facets
� �

$ polymake ip_p2.p FACETS
FACETS
1 -1 -1 -1
-1 -1 1 3
1 1 1 -1
1 1 -1 -1
� �

The third row -1 -1 1 3 represents the linear inequality�1�x1Cx2C3x3 � 0.
The origin Œx1; x2; x3� D Œ0; 0; 0� does not satisfy this inequality, so the origin is not
in the convex polytope P2.

Exercise. Let the convex polytope be

P D CONV.fŒ5; 0; 0�; Œ�5; 0; 0�; Œ0; 5; 0�; Œ0;�5; 0�; Œ0; 0; 5�; Œ0; 0;�5�g/:
Determine whether the points p D Œ1; 1; 1� and q D Œ2; 2; 2� are internal points
of P .

Example 7.3.5. Let the convex polytopes be

P1 D CONV.fŒ1; 0�; Œ0; 1�; Œ�1;�1�g/;
P2 D CONV.fŒ1; 0; 0�; Œ0; 1; 0�; Œ0; 0; 1�; Œ1; 1; 1�g/;
P3 D CONV.fŒ1;�1;�1�; Œ�1;�1; 0�; Œ0; 1;�1�; Œ0; 0; 1�g/;
P4 D CONV.fŒ1; 0; 0�; Œ0; 1; 0�; Œ0; 0; 1�; Œ�1; 0; 0�; Œ0;�1; 0�; Œ0; 0;�1�g/:

Compute the dual polytopes. Here, for a convex polytope P D CONV.fu1; : : : ;
umg/, the dual polytope of P is defined by

P � D fv j v � u � �1 for all u 2 P g :

Answer. For a convex polytope P D CONV.fu1; : : : ;umg/, we explain how to
compute the dual polytopeP �. For any point u 2 P , there exist nonnegative rational
numbers ti 2 Q�0 such that

Pm
iD1 ti D 1 and u DPm

iD1 tiui . For some point v,

v � u � �1 for all u 2 P , v � ui � �1 for i D 1; : : : ; m:
Hence, these linear inequalities v � ui � �1 .i D 1; : : : ; m/ define the dual
polytope P �.
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In the case of the convex polytope P1, the above linear inequalities are

1C x1 � 0; 1C x2 � 0; 1 � x1 � x2 � 0:

In order to compute the vertices of the convex polytopeP1, we prepare the following
input file.

Listing 7.41 Polymake: input file dual_p1.p
� �

INEQUALITIES
1 1 0
1 0 1
1 -1 -1
� �

We then execute the following command.

Listing 7.42 Polymake: computing the vertices
� �

$ polymake dual_p1.p VERTICES
VERTICES
1 2 -1
1 -1 -1
1 -1 2
� �

Hence, we obtain the dual polytope

P �
1 D CONV.fŒ2;�1�; Œ�1;�1�; Œ�1; 2�g/:

We compute the dual polytopes of P2; P3, and P4 as we did for P1, and we obtain

P �
2 DCONV.fŒ0; 0; 1�; Œ0; 1; 0�; Œ1; 0; 0�; Œ1;�1;�1�; Œ�1; 1;�1�; Œ�1;�1; 1�g/;
P �
3 DCONV.fŒ3;�2;�1�; Œ�4;�2;�1�; Œ�1=2; 3=2;�1�; Œ2=3; 1=3; 4=3�g/;
P �
4 DCONV.fŒ1;�1;�1�; Œ1;�1; 1�; Œ1; 1; 1�; Œ1; 1;�1�; Œ�1; 1; 1�;

Œ�1; 1;�1�; Œ�1;�1; 1�; Œ�1;�1;�1�g/:

Exercise. Compute the dual polytopes of the convex polytopes

P1 D CONV.fŒ1; 0; 0; 0�; Œ0; 1; 0; 0�; Œ0; 0; 1; 0�; Œ�1;�1;�1;�1�g/;
P2 D CONV.fŒ1; 0; 0; 0�; Œ0; 1; 0; 0�; Œ0; 0; 1; 0�; Œ�1;�1;�1; 3�; Œ0; 0; 0;�1�g/:

Example 7.3.6. Let the convex polytopes be

P1DCONV.fŒ1; 0; 0�; Œ1; 1; 0�; Œ0; 1; 0�g/; P2DCONV.fŒ0; 1; 0�; Œ0; 1; 1�; Œ0; 0; 1�g/:
Compute the vertices of the Minkowski sum P D P1 C P2 by using the software
program polymake. Compute the faces FACEŒ�1;0;0�.P / and FACEŒ�1;�1;�1�.P /.

Answer. First, we compute the sums of the vertices of P1 and P2 and prepare the
following input file.
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Listing 7.43 Polymake: input file mink_sum.p
� �

POINTS
1 1 1 0
1 1 2 0
1 0 2 0
1 1 1 1
1 1 2 1
1 0 2 1
1 1 0 1
1 1 1 1
1 0 1 1
� �

In order to obtain the vertices of the convex polytope P D P1 C P2, we execute
the following command.

Listing 7.44 Polymake: computing the vertices
� �

$ polymake mink_sum.p VERTICES
VERTICES
1 1 2 1
1 1 2 0
1 0 2 1
1 1 1 0
1 0 2 0
1 1 0 1
1 0 1 1
� �

We obtain the vertices Œ1; 2; 1�; Œ1; 2; 0�; Œ0; 2; 1�; Œ1; 1; 0�; Œ0; 2; 0�; Œ1; 0; 1�; Œ0; 1; 1�.
In order to obtain the face FACEŒ�1;0;0�.P /, we take the vertices of the convex

polytopeP for which the inner product with Œ�1; 0; 0� is maximized. Please refer to
Proposition 5.1.9. Hence, we obtain the face

FACEŒ�1;0;0�.P / D CONV.fŒ0; 2; 1�; Œ0; 2; 0�; Œ0; 1; 1�g/:

In a similar way, we obtain the face

FACEŒ�1;�1;�1�.P / D CONV.fŒ1; 1; 0�; Œ0; 2; 0�; Œ1; 0; 1�; Œ0; 1; 1�g/:

Exercise. 1. For the polynomials f D x C y C z C 1 and g D xy C yz C
zx C 1, compute the Minkowski sum New.f / C New.g/. Check that the
Minkowski sum is equal to the Newton polytope New.fg/. This is an example
of Proposition 5.3.2.

2. Prove Proposition 5.1.3. In the above example, we computed the Minkowski sum
by using this proposition.

Example 7.3.7. Let a polynomial be f D x4Cy4Cz4CxyzCxyCyzCzxC1.
Which terms do not appear in the initial form inw.f / for any nonzero weight
vector w?

Answer. From Proposition 5.3.3, we have

FACEw.New.f // D New.inw.f //:
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Hence, what we want are the terms in f corresponding to the internal points of
New.f / . We use polymake to obtain the vertices of New.f /

Œ0; 0; 0�; Œ0; 0; 4�; Œ0; 4; 0�; Œ4; 0; 0�:

These points correspond to the terms in f

1; z4; y4; x4

and appear in initial forms of f . We next determine if the points Œ1; 1; 1�; Œ1; 1; 0�;
Œ0; 1; 1�; Œ1; 0; 1�, corresponding to the terms xyz; xy; yz; zx, are internal points of
New.f /. As in Example 7.3.4, we obtain linear inequalities defining New.f /:

4 � x1 � x2 � x3 � 0; x1 � 0; x2 � 0; x3 � 0:

We next check to see if any of the points, after being substituted into the inequalities,
results in a left-hand side which is greater than 0. Since Œ1; 1; 1� is such a point, the
term xyz does not appear in any initial form of f . The other three points are not
vertices but lie on the facets. The terms corresponding to these three points appear
in the initial forms of f .

Exercise. Let a polynomial be f D x4Cy4Cz4CxyzCxyCyzCzxC1. Which
terms do not appear in the initial form inw.f

2/ for any nonzero weight vector w ?

7.3.2 Initial Ideals (Sect. 5.2)

Example 7.3.8. Let the ideal be

I D hx2 C y � 1; x C y2 � 1i;

and let the weight vectors be

w1 D Œ3; 1�;w2 D Œ1; 1�;w3 D Œ1; 3�;w4 D Œ2; 1�;w5 D Œ1; 2�;w6 D Œ0; 0�:

Compute the initial form ideal inw.I /.

Answer. We compute the Gröbner bases Gi of I with respect to the monomial orders
<wi , where the tie-breaker< is the reverse lexicographic order with x > y > z.

G1 D fx C y2 � 1;�y4 C 2y2 � yg;
G2 D fx C y2 � 1; x2 C y � 1g;
G3 D fx2 C y � 1;�x4 C 2x2 � xg;



7 Examples and Exercises 377

G4 D fx2 C y � 1; x C y2 � 1g;
G5 D fx2 C y � 1; x C y2 � 1g;
G6 D fx2 C y � 1; x C y2 � 1g:

By Corollary 5.2.5, the sets inw.Gi / D finw.g/ j g 2 Gig generate the initial form
ideal inw.I /. Hence, we have

inw1 .I / D hx;�y4i;
inw2 .I / D hy2; x2i;
inw3 .I / D hy;�x4i;
inw4 .I / D hx2; x C y2i;
inw5 .I / D hx2 C y; y2i;
inw6 .I / D hx2 C y � 1; x C y2 � 1i:

We now explain how to compute a Gröbner basis with respect to a monomial
order by using Risa/Asir. We will use the program toric.rr. In this program, the
function gr_w(Id, VL, W) returns a Gröbner basis of an ideal Id with respect
to a monomial order <W. Here, the argument VL is a list of variables. The function
in_w(P, VL, W) returns the initial form of a polynomial P with respect to a
weight vector W.

Listing 7.45 Risa/Asir: computing initial form ideals
� �

[1358] load("toric.rr"); Read the program toric.rr
[1376] Id=[x+y^2-1, x^2+y-1];
[1377] VL=[x,y];
[1378] G1=gr_w(Id,VL,[3,1]); Compute GB of Id w.r.t. <_[3,1]
[x+y^2-1,-y^4+2*y^2-y]
[1379] IN1 = map(in_w, G1, VL, [3,1]); Initial forms of G1 w.r.t. [3,1]
[x,-y^4]
[1380] G2=gr_w(Id,VL,[1,1]); Compute GB of Id w.r.t. <_[1,1]
[x+y^2-1,x^2+y-1]
[1381] IN2 = map(in_w, G2, VL, [1,1]); Initial forms of G2 w.r.t. [1,1]
[y^2,x^2]
[1382] G3=gr_w(Id,VL,[1,3]); Compute GB of Id w.r.t. <_[1,3]
[x^2+y-1,-x^4+2*x^2-x]
[1383] IN3 = map(in_w, G3, VL, [1,3]); Initial forms of G3 w.r.t. [1,3]
[y,-x^4]
[1384] G4=gr_w(Id,VL,[2,1]); Compute GB of Id w.r.t. <_[2,1]
[x+y^2-1,x^2+y-1]
[1385] IN4 = map(in_w, G4, VL, [2,1]); Initial forms of G4 w.r.t. [2,1]
[x+y^2,x^2]
[1387] G5=gr_w(Id,VL,[1,2]); Compute GB of Id w.r.t. <_[1,2]
[x^2+y-1,x+y^2-1]
[1388] IN5 = map(in_w, G5, VL, [1,2]); Initial forms of G5 w.r.t. [1,2]
[x^2+y,y^2]
[1390] G6=gr_w(Id,VL,[0,0]); Compute GB of Id w.r.t. <_[0,0]
[x+y^2-1,x^2+y-1]
[1391] IN6 = map(in_w, G6, VL, [0,0]); Initial forms of G6 w.r.t. [0,0]
[x+y^2-1,x^2+y-1]
� �
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Exercise. Let the ideal be

I D hx C y C z; xy C yzC zx; xyz � 1i

and let the weight vectors be

w1D Œ3; 2; 1�;w2 D Œ3; 1; 2�;w3 D Œ2; 1; 3�;w4 D Œ1; 2; 3�;w5 D Œ2; 3; 1�;w6 D Œ1; 3; 2�:

Compute the initial form ideal inwi.I /.

Example 7.3.9. We consider the ideal I D hx2Cy�1; xCy2�1i in Example 7.3.8.
Compute the universal Gröbner basis of I by using the software program Gfan.

Answer. Gfan is a software program which computes the universal Gröbner basis.
We prepare the following input file for Gfan.

Listing 7.46 Gfan: input file gfan_input.txt
� �

Q[x,y]
{x^2+y-1, x+y^2-1}
� �

Q[x,y] is notation for the polynomial ring in variables x; y, and {x^2+y-1,
x+y^2-1} are the generators of an ideal. We execute the command gfan, as
follows.

Listing 7.47 Gfan: computing the universal Gröbner basis
� �

$ gfan < gfan_input.txt
Q[x,y]
LP algorithm being used: "cddgmp".
{
{
y^4+y-2*y^2,
x-1+y^2}
,
{
y^2-1+x,
x^2-1+y}
,
{
y-1+x^2,
x^4+x-2*x^2}
}
� �

These three sets are the reduced Gröbner bases of I . For each polynomial
in the set, the first term is the initial term. For example, the first set
{y^4+y-2*y^2,x-1+y^2} is the reduced Gröbner basis for which the initial
terms are y4; x. The Gröbner bases G1;G2;G3 in Example 7.3.8 correspond to these
reduced Gröbner bases.

Exercise. For the ideal I D hx C y C z; xy C yz C zx; xyz � 1i, compute the
universal Gröbner basis.
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7.3.3 Gröbner Fans and State Polytopes (Sect. 5.3)

Example 7.3.10. We consider the ideal I D hx2 C y2 � 4; xy � 1i.
1. Let <purelex be the pure lexicographic order with x > y. Compute the Gröbner

cone C Œ<purelex� D fw0 2 Q2�0 j inw0.I / D in<purelex.I /g:
2. Let the weight vector be w D Œ3; 1�. Compute the Gröbner cone C Œw� D fw0 2

Q2�0 j inw0.I / D inŒ3;1�.I /g.
3. Draw the Gröbner fan GF.I / in Q2�0.
4. For each cone in the Gröbner fan GF.I /, compute the Gröbner basis correspond-

ing to the cone and the initial form ideal inw.I /.

Answer. 1. The reduced Gröbner basis of the ideal I with respect to the pure
lexicographic order is

fg1 D y4 � 4y2 C 1; g2 D x C y3 � 4yg:
Here, the underlined terms are the initial terms. From the conditions inw.g1/ D
in<purelex.g1/ D y4 and inw.g2/ D in<purelex.g2/ D x, we obtain the following
linear inequalities with respect to the weight vector w D Œw1;w2� :

Œ0; 2� � w > 0; Œ0; 4� � w > 0;

Œ1;�3� � w > 0; Œ1;�1� � w > 0;

Œ1; 0� � w > 0; Œ0; 1� � w > 0:

For example, the linear equation Œ1;�3� � w > 0 is obtained from inw.g2/ D x.
More concretely, inw.g2/ D x is equivalent to the inequality for the weights of x
and y3, which states that Œ1; 0� � w is greater than Œ0; 3� � w.

We solve these linear inequalities and obtain the cone C Œ<purelex� D
fŒw1;w2� j w2 > 0;w2 < 1=3w1g. In order to use polymake to solve these
linear inequalities, we prepare the following input file.

Listing 7.48 Polymake: input file cone1.p
� �

INEQUALITIES
0 0 2
0 0 4
0 1 -3
0 1 -1
0 1 0
0 0 1
� �

We then execute the following command.

Listing 7.49 Polymake: computing the facets
� �

$ polymake cone1.p FACETS
FACETS
0 0 2
0 1 -3
1 0 0
� �
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The output indicates the linear inequalities 2w2 > 0;w1 � 3w2 > 0, and 1 > 0,
leading to solution w2 > 0 and w2 < 1=3w1.

2. The reduced Gröbner basis of the ideal I with respect to the monomial order
<Œ3;1� is

fg1 D y4 � 4y2 C 1; g2 D x C y3 � 4yg:
Here, underlined terms are the initial forms with respect to the weight vector
Œ3; 1�. By Proposition 5.3.5 and the conditions inw.g1/ D inŒ3;1�.g1/ D y4 and
inw.g2/ D inŒ3;1�.g2/ D x C y3, we obtain the following linear inequalities with
respect to w D Œw1;w2�:

Œ1;�3� � w D 0; Œ1;�1� � w > 0;

Œ0; 2� � w > 0; Œ0; 4� � w > 0;

Œ1; 0� � w > 0; Œ0; 1� � w > 0:

For example, the linear inequality Œ1;�3� � w D 0 is obtained from the condition
inw.g2/ D xCy3. More concretely, the condition inw.g2/ D xCy3 implies that
in the polynomial g2 the weight of x, which is Œ1; 0� � w, is equal to the weight
of y3, which is Œ0; 3� � w. We solve the linear inequalities and obtain the cone
C ŒŒ3; 1�� D fŒw1;w2� j w2 > 0;w2 D 1=3w1g. In order to use polymake to solve
these linear inequalities, we prepare the following input file.

Listing 7.50 Polymake: input file cone2.p
� �

INEQUALITIES
0 1 -3
0 -1 3
0 1 -1
0 0 2
0 0 4
0 1 0
0 0 1
� �

We then execute the following command.

Listing 7.51 Polymake: computing the facets and the affine hulls
� �

$ polymake cone2.p FACETS AFFINE_HULL
FACETS
0 1 -1
1 0 0

AFFINE_HULL
0 1 -3
� �

This output represents the linear inequalities w1 � w2 > 0 and w1 � 3w2 D 0,
and thus we obtain the solution w2 > 0;w2 D 1=3w1.

3. We consider a point w not in the closure C Œ<purelex�. For example, we take a point
w D Œ3; 2�. As in the previous example, we compute the Gröbner cone

C Œw� D fŒw1;w2� j w2 < w1;w2 > 1=3w1g:
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Fig. 7.3 Gröbner fan of I

The cones C Œw� and C Œ<purelex� have the common border fŒw1;w2� j w1 �
0;w2 � 0;w2 D 1=3w1g. If there is no common border, we take another point
w which is nearer the closure C Œ<purelex�. We continue in a similar way until the
closures of the obtained cones fill Q2�0. In this case, using the symmetry of x and
y, we can easily obtain other cones. The Gröbner fan GF.I / is shown in Fig. 7.3
and consists of 10 cones.

4. We take a point wi in a Gröbner cone Ci . Let <wi be the monomial order whose
tie-breaker < is the pure lexicographic order with x > y. We compute the
reduced Gröbner basis of I with respect to <wi .

• C1 W fx C y3 � 4y; y4 � 4y2 C 1g
• C2 W fx2 C y2 � 4; xy � 1; y3 C x � 4yg
• C3 W fy2 C x2 � 4; xy � 1; x3 � 4x C yg
• C4 W fx4 � 4x2 C 1; y C x3 � 4xg
• C5 W fx C y3 � 4y; y4 � 4y2 C 1g
• C6 W fx C y3 � 4y; y4 � 4y2 C 1g
• C7 W fx2 C y2 � 4; xy � 1; y3 C x � 4yg
• C8 W fy2 C x2 � 4; xy � 1; x3 C y � 4xg
• C9 W fx4 � 4x2 C 1; y C x3 � 4xg
• C0 W fx C y3 � 4y; y4 � 4y2 C 1g
Here, the underlined polynomials are the initial forms.

Exercise. Let the ideal be I D hx5 C y3; xy � 1i. Draw the Gröbner fan GF.I /
in Q2�0.

Example 7.3.11. We consider the ideal J D hx C y C z; y C 2zi.
1. Compute the Gröbner fan of the ideal J . For a relatively interior point w in

maximal dimensional cones of the fan, compute the initial form ideal inw.J /.
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Fig. 7.4 Intersection of
w3 D 0 and the Gröbner fan

2. We consider the intersection of the hyperplane z D 0 and the Gröbner fan. This
intersection is a fan. Draw this fan and a convex polytope for which this is the
normal fan.

3. Find a convex polytope for which the normal fan is the Gröbner fan of J ; that is,
find the state polytope of J .

Answer. 1. As in Example 7.3.10, we compute the Gröbner cones.

C1 D fŒw1;w2;w3� j w1 > w3;w2 > w3g;
C2 D fŒw1;w2;w3� j w1 < w2;w1 < w3g;
C3 D fŒw1;w2;w3� j w1 > w2;w2 < w3g:

The Gröbner fan of J consists of these closures. The reduced Gröbner bases
corresponding to the Gröbner cones are as follows.

• C1 W fx � z; y C 2zg
• C2 W fy C 2x; z� xg
• C3 W f2x C y; 2zC yg
The underlined terms are the initial forms.

2. The intersection of the hyperplane w3 D 0 and the Gröbner fan are shown in
Fig. 7.4. The convex polytope which we want is the shaded polytope in Fig. 7.5.

3. Since the ideal J is generated by linear homogeneous polynomials, we have
D D 1, whereD is the maximum degree of the elements in the universal Gröbner
basis. For each Gröbner coneCi , we take a relatively interior point wi in the cone
Ci and compute s.J;1;<wi /

. By definition, s.J;1;<wi /
.i D 1; 2; 3/ are the points

Œ1; 1; 0�, Œ0; 1; 1�, and Œ1; 0; 1�. Hence, we have the state polytope
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zFig. 7.6 State polytope of J

State.J / D State1.J / D CONV.fŒ1; 1; 0�; Œ0; 1; 1�; Œ1; 0; 1�/g:

The state polytope is shown in Fig. 7.6.
Of course, the projection of the state polytope to xy-space is the polytope in

(2.). For more about the properties of state polytopes of ideals generated by linear
homogeneous polynomials, please refer to [22, Proposition 2.11].

Exercise. Let the ideal be J D hx C y C zC w; zC 2wi.
1. Compute the Gröbner fan of the ideal J . For a relatively interior point w in

maximal dimensional cones of the fan, compute the initial form ideal inw.J /.
2. Compute the state polytope of the ideal J .
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7.3.4 State Polytopes of Toric Ideals (Sect. 5.4)

Example 7.3.12. Let the configuration matrix be

A D

2

66666664

1 1 1 0 0 0 0 0 0

0 0 0 1 1 1 0 0 0

0 0 0 0 0 0 1 1 1

1 0 0 1 0 0 1 0 0

0 1 0 0 1 0 0 1 0

0 0 1 0 0 1 0 0 1

3

77777775

:

This matrix corresponds to a 3 � 3 contingency table. Compute the generators of
the toric ideal IA, the set of all circuits CA, and the Graver basis GrA by using the
program package 4ti2.

Answer. In order to use 4ti2, we first prepare the following input file.

Listing 7.52 4ti2: input file cont3x3
� �

6 9
1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 1 1 1
1 0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 1 0
0 0 1 0 0 1 0 0 1
� �

The first row 6 9 indicates that the input is a 6 � 9 matrix, and the following rows
correspond to the elements of the matrix A.

In order to compute the generators of the toric ideal IA, we execute the command
groebner in 4ti2.

Listing 7.53 4ti2: executing the command groebner
� �

$ groebner cont3x3
� �

This program outputs the file cont3x3.gro.

Listing 7.54 4ti2: output file cont3x3.gro
� �

9 9
-1 0 1 0 0 0 1 0 -1
-1 0 1 1 0 -1 0 0 0
-1 1 0 0 0 0 1 -1 0
-1 1 0 1 -1 0 0 0 0
0 -1 1 0 0 0 0 1 -1
0 -1 1 0 1 -1 0 0 0
0 0 0 -1 0 1 1 0 -1
0 0 0 -1 1 0 1 -1 0
0 0 0 0 -1 1 0 1 -1

� �

In this output file, each row vector corresponds to a binomial. For example, the
second row -1 0 1 0 0 0 1 0 -1 corresponds to the binomial x3x7 � x1x9.
Here, we set that the variable corresponding to the i th column is xi . The set of these
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nine binomials is a reduced Gröbner basis of IA. In fact, without such computations,
we can obtain generators of the toric ideals corresponding to I � J contingency
tables. Please refer to [22, Proposition 5.4].

In order to compute the set of all circuits CA, we execute the command
circuits in 4ti2.

Listing 7.55 4ti2: executing the command circuits
� �

$ circuits cont3x3
� �

This program outputs the file cont3x3.cir.

Listing 7.56 4ti2: output file cont3x3.cir
� �

15 9
0 0 0 0 1 -1 0 -1 1
0 0 0 1 -1 0 -1 1 0
0 0 0 1 0 -1 -1 0 1
0 1 -1 -1 0 1 1 -1 0
0 1 -1 0 -1 1 0 0 0
0 1 -1 0 0 0 0 -1 1
0 1 -1 1 -1 0 -1 0 1
1 -1 0 -1 0 1 0 1 -1
1 -1 0 -1 1 0 0 0 0
1 -1 0 0 0 0 -1 1 0
1 -1 0 0 1 -1 -1 0 1
1 0 -1 -1 0 1 0 0 0
1 0 -1 -1 1 0 0 -1 1
1 0 -1 0 -1 1 -1 1 0
1 0 -1 0 0 0 -1 0 1

� �

In this output file, each row vector corresponds to a binomial. The set of these 15
binomials is the set of all circuits.

In order to compute the Graver basis of IA, we execute the command graver
in 4ti2.

Listing 7.57 4ti2: executing the command graver
� �

$ graver cont3x3
� �

This program outputs the file cont3x3.gra. In this case, this output equals the
previous output; that is, the set of all circuits equals the Graver basis.

Exercise. Let the configuration matrix be

A D
�
1 1 1 1

0 1 2 3

�
:

Compute generators of the toric ideal IA, the set of all circuits CA and the Graver
basis GrA.

Example 7.3.13. Let the configuration matrix be

A D
�
1 1 1 1

0 1 2 3

�
:

Compute an upper bound for the degrees of the circuits: 1
2
.d C 1/D.A/. Generate

candidates for the circuits and find the set of all circuits.
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Answer. In this case, the configuration matrix A has d D 2;D.A/ D 3. By
Theorem 5.4.4, an upper bound for degrees of circuits is 1

2
� .2C 1/ � 3 D 9

2
, and,

for a circuit f , the set VAR.f / consists of at most three elements. Generators of IA
are binomials corresponding to the vectors a1 D Œ1;�2; 1; 0� and a2 D Œ2;�3; 0; 1�.
Hence, we generate the vectors

k1a1 C k2a2 .ki 2 Z/

such that the number of nonzero components is at most three, and the sum of the
positive components and the absolute value of the sum of the negative components
are both less than or equal to 9

2
. These vectors are candidates for circuits; from

them, we pick the vector g which has the minimal VAR.g/, and obtain the set of all
circuits CA.

Exercise. Let the configuration matrix be

A D
�
1 1 1 1

0 1 2 k

�
.k 2 N; k � 3/:

Compute the generators of the toric ideal IA and an upper bound for the degree of
circuits 1

2
.d C 1/D.A/. For k D 4; 5; 6, generate candidates for the circuits and

compute the set of all circuits CA. For a general k, what is CA?

Example 7.3.14. Let the configuration matrix be

A D
�
1 1 1 1

0 1 2 10

�
:

Compute the Graver basis of the toric ideal IA by using the Lawrence lifting �.A/
and Theorem 5.4.11.

Answer. In order to compute a Gröbner basis, we use the command groebner in
4ti2. We prepare the following input file, which corresponds to the Lawrence lifting
�.A/.

Listing 7.58 4ti2: input file lawrence1
� �

6 8
1 1 1 1 0 0 0 0
0 1 2 10 0 0 0 0
1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1
� �

By using the command groebner, we obtain a reduced Gröbner basis of the toric
ideal I�.A/.

Listing 7.59 4ti2: output file lawrence1.gro
� �

11 8
-9 10 0 -1 9 -10 0 1
-8 8 1 -1 8 -8 -1 1
-7 6 2 -1 7 -6 -2 1
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-6 4 3 -1 6 -4 -3 1
-5 2 4 -1 5 -2 -4 1
-4 0 5 -1 4 0 -5 1
-3 -2 6 -1 3 2 -6 1
-2 -4 7 -1 2 4 -7 1
-1 -6 8 -1 1 6 -8 1
-1 2 -1 0 1 -2 1 0
0 -8 9 -1 0 8 -9 1

� �

By Theorem 5.4.11, this output is the Graver basis Gr�.A/. The additional variables
y for the Lawrence lifting are the 5th, 6th, 7th, and 8th columns. If 1 is substituted
for yi , these parts vanish.

Listing 7.60 Graver basis GrA
� �

-9 10 0 -1
-8 8 1 -1
-7 6 2 -1
-6 4 3 -1
-5 2 4 -1
-4 0 5 -1
-3 -2 6 -1
-2 -4 7 -1
-1 -6 8 -1
-1 2 -1 0
0 -8 9 -1

� �

Hence, from these vectors, we obtain the Graver basis

GrA Dfx102 �x91x4; x82x3�x81x4; x62x23�x71x4; x42x33�x61x4; x22x43�x51x4; x53�x41x4;
x63 � x31x22x4; x73 � x21x42x4; x83 � x1x62x4; x22�x1x3; x93�x82x4g:

Exercise. For the configuration matrix in Example 7.3.12, compute the Graver basis
by using the Lawrence lifting.

Example 7.3.15. Let the configuration matrix be

A D
�
1 1 1 1

0 1 2 3

�
:

By using the Graver basis GrA, compute the candidates for the Gröbner degrees.

Answer. From the definition of a Gröbner degree and UA � GrA, for a binomial
xu�xv 2 GrA, the vector Au D Av is a candidate for a Gröbner degree. The Graver
basis of the toric ideal IA is

GrA D fx21x4 � x32 ; x1x4 � x2x3; x2x4 � x23 ; x1x24 � x23g:
For a binomial xu � xv 2 GrA, we compute the vector Au and obtain the following
candidates for a Gröbner degree:

�
3

3

�
;

�
2

2

�
;

�
2

3

�
;

�
2

4

�
;

�
3

6

�
:

In fact, in this case, the Graver basis GrA coincides with the universal Gröbner basis
UA. The above vectors are Gröbner degrees.
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Example 7.3.16. Let the configuration matrix be

A D
�
1 1 1 1

0 1 2 3

�

and let the vectors be

b1 D
�
3

3

�
;b2 D

�
2

2

�
;b3 D

�
2

3

�
;b4 D

�
2

4

�
;b5 D

�
3

6

�
:

Compute the nonnegative integer solutions u 2 Z4�0 for the linear equations
Au D bi for i D 1; : : : ; 5.

Answer. By a method similar to that used in Example 7.2.5, we obtain the following
solutions:

• For i D 1, Œ2; 0; 0; 1�; Œ1; 1; 1; 0�; Œ0; 3; 0; 0�I
• For i D 2, Œ1; 0; 1; 0�; Œ0; 2; 0; 0�I
• For i D 3, Œ1; 0; 0; 1�; Œ0; 1; 1; 0�I
• For i D 4, Œ0; 1; 0; 1�; Œ0; 0; 2; 0�I
• For i D 5, Œ1; 0; 0; 2�; Œ0; 1; 1; 1�; Œ0; 0; 3; 0�:

Example 7.3.17. Let the configuration matrix be

A D
�
1 1 1 1

0 1 2 3

�
:

By using the answer to Example 7.3.16, compute the state polytope of the toric
ideal IA.

Answer. Using a method similar to that used in Example 7.3.6, compute the
Minkowski sum of Gröbner fibers Fiber.bi /. The Minkowski sum is the convex
polytope

CONV.fŒ5; 1; 1; 5�; Œ5; 0; 3; 4�; Œ4; 0; 6; 2�; Œ4; 3; 0; 5�; Œ2; 2; 8; 0�; Œ2; 6; 0; 4�;
Œ0; 8; 2; 2�; Œ0; 6; 6; 0�g/:

By Theorem 5.4.12, this polytope is the state polytope of the toric ideal IA. We can
use the software program polymake to obtain the linear inequalities defining the
state polytope

0 � x1 � 5; 0 � x2; 4 � x1 C x2 � 8; 6 � 2x1 C x2 � 11; 3
2
x1 C x2 � 9;

x3 D 18 � 3x1 � 2x2; x4 D �6C 2x1 C x2:

This state polytope is shown in Fig. 7.7.
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Fig. 7.7 State polytope in the plane x3 D 18�3x1�2x2; x4 D �6C2x1Cx2 and its normal fan

Example 7.3.18. Let the configuration matrix be

A D

2
666664

1 1 1 0 0 0

0 0 0 1 1 1

1 0 0 1 0 0

0 1 0 0 1 0

0 0 1 0 0 1

3
777775
:

This matrix corresponds to a 2 � 3 contingency table. Compute the Graver basis
GrA, the Gröbner degrees bi , the Gröbner fibers Fiber.bi /, and the state polytope.

Answer. We can compute these by using a method similar to that used in the
previous example. We show only the results. The Graver basis of the toric ideal
IA is

GrA D fx11x22 � x12x21; x11x23 � x13x21; x12x23 � x13x22g:
Here, we set the variables of the polynomial ring to be x11; x12; x13; x21; x22, and
x23. The Gröbner degrees are

b1 D Œ1; 1; 1; 1; 0�T ;b2 D Œ1; 1; 1; 0; 1�T ;b3 D Œ1; 1; 0; 1; 1�T :
We then compute the nonnegative integer solutions for the linear equations
Au D bi ; that is, the Gröbner fibers Fiber.bi /:

Fiber.b1/ D fŒ1; 0; 0; 0; 1; 0�; Œ0; 1; 0; 1; 0; 0�g;
Fiber.b2/ D fŒ1; 0; 0; 0; 0; 1�; Œ0; 0; 1; 1; 0; 0�g;
Fiber.b3/ D fŒ0; 1; 0; 0; 0; 1�; Œ0; 0; 1; 0; 1; 0�g:



390 H. Nakayama and K. Nishiyama

0 1 2 3

0

1

2

3

x11

x12

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

x11

x12

Fig. 7.8 State polytope in the plane x11 C x12 C x13 D 3; x11 C x21 D 2; x12 C x22 D 2; x13 C
x23 D 2 and its normal fan

Next, we compute the Minkowski sum of the Gröbner fibers:

3X

iD1
Fiber.bi / D CONV.fŒ2; 1; 0; 0; 1; 2�; Œ2; 0; 1; 0; 2; 1�; Œ1; 0; 2; 1; 2; 0�; Œ1; 2; 0; 1; 0; 2�;

Œ0; 2; 1; 2; 0; 1�; Œ0; 1; 2; 2; 1; 0�g/:

This polytope is the state polytope of IA. The linear inequalities defining the state
polytope are

x11 C x12 C x13 D 3; x11 C x21 D 2; x12 C x22 D 2; x13 C x23 D 2;
0 � x11 � 2; 0 � x12 � 2; 1 � x11 C x12 � 3:

The state polytope is shown in Fig. 7.8. This polytope is isomorphic to the
permutahedron˘2.

Exercise. Choose a configuration matrix A corresponding to a 2 � n contingency
table. For n D 3; 4; 5, compute the state polytope. For a general n, what is the state
polytope?
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7.3.5 Triangulations of Convex Polytopes and Gröbner Bases
(Sect. 5.5)

Example 7.3.19. Let the configuration matrix be

A D
�
1 1 1

0 1 2

�
:

1. Compute the toric ideal IA.
2. For the weight vector w D Œ2; 1; 2�, compute the initial form ideal inw.IA/.
3. For the weight vector w D Œ2; 1; 2�, find the regular triangulation�w.
4. For the weight vector w D Œ1; 2; 1�, find the regular triangulation�w.

Answer. 1. The toric ideal is IA D hx1x3 � x22i.
2. The initial form ideal is inw.IA/ D hx1x3i.
3. The radical of the initial form ideal IA is

p
inw.IA/ D hx1x3i D hx1i \ hx3i.

By Corollary 5.5.7, the maximal simplices in the regular triangulation�w are 23
and 12, where, for example, the symbol 23 means the simplex CONV.fa2; a3g/.

4. The initial form ideal is inw.IA/ D hx22i, and the radical is
p

inw.IA/ D hx2i. By
Corollary 5.5.7, the maximal simplex in the regular triangulation�w is 13.

Exercise. Let the configuration matrix be

A D
2

4
1 1 1 1

0 1 0 1

0 0 1 1

3

5 :

1. Compute the toric ideal IA.
2. For the weight vector w D Œ1; 0; 0; 2�, compute the initial form ideal inw.IA/.
3. Find the regular triangulation�w.

Example 7.3.20. Let the configuration matrix be

A D

2
666664

1 1 1 0 0 0

0 0 0 1 1 1

1 0 0 1 0 0

0 1 0 0 1 0

0 0 1 0 0 1

3
777775
D 
a1; a2; a3; a4; a5; a6

�

corresponding to a 2 � 3 contingency table.

1. Find a triangulation of A by using a Gröbner basis of the toric ideal IA.
2. Compute the Gröbner fan of the toric ideal IA.
3. Generate all the regular triangulations of A.
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Answer. 1. The toric ideal IA is

IA D h�x2x6 C x3x5;�x1x6 C x3x4;�x1x5 C x2x4i:

For the use of a computer to determine toric ideals, please refer to Example
7.3.12 (4ti2) or Example 7.2.4 (Asir). Here, we take the weight vector w D
Œ2; 1; 0; 0; 0; 0� and compute the initial form ideal

inw.IA/ D hx2x6;�x1x6;�x1x5i:

For how to compute the initial form ideal, please refer to Example 7.3.8. The
prime decomposition of the radical ideal of the initial form ideal is

p
inw.IA/ D hx1; x2i \ hx1; x6i \ hx5; x6i:

We can use the function primedec in Risa/Asir to compute the prime decom-
positions of ideals. By Corollary 5.5.7, the maximal simplices of the regular
triangulation �w are 3456; 2345, and 1234: Here, the symbol 3456 means the
simplex CONV.fa3; a4; a5; a6g/.

2. We use the software program Gfan to compute the Gröbner fan. We first prepare
the input file corresponding to generators of the ideal IA.

Listing 7.61 Gfan: input file gfan_cont2x3.txt
� �

Q[x1,x2,x3,x4,x5,x6]
{-x2*x6+x3*x5,-x1*x6+x3*x4,-x1*x5+x2*x4}
� �

We then execute the Gfan command gfan, using gfan_cont2x3.txt as
input; the output contains all the reduced Gröbner bases of IA in the file
gfan_cont2x3.out.

Listing 7.62 Gfan: executing the command gfan
� �

$ gfan < gfan_cont2x3.txt > gfan_cont2x3.out
� �

Listing 7.63 Gfan: output file gfan_cont2x3.out
� �

Q[x1,x2,x3,x4,x5,x6]
{{
x2*x6-x3*x5,
x1*x6-x3*x4,
x1*x5-x2*x4}
,
{
x3*x5-x2*x6,
x1*x6-x3*x4,
x1*x5-x2*x4}
,
{
x3*x5-x2*x6,
x3*x4-x1*x6,
x1*x5-x2*x4}
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,
{
x3*x5-x2*x6,
x3*x4-x1*x6,
x2*x4-x1*x5}
,
{
x2*x6-x3*x5,
x2*x4-x1*x5,
x1*x6-x3*x4}
,
{
x3*x4-x1*x6,
x2*x6-x3*x5,
x2*x4-x1*x5}
}
� �

We obtain six reduced Gröbner bases for IA. In order to compute the
Gröbner cones from these reduced Gröbner bases, we use the Gfan command
gfan_groebnercone. For example, we take the reduced Gröbner basis
fx3x4�x1x6; x2x6�x3x5; x2x4�x1x5g in the output file gfan_cont2x3.out,
and compute its Gröbner cone. We prepare the following input file
cont2x3_6.gb to use the Gfan command gfan_groebner.

Listing 7.64 Gfan: input file cont2x3_6.gb
� �

Q[x1,x2,x3,x4,x5,x6]
{x3*x4-x1*x6, x2*x6-x3*x5, x2*x4-x1*x5}
� �

We then execute the Gfan command gfan_groebnercone.

Listing 7.65 Gfan: computing the Gröbner cone
� �

$ gfan_groebnercone < cont2x3_6.gb
LP algorithm being used: "cddgmp".
_application PolyhedralCone
_version 2.2
_type PolyhedralCone

AMBIENT_DIM
6

DIM
6

IMPLIED_EQUATIONS

LINEALITY_DIM
4

LINEALITY_SPACE
1 0 0 0 -1 -1
0 1 0 0 1 0
0 0 1 0 0 1
0 0 0 1 1 1

FACETS
-1 0 1 1 0 -1
0 1 -1 0 -1 1

RELATIVE_INTERIOR_POINT
-1 1 0 0 0 0
� �
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The property RELATIVE_INTERIOR_POINT indicates a relatively interior
point of the Gröbner cone. In this case, we take the point w D Œ�1; 1; 0; 0; 0; 0�.
The two row vectors with the property FACETS are the normal vectors of the
hyperplanes defining the facets of the Gröbner cone. In other words, the linear
inequalities defining the Gröbner cone are

�w1 C w3 C w4 � w6 > 0;

w2 � w3 � w5 C w6 > 0:

In a similar way, for each reduced Gröbner basis Gi , we obtain a relative interior
point wi of the Gröbner cone corresponding to Gi :

G1 D fx2x6 � x3x5; x1x6 � x3x4; x1x5 � x2x4g, w1 D Œ2; 1; 0; 0; 0; 0�;
G2 D fx3x5 � x2x6; x1x6 � x3x4; x1x5 � x2x4g, w2 D Œ1;�1; 0; 0; 0; 0�;
G3 D fx3x5 � x2x6; x3x4 � x1x6; x1x5 � x2x4g, w3 D Œ�1;�2; 0; 0; 0; 0�;
G4 D fx3x5 � x2x6; x3x4 � x1x6; x2x4 � x1x5g, w4 D Œ�2;�1; 0; 0; 0; 0�;
G5 D fx3x4 � x1x6; x2x6 � x3x5; x2x4 � x1x5g, w5 D Œ�1; 1; 0; 0; 0; 0�;
G6 D fx2x6 � x3x5; x2x4 � x1x5; x1x6 � x3x4g, w6 D Œ1; 2; 0; 0; 0; 0�.

Here, for each binomial, the first term is the initial form with respect to the weight
vector wi .

3. From the previous result (2.), we can obtain all the initial form ideals inw.IA/

which are generated by the monomials.

inw1 .IA/ D hx2x6; x1x6; x1x5i, w1 D Œ2; 1; 0; 0; 0; 0�;
inw2 .IA/ D hx3x5; x1x6; x1x5i, w2 D Œ1;�1; 0; 0; 0; 0�;
inw3 .IA/ D hx3x5; x3x4; x1x5i, w3 D Œ�1;�2; 0; 0; 0; 0�;
inw4 .IA/ D hx3x5; x3x4; x2x4i, w4 D Œ�2;�1; 0; 0; 0; 0�;
inw5 .IA/ D hx3x4; x2x6; x2x4i, w5 D Œ�1; 1; 0; 0; 0; 0�;
inw6 .IA/ D hx2x6; x2x4; x1x6i, w6 D Œ1; 2; 0; 0; 0; 0�.

For each initial form ideal inwi .IA/ .i D 1; : : : ; 6/, we compute the regular
triangulation of A in the same way as in the previous example (1.). For
each weight vector wi .i D 1; : : : ; 6/, the maximal simplices of the regular
triangulation�wi are as follows:

3456; 2345; 1234, w1 D Œ2; 1; 0; 0; 0; 0�;
2456; 2346; 1234, w2 D Œ1;�1; 0; 0; 0; 0�;
2456; 1246; 1236, w3 D Œ�1;�2; 0; 0; 0; 0�;
1456; 1256; 1236, w4 D Œ�2;�1; 0; 0; 0; 0�;
1456; 1356; 1235, w5 D Œ�1; 1; 0; 0; 0; 0�;
3456; 1345; 1235, w6 D Œ1; 2; 0; 0; 0; 0�.
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1 2 4

1 4

1 3 4Fig. 7.9 All regular
triangulations of A

Example 7.3.21. Let the configuration matrix be

A D
�
1 1 1 1

0 1 2 3

�
:

Find all the regular triangulations and sketch the triangulations.

Answer. In the same way as in Example 7.3.20, we can obtain the Gröbner bases
Gi .i D 1; : : : ; 8/ and the relatively interior points wi of the Gröbner cones
corresponding to Gi . The results are as follows:

G1 D hx2x4 � x23; x1x4 � x2x3; x1x3 � x22i, w1 D Œ3; 1; 0; 0�;
G2 D hx23 � x2x4; x1x4 � x2x3; x1x3 � x22i, w2 D Œ0;�1; 0; 0�;
G3 D hx23 � x2x4; x2x3 � x1x4; x1x3 � x22 ; x21x4 � x32i, w3 D Œ�4;�3; 0; 0�;
G4 D hx23 � x2x4; x2x3 � x1x4; x32 � x21x4; x1x3 � x22i, w4 D Œ�5;�3; 0; 0�;
G5 D hx23 � x2x4; x2x3 � x1x4; x22 � x1x3i, w5 D Œ�3;�1; 0; 0�;
G6 D hx2x4 � x23; x22 � x1x3; x1x4 � x2x3i, w6 D Œ3; 2; 0; 0�;
G7 D hx2x4 � x23; x2x3 � x1x4; x22 � x1x3; x1x24 � x33i, w7 D Œ1; 2; 0; 0�;
G8 D hx33 � x1x24 ; x2x4 � x23 ; x2x3 � x1x4; x22 � x1x3i, w8 D Œ�1; 1; 0; 0�.

Here, for each binomial, the first term is the initial form with respect to the weight
vector.

For the weight vector wi .i D 1; : : : ; 8/, the maximal simplices of the regular
triangulation�wi are as follows:

�w1 W 34; 23; 12; �w2 W 24; 12; �w3 W 24; 12; �w4 W 14;
�w5 W 14; �w6 W 34; 13; �w7 W 34; 13; �w8 W 14.

All the regular triangulations of A are shown in Fig. 7.9.

Exercise. For the configuration matrix A in Example 7.3.12, find all the regular
triangulations.

Example 7.3.22. Let the configuration matrix be

A D
�
1 1 1 1

0 1 2 3

�
:

From the results of Example 7.3.21, compute the secondary polytope˙.A/.
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Fig. 7.10 Secondary polytope ˙.A/ in the plane x3 D �9� 3x1 � 2x2; x4 D 3C 2x1 C x2, its
normal fan, and the Gröbner fan of the toric ideal IA

Answer. From the result of Example 7.3.21, the regular triangulations of A are

�1 W 34; 23; 12I�2 W 24; 12I�3 W 14I�4 W 34; 13:

These are the maximal simplices of the regular triangulations. We next compute the
normalized volume of each simplex:

VOL.12/ D 1IVOL.13/ D 2IVOL.14/ D 3I
VOL.23/ D 1IVOL.24/ D 2IVOL.34/ D 1:

Using the definition of the GKZ vector, we compute the points 
�i .i D 1; : : : ; 4/:


�1 D Œ1; 2; 2; 1�I
�2 D Œ1; 3; 0; 2�I
�3 D Œ3; 0; 0; 3�I
�4 D Œ2; 0; 3; 1�:

Hence, we obtain the secondary polytope

˙.A/ D CONV.fŒ�1;�2;�2;�1�; Œ�1;�3; 0;�2�; Œ�3; 0; 0;�3�; Œ�2; 0;�3;�1�g/:
The linear inequalities defining the secondary polytope are

x3 D �9 � 3x1 � 2x2; x4 D 3C 2x1 C x2;

x1 � �1; x2 � 0; x2 � �3
2
x1 � 9

2
; x2 � �2x1 � 4:

The secondary polytope is shown in Fig. 7.10. For more about how to compute these
linear inequalities, please refer to Example 7.3.3.
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Example 7.3.23. Consider the configuration matrix A in Example 7.3.20, and from
the results of this example, compute the secondary polytope˙.A/.

Answer. We can compute this secondary polytope˙.A/ in the same way as that in
the previous example. We only show the results. The regular triangulations of A are

�1 W 3456; 2345; 1234I�2 W 2456; 2346; 1234I�3 W 2456; 1246; 1236I
�4 W 1456; 1256; 1236I�5 W 1456; 1356; 1235I�6 W 3456; 1345; 1235:

These are the maximal simplices of regular triangulations. Since A is unimodular,
the normalized volume of each simplex of A is 1. We compute the points 
�i :


�1 D Œ1; 2; 3; 3; 2; 1�I
�2 D Œ1; 3; 2; 3; 1; 2�I
�3 D Œ2; 3; 1; 2; 1; 3�I

�4 D Œ3; 2; 1; 1; 2; 3�I
�5 D Œ3; 1; 2; 1; 3; 2�I
�6 D Œ2; 1; 3; 2; 3; 1�:

The secondary polytope is

˙.A/ D CONV.f � Œ1; 2; 3; 3; 2; 1�;�Œ1; 3; 2; 3; 1; 2�;�Œ2; 3; 1; 2; 1; 3�;
� Œ3; 2; 1; 1; 2; 3�;�Œ3; 1; 2; 1; 3; 2�;�Œ2; 1; 3; 2; 3; 1�g/:

The linear inequalities defining the secondary polytope are

x3 D �6 � x1 � x2; x4 D �4 � x1; x5 D �4 � x2; x6 D 2C x1 C x2;
� 3 � x1 � �1; � 3 � x2 � �1; � 5 � x1 C x2 � �3:

The secondary polytope ˙.A/ is isomorphic to the permutahedron ˘2, which is
the state polytope of the toric ideal IA. The secondary polytope ˙.A/ is shown in
Fig. 7.11, and the regular triangulations corresponding to the vertices are shown in
Fig. 7.12.

Exercise. 1. Let the configuration matrix be A D
�
1 1 1 1 1

0 1 2 3 4

�
. Compute the

secondary polytope˙.A/.
2. Let the configuration matrix A correspond to a 3�3 contingency table. Compute

the secondary polytope˙.A/.

Example 7.3.24. Let the configuration matrix be

A D
2

4
4 0 0 2 1 1

0 4 0 1 2 1

0 0 4 1 1 2

3

5 D Œa0; : : : ; a5�:
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Fig. 7.12 Regular triangulations of A corresponding to the vertices 
�1 ; : : : ; 
�6

1. Compute the regular triangulation �w with respect to the weight vector w D
Œ3; 2; 1; 0; 0; 0�, by the geometric method, using the software program polymake.

2. Use the software program TOPCOM to find all of the triangulations.

Answer. These six points a0; a1; : : : ; a5 lie on the plane x C y C z D 4 in the
xyz-space, as shown in Fig. 7.13 and Fig. 7.14. Note that we index the points by
0; 1; : : : ; 5 in order to match them to the results of the software programs polymake
and TOPCOM.
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1. We lift the configuration matrixA into the next dimension by using the the height
vector w D Œ3; 2; 1; 0; 0; 0�; that is, we increase the dimensionality A by one.
We consider resulting configuration matrix

bA D

2
664

4 0 0 2 1 1

0 4 0 1 2 1

0 0 4 1 1 2

3 2 1 0 0 0

3
775 :

The regular triangulation �w is now the projection of the set of all the lower
faces of CONV.bA/. We use the software program polymake to compute this.
We prepare the following input file corresponding to the matrix bA.

Listing 7.66 Polymake: input file reg_tri_1.p
� �

POINTS
1 4 0 0 3
1 0 4 0 2
1 0 0 4 1
1 2 1 1 0
1 1 2 1 0
1 1 1 2 0
� �

We compute the vertices and facets of CONV.bA/.
Listing 7.67 Polymake: computing the vertices and the facets
� �

$ polymake reg_tri_1.p VERTICES
VERTICES
1 4 0 0 3
1 0 4 0 2



400 H. Nakayama and K. Nishiyama

1 0 0 4 1
1 2 1 1 0
1 1 2 1 0
1 1 1 2 0

$ polymake reg_tri_1.p FACETS
FACETS
-1 0 1 0 1
0 0 0 0 1
6 -2 -2 0 1
-4 6 -1 0 4
-1 1 0 0 1
4 2 1 0 -4
8 -11/4 -5/2 0 1
-2 -1 4 0 2
� �

The property FACETS indicates the linear inequalities defining the convex
polytope CONV.bA/. For example, the 0th row -1 0 1 0 1 represents the
linear inequality �1 C x2 C x4 � 0. Hence, for each row with the property
FACETS, the first component corresponds to a constant term, and the remaining
components corresponds to the normal vector of the facet. In order to take the
lower facets of CONV.bA/, we take the facets for which the last component of the
normal vector is positive. Thus, the facets corresponding to rows 0; 1; 2; 3; 4; 6,
and 7 with the property FACETS are the lower facets of CONV.bA/. We can
obtain the vertices on each facet as follows.

Listing 7.68 Polymake: computing the vertices of the facets
� �

$ polymake reg_tri_1.p VERTICES_IN_FACETS
VERTICES_IN_FACETS
{2 3 5}
{3 4 5}
{1 3 4}
{1 2 4}
{2 4 5}
{0 1 2}
{0 1 3}
{0 2 3}
� �

For example, the second row {1,3,4} indicates that the vertices corresponding
to rows 1; 3, and 4 with the property VERTICES lie on the facet
corresponding to the second row with the property FACETS. In other words,
the vertices Œ0; 4; 0; 2�; Œ2; 1; 1; 0�, and Œ1; 2; 1; 0� lie on the facets with the
normal vector Œ�2;�2; 0; 1�. Since the lower facets correspond to rows
0; 1; 2; 3; 4; 6, and 7 with FACETS, we take rows 0; 1; 2; 3; 4; 6, and 7 with
VERTICES_IN_FACETS. Thus, the simplices

235; 345; 134; 124; 245; 013; 023

are the maximal simplices of the regular triangulation�w; the regular triangula-
tion is shown in Fig. 7.15. Here, we define ijk D CONV.fai ; aj ; akg/.

2. By using the software program TOPCOM, we can obtain all the triangulations of
a configuration matrix. We prepare the following input file reg_tri_1.top.
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Fig. 7.15 Regular
triangulation with respect to
w D Œ3; 2; 1; 0; 0; 0�

Listing 7.69 TOPCOM: input file reg_tri_1.top
� �

[[4,0,0],
[0,4,0],
[0,0,4],
[2,1,1],
[1,2,1],
[1,1,2]]

� �

First, we use the TOPCOM command points2nalltriangs to count
the number of triangulations of A. Next, we generate all the triangulations
connected to the regular triangulations, by using the TOPCOM command
points2triangs.

Listing 7.70 TOPCOM: generate triangulations
� �

$ points2nalltriangs < reg_tri_1.top
Evaluating Commandline Options ...
... done.
18

$ points2triangs < reg_tri_1.top
Evaluating Commandline Options ...
... done.
T[1]:=[6,3:{{0,1,2}}];
T[2]:=[6,3:{{1,2,4},{0,2,4},{0,1,4}}];
T[3]:=[6,3:{{1,2,5},{0,2,5},{0,1,5}}];
T[4]:=[6,3:{{1,2,3},{0,2,3},{0,1,3}}];
T[5]:=[6,3:{{1,2,4},{0,2,3},{0,1,3},{2,3,4},{1,3,4}}];
T[6]:=[6,3:{{1,2,5},{0,2,3},{0,1,3},{2,3,5},{1,3,5}}];
T[7]:=[6,3:{{1,2,4},{0,1,4},{0,2,3},{2,3,4},{0,3,4}}];
T[8]:=[6,3:{{1,2,4},{0,1,4},{0,2,5},{2,4,5},{0,4,5}}];
T[9]:=[6,3:{{1,2,5},{0,2,5},{0,1,3},{1,3,5},{0,3,5}}];
T[10]:=[6,3:{{0,1,4},{1,2,5},{0,2,5},{0,4,5},{1,4,5}}];
T[11]:=[6,3:{{1,2,4},{0,1,4},{0,2,5},{0,3,4},{2,4,5},{0,3,5},{3,4,5}}];
T[12]:=[6,3:{{1,2,5},{0,2,5},{0,1,3},{1,3,4},{0,3,5},{1,4,5},{3,4,5}}];
T[13]:=[6,3:{{1,2,4},{0,2,3},{0,1,3},{1,3,4},{2,3,5},{2,4,5},{3,4,5}}];
T[14]:=[6,3:{{1,2,5},{0,2,3},{0,1,3},{1,3,4},{2,3,5},{1,4,5},{3,4,5}}];
T[15]:=[6,3:{{1,2,4},{0,1,4},{0,2,3},{2,3,5},{0,3,4},{2,4,5},{3,4,5}}];
T[16]:=[6,3:{{0,1,4},{1,2,5},{0,2,5},{0,3,4},{0,3,5},{1,4,5},{3,4,5}}];
T[17]:=[6,3:{{0,1,4},{1,2,5},{0,2,3},{2,3,5},{0,3,4},{1,4,5},{3,4,5}}];
T[18]:=[6,3:{{1,2,4},{0,2,5},{0,1,3},{1,3,4},{2,4,5},{0,3,5},{3,4,5}}];
� �

From this output, we obtain all the triangulations and see that there are a total of
18 of them. For example,{0,1,3} represents the simplex whose vertices are the
points in rows 0; 1, and 3 of the input file reg_tri_1.top. The triangulation
T[13] in this output is the triangulation in (1.).
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The TOPCOM command points2triangs has the following options:

• --regular: Outputs only regular triangulations.
• --nonregular: Outputs only nonregular triangulations.
• --heights: Outputs the height vectors of regular triangulations.

We can use these options as follows.

Listing 7.71 Options of the TOPCOM command points2triangs
� �

$ points2triangs --regular < reg_tri_1.top

$ points2triangs --heights < reg_tri_1.top

$ points2triangs --nonregular < reg_tri_1.top
� �

In order to compute the triangulations of a convex polytope with symmetries,
we add the information about the symmetries to the input file. By doing this, the
software works efficiently, and the output is simplified. We prepare the following
input file.

Listing 7.72 TOPCOM: input file reg_tri_1_sym.top
� �

[[4,0,0],
[0,4,0],
[0,0,4],
[2,1,1],
[1,2,1],
[1,1,2]]

[[1,2,0,4,5,3],
[1,0,2,4,3,5]]

� �

The second matrix contains information about the symmetries of the configura-
tion. In this case, the configuration has a 120ı rotational symmetry and left–right
symmetry. [1,2,0,4,5,3] means that the points indexed by 0; 1; 2; 3; 4; 5
are transformed to the points indexed by 1; 2; 0; 4; 5; 3; that is, a 120ı rotation.
[1,0,2,4,3,5] means that the points indexed by 0; 1; 2; 3; 4; 5 are trans-
formed to the points indexed by 1; 0; 2; 4; 3; 5; that is, a reflection. With this
input file, we execute the TOPCOM command points2triangs.

Listing 7.73 TOPCOM: generate triangulations
� �

$ points2triangs < reg_tri_1_sym.top
Evaluating Commandline Options ...
... done.
T[1]:=[6,3:{{0,1,2}}];
T[2]:=[6,3:{{1,2,5},{0,2,5},{0,1,5}}];
T[3]:=[6,3:{{1,2,5},{0,2,5},{0,1,4},{1,4,5},{0,4,5}}];
T[4]:=[6,3:{{1,2,5},{0,2,5},{0,1,4},{1,4,5},{0,3,4},{0,3,5},{3,4,5}}];
T[5]:=[6,3:{{1,2,5},{0,1,4},{0,2,3},{1,4,5},{0,3,4},{2,3,5},{3,4,5}}];
� �

Exercise. Consider the configuration matrix A in Example 7.3.12 and set the
weight vector to w D Œ1; 0; 0; 0; 1; 0; 0; 3; 1�. Geometrically compute the regular
triangulation�w. Use the software program TOPCOM to find all the triangulations.
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7.3.6 Ring-Theoretic Properties and Triangulations (Sect. 5.6)

Example 7.3.25. Let the configuration matrix be

A D
2

4
1 1 1 1 1 1

0 1 0 1 0 1

0 0 1 1 2 2

3

5 D Œa1; : : : ; a6�:

Let <lex be a lexicographic order with x1 > x2 > x3 > x4 > x5 > x6. Compute a
lexicographic triangulation�lex.A/ by using Proposition 5.6.2.

Answer. We denote a set fai1 ; : : : ; aimg by i1 : : : im, and denote all the faces of the
convex polytope CONV.fai1 ; : : : ; aimg/ by i1 : : : im.

Since a1 … CONV.23456/, by Proposition 5.6.2, we have

�lex.123456/D �lex.23456/[�1
23456:

Here, we set

�1
23456 D fCONV.1j1 : : : jm/ j j1 : : : jm � 23456;CONV.j1 : : : jm/ 2 �lex.23456/;

CONV.j1 : : : jm/ is visible from a1g:

We compute�lex.23456/. Since a2 … CONV.3456/, by Proposition 5.6.2, we have

�lex.23456/ D �lex.3456/[�2
3456:

Here, we set

�2
3456 D fCONV.2j1 : : : jm/ j j1 : : : jm � 3456;CONV.j1 : : : jm/ 2 �lex.3456/;

CONV.j1 : : : jm/ is visible from a2g:

We compute�lex.3456/. Since a3 … CONV.456/, by Proposition 5.6.2, we have

�lex.3456/ D �lex.456/[�3
456:

Here, we set

�3
456DfCONV.3j1 : : : jm/ j j1 : : : jm � 456;CONV.j1 : : : jm/ 2 �lex.456/D456;

CONV.j1 : : : jm/ is visible from a3g:
By Proposition 5.6.1, it holds that�lex.456/ D 456. Since the set of visible elements
in 456 from a3 is 45, we have �3

456 D 345. Hence, it holds that

�lex.3456/ D 456[ 345:
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Fig. 7.16 Computational processes of a lexicographic triangulation of A

Since we have�lex.3456/, in the same way, we have�2
3456 D 234 and

�lex.23456/ D 456[ 345[ 234:
Since we have�lex.23456/, in the same way, we have �1

23456 D 123 and

�lex.123456/D 456[ 345[ 234[ 123:
These processes are shown in Fig. 7.16.

Exercise. 1. Let the configuration matrix be A D
�
1 1 1 1

0 1 2 3

�
. Let <lex be a

lexicographic order with x1 > x2 > x3 > x4. Compute a lexicographic
triangulation �lex.A/. Consider the 2 � .k C 1/ configuration matrix Ak D�
1 1 1 � � � 1
0 1 2 � � � k

�
. Find a lexicographic triangulation�lex.Ak/.

2. Let the configuration matrix be A D

2

664

1 1 1 1 1 1 1 1

0 1 0 1 0 1 0 1

0 0 1 1 0 0 1 1

0 0 0 0 1 1 1 1

3

775. Let <lex be a lexico-

graphic order with x1 > x2 > x3 > x4 > x5 > x6 > x7 > x8. Compute a
lexicographic triangulation�lex.A/.

Example 7.3.26. Let the configuration matrix be

A D

2

664

1 1 1 1 1 1 1 1

0 1 0 1 0 1 0 1

0 0 1 1 0 0 1 1

0 0 0 0 1 1 1 1

3

775 D Œa1; : : : ; a8�:

Let <rev be a reverse lexicographic order with x1 > x2 > x3 > x4 > x5 >

x6 > x7 > x8. Compute a reverse lexicographic triangulation �rev.A/ by using
Proposition 5.6.5.

Answer. We denote CONV.fai1 ; : : : ; aimg/ by i1 : : : im. Since the facets of
CONV.A/ which do not include the point a8 are 1256; 1234, and 1375, we have

FCT123456788 D ffa1; a2; a5; a6g; fa1; a2; a3; a4g; fa1; a3; a5; a7gg:
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Fig. 7.17 Computational
processes of a reverse
lexicographic triangulation of
A (3-cube)

We next compute reverse lexicographic triangulations �rev.1256/;�rev.1234/ and
�rev.1375/. For�rev.1234/, since the facets of 1234 which do not include the point
a4 are 12 and 13, we have

FCT12344 D ffa1; a2g; fa1; a3gg:

By Proposition 5.6.5, the maximal simplices of �rev.1234/ are 124 and 134. In the
same way, the maximal simplices of �rev.1256/ are 126 and 156, and those of
�rev.1357/ are 137 and 157. Hence, the maximal simplices of �rev.A/ are

[

A02FCT123456788

˚
CONV.fa8g [ B/ j CONV.B/ is a maximal simplex of �rev.A

0/
�

D f1248; 1348; 1268; 1568; 1378; 1578g:

These are shown in Fig. 7.17.

Exercise. In the previous example, we computed the reverse lexicographic triangu-
lation of a three-dimensional unit cube. We now consider a four-dimensional unit
cube; that is, the configuration matrix

A D

2

666664

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

3

777775
:

Let <rev be a lexicographic order with x1 > x2 > � � � > x16. Compute the reverse
lexicographic triangulation�rev.A/.

Example 7.3.27. Consider the Birkhoff polytope

P.d/ D
8
<

:Œxij �1�i;j�d 2 Qd
2 j xij � 0;

dX

kD1
xik D 1;

dX

kD1
xkj D 1 for 1 � i; j � d

9
=

; :
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The vertices of the Birkhoff polytope P.d/ are the set fP� j � 2 Sd g, where Sd is
the symmetric group of degree d and P� is the permutation matrix

P� D Œpij �1�i;j�d ; pij D
(
1 .j D �.i//
0 . otherwise /

:

(Please refer to Example 7.3.2.) Prove that the configuration matrix A.d/ corre-
sponding to the Birkhoff polytope P.d/ is compressed, by using Theorem 5.6.6.

Answer. All the vertices of the Birkhoff polytope P.d/ are vertices of a d2-
dimensional unit cube. The intersection of a d2-dimensional unit cube and the affine
subspace

(
Œxlm� 2 Qd2 j

dX

kD1
xik D 1;

dX

kD1
xkj D 1 for 1 � i; j � d

)

is the Birkhoff polytopeP.d/. By Theorem 5.6.6 (ii), the configuration matrixA.d/
is compressed.

Example 7.3.28. Let the configuration matrices be

A1 D
�
1 1 1

0 1 2

�
IA2 D

2

4
1 1 1 1

0 1 0 1

0 0 1 1

3

5 IA3 D

2

664

1 1 1 1 1 1 1 1

0 1 0 1 0 1 0 1

0 0 1 1 0 0 1 1

0 0 0 0 1 1 1 1

3

775 IA4 D

2
666664

1 1 1 0 0 0

0 0 0 1 1 1

1 0 0 1 0 0

0 1 0 0 1 0

0 0 1 0 0 1

3
777775
:

Use Theorem 5.6.3 to determine which are unimodular configuration matrices.

Answer. We compute all circuits of A1;A2; A3, and A4. For any circuit f of A2 and
A4, the monomials appearing in f are squarefree. By Theorem 5.6.3,A2 andA4 are
unimodular configuration matrices, but A1 and A3 are not.

Exercise. Prove that the configuration matrix A corresponding to a m � n contin-
gency table is unimodular.

Example 7.3.29. Let the configuration matrices be

A1 D
�
1 1 1

0 1 2

�
IA2 D

2

666664

1 1 1 0 0 0

0 1 2 0 0 0

1 0 0 1 0 0

0 1 0 0 1 0

0 0 1 0 0 1

3

777775
IA3 D

�
1 1 1

0 1 3

�
:

Determine which of the toric ringsKŒA1�;KŒA2�, and KŒA3� are normal.
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Answer. The toric ideal of A1 is IA1 D hx1x3 � x22i. Let < be a monomial order
with x1 > x3. The initial ideal is in<.IA1/ D hx1x3i. By Corollary5.6.8, the toric
ringKŒA1� is normal.

The toric ringsKŒA2� andKŒA3� are not normal. SinceA2 is the Lawrence lifting
�.A1/ and A1 is not unimodular, by Theorem 5.6.10, the toric ring KŒ�.A1/� D
KŒA2� is not normal.

The toric ideal of A3 is IA3 D hx32 � x21x3i. The generator x32 � x21x3 has no
squarefree monomials. By Proposition 5.6.9, the normal ring KŒA3� is not normal.
We also see that the toric ring KŒA3� is not normal, since the vector �a1 C 2a2 D
1
3
a1 C 2

3
a3 D

�
1

2

�
2 ZA3 \Q�0A3 is not in Z�0A3.

Exercise. Let the configuration matrices be

A4 D
�
1 1 1 1

0 1 2 3

�
IA5 D

�
1 1 1 1

0 1 3 4

�
IA6 D

�
1 1 1 1

0 1 2 4

�
:

Determine which of the toric ringsKŒA4�;KŒA5�, and KŒA6� are normal.

7.3.7 Examples of Configuration Matrices (Sect. 5.7)

Example 7.3.30. What is the configuration matrix corresponding to the graph G in
Example 5.7.7?

Answer. By definition, we obtain the configuration matrix

AG D

2
6666666666666664

1 0 0 0 1 1 0 0 0 0 0 0 0 0 1

1 1 0 0 0 0 1 1 0 0 0 0 0 0 0

0 1 1 0 0 0 0 0 1 1 0 0 0 0 0

0 0 1 1 0 0 0 0 0 0 1 1 0 0 0

0 0 0 1 1 0 0 0 0 0 0 0 1 1 0

0 0 0 0 0 1 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

3
7777777777777775

:

Example 7.3.31. What is the graph G corresponding to the configuration matrix
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1 2 3

4 5 6

Fig. 7.18 Graph
corresponding to a 3� 3

contingency table

A D

2
66666664

1 1 1 0 0 0 0 0 0

0 0 0 1 1 1 0 0 0

0 0 0 0 0 0 1 1 1

1 0 0 1 0 0 1 0 0

0 1 0 0 1 0 0 1 0

0 0 1 0 0 1 0 0 1

3
77777775

;

which corresponds to a 3 � 3 contingency table?

Answer. The graph G is the complete bipartite graph K3;3, as shown in Fig. 7.18.
In general, the graph corresponding to the configuration matrix of an m � n
contingency table is a complete bipartite graphKm;n.

Example 7.3.32. Using Proposition 5.7.3, compute the circuits of the following
matrices:

A1 D

2

664

1 1 1 0 0

1 0 0 1 0

0 1 0 1 1

0 0 1 0 1

3

775 IA2 D

2

666664

1 0 1 1 0 1

1 1 0 0 0 0

0 1 1 0 0 0

0 0 0 1 1 0

0 0 0 0 1 1

3

777775
IA3 D

2

66666664

1 0 1 1 0 0 0

1 1 0 0 0 0 0

0 1 1 0 0 0 0

0 0 0 1 1 0 1

0 0 0 0 1 1 0

0 0 0 0 0 1 1

3

77777775

:

Answer. The graphs corresponding to these configuration matrices are shown in
Figs. 7.19–7.21. For these graphs, we need to find even closed walks which satisfy
the conditions of Proposition 5.7.3. For the graph corresponding to A1, there exists
an even walk which satisfies condition (i), and its circuit is x1x5 � x3x4. For the
graph corresponding to A2, there exists an even walk which satisfies condition (ii),
and its circuit is x1x3x5 � x2x4x6. For the graph corresponding to A3, there exists
an even walk which satisfies condition (iii), and its circuit is x1x3x5x7 � x2x24x6.

Example 7.3.33. For the graph in Example 5.7.1, use Proposition 5.7.3 to find the
circuits.

Answer. In the graph, there are five even cycles of length 4, five even cycles of
length 6, and five even closed walks which consist of two odd cycles having only a
single point in common. Hence, we obtain the following 15 circuits.
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1

2 3

4

e1
e2

e3

e4

e5

Fig. 7.19 Graph
corresponding to A1

1

3

2 4

5

e1

e2

e3

e4

e5

e6

Fig. 7.20 Graph
corresponding to A2

1 4

3

52

6

e1

e2

e3

e4

e5

e6

e7

Fig. 7.21 Graph
corresponding to A3

• The even cycles of length 4 correspond to

Œ1; 0;�1; 0; 0;�1; 1; 0; 0; 0�; Œ1; 0; 0;�1; 0; 0; 0; 0; 1;�1�; Œ0; 1; 0;�1; 0; 0;�1; 1; 0; 0�;
Œ0; 1; 0; 0;�1;�1; 0; 0; 0; 1�; Œ0; 0; 1; 0;�1; 0; 0;�1; 1; 0�:

• The even cycles of length 6 correspond to

Œ1; 0; 0; 0;�1;�1; 1;�1; 1; 0�; Œ0; 0; 0; 1;�1;�1; 1;�1; 0; 1�; Œ0; 0; 1;�1; 0; 1;�1; 0; 1;�1�;
Œ0; 1;�1; 0; 0;�1; 0; 1;�1; 1�; Œ1;�1; 0; 0; 0; 0; 1;�1; 1;�1�:

• The even closed walks which consist of two odd cycles having only a single point
in common correspond to

Œ0; 1; 1;�1;�1; 0;�1; 0; 1; 0�; Œ1; 0;�1;�1; 1; 0; 0; 1; 0;�1�; Œ1; 1; 0;�1;�1;�1; 0; 0; 1; 0�;
Œ1;�1;�1; 0; 1; 0; 1; 0; 0;�1�; Œ1; 1;�1;�1; 0;�1; 0; 1; 0; 0�:

Exercise. For the graph in Example 5.7.7, use Proposition 5.7.3 to find the circuits.
For the graph in Example 7.3.31, find the circuits.

Example 7.3.34. For the graph G in Example 5.7.7, prove the following properties
by using the software programs 4ti2, Gfan, and TOPCOM.
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(i) For any monomial order <,
p

in<.IAG / ¤ in<.IAG /.
(ii) The configuration matrix AG has unimodular triangulations.

(iii) Any triangulation of AG having the fewest maximal simplices is nonregular.

Answer. (i) We compute the generators of the toric ideal IAG by using the
software program 4ti2. In order to use the software program Gfan to compute
all the reduced Gröbner bases of IAG , we prepare the following input file
corresponding to the generators of IAG .

Listing 7.74 Gfan: input file eg577_gfan.txt
� �

Q[a,b,c,d,e,f,g,h,i,j,k,l,m,n,o]
{o*m*d-n*l*e,n*f*a-o*g*e,n*c*a-o*d*b,m*k*c-l*j*d,m*c*a-l*e*b,k*i*b-j*h*c,
-j*d*a+k*e*b,-i*g*a+h*f*b,-i*d*a+h*e*c,f*d*b-g*e*c,-n*l*j*a+o*m*k*b,
-n*l*i*a+o*m*h*c,n*l*f*b-o*m*g*c,-n*k*i*a+o*j*h*d,-n*k*f*b+o*j*g*d,
n*k*e*c-o*j*d^2,-n*i*a^2+o*h*e*b,-n*h*f*c+o*i*g*d,m*k*i*a-l*j*h*e,
-m*k*f*b+l*j*g*e,m*h*f*c-l*i*g*e,-l*i*d*b+m*h*c^2,-m*f*d*a+l*g*e^2,
-j*h*f*d+k*i*g*e,j*g*c*a-k*f*b^2,-n*l*j*h*f+o*m*k*i*g,
-n*k^2*i*e*b+o*j^2*h*d^2,l*i^2*g*d*a-m*h^2*f*c^2}
� �

We execute the Gfan command gfan with the input file eg577_gfan.txt,
and the output file is eg577_gfan.result.

Listing 7.75 Gfan: executing the command gfan
� �

$ gfan < eg577_gfan.txt > eg577_gfan.result
� �

This computation is lengthy (it takes about half an hour), and we obtain 15; 090
reduced Gröbner bases. We can check that, for each reduced Gröbner basis,
there exists an element whose initial term is not squarefree.

(ii) From the property (i), none of the regular triangulations of AG are unimodular.
Hence, all the unimodular triangulations of AG are nonregular. By using the
software program TOPCOM, we can generate all the nonregular triangulations
which are connected to regular triangulations. We prepare the following input
file for TOPCOM.

Listing 7.76 TOPCOM: input file graph_ag.top
� �

[
[1,1,0,0,0,0,0,0,0,0],
[0,1,1,0,0,0,0,0,0,0],
[0,0,1,1,0,0,0,0,0,0],
[0,0,0,1,1,0,0,0,0,0],
[1,0,0,0,1,0,0,0,0,0],
[1,0,0,0,0,1,0,0,0,0],
[0,1,0,0,0,1,0,0,0,0],
[0,1,0,0,0,0,1,0,0,0],
[0,0,1,0,0,0,1,0,0,0],
[0,0,1,0,0,0,0,1,0,0],
[0,0,0,1,0,0,0,1,0,0],
[0,0,0,1,0,0,0,0,1,0],
[0,0,0,0,1,0,0,0,1,0],
[0,0,0,0,1,0,0,0,0,1],
[1,0,0,0,0,0,0,0,0,1]
]

[
[1,2,3,4,0,7,8,9,10,11,12,13,14,5,6],
[4,3,2,1,0,14,13,12,11,10,9,8,7,6,5]
]
� �
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The first matrix corresponds to the configuration matrixAG . The second matrix
contains information about the symmetries of the configuration. The first row
[1,2,3,4,0,7,8,9,10,11,12,13,14,5,6] indicates a 72ı rota-
tional symmetry, and the second row[4,3,2,1,0,14,13,12,11,10,9,
8,7,6,5] indicates left–right symmetry. We execute the TOPCOM
command points2triangs--nonregular as follows.

Listing 7.77 TOPCOM: generate triangulations
� �

$ points2triangs --nonregular < graph_ag.top > graph_ag.nonreg
� �

This computation takes about 10 minutes, and the output is contained in the
file graph_ag.nonreg, which is 1:3 M bytes.

Listing 7.78 TOPCOM: output file graph_ag.nonreg
� �

T[1]:=[15,10:{{0,1,2,4,5,7,8,9,11,13},...
...
T[1054]:=[15,10:{{0,2,3,4,5,7,10,11,13,14},...
� �

We thus obtain 1054 nonregular triangulations. We need to find the unimodular
triangulations in these nonregular triangulations. We begin by finding the
triangulations whose simplices have the same volume. The triangulation
satisfying this condition is T[16], which is unimodular.

Listing 7.79 Unimodular triangulation of AG
� �

T[16]:=[15,10:
{{0,1,2,3,4,5,7,9,11,13} ,{0,1,3,4,5,6,7,9,11,13},
{0,1,2,4,5,7,8,9,11,13} ,{0,3,4,5,6,7,9,10,11,13},
{2,3,5,6,7,8,9,10,11,13} ,{0,1,4,5,6,7,9,11,12,13},
{0,1,3,4,6,7,9,11,12,13} ,{0,1,4,5,7,8,9,11,12,13},
{3,4,5,6,7,9,10,11,12,13} ,{0,4,5,6,7,9,10,11,12,13},
{0,3,4,6,7,9,10,11,12,13} ,{0,1,3,6,7,9,10,11,12,13},
{3,4,5,7,8,9,10,11,12,13} ,{3,5,6,7,8,9,10,11,12,13},
{0,1,2,5,7,8,9,11,13,14} ,{0,1,2,4,5,8,9,11,13,14},
{1,2,5,6,7,8,9,11,13,14} ,{0,2,3,5,6,7,10,11,13,14},
{2,5,6,7,8,9,10,11,13,14} ,{0,1,5,6,7,9,11,12,13,14},
{1,2,4,5,8,9,11,12,13,14} ,{0,4,5,7,8,9,11,12,13,14},
{0,1,5,7,8,9,11,12,13,14} ,{0,1,4,5,8,9,11,12,13,14},
{1,5,6,7,8,9,11,12,13,14} ,{0,5,6,7,9,10,11,12,13,14},
{0,4,5,7,9,10,11,12,13,14},{4,5,7,8,9,10,11,12,13,14},
{0,2,3,4,5,7,9,11,13,14} ,{2,3,4,5,7,8,9,11,13,14},
{0,3,4,5,7,9,10,11,13,14} ,{0,2,3,4,5,7,9,10,11,14},
{2,3,5,7,8,9,10,11,13,14} ,{3,4,5,7,8,9,10,11,13,14},
{2,3,4,5,7,8,9,10,11,14} ,{0,2,4,5,7,8,9,10,11,14},
{0,1,2,3,5,7,9,10,11,13} ,{0,1,2,5,7,9,10,11,13,14},
{1,2,3,5,6,7,9,10,11,13} ,{0,1,2,3,5,6,7,10,11,13},
{1,3,4,5,6,7,8,9,12,13} ,{0,1,5,6,7,9,10,11,13,14},
{1,2,5,6,7,9,10,11,13,14} ,{0,1,2,5,6,7,10,11,13,14},
{1,2,3,4,5,7,9,11,12,13} ,{1,2,3,5,6,7,9,11,12,13},
{2,3,4,5,7,8,9,11,12,13} ,{1,2,3,4,5,7,8,9,12,13},
{1,2,5,6,7,8,9,11,12,13} ,{2,3,5,6,7,8,9,11,12,13},
{1,2,3,5,6,7,8,9,12,13} ,{0,1,3,5,6,7,9,10,11,13},
{0,2,4,5,7,8,9,11,13,14} ,{1,2,4,5,7,8,9,11,12,13},
{0,2,3,5,7,9,10,11,13,14} ,{1,3,4,5,6,7,9,11,12,13}}];

� �

(iii) From the output file graph_ag.top, in order to find triangulations
with the fewest maximal simplices, we execute the TOPCOM command
points2triangs, as follows.
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Listing 7.80 TOPCOM: generate the triangulations with i maximal simplices (i D
1; : : : ; 45)
� �

$ for i in ‘seq 1 1 45‘;
> do
> points2triangs --cardinality $i < graph_ag.top;
> done
Evaluating Commandline Options ...
--cardinality : restrict to triangulations with 1 simplex
... done.
Evaluating Commandline Options ...
--cardinality : restrict to triangulations with 2 simplices
... done.
...
Evaluating Commandline Options ...
--cardinality : restrict to triangulations with 45 simplices
... done.
� �

The option -cardinality i means to output only triangulations with i
maximal simplices. In the above computation, we check i D 1; : : : ; 45 and find
no triangulations with i maximal simplices in the output graph_ag.top.

Listing 7.81 TOPCOM: triangulation with the fewest maximal simplices
� �

$ points2triangs --cardinality 46 < graph_ag.top
Evaluating Commandline Options ...
--cardinality : restrict to triangulations with 46 simplices
... done.
T[1]:=[15,10:{{0,1,2,3,4,5,7,9,11,13}, ...
� �

From this output, we find only one triangulation with the fewest maximal
simplices, and the total number of maximal simplices is 46. We now use
TOPCOM to check that this triangulation is nonregular, and we prepare the
following input file graph_ag.check.

Listing 7.82 TOPCOM: input file graph_ag.check
� �

[ <-+
[1,1,0,0,0,0,0,0,0,0], |
[0,1,1,0,0,0,0,0,0,0], |
... |
] | these parts are the same as
[ | the input file "graph_ag.top"
[1,2,3,4,0,7,8,9,10,11,12,13,14,5,6], |
[4,3,2,1,0,14,13,12,11,10,9,8,7,6,5] |
] <-+

{{0,1,2,3,4,5,7,9,11,13}, ... <-- triangulation T[1] in
the above output

� �

We execute the TOPCOM command checkregularity as follows.

Listing 7.83 TOPCOM: check the regularity of a triangulation
� �

$ checkregularity < graph_ag.check
Evaluating Commandline Options ...
... done.
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{{0,1,2,3,4,5,7,9,11,13},...
is non-regular.
Checked 1 triangulations, 1 nonregular so far.
� �

From this output, this triangulation is nonregular, and so we have proved
property (iii).

Exercise. Let G be the graph in Example 5.7.7. Prove
p

in<.IAG/ ¤ in<.IAG / for
any monomial order <, without using a computer. (Please refer to [9, p.102].)

7.4 Gröbner Basis of Rings of Differential Operators
and Applications

This section includes examples and exercises for Chap. 6. We consider that it is
important to use computer software to examine these problems; relevant software
programs include Macaulay2 [7], Singular [4], and Risa/Asir [15], all contained
in MathLibre. The computer algebra system Maple [12] is also used in some
examples. The results from these programs will assist in the understanding of
Chap. 6. Although readers might prefer that only one software program is used,
we note that each computer system has its own areas of specialization. We should
thus use the appropriate system for each operation. Once we are familiar with one
computer algebra system, it is easy to use other systems. However, it is inefficient to
do so without a dictionary which shows how a function is realized on other systems.
We will show how to perform functions with various software programs so that this
chapter can be used as a dictionary for software.

Some of the programming exercises below are treated on each of several systems
(e.g., Examples and Exercises 7.4.3, 7.4.5, and 7.4.6). These are advanced exercises
for readers interested in the inner structure of software; these can be skipped
by readers not interested. However, we believe it is important to understand the
mechanisms of computation, and so we hope that readers will follow these.

The following is a table of the commands for each of the software programs
discussed in this chapter.

Commands Macaulay2 Singular Risa/Asir

Packages Dmodules dmod.lib nk_restriction.rr

Gröbner basis gb, gbw groebner, GBWeight nd_weyl_gr
Initial ideal inw initialIdealW initilal_w
Holonomic rank holonomicRank — (kbase) sm1.rank
Holonomicity isHolonomic isHolonomic —
Hilbert polynomial hilbertPolynomial hilbPoly sm1.hilbert
Fourier transform Fourier fourier fourier_trans
b-Function bFunction bfctIdeal generic_bfct
Integration ideal DintegrationIdeal integrationIdeal integration_ideal
Annihilating ideal AnnFs Sannfs ann
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7.4.1 Gröbner Basis for the Ring of Differential Operators
with Rational Function Coefficients R (Sect. 6.1)

Example 7.4.1. Expand @2xx@x both by hand and by using the computer systems
Macaulay2, Singular, and Risa/Asir.

Answer. We expand it using the noncommutative relation @xx D x@x C 1.

Listing 7.84 By hand: multiplication of differential operators
� �

@2xx@x D @x.x@x C 1/@x D .x@x C 1/@2x C @2x D x@3x C 2@2x.
� �

Kan/sm1 [23] outputs the following:

Listing 7.85 Kan/sm1
� �

sm1>[(x) ring_of_differential_operators 0] define_ring ;
sm1>(Dx^2*x*Dx). ;
sm1>dehomogenize ::
x*Dx^3+2*Dx^2
� �

We do not discuss Kan/sm1 in detail in this book, because it is no longer being
maintained. It is, however, the earliest system for manipulating differential opera-
tors, and other systems use it as a reference. Since Kan/sm1 has many commands
which are not found in other systems, it will continue to be used.

In Chap. 3, we learned how to use Macaulay2 and Singular to declare a
polynomial ring. In this chapter, we will primarily use the ring of differential
operators. We begin by declaring the ring of differential operators.

Listing 7.86 Macaulay2: declaration of the ring of differential operators and the product of
differential operators
� �

i1 : R = QQ[x,dx,WeylAlgebra => {x=>dx}];
i2 : dx^2*x*dx

3 2
o2 = x*dx + 2dx
o2 : R

i3 : loadPackage "Dmodules";
i4 : R1=QQ[x];
i5 : D1=makeWA R1;
i6 : dx^2*x*dx

3 2
o6 = x*dx + 2dx
o6 : D1
� �

In Macaulay2, it is similar to the case of a polynomial ring; moreover,
WeylAlgebra => {x=>dx} is required after the variables to specify that
dx is the derivative symbol with respect to the variable x. The operator symbol “*”
is assigned to both noncommutative and ordinal multiplication.

We can also define the ring of differential operators from the polynomial ring by
using the command makeWeylAlgebra (makeWA in short) in the Dmodules



7 Examples and Exercises 415

package. Then, adding “d” at the beginning of a variable creates a differential
operator. Although the latter method is useful, the former method is often required
for setting the advanced options.

The command describe returns variables and options for the base ring.

Listing 7.87 Macaulay2: obtaining information about a ring
� �

i7 : describe D
o7 = QQ[x, dx, Degrees => {2:1}, Heft => {1}, MonomialOrder =>
---------------------------------------------------------------
{MonomialSize => 32}, DegreeRank => 1, WeylAlgebra => {x => dx}]
{GRevLex => {2:1} }
{Position => Up }
� �

Various types of information are displayed; for example, GRevLex means that the
graded lexicographic order is selected by default as the term order.

Listing 7.88 Singular: declaration of the ring of differential operators and the product of
differential operators
� �

> LIB "dmod.lib";
> ring r=0,(x,dx),dp;
> def D=Weyl();
> setring D;
> poly f = dx^2*x*dx;
> f;
x*dx^3+2*dx^2
� �

With Singular, it is easy to use the command Weyl, which is defined in the
nctools.lib library. However, in the examples in this chapter, we always load
dmod.lib library, because it includes nctools.lib and other useful libraries
forD-modules.

We begin by declaring the polynomial ring with variables and differential
operators. Then we define the ring of differential operators by using the command
Weyl.

The command Weyl, either with no arguments or with 0 as the argument,
generates the Weyl algebra in which the second half of the variables corresponds
to the differential operators for the first half of variables. Weyl with nonzero
arguments generates a Weyl algebra with a corresponding variable and operator,
in order from the front. In other words, under the polynomial ring with the variables
.x1; : : : ; xn; xnC1; : : : ; x2n/, Weyl() or Weyl(0) generates the ring of differential
operators and treats xiCn as the differential operators for the first n variables xi
.1 � i � n/. Weyl(1) treats xiC1 as the differential operators for the variables xi
.i W odd/.

Since some commands assume the former format on the variable, we always use
Weyl() in this chapter.

We note that Weyl() only generates the Weyl algebra and does not set the ring.
To set the ring, use the command setring. Then, the operator symbol “*” is
assigned to noncommutative multiplication as well as to ordinal multiplication.

In Singular, to obtain information about a ring, simply input the variable name of
the ring.
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Listing 7.89 Singular: obtaining information about a ring
� �

> D;
// characteristic : 0
// number of vars : 2
// block 1 : ordering dp
// : names x dx
// block 2 : ordering C
// noncommutative relations:
// dxx=x*dx+1
> basering;
(omitted)
> nameof(basering);
D
� �

If you forgot the variable name of the ring, the information can be obtained by
using the command basering, which is an alias of the name of the base ring.
You can also obtain the variable name of the base ring by using the command
nameof(basering);.

Listing 7.90 Risa/Asir: product of a differential operator
� �

[1371] P=dx^2;
dx^2
[1372] Q=x*dx;
x*dx
[1373] V=[x,dx];
[x,dx]
[1374] DP=dp_ptod(P,V);
(1)*<<0,2>>
[1375] DQ=dp_ptod(Q,V);
(1)*<<1,1>>
[1376] DPQ=dp_weyl_mul(DP,DQ);
(1)*<<1,3>>+(2)*<<0,2>>
[1377] PQ=dp_dtop(DPQ,V);
x*dx^3+2*dx^2
� �

Risa/Asir does not require setting the base ring, but has dedicated commands
for differential operators. To compute the product of differential operators, use
the command dp_weyl_mul. The first argument acts as an operator on the
second argument from the left. Since dp_weyl_mul only accepts distributed
representations (see Sect. 3.6.4), we must convert this to a distributed representation.
Moreover, the variables in the last half of the exponential part of the distributed
representation are the differential operators for the variables in the first half. That
is, the command dp_weyl_mul for the distributed representation with the list of
variables V D Œv1; : : : ; vn; vnC1; : : : ; v2n� treats the variable viCn as the differential
operator for the variable vi .

Exercise. Expand the following expressions:

1. @4xx
3@x ,

2. .x2@2x � 2@x/.x3@x � x/.
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Example 7.4.2. Let Fm D fPjkj�m ak.x/@k j ak.x/ 2 C.x1; : : : ; xn/g be a subset
of Rn. Prove that Fm is a finite-dimensional vector space over C.x1; : : : ; xn/, and
find the dimension of Fm.

Answer. It is easy to check that Fm is a vector space. Since we can take B D f@k j
jkj � mg as a basis,Fm is finite-dimensional. Let us count the number of elements in
the set B . The number of ways to sample up tom elements from a set of n elements,
allowing for duplicates, is equal to the number of ways to sample exactlym elements
from a set of nC 1 elements, allowing for duplicates. Thus,

�
.nC1/Cm�1

m

� D �
nCm
m

�
,

and the dimension of Fm is
�
nCm
m

� D .mCn/Š
mŠnŠ

.

Exercise. Find the dimension of the set

Fm n
8
<

:
X

m1;m2�0
am1;m2.x/@

m1C1
1 @

m2C1
2 j am1;m2.x/ 2 C.x1; : : : ; xn/

9
=

;

as a vector space over C.x1; : : : ; xn/.

Example 7.4.3. Implement a multiplying function for univariate differential opera-
tors, using Leibniz’s rule with Risa/Asir or Maple.

Answer.

Listing 7.91 Maple: multiplication by Leibniz’s rule (dm1.ml)
� �

dmult:=proc(F,G)
local N1,A,K;
N1:=degree(numer(F),dx);
A:=0;
for K from 0 by 1 to N1 do

A:=A+(1/factorial(K))*diff2(F,dx,K)*diff2(G,x,K);
od:
RETURN(simplify(A));

end:

diff2:=proc(F,G,K)
local i,A;
A:=F;
for i from 0 by 1 to K-1 do

A:=diff(A,G);
od:

RETURN(A);
end:
dmult(dx^2,x*dx);
� �

The function dmult is the multiplying function for the differential operators.
The symbols dx and x represent the differential operator @x and the variable x,
respectively. Although the symbol dx is displayed to the left of x, we consider
mathematically that dx is on the right of x.
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Listing 7.92 Risa/Asir: multiplication by Leibniz’s rule (dm1.rr)
� �

/* Multiplication F by G */
def d_mult(F, G)
{

N = deg(nm(F), dx); /* the degree of F w.r.t. dx */
A = 0;
for (K = 0; K <= N; K++) {

/* Leibniz’s rule */
A = A + (1/fac(K)) * diff2(F, dx, K) * diff2(G, x, K);
A = red(A); /* reduce A */

}
return A;

}

/* K-th derivative of F w.r.t. G */
def diff2(F, G, K)
{

for (I = 0; I < K; I++)
F = diff(F, G);

return F;
}

d_mult(dx^2, x*dx); /* --> x*dx^3+2*dx^2 */
� �

The symbols dx and x represent the differential operator @x and the variable x,
respectively. dmult is the function for the multiplication of differential operators.

Implementing a multiplying function for n-variate differential operators, and
implementing the above with languages which do not have a multiplying function
for polynomials (e.g., the programming language C) are advanced exercises.

Example 7.4.4. Expand 	x.	x � 1/ � � � .	x � k/.
Answer.

• In the case of k D 1, we have

	x.	x � 1/ D x@x.x@x � 1/ D x.x@x C 1/@x � x@x D x2@2x:

• In the case of k D 2, we have

	x.	x � 1/.	x � 2/ D x2@2x.x@x � 2/ D x2@2xx@x � 2x2@x
D x2@x.x@x C 1/@x � 2x2@2x D x2f.x@x C 1/@x C @xg@x � 2x2@2x
D x3@3x:

• In the case of k, we will show by induction that 	x.	x � 1/ � � � .	x � k/ D
xkC1@kC1

x . Assume that it is true in the case of k � 1: we have

	x.	x � 1/ � � � .	x � k/ D xk@kx.x@x � k/
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D xkC1@kC1
x C kxk@kx � kxk@kx

D xkC1@kC1
x :

We applied Leibniz’s rule to the expansion of xk@kx.x@x � k/.
Exercise. Prove @kxx

k D .	x C 1/.	x C 2/ � � � .	x C k/.
Example 7.4.5. Implement the normal form algorithm (Algorithm 6.1.4) in R1.

Answer. We introduce a sample program in Risa/Asir. For simplicity, x and dx are
fixed as variables. We use the three subfunctions: in, in_, and c_in, to extract an
initial term, an initial monomial, and an initial coefficient, respectively.

Listing 7.93 Risa/Asir: computing the initial term, initial monomial, and initial coefficient (in
nf_r1.rr)
� �

/* initial term (with coefficient) */
def in(F)
{

NM = nm(F); /* numerator of F */
DN = dn(F); /* denominator of F */
Deg = deg(NM, dx);
return coef(NM, Deg, dx)/DN * dx^Deg;

}

/* initial monomial (without coefficient) */
def in_(F)
{

Deg = deg(nm(F), dx);
return dx^Deg;

}

/* initial coefficient */
def c_in(F)
{

NM = nm(F); /* numerator of F */
DN = dn(F); /* denominator of F */
Deg = deg(NM, dx);
return coef(NM, Deg, dx)/DN;

}
� �

The following commands output the initial term .xC 1
x
/�2x , the initial monomial �2x ,

and the initial coefficient .xC 1
x
/ of f D .xC 1

x
/@2xCx@x C1, in R1 D Q.x/h@xi.

Listing 7.94 Risa/Asir: computing the initial term, initial monomial, and initial coefficient, using
nf_r1.rr
� �

[1230] load("nf_r1.rr");
[1246] F = (x+1/x)*dx^2+x*dx+1;
((x^2+1)*dx^2+x^2*dx+x)/(x)
[1247] in(F);
((x^2+1)*dx^2)/(x)
[1248] in_(F);
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dx^2
[1250] c_in(F);
(x^2+1)/(x)
� �

According to Algorithms 6.1.4 and 6.1.5, sample programs for the weak
normal form algorithm (w_normal_form) and the normal form algorithm
(normal_form) are as follows.

Listing 7.95 Risa/Asir: computing the weak normal form and the normal form (in nf_r1.rr)
� �

/* normal form */
def normal_form(F, G)
{

M = length(G);
Q = newvect(M); /* vector for holding quotient */
R = 0; /* variable for holding normal form */
while (F != 0) {

L = w_normal_form(F, G); /* compute weak normal form of F by G */
RR = L[0]; /* weak normal form */
QQ = L[1]; /* quotient */
F = RR - in(RR);
R = R + in(RR);
Q = Q + QQ;
R = red(R); /* reduce the rational function R */
Q = map(red, Q); /* reduce each component of vector Q */

}
return [R, Q];

}

/* weak normal form */
def w_normal_form(F, G)
{

M = length(G);
Q = newvect(M); /* vector for holding quotient */
R = F; /* variable for holding weak normal form */
while ((Index = reducible(R, G)) != -1) {

S = G[Index];
D = tdiv(in_(R), in_(S)); /* quotient of division in_(R) by in_(S) */
X = c_in(R) / c_in(S);
T = d_mult(X*D, S);
Q[Index] = Q[Index] + X*D;
R = R - T;
Q[Index] = red(Q[Index]); /* reduce the rational function Q[Index] */
R = red(R); /* reduce the rational function R */

}
return [R, Q];

}

/* Is R divisible by initial term of G ? */
def reducible(R, G)
{

M = length(G);
InR = in_(R);
for (I = 0; I < M; I++) {

InG = in_(G[I]);
T = tdiv(InR, InG); /* divisibility test: InG | InR ?*/
if (T != 0) /* the case of InG | InR */

return I;
}
return -1;

}
� �
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Listing 7.96 Risa/Asir: computing the normal form, using nf_r1.rr
� �

[1206] load("nf_r1.rr");
[1226] F = dx^3-x$
[1227] G1 = dx^2-1$
[1228] G2 = x*dx-1$
[1229] normal_form(F,[G1, G2]);
[(-x^2+1)/(x),[ dx (1)/(x) ]]
� �

The command normal_form returns the pair [(normal form), (list of
quotients)]. From the output, we see that the normal form of F D @3x � x by

G1 D @2x � 1 and G2 D x@x � 1 is �x2C1
x

. Moreover, we obtain the relation

F D @xG1 C 1

x
G2 C �x

2 C 1
x

from the list of quotients.

Exercise. Implement the algorithm of Example 7.4.5 on Macaulay2, Singular,
Maple, and other systems.

Example 7.4.6. Implement a normal form algorithm over R2 and Buchberger’s
algorithm in R2 (refer to [14, Chap. 16]).

Answer. We provide a sample program on Risa/Asir. For simplicity, x, y, dx,
and dy are fixed as variables. We begin by implementing a multiplying function
d_mult2 in R2 D Q.x; y/h@x; @yi, which uses Leibniz’s rule.

Listing 7.97 Risa/Asir: multiplication in R2 (in nf_r2.rr)
� �

def d_mult2(F, G)
{

NX = deg(nm(F), dx);
NY = deg(nm(F), dy);
A = 0;
for (KX = 0; KX <= NX; KX++) {

for (KY = 0; KY <= NY; KY++) {
/* Leibniz’s rule */
A = A + 1/(fac(KX) * fac(KY))

* diff3(F, dx, KX, dy, KY)

* diff3(G, x, KX, y, KY);
A = red(A);

}
}
return A;

}

/* (M,N)-th derivative of F w.r.t. variables (X, Y) */
def diff3(F, X, M, Y, N)
{

for (I = 0; I < M; I++)
F = diff(F, X); /* derivative of F w.r.t. X */

for (I = 0; I < N; I++)
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F = diff(F, Y); /* derivative of F w.r.t. Y */
return F;

}
� �

The following code shows that y
x
@2x multiplied by x@x@yCx from the left is y@3x@yC

@3x � y

x
@2x@y C xy�1

x
@2x .

Listing 7.98 Risa/Asir: multiplication in R2 by nf_r2.rr
� �

[1251] load("nf_r2.rr");
[1275] d_mult2(x*dx*dy + x, (y/x)*dx^2);
((y*x*dy+x)*dx^3+(-y*dy+y*x-1)*dx^2)/(x)
� �

Next, we implement three subfunctions, in2, in2_, and c_in2, for extracting
an initial term, an initial monomial, and an initial coefficient, respectively. Then,
we note that, unlike the univariate case, it is necessary to specify a term order. Our
program follows the specifications of Risa/Asir: Order = 0 indicates the reverse
lexicographic order (the graded reverse lexicographic order),Order = 1 indicates
the lexicographic order (the graded lexicographic order), and Order = 2 indicates
the pure lexicographic order (the lexicographic order). Here, the terminology in
parentheses follows that of Chap. 3. A variable order is given by a list VL. See
Sect. 3.6.5 for details.

Listing 7.99 Risa/Asir: initial term, initial monomial, and initial coefficient inR2 (in nf_r2.rr)
� �

/* initial term (with coefficient) */
def in2(F, VL, Order)
{

OldOrder = dp_ord(); /* save the original order to OldOrder */
dp_ord(Order); /* set a new order Order */
NM = nm(F); /* numerator of F */
DNM = dp_ptod(NM, VL); /* distributed representation of NM */
DIN = dp_hm(DNM); /* initial term of polynomial DNM */
IN = dp_dtop(DIN, VL); /* recursive representation of DIN */
IN = IN / dn(F); /* divide by denominator of F */
IN = red(IN); /* reduce rational function IN */
dp_ord(OldOrder); /* load the original order */
return IN;

}

/* initial monomial (without coefficient) */
def in2_(F, VL, Order)
{

OldOrder = dp_ord(); /* save the original order to OldOrder */
dp_ord(Order); /* set a new order Order */
NM = nm(F); /* numerator of F */
DNM = dp_ptod(NM, VL); /* distributed representation of NM */
DIN = dp_ht(DNM); /* initial term of polynomial DNM */
IN = dp_dtop(DIN, VL); /* recursive representation of DIN */
dp_ord(OldOrder); /* load the original order */
return IN;

}

/* initial coefficient */
def c_in2(F, VL, Order)
{

OldOrder = dp_ord(); /* save the original order to OldOrder */
dp_ord(Order); /* set a new order Order */
NM = nm(F); /* numerator of F */
DNM = dp_ptod(NM, VL); /* distributed representation of NM */
LC = dp_hc(DNM); /* initial coefficient of polynomial DNM */
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LC = LC / dn(F); /* divide by denominator of F */
LC = red(LC); /* reduce rational function LC */
dp_ord(OldOrder); /* load the original order */
return LC;

}
� �

The following sample code outputs the initial term in�.F / D . 1x C y/�3x , the initial
monomial �3x , and the initial coefficient . 1

x
C y/, of F D 1

x
@2x@

2
y C . 1x C y/@3x C

@x C @y C 1 with respect to the (pure) lexicographic order with @x � @y .

Listing 7.100 Risa/Asir: computation of the initial term, initial monomial, and initial coefficient,
by using nf_r2.rr
� �

[1278] load("nf_r2.rr");
[1302] F = 1/x*dx^2*dy^2+(1/x+y)*dx^3+dx+dy+1;
((y*x^2+x)*dx^3+x*dy^2*dx^2+x^2*dx+x^2*dy+x^2)/(x^2)
[1303] in2(F, [dx,dy], 2);
((y*x+1)*dx^3)/(x)
[1304] in2_(F, [dx,dy], 2);
dx^3
[1305] c_in2(F, [dx,dy], 2);
(y*x+1)/(x)
� �

According to Algorithms 6.1.4 and 6.1.5, sample programs for the weak
normal form algorithm (w_normal_form2) and the normal form algorithm
(normal_form2) are as follows.

Listing 7.101 Risa/Asir: computing the weak normal form and the normal form in R2 (in
nf_r2.rr)
� �

/* normal form */
def normal_form2(F, G, VL, Order)
{

M = length(G);
Q = newvect(M); /* vector for holding quotient */
R = 0; /* variable for holding normal form */
while (F != 0) {

/* compute weak normal form of F by G */
L = w_normal_form2(F, G, VL, Order);
RR = L[0]; /* weak normal form */
QQ = L[1]; /* quotient */
F = RR - in2(RR, VL, Order);
R = R + in2(RR, VL, Order);
Q = Q + QQ;
R = red(R); /* reduce the rational function R */
Q = map(red, Q); /* reduce each component of vector Q */

}
return [R, Q];

}

/* weak normal form */
def w_normal_form2(F, G, VL, Order)
{

M = length(G);
Q = newvect(M); /* vector for holding quotient */
R = F; /* variable for holding weak normal form */
while ((Index = reducible2(R, G, VL, Order)) != -1) {

S = G[Index];
D = tdiv(in2_(R, VL, Order), in2_(S, VL, Order));
X = c_in2(R, VL, Order) / c_in2(S, VL, Order);
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T = d_mult2(X*D, S);
Q[Index] = Q[Index] + X*D;
R = R - T;
Q[Index] = red(Q[Index]); /* reduce the rational function Q[Index] */
R = red(R); /* reduce the rational function R */

}
return [R, Q];

}

/* Is R divisible by initial term of G ? */
def reducible2(R, G, VL, Order)
{

M = length(G);
InR = in2_(R, VL, Order);
for (I = 0; I < M; I++) {

InG = in2_(G[I], VL, Order);
T = tdiv(InR, InG); /* divisibility test: InG | InR ?*/
if (T != 0) /* the case of InG | InR */

return I;
}
return -1;

}
� �

We see from the output that the normal form of F D @x@
3
y by G1 D @x@y C 1

and G2 D 2y@2y � @x C 3@y C 2x with respect to the graded reverse lexicographic
order with @x � @y is � 1

2y
@x C 3

2y
@y C 1

y
x. Moreover, we obtain the relation

F D @2yG1 C
�
� 1

2y

�
G2 C

�
� 1

2y
@x C 3

2y
@y C 1

y
x

�

from the list of quotients.

Listing 7.102 Risa/Asir: computing the normal form by using nf_r2.rr
� �

[1306] load("nf_r2.rr");
[1330] F = dx*dy^3;
dy^3*dx
[1331] G = [dx*dy + 1, 2*y*dy^2-dx+3*dy+2*x];
[dy*dx+1,-dx+2*y*dy^2+3*dy+2*x]
[1332] normal_form2(F, G, [dx,dy], 0);
[(-1/2*dx+3/2*dy+x)/(y),[ dy^2 (-1/2)/(y) ]]
� �

Finally, we implement the function sp2, which computes S -pairs and
Buchberger’s algorithm in R2 (see Algorithm 3.1.1).

Listing 7.103 Risa/Asir: Buchberger’s algorithm in R2 (with nf_r2.rr)
� �

/* S-pair sp(F,G) */
def sp2(F, G, VL, Order)
{

InF = in2_(F, VL, Order);
InG = in2_(G, VL, Order);
LCF = c_in2(F, VL, Order);
LCG = c_in2(G, VL, Order);
LCM = lcm(InF, InG);
MF = tdiv(LCM, InF); /* quotient of division LCM by InF */
MG = tdiv(LCM, InG); /* quotient of division LCM by InG */
Sp = d_mult2(MF, F) - red(LCF/LCG) * d_mult2(MG, G);
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return red(Sp);
}

/* Buchberger’s algorithm in $R_2$ */
def buchberger2(L, VL, Order)
{

N = length(L);
Jlist = []; /* list for holding index pairs */
for (I = 0; I < N; I++)

for (J = I + 1; J < N; J++)
Jlist = append(Jlist, [[I, J]]); /* generate index pairs */

while (Jlist != []) {
Index = car(Jlist); /* the first component of Jlist */
Jlist = cdr(Jlist); /* remove the first component from Jlist */
Sp = sp2(L[Index[0]], L[Index[1]], VL, Order);
Result = normal_form2(Sp, L, VL, Order);
R = Result[0]; /* normal form of Sp by L */
if (R != 0) { /* normal form of Sp by L is non zero */

L = append(L, [R]); /* add R to L as the last component */
N = length(L);
/* generate index pair for the new element R */
for (I = 0; I < N - 1; I++)

Jlist = append(Jlist, [[I, N - 1]]);
}

}
return L;

}
� �

The following sample code computes the S -pair of f1 D @2xCy2 and f2 D @2yCx2,
and shows that G D f@2x C y2; @2y C x2;�4x@x C 4y@yg is a Gröbner basis of
hf1; f2i � R2 with respect to the graded reverse lexicographic order with @x � @y .

Listing 7.104 Risa/Asir: computation of a Gröbner basis using nf_r2.rr
� �

[1333] load("nf_r2.rr");
[1357] F1 = dx^2 + y^2$
[1358] F2 = dy^2 + x^2$
[1359] sp2(F1, F2, [dx,dy], 0);
-x^2*dx^2-4*x*dx+y^2*dy^2+4*y*dy
[1360] buchberger2([F1, F2], [dx,dy], 0);
[dx^2+y^2,dy^2+x^2,-4*x*dx+4*y*dy]
� �

Exercise. Implement the algorithm of Example 7.4.6 on Macaulay2, Singular,
Maple, and other systems.

Example 7.4.7. Prove Buchberger’s criterion in R by referring to the proof on a
polynomial ring.

Answer. This is analogous to the proofs of Lemma 1.3.2 and Theorem 1.3.3, by
replacing the polynomial ring with the ring of differential operators. However, we
note that multiplication is noncommutative on the ring of differential operators.

Exercise. Explain the reason why Lemma 1.3.1 does not hold on the ring of
differential operators with rational function coefficients R (see Example 6.1.9).
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7.4.2 Zero-Dimensional Ideals in R and Pfaffian Equations
(Sect. 6.2)

Example 7.4.8. Compute a Gröbner basis in R for the system of differential
equations in Example 6.5.4:

L1 � f D L2 � f D 0; L1 D y@x � x@y; L2 D @x@y C 4xy;

and derive a Pfaffian system both by hand calculations and by using computer
software.

Answer. (hand calculation) We perform Buchberger’s algorithm with respect to the
graded reverse lexicographic order with @x � @y :

sp.L1; L2/ D @yL1 � yL2

D @y.y@x � x@y/� y.@x@y C 4xy/

D .y@y C 1/@x � x@2y � y@x@y � 4xy2

D �x@2y C @x � 4xy2

�! �x@2y C x

y
@y � 4xy2 DW L3 by L1I

sp.L1; L3/ D x@2yL1 C y@xL3

D x@2y.y@x � x@y/C y@x.�x@2y C x

y
@y � 4xy2/

D x.y@2y C 2@y/@x � x2@3y

� y.x@x C 1/@2y C .x@x C 1/@y � 4y.x@x C 1/y2

D 2x@x@y � x2@3y � y@2y C x@x@y C @y � 4xy3@x � 4y3

�! 2x.�4xy/C x@y

�
�x
y
@y C 4xy2

�
C y

�
� 1

y
@y C 4y2

�

C x.�4xy/C @y � 4xy3@y � 4y3 by L1; L2; L3

D �4xy3@x � x2

y
@2y C

�
x2

y2
C 4x2y2

�
@y � 4x2y

�! �4xy2.x@y/C x

y

�
�x
y
@y C 4xy2

�

C
�
x2

y2
C 4x2y2

�
@y � 4x2y by L1; L3

D 0I
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sp.L2; L3/ D x@yL2 C @xL3

D x@y.@x@y C 4xy/C @x

�
�x@2y C x

y
@y � 4xy2

�

D x@x@y C 4x2.y@y C 1/� .x@x C 1/@2y C 1

y
.x@x C 1/@y � 4y2.x@x C 1/

D x

y
@x@y � 4xy2@x � @2y C

�
4x2y C 1

y

�
@y C 4x2 � 4y2

�! x

y
.�4xy/� 4xy.x@y/� @2y C

�
4x2y C 1

y

�
@y C 4x2 � 4y2 by L1; L2

D �4x2 � 4x2y@y � @2y C
�
4x2y C 1

y

�
@y C 4x2 � 4y2

�! �4x2 � 4x2y@y �
�
1

y
@y � 4y2

�
C
�
4x2y C 1

y

�
@y C 4x2 � 4y2 by L3

D 0:

Therefore, fL1;L2; L3g is a Gröbner basis of the system.
Since the set of standard monomials is f1; @yg, we calculate the normal forms of

@x , @x@y , @y , and @2y by fL1;L2; L3g:
@x �!� x

y
@y by G,

@x@y �!� �4xy by G,
@y �!� @y by G,
@2y �!� �4y2 C 1

y
@y by G.

Setting F D
 
f
@f

@y

!
, we obtain the Pfaffian system:

@F

@x
D
 

0 x
y

�4xy 0

!
F;

@F

@y
D
 

0 1

�4y2 1
y

!
F:

(by computer) We compute a Gröbner basis of the ideal I D hL1;L2i generated by
the operators L1 D y@x � x@y and L2 D @x@y C 4xy with respect to the graded
reverse lexicographic order with @x � @y by using the program nf_r2.rr on
Risa/Asir.

Listing 7.105 Risa/Asir: Gröbner basis computation in R2
� �

[1407] load("nf_r2.rr");
[1431] L1=y*dx-x*dy;
[1432] L2=dx*dy+4*x*y;
[1434] GB=buchberger2([L1,L2],[dx,dy],0);
[y*dx-x*dy,dy*dx+4*y*x,(-y*x*dy^2+x*dy-4*y^3*x)/(y)]
� �

We see from the output that the Gröbner basis is G D fy@x � x@y; @x@y C
4xy;�x@2y C x

y
@y � 4xy2g.
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The initial ideal of I is in�.I / D h�x; �x�y; �2yi � C.x; y/Œ�x; �y �. We find that
the set of standard monomials of I is f1; @yg. We then compute normal forms of @x ,
@x@y , @y , @y@y by G.

Listing 7.106 Risa/Asir: computation the normal form in R2
� �

[1435] normal_form2(dx,GB,VL=[dx,dy],0);
[(x*dy)/(y),[ (1)/(y) 0 0 ]]
[1436] normal_form2(dx*dy,GB,VL=[dx,dy],0);
[-4*y*x,[ (y*dy-1)/(y^2) 0 (-1)/(y) ]]
[1437] normal_form2(dy,GB,VL=[dx,dy],0);
[dy,[ 0 0 0 ]]
[1438] normal_form2(dy*dy,GB,VL=[dx,dy],0);
[(dy-4*y^3)/(y),[ 0 0 (-1)/(x) ]]
� �

The output represents

@x �!� x
y
@y by G,

@x@y �!� �4xy by G,
@y �!� @y by G,
@y@y �!� �4y2 C 1

y
@y by G:

Setting F D
 
f
@f

@y

!
, we obtain the Pfaffian system:

@F

@x
D
 

0 x
y

�4xy 0

!
F;

@F

@y
D
 

0 1

�4y2 1
y

!
F:

Exercise. Compute a Gröbner basis of I D hL1 WD x@x � .2x C y/@y; L2 WD
x@x@y � @y C 2x3 C x2yi in R, and derive a Pfaffian system for the system of
differential equations: L1 � f D L2 � f D 0 .

Example 7.4.9. Check the integrability condition for the Pfaffian system in
Example 7.4.8. That is, show that the Pfaffian system satisfies the condition in
Theorem 6.2.3.

Answer. Set

P1 D
 

0 x
y

�4xy 0

!
; P2 D

 
0 1

�4y2 1
y

!
:

We will prove that

@P1

@y
C P1P2 D @P2

@x
C P2P1:
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Because the derivatives are

@P1

@y
D
 

0 � x
y2

�4x 0

!
;
@P2

@x
D
�
0 0

0 0

�
;

and products are

P1P2 D
 
�4xy x

y2

0 �4xy

!
; P2P1 D

��4xy 0

�4x �4xy
�
;

we find that @P1
@y
C P1P2 and @P2

@x
C P2P1 both coincide with

��4xy 0

�4x �4xy
�
:

Exercise. Check the integrability condition for the Pfaffian system in Exercise 7.4.8.

Example 7.4.10. Compute a Gröbner basis for the system of differential equations
for Appell’s F1 in R, and derive a Pfaffian system.

Answer. (using the program nf_r2.rr) The system of differential equations for
the Appell’s function

F1.˛; ˇ; ˇ
0; � I x; y/ D

1X

m;nD0

.˛/mCn.ˇ/m.ˇ0/n
.�/mCn.1/m.1/n

xmyn

consists of two operators:

.x.1 � x/@2x C y.1 � x/@x@y C .� � .˛ C ˇ C 1/x/@x � ˇy@y � ˛ˇ/ � F1 D 0;
.y.1 � y/@2y C x.1 � y/@x@y C .� � .˛ C ˇ0 C 1/y/@y � ˇ0x@x � ˛ˇ0/ � F1 D 0:

(Note: The ideal generated by the above two operators is not 0-dimensional in R
when the parameters ˛; ˇ; ˇ0; � are special values. If we add the operator

.x � y/@x@y � ˇ0@x C ˇ@y;

it is 0-dimensional for any ˛; ˇ; ˇ0; � . However, regarding it as a Pfaffian system
in R with Q.˛; ˇ; ˇ0; �/.x; y/ coefficients, we consider the ideal without the third
operator.)

Let P1 and P2 be the operators given above, respectively. We compute a Gröbner
basis for the ideal I D hP1; P2i with respect to the graded reverse lexicographic
order with @x � @y in R. In the following code samples, a, b1, b2, c represent the
parameters ˛; ˇ; ˇ0; � , respectively.
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Listing 7.107 Risa/Asir: computing the normal form in R2
� �

[1440] Id=[(-x^2+x)*dx^2+((-y*x+y)*dy+(-a-b1-1)*x+c)*dx-b1*y*dy-b1*a,
((-y+1)*x*dy-b2*x)*dx+(-y^2+y)*dy^2+((-a-b2-1)*y+c)*dy-b2*a];
[1441] GB=buchberger2(Id,[dx,dy],0);
[(-x^2+x)*dx^2+((-y*x+y)*dy+(-a-b1-1)*x+c)*dx-b1*y*dy-b1*a,
...(omitted)...]
[1442] map(in2_, GB, [dx,dy], 0);
[dx^2,dy*dx,dy^2]
� �

We thus obtain the initial ideal in�.I / D h�2x; �x�y; �2yi and the set of standard
monomials f1; @x; @yg. We next compute the normal forms of @x , @x@x , @x@y , @y ,
@y@x , and @y@y by G.

Listing 7.108 Risa/Asir: computing the normal form in R2
� �

[1444] normal_form2(dx,GB,VL=[dx,dy],0);
[dx,[ 0 0 0 ]]
[1445] normal_form2(dx*dx,GB,VL=[dx,dy],0);
[(((-a-b1-1)*x^2+((a+b1-b2+1)*y+c)*x+(-c+b2)*y)*dx
+(b1*y^2-b1*y)*dy-b1*a*x+b1*a*y)/(x^3+(-y-1)*x^2+y*x),
[ (-1)/(x^2-x) (y)/((y-1)*x^2) (-y^2+y)/((a-c+1)*x^2+(-a+c-1)*y*x)]]
[1446] normal_form2(dx*dy,GB,VL=[dx,dy],0);
[(b2*dx-b1*dy)/(x-y),
[ 0 (-1)/((y-1)*x) (y-1)/((a-c+1)*x+(-a+c-1)*y) ]]
[1447] normal_form2(dy,GB,VL=[dx,dy],0);
[dy,[ 0 0 0 ]]
[1448] normal_form2(dy*dx,GB,VL=[dx,dy],0);
[(b2*dx-b1*dy)/(x-y),[ 0 (-1)/((y-1)*x) (y-1)/((a-c+1)*x+(-a+c-1)*y)]]
[1449] normal_form2(dy*dy,GB,VL=[dx,dy],0);
[((-b2*x^2+b2*x)*dx+(((-a+b1-b2-1)*y+c-b1)*x+(a+b2+1)*y^2-c*y)*dy
-b2*a*x+b2*a*y)/((y^2-y)*x-y^3+y^2),
[ 0 0 ((-y+1)*x)/((a-c+1)*y*x+(-a+c-1)*y^2) ]]
� �

The output represents

@x �!� @x by G,
@x@x �!� �˛ˇ

x.x�1/ C ˇy.y�1/
x.x�1/.x�y/@y

C .�˛�ˇ�1/x2C..˛Cˇ�ˇ0C1/yC�/xC.��Cˇ0/y

x.x�1/.x�y/ @x by G,

@x@y �!� ˇ0

x�y @x C �ˇ
x�y @y by G,

@y �!� @y by G,

@y@x �!� ˇ0

x�y @x C �ˇ
x�y @y by G,

@y@y �!� �˛ˇ0

y.y�1/ C �ˇ0x.x�1/
y.y�1/.x�y/ @x

C ..�˛Cˇ�ˇ0�1/yC��ˇ/xC.˛Cˇ0C1/y2��y
y.y�1/.x�y/ @y by G.

Setting F D

0
B@
f
@f

@x
@f

@y

1
CA, where f D F1, we obtain the Pfaffian system:

@F

@x
D

0
B@

0 1 0
�˛ˇ
x.x�1/

..�˛�ˇ�1/x2C..˛Cˇ�ˇ0C1/yC�/xC.��Cˇ0/y

x.x�1/.x�y/
ˇy.y�1/

x.x�1/.x�y/
0

ˇ0

x�y
�ˇ
x�y

1
CAF;
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@F

@y
D

0
B@

0 0 1

0
ˇ0

x�y
�ˇ
x�y

�˛ˇ0

y.y�1/
�ˇ0x.x�1/
y.y�1/.x�y/

..�˛Cˇ�ˇ0�1/yC��ˇ/xC.˛Cˇ0C1/y2��y
y.y�1/.x�y/

1
CAF:

(by using the program yang.rr ) yang.rr is a package of Risa/Asir which
is used to compute Gröbner bases in the rings generated by Euler operators
(	x D x@x), difference operators, or q-difference operators. We will show how to
use it by using Appell’s function F1 as an example.

First, to load the package, use the command load(“yang.rr”);.1 We note
that, with this package, the computations will be performed over the ring
R D Qh	x; 	yi (the symbols in the display, dx and dy, represent the Euler
operators 	x and 	y). Moreover we can take the rational function field, for
example, Q.˛; ˇ; ˇ0; �/, as the coefficient field. Second, to declare the ring, use
the command yang.define_ring. To multiply one operator by another, use the
command yang.mul. Rewriting the system of differential equations for Appell’s
function F1 by using the Euler operators, we have

.x.	x C 	y C ˛/.	x C ˇ/ � .	x C 	y C � � 1/	x/ � F1 D 0;
.y.	x C 	y C ˛/.	y C ˇ0/� .	x C 	y C � � 1/	y/ � F1 D 0:

Let P1 and P2 be the operators given above, respectively. Third, we compute a
Gröbner basis G for the ideal I D hP1; P2i, by using the command yang.gr.
With the command yang.stdmon, we get the set of standard monomials S D
f1; 	x; 	yg. Finally, using the command yang.pf, we obtain the Pfaffian system
for Appell’s F1. (We can derive the Pfaffian system from the normal form, which

can be computed by the command yang.nf.) Setting F D
0

@
f

	x � f
	y � f

1

A ; we obtain

the Pfaffian system:

@F

@x
D

0

B@
0 1

x
0

�˛ˇ
x�1

ˇ0��C1
x
C ��1�˛�ˇ

x�1 C �ˇ0

x�y
�ˇ
x�1 C ˇ

x�y
0

�ˇ0

x
C ˇ0

x�y
�ˇ
x�y

1

CAF;

@F

@y
D

0

B@
0 0 1

y

0
ˇ0

x�y
�ˇ
y
C �ˇ

x�y
�˛ˇ0

y�1
�ˇ0

y�1 C �ˇ0

x�y
ˇ��C1

y
C ��1�˛�ˇ0

y�1 C ˇ

x�y

1

CAF:

1Error messages may be displayed if Asir Contrib is not loaded since the package
yang.rr uses some functions defined in Asir Contrib. If this happens, use the command
import(“names.rr”);.
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Here, for simplicity, each component of a Pfaffian matrix has been decomposed into
partial fractions.

Listing 7.109 Risa/Asir: yang.rr
� �

[1371] load("yang.rr");
[1838] yang.define_ring([x,y]);
{[euler,[x,y]],[x,y],[0,0],[0,0],[dx,dy]}
[1839] P1 = x*yang.mul(dx+dy+a,dx+b1) - yang.mul(dx+dy+c-1,dx);
(x-1)*dx^2+((x-1)*dy+(a+b1)*x-c+1)*dx+b1*x*dy+b1*a*x
[1840] P2 = y*yang.mul(dx+dy+a,dy+b2) - yang.mul(dx+dy+c-1,dy);
((y-1)*dy+b2*y)*dx+(y-1)*dy^2+((a+b2)*y-c+1)*dy+b2*a*y
[1841] GB = yang.gr([P1,P2]);
[((b2*y*x-b2*y)*dx+((y-1)*x-y^2+y)*dy^2+(((a-b1+b2)*y-c+b1+1)*x+(-a-b2)*y^2+
(c-1)*y)*dy+b2*a*y*x-b2*a*y^2)/((y-1)*x-y^2+y),
(((x-y)*dy-b2*y)*dx+b1*x*dy)/(x-y),
((x^2+(-y-1)*x+y)*dx^2+((a+b1)*x^2+((-a-b1+b2)*y-c+1)*x+(c-b2-1)*y)*dx+(-b1

*y+b1)*x*dy+b1*a*x^2-b1*a*y*x)/(x^2+(-y-1)*x+y)]
[1842] Std = yang.stdmon(GB);
[dx,dy,1]
[1845] Std=[1,dx,dy];
[1,dx,dy]
[1846] yang.pf(Std, GB);
[ [ 0 (1)/(x) 0 ]
[ (-b1*a)/(x-1) ((-a-b1)*x^2+((a+b1-b2)*y+c-1)*x+(-c+b2+1)*y)/(x^3+(-y-1)*x^
2+y*x) (b1*y-b1)/(x^2+(-y-1)*x+y) ]
[ 0 (b2*y)/(x^2-y*x) (-b1)/(x-y) ]
[ 0 0 (1)/(y) ]
[ 0 (b2)/(x-y) (-b1*x)/(y*x-y^2) ]
[ (-b2*a)/(y-1) (-b2*x+b2)/((y-1)*x-y^2+y) (((-a+b1-b2)*y+c-b1-1)*x+(a+b2)*
y^2+(-c+1)*y)/((y^2-y)*x-y^3+y^2) ] ]
� �

Exercise. 1. Check the integrability condition for the Pfaffian system of Appell’s
F1 in Example 7.4.10.

2. Derive the system of differential equations annihilating Appell’s series F1.
3. Derive Pfaffian systems for the hypergeometric functions in Horn’s list (see [5,

24]).

The answer to Exercise 3 is available at the website of Prof. Ohara, who developed
yang.rr:
http://air.s.kanazawa-u.ac.jp/~ohara/HG-Pfaffian/index.html.

7.4.3 Solutions of Pfaffian Equations (Sect. 6.3)

Example 7.4.11. Calculating by hand, find a series solution at the origin for the
differential equation: .3@2x C 6@x C .3� x// � f D exp.�x C 1/. Next, use Maple
to compute the solution.

Answer. Let f D
1X

kDs
akx

k be a power series. To determine the initial term of f ,

apply the differential operator:

http://air.s.kanazawa-u.ac.jp/~{}ohara/HG-Pfaffian/index.html
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.3@2x C 6@x C .3 � x// � f
D 3

X

kDs
k.k � 1/akxk�2 C 6

X

kDs
kakx

k�1 C 3
X

kDs
akx

k �
X

kDs
akx

kC1

D 3s.s � 1/asxs�2 C f3s.s C 1/asC1 C 6sasgxs�1
C f3.sC 1/.s C 2/asC2 C 6.s C 1/asC1 C 3asgxs

C
(
3
X

kDs
.kC2/.kC3/akC3C6

X

kDs
.kC2/akC2C3

X

kDs
akC1�

X

kDs
ak

)
xkC1:

The Taylor series for exp.�x C 1/ at the origin is

exp.�x C 1/ D
1X

kD0

.�1/ke
kŠ

xk; where e D exp.1/:

By comparing the exponent parts, we can determine the exponent s of the initial
term for the following three cases.

(1) When s D 2, the initial term is 3s.s � 1/asxs�2, which implies that a0 D 0,
a1 D 0, and 6a2 D e.

(2) When s D 1, the initial term is f3s.sC1/asC1C6sasgxs�1, which implies that
a0 D 0 and 6a2 C 6a1 D e.

(3) When s D 0, the initial term is f3.sC 1/.sC 2/asC2C 6.sC 1/asC1C 3asgxs ,
which implies that 6a2 C 6a1 C 3a0 D e.

Cases (1) and (2) are special cases of (3) under the condition that the constants a0
and a1 are restricted to 0. Therefore, the coefficient ak of the series solution is given
by the following recurrence relation:

3.k C 2/.k C 3/akC3 D .�1/kC1

.k C 1/Še � 6.k C 2/akC2 � 3akC1 C ak .k � 0/;

where a0 and a1 are arbitrary constants and a2 D 1
6
e � a1 � 1

2
a0.

To use Maple to compute a series solution of an inhomogeneous differential
equation, use the command dsolve with the option series.

Listing 7.110 Maple: computation of a series solution
� �

> ode:=3*diff(f(x),x,x)+6*diff(f(x),x)+(3-x)*f(x);
/ 2 \
|d | /d \

ode := 3 |--- f(x)| + 6 |-- f(x)| + (3 - x) f(x)
| 2 | \dx /
\dx /

> dsolve({ode=exp(-x+1)},f(x),series);
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f(x) = f(0) + D(f)(0) x +
2

(-D(f)(0) - 1/2 f(0) + 1/6 exp(1)) x +
3

(1/2 D(f)(0) + 7/18 f(0) - 1/6 exp(1)) x +

/ 11 \ 4
|-5/36 D(f)(0) - -- f(0) + 1/12 exp(1)| x +
\ 72 /

5 6
(1/72 D(f)(0) + 1/30 f(0) - 1/40 exp(1)) x + O(x )

� �

In order to get higher-order terms, set Order:=10; and use dsolve again.
Maple has a powerful package, DEtools, for solving differential equations.

Although it does not support inhomogeneous differential equations, we recom-
mended using it for homogeneous equations. For the homogeneous case of this
example, we obtain the solution by using the command formal_sol.

Listing 7.111 Maple: DEtools
� �

> with(DEtools):
> ode:=3*diff(f(x),x,x)+6*diff(f(x),x)+(3-x)*f(x);
> formal_sol(ode,f(x),x=0,order=6);

2 3 4 5 6
[x - x + 1/2 x - 5/36 x + 1/72 x + O(x ),

2 3 4 5 6
- 1 + x - 1/2 x + 1/9 x + 1/72 x - 7/360 x + O(x )]

� �

We now check that the series solution derived from the recurrence relation
coincides with the output from Maple. The following small program on Risa/Asir
uses the recurrence relation to return the coefficients of a series solution up to N-th
.> 2/. Here, the symbol e is an indeterminate, not the base of the natural logarithm.

Listing 7.112 Risa/Asir: series_rec.rr
� �

def series_rec(N)
{

A = newvect(++N);
A0 = a0; A1 = a1;
A[0]=A0; A[1]=A1; A[2]=1/6*e-A1-1/2*A0;
for ( I = 0; I < N-3; I++ ) {

A[I+3] = (-1)^(I+1)/fac(I+1)*e
-6*(I+2)*A[I+2]-3*A[I+1]+A[I];

A[I+3] /= 3*(I+3)*(I+2);
}
return A;

}
end$
� �
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Listing 7.113 Risa/Asir: computation of coefficients of the series solution
� �

[1355] load("series_rec.rr")$
[1356] series_rec(5);
[ a0 a1 1/6*e-1/2*a0-a1 -1/6*e+7/18*a0+1/2*a1
1/12*e-11/72*a0-5/36*a1 -1/40*e+1/30*a0+1/72*a1 ]

� �

We see that at least the first five coefficients coincide with the output from Maple.

Exercise. Find a series solution at the origin for the differential equation: .3@3x C
9@2x C .9 � x/@x � x C 1/ � f D 4 exp.x � 7/.
Example 7.4.12. Let Ui be a vector-valued function which is holomorphic at the
origin, and let Pi be a matrix which satisfies the integrability condition (6.10).
We consider the inhomogeneous Pfaffian system:

@F

@xi
D PiF C Ui; i D 1; : : : ; n;

where the inhomogeneous part Ui is annihilated by the operator @
@xj
� Qi

j .j D
1; : : : ; n/. Applying this to (6.14), we obtain

�
@2

@xj @xi
�Qi

j

@

@xj

�
F D

�
@

@xj
�Qi

j

�
PiF:

Now, find a homogeneous Pfaffian system for the new vector-valued function

OF D
	
F T ; @F

T

@x1
; : : : ; @F

T

@xn


T
. (Note: This situation commonly appears when we

consider a system of differential operators annihilating a definite integral whose
integral domain is not a cycle.)

Answer. The relation

@2F

@xj @xi
D Qi

j

@F

@xj
C @.PiF /

@xj
�Qi

jPiF

D Qi
j

@F

@xj
C Pi @F

@xj
C @Pi

@xj
F �Qi

jPiF

D
	
Pi CQi

j


 @F
@xj
C
�
@Pi

@xj
�Qi

jPi

�
F

is derived from above expression. Therefore, the desired Pfaffian system: @ OF
@xi
D

OQi
OF .1 � i � n/ is given by
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0

BBBBBBBBBBB@

@F
@xj
@2F

@xj @x1
:::

@2F

@xj @xi

:::
@2F

@xj @xn

1

CCCCCCCCCCCA

D

0

BBBBBBBBBB@

O O � � � O E O � � � O
@P1
@xj
�Q1

jP1 O � � � O P1 CQ1
j O � � � O

:::
:::
: : :

:::
:::

:::
: : :

:::
@Pi
@xj
�Qi

jPi O � � � O Pi CQi
j O � � � O

:::
:::
: : :

:::
:::

:::
: : :

:::
@Pn
@xj
�Qn

jPn O � � � O Pn CQn
j O � � � O

1

CCCCCCCCCCA

0
BBBBBBBBB@

F
@F
@x1
:::
@F
@xj

:::
@F
@xn

1
CCCCCCCCCA

:

The Pfaffian matrix consists of square matrices whose sizes are the same as that
of Pi . Except for those in row 1 and .j C 1/, the component matrices are the zero
matrix. Here, the symbol E is the identity matrix.

Example 7.4.13. By using Example 7.4.12, homogenize the inhomogeneous
Pfaffian system in Example 7.4.11:

dF

dx
D
�

0 1

.�3C x/=3 �2
�
F C

�
0

exp.�x C 1/=3
�
; where F D

�
f
df

dx

�
:

Answer. The inhomogeneous partU D � 0 exp.�x C 1/=3 �T satisfies the differen-
tial equation

dU

dx
D
�
0 0

0 �1
�
U:

Set

P D
�

0 1

.�3C x/=3 �2
�
;Q D

�
0 0

0 �1
�
;

and OF D
	
f

df

dx

df

dx

d2f

dx2


T
. From the result in Example 7.4.12, we obtain the

homogeneous Pfaffian system

d OF
dx
D
�

O E2
dP
dx
�QP P CQ

�
OF D

0

BB@

0 0 1 0

0 0 0 1

0 0 0 1

.�2C x/=3 �2 .�3C x/=3 �3

1

CCA OF :

Since the second and third components of OF agree, the second and third columns of
the Pfaffian matrix also agree. After reducing the redundant components, we obtain
the following simpler Pfaffian system:
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0

B@

df

dx
d2f

dx2

d3f

dx3

1

CA D
0

@
0 1 0

0 0 1

.�2C x/=3 .�9C x/=3 �3

1

A

0

B@
f
df

dx
d2f

dx2

1

CA :

The function exp.�xC 1/ is annihilated by @x C 1. We obtain the homogeneous
differential equation f3@3x C 9@2x C .9 � x/@x C .2 � x/g � f D 0 by applying
@x C 1 from the left to the inhomogeneous differential equation. The set of standard
monomials is f1; @x; @2xg and 3@3x is reduced as follows:

3@3x �!� �9@2x C .�9C x/@x C .�2C x/:

Thus, the same Pfaffian system is obtained.

Exercise. Derive an inhomogeneous Pfaffian system for the inhomogeneous
differential equation which appears in Exercise 7.4.11:

.3@3x C 9@2x C .9 � x/@x � x C 1/ � f D 4 exp.x � 7/:

Moreover, derive a homogenized Pfaffian system by using Example 7.4.12.

Example 7.4.14. Find a holomorphic solution of the system of differential
equations:

@F

@x
D A1F; @F

@y
D A2F; A1 D

�
0 x=y

�4xy 0

�
; A2 D

�
0 1

�4y2 1=y
�
:

Is the minimum value of the first component of the solution at the origin? We note
that the equations appear in Example 6.5.4 and have the solution F D .� cos.x2 C
y2/; 2y sin.x2 C y2//T .

Answer. It is difficult to calculate a series solution because the matrices A1 and A2
both have a y in the denominator of a component. Multiplying both sides by y, we

consider yFy D .yA2/F . Thus, yA2 D
�
0 0

0 1

�
C O.y/ implies the new equation

F D TG, where T D
�
1 0

0 y

�
is the transformation matrix. Then, the system of

differential equations for G is

@G

@x
D B1G; @G

@y
D B2G; B1 D

�
0 x

�4x 0
�
; B2 D

�
0 y

�4y 0
�
:

If we choose the transformation matrix T so that the pole of B2 at y D 0 vanishes,
then, fortunately, the pole of B1 also vanishes. We obtain the series solution
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G D
1X

m;nD0
cmnR

mCnG0x2my2n; R D
�
0 1

�4 0
�
; cmn D 1

2mCnmŠnŠ

by a straightforward calculation. Here, G0 is an arbitrary row vector of length 2.
Let us consider the existence of a minimum of the function F at the origin.

Since the first component of F is equal to the first component of TG, we obtain
.1; 0/

P
cmnR

mCnG0x2my2n by multiplying the first row .1; 0/ of T to G from the
left. We have

.1; 0/G0 C .0; 1/G0c10x2 C .0; 1/G0c01y2 CO.4/:
Here, the symbolO.4/ represents a fourth-order growth rate with respect to x and y.

When the terms with degree 2 are not zero, F has a minimum value if and only
if G0 D .d; c/T , c > 0. When the terms with degree 2 are zero, F has a minimum
value if G0 D .c; 0/T , c 6D 0. In this case, the solution is expressed as

.1; 0/G0 C .�4; 0/G0c11x2y2 C .�4; 0/G0c20x4 C .�4; 0/G0c02y4 CO.6/:

Therefore, F has a minimum when c < 0.
In fact, the system of differential equations L1 � f D L2 � f D 0, L1 D y@x �

x@y ,L2 D @x@yC4xy has a general solution f D A cos.x2Cy2/CB sin.x2Cy2/.
The vector-valued function F D .f; fy/T satisfies the Pfaffian system. We consider
the Taylor expansion of F at the origin. The function f has a minimum at .x; y/ D
.0; 0/ for any real numbers A and B > 0. Moreover, it holds when B D 0 and
A < 0. We reach the same conclusion with the Pfaffian system.

To draw a graph of the function, we use the program gnuplot. For easier
viewing, we draw the graph as a univariate function with respect to r , by using
the transformation r2 D x2 C y2. The following command displays the graph of
�2 cos.r2/C sin.r2/. Since the independent variable on gnuplot is x, we replace r
by x.

Listing 7.114 gnuplot: graphs
� �

plot -2*cos(x**2)+sin(x**2);
� �

To output graphs in postscript format for LATEX, use the following commands. Note
that we must use the command set terminal windows instead of the last
command set terminal x11 in the Windows environment.

Listing 7.115 gnuplot: graphs (EPS format)
� �

set terminal postscript
set output "test.eps"
plot -2*cos(x**2)+sin(x**2);
set terminal x11

� �

When y is fixed, we can use the series solution obtained in this example to find
the conditions for a univariate function with respect to x to have a minimum at the
origin.
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7.4.4 Holonomic Functions (Sect. 6.4)

Example 7.4.15. Let f be a rational function. Is the exponential function exp.f / a
holonomic function? If it is holonomic, find a 0-dimensional ideal of R satisfying
I � exp.f / D 0.

Answer. The derivative of exp.f / is @ exp.f /
@xi

D @f

@xi
exp.f /. Because fi WD @f

@xi
is a

rational function, the ideal I D h@i � fi j 1 � i � ni � R annihilates exp.f /, and
it is 0-dimensional on R. Therefore, exp.f / is holonomic.

Exercise. Let f be a rational function. Is the exponential function log.f / a
holonomic function? If it is holonomic, find a 0-dimensional ideal of R satisfying
I � log.f / D 0.

Example 7.4.16. Let f and g be holonomic functions, and let I and J be ideals
annihilating f and g, respectively. Find an algorithm for computing the ideals in R
annihilating the sum f C g and one annihilating the product fg.

Answer. For simplicity, let f and g be univariate holonomic functions with respect
to x. We present an algorithm for the product fg. Assume that f satisfies

.@l C pl�1@l�1 C � � � C p0/ � f D 0 .pi 2 Q.x//;

and g satisfies

.@m C qm�1@m�1 C � � � C q0/ � g D 0 .qi 2 Q.x//:

From Leibniz’s rule, the k-th derivative of fg is

@k � .fg/ D
kX

iD0

 
k

i

!
.@i � f /.@k�i � g/:

@i � f can be expressed as a linear combination of @l�1 �f; : : : ; @ � f; f over Q.x/,
and @k�i � g can be expressed as a linear combination of @m�1 � g; : : : ; @ � g; g over
Q.x/. Thus, we can rewrite the k-th derivative of fg as

@k � .fg/ D
X

0�i�l�1;0�j�m�1
dij .@

i � f /.@j � g/ .dij 2 Q.x//:

From the expression on the right-hand side, @k � .fg/ can be regarded as an element
.dij /0�i�l�1;0�j�m�1 of the vector space .Q.x//lm. When k is sufficiently large,
fg; @ � .fg/; : : : ; @k � .fg/ is linearly dependent over Q.x/. Then we have the
linear relation

rk@
k � .fg/C rk�1@k�1 � .fg/C � � � C r0fg D 0 .ri 2 Q.x//:

This is the differential equation for the product fg. The ideal hrk@k C rk�1@k�1 C
� � � C r0i has the product fg as a solution.
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For multivariate functions, by performing this algorithm for each variable, we
obtain the univariate differential equations for all the variables. The ideal generated
by them is 0-dimensional and has the product fg as a solution.

We can apply an analogous algorithm for the sum f C g.

Exercise. Derive a differential equation annihilating the sum x C exp.x/ and one
annihilating the product x sin.x/, by using the algorithm in Example 7.4.16.

7.4.5 Gradient Descent for Holonomic Functions (Sect. 6.5)

Example 7.4.17. Draw a graph of the function in Example 6.5.3:

g.x/ D exp.�x C 1/
Z 1

0

exp.xt � t3/dt:

Answer. It is easy to draw a graph when using a system which has a definite integral
calculator. Here, as an example of such a system, we use Maple.

Listing 7.116 Maple: drawing a graph
� �

> h := x -> int(exp(x*t-t^3),t=0..infinity):
> g := x -> exp(-x+1)*h(x):
> g(3.4);

-13
1.016334715 - 0.4834824802 10 I

> plot(Re(g(x)),x=3..4);
� �

To define a function g on Maple, use the arrow symbol ->; it is then easy to obtain
the value g.x/ for any number x. Although the command g.3:4/ is expected to
return a real number, it returns a complex number (the symbol I is the imaginary
unit). Sometimes Maple evaluates an integral as a complex-valued function. We can
extract the real part by using the command Re. To draw a graph, use the command
plot; the first argument specifies the functions, and the second argument specifies
the domain.

The result of this command is shown in Fig. 7.22. However, the graph shows
that g.3:4/ is about 0:018. This is different from the value obtained by the previous
command. We note that it is necessary to pay close attention to possible errors in
the results. Since we cannot solve this by referring to the manual of Maple, we will
graph it in a different way (Fig. 7.23).

Listing 7.117 Maple: drawing a graph
� �

> a:=3: b:=4: k:=30: L:=[]:
> for n from a to b by 1/k

do
L := [op(L),[n,Re(evalf((g(n))))]];

od:
> plot(L,x=a..b);
� �
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Fig. 7.22 Incorrect graph
of g.x/

Fig. 7.23 Correct graph
of g.x/

This method will give the correct values. We calculate the points by using a for
loop and save the values to a list; we then draw the graph by plotting the points and
connecting them with a line. The symbols a and b represent the endpoints of the
domain, and 1/k is the interval used for plotting.

7.4.6 Gröbner Bases in the Ring of Differential Operators
with Polynomial CoefficientsD (Sect. 6.6)

Example 7.4.18. Rewrite @2xx@x as a standard form
P
c˛ˇ�x

˛@
ˇ
xh

� of the homoge-

nized Weyl algebraD.h/
1 D CŒh�hx; @xi.

Answer.

@2xx@x D @x@xx@x D @x.x@x C h2/@x D @xx@2x C h2@2x
D .x@x C h2/@2x C h2@2x D x@3x C 2h2@2x:
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Example 7.4.19. (Example 6.6.3 modified by homogenization)
Homogenize p D x and q D x C x2 on the homogenized Weyl algebra D.h/

1 D
CŒh�hx; @xi. LetH.p/ andH.q/ be homogenized elements of p and q, respectively.
DivideH.p/ byH.q/ with respect to the weighted order 	.�1;1/.
Answer. The homogenized elements are H.p/ D x and H.q/ D hx C x2. Here,
the underlined parts are the initial terms with respect to 	.�1;1/. Thus, H.p/ is not
divisible byH.q/.

Example 7.4.20. Let 	 be the pure lexicographic order with x � y � z � @x �
@y � @z and let .u; v/ D .0; 0; 0; 1; 2; 3/. Compute a Gröbner basis with respect to
	.u;v/ of the ideal

I D hx@x C 3z@z C 3; 3x2@y C z@x; 3x
2@z C y@x; y@y � z@zi � D3:

Find the initial ideal in.u;v/.I /.

Answer. Macaulay2 and Risa/Asir return

hx3@x � yz@x C 3x2; 3y@y Cx@x C 3; 3x2@y C z@x; 3z@z C x@x C 3; 3x2@zCy@xi;

and Singular returns

hx3@x � yz@x C 3x2; 3y@y C x@x C 3; 3x2@y C z@x; z@z � y@y; 3x2@z C y@xi:

They appear to be different from each other. However, they are both Gröbner bases
of I , because both of the initial terms are z�z. In this case, the relation

3.z@z � y@y/ D .3x@z C x@x C 3/� .3y@y C x@x C 3/

implies that they generate the same ideal.
We now show how to perform this computation on the systems Macaulay2,

Singular, and Risa/Asir.

Listing 7.118 Macaulay2: computing the Gröbner basis inD
� �

i1 : R=QQ[x,y,z,dx,dy,dz,WeylAlgebra=>{x=>dx,y=>dy,z=>dz},
MonomialOrder=>{Weights=>{3:0,1,2,3},Lex}];

i2 : L=ideal(x*dx+3*z*dz+3,3*x^2*dy+z*dx,3*x^2*dz+y*dx,y*dy-z*dz);
o2 : Ideal of R
i3 : gens gb L
o3 = | x3dx-yzdx+3x2 3ydy+xdx+3 3x2dy+zdx 3zdz+xdx+3 3x2dz+ydx |

i4 : loadPackage "Dmodules";
i5 : S=QQ[x,y,z,dx,dy,dz,WeylAlgebra=>{x=>dx,y=>dy,z=>dz},

MonomialOrder=>Lex];
i4 : M = (map(S,R))(L);
o4 : Ideal of S
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i5 : gbw(M,{0,0,0,1,2,3})
3 2

o5 = ideal (x dx + 3x - y*z*dx, x*dx + 3y*dy + 3,
---------------------------------------------------

2 2
3x dy + z*dx, x*dx + 3z*dz + 3, 3x dz + y*dx)

� �

After correctly declaring the ring, we can compute a Gröbner basis in D by
using the command gb, as in the case of the polynomial ring. To display the
generators of the Gröbner basis, use the command gens. To specify a term order,
use the option MonomialOrder, as in Sect. 3.2.3. The term order is applied from
left to right. In this case, the ordering is first with respect to the weight vector
Weights=>{3:0,1,2,3} and then with respect to Lex. Here, {3:0,1,2,3}
is an abbreviated representation of {0,0,0,1,2,3}. We can abbreviate it further
as {3:0,1..3}.

Alternatively, we can use the command gbw to compute a Gröbner basis with
respect to a weighted order. Since the weight vector is specified as the second
argument, Lex is used as a tie breaker in the ring declaration.

Listing 7.119 Singular: computing the Gröbner basis in D
� �

> LIB "dmod.lib";
> ring r=0,(x,y,z,dx,dy,dz),(a(0,0,0,1,2,3),lp);
> def D=Weyl();
> setring D;
> ideal L=x*dx+3*z*dz+3,3*x^2*dy+z*dx,3*x^2*dz+y*dx,y*dy-z*dz;
> groebner(L);
_[1]=x^3*dx-y*z*dx+3*x^2
_[2]=3*y*dy+x*dx+3
_[3]=3*x^2*dy+z*dx
_[4]=z*dz-y*dy
_[5]=3*x^2*dz+y*dx

> ring rr=0,(x,y,z,dx,dy,dz),lp;
> def DD=Weyl();
> setring DD;
> ideal L=fetch(D,L);
> intvec u=0,0,0;
> intvec v=1,2,3;
> GBWeight(L,u,v);
_[1]=-y*dy+z*dz
_[2]=x*dx+3*y*dy+3
_[3]=3*x^2*dy+z*dx
_[4]=3*x^2*dz+y*dx
_[5]=x^3*dx+3*x^2-y*z*dx
� �

In Singular, a weighted term order is specified with the syntax (a(0,0,0,1,
2,3),lp). This represents	.u;v/ since the term order is applied from left to right,
as with Macaulay2.

We can also use the commandGBWeight. This command acceptsintvec-type
variables so that the second and third arguments correspond to u and v, respectively.
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Listing 7.120 Risa/Asir: computing the Gröbner basis inD
� �

[1309] L=[x*dx+3*z*dz+3,3*x^2*dy+z*dx,3*x^2*dz+y*dx,y*dy-z*dz]$
[1310] V=[x,y,z,dx,dy,dz]$
[1311] M=newmat(7,6,[[0,0,0,1,2,3],[1],[0,1],[0,0,1],[0,0,0,1],
[0,0,0,0,1],[0,0,0,0,0,1]]);
[ 0 0 0 1 2 3 ]
[ 1 0 0 0 0 0 ]
[ 0 1 0 0 0 0 ]
[ 0 0 1 0 0 0 ]
[ 0 0 0 1 0 0 ]
[ 0 0 0 0 1 0 ]
[ 0 0 0 0 0 1 ]
[1312] G=nd_weyl_gr(L,V,0,M);
[(x^3-z*y)*dx+3*x^2,-x*dx-3*y*dy-3,z*dx+3*x^2*dy,
x*dx+3*z*dz+3,y*dx+3*x^2*dz]
� �

With Risa/Asir, we use the dedicated command nd_weyl_gr. The arguments are
the same as for the command nd_gr (see Sect. 3.6.6). The weighted term order is
specified by an order matrix.

We consider the computation of the initial ideal of I . It is generated by the initial
term of each element of the Gröbner basis. Thus we have

in.u;v/.I / D hx3�x � yz�x; 3y�y; 3x
2�y ; 3z�z; 3x

2�zi � CŒx; y; z; �x ; �y; �z�:

Here, we replace the derivatives @x; @y; @z by the commutative variables �x; �y ; �z,
respectively. We will show how to compute each system. We note that these three
systems do not make the replacement @ 7! �.

Listing 7.121 Macaulay2: computing the initial ideal
� �

i1 : loadPackage "Dmodules";
i2 : R=QQ[x,y,z,dx,dy,dz,WeylAlgebra=>{x=>dx,y=>dy,z=>dz}];
i3 : L=ideal(x*dx+3*z*dz+3,3*x^2*dy+z*dx,3*x^2*dz+y*dx,y*dy-z*dz);
o3 : Ideal of R
i4 : inw(L,{0,0,0,1,2,3})

3 2 2
o4 = ideal (x dx - y*z*dx, 3y*dy, 3x dy, 3z*dz, 3x dz)
o4 : Ideal of QQ[x, y, z, dx, dy, dz]
� �

To compute the initial ideal with respect to the weighted term order, use the com-
mand inw. The second argument is the weight vector, as with the command gbw.
We do not set the term order in the ring declaration, because the initial ideal is unique
for any tie breaker. In this case, GRevLex is used as a default setting. The line at o4
shows that the initial ideal is regarded as the ideal of the polynomial ring because
the weight vector satisfies ui C vi > 0. However, the variables are not replaced as
described above.

Listing 7.122 Singular: computing the initial ideal
� �

> LIB "dmod.lib";
> ring r=0,(x,y,z,dx,dy,dz),(a(0,0,0,1,2,3),lp);
> def D=Weyl();
> setring D;
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> ideal L=x*dx+3*z*dz+3,3*x^2*dy+z*dx,3*x^2*dz+y*dx,y*dy-z*dz;
> ideal G=groebner(L);
> intvec w=0,0,0,1,2,3;
> inForm(G,w);
_[1]=x^3*dx-y*z*dx
_[2]=3*y*dy
_[3]=3*x^2*dy
_[4]=z*dz
_[5]=3*x^2*dz
� �

The command inForm returns the initial parts of polynomials (or generators of the
ideal) with respect to the weight vector. The second argument accepts the intvec-
type variable corresponding to the weight vector. This command returns the initial
terms of the generators, but it does not return the initial ideal when an ideal is given
as the first argument. This command must be used after we compute a Gröbner basis
with respect to the desired weighted term order. 2

Listing 7.123 Risa/Asir: computing the initial ideal
� �

[1336] load("nk_restriction.rr");
[1337] L=[x*dx+3*z*dz+3,3*x^2*dy+z*dx,3*x^2*dz+y*dx,y*dy-z*dz]$
[1338] V=[x,y,z,dx,dy,dz]$
[1339] nk_restriction.initial_w(L,V,[0,0,0,1,2,3]);
[(x^3-z*y)*dx,-3*y*dy,3*x^2*dy,3*z*dz,3*x^2*dz]
� �

In Risa/Asir, the command nk_restriction.initial_w returns the initial
ideal with respect to the weighted term order. It is defined in the library
nk_restriction.rr. The weight vector is specified as the second and third
arguments.

Exercise. For the ideal in Example 7.4.20, compute a Gröbner basis and an initial
ideal with respect to the weighted term order	.u;v/, where .u; v/ D .2; 1; 0; 1; 2; 3/.

7.4.7 Holonomic Systems (Sect. 6.8)

Example 7.4.21. Set A D
�
1 1 1 1

0 1 3 4

�
. Compute the holonomic rank of the

A-hypergeometric system HA.ˇ/ for ˇ D .1; 2/T and ˇ D .1; 3/T .

Answer.

Listing 7.124 Macaulay2: holonomic rank
� �

i1 : loadPackage "Dmodules";
i2 : A=matrix{{1,1,1,1},{0,1,3,4}};

2The command initialIdealW accomplishes this procedure in Singular. However, there may
be a bug in version 3-1-2.
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2 4
o2 : Matrix ZZ <--- ZZ
i3 : b={1,2};
i4 : G=gkz(A,b);
o4 : Ideal of QQ[x , x , x , x , D , D , D , D ]

1 2 3 4 1 2 3 4
i5 : holonomicRank G
o5 = 5

i6 : b={1,3};
i7 : G=gkz(A,b);
o7 : Ideal of QQ[x , x , x , x , D , D , D , D ]

1 2 3 4 1 2 3 4
i8 : holonomicRank G
o8 = 4
� �

In Macaulay2, the command holonomicRank returns the holonomic rank. It is 5
when ˇ D .1; 2/T and 4 when ˇ D .1; 3/T .

Listing 7.125 Singular: holonomic rank
� �

LIB "dmod.lib";
LIB "toric.lib";
> ring r = (0,x(1..4)),(dx(1..4)),dp;
> intmat A[2][4] = 1,1,1,1, 0,1,3,4;
> ideal IA = toric_ideal(A,"ect");
> intmat ORD[8][8]=
. 0,0,0,0,1,1,1,1,
. 0,0,0,0,0,0,0,-1,
. 0,0,0,0,0,0,-1,0,
. 0,0,0,0,0,-1,0,0,
. 1,1,1,1,0,0,0,0,
. 0,0,0,-1,0,0,0,0,
. 0,0,-1,0,0,0,0,0,
. 0,-1,0,0,0,0,0,0;
> ring r8 = 0,(x(1..4),dx(1..4)),M(ORD);
> def D4 = Weyl();
> setring D4;
> vector T = [x(1)*dx(1),x(2)*dx(2),x(3)*dx(3),x(4)*dx(4)];
> vector B = [1,2];
> matrix AT = A*T-B;
> ideal HA = imap(r,IA)+AT[1,1]+AT[2,1];
> ideal G = std(HA);
> setring r;
> ideal GB = imap(D4,G);
> kbase(GB);
// ** GB is no standard basis
_[1]=dx(4)^2
_[2]=dx(3)*dx(4)
_[3]=dx(4)
_[4]=dx(3)
_[5]=1
� �
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Singular does not have a command which directly computes the holonomic rank.
However, it can be computed by using the commandkbase, which returns a base of
the vector space. We can compute a Gröbner basis with respect to a block order with
@ 
 x and regard it as a Gröbner basis of R (see Example 7.4.23 for specification
of the block order). When the command kbase is executed, a warning is displayed,
but it can be disregarded for this purpose.

Executing the command with vector B = [1,3];, the holonomic rank is 4.

Listing 7.126 Risa/Asir: holonomic rank
� �

[1371] A=[[1,1,1,1],[0,1,3,4]]$
[1372] B=[1,2]$
[1373] G=sm1.gkz([A,B]);
[[x4*dx4+x3*dx3+x2*dx2+x1*dx1-1,4*x4*dx4+3*x3*dx3+x2*dx2-2,
-dx1*dx4+dx2*dx3,-dx2^2*dx4+dx1*dx3^2,dx1^2*dx3-dx2^3,
-dx2*dx4^2+dx3^3],[x1,x2,x3,x4]]
[1374] sm1.rank(G);
5

[1375] B=[1,3]$
[1376] G=sm1.gkz([A,B]);
[[x4*dx4+x3*dx3+x2*dx2+x1*dx1-1,4*x4*dx4+3*x3*dx3+x2*dx2-3,
-dx1*dx4+dx2*dx3,-dx2^2*dx4+dx1*dx3^2,dx1^2*dx3-dx2^3,
-dx2*dx4^2+dx3^3],[x1,x2,x3,x4]]
[1377] sm1.rank(G);
4
� �

Risa/Asir does not have a command for computing the holonomic rank, but we can
do so by using the command sm1, sm1.rank.

For the Gröbner basis computation, in general, Risa/Asir is more efficient
than sm1. Thus, for larger problems, it is better to perform computations on
Risa/Asir, as we did with Singular. The command in Risa/Asir that corresponds
to kbase in Singular is dp_mbase (see Sect. 3.6.7).

Exercise. Set A D
�
1 1 1 1

0 1 3 4

�
. Compute the holonomic rank of the A-

hypergeometric system HA.ˇ/ for ˇ D .1; 0/T and ˇ D .1; 4/T . (Note: The
holonomic rank for a generic parameter ˇ coincides with vol.A/. See [20, Chap. 4]
for details.)

Example 7.4.22. Provide an algorithm for determining whether Dr=L is
holonomic. Find the appropriate programs or commands in Macaulay2, Singular,
and Risa/Asir.

Answer. This is somewhat difficult when r > 1 (refer to [16]). Macaulay2 and
Singular have the command isHolonomic to determine holonomicity.

It is easy, however, when r D 1.D=L is holonomic if the Krull dimension of the
characteristic variety of the ideal L in the Weyl algebra D D Dn is n. Hence, we
compute the .0; 1/-initial ideal and examine the degree of the Hilbert polynomial.
For example, we can check the holonomicity of the ideal

I D hx@y; y@xi � D2:
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Listing 7.127 Macaulay2: check the holonomicity
� �

i1 : loadPackage "Dmodules";
i2 : D2=QQ[x,y,dx,dy,WeylAlgebra=>{x=>dx,y=>dy},

MonomialOrder=>GRevLex];
i3 : I=ideal(x*dy,y*dx);
o3 : Ideal of D2
i4 : isHolonomic I
o4 = true

i5 : CI=charIdeal I
o5 = ideal (x*dy, y*dx, x*dx - y*dy)
o5 : Ideal of QQ [x, y, dx, dy]

i6 : IN=inw(I1,{0,0,1,1})
2 2

o6 = ideal (x*dy, y*dx, x*dx - y*dy, y dy, y*dy )
o6 : Ideal of QQ [x, y, dx, dy]
i7 : dim IN
o7 : 2

i8 : hilbertPolynomial(IN)
o8 = 2*P

1
i9 : hilbertPolynomial(IN,Projective=>false)
o9 = 2i + 2
o9 : QQ[i]
i10 : R4=ring IN;
i11 : R5=QQ[x,y,dx,dy,h];
i12 : IN1=(map(R5,R4))(IN);
o12 : Ideal of R5
i13 : hilbertPolynomial(IN1,Projective=>false)

2
o13 = i + 3i + 2
o13 : QQ[i]
� �

The command isHolonomic returns true. Thus, the ideal I is holonomic.
To compute the characteristic ideal, use the command charIdeal or compute the
.0; 1/-initial ideal by using the command inw. To compute the Krull dimension
of the characteristic variety, use the command dim. To compute the Hilbert
polynomial, use the command hilbertPolynomial. This command accepts
only homogeneous ideals. In this example, IN is homogeneous. The degree of
output 1 indicates the dimension of the projective variety. Thus, the dimension of the
affine variety is 2. To compute the Hilbert polynomial as the affine variety, we need
to compute on the homogenized Weyl algebra with the homogenized variable h.

By default, the output of hilbertPolynomial is represented by the symbol
Pk WD

�
iCk
k

�
. The option Projective=>false changes the output to a

polynomial representation.

Listing 7.128 Singular: check the holonomicity
� �

> LIB "dmod.lib";
> ring r=0,(x,y,dx,dy),dp;
> def D2=Weyl();
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> setring D2;
> ideal I=x*dy,y*dx;
> isHolonomic(I);
1
> def A=charVariety(I);
> setring A;
> charVar;
charVar[1]=x*dy
charVar[2]=y*dx
charVar[3]=x*dx-y*dy
charVar[4]=y*dy^2
charVar[5]=y^2*dy
> dim(charVar);
2
> ring B=0,(x,y,dx,dy,h),dp;
> setring B;
> ideal CI=imap(A,charVar);
> hilbPoly(CI);
4,6,2
� �

Singular has the command isHolonomic to check holonomicity; 1 indicates it
is holonomic, 0 indicates it is not. To compute the characteristic variety, use the
command charVariety, move the ring, and read the variable charVar. After
computing the Krull dimension by using the command dim, we can check the holo-
nomicity of I . To compute the Hilbert polynomial, use the command hilbPoly.
This command accepts only homogeneous ideals, as with Macaulay2. It returns
the integer sequence which represents the Hilbert polynomial 1

nŠ

Pn
iD0 ci t i . In this

example, the Hilbert polynomial is .4C 6t C 2t2/=2Š D 2C 3t C t2.
Listing 7.129 Risa/Asir: check the holonomicity
� �

[1371] load("nk_restriction.rr")$
[1579] I=[x*dy,y*dx]$
[1580] V=[x,y,dx,dy]$
[1581] IN=nk_restriction.initial_w(I,V,[0,0,1,1]);
[dy*x,dx*y,-dx*x+dy*y,-dy*y^2,-dy^2*y]
[1582] sm1.hilbert([IN,V]);
h^2+3*h+2

[1587] GI=nd_gr(IN,V,0,0);
[-y^2*dy,-y*dy^2,-x*dx+y*dy,y*dx,x*dy]
[1588] dp_ord(0);
0
[1589] GIN=map(dp_dtop,map(dp_ht,map(dp_ptod,GI,V)),V);
[y^2*dy,y*dy^2,x*dx,y*dx,x*dy]
[1590] sm1.hilbert([GIN,V]);
h^2+3*h+2
� �

Risa/Asir does not have a command to check holonomicity. To compute the
characteristic variety, use the command initial_w. To compute the Hilbert
polynomial, use the commandsm1.hilbert, which is defined in sm1. The degree
of the Hilbert polynomial is 2. Thus the ideal I is holonomic. It is possible to
make a user-defined command to check the holonomicity by combining the above
procedures.
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The computation of a Gröbner basis is used in computing the Hilbert polynomial.
As mentioned above, in general, Risa/Asir is more efficient than sm1 for the
computation of a Gröbner basis. For larger problems, we recommend that you use
Risa/Asir to compute the initial ideal before using the command sm1.hilbert.

Exercise. Check the holonomicity of the following ideals:

1. I1 D hx2@y; y2@xi � D2,
2. I2 D h.x3 � y2/@x C 3x2; .x3 � y2/@y � 2yi � D2,

3. A-hypergeometric ideal HA.ˇ/ � D4 associated with A D
0

@
1 1 0 0

0 0 1 1

0 1 0 1

1

A and

ˇ D .1; 1; 1/T .

7.4.8 Relationship of D and R (Sect. 6.9)

Example 7.4.23. Use Theorem 6.9.3 to compute a Gröbner basis in R of the ideal
in Example 7.4.8.

Answer. We take a term order as a block order @x � @y 
 x � y, where �
represents the pure lexicographic order. We will show how to set the block order on
each system. We cannot use the method shown in Sects. 3.2.3 and 3.6.5, because the
derivatives must be placed on the right of the variables. The matrix order is available
in this case. The matrix corresponding to the block order in this example is

0

BB@

0 0 1 1

0 0 0 �1
1 1 0 0

0 �1 0 0

1

CCA :

Listing 7.130 Macaulay2: computing the Gröbner basis in R
� �

i1 : loadPackage "Dmodules";
i2 : R=QQ[x,y,dx,dy,WeylAlgebra=>{x=>dx,y=>dy},

MonomialOrder=>{Weights=>{0,0,1,1},Weights=>{0,0,0,-1},
Weights=>{1,1},Weights=>{0,-1}}];

i3 : L=ideal(y*dx-x*dy,dx*dy+4*x*y);
o3 : Ideal of R
i4 : gens gb L
o4 = | ydx-xdy ydy^2-dy+4y3 xdy^2-dx+4xy2 dxdy+4xy

-----------------------------------------------
dx^2-dy^2+4x2-4y2 dy^3+4y2dy+12y |

� �

In Macaulay2, use the option Weights. The terms are compared with respect to the
first weight, the second weight in the case of drawing, and so on. Thus, we can set
the matrix order by enumerating the weight corresponding to each row in the matrix.
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When the length of the weight is shorter than that of the variables, the weights of
the remaining variables are regarded as 0.

Listing 7.131 Singular: computing the Gröbner basis in R
� �

> LIB "dmod.lib";
> intmat ORD[4][4]=
. 0,0,1,1,
. 0,0,0,-1,
. 1,1,0,0,
. 0,-1,0,0;
> ring r=0,(x,y,dx,dy),M(ORD);
> def D=Weyl();
> setring D;
> ideal L=y*dx-x*dy,dx*dy+4*x*y;
> groebner(L);
_[1]=y*dx-x*dy
_[2]=y*dy^2-dy+4*y^3
_[3]=x*dy^2-dx+4*x*y^2
_[4]=dx*dy+4*x*y
_[5]=dx^2-dy^2+4*x^2-4*y^2
_[6]=dy^3+4*y^2*dy+12*y
� �

In Singular, after setting the intmat-type variable corresponding to the matrix
order, we declare the ring by using the command M().

Listing 7.132 Risa/Asir: computing the Gröbner basis in R
� �

[1437] L1=y*dx-x*dy$
[1438] L2=dx*dy+4*x*y$
[1439] V=[x,y,dx,dy]$
[1440] M=newmat(4,4,[[0,0,1,1],[0,0,0,-1],[1,1],[0,-1]]);
[ 0 0 1 1 ]
[ 0 0 0 -1 ]
[ 1 1 0 0 ]
[ 0 -1 0 0 ]
[1441] G=nd_weyl_gr([L1,L2],V,0,M);
[-dy*x+dx*y,-4*y^3-dy^2*y+dy,(-4*y^2-dy^2)*x+dx,
4*y*x+dy*dx,-4*x^2+4*y^2-dx^2+dy^2,-4*dy*y^2-12*y-dy^3]
� �

In Risa/Asir, the command nd_weyl_gr accepts the matrix as the term order at
the fourth argument (see Sect. 3.6.5).

Exercise. Let I be an ideal in R2 defined by

I D h@x@y C 1; 2y@2y � @x C 3@y C 2xi:

Compute Gröbner bases of I with respect to the pure lexicographic order and the
degree reverse lexicographic order, with @x � @y .
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7.4.9 Integration Algorithm (Sect. 6.10)

Example 7.4.24. Set L D x2y@x@2y � z@z. Calculate the Fourier transform F .L/ of
L with respect to the variables x; y; z. Calculate the Fourier transform Fx.L/ of L
with respect to the variable x.

Answer. By a simple calculation, we obtain

F .L/ D .�@x/2.�@y/xy2 � .�@z/z

D �.x@2x C 2@x/.2y C y2@y/C .z@z C 1/
D �2xy@2x � xy2@2x@y � 4y@x � 2y2@x@y C z@z C 1;

Fx.L/ D .�@x/2yx@2y � z@z

D .x@2x C 2@x/y@2y � z@z

D xy@2x@2y C 2y@x@2y � z@z:

We also can compute the Fourier transform by using a computer.

Listing 7.133 Macaulay2: the Fourier transform
� �

i1 : loadPackage "Dmodules";
i2 : R=QQ[x,y,z,dx,dy,dz,WeylAlgebra=>{x=>dx,y=>dy,z=>dz}];
i3 : L=x^2*y*dx*dy^2-z*dz;
i4 : Fourier L

2 2 2 2
o4 = - x*y dx dy - 2x*y*dx - 2y dx*dy - 4y*dx + z*dz + 1
o4 : R

i6 : R1=QQ[x,y,z,dx,dy,dz,WeylAlgebra=>{x=>dx}];
i15 : M=(map(R1,R))(L)

2 2
o15 = x y*dx*dy - z*dz
o15 : R1
i14 : Fourier(M)

2 2 2
o14 = x*y*dx dy + 2y*dx*dy - z*dz
� �

The command Fourier returns the Fourier transform with respect to
the variables specified as derivatives in the ring declaration by the option
WeylAlgebra=>{...}. Thus, when we apply the transform with respect to
certain variables, they must be defined in a ring. This command accepts an ideal as
an input parameter. In this case, it returns the Fourier transform for each generator.

Listing 7.134 Singular: the Fourier transform
� �

> LIB "dmod.lib";
> ring r=0,(x,y,z,dx,dy,dz),dp;
> def D=Weyl();
> setring D;
> poly L=x^2*y*dx*dy^2-z*dz;
> fourier(L);
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_[1]=-x*y^2*dx^2*dy-2*x*y*dx^2-2*y^2*dx*dy-4*y*dx+z*dz+1

> intvec w=1;
> fourier(L,w);
_[1]=x*y*dx^2*dy^2+2*y*dx*dy^2-z*dz
� �

The command fourier computes the Fourier transform. When we set as the
second argument an intvec-type variable whose entries are the indices of the
variable list, it computes the Fourier transform restricted to the variable given in
the second argument. It accepts ideals, as does Macaulay2.

Listing 7.135 Risa/Asir: the Fourier transform
� �

[1371] load("nk_restriction.rr");
[1583] L=x^2*y*dx*dy^2-z*dz$
[1584] nk_restriction.fourier_trans(L,[x,y,z],[dx,dy,dz]);
(-y^2*x*dy-2*y*x)*dx^2+(-2*y^2*dy-4*y)*dx+z*dz+1
[1585] nk_restriction.fourier_trans(L,[x],[dx]);
y*x*dy^2*dx^2+2*y*dy^2*dx-z*dz
� �

In Risa/Asir, the command nk_restriction.fourier_trans, defined in
nk_restriction.rr, computes the Fourier transform. It applies the transform
with respect to the variables given by the second and third arguments. The third
argument must contain the derivatives for the second argument.

Exercise. Set L D x2y@x@2y � z@z. Calculate the Fourier transform F .L/ of L with
respect to the variables x; y; z. Calculate the Fourier transform Fx.L/ of L with
respect to the variable x.

Example 7.4.25. Compute the b-function of I D h3x2@4t C @2t � @t@x; 3x3@3t C
x@t C t@t C 2i � Dht; x; @t ; @xi with respect to the weight vector .�w;w/, where
w D .1; 0/.
Answer. The b-function of I is s5 � 2s4 � s3 C 2s2 D .s C 1/s2.s � 1/.s � 2/.
Listing 7.136 Macaulay2: the b-function with respect to .�w;w/
� �

i1 : loadPackage "Dmodules";
i2 : R=QQ[t,x,dt,dx,WeylAlgebra=>{t=>dt,x=>dx}];
i3 : I=ideal(3*x^2*dt^4+dt^2-dx*dt,3*x^3*dt^3+x*dt+t*dt+2);
o3 : Ideal of R
i4 : bFunction(I,{1,0})

5 4 3 2
o4 = s - 2s - s + 2s
o4 : QQ[s]
� �

The command bFunction returns the b-function. The weight w is specified as the
second argument.

Listing 7.137 Singular: the b-function with respect to .�w;w/
� �

> LIB "dmod.lib";
> ring r=0,(t,x,dt,dx),dp;
> def D=Weyl();
> setring D;
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> ideal I=3*x^2*dt^4+dt^2-dx*dt,3*x^3*dt^3+x*dt+t*dt+2;
> intvec w=1,0;
> bfctIdeal(I,w);
[1]:

_[1]=2
_[2]=1
_[3]=0
_[4]=-1

[2]:
1,1,2,1

� �

The command bfctIdeal returns the b-function. The weight w is specified as
the second argument by an intvec-type variable. The first component of the
output is a list of the roots of the b-function. The second component is a list of
the multiplicities of the roots. In this example, the output represents the b-function
.s � 2/1.s � 1/1s2.s C 1/1.
Listing 7.138 Risa/Asir: the b-function with respect to .�w;w/
� �

[1371] I=[3*x^2*dt^4+dt^2-dx*dt,3*x^3*dt^3+x*dt+t*dt+2]$
[1372] generic_bfct(I,[t,x],[dt,dx],[1,0]);
s^5-2*s^4-s^3+2*s^2
� �

In Risa/Asir, the command generic_bfct computes the b-function. We set the
second and third arguments to the variables and derivatives, respectively, and the
fourth argument to the weight vector.

Exercise. Set f D x3 � y2z2 and

If D
�
t � f; @x C @f

@x
@t ; @y C @f

@y
@t ; @z C @f

@z
@t

�

in D4 D Cht; x; y; z; @t ; @x; @y; @zi. Compute the b-function of If with respect to
.�w;w/, where w D .1; 0; 0; 0/. (Note: The b-function of If is called the b-function
of f or the Bernstein-Sato polynomial. See [17, 20] for details.)

Example 7.4.26. Find a differential operator annihilating the definite integrals

F.x/ D
Z 1

�1
exp.xy2 � y4/dy:

Answer. We compute the integration ideal of I WD h@x � y2; @y � 2xy C 4y3i with
respect to y because the derivatives of the integrand f .x; y/ WD exp.xy2 � y4/ are
@xf D y2f and @yf D .2xy � 4y3/f .

From the output of the integration algorithm by the following sample codes, we
have the integration ideal h4@2x � 2x@x � 1i. There exists a differential operator
P 2 D2 such that 4@2x � 2x@x � 1 � @yP 2 I . Therefore, we have the following
equation:

.4@2x � 2x@x � 1/ � F.x/ D ŒP � exp.xy2 � y4/�yD1
yD�1 D 0:

The last equality holds because the integrand is a rapidly decreasing function as
y !1 or y ! �1.
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Listing 7.139 Macaulay2: computing the integration ideal
� �

i1 : loadPackage "Dmodules";
i2 : R=QQ[x,y,dx,dy,WeylAlgebra=>{x=>dx,y=>dy}];
i3 : I=ideal(dx-y^2,dy-2*x*y+4*y^3);
o3 : Ideal of R
i4 : DintegrationIdeal(I,{0,1})

2
o4 = ideal(2x*dx - 4dx + 1)
o4 : Ideal of QQ[x, dx]
� �

The command DintegrationIdeal returns the integration ideal. We set the
second argument to the weight vector. When computing the integration ideal with
respect to y, we must set the weight vector such that the weight of @y is positive and
the other weights are 0; for example, w D .0; 1/.
Listing 7.140 Singular: computing the integration ideal
� �

> LIB "dmod.lib";
> ring r=0,(x,y,dx,dy),dp;
> def D=Weyl();
> setring D;
> ideal I=dx-y^2,dy-2*x*y+4*y^3;
> intvec w=0,1;
> def J=integralIdeal(I,w);
> setring J;
> intIdeal;
intIdeal[1]=2*x*dx-4*dx^2+1
� �

The command integralIdeal returns the integration ideal. The weight vector
is specified by the second argument, as with Macaulay2. After moving the ring by
using setring, we can refer to the variable as intIdeal.

Listing 7.141 Risa/Asir: computing the integration ideal
� �

[1371] load("nk_restriction.rr")$
[1583] I=[dx-y^2,dy-2*x*y+4*y^3]$
[1584] nk_restriction.integration_ideal(I,[y,x],[dy,dx],[1,0]);
-- nd_weyl_gr :0sec(0.0005872sec)
-- weyl_minipoly :0sec(0.000603sec)
-- generic_bfct_and_gr :0sec(0.001509sec)
generic bfct : [[1,1],[s,1],[s-1,1]]
S0 : 1
B_{S0} length : 2
-- fctr(BF) + base :0sec(0.0003839sec)
-- integration_ideal_internal :0sec(0.000494sec)
[4*dx^2-2*x*dx-1]
� �

The command nk_restriction.integration_ideal defined in the
library nk_restriction.rr returns the integration ideal. We set the variables
and derivatives to the second and third arguments, and the weight vector to the
fourth argument. We note that after the first 0 appears, the following components of
the weight vector must also be 0. Thus, in the variable lists, y and @y are put before
x and @x , respectively.
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Exercise. Find a differential operator annihilating the definite integral

F.x/ D
Z 1

�1
exp.xy3 � y4/dy:

Example 7.4.27. Find an inhomogeneous differential equation for the definite
integral

F.x/ D
Z 1

0

exp.xy2 � y4/dy:

Answer. This is a modification of Example 7.4.26, in which the integration domain
Œ�1;1� has been replaced with Œ0; 1�. From the result in Example 7.4.26, we have

.4@2x � 2x@x � 1/ � F.x/ D ŒP � exp.xy2 � y4/�yD1
yD0:

However, we cannot know the values at the end points without the differential oper-
ator P . Risa/Asir can compute P by using the package nk_restriction.rr.
Maple has a package Mgfun [2] which computes P by the method of undetermined
coefficients.

Listing 7.142 Risa/Asir: computing the inhomogeneous differential equation
� �

[1371] load("nk_restriction.rr")$
[1583] I=[dx-y^2,dy-2*x*y+4*y^3]$
[1598] nk_restriction.integration_ideal(I,[y,x],[dy,dx],[1,0]|
inhomo=1);
-- nd_weyl_gr :0sec(0.0003309sec)
-- weyl_minipoly :0sec(0.000675sec)
-- generic_bfct_and_gr :0sec(0.001267sec)
generic bfct : [[1,1],[s,1],[s-1,1]]
S0 : 1
B_{S0} length : 2
-- fctr(BF) + base :0.004sec(0.0003982sec)
-- integration_ideal_internal :0sec(0.0005929sec)
[[4*dx^2-2*x*dx-1],[[[[dy,-y]],1]]]
� �

The command nk_restriction.integration_ideal with the option
inhomo=1 returns the inhomogeneous parts of the generators of the integration
ideal. The output represents

.4@2x � 2x@x � 1/ � .1=1/ � @y.�y/ 2 I:

Thus, we obtain the inhomogeneous differential equation

.4@2x � 2x@x � 1/ � F.x/ D Œ�y exp.xy2 � y4/�yD1
yD0 D � exp.x � 1/:

The package Mgfun is not included in Maple by default, so we will show
how to install it. First, download the program and help files (algolib.mla,
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algolib.hdb) from the web page [2] or http://algo.inria.fr/libraries/. Next, place
these files in the directory which is the library path for Maple. To determine the
library path, use the command libname.

Listing 7.143 Maple: determine the library path
� �

> libname;
"/usr/local/maple14/lib"

� �

If you do not have write-access permission, you will need to add a new
directory as a library path. We will assume that the package is located at
/home/username/algolib in a UNIX environment.

Listing 7.144 Maple: add a new library path
� �

> libname:="/home/username/algolib",libname;
libname := "/home/username/algolib", "/usr/local/maple14/lib"

� �

This path will only be valid for the current session. Finally, we configure the system
so that it is executed automatically when Maple is started. In the UNIX environment,
locate the file named .mapleinit in the home directory.

Listing 7.145 .mapleinit
� �

libname:="/home/username/algolib",libname:
MapleInitRead:=true:
� �

In the Windows environment, we locate the file named maple.ini in
C:/Documents and Settings/username (2000, XP) or C:/Users/
username (Vista, 7).

Listing 7.146 Maple: computing the inhomogeneous differential equation
� �

> with(Mgfun):
> creative_telescoping(exp(x*y^2-y^4),[x::diff],[y::diff]);

/ 2 \
/d \ |d |

[[-_F(x) - 2 x |-- _F(x)| + 4 |--- _F(x)|, -y _f(x, y)]]
\dx / | 2 |

\dx /
� �

To load the package, use the command with(Mgfun). The command
creative_telescoping returns inhomogeneous differential operators withP .
The first argument is the integrand, the second argument is the list of the remaining
variables in the equation, and the third argument is the list of the eliminated
variables. diff means that the ring includes the derivative for the variable. In the
output, _f(x,y) represents the integrand and _F(x) represents the integral of
_f(x,y). Therefore, the output shows

.4@2x � 2x@x � 1/ � _F(x) D Œ�y � _f(x,y)�:

Mgfun can also treat difference operators and q-difference operators by using
the commands shift and qshift. See the manual of Mgfun and [1] for details.

http://algo.inria.fr/libraries/
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Example 7.4.28. Verify Example 6.10.13 by using a computer software package.

Answer.

Listing 7.147 Macaulay2: nonholonomic example
� �

i1 : loadPackage "Dmodules";
i2 : D3=QQ[x,y,z,dx,dy,dz,WeylAlgebra => {x=>dx,y=>dy,z=>dz}];
i3 : F=x^3-y^2*z^2;
i4 : I=ideal(F^2*dx+diff(x,F),F^2*dy+diff(y,F),F^2*dz+diff(z,F));
o4 : Ideal of D3
i5 : isHolonomic I
o5 = false
i6 : Dy=QQ[x,y,z,dx,dy,dz,WeylAlgebra => {y=>dy}];
i7 : FyI=(map(D3,Dy))(Fourier((map(Dy,D3))(I)));
o7 : Ideal of D3
i8 : bFunction(FyI,{0,1,0})
o8 = 0
o8 : QQ[s]
i9 : DintegrationIdeal(I,{0,1,0})
(omitted)/Macaulay2/Dmodules/Drestriction.m2:662:11:(1):[7]:
Module not specializable. Restriction cannot be computed.
(displayed error messages)
i10 : Dx=QQ[x,y,z,dx,dy,dz,WeylAlgebra => {x=>dx}];
i11 : FxI=(map(D3,Dx))(Fourier((map(Dx,D3))(I)));
o11 : Ideal of D3
i12 : bFunction(FxI,{1,0,0})

4 3 2
o12 = s - 2s - s + 2s
o12 : QQ[s]
� �

It is trivial that the ideal I is 0-dimensional in R. However, isHolonomic says
that it is not holonomic. We compute the b-function of the Fourier transformed ideal.
The command bFunction shows that the b-function with respect to y is 0. Since
the b-function does not exist, error messages are displayed when we compute the
integration ideal with respect to y. If the b-function exists, the integration algorithm
works fine for nonholonomic ideals. In this example, the integration ideal with
respect to x is computable because the b-function with respect to x exists.

Listing 7.148 Singular: nonholonomic example
� �

> LIB "dmod.lib";
> ring r=0,(x,y,z,dx,dy,dz),dp;
> def D3=Weyl();
> setring D3;
> poly F=x^3-y^2*z^2;
> ideal I=F^2*dx+diff(F,x),F^2*dy+diff(F,y),F^2*dz+diff(F,z);
> isHolonomic(I);
0
> intvec py = 2;
> ideal FyI = fourier(I,py);
> intvec wy=0,1,0;
> bfctIdeal(FyI,wy);
WARNING: given ideal is not holonomic
... setting bound for degree of b-function to 10 and proceeding
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// Intersection is zero
(omitted)
> integralIdeal(I,wy);

? Given ideal is not holonomic
(displayed error messages)
> intvec px=1;
> ideal FxI = fourier(I,px);
> intvec wx=1,0,0;
> bfctIdeal(FxI,wx);
WARNING: given ideal is not holonomic
... setting bound for degree of b-function to 10 and proceeding
[1]:

_[1]=2
_[2]=1
_[3]=0
_[4]=-1

[2]:
1,1,1,1

> integralIdeal(I,wx);
? Given ideal is not holonomic

(displayed error messages)
� �

We can find that the ideal I is not holonomic by using the command
isHolonomic. The commandbfctIdeal displays a warning for nonholonomic
ideals. The default is to search the b-function up to degree 10 using Noro’s method
[13]. In this example, it detects the b-function since the its degree is 3. Error
messages are displayed when we compute the integration ideal with respect to x.
integralIdeal first checks the holonomicity and returns an error message

if the input ideal is not holonomic. This is because the integration ideal is not
computable for nonholonomic ideals if the b-function exists.

Listing 7.149 Risa/Asir: nonholonomic example
� �

[1563] load("nk_restriction.rr")$
[1771] F=x^3-y^2*z^2$
[1772] I=[F^2*dx+diff(F,x),F^2*dy+diff(F,y),F^2*dz+diff(F,z)];
[dx*x^6-2*dx*z^2*y^2*x^3+3*x^2+dx*z^4*y^4,
dy*x^6-2*dy*z^2*y^2*x^3+dy*z^4*y^4-2*z^2*y,
dz*x^6-2*dz*z^2*y^2*x^3+dz*z^4*y^4-2*z*y^2]
[1773] V = [x,y,z]$ DV=[dx,dy,dz]$ VDV=append(V,DV)$
[1774] CI=nk_restriction.initial_w(I,VDV,[0,0,0,1,1,1])$
[1775] sm1.hilbert([CI,VDV]);
1/6*h^4+15/2*h^3-170/3*h^2+214*h-251

[1779] FyI=map(nk_restriction.fourier_trans,I,[y],[dy])$
[1780] generic_bfct(FyI,V,DV,[0,1,0]);
(interrupted)
[1781] nk_restriction.generic_bfct_and_gr(FyI,[y,x,z],

[dy,dx,dz],[1,0,0]|param=[]);
-- nd_weyl_gr :0.004sec(0.004671sec)
weyl_minipoly_by_elim : b-function does not exist
(omitted)
[1782] nk_restriction.integration_ideal(I,[y,x,z],[dy,dx,dz],

[1,0,0]);
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-- nd_weyl_gr :0sec(0sec)
(interrupted)
[1783] nk_restriction.integration_ideal(I,[y,x,z],[dy,dx,dz],

[1,0,0]|param=[]);
-- nd_weyl_gr :0sec(0sec)
weyl_minipoly_by_elim : b-function does not exist

[1781] nk_restriction.integration_ideal(I,[x,y,z],[dx,dy,dz],
[1,0,0])$

-- nd_weyl_gr :1.776sec + gc : 0.188sec(1.974sec)
-- weyl_minipoly :0.024sec(0.01972sec)
-- generic_bfct_and_gr :1.84sec + gc : 0.188sec(2.033sec)
generic bfct : [[1,1],[s,1],[s-2,1],[s-1,1],[s+1,1]]
S0 : 2
B_{S0} length : 3
-- fctr(BF) + base :0.116sec + gc : 0.008001sec(0.1251sec)
-- integration_ideal_internal :0.112sec + gc : 0.01sec(0.122sec)
� �

In Risa/Asir, we can check the holonomicity by checking the degree of the
Hilbert polynomial, as described above. Since the degree is 4, the ideal I is not
holonomic. If the b-function does not exist, computation of the integration ideal by
nk_restriction.integration_ideal is not stopped because, by default,
it uses Noro’s method [13]. The command will display an error message if we use
the option param=[].

Example 7.4.29. Let f .t/ D t.1 � t/.
1. Compute the annihilating ideal Annf s WD fP 2 DŒs� j P � f s D 0g.
2. Let Es be a difference operator such that Es � F.s/ D F.s C 1/. Then, the

trivial relation .Es � f / � f s D 0 holds. We define the Mellin transform by
the following maps: Es $ p, s C 1 $ �p@p . Let J be an ideal generated by
the Mellin transformed elements ofEs�f , Annf s . Prove that J is a holonomic
ideal in Cht; p; @t ; @pi.

3. Compute the integration ideal of J with respect to t . Find a recurrence relation
of B.s/ D R 1

0
f s.t/dt .

4. Evaluate B.10000/.

Answer.

1. We compute the annihilating ideal Annf s D ht2@t � t@t � 2ts C si with each
system.

Listing 7.150 Macaulay2: computing the annihilating ideal
� �

i1 : loadPackage "Dmodules";
i2 : R=QQ[t,dt,WeylAlgebra=>{t=>dt}];
i3 : f=t*(1-t);
i4 : AnnFs f

2
o4 = ideal(t dt - t*dt - 2t*s + s)
o4 : Ideal of QQ[t, dt, s]
� �
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Use the command AnnFs. We must first declare the ring of differential operators
even though f is an object in the polynomial ring.

Listing 7.151 Singular: computing the annihilating ideal
� �

> LIB "dmod.lib";
> ring r=0,x,dp;
> poly f=x*(1-x);
> def A=Sannfs(f);
> setring A;
> LD;
LD[1]=x^2*Dx-x*Dx-2*x*s+s
� �

Use the command Sannfs The return is held in the variable LD. We note that
the variable x is used instead of t because t is reserved by the command.

Listing 7.152 Risa/Asir: computing the annihilating ideal
� �

[1371] F=t*(1-t);
-t^2+t
[1372] ann(F);
[(-t^2+t)*dt+(2*t-1)*s]
� �

Use the command ann.
2. The Mellin transforms of Es � t.1� t/ and t2@t � t@t � 2tsC s are p � t.1� t/

and t2@t � t@t �2t.�p@p�1/C .�p@p�1/, respectively. The transformed ideal
is J D hp � t.1� t/; t2@t � t@t � 2t.�p@p � 1/C .�p@p � 1/i. We can check
that it is holonomic by using the same procedure as was used in Example 7.4.22.
We will show only the code for Macaulay2.

Listing 7.153 Macaulay2: check the holonomicity
� �

i1 : loadPackage "Dmodules";
i2 : R=QQ[t,p,dt,dp,WeylAlgebra=>{t=>dt,p=>dp}];
i3 : J=ideal(p-t*(1-t),t^2*dt-t*dt-2*t*(-p*dp-1)+(-p*dp-1));
o3 : Ideal of R
i4 : isHolonomic J
o4 = true
� �

3. Following Example 7.4.26, the integration ideal can be computed by the
command DintegrationIdeal.

Listing 7.154 Macaulay2: the integration ideal of J with respect to t (continuation)
� �

i5 : DintegrationIdeal(J,{1,0})
2

o5 = ideal(- 4p dp + p*dp - 2p)
o5 : Ideal of QQ[p, dp]
� �

Applying the inverse Mellin transform to the generator�4p2@p Cp@p � 2p, we
obtain the difference operator

�4Es.�s � 1/C .�s � 1/� 2Es D 4.s C 2/Es � .s C 1/� 2Es
D 2.2s C 3/Es � .s C 1/:
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This annihilates B.s/. In other words, the difference equation .2.2s C 3/Es �
.s C 1// � B.s/ D 0 holds. Therefore, we obtain the recurrence relation

2.2sC 3/B.s C 1/ D .s C 1/B.s/:

4. From the recurrence relation, we have

B.s/ D s

2.2sC 1/B.s � 1/ D � � � D
sŠ

2s.2s C 1/ŠŠB.0/

for any integer s. Since B.0/ D R 1
0
dt D 1, we obtain

B.s/ D sŠ

2s.2s C 1/ŠŠ D
.sŠ/2

.2s C 1/Š :

The inverse of B.10000/ is given by the following for-loop code.

Listing 7.155 Risa/Asir: computing the inverse of B.10000/ by for-loop
� �

[1217] for (B=1, S=1; S<=10000; S++) B*=2*(2*S+1)/S;
[1218] B;
omitted (a integer with 6023 digits)
� �

Exercise. For the function f .t1; t2/ D t1t2.1�t1�t2/, compute a recurrence relation
of the integral B2.s/ D

R
T2
f s.t1; t2/dt1dt2, .T2 D f.t1; t2/ j 0 � t1 � 1; 0 � t2 �

1 � t1g/ and evaluate B2.10000/ by using the method in Example 7.4.29.

7.4.10 Finding a Local Minimum of a Function Defined
by a Definite Integral (Sect. 6.11)

Example 7.4.30. We consider a distribution in proportion to the function

p.t; n/ D t 12 .1 � t/ 12Cn.1C 2t/ 12 ; t 2 Œ0; 1�:

The normalizing constant c.n/ can be expressed as

c.n/ D
Z 1

0

p.t; n/dt D � .b/� .c � b/
� .c/

2F1.a; b; cI �2/

from the integral representation of the Gauss hypergeometric function 2F1, where
b�1 D 1

2
; c�b�1 D 1

2
Cn;�a D 1

2
. For sample data generated by the command

test3() in the program rneuman.rr, estimate the value of n by using the
difference version of the holonomic gradient descent. The command test3() uses
the Neumann rejection method.
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1. Derive the second-order difference equation for c.n/ from the contiguity relation
for the Gauss hypergeometric function:

c.c C 1/.z� 1/2F1.a; b; cI z/
D .c C 1/f.2c � a � b C 1/z� cg2F1.a; b; c C 1I z/
C .a � c � 1/.c � b C 1/z2F1.a; b; c C 2I z/:

2. Let ft1; t2; : : : ; tmg be observation data. We will find the maximum point n of the
likelihood function

d.n/ D
�Qm

iD1 p.ti ; n/
�1=m

c.n/
:

Determine the direction for n which increases the value of d.n/, based on the
given initial values c.0/ D 0:550836 and c.1/ D 0:257771.

3. Find the maximum point of d.n/ by using the difference version of the holonomic
gradient descent.

Answer. 1. Substituting

2F1

�
�1
2
;
3

2
; nC 3I �2

�
D � .nC 3/
� . 3

2
/� .nC 3

2
/
c.n/

and the recurrence relation of the gamma function � .z C 1/ D z� .z/ for the
contiguity relation, we obtain

3.2nC 3/c.n/ D 10.nC 3/c.nC 1/� 2.2nC 9/c.nC 2/:
2. We load the program file rneuman.rr on Risa/Asir and generate sample data

by using the command test3().

Listing 7.156 Risa/Asir: generating sample data by using rneuman.rr
� �

[1371] load("rneuman.rr");
88
[1384] T=test3();
99
...(omitted)...
[0.241507,0.377635,0.126418,...(omitted)...,0.0276227,0.178898]
[1385] length(T);
100
� �

The command test3() generates a random sample of 100 data points.
We implement a small program to compute the numerators of d.0/ and d.1/.

Listing 7.157 Risa/Asir: d_hgd.rr
� �

def nume_dn(T,N)
{

F = (t^(1/2))*((1-t)^(1/2+N))*((1-t*(-2))^(1/2));
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M = length(T);
for ( P = 1; T != []; T = cdr(T) )

P *= eval(subst(F,t,car(T))^(1/M));
return P;

}
end$
� �

Listing 7.158 Risa/Asir: computing d.0/; d.1/ (continuation)
� �

[1386] load("d_hgd.rr");
[1388] C0=0.550836$
[1389] C1=0.257771$
[1390] nume_dn(T,0)/C0;
0.5845663141894453936
[1391] nume_dn(T,1)/C1;
1.089577168373801683
� �

The inequality d.0/ < d.1/ shows that d.n/ increases as n increases from 0.
3. We evaluate the values of c.n/ and d.n/ by using the recurrence relation until
d.n/ begins to decrease.

Listing 7.159 Risa/Asir: add to the file d_hgd.rr
� �

def d_hgd(T)
{

N = 0;
C0 = 0.550836; C1 = 0.257771;
D0 = nume_dn(T,N)/C0;
print([N,C0,D0]);
D1 = nume_dn(T,++N)/C1;
print([N,C1,D1]);
while ( D0 < D1 ) {

TMP = (-3*(2*N+1)*C0+10*(N+2)*C1)/(2*(2*N+7));
C0 = C1; C1 = TMP; D0 = D1;
D1 = nume_dn(T,++N)/C1;
print([N,C1,D1]);

}
return N-1;

}
end$
� �

In this program, the recurrence relation replaces n � 1 with n. For simplicity,
the numerator of d.n/ is evaluated each time through the while-loop. However,
it can also be easily evaluated from the previous value.

Listing 7.160 Risa/Asir: estimation of n (continuation)
� �

[1393] load("d_hgd.rr");
[1396] d_hgd(T);
[0,0.550836,0.5845663141894453936]
[1,0.257771,1.089577168373801683]
[2,0.1542,1.588702896284702378]
[3,0.104611,2.042609748576398825]
[4,0.0766291,2.432237613685558761]
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[5,0.0591081,2.750355506159823718]
[6,0.0473178,2.996726319687802393]
[7,0.0389529,3.175178559400170999]
[8,0.0327728,3.291775218856224361]
[9,0.0280583,3.353651551523593603]
[10,0.0243673,3.368277176674134017]
[11,0.0214149,3.342994658156209513]
10
� �

Each line in the data log represents Œn; c.n/; d.n/�. The inequality d.9/ <

d.10/ > d.11/ shows that the maximum point of d.n/ is n D 10. Thus,
we estimate n D 10 by the likelihood estimation method. (The procedure
outputs values around n D 9; 10; 11 for the other sample data generated by
rneuman.rr.) In fact, we find that the parameter of the sample data distribution
is n D 10 by referring to the following code in the program rneuman.rr.

Listing 7.161 Risa/Asir: rneuman.rr
� �

def whg(X) {
F=(X^(1/2))*((1-X)^(1/2+10))*((1-X*(-2))^(1/2));
Y=deval(F)*20/0.137;
return(Y);

}
� �

Exercise. Modify the program d_hgd.rr in Example 7.4.30 to estimate n by
using the initial values c.30/ D 0:00517171 and c.29/ D 0:00543296.
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