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Preface

In the field of disk-based parallel database management systems exists a great
variety of solutions based on a shared-storage or a shared-nothing architecture.
In contrast, main memory-based parallel database management systems are domi-
nated solely by the shared-nothing approach as it preserves the in-memory per-
formance advantage by processing data locally on each server. We argue that this
unilateral development is going to cease due to the combination of the following
three trends: (a) Nowadays, network technology features remote direct memory
access (RDMA) and narrows the performance gap between accessing main memory
inside a server and of a remote server to and even below a single order of mag-
nitude. (b) Modern storage systems scale gracefully, are elastic, and provide
high-availability. (c) A modern storage system such as Stanford’s RAMCloud even
keeps all data resident in main memory. Exploiting these characteristics in
the context of a main-memory parallel database management system is desirable.
The advent of RDMA-enabled network technology makes the creation of a parallel
main memory DBMS based on a shared-storage approach feasible.

This work describes building a columnar database on shared main memory-based
storage. It discusses the resulting architecture (Part I), the implications on query
processing (Part II), and presents an evaluation of the resulting solution in terms of
performance, high-availability, and elasticity (Part III).

We use Stanford’s RAMCloud as shared-storage, and the self-designed and
developed in-memory AnalyticsDB as relational query processor on top.
AnalyticsDB encapsulates data access and operator execution via an interface which
allows seamless switching between local and remote main memory, while
RAMCloud provides not only storage capacity, but also processing power.
Combining both aspects allows pushing-down the execution of database operators
into the storage system. We describe how the columnar data processed by
AnalyticsDB is mapped to RAMCloud’s key-value data model and how the
advantages of columnar data storage can be preserved.

The combination of fast network technology and the possibility to execute
database operators in the storage system opens the discussion for site selection. We
construct a system model that allows the estimation of operator execution costs in
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terms of network transfer, data processed in memory, and wall time. This can be
used for database operators that work on one relation at a time—such as a scan or
materialize operation—to discuss the site selection problem (data pull vs. operator
push). Since a database query translates to the execution of several database
operators, it is possible that the optimal site selection varies per operator. For the
execution of a database operator that works on two (or more) relations at a time,
such as a join, the system model is enriched by additional factors such as the chosen
algorithm (e.g. Grace- vs. Distributed Block Nested Loop Join vs. Cyclo-Join), the
data partitioning of the respective relations, and their overlapping as well as the
allowed resource allocation.

We present an evaluation on a cluster with 60 nodes where all nodes are con-
nected via RDMA-enabled network equipment. We show that query processing
performance is about 2.4x slower if everything is done via the data pull operator
execution strategy (i.e. RAMCloud is being used only for data access) and about
27 % slower if operator execution is also supported inside RAMCloud (in com-
parison to operating only on main memory inside a server without any network
communication at all). The fast-crash recovery feature of RAMCloud can be lev-
eraged to provide high-availability, e.g. a server crash during query execution only
delays the query response for about one second. Our solution is elastic in a way that
it can adapt to changing workloads (a) within seconds, (b) without interruption
of the ongoing query processing, and (c) without manual intervention.

Palo Alto, CA, USA Christian Tinnefeld
April 2015
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Chapter 1
Introduction

Elmasri and Navathe [EN10] describe a database system as consisting of a data-
base and a database management system (DBMS). They define a database as “a
collection of related data” and a DBMS as “a collection of programs that enables
users to create and maintain a database. The DBMS is hence a general-purpose soft-
ware system that facilitates the process of defining, constructing, manipulating, and
sharing databases among various users and applications”. According to Hellerstein
and Stonebraker [HS05], IBM DB/2 [HS13], PostgreSQL [Sto87], and Sybase SQL
Server [Kir96] are typical representatives of database management systems. These
DBMSs are optimized for the characteristics of disk storage mechanisms. In their
seminal paper Main Memory Database Systems: An Overview [GMS92] from 1992,
Garcia-Molina and Salem describe a main memory database system1 (MMDB) as a
database system where data “resides permanently in main physical memory”. Oper-
ating on data that resides in main memory results in an order of magnitude better
performance than operating on data that sits on a disk. In the last century, main mem-
ory database systems played only a minor role in the overall database market as the
capacities of main memory chips were small yet very expensive. This development
changed significantly in the last decade, resulting in main memory database systems
becoming more popular: for example Plattner [Pla09, Pla11a] presents SanssouciDB
as a main memory DBMS that is tailored for supporting the execution of modern
business applications.

Since the storage capacity and processing power of a single server is limited, one
motivation for deploying a distributed database system is the combination of the
hardware resources provided by many servers. Özsu and Valduriez [ÖV11] define a
distributed database as

a collection ofmultiple, logically interrelated databases distributed over a computer network.
Adistributed databasemanagement system is then defined as the software system that permits
the management of the distributed database system and makes the distribution transparent
to the users.

1Throughout this work, the terms main memory database system and in-memory database system
are being used interchangeably.
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A parallel database system can be seen as a revision and extension of a distributed
database system. According to DeWitt and Gray [DG92], a parallel database system
exploits the parallel nature of an underlying computing system in order to accelerate
query execution and provide high-availability. One fundamental and much debated
aspect of a parallel DBMS is its architecture which determines how the available
hardware resources are shared and interconnected. There are three different paral-
lel DBMS textbook architectures [ÖV11, DG92, DMS13]: shared-memory, shared-
storage (or shared-disk), and shared-nothing. In a shared-memory architecture, all
processors share direct access to any main memory module and to all disks over an
interconnection. This approach is not popular in the field of parallel DBMS due to its
limited extensibility and availability. Since the physicalmemory space is shared by all
processors, for example a memory fault will affect many processors and potentially
lead to a corrupted or unavailable database. Shared-storage (or shared-disk or shared-
data) is an architectural approach where processors each have their own memory, but
share common access to a storage system typically in form of a storage area network
(SAN) or a network-attached storage (NAS). This approach bears the advantage of
being very extendable as an increase in the overall processing and storage capacity
can be done by adding more processors respectively increasing the capacity of the
storage system and adding more capacity to the storage system does not involve or
affect the DBMS in any way. Shared-nothing is an architectural approach where each
memory and disk is owned by some processor which acts as a server for a partition
of the data. The advantage of a shared-nothing architecture is reducing interferences
and resource conflicts by minimizing resource sharing. Operating on the data inside
a local server allows operating with full raw memory and disk performance.

A great variety of solutions exists based on a shared-storage or a shared-nothing
architecture in the field of disk-based parallel databasemanagement systems (as illus-
trated in Sect. 2.3.2). In contrast, main memory-based parallel database management
systems are dominated solely by the shared-nothing approach as it preserves the
in-memory performance advantage by processing data locally on each server. As
mentioned in the abstract, we argue that this unilateral development is going to cease
due to the combination of the following three trends: (a) Nowadays network technol-
ogy features remote direct memory access (RDMA) and narrows the performance
gap between accessing main memory inside a server and of a remote server to and
even below a single order of magnitude. (b) Modern storage systems scale grace-
fully, are elastic, and provide high-availability. (c) A modern storage system such
as Stanford’s RAMCloud [OAE+11] even keeps all data resident in main memory.
In addition, such storage systems also provide not only storage capacity, but also
processing power which allows for code execution in the storage system.

The subsequent creation of a shared-storage parallel DBMS that is composed of
a main memory columnar DBMS, a main memory-based storage system as well as
a RDMA-enabled interconnect, results in a number of implications and challenges:

• Current main memory DBMSs are designed to operate on the main memory that is
available inside a server. Their database operators are designed to directly access a

http://dx.doi.org/10.1007/978-3-319-20711-7_2
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memory address. When using a main memory-based storage system, these access
mechanisms have to be adapted in order to access local and remote memory alike.

• The combination of fast network technology and the possibility to execute database
operators in the storage system opens the discussion for site selection. This means
that (a) there exists the possibility to place the execution of somedatabase operators
either in theDBMSor in the storage systemwhich allows exploiting the computing
power in the storage system for accelerating query processing. (b) Exercising this
option may not always be beneficial as—depending on the database operation and
its parameterization—it might be more efficient to bring the data to the operator
inside the DBMS.

• Modern storage systems are designed to scale gracefully and be elastic. One tech-
nique that is being applied to enable these properties is the application of a sim-
plified, key-value based data model. Each key-value pair is a small object that is
usually stored in a hash-based data structure. However, chopping up data into small
objects and distributing them via a randomized technique contradicts the concept
of a column store where data is being grouped by attribute and stored sequentially.
Hence it has to be ensured that using a modern storage system in conjunction with
a columnar DBMS does not negate the advantages of column-orientation.

• Even though the storage system provides high-availability and is elastic, it is not
clear if these properties can be leveraged by a database application. The execution
of a query and the included database operators are more complex operations than
the simple retrieval of a key-value pair. The following has to be shown: if a storage
system becomes one component of a shared-storage parallel DBMS, are then the
functional guarantees made by the storage system itself also applicable for the
overall system?

• Although the bandwidth and latency provided by RDMA-enabled network equip-
ment closes the performance gap between operating on local and remote memory,
there is still a gap. It has to be shown to what extent this still existing gap impacts
the query processing execution in comparison to an execution solely on the main
memory inside a server.

1.1 Motivation

There are two distinct aspects which motivate this work: on the one hand, the afore-
mentioned external factors of having RDMA-enabled network technology and the
properties of modern storage systems seem to pave the way for deploying a parallel
main memory DBMS according to the principles of a shared-storage architecture.
Ideally, such a system would expose the performance characteristics of operating
on the local main memory inside a server and at the same time provide the benefits
of a modern storage system such as durability, high-availability, and elasticity. In
reality, this is not feasible as remote data access will always incorporate a perfor-
mance penalty, distributed data processing is more complex than a centralized one,
and modern storage systems are not specifically tailored to be used in conjunction
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with a DBMS. However, the motivation is to find out how close the aforementioned
external factors bring such a system to the ideal, and if they have the potential to end
the one-sidedness of the architectural landscape for parallel main memory database
systems which is currently dominated by the shared-nothing approach.

On the other hand, there are a range of applications which would benefit from a
main memory parallel DBMS based on a shared-storage architecture. Two examples
are:

• Cold Store: Garcia-Molina and Salem [GMS92] argue that it is reasonable to
assume that the entire database of some applications can fit into main memory.
For those applications where this is not the case, a hot and cold data partitioning
schema is being proposed: frequently queried, fast accessible data which is usually
of low volume is being kept in main memory (hot store), whereas rarely accessed
more voluminous data can be stored on a slower storage medium (cold store).
The different data partitions can be realized for example by having several logical
databases. With the advent of a storage system that keeps all data resident in main
memory, it seems beneficial to use it as shared-storage for the DBMS that serves
the cold data. The performance characteristics for accessing this data may not be
as good as operating on local main memory inside a server, but the real challenge
for a cold store is scaling out gracefully as the amount of cold data grows over
time and the required storage capacity increases.

• On-Demand In-Memory Computing: nowadays information technology infra-
structure, services and applications can be provisioned over the Internet. Typical
characteristics are the on-demand availability of these resources, their quick adap-
tion to changing workloads, and the billing based on actual usage. These offerings
include the provisioning of an in-memory database such as the availability of SAP’s
in-memory database HANA hosted at Amazon Web Services [Ser13]. Solutions
exist to adapt the capacity of an in-memory database that is based on a shared-
nothing architecture to fluctuating workloads, as summarized and extended by the
work of Schaffner et al. [Sch13, SJK+13]. However, utilizing a shared-storage
architecture for providing on-demand in-memory computing bears the advantages
that a) storage and processing capacities can be adjusted independently, and b)
that the complexity of the DBMS software can be reduced as mechanisms such as
data redistribution in case of a scale-out are implemented and hidden in the storage
system.

1.2 Research Questions and Scope

This work focuses on the implications of building a columnar database on a shared
main memory-based storage and the resulting database operator placement problem
in a shared main memory-based storage system that supports data access and code
execution. This leads to the following research questions:
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1. What is a suitable architecture for a main memory database in order to utilize a
shared main memory-based storage?

2. Where to place the execution of a database operator (site selection) in a main
memory-based storage system that supports data access and code execution (data-
pull versus operator-push)?

3. What is the performance penalty for the execution of database operators not on
the local main memory inside a server, but on a remote main memory over a
RDMA-enabled network?

4. Can the fast-recovery mechanism provided by a modern, main memory-based
storage system be leveraged by a database application, so that a hardware failure
does not interrupt query processing?

5. Can the elasticity provided by a modern, main memory-based storage system
that is incorporated in shared-storage parallel DBMS be leveraged to maintain a
constant query execution time under a varying workload?

While the aforementioned research questions span the scope of this work, the
following aspects are considered out of scope:

• Thiswork does not aim to compare different parallel DBMSarchitectures, let alone
to try to come up with a verdict, which one is superior. As presented in Chap.2,
this is a much discussed and long debated aspect of parallel DBMSs and—as
discussed in Sect. 2.3.1—work already exists that solely addresses architectural
comparisons.

• This work does not consider distributed transaction processing. The aspect of
distributed transaction processing in the context of query execution, in conjunction
with a modern main memory-based storage system, is currently under research at
the ETH Zürich [SG13]. As described in Sect. 3.2, we assume that there is a single,
central instance that handles all write operations.

• This work does not dive into the details or present a comparison of different
high-end network technologies. This work describes the concepts behind RDMA-
enabled network technology in Sect. 2.1.3, and takes it for the remainder as granted.

1.3 Outline

The book is divided into three parts preceded by this introduction and the presentation
of related work and background in Chap.2. Chapter 2 explains the four major areas
influencing this work: current computing hardware trends in Sect. 2.1, in-memory
database management systems in Sect. 2.2, parallel database management systems
in Sect. 2.3, and cloud storage systems in Sect. 2.4. The description of the related
work closes with a classification in Sect. 2.5.

Part I presents a database system architecture for a shared main memory-
based storage and consists of three chapters. Chapter 3 describes the architectural
requirements and assumptions, presents an overview and introduces the compo-
nents AnalyticsDB and RAMCloud. Chapter 4 deals with the resulting data storage
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implications and illustrates how columnar data inside AnalyticsDB is mapped to
objects in RAMCloud, and how the right sizing of these objects can uphold the
advantages of a columnar data layout. Chapter 5 illustrates the data processing by
describing the database operators in AnalyticsDB and how to push their execution
into RAMCloud.

Part II tackles the site selection problem in detail and presents a study of database
operator execution on a shared main memory-based storage. Chapter 6 explains the
operator execution on one relation at a time, presents the related system model in
detail, evaluates the different operator execution strategies, illustrates the subsequent
optimization of a query execution and points out the implications of data partitioning.
Chapter 7 extends the system model to describe the costs for the execution of an
operator that works on two relations, such as the distributed join algorithms Grace
Join, Distributed Block Nested Loop Join and Cyclo Join. The chapter continues
with a comparison of these algorithms and the influence of partitioning criteria and
resource allocation on their parallel executions.

Part III presents an evaluation of our system with regards to performance, high-
availability, and elasticity. Chapter 8 presents a performance evaluation that aims to
quantify the gap between query execution on local and remote main memory while
considering the different operator execution strategies (data pull versus operator
push). Two different workloads are being used: an analytical workload consisting of
the Star SchemaBenchmark, and amixedworkload based on point-of-sales customer
data from a large European retailer. Chapter 9 evaluates the high-availability of our
solution by provoking server crashes during query execution. Chapter 10 evaluates
the elasticity by aiming to maintain a constant query processing time under a heavily
varying workload. Chapter 11 closes with the conclusions.
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Chapter 2
Related Work and Background

This chapter presents the background as well as the related work for this work.
Instead of separating the chapters related work and background, both topics are
presented together in one chapter, giving the reader the advantage of understanding
underlying concepts and getting to know the respective related work in one stroke.
Each section and subsection is preceded by a short summary. Additional related work
is presented where appropriate for example Chap. 6 starts with discussing system
models which are related to the systemmodel presented in remainder of this chapter,
while Chap.7 contains an overview on state-of-the-art distributed join algorithms.
The four major areas which influence this work are current computing hardware
trends, in-memory database management systems, parallel database management
systems, as well as cloud storage systems. The subsequent sections and subsections
also include discussions regarding how the different areas influence each other.

2.1 Current Computing Hardware Trends

Summary: This section introduces the computing hardware trends by describing the
foundation for current computer architecture.

John Von Neumann described in 1945 [vN93] a computer architecture that con-
sists of the following basic components: (a) an Arithmetic Logic Unit (ALU), also
known as processor which executes calculations and logical operations; (b) memory
which holds a program and its to be processed data; (c) a Control Unit that moves
program and data into and out of the memory and executes the program instructions.
For supporting the execution of the instructions the Control Unit can use a Regis-
ter for storing intermediate values; (d) an Input and Output mechanism allows the
interaction with external entities such as a user via keyboard and screen. The original
Von Neumann architecture included the interconnection of the different architectural
components, however an explicit System Bus has been added later to be able to con-
nect a non-volatile memory medium for persistent data storage [NL06]. Figure2.1
depicts the Von Neumann Architecture with an added system bus.

© Springer International Publishing Switzerland 2016
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Fig. 2.1 Modified Von Neumann Architecture with added system bus

As indicated in the description of the Von Neumann architecture, there are differ-
ent types of memory technologies which vary in properties such as cost ($ per bit),
access performance, and volatility. Inside a single computer, a combination of differ-
ent memory technologies is used with the intention of combining their advantages.
The combination of the different technologies is done by aligning them in a hierar-
chy in order to create the illusion that the overall memory is as large as the largest
level of the hierarchy. Such a memory hierarchy can be composed of multiple levels
and data is transferred between two adjacent levels at a time. As shown in Fig. 2.2,
the upper levels are usually smaller, faster, more expensive, and closer to the CPU,
whereas the lower levels provide more capacity (due to the lower costs), but are
slower in terms of access performance. The textbook memory technology examples
from Patterson and Hennessy [PH08] are SRAM (static random access memory),
DRAM (dynamic random access memory), and magnetic disk which build a three-
level hierarchy: SRAM provides fast access times, but requires more transistors for
storing a single bit which makes it expensive and taking up more space [HP11].
SRAM is used in today’s computers as a cache very close to the CPU and is the first
memory level in this example. DRAM is less costly per bit than SRAM, but also
substantially slower and is the second memory level and is used as main memory
for holding currently processed data and programs. In addition, DRAM cells need
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Fig. 2.2 Memory hierarchy as described by Patterson and Hennessy
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constant energy supply otherwise they loose the stored information which makes
them volatile. In order to permanently store data, a third memory hierarchy is intro-
duced that uses a magnetic disk. However, the moving parts inside a magnetic disk
result in a penalty with regards to the access performance in comparison to DRAM.
Two other frequently used terms for differentiating between volatile and non-volatile
memory are primary and secondary memory [PH08]: primary memory is a synonym
for volatile memory such as mainmemory holding currently processed programs and
data, whereas secondary memory is non-volatile memory storing programs and data
between runs. A shortcoming of the Von Neumann Architecture is that the CPU can
either read an instruction or data from memory at the same time. This is addressed
by the Harvard architecture [HP11] which physically separates storage and signal
pathways for instructions and data.

Reflecting on the Von Neumann Architecture and the aspect of memory hierar-
chies, it becomes apparent that a computer is a combination of different hardware
components with unique properties and that the capabilities of those hardware com-
ponents ultimately set the boundaries of the capabilities of the to-be-run programs
on that computer. Consequently, hardware trends also impact the way computer
programs are designed and utilize the underlying hardware. In the remainder of this
section we want to describe three hardware trends which contribute to the motivation
for this work.

2.1.1 Larger and Cheaper Main Memory Capacities

Summary: This subsection quantifies the advancements in main memory capacities
and the price reduction over the last 18 years.

The price for main memory DRAM modules has dropped constantly during the
previous years. As shown in Fig. 2.3, the price for one megabyte of main memory
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used to be $50 in 1995, and dropped to $0.03 in 2007—a price reduction of three
orders of magnitudes in about 20 years. In addition, chip manufacturers managed to
pack transistors and capacitors more densely, which increased the capacity per chip.
In 1995, a single DRAM chip had the capacity of 4Megabytes, which increased to
1024Megabyte per chip in 2013. Putting 32 of those chips on a single DRAMmodule
gives it a capacity of 32Gigabytes. Nowadays, server mainboards (e.g. Intel1 Server
Board S4600LH2 [Int13]) can hold up to 48 of those modules, resulting in a capacity
of 1.5 terabyte of main memory per board. Such an Intel server board equipped
with 1.5 terabyte of Kingston server-grade memory can be bought for under $25,000
(undiscounted retail price [new13]),which illustrates the combinationof price decline
and advancement in capacity per chip.

Despite the previously described developments, solid-state drives (SSD) and hard-
disk drives (HDD) still have amore attractive price point—e.g. the cost per megabyte
capacity of a three terabyte hard-disk is about $0.004 [new13]. In addition, DRAM
is a volatile storage and as long as non-volatile memory is not being mass-produced,
one always needs the same capacity of SSD/HDD storage somewhere to durably
store the data being kept and processed in DRAM (the situation is comparable to
alternative energy sources—you still need the coal power plant when the sun is not
shining or the wind is not blowing). However, in the end the performance advantage
of operating on main memory outweighs the higher cost per megabyte in the context
of performance critical applications such as large-scale web applications [mem13a]
or in-memory databases [Pla11a].

2.1.2 Multi-Core Processors and the Memory Wall

Summary: This subsection describes the development of having multiple cores per
processor and the resulting main memory access bottleneck.

In 1965, Gordon Moore made a statement about the future development of the
complexity of integrated circuits in the semiconductor industry [Moo65]. His predic-
tion that the number of transistors on a single chip is doubled approximately every
two years became famous as Moore’s Law, as it turned out to be a relatively accurate
prediction.

The development of the processors clock rate and the number of processor cores
is of relevance: as depicted in Fig. 2.4a, Intel CPUs reached a clock rate of 3000Mhz
in 2003. Until then the clock rate improved from yearly which used to be convenient
for a programmer, as he usually did not have to adjust his code in order to leverage
the capabilities of a new generation of processors. This changed for Intel processors
between 2003 and 2006, when a further increasement of the clock rate would have

1There is a great variety of computer processor and mainboard vendors such as AMD [AMD13] ,
GIGABYTE [GIG13] or Intel [Int13]. For the sake of better comparability throughout the different
subsections, this section cites only Intel processor and mainboard products. In addition, Intel holds
a market share of over 90% in the worldwide server processor market in 2012 [RS13].
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Fig. 2.4 Illustration of the evolution of Intel processors from 1995 until 2013. a Evolution of Intel
processor clock rate and number of processor cores [Int13]. The figure shows that Intel distributed a
processorwithmore than 3000Mhz clock rate (Intel Pentium4Xeon) already in 2003, but until 2013
the clock rate only evolved to 3900Mhz (Intel Core i7 Extreme Edition). The first mass-produced
processor from Intelwith two cores (Intel PentiumDual-Core) came out in 2006: the number of cores
per processor evolved to twelve in 2013 (Intel Xeon E5). b Comparison of Coremark Benchmark
Score [The13] and memory bandwidth (maximum specified rate at which data can be read from or
stored to a semiconductor memory by the processor) of selected Intel processors [Int13] over time.
The Coremark benchmark measures the performance of a CPU by executing algorithms such as list
processing or matrix manipulation and intends to replace the Dhrystone [Wei84] benchmark. The
figure illustrates that the processing power of CPUs increased more significantly (by introducing
multiple physical processing cores per CPU) than its memory bandwidth

resulted in too much power consumption and heat emission. Instead, the clock rate
remained relatively stable, but having more than one physical processing core per
(multi-core) CPU was introduced. This led to the saying that the free lunch is over
[Sut05], now application developers had to write their software accordingly to utilize
the capabilities of multi-core CPUs. This is also expressed by Amdahl’s Law, which
says that the speed up of a systemcan also be defined as the fraction of code that can be
parallelized [Amd67]. Reflecting on the importance ofmainmemory asmentioned in
the previous subsection, Fig. 2.4b shows the development of CPU processing power
and its memory bandwidth. One can observe that with the advent of multiple cores
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Fig. 2.5 Two different processor interconnect architectures. a Shared Front-Side Bus. b Intel’s
Quick Path Interconnect

per processor, processing power spiked significantly: an equivalent increase in the
maximumspecified rate atwhich data can be read fromor stored into a semiconductor
memory by the processor could not be realized [BGK96].

As described in the beginning of this section, a processor is not directly wired
to the main memory, but accesses it over a system bus. This system bus becomes a
bottle neckwhenmultiple processors or processor cores utilize it. Figure2.5a shows a
shared front-side bus architecture where several processors access thememory over a
shared bus. Here, the access time to data in memory is independent regardless which
processor makes the request or which memory chip contains the transferred data:
this is called uniformmemory access (UMA). In order to overcome the bottleneck of
having a single shared bus, for example, Intel introduced Quick Path Interconnect as
depicted in Fig. 2.5b, where every processor has its exclusively assigned memory. In
addition, each processor is directly interconnected with each other, which increases
the overall bandwidth between the different processors and the memory. A single
processor can access its local memory or the memory of another processor, whereat
the memory access time depends on the memory location relative to the processor.
Therefore, such an architecture is described as NUMA, standing for non-uniform
memory access.

2.1.3 Switch Fabric Network and Remote Direct Memory
Access

Summary: This subsection quantifies the advancements of network bandwidth and
latency over the last 18 years, as well as the closing performance gap between access-
ing main memory inside a server and that of a remote server.

The previous subsection describes the performance characteristics when operat-
ing on the main memory inside a single server. Although Sect. 2.1.1 emphasizes the
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growing main memory capacities inside a single server, the storage space require-
ments from an application can exceed this capacity.When utilizing themainmemory
capacities from several servers, the performance characteristics from the network
interconnect between the servers have to be considered as well. Modern network
technologies such as InfiniBand or Ethernet Fabrics have a switched fabric topology
which means that (a) each network node connects with each other via one or more
switches and (b) that the connection between two nodes is established based on the
crossbar switch theory [Mat01] resulting in no resource conflicts with connections
between any other nodes at the same time [GS02]: in the case of InfiniBand, this
results in full bisection bandwidth between any two nodes at any time. In addition the
InfiniBand specification [Ass13] describes that an InfiniBand link can be operated
at five different data rates: 0.25GBytes/s for single data rate (SDR), 0.5GBytes/s
for double data rate, 1GBytes/s for quad data rate (QDR), 1.7GBytes/s for fourteen
data rate (FDR), and 3.125GBytes/s for enhanced data rate (EDR). In addition, an
InfiniBand connection between two devices can aggregate several links in units of
four and twelve (typically denoted as 4x or 12x). For example, the aggregation of four
quad data rate links results in 4xQDR with a specified data rate of 4GBytes/s. These
specifications describe the effective theoretical unidirectional throughput, meaning
that the overall bandwidth between two hosts can be twice as high.

Figure2.6a compares the bandwidth specifications of main memory and network
technologies. The figure shows how the bandwidth performance gap narrows down
from over an order of magnitude (1995: 267 MBytes/s Fast Page Mode DRAM
versus 12.5MBytes/s Fast Ethernet) to a factor of 1.3 (2010: 16GBytes/s DDR3-
2000 SDRAM versus 12.5GBytes/s 100Gigabit Ethernet) over a period of 15 years,
and that today’s local area network technology specifies a higher bandwidth than
memory (2013: 24GBytes/s DDR3-3000 SDRAM versus 37.5GBytes/s InfiniBand
Enhanced Data Rate (EDR) 12x). Figure2.6b compares the latency specifications of
main memory and network technologies. The figure depicts how the latency perfor-
mance gap has been reduced from five orders of magnitude (2000: 0.052 µs Double
Data Rate SDRAM versus 340µs Gigabit Ethernet) to two orders of magnitude
(2013: 0.037µs DDR3 SDRAM vs 1µs InfiniBand). The recent improvement in
network latency is the result of applying a technique called remote direct memory
access (RDMA). RDMA enables the network interface card to transfer data directly
into the main memory which bypasses the operating system by eliminating the need
to copy data into the data buffers in the operating system (which is also known as zero-
copy networking)—which in turn also increases the available bandwidth. In addition,
transferring data via RDMA can be done without invoking the CPU [Mel13]. RDMA
was originally intended to be used in the context of high-performance computing and
is currently implemented in networking hardware such as InfiniBand. However, three
trends indicate that RDMA can become wide-spread in the context of standardized
computer server hardware: From a specification perspective, RDMAover Converged
Ethernet (RoCE) allows remote direct memory access over an Ethernet network and
network interface cards supporting RoCE are available on the market. From an oper-
ating system perspective, for example Microsoft supports RDMA in Windows 8
and Windows Server 2012 [WW13]. From a hardware perspective, it is likely that
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Fig. 2.6 Comparisons ofmemory and local area network bandwidth and latency specifications from
1995 until 2013. a Comparison of memory and local area network bandwidth specifications [HP11,
Ass13]. The figure illustrates how the bandwidth performance gap narrows down from over an
order of magnitude (1995: 267MBytes/s Fast Page Mode DRAM vs. 12.5MBytes/s Fast Ethernet)
to a factor of 1.3 (2010: 16GBytes/s DDR3-2000 SDRAM vs. 12.5GBytes/s 100Gigabit Ethernet)
over a period of 15 years, and that today’s local area network technology specifies a higher bandwidth
than memory (2013: 24GBytes/s DDR3-3000 SDRAM vs. 37.5GBytes/s Enhanced Data Rate
(EDR) 12x). bComparison ofmemory and local area network latency specifications [HP11, Ass13].
The figure shows that the latency performance gap has been reduced from five orders of magnitude
(2000: 0.052 µs Double Data Rate SDRAM vs. 340µs Gigabit Ethernet) to one to two orders of
magnitude (2013: 0.037µs DDR3 SDRAM vs. 1µs InfiniBand)

RDMA capable network controller chips become on-board commodity equipment
on server-grade mainboards.

The comparison of main memory and network technology specifications suggest
that the performance gap between operating on local (inside a single computer) and
remote (between two separate computers) memory closes. Table2.1 presents a com-
parison of hardware specifications and actual measurements in order to quantify the
bandwidth and latency performance gap between main memory and network tech-
nologies. The Intel Nehalem architecture—which is going to be used in the context of
the measurements—specifies a maximum bandwidth of 32 GBytes/s by combining
its three memory channels per processor [Tho11]. The specified access latency for
retrieving a single cache line from main memory that is not resident in the caches
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Table 2.1 Bandwidth and latency comparison for accessing local (inside a single computer) and
remote (between two separate computers) DRAM

Specification Measurements[3]

Intel
Nehalem[Tho11]
Specification

InfiniBand[Ass13]
Specification
4xFDR/12xEDR

Intel Xeon
Processor
E5-4650

Mellanox
ConnectX-3
4xFDR

Bandwidth 32GBytes/s[1]
Memory Bandwidth

6.75GBytes/s[2]
37.5GBytes/s[2]

10.2GBytes/s[4]
Memory Bandwidth

4.7GBytes/s[6]

Latency 0.06µs Uncached
Main Memory
Access

1µs RDMA
Operation
End-to-End Latency

0.07µs[5]
Uncached Main
Memory Access

1.87µs[6] RDMA
Operation
End-to-End Latency

[1]Combined memory bandwidth of three memory channels per processor[2]These are the specified actual data rates (not signaling rates) for 4xFDR respective 12xEDR[3]Measurements have been performed on the following hardware: Intel Xeon E5-4650 CPU, 24GB DDR3 DRAM,
Mellanox ConnectX-3 MCX354A-FCBT 4xFDR InfiniBand NIC connected via Mellanox InfiniScale IV switch[5]Measured via Bandwidth Benchmark from Z. Smith [Smil13]—Sequential read of 64MB sized objects[4]Measured via Cache-Memory and TLB Calibration Tool from S. Manegold and S. Boncz [MDK02a]
[6]Measured via native InfiniBand Open Fabrics Enterprise Distribution benchmarking tools ib_read_bw and ib_read_lat

between the CPU and the main memory is 0.06µs. Actual measurements with an
Intel Xeon E5-4650 processor show a memory bandwidth of 10.2GBytes/s and a
memory access latency of 0.07µs. The difference between the bandwidth specifica-
tion and the measurement is the number of memory channels: the memory traversal
of a data region executed by a single processor core usually invokes a single memory
channel at a time, resulting in approximately one third of the specified bandwidth
(due to the three available memory channels). Current typical InfiniBand equipment,
such asMellanox ConnectX-3 cards (e.g.Mellanox ConnectX-3MCX354A-FCBT),
support 4xFDR, resulting in a unidirectional data rate of 6.75 GBytes/s between two
devises (as previously mentioned, the current InfiniBand specification [Ass13] itself
supports up to 37.5GBytes/s (12xEDR)). The end-to-end latency for a RDMA oper-
ation is specified with 1µs. Measurements between two machines, each equipped
with a Mellanox ConnectX-3 MCX354A-FCBT card and connected via a Mellanox
InfiniScale IV switch, reveal a unidirectional bandwidth of 4.7GBytes/s and an end-
to-end latency for aRDMAoperation of 1.87µs. The comparison of themeasurement
results requires a certain carefulness, as it is debatable what is the correct way and
appropriate granularity to compare the local and the remote bandwidth: should a
single or several combined memory channels be cited, a single InfiniBand link or the
aggregation of multiple links, and would one quote the unidirectional or bidirectional
bandwidth between two machines? Ultimately, the comparison of the measurements
intends to illustrate the ballpark performance gap that can be summarized as follows:
as shown in Fig. 2.6, from a bandwidth perspective, local and remote memory access
are in the same order of magnitude, and depending on the chosen performance met-
ric, even on par. When it comes to comparing the latency of main memory access
inside a machine and between two separate machines, there is still a gap of one to
two orders of magnitude.
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2.2 In-Memory Database Management Systems

Summary: This section describes a database management system where the data
permanently resides in physical main memory.

As mentioned in Chap.1, Elmasri and Navathe [EN10] describe a database sys-
tem as consisting of a database and a database management system (DBMS). They
define a database as “a collection of related data” and a DBMS as “a collection of
programs that enables users to create and maintain a database. The DBMS is hence
a general-purpose software system that facilitates the process of defining, construct-
ing, manipulating, and sharing databases among various users and applications”.
According to Hellerstein and Stonebraker [HS05], IBM DB/2 [HS13], PostgreSQL
[Sto87], and Sybase SQL Server [Kir96] are typical representatives of relational
database management systems. The term relational in the context of the aforemen-
tioned DBMSs refers to the implementation of the relational data model by Codd
[Cod70], which allows querying the database by using a Structured (English) Query
Language initially abbreviated as SEQUEL then shortened to SQL [CB74]. This
led to the SQL-standard which is regularly updated [Zem12] and is ISO-certified.
Usually a SQL query is issued by an application to a DBMS. The DBMS then parses
the query and creates a query plan potentially with the help of a query optimizer. The
query plan is then executed by a query execution engine which orchestrates a set of
database operators (such as a scan or join) in order to create the result for that query
[GMUW08].

The previously mentioned DBMSs are optimized for the characteristics of disk
storage mechanisms. In their paper Main Memory Database Systems: An Overview
[GMS92] from 1992, Garcia-Molina and Salem describe a main memory database
system (MMDB) as a database system where data “resides permanently in main
physical memory”. They argue that in a disk-based DBMS the data is cached in main
memory for access, where in a main memory database system the permanently in
memory residing data may have a backup copy on disk. They observe that in both
cases a data item can have copies in memory and on disk at the same time. However,
they also note the following main difference when it comes to accessing data that
resides in main memory:

1. The access time formainmemory is orders ofmagnitude less than for disk storage.
2. Mainmemory is normally volatile,while disk storage is not.However it is possible

(at some cost) to construct nonvolatile memory.
3. Disks have a high, fixed cost per access that does not depend on the amount of

data that is retrieved during the access. For this reason, disks are block-oriented
storage devices. Main memory is not block oriented.

4. The layout of data on a disk is much more critical than the layout of data in main
memory, since sequential access to a disk is faster than random access. Sequential
access is not as important in main memories.

5. Main memory is normally directly accessible by the processor(s), while disks are
not. This may make data in main memory more vulnerable than disk resident data
to software errors. [GMS92]

http://dx.doi.org/10.1007/978-3-319-20711-7_1
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In the remainder of their paper,Garcia-Molina andSalemdescribe the implications
of memory resident data on database system design aspects such as access methods
(e.g. index structures do not need to hold a copy of the indexed data, but just a pointer),
query processing (e.g. focus should be on processing costs rather than minimize disk
access) or recovery (e.g. use of checkpointing to and recovery from disk). IBM’s
Office-By-Example [AHK85], IMS/VS Fast Path [GK85] or SystemM from Prince-
ton [SGM90] are presented as state-of-the-art main memory database systems at that
time. The further development ofmemory technology in the subsequent 20 years after
this statement—as illustrated in detail in Sect. 2.1.1 and Fig. 2.3—led to increased
interest in main memory databases. Plattner describes in 2011 [Pla11a,Pla11b] an
in-memory database system called SanssouciDBwhich is tailored for business appli-
cations. SanssouciDB takes hardware developments such as multi-core processors
and the resulting importance of the memory wall—as explained in Sect. 2.1.2—into
consideration and leverages them by allowing inter- and intra-query parallelism and
exploiting cache hierarchies: an important enabler for this is the use of a columnar
data layout which will be discussed in detail in the next two subsections.

2.2.1 Column- and Row-Oriented Data Layout

Summary: This subsection distinguishes between two physical database table lay-
outs, namely storing all tuples of a record together (row-orientation) or storing
all instances of the same attribute type from different tuples together (column-
orientation).

As quoted in the previous subsection, Garcia-Molina and Salem [GMS92] stated
that “sequential access is not as important in main memories” in comparison to disk-
resident data. While the performance penalty for non-sequential data traversal is
higher when operating on disk, it is also exists when accessing data that is in main
memory. As described in Sect. 2.1 and as evaluated by Ailamaki et al. [ADHW99] or
Boncz, Manegold, and Kersten [BMK99], the access latency from the processor to
data in main memory is not truly random due to the memory hierarchy. Since the data
travels frommain memory through the caches to the processor, it is of relevance if all
the data that sits on a cache line is truly being used (cache locality) by the processor
and if a requested cache line is already present in one of the caches (temporal locality).
In addition, a sequential traversal of data is a pattern that modern CPUs can detect
and improve the traversal performance by loading the next to be accessed cache line
while the previous cache line is still being processed: this mechanism is known as
hardware prefetching (spatial locality) [HP11].

If these mechanisms can be exploited depends on the chosen data layout and the
kind of data access thereupon. The two basic distinctions for a data layout are the
n-ary storage model (NSM) and the decomposed storage model[CK85]. In NSM, all
attributes of a tuple are physically stored together, whereas in DSM the instances of
the same attribute type from different tuples are stored together. In database table
terms, NSM is declared as a row-oriented data layout and DSM is called a column-
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Fig. 2.7 Illustration of a row- and column-oriented data layout

oriented layout. As shown in Fig. 2.7, accessing a row or accessing a column can
both leverage the benefits of locality if the data layout has been chosen accordingly.
This has led to the classic distinction that databases which are intended for workloads
that center around transaction processing and operate on a few rows at a time choose
a row-oriented layout and read-only workloads that scan over table attributes and
therefore operate on columns choose a column-oriented layout [AMH08]—the next
subsection is going to discuss the classification of workloads in detail.

Another aspect in the discussion of row- and column-oriented data layout is that
light weight data compression mechanisms work particularly well in a columnar
data layout [AMF06]. The intention for using compression mechanisms is saving
storage space and—by traversing fewer bytes for processing the same amount of
information—increasing performance. The term light-weight describes the compres-
sion on a sequence of values (e.g. in contrast to heavy weight which refers to the
compression of an array of bytes) with techniques such as dictionary compression,
run-length encoding (RLE), and bit-vector encoding: these mechanisms allow the
processing of a query on the compressed values and it is desirable to decompress
the values as late as possible—for example, before returning the result of a query
to the user. Dictionary compression is appealing in a columnar data layout as the
values inside a single column have the same data type and similar semantics (in
contrast to the data inside a single row). The resulting low entropy inside a column
can be exploited by dictionary compression in order to reduce the required storage
space drastically. Additionally, bit-vector encoding can be used to further reduce the
needed storage space: e.g. if a column has up to 4096 different values in total, it can
be encoded with a dictionary key size of 12 bit, and the first 60 bits of an 8-byte
integer can hold five different column values. Run-length encoding can be applied
to columns if they contain sequences in which the same data value occurs multiple
times: instead of storing each occurrence separately, RLE allows storing the value
once accompanied by the number of subsequent occurrences.
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2.2.2 Transactional Versus Analytical Versus Mixed
Workload Processing

Summary: This subsection explains different database workloads and how they are
being affected by the choice of the data layout.

As implied in the previous subsection, database textbooks contain a distinc-
tion between online transaction processing (OLTP) and online analytical processing
(OLAP) [EN10]. The term online expresses the instant processing of a query and
delivering its result. The term transaction in OLTP refers to a database transaction
which, in turn, has been named after the concept of a business or commercial trans-
action. Typical examples for OLTP applications are bank teller processing, airline
reservation processing or insurance claims processing [BN97]. OLTP workloads are
characterized by operating on a few rows per query with an equal mix of read and
write operations. The term analytical in OLAP describes the intent to perform analy-
sis on data. These analyses consist of ad-hoc queries which for example are issued
to support a decision. Systems that are designed for handling OLAP workloads are
also referred to as decision support systems (DSS) [Tur90]. An OLAP workload is
characterized by executing aggregations over the values of a database table issued by
read-mostly queries [Tho02]. OLTP and OLAP work on semantically the same data
(e.g. sales transactions are recorded by an OLTP system and then analyzed with an
OLAP system), yet they are typically separate systems. Initially, analytical queries
were executed against the transactional system, but at the beginning of the 1990s
large corporations were no longer able to do so as the performance of the transac-
tional system was not good enough for handling both workloads at the same time.
This led to the introduction of OLAP and the separation of the two systems [CCS93].
However, the resulting duplication and separation of data introduced a series of draw-
backs. First, the duplication and transformation of data from the transactional to the
analytical system (known as extract, transform, and load (ETL) [KC04]) requires
additional processing for data denormalization and rearranging. Second, since the
execution of the ETL procedure happens only periodically (e.g. once a day), the
analytical processing happens on slightly outdated data. Third, the provisioning of a
dedicated system for analytical processing requires additional resources.

As a consequence, there are two motivational factors for a reunification of OLTP
and OLAP systems as proposed by Plattner [Pla09]: First, the elimination of the
previously explained drawbacks resulting from the separation and second, the support
of applications which cannot be clearly assigned to one of the workload categories,
but expose amix ofmany analytical queries and some transactional queries. Tinnefeld
et al. [Tin09, KTGP10] elaborate that especially business applications, such as the
available-to-promise (ATP) application [TMK+11], expose a mixed workload. An
ATP application evaluates if a requested quantity of a product can be delivered to a
customer at a requested date. This is done by aggregating and evaluating stock levels
and to-be-produced goods with analytical queries, followed by transactional queries
upon the reservation of products by the customer.
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(a) (b)

Fig. 2.8 Comparison of query distribution in analyzed business customer systems and a database
benchmark (comparison by and figure taken fromKrüger et al. [KKG+11]). The comparison shows
that OLTP workloads on customer enterprise resource planning systems are also dominated by
read operations in contrast to the common understanding that OLTP exposes an equal mix of read
and write operations (as e.g. implied by the TPC-C benchmark [Raa93]). a Query distribution in
analyzed business customer systems. b Query distribution in the TPC-C benchmark

In order to find a common database approach for OLTP and OLAP, it is logical
to reevaluate if the previously mentioned workload characterizations are accurate
[Pla09]. Krüger et al. [KKG+11] evaluated the query processing in twelve enterprise
resource planning (ERP) systems from medium- and large-sized companies with
an average of 74,000 database tables per customer system. As shown in Fig. 2.8a,
the distribution of queries in the OLAP category is as expected: over 90% of the
queries are read operations dominated by range select operations. The OLTP queries,
however, also consist of over 80%readqueries dominated by lookupoperations.Only
17% of the overall queries result in write operations: a contradiction to the common
understanding that OLTP consists of an equal mix of read and write queries. This
misconception can be visualized by looking at the query distribution of the TPC-C
benchmark (which is the standard benchmark for OLTP systems [Raa93]) as shown
in Fig. 2.8b: almost 50% of the queries are write operations, while range select and
table scan operations are not included at all.

The drawbacks of the separation of OLTP and OLAP, the missing support for
applications that expose a mixed workload, and the misconception of the nature
of OLTP in the first place drove Plattner to design a common database approach
for OLTP and OLAP [Pla09, Pla11b, Pla11a]: SanssouciDB provides a common
database for OLTP and OLAP and provides adequate performance by leveraging
modern hardware technology: mainly the storage of all data in main memory and the
utilization ofmulti-core processors. Although it supports a column- and row-oriented
data layout, it puts heavy emphasis on the use of a columnar layout as (i) it is the best
match for OLAP workloads, (ii) it has been shown that even OLTP applications have
a portion of over 80% read queries, and (iii) also mixed workloads are dominated
by analytical queries.
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2.2.3 State-of-the-Art In-Memory Database
Management Systems

Summary: This subsection lists state-of-the-art in-memory database management
systems.

In this subsection we present a selection of academic and industry in-memory
database management systems which are considered state-of-the-art in alphabetical
order. We describe their main characteristics, starting with the systems from acad-
emia:

• HyPer (Technical University Munich) [KNI+11, Neu11] is a main memory
database hybrid system that supports row and columnar data layout with the
goal of supporting OLTP and OLAP workloads. To guarantee good performance
for both workloads simultaneously, HyPer creates snapshots of the transactional
data with the help of hardware-assisted replication mechanisms. Data durability is
ensured via logging onto a non-volatile storage, high-availability can be achieved
by deploying a second hot-standby server. The separate data snapshots for OLTP
and OLAP workloads allow conflict-free multi-threaded query processing as well
as the deployment to several servers to increase the OLAP throughput [MRR+13].

• HYRISE (Hasso-Plattner-Institut) [GKP+10, GCMK+12] is a main memory
storage engine that provides dynamic vertical partitioning of the tables it stores.
This means that fragments of a single table can either be stored in a row- or
column-oriented manner with the intention of supporting OLTP, OLAP, andmixed
workloads. HYRISE features a layout algorithm based on a main memory cost
model in order to find the best hybrid data layout for a given workload.

• MonetDB (Centrum Wiskunde and Informatica) [BGvK+06, BKM08a] is a
main memory columnar database management system that is optimized for the
bandwidth bottleneck between CPU and main memory. The optimizations include
cache-conscious algorithms, data compression, and the modeling of main memory
access costs as an input parameter for query optimization. MonetDB is purely
intended for executing OLAP workloads and does not support transactions or
durability.

The following main memory database systems from industry are presented:

• IBM solidDB [MWV+13] is a relational database management system that can
either be deployed as an in-memory cache for traditional database systems, such
as IBM’s DB2 [HS13], or as a stand-alone database. In both cases, it exposes an
SQL interface to applications. When deployed as a stand-alone database it offers
an in-memory as well as a disk-based storage engine. The in-memory engine uses
a trie data structure for indexing, where the nodes in the trie are optimized for
modern processor cache sizes. The trie nodes point to data stored consecutively in
arrays in main memory. When using the in-memory storage, snapshot-consistent
checkpointing [WH 1] to disk is used for ensuring durability. IBM is positioning
solidDB as a database for application areas such as banking, retail, or telecom
[MWV+13].
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• Microsoft SQL Server has two components which are tailored for in-memory
data management: the in-memory database engine Hekaton [DFI+13], which is
optimized for OLTP workloads, and xVelocity [Doc13], which is a columnstore
index and an analytics engine designed for OLAP workloads. Hekaton stores
data either via lock-free hash tables [Mic02] or via lock-free B-trees [LSS13]. In
order to improve transactional throughput, Hekaton is able to compile requests
to native code. xVelocity offers an in-memory columnar index—not a memory
resident columnar storage—that supports data compression and can be utilized by
the xVelocity analytics engine, to provide analytical capabilities in conjunction
with Microsoft Excel. However, Microsoft SQL Server also offers an updateable
columnar storage engine [LCF+13] which stores its data on SSD/disk. Microsoft
SQL server is positioned as a general-purpose database.

• SAP HANA [FCP+12] is an in-memory database that supports row- and column-
oriented storage in a hybrid engine for supporting OLTP, OLAP as well as mixed
workloads (see Sect. 2.2.2). In addition, it features a graph and text processing
engine for semi- and unstructured data management within the same system.
HANA is mainly intended to be used in the context of business applications and
can be queried via SQL, SQL Script, MDX, and other domain-specific languages.
It supports multiversion concurrency control and ensures durability by logging to
SSD. A unique aspect of HANA is its support of transactional workloads via the
column store [KGT+10]: the highly compressed column store is accompanied by
an additional write-optimized buffer called delta store. The content of the delta
is periodically merged into the column store. This architecture provides both fast
read and write performance.

• VoltDB [SW13] is an in-memory database designed for OLTP workloads and
implements the design of the academic H-Store project [KKN+08]. VoltDB per-
sists its data in a row-oriented data layout in main memory and applies check-
pointing and transaction logging for providing durability. It boosts transactional
throughput by analyzing transactions at compile time, and compiles them as stored
procedures which are invoked by the user at run-time with individual parameters.
It is designed for a multi-node setup where data is partitioned horizontally and
replicated across nodes to provide high availability. VoltDB is relatively young
(first release in 2010) and positions itself as a scalable database for transaction
processing.

2.3 Parallel Database Management Systems

Summary: This section introduces parallel database management systemswhich are
a variation of distributed database management systems with the intention to execute
a query as fast as possible.
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Asmentioned inChap.1,Özsu andValduriez [ÖV11] define a distributed database as

a collection ofmultiple, logically interrelated databases distributed over a computer network.
Adistributed databasemanagement system is then defined as the software system that permits
the management of the distributed database system and makes the distribution transparent
to the users.

The two important terms in these definitions are logically interrelated and dis-
tributed over a computer network. Özsu and Valduriez mention that the typical chal-
lenges tackled by distributed database systems include, for example, the aspect of
data placement, distributed query processing, distributed concurrency control, and
deadlock management, ensuring reliability and availability as well as the integration
of heterogeneous databases.

The term distributed over a computer network makes no assumption whether the
network is a wide area or local area network. A database system that is running
on a set of nodes which are connected via a fast network inside a cabinet or inside
a data center can be classified as a parallel database system. According to Özsu
and Valduriez [ÖV11] this can be seen as an revision and extension of a distributed
database system. According to DeWitt and Gray [DG92], a parallel database system
exploits the parallel nature of an underlying computing system in order to provide
high-performance and high-availability.

2.3.1 Shared-Memory Versus Shared-Disk Versus
Shared-Nothing

Summary: This subsection introduces and compares different parallel databaseman-
agement system architectures and reflects those in the context of main memory data-
bases.

As briefly summarized in Chap. 1, one fundamental and much debated aspect
of a parallel DBMS is its architecture. The architecture influences how the avail-
able hardware resources are shared and interconnected. As shown in Fig. 2.9, there
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are three different parallel DBMS textbook architectures [ÖV11, DG92, DMS13]:
shared-memory, shared-storage (or shared-disk or shared-data), and shared-nothing:

Shared-memory (or shared-everything) (see Fig. 2.9a) is an architectural
approach where all processors share direct access to any main memory module
and to all disks over an interconnection. Examples for shared-memory DBMS are
DBS3 [BCV91] and Volcano [Gra94b]. Shared-memory provides the advantages of
an architecturally simple solution: there is no need for complex distributed lock-
ing or commit protocols as the lock manager and buffer pool are both stored in the
memory systemwhere they can be accessed uniformly by all processors [ERAEB05,
DMS13]. In addition, the shared-memory approach is great for parallel processing:
inter-query parallelism is an inherent property as all processors share all underlying
resources, which means that any query can be executed by any processor. Intra-query
parallelism can also be easily achieved due to the shared resources. Shared-memory
has two major disadvantages: the extensibility is limited as all the communication
between all resources goes over a shared interconnection. For example, a higher num-
ber of processors causes conflicts with the shared-memory resource which degrades
performance [TS90]. The biggest drawback of shared-memory is its limited avail-
ability. Since the memory space is shared by all processors, a memory fault will
affect many processors and potentially lead to a corrupted or unavailable database.
Although the research community addressed this problem by work on fault-tolerant
shared-memory [SMHW02], the shared-memory architecture never had much trac-
tion outside academic work and had its peak in the nineties (in terms of available
products in industry and published research papers).

Shared-storage (or shared-disk or shared-data) (see Fig. 2.9b) is an architec-
tural approach where processors each have their own memory, but they share access
to a single collection of disks. The term shared-disk is a bit confusing in the way that
it suggests that rotating disks are an integral part. This is not the case, but hard drive
disks were the commonly used storage device when the term was coined. Nowadays
a shared-storage architecture can be realized by storing data on disk, SSD, or even
keeping it main memory resident (e.g. see Texas Memory Systems RamSan-440
[ME13] or RAMCloud [OAE+11]), typically in the form of a storage area network
(SAN) or a network-attached storage (NAS). However, each processor in a shared-
storage approach can copy data from the database in its local memory for query
processing. Conflicting access can be avoided by global locking or protocols for
maintaining data coherence [MN92]. Examples for shared-storage systems are IBM
IMS [KLB+12] or Sybase IQ [Moo11]. Shared-storage brings the advantage that it
is very extensible as an increase in the overall processing and storage capacity can be
done by adding more processors respectively disks. Since each processor has its own
memory, interference on the disks can be minimized. The coupling of main memory
and processor results in an isolation of amemorymodule fromother processorswhich
results in better availability. As each processor can access all data, load-balancing
is trivial (e.g. distributing load in a round-robin manner over all processors). The
downsides are an increased coordination effort between the processors in terms of
distributed database system protocols, and the shared-disks becoming a bottleneck
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(similar to the shared-memory approach, sharing a resource over an interconnection
is always a potential bottleneck).

Shared-nothing (see Fig. 2.9c) is an architectural approach where each memory
and disk is owned by some processor which acts as a server for that data. The
Gamma Database Machine Project [DGS+90] or VoltDB [SW13] are examples for
shared-nothing architectures. The biggest advantage of a shared-nothing architecture
is reducing interferences and resource conflicts by minimizing resource sharing.
Operating on the data inside a local machine allows operating with full raw memory
and disk performance, high-availability can be achieved by replicating data onto
multiple nodes. With careful partitioning across the different machines, a linear
speed-up and scale-up can be achieved for simple workloads [ÖV11]. A shared-
nothing architecture has also its downsides: the complete decoupling of all resources
introduces a higher complexity when implementing distributed database functions
(e.g. providing high-availability). Load balancing also becomes more difficult as it is
highly dependent on the chosen partition criteria, which makes load balancing based
on data location and not actual load of the system. This also impacts the extensibility
as adding new machines requires a reevaluation and potentially a reorganization of
the existing data partitioning.

When comparing the different architectures one can conclude that there is no
better or worse and no clear winner. The different architectures simply offer different
trade-offswith various degrees of trading resource sharing against systemcomplexity.
Consequently, this is a much debated topic. For example, Rahm [Rah93] says that

A comparison between shared-disk and shared-nothing reveals many potential benefits for
shared-disk with respect to parallel query processing. In particular, shared-disk supports
more flexible control over the communication overhead for intratransaction parallelism, and
a higher potential for dynamic load balancing and efficient processing of mixed OLTP/query
workloads.

DeWitt, Madden, and Stonebraker [DMS13] argue that

Shared-nothing does not typically have nearly as severe bus or resource contention as shared-
memory or shared-disk machines, shared-nothing can be made to scale to hundreds or even
thousands of machines. Because of this, it is generally regarded as the best-scaling architec-
ture. Shared-nothing clusters also can be constructed using very low-cost commodity PCs
and networking hardware.

Hogan [Hog13] summarizes his take on the discussion with

The comparison between shared-disk and shared-nothing is analogous to comparing auto-
motive transmissions. Under certain conditions and, in the hands of an expert, the manual
transmission provides a modest performance improvement ... Similarly, shared-nothing can
be tuned to provide superior performance ... Shared-disk, much like an automatic transmis-
sion, is easier to set-up and it adjusts over time to accommodate changing usage patterns.

When reviewing this discussion in the context of parallel mainmemory databases,
there is a clearer picture: most popular systems such as MonetDB, SAP HANA or
VoltDB use a shared-nothing architecture and not a shared-storage approach. In the
past, there was a big performance gap between accessing main memory inside a



26 2 Related Work and Background

machine and in a remote machine. Consequently, a performance advantage that has
been achieved by keeping all data in main memory should not vanish by sending
much data over a substantially slower network interconnect. As shown in Sect. 2.1.3,
the performance gap between local and remote main memory access performance is
closing, which paves the way for discussing a shared-storage architecture for a main
memory database.

2.3.2 State-of-the-Art Parallel Database Management Systems

Summary: This subsection presents state-of-the-art shared-storage and shared-
nothing parallel database management systems.

In this subsection we present a selection of disk-based and main memory-based
as well as shared-storage and shared-nothing parallel database management systems
and the different variations thereof. Some of the systems were previously introduced,
but this subsection focuses on their ability to be deployed on several servers. We start
with shared-storage parallel database management systems:

• IBM DB2 pureScale [IBM13] is a disk-based shared-storage solution for IBM’s
row-oriented DB2 [HS13]. It allows the creation of a parallel DBMS consisting
of up to 128 nodes where each node is an instance of DB2 and all nodes share
access to a storage system that is based on IBM’s General Parallel File System
(GPFS) [SH02]. Each database node utilizes local storage for caching or main-
taining a bufferpool. In addition to the local bufferpools per node, there is also a
global bufferpool that keeps record of all pages that have been updated, inserted or
deleted. This global bufferpool is used in conjunction with a global lock manager:
before any node can make for example an update, it has to request the global lock.
After data modification, the global lock manager invalidates all local copies of the
respective page in the local memory of the nodes. PureScale offers so called clus-
ter services which, for example, orchestrate the recovery process in the event of a
downtime. GPFS stores the data in blocks of a configured size and also supports
striping and mirroring to ensure high-availability and improved performance.

• MySQL on MEMSCALE [MSFD11a,b] is shared-storagedeployment ofMySQL
on MEMSCALE, which is a hardware-based shared-memory system that claims
to scale gracefully by not sharing cores nor caches, and therefore working with-
out a coherency protocol. This approach uses the main memory storage engine
of MySQL (known as heap or memory) and replaces the common malloc by a
library function that allocates memory from the MEMSCALE shared-memory.
As a consequence, all properties of MySQL are still present so that queries can be
executed in a multithreaded, ACID compliant manner with row-level locking.

• MySQL on RamSan [ME13] is a shared-storage solution where MySQL uti-
lizes the storage space provided by a storage area network that keeps all data
resident in main memory called RamSan. RamSan was originally developed by
Texas Memory Systems (now acquired by IBM). It acts as a traditional storage
area network, but depending on the configuration keeps all data in main memory
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modules such as DDR, and uses additional SSDs for non-volatile storage. RamSan
provides the advantage that it is transparent to a database system, such as MySQL,
that main memory-based storage is being used, but incorporates the downside that
data access is not optimized for main memory.

• ScaleDB [Sca13] implements a shared-storage architecture that consists of three
different entities, namely database nodes, storage nodes, and a cluster manager.
Each database node runs an instance of MySQL server that is equipped with a
custom ScaleDB storage engine by utilizing the MySQL feature of pluggable
storage engines [MyS13a]. That results in a multithreaded, disk-based, ACID
compliant engine that supports row-level locking and operates in read committed
mode. All database nodes share common access to the data inside the storage
nodes. ScaledDB manages the data in block-structured files with each individual
file being broken into blocks of a fixed size. These blocks are stored twice for
providing high-availability and are distributed randomly across the storage nodes.
In addition, ScaleDB also features a cluster manager that is a distributed lock
manager that synchronizes lock requests of different nodes.

• Sybase IQ [Syb13a] is a shared-storage, columnar, relational database system
that is mainly used for data analytics. As depicted in the Sybase IQ 15 sizing
guide [Syb13b], a set of database nodes accesses a commonly shared storage that
holds all data. Among the database nodes is a primary server (or coordinator node)
that manages all global read-write transactions and maintains the global catalog
and metadata. In order to maximize the throughput when operating on the shared
storage system, Sybase IQ strips data with the intention of utilizing as many disks
in parallel as possible.

The following shared-nothing parallel database management systems are pre-
sented:

• C-Store [SAB+05] and its commercial counterpart Vertica [LFV+12] are disk-
based columnar parallel DBMSs based on a shared-nothing architecture. The data
distribution in Vertica is done by splitting tuples among nodes by a hash-based
ring style segmentation scheme. Within each node, tuples are physically grouped
into local segments which are used as a unit of transfer when nodes are being
added to or removed from the cluster in order to speed up the data transfer. Vertica
allows defining how often a data item is being replicated across the cluster (called
k-saftey), realizing thereby high-availability, and allows the operator of the cluster
to set the desired tradeoff between hardware costs and availability guarantees.

• MySQL Cluster [DF06] enables MySQL (MySQL [MyS13b] is one of the most
popular open-source relational DBMS) to be used as a shared-nothing parallel
DBMS. MySQL Cluster partitions data across all nodes in the system by hash-
based partitioning according to the primary key of a table. The database admin-
istrator can choose a different partitioning schema by specifying another key of
a table as partitioning criteria. In addition, data is synchronously replicated to
multiple nodes for guaranteeing availability. Durability is ensured in a way that
each node writes logs to disk in addition to checkpointing the data regularly. In a
MySQL cluster, there are three different type of nodes: a management node that is
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used for configuration andmonitoring of the cluster, a data node which stores parts
of the tables, and a SQL node that accepts queries from clients and automatically
communicates with all other nodes that hold a piece of the data needed to execute
a query.

• Postgres eXtensible Cluster (Postgres-XC) [Pos13, BS13] is a solution to deploy
PostgreSQL as a disk-based, row oriented, shared-nothing parallel DBMS. A
Postgres-XC cluster consists of three different types of entities: a global trans-
action manager, a coordinator, and datanodes. The global transaction manager is
a central instance in a Postgres-XC cluster and enables multi-version concurrency
control (e.g. by issuing unique transaction IDs). The coordinator accepts queries
from an application and coordinates their execution by requesting a transaction ID
from the global transaction manager, determining which datanodes are needed for
answering a query and sending them the respective part of the query. The overall
data is partitioned across datanodes where each datanode executes (partial) queries
on its own data. Data can also be replicated across the datanodes in order to provide
high-availability.

• SAP HANA [FML+12] is an in-memoryparallelDBMSbasedona shared-nothing
architecture [LKF+13]. A database table in HANA can be split by applying round-
robin, hash- or range-based partitioning strategies: the database administrator can
assign the resulting individual partitions to individual HANA nodes either directly
or based on the suggestions of automated partitioning tools. There are two different
types of nodes: a coordinator node and a worker node. A database query issued
by a client gets send to a coordinator node first. A coordinator is responsible for
compiling a distributed query plan based on data locality or issuing global trans-
action tokens. The query plan then gets executed by a set of worker nodes where
each worker node operates on its local data. HANA also features a distributed
cost-based query optimizer that lays out the execution of single database opera-
tors which span multiple worker nodes. High-availability is ensured by hardware
redundancy which allows to provide a stand-by server for a worker node that takes
over immediately if the associated node fails [SAP13]. Durability is ensured by
persisting transaction logs, savepoints, and snapshots to SSD or disk in order to
recover from host failures or to support the restart of the complete system.

• MonetDB [BGvK+06] is an in-memory columnarDBMS that can be deployed as a
shared-nothing cluster. MonetDB is a research project, it comes with the necessary
primitives such as networking support and setting up a cluster by connecting
individual nodes each running MonetDB. This foundation can be used to add
shared-nothing data partitioning features and distributed query optimizations for
running data analytics [MC13].MonetDB is also used as a platform for researching
novel distributed data processing schemes: for example theDataCyclotron [GK10]
project creates a virtual network ring based on RDMA-enabled network facilities
where data is perpetually being passed through the ring, and individual nodes pick
up data fragments for query processing.

• Teradata Warehouse [Ter13, CC11] is a shared-nothing parallel database sys-
tem used for data analytics. The architecture consists of three major component
types: a parsing engine, an access module processor (AMP), and the BYNET
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framework. The parsing engine accepts queries from the user, creates query plans
and distributes them over the network (BYNET framework) to the corresponding
access module processors. An AMP is a separate physical machine that runs an
instance of the Teradata Warehouse database management system which solely
operates on the disks of that machine. The disks inside an AMP are organized in
redundant arrays to prevent data loss. The data is partitioned across all AMPs by
a hash partitioning schema in order to distribute the data evenly and reduce the
risk of bottlenecks. Teradata warehouse allows configuring dedicated AMPs for
hot standby which can seamlessly take over in the case of a failure of an active
AMP.

• VoltDB [SW13] is a row-oriented in-memory database that can be deployed as
a shared-nothing parallel database system. In such a cluster, each server runs an
instance of the VoltDB databasemanagement system. Tables are partitioned across
nodes by hashing the primary key values. In addition, tables can also be replicated
across nodes for performance and high-availability. For ensuring high-availability,
three mechanisms are in place: k-safety which allows to specify the number k of
data replicas in the cluster. Network fault detection evaluates in the case of a
network fault which side of the cluster should continue operation based on the
completeness of the data. Live node rejoin allows nodes when they restart after a
failure to be reintroduced to the running cluster and retrieve their copy of the data.
Durability is ensured via snapshots to disks in intervals and command logging.

2.3.3 Database-Aware Storage Systems

Summary: This subsection introduces database-aware storage systems which are
storage systems that support the execution of database operations in order to reduce
network communication.

The previous discussion of shared-storage versus shared-nothing architectures
describes that each architecture has its advantages: one advantage of a shared-
nothing architecture is that a processor performs data operations on the data that
is inside the same machine without the need for transferring the data over a network
first. Database-aware storage systems [RGF98, Kee99, SBADAD05] aim at bringing
that advantage to shared-storage systems by executing database operators directly
in the storage system. This approach is based on the idea of active storage/active
disks/intelligent disks [AUS98, KPH98] where the computational power inside the
storage device is being used for moving computation closer to the data.

The American National Standards Institute (ANSI) Object-based Storage Device
(OSD) T10 standard describes a command set for the Small Computer System Inter-
face (SCSI) [sta04] that allows communication between the application and the stor-
age system. This, in turn, is the foundation for the work of Raghuveer, Schlosser,
and Iren [RSI07] who use this OSD interface for improving data access for a data-
base application by making the storage device aware of relations, in contrast to just
returning blocks of data. However, they do not support the execution of applica-
tion/database code inside the storage device. This is done in the Diamond project
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[HSW+04], as it applies the concept of early discard in an active storage system.
Early discard describes the rejection of to be filtered out data as early as possible.
Diamond supports the processing of such filters inside an active disk and makes sure
that not requested data is discarded before it reaches the application, such as a data-
base system. Riedel, Gibson, and, Faloutsos [RGF98] evaluate the usage of active
disks for a different set of application scenarios including nearest neighbor search
in a database and data mining of frequent sets. They conclude that the processing
power of a disk drive will always be inferior to server CPUs, but that a storage system
usually consists of a lot of disks resulting in the advantage of parallelism, and that
combining their computational power with the processors inside the server results
in a higher total processing capacity. In addition, the benefit of filtering in the disk
reduces the load on the interconnect and brought significant performance advantages
for their application scenarios.

An example for a current system that exploits the possibilities of database-aware
storage systems is Oracle’s Exadata which combines a database and a storage sys-
tem inside a single appliance: the Exadata storage system supports Smart-Scan and
Offloading [SBADAD05]. Smart-Scan describes the possibility to execute column
projections, predicate filtering, and index creation inside the storage system. Offload-
ing enables the execution of more advanced database functions inside the storage
system, such as simple joins or the execution of mathematical or analytical functions.

2.3.4 Operator Placement for Distributed Query Processing

Summary: This subsection describes and discusses query, hybrid, and data shipping
which are three different approaches how the resources from client and server can
be utilized for processing a query in a distributed database management system.

When using a database-aware storage system, the resources from the storage sys-
tem, as well as the resources from the DBMS, can be utilized for query processing. In
the field of distributed query processing, this problem is classified as the exploitation
of client resources in the context of client-server database systems. As this problem
is originated in a setting where the client is an application and the DBMS acts as
a server, the remainder of this section presents a detailed description of the prob-
lem including the related work and discusses it in conjunction with database-aware
storage systems, where the DBMS is the client and the server is a storage system.

Tanenbaum explains the client-server model by stating that “a client process sends
a request to a server process which then does the work and sends back the answer”
[Tan07]. Based on that definition, Kossmann gives in his seminal paper The State of
the Art in Distributed Query Processing [Kos00] (which is in form and content the
blueprint for the remainder of this subsection) a description of the client resource
exploitation problem:

The essence of client-server computing is that the database is persistently stored by server
machines and that queries are initiated at client machines. The question is whether to execute
a query at the client machine at which the query was initiated or at the server machines that
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Fig. 2.10 Illustration of query, data, and hybrid shipping (Figure taken from [Kos00]). a Query
Shipping. b Data Shipping. c Hybrid Shipping

store the relevant data. In other words, the question is whether to move the query to the data
(execution at servers) or to move the data to the query (execution at clients).

This results in the following three approaches:
Query shipping (see Fig. 2.10a) is an approachwhere the client sends the query in

its entirety to the server, the server processes the query and sends back the result. This
is the approach that is typical for example for relational DBMSs such as Microsoft
SQL Server or IBM DB2.

Data shipping (or data pull) (see Fig. 2.10b) is the opposite solution where the
client consumes all the needed data from the server and then processes the query
locally. This results in an execution of the query where it originated. Object-oriented
databases often work after the data shipping principle as the client consumes the
objects as a whole and then does the processing.

Hybrid shipping (seeFig. 2.10c) is a combination of the twoprevious approaches.
As shown by Franklin, Jónsson, and Kossmann [FJK96], hybrid shipping allows exe-
cuting some query operators at the server side, but also pulling data to and processing
it at the client side. As shown in Fig. 2.10c, data region A is being pulled and scanned
at the client’s side. Data region B is scanned at the server’s side, and the results are
then transferred to the client where they are joined with the results from the scan on
data region A.

The three different approaches imply a number of design decisions when creating
a model that supports the decision where the execution of each individual database
operator that belongs to a query is being placed. Those decisions are: (a) the site
selection itself which determines where each individual operator is being executed,
(b) where to decide the site selection, (c) what parameters should be considered when
doing the site selection, and (d) when to determine the site selection.
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Table 2.2 Site selection for different classes of database operators for query, data, and hybrid
shipping (Figure taken from [Kos00])

Database operator Query shipping Data shipping Hybrid shipping

Display Client Client Client

Update Server Client Client or server

Binary operators (e.g.
join)

Producer of left or
right input

Consumer (i.e. client) Consumer or producer
of left or right input

Unary operators (e.g.
sort, group-by)

Producer Consumer (i.e. client) Consumer or producer

Scan server Client Client or server

Site selection in conjunction with the client resource exploitation problem says
that each individual database operator has a site annotation that indicates where this
operator is going to be executed [Kos00]. As shown in Table2.2, different annotations
are possible per operator class: display operations return the result of a query which
always has to happen at the client. All other operators in a data shipping approach
are executed at the client site as well or in other words at the site where the data
is consumed. Query shipping executes all operators at the server site or where the
data is produced (e.g. by the execution of a previous operator). Hybrid shipping
supports both annotations. The question where to make the site selection depends
on several factors, most notably the number of servers in the system: if there is
only one server, it makes sense to let the server decide the site selection as it knows
its own current load [HF86]. If there are many servers, there might be no or only
little information gained by executing it at the server site as a single server has no
complete knowledge of the system. In addition, the site selection itself is also an
operation that consumes resources which can be scaled with the number of clients if
executed at the client. What information is considered for the site selection depends
on the nature of the site selection algorithm. For example, for a cost-based approach
one might want to consider information about the database operation itself, such as
the amount of data to be traversed or the selectivity, the hardware properties of the
client, the server, as well as the interconnect or information about the current load
of the client and/or the server. If the site selection algorithm is a heuristic, simple
information such as the class of the current database operation and the selectivity
might be sufficient (e.g. executing a scan operator at the server site if the selectivity
is greater than x). Three different approaches are possible with regards to deciding
when site selection occurs: a static, a dynamic, and a two-step optimization approach.
A static approach can be chosen if the queries are known and compiled at the same
time when the application itself is being compiled. This allows also to decide on the
site selection at compile time. Only in exceptional situations, such as a change in the
predetermined queries, doesa reevaluation of the site selection occur [CAK+81]. This
approach works well if queries and workload are static, but performs poorly with a
fluctuating or changing workload. A simple dynamic approach generates alternative
site selection plans at design time and chooses the site selection plan during query
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execution that for example best matches the assumptions about the current load of
the system. If that repeatedly results in poor performance, a new set of site selection
plans can be generated [CG94]. This can be especially useful if certain servers are
not responsive [UFA98] or if the initial assumptions of e.g. the sizes of intermediate
results turned out to be wrong [KD98]. Two-step optimization is a more advanced
dynamic approach that determines the site selection just before the query execution.
This is achieved by a decomposition of the overall query execution into two steps
[Kos00]. First, a query plan is generated that specifies the join order, join methods,
and access paths. This first step has the same complexity as the query plan creation in
a centralized system. Second, right before executing the query plan, it is determined
where every operator is being executed. As the second step only carries out the
site selection for a single query at a time, its complexity is reasonably low and
can also be done during query execution. As a consequence, it is assumed that this
approach reduces the overall complexity of distributed query optimization and is
hereby popular for distributed and parallel database systems [HM95, GGS96]. The
advantages of the two-step optimization are the aforementioned low complexity and
the ability to consider the current state of the system at the time of query execution
which can be used for workload distribution [CL86] and to exploit caching [FJK96].
The downside of decoupling query plan creation and site selection is ignoring the
placement of data across servers during query plan creation as it might result in a
site selection plan with unnecessary high communication costs [Kos00].

The previous explanations are a general take on the client resource exploitation
and the resulting site selection problem. They include the underlying assumption that
every operator in a query can be executed at the client or the server. However, this
might not be the case as not all database operators are available at both sites. This
limits the site selection scope to a subset or a set of classes of database operators
depending on which are available at both sites. In addition, the execution order of
the operators according to the query plan also limits the site selection (e.g. a query
plan foresees that two relations are scanned and the results of the scan operations
are joined). The scan operators are available at the client and server sites, the join
operator is only available at the server. In this case, executing the scans at the client
site results in an unreasonably high communication overhead as both relations have
to be shipped in their entirety to the client and then the scan results have to be
shipped back to the server for processing the join. The availability of operators at a
site depends on which kind of system acts as the client and the server. If the client is
an application and the server is a relational database management system, then the
entirety of database operators is available at the server site. The default mode is to
ship the query to the DBMS and retrieve the result. It is possible that some operators
are also available at the client site (e.g. a scan and a group-by operator). That allows
hybrid shipping for queries that facilitate both, and makes data shipping an option
for queries that only consists of these two types of operators. In such a setting, all
possible queries can be executed with query shipping, a subset of them with hybrid
shipping and an even smaller subset with data shipping (as depicted in Fig. 2.11).
The situation is reversed when the client is a relational DBMS and the server is
a database-aware storage system. If the database-aware storage system has a scan
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Query Shipping Hybrid Shipping Data Shipping

Ratio of queries 
eligible for the 

respective shipping 
approach 

Client:  Application
Server: Relational Database Management System

Client:  Relational Database Management System
Server: Database-Aware Storage System 

Fig. 2.11 Depicting the ratio of queries which are eligible for query, hybrid or data shipping in
correspondence with a relational DBMS either acting as server or client

operator implemented, all queries can be executed with data shipping, queries which
involve a scan can be executed via hybrid shipping and queries solely consisting of
scans have the option of using a query shipping approach.

2.4 Cloud Storage Systems

Summary: This section introduces and classifies cloud storage systems and describes
how they differ from traditional database and file systems.

The paradigm of cloud computing describes the provisioning of information tech-
nology infrastructure, services, and applications over the Internet. Typical charac-
teristics are the on-demand availability of such resources, their quick adaption to
changing workloads, and the billing based on actual usage. From a data manage-
ment perspective, two different types of cloud storage systems have been created to
manage and persist large amounts of data created and consumed by cloud computing
applications: (a) So called NoSQL2 systems include distributed key-value stores,
such as Amazon Dynamo [DHJ+07] or Project Voldemort, wide column stores such
as Google Bigtable [CDG+06] or Cassandra [LM10] as well as document and graph
stores. (b) Distributed file systems such as Google File System (GFS) [GGL03] or
Hadoop Distributed File System (HDFS) [SKRC10]. The remainder of this section
explains themotivation for building these cloud storage systems, and their underlying
concepts, as well as how they differ from traditional database and file systems.

Theprevious section explains that parallel databasemanagement systems combine
the resources of multiple computers to accelerate the execution of queries as well as
increase the overall data processing capacity. Such systems were greatly challenged
with the advent of e-commerce and Internet-based services offered by companies

2There is no explicit explanation what the abbreviation NoSQL stands for, but it is most commonly
agreed that it means “not only SQL”. This term does not reject the query language SQL, but rather
expresses that the design of relational database management systems is unsuitable for large-scale
cloud applications [Bur10] (see Eric Brewer’s CAP theorem [Bre00, Bre12] as explained later in
this Section).
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such as Amazon, eBay or Google in the mid-nineties. These companies not only
grew rapidly in their overall size, they also did it in a comparatively short period
of time with unpredictable growth bursts. This development put big emphasis on
the aspects of scalability and elasticity in the context of data storage and processing
systems. Scalability is defined as

a desirable property of a system, which indicates its ability to either handle growing amounts
of work in a graceful manner or its ability to improve throughput when additional resources
(typically hardware) are added. A system whose performance improves after adding hard-
ware, proportionally to the capacity added, is said to be a scalable system [AEADE11].

Elasticity hardens the scalability property as it focuses on the quality of the workload
adaption process—e.g. when resources have been added—in terms such as money
or time. Elasticity can be defined as

the ability to deal with load variations by adding more resources during high load or con-
solidating the tenants to fewer nodes when the load decreases, all in a live system without
service disruption, is therefore critical for these systems. ... Elasticity is critical to minimize
operating costs while ensuring good performance during high loads. It allows consolida-
tion of the system to consume less resources and thus minimize the operating cost during
periods of low load while allowing it to dynamically scale up its size as the load decreases
[AEADE11].3

For example, the Internet-based retailer Amazon initially used off-the-shelf rela-
tional databasemanagement systems as the data processing backend for their Internet
platform. The Amazon Chief Technology Officer Werner Vogels explains [Vog07]
that Amazon had to perform short-cycled hardware upgrades to their database
machines in their early days. Each upgrade would only provide sufficient data
processing performance for a couple of months until the next upgrade was due to the
company’s extreme growth. This was followed by attempts to tune their relational
database systems by simplifying the database schema, introducing various caching
layers or partitioning the data differently. At some point the engineering team at
Amazon decided to evaluate the data processing needs at Amazon and create their
own data processing infrastructure accordingly. These data processing needs reveal
[Vog07] that at Amazon e.g. about 65% of the data access is based on the primary
key only, about 15% of the data access exposes lot of writes in combination with
the need for strong consistency, and 99.9% of the data access has a need for low
latency where a response time of less than 15 ms is expected. The variety in their
data processing needs is covered by a set of solutions where the most prominent one
is Amazon Dynamo.

Amazon Dynamo [DHJ+07] is a distributed key-value store. Since the majority
of data operations at Amazon encompass primary key access only and require low
latency, Dynamo is designed for storing and retrieving key-value pairs (also referred
to as objects). Dynamo implements a distributed hash table where the different nodes
that hold data of that hash table are organized as a ring. The data distribution is done

3The definitions and usage of the terms scalability and elasticity are much discussed in the computer
science community as they are not strictly quantifiable [Hil90].
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via consistent hashing. However, a hash-based data partitioning onto physical nodes
would lead to a non-uniform data and load distribution due to the random posi-
tion assignment of each node in the ring and the basic algorithm is oblivious to the
heterogeneity in the performance of nodes. This is addressed by the introduction
of virtual nodes (which can be thought of as namespaces), where a single virtual
node is being mapped onto different physical nodes: this allows for providing high-
availability and elasticity by changing the number of physical nodes assigned to a
virtual node upon workload changes. As a result, nodes can be added and removed
from Dynamo without any need for manual partitioning and redistribution. Consis-
tency is facilitated by object versioning [Lam78]. The consistency among replicas
during updates is maintained by a quorum-like technique and a decentralized replica
synchronization protocol. These features in combination make Dynamo a scalable,
highly-available, completely decentralized system with minimal need for manual
administration. Amazon Dynamo is just one example of a distributed key-value
store, but it is conceptually similar to other popular distributed key-value stores such
as Riak [Klo10] or Project Voldemort [SKG+12]. Google Bigtable [CDG+06] and
Cassandra [LM10] are examples for wide column stores (also known as extensible
record stores [Cat11]): for example Google Bigtable implements a sparse, distrib-
uted, persistent multi-dimensional map indexed by a row key, a column key, and
some kind of versioning information such as a timestamp or versioning number.
This multi-dimensional map is partitioned in a cluster in the following way: the rows
of a map are split across nodes with the assignment being done by ranges and based
on hashing. Each column of a map is described as a column family, the contained
data is of the same type and its data is being distributed over multiple nodes. Such
a column family must not be mistaken for a relational database column that implies
that related data is physically collocated, but can be seen more as a namespace.
The motivation for using such wide column stores over simple distributed key-value
stores is the more expressive data model, that provides a simple approach to model
references between data items [CDG+06].

How a cloud storage system such as Amazon Dynamo differs from a relational
DBMS and how it addresses the previously mentioned scalability shortcomings can
be illustrated with the Consistency, Availability, and Partition Tolerance (CAP) the-
orem by Eric Brewer [Bre00, Bre12]. In this theorem

consistencymeans that all nodes see the same data at the same time, availability is a guarantee
that every request receives a response about whether it was successful or failed and partition
tolerance lets the system continue to operate despite arbitrary message loss.

The theorem states that a distributed system can provide two properties at the same
time, but not three. Relational DBMSs provide consistency and availability, cloud
storage systems provide availability and partition tolerance. This is done by relaxing
the ACID constraints in cloud storage systems as it significantly reduces the commu-
nication overhead in a distributed system, providing simple data access APIs instead
of complex query interfaces, and schema-free data storage [Bur10].

Another category of cloud storage systems are distributed filesystems. Distributed
filesystems in general have been available for over 30 years, their purpose is to “allow
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users of physically distributed computers to share data and storage resources by
using a common file system” [LS90]. Well-cited examples are Sun’s Network File
System (NFS) [SGK+88] and the Sprite Network File System [OCD+88]. However,
a distributed file system—such as the Google File System—which is designed to act
as a cloud storage system, differs from traditional distributed filesystems in a similar
way as a distributed key-value storage differs from a relational database management
system. It weakens consistency, reduces synchronization operations along with the
introduction of replicating datamultiple times in order to scale gracefully and provide
high-availability. This can be illustrated by reviewing the underlying assumptions
and requirements that led to the design of the Google File System [GGL03]: the
file system is built from many inexpensive commodity components where hardware
failures are the norm not the exception, which means that fault-tolerance and auto-
recovery need to be built into the system. Files can be huge, bandwidth is more
important than latency, reads are mostly sequential and writes are dominated by
append operations. The corresponding Google File System architecture foresees that
a GFS cluster has a single master server, multiple chunkservers and they are accessed
by multiple clients. Files in GFS are divided into fixed-size chunks, where each
chunk is identified by a unique 64-bit chunk handle, the size of a chunk is 64MB,
and chunks are replicated at least three times throughout the cluster. A master server
maintains all file system metadata such as namespaces, access control information,
the mappings from files to chunks as well as the locations from the different chunks
on the chunkservers. Each chunkserver stores its chunks as separate files in a Linux
file system. If a client wants to access a file, it contacts the master server which
provides it with the chunk server locations as well as the file-to-chunk mappings: the
client is then enabled to autonomously contact the chunkservers. This allows clients
to read, write, and append records in parallel at the price of a relaxed consistency
model (e.g. it may take some time until updates are perpetuated to all replicas): these
relaxed consistency guarantees have to be covered by the applications that run on
top of GFS (e.g. by application-level checkpointing).

With the increasing popularity of cloud storage systems emerged the need to exe-
cute more complex operations on the stored data than simple data retrieval and mod-
ification operations. This need is addressed by Google’s MapReduce programming
model [DG08] that was built for being used in conjunction with Google Bigtable or
the Google File System. The idea of MapReduce is to process large sets of key-value
pairs with a parallel, distributed algorithm on a cluster: the algorithm performs at
first a Map() operation that performs filter operations on key-value pairs and creates
corresponding intermediate results followed by a Reduce() operation which groups
the intermediate results foe example by combining all results that share the same key.
The simplicity of this approach, the ability to quickly identify non-interleaving data
partitions, and the ability to execute the respective sub-operations independently,
enable a great degree of parallelism.
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2.4.1 State-of-the-Art Cloud Storage Systems

Summary: This subsection presents state-of-the-art cloud storage systems.
After describing Amazon Dynamo, Google Bigtable, and the Google File Sys-

tem in the previous subsection, we discuss additional state-of-the-art cloud storage
systems.

• Amazon Dynamo [DHJ+07] see previous Sect. 2.4.
• Google Bigtable [CDG+06] see previous Sect. 2.4.
• Google File System [GGL03] see previous Sect. 2.4.
• Hadoop [Whi09] and the Hadoop Distributed File System (HDFS) [SKRC10]
are open-source implementations based on the concepts of Google’s MapReduce
and the Google File System. HDFS has a similar architecture as GFS as it deploys
a central entity called namenode that maintains all the meta information about
the HDFS cluster. So called datanodes hold the data which gets replicated across
racks, and clients that directly interact with datanodes after retrieving the needed
metadata from the namenode. HDFS differs from GFS in the details (e.g. HDFS
uses 128MB blocks instead of GFS’s 64MB chunks). In HDFS a client can freely
choose against which datanode it wants to write, and HDFS is aware of the concept
of a datacenter rack when it comes to data balancing. Hadoop itself is a framework
for executing MapReduce, it includes and utilizes HDFS for storing data, and
provides additional modules such as theMapReduce engine: this engine takes care
of scheduling and executing MapReduce jobs, and consists of a JobTracker which
accepts and dispatches MapReduce jobs from clients and several TaskTrackers
which aim to execute the individual jobs as close to the data as possible.

• Memcached [Fit04] is a distributed key-value store which is commonly used for
caching data in the context of large web applications (e.g. Facebook [NFG+13]).
As a consequence, each server in a Memcached cluster keeps its data resident in
main memory for performance improvements. Upon a power or hardware failure,
the main memory resident data is lost. However, this is not considered harmful
as it is cached data, which might be invalidated after potential server recovery.
Memcached itself has no support for data recovery, it is expected to be provided
by the application (e.g. Memcached is extensively being used at Facebook and
the Facebook engineering implemented their own data replication mechanism
[NFG+13]). The data in a Memcached cluster is partitioned across servers based
on hash values of the to be stored keys: their ranges are mapped to buckets and
each server is assigned one or more buckets.

• Project Voldemort [SKG+12] is a distributed key-value store developed by the
social network LinkedIn and is conceptionally similar to Amazon’s Dynamo.
Project Voldemort also applies consistent hashing to partition its data across nodes
and to replicate data over multiple times with a configurable replication factor.
Project Voldemort also does not provide strong consistency, but facilitates a ver-
sioning system to ensure that data replicas become consistent at some point.

• Stanford’s RAMCloud [OAE+11] is a research project that combines the
in-memory performance of a solution such as Memcached with the durable,



2.4 Cloud Storage Systems 39

high-available, and gracefully scaling storage of data as realized by a project such
as Bigtable. It does so by keeping all data entirely in DRAM by aggregating the
main memory of multiple of commodity servers at scale. In addition, all of these
servers are connected via a high-end network such as InfiniBand (as discussed in
Sect. 2.1.3) which provides low latency [ROS+11] and a high bandwidth. RAM-
Cloud employs randomized techniques to manage the system in a scalable and
decentralized fashion and is based on a key-value data model. RAMCloud scatters
backup data across hundreds or thousands of disks or SSDs, and harnesses hun-
dreds of servers in parallel to reconstruct lost data. The systemuses a log-structured
approach for all its data, in DRAM as well as on disk/SSD, which provides high
performance both during normal operation and during recovery [ORS+11]. The
inner workings are explained in detail in Sect. 3.3.

2.4.2 Combining Database Management and Cloud Storage
Systems

Summary: This subsection discusses different approaches of combining database
management and cloud storage systems, including the adaptation of each other’s
features, providing connectors, translating SQL to MapReduce programs, provid-
ing specialized SQL engines on top of cloud storage systems, having a hybrid
SQL/MapReduce execution, and utilizing a cloud storage system as shared-storage
for a DBMS.

The advent of cloud storage systems piqued interest in the DBMS as well as in the
cloud storage systems community to evaluate the use and adaptation of each other’s
features. Initially, this was an unstructured undertakingwhich for example resulted in
the statement by Michael Carey that “it is the wild west out there again” [ACC+10].
Dean Jacobs said “I recently reviewed a large number of ‘cloud database’ papers for
various conferences. Most of these papers were either adding features to distributed
key-value stores to make them more usable or removing features from conventional
relational databases to make them more scalable” [Jac13]. However, the adaptation
of relational query processing features in a cloud storage system eventually became
a well-established area of work in academia as demonstrated by the Stratosphere
project [Mem13b], which extends the MapReduce model with operators [BEH+10]
which are common in relational DBMS.

The advantages and growing popularity of cloud storage systems led to the desire
to execute SQL statements against data that is inside a cloud storage system. The
different approaches can be put into the following four categories:

• DBMS to cloud storage system connectors allow the bidirectional exchange of
data between the two systems. Such an approach is commonly used for running ad-
hoc queries on the outcome of aMapReduce job by preparing the unstructured data
in the cloud storage system and then convert it to structured data inside the DBMS.
Those connectors are popular with traditional DBMS vendors as they allow them

http://dx.doi.org/10.1007/978-3-319-20711-7_3
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to label their products as “Hadoop compatible”. Examples for such connectors
are the Microsoft SQL Server Connector for Apache Hadoop [Cor13] and the HP
Vertica Hadoop Distributed File System Connector [Ver13]. The disadvantages of
such connectors are that they (a) require an ETL process which forbids ad-hoc
querying, (b) transfer the complete to be queried dataset over the network, and (c)
create a redundant copy of the dataset.

• SQL translated to MapReduce allows sending an SQL query to a cloud storage
system such as Hadoop. The SQL query is translated to a set of MapReduce
jobs which are then executed by the cluster. This bears the advantages that it (a)
utilizes the properties of the cloud storage system in terms of high-availability as
well as scalability and (b) integrates into the existing scheduling of MapReduce
jobs (as opposed to the previous approach where the extraction of data creates an
unexpected extra load). The main disadvantages are that (a) the accepted SQL is a
SQL dialect and not SQL-standard conform and (b) the translation overhead and
theMapReduce batch-oriented execution style prevent ad-hoc queries. Facebook’s
Hive [TSJ+09] is an example of a system that uses such an approach.

• Specialized SQL engines on top of cloud storage systems accept SQL-like
queries. They execute the queries not by translating them to MapReduce jobs,
but by shipping custom database operators to the data nodes. Systems that fall
into that category are the row-oriented Google F1 [SOE+12] and the column-
oriented Google Dremel [MGL+10]. For example Google Dremel operates on
GFS and exploits the GFS interfaces that allows code execution on chunkservers
and thereby to ship and execute operators. This results in the advantage of being
able to execute ad-hoc queries as well as collocating data and their processing.
The big disadvantages of such an approach are that (a) such specialized SQL
engines are not SQL-standard compliant and (b) they only provide poor coverage
of the common SQL operators. These disadvantages eliminate the use of existing
tools and the ability to execute applications which expose SQL-standard compliant
queries.

• Hybrid SQL and MapReduce execution aims at combining both of the previous
approaches: anSQLquery submitted to the systemgets analyzed and then parts of it
are processed viaMapReduce and other parts with the execution of native database
operators. That allows to determine the mix of MapReduce and database operator
execution based on the type of query: for executing ad-hoc queries MapReduce-
style execution is avoided as much as possible whereas it is preferred for queries
at massive scale in combination with the need for fault tolerance. Examples for
such systems are HadoopDB [BPASP11] or Polybase [DHN+13].

Another category of research that focuses on the combination of database man-
agement and cloud storage systems is the use of cloud storage systems as shared-
storage for parallel DBMS. Whereas the previously explained approaches trim the
SQL coverage and sacrifice the compliance with the SQL standard, this approach
takes a standard relational query processor or DBMS and utilizes the cloud storage
system instead of a classic shared-disk storage.
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• Building a Database on S3 [BFG+08] by Brantner et al. demonstrates the use of
Amazon S3 as a shared-disk for persisting the data from a MySQL database. This
workmaps the elements from theMySQLB-tree to key-value objects and provides
a corresponding customMySQL storage engine that allows for prototypical exper-
iments. It also introduces a set of protocols which show how different levels of
consistency can be implemented using S3. Driven by the TPC-W benchmark, the
trade-offs between performance, response time, and costs (in terms of US dollars)
are discussed.

• Running a transactional Database on top of RAMCloud [Pil12] by Pilman
takes a similar conceptual approach, but utilizes RAMCloud instead of Amazon
S3. The motivation for using RAMCloud is to exploit its performance advantages
provided by in-memory data storage and RDMA capabilities. The work by Pilman
presents two different architectures: onewhere aMySQL instance runs exclusively
on a RAMCloud cluster, and the other one where several instances of MySQL
run on a RAMCloud cluster. A benchmark is presented that executes TPC-W
and uses MySQL with InnoDB as a baseline. The experiments show that “we
can run MySQL on top of a key-value store without any loss of performance or
scalability but still gain the advantages this architecture provides. We have the
desired elasticity and several applications could run in the same network using
each its own database system, but all on the same key-value store” [Pil12].

2.5 Classification

Summary: This section classifies related work as presented throughout the chapter.
After an extensive explanation of the background and the related work in the

previous sections of this chapter, this section presents a compact overview on the
related work and the corresponding classification.

This work is positioned in the field of evaluating a parallel DBMS architecture and
its implications on query processing. As explained in Sect. 2.3.1, the shared-nothing
versus shared storage architecture trade-offs are much discussed in the context of
classic storage architectures (e.g. SAN/NAS storage) and a great variety of prod-
ucts from big vendors are available in both markets. It is noteworthy that for main
memory resident parallel DBMSs a shared-nothing architecture is dominating: this
is due to the intention of not sacrificing the performance advantage of keeping data in
main memory, but constantly shipping it over a significantly slower network. How-
ever, with the advent of fast switch fabric communication links—as discussed in
Sect. 2.1.3—the performance gap between accessing local and remote main memory
narrows down and the implications of this development on the architecture discussion
for main memory parallel DBMS are not clear yet.

Deploying a parallel DBMS on a cloud storage system is a relatively new area
of research. As explained in Sect. 2.4.2, the cloud community has worked out sev-
eral approaches how to execute SQL-like statements against data in a cloud storage
system. SpecializedSQLengines on top of cloud storage systemsmost closely resem-
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ble a traditional DBMS as they just use database operators for query execution and
neglect the batch-oriented MapReduce paradigm altogether. But even those systems
are not SQL-standard compliant and provide their own SQL dialect which makes
them uninteresting for the broad range of applications that expose SQL-standard
compliant queries. This downside is not inherent to the work from the DBMS com-
munity which takes the opposite approach by deploying a standard, SQL-standard
compliant DBMS on to a cloud storage system. In this field, the work co-authored
[BFG+08] and supervised by [Pil12] Donald Kossmann are the single most related
pieces of work.

In this work, we also focus on deploying a parallel DBMS on a cloud storage
system, but (a) we keep all data resident in main memory all the time, (b) we apply a
column-oriented data layout, and (c) we use the storage system for both—data access
and code execution. This area of work in currently not addressed in the research
community. Google works with Dremel in the same domain, but their approach is
based on disk resident data. So far, the work co-authored [BFG+08] and supervised
by [Pil12] Donald Kossmann, focuses on the processing of transactional workloads
by a row-oriented database and it utilizes the cloud storage system solely as passive
storage without considering the possibilities of operator shipping and execution.
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Chapter 3
System Architecture

3.1 System Architecture—Requirements, Assumptions,
and Overview

Requirements

In order to address the research questions as formulated in Sect. 1.2, we have to define
a system architecture that meets the following requirements:

1. The overall system architecture is composed of a parallel DBMS and a storage
system, following the principles of a shared-storage approach (as explained in
Sect. 2.3.1) resulting in:

a. A separation of the processors belonging to the parallel DBMS and the storage
system with the processors sharing common access to the data inside the
storage system.

b. Each processor can access all data.
c. The capacities of the parallel DBMS as well as the storage system can be

adjusted independently.

2. The architecture of the parallel DBMS must support:

a. Operating on data that is structured according to the relational model and
process SQL-standard conform queries (as explained in Sect. 2.2).

b. Organizing data in a columnar format (as explained in Sect. 2.2.1) and pro-
viding corresponding database operators which are able to execute workloads
which benefit from column-oriented data (as explained in Sect. 2.2.2).

c. Seamlessly switching between executing a database operator by itself or del-
egating the execution to someone else (as explained in Sect. 2.3.4).

3. The storage system is required to:

a. Keep all data resident in main memory (as explained in Sect. 2.3.1).
b. Provide durability, high-availability, scale gracefully, and be elastic

(as explained in Sect. 2.4).

© Springer International Publishing Switzerland 2016
C. Tinnefeld, Building a Columnar Database on RAMCloud, In-Memory
Data Management Research, DOI 10.1007/978-3-319-20711-7_3
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Fig. 3.1 Assumptions with regards to the deployed hardware and software stacks

c. Provide data access as well as the possibility to execute code (as explained in
Sect. 2.3.3).

4. The different components of the architecture are connected via a network
infrastructure that supports remote direct memory access (RDMA) (as explained
in Sect. 2.1.3).

Assumptions and Overview

The previously mentioned requirements can be addressed in many different ways.
As discussed in Sects. 2.3.2 and 2.4.1, there are a number of state-of-the-art systems
where each addresses a subset of the requirements. Utilizing them for constructing
our architecture introduces a set of assumptions which we want to articulate in order
to illustrate the translation from the requirements to the actual system architecture.

We make the following assumptions about our system architecture: the parallel
DBMS runs on a number of servers which are referred to as nodes. Each node is
equipped with its own hardware consisting of standard server hardware (as explained
in Sect. 2.1) and a RDMA-enabled network interface card (as illustrated in Fig. 3.11).
The node is equipped with its own local storage in the form of a disk or SSD, but this
is only used for storing the operating system and the DBMS software, but not parts
of the database itself. Each node runs an instance of the parallel DBMS software and
has access to meta information about the database such as the contained relations,
attributes, data types, and foreign keys. The parallel DBMS is equippedwith a central
instance called a federator which accepts queries from clients and distributes them
in a round-robin manner among the nodes in the parallel DBMS cluster. The number
of nodes for the parallel DBMS can be adjusted in order to meet certain performance
requirements.

1The Fundamental Modeling Concepts (FMC) notation [KGT06] is being used for architectural
figures throughout this chapter.
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The storage system also runs on its own servers which are referred to as nodes.
Again, each node is equipped with its own hardware consisting of standard server
hardware (as explained in Sect. 2.1) and an RDMA-enabled network interface card.
Each node keeps all to-be-stored data resident in main memory, which implies that
the overall storage capacity of the storage system cannot be greater than the sum of
the main memories of all nodes. Each node utilizes a local disk or SSD to store also
data in a non-volatile manner. For data recovery purposes, for example in the case
of a failure of an individual node, the to-be-stored data is replicated and scattered
across all nodes and can be recovered in a very short period of time. Each node runs
the storage system software, which can access the storage meta information that
describes the data it holds. The distribution of data and their replication across the
nodes is managed by a central instance in the storage system. This central instance
also distributes the information.

In this work, we use AnalyticsDB as parallel DBMS and Stanford’s RAMCloud
as storage system, and utilize them as components to construct the aforementioned
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Fig. 3.2 System architecture overview
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system architecture as illustrated in the system architecture overview in Fig. 3.2. Both
components in combination allow fulfilling the previously stated requirements and
go along with our assumptions as their detailed description in the remainder of this
chapter shows.

3.2 AnalyticsDB

AnalyticsDB is our prototypical in-memory DBMS written in C++. It has been
designed and developed in the context of this work. Initially, the idea was to stand
on the shoulder of giants and utilize existing open-source in-memory columnar data-
base systems and their implementations such as MonetDB [BKM08b] and HYRISE
[GKP+10]: this option turned out to be cumbersome, since the operator execution
in both systems is parameterized by providing the local memory address of the
to be processed data. This makes the decoupling of operator execution and data
location—and in turn the switching between operator execution on local or remote
memory—difficult. Instead of reengineering those existing systems, AnalyticsDB
has been designed and built from scratch.

The AnalyticsDB architecture is shown in Fig. 3.3 and features the following
properties:

• A columnar data layout according to the decomposed storagemodel (as explained
in Sect. 2.2.1) in combination with all data residing permanently in main phys-
ical memory (as explained in Sect. 2.2).

• Dictionary compression (as explained in Sect. 2.2.1) is used for compressing non-
numeric attributes (e.g. string) to integer values. AnalyticsDB supports choosing
between 2-, 4- or 8-byte sized integers.

• The pattern of late materialization [AMDM07] is applied in order to defer the
materialization of intermediate results as long as possible. Until full materializa-
tion, AnalyticsDB operates on position lists and dictionary-encoded values.

• A column-at-a-time execution model [Bon02]—as opposed a Volcano-style
[Gra94a] query execution—but without the policy of full column materialization
(see previous point).

• The use of a storage application programming interface (API) which encap-
sulates storage access as well as operator execution. The granularity of the API
is per column. This API can be implemented by using a local data structure or
for example, using the client of a separate storage system.2 Listing 3.1 shows an
excerpt from a simplified version of the AnalyticsDB storage API.

2The introduction of such anAPI creates a penalty of a couple of CPU cycles per operator execution.
However, since the ultimate goal is the evaluation of local versus remote operator execution this
penalty is negligible.

http://dx.doi.org/10.1007/978-3-319-20711-7_2
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• AnalyticsDB is designed to process queries written in standard-compliant SQL.
The implementation in its current version accepts fully phrased query plans.

• AnalyticsDB can process analytical and mixed workloads (as explained in
Sect. 2.2.2). The execution of mixed workloads is supported by column-level
locking resulting in a read committed isolation level. In a distributed setup,
one AnalyticsDB node handles all write operations while read-only operations
can be executed by all remaining nodes3: this approach is common for scaling
out an in-memory database system that handles a mixed workload as practiced for
scaling-out HyPer [MRR+13] or by SAP HANA [LKF+13].

3As mentioned in Sect. 1.2, distributed transaction processing is out of scope in this work.

http://dx.doi.org/10.1007/978-3-319-20711-7_2
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1 ColumnPosition append(ColumnValue value);
ColumnValue get(ColumnPosition position);
void set(ColumnPosition position , ColumnValue value)

;

6 ColumnPositionList scan(SCAN_COMPARATOR comparator ,
ColumnValue value ,
ColumnPositionList positionList);

Array <ColumnValue > materialize(ColumnPositionList positionList);
ColumnPositionList joinProbe(ArrayRef probingValues ,

11 ColumnPositionList positionList);
size_t size();
void restore(ArrayRef values);

Listing 3.1 Excerpt from a simplified version of the AnalyticsDB storage API

3.3 Stanford’s RAMCloud

As mentioned in Sect. 2.4.1, RAMCloud [OAE+11] is a storage system that com-
bines DRAM-based data storage with a RDMA-enabled network. A RAMCloud
consists of three different types of software components: a coordinator, a master,
and a backup. Instances thereof are deployed on nodes of a RAMCloud whereat
instances of different components can be deployed on the same physical machine
at the same time. A master stores a set of objects in main memory, replicates these
objects and corresponding changes synchronously over network into the main mem-
ory of a number of backups which asynchronously persist the data on disk/SSD. In
addition, a central coordinator keeps track of all master and backup instances and
the partitioning of the objects’ address ranges across the different master instances.
Clients can utilize the provided storage capabilities of a RAMCloud by using aRAM-
Cloud library which enables them to communicate with the central coordinator and
the master instances.

A coordinator is a central instance in RAMCloud as it maintains a global view on
the locations of stored objects and the available master and backup servers. For doing
so, it employs two different data structures: a tablet map which keeps track of the
address ranges of stored objects, and the corresponding master that stores the objects
within a certain address range, and a host list that keeps track of the locations of the
different servers, their IP address, and their status. The coordinator is contacted by
other entities to find out which master stores a certain object.

Each master stores a number of objects. The address range of all objects to be
stored—as maintained in the tablet map of the coordinator—is partitioned among
the different masters, where each master is considered as the owner of all objects
that fall into a certain span of the global address range. Each master is responsible
for populating updates on its objects to the corresponding backup servers. A master
uses two different data structures to store its objects: a log-based data structure that
stores the actual objects and an object map that keeps track of which object is placed
at what position in the log. The look-up of an object has a complexity of O(1) since
the object map uses a hash function to look up the position of an object (Fig. 3.4).

http://dx.doi.org/10.1007/978-3-319-20711-7_2
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A backup keeps copies of the objects which are stored in a master. Whenever
an object in a master is created or gets modified, the changes are synchronously
dispatched to a number of backups which also keep the objects in main memory.
Besides that in-memory storage, a backup also has a file storage which persists the
data on disk/SSD. Thewrites to disk happen asynchronously. The in-memory storage
as well as the disk/SSD-based storage is log-structured in order to exploit sequential
I/O during the write operations. A segments map provides a hash table lookup in
order to find objects in the log.



Chapter 4
Data Storage

4.1 Mapping from Columnar Data to RAMCloud Objects

Using RAMCloud with its key-value based data model as storage system for a colum-
nar DBMS results in the question how to map the columnar data to objects in RAM-
Cloud. RAMCloud provides the concept of namespaces. A namespace defines a
logical container for a set of objects, where each object key occurs only once. Upon
the creation of a new namespace, the parameter server span is set to define how many
storage nodes will be used to store the objects of the namespace. These namespaces
are assigned to nodes in a round-robin manner. Assignment of key-value pairs across
nodes is done by partitioning the range of the hashes of the object keys contained in
that namespace.

To map an AnalyticsDB table, we create a namespace for each database table
attribute with the naming convention “dbname::dbtablename::attributename”. In
each namespace we create a number of objects, while each object stores a chunk of
the corresponding attribute column. How many column values are held by a single
object is configurable via a parameter object size. The object size parameter and
the actual size of the column determine how many objects have to be created for
storing the complete column. Figure 4.1 depicts this concept for a table consisting
of two columns id and name with object size=3. We discuss the importance and
determination of the object size parameter in the next section. To store the complete
example table, we create a namespace for each attribute and create three objects with
keys 0–2 for every column. In the example depicted in Fig. 4.1, we define server
span=3 for namespace “db1::cust:id” and “db1:cust:name” resulting in the shown
distribution for a three node RAMCloud cluster.

Putting this partitioning mechanism in context with the aforementioned data map-
ping has the following implication: the partition granularity is on AnalyticsDB col-
umn level, meaning it is not possible to enforce placing an entire AnalyticsDB table
consisting of several columns on a single RAMCloud storage node (except when the
RAMCloud cluster has only one node).

© Springer International Publishing Switzerland 2016
C. Tinnefeld, Building a Columnar Database on RAMCloud, In-Memory
Data Management Research, DOI 10.1007/978-3-319-20711-7_4
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4.2 Main Memory Access Costs and Object Sizing

The introduction of splitting columnar data to key-value pairs raises the question
if it ruins the advantages of columnar data storage? As explained in Sect. 2.2.1,
the sequential data alignment of columnar data placement in main memory allows
exploiting cache and spatial locality: we have to clarify if chopping the columnar
data into small key-value pairs lets these advantages vanish and how much data has
to be held sequentially to enable the advantages of columnar data storage? In order
to address those questions we a) formally describe main memory access costs in
dependence of the size and sequential alignment of the to be accessed data and b)
present a set of corresponding experiments and micro-benchmarks. The foundation
for our formal description is the generic database cost models for hierarchical memory
systems from Manegold et al. [MBK02b, MBK02c] that we extend by a data access
pattern that represents our problem.

In the model from Manegold et al., the multiple cascading levels of cache mem-
ories between the main memory and the CPU are referred to as individual caches

http://dx.doi.org/10.1007/978-3-319-20711-7_2
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(Level 1 Cache, Level 2 Cache etc.) and are denoted in this work with a subscript i .
Caches are characterized by three major characteristics: the capacity C defines the
total capacity of a cache in bytes, the cache line or cache block size B describes the
smallest unit of transfer between adjacent cache levels, and the cache associativity A
influences the cache replacement policy. Additionally, the cache latency l describes
the time span (in CPU cycles or in nanoseconds (ns)) that passes between requesting
data and having it available. The bandwidth b is a metric that notes the data volume
(in megabytes per seconds (MB/s)) that can be transferred between two levels of the
hierarchy within a certain period of time. When it comes to measuring the latency
and the bandwidth, there is a distinction between sequential and random access due
to Extended Data Output (EDO). Another relevant concept is address translation
which is used to translate virtual memory addresses to physical page address. The
Translation Lookaside Buffer (TLB) holds the most recently used pages and is treated
as another layer in the memory hierarchy. As a summary, the aforementioned cache
parameters are listed in Table 4.1.

Data Access Patterns and Their Costs
The total time T needed for a computing task that works on data persisted in main
memory can be expressed by the sum of the needed CPU time TCPU and the corre-
sponding memory access time TMem.

T = TCPU + TMem (4.1)

Deriving TCPU is straightforward as it is the pure CPU time that is needed once
the data has traveled through the memory hierarchies to the CPU. Modeling TMem is
more sophisticated, though, as it has to take the memory hierarchies and the different
latencies associated with the respective access patterns into consideration.

Table 4.1 Overview on cache parameters (i ∈ {1, . . . , N })3 (taken from [MBK02b])

Description Unit Symbol

Cache name (level) – Li

Cache capacity [bytes] Ci

Cache block size [bytes] Bi

Number of cache lines – #i = Ci/Bi

Cache associativity – Ai

Sequential access

Access bandwidth [bytes/ns] bs
i+1

Access latency [ns] ls
i+1 = Bi/bs

i+1

Random access

Access latency [ns] lr
i+1

Access bandwidth [bytes/ns] br
i+1 = Bi/ lr

i+1
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TMem =
N∑

i=1

(Ms
i · ls

i+1 + Mr
i · lr

i+1) (4.2)

As shown in Eq. (4.2), the memory access time is modeled by adding the product
of the sequential cache misses Ms , and the sequential access latency ls , and the
product of the random cache misses Mr and random access latency lr . This is done
for all memory hierarchies i independently, whereat the latency always describes
the latency needed for accessing the next memory hierarchy. In order to be able to
apply this model, Manegold et al. introduced a unified description of data structures
referred to as data regions and the corresponding data operations thereupon which
are referred to as data access patterns.

A data region R consists of R.n data items where each data item has a size of
R.w bytes. Consequently, the product R.n · R.w expresses the size ||R|| of a data
region R. A data region R spans |R|B cache lines and |C |R.w data items fit in the
cache. A tuple u specifies how many bytes are actually used out of every data region
R.n (e.g. if all bytes are used then u equals R.n). We extend the description of a
data region by adding the concept of a block where a data region R consists of Blk.n
blocks and each block covers Blk.w data items, as illustrated in Fig. 4.2. The product
Blk.n · Blk.w equals R.n.

Data access patterns describe the different ways of sweeping over data and vary
in their referential locality. Therefore, not only the access latency and the resulting
costs per cache miss, but also the number of cache misses differ between access
patterns. Cache misses can be divided into random and sequential misses, the different
associated costs depend on the performance optimization features of the underlying
hardware. A sequential miss is a miss of data which is closely located to the previously
read data, whereas a random miss describes accessing data which is not closely
located to the previously accessed data. A random miss always causes the full costs
of memory access, whereat a sequential miss can benefit from hardware that exploits
data locality. Based on the two different kinds of cache misses, Manegold et al.
[MBK02b] introduced different data access patterns. Consecutively, we describe the
two most relevant—namely the single sequential traversal and the single random
traversal—and then introduce the single random block traversal pattern.

2 31 R.n-1 R.nR.n-2

u

R.w

 ||R||

Blk.w

Fig. 4.2 Illustration of data region R
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Single Sequential Traversal. As illustrated in Fig. 4.3, a single sequential traver-
sal s_tra(R[, u]) accesses R.n data items in a data region R. It does so by processing
the data items in the same order as they are stored in memory. Hence, a single se-
quential traversal produces exactly one random miss which is the first access. After
that, it reads or writes u consecutive bytes out of every data item R.n. Consequently,
if the length R.w of a data item equals u, then the whole data item gets loaded. If u
is smaller than R.w, a constant part is skipped between two values which is defined
by R.w − u. When describing the costs TMem associated with a single sequential
traversal within a data region R, it is essential to differentiate if the gap R.w − u
between two adjacent accesses is smaller or greater than or equal to the size B of
a single cache line. If the gap is smaller, each loaded cache line serves at least one
adjacent access. Consequently, when going over data region R, all covered cache
lines B have to be loaded as modeled in Eq. 4.3.

Ms
i (s_tras(R, u)) = |R|Bi (4.3)

If the gap between two adjacent accesses is greater than or equal to a single cache
line, not all cache lines covered by R have to be loaded. Additionally, if a tuple u is not
placed in correspondence with the cache line size, reading or writing it could result
in the necessity to load two separate cache lines. Taking both additional constraints
into account, the costs can be modeled as noted in Eq. 4.4.

Ms
i (s_tras(R, u)) = R.n ·

([
u

Bi

]
+ (u − 1)modeBi

Bi

)
(4.4)

Single Random Traversal. As illustrated in Fig. 4.4, a single random traversal
r_tra(R[, u]) accesses each data item R.n in R exactly once, whereas the data items
not accessed in the sequence are stored in memory, but completely at random. Out
of every data item R.n, u consecutive bytes are read or written. A single random
traversal does not produce any sequential misses. The memory costs associated with
a single random traversal r_tra(R[, u]) depend again on the size of the gap R.w− u
between two adjacent accesses. If the gap is equal or larger to the size B of a single
cache line, then no adjacent access can benefit from an already loaded cache line,
which makes the same formula applicable as for the single sequential traversal in
such a case (see Eq. 4.5).
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Fig. 4.4 Single random traversal access pattern (taken from [MBK02b])

Mr
i (r_trar (R, u)) = R.n ·

([
u

Bi

]
+ (u − 1)modeBi

Bi

)
(4.5)

If the gap between two adjacent accesses is smaller than a single cache line, a
single cache line may have to be loaded several times throughout the sweep, as locally
adjacent data is not accessed in the same order. As it is possible that a cache line has
been purged out of the cache before all accesses to it are completed, the probability
of an early eviction has to be modeled. The likelihood of an early eviction depends on
||R|| and the cache capacity C . As an eviction only occurs once, the available cache
capacity is filled, the number #i of cache lines that can be stored in the cache—and
in case of having tuple that spans several cache lines—the number of data items R.w
that fit into cache are of relevance. Putting it all together, the cache misses can be
derived by applying Eq. 4.6 below.

Mr
i (r_trar (R, u)) = |R|Bi +

(R.n − min {#i , |Ci |R.w}) ·
(

1 − min

{
1,

Ci

||R||
})

(4.6)

Single Random Block Traversal. We define a single random block traversal
rb_tra(Blk, R[, u]) as a sweep over a data region R where every data item R.n in R
is accessed exactly once, whereas the data items are grouped in Blk.n blocks. Within
each block the data items are traversed sequentially, however the blocks themselves
are randomly placed in the memory. Hence, a single random block traversal starts
with a random access in order to get the first data item of the first block, followed
by a number of sequential accesses depending on the number of data items Blk.w
per block, followed again by a random access for retrieving the first data item out of
the next block. This implies the following two extreme cases: if Blk.w equals R.n
and all data items are stored in one single block, the sweep equals a single sequential
traversal and the resulting cache misses can be described through the Eqs. 4.3 and
4.4. In contrast, if Blk.w equals R.w and each block contains just a single data item,
the sweep equals a single random traversal and the resulting cache misses can be
described through the Eqs. 4.5 and 4.6 (Fig. 4.5).
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Fig. 4.5 Single random block traversal access pattern

Disregarding the extreme cases, one can observe that the block sizing influences
the ratio of random and sequential misses. When describing the random access for
retrieving the first data item out of each block, one can differentiate if the block size
Blk.w is greater than or equal to or smaller than the size B of a single cache line.
If the block size is greater than or equal, a distinct cache line has to be touched for
every block Blk.n in R. Hence, the number of cache misses per cache hierarchy level
equals the number of blocks, as shown in Eq. 4.7.

Mr
i (rb_trar (Blk, R, u)) = Blk.ni (4.7)

If the block size is smaller than a cache line, again we have at least as many cache
misses as we have blocks. Additionally, there is the chance that a cache line has to
be accessed several times, as it stores two or more disjunct blocks, but since locally
adjacent access is not temporally adjacent, the cache line must be loaded again into
the cache for every block access in a worst case scenario. Consequently, depending
on block sizing and cache capacity, each access to a different block which is stored
in the same cache line may result in an additional cache miss as described in Eq. 4.8.

Mr
i (rb_trar (Blk, R, u)) = Blk.n+

(Blk.n − min {#i , |Ci |Blk.w}) ·
(

1 − min

{
1,

Ci

||R||
})

(4.8)

The sequential access in the context of the single random block traversal covers
the sequential sweep over the remaining Blk.w−1 data items in every block. Having
a block size Blk.w smaller than the cache line size B also implies that the gap R.w−u
between two data items is smaller than B and all cache lines covering the remaining
data items have to be loaded as noted in Eq. 4.9. This equation is also applicable if
the block size Blk.w is larger than B, but the gaps between two data items are still
smaller than B.

Ms
i (rb_tras(Blk, R, u)) = |Blkn · (Blkw − 1)|Bi (4.9)



60 4 Data Storage

If the block size Blk.w as well as the gap R.w − u is bigger than or equal to the
cache line size B, not all cache lines covered by a block have to be loaded. Similar
to a single sequential traversal, a suboptimal placement of a tuple u can result in
accessing separate cache lines. The resulting number of cache misses is the product
of the number of remaining data items per block over all blocks and the occurrence
of cache misses in correspondence with the tuple size u and the cache line size Bi

as shown in Eq. 4.10.

Ms
i (rb_tras(Blk, R, u)) =

(Blkn · (Blkw − 1)) ·
([

u

Bi

]
+ (u − 1)modeBi

Bi

)
(4.10)

Experiments
After formally describing the occurring cache misses when traversing block-wise
grouped data in main memory, we present a set of experiments. Through the exper-
iments we want to gain insights to what extent bandwidth-bound operations can be
accelerated by a block-wise grouping of data, and in the correlation between data
item and block size.

The experiments are based on a prototypical implementation of a hashtable which
can be partitioned into blocks. When initializing the hashtable, one can define the size
of a block which implicitly determines into how many blocks the hashtable will be
partitioned. If the block size is chosen to equal a single data item, the block mechanism
has no further impact, as all data items will be placed randomly—according to the
hash value of their key—within in the hashtable. An IBM Blade-Server H21 XM
with a Intel Xeon E5450 CPU (the CPU has a L1 cache capacity of 32 KB, a L2
cache capacity of 6 MB, and a L1 + L2 cache line size of 64 bytes) was used for the
experiments.

The experiment executes a data traversal which touches 10 million data items
in total—such an operation underlies a scan operation in AnalyticsDB. Throughout
the experiments we vary three different factors: the data item size R.w, the block size
Blk.w, and the type of operation on the data. The data item size R.w is set to 16,64,
or 1024 bytes in order to have data items which are smaller than the L1 or L2 data
cache size as well as significantly bigger than both. The block size or the number of
consecutive data items per block are increased in steps throughout the experiments.
The data that is used in the experiments has the following characteristics: each data
item consists of at least of one integer value making the minimum size of a data
item 4 bytes. This integer value is the only data that is actually touched during our
experiments and is therefore u. Consequently, data items with a size R.w of 16, 64
or 1024 bytes have all the same 4 byte u, but they vary in their padding. The padding
is done with additional integer, boolean, and string values. In every experiment run,
10 millions of such data items are traversed. Consequently, the size ||R|| of the data
region is 153, 610, or 9766 megabytes depending on whether the data item size R.w
is set to 16, 64, or 1024 bytes.



4.2 Main Memory Access Costs and Object Sizing 61

 0

 5e+06

 1e+07

 1.5e+07

 2e+07

 2.5e+07

 3e+07

10 1000 100000 1e+06 1e+07 1  100  10000

 5e+08

 1e+09

 1.5e+09

 2e+09

 2.5e+09

 3e+09

 3.5e+09

 4e+09

 4.5e+09
N
um

be
r 

of
 C

ac
he

/B
uf

fe
r

D
at

a 
M

is
se

s

N
um

be
r 

of
 C
PU

 C
yc

le
s

Number of Consecutive 16-Byte Data Items in DRAM

L1 Cache Data Misses
L2 Cache Data Misses

TLB Data Misses
CPU Cycles

 0

 1e+07

 2e+07

 3e+07

 4e+07

 5e+07

 6e+07

 7e+07

 8e+07

1 4 8 16 128 1024 1e+07

N
um

be
r 

of
 C

ac
he

/B
uf

fe
r

D
at

a 
M

is
se

s

Number of Consecutive
16-Byte Data Items in DRAM

L1 Cache Data Misses
L2 Cache Data Misses

TLB Data Misses

 0

 1e+07

 2e+07

 3e+07

 4e+07

 5e+07

 6e+07

 7e+07

 8e+07

1 4 8 16 128 1024 1e+07

N
um

be
r 

of
 C

ac
he

/B
uf

fe
r

D
at

a 
M

is
se

s

Number of Consecutive
64-Byte Data Items in RAM

L1 Cache Data Misses
L2 Cache Data Misses

TLB Data Misses

 0

 1e+07

 2e+07

 3e+07

 4e+07

 5e+07

 6e+07

 7e+07

 8e+07

1 4 8 16 128 1024 1e+07

N
um

be
r 

of
 C

ac
he

/B
uf

fe
r

D
at

a 
M

is
se

s

Number of Consecutive
1024-Byte Data Items in RAM

L1 Cache Data Misses
L2 Cache Data Misses

TLB Data Misses

 5e+08

 1e+09

 1.5e+09

 2e+09

 2.5e+09

 3e+09

 3.5e+09

 4e+09

 4.5e+09

1 4 8 16 64 128 1024 1e+07

N
um

be
r 

of
 C
PU

 C
yc

le
s

Number of Consecutive 16-Byte Data Items in RAM

Data Prefetching On
Data Prefetching Off

(a)

(b)

(c)

Fig. 4.6 Object sizing experiments. a Detailed breakdown of data traversal with varying block
size (Blk.w = {1, 10, 100, 1000, 10000, 106, 107}R.n, b data traversal with varying data item
(R.w = {16, 64, 1024}Bytes) and block size (Blk.w = {1, 4, 8, 16, 128, 1024, 107}R.n), c impact
of prefetching and block sizing on CPU cycles spent for data traversal

Figure 4.6b illustrates the number of L1 and L2 cache data and TLB misses during
the data traversal. The three graphs vary in the data item size R.w (16,64,1024 bytes).
When having a data item size of 16 bytes, one can observe that the number of L1 cache
data misses is reduced by 50 %, the number of L2 cache misses is reduced by 13 %,
and the number of TLB misses is reduced by 86 % when eight data items are grouped
in a block compared to one data item per block (Blk.w = 8 vs Blk.w = 1). When
having a data item size of 64 bytes, one can observe that the number of L1 cache data
misses is reduced by 27 %, the number of L2 cache misses remains constant, and the
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number of TLB misses is reduced by 86 % when eight data items are grouped in a
block compared to one data item per block. When having a data item size of 1024
bytes, one can observe that the number of L1 cache data misses is reduced by 36 %,
the number of L2 cache misses remains constant, and the number of TLB misses is
reduced by 74 % when eight data items are grouped in a block compared to one data
item per block. Although the exact numbers vary, one can see a similar drop in cache
misses during the disaggregation task, once the block size is increased. Additionally,
one can observe that at a block size of around 128 data items, the minimum number
of cache misses for all hierarchy levels is reached. This observation matches with
Fig. 4.6a.

The calculations and experiments so far have been made with activated data
prefetching as it is the CPU chipset’s default mode. As indicated in Sect. 2.2.1,
prefetching has an impact on sequential data traversal. In this paragraph, we want to
experimentally quantify that impact. Figure 4.6c compares the needed CPU cycles
for executing the data traversal with a data item size R.w of 16 bytes, and with ac-
tivated and deactivated data prefetching. One can see that the bigger the block size
is set, the more performance improvements can be achieved. Starting from a block
size with 128 data items, activated prefetching can speed-up the aggregation task by
a factor two. Figure 4.6c shows that for a block size Blk.w = 1, the execution with
deactivated prefetching is actually faster. This is due to incorrect prefetching which
describes the blocking of the memory and the bus for fetching the next adjacent
cache line. Yet this cache line will not be used, as all values are placed randomly
in memory, but while it is prefetched, the transmission of the correct cache line is
prevented.

In conclusion, the micro benchmarks in Fig. 4.6 illustrate that the required number
of CPU cycles becomes minimal if a relatively small amount of data items are placed
consecutively in DRAM and, therefore, the maximum data traversal or scan speed
has already been reached. In the shown micro benchmarks a block size of around
1000 data items is sufficient to reach the maximum data traversal speed. Reflecting
these insights on the object sizing in RAMCloud, we choose the allowed upper limit
of 1MB for RAMCloud objects which results in an object size of 131.072 (as an
AnalyticsDB column value is 8 bytes). Given the results of our benchmark above,
we conclude that we still achieve maximum scan performance with this partitioning
schema, which is validated in the subsequent Chap. 6 with a scan operation micro
benchmark shown in Fig. 6.1a.

http://dx.doi.org/10.1007/978-3-319-20711-7_2
http://dx.doi.org/10.1007/978-3-319-20711-7_6
http://dx.doi.org/10.1007/978-3-319-20711-7_6


Chapter 5
Data Processing

5.1 Database Operators in AnalyticsDB

AnalyticsDB processes queries with the help of eight different database operators.
Each database operator O accepts as input a single or several column(s) C and/or
(a) position list(s) P . Each operator O evaluates a condition D and outputs a single
value or column(s) or a position list. A position list can be seen as a filter on a column,
as it references a subset of the total entries in a column. Since AnalyticsDB applies
the pattern of late materialization (see Sect. 3.2), it tries to work with position lists
as long as possible during the processing of a query for performance improvements.
Table 5.1 presents an overview of the operators. Although the table shows that most
operators accept one or more columns as input, they also accept a position list as
input if the to be processed column is not materialized yet. Similar to the input, the
output can also be a materialized column or just a position list. A database table from
an operator’s perspective is just a collection of columns.

The Arithmetic Operator allows mathematical operations such as addition, sub-
traction, multiplication, or division between the tuples of two columns. The GroupBy
Operator can reduce a table by a certain criteria which is denoted by the GroupBy
Columns. The reduction is done by aggregating the corresponding tuples in the aggre-
gation column, for example, by calculating the sum. After the execution of a GroupBy
operation, only the distinct combinations of the particular GroupBy Columns are
being returned. A HashJoin Operation identifies the matching tuples of two or more
columns. If two tuples are considered to match is defined via the join criteria which
can express that the two tuples e.g. should have the same value. The HashJoin Oper-
ation utilizes a hash table as an auxiliary data structure for executing the join by
inserting the tuples from one column into the hash table, and then probing with each
value from the other relation. The Materialize Operator accepts as input a position
list and a column, and returns the tuples as specified in the position list. The Merge
Position List Operator merges two or more position lists. The OrderBy Operator sorts
by (a) to be specified OrderBy Column(s), and the tuples of additional columns are
rearranged accordingly. A Scan Operator traverses a column and evaluates for each

© Springer International Publishing Switzerland 2016
C. Tinnefeld, Building a Columnar Database on RAMCloud, In-Memory
Data Management Research, DOI 10.1007/978-3-319-20711-7_5
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Table 5.1 Database Operators in AnalyticsDB

Operator Input Output

Arithmetic Columns Operation (add, sub,
mult, div)

Column

GroupBy Column(s) Aggregation Column
Type (sum, average,
count) GroupBy
Column(s)

Column(s)

HashJoin Columns Join Criteria Column(s) or
Position List

Materialize Column Position List Column

Merge Position Lists Position Lists ——- Position List

OrderBy Column(s) OrderBy Column(s) Table

Scan Column Operand(s)
Comparator(s)
(>,≥,=,≤,<) Logical
Combination (&, ‖)

Column or
Position List

tuple if a condition matches. This condition can contain one or two operand(s), one
or two comparator(s), and a logical combination.

5.2 Operator Push-Down into RAMCloud

So far we have described how RAMCloud is used as shared storage in our system.
With a standard configuration of RAMCloud, query execution can only happen on
an AnalyticsDB node by loading the required data from RAMCloud into the query
processing engine of an AnalyticsDB node. In this section we describe how we
extend the RAMCloud system to allow for execution of database operators directly
in the storage close to the data. Specifically, we first identify which operators are
most significant for a database system designed for read-mostly workloads, such as
AnalyticsDB, and then describe how we designed and implemented these operators
in RAMCloud.

We analyze the queries of the Star-Schema-Benchmark (SSB) [O’N] to identify
which operators benefit from a push-down into the storage system. Table 5.2 shows
the AnalyticsDB operator break-down for one execution cycle of the SSB with a
sizing factor of 10 in local main memory on an Intel Xeon E5620. The complete
execution time is normalized to highlight the contribution of each operator to the
total execution time. To identify operators which should be considered for a push-
down, two questions are of interest: to what extent does an operator contribute to
the overall execution time? Does the operator usually work on data as stored in the
storage system or on intermediate results?
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Table 5.2 AnalyticsDB operator break-down when executing the Star Schema Benchmark,
normalized by the contribution of the operator to the overall query runtime

Arithmetic GroupBy Hash-Join Materialize Merge Positions OrderBy Scan

% 0.0003 0.0754 0.6657 0.0693 0.0283 0.001 0.1594

Table 5.2 shows that the Hash-Join and Scan operator accumulate 82 % of the
total execution time in the SSB. From our query execution plans for the SSB, we
derived that these operators are always the first to touch the raw data and consume it
sequentially. The Materialization Operator also works directly on the data as stored
in the persistence, for example when retrieving the actual values in a column based
on a position list. Consequently, we decided to implement support for these operators
in the storage layer.

As a first approach, we want to push-down the execution of operators which
operate on one relation at a time. This simplifies the push-down, as it avoids the syn-
chronization of two separate operator executions in the storage system. However, the
HashJoin Operator works on two or more relations at a time, and in order to supports
its execution in the storage system, we dissect its execution into three parts (S �� R
with S <= R): building the hash table from relation S (hashBuild), probing against
relation R (joinProbe), and optionally materializing the tuples that meet the join con-
dition (materialize). Pushing down the execution of the hashBuild seems impractical
as (a) each RAMCloud node sees only a fraction of the data which would introduce
the extra effort to merge the different hash tables and (b) the execution of this merge
operation in RAMCloud would require additional synchronization. Therefore, it is
favorable to send the data from relation S to the AnalyticsDB node and build the hash
table there. Instead the join probing is eligible for a push-down, as each probing oper-
ation can happen separately at each respective RAMCloud node. The same applies
to a potentially subsequent materialization operation. Consequently, we added sup-
port for the Scan, Materialization, and JoinProbing operation in RAMCloud. The
Group-By, Merge Position Lists, Sort, and Arithmetic operators work mostly on
intermediate results which are processed inside the query engine of an AnalyticsDB
node and, therefore, are not eligible for being pushed down to RAMCloud.

5.3 From SQL Statement to Main Memory Access

To allow for the push-down of the Scan and Materialization Operators as well as
Join-Probing to RAMCloud nodes, we implement support for these operators in
RAMCloud and add their operator signatures to the AnalyticsDB storage API as
shown in Listing 3.1. To implement the AnalyticsDB storage API for RAMCloud,
we added the corresponding RAMCloud client code in AnalyticsDB for invoking
the operators in RAMCloud. The RAMCloud client component is responsible for
mapping the columnar data to RAMCloud namespaces and objects.

http://dx.doi.org/10.1007/978-3-319-20711-7_3
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RAMCloud NodeAnalyticsDB Node

AnalyticsDB Column

RAMCloud Client

ScanRPC

0x7fff9575c05f
Memory Address

Hash Table

Scan Operator

RPC Handler

RDMA-enabled
Interconnect

Scan Operator

SQL query:

select town_id
from cities
where zip_code = 11011  

zip_code = 11011

de::cities::zip_code
 = 11011

1.2.3.4:41000,
namespace_id 10,

 = 11011

namespace_id 10,
 = 11011

keys 1-30values = 01000-
99998 

position = 224position = 224

position = 224

position = 224

Fig. 5.1 From SQL statement in AnalyticsDB to the corresponding main memory access in
RAMCloud

Figure 5.1 illustrates how the processing of a SQL query in an AnalyticsDB node
results in a main memory access in a RAMCloud node. The presented query includes
the execution of a Scan Operator which scans through the column zip code and aims
to find tuples whose value equals 11011. The Scan Operator is executed on the respec-
tive AnalyticsDB column which then invokes the RAMCloud client: the invocation
passes the fully qualified namespace of the column in RAMCloud as well as the scan
operand. The RAMCloud client maps the namespace to a RAMCloud namespace
ID (called RAMCloud internally tablet, see Sect. 3.3) and in our example the data
belonging to this namespace sits on a single RAMCloud node. The RAMCloud client
also resolves the corresponding IP address and port, and invokes a SCAN remote
procedure call (RPC). The incoming RPC is handled by a RPC handler in the RAM-
Cloud node which passes the to-be-scanned namespace id and the scan operand to
its Scan Operator. The Scan Operator reads the key-value pairs which belong to this
namespace from the hash table: in our example there are 1000 column tuples stored
per key-value pair. Since there are 30000 different zip codes in the zip code column
(with the lowest value being 01000 and the highest 99998), the scan operator has to
traverse 30 key value pairs and finds the zip code 11011 at the position 224. This
position information is then passed back to AnalyticsDB. In a next step, the town id
resolves to position 224 in the cities table.

http://dx.doi.org/10.1007/978-3-319-20711-7_3
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Chapter 6
Operator Execution on One Relation

In this chapter we introduce an execution cost model for AnalyticsDB to analyze
the impact of different parameters that have been induced by the data mapping,
column partitioning, and the design of the operators itself. We first derive an abstract
system model which is later used to predict execution costs analytically for different
scenarios. Afterwards, we use our cost model to evaluate operator push-down and
data pull execution strategies and show how the cost model can be used to decide on
different execution strategies. We start with operators that operate on one relation at
a time, continuing with two or more relations in the next chapter.

Related System Models

There are a number of system models available that can be applied to model the
operator execution costs in a parallel DBMS. For example, Culler et al. from Uni-
versity of California, Berkeley present LogP [CKP+93] as a step towards a realistic
model of distributed and parallel computation. LogP intends to be a general model
that can be applied in the context of portable and parallel algorithms. L defines
the latency introduced by communicating a message, o identifies the overhead for
transmitting and receiving a message, g defines the gap between consecutive mes-
sage transmissions, and P describes the number of processor and memory modules.
Although an approach as LogP is generally applicable, system models in the context
of distributed query processing and database operator execution take additional query
processing-related aspects into consideration. This is demonstrated by Lanzelotte et
al. who present a cost model [LVZ93] for query execution in a parallel DBMS. They
consider the number of tuples in a relation R, the size of one tuple of a relation
R, the CPU and network speed, the size of a packet as well as the time needed for
sending and receiving messages. Based on these input parameters, they define cost
functions for the various database operations. Özsu and Valduriez [ÖV11] describe
a cost model for the query optimizer for a parallel DBMS. They define the cost of
a plan as three components: total work, response time, and memory consumption.

© Springer International Publishing Switzerland 2016
C. Tinnefeld, Building a Columnar Database on RAMCloud, In-Memory
Data Management Research, DOI 10.1007/978-3-319-20711-7_6
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This model also operates on a higher level of abstraction, as total work and response
time are expressed in seconds (wall time) and memory consumption in bytes. How-
ever, we want to address a very specific aspect of operator execution, namely, the
site selection problem. As presented and discussed in Subsect. 2.3.4, there is a great
amount of related work that also incorporates several system models. Carey and Lu
[CL86] include DB site and communication-related parameters as well as query-
related parameters such as the query type or the result size of a query. Franklin
et al. [FJK96] differentiate between operator specific characteristics by modeling
the number of instructions that are needed to perform underlying functions such as
comparing values or calculating a hash value.

System Model

We abstract the following system model: a column C is defined by the number of
contained records SC and the size of a single record Sr in bytes. It may be partitioned
among n RAMCloud nodes RN1, . . . , RNn , resulting in disjoint non-overlapping
partitions C1, . . . ,Cn with sizes SC,1, . . . , SC,n . All nodes are connected by net-
work channels with constant bandwidth BWNet , measured in bytes per second. The
execution of an operation O for a column C is coordinated by a single AnalyticsDB
node AN , while O is executed by evaluating the position list P and condition D on
C . Our system allows for two execution strategies:

1. ship all partitions C1, . . . ,Cn from nodes RN1, . . . , RNn to AN and evaluate P
and D locally at AN . We denote this strategy data pull (DP).

2. ship P and D toRAMCloud nodes and evaluate them remotely at RN1, . . . , RNn .
Here, P has to be split-up into sub-partition lists P1, . . . , Pn to ship a specific
position lists to each RAMCloud node. We denote this strategy operator push-
down (OP).

To push-down an operation O to RAMCloud nodes, it is split-up into sub-
operations O1, . . . , On . These sub-operations Oi take a condition D and a specific
position list Pi as input to be evaluated on all values in Ci . Since we measure the
network traffic in bytes, we have to distinguish different cases for each operator: for
a scan operation, D is the selection condition and usually only a few bytes large
(e.g. the size of two scan comparators and two comparative values). In case of a
materialization operation, we set D = ∅ to return all values defined in P . For a join
operation, D denotes the probing data and has a significant size. We denote the size
of D in bytes by SD . The output of Oi is a list of column values or column positions
where D evaluates to true. In our model, the fraction of values referenced in Pi for
which D evaluates to true is defined by the selectivity parameter s. In case Pi = ∅,
then D is applied to all values at Ci . We denote the number of entries in P by SP

and the size of one entry in bytes by Sp (Table6.1).

http://dx.doi.org/10.1007/978-3-319-20711-7_2
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Table 6.1 Symbols in the system model for operating on one relation at a time

Symbol Parameter

C A column

O An operator executed on C

O1, . . . , On O split-up into sub-operations

P Position list (input parameter for O)

SP # of entries in P

Sp Size of a single record in bytes

P1, . . . , Pn Partitioned position list

D Condition (Evaluated by O on C)

SC # of contained records in C

Sr Size of a single record in bytes

n # of RAMCloud nodes

AN AnalyticsDB node

RN1, . . . , RNn Individual RAMCloud nodes

C1, . . . ,Cn Partitions of C

SC,1, . . . , SC,n Sizes of the partitions in bytes

BWNet Network bandwidth in bytes/second

BWMem In-memory processing speed in
bytes/second

Execution Cost

To derive the overall time EO required to execute an operation O for DP and OP
analytically, we first derive the delay induced by network transfers and afterwards
the time required to execute operators in local DRAM.

For operation O applied to a column C partitioned over n RAMCloud nodes, we
derive network costs M as follows: for DP the network costs are simply given by

MD P = SC · Sr

BWNet
(6.1)

because their only dependency is the amount of data that is pulled fromRN1, . . . ,RNn

to the local execution on AN.
ForOPnetwork costs MO P dependon the size of D and P , aswell as the selectivity

of the predicate s. We derive MO P in (6.2):

MO P = (SP · Sr + SD · n) + (SP · s · Sr )

BWNet
(6.2)

The time required to execute an Oi on a RAMCloud node RNi depends in case
of OP on the scan speed in DRAM at RNi , and in case of DP on the scan speed at
AN . In our system model we define the in-memory processing speed by parameter
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BWMem . We abstract the execution time of an operation TO as the sum of the time
required to traverse the data and the time to write results as follows:

TO = SP · Sr + SP · Sr · s

BWMem
(6.3)

If the operation is a sub-operation Oi the execution time TO,i at RNi is derived
similar to (6.3) by using node specific position list sizes SP,i instead of SP .

In case of OP, we have to consider the overhead time Tovh required to split P , and
later merge results received from RAMCloud nodes RN1, . . . , RNn . This results in
an in-memory traversal over the operators input and output data. We define Tovh as

Tovh = SP · n

BWMem · Sp
+ SP · s · Sr

BWMem
(6.4)

Wenowderive the overall execution time EO in seconds of operation O by the sum
of required network transfer time M and the time for operator execution, distribution
and merge overhead. For DP we derive (6.5).

EO,D P = MD P + TO (6.5)

For OP, we have to consider the overhead for computing n specific position lists as
well as the merge of Oi results. Hence, we derive (6.6) as execution time for OP.

EO,O P = MO P + Tovh + max(TO,i ) (6.6)

While our cost model abstracts from numerous system parameters, we found this
abstraction accurate enough to evaluate the impact of our operator execution para-
meters.

6.1 Evaluating Operator Execution Strategies

After introducing the AnalyticsDB execution cost model, we validate it with a set
of micro benchmarks. Each micro benchmark represents a single operator execu-
tion. We vary the previously described cost model parameters throughout the micro
benchmarks, so that they allow for a discussion about the relation of the execution
strategies data shipping and operator push-down. We execute the micro benchmarks
on a cluster of 50 nodes in total, where each node has an Intel Xeon X3470 CPU,
24GB DDR3 DRAM, and a Mellanox ConnectX-2 InfiniBand HCA network inter-
face card. The nodes are connected via a 36-port Mellanox InfiniScale IV (4X QDR)
switch. We use one node for running AnalyticsDB and vary the number of RAM-
Cloud nodes between one and 20. As the chosen number of nodes is sufficient for
demonstrating the impact of the cost model parameters on the operator execution,
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we will use the full cluster capacity in the subsequent Part III. In addition, we will
also provide a baseline where the respective micro benchmark is executed on local
DRAM on a single AnalyticsDB node.

Figure6.1a shows a scan operation on the entire column with an increasing selec-
tivity and a fixedRAMCloud cluster size of one. The operator push execution time for
a scan with a low selectivity is close to the local DRAM variant, and data pull takes
almost twice as long due to the initial full column copy over network.With an increas-
ing selectivity, the execution time of the operator push-down strategy approaches the
data pull variant as the same amount of data travels over the network.

Figure6.1b illustrates a full column scan with a fixed selectivity of 0.5, but with
a varying number of nodes in the RAMCloud cluster. One can see that with an
increasing number of nodes, the operator push-down execution becomes accelerated
due to the parallel execution of the scan operator, but reaches a limit at around
10 nodes: at that point TO,i is minimized and the execution time is dominated by
MO P + Tovh which cannot be reduced by adding more nodes. Tovh even grows with
an increasing number of nodes which causes the operator execution time to slightly
increase towards a cluster size of 20 nodes. The execution time of data pull is not
affected by a larger cluster size and is constant.

Figure6.1c depicts a materialization operation with an increasing position list
size. The operator push-down execution time increases gradually with a growing
position list size and at some point exceeds the execution time of data pull. This is
caused by the addition of the size of the position list and the returned column values
which exceeds the column size. In such a case, the data pull execution time is faster
than the operator push execution time.

Figure6.1d shows a join probing with an increasing probing data size on a RAM-
Cloud cluster with 20 nodes. BWMem is smaller here than in the previous micro
benchmarks since the creation of and the probing against a hash map takes longer
than a scan or a materialization operation. The graph illustrates that operator push-
down can benefit from parallel execution on 20 nodes and is faster than execution on
local DRAMwhen the probing data is small. When the probing data becomes bigger,
the operator push-down execution time increases as the probing data has to be sent to
all 20 nodes. At a certain probing data size, the operator push-down execution time
exceeds the data pull execution time and makes data pull preferable.

Summarizing the gained insights based on the micro benchmarks, the data pull
execution strategy is two to three times slower than operating on local DRAM. The
performance of the operator push strategy varies: if the to-be-accessed data is on a
single RAMCloud node, the performance is only a few percent worse than operating
on local DRAM if the selectivity or the number of entries in the position list is small.
If these parameter grow, the operator push performance gradually approximates the
data pull performance and can even become worse. If the to-be-processed data is
partitioned across several nodes, the operator push execution time can be up to five
times faster than on local DRAM. But node parallelism can also worsen the operator
push execution time to an extent that it becomes slower than data pull: this is the
case if the input parameter Sd becomes large and must be dispatched to all involved
nodes.
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Fig. 6.1 Evaluating operator execution strategies. a Scan with increasing selectivity. SD = 2,
SP = 0, s = {0.1 . . . 1}, n = 1, BWMem = 2GB/s, b Scan with increasing number of nodes.
SD = 2, SP = 0, s = 0.5, n = {1 . . . 20}, BWMem = 2GB/s, c Materialization with increasing
position list size. SD = 0, SP = {0 . . . 60Mio.}, s = 1, n = 1, BWMem = 2GB/s, d Join
Probing with increasing probing data size. Sd = {0 . . . 60Mio.}, SP = 10Mio., s = 0.5, N = 20,
BWMem = 0.4GB/s
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Fig. 6.2 Execution of a SQL query on the Star Schema Benchmark data set with SF = 1, SC =
6Mio., Sr = 8 bytes, N = 10 and different execution strategies. The figure illustrates that for this
query a mix of data pull and operator push execution strategies is preferable

6.2 Optimizing Operator Execution

1 select sum(lo_revenue)
from lineorder , part
where lo_partkey = p_partkey
and p mfgr between MFGR#1 and MFGR#5

The previous subsection demonstrated that the optimal operator execution strategy
depends on a set of parameters. In this section, we show that the optimal execution
strategy within a single query can vary for each involved operator. We use the same
cluster setup as in the previous subsection.

Figure6.2 depicts the execution times for different execution strategies based on
the query shown in the figure. The join probing operation (Sd = 200.000, SP =
6Mio., s = 1) can benefit from the parallelism of the ten nodes and is fastest with a
operator push strategy. The materialization operation (Sd = 0, SP = 6Mio., s = 1)
has a position list size that is as large as the column itself: the data pull strategy
performs better for this operator execution. Consequently, the optimal execution
time can be reached with a mix of the data pull and operator push strategies as
illustrated by the last column in Fig. 6.2.

6.3 Implications of Data Partitioning

Section6.1 illustrates that the partitioning criteria of the data in RAMCloud influ-
ences the execution time of a pushed-down operator as it can benefit from a par-
allel execution on several RAMCloud nodes. As shown in the micro benchmark in
Fig. 6.1b, the parallel execution can be leveraged until the execution time of each
operator is minimized to an extent that the overall execution time is dominated by
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the data transfer over network and overhead costs such as merging the results from
all nodes. We further explore this causality by executing a set of 42 scan operations
on three different columns. The scan operations vary in their selectivity, the columns
vary in their size (60 million values, 800,000 values, and 2556 values). We execute
the scan operationsmultiple times, but vary across howmanyRAMCloud nodes each
column is being partitioned (via the RAMCloud server span parameter as explained
in Sect. 4.1). The variation includes storing each column on a single RAMCloud
node (server span=1) up to partitioning each column across 20 RAMCloud nodes
(server span=20). Figure6.3 depicts the scan operations on the column with 60 mil-
lion values benefit up to a factor 5 from being distributed, the scan operations on the
column with 800,000 values get accelerated up to factor 1.6, but the scan operations
performance on the column with 2556 values decreases with every additional node
up to a factor 4.5.

So far, we have only covered the aspect of data partitioningwhen oneAnalyticsDB
instance operates exclusively on a RAMCloud cluster. Now we cover the aspect of
partitioning in combination with a variable number of AnalyticsDB nodes: we have
a constant number of 20 nodes in the RAMCloud cluster, but vary the number of
AnalyticsDB nodes between 1 and 30. If a new AnalyticsDB node is added, it is
instructed by the federator to continuously execute the SSB: this results in an load
increase. Figure6.4 shows the corresponding experiment: in Fig. 6.4a the server span
is 10 and in Fig. 6.4b the server span is 20. In Fig. 6.4a the throughput increases
until 15 AnalyticsDB nodes and then begins to flatten out, which means the operator
throughput is saturated in RAMCloud. Themaximum throughput is 2607 SSB cycles
per hour. In Fig. 6.4b the throughput increases until 20 AnalyticsDB nodes and then
begins to flatten out. The maximum throughout is 3280 SSB cycles per hour.

The following two insights can be derived from the experiments: (a) we demon-
strated that a server span of 10 delivers the optimal SSB execution time when a single
AnalyticsDB node uses a RAMCloud cluster with 20 nodes. This statement is valid
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Fig. 6.3 AnalyticsDB runs on a single nodewith a operator push execution strategy, theRAMCloud
cluster has a size of 20 nodes, the server span varies
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Fig. 6.4 RAMCloud cluster with a constant number of 20 nodes and a varying number (1–30) of
nodes running AnalyticsDB with a operator push execution strategy and a Star Schema Benchmark
data scale factor of 10. a RAMCloud running on 20 Nodes with Server Span=10, b RAMCloud
running on 20 Nodes with Server Span=20

if there are up to ten AnalyticsDB nodes running. More than ten AnalyticsDB nodes
per server span of 20 results in a better SSB execution time as the to-be-accessed data
is distributed across more RAMCloud nodes and therefore the operator throughput in
RAMCloud is saturated at a later point. (b) Even in the case of over-provisioning (e.g.
30 AnalyticsDB nodes vs. 20 RAMCloud nodes) the SSB throughput remains con-
stant, but the execution time increases over linearly (due to the operator throughput
saturation in RAMCloud), but it does not result in a reduction of the SSB throughput.
In addition, the increasing throughput in both experiments can either be leveraged
for performing a higher number of SSB executions in parallel or for reducing the exe-
cution time of a single SSB execution by dispatching its queries across the different
AnalyticsDB nodes via the federator.



Chapter 7
Operator Execution on Two Relations

The previous Chapter describes the possibility of pushing-down the execution of
database operators into RAMCloud, but the corresponding model is limited to oper-
ating on a single database column or relation at a time. This is practical for the
execution of a scan operation, but necessitates breaking up a join operation into two
separate operations. This comes along with the previously mentioned drawbacks of
(a) limiting the maximum size of a join-relation by the client’s available main mem-
ory and (b) bringing up the bottleneck of the client’s network link. In addition, it
makes pre- or post-join projections in the context of a join very expensive as the
intermediate results always have to be transferred to the client instead of leaving
them in the storage system. Motivated by avoiding those drawbacks, we describe in
this chapter the execution and comparison of different distributed join algorithms
inside RAMCloud.

Before we describe the choice of the to-be-evaluated join algorithms, we extend
the existing system model and define the following assumptions with regards to the
distributed join execution within RAMCloud: we execute a join operation between
two relations S �� R with SSize <= RSize. The data of a relation is partitioned
across a number of RAMCloud nodes (n part R/S), but among those nodes the data
distribution is considered to be even. As explained previously, the data from a relation
is distributed on a fine granular level in a round-robin manner across the respective
RAMCloud nodes. Consequently, we also assume that the data is partitioned evenly
across the nodes even after filtering or a pre-join projection. For the execution of our
models a pre-join projection results in a smaller SSize/RSize.

It is possible that a number of RAMCloud nodes hold some data from R as well
as S (n part Ovl ). The RAMCloud nodes used for executing the join (n join) are either
a sub- or superset of n part R/S . In order to reduce the amount of data to be transferred,
joins are executed as semi-joins which results in transferring only the join predicate
containing relations, and is succeeded by a materialization of the remaining relations
as defined by the query. However, this potentially necessary materialization is out of
our scope as we define a join execution as finished when the matching tuples from
both relations are derived across all RAMCloud nodes that executed the join (n join).

© Springer International Publishing Switzerland 2016
C. Tinnefeld, Building a Columnar Database on RAMCloud, In-Memory
Data Management Research, DOI 10.1007/978-3-319-20711-7_7
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Table 7.1 System model symbols for operating on two relations at a time

Symbol Parameter

n # of nodes in the cluster

R/S To be joined relations R/S

n part R # of nodes relation R is partitioned across

n part S # of nodes relation S is partitioned across

n part Ovl # of nodes where relations R and S overlap

n join # of nodes used for processing a join

N part R/S
1...i Individual nodes with a partition of R/S

N join
1...i Individual nodes used for processing a join

|R| / |S| Individual records of R/S

R1...i /S1...i Individual partitions of R/S

|Ri | / |Si | Individual records of a partition of R/S

Rsize/Ssize Size of relations R/S in bytes

BWnet Network throughput between two nodes in
bytes/sec

BWhash In-memory throughput for building an hash
table on a single node in bytes/sec

BWprobe In-memory throughput for probing against an
hash table on a single node in bytes/sec

Table 7.1 explains the parameters and their notation used within join algorithms and
our analytical model.

There is a great variety of different join algorithms in the field of parallel database
systems. However, when comparing the different algorithms, there are two aspects
which strongly characterize such an algorithm: the way the data is partitioned and
transferred across the participating nodes for the join execution, and the mechanism
to perform the actual comparison between elements of the two join-relations on each
node. Since we implement and execute the joins in a storage system with switched
fabric communication links, we want to focus on the implications of data partitioning
and transfer, and not on the different options for performing the data item compar-
isons. Therefore, we only consider hashing and probing for the comparison (and not
e.g. sort-merge), since it is a well-established technique, especially in the context of
main memory data access [BLP11, BTAÖ13]. As for the aspect of partitioning and
data transfer we want to evaluate the following three strategies:

1. Partitioning of both relations equally across all n join nodes. This results in a
constant amount of data to be transferred. This can be done with the Grace Join.
2. Replication of the smaller relation across all n join nodes. This results in a data
amount to be transferred which grows linearly with n join nodes. After the completion
of the data transfer, we want to execute the data item comparison which results in a
minimal probing effort, at the price of a decreased degree of parallelism. This can
be done with the distributed block-nested loop join (DBNLJ).
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3. Replication of the smaller relation across all n join nodes. This results in a data
amount to be transferred which grows linearly with n join nodes. During the data
transfer, we want to execute the data item comparison which results in an increased
probing effort, but enables data transfer and probing happening in parallel. This can
be done with the Cyclo Join.

7.1 Grace Join

Grace Join algorithm: the Grace Join is described by Schneider and DeWitt [SD89]
and is one of the standard join algorithms in the Gamma Database Machine Project
[DGS+90]. The Grace Join can be divided into two phases as shown in Algorithm 1
and 2. The first phase partitions the data across all nodes N join

1...i used for executing
the join. This happens by creating a number of buckets on each node N part

1...i that hold
some data of a to-be-joined relation. The number of created buckets on each node
matches the number of nodes that will be used for executing the join. The data from
relation R and S on each node N part

i is then hashed into the buckets. In a next step,
those buckets are sent to the nodes executing the join. This hash partitioning of R
and S across all nodes that execute the join ensures that all records which potentially
match the join criteria are on the same node.

In the second phase (Algorithm 2), each node N join
1...i executes locally a simple

hash join by hashing its data from S (which is considered to be smaller or equal than
its data from R). A probing is then done against the resulting hash table by iterating
over the data from R.

1 foreach |Ri | / |Si | do
2 hash |Ri | / |Si | into bucket R/S

i mod n join
;

3 foreach bucket R/S
i do

4 send bucket R/S
i to host N join

i ;

Algorithm 1: Grace Join partitioning phase at every N part R/S
i

Grace Join system model: the Grace Join distributes the relations S and R over
all nodes that participate in the join. This results in the transfer of both relations over
the network minus the data of relations that does not have to be moved as the initial

1 foreach
∣∣bucket S

i

∣∣ in bucket S
i do

2 hash
∣∣bucket S

i

∣∣ into hashtableS ;

3 foreach
∣∣bucket R

i

∣∣ in bucket R
i do

4 probe
∣∣bucket R

i

∣∣ against hashtableS ;

Algorithm 2: Grace Join processing phase at every N join
i
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partitioning data placement equals the placement for join execution (Eq. 7.1). The
total amount of bytes to be processed by hashing and probing (Eq. 7.4) consists of the
initial hashing of the data for partitioning (Eqs. 7.5 and 7.6) and the hashing (Eq. 7.7)
and probing (Eq. 7.8) of the partitioned data on each node for executing the simple
hash-join. The total execution time (Eq. 7.9) is the sum of the time for partitioning
the data and the join execution of each node. The time for hash-partitioning the data
(Eqs. 7.10 and 7.11) is influenced by the initial partitioning of R and S and to what
extent their data overlaps on nodes. The hashing of the data for partitioning and
the transmission over the network to the join nodes (Eqs. 7.13–7.15) can be done in
parallel. After the data distribution, the execution time is determined by executing
the simple hash-join (Eq. 7.16). The partitioning phase and the join processing phase
are modelled as non-overlapping as (a) the processing capabilities of the nodes can
be fully utilized during the hash partitioning with the data being stored in memory
and (b) to keep the number of probing operations constant during the join processing
phase.

Ntot = Nr + Ns (7.1)

Nr = Rsize − (
Rsize

n part R ∗ n join
∗ min(n part R, n join)) (7.2)

Ns = Ssize − n part Ovl

n part S
∗ (7.3)

(
Ssize

n part S ∗ n join
∗ min(n part S, n join)

Jtot = Jhash Part R + Jhash Part S + Jhash + Jprobe (7.4)

Jhash Part R = Rsize (7.5)

Jhash Part S = Ssize (7.6)

Jhash = Rsize (7.7)

Jprobe = Ssize (7.8)

Ttot = max(Thash Part , Tnet ) + Tjoin (7.9)

Thash Part = max(
Jhash Part R

n part R ∗ BWhash
,

Jhash Part S

n part S ∗ BWhash
) (7.10)

if n part Ovl = 0

=
Jhash Part R

n part R
+ Jhash Part S

n part S

BWhash
(7.11)

if n part Ovl > 0

Tnet = max(Tsend , Trecv) (7.12)
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Tsend = max(
Nr

n part R ∗ BWnet
,

Ns

n part S ∗ BWnet
) (7.13)

if n part Ovl = 0

=
Nr

n part R
+ Ns

n part S

BWnet
(7.14)

if n part Ovl > 0

Trecv = Ns + Nr

n join ∗ BWnet
(7.15)

Tjoin = Jhash

n join ∗ BWhash
+ Jprobe

n join ∗ BWprobe
(7.16)

7.2 Distributed Block Nested Loop Join

Distributed Block Nested Loop Join algorithm: a Distributed Block Nested Loop
Join performs a join between R and S by scanning every block of S tuples once for
every block of R tuples. In a cluster, the data of R and S is distributed across a set
of nodes and for processing the join, the blocks of R and S have to be exchanged
between the respective nodes. The resulting network traffic can be reduced only by
running the outer loop on each node by supplying each node N join

1...i with the entire
relation S.

As depicted in Algorithm 3, each node N join
i receives the complete relation S

from N part
1...i . If the number of nodes where the partitions S and R are partitioned

across and the number of nodes used for join processing are not equal, then R also
has to be distributed. However, each node N join

i only receives a part of R where the
size of the part depends on the number of nodes participating in the join. Once the
data has been distributed, the join can be processed. Whether S or the respective part
of R will be hashed or probed against, depends on their sizes.

Distributed Block Nested Loop Join system model: the DBNLJ—as specified
in Algorithm 3—replicates the relation S on and distributes the relation R equally
over every node that participates in the join. The resulting network transfer Ntot is
the sum of both operations (Eq. 7.17). The network transfer for R is the distribution

1 foreach N part R/S
1...i do

2 if n part = n join then
3 receive Si from N part S

i ;
4 else
5 receive Si ,Ri mod n join from N part R/S

i ;

6 compute Ri �� Si in memory;

Algorithm 3: BNLJ algorithm for every N join
i
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of R over all nodes that participates in the join (Eq. 7.18). The network transfer for
S is the replication of parts of the relation to nodes that already hold some data of
S and the full replication to extra nodes which might be added to the join execution
(Eqs. 7.19 and 7.20). The total amount of bytes to be processed in memory for the join
execution (Eq. 7.21) is the sum of hashing and probing. Since S is being replicated
to all nodes, but each node only holds a part of R, it might be cheaper to hash R
and probe over S (Eqs. 7.22–7.25). The total execution time (Eq. 7.26) is the sum of
the time needed for partitioning the data (Eq. 7.27) as well as hashing and probing
the data (Eq. 7.31). The time needed for partitioning the data across the nodes is
determined by sending and receiving the data over the network (Eqs. 7.28–7.30).

Ntot = Ns + Nr (7.17)

Nr = Rsize

n part R
∗ max(n part R − n join, 0)+ (7.18)

Rsize

n join
∗ max(n join − n part R, 0)

Ns = Ssize ∗ (n join − 1) (7.19)

if n join ≥ (n part R + n part S − n part Ovl)

= Ssize ∗ (n join − n join

n part R + n part S − n part Ovl
) (7.20)

if n join < (n part R + n part S − n part Ovl)

Jtot = Jhash + Jprobe (7.21)

Jhash = Ssize ∗ n join if
Rsize

n join
≥ Ssize (7.22)

= Rsize if
Rsize

n join
< Ssize (7.23)

Jprobe = Rsize if
Rsize

n join
≥ Ssize (7.24)

= Ssize ∗ n join if
Rsize

n join
< Ssize (7.25)

Ttot = Tpart + Tjoin (7.26)

Tpart = max(Tsend , Trecv) (7.27)

Tsend = max(
Nr

n part R ∗ BWnet
,

Ns

n part S ∗ BWnet
) (7.28)

if n part Ovl = 0

=
Nr

n part R
+ Ns

n part S

BWnet
(7.29)

if n part Ovl > 0
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Trecv = Ns + Nr

n join ∗ BWnet
(7.30)

Tjoin = Jhash

n join ∗ BWhash
+ Jprobe

n join ∗ BWprobe
(7.31)

7.3 Cyclo Join

Cyclo Join algorithm: Frey, Goncalves, Kersten, and Teubner introduced the Cyclo
Join [FGKT10] as a way to exploit inter-node bandwidth for join processing by cre-
ating a virtual ring between the nodes that participate in the processing of a join.
During the join processing, data is continuously being pumped through that ring,
thereby allowing for a greater degree of parallelism. In order to minimize the impact
of the network processing overhead and to utilize the in-memory data storage perfor-
mance characteristics at the same time, RDMA is chosen as network technology of
choice for Cyclo Join. Goncalves and Kersten describe the Data Cyclotron [GK11]
as a complete ring-centered data processing architecture.

Algorithm 4 describes the Cyclo Join, where the algorithm is similar to the Dis-
tributed BNLJ algorithm as introduced in the previous subsection, except for the
distribution of S. Before the join execution starts, relation R is equally distributed
across all nodes N join

1...i . Then each node N join
i can in parallel calculate the join

between Ri �� Si and ship parts of S to the next node in the virtual ring. Whether S
or R will be hashed or probed against, depends on their sizes as well as on n join . After

completion of the Cyclo Join, relation S has traversed in its entirety each node N join
i .

1 if n part �= n join then
2 receive Ri mod n join from N part R

i

3 foreach block Si received from N join
(i−1) mod n join

do
4 compute Ri �� Si in memory;
5 forward Si to host N(i+1) mod n join ;

Algorithm 4: Cyclo Join algorithm for every N join
i

Cyclo Join system model: the total network transfer (Eq. 7.32) for a Cyclo Join
execution consists of the data transfer before the join execution and the cyclic data
transfer during the join. Before the join execution, S and R are equally distrib-
uted across all nodes that participate in the join processing (Eqs. 7.33–7.35). During
the join execution, S is fully replicated to every node via the virtual network ring
(Eq. 7.36). The total amount of bytes to be processed in memory for the join execution
(Eq. 7.37) is the sum of hashing and probing. Since the number of probing operations
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grows with the number of nodes participating in the join, either the hashing or the
probing operations can dominate the join execution. Therefore, two helper equations
(Eqs. 7.38 and 7.39) are being introduced to determine if the total execution time of
the join processing is smaller if S or R are being hashed or probed against. Equations
(Eqs. 7.40–7.43) use these functions and provide the resulting amount of bytes to
be processed in-memory for hashing and probing. The total execution time for a
Cyclo Join (Eq. 7.44) consists of the initial data partitioning as well as the cyclic data
transfer and the join processing. The time for the initial data partitioning (Eq. 7.45)
includes the time for distributing S and R equally (Eqs. 7.46–7.48) and for hashing
either S or R. Since the cyclic data transfer of S and the probing can happen in
parallel, Tcyc (Eq. 7.49) is dominated by the more time-consuming operation of the
two.

Ntot = Npart R + Npart S + Ncyc (7.32)

Npart R = Rsize

n part R
∗ max(n part R − n join, 0)+ (7.33)

Rsize

n join
∗ max(n join − n part R, 0)

Npart S = Ssize

n join
∗ max(n part S − n join, 0) (7.34)

if n join ≥ (n part R + n part S − n part Ovl)

= Ssize − Ssize

n part S
∗ max(n part R − n join, 0) (7.35)

if n join < (n part R + n part S − n part Ovl)

NCyc = (n join − 1) ∗ Ssize (7.36)

Jtot = Jhash + Jprobe (7.37)

T s
hash = Ssize

BWhash
+ Rsize ∗ n join

BWprobe
(7.38)

T r
hash = Rsize

BWhash
+ Ssize ∗ n join

BWprobe
(7.39)

Jhash = Ssize if T s
hash < T r

hash (7.40)

= Rsize if T s
hash ≥ T r

hash (7.41)

Jprobe = Rsize ∗ n join if T s
hash < T r

hash (7.42)

= Ssize ∗ n join if T s
hash ≥ T r

hash (7.43)
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Ttot = Tpart + Tcyc (7.44)

Tpart = max(Tsend , Trecv) + Jhash

BWhash ∗ n join
(7.45)

Tsend = max(
Npart R

n part R ∗ BWnet
,

Npart S

n part S ∗ BWnet
) (7.46)

if n part Ovl = 0

=
Npart R
n part R

+ Npart S
n part S

BWnet
(7.47)

if n part Ovl > 0

Trecv = Npart S + Npart R

n join ∗ BWnet
(7.48)

Tcyc = max(
Ncyc

BWnet ∗ n join
,

Jprobe

BWprobe ∗ n join
) (7.49)

7.4 Join Algorithm Comparison

We implemented the system model from the previous section in the statistical lan-
guage R and prototypically implemented the join algorithms in RAMCloud in order
to compare the different algorithms. Figure 7.1 illustrates a set of comparisons based
on the parameters shown in Table 7.2. The comparisons reveal the execution times
of a single join operation in a RAMCloud cluster with 16 nodes. Figure 7.1a, c are
calculations based on the system model, Fig. 7.1b, d are the respective experimen-
tal validations based on the prototypical implementations. The size of relation S is
changed between the first and the second calculation and validation.

Figure 7.1a, b indicate that the Grace Join is preferable when joining evenly sized
relations. At n join = 16 nodes, the Grace Join produces an Ntot of 1.8 GB where the
DBNLJ and the Cyclo Join each transfer 15 GB over the network for executing the
join due to their replication of the complete relation S to all nodes. This also spikes the
amount of data to be processed (e.g. Jtot Grace Join = 4 GB vs. Cyclo Join = 17 GB)
as the full relation S is traversed at every node (as shown in Fig. 7.2). Figure 7.1c, d
show that the Cyclo Join performs best when one relation is substantially smaller than
the other one. In addition, a small relation S lets the Cyclo Join benefit from its high
degree of parallelism without introducing a noteworthy penalty for the additional
probing (as shown in Fig. 7.2c, d). Concluding the comparison, the Grace Join and
the Cyclo Join are the winners in the context of our chosen execution strategies when
one join is executed at a time. We observe that choosing the right algorithm is heavily
influenced by the sizes of the joined relations.

With regards to the validation of the system model, we observe that the measure-
ments are about 20–25 % off in comparison to the system model. The reasons for
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Fig. 7.1 Four comparisons of the execution times for different join algorithms. Figure 7.1a, c
are calculations based on the system model, Fig. 7.1b, d are the respective experiments based
on the prototypical implementations. a Calculation with system model for: n part R/S = 16 nodes,
n part Ovl = 16 nodes, Rsize = 1 GB, Ssize = 1 GB, b Experiment with implementation: n part R/S = 16
nodes, n part Ovl = 16 nodes, Rsize = 1 GB, Ssize = 1 GB, c Calculation with system model for:
n part R/S = 16 nodes, n part Ovl = 16 nodes, Rsize = 1 GB, Ssize = 0.1 GB, d Experiment with imple-
mentation: n part R/S = 16 nodes, n part Ovl = 16 nodes, Rsize = 1 GB, Ssize = 0.1 GB
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Table 7.2 Hardware parameters

Parameter Value

CPU Intel Xeon X3470 CPU

NIC Mellanox ConnectX-2 InfiniBand HCA

BWnet 3.142 GB/sec network bandwidth two nodes

BWhash 0.107 GB/sec throughput for inserting into
std::unordered_set

BWprobe 0.731 GB/sec throughput for probing against
std::unordered_set
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Fig. 7.2 Four comparisons of the network transfer and data processed in memory for different
join algorithms. Figure 7.2a + b depict the network transfer Ntot , Fig. 7.2c + d illustrate the data
amount processed in memory Jtot . a Ntot based on the system model for: n part R/S = 16 nodes,
n part Ovl = 16 nodes, Rsize = 1 GB, Ssize = 1 GB, b Ntot based on the system model for: n part R/S = 16
nodes, n part Ovl = 16 nodes, Rsize = 1 GB, Ssize = 0.1 GB, c Jtot based on the system model for:
n part R/S = 16 nodes, n part Ovl = 16 nodes, Rsize = 1 GB, Ssize = 1 GB, d Jtot based on the system
model for: n part R/S = 16 nodes, n part Ovl = 16 nodes, Rsize = 1 GB, Ssize = 0.1 GB

that are, on the one hand, that our system model abstracts from resource conflicts
and assumes a perfect distribution of network bandwidth among clients. On the other
hand, our implementation in RAMCloud is not fully optimized, as we currently are
working with dynamically growing data structures instead of estimating the data
structure size and preallocating memory accordingly.
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7.5 Parallel Join Executions

After comparing the execution of one join operation at a time, we now address the
execution of many join operations in parallel via a simulation based on the previously
created R-model. We take the join operations from the Star Schema Benchmark [O’N]
at a sizing factor 100 (which has 600 million records in its main table) as workload
as they vary in to-be-joined relations, relation sizes, and selectivity (as shown in the
Tables 11.1 and 11.2 in the Appendix). Our goal is to execute this workload as fast as
possible. The execution of the join operations in the workload happens sequentially
(no change in the execution order), although join operations from different queries
can run in parallel. Furthermore, we execute one join operation per RAMCloud
node at a time. We introduce a set of heuristics that can decide at run-time how to
parameterize the execution of a join operation. These parameters include the number
of nodes to be used for executing the join (n join) and the choice of the algorithm.
The heuristics are:

• Greedy Heuristic. The Greedy Heuristic uses all nodes in the cluster for every
join. This results in a sequential execution of all join operations in the workload.
For each join operation the fastest algorithm is determined via the system model
(with n join = n).

• Modest Heuristic. This heuristic uses one-fourth of the nodes in the cluster for
every join. This results in up to four join executions being executed in parallel.
For each join operation the fastest algorithm is determined via the system model
(with n join = n

4 ).
• Graceful Heuristic. The Graceful Heuristic monitors the current load of the clus-

ter and takes half of the currently idling nodes (where idling is defined as not
currently executing a join) for the join execution. For each join operation the
optimal algorithm is determined via the system model (with n join = idling n

2 ).
• Smart Heuristic. This heuristic calculates for every join the to-be-used number

of nodes and algorithm with the most efficient hardware utilization based on the
cost model (minimal Ttot

n join
).

In addition to the above heuristics we also introduce a set of different partitioning
strategies:

• All Relations Uniform. All relations are uniformly partitioned across all nodes.
• All Relations Round-Robin. All relations are distributed in a round-robin manner

over four nodes at a time.
• Small Relations Pinned - Large Relations Uniform. Small relations are pinned

on one node, large relations are partitioned uniformly across the remaining nodes.

Figure 7.3 illustrates the resulting execution times, showing that the partitioning
of the large relations across all nodes in the cluster is preferable over placing them
on only a few nodes each. The choice of the partitioning criteria has potentially more
impact than the choice of the heuristic. When comparing the heuristics, one can see
that the Modest Heuristic always performs best while the Smart and the Graceful

http://dx.doi.org/10.1007/978-3-319-20711-7_11
http://dx.doi.org/10.1007/978-3-319-20711-7_11
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Fig. 7.3 Evaluation of join execution heuristics on a cluster with 32 nodes and hardware parameters
shown in Table 7.2

Table 7.3 Distribution of join algorithms for Star Schema Benchmark execution as shown in
Fig. 7.3 in dependence of the chosen heuristic

All Relations Uniform All Relations Round-Robin Small Pinned, Large Uniform

Grace DBNLJ Cyclo Grace DBNLJ Cyclo Grace DBNLJ Cyclo

Greedy 36 0 0 36 0 0 19 0 17

Modest 30 0 6 11 0 25 30 0 6

Graceful 36 0 0 36 0 0 36 0 0

Smart 32 0 4 17 0 19 34 0 2

Illustration how many of the 36 joins are executed with which algorithm

Heuristics perform worse. This is due to executing each join very efficiently, but
resulting in an overall bad cluster utilization. When looking at the chosen algorithms,
Table 7.3 reports that the Grace Join and the Cyclo Join were chosen exclusively.
Depending on the heuristic, either only the Grace Join has been used or in conjunction
with the Cyclo Join. The winning Modest Heuristic always picked a mix of the Grace
Join and the Cyclo Join. Concluding this section, the evaluation shows that (a) it is
preferable to partition the data across as many nodes as possible and (b) perform
the join operations with a mix of the Grace and the Cyclo Join. Furthermore, it
is preferable to allocate a fixed number of nodes for the execution of each join as
choosing the number of nodes based on efficient join execution or cluster load leads
to under utilization of the cluster.
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Chapter 8
Performance Evaluation

This chapter presents a performance evaluation to quantify the gap between query
execution on local and remote main memory while considering the different operator
execution strategies (data pull vs. operator push). Two different workloads are being
used: an analytical workload consisting of the Star Schema Benchmark in Sect. 8.1
and a mixed workload based on point-of-sales customer data from a large European
retailer in Sect. 8.2. The used hardware is the same as in the previous part. Each node
has an Intel Xeon X3470 CPU, 24GB DDR3 DRAM, and a Mellanox ConnectX-
2 InfiniBand HCA network interface card with the nodes connected via a 36-port
Mellanox InfiniScale IV (4X QDR) switch.

8.1 Analytical Workload: Star Schema Benchmark

Figure 8.1 shows an AnalyticsDB operator breakdown for each query of the Star
Schema Benchmark (SSB). AnalyticsDB runs on a single node, the RAMCloud
cluster has 20 nodes. The execution on RAMCloud happens either via data pull or
operator push strategy and each AnalyticsDB column is either being stored on one
storage node (server span=1) or partitioned across all nodes (server span=20). The
figure illustrates that the partitioning criteria has only very little impact (2.8 %) on
the data pull execution strategy and that data pull is on average 2.6 times slower than
the execution on local DRAM. With a server span of one, the operator push execution
strategy is on average 11 % slower than the execution on local DRAM. With a server
span of 20, the operator execution strategy can be accelerated by a factor of 3.4. The
figure does not show the execution times of the local AnalyticsDB operators such as
Sort in detail, but summarizes them as Other Operators.

Figure 8.2 evaluates the impact a varying data set size has on the execution time
by showing the execution of the SSB with a varying data scale factor SF. Scale factor
1 has a fact table with 6 million rows and a total data size of 600 MB, scale factor
10 has a fact table with 60 million rows and a total data set size of 6 GB, and scale
factor 100 has 600 million rows in the fact table and a total data set size of 60 GB.

© Springer International Publishing Switzerland 2016
C. Tinnefeld, Building a Columnar Database on RAMCloud, In-Memory
Data Management Research, DOI 10.1007/978-3-319-20711-7_8
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Fig. 8.1 Operator breakdown for AnalyticsDB executing Star Schema Benchmark queries with a
data scale factor of 10 and different storage options and operator execution strategies. AnalyticsDB
runs on a single node, the RAMCloud (RC) cluster has size of 20 nodes. The figure illustrates that
the data pull execution strategy is on average 2.6 times (or 260 %) slower than the execution on local
DRAM and that the operator push execution strategy is on average 11 % slower than the execution
on local DRAM. a Star Schema Benchmark Queries 1.1–2.3. b Star Schema Benchmark Queries
3.1–4.3

The experiments with SF 100 could not be executed on local DRAM as the data
set size exceeded the capacity of a single server. Figure 8.2 illustrates that the ratio
between the data set size and the SSB execution times of the different execution
strategies remain constant even with a growing data set size and with a constant
cluster size.

Throughout the previous experiments, we varied the number of nodes in the RAM-
Cloud cluster and the resulting server span. In this subsection, we want to perform
this variation not in separate experiment executions, but continuously while a single
AnalyticsDB node is executing queries. Therefore, we designed and used a simplistic
data migration manager which distributes the data equally across the available nodes:
if a new node joins the RAMCloud cluster, it gets a chunk of the data, before a node
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Fig. 8.2 RAMCloud cluster with 20 nodes and a single node running AnalyticsDB with a varying
Star Schema Benchmark data scale factor (SF). The figure shows that the ratio between data set
size and Star Schema Benchmark execution times remain constant with a growing data set size.
a Sizing Factor = 1, b Sizing Factor = 10, c Sizing Factor = 100

is removed from the cluster its contained data is distributed across the remaining
nodes. The data distribution is done via a splitting of the RAMCloud namespaces
and a subsequent migration of the data that is contained in a part of a namespace: the
complexity and execution time of this mechanism benefits from an equal partitioning
of all namespaces.

Figure 8.3 illustrates the SSB execution time while RAMCloud nodes are being
added or removed from the cluster. With every added RAMCloud node, the overall
storage capacity increases and the SSB execution time decreases as previously dis-
cussed. With every removed node the overall storage capacity decreases and the SSB
execution time increases.
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Fig. 8.3 RAMCloud cluster with a varying number of nodes and a single node running AnalyticsDB
with a operator push execution strategy and a Star Schema Benchmark data scale factor of 10
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8.2 Mixed Workload: Point-of-Sales Customer Data

This section also aims to quantify the gap between query execution on local and
remote main memory while considering the different operator execution strategies
(data pull vs. operator push). In contrast to the previous section, it is not done by
taking a synthetic benchmark with generated data, but an excerpt of the point-of-
sales data from one of the largest European retailers with over 5,000 branches. The
excerpt includes about 62 million records, which is a data volume of 10.8 GB and
holds the point-of-sales data of some branches over the course of a month. Each
record represents a single product being sold at the cash register in a single branch.
The point-of-sales data itself is in a single fact table accompanied by a number
of dimension tables which describe the different branches and products. Products
are hierarchically grouped in four levels where Product Group Level 1 contains for
example all non-alcoholic drinks, Product Group Level 2 contains all soft drinks,
Product Group Level 3 contains all energy drinks and Product Level 4 contains the
different actual products where each variation of a product in size or flavor is a
separate product.

The workload itself consists of four analytical and one transactional query. The
analytical queries represent how a sales analyst operates on the data, while the trans-
actional query covers a product being sold at a cash register. The following queries
are used:

• AQ1: The first analytical query calculates the grouping of all sold items by Product
Group Level 1, showing for example which percentage of the overall sales was
achieved by non-alcoholic drinks.
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Fig. 8.4 Operator breakdown for executing the customer data mixed workload.Operator breakdown
for executing the point-of-sales customer data mixed workload with different operator execution
strategies. AnalyticsDB runs on a single node, the RAMCloud (RC) cluster has a size of 8 nodes.
The figure illustrates i.a. that the data pull execution strategy is on average 2.2x slower than the
execution on local DRAM and that the operator push execution strategy is on average 44 % slower
than the execution on local DRAM
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• AQ2: This analytical query lists how often a single product has been sold for what
price, analyzing the price elasticity of a product.

• AQ3: This query groups all sales by a chosen Product Group Level 2 and shows
the respective revenues and quantities. This query has a low selectivity as it groups
by a product group that includes many sold products.

• AQ4: Same as AQ3 but with selecting a product group where only few products
were sold resulting in a high selectivity.

• TQ1: This query performs an insert for a sold product that was registered at the
counter.

Figure 8.4 presents the operator breakdown for executing the customer data mixed
workload with different operator execution strategies. AnalyticsDB runs on a single
node, the RAMCloud cluster has a size of 8 nodes. The outcome of the experiment
is similar to the experiment presented in Sect. 8.1: for the queries AQ1–AQ4 the
data pull execution strategy is on average 2.3x slower, the operator push execution
strategy is on average 44 % slower. It can be observed that in query AQ3 the operator
push execution strategy is slower than the data pull strategy due to the low selectivity,
whereas in query AQ4 the operator push execution strategy is even faster than an
execution on local DRAM due to parallelism in RAMCloud in combination with
high selectivity. The transactional query takes 4 µs on local DRAM and 12 µs with
RAMCloud regardless of the operator execution strategy.



Chapter 9
High-Availability Evaluation

As shown in Fig. 8.3 in the previous chapter, the size of a RAMCloud Cluster can be
changed without an interruption of the query processing executed by AnalyticsDB.
However, the dynamic resizing in Fig. 8.3b is done via a purposeful revocation of a
node which gives RAMCloud the time to redistribute the data from the to-be-removed
node before its actual revocation. This kind of awareness cannot be expected in the
event of a hardware failure. For the scenario of an unexpected hardware failure,
RAMCloud features a fast crash recovery mechanism [ORS+11] as explained in
Sect. 3.3.

AnalyticsDB can make use of the fast crash recovery feature in RAMCloud.
To prove its applicability in the context of a database application, we conduct the
following experiment: the experiment utilizes a total of 20 nodes where 10 nodes
run the RAMCloud master service as well as the RAMCloud backup service. The
number of replicas is set to three. The remaining 10 nodes run AnalyticsDB which
consecutively executes the Star Schema Benchmark suite to create a base load on
the cluster. The Star Schema Benchmark data set is sized at factor 10.

In this experiment, each AnalyticsDB node permanently executes the Star Schema
Benchmark. At a sizing factor 10, the average runtime is about 8.2 s. As shown in
Fig. 9.1, after about 60 s, one RAMCloud node is getting killed, decreasing the total
RAMCloud node count to 9 running nodes within the cluster. When a RAMCloud
node is killed, its data is restored from the backups to the remaining servers.

The RAMCloud data recovery process itself takes between 0.2 and 0.5 s. At a
SSB sizing factor 10 the overall dataset is about 6 GB, resulting in about 600 MB
of data per node at the initial setup of 10 RAMCloud nodes. It is possible that an
AnalyticsDB node is connected to the RAMCloud node that is being killed and
executes an operator. Here, the AnalyticsDB node is not notified in any way of the
crashed RAMCloud node. For that case, AnalyticsDB has a RPC timeout of 1 s
after which the respective RPC is issued again. This RPC timeout also explains the
execution time bumps in Fig. 9.1 which are greater than just the time needed for the
RAMCloud recovery process.
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Fig. 9.1 High-availability experiment with one AnalyticsDB and ten RAMCloud nodes. Through-
out the experiment RAMCloud nodes get killed and the impact on the query response time is
observed

AnalyticsDB is not aware of the fact that a node of its storage system was killed, it
just notices the timed-out RPC and restarts it. Throughout the experiment in Fig. 9.1,
the execution time of the Star Schema Benchmark execution increases as the capacity
of the RAMCloud cluster decreases constantly.



Chapter 10
Elasticity Evaluation

In the previous experiments in our evaluation, we varied either the number of RAM-
Cloud nodes or we varied the load by changing the number of AnalyticsDB nodes. In
this chapter we want to put the pieces together by maintaining a constant query exe-
cution time by resizing the RAMCloud cluster online under a changing load which is
represented by a varying amount of AnalyticsDB nodes executing the Star Schema
Benchmark.

The experiments in this chapter define an upper and lower execution time limit
for the average Star Schema Benchmark execution time of 30 and 20 seconds respec-
tively. If the load is increased by adding AnalyticsDB nodes and subsequently the
execution time goes above the upper limit, then new RAMCloud nodes are added
to the cluster until the average execution is back within the boundaries. The same
approach is used when AnalyticsDB nodes are being removed and the execution
time drops below the lower limit resulting in the removal of RAMCloud nodes. It is
common to take differently shaped workloads for evaluating the elasticity of a sys-
tem [ILFL12, CST+10]: we use three different workloads namely a sinus-shaped, a
plateau-shaped, and an exponential workload. We added a simplistic load manager
to the system, as the RAMCloud project does not feature such a component as of
now, which checks on configurable intervals the average processing time of the Star
Schema Benchmark and adds or removes RAMCloud nodes accordingly.

Sinus-Shaped Workload

The first experiment we present executes a sinus-shaped workload. In the beginning,
only one AnalyticsDB node executes the SSB benchmark, after a while a second
node, then three more nodes and finally five nodes are added. The experiments
highest load counts ten AnalyticsDB nodes in total. Following the sinus shape, after
a while, five nodes, then three nodes and finally one node are removed to lower the
load back to the initial load. Once the load manager detects a breach of the upper
bound, it will check another 90 times before acting. The delay of the lower bound
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is set to 30s, while the delay for the upper bound breach is three times higher than
for the lower bound. This can be useful to avoid provisioning resources in case of
runaways. On the other hand, a shorter delay helps the load manager to provision
new resources faster and therefore react more elastically. Figure10.1 shows a sinus-
shaped workload pattern in which RAMCloud scales out and later back in as load is
decreasing. The delay between breaching the upper bound and starting the second
RAMCloud node is obvious. Since the load manager is a simple reactive manager,
it only starts one RAMCloud node at a time leading to a period of slow mitigation
from the moment of high load at about 500s from the experiment’s beginning. At
about 700s, the SSB runtime is back in its normal boundaries. With lowering the
load, the system reacts faster with de-provisioning of nodes.

Plateau-Shaped Workload

The second experiment is depicted in Fig. 10.2. The upper and lower boundary for
the SSB runtime are set to the same value (30 s upper and 20s lower) as in the first
experiment. One RAMCloud node is started at the beginning of the experiment.
The cluster load is ramped up by starting an AnalyticsDB node every 60s. In this
experiment, the load manager delays acting upon a boundary violation by 300ms.
Because of the instantaneous under-provisioning situation, the load manager starts
seven more RAMCloud nodes to bring the SSB execution time into the specified
boundaries. The time period the cluster runs on high load is called plateau time.
In this experiment, it is 600s long. At about 1100s, the plateau time is over. The
benchmark framework stops 9 out of 10 AnalyticsDB nodes, reducing the cluster
load to one-tenth of the plateau load. This leads to an immense over-provisioning
situation. The runtime of the SSB benchmark drops to under 10 s per SSB run. The
load manager acts immediately by stopping 7 of the 8 running nodes to bring the
runtime back into its boundaries. The SSB runtime runs within boundaries until the
end of the experiment.

Exponential Workload

In the third experiment, we probe an exponential workload. As shown in Fig. 10.3
the experiment starts with one AnalyticsDB node. After the second node has been
added, first two then four nodes are added with a delay of 120s. It is clearly visible,
that the system needsmuchmore time to normalize the SSB runtimewhen four nodes
are being added to the system. This has two reasons: first, the load manager only
adds one node at a time. With a more efficient load manager, it could be possible
to start more RAMCloud nodes the more the load has increased. This would bring
the execution time within the specified boundaries more quickly, but also bears the
risk of oversteering. Second, the higher the load in the system, the longer it takes
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to migrate data between the nodes to distribute the load among more nodes. When
the load decreases, the system corrects the over-provisioning situation by stopping
RAMCloud nodes.

The experiments in this chapter (a) show that the architecture can adapt to work-
load changes of different orders in a short period of time (seconds), (b) the adaption
does not interrupt the ongoing query processing and (c) the resulting elasticity allows
the compliance with a performance goal without any adjustments from a DBMS per-
spective or without any manual intervention from a database administrator.



Part IV
Conclusions



Chapter 11
Conclusions

Current state-of-the-art parallel main memory DBMSs are designed according to
the principles of a shared-nothing architecture driven by the intention of minimizing
network traffic and thereby preserve the main memory performance advantage (as
discussed in Chap. 2). The advent of RDMA-enabled network technology makes the
creation of a parallel main memory DBMS based on a shared-storage technology
feasible. Amodern storage system such as RAMCloud keeps all data resident inmain
memory, provides durability, high-availability and is elastic: exploiting these char-
acteristics in the context of a database management system is desirable. Nowadays,
provisioning of information technology infrastructure over the Internet—including
in-memory computing—allows the service providers to leverage the economies of
scale and offer their services at an unbeatable price point. Being able to utilize hosted
main memory-based storage for operating a database system makes in-memory data
management even more economically viable.

Consequently, this work describes building a columnar database on shared main
memory-based storage. The DBMS that is used throughout this work is Analyt-
icsDB which features dictionary-compression, a column-at-a-time execution model,
applies the pattern of late materialization and is optimized for read-mostly respec-
tively mixed workloads. Several instances of AnalyticsDB share a common access to
main memory-based storage provided by RAMCloud, in combination with RDMA-
enabled network.

Part I of this work describes that AnalyticsDB features an encapsulation of data
access and operator execution via an interface which allows seamlessly switching
between local or remote main memory. Since RAMCloud provides not only storage
capacity but also processing power, this allows for pushing-down the execution of
database operators into the storage system. Part I also shows that the data of a column-
oriented DBMS can be persisted in a hash table while at the same time maintaining
the fast scan speed when working on column-oriented data by chopping up a column
into small blocks and storing each block as a key-value pair. We demonstrated that
with a tuple size of 8-bytes a block size of 1000 tuples is sufficient to achieve the
same scan speed as with a completely sequential placement of all tuples.
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Part II tackles the problem of placing the execution of database operators. The
presented system model allows the estimation of operator execution costs in terms
of network transfer, data processed in memory, and wall time. This can be used for
database operators that work on one relation at a time—such as a scan or materialize
operation—to discuss the site selection problem (data pull vs. operator push). Since a
database query translates to the execution of several database operators, it is possible
that the optimal site selection varies per operator. For the execution of a database
operator that works on two (or more) relations at a time—such as a join—the system
model is enriched by additional factors such as the chosen algorithm (e.g. Grace-
vs. DBNL- vs. Cyclo-Join), the data partitioning of the respective relations and their
overlapping as well as the allowed resource allocation.

Part III presents an evaluation of AnalyticsDB on RAMCloud on a cluster with
60 nodes where all nodes are connected via RDMA-enabled network equipment. We
show that query processing performance is about 2.4x slower if everything is done
via the data pull operator execution strategy (i.e. RAMCloud is being used only for
data access), and about 27% slower if operator execution is also supported inside
RAMCloud (in comparison to operating only onmainmemory inside a serverwithout
any network communication). The fast-crash recovery feature of RAMCloud can be
leveraged for providing high-availability (e.g. a server crash during query execution
only delays the query response for about one second). Our solution is elastic in a
way that it adapts to changing workloads (a) within seconds (b) without interruption
of the ongoing query processing and (c) without manual intervention.

A closing remark: thiswork comes to the conclusion that deploying a parallelmain
memory-based DBMS on a storage system such as RAMCloud allows leveraging the
features of the storage system, but incorporates a performance penalty in comparison
to operating on local main memory. Is this a beneficial trade-off? We believe yes:
(a) When operating a system at scale, the scalability and elasticity of the overall
system is more important than the last percentage points of performance. (b) This
approach enables the main memory DBMS to neglect the aspect of data durability—
which currently is a complex aspect of amainmemoryDBMS. (c) The comparison to
operating on localmainmemory for quantifying the performance penalties references
the best-case scenario which is not achievable in any parallel DBMS architecture.



Appendix

See Tables A.1 and A.2.

Table A.1 Star Schema
Benchmark relations involved
in joins operations. One
record has a size of 8 bytes

Relation name ID Number of records in
SF1

LineOrder::Custkey R1 6,000,000

LineOrder::Orderdate R2 6,000,000

LineOrder:Partkey R3 6,000,000

LineOrder::Suppkey R4 6,000,000

Customer::Custkey S1 150,000

Date::Datekey S2 2556

Part::Partkey S3 200,000

Supplier::Suppkey S4 10,000
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Table A.2 Star Schema Benchmark join operations

Join ID Query ID R ID R Selectivity S ID S Selectivity

J1 Query 1.1 R2 0.136 S2 0.142

J2 Query 1.2 R2 0.054 S2 0.011

J3 Query 1.3 R2 0.027 S2 0.002

J4 Query 2.1 R3 1 S3 0.04

J5 Query 2.1 R4 0.04 S4 0.2

J6 Query 2.1 R2 0.008 S2 1

J7 Query 2.2 R3 1 S3 0.008

J8 Query 2.2 R4 0.008 S4 0.2

J9 Query 2.2 R2 0.0016 S2 1

J10 Query 2.3 R3 1 S3 0.001

J11 Query 2.3 R4 0.001 S4 0.2

J12 Query 2.3 R2 0.0002 S2 1

J13 Query 3.1 R1 1 S1 0.2

J14 Query 3.1 R4 0.2 S4 0.2

J15 Query 3.1 R2 0.04 S2 1

J16 Query 3.2 R1 1 S1 0.04

J17 Query 3.2 R4 0.04 S4 0.04

J18 Query 3.2 R2 0.0016 S2 0.86

J19 Query 3.3 R1 1 S1 0.008

J20 Query 3.3 R4 0.008 S4 0.008

J21 Query 3.3 R2 0.00006 S2 0.86

J22 Query 3.4 R1 1 S1 0.008

J23 Query 3.4 R4 0.008 S4 0.008

J24 Query 3.4 R2 0.00006 S2 0.012

J25 Query 4.1 R1 1 S1 0.2

J26 Query 4.1 R4 0.2 S4 0.2

J27 Query 4.1 R3 0.04 S3 0.4

J28 Query 4.1 R2 0.016 S2 1

J29 Query 4.2 R1 1 S1 0.2

J30 Query 4.2 R4 0.2 S4 0.2

J31 Query 4.2 R3 0.04 S3 0.4

J32 Query 4.2 R2 0.016 S2 0.285

J33 Query 4.3 R3 1 S3 0.008

J34 Query 4.3 R4 0.08 S4 0.04

J35 Query 4.3 R1 0.00003 S1 0.2

J36 Query 4.3 R2 0.00006 S2 0.285



Glossary

AnalyticsDB is a prototypical in-memory DBMS written in C++ that can seam-
lessly switch between local and remote main memory.

CPU Central Processing Unit.
Cloud Computing is a paradigm that describes the provisioning of information

technology infrastructure, services, and applications over the Internet.
Cloud Storage System manages and persists large amounts of data created and

consumed by cloud computing applications.
Column-Oriented Data Layout stores all the instances of the same attribute type

from different tuples physically together.
Database is a collection of related data [EN10].
Database Management System (DBMS) is a collection of programs that enables

users to create and maintain a database. The DBMS is a general purpose software
system that facilitates the processes of defining, constructing, manipulating, and
sharing databases among various users and applications [EN10].

Database Operator evaluates a condition on a set of tuples.
Database-Aware Storage System directly executes database operators inside the

storage system [RGF98, Kee99, SBADAD05]. This approach is based on the idea
of active storage/active disks/intelligent disks where the computational power
inside the storage device is being used for moving computation closer to the data
[AUS98, KPH98].

DBMS Database Management System.
Distributed Database is a collection of multiple, logically interrelated databases

distributed over a computer network. A distributed database management system
(DBMS) is then defined as the software system that permits the management of
the distributed database system andmakes the distribution transparent to the users
[ÖV11].

Distributed Filesystem allows users of physically distributed computers to share
data and storage resources by using a common file system [LS90].

DRAM Dynamic Random-Access Memory.
Elasticity is the ability to deal with load variations by adding more resources dur-

ing high load or consolidating the tenants to fewer nodes when the load decreases,
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all in a live system without service disruption, and is therefore critical for these
systems. Elasticity is critical tominimize operating costs while ensuring good per-
formance during high loads. It allows consolidation of the system to consume less
resources and thus minimize the operating cost during periods of low load while
allowing it to dynamically scale up its size as the load decreases [AEADE11].

ETL Extract, Transform, and Load.
InfiniBand is a switched fabric computer network communications link.
IMDB In-Memory Database.
In-Memory Database (IMDB) system, also referred to asmainmemory database

system, is a database system where data resides permanently in main physical
memory [GMS92].

Mixed Workload is a database workload that includes transactional as well as
analytical queries [Pla09].

MMDB Main Memory Database, see In-Memory Database.
NoSQL is most commonly referred to as “not only SQL”. This term does not reject

the query language SQL, but rather expresses that the design of relational database
management systems is unsuitable for large-scale cloud applications [Bur10].

OLAP Online Analytical Processing.
OLTP Online Transaction Processing.
Parallel Database Management System (DBMS) is a revision and extension of

a distributed database management system that exploits the parallel nature of an
underlying computing system in order to accelerate query execution [DG92].

RAMCloud is a storage system from Stanford University where data is kept
entirely in DRAM [OAE+11].

RDMA Remote Direct Memory Access.
Remote Direct Memory Access (RDMA) Remote Direct Memory Access ena-

bles the network interface card to transfer data directly into the main memory,
bypassing the operating system by eliminating the need to copy data into the data
buffers in the operating system (which is also known as zero-copy networking).
In addition, transferring data via RDMA can be done without invoking the CPU
[Mel13].

Row-Oriented Data Layout stores all attributes of a tuple physically together.
Scalability is a desirable property of a system, which indicates its ability to either

handle growing amounts of work in a graceful manner or its ability to improve
throughput when additional resources (typically hardware) are added. A system
whose performance improves after adding hardware, proportionally to the capac-
ity added, is said to be a scalable system [AEADE11].

Shared-memory (or shared-everything) is an architectural approach for a parallel
databasemanagement systemwhere all processors share direct access to anymain
memory module and to all disks over an interconnection [ÖV11].

Shared-storage (or shared-disk or shared-data) is an architectural approach for
a parallel database management system where processors each have their own
memory, but they share access to a single collection of storage devices such as a
hard-disk [ÖV11].
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Shared-storage is an architectural approach for a parallel database management
system where each memory and disk is owned by some processor which acts as
a server for that data [ÖV11].

Site Selection in the context of client-server computing, describes the decision
whether to execute a query at the client machine at which the query was initiated
or at the server machines that store the relevant data. In other words, the question
is whether to move the query to the data (execution at servers) or to move the data
to the query (execution at clients) [Kos00].

SSB Star Schema Benchmark.
Star Schema Benchmark (SSB) is an analytical database benchmark [O’N].
SQL Structured (English) Query Language [CB74].
Switch Fabric Communication describes a network topologywhere (a) each net-

work node connects with each other via one or more switches, (b) the connection
between two nodes is established based on the crossbar switch theory [Mat01]
resulting in no resource conflicts with connections between any other nodes at the
same time [GS02].
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