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Preface 

The environmental movement of the 1960s and 1970s resulted in the creation of 
several laws aimed at protecting the environment, and in the creation of federal, 
state, and local government agencies charged with enforcing these laws.  Most of 
these laws mandate monitoring or assessment of the physical environment, which 
means someone has to collect, analyze, and explain environmental data.  Numerous 
excellent books, guidance documents, and journal articles have been published  
to explain various aspects of applying statistical methods to these kinds of environ-
mental data analyses.  Also, several specialty software packages for specific 
niches in environmental statistics exist, such as for ecology, forestry, and climate 
modeling.  Not very many software packages provide a comprehensive treatment 
of environmental statistics in the context of monitoring the physical environment 
as mandated by current environmental law. 

EnvStats is an R package for environmental statistics.  It is the open-source 
successor to the commercial module for S-Plus© called EnvironmentalStats for 
S-Plus, which was first released in April 1997.  The EnvStats package, along with 
the R software environment, provides comprehensive and powerful software for 
environmental data analysis.  EnvStats brings the major environmental statistical 
methods found in the literature and regulatory guidance documents into one 
statistical package, along with an extensive hypertext help system that explains 
what these methods do, how to use these methods, and where to find them in the 
environmental statistics literature.  Also included are numerous built-in data sets 
from regulatory guidance documents and the environmental statistics literature.  
EnvStats combined with other R packages (e.g., for spatial analysis) provides the 
environmental scientist, statistician, researcher, and technician with tools to “get 
the job done!” 

EnvStats and this user’s manual are intended for anyone who has to make 
sense of environmental data, including statisticians, hydrologists, soil scientists, 
atmospheric scientists, geochemists, environmental engineers and consultants, 
hazardous and solid waste site managers, and regulatory agency analysts and 
enforcement officers.  Some parts of EnvStats incorporate statistical methods that 
have appeared in the environmental literature but are not commonly found in any 
statistical software package.  Some parts are specifically aimed at users who are 
required to collect and analyze environmental monitoring data in order to comply 
with federal and state Superfund, RCRA, CERCLA, and Subtitle D regulations for 
environmental monitoring at hazardous and solid waste sites.  All of the functions 
in EnvStats, however, are useful to anyone who needs to analyze environmental 
data.  In fact, all of these functions are useful to anyone who needs to analyze data. 
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This manual is divided into 9 chapters.  Chapter 1 is an introduction to envi-
ronmental statistics in general and the EnvStats package i  
includes information on system and user requirements, installing the software, 
loading and using the package, and getting technical support.  The last section 
of the chapter includes a tutorial. 

Chapters 2, 3, 4, 5, 6, 7, and 8 contain information about how to use  
the functions in EnvStats to design sampling programs and perform graphical  
and statistical analyses of environmental data.  Chapter 9 shows you how to use 
EnvStats to perform Monte Carlo simulation and probabilistic risk assessment. 

At the back of the book is an extensive list of references for environmental 
statistics as well as an index of key words and terms.  In addition to using the 
index, you are encouraged to use the online hypertext help system as well. 

Companion Scripts 

Companion R scripts to reproduce the examples in this user’s manual, as well as 
scripts for reproducing examples in US EPA guidance documents, are located in 
the scripts subdirectory of the directory where the package was installed.  See 
Chap. 1 for more information. 

Companion Textbook and Help Files 

This user’s manual provides brief explanations of various topics in environmental 
statistics.  A companion textbook, currently in preparation and titled Environmental 
Statistics with R (Millard et al. 2014), provides more details and can be used as a 
textbook for a course in environmental statistics.  (The predecessor to this text-
book is Millard and Neerchal 2001.)  Space constraints dictate that the examples 
in this user’s manual convey a general sense of how various EnvStats functions 
can be used.  The companion help files list all of the arguments associated with 
these functions and give more examples. 

Technical Support 

Technical support for R is available through the R-help mailing list (see the URL 
www.r-project.org for more information).  Technical support for questions or 
problems specifically related to the functioning of the EnvStats package is 
available by e-mailing the author at EnvStats@ProbStatInfo.com. 

n particular, and

http://www.r-project.org
mailto:EnvStats@ProbStatInfo.com
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Typographic Conventions 

Throughout this user’s manual, the following typographic conventions are used: 

• The bold font is used for chapter and section headings, as well as 
operating system commands and file names.  Sometimes it is also used 
for emphasis.  R menu selections are shown in an abbreviated form using 
this font and the arrow symbol (>) to indicate a selection within a menu, 
as in Packages>Load package…. 

• The italic courier font is used to display what you type within 
an R Command or Script Window. 

• The courier font is used to display output from R and the names of 
R objects. 

• The italic font is used for chapter and help file titles within the text, 
emphasis, and user-supplied variables within R commands. 

• The bold italic font is used for emphasis. 

R commands are preceded with the “greater than” sign, i.e., >, which is the default 
R prompt.  For commands that require more than one line of input, the line or lines 
following the first line are indented, whereas within R they are preceded with the 
“plus” sign, i.e., +, which is the default R continuation prompt.  Note that page 
size and formatting for this book determine how command lines are split.  As a 
user, you can choose to split lines differently or not at all. 

A Note About Figure Titles 

To conserve space, very few of the plots shown in this user’s manual have titles 
above them since all plots are labeled at the bottom with a figure number and title.  
However, several plotting functions in EnvStats produce figures with titles at the 
top by default if the argument main is not supplied.  Thus, there are several 
examples in this manual where the figure shown does not include a title at the top, 
but if you type in the commands as shown or run the companion script to produce 
the figure, you will produce a figure with a title at the top.  To create a different 
title from the one shown, use the main argument or, to suppress the title, set the 
argument main="". 

Acknowledgments 
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knowledge gap in the field of environmental statistics.  There was lots of research 
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book). 
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great graphics that allowed users to write their own functions and create pull-down 
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R package EnvStats.  Most recently, thanks to Charles Davis (Envirostat & 
Statistics Ltd) and Kirk Cameron (MacStat Consulting Ltd) for help with updating 
the functions for simultaneous nonparametric prediction intervals, and to Phil 
Dixon (Iowa State University) for early feedback on EnvStats. 
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Chapter 1 

Getting Started 

1.1 Introduction 
Welcome to EnvStats!  This user’s manual provides step-by-step guidance to  
using this software.  EnvStats is an R package for environmental statistics.  This 
chapter is an introduction to environmental statistics in general and EnvStats in 
particular, and includes information on system and user requirements, installing 
the software, loading and using the package, and getting technical support.  The 
last section of the chapter provides a brief tutorial. 

1.2 What Is Environmental Statistics? 
Environmental statistics is the application of statistical methods to problems  
concerning the environment.  Examples of activities that require the use of envi-
ronmental statistics include: 

• Monitoring air or water quality. 
• Monitoring groundwater quality near a hazardous or solid waste site. 
• Using risk assessment to determine whether a potentially contaminated 

area needs to be cleaned up, and, if so, how much. 
• Assessing whether a previously contaminated area has been cleaned up 

according to some specified criterion. 
• Using hydrological data to predict the occurrences of floods. 

The term “environmental statistics” also includes work done in atmospheric and 
climate-change research and modeling, and the application of statistics in the 
fields of ecology, geology, chemistry, epidemiology, and oceanography.  This user’s 
manual concentrates on statistical methods to analyze chemical concentrations and 
physical parameters, usually in the context of mandated environmental monitoring. 

Environmental statistics is a special field of statistics.  Probability and statistics 
deal with situations in which the outcome is not certain.  They are built upon the 
concepts of a population and a sample from the population.  Probability deals 
with predicting the characteristics of the sample, given that you know the charac-
teristics of the population (e.g., the probability of picking an ace out of a deck of 
52 well-shuffled standard playing cards).  Statistics deals with inferring the char-
acteristics of the population, given information from one or more samples from 
the population (e.g., estimating the concentration of dissolved oxygen in a lake 
based on samples taken at various depths and locations). 
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The field of environmental statistics is relatively young and employs several 
statistical methods that have been developed in other fields of statistics, such as 
sampling design, exploratory data analysis, basic estimation and hypothesis testing, 
quality control, multiple comparisons, survival analysis, and Monte Carlo simula-
tion.  Nonetheless, special problems have motivated innovative research, and both 
traditional and new journals now report on statistical methods that have been  
developed in the context of environmental monitoring (see the references listed at 
the end of this book.) 

In addition, environmental legislation such as the Clean Air Act, the Clean 
Water Act, the National Environmental Policy Act (NEPA), the Occupational 
Safety and Health Act, the Federal Insecticide, Fungicide, and Rodenticide Act 
(FIFRA), the Comprehensive Emergency Response, Compensation, and Liability 
Act (CERCLA), the Resource and Recovery Act (RCRA) and all of their subse-
quent amendments have spawned environmental regulations and agency guidance 
documents that mandate or suggest various statistical methods for environmental 
monitoring (see http://www.epa.gov/lawsregs/policy/sgd/byoffice.html). 

1.3 What Is EnvStats? 
EnvStats is an R package for environmental statistics.  It is the open-source  
successor to the commercial module for S-Plus© called EnvironmentalStats for 
S-Plus, which was first released in April, 1997.  The EnvStats package, along with 
the R software environment, provides comprehensive and powerful software for 
environmental data analysis.  EnvStats brings the major environmental statistical 
methods found in the literature and regulatory guidance documents into one statis-
tical package, along with an extensive hypertext help system that explains what 
these methods do, how to use these methods, and where to find them in the envi-
ronmental statistics literature.  Also included are numerous built-in data sets from 
regulatory guidance documents and the environmental statistics literature.   
EnvStats combined with other R packages (e.g., for spatial analysis) provides the 
environmental scientist, statistician, researcher, and technician with tools to “get 
the job done!” 

Because EnvStats is an R package, you automatically have access to all the 
features and functions of R, including powerful graphics, standard hypothesis 
tests, and the flexibility of a programming language.  In addition, with EnvStats 
you can use new functions to: 

• Compute several kinds of summary statistics and create summary plots to 
compare the distributions between groups side-by-side. 

• Compute quantities (probability density functions, cumulative distribu-
tion functions, and quantiles) and random numbers associated with new 
probability distributions, including the extreme value distribution and the 
zero-modified lognormal (delta) distribution. 

• Plot probability distributions so you can see how they change with the 
value of the distribution parameter(s). 

http://www.epa.gov/lawsregs/policy/sgd/byoffice.html
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• Estimate distribution parameters and quantiles and compute confidence 
intervals for commonly used probability distributions, including special 
methods for the lognormal and gamma distributions. 

• Perform and plot the results of goodness-of-fit tests, including a new 
generalized goodness-of-fit test for any continuous distribution. 

• Compute optimal Box-Cox data transformations. 
• Compute parametric and non-parametric prediction intervals, simultaneous 

prediction intervals, and tolerance intervals. 
• Perform additional hypothesis tests not already part of R, including non-

parametric estimation and tests for seasonal trend, Fisher’s one-sample 
randomization (permutation) test for location, the quantile test to detect a 
shift in the tail of one population relative to another, two-sample linear 
rank tests, and the test for serial correlation based on the von Neumann 
rank test. 

• Perform power and sample size computations and create associated plots 
for sampling designs based on confidence intervals, hypothesis tests,  
prediction intervals, and tolerance intervals. 

• Perform calibration based on a machine signal to determine decision and 
detection limits, and report estimated concentrations along with confidence 
intervals. 

• Analyze singly and multiply censored (less-than-detection-limit) data 
with empirical cdf and Q-Q plots, parameter/quantile estimation and con-
fidence intervals, prediction and tolerance intervals, goodness-of-fit tests, 
optimal Box-Cox transformations, and two-sample rank tests. 

• Perform probabilistic risk assessment. 
• Reproduce specific examples in EPA guidance documents by using built-in 

data sets from these documents and companion scripts. 

1.4 Intended Audience and Users 
EnvStats and this user’s manual are intended for anyone who has to make sense of 
environmental data, including statisticians, environmental scientists, hydrologists, 
soil scientists, atmospheric scientists, geochemists, environmental engineers and 
consultants, hazardous and solid waste site managers, and regulatory agency  
analysts and enforcement officers.  Some parts of EnvStats incorporate statistical 
methods that have appeared in the environmental literature but are not commonly 
found in any statistical software package.  Some parts are specifically aimed at  
users who are required to collect and analyze environmental monitoring data in 
order to comply with federal and state Superfund, RCRA, CERCLA, and Subtitle 
D regulations for environmental monitoring at hazardous and solid waste sites.  
All of the functions in EnvStats, however, are useful to anyone who needs to  
analyze environmental data. 
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basic data objects (e.g., data frames).  The R documentation provides information 
on using R, and there are several excellent introductory books on R (e.g., 
Allerhand 2011; Ekstrøm 2012; Zuur et al. 2009) as well as books on how to use R 
for specific kinds of analyses (see for example www.springer.com/series/6991).  
In addition, you need to have a basic knowledge of probability and statistics.  
While this user’s manual provides brief explanations of various topics in  
environmental statistics, a companion textbook, Environmental Statistics with R 
(Millard et al. 2014), provides more details. 

1.5 System Requirements 
Because EnvStats is an R package, it runs under every operating system that R 
runs under, including Windows, UNIX-like, and MacOS X. 

1.6 Installing EnvStats 
EnvStats

 R Archive Network (CRAN).

1.7 Starting EnvStats 
To start EnvStats, you must have already started R.  You can load the package  
either from the command window or, if you are running R under Windows, from 
the menu. 

• To load the package from the command window, type 

> library(EnvStats) 

• To load the package from the menu, on the R menu bar make the follow-
ing selections:  Packages>Load package….  This brings up a dialog box 
listing all the packages you currently have installed.  Select EnvStats and 
click OK. 

To download and install the  package, the most up to date information is
available on www.probstatinfo.com. This includes how to find EnvStats on the
Comprehensive

Loading the package attaches the library of EnvStats functions to the second  
position in your search list (type search() at the R prompt to see the listing of 
directories on the search list). 

EnvStats is an R package.  In order to use it, you need to have R installed on 
your system (see www.r-project.org) and know how to perform basic operations in 
R, such as using the command and script windows, reading data into R, and creating 

http://www.r-project.org
http://www.springer.com/series/6991
http://www.probstatinfo.com
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Note:  Some of the functions in EnvStats mask built-in R functions.  The 
masked functions are modified versions of the built-in functions and have been 
created to support the other functions in EnvStats, but the modifications should 
not affect normal use of R.  If you experience unexpected behavior of R after load-
ing EnvStats, try unloading the package (see the Sect. 1.10 below).  All of the 
functions in EnvStats, whether they mask built-in functions or not, are described 
in the help system. 

1.8 Getting Help and Using Companion Scripts 
To get help for a specific topic, function or dataset, use the ? operator or the help 
function, just as you do for other help topics in R.  For example, type  

> ?EnvStats 

or 

> help(EnvStats) 

to display the general help file for the EnvStats package, type 

> ?pdfPlot  

or 

> help(pdfPlot) 

to display the help file for the pdfPlot function, and type 

> ?EPA.94b.tccb.df 

or 

> help(EPA.94b.tccb.df) 

to display the help file for the data frame EPA.94b.tccb.df.  For help files 
with an associated alias of more than one word, you’ll need to enclose the words 
in quotes.  For example, typing  

> ?"Functions by Category" 

will bring up a help file with a hyperlink list of EnvStats functions by category.  
Running the command 

> help(package="EnvStats") 

will bring up a window with basic information about the EnvStats package,  
including the version number and a list of functions and datasets.  All function 
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names start with a lower case letter, and all data object names start with an upper 
case letter.  Typing 

> newsEnvStats() 

will bring up a window with the latest information about the current version of 
EnvStats. 

There is also a companion PDF file EnvStats-maual.PDF containing a listing 
of all the help files.  This file is located in the doc subdirectory of the directory 
where the EnvStats package was installed.  For example, if you installed R under 
Windows, this file might be located in the directory C:\Program Files\R-
*.**.*\library\EnvStats\doc where *.**.* denotes the version of R you are

C:\Users\Name\Documents\R\win-
library\*.**.*\EnvStats\doc where Name denotes your user name on the Win-
dows operating system. 

EnvStats comes with sets of companion scripts, located in the scripts subdi-
rectory of the directory where EnvStats was installed.  The scripts located in the 
directory Manual let you reproduce the output and figures shown in this user’s 
manual.  The scripts in the other directories let you reproduce examples from  
various US EPA guidance documents. 

1.9 A Note About Examples and Masking 
Some of the examples in this user’s manual ask you to attach a particular data 
frame in order to access the variables within the data frame directly.  For example, 
typing the command: 

> attach(EPA.94b.tccb.df) 

will attach the data frame EPA.94b.tccb.df to your search list.  The names of 
the variables in this data frame are: 

> names(EPA.94b.tccb.df) 

[1] "TcCB.orig" "TcCB"      "Censored"  "Area" 

If you already have a data object in your working directory with one of these 
names (e.g., Area), then it will mask the variable that is part of the attached data 
frame.  In this case you will probably not get the same results as those shown in 
this user’s manual.  Therefore, it is recommended that when you are typing in the 
examples in this user’s manual or running the companion scripts, you do so from a 
working directory that has no pre-existing data objects. 

If you do attach a data object in order to access variables from it directly, it is 
good practice to detach it after you are through with it.  For example, typing the 
command: 

> detach("EPA.94b.tccb.df") 

using (e.g., 3.0.1) or in the directory 
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will detach the data frame EPA.94b.tccb.df from your search list.  In this  
user’s manual, we do not explicitly show commands for detaching data objects; 
however the companion scripts include commands for detaching data objects. 

To avoid problems with masking in your day-to-day work, apart from always 
starting with a working directory that has no pre-existing objects in it (not likely 
since it is common practice to keep objects for a project in a specific working  
directory), there are at least three things you can do: 

1. For functions that take a data argument, specify the data source in this 
way.  For example, typing: 

> stripChart(TcCB ~ Area, data = EPA.94b.tccb.df) 

will create strip charts of the TcCB data by area by using the data in the 
column labeled TcCB in the data frame EPA.94b.tccb.df and using 
the data in the column Area to specify the area. 

2. For functions that don’t take a data argument, you can use the R with 
function.  For example, typing 

> with(EPA.94b.tccb.df, summary(TcCB)) 

will give you summary statistics for the column labeled TcCB in the data 
frame EPA.94b.tccb.df. 

3. Access the variables directly using the [or $ operators.  For example,  
typing: 

> summary(EPA.94b.tccb.df$TcCB) 

will give you summary statistics for the column labeled TcCB in the data 
frame EPA.94b.tccb.df. 

1.10 Unloading EnvStats 
To remove the EnvStats package from your R session, type the following com-
mand at the R prompt: 

> detach(package:EnvStats) 

1.11 A Tutorial 
This section highlights some of the major features of EnvStats.  There are several 
ways to use this section.  If you are fairly new to R, you may want to briefly skim 
this section to get an idea of what you can do in EnvStats, and then come back  
later after you have read the other chapters of this manual.  If you have used R for 
a long time and have just installed EnvStats, you may want to follow this tutorial 
in depth right now to get acquainted with some of the features available in this R 
package.  Throughout this section we assume you have started R and also have 
loaded EnvStats. 
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1.11.1 The TcCB Data 
The guidance document Statistical Methods for Evaluating the Attainment of 
Cleanup Standards, Volume 3:  Reference-Based Standards for Soils and Solid 
Media (USEPA 1994b, pp. 6.22–6.25) contains 124 measures of 1,2,3,4-
Tetrachlorobenzene (TcCB) concentrations (ppb) from soil samples at a Reference 
site and a Cleanup area (Table 1.1).  There are 47 observations from the Reference 
site and 77 in the Cleanup area.  These data are stored in the data frame 
EPA.94b.tccb.df.  There is one observation coded as “ND” in this data set as 
presented in the guidance document.  In the data frame EPA.94b.tccb.df this 
observation is treated as censored at an assumed detection limit of 0.09 ppb (the 
smallest observed value).  For the purposes of this tutorial, we’ll ignore the fact 
that this observation is censored and assumed it has an observed value of 0.09.  
See Chap. 8 for more information on dealing with censored data. 

Reference area Cleanup area 
0.22 0.23 0.26 0.27 
0.28 0.28 0.29 0.33 
0.34 0.35 0.38 0.39 
0.39 0.42 0.42 0.43 
0.45 0.46 0.48 0.50 
0.50 0.51 0.52 0.54 
0.56 0.56 0.57 0.57 
0.60 0.62 0.63 0.67 
0.69 0.72 0.74 0.76 
0.79 0.81 0.82 0.84 
0.89 1.11 1.13 1.14 
1.14 1.20 1.33 

<0.09 0.09 0.09 0.12 0.12 0.14 0.16 
  0.17 0.17 0.17 0.18 0.19 0.20 0.20 
  0.21 0.21 0.22 0.22 0.22 0.23 0.24 
  0.25 0.25 0.25 0.25 0.26 0.28 0.28 
  0.29 0.31 0.33 0.33 0.33 0.34 0.37 
  0.38 0.39 0.40 0.43 0.43 0.47 0.48 
  0.48 0.49 0.51 0.51 0.54 0.60 0.61 
  0.62 0.75 0.82 0.85 0.92 0.94 1.05 
  1.10 1.10 1.19 1.22 1.33 1.39 1.39 
  1.52 1.53 1.73 2.35 2.46 2.59 2.61 
  3.06 3.29 5.56 6.61 18.40 51.97 
168.64 

Table 1.1 1,2,3,4-Tetrachlorobenzene (TcCB) concentrations (ppb) from soil samples 

To look at the raw data, after loading EnvStats, type EPA.94b.tccb.df at 
the R command prompt: 

> library(EnvStats) 

> EPA.94b.tccb.df 

    TcCB.orig   TcCB Censored      Area 
1        0.22   0.22    FALSE Reference 
2        0.23   0.23    FALSE Reference 
… 
48      <0.09   0.09     TRUE   Cleanup 
… 
123     51.97  51.97    FALSE   Cleanup 
124    168.64 168.64    FALSE   Cleanup 

If you just want to get a feel for the data and don’t need to look at all of the rows, 
you can use the R head function to look at just the first few rows: 
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> head(EPA.94b.tccb.df) 

  TcCB.orig TcCB Censored      Area 
1      0.22 0.22    FALSE Reference 
2      0.23 0.23    FALSE Reference 
3      0.26 0.26    FALSE Reference 
4      0.27 0.27    FALSE Reference 
5      0.28 0.28    FALSE Reference 
6      0.28 0.28    FALSE Reference 

For the remainder of this tutorial, we will assume that you have attached the data 
frame EPA.94b.tccb.df to your search list with the following command: 

> attach(EPA.94b.tccb.df) 

1.11.2 Computing Summary Statistics 
There are two different functions in EnvStats for producing summary statistics.  
The function summaryStats produces commonly reported summary statistics 
while the function summaryFull provides a much more extensive set: 

> summaryStats(TcCB ~ Area, data = EPA.94b.tccb.df) 

           N Mean   SD Median Min   Max 
Cleanup   77  3.9 20.0    0.4 0.1 168.6 
Reference 47  0.6  0.3    0.5 0.2   1.3 

> summaryFull(TcCB ~ Area, data = EPA.94b.tccb.df) 

                              Cleanup  Reference 
Sample Size:                   77       47       
Mean:                           3.915    0.5985  
Median:                         0.43     0.54    
10% Trimmed Mean:               0.6846   0.5728  
Geometric Mean:                 0.5784   0.5382  
Skew:                           7.717    0.9019  
Kurtosis:                      62.67     0.132   
Min:                            0.09     0.22    
Max:                          168.6      1.33    
Range:                        168.5      1.11    
1st Quartile:                   0.23     0.39    
3rd Quartile:                   1.1      0.75    
Standard Deviation:            20.02     0.2836  
Geometric Standard Deviation:   3.898    1.597   
Interquartile Range:            0.87     0.36    
Median Absolute Deviation:      0.3558   0.2669  
Coefficient of Variation:       5.112    0.4739 
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These summary statistics indicate that the observations for the Cleanup area are 
extremely skewed to the right.  This may be indicative of residual contamination. 

1.11.3 Looking at the TcCB Data 
Figure 1.1 shows one-dimensional scatterplots (also called strip plots or strip 
charts) of the log-transformed TcCB data by area, along with confidence intervals 
for the means, created with the EnvStats function stripChart (a modification 
of the R function stripchart): 

> stripChart(log(TcCB) ~ Area, data = EPA.94b.tccb.df,  
col = c("red", "blue"), ylab = "Log  [ TcCB (ppb) ]") 
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Fig. 1.1 One-dimensional scatterplots, along with 95 % confidence intervals for the mean, 
comparing log-transformed TcCB concentrations at Reference and Cleanup areas 

Figure 1.2 shows the associated histograms produced with the R function hist: 

> par(mfrow = c(2, 1)) 

> hist(log(TcCB[Area == "Reference"]), xlim = c(-4, 6),  
col = "blue", xlab = "log [ TcCB (ppb) ]",  
ylab = "Number of Observations", main = "Reference Area") 

> hist(log(TcCB[Area == "Cleanup"]), xlim = c(-4, 6),  
nclass = 30, col = "red", xlab = "log [ TcCB (ppb) ]",  
ylab = "Number of Observations", main = "Cleanup Area") 
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Fig. 1.2 Histograms comparing log-transformed TcCB concentrations at Reference and 
Cleanup areas 
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Fig. 1.3 Boxplots comparing log-transformed TcCB concentrations at Reference and 
Cleanup areas 
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Figure 1.3 shows side-by-side boxplots produced with the R function boxplot: 

> boxplot(log(TcCB) ~ Area, col = c("red", "blue"),  
pars = list(outpch = 16), xlab = "Area",  
ylab = "Log [ TcCB (ppb) ]") 

We see in these plots that most of the observations in the Cleanup area are compa-
rable to (or even smaller than) the observations in the Reference area, but there are 
a few very large “outliers” in the Cleanup area.  As previously stated, this may be 
indicative of residual contamination that was missed during the cleanup process. 

1.11.4 Quantile (Empirical CDF) Plots 
Figure 1.4 shows the quantile plot, also called the empirical cumulative distribu-
tion function (cdf) plot, for the Reference area TcCB data.  It was created with the 
EnvStats function ecdfPlot: 

> ecdfPlot(TcCB[Area == "Reference"], xlab = "TcCB (ppb)") 
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Fig. 1.4 Quantile plot of Reference area TcCB data 

You can easily pick out the median as about 0.55 ppb and the quartiles as about 
0.4 and 0.75 ppb (compare these numbers to the ones listed in Sect. 1.11.2).  You 
can also see that the quantile plot quickly rises, then pretty much levels off after 
about 0.8 ppb, which indicates that the data are skewed to the right (see the histo-
gram for the Reference area data in Fig. 1.2). 
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Fig. 1.5 Empirical cdf of Reference area TcCB data compared to a lognormal cdf 
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Fig. 1.6 Quantile plots comparing log-transformed TcCB data at the Reference and Cleanup 
areas 
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Figure 1.5 shows the quantile plot with a fitted lognormal distribution: 

> cdfCompare(TcCB[Area == "Reference"], dist = "lnorm",  
xlab = "Order Statistics for Reference Area TcCB (ppb)") 

> legend(0.65, 0.4, legend = c("Empirical CDF",  
"Fitted Lognormal CDF"), lty = 1:2, col = c(4, 1),  
lwd = 3, bty = "n") 

We see that the lognormal distribution appears to fit these data quite well.  Figure 
1.6 compares the empirical cdf for the Reference area with the empirical cdf for 
the Cleanup area for the log-transformed TcCB data: 

> cdfCompare(log(TcCB[Area == "Reference"]),  
log(TcCB[Area == "Cleanup"]),  
xlab = "Order Statistics for log [ TcCB (ppb) ]") 

> legend(1.5, 0.4, legend = c("Reference Area",  
"Cleanup Area"), lty = 1:2, col = c(4, 1), lwd = 3,  
bty = "n") 

As we saw with the histograms and boxplots, the Cleanup area has quite a few  
extreme values compared to the Reference area. 

1.11.5 Assessing Goodness-of-Fit with Quantile-Quantile Plots 
Figure 1.7 displays the normal Q-Q plot for the log-transformed Reference area 
TcCB data (i.e., we are assuming these data come from a lognormal distribution), 
along with a fitted least squares line. 

> qqPlot(TcCB[Area == "Reference"], dist = "lnorm",  
add.line = TRUE, points.col = "blue", 
ylab="Quantiles of log [ TcCB (ppb) ]") 

Figure 1.8 displays the corresponding Tukey mean-difference Q-Q plot. 

> qqPlot(TcCB[Area == "Reference"], dist = "lnorm",  
plot.type = "Tukey", estimate.params = TRUE,  
add.line = TRUE, points.col = "blue") 

As we saw with the quantile plot, the lognormal model appears to be a fairly good 
fit to these data. 

Some EPA guidance documents (e.g., Singh et al. 2002; Singh et al. 2010a,b) 
discourage using the assumption of a lognormal distribution and recommend  
instead assessing whether the data appear to fit a gamma distribution.  Figure 1.9 
displays the gamma Q-Q plot for the Reference area TcCB data: 

> qqPlot(TcCB[Area == "Reference"], dist = "gamma", 
estimate.params = TRUE, digits = 2, add.line = TRUE, 
points.col = "blue", ylab="Quantiles of TcCB (ppb)") 
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Fig. 1.7 Normal Q-Q plot for the log-transformed Reference area TcCB data 
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Fig. 1.8 Tukey mean-difference Q-Q plot for the Reference area TcCB data fitted to a 
lognormal distribution 
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Fig. 1.9 Gamma Q-Q plot for the Reference area TcCB data 

The gamma model also appears to be a fairly good fit to these data. 

1.11.6 Estimating Distribution Parameters 
In EnvStats you can estimate parameters for several parametric distributions.  For 
example, for the lognormal distribution you can estimate the mean and standard 
deviation based on the log-transformed data, or you can estimate the mean and  
coefficient of variation based on the original data.  For either parameterization, 
you can compute a confidence interval for the mean.  Here are the results for the 
log-transformed Reference area TcCB data: 

> elnorm(TcCB[Area == "Reference"], ci = TRUE) 

Results of Distribution Parameter Estimation 
-------------------------------------------- 
Assumed Distribution:            Lognormal 
 
Estimated Parameter(s):          meanlog = -0.6195712 
                                 sdlog   =  0.4679530 
 
Estimation Method:               mvue 
 
Data:                            TcCB[Area == "Reference"] 
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Sample Size:                     47 
 
Confidence Interval for:         meanlog 
 
Confidence Interval Method:      Exact 
 
Confidence Interval Type:        two-sided 
 
Confidence Level:                95% 
 
Confidence Interval:             LCL = -0.7569673 
                                 UCL = -0.4821751 

and here are the results for the original Reference area TcCB data: 

> elnormAlt(TcCB[Area == "Reference"], ci = TRUE) 

Results of Distribution Parameter Estimation 
-------------------------------------------- 
 
Assumed Distribution:            Lognormal 
 
Estimated Parameter(s):          mean = 0.5989072 
                                 cv   = 0.4899539 
 
Estimation Method:               mvue 
 
Data:                            TcCB[Area == "Reference"] 
 
Sample Size:                     47 
 
Confidence Interval for:         mean 
 
Confidence Interval Method:      Land 
Confidence Interval Type:        two-sided 
 
Confidence Level:                95% 
 
Confidence Interval:             LCL = 0.5243787 
                                 UCL = 0.7016992 

If we want to assume a gamma distribution, we can use the egamma function, 
which estimates the shape and scale parameters and gives a confidence interval for 
the mean: 

> egamma(TcCB[Area == "Reference"], ci = TRUE) 
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Results of Distribution Parameter Estimation 
-------------------------------------------- 
 
Assumed Distribution:            Gamma 
 
Estimated Parameter(s):          shape = 4.8659316 
                                 scale = 0.1230002 
 
Estimation Method:               mle 
 
Data:                            TcCB[Area == "Reference"] 
 
Sample Size:                     47 
 
Confidence Interval for:         mean 
 
Confidence Interval Method:      Optimum Power  
                                 Normal Approximation 
                                 of Kulkarni & Powar (2010) 
                                 using mle of 'shape' 
 
Confidence Interval Type:        two-sided 
 
Confidence Level:                95% 
 
Confidence Interval:             LCL = 0.5196677 
                                 UCL = 0.6844993 

Or, we can use the egammaAlt function, which estimates the mean and coeffi-
cient of variation, and gives a confidence interval for the mean: 

> egammaAlt(TcCB[Area == "Reference"], ci = TRUE) 

Results of Distribution Parameter Estimation 
-------------------------------------------- 
 
Assumed Distribution:            Gamma 
 
Estimated Parameter(s):          mean = 0.5985106 
                                 cv   = 0.4533326 
 
Estimation Method:               mle of 'shape' 
 
Data:                            TcCB[Area == "Reference"] 
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Sample Size:                     47 
 
Confidence Interval for:         mean 
 
Confidence Interval Method:      Optimum Power  
                                 Normal Approximation 
                                 of Kulkarni & Powar (2010) 
                                 using mle of 'shape' 
 
Confidence Interval Type:        two-sided 
 
Confidence Level:                95% 
 
Confidence Interval:             LCL = 0.5196677 
                                 UCL = 0.6844993 

You can see that in this case the 95 % confidence intervals for the mean based  
on the lognormal distribution and based on the gamma distribution are nearly 
identical. 

1.11.7 Testing for Goodness of Fit 
EnvStats contains several new or modified R functions for testing goodness of fit.  
Here we will use the Shapiro-Wilk test to test the adequacy of a lognormal model 
and then a gamma model for the Reference area TcCB data (Figs. 1.10 and 1.11). 

> TcCB.ref <- TcCB[Area == "Reference"] 

> sw.lnorm <- gofTest(TcCB.ref, dist = "lnorm") 

> sw.lnorm 

Results of Goodness-of-Fit Test 
------------------------------- 
 
Test Method:                    Shapiro-Wilk GOF 
 
Hypothesized Distribution:      Lognormal 
 
Estimated Parameter(s):         meanlog = -0.6195712 
                                sdlog   =  0.4679530 
 
Estimation Method:              mvue 
 
Data:                           TcCB.ref 
 
Sample Size:                    47 
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Test Statistic:                 W = 0.978638 
 
Test Statistic Parameter:       n = 47 
 
P-value:                        0.5371935 
 
Alternative Hypothesis:         True cdf does not equal the 
                                Lognormal Distribution. 

> plot(sw.lnorm, digits = 3) 
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Fig. 1.10 Summary plots of Shapiro-Wilk goodness-of-fit test for lognormal distribution for 
Reference area TcCB data 

> sw.gamma <- gofTest(TcCB.ref, dist = "gamma") 

> plot(sw.gamma, digits = 3) 
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Fig. 1.11 Summary plots of Shapiro-Wilk goodness-of-fit test for gamma distribution for 
Reference area TcCB data 

> sw.gamma 

Results of Goodness-of-Fit Test 
------------------------------- 
 
Test Method:             Shapiro-Wilk GOF using Probabilities 
                         Based on Fitted Distribution 
 
Hypothesized Distribution:       Gamma 
 
Estimated Parameter(s):          shape = 4.8659316 
                                 scale = 0.1230002 
 
Estimation Method:               mle 
 
Data:                            TcCB.ref 
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Sample Size:                     47 
 
Test Statistic:                  W = 0.9703805 
 
Test Statistic Parameter:        n = 47 
 
P-value:                         0.2738988 
 
Alternative Hypothesis:          True cdf does not equal the 
                                 Gamma Distribution. 

The goodness-of-fit tests show that both the lognormal and gamma distributions 
appear to fit the Reference area TcCB data. 

1.11.8 Estimating Quantiles and Computing Confidence Limits 
EnvStats contains functions for estimating quantiles and optionally constructing 
confidence limits for the quantiles.  Here we will estimate the 90th percentile of 
the distribution of the Reference area TcCB, assuming the true distribution is a 
lognormal distribution, and compute a 95 % confidence interval for this 90th  
percentile. 

> eqlnorm(TcCB[Area == "Reference"], p = 0.9, ci = TRUE) 

Results of Distribution Parameter Estimation 
-------------------------------------------- 
 
Assumed Distribution:            Lognormal 
 
Estimated Parameter(s):          meanlog = -0.6195712 
                                 sdlog   =  0.4679530 
Estimation Method:               mvue 
 
Estimated Quantile(s):           90'th %ile = 0.9803307 
 
Quantile Estimation Method:      qmle 
 
Data:                            TcCB[Area == "Reference"] 
 
Sample Size:                     47 
 
Confidence Interval for:         90'th %ile 
 
Confidence Interval Method:      Exact 
 
Confidence Interval Type:        two-sided 
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Confidence Level:                95% 
 
Confidence Interval:             LCL = 0.8358791 
                                 UCL = 1.2154977 

1.11.9 Comparing Two Distributions Using Nonparametric Tests 
EnvStats contains functions for performing general two-sample linear rank tests 
(to test for a shift in location) and a special quantile test that tests for a shift in the 
tail of one of the distributions.  In this example we will compare the Reference and 
Cleanup area TcCB data.  Here are the results for the Wilcoxon rank sum test: 

> twoSampleLinearRankTest(TcCB[Area == "Cleanup"],  
TcCB[Area == "Reference"], alternative = "greater") 

Results of Hypothesis Test 
-------------------------- 
 
Null Hypothesis:           Fy(t) = Fx(t) 
 
Alternative Hypothesis:    Fy(t) > Fx(t) for at least one t 
 
Test Name:                 Two-Sample Linear Rank Test: 
                           Wilcoxon Rank Sum Test 
                           Based on Normal Approximation 
 
Data:                      x = TcCB[Area == "Cleanup"]   
                           y = TcCB[Area == "Reference"] 
 
Sample Sizes:              nx = 77 
                           ny = 47 
 
Test Statistic:            z = -1.171872 
 
P-value:                   0.8793758 

and here are the results for the quantile test: 

> quantileTest(TcCB[Area == "Cleanup"],  
TcCB[Area == "Reference"], alternative = "greater",  
target.r = 9) 

Results of Hypothesis Test 
-------------------------- 
 
Null Hypothesis:            e = 0 
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Alternative Hypothesis:      Tail of Fx Shifted to Right of 
                             Tail of Fy. 
                             0 < e <= 1, where 
                             Fx(t) = (1-e)*Fy(t) + e*Fz(t), 
                             Fz(t) <= Fy(t) for all t, 
                             and Fy != Fz 
 
Test Name:                   Quantile Test 
 
Data:                        x = TcCB[Area == "Cleanup"]   
                             y = TcCB[Area == "Reference"] 
 
Sample Sizes:                nx = 77 
                             ny = 47 
 
Test Statistics:             k (# x obs of r largest) = 9 
                             r                        = 9 
 
Test Statistic Parameters:   m           = 77.000 
                             n           = 47.000 
                             quantile.ub =  0.928 
 
P-value:                     0.01136926 

Note that the Wilcoxon rank sum test is not significant at the 0.10 level (p = 0.88), 
while the quantile test is significant at the 0.011 level.  The quantile test picked up 
the portion of large outlying values in the Cleanup area data.  Note:  you can also 
perform the Wilcoxon rank sum test with the R function wilcox.test.  The 
EnvStats function two.sample.linear.rank.test lets you perform other 
kinds of linear rank tests, including normal scores, Mood’s median, and Savage 
scores. 

1.12 Summary 
• Environmental statistics is the application of statistics to environmental 

problems. 
• EnvStats is an R package for environmental statistics.  It includes several 

functions for creating graphs and performing statistical analyses that are 
commonly used in environmental statistics. 

• To use EnvStats you should be familiar with the basic operation of R and 
have an elementary knowledge of probability and statistics. 

• EnvStats has an extensive help system that includes basic explanations in 
English, as well as equations and references. 

 



S.P. Millard, EnvStats: An R Package for Environmental Statistics,  25 
DOI 10.1007/978-1-4614-8456-1_2, © Springer Science+Business Media New York 2013 

Chapter 2 

Designing a Sampling Program 

2.1 Introduction 
The first and most important step of any environmental study is to design the 
sampling program.  This chapter discusses the basics of designing a sampling 
program, and shows you how to use EnvStats to help you determine required 
sample sizes.  For a more in-depth discussion of sampling design and sample size 
calculation, see Millard et al. (2014). 

2.2 The Necessity of a Good Sampling Design 
A study is only as good as the data upon which it is based.  No amount of 
advanced, cutting-edge statistical theory and techniques can rescue a study that 
has produced poor quality data, not enough data, or data irrelevant to the question 
it was meant to answer.  From the very start of an environmental study, there must 
be a constant dialog between the data producers (field and lab personnel, data 
coders, etc.), the data users (scientists and statisticians), and the ultimate decision 
maker (the person for whom the study was instigated in the first place).  All 
persons involved in the study must have a clear understanding of the study 
objectives and the limitations associated with the chosen physical sampling and 
analytical (measurement) techniques before anyone can make any sense of the 
resulting data. 

2.3 What Is a Population and What Is a Sample? 
In everyday language, the word “population” refers to all the people or organisms 
contained within a specific country, area, region, etc.  When we talk about the 
population of the United States, we usually mean something like “the total number 
of people who currently reside in the U.S.” 

In the field of statistics, however, the term population is defined operationally 
by the question we ask:  it is the entire collection of measurements about which 
we want to make a statement (Zar 2010; Berthouex and Brown 2002; Gilbert 
1987). 

For example, if the question is “What is the concentration of dissolved oxygen
r refined until a suitable population can 

be defined:  “What is the average concentration of dissolved oxygen in a particular 
section of a stream at a depth of 0.5 m over a particular 3-day period?”  In this 
case, the population is the set of all possible measurements of dissolved oxygen in 

in this stream?”, the question must be furthe
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that section of the stream at 0.5 m within that time period.  The section of the 
stream, the time period, the method of taking water samples, and the method of 
measuring dissolved oxygen all define the population. 

A sample is defined as some subset of a population (Zar 2010; Berthouex and 
Brown 2002; Gilbert 1987).  If the sample contains all the elements of the 
population, it is called a census.  Usually, a population is too large to take a 
census, so a portion of the population is sampled.  The statistical definition of the 
word sample (a selection of individual population members) should not be 
confused with the more common meaning of a physical sample of soil (e.g., 10 g 
of soil), water (e.g., 5 ml of water), air (e.g., 20 cc of air), etc. 

2.4 Random Versus Judgment Sampling 
Judgment sampling involves subjective selection of the population units by an 
individual or group of individuals (Gilbert 1987).  For example, the number of 
samples and sampling locations might be determined based on expert opinion or 
historical information.  Sometimes, public opinion might play a role and samples 
need to be collected from areas known to be highly polluted.  The uncertainty 
inherent in the results of a judgment sample cannot be quantified and statistical 
methods cannot be applied to judgment samples.  Judgment sampling does not 
refer to using prior information and the knowledge of experts to define the area of 
concern, define the population, or plan the study.  Gilbert (1987) also describes 
“haphazard” sampling, which is a kind of judgment sampling with the attitude that 
“any sample will do” and can lead to “convenience” sampling, in which samples 
are taken in convenient places at convenient times. 

Probability sampling or random sampling involves using a random mecha-
nism to select samples from the population (Gilbert 1987).  All statistical methods 
used to quantify uncertainty assume some form of random sampling has been used 
to obtain a sample.  At the simplest level, a simple random sample is used in 
which each member of the population has an equal chance of being chosen, and 
the selection of any member of the population does not influence the selection of 
any other member.  Other probability sampling methods include stratified random 
sampling, composite sampling, and ranked set sampling. 

2.5 Common Mistakes in Environmental Studies 
The most common mistakes that occur in environmental studies include the 
following: 

• Using Judgment Sampling to Obtain Samples.  When judgment sampl-
ing is used to obtain samples, there is no way to quantify the precision 
and bias of any type of estimate computed from these samples. 

• Lack of Samples from Proper Control Populations.  If one of the 
objectives of an environmental study is to determine the effects of a 
pollutant on some specified population, then the sampling design must 
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include samples from a proper control population.  This is a basic tenet of 
the scientific method.  If control populations were not sampled, there is 
no way to know whether the observed effect was really due to the 
hypothesized cause, or whether it would have occurred anyway. 

• Failing to Randomize over Potentially Influential Factors.  An enor-
mous number of factors can influence the final measure associated with a 
single sampling unit, including the person doing the sampling, the device 
used to collect the sample, the weather and field conditions when the 
sample was collected, the method used to analyze the sample, the labo-
ratory to which the sample was sent, etc.  A good sampling design 
controls for as many potentially influencing factors as possible, and 
randomizes over the factors that cannot be controlled.  For example, if 
data are collected from two sites, and two laboratories are used to analyze 
the results, you should not send all the samples from site 1 to laboratory 
A and all the samples from site 2 to laboratory B, but rather send samples 
collected at each site to each of the laboratories. 

• Collecting Too Few Samples to Have a High Degree of Confidence in 
the Results.  The ultimate goal of an environmental study is to answer 
one or more basic questions.  These questions should be stated in terms 
of hypotheses that can be tested using statistical procedures, as well as 
what constitutes an important scientific effect since statistically signi-
ficant effects are not always scientifically important.  In this case, you 
can determine the probability of rejecting the null hypothesis when in fact 
it is true (a Type I error), and the probability of not rejecting the null 
hypothesis when in fact it is false (a Type II error).  Usually, the Type I 
error is set in advance, and the probability of correctly rejecting the null 
hypothesis when in fact it is false (the power), or the width of a 
confidence, prediction, or tolerance interval, is calculated for various 
sample sizes and assumed amounts of variability.  Too often, this step of 
determining power and/or interval width versus sample size is neglected, 
resulting in a study from which no conclusions can be drawn with any 
great degree of confidence. 

2.6 The Data Quality Objectives Process 
The Data Quality Objectives (DQO) process is a systematic planning tool based 
on the scientific method that has been developed by the U.S. Environmental 
Protection Agency (USEPA 2006b).  The DQO process provides an easy-to-
follow, step-by-step approach to decision-making in the face of uncertainty.  Each 
step focuses on a specific aspect of the decision-making process.  Data Quality 
Objectives are the qualitative and quantitative statements that: 

• Clarify the study objective. 
• Define the most appropriate type of data to collect. 
• Determine the most appropriate conditions under which to collect the  

data. 



28     2. Designing a Sampling Program 

 

 

• Specify acceptable levels of decision errors that will be used as the basis 
for establishing the quantity and quality of data needed to support the  
decision. 

The seven steps in the DQO process are:  (1) state the problem, (2) identify the 
goals of the study, (3) identify information inputs, (4) define boundaries of the 
study, (5) develop the analytic approach, (6) specify performance or acceptance 
criteria, and (7) develop the plan for obtaining the data (see Millard et al. 2014, for 
more details).  Steps 5 and 6 involve deciding what statistical methods you will 
use and trading off limits on Type I and Type II errors and sample size. 

2.7 Power and Sample Size Calculations 
EnvStats contains several functions to assist you in determining how many 
samples you need for a given degree of confidence in the results of a sampling 
program (see the help file Power and Sample Size).  These functions are based on 
the ideas of confidence intervals, prediction intervals, tolerance intervals, and 
hypothesis tests.  If you are unfamiliar with these concepts, please see Millard  
et al. (2014). 

A very important point to remember is that no matter what you come up with 
for estimates of required sample sizes, it is always a good idea to assume you will 
lose some percentage of your observations due to sample loss, sample contami-
nation, database issues, etc. 

2.8 Sample Size for Confidence Intervals 
Table 2.1 lists the functions available in EnvStats for computing required sample 
sizes, half-widths, and confidence levels associated with a confidence interval.  
For the normal and binomial distributions, you can compute the half-width of the 
confidence interval given the user-specified sample size, compute the required 
sample size given the user-specified half-width, and plot the relationship between 
sample size and half-width.  For a nonparametric confidence interval for a 
percentile, you can compute the required sample size for a specified confidence 
level, compute the confidence level associated with a given sample size, and plot 
the relationship between sample size and confidence level.  Chapter 5 gives more 
details on computing confidence intervals once you have your data. 

Bacchetti (2010) presents strong arguments against the current convention in 
scientific research for computing sample size that is based on formulas that use a 
fixed Type I error (usually 5 %) and a fixed minimal power (often 80 %) without 
regard to costs.  He notes that a key input to these formulas is a measure of 
variability (usually a standard deviation) that is difficult to measure accurately 
“unless there is so much preliminary data that the study isn’t really needed.”  Also, 
study designers often avoid defining what a scientifically meaningful difference is 
by presenting sample size results in terms of the effect size (i.e., the difference of 
interest divided by the elusive standard deviation).  Bacchetti (2010) encourages 
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study designers to use simple tables in a sensitivity analysis to see what results of 
a study may look like for low, moderate, and high rates of variability and large, 
intermediate, and no underlying differences in the populations or processes being 
studied. 

Distribution Function Output 
Normal ciTableMean Confidence intervals for mean of 

normal distribution, or difference 
between two means, following 
Bacchetti (2010) 

 ciNormHalfWidth Half-width of confidence interval 
for mean of normal distribution or 
difference between two means 

 ciNormN Required sample size for specified 
half-width of confidence interval for 
mean of normal distribution or 
difference between two means 

 plotCiNormDesign Plots for sampling design based on 
confidence interval for mean of 
normal distribution or difference 
between two means 

Binomial ciTableProp Confidence intervals for binomial 
proportion, or difference between 
two proportions, following 
Bacchetti (2010) 

 ciBinomHalfWidth Half-width of confidence interval 
for binomial proportion or 
difference between two proportions 

 ciBinomN Required sample size for specified 
half-width of confidence interval for 
binomial proportion or difference 
between two proportions 

 plotCiBinomDesign Plots for sampling design based on 
confidence interval for binomial 
proportion or difference between 
two proportions 

Nonparametric ciNparConfLevel Confidence level of confidence 
interval for a percentile, given the 
sample size 

 ciNparN Required sample size for specified 
confidence level of confidence 
interval for a percentile 

 plotCiNparDesign Plots for sampling design based on 
confidence interval for a percentile 

Table 2.1 Sample size functions for confidence intervals 
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2.8.1 Confidence Interval for the Mean of a Normal Distribution 
The EnvStats nction ciTableMean produces a table similar to Table 1 of 
Bacchetti (2010) for looking at how the confidence interval for the mean of a 
normal distribution or the difference between two means varies with various levels 
of variability and the value of the estimated mean or difference between two 
means, given the sample size and confidence level.  The EnvStats function  
ciNormHalfWidth computes the half-width associated with the confidence 
interval, given the sample size, estimated standard deviation, and confidence level.  
The function ciNormN computes the sample size required to achieve a specified 
half-width, given the estimated standard deviation and confidence level.  The 
function plotCiNormDesign plots the relationships between sample size, half-
width, estimated standard deviation, and confidence level. 

The data frame EPA.09.Ex.16.1.sulfate.df contains sulfate con-
centrations (ppm) at one background and one downgradient well.  The estimated 
mean and standard deviation for the background well are 536 and 27 ppm, 
respectively, based on a sample size of n = 8 quarterly samples take over 2 years.  
A two-sided 95 % confidence interval for this mean is [514, 559], which has a 
half-width of 23 ppm. 

> EPA.09.Ex.16.1.sulfate.df 

   Month Year    Well.type Sulfate.ppm 
1    Jan 1995   Background         560 
2    Apr 1995   Background         530 
… 
15   Jul 1996 Downgradient         610 
16   Oct 1996 Downgradient         630 

> Sulfate.back <- with(EPA.09.Ex.16.1.sulfate.df, 
Sulfate.ppm[Well.type == "Background"]) 

> enorm(Sulfate.back, ci = TRUE) 

Results of Distribution Parameter Estimation 
-------------------------------------------- 
 
Assumed Distribution:            Normal 
 
Estimated Parameter(s):          mean = 536.25000 
                                 sd   =  26.69270 
 
Estimation Method:               mvue 
 
Data:                            Sulfate.back 
 
Sample Size:                     8 

fu
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Confidence Interval for:         mean 
 
Confidence Interval Method:      Exact 
 
Confidence Interval Type:        two-sided 
 
Confidence Level:                95% 
 
Confidence Interval:             LCL = 513.9343 
                                 UCL = 558.5657 

Suppose we are planning a future study and are interested in the size of the 
confidence interval.  Initially we plan to take eight quarterly samples taken over 2 
years, as in the previous study.  We could assume an estimated standard deviation 
of about 25 or 30 ppm, but based on the 95 % confidence interval for the variance, 
which is [311, 2,951] ppm, the true standard deviation may be as small as about 
18 ppm or as large as about 54 ppm. 

> enorm(Sulfate.back, ci = TRUE,  
ci.param = "variance")$interval 

Confidence Interval for:         variance 
 
Confidence Interval Method:      Exact 
 
Confidence Interval Type:        two-sided 
 
Confidence Level:                95% 
 
Confidence Interval:             LCL =  311.4703 
                                 UCL = 2951.4119 

Letting the estimated standard deviation vary from 15 to 60 ppm shows that the 
width of the confidence interval varies between about 13 and 50 ppm: 

> ciNormHalfWidth(n.or.n1 = 8, sigma.hat = c(15, 30, 60)) 

[1] 12.54031 25.08063 50.16126 

Assuming a standard deviation of about 30 ppm, if in a future study we take only 
four observations, the half-width of the confidence interval should be about 
48 ppm: 

> ciNormHalfWidth(n.or.n1 = 4, sigma.hat = 30) 

[1] 47.73669 
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Also, if we want the confidence interval to have a half-width of 10 ppm, we would 
need to take n = 38 observations (i.e., quarterly samples taken over more than 9 
years). 

> ciNormN(half.width = 10, sigma.hat = 30) 

[1] 38 

Figure 2.1 displays the half-width of the confidence interval as a function of the 
sample size for various confidence levels, again assuming a standard deviation of 
about 30 ppm. 
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Fig. 2.1 The half-width of the confidence interval for the mean of background sulfate 
concentration (ppm) as a function of sample size and confidence level, assuming a standard 
deviation of 30 ppm 

To create this plot, type these commands: 

> plotCiNormDesign(sigma.hat = 30, range.x.var = c(4, 80), 
conf = 0.99, xlim = c(0, 80), ylim = c(0, 90), main = "") 

> plotCiNormDesign(sigma.hat = 30, range.x.var = c(4, 80), 
conf = 0.95, plot.col = 2, plot.lty = 2, add = TRUE) 

> plotCiNormDesign(sigma.hat = 30, range.x.var = c(4, 80), 
conf = 0.90, plot.col = 4, plot.lty = 3, add = TRUE) 
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> legend("topright",  
paste(c("99%", "95%", "90%"), "Confidence")  
col = c(1, 2, 4), lty = 1:3, lwd = 2, bty = "n") 

Considering the data frame EPA.09.Ex.16.1.sulfate.df again, the 
estimated mean and standard deviation for the downgradient well are 608 and 
18 ppm, respectively, based on a sample size of n = 6 quarterly samples.  A two-
sided 95 % confidence interval for the difference between this mean and the 
background mean is [44, 100] ppm. 

> Sulfate.down <- with(EPA.09.Ex.16.1.sulfate.df, 
Sulfate.ppm[Well.type == "Downgradient"]) 

> enorm(Sulfate.down) 

Results of Distribution Parameter Estimation 
-------------------------------------------- 
 
Assumed Distribution:            Normal 
 
Estimated Parameter(s):          mean = 608.33333 
                                 sd   =  18.34848 
 
Estimation Method:               mvue 
 
Data:                            Sulfate.down 
 
Sample Size:                     6 
 
Number NA/NaN/Inf's:             2 

> t.test(Sulfate.down, Sulfate.back,  
var.equal = TRUE)$conf.int 

[1] 44.33974 99.82693 
attr(,"conf.level") 
[1] 0.95 

We can use ciTableMean to look how the confidence interval for the difference 
between the background and downgradient means in a future study using eight 
quarterly samples at each well varies with assumed value of the pooled standard 
deviation and the observed difference between the sample means.  Our current 
estimate of the pooled standard deviation is 24 ppm: 

> summary(lm(Sulfate.ppm ~ Well.type,  
data = EPA.09.Ex.16.1.sulfate.df))$sigma 

[1] 23.57759 
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We see that if this is overly optimistic and in our next study the pooled standard 
deviation is around 50 ppm, then if the observed difference between the means is 
50 ppm, the lower end of the confidence interval for the difference between the 
two means will include 0, so we may want to increase our sample size. 

> ciTableMean(n1 = 8, n2 = 8, diff = c(100, 50, 0),  
SD = c(15, 25, 50), digits = 0) 

        Diff=100    Diff=50     Diff=0 
SD=15 [ 84, 116] [ 34,  66] [-16,  16] 
SD=25 [ 73, 127] [ 23,  77] [-27,  27] 
SD=50 [ 46, 154] [ -4, 104] [-54,  54] 

2.8.2 Confidence Interval for a Binomial Proportion 
The EnvStats functions ciTableProp produces a table similar to Table 1 of 
Bacchetti (2010) for looking at how the confidence interval for a binomial 
proportion or the difference between two proportions varies with the value of the 
estimated proportion(s), given the sample size, confidence level, and method of 
computing the confidence interval.  The function ciBinomHalfWidth computes 
the half-width associated with the confidence interval for the proportion or differ-
ence between two proportions, given the sample size, estimated proportion(s), 
confidence level, and method of computing the confidence interval.  The function 
ciBinomN computes the sample size required to achieve a specified half-width, 
given the estimated proportion(s) and confidence level.  The EnvStats function 
plotCiBinomDesign plots the relationships between sample size, half-width, 
estimated proportion(s), and confidence level. 

The data frame EPA.92c.benzene1.df contains observations on benzene 
concentrations (ppb) in groundwater from six background wells sampled monthly 
for 6 months.  Nondetect values are reported as “<2.” 

> EPA.92c.benzene1.df 

   Benzene.orig Benzene Censored Month Well 
1            <2       2     TRUE     1    1 
2            <2       2     TRUE     2    1 
… 
35           10      10    FALSE     5    6 
36           <2       2     TRUE     6    6 

Of the 36 values, 33 are nondetects.  Based on these data, the estimated 
probability of observing a nondetect is 92 %, and the two-sided 95 % confidence 
interval for the binomial proportion based on using the normal score 
approximation with continuity correction is [0.76, 0.98].  The half-width of this 
interval is 0.11, or 11 % points. 
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> with(EPA.92c.benzene1.df , ebinom(Censored, ci = TRUE)) 

Results of Distribution Parameter Estimation 
-------------------------------------------- 
 
Assumed Distribution:          Binomial 
 
Estimated Parameter(s):        size = 36.0000000 
                               prob =  0.9166667 
 
Estimation Method:             mle/mme/mvue for 'prob' 
 
Data:                          Censored 
 
Sample Size:                   36 
 
Confidence Interval for:       prob 
 
Confidence Interval Method:    Score normal approximation 
                               (With continuity correction) 
 
Confidence Interval Type:      two-sided 
 
Confidence Level:              95% 
 
Confidence Interval:           LCL = 0.7640884 
                               UCL = 0.9782279 

Suppose we are planning a future study and are interested in the size of the 
confidence interval.  Initially we plan to take 36 samples as in the previous study.  
Letting the estimated percentage of nondetects vary from 75 % to 95 % shows that 
the width of the confidence interval varies between about 15 % and 10 % points. 

> ciBinomHalfWidth(n.or.n1 = 36, p.hat = c(0.75, 0.85, 0.95)) 

$half.width 
[1] 0.14907011 0.12529727 0.09523133 
 
$n 
[1] 36 36 36 
$p.hat 
[1] 0.7500000 0.8611111 0.9444444 
 
$method 
[1] "Score normal approximation, with continuity correction" 
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Assuming an estimated proportion of 90 %, if we take only n = 10 observations, 
the half-width of the confidence interval would be about 23 % points: 

> ciBinomHalfWidth(n.or.n1 = 10, p.hat = 0.9) 

$half.width 
[1] 0.2268019 
 
$n 
[1] 10 
 
$p.hat 
[1] 0.9 
 
$method 
[1] "Score normal approximation, with continuity correction" 

Also, if we want the confidence interval to have a half-width of 0.03 (3 % points), 
we would need to take n = 319 observations (a sample size probably not feasible 
for many environmental studies!). 

> ciBinomN(half.width = 0.03, p.hat = 0.9) 

$n 
[1] 319 
 
$p.hat 
[1] 0.8996865 
 
$half.width 
[1] 0.03466104 
 
$method 
[1] "Score normal approximation, with continuity correction"" 

Figure 2.2 displays the half-width of the confidence interval as a function of the 
sample size for various confidence levels, based on using the score normal 
approximation with continuity correction to construct the confidence interval. 

> plotCiBinomDesign(p.hat = 0.9, range.x.var = c(10, 200), 
conf = 0.99, xlim = c(0, 200), ylim = c(0, 0.3),  
main = "") 

> plotCiBinomDesign(p.hat = 0.9, range.x.var = c(10, 200), 
conf = 0.95, plot.col = 2, plot.lty = 2, add = TRUE) 

> plotCiBinomDesign(p.hat = 0.9, range.x.var = c(10, 200), 
conf = 0.90, plot.col = 4, plot.lty = 3, add = TRUE) 
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> legend("topright",  
paste(c("99%", "95%", "90%"), "Confidence"),  
col = c(1, 2, 4), lty = 1:3, lwd = 3, bty = "n") 
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Fig. 2.2 The half-width of the confidence interval for the probability of a nondetect as a 
function of sample size and confidence level, assuming an estimated nondetect proportion 
of 90 % 

If we are planning a study to compare the proportion of nondetects at a 
background and downgradient well, we can use ciTableProp to look how the 
confidence interval for the difference between the two proportions using say 36 
quarterly samples at each well varies with the observed estimated proportions.  
Here we’ll let the argument p1.hat denote the proportion of nondetects observed 
at the downgradient well and set this equal to 20 %, 40 % and 60 %.  The argu-
ment p2.hat.minus.p1.hat represents the proportion of nondetects at the 
background well minus the proportion of nondetects at the downgradient well. 

> ciTableProp(n1 = 36, p1.hat = c(0.2, 0.4, 0.6),  
n2 = 36, p2.hat.minus.p1.hat = c(0.3, 0.15, 0)) 

                Diff=0.31     Diff=0.14        Diff=0 
P1.hat=0.19 [ 0.07, 0.54] [-0.09, 0.37] [-0.18, 0.18] 
P1.hat=0.39 [ 0.06, 0.55] [-0.12, 0.39] [-0.23, 0.23] 
P1.hat=0.61 [ 0.09, 0.52] [-0.10, 0.38] [-0.23, 0.23] 
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We see that even if the observed difference in the proportion of nondetects is 
about 15 % points, all of the confidence intervals for the difference between the 
proportions of nondetects at the two wells contain 0, so if a difference of 15 % 
points is important to substantiate, we may need to increase our sample sizes. 

2.8.3 Nonparametric Confidence Interval for a Percentile 
The function ciNparConfLevel computes the confidence level associated with 
a nonparametric confidence interval for the pth quantile (the pth quantile is same 
as the 100pth percentile, where 0  p  1), given the sample size and value of p.  
The function ciNparN computes the sample size required to achieve a specified 
confidence level, given the value of p.  The function plotCiNparDesign plots 
the relationships between sample size, confidence level, and p. 

The data frame EPA.92c.copper2.df contains copper concentrations 
(ppb) at three background wells and two compliance wells. 

> EPA.92c.copper2.df 

   Copper.orig Copper Censored Month Well  Well.type 
1           <5    5.0     TRUE     1    1 Background 
2           <5    5.0     TRUE     2    1 Background 
3          7.5    7.5    FALSE     3    1 Background 
… 
38          <5    5.0     TRUE     6    5 Compliance 
39         5.6    5.6    FALSE     7    5 Compliance 
40          <5    5.0     TRUE     8    5 Compliance 

There are eight observations associated with each of the three background wells.  
Of the 24 observations at the three background wells, 15 are nondetects recorded 
as “< 5”.  The other nine observations at the background wells are:  5.4, 5.9, 6.0, 
6.1, 6.4, 6.7, 7.5, 8.0, and 9.2.  The estimated 95th percentile of copper 
concentration at the background wells is 7.925 ppb. 

> Cu.Bkgrd <- with(EPA.92c.copper2.df,   
Copper[Well.type == "Background"] 

> eqnpar(Cu.Bkgrd, p = 0.95) 

Results of Distribution Parameter Estimation 
-------------------------------------------- 
 
Assumed Distribution:            None 
 
Estimated Quantile(s):           95'th %ile = 7.925 
 
Quantile Estimation Method:      Nonparametric 
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Data:                            Cu.Bkgrd 
 
Sample Size:                     24 

If we use the largest observed value of 9.2 as the upper confidence limit of the 
95th percentile of the copper concentration, the associated confidence level is 
71 %. 

> ciNparConfLevel(n = 24, p = 0.95, ci.type = "upper") 

[1] 0.708011 

If only four observations had been taken at each well for a total sample size of 
n = 12, the associated confidence level would have been 46 %. 

> ciNparConfLevel(n = 12, p = 0.95, ci.type = "upper") 

[1] 0.4596399 

If we want to construct a nonparametric confidence interval for the 95th percentile 
of copper concentration with an associated confidence level of at least 95 %, we 
would need n = 59 observations (about 20 observations at each background well). 

> ciNparN(p = 0.95, ci.type = "upper") 

[1] 59 
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Fig. 2.3 Confidence level for the one-sided upper nonparametric confidence interval for the 
95th percentile versus sample size, using the maximum value as the upper confidence limit 
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Figure 2.3 displays the confidence level of the one-sided upper confidence interval 
for the 95th percentile as a function of the sample size.  To create this plot, type 
this command: 

> plotCiNparDesign(p = 0.95, ci.type = "upper",  
range.x.var = c(2, 100), ylim = c(0, 1)) 

2.9 Sample Size for Prediction Intervals 
Table 2.2 lists the functions available in EnvStats for computing required sample 
sizes, half-widths, and confidence levels associated with a prediction interval.  For 
the normal distribution, you can compute the half-width of the prediction interval 
given the user-specified sample size, compute the required sample size given the 
user-specified half-width, and plot the relationship between sample size and half-
width.  For a nonparametric prediction interval, you can compute the required 
sample size for a specified confidence level, compute the confidence level 
associated with a given sample size, and plot the relationship between sample size 
and confidence level. 

Distribution Function Output 
Normal predIntNormHalfWidth Half-width of prediction 

interval for normal 
distribution 

 predIntNormN Required sample size for 
specified half-width of 
prediction interval for 
normal distribution 

 plotPredIntNormDesign Plots for sampling design 
based on prediction 
interval for normal 
distribution 

Nonparametric predIntNparConfLevel 
predIntNparSimultaneousConfLevel 

Confidence level of 
prediction interval, given 
sample size 

 predIntNparN 
predIntNparSimultaneousN 

Required sample size for 
specified confidence 
level of prediction 
interval 

 plotPredIntNparDesign 
plotPredIntNparSimultaneousDesign 

Plots for sampling design 
based on prediction 
interval 

Table 2.2 Sample size functions for prediction intervals 

2.9.1 Prediction Interval for a Normal Distribution 
The function predIntNormHalfWidth computes the half-width associated 
with the prediction interval for a normal distribution, given the sample size, 
number of future observations the prediction interval should contain, estimated 
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standard deviation, and confidence level.  The function predIntNormN computes 
the sample size required to achieve a specified half-width, given the number of 
future observations, estimated standard deviation, and confidence level.  The 
function plotPredIntNormDesign plots the relationships between sample 
size, number of future observations, half-width, estimated standard deviation, and 
confidence level. 

The data frame EPA.92c.arsenic3.df contains arsenic concentrations 
(ppb) collected quarterly for 3 years at a background well and quarterly for 2 years 
at a compliance well. 

> EPA.92c.arsenic3.df 

   Arsenic Year  Well.type 
1     12.6    1 Background 
2     30.8    1 Background 
… 
19     2.6    5 Compliance 
20    51.9    5 Compliance 

The estimated mean and standard deviation for the background well are 28 and 
17 ppb, respectively.  The exact two-sided 95 % prediction limit for the next k = 4 
future observations is [ 25, 80], which has a half-width of 52.5 ppb and includes 
values less than 0, which are not possible to observe. 

> As.Bkgrd <- with(EPA.92c.arsenic3.df,  
Arsenic[Well.type == "Background"]) 

> predIntNorm(As.Bkgrd, k = 4, method = "exact") 

Results of Distribution Parameter Estimation 
-------------------------------------------- 
 
Assumed Distribution:            Normal 
 
Estimated Parameter(s):          mean = 27.51667 
                                 sd   = 17.10119 
 
Estimation Method:               mvue 
 
Data:                            As.Bkgrd 
 
Sample Size:                     12 
 
Prediction Interval Method:      exact 
 
Prediction Interval Type:        two-sided 
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Confidence Level:                95% 
 
Number of Future Observations:   4 
 
Prediction Interval:             LPL = -24.65682 
                                 UPL =  79.69015 

In fact, given an assumed standard deviation of s = 17, the smallest half width 
you can achieve for a prediction interval for the next k = 4 future observations is 
42 ppb, based on an infinite sample size.  Unlike a confidence interval, the half-
width of a prediction interval does not approach 0 as the sample size increases.  
Figure 2.4 shows a plot of sample size versus half-width for a 95 % prediction 
interval for a normal distribution for various values of k (the number of future 
observations), assuming a standard deviation of s = 17. 
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Fig. 2.4 The half-width of a 95 % prediction interval for arsenic concentrations (ppb) as a 
function of sample size and number of future observations (k), assuming a standard 
deviation of 17 ppb 
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Type these commands to create the plot: 

> plotPredIntNormDesign(range.x.var = c(4, 50), k = 4, 
sigma.hat = 17, xlim = c(0, 50), ylim = c(30, 110),  
main = "") 

> plotPredIntNormDesign(range.x.var = c(4, 50), k = 2, 
sigma.hat = 17, plot.col = 2, plot.lty = 2, add = TRUE) 

> plotPredIntNormDesign(range.x.var = c(4, 50), k = 1, 
sigma.hat = 17, plot.col = 4, plot.lty = 3, add = TRUE) 

> legend("topright", c("k=4", "k=2", "k=1"),  
col = c(1, 2, 4), lty = 1:3, lwd = 3, bty = "n") 

2.9.2 Nonparametric Prediction Interval 
The function predIntNparConfLevel computes the confidence level 
associated with a nonparametric prediction interval, given the minimum number 
of future observations the interval should contain (k), the number of future observ-
ations (m), and sample size.  The function predIntNparN computes the sample 
size required to achieve a specified confidence level, given the number of future 
observations.  The function plotPredIntNparDesign plots the relationships 
between sample size, confidence level, and number of future observations. 

Table 2.3 shows the required sample size for a two-sided nonparametric 
prediction interval for the next m future observations (assuming k = m) for various 
values of m and required confidence levels, assuming we are using the minimum 
and maximum values as the prediction limits.  The values for the table are 
generated using this command: 

> predIntNparN(m = rep(c(1, 5, 10), 2),  
conf.level = rep(c(0.9, 0.95), each = 3)) 

Confidence level (%) # future observations (m) Required sample size (n) 
90          1        19

          5        93

         10       186

95          1        39

          5       193

         10       386

Table 2.3 Required sample sizes for a two-sided nonparametric prediction interval, using 
the minimum and maximum values as the prediction limits 

Figure 2.5 displays the confidence level of a two-sided nonparametric 
prediction interval as a function of sample size for various values of m, using the 
minimum and maximum values as the prediction limits.  To create this figure, type 
these commands: 
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> plotPredIntNparDesign(range.x.var = c(2, 100), k = 1,  
m = 1, xlim = c(0, 100), ylim = c(0, 1), main = "") 

> plotPredIntNparDesign(range.x.var = c(2, 100), k = 5,  
m = 5, plot.col = 2, plot.lty = 2, add = TRUE) 

> plotPredIntNparDesign(range.x.var = c(2, 100),  
k = 10, m = 10, plot.col = 4, plot.lty = 3, add = TRUE) 

> legend("bottomright", c("m=  1", "m=  5", "m=10"),  
col = c(1, 2, 4), lty = 1:3, lwd = 3) 
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Fig. 2.5 The confidence level of a two-sided nonparametric prediction interval as a function 
of sample size, for various values of the number of future observations (m) 

2.10 Sample Size for Tolerance Intervals 
Table 2.4 lists the functions available in EnvStats for computing required sample 
sizes, half-widths, coverage, and confidence levels associated with a tolerance 
interval.  For the normal distribution, you can compute the half-width of the 
tolerance interval given the user-specified sample size and coverage, compute the 
required sample size given the user-specified half-width and coverage, and plot 
the relationship between sample size, half-width, and coverage.  For a non-
parametric prediction interval, you can compute the required sample size for a 
specified confidence level and coverage, compute the confidence level associated 
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with a given sample size and coverage, compute the coverage associated with a 
given sample size and confidence level, and plot the relationship between sample 
size, confidence level, and coverage. 

Distribution Function Output 
Normal tolIntNormHalfWidth Half-width of tolerance interval for 

normal distribution 
 tolIntNormN Required sample size for specified 

half-width of tolerance interval for 
normal distribution 

 plotTolIntNormDesign Plots for sampling design based on 
tolerance interval for normal 
distribution 

Nonparametric tolIntNparConfLevel Confidence level of tolerance interval, 
given the coverage and sample size 

 tolIntNparCoverage Coverage of tolerance interval, given 
confidence level and sample size 

 tolIntNparN Required sample size for specified 
confidence level and coverage of a 
tolerance interval 

 plotTolIntNparDesign Plots for sampling design based on a 
tolerance interval 

Table 2.4 Sample size functions for tolerance intervals 

2.10.1 Tolerance Interval for a Normal Distribution 
The function tolIntNormHalfWidth computes the half-width associated with 
a tolerance interval for a normal distribution, given the sample size, coverage, 
estimated standard deviation, and confidence level.  The function tolIntNormN 
computes the sample size required to achieve a specified half-width, given the 
coverage, estimated standard deviation, and confidence level.  The function 
plotTolIntNormDesign plots the relationships between sample size, half-
width, coverage, estimated standard deviation, and confidence level. 

Again using the data frame EPA.92c.arsenic3.df containing arsenic 
concentrations, we saw in Sect. 2.9.1 that the estimated mean and standard 
deviation for the background well are 28 and 17 ppb, respectively, based on a 
sample size of n = 12 quarterly samples.  The two-sided -content tolerance limit 
with 95 % coverage and associated confidence level of 99 % is [ 39, 94], which 
has a half-width of 66.5 ppb and includes values less than 0, which are not 
possible to observe. 

> tolIntNorm(As.Bkgrd, coverage = 0.95,  
cov.type = "content", conf.level = 0.99) 
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Results of Distribution Parameter Estimation 
-------------------------------------------- 
 
Assumed Distribution:            Normal 
 
Estimated Parameter(s):          mean = 27.51667 
                                 sd   = 17.10119 
 
Estimation Method:               mvue 
 
Data:                            As.Bkgrd 
 
Sample Size:                     12 
 
Tolerance Interval Coverage:     95% 
 
Coverage Type:                   content 
 
Tolerance Interval Method:       Wald-Wolfowitz Approx 
 
Tolerance Interval Type:         two-sided 
 
Confidence Level:                99% 
 
Tolerance Interval:              LTL = -38.66445 
                                 UTL =  93.69778 

In fact, given an assumed standard deviation of s = 17, the smallest half width you 
can achieve for a tolerance interval with 95 % coverage and 99 % confidence is 
33 ppb, based on an infinite sample size.  Unlike a confidence interval, the half-
width of a tolerance interval does not approach 0 as the sample size increases.  
Figure 2.6 shows a plot of sample size versus half-width for a -content tolerance 
interval for a normal distribution with confidence level 99 % for various values of 
coverage, assuming a standard deviation of s = 17.  It was created with these 
commands: 

> plotTolIntNormDesign(range.x.var = c(5, 50),  
sigma.hat = 17, coverage = 0.99, conf = 0.99,  
xlim = c(0, 50), ylim = c(0, 200), main = "") 

> plotTolIntNormDesign(range.x.var = c(5, 50),  
sigma.hat = 17, coverage = 0.95, conf = 0.99,  
plot.col = 2, plot.lty = 2, add = TRUE) 
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> plotTolIntNormDesign(range.x.var = c(5, 50),  
sigma.hat = 17, coverage = 0.90, conf = 0.99,  
plot.col = 4, plot.lty = 3, add = TRUE) 

> legend("topright",  
paste(c("99%", "95%", "90%"), "Coverage"),  
col = c(1, 2, 4), lty=1:3, lwd=3, bty = "n") 

0 10 20 30 40 50

0
50

10
0

15
0

20
0

Sample Size (n)

H
al

f-W
id

th

99% Coverage
95% Coverage
90% Coverage

 
Fig. 2.6 The half-width of a tolerance interval for arsenic concentrations (ppb) as a function 
of sample size and coverage, assuming a standard deviation of 17 ppb 

2.10.2 Nonparametric Tolerance Interval 
The function tolIntNparConfLevel computes the confidence level 
associated with a nonparametric tolerance interval, given the coverage and sample 
size.  The function tolIntNparCoverage computes the coverage associated 
with the tolerance interval, given the confidence level and sample size.  The 
function tolIntNparN computes the sample size required to achieve a specified 
confidence level, for a given coverage.  The function plotTolIntNparDesign 
plots the relationships between sample size, confidence level, and coverage. 

Table 2.5 shows the required sample size for a two-sided nonparametric 
tolerance interval for various values of coverage and required confidence levels, 
assuming we are using the minimum and maximum values as the tolerance limits.  
The values for the table are generated using this command: 
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> tolIntNparN(coverage = rep(c(0.8, 0.9, 0.95), 2), 
conf.level = rep(c(0.9, 0.95), each = 3)) 

Confidence level (%) Coverage (%) Required sample size (n) 
90 80        18

90        38

95        77

95 80        22

90        46

95        93

Table 2.5 Required sample sizes for a two-sided nonparametric tolerance interval, using the 
minimum and maximum values as the tolerance limits 

Figure 2.7 displays the confidence level of a two-sided nonparametric 
tolerance interval as a function of sample size for various values of coverage, 
using the minimum and maximum values as the tolerance limits. 

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Sample Size (n)

C
on

fid
en

ce
 L

ev
el

80% Coverage
90% Coverage
95% Coverage

 
Fig. 2.7 The confidence level of a two-sided nonparametric tolerance interval as a function 
of sample size, for various values of coverage 

To create this plot, type these commands: 

> plotTolIntNparDesign(range.x.var = c(2, 100),  
coverage = 0.8, xlim = c(0, 100), ylim = c(0, 1),  
main = "") 
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> plotTolIntNparDesign(range.x.var = c(2, 100),  
coverage = 0.90, plot.col = 2, plot.lty = 2, add = TRUE) 

> plotTolIntNparDesign(range.x.var = c(2, 100),  
coverage = 0.95, plot.col = 4, plot.lty = 3, add = TRUE) 

> legend("bottomright",  
paste(c("80%", "90%", "95%"), "Coverage"),  
col = c(1, 2, 4), lty = 1:3, lwd = 3, bty = "n") 

2.11 Sample Size and Power for Hypothesis Tests 
Table 2.6 lists the functions available in EnvStats for computing required sample 
sizes, powers, and minimal detectable differences associated with several different 
hypothesis tests.  In this section, we will illustrate how to use EnvStats functions 
to explore the relationship between sample size and power for testing the mean of 
a normal distribution, testing a binomial proportion, and using simultaneous 
prediction limits with retesting.  See Millard et al. (2014) and the help files for the 
functions listed in Table 2.6 for more examples of exploring the relationship 
between sample size and power for other kinds of hypothesis tests. 

Test Function Output 
Student’s t-test tTestPower Power of t-test 
 tTestAlpha Type I error of t-test 
 tTestN Required sample size for specified power 

of t-test 
 tTestScaledMdd Required scaled minimal detectable 

difference ( / ) for specified power of t-
test 

 plotTTestDesign Plots for sampling design based on t-test 
Student’s t-test, 
lognormal 
distribution 

tTestLnormAltPower Power of one- or two-sample t-test 
assuming lognormal distribution 

 tTestLnormAltN Required sample size for specified power 
for one- or two-sample t-test assuming 
lognormal distribution 

 tTestLnormAltRatioOfMeans Required ratio of means for specified 
power for one- or two-sample t-test 
assuming lognormal distribution 

 plotTTestLnormAltDesign Plots for sampling design based on one- 
or two-sample t-test assuming lognormal 
distribution 

Table 2.6 Sample size and power functions for hypothesis tests 
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Test Function Output 
ANOVA F-test aovPower Power of F-test for one-

way ANOVA 
 aovN Required sample size for 

specified power of F-test 
for one-way ANOVA 

 plotAovDesign Plots for sampling design 
based on F-test for one-
way ANOVA 

Proportion test, 
binomial  
distribution 

propTestPower Power of one- or two-
sample proportion test 

 propTestN Required sample size for 
specified power for one- 
or two-sample proportion 
test 

 propTestMdd Required minimal 
detectable difference for 
specified power for one- 
or two-sample proportion 
test 

 plotPropTestDesign Plots for sampling design 
based on one- or two-
sample proportion test 

Linear trend linearTrendTestPower Power of test for non-zero 
slope 

 linearTrendTestN Required sample size for 
specified power for test of 
non-zero slope 

 linearTrendTestScaledMds Required minimal 
detectable slope for 
specified power for test of 
non-zero slope 

 plotLinearTrendTestDesign Plots for sampling design 
based on test for non-zero 
slope 

Prediction 
interval, normal  
distribution 

predIntNormTestPower Power of test based on 
prediction interval for 
normal distribution 

 plotPredIntNormTestPowerCurve Power curve for test based 
on prediction interval for 
normal distribution 

 predIntNormSimultaneousTestPower Power of test based on 
simultaneous prediction 
interval for normal 
distribution 

 plotPredIntNormSimultaneousTestPower
  Curve 

Power curve for test based 
on simultaneous 
prediction interval for 
normal distribution 

 
 

t-test 

Table 2.6 (continued). Sample size and power functions for hypothesis tests 
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Test Function Output 
Prediction interval, 
lognormal  
distribution 

predIntLnormAltTestPower Power of test based 
on prediction interval 
for lognormal 
distribution 

 plotPredIntLnormAltTestPowerCurve Power curve for test 
based on prediction 
interval for lognormal 
distribution 

 predIntLnormAltSimultaneousTestPower Power of test based 
on simultaneous 
prediction interval 
for lognormal 
distribution 

 plotPredIntLnormAltSimultaneousTest 
  PowerCurve 

Power curve for test 
based on 
simultaneous 
prediction interval 
for lognormal 
distribution 

Prediction interval, 
nonparametric 

predIntNparSimultaneousTestPower Power of test based 
on nonparametric 
simultaneous 
prediction interval 

 plotPredIntNparSimultaneousTestPower 
  Curve 

Power curve for test 
based on 
nonparametric 
simultaneous 
prediction interval 

Table 2.6 (continued). Sample size and power functions for hypothesis tests 

2.11.1 Testing the Mean of a Normal Distribution 
Power and sample size calculations based on Student’s t-test involve four quantities: 

1. The fixed type I error (also called the -level). 
2. The desired power of the test. 
3. The sample size(s). 
4. The scaled minimal detectable difference (scaled MDD), also often called 

the effect size.  For the one-sample case, the scaled MDD is the differ-
ence between the true population mean and the population mean hypo-
thesized under the null hypothesis, divided by the population standard 
deviation.  For the two-sample case, the scaled MDD is the difference 
between the true population means for the two groups minus the differ-
ence between the population means hypothesized for the two groups 
under the null hypothesis, divided by the population standard deviation 
(the standard deviation is assumed to be the same for both groups).  
Because the term “effect size” is sometimes used to denote simply the 
difference between the means, we always use the term scaled MDD to 
denote this quantity. 
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The EnvStats function tTestPower computes the power associated with the 
Student’s t-test to perform a hypothesis test for the mean of a normal distribution 
or the difference between two means, given the sample size, scaled MDD, and -
level.  The function tTestAlpha computes the -level given the power, sample 
size, and scaled MDD.  The function tTestN computes the sample size required 
to achieve a specified power, given the scaled MDD and -level.  The function 
tTestScaledMdd computes the scaled MDD associated with user-specified 
values of power, sample size, and -level.  The function plotTTestDesign 
plots the relationships between sample size, power, scaled MDD, and -level. 

The guidance document Statistical Analysis of Ground-Water Monitoring Data 
at RCRA Facilities:  Unified Guidance (USEPA 2009) contains an example on 
pages 22–6 to 22–8 that uses vinyl chloride (ppb) concentrations at two different 
compliance wells.  There are 4 years of quarterly observations at each of the two 
wells.  The first year of data corresponds to the background period and the 
subsequent 3 years correspond to the compliance period.  The data in this example 
are stored in the data frame EPA.09.Ex.22.1.VC.df. 

> EPA.09.Ex.22.1.VC.df 

   Year Quarter     Period Well VC.ppb 
1     1       1 Background GW-1    6.3 
2     1       2 Background GW-1    9.5 
… 
31    4       3 Compliance GW-2    7.5 
32    4       4 Compliance GW-2    9.7 

The groundwater protection standard (GWPS) has been set to 5 ppb.  During 
compliance monitoring, we want to test the null hypothesis that the mean vinyl 
chloride concentration is less than or equal to 5 ppb versus the alternative that it is 
greater than 5 ppb based on using 1 year of data (i.e., four quarterly observations).  
We want to have 80 % power of detecting an increase of twice the GWPS (i.e., 
detecting a true mean vinyl chloride concentration of 10 ppb, a difference of 5 ppb 
between the assumed mean under the null hypothesis and the mean under the 
alternative hypothesis). 

In this example, first we’ll use the first year (background period) of monitoring 
to estimate the standard deviation of vinyl chloride measurements to determine the 
required -level.  Then we’ll see how changing the -level and sample size affects 
the power. 

For the first year (background period) of monitoring, the observed means and 
standard deviations are 8.9 and 2.4 ppb for Well 1, and 7.4 and 3.9 ppb for Well 2, 
and the pooled estimate of standard deviation (assuming the standard deviation is 
the same at the two wells) is 3.2 ppb. 

> summaryStats(VC.ppb ~ Well, data = EPA.09.Ex.22.1.VC.df,  
subset = Period == "Background", digits = 1) 
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     N Mean  SD Median Min  Max 
GW-1 4  8.9 2.4    8.8 6.3 11.9 
GW-2 4  7.4 3.9    7.4 3.0 12.0 

> VC.lm.fit <- lm(VC.ppb ~ Well,  
data = EPA.09.Ex.22.1.VC.df,  
subset = Period == "Background") 

> summary(VC.lm.fit)$sigma 

[1] 3.200976 

However, if we compute a two-sided 95 % confidence interval for the true 
standard deviation based on the background period data, we see that it may be as 
high as about 6 ppb: 

> sqrt(enorm(VC.lm.fit$residuals, ci = TRUE,  
ci.param = "variance")$interval$limits) 

     LCL      UCL  
1.959408 6.031586 

Assuming population standard deviations of 3.2 and 6 ppb, basing the one-sample 
t-test on n = 4 observations, we need to set the type I error level to 0.057 or 0.23 
respectively in order to achieve 80 % power of detecting a true concentration of 
vinyl chloride of 10 ppb: 

> tTestAlpha(n.or.n1 = 4, delta.over.sigma = 5 / c(3, 6), 
power = 0.8, sample.type = "one.sample",  
alternative = "greater") 

[1] 0.05763283 0.22936065 

If we set the significance level to 1 % and assume a standard deviation of 
3.2 ppb, we can see how the power varies with sample size: 

> tTestPower(n.or.n1 = c(4, 8, 12),  
delta.over.sigma = 5 / 3.2, alpha = 0.01,  
alternative = "greater") 

[1] 0.3173891 0.8839337 0.9911121 

If we set the significance level to 1 %, the desired power to 90 %, and assume 
a standard deviation of 6 ppb, we would need a sample size of at least n = 22 to 
detect an average vinyl chloride concentration that is 5 ppb above the GWPS: 

> tTestN(delta.over.sigma = 5 / 6, alpha = 0.01,  
power = 0.9, alternative = "greater") 

[1] 22 
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Fig. 2.8 Power versus sample size for a one-sample t-test with a significance level of 1 %, 
assuming a scaled minimal detectable difference of /   = 1 
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Fig. 2.9 Scaled minimal detectable difference versus sample size for a one-sample t-test 
with a significance level of 1 %, assuming a power of 90 % 
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Figure 2.8 plots power as a function of sample size for a significance level of 
1 %, assuming a scaled minimal detectable difference of 1.  Use this command to 
produce it: 

> plotTTestDesign(alpha = 0.01, delta.over.sigma = 1, 
range.x.var = c(2, 35), xlim = c(0, 35), ylim = c(0, 1), 
alternative="greater", approx = FALSE) 

Figure 2.9 plots the scaled minimal detectable difference as a function of sample 
size for a significance level of 1 %, assuming a power of 90 %. 

> plotTTestDesign(y.var = "delta.over.sigma",  
alpha = 0.01, power = 0.9, range.x.var = c(2, 15),  
xlim = c(0, 15), ylim = c(0, 40), alternative="greater", 
approx. = FALSE) 

2.11.2 Testing a Binomial Proportion 
The guidance document Statistical Analysis of Ground-Water Monitoring Data at 
RCRA Facilities:  Unified Guidance (USEPA 2009) contains an example on page 
22–20 that involves determining whether more than 10 % of chlorine gas 
containers are stored at pressures above a compliance limit.  We want to test the 
one-sided null hypothesis that 10 % or fewer of the containers are stored at 
pressures greater than the compliance limit versus the alternative that more than 
10 % are stored at pressures greater than the compliance limit.  We want to have at 
least 90 % power of detecting a true proportion of 30 % or greater, using a 5 % 
Type I error level.  The example in the guidance document uses the normal 
approximation to the binomial distribution (without a continuity correction) to 
determine we need to check 30 containers: 

> propTestN(p.or.p1 = 0.3, p0.or.p2 = 0.1, alpha = 0.05, 
power = 0.9, sample.type = "one.sample",  
alternative = "greater", approx = TRUE, round.up = TRUE) 

[1] 30 

However, a quick simulation shows that the true Type I error of the hypothesis test 
based on the normal approximation without using the continuity correction is 
inflated above 5 % and is really about 7 %: 

> set.seed(274) 

> N <- 10000 

> Reject.vec <- logical(N) 
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> for(i in 1:N) { 
Reject.vec[i] <- prop.test( 
x = rbinom(n = 1, size = 30, prob = 0.1), n = 30, p = 0.1, 
alternative = "greater", correct = FALSE)$p.value < 0.05 
} 

> mean(Reject.vec) 

[1] 0.071 

The 95 % confidence interval for the true Type I error level based on our 
simulation of 10,000 trials is [6.6 %, 7.6 %]: 

> binom.test(x = sum(Reject.vec), n = length(Reject.vec),  
p = 0.05)$conf.int 

[1] 0.06604181 0.07620974 

We could try basing our sample size calculation on the test based on the 
normal approximation with the continuity correction, but simulation shows that 
the continuity correction makes the true Type I error rate about 2.5 % with a 95 % 
confidence interval of [2.2 %, 2.8 %] for the true Type I error rate: 

> set.seed(538) 

> N <- 10000 

> Reject.vec <- logical(N) 

> for(i in 1:N) { 
Reject.vec[i] <- prop.test( 
x = rbinom(n = 1, size = 30, prob = 0.1), n = 30, p = 0.1, 
alternative = "greater", correct = TRUE)$p.value < 0.05 
} 

> mean(Reject.vec) 

[1] 0.0248 

> binom.test(x = sum(Reject.vec), n = length(Reject.vec),  
p = 0.05)$conf.int 

[1] 0.02184098 0.02803999 

If we base our sample size calculation on the exact binomial test instead of the 
test based on the normal approximation, we can set how much the actual Type I 
error rate can deviate from what we specify by using the tol.alpha argument 
to propTestN.  By default, tol.alpha is equal to 10 % of the value of  
alpha, so in this case tol.alpha=0.005 which means the smallest the true 
Type I error rate can be is 0.045, and the required sample size is 34: 
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> propTestN(p.or.p1 = 0.3, p0.or.p2 = 0.1, alpha = 0.05, 
power = 0.9, sample.type = "one.sample",  
alternative = "greater", approx = FALSE, round.up = TRUE) 

$n 
[1] 34 
 
$power 
[1] 0.9214717 
 
$alpha 
[1] 0.04814433 
 
$q.critical.upper 
[1] 6 

If we allow the true Type I error to deviate by 0.01, the required sample size is 33: 

> propTestN(p.or.p1 = 0.3, p0.or.p2 = 0.1, alpha = 0.05, 
power = 0.9, sample.type = "one.sample", tol.alpha = 0.01, 
alternative = "greater", approx = FALSE, round.up = TRUE) 

$n 
[1] 33 
 
$power 
[1] 0.9055545 
 
$alpha 
[1] 0.04170385 
 
$q.critical.upper 
[1] 6 

2.11.3 Testing Multiple Wells for Compliance with Simultaneous 
Prediction Intervals 

The guidance document Statistical Analysis of Ground-Water Monitoring Data at 
RCRA Facilities:  Unified Guidance (USEPA 2009) contains an example on page 
19–23 that involves monitoring nw = 100 compliance wells at a large facility with 
minimal natural spatial variation every 6 months for nc = 20 separate chemicals.  
There are n = 25 background measurements for each chemical to use to create 
simultaneous prediction intervals.  We would like to determine which kind of 
resampling plan based on normal distribution simultaneous prediction intervals to 
use (1-of-m, 1-of-m based on means, or Modified California) in order to have 
adequate power of detecting an increase in chemical concentration at any of the 
100 wells while at the same time maintaining a site-wide false positive rate 
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(SWFPR) of 10 % per year over all 4,000 (100 wells × 20 chemicals × semi-
annual sampling) comparisons. 

The EnvStats functions for computing power based on simultaneous prediction 
limits include the argument r that is the number of future sampling occasions 
(r=2 in this case because we are performing semi-annual sampling), so to com-
pute the individual test Type I error level test (and thus the individual test 
confidence level), we only need to worry about the number of wells (100) and the 
number of constituents (20):  test = 1 (1 )1/(nw × nc).  The individual confidence 
level is simply 1 test.  Plugging in 0.1 for , 100 for nw, and 20 for nc yields an 
individual test confidence level of 1 test = 0.9999473. 

> nc <- 20 

> nw <- 100 

> conf.level <- (1 - 0.1)^(1 / (nc * nw)) 

> conf.level 

[1] 0.9999473 

Now we can compute the power of any particular sampling strategy using the  
EnvStats function predIntNormSimultaneousTestPower.  For example, 
to compute the power of detecting an increase of three standard deviations in 
concentration using the prediction interval based on the “1-of-2” resampling rule, 
type this command: 

> predIntNormSimultaneousTestPower(n = 25, k = 1,  
m = 2, r = 2, rule = "k.of.m", delta.over.sigma = 3, 
pi.type = "upper", conf.level = conf.level) 

[1] 0.3900202 

The following commands will reproduce the table shown in Step 2 on page 
19–23 of the EPA guidance document: 

> rule.vec <- c(rep("k.of.m", 3), "Modified.CA", 
rep("k.of.m", 3)) 

> m.vec <- c(2, 3, 4, 4, 1, 2, 1) 

> n.mean.vec <- c(rep(1, 4), 2, 2, 3) 

> n.scenarios <- length(rule.vec) 

> K.vec <- numeric(n.scenarios) 

> Power.vec <- numeric(n.scenarios) 

> K.vec <- predIntNormSimultaneousK(n = n, k = 1, m = m.vec, 
n.mean = n.mean.vec, r = r, rule = rule.vec,  
pi.type = "upper", conf.level = conf.level) 
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> Power.vec <- predIntNormSimultaneousTestPower(n = n, k = 1, 
m = m.vec, n.mean = n.mean.vec, r = r, rule = rule.vec, 
delta.over.sigma = 3, pi.type = "upper",  
conf.level = conf.level) 

> data.frame(Rule = rule.vec, k = rep(1, n.scenarios),  
m = m.vec, N.Mean = n.mean.vec, K = round(K.vec, 2),  
Power = round(Power.vec, 2),  
Total.Samples = m.vec * n.mean.vec) 

         Rule k m N.Mean    K Power Total.Samples 
1      k.of.m 1 2      1 3.16  0.39             2 
2      k.of.m 1 3      1 2.33  0.65             3 
3      k.of.m 1 4      1 1.83  0.81             4 
4 Modified.CA 1 4      1 2.57  0.71             4 
5      k.of.m 1 1      2 3.62  0.41             2 
6      k.of.m 1 2      2 2.33  0.85             4 
7      k.of.m 1 1      3 2.99  0.71             3 

The above table shows the -multipliers for each prediction interval, along with 
the power of detecting a change in concentration of three standard deviations at 
any of the 100 wells during the course of a year, for each of the sampling 
strategies considered.  The last three rows of the table correspond to sampling 
strategies that involve using the mean of two or three observations. 

Figure 2.10 shows the power curves for the first four sampling strategies.  It 
was created with these commands: 

> plotPredIntNormSimultaneousTestPowerCurve(n = 25,  
k = 1, m = 4, r = 2, rule="k.of.m", pi.type = "upper", 
conf.level = conf.level,  
xlab = "SD Units Above Background", main = "") 

> plotPredIntNormSimultaneousTestPowerCurve(n = 25,  
k = 1, m = 3, r = 2, rule="k.of.m", pi.type = "upper", 
conf.level = conf.level, add = TRUE, plot.col = 2, 
plot.lty = 2) 

> plotPredIntNormSimultaneousTestPowerCurve(n = 25,  
k = 1, m = 2, r = 2, rule="k.of.m", pi.type = "upper", 
conf.level = conf.level, add = TRUE, plot.col = 3, 
plot.lty = 3) 

> plotPredIntNormSimultaneousTestPowerCurve(n = 25,  
r = 2, rule="Modified.CA", pi.type = "upper",  
conf.level = conf.level, add = TRUE, plot.col = 4, 
plot.lty = 4) 
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> legend(0, 1, c("1-of-4", "Modified CA", "1-of-3",  
"1-of-2"), col = c(1, 4, 2, 3), lty = c(1, 4, 2, 3),  
lwd = 2, bty = "n") 
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Fig. 2.10 Power versus increase in concentration for various testing strategies based on 
simultaneous prediction limits, with 100 wells, 20 chemicals, semi-annual sampling, and an 
annual SWFPR of 10 % 

Figure 2.11 shows the power curves for the last three sampling strategies.  It was 
created with these commands: 

> plotPredIntNormSimultaneousTestPowerCurve(n = 25,  
k = 1, m = 2, n.mean = 2, r = 2, rule="k.of.m",  
pi.type = "upper", conf.level = conf.level,  
xlab = "SD Units Above Background", main = "") 

> plotPredIntNormSimultaneousTestPowerCurve(n = 25,  
k = 1, m = 1, n.mean = 2, r = 2, rule="k.of.m",  
pi.type = "upper", conf.level = conf.level, add = TRUE, 
plot.col = 2, plot.lty = 2) 

> plotPredIntNormSimultaneousTestPowerCurve(n = 25,  
k = 1, m = 1, n.mean = 3, r = 2, rule="k.of.m",  
pi.type = "upper", conf.level = conf.level, add = TRUE, 
plot.col = 3, plot.lty = 3) 
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> legend(0, 1, c("1-of-2, Order 2", "1-of-1, Order 3",  
"1-of-1, Order 2"), col = c(1, 3, 2), lty = c(1, 3, 2), 
lwd = 2, bty="n") 
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Fig. 2.11 Power versus increase in concentration for various testing strategies based on 
simultaneous prediction limits using the mean of two measures, with 100 wells, 20 
chemicals, semi-annual sampling, and an annual SWFPR of 10 % 

2.12 Summary 
• The first and most important step of any environmental study is to design 

the sampling program. 
• Probability sampling or random sampling involves using a random 

mechanism to select samples from the population.  All statistical methods 
used to quantify uncertainty assume some form of random sampling was 
used to obtain the sample. 

• The Data Quality Objectives (DQO) process is a systematic planning tool 
based on the scientific method.  The last two steps involve trading off 
limits on Type I and Type II errors and sample size. 

• You can use the EnvStats functions listed in Tables 2.1, 2.2, 2.4, and 2.6 
(and in the help file Power and Sample Size) to estimate required samples 
sizes for an environmental study. 
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Chapter 3 

Looking at Data 

3.1 Introduction 
Once you have a collection of observations from your environmental study, you 
should thoroughly examine the data in as many ways as possible and relevant.  
When the first widely available commercial statistical software packages came out 
in the 1960s, the emphasis was on statistical summaries of data, such as means, 
standard deviations, and measures of skew and kurtosis.  It is still true that “a picture 
is worth a thousand words,” and no amount of summary or descriptive statistics 
can replace a good graph to explain your data.  John Tukey coined the acronym 
EDA, which stands for Exploratory Data Analysis.  Helsel and Hirsch (1992), 
USEPA (2006a), and Millard et al. (2014) give a good overview of statistical and 
graphical methods for exploring environmental data.  Cleveland (1993, 1994) and 
Chambers et al. (1983) are excellent general references for methods of graphing 
data.  This chapter discusses the functions available in ENVSTATS for producing 
summary statistics and graphs to describe and look at environmental data. 

Statistic or plot Function Output 
Summary statistics summaryFull Summary statistics 
 summaryStats Summary statistics, p-values, and 

confidence intervals 
Strip chart stripChart Strip chart with confidence inter-

vals for mean or pseudo-median 
Probability distribution 
function (PDF) plot 

epdfPlot Empirical PDF plot 

Cumulative distribution 
function (CDF) plots 

ecdfPlot Empirical CDF plot 

 cdfCompare Compare empirical CDF to a hy-
pothesized CDF, or compare two 
empirical CDFs 

Quantile-Quantile  
(Q-Q) plots 

qqPlot Q-Q plot comparing data to a the-
oretical distribution or comparing 
two data sets 

 qqPlotGestalt Numerous Q-Q plots based on a 
specified distribution 

Box-Cox  
transformations 

boxcox Determine optimal Box-Cox 
transformation 

Table 3.1  Functions in ENVSTATS for exploratory data analysis 
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3.2 EDA Using ENVSTATS 
R comes with numerous functions for producing summary statistics and graphs to 
look at your data.  Table 3.1 lists the additional functions available in ENVSTATS 
for performing EDA. 

 
Statistic 

 
What it measures / how it is computed 

Robust to 
extreme 
values? 

Mean Center of distribution 
Sum of observations divided by sample size 
Where the histogram balances 

No 

Trimmed mean Center of distribution 
Trim off extreme observations and compute mean 
Where the trimmed histogram balances 

Somewhat 

Median Center of the distribution 
Middle value or mean of middle values 
Half of observations are less and half are greater 

Very 

Geometric mean Center of distribution 
Exponentiated mean of log-transformed observations 
Estimates true median for a lognormal distribution 

Yes 

Variance Spread of distribution 
Average of squared distances from the mean 

No 

Standard deviation Spread of distribution 
Square root of variance 
In same units as original observations 

No 

Range Spread of distribution 
Maximum minus minimum 

No 

Interquartile range Spread of distribution 
75th percentile minus 25th percentile 
Range of middle 50 % of data 

Yes 

Median absolute  
deviation 

Spread of distribution 
1.4826 × Median of distances from the median 

Yes 

Geometric standard  
deviation 

Spread of distribution 
Exponentiated standard deviation of log-transformed 
  observations 

No 

Coefficient of  
variation 

Spread of distribution/center of distribution 
Standard deviation divided by mean 
Sometimes multiplied by 100 and expressed as a  
  percentage 

No 

Skew How the distribution leans  
  (left, right, or centered) 
Average of cubed distances from the mean 

No 

Kurtosis Peakedness of the distribution 
Average of quartic distances from the mean, then  
  subtract 3 

No 

Table 3.2 A description of commonly used summary statistics 
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3.3 Summary Statistics 
Summary statistics (also called descriptive statistics) are numbers that you can 
use to summarize the information contained in a collection of observations.  
Summary statistics are also called sample statistics because they are statistics 
computed from a sample; they do not describe the whole population. 

One way to classify summary or descriptive statistics is by what they measure:  
location (central tendency), spread (variability), skew (long-tail in one direction), 
kurtosis (peakedness), etc.  Another way to classify summary statistics is by how 
they behave when unusually extreme observations are present:  sensitive versus 
robust.  Table 3.2 summarizes several kinds of descriptive statistics based on these 
two classification schemes. 

Millard et al. (2014) describe functions in R for computing summary statistics.  
The ENVSTATS help topic Summary Statistics lists additional and/or modified func-
tions for computing summary statistics. 

3.3.1 Summary Statistics for TcCB Concentrations 
The guidance document USEPA (1994b) contains measures of 1,2,3,4-
Tetrachlorobenzene (TcCB) concentrations (ppb) from soil samples at a “Refer-
ence” site and a “Cleanup” area.  The Cleanup area was previously contaminated 
and we are interested in determining whether the cleanup process has brought the 
level of TcCB back down to what you would find in soil typical of that particular 
geographic region.  In ENVSTATS, these data are stored in the data frame 
EPA.94b.tccb.df. 

> EPA.94b.tccb.df 

    TcCB.orig   TcCB Censored      Area 
1        0.22   0.22    FALSE Reference 
2        0.23   0.23    FALSE Reference 
… 
47       1.33   1.33    FALSE Reference 
48      <0.09   0.09     TRUE   Cleanup 
… 
123     51.97  51.97    FALSE   Cleanup 
124    168.64 168.64    FALSE   Cleanup 

There are 47 observations from the Reference site and 77 in the Cleanup area.  
There is one observation in the Cleanup area that was coded as “ND,” which 
stands for nondetect.  This means that the concentration of TcCB for this soil 
sample (if any was present at all) was so small that the procedure used to quantify 
TcCB concentrations could not reliably measure the true concentration.  For the 
purpose of creating the data frame EPA.94b.tccb.df, we set the (unreported) 
detection limit to the value of the smallest observation, which is 0.09.  The column 
TcCB.orig displays how the data were originally recorded, the column TcCB 
contains the original observations, except that the nondetect value is set to the  
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censoring level 0.09, the column Censored indicates whether the observation 
was censored (i.e., reported as a nondetect), and the column Area indicates which 
area the observation comes from. 

The summary statistics for the TcCB data are shown in Sect. 1.11.2 of Chap. 1.  
The summary statistics indicate that the observations for the Cleanup area are ex-
tremely skewed to the right:  the medians for the two areas are about the same, but 
the mean for the Cleanup area is much larger, indicating a few or more “outlying” 
observations.  This may be indicative of residual contamination that was missed 
during the cleanup process.  Figures 1.1, 1.2, and 1.3 in Sect. 1.11.3 display the 
strip charts, histograms and boxplots for the log-transformed TcCB data. 

For the remainder of this chapter, we will assume that you have attached the 
data frame EPA.94b.tccb.df to your search list with the command: 

> attach(EPA.94b.tccb.df) 

3.4 Strip Charts 
The R function stripchart creates one-dimensional scatterplots (also called 
strip plots or strip charts).  The EnvStats function stripChart is a modification 
of stripchart that allows you to add confidence intervals for the mean or 
pseudo-median of each group and also display the results of a hypothesis test that 
the group means are all equal (confidence intervals are discussed in Chap. 5 and 
hypothesis tests in Chap. 7).  Figure 1.1 in Sect. 1.11.3 displays the strip charts for 
the log-transformed TcCB data by area and includes confidence intervals for the 
mean TcCB concentration in each area. 

3.5 Empirical PDF Plots 
Figures 1.2 and 1.3 in Sect. 1.11.3 show histograms and boxplots for the TcCB  
data.  Strip charts, histograms, and boxplots are all graphical tools used to give you 
an idea of the shape of the underlying probability density function (pdf; see Chap. 
4).  Another graphical tool for this purpose is an empirical pdf plot (also called a 
density plot), and you can use the EnvStats function epdfPlot to create these.  
When a distribution is discrete and can only take on a finite number of values, the 
empirical pdf plot is the same as the standard relative frequency histogram; that is, 
each bar of the histogram represents the proportion of the sample equal to that par-
ticular number (or category).  When a distribution is continuous, the function 
epdfPlot calls the R function density to compute the estimated probability 
density at a number of evenly spaced points between the minimum and maximum 
values.  Figure 3.1 shows the empirical pdf plot for the log-transformed Reference 
area TcCB data superimposed on a relative frequency histogram.  It was created 
with these commands: 

> log.TcCB <- log(TcCB[Area == "Reference"]) 
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> hist(log.TcCB, freq = FALSE, xlim = c(-2, 1), 
col = "grey", xlab = "log [ TcCB (ppb) ]", 
ylab = "Relative Frequency", main = "") 

> epdfPlot(log.TcCB, epdf.col = "blue", add = TRUE) 
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Fig. 3.1 Histogram with overlaid empirical pdf plot for log-transformed Reference area 
TcCB data 

3.6 Quantile (Empirical CDF) Plots 
Loosely speaking, the pth quantile of a population is the (a) number such that a 
fraction p of the population is less than or equal to this number.  The pth quantile 
is the same as the 100pth percentile; for example, the 0.5 quantile is the same as 
the 50th percentile.  For a population, a plot of the quantiles on the x-axis versus 
the percentage or fraction of the population less than or equal to that number on 
the y-axis is called a cumulative distribution function plot or cdf plot (we will 
talk more about cumulative distribution functions in Chap. 4).  The y-axis is usually 
labeled as the cumulative probability or cumulative frequency. 

When we have a sample of data from some population, we usually do not 
know what percentiles our observations correspond to because we do not know the 
true population percentiles, so we use the sample data to estimate them.  A 
quantile plot (also called an empirical cumulative distribution function plot or 
empirical cdf plot) plots the ordered data (sorted from smallest to largest) on the 
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x-axis versus the estimated cumulative probabilities on the y-axis (Chambers et al. 
1983; Cleveland 1993. 1994; Helsel and Hirsch 1992).  (Sometimes the x- and  
y-axes are reversed.)  The specific formulas that are used to estimate the cumula-
tive probabilities (also called the plotting positions) are discussed in Millard et al. 
(2014). 

3.6.1 Empirical CDFs for the TcCB Data 
Figure 1.4 in Sect. 1.11.4 shows the quantile plot for the Reference area TcCB  
data.  Based on this plot, you can easily pick out the median as about 0.55 ppb and 
the quartiles as about 0.4 and 0.75 ppb (compare these numbers to the ones listed 
in Sect. 1.11.2).  You can also see that the quantile plot quickly rises, then pretty 
much levels off after about 0.8 ppb, which indicates that the data are skewed to the 
right (see the histogram for the Reference area data in Fig. 1.2 in Sect. 1.11.3).  
Helsel and Hirsch (1992) note that quantile plots, unlike histograms, do not  
require you to figure out how to divide the data into classes, and, unlike boxplots, 
all of the data are displayed in the graph. 

Figure 1.5 in Sect. 1.11.4 shows the quantile plot for the Reference area TcCB 
data with a fitted lognormal distribution.  We see that the lognormal distribution 
appears to fit these data quite well. 

Figure 1.6 compares the empirical cdf for the Reference area with the empiri-
cal cdf for the Cleanup area for the log-transformed TcCB data.  As we saw with 
the histograms and boxplots, the Cleanup area has quite a few extreme values 
compared to the reference area. 

3.7 Probability Plots or Quantile-Quantile (Q-Q) Plots 
A probability plot or quantile-quantile (Q-Q) plot is a graphical display invented 
by Wilk and Gnanadesikan (1968) to compare a data set to a particular probability 
distribution or to compare it to another data set.  The idea is that if two population 
distributions are exactly the same, then they have the same quantiles (percentiles), 
so a plot of the quantiles for the first distribution versus the quantiles for the  
second distribution will fall on the 0–1 line (i.e., the straight line y = x with intercept 
0 and slope 1).  If the two distributions have the same shape and spread but differ-
ent locations, then the plot of the quantiles will fall on the line y = a + x (parallel 
to the 0–1 line) where a denotes the difference in locations.  If the distributions 
have different locations and differ by a multiplicative constant b, then the plot of 
the quantiles will fall on the line y = a + bx (D’Agostino 1986a; Helsel and Hirsch 
1992).  Various kinds of differences between distributions will yield various kinds 
of deviations from a straight line.  In ENVSTATS, you can add a fitted  
regression line, a robust regression line, or a 0–1 line to the Q-Q plot. 

Instead of adding a fitted regression line to a Q-Q plot, another way to assess 
deviation from linearity is to use a Tukey mean-difference Q-Q plot, also called an 
m-d plot (Cleveland 1993).  This is a plot of the differences between the quantiles 
on the y-axis versus the average of the quantiles on the x-axis.  If the two sets of  
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quantiles come from the same parent distribution, then the points in an m-d plot 
should fall roughly along the horizontal line y = 0.  If one set of quantiles come 
from the same distribution with a shift in median, then the points in this plot 
should fall along a horizontal line above or below the line y = 0.  If the parent  
distributions of the quantiles differ in scale, then the points on this plot will fall at 
an angle. 

3.7.1 Q-Q Plots for the Normal and Lognormal Distribution 
Figure 3.2 shows the normal Q-Q plot for the Reference area TcCB data, along 
with a fitted regression line.  In this figure you can see that the points do not tend 
to fall on the line, but rather seem to make a U shape.  This indicates that the  
Reference area data are skewed to the right relative to a symmetrical, bell-shaped 
normal distribution. 

> qqPlot(TcCB[Area == "Reference"], add.line = TRUE,  
points.col = "blue", ylab = "Quantiles of TcCB (ppb)", 
main = "") 
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Fig. 3.2 Normal Q-Q plot for Reference area TcCB data 

Figure 1.7 in Sect. 1.11.5 shows the normal Q-Q plot for the log-transformed 
Reference area data, and Fig. 1.8 displays the corresponding Tukey mean-
difference Q-Q plot.  Here you can see the points do tend to fall on the line,  
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indicating that a lognormal distribution may be a good model for these data.   
Compare these figures to Fig. 1.5. 

An interesting feature of normal Q-Q plots is that if a sample of data comes 
from a normal distribution, and the data are plotted against quantiles of a standard 
normal distribution (with mean 0 and variance 1), then the intercept of the fitted 
line estimates the mean of the population, and the slope of the fitted line estimates 
the standard deviation (Nelson 1982; Cleveland 1993).  For the fitted line in  
Fig. 1.7, we can eyeball the intercept at about 0.6 and the slope at about 0.5.  
The actual mean and standard deviation are 0.62 and 0.47, respectively. 

3.7.2 Q-Q Plots for Other Distributions 
Although they are not as commonly used as Q-Q plots for the normal and lognormal 
distributions, you can easily create Q-Q plots for other distributions as well.   
Figure 1.9 in Sect. 1.11.5 shows a gamma Q-Q plot for the reference area TcCB 
data.  As in Fig. 1.7, the points tend to fall on the line, indicating that a gamma 
distribution may be a good model for these data as well. 

As another example, the guidance document Statistical Analysis of Ground-
Water Monitoring Data at RCRA Facilities:  Addendum to Interim Final Guidance 
(USEPA 1992c) contains a data set of benzene concentrations (ppb) from water 
samples collected over 6 months from six different background monitoring wells.  
These data are stored in the data frame EPA.92c.benzene1.df. 

> EPA.92c.benzene1.df 

   Benzene.orig Benzene Censored Month Well  
 1           <2       2        T     1    1 
 2           <2       2        T     2    1 
… 
35           10      10        F     5    6 
36           <2       2        T     6    6 

Out of the 36 observations, 33 are reported as “<2”, and the other three  
observations are 10, 12, and 15.  The example in the guidance document proposes 
to model these data as having come from a Poisson distribution, and sets each 
nondetect to 1 ppb (half the detection limit).  (Note:  this guidance document has 
been superseded by USEPA (2009), but we include this example here for illustrative 
purposes.)  Figures 3.3 and 3.4 show the Poisson Q-Q plots for these data, which 
indicate that the assumption of a Poisson distribution is questionable:  there are 
too many observations with the value 1 (the nondetects), and the detected  
observations are too large.  In Fig. 3.3 we indicate multiple observations that have 
the same (x, y) coordinates with the number of observations that have those  
coordinates.  In Fig. 3.4 we instead jitter all of the points. 

To create the Poisson Q-Q plot shown in Fig. 3.3, type these commands: 

> attach(EPA.92c.benzene1.df) 

> Benzene[Censored] <- 1 
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Fig. 3.3 Poisson probability plot for the benzene data 
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Fig. 3.4 Poisson probability plot for the benzene data with jittered points 
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> qqPlot(Benzene, dist = "pois", estimate.params = TRUE, 
duplicate.points.method = "number", add.line = TRUE, 
qq.line.type = "0-1", points.col = "blue", main = "") 

To create the Poisson Q-Q plot shown in Fig. 3.4, type these commands: 

> set.seed(721) 

> qqPlot(Benzene, dist = "pois", estimate.params = TRUE, 
duplicate.points.method = "jitter", add.line = TRUE, 
qq.line.type = "0-1", points.col = "blue", main = "") 

> detach("EPA.92c.benzene1.df") 

3.7.3 Using Q-Q Plots to Compare Two Data Sets 
Besides using Q-Q plots or probability plots to assess whether a set of data appear 
to come from a particular probability distribution, you can use a Q-Q plot to assess 
whether two sets of data appear to have the same parent distribution (i.e., the same 
shape but not necessarily the same location or scale).  If the distributions have the 
same shape (but not necessarily the same location or scale parameters), then the 
plot will fall roughly on a straight line.  If the distributions are exactly the same, 
then the plot will fall roughly on the straight line y = x. 

Figure 3.5 shows the Q-Q plot comparing the Cleanup and Reference areas for 
the log-transformed TcCB data, along with the 0–1 line.  It was created with these 
commands: 

> qqPlot(log(TcCB[Area == "Reference"]),  
log(TcCB[Area == "Cleanup"]), plot.pos.con = 0.375, 
equal.axes = TRUE, add.line = TRUE,  
qq.line.type = "0-1", points.col = "blue",  
xlab = paste("Quantiles of log [ TcCB (ppb) ]", 
  "for Reference Area"),  
ylab = paste("Quantiles of log [ TcCB (ppb) ]", 
  "for Cleanup Area"), main = "") 

In this figure you can see the points do not tend to fall on the 0–1 line, but instead 
tend to fall along two different lines, both with a steeper slope than 1.  Q-Q plots 
that exhibit this kind of pattern indicate that one of the samples (the Cleanup area 
data in this case) probably comes from a “mixture” distribution:  some of the  
observations come from a distribution similar in shape and scale to the Reference 
area distribution, and some of the observations come from a distribution that is 
shifted to the right and more spread out relative to the Reference area distribution 
because of residual contamination. 
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Fig. 3.5 Q-Q plot comparing log-transformed Cleanup and Reference area TcCB data 

3.7.4 Building an Internal Gestalt for Q-Q Plots 
Probability plots or Q-Q plots are a graphical, subjective way of assessing the 
goodness-of-fit of a data set to a specified theoretical distribution.  In order to be 
able to assess the goodness-of-fit, you need to have an internal baseline image  
(a gestalt) of what a “typical” Q-Q plot looks like when in fact the data come from 
the specified distribution.  You can use ENVSTATS to produce numerous Q-Q plots 
to build up such an internal gestalt (see the help file for qqPlotGestalt for 
more information). 

Figure 3.6 shows a set of four typical normal Q-Q plots based on a sample size 
of n = 10.  It was created with these commands: 

> set.seed(426) 

> qqPlotGestalt(num.pages = 1, add.line = TRUE,  
points.col = "blue") 

Note that with such a small number of observations, there can be a bit of spread 
about the fitted regression line.  Figure 3.7 shows a set of four typical Tukey 
mean-difference Q-Q plots based on a sample size of n = 10. 

> qqPlotGestalt(num.pages = 1, add.line = TRUE,  
plot.type = "Tukey", estimate.params = TRUE,  
points.col = "blue") 
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Fig. 3.6 Four typical normal Q-Q plots 

Fig. 3.7 Four typical Tukey mean-difference normal Q-Q plots 
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3.8 Box-Cox Data Transformations and Q-Q Plots 
Two common assumptions for several standard parametric hypothesis tests are: 

1. The observations come from a normal distribution. 
2. If several groups are involved, the variances are the same among all of 

the groups. 

A standard linear regression model makes the above assumptions, and also  
assumes a linear relationship between the response variable and the predictor vari-
able or variables. 

Often, especially with environmental data, the above assumptions do not hold 
because the original data are skewed and/or they follow a distribution that is not 
really shaped like a normal distribution.  It is sometimes possible, however, to 
transform the original data so that the transformed observations in fact come from 
a normal distribution or close to a normal distribution.  The transformation may 
also induce homogeneity of variance and a linear relationship between the  
response and predictor variable(s) (if this is relevant). 

Sometimes, theoretical considerations indicate an appropriate transformation.  
For example, count data often follow a Poisson distribution, and it can be shown 
that taking the square root of observations from a Poisson distribution tends to 
make these data look more bell-shaped (Johnson et al. 1992; Johnson and Wichern 
2007; Zar 2010).  A common example in the environmental field is that chemical 
concentration data often appear to come from a lognormal distribution or some 
other positively skewed distribution.  In this case, taking the logarithm of the  
observations often appears to yield normally distributed data.  Usually, a data 
transformation is chosen based on knowledge of the process generating the data, 
as well as graphical tools such as quantile-quantile plots and histograms. 

Although data analysts knew about using data transformations for several 
years, Box and Cox (1964) presented a formalized method for deciding on a data 
transformation.  Given a random variable X from some distribution with only positive 
values, the Box-Cox family of power transformations is defined as: 

 

( )

( )

1
, 0

log , 1
=

=

X

Y
X

 (3.1) 

where  (lambda) denotes the power of the transformation and Y is assumed to 
come from a normal distribution.  This transformation is continuous in .  Note 
that this transformation also preserves ordering.  That is, if X1 < X2 then Y1 < Y2. 

Box and Cox (1964) proposed choosing the appropriate value of  based on 
maximizing the likelihood function.  Note that for non-zero values of , instead of 
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using the formula of Box and Cox in Eq. 3.1, you may simply use the power trans-
formation 

 =Y X  (3.2) 

since these two equations differ only by a scale difference and origin shift, and the 
essential character of the transformed distribution remains unchanged (Draper and 
Smith 1998). 

The value  = 1 corresponds to no transformation.  Values of  less than 1 
shrink large values of X, and are therefore useful for transforming positively 
skewed (right-skewed) data.  Values of  larger than 1 inflate large values of X, 
and are therefore useful for transforming negatively skewed (left-skewed) data 
(Helsel and Hirsch 1992; Johnson and Wichern 2007).  Commonly used values of 

 include 0 (log transformation), 0.5 (square-root transformation), 1 (reciprocal), 
and 0.5 (reciprocal root). 

Transformations are not “tricks” used by the data analyst to hide what is going 
on, but rather useful tools for understanding and dealing with data (Berthouex and 
Brown 2002).  Hoaglin (1988) discusses “hidden” transformations that are used 
every day, such as the pH scale for measuring acidity.  It is often recommend that 
when dealing with several similar data sets, it is best to find a common transfor-
mation that works reasonably well for all the data sets, rather than using slightly 
different transformations for each data set (Helsel and Hirsch 1992; Shumway et 
al. 1989). 

One problem with data transformations is that translating results on the trans-
formed scale back to the original scale is not always straightforward.  Estimating 
quantities such as means, variances, and confidence limits in the transformed scale 
and then transforming them back to the original scale usually leads to biased and 
inconsistent estimates (Gilbert 1987; van Belle et al. 2004).  For example, 
exponentiating the confidence limits for a mean based on log-transformed data 
does not yield a confidence interval for the mean on the original scale.  Instead, 
this yields a confidence interval for the median.  It should be noted, however, that 
quantiles (percentiles) and rank-based procedures are invariant to monotonic 
transformations (Helsel and Hirsch 1992). 

You can use ENVSTATS to determine an “optimal” Box-Cox transformation, 
based on one of three possible criteria: 

• Probability Plot Correlation Coefficient (PPCC) 
• Shapiro-Wilk Goodness-of-Fit Test Statistic (W) 
• Log-Likelihood Function 

You can also compute the value of the selected criterion for a range of values of 
the transform power . 

Figure 3.8 displays a plot of the probability plot correlation coefficient versus 
various values of the transform power  for the Reference area TcCB data.  For 
this data set, the PPCC reaches its maximum at about  = 0, which corresponds to 
a log transformation.  Besides plotting the objective function versus , you can also 
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generate Q-Q plots and Tukey mean-difference Q-Q plots for each of the values  
of . 
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Fig. 3.8 Probability plot correlation coefficient versus Box-Cox transform power ( ) for the 
Reference area TcCB data 

To create Figure 3.8, type these commands: 

> boxcox.list <- boxcox(TcCB[Area == "Reference"]) 

> plot(boxcox.list, main = "") 

To produce the nine Q-Q plots associated with each of the values of , type: 

> plot(boxcox.list, plot.type = "Q-Q") 

and to produce the nine Tukey mean-difference Q-Q plots type: 

> plot(boxcox.list, plot.type = "Tukey") 

To create all of the plots, you can type: 

> plot(boxcox.list, plot.type = "All") 

To print the results, type 

> boxcox.list 
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Results of Box-Cox Transformation 
--------------------------------- 
 
Objective Name:                  PPCC 
 
Data:                            TcCB[Area == "Reference"] 
 
Sample Size:                     47 
 
 lambda      PPCC 
   -2.0 0.9008498 
   -1.5 0.9366847 
   -1.0 0.9669707 
   -0.5 0.9871430 
    0.0 0.9932857 
    0.5 0.9839249 
    1.0 0.9608911 
    1.5 0.9284576 
    2.0 0.8914832 

3.9 Summary 
• Summary or descriptive statistics can be classified by what they measure 

(location, spread, skew, kurtosis, etc.) and also how they behave when 
unusually extreme observations are present (sensitive versus robust). 

• Because environmental data usually involve measures of chemical con-
centrations, and concentrations cannot fall below 0, environmental data 
often tend to be positively skewed. 

• Graphical displays are usually far superior to summary statistics for con-
veying information in a data set. 

• For conveying the distribution of univariate data, use strip plots, histo-
grams, density plots (also called empirical probability distribution func-
tion plots), boxplots, and quantile plots (also called empirical cumulative 
distribution function plots). 

• To compare two data sets or to compare a data set to a theoretical proba-
bility distribution, use quantile-quantile (Q-Q) plots (also called probabil-
ity plots), and Tukey mean-difference Q-Q plots. 

• You can use Box-Cox transformations along with Q-Q plots to determine 
a transformation that may satisfy the assumption of normality if this as-
sumption is necessary for a hypothesis test or confidence interval. 

• You can use the ENVSTATS functions listed in Table 3.1 to create sum-
mary statistics, strip charts with confidence intervals, empirical pdf plots, 
empirical cdf plots, Q-Q plots, and determine “optimal” Box-Cox trans-
formations. 



S.P. Millard, EnvStats: An R Package for Environmental Statistics,  79 
DOI 10.1007/978-1-4614-8456-1_4, © Springer Science+Business Media New York 2013 

Chapter 4 

Probability Distributions 

4.1 Introduction 
As we stated in Chap. 2, a population is defined as the entire collection of 
measurements about which we want to make a statement, such as all possible 
measurements of dissolved oxygen in a specific section of a stream within a 
certain time period.  Probability distributions are idealized mathematical models 
that are used to model the variability inherent in a population.  Certain probability 
distributions come up again and again in environmental statistics.  This chapter 
discusses the functions available in ENVSTATS for plotting probability distributions, 
computing quantities associated with these distributions, and generating random 
numbers from these distributions.  See Millard et al. (2014) for a more in-depth 
discussion of probability distributions. 

Table 4.1 lists the probability distributions available in R and ENVSTATS (see 
the ENVSTATS help file Probability Distributions) and Fig. 4.1 displays examples 
of the probability density functions for these probability distributions.  Most of 
these distributions are already available in R, but many have been added in 
ENVSTATS.  The help file for Distribution.df contains more extensive tables 
that include the distribution name, abbreviation, type (continuous, discrete, finite 
discrete, mixed), range (i.e., support), parameters, default values for the para-
meters, parameter ranges, and estimation methods available for the parameters. 

Distribution name Abbreviation Parameter(s) 
Beta beta shape1, shape2, ncp 

Binomial binom size, prob

Cauchy cauchy location, scale

Chi* chi df

Chi-square chisq df, ncp

Empirical* emp

Exponential exp rate

Extreme value* evd location, scale

F f df1, df2, ncp

Gamma gamma shape, scale or rate 
Gamma (alternative  
parameterization)* 

gammaAlt mean, cv

Table 4.1 Distribution abbreviations and parameters (*part of EnvStats) 
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Distribution name Abbreviation Parameter(s) 
Generalized  
extreme value* 

gevd location, scale, shape 

Geometric geom prob

Hypergeometric hyper m, n, k

Logistic logis location, scale

Lognormal lnorm meanlog, sdlog

Lognormal (alternative  
parameterization)* 

lnormAlt mean, cv

Lognormal mixture* lnormMix meanlog1, sdlog1,  
meanlog2, sdlog2, p.mix 

Lognormal mixture 
(alternative  
parameterization)* 

lnormMixAlt mean1, sd1, 
mean2, sd2,  
cv 

3-Parameter  
lognormal* 

lnorm3 meanlog, sdlog, 
threshold 

Truncated lognormal* lnormTrunc meanlog, sdlog, 
min, max 

Truncated lognormal 
(alternative  
parameterization)* 

lnormAltTrunc mean, cv, min, max 

Negative binomial nbinom size, prob

Normal norm mean, sd

Normal mixture* normMix mean1, sd1, 
mean2, sd2, p.mix 

Truncated normal* normTrunc mean, sd, min, max 

Pareto* pareto location, shape

Poisson pois lambda

Student’s t t df, ncp

Triangular* tri min, max, mode

Uniform unif min, max

Weibull weibull shape, scale

Wilcoxon rank sum wilcox m, n

Zero-modified  
lognormal (delta)* 

zmlnorm meanlog, sdlog, p.zero 

Zero-Modified  
Lognormal (delta) 
(alternative  
parameterization)* 

zmlnormAlt mean, cv, p.zero

Zero-modified  
normal* 

zmnorm mean, sd, p.zero

Table 4.1 (continued) EnvStats) . Distribution abbreviations and parameters (*part of 
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Fig. 4.1 Probability distributions in R and ENVSTATS 
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Fig. 4.1 (continued). Probability distributions in R and ENVSTATS 
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Fig. 4.1 (continued). Probability distributions in R and ENVSTATS 
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Fig. 4.1 (continued). Probability distributions in R and ENVSTATS 
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Fig. 4.1 (continued). Probability distributions in R and ENVSTATS 
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Fig. 4.1 (continued). Probability distributions in R and ENVSTATS 
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Fig. 4.1 (continued). Probability distributions in R and ENVSTATS 

For each of these distributions, there are functions for computing the 
probability density function (pdf), the cumulative distribution function (cdf), 
quantiles, and random numbers.  The form of the names of the functions are 
dabb, pabb, qabb, and rabb, where abb denotes the abbreviation of the 
distribution name (see column 2 of Table 4.1).  For example, the functions 
dnorm, pnorm, qnorm, and rnorm compute the pdf, cdf, quantiles, and random 
numbers for the normal distribution. 

Table 4.2 lists the functions available in R and ENVSTATS for plotting 
probability distributions, computing quantities associated with these distributions, 
and generating random numbers from these distributions. 
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Function(s) Output 
dabb, pabb, qabb Probability density, cumulative distribution function, 

or quantiles for distribution with abbreviation abb 
rabb 
simulateVector* 

Random numbers from distribution with abbreviation 
abb 

simulateMvMatrix* Multivariate random numbers from various 
distributions based on user-specified rank correlation 
matrix 

pdfPlot* 
epdfPlot* 
cdfPlot* 

Plot of probability density function or cumulative 
distribution function 

Table 4.2 Functions for probability distributions and random numbers (*part of ENVSTATS) 

4.2 Probability Density Function (PDF) 
A probability density function (pdf) is a mathematical formula that describes the 
relative frequency of a random variable.  Sometimes the picture of this formula is 
called the pdf.  If a random variable is discrete, its probability density function  
is sometimes called a probability mass function, since it shows the “mass” of 
probability at each possible value of the random variable. 

4.2.1 Probability Density Function for Lognormal Distribution 

 
Fig. 4.2 Relative frequency (density) histogram of the Reference area TcCB data 
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Figure 4.2 shows the relative frequency (density) histogram for the Reference area 
TcCB data.  It was created with these commands: 

> with(EPA.94b.tccb.df ,  
hist(TcCB[Area == "Reference"], freq = FALSE,  
xlim = c(0, 2), xlab = "TcCB (ppb)",  
col = "cyan", main = "")) 

For each class (bar) of this histogram, the proportion of observations falling in that 
class is equal to the area of the bar; that is, it is the width of the bar times the 
height of the bar.  If we could take many, many more samples and create relative 
frequency histograms with narrower and narrower classes, we might end up with a 
picture that looks like Fig. 4.3 which shows the probability density function of a 
lognormal random variable with a mean of 0.6 and a coefficient of variation (CV) 
of 0.5.  For a continuous random variable, a probability distribution can be 
thought of as what a density (relative frequency) histogram of outcomes would 
look like if you could keep taking more and more samples and making the 
histogram bars narrower and narrower.  Figure 4.3 was created with this 
command: 

> pdfPlot(distribution = "lnormAlt",   
param.list = list(mean = 0.6, cv = 0.5),  
curve.fill.col = "cyan", main = "") 

 
Fig. 4.3 Lognormal probability density function with a mean of 0.6 and a CV of 0.5 
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The probability density function for the lognormal distribution shown in Fig. 4.3 is 
given by: 

 ( )
( ) 2

2
1 log

21 , 0
2

x
f x e x

x
= >  (4.1) 

where 

 

( )

2

2

log
1

log 1

0.6

0.5

=
+

= +

=

=

 (4.2) 

and  and  denote the mean and coefficient of variation of the distribution, and  
and  denote the mean and standard deviation of the log-transformed random 
variable.  The values of the pdf evaluated at 0, 0.5, 1, 1.5, and 2, to three decimal 
places, are given by: 

> round(dlnormAlt(seq(0, 2, by = 0.5), mean=0.6, cv=0.5), 
digits = 3) 

[1] 0.000 1.670 0.355 0.053 0.009 

4.2.2 Probability Density Function for a Gamma Distribution 
As stated in Chap. 1, some EPA guidance documents (e.g., Singh et al. 2002; 
Singh et al. 2010a, b) discourage using the assumption of a lognormal distribution 
and recommend instead using a gamma distribution if it appears to fit the data.  
Figure 4.4 shows the probability density function of a gamma random variable 
with a mean of 0.6 and a coefficient of variation of 0.5 and was created with this 
command: 

> pdfPlot(distribution = "gammaAlt",   
param.list = list(mean = 0.6, cv = 0.5), main = "") 

The probability density function for the gamma distribution shown in Fig. 4.4 is 
given by: 
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where k and  denote the shape and scale parameters, () denotes the gamma 
function, and  

 

1

0.6
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k
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=

=

 (4.4) 

where  and  denote the mean and coefficient of variation of the distribution.  
The values of the pdf evaluated at 0, 0.5, 1, 1.5, and 2, to three decimal places, are 
given by: 

> round(dgammaAlt(seq(0, 2, by = 0.5), mean=0.6, cv=0.5), 
digits = 3) 

[1] 0.000 1.468 0.419 0.050 0.004 

 
Fig. 4.4 Gamma probability density function with a mean of 0.6 and a CV of 0.5 
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4.3 Cumulative Distribution Function (CDF) 
The cumulative distribution function (cdf) of a random variable X, sometimes 
called simply the distribution function, is the function F such that 

 ( ) ( )PrF x X x=  (4.5) 

for all values of x.  That is, F(x) is the probability that the random variable X is 
less than or equal to some number x.  The cdf can also be defined or computed in 
terms of the probability density function (pdf) f as 

 ( ) ( ) ( )Pr
x

F x X x f t dt= =  (4.6) 

4.3.1 Cumulative Distribution Function for Lognormal 
Distribution 

Figure 4.5 displays the cumulative distribution function for the lognormal random 
variable whose pdf was shown in Fig. 4.3.  It was created with this command: 

> cdfPlot(distribution = "lnormAlt",  
param.list = list(mean = 0.6, cv = 0.5), main = "") 

 
Fig. 4.5 Lognormal cumulative distribution function with a mean of 0.6 and a CV of 0.5 
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The values of the cdf evaluated at 0, 0.5, 1, 1.5, and 2, to two decimal places, are 
given by: 

> round(plnormAlt(seq(0, 2, by = 0.5), mean=0.6, cv=0.5), 
digits = 2) 

[1] 0.00 0.44 0.91 0.99 1.00 

4.4 Quantiles and Percentiles 
Loosely speaking, the pth quantile of a population is the (a) number such that a 
fraction p of the population is less than or equal to this number.  The pth quantile 
is the same as the 100pth percentile; for example, the 0.5 quantile is the same as 
the 50th percentile. 

Here is a more technical definition of a quantile.  If X is a random variable 
with some specified distribution, the pth quantile of the distribution of X, denoted 
xp, is a (the) number that satisfies: 

 ( ) ( )Pr Prp pX x p X x<  (4.7) 

where p is a number between 0 and 1 (inclusive).  If there is more than one 
number that satisfies the above condition, the pth quantile of X is often taken to be 
the average of the smallest and largest numbers that satisfy the condition.  The R 
functions for computing quantiles, however, return the smallest number that 
satisfies the above condition. 

If X is a continuous random variable, the pth quantile of X is simply defined as 
the value such that the cdf of that value is equal to p: 

 ( ) ( )Pr p pX x F x p= =  (4.8) 

The 100pth percentile is another name for the pth quantile.  That is, the 100pth
p % of the distribution lies below this number. 

4.4.1 Quantiles for Lognormal Distribution 
A plot of the cumulative distribution function makes it easy to visually pick out 
important quantiles, such as the median (50th percentile) or the 95th percentile.  
Looking at the cdf of the lognormal distribution shown in Fig. 4.5, the median 
(50th percentile) is about 0.5 and the 95th percentile is about 1.1.  To compute the 
50th and 95th percentiles of this lognormal distribution, type this command: 

> qlnormAlt(c(0.5, 0.95), mean = 0.6, cv = 0.5) 

[1] 0.5366563 1.1671907 

percentile is the (a) number such that 100
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4.5 Generating Random Numbers 
With the advance of modern computers, experiments and simulations that just a 
couple of decades ago would have required an enormous amount of time to 
complete using large-scale computers can now be easily carried out on personal 
computers.  Simulation is now an important tool in environmental statistics and all 
fields of statistics in general. 

For all of the distributions shown in Fig. 4.1, you can generate random 
numbers (actually, pseudo-random numbers) from these distributions using R and 
ENVSTATS.  Chapter 9 discusses how random numbers are generated in R and 
ENVSTATS, and how to use simulation to do environmental risk assessment. 

4.5.1 Generating Random Numbers from a Univariate 
Distribution 

To generate five random numbers from the lognormal distribution shown in Figs 
4.3 and 4.5, type these commands: 

> set.seed(23) 

> rlnormAlt(5, mean = 0.6, cv = 0.5) 

[1] 0.5879416 0.4370390 0.8261428 1.2520279 0.8593145 

Note that you do not have to call the function set.seed before you generate 
random numbers.  However, if you leave out the call to set.seed, the random 
numbers you generate will not be the same as the ones shown here. 

4.5.2 Generating Multivariate Normal Random Numbers 
In R you can generate random observations from a multivariate normal 
distribution using the function mvrnorm, which is part of the MASS package.  
Consider a bivariate normal distribution with the following parameters: 

 

( ) ( )

( )

1 2

1 2

, 5, 10

, (1, 3)

1 0.5
0.5 1

= =

= =

=

 (4.9) 

where  denotes the vector of means,  denotes the vector of standard deviations, 
and  denotes the correlation matrix.  The function mvrnorm requires you to 
supply the covariance matrix, , and the relationship between the covariance 
matrix, the standard deviations, and correlation matrix is given by: 
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 1 1

2 2

0 0

0 0
=  (4.10) 

To generate three random observations from this bivariate distribution, type these 
commands: 

> library(MASS) 

> set.seed(47) 

> sd.vec <- c(1, 3) 

> cor.mat <- matrix(c(1, 0.5, 0.5, 1), ncol = 2) 

> cor.mat 

     [,1] [,2] 
[1,]  1.0  0.5 
[2,]  0.5  1.0 

> cov.mat <- diag(sd.vec) %*% cor.mat %*% diag(sd.vec) 

> cov.mat 

     [,1] [,2] 
[1,]  1.0  1.5 
[2,]  1.5  9.0 

> mvrnorm(n = 3, mu = c(5, 10), Sigma = cov.mat) 

         [,1]     [,2] 
[1,] 5.847172 16.01927 
[2,] 5.477687 12.11412 
[3,] 4.189215 10.72079 

4.5.3 Generating Multivariate Observations Based on Rank 
Correlations 

In ENVSTATS, you can use the function simulateMvMatrix to generate 
multivariate correlated observations where each variable has an arbitrary 
distribution.  For example, you can generate a multivariate observation (X1, X2) 
where X1 comes from a normal distribution and X2 comes from a lognormal 
distribution.  As an example, suppose X1 follows a normal distribution with mean 
5 and standard deviation 1, X2 follows a lognormal distribution with mean 10 and 
CV 2, and we desire a rank correlation specified by  in Eq. 4.9.  Here is a 
command to generate three random observations from this bivariate distribution: 
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> simulateMvMatrix(n = 3,  
distributions = c(X1 = "norm", X2 = "lnormAlt"), 
param.list = list(X1 = list(mean = 5, sd = 1), 
                  X2 = list(mean = 10, cv = 2)), 
cor.mat = matrix(c(1, 0.5, 0.5, 1), ncol=2), seed = 105) 

           X1       X2 
[1,] 5.117840 1.595663 
[2,] 5.404491 7.100144 
[3,] 6.294479 6.055441 

4.6 Summary 
• Figure 4.1 displays examples of the probability density functions for the 

probability distributions available in R and ENVSTATS.  Many of these 
distributions are already available in R, and some have been added in 
ENVSTATS. 

• Table 4.1 lists the probability distributions available in R and ENVSTATS, 
along with their abbreviations and associated parameters.  For each of 
these distributions, you can compute the probability density function 
(pdf), the cumulative distribution function (cdf), quantiles, and random 
numbers.  You can also plot the pdf and/or cdf. 

• Table 4.2 lists the functions available in ENVSTATS for plotting 
probability distributions, computing quantities associated with these 
distributions, and generating random numbers from these distributions. 
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Chapter 5 

Estimating Distribution Parameters 
and Quantiles 

5.1 Introduction 
In Chap. 2 we discussed the ideas of a population and a sample.  Chapter 4  
described probability distributions, which are used to model populations.  Based 
on using the graphical tools discussed in Chap. 3 to look at your data, and based 
on your knowledge of the mechanism producing the data, you can model the data 
from your sampling program as having come from a particular kind of probability 
distribution.  Once you decide on what probability distribution to use (if any), you 
usually need to estimate the parameters associated with that distribution.  For  
example, you may need to compare the mean or 95th percentile of the concentration 
of a chemical in soil, groundwater, surface water, or air with some fixed standard.  
This chapter discusses the functions available in ENVSTATS for estimating distribu-
tion parameters and quantiles for various probability distributions, as well as  
constructing confidence intervals (CIs) for these quantities.  See Millard et al. 
(2014) for a more in-depth discussion of this topic. 

5.2 Estimating Distribution Parameters 
Table 4.1 lists the probability distributions available in R and ENVSTATS.  For most 
of these distributions, there are EnvStats functions for estimating the parameters 
of these distributions (see the EnvStats help file Estimating Distribution Parameters 
for a complete list).  The form of the names of these functions is eabb, where 
abb denotes the abbreviation of the distribution name (see column 2 of Table 
4.1).  For example, the function enorm estimates the mean and standard deviation 
based on a set of observations assumed to come from a normal distribution, and 
also optionally allows you to construct a confidence interval for the mean or  
variance. 

5.2.1 Estimating Parameters of a Normal Distribution 
Recall that in Chap. 1 we saw that the Reference area TcCB data appeared to 
come from a lognormal distribution.  Here is the estimated mean and standard  
deviation of the log-transformed data, along with a 95 % confidence interval for 
the mean: 

P.
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> attach(EPA.94b.tccb.df) 

> enorm.list <- enorm(log(TcCB[Area == "Reference"]),  
ci = TRUE)) 

> enorm.list 

Results of Distribution Parameter Estimation 
-------------------------------------------- 
 
Assumed Distribution:        Normal 
 
Estimated Parameter(s):      mean = -0.6195712 
                             sd   =  0.4679530 
 
Estimation Method:           mvue 
 
Data:                        log(TcCB[Area == "Reference"]) 
 
Sample Size:                 47 
 
Confidence Interval for:     mean 
 
Confidence Interval Method:  Exact 
 
Confidence Interval Type:    two-sided 
 
Confidence Level:            95% 
 
Confidence Interval:         LCL = -0.7569673 
                             UCL = -0.4821751 

Note that calling the function enorm with the log-transformed data gives the 
same results as calling the function elnorm with the untransformed data  
(see Sect. 1.11.6).  Figure 5.1 shows a density histogram of the log-transformed 
Reference area TcCB data, along with the fitted normal distribution based on these 
estimates.  It was create with these commands: 

> hist(log(TcCB[Area == "Reference"]), freq = FALSE,  
xlim = c(-2, 1), xlab = "log [ TcCB (ppb) ]",  
ylim = c(0, 1), col = "cyan", main = "") 

> params <- enorm.list$parameters 

> pdfPlot(dist = "norm", param.list = as.list(params),  
add = TRUE) 
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Fig. 5.1 Histogram of log-transformed Reference area TcCB data with fitted normal  
distribution 

5.2.2 Estimating Parameters of a Lognormal Distribution 
Rather than estimate parameters based on the log-transformed TcCB Reference 
area data, we can estimate the parameters of the lognormal distribution based on 
the original scale.  For the untransformed Reference area TcCB data, the estimated 
mean is 0.6 ppb and the estimated coefficient of variation is 0.49.  Figure 5.2 
shows a density histogram of the Reference area TcCB data, along with the fitted 
lognormal distribution based on these estimates.  The two-sided 95 % confidence 
interval for the mean based on Land’s method is [0.52, 0.70] ppb. 

> elnormAlt.list <- elnormAlt(TcCB[Area == "Reference"],  
ci = TRUE) 

> elnormAlt.list 

Results of Distribution Parameter Estimation 
-------------------------------------------- 
 
Assumed Distribution:            Lognormal 
 
Estimated Parameter(s):          mean = 0.5989072 
                                 cv   = 0.4899539 
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Estimation Method:               mvue 
 
Data:                            TcCB[Area == "Reference"] 
 
Sample Size:                     47 
 
Confidence Interval for:         mean 
 
Confidence Interval Method:      Land 
 
Confidence Interval Type:        two-sided 
 
Confidence Level:                95% 
 
Confidence Interval:             LCL = 0.5243787 
                                 UCL = 0.7016992 
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Fig. 5.2 Histogram of Reference area TcCB data with fitted lognormal distribution 

To create Fig. 5.2, type these commands: 

> hist(TcCB[Area == "Reference"], freq = FALSE,  
xlim = c(0, 2), xlab = "TcCB (ppb)", ylim = c(0, 2),  
col = "cyan", main = "") 
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> params <- elnormAlt.list$parameters 

> pdfPlot(dist = "lnormAlt", param.list = as.list(params), 
add = TRUE) 

By default, the function elnormAlt uses the method of Land (1971, 1975) to 
compute a confidence interval for the mean of a lognormal distribution.  Although 
Land’s method is exact (i.e., the confidence level is exact and does not depend on 
asymptotic theory), it is computationally intensive.  Zou et al. (2009) present a 
simpler alternative method that appears to perform quite well even for small  
sample sizes.  They give an example using data on ambient air lead levels ( g/m3) 
collected by the National Institute of Occupation Safety and Health (NIOSH) in 
1989 that appear in Krishnamoorthy et al. (2006). 

> sort(NIOSH.89.air.lead.vec) 

[1]    6    7    8   15   29   48   61   80  110  120  200 
[12]  350  380 1000 1400 

> round(elnormAlt(NIOSH.89.air.lead.vec,  
ci = TRUE)$interval$limits) 

LCL  UCL  
 117 4038 

> round(elnormAlt(NIOSH.89.air.lead.vec, ci = TRUE,  
ci.method = "zou")$interval$limits) 

LCL  UCL  
 112 3873 

Neither of these methods may prove satisfactory for small sample sizes because 
the upper confidence limit can be much larger (e.g., an order of magnitude larger) 
than the largest observation.  Some authors (e.g., USEPA 1997d) erroneously 
claim that using the bootstrap can overcome this problem.  In fact, confidence  
intervals for the mean of a lognormal distribution based on the bootstrap fail to 
provide adequate coverage for small sample sizes (Millard et al. 2014). 

5.2.3 Estimating Parameters of a Gamma Distribution 
One way to avoid the problem of potentially large confidence limits associated 
with an assumed lognormal distribution is to not assume a lognormal distribution 
at all, but instead assume a gamma distribution if it makes sense, as recommended 
by the EPA guidance documents Singh et al. (2002) and Singh et al. (2010a, b).  In 
Chap. 1 we saw that the gamma distribution appeared to be an adequate model for 
the Reference area TcCB data (see Figs. 1.9 and 1.11).  Using the egamma and 
egammaAlt functions (Sect. 1.11.6), the estimated shape and scale parameters 
are 4.9 and 0.1, respectively, the estimated mean and CV are 0.6 and 0.45, respec-
tively, and the 95 % confidence interval for the mean is [0.52, 0.68] ppb, compared  
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with [0.52, 0.70] based on the assumption of a lognormal distribution.  By default, 
the confidence interval for the mean is based on the method of Kulkarni and 
Powar (2010), which involves approximating the gamma distribution with a  
normal distribution.  See Millard et al. (2014) or the help files for details. 

5.2.4 Estimating the Parameter of a Binomial Distribution 
The guidance document Statistical Analysis of Ground-Water Monitoring Data at 
RCRA Facilities:  Addendum to Interim Final Guidance (USEPA 1992c) contains 
observations on benzene concentrations (ppb) in groundwater from six back-
ground wells sampled monthly for 6 months.  The data are stored in the data frame 
EPA.92c.benzene1.df in ENVSTATS.  Nondetect values are reported as “<2” 
and of the 36 values, 33 are nondetects.  Section 2.8.2 in Chap. 2 showed how to 
use the EnvStats function ebinom to estimate the probability of observing a 
nondetect value at any of the six wells as about 92 %, with the two-sided 95 % 
confidence interval for the binomial proportion based on using the normal score 
approximation with continuity correction as [76 %, 98 %]. 

5.3 Estimating Distribution Quantiles 
We defined the pth quantile or the 100pth percentile of a distribution in Sect. 4.4 
of Chap. 4.  Quantiles or percentiles are sometimes used in environmental standards 
and regulations (e.g., Berthouex and Brown 2002).  For example, in order to  
determine compliance, you may be required to estimate an extreme percentile 
(e.g., the 95th percentile) for the “background level” distribution, and then com-
pare observations at compliance wells or remediated areas to this upper percentile 
(or an upper confidence limit for this percentile).  In the context of soil cleanup, 
USEPA (1994b) has called this the “Hot-Measurement Comparison.”  (There are 
some major problems with this technique that are discussed in Millard et al. 2014.) 

As another example, when monitoring groundwater around a RCRA landfill, 
the site may be in compliance/assessment or corrective action monitoring for a 
particular chemical constituent, where data are compared to a groundwater protec-
tion standard (GWPS).  “In compliance/assessment, the comparison is made to  
determine whether groundwater concentrations have increased above the compli-
ance standard.  In corrective action, the test determines whether concentrations 
have decreased below a clean-up criterion or compliance level.  In compliance/  
assessment monitoring, the lower confidence limit [LCL] is of primary interest, 
while the upper confidence limit [UCL] is most important in corrective action,” 
(USEPA 2009, pp. 21–1).  The fixed compliance limit may be a maximum  
concentration limit (MCL) or an alternate concentration limit (ACL).  Most MCLs 
and ACLs appear to represent long-term average levels, but sometimes they may 
represent a limit that should be exceeded only a small fraction of the time, for  
example, the 95th percentile of the distribution.  In this case you need to com- 
pare the 95th percentile of the distribution of the chemical’s concentration in the  
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groundwater with the GWPS.  Under compliance/assessment monitoring, if the 
lower confidence limit for the specified percentile is greater than the GWPS, this 
indicates the facility is out of compliance for that constituent.  Under corrective 
action monitoring, if the upper confidence limit for the specified percentile is less 
than the GWPS, this indicates the facility appears to have cleaned up the contami-
nation and should be able to return to compliance/assessment monitoring. 

In EnvStats, functions for estimating quantiles have names of the form 
eqabb, where abb denotes the abbreviation of the distribution name (see column 
2 of Table 4.1).  Some of these functions let you create confidence intervals for 
quantiles as well.  You can also estimate quantiles and create confidence intervals 
for them nonparametrically using the function eqnpar.  See the EnvStats help 
file Estimating Distribution Quantiles for a complete list of functions. 

5.3.1 Estimating Quantiles of a Normal Distribution 
The guidance document Statistical Analysis of Groundwater Monitoring Data at 
RCRA Facilities:  Unified Guidance (USEPA 2009) contains an example on page 
21–13 where aldicarb concentrations (ppb) at three compliance wells (four monthly 
samples at each well) are to be compared against an MCL of 30 ppb.  The MCL 
should not be exceeded more than 5 % of the time.  The data for this example are 
stored in EPA.09.Ex.21.1.aldicarb.df. 

> EPA.09.Ex.21.1.aldicarb.df 

   Month   Well Aldicarb.ppb 
1      1 Well.1         19.9 
2      2 Well.1         29.6 
3      3 Well.1         18.7 
4      4 Well.1         24.2 
5      1 Well.2         23.7 
6      2 Well.2         21.9 
7      3 Well.2         26.9 
8      4 Well.2         26.1 
9      1 Well.3          5.6 
10     2 Well.3          3.3 
11     3 Well.3          2.3 
12     4 Well.3          6.9 

First we assume the facility is in compliance/assessment monitoring, so we are  
instructed to compute a one-sided lower 99 % confidence limit for the 95th per-
centile for each well and compare that to the GWPS.  Here are the results for Well 1: 

> attach(EPA.09.Ex.21.1.aldicarb.df) 

> eqnorm(Aldicarb.ppb[Well == "Well.1"], p = 0.95, ci = TRUE, 
ci.type = "lower", conf.level = 0.99) 
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Results of Distribution Parameter Estimation 
-------------------------------------------- 
 
Assumed Distribution:          Normal 
 
Estimated Parameter(s):        mean = 23.10000 
                               sd   =  4.93491 
 
Estimation Method:             mvue 
 
Estimated Quantile(s):         95'th %ile = 31.21720 
 
Quantile Estimation Method:    qmle 
 
Data:                          Aldicarb.ppb[Well == "Well.1"] 
 
Sample Size:                   4 
 
Confidence Interval for:       95'th %ile 
 
Confidence Interval Method:    Exact 
 
Confidence Interval Type:      lower 
 
Confidence Level:              99% 
 
Confidence Interval:           LCL = 25.28550 
                               UCL =      Inf 

To compute the LCL for all three wells at once, type this command: 

> sapply(split(Aldicarb.ppb, Well), function(x) { 
eqnorm(x, p = 0.95, ci = TRUE, ci.type = "lower", 
conf.level = 0.99)$interval$limits["LCL"]}) 

Well.1.LCL Well.2.LCL Well.3.LCL  
  25.28550   25.66086    5.45563 

Since none of the LCLs is above 30 ppb, no corrective action is needed.  On the 
other hand, if we assume the site is in corrective action monitoring, then we need 
to compute the one-sided 99 % upper confidence limit for the 95th percentile and 
compare that to the MCL: 

> sapply(split(Aldicarb.ppb, Well), function(x) { 
eqnorm(x, p = 0.95, ci = TRUE, ci.type = "upper", 
conf.level = 0.99)$interval$limits["UCL"]}) 
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Well.1.UCL Well.2.UCL Well.3.UCL 
  67.92601   45.38336   23.61286 

In this case there is evidence that corrective action is still needed at Wells 1 and 2 
since the UCL is greater than 30 ppb.  Of course, a major consideration in this 
whole example is the very small sample size at each well (n = 4) used to compute 
the intra-well confidence limit. 

5.3.2 Estimating Quantiles of a Lognormal Distribution 
The guidance document Statistical Analysis of Groundwater Monitoring Data at 
RCRA Facilities:  Unified Guidance (USEPA 2009) contains an example on page 
17–17 of chrysene concentrations (ppb) from groundwater monitoring at two 
background wells and three compliance wells (four monthly samples at each well).  
In ENVSTATS these data are stored in EPA.09.Ex.17.3.chrysene.df. 

> EPA.09.Ex.17.3.chrysene.df 

   Month   Well  Well.type Chrysene.ppb 
1      1 Well.1 Background         19.7 
2      2 Well.1 Background         39.2 
3      3 Well.1 Background          7.8 
4      4 Well.1 Background         12.8 
5      1 Well.2 Background         10.2 
6      2 Well.2 Background          7.2 
7      3 Well.2 Background         16.1 
8      4 Well.2 Background          5.7 
9      1 Well.3 Compliance         68.0 
10     2 Well.3 Compliance         48.9 
11     3 Well.3 Compliance         30.1 
12     4 Well.3 Compliance         38.1 
13     1 Well.4 Compliance         26.8 
14     2 Well.4 Compliance         17.7 
15     3 Well.4 Compliance         31.9 
16     4 Well.4 Compliance         22.2 
17     1 Well.5 Compliance         47.0 
18     2 Well.5 Compliance         30.5 
19     3 Well.5 Compliance         15.0 
20     4 Well.5 Compliance         23.4 

In this example, we compute a 95 % upper confidence limit for the 95th per-
centile based on the data from the two background wells, and compare all of the 
observations at the three compliance wells to this UCL to determine whether any 
of them are out of compliance.  The example in the guidance document shows that 
a lognormal distribution appears to fit these data. 

> attach(EPA.09.Ex.17.3.chrysene.df) 
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> Chrysene <- Chrysene.ppb[Well.type == "Background"] 

> eqlnorm(Chrysene, p = 0.95, ci = TRUE, ci.type = "upper", 
conf.level = 0.95) 

Results of Distribution Parameter Estimation 
-------------------------------------------- 
 
Assumed Distribution:            Lognormal 
 
Estimated Parameter(s):          meanlog = 2.5085773 
                                 sdlog   = 0.6279479 
 
Estimation Method:               mvue 
 
Estimated Quantile(s):           95'th %ile = 34.51727 
 
Quantile Estimation Method:      qmle 
 
Data:                            Chrysene 
 
Sample Size:                     8 
 
Confidence Interval for:         95'th %ile 
 
Confidence Interval Method:      Exact 
 
Confidence Interval Type:        upper 
 
Confidence Level:                95% 
 
Confidence Interval:             LCL =  0.0000 
                                 UCL = 90.9247 

Since none of the observations from the compliance wells exceed the UCL of 
90.9 ppb, there is no evidence of contamination.  Note that although this example 
in the EPA guidance document is presented in the section on tolerance intervals in 
that document, tolerance intervals (specifically -content tolerance intervals) and 
confidence intervals for percentiles are the same thing; see Millard et al. (2014) 
for details. 

5.3.3 Estimating Quantiles of a Gamma Distribution 
Instead of assuming the chrysene data in the previous section comes from a 
lognormal distribution, we could instead assume it comes from a gamma distribution.  
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In this case, the estimated 95 % UCL of the 95th percentile is only 69.3 ppb  
instead of 90.9, almost a 25 % reduction in the UCL! 

> eqgamma(Chrysene, p = 0.95, ci = TRUE, ci.type = "upper", 
conf.level = 0.95) 

Results of Distribution Parameter Estimation 
-------------------------------------------- 
 
Assumed Distribution:            Gamma 
 
Estimated Parameter(s):          shape = 2.806929 
                                 scale = 5.286026 
 
Estimation Method:               mle 
 
Estimated Quantile(s):           95'th %ile = 31.74348 
 
Quantile Estimation Method:      Quantile(s) Based on 
                                 mle Estimators 
 
Data:                            Chrysene 
 
Sample Size:                     8 
 
Confidence Interval for:         95'th %ile 
 
Confidence Interval Method:      Exact using 
                                 Kulkarni & Powar (2010) 
                                 transformation to Normality 
                                 based on mle of 'shape' 
 
Confidence Interval Type:        upper 
 
Confidence Level:                95% 
 
Confidence Interval:             LCL =  0.00000 
                                 UCL = 69.32425 

5.3.4 Nonparametric Estimates of Quantiles 
To estimate quantiles nonparametrically, all you need to do is estimate the cdf 
nonparametrically using the empirical cdf, then use linear interpolation (if neces-
sary).  Graphically, this just means connecting the points in the quantile plot by 
straight lines, finding the value of p on the y-axis, and determining the correspond-
ing number on the x-axis.  For example, looking at Fig. 1.4 in Sect. 1.11.4, we 
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might estimate the median (i.e., p = 0.5) of the Reference area TcCB data to be 
about 0.5 ppb (the actual value is 0.54 ppb). 

One problem with estimating quantiles nonparametrically versus parametrically 
is that you need many more observations to estimate extreme quantiles with good 
precision.  In fact, even though the quantile function in R allows you to estimate 
any quantile for any sample size, in the case where say n = 10, it does not make 
sense intuitively that we should be able to estimate anything less than the 10th 
percentile or anything more than the 90th percentile with any kind of precision.  
This characteristic becomes clear when we create nonparametric confidence inter-
vals for quantiles.  On the other hand, an advantage to estimating quantiles 
nonparametrically is that it is often easy to deal with censored values since all you 
have to do is rank them. 

Nonparametric confidence intervals for quantiles are based on the ranked data, 
and usually the largest value is used for the upper confidence limit for a large  
percentile, and the smallest value is used for the lower confidence limit for a small 
percentile.  The confidence level associated with these confidence intervals  
depends on the sample size.  For example, to compute the confidence levels asso-
ciated with a one-sided upper confidence interval for the 95th percentile based on 
various sample sizes assuming the upper confidence limit is the maximum value, 
type these commands: 

> Sample.Size <- c(seq(5, 25, by = 5), 50, 75, 100) 

> conf.level <- tolIntNparConfLevel(Sample.Size,  
coverage = 0.95, ti.type = "upper") 

> cbind(Sample.Size,  
Confidence.Level = round(100 * conf.level)) 

     Sample.Size Confidence.Level 
[1,]           5               23 
[2,]          10               40 
[3,]          15               54 
[4,]          20               64 
[5,]          25               72 
[6,]          50               92 
[7,]          75               98 
[8,]         100               99 

You can see that a confidence level greater than 95 % cannot be achieved until the 
sample size is larger than n = 50.  See Millard et al. (2014) for a detailed discus-
sion of estimating quantiles nonparametrically and constructing nonparametric 
confidence intervals for quantiles. 

The guidance document Statistical Analysis of Groundwater Monitoring Data 
at RCRA Facilities:  Unified Guidance (USEPA 2009) contains an example on 
page 21–21 where nitrate concentrations (mg/L) at a well that is used for drinking 
water are to be compared against the infant-based, acute risk standard of 10 mg/L.  
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The risk standard represents the upper 95th percentile limit on nitrate concentra-
tions and we want to be 95 % confident that the risk standard has not been violated.  
First we assume the facility is in compliance/assessment monitoring, so we are  
instructed to compute one-sided lower 95 % confidence limit for the 95th percen-
tile and compare it to the risk standard of 10 mg/L.  The data for this example are 
stored in EPA.09.Ex.21.6.nitrate.df. 

> EPA.09.Ex.21.6.nitrate.df[, 1:3] 

   Sampling.Date       Date Nitrate.mg.per.l.orig 
1      7/28/1999 1999-07-28                  <5.0 
2       9/3/1999 1999-09-03                  12.3 
3     11/24/1999 1999-11-24                  <5.0 
4       5/3/2000 2000-05-03                  <5.0 
5      7/14/2000 2000-07-14                   8.1 
6     10/31/2000 2000-10-31                  <5.0 
7     12/14/2000 2000-12-14                    11 
8      3/27/2001 2001-03-27                  35.1 
9      6/13/2001 2001-06-13                  <5.0 
10     9/16/2001 2001-09-16                  <5.0 
11    11/26/2001 2001-11-26                   9.3 
12      3/2/2002 2002-03-02                  10.3 

Because the data contain censored observations, two additional columns were 
added to indicate the numeric value and whether or not the observation was  
censored: 

> EPA.09.Ex.21.6.nitrate.df[, c(2, 4:5)] 

         Date Nitrate.mg.per.l Censored 
1  1999-07-28              5.0     TRUE 
2  1999-09-03             12.3    FALSE 
3  1999-11-24              5.0     TRUE 
4  2000-05-03              5.0     TRUE 
5  2000-07-14              8.1    FALSE 
6  2000-10-31              5.0     TRUE 
7  2000-12-14             11.0    FALSE 
8  2001-03-27             35.1    FALSE 
9  2001-06-13              5.0     TRUE 
10 2001-09-16              5.0     TRUE 
11 2001-11-26              9.3    FALSE 
12 2002-03-02             10.3    FALSE 

For this data set, half of the values are nondetects, so estimating the median 
nonparametrically is problematic and estimating percentiles less than 50 % 
nonparametrically is not possible.  We need to determine which ranked value to 
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use for the lower confidence limit for the 95th percentile in order to achieve at 
least 95 % confidence. 

> Nitrate <- EPA.09.Ex.21.6.nitrate.df$ Nitrate.mg.per.l 

> eqnpar(Nitrate, p = 0.95, ci = TRUE, ci.type = "lower", 
approx.conf.level = 0.95) 

Results of Distribution Parameter Estimation 
-------------------------------------------- 
 
Assumed Distribution:            None 
 
Estimated Quantile(s):           95'th %ile = 22.56 
 
Quantile Estimation Method:      Nonparametric 
 
Data:                            Nitrate 
 
Sample Size:                     12 
 
Confidence Interval for:         95'th %ile 
 
Confidence Interval Method:      exact 
 
Confidence Interval Type:        lower 
 
Confidence Level:                88% 
 
Confidence Limit Rank(s):        11  
 
Confidence Interval:             LCL = 12.3 
                                 UCL =  Inf  

In this example, by default, the EnvStats function eqnpar uses the 11th largest 
value (12.3 mg/L) as the lower confidence limit, but this yields only an 88 %  
confidence level.  Using the 10th largest value yields a confidence level of 98 %: 

> eqnpar(Nitrate, p = 0.95, ci = TRUE, ci.type = "lower", 
lcl.rank = 10) 

Results of Distribution Parameter Estimation 
-------------------------------------------- 
 
Assumed Distribution:            None 
 
Estimated Quantile(s):           95'th %ile = 22.56 
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Quantile Estimation Method:      Nonparametric 
 
Data:                            Nitrate 
 
Sample Size:                     12 
 
Confidence Interval for:         95'th %ile 
 
Confidence Interval Method:      exact 
 
Confidence Interval Type:        lower 
 
Confidence Level:                98% 
 
Confidence Limit Rank(s):        10  
 
Confidence Interval:             LCL =  11 
                                 UCL = Inf 

Because the 10th largest value is 11 mg/L and this is larger than the acute risk 
standard of 10 mg/L, we conclude there is evidence of contamination at the well. 

If we assume the well was being remediated under corrective action monitor-
ing, the fixed standard would be compared against a one-sided upper confidence 
limit for the 95th percentile.  With a sample size of n = 12, using the largest value 
as the upper confidence limit yields a confidence level of only 46 %: 

> eqnpar(Nitrate, p = 0.95, ci = TRUE, ci.type = "upper", 
approx.conf.level = 0.95) 

Results of Distribution Parameter Estimation 
-------------------------------------------- 
 
Assumed Distribution:            None 
 
Estimated Quantile(s):           95'th %ile = 22.56 
 
Quantile Estimation Method:      Nonparametric 
 
Data:                            Nitrate 
 
Sample Size:                     12 
 
Confidence Interval for:         95'th %ile 
 
Confidence Interval Method:      exact 
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Confidence Interval Type:        upper 
 
Confidence Level:                46% 
 
Confidence Limit Rank(s):        12  
 
Confidence Interval:             LCL = -Inf 
                                 UCL = 35.1 

In order to achieve a confidence level of 95 %, we would need to have n = 59  
observations and all of the observations would need to be less than the fixed 
standard of 10 mg/L in order for the well to return to compliance/assessment  
monitoring: 

> tolIntNparN(coverage = 0.95, ti.type = "upper",  
conf.level = 0.95) 

[1] 59 

 
 
 
 
 
 
 

5.4 Summary 
• Whether you are conducting a preliminary, descriptive study of the  

environment or monitoring the environment for contamination under a 
specific regulation, you usually need to characterize the distribution of 
whatever you are looking at (e.g., a chemical in the environment), which 
involves estimating distribution parameters such as the mean, median, 
standard deviation, 95th percentile, etc. 

• 

•  
 
 

 
 
 
 

 
You can use EnvStats functions of the form eabb (where abb  denotes the 
abbreviation of the distribution name) for estimating distribution parame-
ters and optionally constructing confidence intervals.  These functions are 
listed in the help file Estimating Distribution Parameters.

• One problem with estimating quantiles nonparametrically versus para-
metrically is that you need many more observations to estimate extreme 
quantiles with good precision. 

 
 

Functions for estimating quantiles and optionally constructing confidence 
intervals for them have names of the form eqabb.  These  functions  are  
listed in the help file Estimating Distribution Quantiles. 
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Chapter 6 

Prediction and Tolerance Intervals 

6.1 Introduction 
Any activity that requires constant monitoring over time and the comparison of 
new values to “background” or “standard” values creates a decision problem:  if 
the new values greatly exceed the background values, has a change really occurred, 
or have the true underlying concentrations stayed the same and this is just a 
“chance” event?  Statistical tests are used as objective tools to decide whether a 
change has occurred (although the choice of Type I error level and acceptable 
power are subjective decisions).  For a monitoring program that involves numer-
ous tests over time, figuring out how to balance the overall Type I error with the 
power of detecting a change is not a trivial problem, but it is also a problem that 
has been dealt with for a long time in the statistical literature under the heading of 
“multiple comparisons.”  Prediction intervals and tolerance intervals are two tools 
that you can use to attempt to solve the multiple comparisons problem.  This chapter 
discusses the functions available in ENVSTATS for constructing prediction and  
tolerance intervals.  See Millard et al. (2014) for a more in-depth discussion of this 
topic. 

6.2 Prediction Intervals 
A prediction interval for some population is an interval on the real line constructed 
so that it will contain k future observations or averages from that population with 
some specified probability (1 )100 %, where  is some fraction between 0 and 
1 (usually  is less than 0.5), and k is some pre-specified positive integer.  Just as 
for confidence intervals, the quantity (1 )100 % is called the confidence coeffi-
cient or confidence level associated with the prediction interval.  Table 6.1 lists 
the functions available in ENVSTATS for constructing prediction intervals. 

The basic idea of a prediction interval is to assume a particular probability  
distribution (e.g., normal, lognormal, etc.) for some process generating the data 
(e.g., quarterly observations of chemical concentrations in groundwater), compute 
sample statistics from a baseline sample, and then use these sample statistics to 
construct a prediction interval, assuming the distribution of the data does not change 
in the future (or if we are comparing one geographical area to another, we assume 
the distribution of data from the comparison area is the same as the distribution of 
data from the baseline area).  If the future observation or observations do not fall 
within the prediction interval, then this is evidence that the distribution has poten-
tially changed (e.g., contamination is present).  For example, if X denotes a ran-
dom variable from some population, and we know what the population looks like, 
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Distribution Function name Description 
Normal predIntNorm Construct a prediction interval for 

the next k observations or next k 
means from a normal distribution 

 predIntNormK Compute the value of K for a pre-
diction interval for a normal distri-
bution 

 predIntNormSimultaneous Construct a simultaneous predic-
tion interval for the next r sam-
pling occasions based on a normal 
distribution 

 predIntNormSimultaneousK Compute the value of K for a sim-
ultaneous prediction interval for 
the next r sampling occasions 
based on a normal distribution 

Lognormal predIntLnorm 
predIntLnormAlt 

Construct a prediction interval 
based on a lognormal distribution 

 predIntLnormSimultaneous 
predIntLnormAltSimultaneous 

Construct a simultaneous predic-
tion interval based on a lognormal 
distribution 

Gamma predIntGamma 
predIntGammaAlt 

Construct a prediction interval 
based on a gamma distribution 

 predIntGammaSimultaneous 
predIntGammaSimultaneousAlt 

Construct a simultaneous predic-
tion interval based on a gamma 
distribution 

Poisson predIntPois Construct a prediction interval for 
the next k observations or sums 
from a Poisson distribution 

Nonparametric predIntNpar Construct a nonparametric predic-
tion interval for the next k of m ob-
servations 

Table 6.1 Functions in ENVSTATS for constructing prediction intervals 

(e.g., lognormal with a mean of 10 and a CV of 1), so we can compute the 
quantiles of the population, then a (1 )100 % two-sided prediction interval for 
the next k = 1 observation of X is given by: 

 2 1 2,x x  (6.1) 

where xp denotes the pth quantile of the distribution of X.  Similarly, a 
(1 )100 % one-sided upper prediction interval for the next observation is given 
by: 

 [ ]1, x  (6.2) 

and a (1 )100 % one-sided lower prediction interval for the next observation is 
given by: 

 [ ],x  (6.3) 
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See Millard et al. (2014) for the corresponding equations for general values of k. 
Usually the true distribution of X is unknown, so the values of the prediction 

limits have to be estimated based on estimating the parameters of the distribution 
of X.  For the usual case when the exact distribution of X is unknown, a prediction 
interval is thus a random interval; that is, the lower and upper bounds are random 
variables computed based on sample statistics in the baseline sample.  Prior to taking 
one specific baseline sample, the probability that the prediction interval will contain 
the next k observations is (1 )100 %.  Once a specific baseline sample is taken 
and the prediction interval based on that sample is computed, the probability that 
that prediction interval will contain the next k observations is not necessarily 
(1 )100 %, but it should be close to this value for a moderately large sample size. 

Suppose an experiment is performed N times, and suppose that for each  
experiment: 

1. A sample is taken and a (1 )100 % prediction interval for k = 1 future 
observation is computed. 

2. One future observation is generated and compared to the prediction  
interval. 

Then the number of times a prediction interval generated in Step 1 above will con-
tain a future observation generated in step 2 above is a binomial random variable 
with parameters n = N and p = 1 , that is, it follows a B(N, 1 ) distribution. 

 
Fig. 6.1 Results of simulation experiment showing the 80 % prediction interval and one  
future observation for 100 simulations 

0 20 40 60 80 100

2
3

4
5

6
7

8

Experiment Number

Pr
ed

ic
tio

n 
In

te
rv

al
 a

nd
 F

ut
ur

e 
O

bs
er

va
tio

n



116     6. Prediction and Tolerance Intervals 

 

 

Figure 6.1 shows the results of such a simulated experiment in which a random 
sample of n = 10 observations was taken from a N(5, 1) distribution and an 80 % 
prediction interval for k = 1 future observation was constructed based on these 10 
observations.  Then one future observation was generated.  The experiment was 
repeated 100 times.  In this case, the actual number of times the prediction interval 
contained the future observation was 79. 

It is important to note that if only one baseline sample is taken and only one 
prediction interval for k = 1 future observation is computed, then the number of 
future observations out of a total of N future observations that will be contained in 
that one prediction interval is a binomial random variable with parameters n = N 
and p = 1 *, where * depends on the true population parameters and the  
computed bounds of the single prediction interval.  For example, if we compute a 
prediction interval for k = 1 future observation, assuming the data used to create 
the prediction interval come from a N(5, 1) distribution and the prediction interval 
is [2.54, 7.25], then the total number of N future observations that will be con-
tained in this prediction interval is a Binomial random variable with parameters 
n = N and p = 0.98 since the probability that a single observation from a N(5, 1) 
distribution will fall in the interval [2.54, 7.25] is 98 %. 

A prediction interval is usually constructed as a bound on future individual  
observations, but it can also be formulated as a bound on the mean of p future obser-
vations (or a bound on multiple future means).  In a testing scenario, the comparison 
rule for the test is then different:  instead of requiring all of a set of p individual 
values to fall within the prediction interval for the test to pass, only the average of 
the p future values should not fall outside the prediction limit (USEPA 2009). 

6.2.1 Prediction Intervals for a Normal Distribution 
Prediction Intervals for Future Observations 
The guidance document Statistical Analysis of Groundwater Monitoring Data at 
RCRA Facilities:  Unified Guidance (USEPA 2009) contains an example on page 
18–9 where arsenic concentrations (ppb) are measured quarterly at a single well at 
a solid waste landfill.  The first 3 years of the sample represent the background

EPA.09.Ex.18.1.arsenic.df in ENVSTATS. 

> EPA.09.Ex.18.1.arsenic.df 

   Year Sampling.Period Arsenic.ppb 
1     1      Background        12.6 
2     1      Background        30.8 
3     1      Background        52.0 
4     1      Background        28.1 
5     2      Background        33.3 
6     2      Background        44.0 
7     2      Background         3.0 

period and the fourth year is the compliance period.  The data for this example are
stored in 
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8     2      Background        12.8 
9     3      Background        58.1 
10    3      Background        12.6 
11    3      Background        17.6 
12    3      Background        25.3 
13    4      Compliance        48.0 
14    4      Compliance        30.3 
15    4      Compliance        42.5 
16    4      Compliance        15.0 

Combining all of the observations from the background period and assuming these 
data come from a normal distribution, the exact one-sided upper 95 % prediction 
limit for the next k = 4 future observations is 72.9 ppb: 

> attach(EPA.09.Ex.18.1.arsenic.df) 

> predIntNorm(Arsenic.ppb[Sampling.Period == "Background"],  
k = 4, pi.type = "upper", conf.level = 0.95,  
method = "exact") 

Results of Distribution Parameter Estimation 
-------------------------------------------- 
 
Assumed Distribution:            Normal 
 
Estimated Parameter(s):          mean = 27.51667 
                                 sd   = 17.10119 
 
Estimation Method:               mvue 
 
Data:                             
       Arsenic.ppb[Sampling.Period == "Background"] 
 
Sample Size:                     12 
 
Prediction Interval Method:      exact 
 
Prediction Interval Type:        upper 
 
Confidence Level:                95% 
 
Number of Future Observations:   4 
 
Prediction Interval:             LPL =     -Inf 
                                 UPL = 72.90375 

and the one based on the Bonferroni method is 73.7 ppb: 
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> predIntNorm(Arsenic.ppb[Sampling.Period == "Background"],  
k = 4, pi.type = "upper",  
conf.level = 0.95)$interval$limits["UPL"] 

     UPL 
73.67237 

The four observed values of arsenic in year 4 (the compliance period) are all  
below both of these prediction limits, so there is no evidence of contamination.  Of 
course, even if one or more observations during the compliance period had  
exceeded the prediction limit, the evidence for “contamination” would depend on 
the assumption that “background” conditions had not changed. 

Prediction Intervals for Future Means 
For normally-distributed data, for the same background sample size and false positive 
rate, the power of the prediction limit for a future mean based on p future observa-
tions is generally higher than for a prediction limit for the next p individual future 
observations (USEPA 2009).  Chapter 2 discussed functions in EnvStats for com-
puting the power associated with a test based on prediction intervals.  Figure 18–1 
in USEPA (2009) demonstrates these power differences, and you can reproduce 
these figures in EnvStats using the accompanying scripts (see Chap. 1 for infor-
mation on where these scripts are located). 

USEPA (2009) contains an example on page 18–15 where chrysene concentra-
tions (ppb) are measured at two background wells and one compliance well.  The 
data for this example are stored in EPA.09.Ex.18.2.chrysene.df in 
ENVSTATS. 

> EPA.09.Ex.18.2.chrysene.df 

   Month   Well  Well.type Chrysene.ppb 
1      1 Well.1 Background          6.9 
2      2 Well.1 Background         27.3 
3      3 Well.1 Background         10.8 
4      4 Well.1 Background          8.9 
5      1 Well.2 Background         15.1 
6      2 Well.2 Background          7.2 
7      3 Well.2 Background         48.4 
8      4 Well.2 Background          7.8 
9      1 Well.3 Compliance         68.0 
10     2 Well.3 Compliance         48.9 
11     3 Well.3 Compliance         30.1 
12     4 Well.3 Compliance         38.1 

Combining the observations from the two background wells and assuming  
these data come from a lognormal distribution, the exact one-sided upper 99 % 
prediction limit for the mean of the next four future log-transformed observations 
is 3.85 log(ppb): 
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> attach(EPA.09.Ex.18.2.chrysene.df) 

> predIntNorm(log(Chrysene.ppb)[Well.type == "Background"], 
n.mean = 4, k = 1, pi.type = "upper", conf.level = 0.99) 

Results of Distribution Parameter Estimation 
-------------------------------------------- 
 
Assumed Distribution:            Normal 
 
Estimated Parameter(s):          mean = 2.5533006 
                                 sd   = 0.7060038 
 
Estimation Method:               mvue 
 
Data:                             
                 log(Chrysene.ppb)[Well.type == "Background"] 
 
Sample Size:                     8 
 
Prediction Interval Method:      exact 
 
Prediction Interval Type:        upper 
 
Confidence Level:                99% 
 
Number of Future Averages:       1 
 
Sample Size for Averages:        4 
 
Prediction Interval:             LPL =     -Inf 
                                 UPL = 3.849427 

(The exact method and the Bonferroni method are identical for one future observa-
tion or one future mean.)  The mean of the log-transformed values at the compli-
ance well is 3.79 log(ppb), so there is no evidence of contamination. 

> mean(log(Chrysene.ppb)[Well.type == "Compliance"]) 

[1] 3.788506 

6.2.2 Prediction Intervals for a Lognormal Distribution 
A prediction interval for a lognormal distribution is constructed by simply taking 
the natural logarithm of the observations and constructing a prediction interval 
based on the normal distribution, then exponentiating the prediction limits to  
produce a prediction interval on the original scale of the data (Hahn and Meeker 
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1991, p. 73).  In fact, you can use any monotonic transformation of the observa-
tions that you think induces normality (e.g., a Box-Cox power transformation), 
compute the prediction interval on the transformed scale, and then use the inverse 
transformation on the prediction limits to produce a prediction interval on the  
original scale.  To construct a prediction interval for a lognormal distribution  
using ENVSTATS, type commands similar to those shown in the previous section for 
a normal distribution, except instead of using predIntNorm use the function 
predIntLnorm or predIntLnormAlt

Prediction Intervals for Future Observations 

the Cleanup and Reference areas (see Figs. 1.1, 1.2, and 1.3 in Chap. 1).  Based on 
the data from the Background area, the one-sided upper 95 % prediction limit for 
the next k = 77 observations (there are 77 observations in the Cleanup area) is 
2.68 ppb: 

> attach(EPA.94b.tccb.df) 

> predIntLnorm(TcCB[Area == "Reference"], k = 77,  
method = "exact", pi.type = "upper", conf.level = 0.95) 

Results of Distribution Parameter Estimation 
-------------------------------------------- 
 
Assumed Distribution:            Lognormal 
 
Estimated Parameter(s):          meanlog = -0.6195712 
                                 sdlog   =  0.4679530 
 
Estimation Method:               mvue 
 
Data:                            TcCB[Area == "Reference"] 
 
Sample Size:                     47 
 
Prediction Interval Method:      exact 
 
Prediction Interval Type:        upper 
 
Confidence Level:                95% 
 
Number of Future Observations:   77 
 
Prediction Interval:             LPL = 0.000000 
                                 UPL = 2.681076 

 and the untransformed observations. 

We can use a prediction interval to compare the TcCB concentrations between 
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There are seven observations in the Cleanup area larger than 2.68: 

> sum(TcCB[Area=="Cleanup"] > 2.68) 

[1] 7 

so the prediction interval indicates residual contamination is present in the Cleanup 
area.  Note that both Student’s t-test and the Wilcoxon rank sum test do not yield a 
significant difference between the two areas. 

Prediction Intervals for Future Geometric Means 
Revisiting the example from Sect. 6.2.1, instead of log-transforming the chrysene 
data and using the function predIntNorm, we can use the original data and use 
predIntLnorm.  The exact one-sided upper 99 % prediction limit for the geo-
metric mean of the next four future observations is 47.0 ppb: 

> attach(EPA.09.Ex.18.2.chrysene.df)  #if not attached 

> predIntLnorm(Chrysene.ppb[Well.type == "Background"],  
n.geomean = 4, k = 1, pi.type = "upper",  
conf.level = 0.99) 

Results of Distribution Parameter Estimation 
-------------------------------------------- 
 
Assumed Distribution:            Lognormal 
 
Estimated Parameter(s):          meanlog = 2.5533006 
                                 sdlog   = 0.7060038 
 
Estimation Method:               mvue 
 
Data:                             
                      Chrysene.ppb[Well.type == "Background"] 
 
Sample Size:                     8 
 
Prediction Interval Method:      exact 
 
Prediction Interval Type:        upper 
 
Confidence Level:                99% 
 
Number of Future 
Geometric Means:                 1 
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Sample Size for 
Geometric Means:                 4 
 
Prediction Interval:             LPL =  0.00000 
                                 UPL = 46.96613 

The geometric mean of the values at the compliance well is 44.2 ppb, so there is 
no evidence of contamination. 

> geoMean(Chrysene.ppb[Well.type == "Compliance"]) 

[1] 44.19034 

6.2.3 Prediction Intervals for a Gamma Distribution 
Following the suggestion of Singh et al. (2002; 2010a, b), instead of assuming a 
lognormal distribution for the data in the examples of the previous section, we 
could instead assume the data follow a gamma distribution.  Prediction intervals 
for a gamma distribution are constructed by using a power transformation to  
approximate a normal distribution, computing the prediction interval for a normal 
distribution based on the transformed data, then transforming the prediction  
interval back to the original scale.  Choices for what power transformation to use 
to approximate normality include the power transformation of Kulkarni and Powar 
(2010), the cube-root transformation (Wilson and Hilferty 1931; Krishnamoorthy 
et al. 2008), and the fourth-root transformation (Hawkins and Wixley 1986).  See 
Millard et al. (2014) or the help file for predIntGamma for details 

Prediction Intervals for Future Observations 
For the first example that involves comparing the TcCB concentrations between 
the Cleanup and Reference areas, based on the data from the Background area, the 
one-sided upper 95 % prediction limit for the next k = 77 observations is 2.14 ppb 
as compared to 2.68 ppb computed using a lognormal assumption: 

> predIntGamma(TcCB[Area == "Reference"], k = 77,  
method = "exact", pi.type = "upper", conf.level = 0.95) 

Results of Distribution Parameter Estimation 
-------------------------------------------- 
 
Assumed Distribution:            Gamma 
 
Estimated Parameter(s):          shape = 4.8659316 
                                 scale = 0.1230002 
 
Estimation Method:               mle 
 
Data:                            TcCB[Area == "Reference"] 
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Sample Size:                     47 
 
Prediction Interval Method:      exact using 
                                 Kulkarni & Powar (2010) 
                                 transformation to Normality 
                                 based on mle of 'shape' 
 
Normal Transform Power:          0.246 
 
Prediction Interval Type:        upper 
 
Confidence Level:                95% 
Number of Future Observations:   77 
 
Prediction Interval:             LPL = 0.000000 
                                 UPL = 2.143873 

Prediction Intervals for Future Transformed Means 
For the second example involving chrysene concentrations (ppb) measured at two 
background wells and one compliance well, combining the observations from the 
two background wells and assuming these data come from a gamma distribution, 
the exact one-sided upper 99 % prediction limit for the transformed mean of the 
next four future observations is 45 ppb: 

> predInt.list <- predIntGamma( 
Chrysene.ppb[Well.type == "Background"], n.transmean = 4, 
k = 1, pi.type = "upper", conf.level = 0.99) 

> predInt.list 

Results of Distribution Parameter Estimation 
-------------------------------------------- 
 
Assumed Distribution:            Gamma 
 
Estimated Parameter(s):          shape = 2.127279 
                                 scale = 7.779891 
 
Estimation Method:               mle 
 
Data:                             
       Chrysene.ppb[Well.type == "Background"] 
 
Sample Size:                     8 
  



124     6. Prediction and Tolerance Intervals 

 

 

Prediction Interval Method:      exact using 
                                 Kulkarni & Powar (2010) 
                                 transformation to Normality 
                                 based on mle of 'shape' 
 
Normal Transform Power:          0.246 
 
Prediction Interval Type:        upper 
 
Confidence Level:                99% 
 
Number of Future 
Transformed Means:               1 
 
Sample Size for 
Transformed Means:               4 
 
Prediction Interval:             LPL =  0.00000 
                                 UPL = 45.02989 

Recall that in Sect. 6.2.2 when we assumed a lognormal distribution, we computed 
the geometric mean for the compliance well; that is, we computed the mean based 
on the log-transformed data and then transformed that mean back to the original 
scale using the exponential function.  Similarly, in this example we need to trans-
form the original data from the compliance well using the transformation that was 
used to construct the prediction interval assuming a gamma distribution, compute 
the mean based on these transformed data, then back-transform this mean to the 
original scale. 

> trans.power <- predInt.list$interval$normal.transform.power 

> trans.power 

[1] 0.246 

> mean.of.trans <- mean( 
Chrysene.ppb[Well.type == "Compliance"] ^ trans.power) 

> mean.of.trans ^ (1 / trans.power) 

[1] 44.69182 

Since 44.7 is less than the UPL of 45 ppb (just barely!), there is no evidence of 
contamination.  However, we will see in Chap. 7 that the goodness-of-fit test  
rejects the hypothesis that the chrysene data at the background wells comes from a 
gamma distribution, so the assumption of a gamma distribution is probably not 
valid. 
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6.2.4 Nonparametric Prediction Intervals 
You can construct a prediction interval without making any assumption about the 
distribution of the background data, except that the distribution is continuous.  
This kind of prediction intervals is called a nonparametric prediction interval, 
and it is based on the ranked data.  Usually the prediction interval is based on the 
maximum and/or the minimum of the background data, but it can be based on any 
order statistics you choose.  Of course, a nonparametric prediction interval still  
requires the assumption that the distribution of future observations is the same  
as the distribution of the observations used to create the prediction interval.  See 
Millard et al. (2014) for a detailed discussion. 

Nonparametric Prediction Intervals for Future Observations 
Table 6.2 illustrates the confidence levels associated with a one-sided upper  
prediction interval for the next m = 3 observations, based on various sample sizes, 
assuming the upper prediction limit is the maximum value. 

Sample size (n) Confidence level (%) 
     5      62
    10      77
    15      83
    20      87
    25      89
    50      94
    75      96
   100      97

Table 6.2 Confidence levels for one-sided upper nonparametric prediction interval for the 
next m = 3 observations, based on using the maximum value as the upper prediction limit 

The values for this table were created with the following commands: 

> n <- c(seq(5, 20, by = 5), seq(25, 100, by = 25)) 

> round(100 *  
predIntNparConfLevel(n = n, m = 3, pi.type = "upper")) 

You can see that a confidence level greater than 95 % cannot be achieved until the 
sample size is larger than n = 50. 

 
Month 

Background Compliance 
Well 1 Well 2 Well 3 Well 4 

1 
2 
3 
4 
5 
6 

 <5
 <5 
  8 
 <5 
  9 
 10 

 7
  6.5 
 <5 
  6 
 12 
 <5 

<5
 <5 
 10.5 
 <5 
 <5 
  9 

    
      
    7.5 
   <5 
    8 
   14 

Table 6.3 Trichloroethylene data (ppb) from groundwater monitoring wells 
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USEPA (2009, pp.18–19) gives an example of constructing a nonparametric 
prediction interval for the next m = 4 monthly observations of trichloroethylene 
concentrations (ppb) in groundwater at a downgradient well, based on observa-
tions from three background wells.  These data are shown in Table 6.3 and stored 
in the data frame EPA.09.Ex.18.3.TCE.df in ENVSTATS. 

> EPA.09.Ex.18.3.TCE.df 

   Month Well  Well.type TCE.ppb.orig TCE.ppb Censored 
1      1 BW-1 Background           <5     5.0     TRUE 
2      2 BW-1 Background           <5     5.0     TRUE 
… 
23     5 CW-4 Compliance            8     8.0    FALSE 
24     6 CW-4 Compliance           14    14.0    FALSE 

The three background wells were sampled once per month for 6 months.  The 
compliance well was only sampled in months 3–6.  The EPA guidance document 
combines all of the observations from the three background wells (n = 18) and uses 
the maximum value 12 as an upper prediction limit for the next m = 4 observations 
at the compliance well.  This produces an 82 % upper prediction interval. 

> with(EPA.09.Ex.18.3.TCE.df,  
predIntNpar(TCE.ppb[Well.type == "Background"], m = 4,  
lb = 0, pi.type = "upper")) 

Results of Distribution Parameter Estimation 
-------------------------------------------- 
 
Assumed Distribution:            None 
 
Data:                             
                           TCE.ppb[Well.type == "Background"] 
 
Sample Size:                     18 
 
Prediction Interval Method:      Exact 
 
Prediction Interval Type:        upper 
 
Confidence Level:                82% 
 
Prediction Limit Rank(s):        18  
 
Number of Future Observations:   4 
 
Prediction Interval:             LPL =  0 
                                 UPL = 12 
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Since one of the values from the compliance well lies above the upper prediction 
limit, we might conclude there is evidence of contamination at the compliance 
well, but we should keep in mind that given the way we constructed our prediction 
interval, we would incorrectly declare contamination present when in fact it is not 
present about 18 % (100–82 %) of the time.  As USEPA (2009, pp. 18–19) states:  
“Only additional background data and/or use of a retesting strategy would lower 
the false positive rate.” 

Nonparametric Prediction Intervals for a Single Future Median 
Constructing a prediction interval for a future median of order 3 (i.e., three future 
observations will be used to construct the median) is equivalent to constructing a 
simultaneous prediction interval for the next 2 of 3 observations (see the Sect. 
6.3).  In general, a prediction interval for a future median of order m is equivalent 
to a prediction interval for the next (m + 1)/2 of m observations as long as m is an 
odd number. 

 
Month 

Background Compliance 
Well 1 Well 2 Well 3 Well 4 

1 
2 
3 
4 
5 
6 
7 
8 

 <5
 <5 
  7.5 
 <5 
 <5  
 <5 
  6.4 
  6.0 

 9.2
 <5 
 <5 
  6.1 
  8.0 
  5.9 
 <5 
 <5 

<5
  5.4 
  6.7 
 <5 
 <5 
 <5 
 <5 
 <5 

    
      
      
 
 
   <5 
    7.8 
   10.4 

Table 6.4  Xylene data (ppb) from groundwater monitoring wells 

USEPA (2009, pp.18–21) gives an example of constructing a nonparametric 
prediction interval for a future median of order 3 (i.e., three future observations 
will be used to construct the median) using monthly observations of xylene  
concentrations (ppb) in groundwater at a downgradient well, based on observa-
tions from three background wells.  These data are stored in the data frame 
EPA.09.Ex.18.4.xylene.df in ENVSTATS and shown in Table 6.4. 

> EPA.09.Ex.18.4.xylene.df 

   Month   Well  Well.type Xylene.ppb.orig Xylene.ppb Censored 

1      1 Well.1 Background              <5        5.0     TRUE 

2      2 Well.1 Background              <5        5.0     TRUE 

… 

31     7 Well.4 Compliance             7.8        7.8    FALSE 

32     8 Well.4 Compliance            10.4       10.4    FALSE 

Combining all of the observations from the three background wells (n = 24) and 
using the maximum value 9.2 ppb as an upper prediction limit produces a 99 % 
upper prediction interval for a future median of order 3. 



128     6. Prediction and Tolerance Intervals 

 

 

> with(EPA.09.Ex.18.4.xylene.df, 
predIntNpar(Xylene.ppb[Well.type == "Background"], k = 2,  
m = 3, lb = 0, pi.type = "upper") 

Results of Distribution Parameter Estimation 
-------------------------------------------- 
 
Assumed Distribution:            None 
 
Data:                             
                        Xylene.ppb[Well.type == "Background"] 
 
Sample Size:                     24 
 
Prediction Interval Method:      Exact 
 
Prediction Interval Type:        upper 
 
Confidence Level:                99% 
 
Prediction Limit Rank(s):        24  
 
Minimum Number of 
Future Observations 
Interval Should Contain:         2 
 
Total Number of 
Future Observations:             3 
 
Prediction Interval:             LPL = 0.0 
                                 UPL = 9.2 

Since the median of the values at the compliance well is 7.8 ppb and therefore less 
than the upper prediction limit, there is no evidence of contamination at the com-
pliance well, in spite of the fact that the maximum value at the compliance well is 
greater than the upper prediction limit. 

6.3 Simultaneous Prediction Intervals 
Analyzing data from a groundwater monitoring program involves several difficul-
ties, including trying to control for natural spatial and temporal variability, and 
sometimes dealing with nondetect values.  One of the main statistical problems 
that plague groundwater monitoring programs at hazardous and solid waste facili-
ties is the requirement of testing several wells and several constituents at each well 
on each sampling occasion.  The number of constituents monitored can range from 
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around 5 to 60 or more, and some facilities may have as many as 150 monitoring 
wells (Davis and McNichols 1999).  This is an obvious multiple comparisons 
problem, and the naive approach of using a prediction interval with a conventional 
confidence level (e.g., 95 % or 99 %) for each comparison of a compliance well 
with background for each chemical of concern leads to a very high probability of 
at least one declaration of contamination on each sampling occasion, when in  
fact no contamination has occurred at any of the wells at any time for any of the 
chemicals of concern.  This problem was pointed out several years ago by Millard 
(1987a) and others. 

Davis and McNichols (1987, 1994b, 1999) proposed simultaneous prediction 
intervals as a way of controlling the site-wide false positive rate (SWFPR) while 
maintaining adequate power to detect contamination in the groundwater.  A simul-
taneous prediction interval with confidence level (1 )100 % is a prediction  
interval that will contain a specified number of future observations with probability 
(1 )100 % for each of r future sampling occasions, where r is some pre-specified 
positive integer.  The quantity r may actually refer to r distinct future sampling 
occasions in time, r distinct compliance wells sampled on one future sampling  
occasion, or the product of the number of future sampling occasions and number 
of wells.  In any of these cases, it is assumed that the distribution of concentrations 
is constant over all r “future sampling occasions.” 

There are several ways to define a rule for a simultaneous prediction interval.  
ENVSTATS includes functions for the following three rules: 

• The k-of-m Rule.  For the k-of-m rule, at least k of the next m future  
observations will fall in the prediction interval with probability (1 )100 % 
on each of the r future sampling occasions.  If observations are being  
taken sequentially, for a particular sampling occasion (or monitoring 
well), up to m observations may be taken, but once k of the observations 
fall within the prediction interval, sampling can stop.  If m (k 1) obser-
vations fall outside the prediction interval, then contamination is declared 
to be present.  For example, suppose we have r = 5 monitoring wells and 
we want to use the 1-of-3 rule (i.e., k = 1 and m = 3).  Then for the ith 
monitoring well (i = 1, 2, 3, 4, 5), if the first observation is in the interval, 
we can stop.  If the first observation is outside the interval, we have to 
wait a specified time (e.g., a few weeks), and take a second observation.  
If the second observation is in the interval, we can stop.  If the second  
observation is outside the interval, then we have to wait a specified time 
and take a third observation.  If the third observation is in the interval, we 
can stop.  If the third observation is outside the interval, then contamina-
tion is declared to be present.  (Note that in the case k = m and r = 1, a 
simultaneous prediction interval reduces to the simple prediction interval 
we have already discussed in Sect. 6.2.) 

• California Rule.  For the California rule, with probability (1 )100 %, 
for each of the r future sampling occasions, either the first observation 
will fall in the prediction interval, or else all of the next m 1 observations 
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will fall in the prediction interval.  That is, if the first observation falls in 
the prediction interval then sampling can stop.  Otherwise, up to m 1 
more observations must be taken (with a sufficient waiting time between 
sampling occasions).  If any of these subsequent m 1 observations falls 
outside the interval, we declare contamination is present. 

• Modified California Rule.  For the Modified California rule, with proba-
bility (1 )100 %, for each of the r future sampling occasions, either the 
first observation will fall in the prediction interval, or else at least 2 out of 
the next 3 observations will fall in the prediction interval.  That is, if the 
first observation falls in the prediction interval then sampling can stop.  
Otherwise, up to 3 more observations must be taken (with a sufficient 
waiting time between sampling occasions).  If any two of these next three 
observations fall into the interval then sampling can stop.  Otherwise,  
contamination is declared to be present. 

Just as in the case of regular prediction intervals, instead of constructing intervals 
for future observations, it is possible to construct simultaneous prediction intervals 
for the mean or median of future observations. 

Although simultaneous prediction intervals help us control the Type I error 
rate (the probability of declaring contamination when it is not present) over r  
future sampling occasions (or monitoring wells), we need to control the Type I error 
rate over all future sampling occasions, all monitoring wells, and all constituents 
(chemicals and physical properties) we monitor.  USEPA (2009, Chap. 19) gives 
guidelines for setting the confidence level in order to control the annual SWFPR 
( ), and suggests setting the annual SWFPR to 10 % (USEPA 2009, pp. 6–4). 

For parametric simultaneous prediction intervals, USEPA (2009) suggests  
using a confidence level based on adjusting for the number of well-constituent pairs, 
i.e., the number of monitoring wells (nw) times the number of constituents (nc): 

 ( ) ( )11 100%w cn nConfidence Level =  (6.4) 

In this case, the number of future observations r is set to the number of evaluations 
per year (nE), so for annual evaluations r = 1, semi-annual evaluations r = 2, etc. 

For nonparametric simultaneous prediction intervals, for performing interwell 
tests in which all monitoring wells are compared to the same background  
data, USEPA (2009) suggests using a confidence level based on adjusting for the  
number of constituents: 

 ( )11 100%cnConfidence Level =  (6.5) 

and setting the number of future sampling occasions r to the product of the number 
of wells (nw) and the number of evaluations per year (nE).  For performing 
intrawell tests in which each monitoring well is compared to its own background 
data, USEPA (2009) suggests using the confidence level defined in Eq. 6.4 above. 
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6.3.1 Simultaneous Prediction Intervals for a Normal 
Distribution 

Using the background period arsenic data introduced in Sect. 6.2.1 and assuming 
there are nw = 20 compliance wells to be monitored semi-annually (i.e., r = 2), a 
total of nc = 10 constituents (including arsenic), and negligible spatial variability 
so that you can use interwell testing, we can construct 90 % upper simultaneous 
prediction limits based on various rules.  Here we will consider the 1-of-2 rule, the 
1-of-3 rule, the Modified California rule, and the 1-of-2 rule based on means of 
order 2.  Using Eq. 6.4, the confidence level is set to 99.94733%: 

> nw <- 20 

> nc <- 10 

> conf.level <- (1 - 0.1)^(1 / (nc * nw)) 

> conf.level 

[1] 0.9994733 

Now use the background period arsenic data to construct the upper prediction limit 
for each of the rules.  For the 1-of-2 rule, the upper limit is 80.1 ppb: 

> attach(EPA.09.Ex.18.1.arsenic.df)  #If not already attached 

> As.Bkgrd <- Arsenic.ppb[Sampling.Period == "Background"] 

> predIntNormSimultaneous(As.Bkgrd, k = 1, m = 2, r = 2,  
rule = "k.of.m", pi.type = "upper",  
conf.level = conf.level) 

Results of Distribution Parameter Estimation 
-------------------------------------------- 
 
Assumed Distribution:            Normal 
 
Estimated Parameter(s):          mean = 27.51667 
                                 sd   = 17.10119 
 
Estimation Method:               mvue 
 
Data:                            As.Bkgrd 
 
Sample Size:                     12 
 
Prediction Interval Method:      exact  
 
Prediction Interval Type:        upper 
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Confidence Level:                99.94733% 
 
Minimum Number of 
Future Observations 
Interval Should Contain 
(per Sampling Occasion):         1 
 
Total Number of 
Future Observations 
(per Sampling Occasion):         2 
 
Number of Future 
Sampling Occasions:              2 
 
Prediction Interval:             LPL =     -Inf 
                                 UPL = 80.09079 

For the 1-of-3 rule the limit is 65.3 ppb: 

> predIntNormSimultaneous(As.Bkgrd, k = 1, m = 3, r = 2,  
rule = "k.of.m", pi.type = "upper",  
conf.level = conf.level)$interval$limits["UPL"] 

     UPL 
65.29204 

for the Modified California rule the limit is 71.1 ppb: 

> predIntNormSimultaneous(As.Bkgrd, r = 2,  
rule = "Modified.CA", pi.type = "upper",  
conf.level = conf.level)$interval$limits["UPL"] 

     UPL  
71.11351 

and for the 1-of-2 rule using means of order 2 the limit is 67.5 ppb: 

> predIntNormSimultaneous(As.Bkgrd, n.mean = 2, k = 1,  
m = 2, r = 2, rule = "k.of.m", pi.type = "upper",  
conf.level = conf.level)$interval$limits["UPL"] 

     UPL  
67.54322 

Using the following commands, we can construct a data frame showing the 
upper prediction limits for each of the rules, along with the power of detecting a 
change in concentration of three standard deviations at any of the 20 compliance 
wells during the course of a year, as well as the total number of potential samples 
that may have to be taken. 
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> n <- sum(!is.na(As.Bkgrd)) 

> rule.vec <- c("k.of.m", "k.of.m", "Modified.CA", "k.of.m") 

> n.mean.vec <- c(1, 1, 1, 2) 

> m.vec <- c(2, 3, 4, 2) 

> n.rules <- length(rule.vec) 

> UPL.vec <- rep(as.numeric(NA), n.rules) 

> for(i in 1:n.rules)  
UPL.vec[i] <- predIntNormSimultaneous(As.Bkgrd,  
n.mean = n.mean.vec[i], k = 1, m = m.vec[i], r = 2,  
rule = rule.vec[i], pi.type = "upper",  
conf.level = conf.level)$interval$limits["UPL"] 

> Power.vec <- predIntNormSimultaneousTestPower(n = n,  
k = 1, m = m.vec, n.mean = n.mean.vec, r = 2,  
rule = rule.vec, delta.over.sigma = 3,  
pi.type = "upper", conf.level = conf.level) 

> data.frame(Rule = rule.vec, k = rep(1, n.rules),  
m = m.vec, N.Mean = n.mean.vec, UPL = round(UPL.vec, 1), 
Power = round(Power.vec, 2),  
Total.Samples = n.mean.vec * m.vec * r) 

         Rule k m N.Mean  UPL Power Total.Samples 
1      k.of.m 1 2      1 80.1  0.46             4 
2      k.of.m 1 3      1 65.3  0.70             6 
3 Modified.CA 1 4      1 71.1  0.70             8 
4      k.of.m 1 2      2 67.5  0.81             8 

We can see that the 1-of-2 rule using means of order 2 gives the highest power 
(81 %) for detecting a change in concentration of three standard deviations at any 
of the 20 compliance wells during the course of a year, but it may potentially  
involve taking up to eight samples during the course of the year, which might not 
be feasible either in terms of avoiding temporal correlation or in terms of the time 
and cost involved to collect so many samples.  On the other hand, although the  
1-of-2 rule for future single observations requires the least number of potential 
samples, it has poor power (46 %). 

6.3.2 Simultaneous Prediction Intervals for a Lognormal 
Distribution 

Just as for a standard prediction interval for a lognormal distribution, a simultaneous 
prediction interval for a lognormal distribution is constructed by simply taking the 
natural logarithm of the observations and constructing a simultaneous prediction 
interval based on the normal distribution, then exponentiating the prediction limits 
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to produce a simultaneous prediction interval on the original scale of the data.   
To construct a simultaneous prediction interval for a lognormal distribution  
you can use the ENVSTATS functions predIntLnormSimultaneous or 
predIntLnormAltSimultaneous. 

USEPA (2009) contains an example on page 19–17 in which sulfate concen-
trations (mg/l) are to be monitored at nw = 50 compliance wells on a semi-annual 
basis.  There are nc = 10 constituents total (including sulfate), and negligible  
spatial variability so that you can use interwell testing.  Because the regulating  
authority will only allow up to two resamples per exceedence of the background 
concentration limit, we cannot consider a 1-of-4 or Modified California rule.  Here 
we will look at the 1-of-2 and 1-of-3 plan.  The n = 25 background sulfate obser-
vations are stored in the data frame EPA.09.Ex.19.1.sulfate.df in 
EnvStats: 

> EPA.09.Ex.19.1.sulfate.df[ , -(2:4)] 

    Well       Date Sulfate.mg.per.l log.Sulfate.mg.per.l 
1  GW-01 1999-07-08             63.0             4.143135 
2  GW-01 1999-09-12             51.0             3.931826 
3  GW-01 1999-10-16             60.0             4.094345 
… 
23 GW-09 2000-10-24             85.5             4.448516 
24 GW-09 2002-12-01            188.0             5.236442 
25 GW-09 2003-03-24            150.0             5.010635 

A check for normality of the pooled background sulfate measurements indicates a 
log transformation is appropriate.  Using Eq. 6.4, the confidence level is set to 
99.97893 %: 

> nw <- 50 

> nc <- 10 

> conf.level <- (1 - 0.1)^(1 / (nc * nw)) 

> conf.level 

[1] 0.9997893 

We can compare the power of detecting a change in concentration of three standard 
deviations (on the log scale) at any of the 50 compliance wells during the course 
of a year for the 1-of-2 rule versus the 1-of-3 rule: 

> predIntNormSimultaneousTestPower(n = 25, k = 1, m = 2:3,  
r = 2, rule = "k.of.m", delta.over.sigma = 3,  
pi.type = "upper", conf.level = conf.level) 

[1] 0.5776416 0.8023368 

Since the power of the 1-of-3 test is much better than the 1-of-2 test, we will  
compute the upper prediction limit based on the 1-of-3 test. 
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> with(EPA.09.Ex.19.1.sulfate.df, 
predIntLnormSimultaneous(Sulfate.mg.per.l,  
k = 1, m = 3, r = 2, rule = "k.of.m", pi.type = "upper",  
conf.level = conf.level)) 

Results of Distribution Parameter Estimation 
-------------------------------------------- 
 
Assumed Distribution:            Lognormal 
 
Estimated Parameter(s):          meanlog = 4.3156194 
                                 sdlog   = 0.3756697 
 
Estimation Method:               mvue 
 
Data:                            Sulfate.mg.per.l 
 
Sample Size:                     25 
 
Prediction Interval Method:      exact  
 
Prediction Interval Type:        upper 
 
Confidence Level:                99.97893% 
 
Minimum Number of 
Future Observations 
Interval Should Contain 
(per Sampling Occasion):         1 
 
Total Number of 
Future Observations 
(per Sampling Occasion):         3 
 
Number of Future 
Sampling Occasions:              2 
 
Prediction Interval:             LPL =   0.0000 
                                 UPL = 159.5497 

So for each of the semi-annual sampling occasions and each of the 50 compliance 
wells, if a sulfate concentration is greater than 159.5 mg/l for the first sample, then 
you need to re-sample and compare again to 159.5 mg/l.  If the first re-sample is 
above this limit you need to take a second re-sample.  If the second re-sample is 
also above this limit, then you can declare contamination. 
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6.3.3 Simultaneous Prediction Intervals for a Gamma 
Distribution 

Again, following the suggestion of Singh et al. (2002, 2010a, b), instead of assuming 
a lognormal distribution for the data in the example of the previous section, we 
could instead assume the data follow a gamma distribution.  A goodness-of-fit test 
indicates the pooled background sulfate measurements fit a gamma distribution.  
The upper prediction limit based on the 1-of-3 test is 153.2 mg/l as compared to 
159.5 g/l assuming a lognormal distribution: 

> with(EPA.09.Ex.19.1.sulfate.df, 
predIntGammaSimultaneous(Sulfate.mg.per.l,  
k = 1, m = 3, r = 2, rule = "k.of.m", pi.type = "upper",  
conf.level = conf.level)$interval$limits["UPL"] 

     UPL 
153.3232 

6.3.4 Simultaneous Nonparametric Prediction Intervals 
Chou and Owen (1986) developed the theory for nonparametric simultaneous  
prediction limits for various rules, including the 1-of-m rule.  Their theory, however, 
does not cover the California or Modified California rules, and uses an r-fold 
summation involving a minimum of 2r terms.  Davis and McNichols (1994b, 
1999) extended the results of Chou and Owen (1986) to include the California and 
Modified California rule, and developed algorithms that involve summing far 
fewer terms. 

Like a standard nonparametric prediction interval, a simultaneous nonparametric 
prediction interval is based on the order statistics from the sample.  For a one-sided 
upper simultaneous nonparametric prediction interval, the upper prediction limit is 
usually the largest observation in the background data, but it could be the next 
largest or any other order statistic.  Similarly, for a one-sided lower simultaneous 
nonparametric prediction interval, the lower prediction limit is usually the smallest 
observation.  Simultaneous nonparametric prediction intervals can also be extended 
to the case of predicting future medians instead of future observations. 

Event BG-1 BG-2 BG-3 BG-4 CW-1 CW-2 
1  0.21 <0.2 <0.2 <0.2 0.22 0.36 
2 <0.2 <0.2 0.23 0.25 0.20 0.41 
3 <0.2 <0.2 <0.2 0.28 <0.2 0.28 
4 <0.2  0.21 0.23 <0.2 0.25 0.45 
5 <0.2 <0.2 0.24 <0.2 0.24 0.43 
6   <0.2 0.54 

Table 6.5 Mercury data (ppb) from groundwater monitoring wells 

USEPA (2009) contains an example on page 19–33 in which mercury concen-
trations (ppb) are to be monitored at nw = 10 compliance wells on an annual basis.  
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There are nc = 5 constituents total (including mercury), and negligible spatial  
variability so that you can use interwell testing.  Table 6.5 shows the n = 20  
background observations (collected from four different wells), along with data 
from two of the 10 compliance wells.  These data are stored in the data frame 
EPA.09.Ex.19.5.mercury.df in ENVSTATS. 

> EPA.09.Ex.19.5.mercury.df 

   Event Well  Well.type Mercury.ppb.orig Mercury.ppb Censored 

1      1 BG-1 Background             0.21        0.21    FALSE 

2      2 BG-1 Background              <.2        0.20     TRUE 

… 

35     5 CW-2 Compliance             0.43        0.43    FALSE 

36     6 CW-2 Compliance             0.54        0.54    FALSE 

Because there are so many non-detect values, we need to use a nonparametric  
approach.  Using Eq. 6.5, the confidence level is set to 97.91484 %, and the  
corresponding per-test Type I error rate is 2.085164 %: 

> nc <- 5 

> conf.level <- (1 - 0.1)^(1 / nc) 

> conf.level 

[1] 0.9791484 

> alpha <- 1 – conf.level 

> alpha 

[1] 0.02085164 

The number of future sampling occasions r is set to the product of the number of 
compliance wells and the number of evaluations per year: 

> nw <- 10 

> ne <- 1 

> r <- nw * ne 

Now we need to determine which sampling plans will yield a per-test Type I error 
less than or equal to the required 2.1 % level.  Here we will consider six candidate 
rules: 

1) 1-of-2 
2) 1-of-3 
3) 1-of-4 
4) Modified California 
5) 1-of-1 for the median of 3 future values.  (This plan is equivalent to the 

2-of-3 plan for single observations.) 
6) 1-of-2 for the median of 3 future values. 
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and we will consider using the maximum, second largest, or third largest value of 
the background data as the upper simultaneous prediction limit (i.e., a total of 18 
candidate sampling plans).  First we will create some data objects that store  
information about the six different rules: 

> rule.vec <- c(rep("k.of.m", 3), "Modified.CA", 
rep("k.of.m", 2)) 

> k.vec <- rep(1, 6) 

> m.vec <- c(2:4, 4, 1, 2) 

> n.median.vec <- c(rep(1, 4), rep(3, 2)) 

> n.plans <- length(rule.vec) 

Next we’ll compute the per-test Type I error associated with using the maximum 
value of the background data as the upper simultaneous prediction limit: 

> n <- 20 

> alpha.vec.Max <- 1 - predIntNparSimultaneousConfLevel( 
n = n, n.median = n.median.vec, k = k.vec, m = m.vec,  
r = r, rule = rule.vec, pi.type = "upper") 

Next we’ll compute the per-test Type I error associated with using the second 
largest and third largest value of the background data as the upper simultaneous 
prediction limit.  The code for this looks just like the code above, except that we 
set the argument n.plus.one.minus.upl.rank equal to 2 or 3: 

> alpha.vec.2nd <- 1 - predIntNparSimultaneousConfLevel( 
n = n, n.median = n.median.vec, k = k.vec, m = m.vec,  
r = r, rule = rule.vec, pi.type = "upper", 
n.plus.one.minus.upl.rank = 2) 

> alpha.vec.3rd <- 1 - predIntNparSimultaneousConfLevel( 
n = n, n.median = n.median.vec, k = k.vec, m = m.vec,  
r = r, rule = rule.vec, pi.type = "upper", 
n.plus.one.minus.upl.rank = 3) 

Now create a data frame listing all 18 of the plans, their associated per-test Type I 
error rate, and their associated upper prediction limit: 

> attach(EPA.09.Ex.19.5.mercury.df) 

> Bkgd.Hg.Sorted <- sort(Mercury.ppb[ 
Well.type == "Background"], decreasing = TRUE) 
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> Candidate.Plans.df <- data.frame(Rule = rep(rule.vec, 3), k 
= rep(k.vec, 3), m = rep(m.vec, 3),  
Median.n = rep(n.median.vec, 3), Order.Statistic =  
rep(c("Max", "2nd", "3rd"), each = n.plans), 
Achieved.alpha = round(c(alpha.vec.Max, alpha.vec.2nd,  
                         alpha.vec.3rd), 4),  
BG.Limit = rep(Bkgd.Hg.Sorted[1:3], each = n.plans)) 

> Candidate.Plans.df 

          Rule k m Median.n Order.Statistic Achieved.alpha BG.Limit 

1       k.of.m 1 2        1             Max         0.0395     0.28 

2       k.of.m 1 3        1             Max         0.0055     0.28 

3       k.of.m 1 4        1             Max         0.0009     0.28 

4  Modified.CA 1 4        1             Max         0.0140     0.28 

5       k.of.m 1 1        3             Max         0.0961     0.28 

6       k.of.m 1 2        3             Max         0.0060     0.28 

7       k.of.m 1 2        1             2nd         0.1118     0.25 

8       k.of.m 1 3        1             2nd         0.0213     0.25 

9       k.of.m 1 4        1             2nd         0.0046     0.25 

10 Modified.CA 1 4        1             2nd         0.0516     0.25 

11      k.of.m 1 1        3             2nd         0.2474     0.25 

12      k.of.m 1 2        3             2nd         0.0268     0.25 

13      k.of.m 1 2        1             3rd         0.2082     0.24 

14      k.of.m 1 3        1             3rd         0.0516     0.24 

15      k.of.m 1 4        1             3rd         0.0135     0.24 

16 Modified.CA 1 4        1             3rd         0.1170     0.24 

17      k.of.m 1 1        3             3rd         0.4166     0.24 

18      k.of.m 1 2        3             3rd         0.0709     0.2 

Eliminate plans that do not achieve the required per-test Type I error rate of 2.1 %: 

> index <- Candidate.Plans.df$Achieved.alpha <= alpha 

> Candidate.Plans.df <- Candidate.Plans.df[index, ] 

> Candidate.Plans.df 

          Rule k m Median.n Order.Statistic Achieved.alpha BG.Limit 

2       k.of.m 1 3        1             Max         0.0055     0.28 

3       k.of.m 1 4        1             Max         0.0009     0.28 

4  Modified.CA 1 4        1             Max         0.0140     0.28 

6       k.of.m 1 2        3             Max         0.0060     0.28 

9       k.of.m 1 4        1             2nd         0.0046     0.25 

15      k.of.m 1 4        1             3rd         0.0135     0.24 

For the plans based on predicting individual observations, the ones that achieve 
the required per-test Type I error level are the 1-of-3 and the Modified California 



140     6. Prediction and Tolerance Intervals 

 

 

using the maximum background value, and the 1-of-4 using the maximum, second 
largest, or third largest background value.  For plans based on predicting medians, 
only the 1-of-2 plan using the maximum background level meets the required  
per-test Type I error rate. 

Looking at the six final candidate plans above and comparing them to the data 
for the two compliance wells in Table 6.5, we see that the first compliance well 
passes for each of the six plans since the first observed value is 0.22 ppb which is 
less than the upper simultaneous prediction limit for all of the plans.  The second 
compliance well only passes for the first two plans and fails the last four. 

One step that we did not perform yet was to look at the power of each plan 
(something that normally is done prior to choosing a specific plan to use and prior 
to actually comparing compliance well data to the upper prediction limit).  In  
order to compute power, you need to make an assumption about the distribution of 
the background data.  Here we will assume a normal distribution and compute the 
power of detecting a change in concentration of three standard deviations at any of 
the 10 compliance wells during the course of a year, as well as the total number of 
potential samples that may have to be taken. 

> Power.vec <- predIntNparSimultaneousTestPower(n = n, 
n.median = Candidate.Plans.df[, "Median.n"],  
k = Candidate.Plans.df[, "k"],  
m = Candidate.Plans.df[, "m"], r = r,  
rule = as.character(Candidate.Plans.df[, "Rule"]), 
n.plus.one.minus.upl.rank = match(Candidate.Plans.df[,  
    "Order.Statistic"] , c("Max", "2nd", "3rd")), 
delta.over.sigma = 3, pi.type = "upper", r.shifted = 1, 
distribution = "norm", method = "approx") 

> data.frame(Candidate.Plans.df[, c("Rule", "k", "m", 
"Median.n", "Order.Statistic")],  
Power = round(Power.vec, 2), Total.Samples = 
Candidate.Plans.df$Median.n * Candidate.Plans.df$m * ne) 

          Rule k m Median.n Order.Statistic Power Total.Samples 

2       k.of.m 1 3        1             Max  0.65             3 

3       k.of.m 1 4        1             Max  0.58             4 

4  Modified.CA 1 4        1             Max  0.81             4 

6       k.of.m 1 2        3             Max  0.91             6 

9       k.of.m 1 4        1             2nd  0.78             4 

15      k.of.m 1 4        1             3rd  0.87             4 

The first two plans (under which the second compliance well passed) have the 
lowest power.  The plan with the highest power, the 1-of-2 for medians of order 3, 
also requires the most potential resampling. 
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6.4 Tolerance Intervals 
A tolerance interval for some population is an interval on the real line constructed 
so as to contain 100 % of the population (i.e., 100 % of all future observations), 
where 0 <  < 1 (usually  is bigger than 0.5).  The quantity 100 % is called the 
coverage.  (Note:  Do not confuse our use of the symbol  here with the probability 
of a Type II error.  The symbol  is used here to be consistent with previous litera-
ture on tolerance intervals.)  Table 6.6 lists the functions available in ENVSTATS for 
constructing tolerance intervals. 

Distribution Function name Description 
Gamma tolIntGamma 

tolIntGammaAlt 
Construct a tolerance interval for a gamma  
distribution 

Normal tolIntNorm Construct a tolerance interval for a normal  
distribution 

 tolIntNormK Compute the value of K for a tolerance interval for a 
normal distribution 

Lognormal tolIntLnorm 
tolIntLnormAlt 

Construct a tolerance interval for a lognormal distri-
bution 

Poisson tolIntPois Construct a tolerance interval for a Poisson distribu-
tion 

Nonparametric tolIntNpar Construct a nonparametric tolerance interval 

Table 6.6 Functions in ENVSTATS for constructing tolerance intervals 

As with a prediction interval, the basic idea of a tolerance interval is to assume 
a particular probability distribution (e.g., normal, lognormal, etc.) for some  
process generating the data (e.g., quarterly observations of chemical concentra-
tions in groundwater), compute sample statistics from a baseline sample, and then 
use these sample statistics to construct a tolerance interval, assuming the distribu-
tion of the data does not change in the future.  For example, if X denotes a random 
variable from some population, and we know what the population looks like (e.g., 
N(10, 2)) so we can compute the quantiles of the population, then a 100 %  
two-sided tolerance interval is given by: 

 1 2 2,x x  (6.6) 

where xp denotes the pth quantile of the distribution of X.  Similarly, a 100 % 
one-sided upper tolerance interval is given by: 

 , x  (6.7) 

and a 100 % one-sided lower tolerance interval is given by: 

 1 ,x  (6.8) 

Note that in the case when the distribution of X is known, a 100 % tolerance  
interval is exactly the same as a (1 )100 % prediction interval for k = 1 future 
observation, where  = 1  (see Eq. 6.1, 6.2, and 6.3). 
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Usually the true distribution of X is unknown, so the values of the tolerance 
limits have to be estimated based on estimating the parameters of the distribution 
of X.  In this case, a tolerance interval is a random interval; that is, the lower 
and/or upper bounds are random variables computed based on sample statistics in 
the baseline sample.  Given this uncertainty in the bounds, there are two ways to 
construct tolerance intervals (Guttman 1970): 

• A -content tolerance interval with confidence level (1 )100 % is  
constructed so that it contains at least 100 % of the population (i.e., the 
coverage is at least 100 %) with probability (1 )100 %. 

• A -expectation tolerance interval is constructed so that it contains on av-
erage 100 % of the population (i.e., the average coverage is 100 %). 

A -expectation tolerance interval with coverage 100 % is equivalent to a 
prediction interval for k = 1 future observation with associated confidence level 

100 %.  Note that there is no explicit confidence level associated with a  
-expectation tolerance interval.  If a -expectation tolerance interval is treated as 

a -content tolerance interval, the confidence level associated with this tolerance 
interval is usually around 50 % (e.g., Guttman 1970).  Thus, a -content tolerance 
interval with coverage 100 % will usually be wider than a -expectation toler-
ance interval with the same coverage if the confidence level associated with the  

-content tolerance interval is more than 50 %. 
It can be shown (e.g., Conover 1980) that an upper confidence interval for the 

pth quantile with confidence level (1 )100 % is equivalent to an upper -content 
tolerance interval with coverage 100p % and confidence level (1 )100 %.   
Also, a lower confidence interval for the pth quantile with confidence level 
(1 )100 % is equivalent to a lower -content tolerance interval with coverage 
100(1 p) % and confidence level (1 )100 %. 

Tolerance intervals have long been applied to quality control and life testing 
problems.  In environmental monitoring, USEPA has in the past proposed using 
tolerance intervals in at least two different ways:  compliance-to-background 
comparisons and compliance-to-fixed standard comparisons.  However, current 
guidance (USEPA 2009) recommends using prediction intervals or confidence  
intervals in place of tolerance intervals except in the case when concentrations at 
compliance wells need to be compared to a groundwater protection standard 
(GWPS) and background concentrations are themselves above the GWPS (see 
USEPA 2009, pp. 6–46, 7–21). 

6.4.1 Tolerance Intervals for a Normal Distribution 
Section 5.3.1 contains an example in which an MCL of 30 ppb for aldicarb should 
not be exceeded more than 5 % of the time.  Using the data from three groundwa-
ter monitoring compliance wells (four monthly samples at each well) stored in 
EPA.09.Ex.21.1.aldicarb.df, first we assume the facility is in compli-
ance/assessment monitoring, so we compute a lower 99 % confidence limit for the 
95th percentile for the distribution at each of the three compliance wells, yielding 
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25.3, 25.7, and 5.5 ppb.  This is equivalent to computing a lower -content  
tolerance limit with coverage 5 % and associated confidence level of 99 %.  Here 
are the results for the first well: 

> Aldicarb <- EPA.09.Ex.21.1.aldicarb.df$Aldicarb.ppb 

> Well <- EPA.09.Ex.21.1.aldicarb.df$Well 

> tolIntNorm(Aldicarb[Well == "Well.1"], coverage = 0.05, 
ti.type = "lower", conf.level = 0.99) 

Results of Distribution Parameter Estimation 
-------------------------------------------- 
 
Assumed Distribution:            Normal 
 
Estimated Parameter(s):          mean = 23.10000 
                                 sd   =  4.93491 
 
Estimation Method:               mvue 
 
Data:                            Aldicarb[Well == "Well.1"] 
 
Sample Size:                     4 
 
Tolerance Interval Coverage:     5% 
 
Coverage Type:                   content 
 
Tolerance Interval Method:       Exact 
 
Tolerance Interval Type:         lower 
 
Confidence Level:                99% 
 
Tolerance Interval:              LTL = 25.28550 
                                 UTL =      Inf 

Here are the results for wells 2 and 3: 

> tolIntNorm(Aldicarb[Well = ="Well.2"], coverage = 0.05, 
ti.type = "lower",  
conf.level = 0.99)$interval$limits["LTL"] 

     LTL 
25.66086 
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> tolIntNorm(Aldicarb[Well == "Well.3"], coverage = 0.05, 
ti.type = "lower",  
conf.level = 0.99)$interval$limits["LTL"] 

    LTL 
5.45563 

Instead of calling tolIntNorm three separate times, you can instead just use the 
following single command: 

> sapply(split(Aldicarb, Well), function(x) { 
tolIntNorm(x, coverage = 0.05, ti.type = "lower", 
conf.level = 0.99)$interval$limits["LTL"]}) 

Well.1.LTL Well.2.LTL Well.3.LTL 
  25.28550   25.66086    5.45563 

Since none of the LTLs is above the 30 ppb MCL, no corrective action is needed.  
In the second part of the example, however, we assume the site is in corrective  
action monitoring, and we compute the one-sided 99 % upper confidence limit for 
the 95th percentile and compare that to the MCL.  This is equivalent to computing 
an upper -content tolerance limit with coverage 95 % and associated confidence 
level of 99 %. 

> sapply(split(Aldicarb, Well), function(x) { 
tolIntNorm(x, coverage = 0.95, ti.type = "upper", 
conf.level = 0.99)$interval$limits["UTL"]}) 

Well.1.UTL Well.2.UTL Well.3.UTL 
  67.92601   45.38336   23.61286 

In this case there is evidence that corrective action is still needed at Wells 1 and 2 
since the UTL is greater than 30 ppb.  Of course, a major problem in this whole 
example is the very small sample size at each well (n = 4) used to compute the  
intra-well tolerance limit. 

6.4.2 Tolerance Intervals for a Lognormal Distribution 
In Sect. 6.2.2 we computed a prediction interval to compare the TcCB concentra-
tions between the Cleanup and Reference areas (see Figs. 1.1, 1.2, and 1.3 in Sect. 
1.11.3).  Based on the data from the Background area, the one-sided upper 95 % 
prediction limit for the next k = 77 observations (there are 77 observations in the 
Cleanup area) is 2.68 ppb.  There are seven observations in the Cleanup area larger 
than 2.68, so the prediction interval indicates residual contamination is present in 
the Cleanup area. 

Some guidance documents suggest constructing a one-sided upper tolerance 
interval based on the Reference area and comparing all of the observations  
from the Cleanup area to the upper tolerance limit.  This is sometimes called the  
“Hot-Measurement Comparison” (USEPA 1994b).  Millard et al. (2014) explain 
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why this method should never be used because you do not know the true Type I 
error rate.  In this case, the one-sided upper 95 % -content tolerance limit with 
associated confidence level 95 % is 1.42 ppb (versus 2.68 ppb for the upper  
prediction limit). 

> with(EPA.94b.tccb.df,  
tolIntLnorm(TcCB[Area == "Reference"], coverage = 0.95, 
ti.type = "upper", conf.level = 0.95)) 

Results of Distribution Parameter Estimation 
-------------------------------------------- 
 
Assumed Distribution:            Lognormal 
 
Estimated Parameter(s):          meanlog = -0.6195712 
                                 sdlog   =  0.4679530 
 
Estimation Method:               mvue 
 
Data:                            TcCB[Area == "Reference"] 
 
Sample Size:                     47 
 
Tolerance Interval Coverage:     95% 
 
Coverage Type:                   content 
 
Tolerance Interval Method:       Exact 
 
Tolerance Interval Type:         upper 
 
Confidence Level:                95% 
Tolerance Interval:              LTL = 0.000000 
                                 UTL = 1.424970 

Example 17-3 of USEPA (2009, p. 17-17) presents a similar example using 
groundwater monitoring data on chrysene concentrations from two background 
wells and three compliance wells.  In EnvStats theses data are stored in 
EPA.09.Ex.17.3.chrysene.df. 

> EPA.09.Ex.17.3.chrysene.df 

   Month   Well  Well.type Chrysene.ppb 
1      1 Well.1 Background         19.7 
2      2 Well.1 Background         39.2 
3      3 Well.1 Background          7.8 
… 
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18     2 Well.5 Compliance         30.5 
19     3 Well.5 Compliance         15.0 
20     4 Well.5 Compliance         23.4 

A check on the distribution of the background well concentrations indicates the 
data are right-skewed and can be modeled with a lognormal distribution.  The  
one-sided upper 95 % -content tolerance limit with associated confidence level 
95 % is 90.9 ppb, and since none of the concentrations at the compliance wells is 
larger than this there is no evidence of contamination.  Again, this method should 
never be used because you do not know the true Type I error rate. 

> with(EPA.09.Ex.17.3.chrysene.df, 
tolIntLnorm(Chrysene.ppb[Well.type == "Background"], 
coverage = 0.95, ti.type = "upper",  
conf.level = 0.95))$interval$limits["UTL"] 

    UTL 
90.9247 

6.4.3 Tolerance Intervals for a Gamma Distribution 
You can use the EnvStats functions tolIntGamma or tolIntGammaAlt  
to construct tolerance intervals assuming a gamma distribution.  The upper 95 % 
tolerance interval based on the Reference area TcCB data is 1.33 ppb, as opposed 
to is 1.42 ppb assuming a lognormal distribution: 

> with(EPA.94b.tccb.df,  
tolIntGamma(TcCB[Area == "Reference"],  
coverage = 0.95, ti.type = "upper",  
conf.level = 0.95))$interval$limits["UTL"] 

     UTL 
1.325023 

6.4.4 Nonparametric Tolerance Intervals 
You can construct tolerance intervals without making any assumption about the 
distribution of the background data, except that the distribution is continuous.  
These kinds of tolerance intervals are called nonparametric tolerance intervals.  
Of course, nonparametric tolerance intervals still require the assumption that the 
distribution of future observations is the same as the distribution of the observa-
tions used to create the tolerance interval.  Just as for nonparametric prediction  
intervals, nonparametric tolerance intervals are based on the ranked data. 

Example 17-4 of USEPA (2009, pp. 17–21) contains copper concentration data 
from three background wells and two compliance wells as shown in Table 6.7  
below: 
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 Background Compliance 
Month Well 1 Well 2 Well 3 Well 4 Well 5 

1 <5 9.2 <5
2 <5 <5 5.4
3  7.5 <5 6.7
4 <5 6.1 <5
5 <5 8.0 <5 6.2 <5
6 <5 5.9 <5 <5 <5
7  6.4 <5 <5 7.8 5.6
8  6.0 <5 <5 10.4 <5

Table 6.7 Copper concentrations (ppb) from groundwater monitoring wells 

In EnvStats these data are stored in EPA.09.Ex.17.4.copper.df: 

> EPA.09.Ex.17.4.copper.df 

   Month   Well  Well.type Copper.ppb.orig Copper.ppb Censored 

1      1 Well.1 Background              <5        5.0     TRUE 

2      2 Well.1 Background              <5        5.0     TRUE 

3      3 Well.1 Background             7.5        7.5    FALSE 

… 

38     6 Well.5 Compliance              <5        5.0     TRUE 

39     7 Well.5 Compliance             5.6        5.6    FALSE 

40     8 Well.5 Compliance              <5        5.0     TRUE 

Because of the large percentage of non-detects, a nonparametric approach is used.  
In this example the 95 % confidence upper tolerance limit is computed using the 
maximum value of the background wells (i.e., 9.2 ppb) with the idea that this limit 
will be used as a threshold value for concentrations observed in the two com-
pliance wells (i.e., if any concentrations at the compliance wells exceed this  
limit, this indicates there may be contamination in the groundwater).  This is the  
“Hot-Measurement Comparison,” and as already discussed above there are some 
major problems with this technique. 

> with(EPA.09.Ex.17.4.copper.df,  
tolIntNpar(Copper.ppb[Well.type == "Background"], 
conf.level = 0.95, ti.type = "upper", lb = 0) 

Results of Distribution Parameter Estimation 
-------------------------------------------- 
 
Assumed Distribution:            None 
 
Data:                             
       Copper.ppb[Well.type == "Background"] 
 
Sample Size:                     24 
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Tolerance Interval Coverage:     88.26538% 
 
Coverage Type:                   content 
 
Tolerance Interval Method:       Exact 
 
Tolerance Interval Type:         upper 
 
Confidence Level:                95% 
 
Tolerance Limit Rank(s):         24  
 
Tolerance Interval:              LTL = 0.0 
                                 UTL = 9.2 

There is evidence of possible contamination at Well 4 because of the one value 
greater than 9.2 ppb.  However, the coverage associated with a nonparametric  
tolerance interval based on n = 24 observations is only 88 %, so the probability of 
a Type I error using this method is 12 %.  In order to obtain coverage of at least 
95 %, you would need 59 background samples: 

> tolIntNparN(ti.type = "upper", coverage = 0.95,  
conf.level = 0.95) 

[1] 59 

6.5 Summary 
• Any activity that requires comparing new values to “background” or 

“standard” values creates a decision problem:  if the new values greatly 
exceed the background or standard value, is this evidence of a true differ-
ence (i.e., is there contamination)? 

• Statistical tests are used as objective tools to decide whether a change has 
occurred.  For a monitoring program that involves numerous tests over 
time, figuring out how to balance the overall Type I error with the power 
of detecting a change is a multiple comparisons problem. 

• Prediction intervals and tolerance intervals are two tools that you can use 
to attempt to solve the multiple comparisons problem. 

• Table 6.1 lists the functions available in ENVSTATS for constructing  
prediction intervals. 

• Table 6.6 lists the functions available in ENVSTATS for constructing  
tolerance intervals. 

 



S.P. Millard, EnvStats: An R Package for Environmental Statistics,  149 
DOI 10.1007/978-1-4614-8456-1_7, © Springer Science+Business Media New York 2013 

Chapter 7 

Hypothesis Tests 

7.1 Introduction 
If you are comparing chemical concentrations between a background area and a 
potentially contaminated area, how different do the concentrations in these two 
areas have to be before you decide that the potentially contaminated area is in fact 
contaminated?  In the last chapter we showed how to use prediction and tolerance 
intervals to try to answer this question.  There are other kinds of hypothesis tests 
you can use as well.  R contains several functions for performing classical 
statistical hypothesis tests, such as t-tests, analysis of variance, linear regression, 
nonparametric tests, quality control procedures, and time series analysis (see the R 
documentation and help files).  ENVSTATS contains modifications of some of these 
functions (e.g., summaryStats and stripChart), as well as functions for 
statistical tests that are not included in R but that are used in environmental 
statistics, such as the Shapiro-Francia goodness-of-fit test, Kendall’s seasonal test 
for trend, and the quantile test for a shift in the tail of the distribution (see the help

chapter discusses these functions.  See Millard et al. (2014)

7.2 Goodness-of-Fit Tests 
Most commonly used parametric statistical tests assume the observations in the 
random sample come from a normal population.  In fact, the usual assumptions are 
that the observations are independent, the variance of the distribution is constant, 
and the distribution is normal.  These three assumptions are listed in decreasing 
importance with respect to maintaining the assumed Type I error (van Belle 2008; 
Millard et al. 2014).  So how do you know whether the assumption of a normal 
distribution is valid?  We saw in Chap. 3 how to make a visual assessment of this 
assumption using Q-Q plots.  Another way to verify this assumption is with a 
goodness-of-fit test, which lets you specify what kind of distribution you think the 
data come from and then compute a test statistic and a p-value. 

A goodness-of-fit test may be used to test the null hypothesis that the data 
come from a specific distribution, such as “the data come from a normal 
distribution with mean 10 and standard deviation 2,” or to test the more general 
null hypothesis that the data come from a particular family of distributions, such 
as “the data come from a lognormal distribution.”  Goodness-of-fit tests are 
mostly used to test the latter kind of hypothesis, since in practice we rarely know 
or want to specify the parameters of the distribution. 

file Hypothesis Tests). This 
for a more in-depth discussion of hypothesis tests. 
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In practice, goodness-of-fit tests may be of limited use for very large or very 
small sample sizes.  Almost any goodness-of-fit test will reject the null hypothesis 
of the specified distribution if the number of observations is very large, since 
“real” data are never distributed according to any theoretical distribution (Conover 
1980).  On the other hand, with only a very small number of observations, no test 
will be able to determine whether the observations appear to come from the 
hypothesized distribution or some other totally different looking distribution. 

Function Description 
gofTest Shapiro-Wilk, Shapiro-Francia, probability plot correlation 

coefficient (PPCC), and zero-skew goodness-of-fit tests for a 
normal, lognormal, three-parameter lognormal, zero-modified 
normal, or zero-modified lognormal (delta) distribution 
 
Wilk-Shapiro test for a uniform [0, 1] distribution 
 
Shapiro-Wilk type test for any continuous distribution 
available in EnvStats 
 
PPCC goodness-of-fit test for extreme value distribution 
 
Kolmogorov-Smirnov goodness-of-fit test to compare a 
sample with a specified probability distribution or to compare 
two samples 
 
Chi-square goodness-of-fit test for a specified probability 
distribution 

gofGroupTest Shapiro-Wilk, Shapiro-Francia, and PPCC goodness-of-fit 
tests for normality for two or more groups 

gofCensoredTest Shapiro-Wilk, Shapiro-Francia, and PPCC goodness-of-fit 
tests for normality for censored data 

Table 7.1 Functions in ENVSTATS for goodness-of-fit tests 

Table 7.1 shows the functions available in EnvStats for performing goodness-
of-fit tests.  The function gofTest lets you perform the one-sample Shapiro-
Wilk, Shapiro-Francia, or probability plot correlation coefficient (PPCC) 
goodness-of-fit test for normality.  You can also use this function to determine 
whether a set of observations appears to come from a lognormal, three-parameter 
lognormal, zero-modified normal, or zero-modified lognormal (delta) distribution.  
In addition, you can perform a Shapiro-Wilk type test to test for any continuous 
distribution that is available in EnvStats (see the help file for Distribution.df).  
This function also lets you perform the one-sample PPCC test for the extreme 
value distribution, as well as the Kolmogorov-Smirnov and chi-square goodness-
of-fit tests to compare a sample with any specified probability distribution.  The 
function gofGroupTest lets you test the assumption of normality for several 
groups of data simultaneously while controlling the overall Type I error.   
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The function gofCensoredTest lets you test the assumption of normality 
based on censored data, and the discussion of this function is deferred until the 
next chapter.  There are specific printing and plotting methods associated with the 
results of gofTest, gofGroupTest, and gofCensoredTest. 

7.2.1 One-Sample Goodness-of-Fit Tests for Normality 
In Chaps. 1 and 3 we saw that the Reference area TcCB data appear to come from 
a lognormal distribution based on a histogram (Fig. 1.2), an empirical cdf plot 
(Fig. 1.5), a normal Q-Q plot (Fig. 1.7), a Tukey mean-difference Q-Q plot  
(Fig. 1.8), and a plot of the probability plot correlation coefficient (PPCC) versus 

 for a variety of Box-Cox transformations (Fig. 3.7).  In Sect. 1.11.7 we showed 
the results of using the Shapiro-Wilk test to test the adequacy of the lognormal 
distribution.  Here we will formally test whether the Reference area TcCB data 
appear to come from a normal distribution versus a lognormal distribution, and in 
the call to gofTest for testing lognormality we will specify using the alternative 
parameterization of the lognormal distribution (i.e., estimating the mean and CV 
of the original distribution). 

> attach(EPA.94b.tccb.df) 

> TcCB.Ref <- TcCB[Area == "Reference"] 

> sw.list.norm <- gofTest(TcCB.Ref) 

> sw.list.norm 

Results of Goodness-of-Fit Test 
------------------------------- 
 
Test Method:                     Shapiro-Wilk GOF 
 
Hypothesized Distribution:       Normal 
 
Estimated Parameter(s):          mean = 0.5985106 
                                 sd   = 0.2836408 
 
Estimation Method:               mvue 
 
Data:                            TcCB.Ref 
 
Sample Size:                     47 
 
Test Statistic:                  W = 0.9176408 
 
Test Statistic Parameter:        n = 47 
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P-value:                         0.002768207 
 
Alternative Hypothesis:          True cdf does not equal the 
                                 Normal Distribution. 

> sw.list.lnormAlt <- gofTest(TcCB.Ref, dist = "lnormAlt") 

> sw.list.lnormAlt 

Results of Goodness-of-Fit Test 
------------------------------- 
 
Test Method:                     Shapiro-Wilk GOF 
 
Hypothesized Distribution:       Lognormal 
 
Estimated Parameter(s):          mean = 0.5989072 
                                 cv   = 0.4899539 
 
Estimation Method:               mvue 
 
Data:                            TcCB.Ref 
 
Sample Size:                     47 
 
Test Statistic:                  W = 0.978638 
 
Test Statistic Parameter:        n = 47 
 
P-value:                         0.5371935 
 
Alternative Hypothesis:          True cdf does not equal the 
                                 Lognormal Distribution. 

The p-value for the test of normality (p = 0.003) clearly indicates that we should 
not assume the Reference area TcCB data come from a normal distribution, but 
the assumption of a lognormal distribution appears to be adequate (p = 0.54).  
Figures 7.1 and 7.2 show companion plots for the results of the Shapiro-Wilk tests 
for normality and lognormality, respectively.  These plots include the observed 
distribution overlaid with the fitted distribution, the observed and fitted CDF, the 
normal Q-Q plot, and the results of the hypothesis test.  They were created with 
these commands: 

> plot(sw.list.norm) 

> plot(sw.list.lnormAlt) 
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Fig. 7.1 Companion plots for the Shapiro-Wilk test for normality for the Reference area 
TcCB data 

Fig. 7.2 Companion plots for the Shapiro-Wilk test for lognormality for the Reference area 
TcCB data 
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You can use the plot.type argument to specify particular plots.  For example, 
to generate a Tukey Mean-Difference Q-Q plot for the test of normality, you 
would type: 

> plot(sw.list.norm, plot.type = "Tukey") 

7.2.2 Testing Several Groups for Normality 
If you have several sets of observations you want to test for normality, you may 
encounter the multiple comparisons problem.  For example, regulations for 
monitoring groundwater at hazardous and solid waste sites may require per-
forming statistical analyses even when there are only small sample sizes at each 
monitoring well.  As we noted above, goodness-of-fit tests are not very useful 
with small sample sizes; there is simply not enough information to determine 
whether the data appear to come from the hypothesized distribution or not.  
Gibbons (1994) suggests pooling the measures from several upgradient wells to 
establish “background.”  Due to spatial variability, the wells may have different 
means and variances, yet you would like to test the assumption of a normal 
distribution for the chemical concentration at each of the upgradient wells. 

Wilk and Shapiro (1968) suggest two different test statistics for the problem of 
testing the normality of K separate groups, using the results of the Shapiro-Wilk 
test applied to random samples from each of the K groups.  Both test statistics are 
functions of the K p-values that result from performing the test on each of the K 
samples.  Under the null hypothesis that all K samples come from normal 
distributions, the p-values represent a random sample from a uniform distribution 
on the interval [0,1].  Since these two test statistics are based solely on the  
p-values, they are really meta-analysis statistics (Fisher and van Belle 1993), and 
can be applied to the problem of combining the results from K independent 
hypothesis tests, where the hypothesis tests are not necessarily goodness-of-fit 
tests.  You can use the function gofGroupTest for performing group tests for 
normality. 

Example 10-4 of USEPA (2009, pp. 10–20) involves looking at observations 
of nickel concentrations (ppb) collected over 5 months at 4 monitoring wells.  
These data are stored in the data frame EPA.09.Ex.10.1.nickel.df. 

> EPA.09.Ex.10.1.nickel.df 

   Month   Well Nickel.ppb 
1      1 Well.1       58.8 
2      3 Well.1        1.0 
… 
19     8 Well.4       10.0 
20    10 Well.4      637.0 

Figure 7.3 displays the observations for each well, and Fig. 7.4 displays the log-
transformed observations, created with these commands: 



 7.2. Goodness-of-Fit Tests     155  

Well.1 Well.2 Well.3 Well.4

0
20

0
40

0
60

0
80

0

N
ic

ke
l (

pp
b)

n=5

Mean= 77.3
SD   =106.6

n=5

Mean=102.0
SD   =131.3

n=5

Mean=163.3
SD   =237.9

n=5

Mean=335.5
SD   =429.4

 
Fig. 7.3 Nickel concentrations (ppb) by well 

Well.1 Well.2 Well.3 Well.4

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

lo
g 1

0[ 
N

ic
ke

l (
pp

b)
 ]

n=5

Mean=1.4
SD   =0.9

n=5

Mean=1.7
SD   =0.5

n=5

Mean=1.9
SD   =0.6

n=5

Mean=1.8
SD   =1.1

 
Fig. 7.4 Log-transformed nickel concentrations by well 
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> stripChart(Nickel.ppb ~ Well, col = 1:4,  
data = EPA.09.Ex.10.1.nickel.df, show.ci = FALSE,  
ylab = "Nickel (ppb)") 

> stripChart(log10(Nickel.ppb) ~ Well, col = 1:4, data = 
EPA.09.Ex.10.1.nickel.df, show.ci = FALSE,  
ylab = expression(paste(log[10], "[ Nickel (ppb) ]"))) 

First we will use the Shapiro-Wilk group test to test the null hypotheses that the 
observations at each well represent a sample from some kind of normal 
distribution, but the population means and/or variances may differ between wells. 

> sw.list <- gofGroupTest(Nickel.ppb ~ Well,  
data = EPA.09.Ex.10.1.nickel.df) 

> sw.list 

Results of Group Goodness-of-Fit Test 
------------------------------------- 
 
Test Method:                 Wilk-Shapiro GOF (Normal Scores) 
 
Hypothesized Distribution:   Normal 
 
Data:                        Nickel.ppb 
 
Grouping Variable:           Well 
 
Data Source:                 EPA.09.Ex.10.1.nickel.df 
 
Number of Groups:            4 
 
Sample Sizes:                Well.1 = 5 
                             Well.2 = 5 
                             Well.3 = 5 
                             Well.4 = 5 
 
Test Statistic:              z (G) = -3.658696 
 
P-values for 
Individual Tests:            Well.1 = 0.03510747 
                             Well.2 = 0.02385344 
                             Well.3 = 0.01120775 
                             Well.4 = 0.10681461 
 
P-value for 
Group Test:                  0.0001267509 
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Alternative Hypothesis:      At least one group 
                             does not come from a 
                             Normal Distribution. 

Now we’ll do the same test but assume a lognormal distribution: 

> sw.log.list <- gofGroupTest(Nickel.ppb ~ Well,  
data = EPA.09.Ex.10.1.nickel.df, dist = "lnorm") 

> sw.log.list 

Results of Group Goodness-of-Fit Test 
------------------------------------- 
 
Test Method:                 Wilk-Shapiro GOF (Normal Scores) 
 
Hypothesized Distribution:   Lognormal 
 
Data:                        Nickel.ppb 
 
Grouping Variable:           Well 
 
Data Source:                 EPA.09.Ex.10.1.nickel.df 
 
Number of Groups:            4 
 
Sample Sizes:                Well.1 = 5 
                             Well.2 = 5 
                             Well.3 = 5 
                             Well.4 = 5 
 
Test Statistic:              z (G) = 0.240172 
 
P-values for 
Individual Tests:            Well.1 = 0.6898164 
                             Well.2 = 0.6700394 
                             Well.3 = 0.3208299 
                             Well.4 = 0.5041375 
 
P-value for 
Group Test:                      0.5949015 
 
Alternative Hypothesis:          At least one group 
                                 does not come from a 
                                 Lognormal Distribution. 
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Fig. 7.5 Companion plots for Shapiro-Wilk group goodness-of-fit test for normality of the 
nickel concentrations 

 
Fig. 7.6 Companion plots for Shapiro-Wilk group goodness-of-fit test for lognormality of 
the nickel concentrations 
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Figures 7.5 and 7.6 display the companion plots for each of the hypotheses we 
tested.  They were created with these commands: 

> plot(sw.list) 

> plot(sw.log.list) 

There is clear evidence that the raw concentrations do not come from normal 
distributions, but the assumption of lognormal distributions appears to be 
adequate. 

7.2.3 One-Sample Goodness-of-Fit Tests for Other Distributions 
Section 1.11.7 in Chap. 1 showed how to test for the assumption of a gamma 
distribution for the Reference Area TcCB data.  In general, you can perform a 
goodness-of-fit test for any continuous distribution available in EnvStats by using 
the dist argument to gofTest. 

Three other commonly used goodness-of-fit tests are the Kolmogorov-Smirnov 
goodness-of-fit test (Zar 2010), the chi-square goodness-of-fit test (Zar 2010), and 
the probability plot correlation coefficient (PPCC) goodness-of-fit test (Filliben 
1975; Vogel 1986).  The function gofTest uses the Kolmogorov-Smirnov and 
chi-square tests built into R (i.e., ks.test and chisq.test).  ENVSTATS also 
adds the PPCC test for the extreme value distribution.  The help file for gofTest 
contains more detailed information and examples. 

In Chap. 3, Sect. 3.7.2, we created a Q-Q plot to determine whether a set of 
benzene concentrations appear to come from a Poisson distribution.  Out of the 36 
observations, 33 are reported as “<2”, and these observations were set to half the 
detection limit (i.e., 1).  We can use the chi-square goodness-of-fit test to formally 
test whether these data appear to come from a Poisson distribution.  When using 
the chi-square test to test whether data appear to come from a discrete distribution, 
you have to supply the vector of cut points that define the bins you want to use.  
Each bin is defined as all values greater than the lower cut point and less than or 
equal to the upper cut point.  Here we will use the cut points –1, 0, 2, and , 
which correspond to bins that hold 14 %, 55 %, and 31 % of the distribution based 
on the estimated parameter  = 1.94. 

> attach(EPA.92c.benzene1.df) 

> Benzene[Censored] <- 1 

> table(Benzene) 

Benzene 
 1 10 12 15  
33  1  1  1 

> lambda.hat <- epois(Benzene)$parameters 
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> lambda.hat 

  lambda 
1.944444 

> ppois(c(-1, 0, 2, Inf), lambda = lambda.hat) 

[1] 0.0000000 0.1430667 0.6917097 1.0000000 

> diff(ppois(c(-1, 0, 2, Inf), lambda = lambda.hat)) 

[1] 0.1430667 0.5486431 0.3082903 

> chisq.list <- gofTest(Benzene, test = "chisq",  
dist = "pois", cut.points = c(-1, 0, 2, Inf)) 

> chisq.list 

Results of Goodness-of-Fit Test 
------------------------------- 
 
Test Method:                     Chi-square GOF 
 
Hypothesized Distribution:       Poisson 
 
Estimated Parameter(s):          lambda = 1.944444 
 
Estimation Method:               mle/mme/mvue 
 
Data:                            Benzene 
 
Sample Size:                     36 
 
Test Statistic:                  Chi-square = 19.94695 
 
Test Statistic Parameter:        df = 1 
 
P-value:                         7.962074e-06 
 
Alternative Hypothesis:          True cdf does not equal the 
                                 Poisson Distribution. 

The p-value is essentially 0, so we have evidence that the assumption of a Poisson 
distribution is not valid.  Figure 7.7 shows companion plots to the test, created 
with this command: 

> plot(chisq.list) 
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Fig. 7.7 Companion plots for chi-square goodness-of-fit test of Poisson distribution for 
benzene concentrations 

7.2.4 Two-Sample Goodness-of-Fit Test to Compare Samples 
You can use the Kolmogorov-Smirnov test to test whether two sets of 
observations appear to come from the exact same distribution.  In Chap. 3, Sect. 
3.7.3, we created a Q-Q plot comparing the Reference area and Cleanup area 
TcCB concentrations based on the log-transformed data.  The Kolmogorov-
Smirnov test yields a p-value of 0.013, so there is evidence that these two 
distributions differ (Fig. 7.8). 

> attach(EPA.94b.tccb.df) 

> log.TcCB.ref <- log(TcCB[Area=="Reference"]) 

> log.TcCB.clean <- log(TcCB[Area=="Cleanup"]) 

> ks.list <- gofTest(x = log.TcCB.ref, y = log.TcCB.clean,  
test = "ks") 

> ks.list 

Results of Goodness-of-Fit Test 
------------------------------- 
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Hypothesized Distribution:    Equal 
 
Data:                         log.TcCB.ref and log.TcCB.clean 
 
Number NA/NaN/Inf's Removed:  0 and 0 
 
Sample Sizes:                 n.x = 47 
                              n.y = 77 
 
Test Statistic:               ks = 0.2821221 
Test Statistic Parameters:    n = 47 
                          m = 77 
 
P-value:                  0.01920147 
 
Alternative Hypothesis:   The cdf of 'x' does not equal 
                          the cdf of 'y'. 

> plot(ks.list) 

Fig. 7.8 Companion plots for Kolmogorov-Smirnov goodness-of-fit test comparing log-
transformed TcCB data for reference and cleanup areas 
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7.3 One-, Two-, and k-Sample Comparison Tests 
Frequently in environmental studies, we are interested in comparing con-
centrations to a standard, or comparing concentrations between two or more areas 
(e.g., background versus potentially contaminated).  R comes with several built-in 
functions for performing standard hypothesis tests for one-, two-, and k-sample 
comparisons (e.g., Student’s t-test, analysis of variance, etc.).  Table 7.2 lists 
additional functions available in ENVSTATS for comparing samples.  See the help 
files and Millard et al. (2014) for more detailed discussion of these functions.   
In this section we’ll give examples of using the summaryStats and stripChart 
functions to perform 2- and k-sample comparisons, as well as an example of 
performing Chen’s modified t-test, and comparing a linear rank test with the 
quantile test. 

Comparison 
Type 

Function Description 

Location summaryStats Summary statistics,  
p-values, and confidence 
intervals for mean or 
pseudo-median 

 stripChart Strip chart with 
confidence intervals for 
mean or pseudo-median 

 chenTTest Chen’s modified one-
sample or paired t-test for 
skewed data 

 oneSamplePermutationTest Fisher’s one-sample 
permutation test for 
location 

 twoSamplePermutationTestLocation Two-sample or paired 
permutation test to 
compare locations 

 signTest Sign test for one-sample 
or paired data 

 twoSampleLinearRankTest Two-sample linear rank test 
Quantile quantileTest Quantile test for a shift in 

the tail 
Proportion twoSamplePermutationTestProportion Two-sample or paired 

permutation test to 
compare proportions 

Variance varTest One-sample chi-square 
test on variance, or two-
sample F test for equal 
variances 

 varGroupTest Levene’s or Bartlett’s test 
for equal variances among 
k populations 

Table 7.2 Functions in ENVSTATS for comparison tests 
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7.3.1 Two- and k-Sample Comparisons for Location 
The EnvStats function summaryStats not only displays basic summary 
statistics in a nice format, but it also allows you to perform standard tests for two-
sample or k-sample comparisons.  In Chap. 1 we looked at summary statistics and 
plots comparing the TcCB data in the Reference and Cleanup areas.  Here we’ll 
perform some hypothesis tests to compare the concentrations in these two  
areas.  Here are the standard two-sample t-test results for the log-transformed 
concentrations: 

> summaryStats(log(TcCB) ~ Area, data = EPA.94b.tccb.df,  
digits = 2, p.value = TRUE, stats.in.rows = TRUE) 

                Cleanup Reference Combined 
N                77      47       124      
Mean             -0.55   -0.62     -0.57   
SD                1.36    0.47      1.11   
Median           -0.84   -0.62     -0.72   
Min              -2.41   -1.51     -2.41   
Max               5.13    0.29      5.13   
p.value.between                     0.73   
95%.LCL.between                    -0.48   
95%.UCL.between                     0.34 

In Chap. 1 we noted that most of the observations in the Cleanup area are 
comparable to (or even smaller than) the observations in the Reference area, but 
there are a few very large “outliers” in the Cleanup area.  By default, when the 
argument p.value is set to TRUE and there are two groups, the p-value is based 
on Student’s t-test assuming equal variances (which is not the default behavior of 
the built in R function t.test).  In this example the standard deviation in the 
Cleanup area is more than twice the standard deviation in the Reference area, so 
now we’ll perform the test allowing for different variances in the two groups: 

> summaryStats(log(TcCB) ~ Area, data = EPA.94b.tccb.df,  
digits = 2, p.value = TRUE, stats.in.rows = TRUE, 
test.arg.list = list(var.equal = FALSE)) 

                      Cleanup Reference Combined 
N                      77      47       124      
Mean                   -0.55   -0.62     -0.57   
SD                      1.36    0.47      1.11   
Median                 -0.84   -0.62     -0.72   
Min                    -2.41   -1.51     -2.41   
Max                     5.13    0.29      5.13   
Welch.p.value.between                     0.67   
95%.LCL.between                          -0.41   
95%.UCL.between                           0.26 
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Even allowing for different variances, the t-test does not provide evidence of a 
difference in the mean value between the two areas.  When there are more than 
two groups, by default a standard analysis of variance F-test is performed.  Instead 
of performing the t-test or F-test, you can set test="nonparametric" to 
perform the Wilcoxon or Kruskal-Wallis rank sum test. 

In Chap. 1 we used the function stripChart to produce one-dimensional 
scatterplots of the log-transformed TcCB data by area, along with confidence 
intervals for the means (Fig. 1.1).  You can also display the results of testing for a 
difference between the two means (Fig. 7.9): 

> stripChart(log(TcCB) ~ Area, data = EPA.94b.tccb.df,  
col = c("red", "blue"), p.value = TRUE,  
ylab = "Log [ TcCB (ppb) ]") 
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Fig. 7.9 One-dimensional scatterplots, 95 % confidence intervals for the means, and results 
of Student’s t-test comparing TcCB concentrations at Reference and Cleanup areas 

As with summaryStats, when you set p.value=TRUE in the call to 
stripChart and there are two groups, the standard two-sample t-test is per-
formed, and when there are more than two groups a standard analysis of variance 
F-test is performed.  Setting test="nonparametric" will compute the 
Wilcoxon or Kruskal-Wallis rank sum test instead. 

7.3. One-, Two-, and k-Sample Comparison Tests 
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7.3.2 Chen’s Modified One-Sample t-Test for Skewed Data 
Student’s t-test, Fisher’s one-sample permutation test, and the Wilcoxon signed 
rank test all assume that the underlying distribution is symmetric about its mean.  
Chen (1995b) developed a modified t-statistic for performing a one-sided test of 
hypothesis on the mean of a skewed distribution.  For the case of a positively 
skewed distribution, her test can be applied to the upper one-sided alternative 
hypothesis (i.e., H0:   0 vs. Ha:  > 0).  For the case of a negatively skewed 
distribution, her test can be applied to the lower one-sided alternative hypothesis 
(i.e., H0:   0 vs. Ha:  < 0).  Since environmental data are usually positively 
skewed, her test would usually be applied to the case of testing the upper one-
sided hypothesis. 

The guidance document Calculating Upper Confidence Limits for Exposure 
Point Concentrations at Hazardous Waste Sites (USEPA 2002d, Exhibit 9, p. 16) 
contains an example of 60 observations from an exposure unit (Fig. 7.10).  In 
ENVSTATS these data are stored in the vector EPA.02d.Ex.9.mg.per.L.vec. 

> hist(EPA.02d.Ex.9.mg.per.L.vec, col = "cyan",  
xlab = "Concentration (mg/L)", main = "") 
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Fig. 7.10 Concentrations at exposure unit from Exhibit 9 of USEPA (2002d) 

The Shapiro-Wilk goodness-of-fit test rejects the null hypothesis of a normal 
distribution and a lognormal distribution. 
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> gofTest(EPA.02d.Ex.9.mg.per.L.vec)$p.value 

[1] 2.496781e-12 

> gofTest(EPA.02d.Ex.9.mg.per.L.vec, dist = "lnorm")$p.value 

[1] 3.349035e-09 

In this example we will use Chen’s modified t-test to test the null hypothesis that 
the average concentration is less than 30 mg/L versus the alternative that it is 
greater than 30 mg/L. 

> chenTTest(EPA.02d.Ex.9.mg.per.L.vec, mu = 30) 

Results of Hypothesis Test 
-------------------------- 
 
Null Hypothesis:              mean = 30 
 
Alternative Hypothesis:       True mean is greater than 30 
 
Test Name:                    One-sample t-Test 
                              Modified for 
                              Positively-Skewed Distributions 
                              (Chen, 1995) 
 
Estimated Parameter(s):       mean = 34.566667 
                              sd   = 27.330598 
                              skew =  2.365778 
 
Data:                         EPA.02d.Ex.9.mg.per.L.vec 
 
Test Statistic:               t = 1.574075 
 
Test Statistic Parameter:     df = 59 
 
P-values:                     z               = 0.05773508 
                              t               = 0.06040889 
                              Avg. of z and t = 0.05907199 
 
Confidence Interval for:      mean 
 
Confidence Interval Method:   Based on z 
 
Confidence Interval Type:     Lower 
 
Confidence Level:             95% 

7.3. One-, Two-, and k-Sample Comparison Tests 
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Confidence Interval:          LCL = 29.82 
                              UCL =   Inf 

The estimated mean, standard deviation, and skew are 35, 27, and 2.4, res-
pectively.  The p-value is 0.06, and the lower 95 % confidence interval is [29.8, ).  
Depending on what you use for your Type I error rate, you may or may not want 
to reject the null hypothesis. 

The presentation of Chen’s (1995b) method in USEPA (2002d) and Singh et 
al. (2010b, p. 52) is incorrect for two reasons:  it is based on an intermediate 
formula instead of the actual statistic that Chen proposes, and it uses the inter-
mediate formula to computer an upper confidence limit for the mean when the 
sample data are positively skewed.  As explained above, for the case of positively 
skewed data, Chen’s method is appropriate to test the upper one-sided alternative 
hypothesis that the population mean is greater than some specified value, and a 
one-sided upper alternative corresponds to creating a one-sided lower confidence 
limit, not an upper confidence limit (see, for example, Millard and Neerchal 2001, 
p. 371). 

7.3.3 Two-Sample Linear Rank Tests and the Quantile Test 
The Wilcoxon rank sum test is an example of a two-sample linear rank test.   
A linear rank test can be written as follows: 

 ( )
1

1
1

n

i
i

L a R
=

=  (7.1) 

where n1 denotes the number of observations in group 1,  R1i denotes the rank of 
the ith observation in group 1, and a() is some function that is called the score 
function.  A linear rank test is based on the sum of the scores for group 1.  For the 
Wilcoxon rank sum test, the function a() is simply the identity function.  Other 
functions may work better at detecting a small shift in location, depending on  
the shape of the underlying distributions.  See the ENVSTATS help file for 
twoSampleLinearRankTest for more information. 

The Wilcoxon rank sum test and other linear rank tests for shifts in location are 
all designed to detect a shift in the whole distribution of group 1 relative to the 
distribution of group 2.  Sometimes, we may be interested in detecting a difference 
between the two distributions where only a portion of the distribution of group 1 is 
shifted relative to the distribution of group 2.  The mathematical notation for this 
kind of shift is: 

 ( ) ( ) ( ) ( )1 2 31 ,F t F t F t t= + < <  (7.2) 

where F1 denotes the cumulative distribution function (cdf) of group 1, F2 denotes 
the cdf of group 2, and  denotes a fraction between 0 and 1.  In the statistical 
literature, the distribution of group 1 is sometimes called a “contaminated” 
distribution, because it is the same as the distribution of group 2, except it is  
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partially contaminated with another distribution.  If the distribution of group 1 is 
partially shifted to the right of the distribution of group 2, F3 denotes a cdf such 
that  

 ( ) ( )3 2 ,F t F t t< <  (7.3) 

with a strict inequality for at least one value of t.  If the distribution of group 1 is 
partially shifted to the left of the distribution of group 2, F3 denotes a cdf such that 

 ( ) ( )3 2 ,F t F t t< <  (7.4) 

with a strict inequality for at least one value of t. 
The quantile test is a two-sample rank test to detect a shift in a proportion of 

one population relative to another population (Johnson et al. 1987).  Under the 
null hypothesis, the two distributions are the same.  If the alternative hypothesis  
is that the distribution of group 1 is partially shifted to the right of the distribution 
of group 2, the test combines the observations, ranks them, and computes k, which 
is the number of observations from group 1 out of the r largest observations.  The 
test rejects the null hypothesis if k is too large. 

In Chap. 1, Sect. 1.11.9, we compared the Reference area and Cleanup area 
TcCB concentrations using both the Wilcoxon rank sum test and the quantile test.  
The Wilcoxon rank sum test yields a p-value of 0.88, whereas the quantile test 
yields a p-value of 0.01.  These results are not surprising, considering the 
histograms of the data shown in Fig. 1.2 in Sect. 1.11.3. 

7.4 Testing for Serial Correlation 
You can test for the presence of serial correlation in a time series or set of resi-
duals from a linear fit using the ENVSTATS function serialCorrelationTest.  
You can test for the presence of lag-one serial correlation using either the rank von 
Neumann ratio test, the normal approximation based on the Yule-Walker estimate 
of lag-one correlation, or the normal approximation based on the MLE of lag-one 
correlation.  Only the last method, however, allows for missing values in the time 
series.  See the help file for serialCorrelationTest and Millard et al. 
(2014) for examples of testing for serial correlation. 

7.5 Testing for Trend 
Often in environmental studies we are interested in assessing the presence or 
absence of a long term trend.  A parametric test for trend involves fitting a linear 
model that includes some measure of time as one of the predictor variables, and 
possibly allowing for serially correlated errors in the model.  The Mann-Kendall 
test for trend (Mann 1945) is a nonparametric test for trend that does not assume 
normally distributed errors.  Hirsch et al. (1982) introduced a modification of this 
test they call the seasonal Kendall test.  This test allows for seasonality and  
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possibly serially correlated observations as well.  Parametric and nonparametric 
tests for trend are described in detail in Millard et al. (2014).  Table 7.3 lists the 
functions available in ENVSTATS for nonparametric tests for trend. 

Function Description 
kendallTrendTest Nonparametric test for monotonic trend based on 

Kendall’s tau statistic 
kendallSeasonalTrendTest Nonparametric test for monotonic trend within each 

season based on Kendall’s tau statistic.  Allows for 
serial correlation as well 

Table 7.3 Functions in ENVSTATS for nonparametric tests for trend 

7.5.1 Testing for Trend in the Presence of Seasons 
Figure 7.11 displays monthly estimated total phosphorus mass (mg) within a water 
column at station CB3.3e for the 5-year time period October 1984–September 
1989 from a study on phosphorus concentration conducted in the Chesapeake Bay 

ENVSTATS these data are stored in the data 
frame Total.P.df. 
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Fig. 7.11 Monthly estimated total phosphorus mass (mg) within a water column at station 
CB3.3e in the Chesapeake Bay 

(Neerchal and Brunenmeister 1993).  In 
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> Total.P.df 

     CB3.1  CB3.3e Month Year 
1   5.6330 2.30034   Oct 1984 
2   3.6457 1.81900   Nov 1984 
… 
59  6.8030 3.75360   Aug 1989 
60  6.2471 2.41853   Sep 1989 

Figure 7.11 was created with these commands: 

> with(Total.P.df, plot(CB3.3e, type = "o", xaxt = "n",  
xlab = "Time", ylab = "Total P (mg)")) 

> with(Total.P.df, axis(1, at = (1:length(CB3.3e))[ 
Month == "Jan"], labels = Year[Month == "Jan"])) 

These data display seasonal variation, so we need to account for this while 
testing for trend.  Here are the results of the seasonal Kendall test for trend: 

> kendallSeasonalTrendTest(CB3.3e ~ Month + Year,  
data = Total.P.df) 

Results of Hypothesis Test 
-------------------------- 
 
Null Hypothesis:                 All 12 values of tau = 0 
 
Alternative Hypothesis:          The seasonal taus are not all equal 
                                 (Chi-Square Heterogeneity Test) 
                                 At least one seasonal tau != 0 
                                 and all non-zero tau's have the 
                                 same sign (z Trend Test) 
 
Test Name:                       Seasonal Kendall Test for Trend 
                                 (with continuity correction) 
 
Estimated Parameter(s):          tau       =  -0.3333333 
                                 slope     =  -0.2312000 
                                 intercept = 346.5468681 
 
Estimation Method:               tau:        Weighted Average of 
                                             Seasonal Estimates 
                                 slope:      Hirsch et al.'s 
                                             Modification of 
                                             Thiel/Sen Estimator 
                                 intercept:  Median of 
                                             Seasonal Estimates 
 
Data:                            y      = CB3.3e 
                                 season = Month  
                                 year   = Year   
 
Data Source:                     Total.P.df 
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Sample Sizes:                    Oct   =  5 
                                 Nov   =  5 
                                 Dec   =  5 
                                 Jan   =  5 
                                 Feb   =  5 
                                 Mar   =  5 
                                 Apr   =  5 
                                 May   =  5 
                                 Jun   =  5 
                                 Jul   =  5 
                                 Aug   =  5 
                                 Sep   =  5 
                                 Total = 60 
 
Test Statistics:                 Chi-Square (Het) =  4.480000 
                                 z (Trend)        = -2.757716 
 
Test Statistic Parameter:        df = 11 
 
P-values:                        Chi-Square (Het) = 0.953720141 
                                 z (Trend)        = 0.005820666 
 
Confidence Interval for:         slope 
 
Confidence Interval Method:      Gilbert's Modification of 
                                 Theil/Sen Method 
 
Confidence Interval Type:        two-sided 
 
Confidence Level:                95% 
 
Confidence Interval:             LCL = -0.36162682 
                                 UCL = -0.05569319 

The estimated annual trend is 0.23 mg/year, i.e., a yearly decrease in total 
phosphorus.  The p-value associated with the seasonal Kendall test for trend is 
p = 0.006, indicating this is statistically significant.  The two-sided 95 % con-
fidence interval for the trend is [ 0.36, 0.06].  The chi-square test for hetero-
geneity (i.e., is the trend different for different seasons?) yields a p-value of 0.95, 
so there is no evidence of different amounts of trend within different seasons. 

7.6 Summary 
• R contains several functions for performing classical statistical 

hypothesis tests, such as t-tests, analysis of variance, linear regression, 
nonparametric tests, quality control procedures, and time series analysis 
(see the R documentation and help files). 

• ENVSTATS contains functions for some statistical tests that are not 
included in R but that are often used in environmental statistics 

• Table 7.1 lists functions available in ENVSTATS for performing goodness-
of-fit tests. 
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• Table 7.2 lists functions available in ENVSTATS for performing one-, two- 
and k-sample comparison tests. 

• You can test for the presence of serial correlation in a time series or  
set of residuals from a linear fit using the ENVSTATS function 
serialCorrelationTest. 

• Table 7.3 lists the functions available in ENVSTATS for performing 
nonparametric tests for trend. 
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Chapter 8 

Censored Data 

8.1 Introduction 
Often in environmental data analysis values are reported simply as being “below 
detection limit” along with the stated detection limit (e.g., Helsel 2012; Porter  
et al. 1988; USEPA 1992c, 2001, 2002a, d, 2009; Singh et al. 2002, 2006, 2010b).  
A sample of data contains censored observations if some of the observations are 
reported only as being below or above some censoring level.  Although this results 
in some loss of information, we can still use data that contain nondetects for 
graphical and statistical analyses.  Statistical methods for dealing with censored 
data have a long history in the fields of survival analysis and life testing (e.g., 
Hosmer et al. 2008; Kleinbaum and Klein 2011; Nelson 2004).  In this chapter, we 
will discuss how to create graphs, estimate distribution parameters and quantiles, 
construct prediction and tolerance intervals, perform goodness-of-fit tests, and 
compare distributions using censored data.  See Helsel (2012) and Millard et al. 
(2014) for a more in-depth discussion of analyzing environmental censored data. 

8.2 Classification of Censored Data 
There are four major ways to classify censored data:  truncated versus censored, 
left versus right versus double, single versus multiple (progressive), and censored 
Type I versus censored Type II (Cohen 1991).  Most environmental data sets with 
nondetect values are either Type I left singly censored or Type I left multiply  
censored. 

A sample of N observations is left singly censored (also called singly censored 
on the left) if c observations are known only to fall below a known censoring level 
T, while the remaining n (n = N c) uncensored observations falling above T are 
fully measured and reported. 

A sample is singly censored (e.g., singly left censored) if there is only one 
censoring level T.  A sample is multiply censored or progressively censored (e.g., 
multiply left censored) if there are several censoring levels T1, T2, ..., Tp, where 
T1 < T2 < ... < Tp. 

A censored sample has been subjected to Type I censoring if the censoring 
level(s) is(are) known in advance, so that given a fixed sample size N, the number 
of censored observations c (and hence the number of uncensored observations n) 
is a random outcome.  Type I censored samples are sometimes called time-
censored samples (Nelson 1982). 
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8.3 Functions for Censored Data 
Table 8.1 lists the functions available in ENVSTATS for analyzing censored data. 

Function Description 
ppointsCensored Compute plotting positions based on censored data 
ecdfPlotCensored Empirical CDF based on censored data 
cdfCompareCensored Compare an empirical CDF to a hypothesized CDF, or 

compare two CDFs, based on censored data 
qqPlotCensored Q-Q plot based on censored data 
boxcoxCensored Determine an optimal Box-Cox transformation based 

on censored data 
eabbCensored Estimate the parameters of the distribution with the  

abbreviation abb based on censored data, and optionally
construct a confidence interval for the parameters 

eqnormCensored 
eqlnormCensored 

Estimate the quantiles of the normal or lognormal  
distribution based on censored data, and optionally 
construct a confidence interval for a quantile 

tolIntNormCensored 
tolIntLnormCensored 

Create a tolerance interval for the normal or lognormal 
distribution based on censored data 

gofTestCensored Shapiro-Wilk, Shapiro-Francia, and PPCC goodness-
of-fit tests for normality for censored data 

twoSampleLinear 
  RankTestCensored 

Two-sample linear rank test based on censored data 

Table 8.1 Functions in ENVSTATS for analyzing censored data 

8.4 Graphical Assessment of Censored Data 
In Chap. 3 we illustrated several ways of creating graphs for a single variable,  
including histograms, quantile (empirical cdf) plots, and probability (Q-Q) plots.  
When you have censored data, creating a histogram is not necessarily straight-
forward (especially with multiply censored data), but you can create quantile plots 
and probability plots, as well as determine “optimal” Box-Cox transformations 
(see Table 8.1). 

8.4.1 Quantile (Empirical CDF) Plots for Censored Data 
In Chap. 3 we explained that a quantile plot (also called an empirical cumulative 
distribution function plot or empirical cdf plot) plots the ordered data (the empirical 
quantiles) on the x-axis versus the estimated cumulative probabilities (or plotting 
positions) on the y-axis.  Various formulas for the plotting positions are given in 
Millard et al. (2014) and the help file for ecdfPlot.  When you have censored 
data, the formulas for the plotting positions must be modified.  For right-censored 
data, various formulas for the plotting positions are given by Kaplan and Meier 
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(1958), Nelson (1972), and Michael and Schucany (1986).  For left-censored data, 
formulas for the plotting positions are given by Michael and Schucany (1986), 
Hirsch and Stedinger (1987), USEPA (2009), and Helsel (2012). 

When you have Type I left-censored data with only one censoring level, and 
all of the uncensored observations are larger than the censoring level, the compu-
tation of the plotting positions is straightforward because it is easy to order the  
uncensored observations.  When you have one or more uncensored observations with 
values less than one or more of the censoring levels, then the computation of the 
plotting positions becomes a bit trickier.  The help file for ppointsCensored 
in ENVSTATS gives a detailed explanation of the formulas for the plotting positions 
for censored data. 

Silver concentrations ( g/L) 
 <0.1  <0.1   0.1   0.1  <0.2  <0.2  <0.2   <0.2    0.2 
 <0.3  <0.5   0.7   0.8  <1    <1    <1     <1     <1   
 <1    <1    <1    <1    <1     1     1      1      1.2 
  1.4   1.5  <2     2     2     2     2     <2.5    2.7 
  3.2   4.4  <5    <5    <5    <5     5     <6    <10   
<10   <10   <10   <10    10   <20   <20    <20    <25   
 90   560 

Table 8.2 Silver concentrations from an interlab comparison (Helsel and Cohn 1988) 

Table 8.2 displays 56 silver concentrations ( g/L) from an interlab comparison 
that include 34 values below one of 12 detection limits (Helsel and Cohn 1988).  
These data are stored in the data frame Helsel.Cohn.88.silver.df in 
EnvStats.  Figure 8.1 displays the empirical cdf plot for the silver data.  This plot 
indicates the data are extremely skewed to the right.  This is not surprising since 
looking at the data in the table we see that all of the observations are less than 
25 g/L except for two that are 90 and 560 g/L.  Figure 8.2 displays the quantile 
plot based on the log-transformed observations.  In both of these plots, the upside-
down triangles indicate the censoring levels of observations that have been  
censored.  The figures were created with these commands: 

> with(Helsel.Cohn.88.silver.df,  
ecdfPlotCensored(Ag, Censored,  
xlab = expression(paste("Ag (", mu, "g/L)",  
sep = "")), include.cen = TRUE)) 

> with(Helsel.Cohn.88.silver.df,  
ecdfPlotCensored(log.Ag, Censored,  
xlab = expression(paste("log [ Ag (", mu, "g/L) ]",  
sep = "")), include.cen = TRUE)) 
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Fig. 8.1 Empirical cdf plot of the silver data using the method of Michael and Schucany 
(1986) 
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Fig. 8.2 Empirical cdf plot of the log-transformed silver data 
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8.4.2 Comparing an Empirical and Hypothesized CDF 
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Fig. 8.3 Empirical cdf of the silver data with a fitted lognormal distribution 
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Fig. 8.4 Empirical cdf of the log-transformed silver data with a fitted normal distribution 
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Figure 8.3 compares the empirical cdf of the silver data with a lognormal cdf, 
where the parameters for the lognormal distribution are estimated from the data 
(see the Sect. 8.5 later in this chapter).  Figure 8.4 compares the log-transformed 
silver data with a normal distribution.  The figures were created with these com-
mands: 

> with(Helsel.Cohn.88.silver.df, 
cdfCompareCensored(Ag, Censored, distribution = "lnorm", 
xlab = expression(paste("Ag (", mu, "g/L)", sep = "")))) 

> with(Helsel.Cohn.88.silver.df,  
cdfCompareCensored(log(Ag), Censored, distribution="norm", 
xlab = expression(paste("log [ Ag (", mu, "g/L) ]",  
sep = "")))) 

The plots appear to show that the lognormal distribution provides an adequate fit 
to these data but the Shapiro-Francia goodness-of-fit test for lognormality yields a 
p-value of 0.03 (see the Sect. 8.9.1 later in this chapter). 

8.4.3 Comparing Two Empirical CDFs 
Table 8.3 displays copper concentrations ( g/L) in shallow groundwater samples 
from two different geological zones in the San Joaquin Valley, California (Millard 
and Deverel 1988).  The alluvial fan data include four different detection limits 
and the basin trough data include five different detection limits.  In ENVSTATS the-
se data are stored in the data frame Millard.Deverel.88.df.  Figure 8.5 
compares the empirical cdf of copper concentrations from the alluvial fan zone 
with those from the basin trough zone.  This plot shows that the two distributions 
are fairly similar in shape and location. 

Zone Copper ( g/L) 
Alluvial fan  <1  <1  <1  <1   1   1   1   1   1   2   2 

  2   2   2   2   2   2   2   2   2   2   2 
  2   2   2   2   2   2   2   2   3   3   3 
  3   3   3   4   4   4  <5  <5  <5  <5  <5 
 <5  <5  <5   5   5   5   7   7   7   8   9 
<10 <10 <10  10  11  12  16 <20 <20  20  NA 
 NA  NA 

Basin trough  <1  <1   1   1   1   1   1   1   1  <2  <2 
  2   2   2   2   3   3   3   3   3   3   3 
  3   4   4   4   4   4  <5  <5  <5  <5  <5 
  5   6   6   8   9   9 <10 <10 <10 <10  12 
 14 <15  15  17  23  NA 

Table 8.3 Copper concentrations in shallow groundwater in two geological zones 

> attach(Millard.Deverel.88.df) 

> Cu.Alluvial <- Cu[Zone == "Alluvial.Fan"] 
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> Cu.Alluvial.cen <- Cu.censored[Zone == "Alluvial.Fan"] 

> Cu.Basin <- Cu[Zone == "Basin.Trough"] 

> Cu.Basin.cen <- Cu.censored[Zone == "Basin.Trough"] 

> cdfCompareCensored(Cu.Alluvial, censored = Cu.Alluvial.cen, 
y = Cu.Basin, y.censored = Cu.Basin.cen) 
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Fig. 8.5 Empirical CDFs of copper concentrations in the alluvial fan and basin trough zones 

8.4.4 Q-Q Plots for Censored Data 
In Chap. 3 we explained that a probability plot (also called a quantile-quantile or 
Q-Q plot) plots the ordered data (the empirical quantiles) on the y-axis versus the 
corresponding quantiles from the assumed theoretical probability distribution on 
the x-axis, where the quantiles from the assumed distribution are computed based 
on the plotting positions.  As is the case for empirical cdf plots, when you have 
censored data, the formulas for the plotting positions must be modified. 

Table 8.4 presents artificial TcCB concentrations based on the Reference area 
TcCB data presented in Sect. 1.11.1 of Chap. 1.  For this data set, the concentra-
tions of TcCB less than 0.5 ppb have been recoded as “<0.5,” so there are 19  
censored observations, 28 uncensored observations, and a total sample size of 47.  
In ENVSTATS these data are stored in the data frame Modified.TcCB.df. 
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TcCB concentrations (ppb) 
 <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5 
 <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5   <0.5 
 <0.5   <0.5   <0.5    0.5    0.5    0.51   0.52   0.54 
  0.56   0.56   0.57   0.57   0.6    0.62   0.63   0.67 
  0.69   0.72   0.74   0.76   0.79   0.81   0.82   0.84 
  0.89   1.11   1.13   1.14   1.14   1.2    1.33 

Table 8.4 Modified Reference area TcCB concentrations 

Figure 8.6 shows the normal Q-Q plot for the log-transformed modified TcCB 
data, created with this command: 

> with(Modified.TcCB.df, qqPlotCensored(TcCB, Censored, 
distribution ="lnorm", add.line = TRUE,  
points.col = "blue")) 
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Fig. 8.6 Normal Q-Q plot for the log-transformed singly left-censored TcCB data of Table 
8.4 based on the method of Michael and Schucany (1986) 

This plot indicates that the lognormal distribution appears to provide an adequate 
fit to these data.  This is not surprising since we already saw in Fig. 1.6 in Sect. 
1.11.4 that a lognormal distribution provides a good fit to the original data. 

The method that qqPlotCensored uses for computing quantiles is deter-
mined by the argument prob.method.  The default value of prob.method is 
"michael-schucany" (Michael and Schucany 1986).  Both Helsel (2012) 
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and USEPA (2009) suggest two other methods:  one based on Kaplan-Meier esti-
mates and one based on regression on order statistics (ROS).  Setting the value of 
prob.method to "kaplan-meier" uses the standard method of Kaplan-
Meier, and when prob.method equals "kaplan-meier with max" the 
estimated cumulative probability associated with the maximum value is set to 
(n 0.375)/(n + 0.25) rather than 1, where n denotes the sample size, i.e., the Blom 
plotting position, so that the point associated with the maximum value can be dis-
played.  The ROS method is also discussed below in Sect. 8.5.  Other possible 
values of prob.method include "nelson" (for right-censored data only) and 
"hirsch-stedinger".  See the help file for qqPlotCensored for details. 

8.4.5 Box-Cox Transformations for Censored Data 
In Chap. 3 we discussed using Box-Cox transformations as a way to satisfy  
normality assumptions for standard statistical tests, and also sometimes to satisfy 
the linear assumption and/or the constant variance in the errors assumption for  
a standard linear regression model.  We also discussed three possible criteria to 
use to decide on the power of the transformation:  the probability plot correlation 
coefficient (PPCC), the Shapiro-Wilk goodness-of-fit test statistic, and the log-
likelihood function.  This idea can be extended to the case of censored data (e.g., 
Shumway et al. 1989).  See the help file for boxcoxCensored for details. 
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Fig. 8.7 Probability plot correlation coefficient versus Box-Cox transform power ( ) for the 
singly censored TcCB data of Table 8.4 
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Figure 8.7 displays a plot of the probability plot correlation coefficient versus 
various values of the transform power  for the singly censored TcCB data shown 
in Table 8.4, created with these commands: 

> boxcox.list <- with(Modified.TcCB.df,  
boxcoxCensored(TcCB, Censored)) 

> plot(boxcox.list) 

For these data, the PPCC reaches its maximum between about  = 0 (log transfor-
mation) and  = 0.5 (square-root transformation).  We saw a similar pattern for the 
original Reference area TcCB data in Fig. 3.8 in Sect. 3.8, although in that figure 
the maximum appeared at about  = 0. 

8.5 Estimating Distribution Parameters 
In Chap. 5 we illustrated how to use ENVSTATS to estimate distribution parameters 
and quantiles, and also create confidence intervals for these quantities.  Methods 
for estimating parameters include maximum likelihood, method of moments, and 
minimum variance unbiased.  It is fairly straightforward to extend maximum likeli-
hood estimation to the case of censored data (e.g., Cohen 1991; Schneider 1986).  
More recently, researchers in the environmental field have proposed alternative 
methods of computing estimates and confidence intervals in addition to the classical 
ones such as maximum likelihood estimation.  See Helsel (2012) and Millard et al. 
(2014) for details. 

8.5.1 The Normal and Lognormal Distribution 
Estimating Parameters 
The function enormCensored estimates the mean and standard deviation of  
a normal distribution based on Type I censored data, and optionally constructs a 
confidence interval for the mean.  The function elnormCensored does the 
same thing assuming a lognormal distribution and estimating the mean and stand-
ard deviation on the log-scale.  These functions both take an argument called 
method that determines what estimation method is used.  Table 8.5 lists the esti-
mation methods available along with references.  The half censoring level method 
(method="half.cen.level") in which left-censored observations are set to 
half the value of the censoring level associated with that observation is included 
only for historical reasons and should never be used (e.g., Helsel 2012), except 
perhaps in simulations to show how poorly it performs! 

Chapter 15 of USEPA (2009) gives several examples of estimating the mean 
and standard deviation of a lognormal distribution on the log-scale using manga-
nese concentrations (ppb) in groundwater at five background wells.  In EnvStats 
these data are stored in the data frame EPA.09.Ex.15.1.manganese.df. 
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> EPA.09.Ex.15.1.manganese.df 

   Sample   Well Manganese.Orig.ppb Manganese.ppb Censored 
1       1 Well.1                 <5           5.0     TRUE 
2       2 Well.1               12.1          12.1    FALSE 
… 
24      4 Well.5                8.4           8.4    FALSE 
25      5 Well.5                 <2           2.0     TRUE 

> longToWide(EPA.09.Ex.15.1.manganese.df, 
"Manganese.Orig.ppb", "Sample", "Well",  
paste.row.name = TRUE) 

         Well.1 Well.2 Well.3 Well.4 Well.5 
Sample.1     <5     <5     <5    6.3   17.9 
Sample.2   12.1    7.7    5.3   11.9   22.7 
Sample.3   16.9   53.6   12.6     10    3.3 
Sample.4   21.6    9.5  106.3     <2    8.4 
Sample.5     <2   45.9   34.5   77.2     <2 

Value of method Common name References 
mle Maximum likelihood estimator 

(MLE) 
Cohen (1959, 1991) 

bcmle Bias-corrected MLE Saw (1961b), Schneider 
(1986), Haas and Scheff 
(1990), Bain and Engelhardt 
(1991) 

qq.reg Q-Q regression. 
Also called probability plot 
method, and regression on or-
der statistics (ROS). 

Nelson (1982), Gilbert (1987), 
Hass and Scheff (1990), Travis 
and Land (1990), Helsel and 
Hirsch (1992) 

qq.reg.w.cen.level Q-Q regression 
with censoring level 

El-Shaarawi (1989) 

impute.w.qq.reg Imputation with Q-Q Regres-
sion.  Also called robust re-
gression on order statistics 
(Robust ROS) 

Hashimoto and Trussell 
(1983), Gilliom and Helsel 
(1986), El-Shaarawi (1989), 
Helsel (2012) 

impute.w.qq.reg.w. 
  cen.level 

Impute with Q-Q regression 
with censoring level 

El-Shaarawi (1989) 

impute.w.mle Impute with MLE El-Shaarawi (1989) 
iterative.impute.w. 
  qq.reg 

Iterative imputation with 
Q-Q regression 

Gleit (1985) 

m.est Robust M estimation Korn and Tyler (2001) 
half.cen.level Half censoring level Gleit (1985), Haas and Scheff 

(1990), El-Shaarawi and 
Esterby (1992) 

Table 8.5 Available methods for estimating the parameters of a normal distribution based 
on censored data using the functions enormCensored or elnormCensored 
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Here we will estimate the mean and standard deviation using the MLE, Q-Q  
regression (also called parametric regression on order statistics or ROS; e.g., 
USEPA 2009 and Helsel 2012), and imputation with Q-Q regression (also called 
robust ROS).  The command to estimate the parameters using the MLE method is: 

> with(EPA.09.Ex.15.1.manganese.df, 
elnormCensored(Manganese.ppb, Censored)) 

Results of Distribution Parameter Estimation 
Based on Type I Censored Data 
-------------------------------------------- 
 
Assumed Distribution:            Lognormal 
 
Censoring Side:                  left 
 
Censoring Level(s):              2 5  
 
Estimated Parameter(s):          meanlog = 2.215905 
                                 sdlog   = 1.356291 
 
Estimation Method:               MLE 
 
Data:                            Manganese.ppb 
 
Censoring Variable:              Censored 
 
Sample Size:                     25 
 
Percent Censored:                24% 

The commands to estimate the parameters based on Q-Q regression (ROS) and 
imputation with Q-Q regression (robust ROS) are, respectively: 

> with(EPA.09.Ex.15.1.manganese.df, 
elnormCensored(Manganese.ppb, Censored,  
method = "qq.reg")) 

> with(EPA.09.Ex.15.1.manganese.df, 
elnormCensored(Manganese.ppb, Censored,  
method = "impute.w.qq.reg")) 

The estimated mean and standard deviation are 2.29 and 1.28 ppb based on Q-Q 
regression, and 2.30 and 1.24 ppb based on imputation with Q-Q regression. 

As explained in Sect. 8.4.4, the method used to estimate quantiles for  
a Q-Q plot is determined by the argument prob.method.  For the functions 
enormCensored and elnormCensored, for any estimation method that  



 8.5. Estimating Distribution Parameters     187 

 

 

involves Q-Q regression, the default value of prob.method is "hirsch-
stedinger" and the default value for the plotting position constant is 
plot.pos.con=0.375.  Both Helsel (2012) and USEPA (2009) also use the 
Hirsch-Stedinger probability method but set the plotting position constant to 0.   
In this case the estimated mean and standard deviation are 2.28 and 1.26 ppb. 

> with(EPA.09.Ex.15.1.manganese.df, 
elnormCensored(Manganese.ppb, Censored,  
method = "impute.w.qq.reg", plot.pos.con = 0)) 

Computing a Confidence Interval for the Mean 
The functions enormCensored and elnormCensored take an argument 
called ci.method that determines what method is used to construct a confidence 
interval for the mean.  Table 8.6 lists the available methods along with references. 

Value of ci.method Common name References 
profile.likelihood Profile likelihood Venzon and  

    Moolgavkar (1988) 
normal.approx Normal approximation Cohen (1959, 1991) 
normal.approx.w.cov Normal approximation using 

variance-covariance of pa-
rameter estimates 

Schneider (1986) 

bootstrap Bootstrap Efron and Tibshirani (1993) 
gpq Generalized pivotal quantity Schmee et al. (1985), 

Krishnamoorthy and  
    Mathew (2009) 

Table 8.6 Available methods for constructing a confidence interval for the mean of a  
normal distribution based on censored data 

Here is the command to produce a 95 % confidence interval for the mean of the 
manganese data using the MLE method to estimate the parameters and the profile 
likelihood method to produce the confidence interval: 

> with(EPA.09.Ex.15.1.manganese.df, 
elnormCensored(Manganese.ppb, Censored, ci = TRUE)) 

Results of Distribution Parameter Estimation 
Based on Type I Censored Data 
-------------------------------------------- 
 
Assumed Distribution:            Lognormal 
 
Censoring Side:                  left 
 
Censoring Level(s):              2 5  
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Estimated Parameter(s):          meanlog = 2.215905 
                                 sdlog   = 1.356291 
 
Estimation Method:               MLE 
 
Data:                            Manganese.ppb 
 
Censoring Variable:              Censored 
 
Sample Size:                     25 
 
Percent Censored:                24% 
 
Confidence Interval for:         meanlog 
 
Confidence Interval Method:      Profile Likelihood 
 
Confidence Interval Type:        two-sided 
 
Confidence Level:                95% 
 
Confidence Interval:             LCL = 1.595062 
                                 UCL = 2.771197 

8.5.2 The Lognormal Distribution (Original Scale) 

Value of method Common name References 
mle Maximum likelihood estimator 

(MLE) 
Cohen (1959, 1991) 

bcmle Bias-corrected MLE El-Shaarawi (1989) 
qmvue Quasi-minimum variance un-

biased estimator (QMVUE) 
Gilliom and Helsel (1986), 
Newman et al. (1989), Cohn  
et al. (1989) 

impute.w.qq.reg Imputation with Q-Q regres-
sion.  Also called robust re-
gression on order statistics 
(robust ROS) 

Hashimoto and Trussell 
(1983), Gilliom and Helsel 
(1986), El-Shaarawi (1989), 
Helsel (2012) 

impute.w.qq.reg.w. 
  cen.level 

Impute with Q-Q regression 
with censoring level 

El-Shaarawi (1989) 

impute.w.mle Impute with MLE El-Shaarawi (1989) 
half.cen.level Half censoring level Gleit (1985), Haas and Scheff 

(1990), El-Shaarawi and 
Esterby (1992) 

Table 8.7 Available methods for estimating the parameters of a lognormal distribution 
based on censored data using the function elnormAltCensored 
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The function elnormAltCensored estimates the mean and coefficient of  
variation of a lognormal distribution on the original scale.  Table 8.7 shows the 
available estimation methods (as for the normal distribution, the half censoring 
level method should only be used in simulations to show how poorly it performs), 
and Table 8.8 shows the methods available for constructing a confidence interval 
for the mean on the original scale. 

Value of ci.method Common name References 
profile.likelihood Profile likelihood Venzon and  

    Moolgavkar (1988) 
cox Extension of Cox’s method to 

censored data 
El-Shaarawi (1989) 

delta Delta method Shumway et al. (1989) 
normal.approx Normal approximation Cohen (1959, 1991) 
bootstrap Bootstrap Efron and Tibshirani (1993) 

Table 8.8 Available methods for constructing a confidence interval for the mean of  
a lognormal distribution based on censored data 

In Sect. 5.2.2 we estimated the mean TcCB concentration in the Reference  
area as 0.6 ppb and the CV as 0.49, assuming the data come from a lognormal dis-
tribution.  We also computed a two-sided 95% confidence intervals for the mean 
as [0.52, 0.70].  There are 47 uncensored observations in this data set.  The modi-
fied TcCB data shown in Table 8.4 include 19 censored observations.  Using these 
data, the estimated mean and CV are 0.61 and 0.46 based on the maximum likeli-
hood method, and the two-sided 95 % confidence interval for the mean is [0.53, 
0.70] based on the profile likelihood method. 

> with(Modified.TcCB.df,  
elnormAltCensored(TcCB, Censored, ci = TRUE)) 

Results of Distribution Parameter Estimation 
Based on Type I Censored Data 
-------------------------------------------- 
 
Assumed Distribution:            Lognormal 
 
Censoring Side:                  left 
 
Censoring Level(s):              0.5  
 
Estimated Parameter(s):          mean = 0.6082981 
                                 cv   = 0.4645955 
 
Estimation Method:               MLE 
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Data:                            TcCB 
 
Censoring Variable:              Censored 
 
Sample Size:                     47 
 
Percent Censored:                40.42553% 
 
Confidence Interval for:         mean 
 
Confidence Interval Method:      Profile Likelihood 
 
Confidence Interval Type:        two-sided 
 
Confidence Level:                95% 
 
Confidence Interval:             LCL = 0.5292601 
                                 UCL = 0.7032881 

8.5.3 The Gamma Distribution 
The function egammaCensored estimates the shape and scale parameters of a 
gamma distribution based on censored data, while the function 
egammaAltCensored estimates the mean and coefficient of variation.  Cur-
rently the only available method of estimation for these functions is maximum 
likelihood estimation.  Methods for constructing a confidence interval for the 
mean include the normal approximation, bootstrap, and profile likelihood.  Here is 
the command to estimate the mean and CV and create a 95% confidence interval 
for the mean using the modified TcCB data shown in Table 8.4: 

> with(Modified.TcCB.df,  
egammaAltCensored(TcCB, Censored, ci = TRUE)) 

Results of Distribution Parameter Estimation 
Based on Type I Censored Data 
-------------------------------------------- 
 
Assumed Distribution:            Gamma 
 
Censoring Side:                  left 
 
Censoring Level(s):              0.5  
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Estimated Parameter(s):          mean = 0.5981132 
                                 cv   = 0.4739765 
 
Estimation Method:               MLE 
 
Data:                            TcCB 
 
Censoring Variable:              Censored 
 
Sample Size:                     47 
 
Percent Censored:                40.42553% 
 
Confidence Interval for:         mean 
 
Confidence Interval Method:      Profile Likelihood 
 
Confidence Interval Type:        two-sided 
 
Confidence Level:                95% 
 
Confidence Interval:             LCL = 0.5127789 
                                 UCL = 0.6895852 

In this case, the estimated mean and CV and the confidence interval for the mean 
are nearly identical to the values we saw in the previous section when we assumed 
a lognormal distribution. 

8.5.4 Estimating the Mean Nonparametrically 
Formulas for the mean and the variance of the mean based on right-censored data 
using the Kaplan-Meier estimate of the survival function are well known from the 
survival analysis literature (e.g., Lee and Wang 2003).  Helsel (2012) discusses 
adapting these formulas for left-censored data as well in order to estimate the 
mean nonparametrically and also to construct a confidence interval for the mean 
based on a normal approximation.  (He also notes you should not use this method 
for left-censored data if there is only one censoring level since it is then equivalent 
to substituting the detection limit for the censored observations.)  You can imple-
ment these methods in EnvStats using the enparCensored function. 

Following Example 15-1 in USEPA (2009, p. 15–10), we’ll use the manganese 
data introduced in Sect. 8.5.1 to nonparametrically estimate the mean on the log-
scale and create a 95 % confidence interval for the mean: 
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> with(EPA.09.Ex.15.1.manganese.df, 
enparCensored(log(Manganese.ppb), Censored, ci = TRUE)) 

Results of Distribution Parameter Estimation 
Based on Type I Censored Data 
-------------------------------------------- 
 
Assumed Distribution:            None 
 
Censoring Side:                  left 
 
Censoring Level(s):              0.6931472 1.6094379  
 
Estimated Parameter(s):          mean    = 2.3092890
                                 sd      = 1.1816102
                                 se.mean = 0.1682862
 
Estimation Method:               Kaplan-Meier 
 
Data:                            log(Manganese.ppb) 
 
Censoring Variable:              Censored 
 
Sample Size:                     25 
 
Percent Censored:                24% 
 
Confidence Interval for:         mean 
 
Confidence Interval Method:      Normal Approximation 
 
Confidence Interval Type:        two-sided 
 
Confidence Level:                95% 
 
Confidence Interval:             LCL = 1.979454
                                 UCL = 2.639124

The estimated mean and standard deviation, as well as the confidence interval for 
the mean, are not too different from the results based on assuming a lognormal 
distribution that were shown in Sect. 8.5.1  Of course, if you are estimating the 
mean nonparametrically, there is no reason to use a log transformation to attempt 
to induce normality; here is the command to estimate the mean and standard  
deviation on the original scale: 
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> with(EPA.09.Ex.15.1.manganese.df, 
enparCensored(Manganese.ppb, Censored, ci = TRUE)) 

Results of Distribution Parameter Estimation 
Based on Type I Censored Data 
-------------------------------------------- 
 
Assumed Distribution:            None 
 
Censoring Side:                  left 
 
Censoring Level(s):              2 5  
 
Estimated Parameter(s):          mean    = 19.867000 
                                 sd      = 25.317737
                                 se.mean =  4.689888
 
Estimation Method:               Kaplan-Meier 
 
Data:                            Manganese.ppb 
 
Censoring Variable:              Censored 
 
Sample Size:                     25 
 
Percent Censored:                24% 
 
Confidence Interval for:         mean 
 
Confidence Interval Method:      Normal Approximation 
 
Confidence Interval Type:        two-sided 
 
Confidence Level:                95% 
 
Confidence Interval:             LCL = 10.67499
                                 UCL = 29.05901

8.6 Estimating Distribution Quantiles 
In Chap. 5 we illustrated how to estimate and construct confidence intervals  
for population quantiles or percentiles, both parametrically and nonparametrically.  
In this section we will discuss how to do this with censored data. 
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8.6.1 Parametric Estimates of Quantiles 
A parametric estimate of a quantile is a function of the estimated distribution pa-
rameters (e.g., mean and standard deviation).  The same is true for a confidence 
interval for the quantile.  To estimate a quantile in the presence of censored obser-
vations, you can simply use the same formula for estimating the quantile as for 
complete data, but estimate the distribution parameters using formulas that are  
appropriate for censored data (e.g., USEPA 2009; Helsel 2012).  If you use maxi-
mum likelihood estimation for the distribution parameters, then the resulting esti-
mate of the quantile is also a maximum likelihood estimate.  Estimates of 
quantiles based on other kinds of estimates of the distribution parameters (e.g., 
ROS, robust ROS, Kaplan-Meier, etc.) should have similar properties, but this is 
an area that requires further research.  Also, it is not clear how well this method 
works for producing accurate confidence intervals for a quantile.  An alternative 
method for constructing a parametric confidence interval for a quantile that has 
been shown to perform fairly well is based on generalized pivotal quantities or 
GPQs (Krishnamoorthy and Mathew 2009). 

The Normal and Lognormal Distribution 
The EnvStats functions eqnormCensored and eqlnormCensored allow 
you to estimate quantiles and construct intervals for them assuming a normal or 
lognormal distribution, respectively.  You can construct confidence intervals by 
using the standard formulas for complete data and substituting in estimates of the 
mean and standard deviation based on an appropriate formula for censored data,  
or you can use the GPQ method. 

Using the Reference area TcCB concentrations of Table 1.1 in Sect. 1.11.1, the 
estimated 90th percentile is 0.98 ppb, assuming these data come from a lognormal 
distribution.  Also, the two-sided 95 % confidence interval for the 90th percentile 
is [0.84, 1.22].  If instead we use the modified TcCB concentrations shown in  
Table 8.4, the estimated 90th percentile is 0.97 using the MLE, and the two-sided 
95 % confidence interval for the 90th percentile is [0.84, 1.19] using the standard 
formula for complete data but plugging in the MLEs for the mean and standard 
deviation, so in this case censoring does not have a large effect on the estimate or 
confidence interval. 

> with(Modified.TcCB.df,  
eqlnormCensored(TcCB, Censored, p = 0.9, ci = TRUE)) 

Results of Distribution Parameter Estimation 
Based on Type I Censored Data 
-------------------------------------------- 
 
Assumed Distribution:            Lognormal 
 
Censoring Side:                  left 
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Censoring Level(s):              0.5  
 
Estimated Parameter(s):          meanlog = -0.5948115 
                                 sdlog   =  0.4420888 
 
Estimation Method:               MLE 
 
Estimated Quantile(s):           90'th %ile = 0.9721435 
 
Quantile Estimation Method:      Quantile(s) Based on 
                                 MLE Estimators 
 
Data:                            TcCB 
 
Censoring Variable:              Censored 
 
Sample Size:                     47 
 
Percent Censored:                40.42553% 
 
Confidence Interval for:         90'th %ile 
 
Assumed Sample Size:             47 
 
Confidence Interval Method:      Exact for 
                                 Complete Data 
 
Confidence Interval Type:        two-sided 
 
Confidence Level:                95% 
 
Confidence Interval:             LCL = 0.8362336 
                                 UCL = 1.1911067 

To estimate the quantile based on distribution parameters estimated using imputa-
tion with Q-Q regression (robust ROS), and to compute the confidence interval us-
ing the method of generalized pivotal quantities, type this command: 

> with(Modified.TcCB.df, eqlnormCensored(TcCB, Censored,  
p = 0.9, method = "impute.w.qq.reg", ci = TRUE,  
ci.method = "gpq", seed = 47)) 
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Results of Distribution Parameter Estimation 
Based on Type I Censored Data 
-------------------------------------------- 
 
Assumed Distribution:         Lognormal 
 
Censoring Side:               left 
 
Censoring Level(s):           0.5  
 
Estimated Parameter(s):       meanlog = -0.6098130 
                              sdlog   =  0.4604909 
 
Estimation Method:            Imputation with 
                              Q-Q Regression (ROS) 
 
Estimated Quantile(s):        90'th %ile = 0.980522 
 
Quantile Estimation Method:   Quantile(s) Based on 
                              Imputation with 
                              Q-Q Regression (ROS) Estimators 
 
Data:                         TcCB 
 
Censoring Variable:           Censored 
 
Sample Size:                  47 
 
Percent Censored:             40.42553% 
 
Confidence Interval for:      90'th %ile 
 
Confidence Interval Method:   Generalized Pivotal Quantity 
 
Number of Monte Carlos:       1000 
 
Confidence Interval Type:     two-sided 
 
Confidence Level:             95% 
 
Confidence Interval:          LCL = 0.8462989 
                              UCL = 1.2525365 
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The argument seed lets you set the seed for the random number generator used in 
the Monte Carlo trials so you can reproduce the exact same results shown here.  
Note that by default the GPQ method of constructing the confidence interval uses 
only 1,000 Monte Carlo trials, whereas Krishnamoorthy and Mathew (2009)  
suggest using 10,000 Monte Carlo trials. 

Other Distributions 
All of the available functions for estimating quantiles based on complete data (see 
Sect. 5.3) accept objects that are the result of distribution parameter estimation, so 
you can estimate distribution parameters based on censored data and supply these 
results to functions that estimate quantiles based on complete data.  (However, as 
previously stated, it is not clear how well this method performs.)  For example, 
here is the command to estimate the 90th percentile using the modified TcCB  
concentrations shown in Table 8.4 and assuming the data come from a gamma  
distribution: 

> egamma.list <- with(Modified.TcCB.df,  
egammaCensored(TcCB, Censored)) 

> eqgamma(egamma.list, p = 0.9) 

Results of Distribution Parameter Estimation 
Based on Type I Censored Data 
-------------------------------------------- 
 
Assumed Distribution:            Gamma 
 
Censoring Side:                  left 
 
Censoring Level(s):              0.5  
 
Estimated Parameter(s):          shape = 4.4512947 
                                 scale = 0.1343684 
 
Estimation Method:               MLE 
 
Estimated Quantile(s):           90'th %ile = 0.9779156 
 
Quantile Estimation Method:      Quantile(s) Based on 
                                 MLE Estimators 
 
Data:                            TcCB 
 
Censoring Variable:              Censored 
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Sample Size:                     47 
 
Percent Censored:                40.42553% 

8.6.2 Nonparametric Estimates of Quantiles 
We saw in Chap. 5 that nonparametric estimates and confidence intervals for  
population percentiles are simply functions of the ordered observations.  Thus, for 
left censored data, you can still estimate quantiles and create one-sided upper con-
fidence intervals as long as there are enough uncensored observations that can be 
ordered in a logical way, just as we did in Sect. 5.3.4 using the nitrate data. 

8.7 Prediction Intervals 
In Chap. 6 we illustrated how to construct parametric and nonparametric predic-
tion intervals.  In this section we will discuss how to do this with censored data. 

8.7.1 Parametric Prediction Intervals 
Just as for parametric estimates of a quantile, a parametric prediction interval is a 
function of the estimated distribution parameters.  To construct a parametric pre-
diction interval in the presence of censored observations, you can simply use the 
same formula as for complete data, but estimate the distribution parameters using 
formulas that are appropriate for censored data (e.g., USEPA 2009; Helsel 2012).  
Again, it is not clear how well this method works for producing accurate predic-
tion intervals; this is an area that requires further research. 

All of the available functions for constructing prediction intervals based on 
complete data (see Sect. 6.2) accept objects that are the result of distribution pa-
rameter estimation, so you can estimate distribution parameters based on censored 
data and supply these results to functions that compute prediction intervals based 
on complete data.  For example, in Sect. 6.2.4, we constructed a 95 % upper non-
parametric prediction interval for the next k = 4 future monthly trichloroethylene 
concentrations (ppb) in groundwater at a compliance well using the data from 
three background wells shown in Table 6.3.  Here are the commands to produce a 
parametric version of this prediction interval assuming a normal distribution: 

> enorm.list <- with(EPA.09.Ex.18.3.TCE.df, 
enormCensored(TCE.ppb[Well.type == "Background"], 
Censored[Well.type == "Background"])) 

> predIntNorm(enorm.list, k = 4, pi.type = "upper", 
conf.level = 0.95, method = "exact") 
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Results of Distribution Parameter Estimation 
Based on Type I Censored Data 
-------------------------------------------- 
 
Assumed Distribution:            Normal 
 
Censoring Side:                  left 
 
Censoring Level(s):              5  
 
Estimated Parameter(s):          mean = 5.297871 
                                 sd   = 3.981489 
 
Estimation Method:               MLE 
 
Data:                     TCE.ppb[Well.type == “Background”] 
 
Censoring Variable:       Censored[Well.type == “Background”] 
 
Sample Size:                     18 
 
Percent Censored:                50% 
 
Assumed Sample Size:             18 
 
Prediction Interval Method:      exact 
 
Prediction Interval Type:        upper 
 
Confidence Level:                95% 
 
Number of Future Observations:   4 
 
Prediction Interval:             LPL =    -Inf 
                                 UPL = 15.2453 

Note that although the prediction interval method in the returned object has the 
value "exact", it is not in fact exact because the prediction interval is based on 
censored, rather than complete, data.  Because half of the observations are cen-
sored, it is difficult to determine with say the function qqPlotCensored 
whether these data appear to fit a normal, lognormal, or some other distribution. 
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8.7.2 Nonparametric Prediction Intervals 
We saw in Chap. 6 that nonparametric prediction intervals are simply functions of 
the ordered observations.  Thus, for left censored data, you can still create nonpara-
metric prediction intervals as long as there are enough uncensored observations 
that can be ordered in a logical way, just as we did in Sect. 6.2.4 with the trichloro-
ethylene and xylene data and in Sect. 6.3.4 with the mercury data. 

8.8 Tolerance Intervals 
In Chap. 6 we illustrated how to construct parametric and nonparametric tolerance 
intervals.  In this section we will discuss how to do this with censored data 

8.8.1 Parametric Tolerance Intervals 
Just as for parametric estimates of a quantile, a parametric tolerance interval is a 
function of the estimated distribution parameters.  To construct a parametric toler-
ance interval in the presence of censored observations, you can simply use the 
same formula as for complete data, but estimate the distribution parameters using 
formulas that are appropriate for censored data (e.g., USEPA 2009; Helsel 2012).  
Again, it is not clear how well this method works for producing accurate tolerance 
intervals; this is an area that requires further research.  An alternative method for 
constructing parametric tolerance intervals that has been shown to perform fairly 
well is based on generalized pivotal quantities or GPQs (Krishnamoorthy and 
Mathew 2009). 

The functions  tolIntNormCensored and 
allow you to construct tolerance intervals assuming a normal or lognormal 
distribution, respectively.  You can construct tolerance intervals by using the
standard formulas for complete data and substituting in estimates of the mean and 
standard deviation based on an appropriate formula for censored data, or you can 
use the GPQ method. 

In Chap. 6, Sect. 6.4.2, we constructed a one-sided upper tolerance limit based 
on using the Reference area TcCB data presented in Sect. 1.11.1 of Chap. 1 and 
assuming a lognormal distribution.  The tolerance limit was a 95 % -content  
tolerance limit with associated confidence level of 95 % and had the value 
1.42 ppb.  For the singly censored data set shown in Table 8.4, this limit becomes 
1.38 ppb based on using MLEs to estimate the mean and standard deviation and 
using the formula for the tolerance interval that assumes complete data.  In this 
case there is very little difference between the limits based on the complete data 
versus those based on the censored data.  Here is the command to construct the 
tolerance limit using the standard formula for complete data but plugging in the 
MLEs for the mean and standard deviation: 

> with(Modified.TcCB.df,  
tolIntLnormCensored(TcCB, Censored, ti.type = "upper")) 

tolIntLnormCensored
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Results of Distribution Parameter Estimation 
Based on Type I Censored Data 
-------------------------------------------- 
 
Assumed Distribution:            Lognormal 
 
Censoring Side:                  left 
 
Censoring Level(s):              -0.6931472  
 
Estimated Parameter(s):          meanlog = -0.5948115 
                                 sdlog   =  0.4420888 
 
Estimation Method:               MLE 
 
Data:                            TcCB 
 
Censoring Variable:              censored 
 
Sample Size:                     47 
 
Percent Censored:                40.42553% 
 
Assumed Sample Size:             47 
 
Tolerance Interval Coverage:     95% 
 
Coverage Type:                   content 
 
Tolerance Interval Method:       Exact for 
                                 Complete Data 
 
Tolerance Interval Type:         upper 
 
Confidence Level:                95% 
 
Tolerance Interval:              LTL = 0.000000 
                                 UTL = 1.384159 

To construct the tolerance interval based on distribution parameters estimated us-
ing imputation with Q-Q regression (robust ROS), and using the method of gener-
alized pivotal quantities, type this command: 
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> with(Modified.TcCB.df, tolIntLnormCensored(TcCB, Censored, 
ti.type = "upper", method = "impute.w.qq.reg",  
ti.method = "gpq", seed = 47)) 

Results of Distribution Parameter Estimation 
Based on Type I Censored Data 
-------------------------------------------- 
 
Assumed Distribution:            Lognormal 
 
Censoring Side:                  left 
 
Censoring Level(s):              -0.6931472  
 
Estimated Parameter(s):          meanlog = -0.6098130 
                                 sdlog   =  0.4604909 
 
Estimation Method:               Imputation with 
                                 Q-Q Regression (ROS) 
 
Data:                            TcCB 
 
Censoring Variable:              censored 
 
Sample Size:                     47 
 
Percent Censored:                40.42553% 
 
Tolerance Interval Coverage:     95% 
 
Coverage Type:                   content 
 
Tolerance Interval Method:       Generalized Pivotal Quantity 
 
Number of Monte Carlos:          1000 
 
Tolerance Interval Type:         upper 
 
Confidence Level:                95% 
 
Tolerance Interval:              LTL = 0.000000 
                                 UTL = 1.492929 
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8.8.2 Nonparametric Tolerance Intervals 
We saw in Chap. 6 that nonparametric tolerance intervals are simply functions of 
the ordered observations.  Thus, for left censored data, you can still create nonpara-
metric tolerance intervals as long as there are enough uncensored observations that 
can be ordered in a logical way, just as we did in Sect. 6.4.4 with the copper data. 

8.9 Hypothesis Tests 
In this section we discuss how to perform hypothesis tests in the presence of  
censored data. 

8.9.1 Goodness-of-Fit Tests 
Royston (1993) extended both the Shapiro-Francia and Shapiro-Wilk goodness-of-
fit tests to the case of singly censored data.  He also provides a method of compu-
ting p-values for these statistics based on tables given in Verrill and Johnson 
(1988).  Although Verrill and Johnson (1988) produced their tables based on Type 
II censoring, Royston’s (1993) approximation to the p-value of these tests should 
be fairly accurate for Type I censored data as well.  The Shapiro-Francia and 
PPCC tests are also easily extendible to the case of multiply censored data, but it 
is not known how well Royston’s method of computing p-values works in this 
case.  The ENVSTATS function gofTestCensored performs goodness-of-fit 
tests for censored data using Royson’s method; see the help file for details. 

We noted in Chap. 7 that goodness-of-fit tests are of limited value for small 
sample sizes because there is usually not enough information to distinguish be-
tween different kinds of distributions.  This also holds true even for moderate 
sample sizes if you have data with a moderate amount of censored observations, as 
the next example shows. 

In Sect. 7.2.1 we showed that goodness-of-fit tests for the Reference area 
TcCB data indicated that the normal distribution was not appropriate, but that  
a lognormal distribution appeared to adequately model the data.  In this example 
we will perform the same tests but use the modified TcCB data of Table 8.4.  The 
Shapiro-Wilk test for normality yields a p-value of 0.35 and the test for 
lognormality yields a p-value of 0.43.  Figures 8.8 and 8.9 show companion plots 
for the tests for normality and lognormality, respectively.  Compare these figures 
to Figs. 7.1 and 7.2.  We see that unlike the case with complete data, here censor-
ing 40 % of the observations leaves us unable to distinguish between a normal and 
lognormal distribution. 

> sw.list.norm <- with(Modified.TcCB.df,  
gofTestCensored(TcCB, Censored)) 

> sw.list.norm 
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Results of Goodness-of-Fit Test 
Based on Type I Censored Data 
------------------------------- 
 
Test Method:                     Shapiro-Wilk GOF 
                                 (Singly Censored Data) 
 
Hypothesized Distribution:       Normal 
 
Censoring Side:                  left 
 
Censoring Level(s):              0.5  
 
Estimated Parameter(s):          mean = 0.5580721 
                                 sd   = 0.3371722 
 
Estimation Method:               MLE 
 
Data:                            TcCB 
 
Censoring Variable:              Censored 
 
Sample Size:                     47 
 
Percent Censored:                40.4% 
 
Test Statistic:                  W = 0.9625386
 
Test Statistic Parameters:       N     = 47.0000000 
                                 DELTA =  0.4042553 
 
P-value:                         0.3469034
 
Alternative Hypothesis:          True cdf does not equal the 
                                 Normal Distribution. 

> sw.list.lnorm <- with(Modified.TcCB.df, 
gofTestCensored(TcCB, Censored, dist = "lnorm")) 

> sw.list.lnorm 
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Results of Goodness-of-Fit Test 
Based on Type I Censored Data 
------------------------------- 
 
Test Method:                     Shapiro-Wilk GOF 
                                 (Singly Censored Data) 
 
Hypothesized Distribution:       Lognormal 
 
Censoring Side:                  left 
 
Censoring Level(s):              0.5  
 
Estimated Parameter(s):          meanlog = -0.5948115 
                                 sdlog   =  0.4420888 
 
Estimation Method:               MLE 
 
Data:                            TcCB 
 
Censoring Variable:              Censored 
 
Sample Size:                     47 
 
Percent Censored:                40.4% 
 
Test Statistic:                  W = 0.9667591
 
Test Statistic Parameters:       N     = 47.0000000 
                                 DELTA =  0.4042553 
 
P-value:                         0.4298383
 
Alternative Hypothesis:          True cdf does not equal the 
                                 Lognormal Distribution. 

commands. 

> plot(sw.list.norm) 

> plot(sw.list.lnorm) 

To plot the results of these tests as shown in Figs. 8.8 and 8.9, type these  
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Fig. 8.8 Companion plots for the Shapiro-Wilk test for normality for the singly censored 
Reference area TcCB data 

Fig. 8.9 Companion plots for the Shapiro-Wilk test for lognormality for the singly censored 
Reference area TcCB data 
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8.9.2 Nonparametric Tests to Compare Two Groups 
In Sect. 7.3 of Chap. 7 we discussed various hypothesis tests to compare locations 
(central tendency) between two groups, including the Wilcoxon rank sum test, 
other linear rank tests, and the quantile test.  In the presence of censored observa-
tions, you can still use a linear rank test (e.g., the Wilcoxon rank sum test) or 
quantile test as long as there are enough uncensored observations that can be  
ordered in a logical way.  For example, if both samples are singly censored with 
the same censoring level and all uncensored observations are greater than the  
censoring level, then all censored observations receive the lowest ranks and are 
considered tied observations.  Actually you can use linear rank tests even with 
multiply censored data as well. 

We stated in Chap. 7 that the Wilcoxon rank sum test is a particular kind of 
linear rank test.  Several authors have proposed extensions of the Wilcoxon rank 
sum test to the case of singly or multiply censored data, mainly in the context of 
survival analysis (e.g., Breslow 1970; Cox 1972; Gehan 1965; Mantel 1966; Peto 
and Peto 1972; Prentice 1978).  Prentice (1978) showed how all of these proposed 
tests are extensions of a linear rank test to the case of censored observations.  As 
for the case of complete data, different linear rank tests use different score func-
tions, and some may be better than others at detecting a small shift in location,  
depending upon the true underlying distribution. 

Prentice and Marek (1979), Latta (1981), and Millard and Deverel (1988)  
studied the behavior of several linear rank tests for censored data.  For details, see 
the help file for twoSampleLinearRankTestCensored. 

In Sect. 8.4.3 we compared the empirical cumulative distribution functions of 
copper concentrations in the alluvial fan and basin trough zones (see Table 8.3 and 
Fig. 8.5).  The plot indicates the distributions of concentrations are fairly similar.  
The two-sample linear rank test based on normal scores and a hypergeometric  
variance yields a p-value of 0.2, indicating no significant difference.  To perform 
the two-sample linear rank test to compare copper concentrations, type these 
commands. 

> attach(Millard.Deverel.88.df) 

> Cu.AF <- Cu[Zone=="Alluvial.Fan"] 

> Cu.AF.cen <- Cu.censored[Zone=="Alluvial.Fan"] 

> Cu.BT <- Cu[Zone=="Basin.Trough"] 

> Cu.BT.cen <- Cu.censored[Zone=="Basin.Trough"] 

> twoSampleLinearRankTestCensored(Cu.AF, Cu.AF.cen,  
Cu.BT, Cu.BT.cen, test = "normal.scores.2",  
var = "hypergeometric") 
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Results of Hypothesis Test 
Based on Censored Data 
-------------------------- 
 
Null Hypothesis:                 Fy(t) = Fx(t) 
 
Alternative Hypothesis:          Fy(t) != Fx(t) for at least 
one t 
 
Test Name:                       Two-Sample Linear Rank Test: 
                                 Normal Scores Test Using 
                                 Prentice Survival Estimator 
                           Based on Prentice and Marek (1979) 
                                 with Hypergeometric Variance 
 
Censoring Side:                  left 

 
Data:                            x = Cu.AF 
                                 y = Cu.BT 
 
Censoring Variable:              x = Cu.AF.cen 
                                 y = Cu.BT.cen 
 
Number NA/NaN/Inf's Removed:     x = 3 
                                 y = 1 
 
Sample Sizes:                    nx = 65 
                                 ny = 49 
 
Percent Censored:                x = 26.2% 
                                 y = 28.6% 
 
Test Statistics:                 nu     = -5.119320 
                                 var.nu = 16.020363 
                                 z      = -1.279016 
 
P-value:                         0.2008913 

Censoring   x = 1 5 10 20
                                 y = 1 2 5 10 15

Level(s)
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8.10 Summary 
• A sample of data contains censored observations if some of the observa-

tions are reported only as being below or above some censoring level. 
• Environmental data often contain values reported as “less-than-detection-

limit”. 
• Table 8.1 lists functions available in ENVSTATS for analyzing censored 

data. 
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Chapter 9 

Monte Carlo Simulation and Risk 
Assessment 

9.1 Introduction 
In the first eight chapters of this book we have discussed several statistical tools 
for looking at data, modeling probability distributions, estimating distribution para-
meters and quantiles, constructing prediction and tolerance intervals, comparing 
two or more groups, and testing for trend.  All of our examples have concentrated 
on assessing how much chemical is in the environment and comparing chemical 
concentrations to “background.”  But given that chemicals are in the environment, 
what happens when people or other living organisms are exposed to these chemicals? 

Of course, “chemicals” in the environment are part of our everyday lives:  they 
are in the food we eat, the water we drink, the air we breathe.  Some are natural 
and others are synthetic, having been added either on purpose or as a by-product 
of a manufacturing process.  There is no doubt that the chemical revolution of 
twentieth century has improved our lives immensely.  But we have also learned 
that some chemicals that improved some facet of our lives can have devastating 
consequences on our health and environment. 

Several government agencies are charged with evaluating the potential health 
and ecological effects of environmental toxicants.  Based on their assessments, 
these agencies set standards for acceptable concentration levels of these toxicants 
in air, water, soil, food, etc.  The process of modeling exposure to a toxicant and 
predicting health or ecological effects is termed risk assessment, and probabilistic 
risk assessment uses probability distributions to characterize variability or uncer-
tainty in risk estimates. 

Risk assessment is a process where science, politics, and psychology all  
intersect.  Not surprisingly, it is also a field full of controversy.  References dis-
cussing risk assessment and the concept of risk include Byrd and Cothern (2000), 
Everitt (2008), Hallenbeck (1993), Laudan (1997), Lewis (1990), Lundgren and 
McMakin (2009), Neely (1994), Ostrom and Wilhelmsen (2012), Robson and 
Toscano (2007), Rodricks (2007), Suter et al. (2000), Suter (2007), USEPA 
(1992g, 1997a, b, c, 1999, 2001, 2005), Vose (2008), and Walsh (1996).  In  
addition, the US Environmental Protection Agency has a web site dedicated to the 
topic of environmental risk assessment:  www.epa.gov/risk.  In this chapter, we 
will introduce basic mathematical models used in risk assessment and talk about 
how to use ENVSTATS and R to perform Monte Carlo simulation and probabilistic 
risk assessment (see Millard et al. 2014, for a more in-depth discussion of these 
topics). 

http://www.epa.gov/risk
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9.2 Overview 
Human and ecological risk assessment involves characterizing the exposure to a 
toxicant for one or several populations, quantifying the relationship between  
exposure (dose) and health or ecological effects (response), determining the risk 
(probability) of a health or ecological effect given the observed level(s) of expo-
sure, and characterizing the uncertainty associated with the estimated risk 
(Hallenbeck 1993).  Risk assessment is an enormous field of research and practice.  
The merits and disadvantages of particular exposure models (including fate and 
transport models) and dose-response models are not discussed in this chapter.  
Several journals, textbooks, and web sites are dedicated to risk assessment (see  
Introduction). 

In the past, estimates of risk were often based solely on setting values of the 
input variables (e.g., body weight, dose, etc.) to particular point estimates and  
producing a single point estimate of risk, with little, if any, quantification of the 
uncertainty associated with the estimated risk.  More recently, several practitioners 
have advocated “probabilistic” risk assessment, in which the input variables are 
considered random variables, so the result of the risk assessment is a probability 
distribution for predicted risk or exposure. 

Usually, the equation describing risk or exposure is so complicated that it is 
not feasible to determine the output distribution using analytical methods, so the 
distribution of risk or exposure is derived via Monte Carlo simulation.  This chapter 
discusses the concepts of Monte Carlo simulation, sensitivity and uncertainty 
analysis, and risk assessment, and shows you how to use ENVSTATS and R to  
perform probabilistic risk assessment. 

9.3 Monte Carlo Simulation 
Monte Carlo simulation is a method of investigating the distribution of a random 
variable by simulating random numbers (Gentle 1985).  Usually, the random vari-
able of interest, say Y, is some function of one or more other random variables: 

 ( )1 2( ) , , , kY h X h X X X= = …  (9.1) 

For example, Y may be an estimate of the median of a population with a Cauchy 
distribution, in which case the vector of random variables X represents k inde-
pendent and identically distributed observations from some particular Cauchy dis-
tribution.  As another example, Y may be the incremental lifetime cancer risk due 
to ingestion of soil contaminated with benzene (Thompson et al. 1992; Hamed and 
Bedient 1997).  In this case the random vector X may represent observations from 
several kinds of distributions that characterize exposure and dose-response, such 
as benzene concentration in the soil, soil ingestion rate, average body weight, the 
cancer potency factor for benzene, etc.  These distributions may or may not be  
assumed to be independent of one another (Smith et al. 1992; Bukowski et al. 1995). 

Sometimes the input variables X1, X2, …, Xk are called input parameters.  This 
terminology can be confusing, however, since the input variables are often random 
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variables and therefore have distribution parameters associated with their proba-
bility distributions (e.g., mean and standard deviation for a normally distributed 
input variable). 

Sometimes the distribution of Y in Eq. 9.1 can be derived analytically based on 
statistical theory (Springer 1979; Slob 1994).  Often, however, the function h is 
complicated and/or the elements of the random vector X involve several kinds of 
probability distributions, making it difficult or impossible to derive the exact dis-
tribution of Y.  In this case, Monte Carlo simulation can be used to approximate 
the distribution of Y.  Monte Carlo simulation is often used in risk assessment, 
specifically in sensitivity and uncertainty analysis. 

Monte Carlo simulation involves creating a large number of realizations of the 
random vector X, say n, and computing Y for each of the n realizations of X.  The 
resulting distribution of Y, or some characteristic of this distribution (e.g., the 
mean), is then assumed to be “close” to the true distribution or distribution charac-
teristic of Y.  The adequacy of the approximation depends on a number of factors, 
including how well the mathematical relationship described in Eq. 9.1 reflects the 
true relationship between Y and X, how well the specified distribution of X reflects 
its true distribution (including any possible dependencies between the individual 
elements of X), and how many Monte Carlo samples or trials (n) are created.  
Usually, Monte Carlo simulation involves generating random numbers from some 
specified theoretical probability distribution, such as a normal, lognormal, beta, 
etc.  When the simulation is done based on an empirical distribution, this is also 
called bootstrapping (Efron and Tibshirani 1993). 

Various sources indicate that the term “Monte Carlo” comes from the code 
name of a World War II era project at Los Alamos Laboratories, although they 
differ on exactly who coined the term (Anderson 1986; Gentle 1985; Hayes 1993; 
Rubinstein 1981; Rugen and Callahan 1996).  The code name comes from the  
casino in Monaco with the same name.  References that address the issues of how 
to properly perform and report the results of a Monte Carlo simulation study  
include Burmaster and Anderson (1994), Hoaglin and Andrews (1975), Law 
(2006), and Vose (2008). 

9.3.1 Simulating the Distribution of the Sum of Two Normal 
Random Variables 

Suppose X1 and X2 are two independent standard normal random variables.  Then 
the distribution of 

 ( )1 2 1 2,Y h X X X X= = +  (9.2) 

is normal with a mean of 0 and a variance of 2.  Suppose, however, that we do not 
know how to derive the distribution of Y.  We can use Monte Carlo simulation to 
investigate the shape of the distribution of Y, as well as compute characteristics of 
the distribution (e.g., mean, median, standard deviation, quantiles, etc.) 

Figure 9.1 displays the empirical and true distribution of Y, where the empiri-
cal distribution of Y was derived by using Monte Carlo simulation with 100 trials.  
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That is, for each trial, two random numbers from a standard normal distribution 
were generated and added together.  Figure 9.2 displays the empirical distribution 
based on 10,000 trials along with the true distribution.  Table 9.1 displays some 
summary statistics for the two empirical distributions and compares them with the 
true population values.  As we increase the number of Monte Carlo trials, the  
simulated distribution tends to get “closer” to the true distribution.  This is called 
the Law of Large Numbers. 

 
Parameter 

Empirical
(100) 

Empirical
(10,000) 

Population
N(0, 2) 

Mean  0.12  0.03  0
Standard deviation  1.46  1.43  1.41
5th percentile -2.10 -2.32 -2.33
95th percentile  2.97  2.41  2.33

Table 9.1 Comparison of empirical and population summary statistics 

To generate the empirical distribution of the sum of two independent standard 
normal random variables based on 100 and 10,000 Monte Carlo trials, type these 
commands: 

> df.100 <-data.frame(simulateMvMatrix(n = 100, seed = 20)) 

> y.100 <- with(df.100, Var.1 + Var.2) 

> df.10000 <- data.frame( 
simulateMvMatrix(n = 10000, seed = 20) 

> df.10000 <- with(df.10000, Var.1 + Var.2) 

(You can also use the function mvrnom in the MASS package to create multivariate 
normal random numbers.)  To create Fig. 9.1, type these commands: 

> hist(y.100, freq = FALSE, col = "cyan",  
xlab = expression(paste("Y = ", X[1], " + ", X[2])),  
ylab = "Relative Frequency", main = "") 

> pdfPlot(param.list = list(mean = 0, sd = sqrt(2)),  
add = TRUE, pdf.lwd = 3) 

To create Fig. 9.2 type these commands: 

> hist(y.10000, freq = FALSE, breaks = 75, col = "cyan",  
xlab = expression(paste("Y = ", X[1], " + ", X[2])),  
ylab = "Relative Frequency", main = "") 

> pdfPlot(param.list = list(mean = 0, sd = sqrt(2)),  
add = TRUE, pdf.lwd = 3) 
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Fig. 9.1 Empirical and theoretical distribution of the sum of two independent N(0,1)  
random variables based on 100 Monte Carlo trials 
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Fig. 9.2 Empirical and theoretical distribution of the sum of two independent N(0,1)  
random variables based on 10,000 Monte Carlo trials 
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9.4 Generating Random Numbers 
A random number is a realization of a random variable, say X.  For many people, 
the term random number initially conjures up an image of somehow choosing an 
integer between a specified lower and upper bound (e.g., 1 and 10), where each 
number is equally likely to be chosen.  In that case, the random variable X is a dis-
crete uniform random variable with probability density (mass) function given by: 

 ( ) ( ) 1Pr ; 1, 2, ,10
10

f x X x x= = = = …  (9.3) 

In general, a random number can be a realization of a random variable from any 
kind of probability distribution (e.g., uniform, normal, lognormal, gamma, empirical, 
etc.) 

9.4.1 Generating Random Numbers from a Uniform Distribution 
The R function runif generates pseudo-random numbers from a (continuous) 
uniform distribution.  Random number generation in R is documented in the help 
file Random.  The default generator is a Mersenne-Twister (Matsumoto and 
Nishimura 1998).  References that discuss generating pseudo-random numbers  
include Barry (1996), Hayes (1993), Kennedy and Gentle (1980), Law (2006), 
Ripley (1981), and Rubinstein (1981). 

Pseudo-random number generators start with an initial seed, and then appear to 
generate random numbers, although these numbers are actually generated by a  
deterministic mechanism.  Each time you generate a set of random numbers, the 
value of the seed changes.  If you start with the same seed, you will get the same 
sequence of pseudo-random numbers.  You can use the R function set.seed to 
set the seed of the random number generator. 

The period of a random number generator is the number of random numbers 
that can be generated before the sequence repeats itself.  The period of the default 
generator in R is 219,937 – 1 (about 106,000). 

9.4.2 Generating Random Numbers from an Arbitrary 
Distribution 

As we saw in Chap. 4, the R and ENVSTATS functions of the form rabb (where 
abb denotes the abbreviation of the distribution) generate random numbers from 
several theoretical probability distributions.  For example, the function rnorm 
generates random numbers from a normal distribution. 

To generate random numbers for a specified probability distribution, most 
computer software programs use the inverse transformation method (Law 2006; 
Rubinstein 1981; Vose 2008).  Suppose the random variable U has a U[0,1] distri-
bution, that is, a uniform distribution over the interval [0,1].  Let FX denote the 
cumulative distribution function (cdf) of the specified probability distribution.  
Then the random variable X defined by: 
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 ( )1
XX F U=  (9.4) 

has the specified distribution, where the quantity 1
XF  denotes the inverse of the 

cdf function FX.  Thus, to generate a set of random numbers from any distribution, 
all you need is a set of random numbers from a U[0,1] distribution and a function 
that computes the inverse of the cdf function for the specified distribution.  Figure 
9.3 illustrates the inverse transformation method for a standard normal distribu-
tion, with U = 0.8.  In this case, the random number generated is 1(0.8), which 
is 0.8416212. 
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Fig. 9.3 Example of the inverse transformation method of generating a random number 
from the standard normal distribution 

9.4.3 Latin Hypercube Sampling 
Latin Hypercube sampling, sometimes abbreviated LHS, is a method of sampling 
from a probability distribution (one random variable) or a joint probability distri-
bution (several random variables) that ensures all portions of the probability  
distribution are represented in the sample.  It was introduced in the published liter-
ature by McKay et al. (1979).  Other references include Iman and Conover (1980, 
1982), and Vose (2008).  Latin Hypercube sampling is an extension of quota  
sampling, and when applied to the joint distribution of k random variables, can be 
viewed as a k-dimensional extension of Latin square sampling, thus the name 
(McKay et al. 1979). 
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Latin Hypercube sampling was introduced to overcome the following problem 
in Monte Carlo simulation based on simple random sampling (SRS).  Suppose we 
want to generate random numbers from a specified distribution.  If we use simple 
random sampling, there is a low probability of getting very many observations in 
an area of low probability of the distribution.  For example, if we generate n  
observations from the distribution, the probability that none of these observations 
falls into the upper 98th percentile of the distribution is 0.98n.  So, for example, 
there is a 13 % chance that out of 100 random numbers none will fall at or above 
the 98th percentile.  If we are interested in reproducing the shape of the distribu-
tion, we will need a very large number of observations to ensure that we can  
adequately characterize the tails of the distribution (Vose 2008). 

Latin Hypercube sampling was developed in the context of using computer 
models that required enormous amounts of time to run and for which only a  
limited number of Monte Carlo simulations could be implemented.  In cases 
where it is fairly easy to generate tens of thousands of Monte Carlo trials, Latin 
Hypercube sampling may or may not offer any real advantage. 

Latin Hypercube sampling works as follows for a single probability distribution.  
If we want to generate n random numbers from the distribution, the distribution is 
divided into n intervals of equal probability 1/n.  A random number is then gener-
ated from each of these intervals.  For k independent probability distributions, 
LHS is applied to each distribution, and the resulting random numbers are 
matched at random to produce n random vectors of dimension k. 
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Fig. 9.4 N(0, 1) probability density with four equal-probability intervals 
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Fig. 9.5 N(0, 1) cumulative distribution with four equal-probability intervals 
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Fig. 9.6 Visual explanation of generating four random numbers from a N(0, 1) distribution 
using Latin Hypercube sampling 
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Figures 9.4, 9.5, and 9.6 illustrate Latin Hypercube sampling for a sample size 
of n = 4, assuming a standard normal distribution.  Figure 9.4 shows the four 
equal-probable intervals for a standard normal distribution in terms of the proba-
bility density function, and Fig. 9.5 shows the same thing in terms of the cumula-
tive distribution function.  Figure 9.6 shows how Latin Hypercube sampling is  
accomplished using the inverse transformation method for generating random 
numbers.  In this case, the interval [0,1] is divided into the four intervals [0, 0.25], 
[0.25, 0.5], [0.5, 0.75], and [0.75, 1].  Next, a uniform random number is generat-
ed within each of these intervals.  For this example, the four numbers generated 
are (to two decimal places) 0.04, 0.35, 0.70, and 0.89.  Finally, the standard normal 
random numbers associated with the inverse cumulative distribution function of 
the four uniform random numbers are computed:  1.75, 0.39, 0.52 and 1.23. 

9.4.4 Example of Simple Random Sampling versus Latin 
Hypercube Sampling 

Figure 9.7 displays a histogram of 50 observations based on a simple random 
sample from a standard normal distribution.  Figure 9.8 displays the same thing 
based on a Latin Hypercube sample.  You can see that the form of the histogram 
constructed with the Latin Hypercube sample more closely resembles the true  
underlying distribution. 
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Fig. 9.7 Results of simple random sampling from a N(0, 1) distribution 
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Fig. 9.8 Results of Latin Hypercube sampling from a N(0, 1) distribution 

The EnvStats function simulateVector lets you generate random numbers 
from any of the built-in probability distributions in R and EnvStats using either 
simple random sampling or Latin hypercube sampling.  To create Figs. 9.7 and 9.8 
type these commands: 

> x.srs <- simulateVector(50, seed = 798) 

> hist(x.srs, freq = FALSE, breaks = 15, ylim = c(0, 0.7), 
col = "cyan", xlab = "50 Random Numbers Based on SRS", 
ylab = "Relative Frequency", main = "") 

> pdfPlot(add = TRUE, pdf.lwd = 3) 

> x.lhs <- simulateVector(50, seed = 798,  
sample.method = "LHS") 

> hist(x.lhs, freq = FALSE, breaks = 15, ylim = c(0, 0.4), 
col = "cyan", xlab = "50 Random Numbers Based on LHS", 
ylab = "Relative Frequency", main = "") 

> pdfPlot(add = TRUE, pdf.lwd = 3) 
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9.4.5 Properties of Latin Hypercube Sampling 
Let Y denote the outcome variable for one trial of a Monte Carlo simulation, and 
suppose Y is a function of k independent random variables as shown in Eq. 9.1 
above.  McKay et al. (1979) consider the class of estimators of the form 

 ( ) ( ) ( )1 2
1

1, , ,
n

n i
i

T T Y T Y Y Y g Y
n =

= = =…  (9.5) 

where g is an arbitrary function.  This class of estimators includes the mean, the 
rth sample moment, and the empirical cumulative distribution function.  Setting 

 ( )E T Y=  (9.6) 

the variance of T under LHS is less than or equal to the variance of T under SRS. 
Stein (1987) shows that the variance of the sample mean of Y under LHS is  

asymptotically less than the variance of the sample mean under simple random 
sampling whether or not the function h is monotonic in its arguments.  Unfortu-
nately, for most cases of LHS, the formula for the true variance of the sample 
mean is difficult to derive, and thus a good estimate of true variance is not available.  
Using the usual formula of dividing the sample variance by the sample size will 
usually overestimate the true variance of the sample mean. 

Iman and Conover (1980) and Stein (1987) suggest producing several inde-
pendent Latin Hypercube samples, say N, and for each Latin Hypercube sample 
computing the sample mean based on the n observations within that sample; they 
call this method replicated Latin Hypercube sampling.  You can then estimate the 
variance of the sample mean by computing the usual sample variance of these N 
sample means.  Note that this method can be applied to any quantity of interest, 
such as the median, 95th percentile, etc. 

9.4.6 Generating Correlated Multivariate Random Numbers 
Often, the input variables in a Monte Carlo simulation are known to be correlated, 
such as body weight and dermal area.  If all of the input variables are normally 
distributed or all of them are lognormally distributed, you can easily generate  
correlated random numbers using the function mvrnom in the R package MASS.  
However, if the different input variables have different kinds of distributions, it is 
not straightforward how to generate correlated random variables.  The EnvStats 
function simulateMvMatrix uses the method of Iman and Conover (1982) to 
allow you to generate a random sample or Latin Hypercube sample of correlated 
random variables from multiple types of distributions using rank correlations. 

USEPA (2001, p. B-27) presents an example of a Monte Carlo simulation  

 

McKay et al. (1979) show that under LHS, T is an unbiased estimator of , and 
h in Eq. 9.1 is monotonic in each of its arguments and g is monotonic, then also, if 

with correlated input variables for estimating the distribution in a certain human  
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population of daily intake over a 30-year period of a chemical found in fish.  The 
equation used to model chemical intake is given by: 

 
CF IR FI EF EDIntake

BW AT
× × × ×

=
×

 (9.7) 

and Table 9.2 displays the descriptions and assumed values or distributions for the 
input variables.  The parameters for the lognormal distributions refer to the mean 
and standard deviation for the untransformed variable.  The averaging time (AT) is 
simply the exposure duration multiplied by 365 days/year. 

Variable Description Units Point estimate or PDF 
CF Concentration in fish g/kg 25 
IR Fish ingestion rate kg/meal Lognormal (0.16, 0.07) 
FI Fraction ingestion from source unitless 1.0 
EF Exposure frequency meals/year Lognormal (35.5, 25.0) 
ED Exposure duration years 30 
BW Body weight kg 70 
AT Averaging time days 10,950 

Table 9.2 Input variables, point estimates, and distributions for Eq. 9.7 

To reproduce this example, first we will create a function for intake: 

> Intake.fcn <- function(CF = 25, IR, FI = 1, EF, ED = 30,  
BW = 70, AT = ED * 365) 
{ (CF * IR * FI * EF * ED) / (BW * AT) } 

Next we will perform 5,000 Monte Carlo simulations of intake using Latin  
Hypercube sampling for each of four different scenarios of rank correlation  
between the input variables IR and EF:  0, 0.1, 0.5, and 0.9. 

> cors <- c(0, 0.1, 0.5, 0.9) 

> Intake.mat <- matrix(as.numeric(NA), nrow = 5000, ncol = 4, 
dimnames = list(NULL, paste("Cor", cors, sep = "."))) 

> for(j in 1:4) { 
IR.EF.df <- data.frame(simulateMvMatrix(5000, 
distributions = c(IR = "lnormAlt", EF = "lnormAlt"), 
param.list = list(IR = list(mean = 0.16, cv = 0.07/0.16), 
EF = list(mean = 35.5, cv = 25/35.5)),  
cor.mat = matrix(c(1, cors[j], cors[j], 1), ncol = 2), 
sample.method = "LHS", seed = 428)) 
 
Intake.mat[, j] <- with(IR.EF.df,  
 Intake.fcn(IR = IR, EF = EF)) 
} 
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Finally, here are the summary statistics showing the mean and the 50th, 95th and 
97.5th percentiles for each scenario.  Note that intake is in units of g/(kg-day), 
however USEPA (2001) reports the results of the simulation in units of g/day, so 
we will multiply our results by 70 kg (the assumed body weight). 

> Results.mat <- 70 * apply(Intake.mat, 2,  
function(x) c(Mean = mean(x),  
quantile(x, probs = c(0.5, 0.95, 0.975)))) 

> round(Results.mat, 2) 

      Cor.0 Cor.0.1 Cor.0.5 Cor.0.9 
Mean   0.39    0.40    0.45    0.49 
50%    0.29    0.29    0.29    0.29 
95%    1.04    1.10    1.32    1.57 
97.5%  1.33    1.42    1.77    2.17 
Note that these results differ from the results presented in USEPA (2001) by about 
a factor of 1/4.  As USEPA (2001) points out, positive rank correlations have little 
effect on the median of the distribution for intake but tend to widen the tails of the 
distribution. 

9.5 Uncertainty and Sensitivity Analysis 
Uncertainty analysis and sensitivity analysis are terms used to describe various 
methods of characterizing the behavior of a complex mathematical/computer 
model.  The model in Eq. 9.1 above is different from most conventional statistical 
models, where the form of the model is: 

 ( )Y h X= +  (9.8) 

(e.g., linear regression models, generalized linear models, nonlinear regression 
models, etc.).  In Eq. 9.8, the vector X is assumed to be set or observed at fixed 
values, and for fixed values of X the response variable Y deviates about its mean 
value according to the distribution of the error term .  This kind of model is  
useful when we are interested in the specific relationship between Y and X, and we 
want to predict the value of Y for a specified value of X.  Furthermore, this kind of 
model is fit using paired observations of Y and X. 

In Eq. 9.1, Y is assumed to be observed without error, that is, the value of Y is 
deterministic for a set value of X.  The output variable Y, however, is a random 
variable when some or all of the input variables X1, X2, …, Xk are random  
variables.  This kind of model is useful when we are interested in describing the 
distribution of Y taken over all possible (read as “reasonable and realistic”)  
combinations of the input variables.  Furthermore, paired observations of Y and X 
are usually not available to validate this kind of model, hence, there is some 
amount of unquantifiable uncertainty associated with this kind of model. 
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Uncertainty analysis involves describing the variability or distribution of  
values of the output variable Y that is due to the collective variation in the input 
variables X (Iman and Helton 1988).  This description usually involves graphical 
displays such as histograms, empirical density plots, and empirical cdf plots, as 
well as summary statistics such as the mean, median, standard deviation, coefficient 
of variation, 95th percentile, etc. 

Sensitivity analysis involves determining how the distribution of Y changes 
with changes in the individual input variables.  It is used to identify which input 
variables contribute the most to the variation or uncertainty in the output variable 
Y (Iman and Helton 1988).  Sensitivity analysis is also used in a broader sense to 
determine how changing the distributions of the input variables and/or their  
assumed correlations or even changing the form of the model affects the output 
(Thompson et al. 1992; Smith et al. 1992; Cullen 1994; Shlyakhter 1994; 
Bukowski et al. 1995; Hamed and Bedient 1997; USEPA 1997a). 

9.5.1 Important Versus Sensitive Parameters 

X1 Important (Thus Sensitive)

X1

Y

X2 Not Sensitive (Thus Not Important)

X2

Y

X3 Not Important

X3

Y

 
Fig. 9.9 Three examples of the concepts of “important” and “sensitive” parameters 
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Two useful concepts associated with sensitivity analysis are important parameters 
(variables) and sensitive parameters (variables) (Crick et al. 1987 as cited in 
Hamby 1994).  Sensitive parameters have a substantial influence on the resulting 
distribution of the output variable Y, that is, small changes in the value of a sensitive 
parameter result in substantial changes in Y.  Important parameters have some 
amount of uncertainty and/or variability associated with them and this variability 
contributes substantially to the resulting variability in the output variable Y. 

Figure 9.9 illustrate these two concepts for the simple case of three input  
variables.  The top plot is an example of an important variable.  An important  
variable is always sensitive.  The middle plot is an example of a variable that is 
not sensitive, and hence not important.  The bottom plot is an example of a variable 
that is not important.  This variable may not be sensitive like the one in the middle 
plot, or it may be sensitive like the one in the top plot but it is not important  
because of its limited variability. 

9.5.2 Uncertainty Versus Variability 
The terms uncertainty and variability have specific meanings in the risk assess-
ment literature that do not necessarily match their meanings in the statistical  
literature or everyday language.  The term variability refers to the inherent hetero-
geneity of a particular variable (parameter).  For example, there is natural variation 
in body weight and height between individuals in a given population.  The term 
uncertainty refers to a lack of knowledge about specific parameters, models, or 
factors (Morgan and Henrion 1990; Hattis and Burmaster 1994; Rowe 1994; 
Bogen 1995; USEPA 1997a, 2001).  Uncertainty can be classified into three broad 
categories: 

• Parameter uncertainty.  Uncertainty in the point estimates or distribution 
parameters used to estimate variables of the model.  For example, we 
may be uncertain about the true distribution of exposure to a toxic chemical 
in a population (parameter uncertainty due to lack of data, measurement 
errors, sampling errors, systematic errors, etc.). 

• Model uncertainty.  Uncertainty in the adequacy of the model.  We may 
be uncertain how well our model of incremental lifetime cancer risk  
reflects reality (model uncertainty due to simplification of the process, 
misspecification of the model structure, model misuse, use of inappropriate 
surrogate variables, etc.),  

• Scenario uncertainty.  Uncertainty regarding missing or incomplete  
information to fully define what we are modeling (e.g., exposure).  For 
example, we may be uncertain about whether a chemical is even present 
at a site of concern (scenario uncertainty due to descriptive errors, aggre-
gation errors, errors in professional judgment, incomplete analysis, etc.). 

We can usually reduce uncertainty through further measurement or study.  We 
cannot reduce variability, since it is inherent in the variable.  Note that in the risk 
assessment literature, measurement error contributes to uncertainty; we can  
decrease uncertainty by decreasing measurement error.  In the statistical literature, 
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measurement error is one component of the variance of a random variable.  Note 
that a parameter (input variable) may have little or no variability associated with 
it, yet still have uncertainty associated with it (e.g., the speed of light is constant, 
but we only know its value to a given number of decimal places). 

The terms uncertainty and uncertainty analysis should not be confused.   
Uncertainty analysis characterizes the distribution of the output variable Y.  The 
output variable Y varies due to the fact that the input variables are random varia-
bles.  The distributions of the input random variables reflect both variability  
(inherent heterogeneity) and uncertainty (lack of knowledge). 

9.5.3 Sensitivity Analysis Methods 
Sensitivity analysis methods can be classified into three groups:  one-at-a-time  
deviations from a baseline case, factorial design and response surface modeling, 
and Monte Carlo simulation (Hamby 1994).  Each of these kinds of sensitivity 
analysis is briefly discussed below.  For more detailed information, see Vose 
(2008), USEPA (2001), and Millard et al. (2014).  Several studies indicate that  
using Monte Carlo simulation in conjunction with certain sensitivity measures 
usually provides the best method of determining sensitivity of the parameters. 

One-at-a-Time Deviations from a Baseline Case 
These sensitivity analysis methods include differential analysis and measures of 
change in output to change in input.  Differential analysis is simply approximating 
the variance of the output variable Y at a particular value of the input vector X 
(called the baseline case) by using a first-order Taylor series expansion (Kotz and 
Johnson 1985, Volume 8; Downing et al. 1985; Seiler 1987; Iman and Helton 
1988; Hamby 1994).  This approximating equation for the variance of Y is useful 
for quantifying the proportion of variability in Y that is accounted for by each  
input variable.  Unfortunately, the approximation is usually good only in a small 
region close to the baseline case, and the relative contribution of each input variable 
to the variance of Y may differ dramatically for differently chosen baseline cases.  
Also, differential analysis requires the calculation of partial derivatives, which 
may or may not be a simple task, depending on the complexity of the input  
function h in Eq. 9.1. 

Measures of change in output to change in input include the ratio of percent 
change in Y to percent change in Xi (Hamby 1994), the ratio of percent change in Y 
to change in Xi in units of the standard deviation of Xi (Hamby 1994; Finley and 
Paustenbach 1994), the percent change in Y as Xi ranges from its minimum to 
maximum value (Hamby 1994), and spider plots, which are plots of Y versus  
percent change in Xi, or Y versus percentiles of Xi (Vose 2008). 

Factorial Design and Response Surface Modeling 
The concepts of factorial designs and response surfaces come from the field of  
experimental design (Box et al. 1978).  In the context of sensitivity analysis for 
computer models, n distinct values of the input vector X are chosen (usually  
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reflecting the possible ranges and medians of each of the k input variables), and 
the model output Y is recorded for each of these input values.  Then a multiple  
linear regression model (a response surface) is fit to these data.  The fitted model 
is called the fitted response surface, and this response surface is used as a  
replacement for the computer model (Downing et al. 1985; Iman and Helton 1988; 
Hamby 1994).  The sensitivity analysis is based on the fitted response surface.  
The reason for using a response surface to replace the actual model output is that 
some computer models are, or used to be, very costly to run, whereas computing 
output based on a response surface is relatively inexpensive. 

One way to rank the importance of the variables in the response surface is to 
simply compare the magnitudes of the estimated coefficients.  The estimated  
coefficients, however, depend on the units of the predictor variables in the model, 
so some sources suggest using standardized regression coefficients (Iman and  
Helton 1988; Hamby 1994).  The standardized regression coefficients are simply 
the coefficients that are obtained from fitting the response surface model based on 
the “standardized” output variable and the “standardized” predictor (input) variables.  
That is, for each variable, each observation is replaced by subtracting the mean 
(for that variable) from the observation and dividing by the standard deviation (for 
that variable). 

A big problem with using standardized coefficients to determine the impor-
tance of predictor variables is that they depend on the range of the predictor varia-
bles (Weisberg 1985).  So, for example, the variable X3 in Fig. 9.9 above may be 
very important but it has a very limited range and therefore does not contribute to 
very much variation in Y. 

Iman and Helton (1988) compared uncertainty and sensitivity analysis of several 
models based on differential analysis, factorial design with a response surface 
model, and Monte Carlo simulation using Latin Hypercube sampling.  The main 
outcome they looked at for uncertainty analysis was estimating the cumulative  
distribution function.  They found that the models were too mathematically complex 
to be adequately represented by a response surface.  Also, the results of differen-
tial analysis gave widely varying results depending on the values chosen for the 
baseline case.  The method based on Monte Carlo simulation gave the best results. 

Monte Carlo Simulation 
Monte Carlo simulation is used to produce a distribution of Y values based on 
generating a large number of values of the input vector X according to the joint 
distribution of X.  There are several possible ways to produce a distribution for Y, 
including varying all of the input parameters (variables) simultaneously, varying 
one parameter at a time while keeping the others fixed at baseline values, or varying 
the parameters in one group while keeping the parameters in the other groups at 
fixed baseline values.  Sensitivity methods that can be used with Monte Carlo 
simulation results include the following: 

• Histograms, Empirical CDF Plots, Percentiles of Output.  A simple 
graphical way to assess the effect of different input variables or groups of 
input variables on the distribution of Y is to look at how the histogram 
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and empirical cdf of Y change as you vary one parameter at a time or vary 
parameters by groups (Thompson et al. 1992).  Various quantities such as 
the mean, median, 95th percentile, etc. can be displayed on these plots as 
well. 

• Scatterplots.  Another simple graphical way to assess the effect of  
different input variables on the distribution of Y and their relationship to 
each other is to look at pair-wise scatterplots. 

• Correlations and Partial Correlations.  A quantitative measure of  
the relationship between Y and an individual input variable Xi is the  
correlation between these two variables, computed based on varying all 
parameters simultaneously (Saltelli and Marivoet 1990; Hamby 1994).  
Vose (2008) suggests using tornado charts, which are simply horizontal 
barcharts displaying the values of the correlations.  Individual correla-
tions are hard to interpret when some or most of the input variables are 
highly related to one another.  One way to get around this problem is to 
look at partial correlation coefficients.  See Millard et al. (2014) for more 
information. 

• Change in Output to Change in Input.  Any of the types of measures 
that are described above under the section One-at-a-Time Deviations 
from a Baseline Case can be adapted to the results of a Monte Carlo  
simulation.  Additional measures include relative deviation, in which you 
vary one parameter at a time and compute the coefficient of variation 
(CV) of Y for each case, and relative deviation ratio, in which you vary 
one parameter at a time and compute the ratio of the CV of Y to the CV 
of Xi (Hamby 1994). 

• Response Surface.  This methodology that was described above in the 
section Factorial Design and Response Surface Modeling can be adapted 
to the results of a Monte Carlo simulation.  In this case, use the model  
input and output to fit a regression equation (possibly stepwise) and then 
use standardized coefficients to rank the input variables (Iman and Helton 
1988; Saltelli and Marivoet 1990). 

• Comparing Groupings within Input Distributions Based on Parti-
tioning the Output Distribution.  One final method of sensitivity analysis 
that has been used with Monte Carlo simulation is to divide the distribution 
of the output variable Y into two or more groups, and then to compare the 
distributions of an input variable that has been split up based on these 
groupings (Saltelli and Marivoet 1990; Hamby 1994; Vose 2008).  For 
example, you could divide the distribution of an input variable Xi into 
two groups based on whether the values yielded a value of Y below the 
median of Y or above the median of Y.  You could then compare the  
distributions of these two groups, compare these distributions with a 
goodness-of-fit test, or compare the means or medians of these distribu-
tions with the t-test or Wilcoxon rank sum test.  A significant difference 
between the two distributions is an indication that the input variable is 
important in determining the distribution of Y. 
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9.5.4 Uncertainty Analysis Methods 
A specific model such as Eq. 9.1 with specific joint distributions of the input  
variables leads to a specific distribution of the output variable.  The process of  
describing the distribution of the output variable is called uncertainty analysis 
(Iman and Helton 1988).  This description usually involves graphical displays 
such as histograms, empirical distribution plots, and empirical cdf plots, as well as 
summary statistics such as the mean, median, standard deviation, coefficient of 
variation, 95th percentile, etc. 

Sometimes the distribution of Y in Eq. 9.1 can be derived analytically based on 
statistical theory (Springer 1979; Slob 1994).  For example, if the function h  
describes a combination of products and ratios, and all of the input variables have 
a lognormal distribution, then the output variable Y has a lognormal distribution as 
well, since products and ratios of lognormal random variables have lognormal  
distributions.  Many risk models, however, include several kinds of distributions 
for the input variables, and some risk models are not easily described in a closed 
algebraic form.  In these cases, the exact distribution of Y can be difficult or  
almost impossible to derive analytically. 

The rest of this section briefly describes some methods of uncertainty analysis 
based on Monte Carlo simulation.  For more information on uncertainty analysis, 
see Vose (2008), USEPA (2001), and Millard et al. (2014). 

Quantifying Uncertainty with Monte Carlo Simulation 
When the distribution of Y cannot be derived analytically, it can usually be  
estimated via Monte Carlo simulation.  Given this simulated distribution, you can 
construct histograms or empirical density plots and empirical cdf plots, as well as 
compute summary statistics.  You can also compute confidence bounds for specific 
quantities, such as percentiles.  These confidence bounds are based on the assump-
tion that the observed values of Y are randomly selected based on simple random 
sampling.  When Latin Hypercube sampling is used to generate input variables 
and hence the output variable Y, the statistical theory for confidence bounds based 
on simple random sampling is not truly applicable (Easterling 1986; Iman and 
Helton 1991; Stein 1987).  Most of the time, confidence bounds that assume  
simple random sampling but are applied to the results of Latin Hypercube sam-
pling will probably be too wide. 

Quantifying Uncertainty by Repeating the Monte Carlo Simulation 
One way around the above problem with Latin Hypercube sampling is to use  
replicated Latin Hypercube sampling, that is, repeat the Monte Carlo simulation 
numerous times, say N, so that you have a collection of N empirical distributions 
of Y, where each empirical distribution is based on n observations of the input  
vector X.  You can then use these N replicate distributions to assess the variability 
of the sample mean, median, 95th percentile, empirical cdf, etc. 

A simpler process is to repeat the simulation just twice and compare the values 
of certain distribution characteristics, such as the mean, median, 5th, 10th, 90th 
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and 95th percentiles, and also to graphically compare the two empirical cdf plots.  
If the values between the two simulations are within a small percentage of each 
other, then you can be fairly confident about characterizing the distribution of the 
output variable.  Iman and Helton (1991) did this for a very complex risk assess-
ment for a nuclear power plant and found a remarkable agreement in the empirical 
cdf’s.  Thompson et al. (1992) did the same thing for a risk assessment for incre-
mental lifetime cancer risk due to ingestion or dermal contact with soil contami-
nated with benzene. 

You may also want to compare the results of the original simulation with a 
simulation that uses say twice as many Monte Carlo trials (e.g., Thompson et al., 
1992).  Barry (1996) warns that if the moments of the simulated distribution do 
not appear to stabilize with an increasing number of Monte Carlo trials, this can 
mean that they do not exist.  For most risk models, however, the true distributions 
of any random variables involved in a denominator in Eq. 9.1 are bounded above 
0, so the moments will exist.  If a random variable involved in the denominator 
has a mean or median that is close to 0, it is important to use a bounded or truncated 
distribution to assure the random variable stays sufficiently far away from 0. 

Quantifying Uncertainty Based on Modeling Distribution 

To account for the uncertainty in specifying the distribution of the input variables, 
some authors suggest using mixture distributions to describe the distributions of 
the input variables (e.g., Hoffman and Hammonds 1994; Burmaster and Wilson 
1996; Vose 2008).  For each input variable, a distribution is specified for the  
parameter(s) of the input variable’s distribution.  Some authors call random varia-
bles with this kind of distribution second-order random variables (e.g., Burmaster 
and Wilson 1996).  Vose (2008) calls this second-order fitting.  USEPA (2001) 
distinguishes between one-dimensional Monte Carlo analysis (1-D MCA) in 
which some or all of the input variables are characterized by probability distribu-
tions with fixed parameters versus two-dimensional Monte Carlo analysis (2-D 
MCA) in which one or more parameters for some of the probability distributions 
are not fixed but themselves random variables from some specified distribution. 

For example we may assume the first input variable comes from a lognormal 
distribution with a certain mean and coefficient of variation (CV).  The mean is 
unknown to a certain degree, and so we may specify that the mean comes from a 
uniform distribution with a given set of upper and lower bounds.  We can also 
specify a distribution for the CV.  In this case, the Monte Carlo simulation can be 
broken down into two stages.  In the first stage, a set of parameters is generated 
for each input distribution.  In the second stage, n realizations of the input vector X 
are generated based on this one set of distribution parameters.  This two-stage  
process is repeated N times, so that you end up with N different empirical distribu-
tions of the output variable Y, and each empirical distribution is based on n  
observations of the input vector X. 

 

Parameter Uncertainty 
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For a fixed number of Monte Carlo trials nN, the optimal combination of n and 
N will depend on how the distribution of the output variable Y changes relative to 
variability in the input distribution parameter(s) versus variability in the input  
variables themselves.  For example, if the distribution of Y is very sensitive to 
changes in the input distribution parameters, then N should be large relative to n.  
On the other hand, if the distribution of Y is relatively insensitive to the values of 
the parameters of the input distributions, but varies substantially with the values of 
the input variables, then N may be small relative to n. 

9.5.5 Caveat 
An important point to remember is that no matter how complex the mathematical 
model in Eq. 9.1 is, or how extensive the uncertainty and sensitivity analyses are, 
there is always the question of how well the mathematical model reflects reality.  
The only way to attempt to answer this question is with data collected directly on 
the input and output variables.  Often, however, it is not possible to do this, which 
is why the model was constructed in the first place. 

For example, in order to attempt to directly verify a model for incremental  
lifetime cancer risk for a particular exposed population within a particular  
geographical region, you have to collect data on lifetime exposure for each person 
and the actual proportion of people who developed that particular cancer within 
their lifetime, accounting for competing risks as well, and compare these data to 
similar data collected on a proper control population.  A controlled experiment 
that involves exposing a random subset of a particular human population to a toxin 
and following the exposed and control group throughout their lifetimes for the 
purpose of a risk assessment is not possible to perform for several reasons, including 
ethical and practical ones.  Rodricks (2007) is an excellent text that discusses the 
complexities of risk assessment based on animal bioassay and epidemiological 
studies. 

9.6 Risk Assessment 
This section discusses the concepts and practices involved in risk assessment, and 
gives examples of how to use ENVSTATS to perform probabilistic risk assessment. 

9.6.1 Definitions 
It will be helpful to start by defining common terms and concepts used in risk  
assessment. 

Risk 
The common meaning of the term risk when used as a noun is “the chance of  
injury, damage, or loss.”  Thus, risk is a probability, since “chance” is another 
term for “probability.” 



 9.6. Risk Assessment     233 

 

 

Risk Assessment 
Risk assessment is the practice of gathering and analyzing information in order to 
predict future risk.  Risk assessment has been commonly used in the fields of  
insurance, engineering, and finance for quite some time.  In the last couple of  
decades it has been increasingly applied to the problems of predicting human 
health and ecological effects from exposure to toxicants in the environment (e.g., 
Hallenbeck 1993; Suter 2007).  In this chapter, the term risk assessment is applied 
in the context of human health and ecological risk assessment. 

The basic model that is often used as the foundation for human health and  
ecological risk assessment is: 

 
( )Pr perRisk Dose Effect Unit Dose

Intake CSF
= ×

= ×
 (9.9) 

That is, the risk of injury (the effect) to an individual is equal to the amount of  
toxicant the individual absorbs (the dose or intake) times the probability of the  
effect occurring for a single unit of the toxicant.  If the effect is some form of  
cancer, the second term on the right-hand side of Eq. 9.9 is often called the cancer 
slope factor (abbreviated CSF) or the cancer potency factor (abbreviated CPF). 

The first term on the right-hand side of Eq. 9.9, the dose, is estimated by iden-
tifying sources of the toxicant and quantifying their concentrations, identifying 
how these sources will expose an individual to the toxicant (via fate and transport 
models), quantifying the amount of exposure an individual will receive, and  
estimating how much toxicant the individual will absorb at various levels of  
exposure.  Sometimes the dose represents the amount of toxicant absorbed over a 
lifetime, and sometimes it represents the amount absorbed over a shorter period of 
time. 

The second term on the right-hand side of Eq. 9.9, the probability of an effect 
(CSF or CPF), is estimated from a dose-response curve, a model that relates the 
probability of the effect to the dose received.  Dose-response curves are developed 
from controlled laboratory experiments on animals or other organisms, and/or 
from epidemiological studies of human populations (Hallenbeck 1993; Piegorsch 
and Bailer 2005). 

Risk assessment involves four major steps (Hallenbeck 1993; USEPA 1995c, 
2005; Piegorsch and Bailer 2005): 

• Hazard Identification.  Describe the effects (if any) of the toxicant on 
laboratory animals, humans, and/or wildlife species, based on document-
ed studies.  Describe the quality and relevance of the data from these 
studies.  Describe what is known about how the toxicant produces these 
effects.  Describe the uncertainties and subjective choices or assumptions 
associated with determining the degree of hazard of the toxicant. 

• Dose-Response Assessment.  Describe what is known about the biological 
mechanism that causes the health or ecological effect.  Describe what  
data, models, and extrapolations have been used to develop the dose-
response curve for laboratory animals, humans, and/or wildlife species.  
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Describe the routes and levels of exposure used in the studies to deter-
mine the dose-response curve, and compare them to the expected routes 
and levels of exposure in the population(s) of concern.  Describe the  
uncertainties and subjective choices or assumptions associated with char-
acterizing the dose-response relationship. 

• Exposure Assessment.  Identify the sources of environmental exposure 
to the population(s) of concern.  Describe what is known about the prin-
cipal paths, patterns, and magnitudes of exposure.  Determine average 
and “high end” levels of exposure.  Describe the characteristics of the 
populations that are potentially exposed.  Determine how many members 
of the population are likely to be exposed.  Describe the uncertainties and 
subjective choices or assumptions associated with characterizing the  
exposure for the population of concern. 

• Risk Characterization.  Incorporate all of the information from the  
hazard identification, dose-response assessment, and exposure assess-
ment steps into a single assessment of the overall risk of the toxicant.  
Usually some form of Eq. 9.9 is used to estimate the risk for a particular 
population of concern.  Both sensitivity analysis and uncertainty analysis 
should be applied to the risk assessment model to quantify the uncertainty 
associated with the estimated risk.  USEPA (2005, p. 5-1) states:  “The 
risk characterization includes a summary for the risk manager in a  
nontechnical discussion that minimizes the use of technical terms.  It is 
an appraisal of the science that informs the risk manager in public health 
decisions, as do other decision-making analyses of economic, social, or 
technology issues.” 

Risk Assessment Versus Risk Characterization 
USEPA (1995c) distinguishes between the process of risk assessment and risk 
characterization.  Risk characterization is the summarizing step of risk assess-
ment that integrates all of the information from the risk assessment, including  
uncertainty and sensitivity analyses and a discussion of uncertainty versus varia-
bility, to form an overall conclusion about the risk.  Risk assessment is the tool 
that a risk assessor uses to produce a risk characterization.  A risk characterization 
is the product that is delivered to the risk assessor’s client:  the risk manager. 

Risk Management 
Risk management is the process of using information from risk characterizations 
(calculated risks), perceived risks, regulatory policies and statutes, and economic 
and social analyses in order to make and justify a decision (USEPA 1995c).  If the 
risk manager decides that the risk is not acceptable, he or she will order or  
recommend some sort of action to decrease the risk.  If the risk manager decides 
that the risk poses minimal danger to the population of concern, he or she may 
recommend that no further action is needed at the present time. 
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Because the risk manager is the client of the risk assessor, the risk manager 
must be involved in the risk assessment process from the start, helping to deter-
mine the scope and endpoints of the risk assessment (USEPA 1995c).  Also, the 
risk manager must interact with the risk assessor throughout the risk assessment 
process, so that he or she may take responsibility for critical decisions.  The risk 
manager, however, must be careful not to let non-scientific (e.g., political) issues 
influence the risk assessment.  Non-scientific issues are dealt with at the risk  
management stage, not the risk assessment stage. 

Risk Communication 
USEPA (1995c) defines risk communication as exchanging information with the 
public.  While the communication of risk from the risk assessor to the risk manag-
er is accomplished through risk characterization, the communication of risk  
between the risk manager (or representatives of his or her agency) and the public 
is accomplished through risk communication.  The risk characterization will  
probably include highly technical information, while risk communication should 
concentrate on communicating basic ideas of risk to the public. 

9.6.2 Building a Risk Assessment Model 
Usually some form of Eq. 9.9 is used to estimate the risk for a particular popula-
tion of concern.  The form of the two terms on the right-hand side of Eq. 9.9 may 
be very complex.  Estimation of dose involves identifying sources of exposure, 
postulating pathways of exposure from these sources, estimating exposure concen-
trations, and estimating the resulting dose for a given exposure.  Estimation of 
dose-response involves using information from controlled laboratory experiments 
on animals and/or epidemiological studies.  Given a set of dose-response data, 
there are several possible statistical models that can be used to fit these data,  
including tolerance distribution models, mechanistic models, linear-quadratic-
exponential models, and time-to-response models (Hallenbeck 1993). 

Probably the biggest controversy in risk assessment involves the extrapolation 
of dose-response data from high-dose to low-dose and from one species to another 
(e.g., between mice and humans).  Rodricks (2007) discusses these problems in 
detail.  An example of this problem is the case of saccharin, which was shown in 
the late 1970s to produce bladder tumors in male rats that were fed extremely 
large concentrations of the chemical.  These studies led the FDA to call for a ban 
on saccharin, but Congress placed a moratorium on the ban that was renewed  
periodically.  A little over two decades later, the National Institute of Environmental 
Health Sciences stated that new studies show “no clear association” between  
saccharin and human cancer (The Seattle Times, Tuesday, May 16, 2000) and took 
saccharin off of its list of cancer-causing chemicals. 
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Risk Dose Effect Unit Dose

h X X X CPF

= ×

= ×…
 (9.10) 

That is, the risk is assumed to be proportional to dose, and the dose term is a func-
tion of several input variables.  For example, USEPA (2001) uses the following 
equation for chronic daily intake: 

 
C IR EF EDIntake

BW AT
× × ×

=
×

 (9.11) 

where C is the chemical concentration, IR is the ingestion or contact rate, EF is the 
exposure frequency, ED is the exposure duration, BW is body weight, and AT 
 is the averaging time (equal to exposure duration × 365 days/year for  
non-carcinogens and 70 years × 365 days/year for carcinogens). 

Usually, many of the input variables and sometimes the cancer potency factor 
(CPF) in Eq. 9.10 are themselves assumed to be random variables because they 
exhibit inherent heterogeneity (variability) within the population (e.g., body 
weight, fluid intake, etc.), and because there is a certain amount of uncertainty  
associated with their values.  The choice of what distribution to use for each of the 
input variables is based on a combination of available data and expert judgment.  
USEPA (2001, pp. 1–13) states that a convenient aid to understanding the Monte 
Carlo approach to risk assessment is to think of each iteration as representing a 
single individual, and the collection of iterations as representing the population.  
Thus, “Each iteration of a Monte Carlo simulation should represent a plausible 
combination of input values (i.e., exposure and toxicity variables), which may  
require using bounded or truncated probability distributions …” 

9.6.3 Example:  Quantifying Variability and Parameter 
Uncertainty 

USEPA (2001, pp. 3–13) presents an example of quantifying variability and  
parameter uncertainty in a probabilistic risk assessment involving exposure to a 
chemical via soil ingestion (obviously based on an example from Thompson et al., 
1992).  The risk equation is given by: 

 oral
C IR CF EF EDRisk CSF

BW AT
× × × ×

= ×
×

 (9.12) 

and Table 9.3 displays the descriptions and assumed values or distributions for the 
input variables for four different cases.  Two sources of variability are quantified:  
(1) inter-individual variability in exposure frequency (EF), characterized by a  
triangular distribution, and (2) inter-individual variability in exposure duration 
(ED), characterized by a truncated lognormal distribution.  In addition, two 
sources of uncertainty are presented:  (1) a point estimate for soil and dust inges-
tion rate (IR), intended to characterize the reasonable maximum exposure (RME), 

Many risk assessment models have the general form: 
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and (2) an upper truncation limit of the lognormal distribution for ED, intended to 
represent a plausible upper bound for the exposed population. 

Variable Description 
1-D MCA 2-D MCA 

Case 1 Case 2 Case 3 Case 4 
C Concentration  

(mg/kg) 500 500 500 500 

IR Ingestion 
rate (mg/day) 50 100 200 

Uniform 
min = 50 
max = 200 

CF Conversion 
factor (kg/mg) 1e-6 1e-6 1e-6 1e-6 

EF Exposure 
frequency  
(days/year) 

Triangular 
Min = 200 
Mode = 250 
Max = 350 

Triangular 
Min = 200 
Mode = 250 
Max = 350 

Triangular 
Min = 200 
Mode = 250
Max = 350 

Triangular 
min = 200 
mode = 250 
max = 350 

ED Exposure 
duration 
(years) 

Truncated  
lognormal 
Mean = 9 
cv = 10/9 
Max = 26 

Truncated  
lognormal 
Mean = 9 
cv = 10/9 
Max = 33 

Truncated  
lognormal 
Mean = 9 
cv = 10/9 
Max = 40 

Truncated  
lognormal 
Mean = 9 
cv = 10/9 
Max ~ uniform 
    Min = 26 
    Max = 40 

BW Body  
weight (kg) 70 70 70 70 

AT Averaging  
time (days) 25,550 25,550 25,550 25,550 

CSF Cancer slope  
factor  
(mg/kg-day) 1 

1e-1 1e-1 1e-1 1e-1 

Table 9.3 Input variables, point estimates, and distributions for Eq. 9.12 

The first three cases involve one-dimensional Monte Carlo Analysis (1-D 
MCA) in which the input variables EF and ED have associated triangular and 
truncated lognormal probability distributions, respectively, with fixed parameters 
within each case.  The value of the point estimate for IR varies between Case 1, 2, 
and 3, as does the value of the parameter “max” in the truncated lognormal distri-
bution for ED.  The fourth case involves two-dimensional Monte Carlo analysis 
(2-D MCA) in which the parameter “max” in the truncated lognormal distribution 
for ED is itself allowed to vary according to a uniform distribution.  Note also that 
the variable IR now has an associated probability distribution in this case

.

 
For Cases 1–3, simulations were run with 10,000 iterations and Latin Hyper-

cube sampling.  Figure 9.10 shows the results of these simulations by plotting  
the empirical cdf for each case.  Each simulation used a different combination of  
plausible estimates of the reasonable maximum exposure (RME) value for IR and 
the upper truncation limit for ED, as discussed above.  The results provide a 
bounding estimate on the risk distribution given these two sources of uncertainty.  
The 95th percentile risk, highlighted as an example of the RME risk estimate, may 
range from approximately 7.2  10  and 3.4  10  –6 –5
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Fig. 9.10 Results of 1-D MCA 
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Fig. 9.11 Results of 2-D MCA 
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For Case 4, the 2-D MCA was performed by first generating 250 random  
values of the “max” parameter of the truncated lognormal distribution for ED  
using Latin Hypercube sampling (250 iterations of the outer loop representing  
uncertainty), and then for each of these 250 values, 2,000 iterations of the inner 
loop (representing variability) were run.  Figure 9.11 shows the 250 empirical cdf 
plots; you can see that for this scenario the uncertainty in the “max” parameter  
has a very small effect on distribution of risk compared to the differences in the 
distribution of risk we saw in Cases 1–3. 

To create Fig. 9.10, type these commands: 

> Risk.fcn <- function(C = 500, IR, CF = 1e-6, EF, ED,  
BW = 70, AT = 25550, CSF = 0.1) { 
CSF * (C * IR * CF * EF * ED) / (BW * AT) 
} 

> IR.vec <- c(50, 100, 200) 

> ED.max <- c(26, 33, 40) 

> Risk.mat <- matrix(as.numeric(NA), nrow = 10000, ncol = 3) 

> set.seed(398) 

> for(j in 1:3) { 
EF <- simulateVector(n = 10000, distribution = "tri", 
param.list = list(min = 200, mode = 250, max = 350), 
sample.method = "LHS") 
 
ED <- simulateVector(n = 10000, distribution = 
"lnormTruncAlt", param.list = list(mean = 9, cv = 10/9, 
min = 0, max = ED.max[j]), sample.method = "LHS") 
 
Risk.mat[, j] <- Risk.fcn(IR = IR.vec[j], EF = EF,  
ED = ED) 
} 

> ecdfPlot(log10(Risk.mat[, 1]), xlim = c(-7, -4),  
ecdf.col = "green", xlab = "Risk", xaxt = "n", main = "") 

> axis(1, at = -7:-4, labels = paste("1e", -7:-4, sep = "")) 

> ecdfPlot(log10(Risk.mat[, 2]), ecdf.col = "blue",  
add = TRUE) 

> ecdfPlot(log10(Risk.mat[, 3]), ecdf.col = "red",  
add = TRUE) 

> usr <- par("usr") 
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> legend(x = usr[1], y = 0.9, legend = paste("Case", 1:3), 
col = c("green", "blue", "red"), lty = 1, lwd = 3,  
bty = "n") 

> abline(h = 0.95, lty = 3) 

> text(x = -6.5, y = 0.97, "95th %'ile") 

> bounds <- apply(Risk.mat[, c(1, 3)], 2, quantile,  
probs = 0.95) 

> log10.bounds <- log10(bounds) 

> segments(x0 = log10.bounds, x1 = log10.bounds,  
y0 = 0, y1 = 0.95, lty = 2) 

> text(x = log10.bounds, y = usr[3]/2, signif(bounds, 2)) 

> arrows(x0 = log10.bounds[1], x1 = log10.bounds[2],  
y0 = 0.2, y1 = 0.2, code = 3) 

> text(x = mean(log10.bounds), y = 0.1,  
"Range of\nUncertainty") 

To create Fig. 9.11, type these commands: 

> Risk.mat.4 <- matrix(as.numeric(NA), nrow = 2000,  
ncol = 250) 

> ED.max <- simulateVector(250, distribution = "unif", 
param.list = list(min = 26, max = 40),  
sample.method = "LHS", seed = 322, sort = TRUE) 

> for(j in 1:250) { 
IR <- simulateVector(2000, distribution = "unif", 
param.list = list(min = 50, max = 200),  
sample.method = "LHS") 
 
EF <- simulateVector(n = 2000, distribution = "tri", 
param.list = list(min = 200, mode = 250, max = 350), 
sample.method = "LHS") 
 
ED <- simulateVector(n = 2000,  
distribution = "lnormTruncAlt",  
param.list = list(mean = 9, cv = 10/9, min = 0,  
max = ED.max[j]), sample.method = "LHS") 
 
Risk.mat.4[, j] <- Risk.fcn(IR = IR, EF = EF, ED = ED) 
} 
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> ecdfPlot(log10(Risk.mat.4[, 1]), xlim = c(-7, -4),  
ecdf.col = 1, xlab = "Risk", xaxt = "n", main = "") 

> axis(1, at = -7:-4, labels = paste("1e", -7:-4, sep = "")) 

> for(j in 2:250) { 
ecdfPlot(log10(Risk.mat.4[, j]), ecdf.col = j, add = TRUE) 
} 

See USEPA (2001), Vose (2008), and Millard et al. (2014) for more examples of 
probabilistic risk assessment. 

9.7 Summary 
• Human and ecological risk assessment involves characterizing the  

exposure to a toxicant for one or several populations, quantifying the  
relationship between exposure (dose) and health or ecological effects  
(response), determining the risk (probability) of a health or ecological  
effect given the observed level(s) of exposure, and characterizing the  
uncertainty associated with the estimated risk. 

• In the past, estimates of risk were often based solely on setting values of 
the input variables (e.g., body weight, dose, etc.) to particular point  
estimates and producing a single point estimate of risk, with little, if any, 
quantification of the uncertainty associated with the estimated risk.  More 
recently, several practitioners have advocated “probabilistic” risk  
assessment, in which the input variables are considered random variables, 
so the result of the risk assessment is a probability distribution for  
predicted risk or exposure. 

• You can use R and ENVSTATS to perform Monte Carlo simulation and 
probabilistic risk assessment.  ENVSTATS includes functions for both  
simple random sampling (SRS) and Latin Hypercube sampling (LHS), as 
well as for generating random vectors from arbitrary distributions with a 
specified rank correlation matrix. 

• Most risk assessment models follow the form of Eqs. 9.1 and 9.10, where 
the output variable (risk or exposure) is a function of several input  
variables, and some or all of the input variables are considered to be  
random variables. 

• Uncertainty analysis involves describing the variability or distribution of 
values of the output variable that is due to the collective variation in the 
input variables.  This description usually involves graphical displays such 
as histograms, empirical density plots, and empirical cdf plots, as well  
as summary statistics such as the mean, median, standard deviation,  
coefficient of variation, 95th percentile, etc. 

• Sensitivity analysis involves determining how the distribution of the  
output variable changes with changes in the individual input variables.  It 
is used to identify which input variables contribute the most to the variation 
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or uncertainty in the output variable.  Sensitivity analysis is also used in a 
broader sense to determine how changing the distributions of the input 
variables and/or their assumed correlations or even changing the form of 
the model affects the output. 

• Variability refers to the inherent heterogeneity of a particular variable 
(parameter).  For example, there is natural variation in body weight and 
height between individuals in a given population.  Uncertainty refers to a 
lack of knowledge about specific parameters, models, or factors.  We can 
usually reduce uncertainty through further measurement or study.  We 
cannot reduce variability, since it is inherent in the variable. 

• Sensitivity analysis methods include one-at-a-time deviations from a 
baseline case, factorial design and response surface modeling, and Monte 
Carlo simulation. 

• Uncertainty analysis methods include describing the empirical distribu-
tion of risk, repeating the simulation using a different set of random 
numbers, and using mixture distributions. 

• An important point to remember is that no matter how complex the  
mathematical model in Eqs. 9.1 or 9.10, or how extensive the uncertainty 
and sensitivity analyses, there is always the question of how well  
the mathematical model reflects reality.  The only way to attempt to  
answer this question is with data collected directly on the input and  
output variables. 
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