Steelwork design guide to BS 5950-1:2000

 Volume 2: Worked examples

 Volume 2: Worked examples}

M D Heywood MEng PhD CEng MICE
J B Lim BEng PhD

[^0]Apart from any fair dealing for the purposes of research or private study or criticism or review, as permitted under the Copyright Designs and Patents Act, 1988, this publication may not be reproduced, stored or transmitted, in any form or by any means, without the prior permission in writing of the publishers, or in the case of reprographic reproduction only in accordance with the terms of the licences issued by the UK Copyright Licensing Agency, or in accordance with the terms of licences issued by the appropriate Reproduction Rights Organisation outside the UK.

Enquiries concerning reproduction outside the terms stated here should be sent to the publishers, The Steel Construction Institute, at the address given on the title page.

Although care has been taken to ensure, to the best of our knowledge, that all data and information contained herein are accurate to the extent that they relate to either matters of fact or accepted practice or matters of opinion at the time of publication, The Steel Construction Institute, the authors and the reviewers assume no responsibility for any errors in or misinterpretations of such data and/or information or any loss or damage arising from or related to their use.

Publications supplied to the Members of the Institute at a discount are not for resale by them.
Publication Number: SCI P326

ISBN 1859421423

British Library Cataloguing-in-Publication Data.
A catalogue record for this book is available from the British Library.

FOREWORD

This publication replaces an earlier SCI publication (P002) that provided a series of worked examples using the previous issue of the design code for steelwork in buildings (BS 5950-1:1990). A revised design code, (BS 5950-1:2000), which incorporated significant technical revisions, came into effect in 2001 and this led to the need to update those earlier examples.

The publication is a companion to the 'Blue Book', Steelwork design to BS 5950-1: 2000 - Volume 1, which provides section property and member capacity tables. Further guidance on the application of the Code can be found in Introduction to steelwork design to BS 5950-1:2000 (P325).

The present publication has been prepared by Dr Martin Heywood and Dr James Lim of The Steel Construction Institute and presents many new examples as well as revised versions of some of the examples in the earlier publication.

Further advice and guidance was received during the drafting of this publication from Mr Abdul Malik, Mr Charles King and Mr Thomas Cosgrove, all of The Steel Construction Institute.

The authors would like to thank the following people and organisations for reviewing the worked examples and providing useful feedback on the content and presentation:

Mr N Conway	Integer
Mr R Hairsine	CADS (Computer \& Design Services Ltd)
Mr S Land	Peter Brett Associates
Mr R Lankshear	Peter Brett Associates
Mr T Mustard	Corus
Mr A Rathbone	CSC (UK) Ltd
Mr J Rushton	Peter Brett Associates
Mr B Staley	Acecad Software Ltd
Mr R Starkey	James Lupton Consultants
Mr P Swindells	Caunton Engineering Ltd

The preparation of this publication was funded by Corus Construction \& Industrial and Corus Tubes. Their support is gratefully acknowledged.

Contents

FOREWORD iii
INTRODUCTION 1
EXAMPLES

1. Choosing a steel sub-grade 3
2. Simply supported restrained beam 5
3. Unrestrained beam with end moments 13
4. Simply supported beam with lateral restraint at load application points 19
5. Simply supported beam with lateral restraint at load application points using a class 3 UC 25
6. Beam under combined bending and torsion using a UC section 33
7. RHS beam under combined bending and torsion 41
8. Continuous beam designed elastically 47
9. Continuous beam designed plastically 57
10. Pinned column using a non-slender UC 65
11. Pinned column using a non-slender RHS 69
12. Pinned column using a slender CHS 71
13. Pinned column with intermediate restraint 73
14. Continuous column in simple construction using a UC section 77
15. Continuous column in simple construction using an RHS 83
16. Beam subject to combined biaxial bending and compression (compact section) 89
17. Beam subject to combined biaxial bending and compression (semi-compact section) 99
18. Beam subject to combined biaxial bending and compression (slender section) 109
19. Lattice beam 119
20. Gantry girder, using a UB with a plated top flange 125
21. Simply supported stiffened plate girder 147
22. Sway stability 161
23. Tying and the avoidance of disproportionate collapse 167
REFERENCES 179

INTRODUCTION

This publication is intended to provide practising engineers and students with a guide to meeting the requirements of BS 5950-1: 2000 Structural use of steelwork in building ${ }^{[1]}$ and contains worked examples that have been prepared to give a detailed indication of the process of designing members to this Code.

The worked examples deal with all the main checks required by the Code and point out those which will normally be critical in design. The emphasis has been to illustrate the points in the Code rather than attempt to match practical cases exactly.

In addition to the design of simple elements, a number of frames and combinations of members have been included. Generally, the solutions illustrated are aimed at the most economical use of steel but it is emphasized that other solutions may be equally acceptable. No consideration has been given to factors governing erection and fabrication; the considerations of these factors and the standardization of sizes may well lead to solutions with better overall economy.

Unless otherwise stated, the clause and table numbers given in the right-hand margin of the examples refer to BS 5950-1:2000 ${ }^{[1]}$. Where a reference is made to a page in "Vol 1" this refers to Steelwork design to BS 5950-1:2000 Volume 1 Section properties member capacities ${ }^{[2]}$, commonly known as the "Blue Book".

	Job No. CDS 153			Sheet	1 of	1	Rev
	Job Title Example no. 1						
	Subject Choosing a steel sub-grade						
CALCULATION SHEET	Client	SCI	Made by	MDH	Date	Jun	003
			Checked by	TCC	Date	Oct	003

1 Choosing a steel sub-grade

1.1 Introduction

An exposed steel structure is proposed. The steel is S355 to BS EN 10025 and the thickest element is 30 mm . Beams are welded to the column flanges and the maximum tensile stress is $200 \mathrm{~N} / \mathrm{mm}^{2}$. Choose an appropriate sub-grade to avoid brittle fracture.

1.2 Sub-grade selection

Basic requirement: $\boldsymbol{t} \leq \boldsymbol{K} t_{1}$
Since the maximum thickness $t=30 \mathrm{~mm}$, the steel sub-grade should be chosen such that
$t_{1} \geq 30 / K$
The nominal yield strength $Y_{\text {nom }} \quad=355 \mathrm{~N} / \mathrm{mm}^{2}$
The maximum tensile stress in the component $=200 \mathrm{~N} / \mathrm{mm}^{2}$
Therefore, stress $>0.3 Y_{\text {nom }}$

For welded connections to unstiffened flanges with stress $>0.3 Y_{\text {nom }}$
$K=0.5$

The requirement for t_{1} is therefore
$t_{1} \geq 60 \mathrm{~mm}$

For BS EN 10025 - S355 K2 in external conditions $\left(-15^{\circ} \mathrm{C}\right), t_{1}=66 \mathrm{~mm}$.

Therefore, $K t_{1}=0.5 \times 66=33 \mathrm{~mm}$
$30 \mathrm{~mm}<33 \mathrm{~mm} \quad$ OK

Finally, check that the maximum thickness in the component does not exceed the

Table 4

Table 6
limit for which the full Charpy impact value applies, t_{2}, as given in Table 6.

Basic requirement: $\boldsymbol{t}<\boldsymbol{t}_{\mathbf{2}}$

For all "sections" of grade S355 to BS EN 10025, $t_{2}=100 \mathrm{~mm}$.
$30 \mathrm{~mm}<100 \mathrm{~mm}$ OK
Adopt BS EN 10025-S355 K2

The Steel Construction Institute Silwood Park, Ascot, Berks SL5 70N Telephone: (01344) 623345 Fax: (01344) 622944	Job No. CDS 153			Sheet	1 of	7	Rev
	Job Title Example no. 2						
	Subject Simply supported restrained beam						
CALCULATION SHEET	Client	SCI	Made by	MDH	Date	Jun	003
			Checked by	ASM	Date	Oct	003

2 Simply supported restrained beam

2.1 Introduction

The beam shown in Figure 2.1 is fully restrained along its length and has stiff bearing of 50 mm at the supports and 75 mm under the point load. Design the beam in S275 steel for the loading shown below.

Two solutions are presented: the full calculation in Sections 2.2 and 2.3 and the simplified approach using Volume $1^{[2]}$ (the "Blue Book" approach) in Section 2.4.

Figure 2.1

2.1.2 Loading (unfactored)

Dead loads:
Distributed load (including s/w) $w_{\mathrm{d}}=15 \mathrm{kN} / \mathrm{m}$
Point load $W_{\mathrm{d}}=40 \mathrm{kN}$
Imposed loads:
Distributed load

$$
w_{\mathrm{i}} \quad=30 \mathrm{kN} / \mathrm{m}
$$

Point load $\quad W_{\mathrm{i}}=50 \mathrm{kN}$

2.1.3 Load Factors

Dead load factor
Imposed load factor

$$
\begin{aligned}
\gamma_{\mathrm{fd}} & =1.4 \\
\gamma_{\mathrm{fi}} & =1.6
\end{aligned}
$$

2.1.4 Factored loads

| $w^{\prime}=w_{\mathrm{d}} \gamma_{\mathrm{d}}+w_{\mathrm{i}} \gamma_{\mathrm{fi}}$ | $=(15 \times 1.4)+(30 \times 1.6)$ | $=69 \mathrm{kN} / \mathrm{m}$ |
| :--- | :--- | :--- | :--- |
| $W^{\prime}=W_{\mathrm{d}} \gamma_{\mathrm{fd}}+W_{\mathrm{i}} \gamma_{\mathrm{fi}}$ | $=(40 \times 1.4)+(50 \times 1.6)$ | $=136 \mathrm{kN}$ |

2.1.5 Maximum moment and shear

Maximum moment occurs at the centre:

$$
M=\frac{w^{\prime} L^{2}}{8}+\frac{W^{\prime} L}{4} \quad M=\frac{69 \times 6.5^{2}}{8}+\frac{136 \times 6.5}{4} \quad=585 \mathrm{kNm}
$$

Sheet	2	of	7	Rev

Shear force at the ends:

$$
F_{\mathrm{ve}}=\frac{w^{\prime} L}{2}+\frac{W^{\prime}}{2} \quad F_{\mathrm{ve}}=\frac{69 \times 6.5}{2}+\frac{136}{2} \quad=292 \mathrm{kN}
$$

Shear force at the centre:
$F_{\mathrm{vc}}=F_{\mathrm{ve}}-\frac{w^{\prime} L}{2}$
$F_{\mathrm{vc}}=292-\frac{69 \times 6.5}{2}=67.8 \mathrm{kN}$

2.2 Member checks

2.2.1 Trial section

The initial trial section is selected to give a suitable moment capacity. This initial member size is then checked to ensure its suitability in all other respects.

Try $533 \times 210 \times 92$ UB in grade S275

From member capacity tables:
Moment capacity
From section property tables:
Depth $\quad D=533.1 \mathrm{~mm}$
Width
Web thickness
B $=209.3 \mathrm{~mm}$
Flange thickness
Depth between fillets
Plastic modulus
Elastic modulus
$t=10.1 \mathrm{~mm}$
$T=15.6 \mathrm{~mm}$
$d=476.5 \mathrm{~mm}$
$S_{\mathrm{x}}=2360 \mathrm{~cm}^{3}$
$Z_{\mathrm{x}}=2070 \mathrm{~cm}^{3}$
Local buckling ratios:
Flange
$b / T=6.71$
Web
$d / t=47.2$

2.2.2 Classify the cross section

Grade of steel = S275
$T<16 \mathrm{~mm}$
Therefore $p_{\mathrm{y}} \quad=275 \mathrm{~N} / \mathrm{mm}^{2}$
$\varepsilon=\sqrt{\frac{275}{p_{\mathrm{y}}}}=\sqrt{\frac{275}{275}}=1.0$
For the outstand element of a compression flange, the limiting b / T for a class 1 plastic flange is 9ε.
Limiting $\quad b / T=9 \varepsilon=9.0$
The actual $b / T=6.71<9.0$
Therefore, the flange is class 1.
Since the section is symmetrical and subject to pure bending, the neutral axis is at mid depth. For this case, the limiting d / t for a class 1 plastic web is 80ε.
Limiting $d / t=80 \varepsilon=80.0$
The actual $d / t=47.2<80.0$
Therefore, the web is class 1.
The flange and the web are both class 1 , therefore, the cross section is class 1 .

Vol 1
Page C-59
Vol 1
Page B-2

Vol 1
Page B-3

Vol 1
Page B-2
3.1.1

Table 9

3.5.2

Table 11
3.5.2

Table 11

2.2.3 Check for shear buckling

If the d / t ratio exceeds 70ε for a rolled section, the web should be checked for shear buckling in accordance with clause 4.4.5 of BS 5950-1:2000 ${ }^{[1]}$.
$70 \varepsilon=70.0$
In this case, $d / t=47.2<70 \varepsilon$, so there is no need to check for shear buckling.

2.2.4 Check the shear capacity

Basic requirement $F_{v} \leq P_{\mathrm{v}}$
$P_{\mathrm{v}}=0.6 p_{\mathrm{y}} A_{\mathrm{v}}$
$p_{\mathrm{y}}=275 \mathrm{~N} / \mathrm{mm}^{2}$
$A_{\mathrm{v}}=t D=10.1 \times 533.1=5384 \mathrm{~mm}^{2}$
$P_{\mathrm{v}}=0.6 \times 275 \times 5384 \times 10^{-3}=888 \mathrm{kN}$
At the ends of the member $F_{\mathrm{v}}=292 \mathrm{kN}$
$292 \mathrm{kN}<888 \mathrm{kN}$
Therefore, the shear capacity is adequate.

2.2.5 Check the moment capacity

Basic requirement $M_{\mathrm{x}} \leq \boldsymbol{M}_{\mathrm{cx}}$
Check whether the shear is "high" (i.e. $F_{\mathrm{v}}>0.6 P_{\mathrm{v}}$) or "low" at the point of maximum moment.
At the centre of the member, $F_{\mathrm{vc}}=67.8 \mathrm{kN}$
$0.6 P_{\mathrm{v}}=0.6 \times 888=533 \mathrm{kN}$
$67.8 \mathrm{kN}<533 \mathrm{kN}$
Therefore, the shear is low.
For low shear, the moment capacity for a class 1 section is given by:
$M_{\mathrm{cx}}=p_{\mathrm{y}} S_{\mathrm{x}}$
$M_{\mathrm{cx}}=275 \times 2360 \times 10^{-3}=649 \mathrm{kNm}$
Check limit to avoid irreversible deformation under serviceability loads.
For a simply supported beam $M_{\mathrm{cx}} \leq 1.2 p_{\mathrm{y}} Z_{\mathrm{x}}$
$1.2 p_{\mathrm{y}} Z_{\mathrm{x}}=1.2 \times 275 \times 2070 \times 10^{-3}=683 \mathrm{kNm}$

Therefore $\quad M_{\mathrm{cx}}=649 \mathrm{kNm}$
From above, $\quad M_{\mathrm{x}}=585 \mathrm{kNm}$
$585 \mathrm{kNm}<649 \mathrm{kNm}$
Therefore, the moment capacity is adequate.
Note:

1. It will be found that in most cases there is no need to reduce the moment capacity to allow for shear when using rolled I- or H-sections.
2. Except for a few heavy universal column sections, $M_{\mathrm{c}}=p_{\mathrm{y}} S_{\mathrm{x}}$ will usually be the governing criterion for the moment capacity.

2.2.6 Web bearing and buckling under the point load

Bearing capacity of the unstiffened web
Basic requirement $\boldsymbol{F}_{\mathrm{x}} \leq \boldsymbol{P}_{\mathrm{bw}}$
$P_{\mathrm{bw}} \quad=\left(b_{1}+n k\right) t p_{\mathrm{yw}}$
$b_{1} \quad=75 \mathrm{~mm}$
$n \quad=5.0$ (not at the end of the member)
$k=T+r=15.6+12.7=28.3 \mathrm{~mm}$
$\left(b_{1}+n k\right)=75+(5.0 \times 28.3)=216.5 \mathrm{~mm}$
$P_{\text {bw }} \quad=216.5 \times 10.1 \times 275 \times 10^{-3}=601 \mathrm{kN}$
$F_{\mathrm{x}} \quad=136 \mathrm{kN}$
$136 \mathrm{kN}<601 \mathrm{kN}$
Therefore, the bearing capacity of the unstiffened web under the point load is adequate.

Buckling resistance of the unstiffened web

Basic requirement $\boldsymbol{F}_{\mathrm{x}} \leq \boldsymbol{P}_{\mathrm{x}}$
$P_{\mathrm{x}}=\frac{25 \varepsilon t}{\sqrt{\left(b_{1}+n k\right) d}} P_{\mathrm{bw}}$
$\varepsilon \quad=1.0$
$P_{\mathrm{x}}=\frac{25 \times 1.0 \times 10.1}{\sqrt{216.5 \times 476.5}} \times 601=472 \mathrm{kN}$
$F_{\mathrm{x}}=136 \mathrm{kN}$
$136 \mathrm{kN}<472 \mathrm{kN}$
Therefore, the buckling resistance of the unstiffened web under the point load is adequate.

2.2.7 Web bearing and buckling at the support

Bearing capacity of the unstiffened web

Basic requirement $\boldsymbol{F}_{\mathrm{x}} \leq \boldsymbol{P}_{\mathrm{bw}}$
$P_{\mathrm{bw}} \quad=\left(b_{1}+n k\right) t p_{\mathrm{yw}}$
At the end of a member, $n=2+0.6 b_{\mathrm{e}} / k$ but ≤ 5,
$b_{\mathrm{e}} \quad=0 \mathrm{~mm}$
$b_{1} \quad=50 \mathrm{~mm}$
$k=T+r=15.6+12.7=28.3 \mathrm{~mm}$
$n=2+\frac{0.6 \times 0}{28.3}=2.0$
$\begin{array}{lll}\left(b_{1}+n k\right) & =50+(2.0 \times 28.3) & =106.6 \mathrm{~mm} \\ P_{\mathrm{bw}} & =106.6 \times 10.1 \times 275 \times 10^{-3} & =296 \mathrm{kN}\end{array}$
$F_{\mathrm{x}} \quad=292 \mathrm{kN}$
292 kN < 296 kN
Therefore, the bearing capacity of the unstiffened web at the support is adequate.

Example 2 Simply supported beam

Sheet	5	of	7	Re

Buckling resistance of the unstiffened web

Basic requirement $F_{\mathrm{x}} \leq \boldsymbol{P}_{\mathrm{x}}$
Check whether $a_{\mathrm{e}}<0.7 \mathrm{~d}$,
$a_{\mathrm{e}} \quad=25 \mathrm{~mm}$
$0.7 d=0.7 \times 476.5=333.6 \mathrm{~mm}$
Since $a_{\mathrm{e}}<0.7 \mathrm{~d}$, the buckling resistance P_{x} is given by
$P_{\mathrm{x}}=\frac{a_{\mathrm{e}}+0.7 d}{1.4 d} \frac{25 \varepsilon t}{\sqrt{\left(b_{1}+n k\right) d}} P_{\mathrm{bw}}$

$$
=\frac{25+333.6}{1.4 \times 476.5} \times \frac{25 \times 1.0 \times 10.1}{\sqrt{106.6 \times 476.5}} \times 296 \quad=178 \mathrm{kN}
$$

$F_{\mathrm{x}}=292 \mathrm{kN}$
$292 \mathrm{kN}>178 \mathrm{kN}$
The buckling resistance of the web at the support is NOT adequate and a load-carrying stiffener must be provided at this location.

2.2.8 SLS deflection check

Created on 30 March 2011
This material is copyright - all rights reserved. Use of this document is subject to the terms and conditions of the Steelbiz Licence Agreement
In addition to checking the adequacy of the beam at ULS, it is also necessary to check the maximum deflection under working loads.

The serviceability loads are taken as the unfactored imposed loads, i.e.:
Distributed load $w_{i}=30 \mathrm{kN} / \mathrm{m}$
Point load $\quad W_{\mathrm{i}}=50 \mathrm{kN}$
$E=205 \mathrm{kN} / \mathrm{mm}^{2}$
$I=55200 \mathrm{~cm}^{4}$
The total deflection δ is given by:
$\delta=\frac{1}{E I}\left[\frac{5 w_{\mathrm{i}} L^{4}}{384}+\frac{W_{\mathrm{i}} L^{3}}{48}\right]=\frac{1}{205 \times 55200}\left[\frac{5 \times 30 \times 6.5^{4}}{384}+\frac{50 \times 6.5^{3}}{48}\right] \times 10^{5}$
$=8.69 \mathrm{~mm}$
Assume that the beam carries a plaster finish.
The suggested limit in BS 5950-1:2000 ${ }^{[1]}$ is span $/ 360$.
$\frac{L}{360}=\frac{6500}{360}=18.1 \mathrm{~mm}$.
$8.69 \mathrm{~mm}<18.1 \mathrm{~mm}$
The deflection is satisfactory.
Adopt $533 \times 210 \times 92$ UB in grade S275
(with load carrying stiffeners at the supports).

2.3 Blue Book approach

The member capacities calculated in section 2.2 of this example could have been obtained directly from Volume $1^{[2]}$.

Try $533 \times 210 \times 92$ UB in grade $\mathbf{S 2 7 5}$

2.3.1 Shear capacity

$P_{\mathrm{v}}=888 \mathrm{kN}$
$F_{\mathrm{v}}=292 \mathrm{kN}$
$292 \mathrm{kN}<888 \mathrm{kN}$
Therefore, the shear capacity is adequate.

2.3.2 Moment capacity

$M_{\mathrm{cx}}=649 \mathrm{kNm}$
$M_{\mathrm{x}}=585 \mathrm{kNm}$
$585 \mathrm{kNm}<649 \mathrm{kNm}$
Therefore, the moment capacity is adequate.

2.3.3 Web bearing capacity

$P_{\mathrm{w}}=C_{1}+b_{1} C_{2}$
At the location of the point load
$C_{1}=393 \mathrm{kN}$
$C_{2}=2.78 \mathrm{kN} / \mathrm{mm}$
$b_{1} \quad=75 \mathrm{~mm}$
$P_{\mathrm{w}}=393+(2.78 \times 75)=601 \mathrm{kN}$
$F_{\mathrm{x}}=136 \mathrm{kN}$
$136 \mathrm{kN}<601 \mathrm{kN}$
Therefore, the bearing capacity of the unstiffened web under the point load is adequate.

At the support
$C_{1}=157 \mathrm{kN}$
$C_{2}=2.78 \mathrm{kN} / \mathrm{mm}$
$b_{1} \quad=50 \mathrm{~mm}$
$P_{\mathrm{w}}=157+(2.78 \times 50)=296 \mathrm{kN}$
$F_{\mathrm{x}}=292 \mathrm{kN}$
$292 \mathrm{kN}<296 \mathrm{kN}$
Therefore, the bearing capacity of the unstiffened web at the support is adequate.

2.3.4 Web buckling resistance

$P_{x}=K\left(C_{4} P_{w}\right)^{0.5}$
At the location of the point load
$K=1$
$C_{4}=372 \mathrm{kN}$
$P_{\mathrm{w}}=601 \mathrm{kN}$
$P_{\mathrm{x}}=(372 \times 601)^{0.5}=473 \mathrm{kN}$
$F_{\mathrm{x}}=136 \mathrm{kN}$
$136 \mathrm{kN}<473 \mathrm{kN}$
Therefore, the buckling resistance of the unstiffened web under the point load is adequate.

Vol 1
Page C-79

Vol 1
Page C-59

Vol 1
Page C-79

Vol 1
Page C-79

Vol 1
Page C-79

Example 2 Simply supported beam
Rev
At the support
$\boldsymbol{K}=\frac{a_{\mathrm{e}}}{1.4 d}+0.5 \quad$ but ≤ 1
$1.4 d=667 \mathrm{~mm}$
$\boldsymbol{K}=\frac{25}{667}+0.5=0.537$
$C_{4} \quad=372 \mathrm{kN}$
$P_{\mathrm{w}}=296 \mathrm{kN}$
$P_{\mathrm{x}}=0.537 \times(372 \times 296)^{0.5}=178 \mathrm{kN}$
$F_{\mathrm{x}}=292 \mathrm{kN}$
$292 \mathrm{kN}>178 \mathrm{kN}$
The buckling resistance of the web at the support is NOT adequate and a load-carrying stiffener must be provided at this location.

Note
Volume 1 of the Blue Book does not include deflection values, so the SLS deflection check must be carried out as in Section 2.2.8 of this example.

Adopt $533 \times 210 \times 92$ UB in grade S275
(with load carrying stiffeners at the supports).

	Job No. CDS 153			Sheet	1 of	6	Rev
	Job Title Example no. 3						
	Subject U		Unrestrained beam with end moments				
	Client	SCI	Made by	MDH	Date	Jun	003
			Checked by	ASM	Date	Oct	003

3 Unrestrained beam with end moments

3.1 Introduction

The beam shown in Figure 3.1 has end moments of 282 kNm and 231 kNm (due to the factored loads). The intermediate point loads are applied through the bottom flange as shown below. These point loads do not provide restraint against lateral-torsional buckling. Design the beam in S275 steel.

Two solutions are presented: the full calculation and the simplified approach using Volume $1^{[2]}$ (the "Blue Book" approach).

Figure 3.1

3.1.2 Loading (unfactored)

Dead loads:
Self-weight
$w_{\mathrm{s}} \quad=3 \mathrm{kN} / \mathrm{m}$
Point load
$W_{1 \mathrm{~d}}=40 \mathrm{kN}$
Point load
$W_{2 \mathrm{~d}}=20 \mathrm{kN}$
Imposed loads:
Point load
$W_{1 \mathrm{i}}=60 \mathrm{kN}$
Point load
$W_{2 \mathrm{i}}=30 \mathrm{kN}$

3.1.3 Load Factors

Dead load factor $\quad \gamma_{\mathrm{fd}}=1.4$
Imposed load factor $\gamma_{\mathrm{fi}}=1.6$

3.1.4 Factored loads

$$
\begin{array}{ll}
w_{\mathrm{s}}^{\prime}=w_{\mathrm{s}} \gamma_{\mathrm{fd}}=(3 \times 1.4) & =4.2 \mathrm{kN} / \mathrm{m} \\
W_{1}^{\prime}=W_{1 \mathrm{~d}} \gamma_{\mathrm{fd}}+W_{\mathrm{li}} \gamma_{\mathrm{fi}}=(40 \times 1.4)+(60 \times 1.6)=152 \mathrm{kN} \\
W_{2}^{\prime}=W_{2 \mathrm{~d}} \gamma_{\mathrm{fd}}+W_{2 \mathrm{i}} \gamma_{\mathrm{fi}}=(20 \times 1.4)+(30 \times 1.6)=76 \mathrm{kN}
\end{array}
$$

The design shear forces and bending moments due to factored loads are as shown in Figure 3.2.

Table 2
\square

Fig

Figure 3.2

3.2 Member checks

3.2.1 Determine the effective length

Since the beam is unrestrained between the supports, there is only one segment to consider in this example, with a length equal to the beam length.

At the supports the following conditions exist:
Beam torsionally restrained.
Compression flange laterally restrained.
Both flanges fully restrained against rotation
Therefore, $L_{\mathrm{E}}=0.7 L=0.7 \times 9000=6300 \mathrm{~mm}$.
Note: In practice 0.7 L might be difficult to achieve (not easy to guarantee full rotational restraint) and designers might choose $0.85 L$ instead.

3.2.2 Calculate $\boldsymbol{m}_{\mathrm{LT}}$

In BS 5950-1:2000 ${ }^{[1]}$ the m -factor method is used for all cases, even when there is loading applied between the restraints, as in this example. Since there is loading between the restraints, it is necessary to calculate $m_{\text {LT }}$ using the following general formula:

$$
m_{\mathrm{LT}}=0.2+\frac{0.15 M_{2}+0.5 M_{3}+0.15 M_{4}}{M_{\max }} \quad \text { but } m_{\mathrm{LT}} \geq 0.44
$$

4.3.5

Table 13
4.3.6.6

Table 18

The moments M_{2} and M_{4} are the values at the quarter points, the moment M_{3} is the value at mid-length and $M_{\text {max }}$ is the maximum moment in the segment. The distributed load is only a small part of the total loading, so the bending moment diagram can be approximated to a series of straight lines as shown in Figure 3.3.

Example 3 Unrestrained beam with end moments \quad Sheet $\quad 3$| | of | 6 | Rev |
| :--- | :--- | :--- | :--- |

Figure 3.3 Bending moment
$M_{2}=48 \mathrm{kNm}, M_{3}=126 \mathrm{kNm}, M_{4}=13 \mathrm{kNm}, M_{\max }=M_{1}=282 \mathrm{kNm}$
$m_{\mathrm{LT}}=0.2+\frac{(0.15 \times 48)+(0.5 \times 126)+(0.15 \times 13)}{282}=0.46$

3.2.3 Trial section

The initial trial section is selected to give a suitable moment capacity and resistance to lateral-torsional buckling. This initial member size is then checked to ensure its suitability in all other respects.

For an unrestrained beam, the maximum major axis moment M_{x} must satisfy the following conditions:
$M_{\mathrm{x}} \leq M_{\mathrm{cx}} \quad$ and $\quad M_{\mathrm{x}} \leq M_{\mathrm{b}} / m_{\mathrm{LT}}$
The chosen beam must, therefore, satisfy:
$M_{\mathrm{cx}} \geq 282 \mathrm{kNm}$ and
$M_{\mathrm{b}} \geq 282 \times 0.46=130 \mathrm{kNm}$ for an effective length of 6.3 m .
Try $457 \times 191 \times 67$ UB in grade S275
From member capacity tables:
Moment capacity $\quad M_{\mathrm{c}} \quad=405 \mathrm{kNm}$
Buckling resistance $\quad M_{\mathrm{b}} \quad=159 \mathrm{kNm}$ for $L_{\mathrm{E}}=6.0 \mathrm{~m}$
Buckling resistance $\quad M_{\mathrm{b}} \quad=133 \mathrm{kNm}$ for $L_{\mathrm{E}}=7.0 \mathrm{~m}$
From section property tables:
Depth $\quad D=453.4 \mathrm{~mm}$
Width $\quad B=189.9 \mathrm{~mm}$
Web thickness $t=8.5 \mathrm{~mm}$
Flange thickness $\quad T=12.7 \mathrm{~mm}$
Depth between fillets $d=407.6 \mathrm{~mm}$
Plastic modulus $\quad S_{\mathrm{x}}=1470 \mathrm{~cm}^{3}$
Elastic modulus $\quad Z_{x}=1300 \mathrm{~cm}^{3}$
Radius of gyration $\quad r_{y} \quad=4.12 \mathrm{~cm}$
Buckling parameter $u=0.872$
Torsional index $x=37.9$
Local buckling ratios:
$\begin{array}{lll}\text { Flange } & b / T & =7.48 \\ \text { Web } & d / t & =48.0\end{array}$
4.3.6.2

Vol 1
Page C-59

Vol 1
Page B-4

Vol 1
Page B-5

Vol 1
Page B-4

Example 3 Unrestrained beam with end moments	Sheet	4	of	6	Rev

3.2.4 Classify the cross section

Grade of steel = S275
$T<16 \mathrm{~mm}$
Therefore $p_{\mathrm{y}}=275 \mathrm{~N} / \mathrm{mm}^{2}$
$\varepsilon=\sqrt{\frac{275}{p_{\mathrm{y}}}}=\sqrt{\frac{275}{275}}=1.0$
For the outstand element of a compression flange, the limiting b / T for a class 1 plastic flange is 9ε. Limiting $b / T=9 \varepsilon=9.0$
The actual $b / T=7.48<9.0$
Therefore, the flange is class 1.
Since the section is symmetrical and subject to pure bending, the neutral axis is at mid depth. For this case, the limiting d / t for a class 1 plastic web is 80ε.
Limiting $d / t=80 \varepsilon=80.0$
The actual $d / t=48.0<80.0$
Therefore, the web is class 1 .
The flange and the web are both class 1 , therefore, the cross section is class 1 .

3.2.5 Check for shear buckling

If the d / t ratio exceeds 70ε for a rolled section, the web should be checked for shear buckling in accordance with clause 4.4.5 of BS 5950-1:2000 ${ }^{[1]}$.
$70 \varepsilon=70.0$
In this case, $d / t \quad=48.0<70 \varepsilon$, so there is no need to check for shear buckling.

3.2.6 Check the shear capacity

Basic requirement $F_{\mathrm{v}} \leq \boldsymbol{P}_{\mathrm{v}}$
$P_{\mathrm{v}} \quad=0.6 p_{\mathrm{y}} A_{\mathrm{v}}$
$p_{\mathrm{y}}=275 \mathrm{~N} / \mathrm{mm}^{2}$
$A_{\mathrm{v}}=t D=8.5 \times 453.4=3854 \mathrm{~mm}^{2}$
$P_{\mathrm{v}}=0.6 \times 275 \times 3854 \times 10^{-3}=636 \mathrm{kN}$
The highest shear force occurs at A, where $F_{\mathrm{v}}=152 \mathrm{kN}$
$152 \mathrm{kN}<636 \mathrm{kN}$
Therefore, the shear capacity is adequate.

3.2.7 Check the moment capacity

Basic requirement $M_{\mathrm{x}} \leq \boldsymbol{M}_{\mathrm{cx}}$
Check whether the shear is "high" (i.e. $F_{\mathrm{v}}>0.6 P_{\mathrm{v}}$) or "low" at the point of maximum moment. The maximum moment occurs at A, where $F_{\mathrm{v}}=152 \mathrm{kN}$.
$0.6 P_{\mathrm{v}}=0.6 \times 636=382 \mathrm{kN}$
$152 \mathrm{kN}<382 \mathrm{kN}$
Therefore, the shear is low.
For low shear, the moment capacity for a class 1 section is given by
$M_{\mathrm{cx}}=p_{\mathrm{y}} S_{\mathrm{x}}$
$M_{\mathrm{cx}}=275 \times 1470 \times 10^{-3}=404 \mathrm{kNm}$
Check limit to avoid irreversible deformation under serviceability loads.
3.1.1

Table 9
3.5.2

Table 11
3.5.2

Table 11
4.2.3

For a fixed-ended beam $M_{\mathrm{cx}} \leq 1.5 p_{\mathrm{y}} Z_{\mathrm{x}}$
$1.5 p_{\mathrm{y}} Z_{\mathrm{x}}=1.5 \times 275 \times 1300 \times 10^{-3}=536 \mathrm{kNm}$

Example 3 Unrestrained beam with end moments	Sheet	5	of	6	Rev

Therefore $M_{\mathrm{cx}}=404 \mathrm{kNm}$
From above, $M_{\mathrm{x}}=282 \mathrm{kNm}$
$282 \mathrm{kNm}<404 \mathrm{kNm}$
Therefore, the moment capacity is adequate.

3.2.8 Lateral-torsional buckling

Basic requirements: $\quad M_{\mathrm{x}} \leq \boldsymbol{M}_{\mathrm{b}} / \boldsymbol{m}_{\mathrm{LT}}$
and $\quad \boldsymbol{M}_{\mathrm{x}} \leq \boldsymbol{M}_{\mathrm{cx}}$ (already checked in 3.2.7)
The buckling resistance moment M_{b} for a class 1 plastic section is given by $M_{\mathrm{b}} \quad=p_{\mathrm{b}} S_{\mathrm{x}}$
where p_{b} is the bending strength and is dependent on the design strength p_{y} and the equivalent slenderness $\lambda_{\text {LT }}$.
$\lambda_{\mathrm{LT}}=u v \lambda \sqrt{\beta_{\mathrm{W}}}$
$\lambda=\frac{L_{E}}{r_{y}}=\frac{6300}{41.2}=153$
$\lambda / x=\frac{153}{37.9}=4.0$

Created on 30 March 2011
This material is copyright - all rights reserved. Use of this document is subject to the terms and conditions of the Steelbiz Licence Agreement
For a section with equal flanges and $\lambda / x=4.0$,
$v=0.86$

For a class 1 plastic section, $\beta_{\mathrm{W}}=1.0$
Therefore, $\lambda_{\mathrm{LT}}=0.872 \times 0.86 \times 153 \times 1.0=115$
For $p_{\mathrm{y}}=275 \mathrm{~N} / \mathrm{mm}^{2}$ and $\lambda_{\mathrm{LT}}=115$, Table 16 gives $p_{\mathrm{b}}=102 \mathrm{~N} / \mathrm{mm}^{2}$
$M_{\mathrm{b}} \quad=102 \times 1470 \times 10^{-3}=150 \mathrm{kNm}$
$M_{\mathrm{b}} / m_{\mathrm{LT}}=150 / 0.46=326 \mathrm{kNm}$
From above, $M_{\mathrm{x}}=282 \mathrm{kNm}$
$282 \mathrm{kNm}<326 \mathrm{kNm}$
Therefore, the buckling resistance moment is adequate.

3.2.9 Web bearing and buckling

The web bearing and buckling checks should be carried out at the supports and at the points of load application. However, as the reactions are transferred through end plates and the loads are applied through the bottom flange, there is no need to check the web for bearing and buckling in this example.

3.2.10 SLS deflection check

The deflections under unfactored imposed loads should be checked as in Example 2.
Adopt $457 \times 191 \times 67$ UB in grade S275

Example 3 Unrestrained beam with end moments \quad Sheet | 6 | of | 6 | Rev |
| :--- | :--- | :--- | :--- | :--- | :--- |

3.3 Blue Book approach

The member capacities and resistances calculated in section 3.2 could have been obtained directly from Volume $1^{[2]}$.

Try $457 \times 191 \times 67$ UB in grade $\mathbf{S 2 7 5}$

3.3.1 Shear Capacity

$P_{\mathrm{v}} \quad=636 \mathrm{kN}$
$F_{\mathrm{v}}=152 \mathrm{kN}$
$152 \mathrm{kN}<636 \mathrm{kN}$
Therefore, the shear capacity is adequate.

3.3.2 Moment capacity

$M_{\mathrm{cx}}=405 \mathrm{kNm}$
$M_{\mathrm{x}}=282 \mathrm{kNm}$
$282 \mathrm{kNm}<405 \mathrm{kNm}$
Therefore, the moment capacity is adequate.

3.3.3 Buckling resistance moment

For $L_{\mathrm{E}}=6.0 \mathrm{~m}, M_{\mathrm{b}}=159 \mathrm{kNm}$
For $L_{\mathrm{E}}=7.0 \mathrm{~m}, M_{\mathrm{b}}=133 \mathrm{kNm}$
Interpolating, an approximate value for $L_{\mathrm{E}}=6.3 \mathrm{~m}$, is $M_{\mathrm{b}}=151 \mathrm{kNm}$
$M_{\mathrm{b}} / m_{\mathrm{LT}}=151 / 0.46=328 \mathrm{kNm}$
$M_{\mathrm{x}} \quad=282 \mathrm{kNm}$
$282 \mathrm{kNm}<328 \mathrm{kNm}$
Therefore, the buckling resistance moment is adequate.
Note:
$\overline{m_{\text {LT }}}$ values are not included in Volume 1 and must be obtained from Table 18 of BS 5950-1:2000.

Adopt $457 \times 191 \times 67$ UB in grade S275

Vol 1
Page C-79

Vol 1
Page C-59

Vol 1
Page C-59

Silwood Park, Ascot, Berks SL5 7QN
Telephone: (01344) 623345
Fax: (01344) 622944
CALCULATION SHEET

Job No.	CDS 153	Sheet	1	of	5	Rev
Job Title	Example no. 4					
Subject	Simply supported beam with lateral restraint at load application points					

Client					
		Made by	MDH	Date	Jun 2003
	Checked by	ASM	Date	Oct 2003	

4 Simply supported beam with lateral restraint at load application points

4.1 Introduction

The beam shown in Figure 4.1 is laterally restrained at the ends and at the points of load application only. For the loading shown, design the beam in S275 steel.

Two solutions are presented: the full calculation and the simplified approach using Volume $1^{[2]}$ (the "Blue Book" approach).

Figure 4.1

4.1.2 Loading (unfactored)

Dead loads:

Self-weight
$w_{\mathrm{s}} \quad=3 \mathrm{kN} / \mathrm{m}$
Point load
$W_{1 \mathrm{~d}}=40 \mathrm{kN}$
Point load
$W_{2 \mathrm{~d}}=20 \mathrm{kN}$
Imposed loads:
Point load $\quad W_{1 \mathrm{i}}=60 \mathrm{kN}$
Point load
$W_{2 \mathrm{i}}=30 \mathrm{kN}$

4.1.3 Load Factors

Dead load factor $\quad \gamma_{\mathrm{fd}}=1.4$
Imposed load factor $\gamma_{\mathrm{fi}}=1.6$

4.1.4 Factored loads

$$
\begin{array}{lll}
w_{\mathrm{s}}^{\prime}=w_{\mathrm{s}} \gamma_{\mathrm{fd}} & =(3 \times 1.4) & =4.2 \mathrm{kN} / \mathrm{m} \\
W_{1}^{\prime}=W_{\mathrm{ld}} \gamma_{\mathrm{fd}}+W_{\mathrm{li}} \gamma_{\mathrm{fi}}=(40 \times 1.4)+(60 \times 1.6) & =152 \mathrm{kN} \\
W_{2}^{\prime}=W_{2 \mathrm{~d}} \gamma_{\mathrm{fd}}+W_{2 \mathrm{i}} \gamma_{\mathrm{fi}}=(20 \times 1.4)+(30 \times 1.6) & =76 \mathrm{kN}
\end{array}
$$

The design shear forces and bending moments due to factored loads are as shown in Figure 4.2.

Example 4 Beam with lateral restraint at load application points	Sheet	2	of	5	Rev

Bending moment kNm

Figure 4.2

4.2 Member checks

4.2.1 Determine the effective length

Since the beam is restrained at the points of load application, there are three segments to consider. However, from the bending moment diagram (Figure 4.2), BC is the critical segment and is, therefore, the only segment considered in this example.

For segment length BC , the effective length $L_{\mathrm{E}}=1.0 L_{\mathrm{LT}}=3000 \mathrm{~mm}$.

4.2.2 Calculate $m_{\text {LT }}$

Since there is no loading between the lateral restraints at B and C (apart from the selfweight of the beam, which is considered insignificant), $m_{\text {LT }}$ can be obtained directly from Table 18 for a known value of β.
β is the ratio of the bending moments at points B and C ,

$$
\text { i.e. } \quad \beta=\frac{\text { moment at } \mathrm{C}}{\text { moment at } \mathrm{B}}=\frac{342}{419}=0.82
$$

From Table 18, $m_{\mathrm{LT}} \quad=0.93$

4.2.3 Trial section

The initial trial section size is selected to give a suitable moment capacity and resistance to lateral-torsional buckling. This initial member size is then checked to ensure its suitability in all other respects.

For an unrestrained beam, the maximum major axis moment M_{x} must satisfy the following conditions:
$M_{\mathrm{x}} \leq M_{\mathrm{cx}}$ and $M_{\mathrm{x}} \leq M_{\mathrm{b}} / m_{\mathrm{LT}}$

| Example 4 Beam with lateral restraint at load application points | Sheet | 3 | of | 5 | Rev |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

The chosen beam must, therefore, satisfy:
$M_{\mathrm{cx}} \geq 419 \mathrm{kNm}$ and
$M_{\mathrm{b}} \geq 419 \times 0.93=390 \mathrm{kNm}$ for an effective length of 3.0 m .

Try $457 \times 191 \times 82$ UB in grade S275

From member capacity tables:
Moment capacity $\quad M_{\mathrm{c}}=504 \mathrm{kNm}$
Buckling resistance $\quad M_{\mathrm{b}} \quad=396 \mathrm{kNm}$ for $L_{\mathrm{E}}=3.0 \mathrm{~m}$
From section property tables:
Depth $\quad D=460.0 \mathrm{~mm}$
Width $\quad B=191.3 \mathrm{~mm}$
Web thickness $t=9.9 \mathrm{~mm}$
Flange thickness $\quad T=16.0 \mathrm{~mm}$
Depth between fillets $d=407.6 \mathrm{~mm}$
Plastic modulus $\quad S_{\mathrm{x}}=1830 \mathrm{~cm}^{3}$
Elastic modulus $\quad Z_{\mathrm{x}}=1610 \mathrm{~cm}^{3}$
Radius of gyration $\quad r_{y} \quad=4.23 \mathrm{~cm}$
Buckling parameter $\quad u \quad=0.879$
Torsional index $x=30.8$
Local buckling ratios:
$\begin{array}{lll}\text { Flange } & b / T & =5.98 \\ \text { Web } & d / t & =41.2\end{array}$
Web $d / t=41.2$

4.2.4 Classify the cross section

Grade of steel $=$ S275
$T=16.0 \mathrm{~mm}$
Therefore $\quad p_{\mathrm{y}}=275 \mathrm{~N} / \mathrm{mm}^{2}$
$\varepsilon=\sqrt{\frac{275}{p_{\mathrm{y}}}}=\sqrt{\frac{275}{275}}=1.0$
For the outstand element of a compression flange, the limiting b / T for a class 1 plastic
flange is 9ε. Limiting $b / T=9 \varepsilon=9.0$
The actual $b / T=5.98<9.0$
Therefore, the flange is class 1.
Since the section is symmetrical and subject to pure bending, the neutral axis is at mid depth. For this case, the limiting d / t for a class 1 plastic web is 80ε.
Limiting $d / t=80 \varepsilon=80.0$
The actual $d / t=41.2<80.0$
Therefore, the web is class 1 .
The flange and the web are both class 1 , therefore, the cross section is class 1 .

4.2.5 Check for shear buckling

If the d / t ratio exceeds 70ε for a rolled section, the web should be checked for shear

Vol 1
Page C-59

Vol 1
Page B-4

Vol 1
Page B-5

Vol 1
Page B-4
3.1.1

Table 9
3.5.2

Table 11
3.5.2

Table 11
4.2.3 buckling in accordance with clause 4.4.5 of BS 5950-1:2000 ${ }^{[1]}$.
$70 \varepsilon=70.0$
In this case, $d / t=41.2<70 \varepsilon$, so there is no need to check for shear buckling.

Example 4 Beam with lateral restraint at load application points	Sheet	4	of	5	Rev

> 4.2.6 Check the shear capacity
> Basic requirement $F_{\mathrm{v}} \leq \boldsymbol{P}_{\mathrm{v}}$
> $P_{\mathrm{v}} \quad=0.6 p_{\mathrm{y}} A_{\mathrm{v}}$
> $p_{\mathrm{y}} \quad=275 \mathrm{~N} / \mathrm{mm}^{2}$
> $A_{\mathrm{v}} \quad=t D=9.9 \times 460.0 \quad=4554 \mathrm{~mm}^{2}$
> $P_{\mathrm{v}} \quad=0.6 \times 275 \times 4554 \times 10^{-3}=751 \mathrm{kN}$

The highest shear force occurs at A, where $F_{\mathrm{v}}=146 \mathrm{kN}$
$146 \mathrm{kN}<751 \mathrm{kN}$
Therefore, the shear capacity is adequate.

4.2.7 Check the moment capacity

Basic requirement $M_{\mathrm{x}} \leq \boldsymbol{M}_{\mathrm{cx}}$
Check whether the shear is "high" (i.e. $F_{\mathrm{v}}>0.6 P_{\mathrm{v}}$) or "low" at the point of maximum moment. The maximum moment occurs at B, where $F_{\mathrm{v}}=133 \mathrm{kN}$.
$0.6 P_{\mathrm{v}}=0.6 \times 751=451 \mathrm{kN}$
$133 \mathrm{kN}<451 \mathrm{kN}$
Therefore, the shear is low.
For low shear, the moment capacity for a class 1 section is given by
$M_{\mathrm{cx}}=p_{\mathrm{y}} S_{\mathrm{x}}$
$M_{\mathrm{cx}}=275 \times 1830 \times 10^{-3}=503 \mathrm{kNm}$
Check limit to avoid irreversible deformation under serviceability loads.
For a simply supported beam $M_{\mathrm{cx}} \leq 1.2 p_{\mathrm{y}} Z_{\mathrm{x}}$
$1.2 p_{\mathrm{y}} Z_{\mathrm{x}}=1.2 \times 275 \times 1610 \times 10^{-3}=531 \mathrm{kNm}$
Therefore $M_{\mathrm{cx}} \quad=503 \mathrm{kNm}$
From above, $M_{\mathrm{x}}=419 \mathrm{kNm}$
$419 \mathrm{kNm}<503 \mathrm{kNm}$
Therefore, the moment capacity is adequate.

4.2.8 Lateral-torsional buckling

Basic requirements: $\boldsymbol{M}_{\mathbf{x}} \leq \boldsymbol{M}_{\mathrm{b}} / \boldsymbol{m}_{\mathrm{LT}}$
and $\quad \boldsymbol{M}_{\mathrm{x}} \leq \boldsymbol{M}_{\mathrm{cx}}$ (already checked in 4.2.7)
The buckling resistance moment M_{b} for a class 1 plastic section is given by

$$
M_{\mathrm{b}}=p_{\mathrm{b}} S_{\mathrm{x}}
$$

where p_{b} is the bending strength and is dependent on the design strength p_{y} and the equivalent slenderness $\lambda_{\text {LT }}$.

$$
\begin{align*}
\lambda_{\mathrm{LT}} & =u \nu \lambda \sqrt{\beta_{\mathrm{W}}} \\
\lambda & =\frac{L_{E}}{r_{y}}=\frac{3000}{42.3}=70.9 \\
\lambda / x & =\frac{70.9}{30.8}
\end{align*}
$$

For a section with equal flanges and $\lambda / x=2.3$,
$v=0.94$
4.3.6.9

For a class 1 plastic section, $\beta_{\mathrm{w}}=1.0$

Example 4 Beam with lateral restraint at load application points	Sheet	5	of	5	Rev

Therefore, $\lambda_{\mathrm{LT}}=0.879 \times 0.94 \times 70.9 \times 1.0=58.6$
For $p_{\mathrm{y}}=275 \mathrm{~N} / \mathrm{mm}^{2}$ and $\lambda_{\mathrm{LT}}=58.6$, Table 16 gives $p_{\mathrm{b}}=217 \mathrm{~N} / \mathrm{mm}^{2}$
$M_{\mathrm{b}}=217 \times 1830 \times 10^{-3}=397 \mathrm{kNm}$
$M_{\mathrm{b}} / m_{\mathrm{LT}}=397 / 0.93=427 \mathrm{kNm}$
From above, $M_{\mathrm{x}}=419 \mathrm{kNm}$
$419 \mathrm{kNm}<427 \mathrm{kNm}$
Therefore, the buckling resistance moment is adequate.

4.2.9 Web bearing and buckling

There is no need to check the web for bearing and buckling in this example, because the secondary beams are connected into the webs of the primary beams and flexible end plates are used to connect the beams to the columns.

4.2.10 SLS deflection check

The deflections under unfactored imposed loads should be checked as in Example 2.

Adopt $457 \times 191 \times 82$ UB in grade S275

4.3 Blue Book approach

The member capacities and resistances calculated in section 4.2 could have been obtained directly from Volume $1^{[2]}$.

Try $457 \times 191 \times 82$ UB in grade S275

4.3.1 Shear Capacity

$P_{\mathrm{v}} \quad=751 \mathrm{kN}$
$F_{\mathrm{v}} \quad=146 \mathrm{kN}$
$146 \mathrm{kN}<751 \mathrm{kN}$
Therefore, the shear capacity is adequate.

4.3.2 Moment capacity

$M_{\mathrm{cx}}=504 \mathrm{kNm}$
$M_{\mathrm{x}}=419 \mathrm{kNm}$
$419 \mathrm{kNm}<504 \mathrm{kNm}$
Therefore, the moment capacity is adequate.

4.3.3 Buckling resistance moment

For $L_{\mathrm{E}}=3.0 \mathrm{~m}, M_{\mathrm{b}}=396 \mathrm{kNm}$
$M_{\mathrm{b}} / m_{\mathrm{LT}}=396 / 0.93=426 \mathrm{kNm}$
$M_{\mathrm{x}} \quad=419 \mathrm{kNm}$
$419 \mathrm{kNm}<426 \mathrm{kNm}$
Therefore, the buckling resistance moment is adequate.
Note
$m_{\text {LT }}$ values are not included in Volume 1 and must be obtained from Table 18 of BS 5950-1:2000.

Vol 1
Page C-79

Vol 1
Page C-59

Adopt $457 \times 191 \times 82$ UB in grade S275

The Steel Construction Institute Silwood Park, Ascot, Berks SL5 7QN Telephone: (01344) 623345 Fax: (01344) 622944	Job No.	CDS 153		Sheet	1 of	7	Rev
	Job Title Example no. 5						
	Subject Si	Simply supported beam with lateral restraint at load application points using a class 3 UC					
	Client	SCI	Made by	MDH	Date	Jun	003
CALCULATION SHEET			Checked by	ASM	Date	Oct	003

5 Simply supported beam with lateral restraint at load application points using a class 3 UC

5.1 Introduction

The beam shown in Figure 5.1 is laterally restrained at the ends and at the points of load application only. For the loading shown, design the beam in S355 steel using a Universal Column section.

Two solutions are presented: the full calculation and the simplified approach using Volume $1^{[2]}$ (the "Blue Book" approach).

Figure 5.1

5.1.1 Factored loads

$w_{\mathrm{s}}^{\prime}=3.4 \mathrm{kN} / \mathrm{m}$ (self weight)
$W_{1}^{\prime}=122 \mathrm{kN}$
$W_{2}^{\prime}=61 \mathrm{kN}$
The shear forces and bending moments are as shown in Figure 5.2.

Figure 5.2

5.2 Member checks

5.2.1 Determine the effective length

Since the beam is restrained at the points of load application, there are three segments to consider. However, from the bending moment diagram (Figure 5.2), BC is the critical segment and is, therefore, the only segment considered in this example.

For segment length BC , the effective length $L_{\mathrm{E}}=1.0 L_{\mathrm{LT}}=3000 \mathrm{~mm}$.

5.2.2 Calculate m_{LT}

Since there is no loading between the lateral restraints at B and C (apart from the selfweight of the beam, which is considered insignificant), $m_{\text {LT }}$ can be obtained directly from Table 18 for a known value of β.
β is the ratio of the bending moments at points B and C ,
i.e. $\beta=\frac{\text { moment at } \mathrm{C}}{\text { moment at } \mathrm{B}}=\frac{274}{335}=0.82$

From Table 18, $m_{\text {LT }} \quad=0.93$

5.2.3 Trial section

The initial trial section size is selected to give a suitable moment capacity and resistance to lateral-torsional buckling. This initial member size is then checked to ensure its suitability in all other respects.

Example 5 Beam with restraint at load points using class 3 UC

Sheet	3	of	7
Rev			

For an unrestrained beam, the maximum major axis moment M_{x} must satisfy the following conditions:
$M_{\mathrm{x}} \leq M_{\mathrm{cx}}$ and $M_{\mathrm{x}} \leq M_{\mathrm{b}} / m_{\mathrm{LT}}$
The chosen beam must, therefore, satisfy:
$M_{c x} \geq 335 \mathrm{kNm}$ and
$M_{\mathrm{b}} \geq 335 \times 0.93=312 \mathrm{kNm}$ for an effective length of 3.0 m .

Try $254 \times 254 \times 73$ UC in grade $\mathbf{S 3 5 5}$

From member capacity tables:
Moment capacity $\quad M_{\mathrm{c}}=350 \mathrm{kNm}$
Buckling resistance $\quad M_{\mathrm{b}}=332 \mathrm{kNm}$ for $L_{\mathrm{E}}=3.0 \mathrm{~m}$
From section property tables:
Depth
$D=254.1 \mathrm{~mm}$
Width
$B=254.6 \mathrm{~mm}$
Web thickness
$t=8.6 \mathrm{~mm}$
Flange thickness
$T=14.2 \mathrm{~mm}$
Depth between fillets
$d=200.3 \mathrm{~mm}$
Plastic modulus
$S_{\mathrm{x}}=992 \mathrm{~cm}^{3}$
Elastic modulus
$Z_{\mathrm{x}}=898 \mathrm{~cm}^{3}$
Radius of gyration
$r_{y}=6.48 \mathrm{~cm}$
Buckling parameter $\quad u=0.849$
Torsional index

$$
x=17.3
$$

Local buckling ratios:

Flange	b / T	$=8.96$
Web	d / t	$=23.3$

5.2.4 Classify the cross section

Grade of steel = S355
$T<16 \mathrm{~mm}$
Therefore $p_{\mathrm{y}} \quad=355 \mathrm{~N} / \mathrm{mm}^{2}$
$\varepsilon=\sqrt{\frac{275}{p_{\mathrm{y}}}} \quad=\sqrt{\frac{275}{355}}=0.88$
For the outstand element of a compression flange, the limiting b / T for a class 1 plastic flange is 9ε.
Limiting $b / T=9 \varepsilon=9 \times 0.88=7.92$
The actual $b / T=8.96>7.92$
Therefore, the flange is not class 1 .
The limiting b / T for a class 2 compact flange is 10ε.
Limiting $b / T=10 \varepsilon=10 \times 0.88=8.8$
The actual $b / T=8.96>8.8$
Therefore, the flange is not class 2 .
The limiting b / T for a class 3 compact flange is 15ε.
Limiting $b / T=15 \varepsilon=15 \times 0.88=13.2$
The actual $b / T=8.96<13.2$
Therefore, the flange is class 3.
4.3.6.2

Vol 1
Page D-61

Vol 1
Page B-8

Vol 1
Page B-9

Vol 1
Page B-8
3.1.1

Table 9
3.5.2

Table 11
3.5.2

Table 11
3.5.2

Table 11

Example 5 Beam with restraint at load points using class 3 UC

Sheet	4	of	7	Rev

Since the section is symmetrical and subject to pure bending, the neutral axis is at mid depth. For this case, the limiting d / t for a class 1 plastic web is 80ε.
Limiting $d / t=80 \varepsilon=80 \times 0.88=70.4$
The actual $d / t=23.3<70.4$
Therefore, the web is class 1 .
The flange is critical and, therefore, the cross section is class 3.

5.2.5 Check for shear buckling

If the d / t ratio exceeds 70ε for a rolled section, the web should be checked for shear buckling in accordance with clause 4.4.5 of BS 5950-1:2000 ${ }^{[1]}$.
$70 \varepsilon=70 \times 0.88=61.6$
In this case, $d / t=23.3<70 \varepsilon$, so there is no need to check for shear buckling.

5.2.6 Check the shear capacity

Basic requirement $\boldsymbol{F}_{\mathrm{v}} \leq \boldsymbol{P}_{\mathrm{v}}$
$P_{\mathrm{v}}=0.6 p_{\mathrm{y}} A_{\mathrm{v}}$
$p_{\mathrm{y}}=355 \mathrm{~N} / \mathrm{mm}^{2}$
$A_{\mathrm{v}}=t D=8.6 \times 254.1=2185 \mathrm{~mm}^{2}$
$P_{\mathrm{v}}=0.6 \times 355 \times 2185 \times 10^{-3}=465 \mathrm{kN}$
The highest shear force occurs at A, where $F_{\mathrm{v}}=117 \mathrm{kN}$
$117 \mathrm{kN}<465 \mathrm{kN}$
Therefore, the shear capacity is adequate.

5.2.7 Check the moment capacity

Basic requirement $M_{\mathrm{x}} \leq \boldsymbol{M}_{\mathrm{cx}}$
Check whether the shear is "high" (i.e. $F_{\mathrm{v}}>0.6 P_{\mathrm{v}}$) or "low" at the point of
Check whether the shear is "high" (i.e. $F_{\mathrm{v}}>0.6 P_{\mathrm{v}}$) or "low" at the
maximum moment. The maximum moment occurs at B , where $F_{\mathrm{v}}=106 \mathrm{kN}$.
$0.6 P_{\mathrm{v}}=0.6 \times 465=279 \mathrm{kN}$
$106 \mathrm{kN}<279 \mathrm{kN}$
Therefore, the shear is low.
For low shear, the moment capacity for a class 3 section is given by
Either $\quad M_{\mathrm{cx}}=p_{\mathrm{y}} Z_{\mathrm{x}}$
Or $\quad M_{\mathrm{cx}}=p_{\mathrm{y}} S_{\mathrm{x}, \mathrm{eff}}$
where $S_{\mathrm{x}, \mathrm{eff}}$ is the effective plastic modulus for a class 3 cross-section. $S_{\mathrm{x}, \text { eff }}$ will be greater than the elastic modulus Z_{x}, but less than the plastic modulus S_{x}.

The first equation above is the traditional formula for a class 3 semi-compact section. It is simple to use, but limits the moment capacity of the section to the moment of It is simple to use, but limits the moment capacity of the section to the moment of
first yield. By contrast, the second equation gives a more realistic approximation to the actual moment capacity of the section, but requires a little extra computational effort. Designers may choose either method. For the purpose of this example, the effort. Designers may choose either method. For the purpose of this example, the
second equation will be used, since the section only just failed to be class 2 compact and will, therefore, have a moment capacity close to the fully plastic moment capacity.

Example 5 Beam with restraint at load points using class 3 UC
Sheet 5 of $7 \quad$ Rev

The effective plastic modulus $S_{\mathrm{x}, \text { eff }}$ is calculated as follows:
$S_{\mathrm{x}, \mathrm{eff}} \quad=Z_{\mathrm{x}}+\left(S_{\mathrm{x}}-Z_{\mathrm{x}}\right)\left[\frac{\left(\frac{\beta_{3 \mathrm{w}}}{d / t}\right)^{2}-1}{\left(\frac{\beta_{3 \mathrm{w}}}{\beta_{2 \mathrm{w}}}\right)^{2}-1}\right]$
but $S_{\mathrm{x}, \text { eff }} \leq Z_{\mathrm{x}}+\left(S_{\mathrm{x}}-Z_{\mathrm{x}}\right)\left[\frac{\left(\frac{\beta_{3 \mathrm{f}}}{b / T}\right)^{2}-1}{\left(\frac{\beta_{3 \mathrm{f}}}{\beta_{2 \mathrm{f}}}\right)^{2}-1}\right]$
$\beta_{2 \mathrm{w}}=100 \varepsilon=100 \times 0.88=88$
$\beta_{3 \mathrm{w}}=120 \varepsilon=120 \times 0.88=106$
$\beta_{2 \mathrm{f}}=10 \varepsilon=10 \times 0.88=8.8$
$\beta_{3 \mathrm{f}}=15 \varepsilon=15 \times 0.88=13.2$

For a simply supported beam $M_{\mathrm{cx}} \leq 1.2 p_{\mathrm{y}} Z_{\mathrm{x}}$
$1.2 p_{\mathrm{y}} Z_{\mathrm{x}}=1.2 \times 355 \times 898 \times 10^{-3}=383 \mathrm{kNm}$
Therefore $\quad M_{\mathrm{cx}}=350 \mathrm{kNm}$
From above, $\quad M_{x}=335 \mathrm{kNm}$ $335 \mathrm{kNm}<350 \mathrm{kNm}$
Therefore, the moment capacity is adequate.
Sheet 6 of

5.2.8 Lateral-torsional buckling

Basic requirements: $\boldsymbol{M}_{\mathrm{x}} \leq \boldsymbol{M}_{\mathrm{b}} / \boldsymbol{m}_{\mathrm{LT}}$
and $\quad M_{\mathbf{x}} \leq M_{\mathrm{cx}}$ (already checked in 5.2.7)
The buckling resistance moment M_{b} for a class 3 semi-compact section is given by $M_{\mathrm{b}}=p_{\mathrm{b}} S_{\mathrm{x}, \text { eff }} \quad$ (or conservatively $M_{\mathrm{b}}=p_{\mathrm{b}} Z_{\mathrm{x}}$)
where p_{b} is the bending strength and is dependent on the design strength p_{y} and the equivalent slenderness $\lambda_{\text {LT }}$.

$$
\lambda_{L T}=u \nu \lambda \sqrt{\beta_{W}}
$$

$$
\lambda=\frac{L_{E}}{r_{y}}=\frac{3000}{64.8}=46.3
$$

$$
\lambda / x=\frac{46.3}{17.3} \quad=2.7
$$

For a section with equal flanges and $\lambda / x=2.68$,
$v \quad=0.92$
For a class 3 semi-compact section, β_{w} is given by
$\beta_{\mathrm{w}}=S_{\mathrm{x}, \text { eff }} / S_{\mathrm{x},}=986 / 992=0.99$
Therefore, $\lambda_{\mathrm{LT}} \quad=0.849 \times 0.92 \times 46.3 \times(0.99)^{0.5}=36$
For $p_{\mathrm{y}}=355 \mathrm{~N} / \mathrm{mm}^{2}$ and $\lambda_{\mathrm{LT}}=36$, Table 16 gives $p_{\mathrm{b}}=338 \mathrm{~N} / \mathrm{mm}^{2}$
4.3.6.2

Table 19

Table 16
$M_{\mathrm{b}}=338 \times 986 \times 10^{-3}=333 \mathrm{kNm}$
$M_{\mathrm{b}} / m_{\mathrm{LT}}=333 / 093=358 \mathrm{kNm}$
From above, $M_{x}=335 \mathrm{kNm}$
$335 \mathrm{kNm}<358 \mathrm{kNm}$
Therefore, the buckling resistance moment is adequate.

5.2.9 Web bearing and buckling

There is no need to check the web for bearing and buckling in this example, because the secondary beams are connected into the webs of the primary beams and flexible end plates are used to connect the beams to the columns.

5.2.10 SLS deflection check

The deflections under unfactored imposed loads should be checked as in Example 2.

Adopt $254 \times 254 \times 73$ UC in grade S355

Example 5 Beam with restraint at load points using class 3 UC Sheet 7 of 7

Rev

5.3 Blue Book approach

The member capacities and resistances calculated in section 5.2 could have been obtained directly from Volume $1^{[2]}$.

Try $254 \times 254 \times 73$ UC in grade $\mathbf{S 3 5 5}$

5.3.1 Shear Capacity

$P_{\mathrm{v}} \quad=465 \mathrm{kN}$
$F_{\mathrm{v}} \quad=117 \mathrm{kN}$
Vol 1
Page D-81
$117 \mathrm{kN}<465 \mathrm{kN}$
Therefore, the shear capacity is adequate.

5.3.2 Moment capacity

$M_{\mathrm{cx}}=350 \mathrm{kNm}$
$M_{x}=335 \mathrm{kNm}$
$335 \mathrm{kNm}<350 \mathrm{kNm}$
Therefore, the moment capacity is adequate.

5.3.3 Buckling resistance moment

For $L_{\mathrm{E}} \quad=3.0 \mathrm{~m}, M_{\mathrm{b}}=332 \mathrm{kNm}$
$M_{\mathrm{b}} / m_{\mathrm{LT}}=332 / 0.93=357 \mathrm{kNm}$
$M_{x} \quad=335 \mathrm{kNm}$
$335 \mathrm{kNm}<357 \mathrm{kNm}$
Therefore, the buckling resistance moment is adequate.

Note

$m_{\text {LT }}$ values are not included in Volume 1 and must be obtained from Table 18 of BS 5950-1:2000.

Adopt $254 \times 254 \times 73$ UC in grade $\mathbf{S 3 5 5}$

Silwood Park, Ascot, Berks SL5 7QN
Telephone: (01344) 623345
Fax: (01344) 622944

CALCULATION SHEET

Job No.	CDS 153	Sheet	1	of	7	Rev
Job Title	Example no. 6					
Subject	Beam under combined bending and torsion using a UC section					

Client		Made by	MDH	Date	Jun 2003
		Checked by	ASM	Date	Oct 2003

6 Beam under combined bending and torsion using a UC section

6.1 Introduction

The beam shown in Figure 6.1 is unrestrained along its length. An eccentric load is applied to the bottom flange at the centre of the span in such a way that it does not provide any lateral restraint to the member. The end conditions are assumed to be simply supported for bending and fixed against torsion, but free for warping. For the factored loads shown, design the beam in S275 steel.

Figure 6.1

6.1.1 Loading

Replace the actual loading by an equivalent arrangement, comprising a vertical load applied through the shear centre and a torsional moment as shown below.

\equiv

Figure 6.2

Loadings due to plane bending and torsion are shown below.

(i) Plane bending

(ii) Torsional loading

Figure 6.3

6.1.2 Factored loads

Distributed load (self-weight) $w=1.0 \mathrm{kN} / \mathrm{m}$ (assumed)
Point load $W=100 \mathrm{kN}$
Eccentricity $e=75 \mathrm{~mm}$

6.1.3 Bending effects at ULS

Moment at B

$$
\begin{aligned}
M_{\mathrm{xB}} & =102 \mathrm{kNm} \\
F_{\mathrm{vA}} & =52 \mathrm{kN}
\end{aligned}
$$

Shear at A
Shear at B
$F_{\mathrm{vB}}=50 \mathrm{kN}$

6.1.4 Torsional effects at ULS

Torsional moment $T_{\mathrm{q}} \quad=W \times e$
$T_{\mathrm{q}}=100 \times 75 \times 10^{-3}=7.5 \mathrm{kNm}$

6.2 Bending checks

6.2.1 Determine the effective length

Since the beam is unrestrained between the supports, there is only one segment length to consider in this example, with a length equal to the beam length. In bending, the beam is simply supported.
Therefore, $L_{\mathrm{E}}=1.0 L=4000 \mathrm{~mm}$.

6.2.2 Calculate m_{LT}

If the self-weight is ignored (it is small compared to the point load), the bending moment diagram resembles the first of the four specific cases given in Table 18 of BS 5950-1:2000 ${ }^{[1]}$.

From Table 18, $m_{\mathrm{LT}}=0.85$

Example 6 Combined bending and torsion using a UC section	Sheet	3	of	7	Rev

6.2.3 Trial section

In the previous examples, the initial trial section size was selected to give a suitable moment capacity and resistance to lateral-torsional buckling using Volume $1^{[2]}$. This initial member size was then checked to ensure its suitability in all other respects. In this example, due to the torsion, a beam chosen in this way is unlikely to be adequate. However, it is a useful starting point for the design procedure.
For an unrestrained beam, the maximum major axis moment M_{x} must satisfy the following conditions:
$M_{\mathrm{x}} \leq M_{\mathrm{cx}} \quad$ and $\quad M_{\mathrm{x}} \leq M_{\mathrm{b}} / m_{\mathrm{LT}}$
The chosen beam must, therefore, satisfy:
$M_{\mathrm{cx}} \geq 102 \mathrm{kNm}$ and
$M_{\mathrm{b}} \geq 102 \times 0.85=86.7 \mathrm{kNm}$ for an effective length of 4.0 m .
To resist torsion, it is generally better to use a UC section rather than a UB.
Referring to Volume $1^{[2]}$, for bending only, a $203 \times 203 \times 46$ UC in grade S275 is
adequate, having a moment capacity M_{c} of 137 kNm and a buckling resistance
moment $M_{\mathrm{b}}=111 \mathrm{kNm}$ for an effective length of 4.0 m . However, to allow for torsion, the next serial size up will be selected as the trial section.

Try $254 \times 254 \times 89$ UC in grade S275
From member capacity tables:
Moment capacity

$$
\begin{aligned}
& M_{\mathrm{cx}}=324 \mathrm{kNm} \\
& M_{\mathrm{b}}=299 \mathrm{kNm} \text { for } L_{\mathrm{E}}=4.0 \mathrm{~m}
\end{aligned}
$$

Buckling resistance
From section property tables:
Depth $\quad D=260.3 \mathrm{~mm}$
Width
Web thickness
Flange thickness
Depth between fillets
$B \quad=256.3 \mathrm{~mm}$
$t=10.3 \mathrm{~mm}$
$T=17.3 \mathrm{~mm}$
Second moment of area x axis
$d=200.3 \mathrm{~mm}$
Radius of gyration y axis
$I_{\mathrm{x}}=14300 \mathrm{~cm}^{4}$
Plastic modulus x axis
$r_{\mathrm{y}}=6.55 \mathrm{~cm}$
Elastic modulus x axis
$S_{\mathrm{x}}=1220 \mathrm{~cm}^{3}$
Elastic modulus y axis
$Z_{\mathrm{x}}=1100 \mathrm{~cm}^{3}$
$Z_{\mathrm{y}}=379 \mathrm{~cm}^{3}$
Torsion constant
$J=102 \mathrm{~cm}^{4}$
Local buckling ratios:
Flange
$b / T=7.41$
Web
$d / t=19.4$

6.2.4 Classify the cross section

Grade of steel $=$ S275
$T>16.0 \mathrm{~mm}$
Therefore $p_{\mathrm{y}}=265 \mathrm{~N} / \mathrm{mm}^{2}$
$\varepsilon=\sqrt{\frac{275}{p_{y}}}=\sqrt{\frac{275}{265}}=1.02$
For the outstand element of a compression flange, the limiting b / T for a class 1 plastic flange is 9ε.
Limiting $b / T=9 \varepsilon=9 \times 1.02=9.18$
The actual $b / T=7.41<9.18$
Therefore, the flange is class 1 .

Vol 1
Page C-61

Vol 1
Page C-61

Vol 1
Page B-8

Vol 1
Page B-9

Vol 1
Page B-8
3.1.1

Table 9
3.5.2

Table 11

Example 6 Combined bending and torsion using a UC section
Sheet 4 of
7

Since the section is symmetrical and subject to bending (without axial load), the neutral axis is at mid depth. For this case, the limiting d / t for a class 1 plastic web is 80ε.
Limiting $d / t=80 \varepsilon=80 \times 1.02=81.6$
The actual $d / t=19.4<81.6$
Therefore, the web is class 1.
The flange and the web are both class 1 , therefore, the cross section is class $\mathbf{1}$.

6.2.5 Check for shear buckling

If the d / t ratio exceeds 70ε for a rolled section, the web should be checked for shear buckling in accordance with clause 4.4.5 of BS 5950-1:2000 ${ }^{[1]}$.
$70 \varepsilon=70 \times 1.02=71.4$
In this case, $d / t=19.4<70 \varepsilon$, so there is no need to check for shear buckling.

6.2.6 Check the shear capacity

Basic requirement $\boldsymbol{F}_{\mathrm{v}} \leq \boldsymbol{P}_{\mathrm{v}}$
$P_{\mathrm{v}}=0.6 p_{\mathrm{y}} A_{\mathrm{v}}$
$p_{\mathrm{y}}=265 \mathrm{~N} / \mathrm{mm}^{2}$
$A_{\mathrm{v}}=t D=10.3 \times 260.3=2681 \mathrm{~mm}^{2}$
$P_{\mathrm{v}}=0.6 \times 265 \times 2681 \times 10^{-3}=426 \mathrm{kN}$
The highest shear force occurs at A, where $F_{\mathrm{v}}=52 \mathrm{kN}$
$52 \mathrm{kN}<426 \mathrm{kN}$
Therefore, the shear capacity is adequate.

6.2.7 Check the moment capacity

Basic requirement $\boldsymbol{M}_{\mathrm{x}} \leq \boldsymbol{M}_{\mathrm{cx}}$
Check whether the shear is "high" (i.e. $F_{\mathrm{v}}>0.6 P_{\mathrm{v}}$) or "low" at the point of maximum moment. The maximum moment occurs at B , where $F_{\mathrm{v}}=50 \mathrm{kN}$.
$0.6 P_{\mathrm{v}}=0.6 \times 426=256 \mathrm{kN}$
$50 \mathrm{kN}<256 \mathrm{kN}$
Therefore, the shear is low.
For low shear, the moment capacity for a class 1 section is given by:
$M_{\mathrm{cx}}=p_{\mathrm{y}} S_{\mathrm{x}}$
$M_{\mathrm{cx}}=265 \times 1220 \times 10^{-3}=323 \mathrm{kNm}$
Check limit to avoid irreversible deformation under serviceability loads.
For a simply supported beam $M_{\mathrm{cx}} \leq 1.2 p_{\mathrm{y}} Z_{\mathrm{x}}$
$1.2 p_{\mathrm{y}} Z_{\mathrm{x}}=1.2 \times 265 \times 1100 \times 10^{-3}=350 \mathrm{kNm}$
Therefore $\quad M_{\mathrm{cx}}=323 \mathrm{kNm}$
From above, $\quad M_{\mathrm{x}}=102 \mathrm{kNm}$
102 kNm < 323 kNm
Therefore, the moment capacity is adequate.

6.2.8 Lateral-torsional buckling

Basic requirements: $\quad M_{\mathrm{x}} \leq M_{\mathrm{b}} / \boldsymbol{m}_{\mathrm{LT}}$
and $\quad M_{\mathrm{x}} \leq M_{\mathrm{cx}}$ (already checked in 6.2.7)

Example 6 Combined bending and torsion using a UC section	Sheet	5	of	7	Rev

The buckling resistance moment M_{b} for a class 1 plastic section is given by
$M_{\mathrm{b}}=p_{\mathrm{b}} S_{\mathrm{x}}$
where p_{b} is the bending strength and is dependent on the design strength p_{y} and the equivalent slenderness $\lambda_{\text {LT }}$.
$\lambda_{\mathrm{LT}}=u \nu \lambda \sqrt{\beta_{W}}$
$\lambda=\frac{L_{E}}{r_{y}}=\frac{4000}{65.5}=61.1$
$\lambda x=\frac{61.1}{14.5}=4.2$

For a section with equal flanges and $\lambda / x=4.21$,
$v=0.85$
For a class 1 plastic section, $\beta_{\mathrm{W}}=1.0$
Therefore, $\quad \lambda_{\mathrm{LT}}=0.851 \times 0.85 \times 61.1 \times 1.0=44.2$
For $p_{\mathrm{y}}=265 \mathrm{~N} / \mathrm{mm}^{2}$ and $\lambda_{\mathrm{LT}}=44.2$, Table 16 gives $p_{\mathrm{b}}=244 \mathrm{~N} / \mathrm{mm}^{2}$
$M_{\mathrm{b}} \quad=244 \times 1220 \times 10^{-3}=298 \mathrm{kNm}$
$M_{\mathrm{b}} / m_{\mathrm{LT}}=298 / 0.85=351 \mathrm{kNm}$
From above, $M_{\mathrm{x}}=102 \mathrm{kNm}$
$102 \mathrm{kNm}<351 \mathrm{kNm}$
Therefore, the buckling resistance moment is adequate.

6.3 Combined bending and torsion checks

A complete and very accurate method is given in P057 Design of members subject to combined bending and torsion ${ }^{[3]}$. However, the following simplified method may be used for I-sections subject to combined bending and torsion. The method has been used in practice in building design for many years. It ignores the pure torsion stiffness of the beam, but also ignores the small component of the major axis moment that is applied as a minor axis moment due to the twist of the section. The beam is then checked using the philosophy of BS $5950-1: 2000{ }^{[1]}$ clause 4.9 , which requires checks to clause 4.8 .3 with the axial load taken as zero.

6.3.1 Equivalent flange force

The applied torque may be replaced by two equal and opposite lateral forces in the flanges as shown below.

The force F, acting in each flange, is given by:

$$
F=\frac{T_{\mathrm{q}}}{D-T}=\frac{7.5}{(260.3-17.3) \times 10^{-3}}=30.9 \mathrm{kN}
$$

6.3.2 Lateral bending of the flange

Basic requirement: $\boldsymbol{M}_{\mathrm{f}} \leq \boldsymbol{M}_{\mathrm{cf}}$
This flange force is applied at the mid-span of the beam (at the same location as the applied torque). Since the flanges are free to rotate on plan at the supports, the maximum bending moment in the flange due to the lateral flange force is given by
$M_{\mathrm{f}}=\frac{F L}{4}=\frac{30.9 \times 4.0}{4}=30.9 \mathrm{kNm}$
The moment capacity of a class 1 plastic flange is given by
$M_{\text {cf }}=p_{\mathrm{y}} S_{\mathrm{f}}$
where S_{f} is the plastic modulus of the flange about its major axis (i.e. the minor axis of the beam).
$S_{\mathrm{f}}=\frac{T B^{2}}{4}=\frac{17.3 \times 256.3^{2}}{4} \times 10^{-3}=284 \mathrm{~cm}^{3}$
$M_{\text {cf }}=265 \times 284 \times 10^{-3}=75.3 \mathrm{kNm}$
$30.9 \mathrm{kNm}<75.3 \mathrm{kNm}$
Therefore, the moment capacity of the flange is adequate.

6.3.3 Cross section check

Basic requirement: $\frac{M_{\mathrm{x}}}{M_{\mathrm{cx}}}+\frac{M_{\mathrm{f}}}{M_{\mathrm{cf}}} \leq 1$
$\frac{102}{323}+\frac{30.9}{75.3}=0.316+0.410=0.73<1$
Therefore, the cross section check is OK.

6.3.4 Buckling check

Basic requirement: $\frac{m_{\mathrm{LT}} M_{\mathrm{LT}}}{M_{\mathrm{b}}}+\frac{m_{\mathrm{y}} M_{\mathrm{f}}}{p_{\mathrm{y}} Z_{\mathrm{f}}} \leq 1$
For the flange, $I_{\mathrm{f}}=\frac{T B^{3}}{12}=\frac{17.3 \times(256.3)^{3}}{12} \times 10^{-4}=2427 \mathrm{~cm}^{4}$

$$
Z_{\mathrm{f}}=\frac{I_{f}}{B / 2}=\frac{2427}{12.8} \quad=189.4 \mathrm{~cm}^{3}
$$

m_{y} is determined according to the shape of the bending moment diagram for the flange between restraints on the y axis. For the case of a simply supported beam with a centrally applied load, $m_{\mathrm{y}}=0.90$.
$\frac{0.85 \times 102}{298}+\frac{0.9 \times 30.9 \times 10^{6}}{265 \times 189.4 \times 10^{3}}=0.291+0.554 \quad=0.85<1$
Therefore, the buckling check is OK.
4.8.3.2(a)
4.8.3.3.1
4.8.3.3.4

Table 26

6.4 Deflections and twist

It is common for deflection to govern the design of beams subject to torsion. The vertical deflections are calculated as in Example 2 using the SLS loads.

The twist can be calculated from the horizontal deflections of the two flanges.
For simplicity, the SLS loading may be calculated as:
$F_{\mathrm{SLS}}=F_{\mathrm{ULS}} / 1.5$
$F_{\text {ULS }}=30.9 \mathrm{kN}$ (See Section 6.3.1)
$F_{\text {SLS }}=30.9 / 1.5=20.6 \mathrm{kN}$
The horizontal deflection of each flange is given by:
$\delta=\frac{F_{\text {SLS }} L^{3}}{48 E I_{\mathrm{f}}} \quad=\frac{20.6 \times 10^{3} \times 4000^{3}}{48 \times 205000 \times 2427 \times 10^{4}} \quad=5.52 \mathrm{~mm}$
The maximum twist is given by:
$\phi=\frac{2 \delta}{D-T}=\frac{2 \times 5.52}{260.3-17.3}=0.0454$ radians $\quad=2.6$ degrees
This twist exceeds the recommended limit of 2 degrees in P057 Design of members subject to combined bending and torsion ${ }^{[3]}$. In practice, a heavier section would have to be used.

Note that this twist is in addition to any rotations due to movement of the connections or deflections of the supporting structure.

The Steel Construction Institute Silwood Park, Ascot, Berks SL5 7QN Telephone: (01344) 623345 Fax: (01344) 622944	Job No. CDS 153			Sheet 1 of 5			Rev
	Job Title Example no. 7						
	Subject	RHS beam under combined bending and torsion					
	Client	SCI	Made by	MDH	Date	Jun	003
CALCULATION SHEET			Checked by	ASM	Date	Oct	003

7 RHS beam under combined bending and torsion

7.1 Introduction

Redesign the member shown in Example 6 using a hot-finished rectangular hollow section (RHS).

7.1.1 Factored loads

Distributed load (self-weight) $\quad w=1.0 \mathrm{kN} / \mathrm{m}$ (assumed)
Point load
$W=100 \mathrm{kN}$
Eccentricity
$e=75 \mathrm{~mm}$

7.1.2 Bending effects at ULS

Moment at $\mathrm{B} M_{\mathrm{xB}}=102 \mathrm{kNm}$
Shear at A $F_{\mathrm{vA}}=52 \mathrm{kN}$
Shear at B $F_{\mathrm{vB}}=50 \mathrm{kN}$

7.1.3 Torsional effects at ULS

Torsional moment $T_{\mathrm{q}}=W \times e$
$T_{\mathrm{q}}=100 \times 75 \times 10^{-3}=7.5 \mathrm{kNm}$

7.2 Bending checks

7.2.1 Determine the effective length

Since the beam is unrestrained between the supports, there is only one segment length to consider in this example, with a length equal to the beam length. In bending the beam is simply supported.
Therefore, $L_{\mathrm{E}}=1.0 \mathrm{~L}=4000 \mathrm{~mm}$.

7.2.2 Trial section

Try $250 \times 150 \times 8$ RHS in S275 (Hot finished)
From section property tables:

Depth
Width
Web/flange thickness
Area of cross section
Second moment of area x axis
Radius of gyration y axis
Plastic modulus x axis
Elastic modulus x axis
Elastic modulus y axis
Torsion constant
$D=250 \mathrm{~mm}$
$B=150 \mathrm{~mm}$
$t=8 \mathrm{~mm}$
$A=60.8 \mathrm{~cm}^{2}$
$I_{\mathrm{x}}=5110 \mathrm{~cm}^{4}$
$r_{\mathrm{y}}=6.15 \mathrm{~cm}$
$S_{\mathrm{x}}=501 \mathrm{~cm}^{3}$
$Z_{\mathrm{x}}=409 \mathrm{~cm}^{3}$
$Z_{y}=306 \mathrm{~cm}^{3}$
$J=5020 \mathrm{~cm}^{4}$

Example 7 RHS beam under combined bending	
Torsional modulus constant	$C=506 \mathrm{~cm}^{3}$
Local buckling ratios:	
Flange	$b / t=15.8$
Web	$d / t=28.3$

7.2.3 Classify the cross section

Grade of steel = S275
$t<16.0 \mathrm{~mm}$
Therefore p_{y}

For a hot finished RHS, the limiting b / t for a class 1 plastic flange is 28ε.
Limiting $\quad b / t=28 \varepsilon=28 \times 1.0=28$
The actual $b / t=15.8<28$
Therefore, the flange is class 1.
Since the section is symmetrical and subject to bending (i.e. no axial load), the neutral axis is at mid depth. For this case, the limiting d / t for a class 1 plastic web is 64ε.

Vol 1
Page B-24
3.1.1

$$
\begin{aligned}
& \text { Therefore } p_{\mathrm{y}} \\
& \varepsilon=\sqrt{\frac{275}{p_{\mathrm{y}}}} \quad=\sqrt{\frac{275}{275}}=1.0
\end{aligned}
$$

Table 9
3.5.2

Table 12
3.5.2

Table 12
Limiting $d / t=64 \varepsilon=64 \times 1.0=64$
The actual $d / t=28.3<64$
Therefore, the web is class 1 .
The flange and the web are both class 1 , therefore, the cross section is class 1.

7.2.4 Check for shear buckling

If the d / t ratio exceeds 70ε for a rolled section, the web should be checked for shear buckling in accordance with clause 4.4 .5 of BS 5950-1:2000 ${ }^{[1]}$.
$70 \varepsilon=70 \times 1.0=70$
In this case, $d / t \quad=28.3<70 \varepsilon$, so there is no need to check for shear buckling.

7.2.5 Check the shear capacity

Basic requirement $\boldsymbol{F}_{\mathrm{v}} \leq \boldsymbol{P}_{\mathrm{v}}$
$P_{\mathrm{v}}=0.6 p_{\mathrm{y}} A_{\mathrm{v}}$
$p_{\mathrm{y}}=275 \mathrm{~N} / \mathrm{mm}^{2}$
$A_{\mathrm{v}}=A D /(D+B)=6080 \times 250 /(250+150)=3800 \mathrm{~mm}^{2}$
$P_{\mathrm{v}}=0.6 \times 275 \times 3800 \times 10^{-3} \quad=627 \mathrm{kN}$
The highest shear force occurs at A, where $F_{\mathrm{v}}=52 \mathrm{kN}$
$52 \mathrm{kN}<627 \mathrm{kN}$
Therefore, the shear capacity is adequate.

7.2.6 Check the moment capacity

Basic requirement $M_{\mathrm{x}} \leq \boldsymbol{M c x}_{\text {cx }}$
Without calculation, it is clear that the shear is "low" in this case.
For low shear, the moment capacity for a class 1 section is given by:
$M_{\mathrm{cx}}=p_{\mathrm{y}} S_{\mathrm{x}}$
$M_{\mathrm{cx}}=275 \times 501 \times 10^{-3}=138 \mathrm{kNm}$
Check limit to avoid irreversible deformation under serviceability loads.
For a simply supported beam $M_{\mathrm{cx}} \leq 1.2 p_{\mathrm{y}} Z_{\mathrm{x}}$

Example 7 RHS beam under combined bending and torsion	Sheet 3 of
$1.2 p_{\mathrm{y}} Z_{\mathrm{x}}=1.2 \times 275 \times 409 \times 10^{-3}=135 \mathrm{kNm}$	
Therefore $M_{\mathrm{cx}}=135 \mathrm{kNm}$	
From above, $M_{x}=102 \mathrm{kNm}$	
$102 \mathrm{kNm}<135 \mathrm{kNm}$	
Therefore, the moment capacity is adequate.	
7.2.7 Lateral-torsional buckling	
For an RHS, there is no need to consider lateral-torsional buckling, unless the	

4.3.6.1

Table 15 considering the torsional equilibrium of the member as shown in Figure 7.1.

Figure 7.1

$$
T_{\mathrm{o}}=\frac{T_{\mathrm{q}}}{2} \quad=\frac{7.5}{2} \quad=3.75 \mathrm{kNm} .
$$

7.3.2 Stresses due to bending

Normal stress in the outer fibre of the flange:
$\sigma_{\mathrm{bx}}=\frac{M_{\mathrm{x}}}{Z_{\mathrm{x}}}=\frac{102 \times 10^{6}}{409 \times 10^{3}}=249 \mathrm{~N} / \mathrm{mm}^{2}$
Shear stress due to bending:

$$
\begin{aligned}
\tau_{\mathrm{b}} & =\frac{F_{\mathrm{vA}} Q_{\mathrm{w}}}{I_{\mathrm{x}} t_{1}} \\
Q_{\mathrm{w}} & =A_{1} \bar{y}
\end{aligned}
$$

Example 7 RHS beam under combined bending and torsion Sheet 4 of 5

Rev

$$
\begin{array}{ll}
A_{1}=\frac{A}{2}=\frac{6080}{2} & =3040 \mathrm{~mm}^{2} \\
\bar{y}=\frac{\left(125^{2} \times 8\right)+(134 \times 8 \times 121)}{A_{1}} & =83.8 \mathrm{~mm} \\
Q_{\mathrm{w}}=3040 \times 83.8 \times 10^{-3} & =254.8 \mathrm{~cm}^{3} \\
\tau_{\mathrm{b}}=\frac{52 \times 10^{3} \times 254.8 \times 10^{3}}{5110 \times 10^{4} \times(2 \times 8)} & =16.2 \mathrm{~N} / \mathrm{mm}^{2}
\end{array}
$$

7.3.3 Shear stresses due to torsion

$$
\tau_{\mathrm{t}}=\frac{T_{o}}{C}=\frac{3.75 \times 10^{6}}{506 \times 10^{3}} \quad=7.4 \mathrm{~N} / \mathrm{mm}^{2}
$$

7.3.4 Total shear stress

$$
\tau=\tau_{\mathrm{b}}+\tau_{\mathrm{t}}=16.2+7.4=23.6 \mathrm{~N} / \mathrm{mm}^{2}
$$

7.3.5 Von Mises interaction check

Basic requirement: $\sqrt{\sigma_{\mathrm{bx}}^{2}+3 \tau^{2}} \leq p_{\mathrm{y}}$

$$
\sqrt{249^{2}+3 \times 23.6^{2}}=252 \mathrm{~N} / \mathrm{mm}^{2}<275 \mathrm{~N} / \mathrm{mm}^{2}
$$

Note that this is very slightly conservative because it uses the maximum shear stress due to the shear force, which is not coexistent with the maximum bending stresses. The shear stresses from the shear force could be calculated with sufficient accuracy by using:

$$
\tau_{\mathrm{b}}=\frac{F_{\mathrm{v}}}{A_{\mathrm{v}}}
$$

where F_{v} and A_{v} are as defined in BS 5950-1:2000 ${ }^{[1]}$ clause 4.2.3.

7.4 Deflections

It is common for deflection to govern the design of beams subject to torsion.
The twist along the member is given by:
$\phi=\int \frac{d \phi}{d z} d z$
$\frac{d \phi}{d z}=\frac{T}{G J}$
For simplicity, the SLS torque may be calculated as:
$T_{\mathrm{SLS}}=T_{\mathrm{ULS}} / 1.5$
$T_{\mathrm{ULS}}=T_{\mathrm{o}}=3.75 \mathrm{kNm}$ (See Section 7.3.1)
$T_{\text {SLS }}=3.75 / 1.5 \quad 2.5 \mathrm{kNm}$
$G=\frac{E}{2(1+v)} \approx 79,000 \mathrm{~N} / \mathrm{mm}^{2}$
$\frac{d \phi}{d z}=\frac{2.5 \times 10^{6}}{79 \times 10^{3} \times 5020 \times 10^{4}}=6.3 \times 10^{-7}$ radians $/ \mathrm{mm}$
Twist $\phi=\frac{d \phi}{d z} \times \frac{L}{2}=6.3 \times 10^{-7} \times 2000=1.26 \times 10^{-3}$ radians ≈ 0.07 degrees
The large torsional stiffness of hollow sections results in small twists along the member. However there may be additional twist from the connections and the supporting structure.

Adopt $250 \times 150 \times 8$ RHS in S275 (Hot finished)

The Steel Construction Institute Silwood Park, Ascot, Berks SL5 7QN Telephone: (01344) 623345 Fax: (01344) 622944	Job No. CDS 153			Sheet 1 of 9			Rev
	Job Title Example no. 8						
	Subject Continuous beam designed elastically						
	Client	SCI	Made by	MDH	Date	Jun	003
CALCULATION SHEET			Checked by	ASM	Date	Oct	003

8 Continuous beam designed elastically

8.1 Introduction

The continuous non-composite beam shown in Figure 8.1 has its top flange fully restrained laterally by a composite slab supported on secondary beams. The bottom flange is restrained at the supports and at the points of load application by the secondary beams. The dead load is $50 \mathrm{kN} / \mathrm{m}$ and the imposed load is $75 \mathrm{kN} / \mathrm{m}$ from point 1 to point 6 and $100 \mathrm{kN} / \mathrm{m}$ from point 6 to point 8 . Design the beam elastically in S275 steel using a uniform section throughout.

Figure 8.1

8.1.2 Loading

Taking the self weight of the beam as concentrated at the secondary beams, the bending moments and shear forces in the beam are related to the point loads at points 2, 4, 5 and 7 as shown in Figure 8.2.

Figure 8.2

	Unfactored loads (kN)		Factored loads (kN)	
Location	Dead load	Imposed load	Dead load	Imposed load
2	150	225	210	360
4	150	225	210	360
5	150	225	210	360
7	150	300	210	480

| Example 8 Continuous beam designed elastically | Sheet | 2 | of | 9 | Rev |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

8.1.3 Load cases

Vertical loads should be arranged in the most unfavourable but realistic pattern for each element. The four possible load cases are shown below in Figure 8.3, with the corresponding bending moments and shear forces in Figure 8.4.

Maximum moment is at point 3 for load case 4.
Design moment $M_{\mathrm{x}}=M_{\mathrm{x} @ 3}=1029 \mathrm{kNm}$
Maximum shear is at point 6 for load case 3.
Design shear force $F_{\mathrm{v}}=F_{\mathrm{v} @ 6}=593 \mathrm{kN}$

a) Load case 1

b) Load case 2

c) Load case 3

Figure 8.3 Load cases

Figure 8.4(a) Load case 1
Created on 30 March 2011
This material is copyright - all rights reserved. Use of this document is subject to the terms and conditions of the Steelbiz Licence Agreement

Figure 8.4(b) Load case 2

Example 8 Continuous beam designed elastically	Sheet	4	of	9	Rev

Figure 8.4(c) Load case 3

Figure 8.4(d) Load case 4

Example 8 Continuous beam designed elastically	Sheet	5	of	9	Rev

8.2 Member design

8.2.1 Trial section

Try $686 \times 254 \times 125$ UB in grade S275
From section property tables:

Depth	D	$=677.9 \mathrm{~mm}$
Width	B	$=253.0 \mathrm{~mm}$
Web thickness	t	$=11.7 \mathrm{~mm}$
Flange thickness	T	$=16.2 \mathrm{~mm}$
Depth between fillets	d	$=615.1 \mathrm{~mm}$
Radius of gyration	r_{y}	$=5.24 \mathrm{~cm}$
Plastic modulus	S_{x}	$=3990 \mathrm{~cm}^{3}$
Elastic modulus	Z_{x}	$=3480 \mathrm{~cm}^{3}$
Buckling parameter	u	$=0.863$
Torsional index	x	$=43.8$
Local buckling ratios:		
Flange	b / T	$=7.81$
Web	d / t	$=52.6$

8.2.2 Classify the cross section

Grade of steel = S275
$T>16.0 \mathrm{~mm}$
Therefore $\quad p_{\mathrm{y}}=265 \mathrm{~N} / \mathrm{mm}^{2}$
$\varepsilon=\sqrt{\frac{275}{p_{\mathrm{y}}}}=\sqrt{\frac{275}{265}}=1.02$
For the outstand element of a compression flange, the limiting b / T for a class 1 plastic flange is 9ε.
Limiting $b / T=9 \varepsilon=9 \times 1.02=9.18$
The actual $b / T=7.81<9.18$
Therefore, the flange is class 1 .
Since the section is symmetrical and subject to pure bending, the neutral axis is at mid depth. For this case, the limiting d / t for a class 1 plastic web is 80ε.
Limiting $d / t=80 \varepsilon=80 \times 1.02=81.6$
The actual $d / t=52.6<81.6$
Therefore, the web is class 1 .
The flange and the web are both class 1 , therefore, the cross section is class 1 .

8.2.3 Check for shear buckling

If the d / t ratio exceeds 70ε for a rolled section, the web should be checked for shear buckling in accordance with clause 4.4 .5 of BS 5950-1:2000 ${ }^{[1]}$.
$70 \varepsilon=70 \times 1.02=71.4$
In this case, $d / t=52.6<70 \varepsilon$, so there is no need to check for shear buckling.

8.2.4 Check the shear capacity

Basic requirement $F_{\mathrm{v}} \leq \boldsymbol{P}_{\mathrm{v}}$
$P_{\mathrm{v}}=0.6 p_{\mathrm{y}} A_{\mathrm{v}}$
$p_{\mathrm{y}}=265 \mathrm{~N} / \mathrm{mm}^{2}$
$A_{\mathrm{v}}=t D=11.7 \times 677.9=7931 \mathrm{~mm}^{2}$
$P_{\mathrm{v}} \quad=0.6 \times 265 \times 7931 \times 10^{-3}=1261 \mathrm{kN}$

Vol 1
Page B-2

Vol 1
Page B-3

Vol 1
Page B-2
3.1.1

Table 9
3.5.2

Table 11
3.5.2

Table 11
4.2.3
4.2.3

Example 8 Continuous beam designed elastically	Sheet 6 of 9	Rev

The maximum shear force is at point 6 for load case 3.
$F_{\mathrm{v}}=F_{\mathrm{v} @ 6}=593 \mathrm{kN}$
$593 \mathrm{kN}<1261 \mathrm{kN}$
Therefore, the shear capacity is adequate.

8.2.5 Check the moment capacity

Basic requirement $M_{\mathrm{x}} \leq \boldsymbol{M}_{\mathrm{cx}}$
Check whether the shear is "high" (i.e. $F_{\mathrm{v}}>0.6 P_{\mathrm{v}}$) or "low" at the point of maximum moment. The maximum moment occurs at point 3 in load case 4 , where:
$F_{\mathrm{v}} \quad=591 \mathrm{kN}$.
$0.6 P_{\mathrm{v}}=0.6 \times 1261=757 \mathrm{kN}$
$591 \mathrm{kN}<757 \mathrm{kN}$
Therefore, the shear is low.
For low shear, the moment capacity for a class 1 section is given by:
$M_{\mathrm{cx}}=p_{\mathrm{y}} S_{\mathrm{x}}$
$M_{\mathrm{cx}}=265 \times 3990 \times 10^{-3}=1057 \mathrm{kNm}$
Check limit to avoid irreversible deformation under serviceability loads.
For a continuous beam $M_{\mathrm{cx}} \leq 1.5 p_{\mathrm{y}} Z_{\mathrm{x}}$
$1.5 p_{\mathrm{y}} Z_{\mathrm{x}}=1.5 \times 265 \times 3480 \times 10^{-3}=1383 \mathrm{kNm}$
Therefore $M_{c x}=1057 \mathrm{kNm}$
Maximum moment is at point 3 for load case 4.
$M_{\mathrm{x}} \quad=M_{\mathrm{x} @ 3}=1029 \mathrm{kNm}$
1029 kNm < 1057 kNm
Therefore, the moment capacity is adequate.

8.2.6 Lateral-torsional buckling

As the top flange is fully restrained, lateral-torsional buckling will only be critical when the beam is subject to a hogging moment with the bottom flange in compression. By inspection of Figures 8.4 (a) to (d), it can be seen that the most critical part of the beam will be either the section between points 6 and 7 for load case 1 , or the section between points 2 and 3 for load case 4 .

Check between points 6 and 7 in load case 1

Basic requirements: $\quad M_{\mathrm{x}} \leq M_{\mathrm{b}} / \boldsymbol{m}_{\mathrm{LT}}$
and $\quad M_{\mathrm{x}} \leq M_{\mathrm{cx}}$
(already checked in 8.2.5)
The buckling resistance moment M_{b} for a class 1 plastic section is given by:
$M_{\mathrm{b}}=p_{\mathrm{b}} S_{\mathrm{x}}$
where p_{b} is the bending strength and is dependent on the design strength p_{y} and the equivalent slenderness λ_{LT}.

Example 8 Continuous beam designed elastically	Sheet 7 of
$\lambda_{\mathrm{LT}}=u \nu \lambda \sqrt{\beta_{W}}$	
$\lambda \quad=\frac{L_{E}}{r_{y}}=\frac{3000}{52.4}=57$	
$\lambda /=\frac{57}{43.8} \quad=1.3$	
For a section with equal flanges and $\lambda / x=1.3$,	
$v=0.98$	
For a class 1 plastic section, $\beta_{\mathrm{W}}=1.0$	
Therefore, $\lambda_{\mathrm{LT}}=0.863 \times 0.98 \times 57 \times 1.0 \quad=48.2$	
For $p_{\mathrm{y}}=265 \mathrm{~N} / \mathrm{mm}^{2}$ and $\lambda_{\mathrm{LT}}=48.2$, Table 16 gives $p_{\mathrm{b}}=235 \mathrm{~N} / \mathrm{mm}^{2}$	
$M_{\mathrm{b}} \quad=235 \times 3990 \times 10^{-3}=938 \mathrm{kNm}$	
Since there is no loading between the points of intermediate restraint, the value of m_{LT}	
is obtained from the top part of Table 18 (i.e. segments with end moments only).	

$$
\beta=\frac{91}{904}=0.1
$$

From Table 18, $\quad m_{\text {LT }}=0.64$
$M_{\mathrm{b}} / m_{\mathrm{LT}}=938 / 0.64=1466 \mathrm{kNm}$
$M_{\mathrm{x}} \quad=1029 \mathrm{kNm}$
1029 kNm < 1466 kNm
Therefore, the buckling resistance moment between 6 and 7 in load case 1 is adequate.

Check between points 2 and 3 in load case 4

Basic requirements:

$$
\begin{aligned}
& M_{\mathrm{x}} \leq M_{\mathrm{b}} / m_{\mathrm{LT}} \\
& M_{\mathrm{x}} \leq M_{\mathrm{cx}}
\end{aligned}
$$

(already checked in 8.2.5)
The buckling resistance moment M_{b} is already known from the calculation between points 6 and 7, so all that is required is a new value for $m_{\text {LT }}$.

Example 8 Continuous beam designed elastically	Sheet	8	of	9	Re

$$
\beta=\frac{-340}{1029}=-0.33
$$

From Table 18, $\quad m_{\mathrm{LT}}=0.47$
$M_{\mathrm{b}} / m_{\mathrm{LT}}=938 / 0.47=1996 \mathrm{kNm}$
$M_{\mathrm{x}}=1029 \mathrm{kNm}$
$1029 \mathrm{kNm}<1996 \mathrm{kNm}$
Therefore, the buckling resistance moment between 2 and 3 in load case 4 is adequate.

8.2.7 Web bearing and buckling

The web should be checked for bearing and buckling as in Example 2.

8.2.8 SLS deflection check

The deflections under unfactored imposed loads should be checked as in Example 2
$\underline{\text { Adopt } 686 \times 254 \times 125 \text { UB in grade S275 }}$

Example 8 Continuous beam designed elastically	Sheet	9	of	9	Rev

8.3 Blue Book approach

The member capacities and resistances calculated in Section 8.2 could have been obtained directly from Volume $1^{[2]}$.

Try $686 \times 254 \times 125$ UB in grade $\mathbf{S} 275$

8.3.1 Shear capacity

$$
P_{\mathrm{v}} \quad=1260 \mathrm{kN}
$$

$F_{\mathrm{v}} \quad=F_{\mathrm{v} @ 6}=593 \mathrm{kN}$
$593 \mathrm{kN}<1260 \mathrm{kN}$
Therefore, the shear capacity is adequate.

8.3.2 Moment capacity

$M_{\mathrm{cx}}=1060 \mathrm{kNm}$
$M_{\mathrm{x}}=M_{\mathrm{x} @ 3}=1029 \mathrm{kNm}$
$1029 \mathrm{kNm}<1060 \mathrm{kNm}$
Therefore, the moment capacity is adequate.

8.3.3 Buckling resistance moment

For $L_{\mathrm{E}} \quad=3.0 \mathrm{~m}, \quad M_{\mathrm{b}} \quad=938 \mathrm{kNm}$

Note

$m_{\text {LT }}$ values are not included in Volume 1 and must be obtained from Table 18 of BS 5950-1:2000.

Check between points 6 and 7 in load case 1

From Table 18, $\quad m_{\mathrm{LT}}=0.64$
$M_{\mathrm{b}} / m_{\mathrm{LT}}=938 / 0.64=1466 \mathrm{kNm}$
$M_{\mathrm{x}} \quad=1029 \mathrm{kNm}$
$1029 \mathrm{kNm}<1466 \mathrm{kNm}$
Therefore, the buckling resistance moment between 6 and 7 in load case 1 is adequate.

Check between points 2 and 3 in load case 4

From Table 18, $\quad m_{\text {LT }}=0.47$
$M_{\mathrm{b}} / m_{\mathrm{LT}}=938 / 0.47=1996 \mathrm{kNm}$
$M_{\mathrm{x}} \quad=1029 \mathrm{kNm}$
$1029 \mathrm{kNm}<1996 \mathrm{kNm}$
Therefore, the buckling resistance moment between 2 and 3 in load case 4 is adequate.

Vol 1
Page C-78

Vol 1
Page C-59

Vol 1
Page C-59

The Steel Construction Institute Silwood Park, Ascot, Berks SL5 7QN Telephone: (01344) 623345 Fax: (01344) 622944	Job No. CDS 153			Sheet	1 of	8	Rev
	Job Title Example no. 9						
	Subject Continuous beam designed plastically						
	Client	SCI	Made by	MDH	Date	Jun 2003	
			Checked by	ASM	Date	Oct	003

9 Continuous beam designed plastically

9.1 Introduction

The continuous non-composite beam shown below has the same geometry, loading and restraint conditions as the beam designed elastically in Example 8. Its top flange is fully restrained laterally by a composite slab supported on secondary beams, while the bottom flange is restrained at the supports and at the points of load application by the secondary beams. Design the beam plastically in S275 steel using a uniform section throughout.

Figure 9.1

9.1.1 Loading

Taking the self weight of the beam as concentrated at the secondary beams, the bending moments and shear forces in the beam are related to the point loads at points 2, 4, 5 and 7 as shown in Figure 9.2.

Figure 9.2

	Unfactored loads (kN)		Factored loads (kN)	
Location	Dead load	Imposed load	Dead load	Imposed load
2	150	225	210	360
4	150	225	210	360
5	150	225	210	360
7	150	300	210	480

Example 9 Continuous beam designed plastically \quad Sheet $\quad 2$| | of | 8 | Rev |
| :--- | :--- | :--- | :--- |

Consider load case 1 , i.e. $(1.4 \times$ dead load $)+(1.6 \times$ imposed load $)$ on span $3-6$, with ($1.4 \times$ dead load) elsewhere (see Figure 8.3 (a) and Figure 8.4 (a) in Example 8). This is the worst case for moment capacity in span 3-6 and for buckling resistance in spans 1-3 and 6-8.

9.1.2 Plastic hinges

Assume plastic hinges at points $3,4,5$ and 6 . The bending moments and shear forces are then as shown in Figure 9.3.

Figure 9.3
By inspection, span 3-6 is the critical one.
Total free moment $\quad M_{\mathrm{f}}=570 \times 3=1710 \mathrm{kNm}$.

$$
M_{\mathrm{p}}=\frac{M_{\mathrm{f}}}{2}=\frac{1710}{2}=855 \mathrm{kNm}
$$

Assuming a design strength $p_{\mathrm{y}}=265 \mathrm{~N} / \mathrm{mm}^{2}$, the required plastic modulus S_{req} is given by:

$$
S_{\text {req }}=\frac{M_{\mathrm{p}}}{p_{\mathrm{y}}}=\frac{855}{265} \times 10^{3}=3226 \mathrm{~cm}^{3}
$$

9.2 Member design

9.2.1 Trial section

Try $610 \times 229 \times 113$ UB in grade $\mathbf{S 2 7 5}$
From section property tables:

Depth	D	$=607.6 \mathrm{~mm}$
Width	B	$=228.2 \mathrm{~mm}$
Web thickness	t	$=11.1 \mathrm{~mm}$
Flange thickness	T	$=17.3 \mathrm{~mm}$
Depth between fillets	d	$=547.6 \mathrm{~mm}$
Radius of gyration	$r_{\mathrm{y}}=4.88 \mathrm{~cm}$	
Plastic modulus	S_{x}	$=3280 \mathrm{~cm}^{3}$
Elastic modulus	Z_{x}	$=2870 \mathrm{~cm}^{3}$
Torsional index	x	$=38.1$

Local buckling ratios:

| Flange | $b / T=6.60$ |
| :--- | :--- | :--- |
| Web | $d / t=49.3$ |

9.2.2 Classify the cross section

Grade of steel $=$ S275
$T>16.0 \mathrm{~mm}$
Therefore $p_{\mathrm{y}}=265 \mathrm{~N} / \mathrm{mm}^{2}$
$\varepsilon=\sqrt{\frac{275}{p_{\mathrm{y}}}}=\sqrt{\frac{275}{265}}=1.02$

For the outstand element of a compression flange, the limiting b / T for a class 1 plastic flange is 9ε.
Limiting $\quad b / T=9 \varepsilon=9 \times 1.02=9.18$
The actual $b / T=6.60<9.18$
Therefore, the flange is class 1 .
Since the section is symmetrical and subject to pure bending, the neutral axis is at mid depth. For this case, the limiting d / t for a class 1 plastic web is 80ε.
Limiting $d / t=80 \varepsilon=80 \times 1.02=81.6$
The actual $d / t=49.3<81.6$
Therefore, the web is class 1.
The cross section is class 1 and is, therefore, suitable for plastic design.

9.2.3 Check for shear buckling

If the d / t ratio exceeds 70ε for a rolled section, the web should be checked for shear buckling in accordance with clause 4.4.5 of BS 5950-1:2000 ${ }^{[1]}$.
$70 \varepsilon=70 \times 1.02=71.4$
In this case, $d / t=49.3<70 \varepsilon$, so there is no need to check for shear buckling.

9.2.4 Check the shear capacity

Basic requirement $\boldsymbol{F}_{\mathrm{v}} \leq \boldsymbol{P}_{\mathrm{v}}$
$P_{\mathrm{v}}=0.6 p_{\mathrm{y}} A_{\mathrm{v}}$
$p_{\mathrm{y}}=265 \mathrm{~N} / \mathrm{mm}^{2}$
$A_{\mathrm{v}}=t D=11.1 \times 607.6=6744 \mathrm{~mm}^{2}$
$P_{\mathrm{v}} \quad=0.6 \times 265 \times 6744 \times 10^{-3}=1072 \mathrm{kN}$
$F_{\mathrm{v}}=570 \mathrm{kN}$
$570 \mathrm{kN}<1072 \mathrm{kN}$
Therefore, the shear capacity is adequate.

9.2.5 Check the moment capacity

Basic requirement $\boldsymbol{M}_{x} \leq \boldsymbol{M}_{c x}$

Check whether the shear is "high" (i.e. $F_{\mathrm{v}}>0.6 P_{\mathrm{v}}$) or "low" at the point of maximum moment. The maximum moment and the maximum shear occur at the same location, i.e. $F_{\mathrm{v}}=570 \mathrm{kN}$.
$0.6 P_{\mathrm{v}}=0.6 \times 1072=643 \mathrm{kN}$
$570 \mathrm{kN}<643 \mathrm{kN}$
Therefore, the shear is low.
For low shear, the moment capacity for a class 1 section is given by:
$M_{\mathrm{cx}}=p_{\mathrm{y}} S_{\mathrm{x}}$
$M_{\mathrm{cx}}=265 \times 3280 \times 10^{-3}=869 \mathrm{kNm}$
Check limit to avoid irreversible deformation under serviceability loads.
For a continuous beam $M_{\mathrm{cx}} \leq 1.5 p_{\mathrm{y}} Z_{\mathrm{x}}$
$1.5 p_{\mathrm{y}} Z_{\mathrm{x}}=1.5 \times 265 \times 2870 \times 10^{-3}=1141 \mathrm{kNm}$
Therefore $M_{\mathrm{cx}}=869 \mathrm{kNm}$
Maximum moment $M_{\mathrm{x}}=M_{\mathrm{p}}=855 \mathrm{kNm}$.
$855 \mathrm{kNm}<869 \mathrm{kNm}$
Therefore, the moment capacity is adequate.

9.3 Restraints

9.3.1 Restraints at plastic hinges

Both flanges should be laterally restrained at each plastic hinge location or within a distance of $D / 2$ along the length of the member from the plastic hinge location.

9.3.2 Restraints adjacent to a plastic hinge

Lateral restraint to the compression flange should be provided in accordance with one of the four methods given below. Method 1 is the most conservative and method 4 is the most rigorous.

Method 1 - Ignoring restraint to the top flange and assuming a uniform moment

The maximum distance from the restraint at a hinge to an adjacent restraint, L_{m}, may be taken as equal to L_{u} given by:

$$
L_{\mathrm{u}}=\frac{38 r_{\mathrm{y}}}{\left[\frac{f_{\mathrm{c}}}{130}+\left(\frac{x}{36}\right)^{2}\left(\frac{p_{\mathrm{y}}}{275}\right)^{2}\right]^{0.5}}
$$

Example 9 Continuous beam designed plastically \quad Sheet $\quad 5$ of 80 Rev
f_{c}, is the average compressive stress in $\mathrm{N} / \mathrm{mm}^{2}$ due to the applied axial load. In this example, the beam is subjected to bending only, so $f_{\mathrm{c}}=0$.

$$
L_{\mathrm{m}}=L_{\mathrm{u}}=\frac{38 \times 48.8}{\left[\left(\frac{38.1}{36}\right)^{2}\left(\frac{265}{275}\right)^{2}\right]^{0.5}}=1818 \mathrm{~mm}
$$

In this case, an additional restraint must be provided within 1818 mm of each plastic hinge position. This can be achieved by providing bottom flange restraints at the mid-points of parts 2-3, 3-4, 5-6 and 6-7.

Method 2 - Ignoring restraint to the top flange and allowing for moment gradient

Note: This method should only be used for uniform I-section members with equal flanges and $D / B \geq 1.2$, in S275 or S 355 steel where f_{c} does not exceed 80 $\mathrm{N} / \mathrm{mm}^{2}$.

Method 1 assumes a uniform bending moment in the beam between the plastic hinge position and the location of the next restraint. Method 2 uses an improved value of L_{m} by making an approximate allowance for the moment gradient. In this case, L_{m} is given by:

$$
L_{\mathrm{m}}=\phi L_{\mathrm{u}}
$$

where ϕ is dependent on the end moment ratio β and the limiting ratio β_{u}.
The critical segment length is that between points 2 and 3, where the bending moments are as shown below.

Figure 9.4 Segment 2-3

$$
\beta=\frac{112.5}{855}=0.132
$$

For $\mathbf{S} 275$ steel, β_{u} is given by:
$\beta_{\mathrm{u}}=0.44+\frac{x}{270}-\frac{f_{\mathrm{c}}}{200}=0.44+\frac{38.1}{270}-0=0.581$

For $\beta_{\mathrm{u}}>\beta>0, \phi$ is given by:
$\phi \quad=1-\left(1-K K_{0}\right)\left(\beta_{\mathrm{u}}-\beta\right) / \beta_{\mathrm{u}}$
$K_{0}=(180+x) / 300=(180+38.1) / 300=0.727$
For $30 \leq x \leq 50$
$K=0.8+0.08 x-(x-10) f_{\mathrm{c}} / 2000=0.8+(0.08 \times 38.1)=3.848$
Therefore, $\phi=1-(1-(3.848 \times 0.727))(0.581-0.132) / 0.581=2.389$
$L_{\mathrm{m}}=\phi L_{\mathrm{u}}=2.389 \times 1818=4343 \mathrm{~mm}$.
Using this method, no intermediate restraints to the compression flange are needed.

Method 3 - allowing for restraint to the top flange and ignoring moment gradient

Advantage may be taken of the restraint to the tension flange near the supports, by using the method given in Annex G (see method 4) or the simplified approach in clause 5.3.4. The simplified approach should only be used for I-section members with $D / B \geq 1.2$ in S275 or S355 steel.

In the simple method, the limiting spacing L_{s} for S 275 steel is given conservatively by:

$$
L_{\mathrm{s}}=\frac{620 r_{\mathrm{y}}}{K_{1}\left[72-\left(\frac{100}{x}\right)^{2}\right]^{0.5}}
$$

For an un-haunched segment, $K_{1}=1.0$

$$
L_{\mathrm{s}}=\frac{620 \times 48.8}{\left[72-\left(\frac{100}{38.1}\right)^{2}\right]^{0.5}} \quad=3750 \mathrm{~mm}
$$

Using this method, no intermediate restraints to the compression flange are needed.

Method 4 - allowing for restraint to the top flange and allowing for moment gradient

For uniform members or segments with a linear moment gradient (as in this case) the limiting spacing L_{s} between points of restraint to the compression flange is given by:

$$
L_{\mathrm{s}}=\frac{L_{\mathrm{k}}}{\sqrt{m_{\mathrm{t}}}}\left(\frac{M_{\mathrm{px}}}{M_{\mathrm{rx}}+a F_{\mathrm{c}}}\right)^{0.5}
$$

Since the axial load $F_{\mathrm{c}}=0, \quad M_{\mathrm{rx}}=M_{\mathrm{px}}$ and the criterion becomes:
$L_{\mathrm{s}}=\frac{L_{\mathrm{k}}}{\sqrt{m_{\mathrm{t}}}}$

Sheet	7	of	8	Rev

The limiting length L_{k} for a uniform member subject to uniform moment, for an I-section with $x \geq 20$ and $D \geq 1.2 B$ is obtained from:

$$
L_{\mathrm{k}}=\frac{\left(5.4+600 \frac{p_{\mathrm{y}}}{E}\right) r_{\mathrm{y}} x}{\left(5.4 x^{2} \frac{p_{\mathrm{y}}}{E}-1\right)^{0.5}}=\frac{\left(5.4+600 \times \frac{265}{205000}\right) 48.8 \times 38.1}{\left(5.4(38.1)^{2} \times \frac{265}{205000}-1\right)^{0.5}}=3799 \mathrm{~mm}
$$

The equivalent uniform moment factor m_{t} is obtained from Table G. 1 for given values of y and β_{t}.

$$
\begin{aligned}
& \beta_{\mathrm{t}}=\frac{112.5}{855}=0.132 \\
& y=\left[\frac{1+\left(2 a / h_{\mathrm{s}}\right)^{2}}{1+\left(2 a / h_{\mathrm{s}}\right)^{2}+0.05(\lambda / x)^{2}}\right]^{0.5}
\end{aligned}
$$

$$
a \quad=\frac{D}{2}=\frac{607.6}{2}=303.8 \mathrm{~mm}
$$

$$
h_{\mathrm{s}}=D-T=607.6-17.3=590.3 \mathrm{~mm}
$$

$$
\frac{2 a}{h_{s}}=\frac{2 \times 303.8}{590.3}=1.03
$$

$$
\lambda \quad=\frac{L_{\mathrm{y}}}{r_{\mathrm{y}}}=\frac{3000}{48.8}=61.5
$$

$$
\frac{\lambda}{x}=\frac{61.5}{38.1}=1.61
$$

$$
y=\left[\frac{1+(1.03)^{2}}{1+(1.03)^{2}+0.05(1.61)^{2}}\right]^{0.5}=0.97
$$

For $\beta_{\mathrm{t}}=0.132$ and $\quad y=0.97, \quad m_{\mathrm{t}}=0.58$
$L_{\mathrm{s}}=\frac{L_{\mathrm{k}}}{\sqrt{m_{\mathrm{t}}}}=\frac{3799}{\sqrt{0.58}} \quad=4988 \mathrm{~mm}$
Table G. 1
G.3.3.1

Using this method, no intermediate restraints to the compression flange are needed.

| Example 9 Continuous beam designed plastically | Sheet | 8 | of | 8 | Rev |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

9.4 Stiffeners

9.4.1 At hinge locations

Web stiffeners should be provided where a force that exceeds 10% of the shear capacity of the cross-section is applied to the web within a distance $D / 2$ of a plastic hinge.

Consider hinge position 4:
$\begin{array}{ll}\text { Shear capacity } & P_{\mathrm{v}}=1072 \mathrm{kN} \\ \text { Applied load } & F=570 \mathrm{kN}=53 \% \text { of the shear capacity. }\end{array}$

Therefore, a stiffener would be required in this case.

9.4.2 At supports and points of load application (not hinges)

The need for stiffeners at points $1,2,7$ and 8 should be assessed using the same procedure as in Example 2. At each location, the load case giving the maximum reaction should be considered.

Adopt $610 \times 229 \times 113$ UB in S275 steel

Comparing Examples 7 and 8, it is apparent that plastic design produces greater economy in terms of the weight of steel required and also reduces the depth of construction.

Note: The deflections under unfactored imposed loads should be checked as in Example 2.

9.5 Blue Book approach

The member capacities calculated in section 9.2 could have been obtained directly from Volume $1^{[2]}$.

Try $610 \times 229 \times 113$ UB in grade S275

9.5.1 Shear capacity

$P_{\mathrm{v}}=1070 \mathrm{kN}$
$570 \mathrm{kN}<1070 \mathrm{kN}$
Therefore, the shear capacity is adequate.

9.5.2 Moment capacity

$M_{\mathrm{cx}}=869 \mathrm{kNm}$
Maximum moment $M_{\mathrm{x}}=M_{\mathrm{p}}=855 \mathrm{kNm}$.
$855 \mathrm{kNm}<869 \mathrm{kNm}$
Therefore, the moment capacity is adequate.

Note: Volume 1 does not consider the issue of restraint adjacent to plastic hinges.
Adopt $610 \times 229 \times 113$ UB in S275 steel

Vol 1
Page C-78
5.2.3.7

The Steel Construction Institute Silwood Park, Ascot, Berks SL5 70N Telephone: (01344) 623345 Fax: (01344) 622944 CALCULATION SHEET	Job No. CDS 153			Sheet	1 of	3	Rev
	Job Title Example no. 10						
	Subject Pinned column using a non-slender UC						
	Client	SCI	Made by	MDH	Date	Jun 2003	
			Checked by	ASM	Date	Oct	003

10 Pinned column using a non-slender UC

10.1 Introduction

The column shown in Figure 10.1 is pin-ended about both axes and has no intermediate restraint. Design the column in S275 steel for the factored force shown below.

Figure 10.1

10.2 Member checks

10.2.1 Determine the effective length

The member is effectively held in position at both ends, but not restrained in direction at either end. Therefore, the effective length $L_{\mathrm{E}}=1.0 L=6000 \mathrm{~mm}$.

10.2.2 Trial section

Try $356 \times 368 \times 129$ UC in grade S275
From section property tables:
Depth $\quad D=355.6 \mathrm{~mm}$
Width $B=368.6 \mathrm{~mm}$
Web thickness $t=10.4 \mathrm{~mm}$
Flange thickness $\quad T=17.5 \mathrm{~mm}$
Depth between fillets $\quad d=290.2 \mathrm{~mm}$
Radius of gyration about $\mathrm{x}-\mathrm{x}$ axis $\quad r_{\mathrm{x}}=15.6 \mathrm{~cm}$
Radius of gyration about y -y axis $\quad r_{\mathrm{y}}=9.43 \mathrm{~cm}$
Gross area
$A_{\mathrm{g}}=164 \mathrm{~cm}^{2}$
4.7.3

Table 22

Vol 1
Page B-8

Vol 1
Page B-9

Example 10 Pinned column using a non-slender UC	Sheet	2	of	3	Rev

Local buckling ratios:
Flange $b / T=10.5$
Web $d / t=27.9$

10.2.3 Section classification

Grade of steel = S275
$T>16 \mathrm{~mm}$ and $<40 \mathrm{~mm}$
Therefore, design strength $p_{\mathrm{y}}=265 \mathrm{~N} / \mathrm{mm}^{2}$
$\varepsilon=\sqrt{\frac{275}{p_{\mathrm{y}}}}=\sqrt{\frac{275}{265}}=1.02$
In the design of columns under axial compression only, it is sufficient to determine whether the section is "class 4 slender" or "not class 4 slender".

For the outstand element of a compression flange, the limiting b / T for a class 3 semi-compact flange is 15ε.
Limiting $b / T=15 \varepsilon=15 \times 1.02=15.3$
The actual $b / T=10.5<15.3$
Therefore, the flange is "not class 4 slender".
For the web of an I-or H -section under axial compression, the limiting d / t for a class 3 semi-compact web is $\frac{120 \varepsilon}{1+2 r_{2}}$ but $\geq 40 \varepsilon$
$r_{2}=\frac{F_{\mathrm{c}}}{A_{\mathrm{g}} p_{\mathrm{y}}}=\frac{2500000}{16400 \times 265} \quad=0.58$
Limiting $d / t=\frac{120 \times 1.02}{1+(2 \times 0.58)}=56.7$
The actual $d / t=27.9<56.7$
Therefore, the web is "not class $\mathbf{4}$ slender".
The cross section is "not class 4 slender".

10.2.4 Slenderness

$\lambda_{\mathrm{x}}=\frac{L_{\mathrm{Ex}}}{r_{\mathrm{x}}}=\frac{6000}{156} \quad=38.5$
$\lambda_{\mathrm{y}}=\frac{L_{\mathrm{Ey}}}{r_{\mathrm{y}}}=\frac{6000}{94.3} \quad=63.6$

10.2.5 Check the compression resistance

Basic requirement $F_{\mathrm{c}} \leq \boldsymbol{P}_{\mathrm{c}}$
$P_{\mathrm{c}} \quad=A_{\mathrm{g}} p_{\mathrm{c}}$ (for a class 4 non-slender cross section)
$A_{\mathrm{g}} \quad=164 \mathrm{~cm}^{2}$

Vol 1
Page B-8
3.1.1

Table 9
4.7.4

Example 10 Pinned column using a non-slender UC
Sheet 3 of $3 \quad$ Rev

The compressive strength p_{c} is obtained from the relevant strut curve for buckling about the $\mathrm{x}-\mathrm{x}$ and y -y axes. For a rolled H -section with $T<40 \mathrm{~mm}$:

Buckling about the x-x axis

Use strut curve b
For $\lambda_{\mathrm{x}}=38.5$ and $p_{\mathrm{y}}=265 \mathrm{~N} / \mathrm{mm}^{2}, \quad p_{\mathrm{cx}}=243 \mathrm{~N} / \mathrm{mm}^{2}$

Buckling about the y-y axis

Use strut curve c
For $\lambda_{\mathrm{y}}=63.6$ and $p_{\mathrm{y}}=265 \mathrm{~N} / \mathrm{mm}^{2}, \quad p_{\text {cy }}=189 \mathrm{~N} / \mathrm{mm}^{2}$
Therefore, $p_{\mathrm{c}}=189 \mathrm{~N} / \mathrm{mm}^{2}$

$$
\begin{aligned}
& P_{\mathrm{c}} \quad=16400 \times 189 \times 10^{-3}=3100 \mathrm{kN} \\
& F_{\mathrm{c}} \quad=2500 \mathrm{kN}
\end{aligned}
$$

$2500 \mathrm{kN}<3100 \mathrm{kN}$
Therefore, the compression resistance is adequate.

Adopt $356 \times 368 \times 129$ UC in S275

10.3 Blue Book approach

The compression resistance calculated above could have been obtained directly from Volume $1^{[2]}$.

Table 23
Table 24b

Table 23
Table 24c

Vol 1
Page C-6

Try $356 \times 368 \times 129$ UC in grade S275
For $L_{\mathrm{E}}=6.0 \mathrm{~m}, P_{\mathrm{cx}}=3990 \mathrm{kN}$ and $P_{\text {cy }}=3090 \mathrm{kN}$
Therefore, $P_{\mathrm{c}}=3090 \mathrm{kN}$
$F_{\mathrm{c}}=2500 \mathrm{kN}$
2500 kN < 3090 kN
Therefore, the compression resistance is adequate.
Adopt $356 \times 368 \times 129$ UC in S275

11 Pinned column using a non-slender RHS

11.1 Introduction

Redesign the column shown in Example 10 using a grade 355 hot finished square hollow section.
Design axial compressive force $F_{\mathrm{c}}=2500 \mathrm{kN}$.

11.2 Member checks

11.2.1 Determine the effective length

The member is effectively held in position at both ends, but not restrained in direction at either end. Therefore, the effective length $L_{\mathrm{E}}=1.0 L=6000 \mathrm{~mm}$.

11.2.2 Trial section

Try $250 \times 250 \times 10$ HF RHS ($74.5 \mathrm{~kg} / \mathrm{m}$) in S355
From section property tables:

Depth	D	$=250.0 \mathrm{~mm}$
Thickness	t	$=10.0 \mathrm{~mm}$
Radius of gyration	r	$=9.77 \mathrm{~cm}$
Gross area	A_{g}	$=94.9 \mathrm{~cm}^{2}$
Local buckling ratio	d / t	$=22.0$

11.2.3 Section classification

Grade of steel = S355
$t<16 \mathrm{~mm}$
Therefore, design strength $p_{\mathrm{y}}=355 \mathrm{~N} / \mathrm{mm}^{2}$
$\varepsilon=\sqrt{\frac{275}{p_{\mathrm{y}}}} \quad=\sqrt{\frac{275}{355}} \quad=0.88$
In the design of columns under axial compression only, it is sufficient to determine whether the section is "class 4 slender" or "not class 4 slender".

The limiting d / t for a class 3 semi-compact hot-finished RHS under axial compression is 40ε.
Limiting $d / t=40 \varepsilon=40 \times 0.88=35.2$
The actual $d / t=22.0<35.2$
Therefore, the cross section is "not class 4 slender".
4.7.3

Table 22

Vol 1
Page B-22
3.1.1

Table 9
4.7.4
3.5.2

Table 12

Example 11 Pinned column using a non-slender RHS

Sheet 2 of 2

11.2.4 Slenderness

$$
\lambda=\frac{L_{\mathrm{E}}}{r} \quad=\frac{6000}{97.7}=61.4
$$

11.2.5 Check the compression resistance

Basic requirement $\boldsymbol{F}_{\mathbf{c}} \leq \boldsymbol{P}_{\mathrm{c}}$
$P_{\mathrm{c}}=A_{\mathrm{g}} p_{\mathrm{c}}$ (for a non-slender cross section)
$A_{\mathrm{g}}=94.9 \mathrm{~cm}^{2}$
The compressive strength p_{c} is obtained from the relevant strut curve.
For hot-finished hollow sections, use strut curve a.
(Note that for cold-formed hollow sections, strut curve c should be used).

For $\lambda=61.4$ and $p_{\mathrm{y}}=355 \mathrm{~N} / \mathrm{mm}^{2}, \quad p_{\mathrm{c}}=294 \mathrm{~N} / \mathrm{mm}^{2}$
$P_{\mathrm{c}}=9490 \times 294 \times 10^{-3}=2790 \mathrm{kN}$
$F_{\mathrm{c}} \quad=2500 \mathrm{kN}$
$2500 \mathrm{kN}<2790 \mathrm{kN}$
Therefore, the compression resistance is adequate.
Adopt $250 \times 250 \times 10$ HF RHS ($74.5 \mathrm{~kg} / \mathrm{m}$) in grade S355

11.3 Blue Book approach

The compression resistance calculated above could have been obtained directly from Volume $1^{[2]}$.

Try $250 \times 250 \times 10$ HF RHS ($74.5 \mathrm{~kg} / \mathrm{m}$) in S355

For $L_{\mathrm{E}}=6.0 \mathrm{~m}, \quad P_{\mathrm{c}}=2790 \mathrm{kN}$
$F_{\mathrm{c}} \quad=2500 \mathrm{kN}$
$2500 \mathrm{kN}<2790 \mathrm{kN}$
Therefore, the compression resistance is adequate.
Adopt $250 \times 250 \times 10$ HF RHS ($74.5 \mathrm{~kg} / \mathrm{m}$) in grade $\mathbf{S 3 5 5}$

The SteelConstructionInstitute	Job No. CDS 153			Sheet	1 of	2	Rev
	Job Title Example no. 12						
	Subject Pinned columnn using a slender CHS						
CALCULATION SHEET	Client	SCI	Made by	MDH	Date	Jun	003
			Checked by	ASM	Date	Oct	003

12 Pinned column using a slender CHS

12.1 Introduction

Redesign the column shown in Example 10 using a grade S355 hot finished circular hollow section.
Design axial compressive force $F_{\mathrm{c}}=2500 \mathrm{kN}$.

12.2 Member checks

12.2.1 Determine the effective length

The member is effectively held in position at both ends, but not restrained in direction at either end. Therefore, the effective length $L_{\mathrm{E}}=1.0 L=6000 \mathrm{~mm}$.

12.2.2 Trial section

Try $406.4 \times 6.3 \mathrm{HF}$ CHS ($\mathbf{6 2 . 2} \mathbf{~ k g / m}$) in S355
From section property tables:

Outside diameter	D	$=406.4 \mathrm{~mm}$
Thickness	t	$=6.3 \mathrm{~mm}$
Radius of gyration	r	$=14.1 \mathrm{~cm}$
Gross area	A_{g}	$=79.2 \mathrm{~cm}^{2}$
Local buckling ratio	D / t	$=64.5$

12.2.3 Section classification

Grade of steel $=$ S355
$t<16 \mathrm{~mm}$
Therefore, design strength $p_{\mathrm{y}}=355 \mathrm{~N} / \mathrm{mm}^{2}$
$\varepsilon=\sqrt{\frac{275}{p_{y}}}=\sqrt{\frac{275}{355}}=0.88$
In the design of columns under axial compression only, it is sufficient to determine whether the section is "class 4 slender" or "not class 4 slender".

The limiting D / t for a class 3 semi-compact CHS under axial compression is $80 \varepsilon^{2}$.
Limiting $D / t=80 \varepsilon^{2}=80 \times 0.88^{2}=62.0$
The actual $d / t=64.5>62.0$
Therefore, the cross section is "class 4 slender".
12.2.4 Slenderness
$\lambda=\frac{L_{\mathrm{E}}}{r}=\frac{6000}{141}=42.6$
4.7.3

Table 22

Vol 1
Page B-20
3.1.1

Table 9
4.7.4
3.5.2

Table 12
4.7.2

Example 12 Pinned column using a slender CHS

Sheet	2	of	2
Rev			

12.2.5 Check the compression resistance

Basic requirement $\boldsymbol{F}_{\mathrm{c}} \leq \boldsymbol{P}_{\mathrm{c}}$
$P_{\mathrm{c}}=A_{\text {eff }} P_{\mathrm{cs}}$ (for a slender cross section)

$$
A_{\mathrm{eff}}=A\left[\left(\frac{80}{D / t}\right)\left(\frac{275}{p_{\mathrm{y}}}\right)\right]^{0.5}=79.2\left[\left(\frac{80}{64.5}\right)\left(\frac{275}{355}\right)\right]^{0.5}=77.6 \mathrm{~cm}^{2}
$$

The compressive strength $p_{\text {cs }}$ is obtained from the relevant strut curve using a reduced slenderness.
Reduced slenderness $=42.6 \times\left(\frac{77.6}{79.2}\right)^{0.5}=42.2$
For hot-finished hollow sections, use strut curve a.
(Note that for cold-formed hollow sections, strut curve c should be used).
For $\lambda=42.2$ and $p_{\mathrm{y}}=355 \mathrm{~N} / \mathrm{mm}^{2}, \quad p_{\mathrm{cs}}=330 \mathrm{~N} / \mathrm{mm}^{2}$
$P_{\mathrm{c}}=7760 \times 330 \times 10^{-3}=2561 \mathrm{kN}$
$F_{\mathrm{c}}=2500 \mathrm{kN}$
$2500 \mathrm{kN}<2561 \mathrm{kN}$
Therefore, the compression resistance is adequate.
Adopt $406.4 \times 6.3 \mathrm{HF}$ CHS ($62.2 \mathrm{~kg} / \mathrm{m}$) in S355

12.3 Blue Book approach

The buckling resistance calculated above could have been obtained directly from Volume $1^{[2]}$.

Try $406.4 \times 6.3 \mathrm{HF}$ CHS ($62.2 \mathrm{~kg} / \mathrm{m}$) in S355
For $L_{\mathrm{E}}=6.0 \mathrm{~m}, P_{\mathrm{c}}=2560 \mathrm{kN}$
$F_{\mathrm{c}} \quad=2500 \mathrm{kN}$
$2500 \mathrm{kN}<2560 \mathrm{kN}$
Therefore, the compression resistance is adequate.
Adopt $406.4 \times 6.3 \mathrm{HF}$ CHS $(62.2 \mathrm{~kg} / \mathrm{m})$ in $\mathbf{S 3 5 5}$
4.7.4

Table 24a

Vol 1
Page D-10

The Steel Construction Institute Silwood Park, Ascot, Berks SL5 7ON Telephone: (01344) 623345 Fax: (01344) 622944	Job No. CDS 153			Sheet	1 of	3	Rev
	Job Title Example no. 13						
	Subject Pinned column with intermediate restraint						
	Client	SCI	Made by	MDH	Date	Jun	003
CALCULATION SHEET			Checked by	ASM	Date	Oct	003

13 Pinned column with intermediate restraint

13.1 Introduction

The column shown in Figure 13.1 has the same length and axial force as in Example 10 with the addition of a tie at mid-height providing restraint about the $y-y$ axis. Design the column in S275 steel.

Figure 13.1

Design axial compressive force $F_{\mathrm{c}}=2500 \mathrm{kN}$.

13.2 Member checks

13.2.1 Determine the effective lengths

The member is effectively held in position at both ends, but not restrained in direction at either end. The tie provides restraint in position only for buckling about the $\mathrm{y}-\mathrm{y}$ axis (i.e. the member is not restrained in direction by the tie).
About the $\mathrm{x}-\mathrm{x}$ axis $L_{\mathrm{Ex}}=1.0 \times 6000=6000 \mathrm{~mm}$.
About the y-y axis $L_{\mathrm{Ey}}=1.0 \times 3000=3000 \mathrm{~mm}$.
4.7.3

Table 22

Example 13 Pinned column with intermediate restraint \quad Sheet 2 of 3	Rev

13.2.2 Trial section

Try $305 \times 305 \times 97$ UC in grade S275
From section property tables:
Depth $D=307.9 \mathrm{~mm}$
Width $B=305.3 \mathrm{~mm}$
Web thickness $t=9.9 \mathrm{~mm}$
Flange thickness $\quad T=15.4 \mathrm{~mm}$
Depth between fillets $d=246.7 \mathrm{~mm}$
Radius of gyration about x -x axis $\quad r_{\mathrm{x}}=13.4 \mathrm{~cm}$
Radius of gyration about $y-y$ axis $\quad r_{y}=7.69 \mathrm{~cm}$
Gross area
$A_{\mathrm{g}}=123 \mathrm{~cm}^{2}$
Local buckling ratios:
Flange
$b / T=9.91$
Web
$d / t=24.9$

13.2.3 Section classification

Grade of steel $=$ S275
$T<16 \mathrm{~mm}$
Therefore, design strength $p_{\mathrm{y}}=275 \mathrm{~N} / \mathrm{mm}^{2}$

$$
\varepsilon=\sqrt{\frac{275}{p_{\mathrm{y}}}} \quad=\sqrt{\frac{275}{275}}=1.0
$$

In the design of columns under axial compression only, it is sufficient to determine whether the section is "class 4 slender" or "not class 4 slender".

For the outstand element of a compression flange, the limiting b / T for a class 3 semi-compact flange is 15ε.
Limiting $b / T=15 \varepsilon=15 \times 1.0=15.0$
The actual $b / T=9.91<15.0$
Therefore, the flange is "not class 4 slender".
For the web of an I-or H -section under axial compression, the limiting d / t for a class 3 semi-compact web is $\frac{120 \varepsilon}{1+2 r_{2}}$ but $\geq 40 \varepsilon$
$r_{2}=\frac{F_{\mathrm{c}}}{A_{\mathrm{g}} p_{\mathrm{y}}}=\frac{2500000}{12300 \times 275}=0.74$
Limiting $\quad d / t=\frac{120 \times 1.0}{1+(2 \times 0.74)}=48.4$
The actual $d / t=24.9<48.4$
Therefore, the web is "not class 4 slender".
The cross section is "not class 4 slender".
13.2.4 Slenderness
$\lambda_{\mathrm{x}}=\frac{L_{\mathrm{Ex}}}{r_{\mathrm{x}}} \quad=\frac{6000}{134} \quad=44.8$
$\lambda_{\mathrm{y}}=\frac{L_{\mathrm{Ey}}}{r_{y}}=\frac{3000}{76.9} \quad=39.0$

Vol 1
Page B-8

Vol 1
Page B-9

Vol 1
Page B-8
3.1.1

Table 9
4.7.4
3.5.2

Table 11
3.5.2

Table 11

Example 13 Pinned column with intermediate restraint \quad Sheet 3 of 3	Rev

13.2.5 Check the compression resistance

Basic requirement $\boldsymbol{F}_{\mathrm{c}} \leq \boldsymbol{P}_{\mathrm{c}}$
$P_{\mathrm{c}}=A_{\mathrm{g}} p_{\mathrm{c}}$ (for a non-slender cross section)
$A_{\mathrm{g}}=123 \mathrm{~cm}^{2}$
The compressive strength p_{c} is obtained from the relevant strut curve for buckling about the $\mathrm{x}-\mathrm{x}$ and $\mathrm{y}-\mathrm{y}$ axes. For a rolled H -section with $T<40 \mathrm{~mm}$:

Buckling about the x-x axis

Use strut curve b
For $\lambda_{\mathrm{x}}=44.8$ and $p_{\mathrm{y}}=275 \mathrm{~N} / \mathrm{mm}^{2}, p_{\mathrm{cx}}=244 \mathrm{~N} / \mathrm{mm}^{2}$

Buckling about the y - y axis

Use strut curve c
For $\lambda_{\mathrm{y}}=39.0$ and $p_{\mathrm{y}}=275 \mathrm{~N} / \mathrm{mm}^{2}, p_{\text {cy }}=240 \mathrm{~N} / \mathrm{mm}^{2}$
Therefore, $p_{\mathrm{c}}=240 \mathrm{~N} / \mathrm{mm}^{2}$
Note:
Although $\lambda_{\mathrm{x}}>\lambda_{\mathrm{y}}$, buckling about the y - y axis governs because the lower strut curve is used for buckling about the minor axis.
$P_{\mathrm{c}}=12300 \times 240 \times 10^{-3}=2952 \mathrm{kN}$
$F_{\mathrm{c}} \quad=2500 \mathrm{kN}$
$2500 \mathrm{kN}<2952 \mathrm{kN}$
Therefore, the compression resistance is adequate.

$\underline{\text { Adopt } 305 \times 305 \times 97 \text { UC in S275 }}$

13.3 Blue Book approach

The buckling resistance calculated above could have been obtained directly from Volume $1^{[2]}$.

Try $305 \times 305 \times 97$ UC in grade S275

$$
\begin{array}{ll}
\text { For } & L_{\mathrm{Ex}}=6.0 \mathrm{~m}, P_{\mathrm{cx}}=3000 \mathrm{kN} \\
\text { For } & L_{\mathrm{Ey}}=3.0 \mathrm{~m}, P_{\mathrm{cy}}=2950 \mathrm{kN} \\
\text { Therefore, } & P_{\mathrm{c}}=2950 \mathrm{kN} \\
& F_{\mathrm{c}}=2500 \mathrm{kN}
\end{array}
$$

$2500 \mathrm{kN}<2950 \mathrm{kN}$
Therefore, the compression resistance is adequate.
$\underline{\text { Adopt } 305 \times 305 \times 97 \text { UC in S275 }}$
4.7.4

Table 23
Table 24b

Table 23
Table 24c

Vol 1
Page C-6

	Job No. CDS 153			Sheet	1 o	5	Rev
	Job Title Example no. 14						
	Subject	Continuous column in simple construction using a UC section					
	Client	SCI	Made by	MDH	Date	Jun	003
			Checked by	ASM	Date	Oct	003

14 Continuous column in simple construction using a UC section

14.1 Introduction

Design the column shown in Figure 14.1 in S275 steel between levels 1 and 2. Two solutions are presented; the full calculation and the Blue Book approach.

Figure 14.1

14.1.1 Assumptions

- The column is continuous and forms part of a structure of simple construction.
- The column is effectively pinned at the base.
- Beams are connected to the column flange by flexible end plates.

14.1.2 Loading (factored)

$F_{2-3}=410 \mathrm{kN}$ (axial force in column between levels 2 and 3)
$R_{1} \quad=40 \mathrm{kN}$ (reaction from beam 1)
$R_{2} \quad=160 \mathrm{kN}$ (reaction from beam 2)
$R_{3} \quad=30 \mathrm{kN}$ (reaction from beam 3)
The total axial load acting on the column between levels 1 and 2 is given by:
$F_{\mathrm{c}}=F_{2-3}+R_{1}+R_{2}+R_{3}$
$F_{\mathrm{c}} \quad=410+40+160+30=640 \mathrm{kN}$

| Example 14 Continuous column in simple construction using UC | Sheet | 2 of | 5 | Rev |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

14.2 Member checks

14.2.1 Determine the effective lengths

About the x-x axis, $L_{\mathrm{Ex}}=0.85 L=0.85 \times 5000=4250 \mathrm{~mm}$
About the y-y axis, $L_{\mathrm{Ey}}=1.0 L=1.0 \times 5000=5000 \mathrm{~mm}$
4.7.3

Table 22

14.2.2 Trial section

The trial section may be obtained from the member capacity tables in Volume $1^{[2]}$ by considering the axial force only (i.e. ignoring the moment due to eccentricity). This section should then be checked for the combined effects of axial force and nominal moment.

Try $203 \times 203 \times 46$ UC in grade S275
From member capacity tables:
Compression resistance $\quad P_{\text {cy }}=760 \mathrm{kN}$ for $L_{\mathrm{E}}=5.0 \mathrm{~m}$
From section property tables:
Depth
$D=203.2 \mathrm{~mm}$
Width
Web thickness
Flange thickness
Depth between fillets
Radius of gyration about $x-x$ axis
Radius of gyration about y - y axis
Gross area
$B=203.6 \mathrm{~mm}$
$t=7.2 \mathrm{~mm}$
$T=11.0 \mathrm{~mm}$
$d=160.8 \mathrm{~mm}$
$r_{\mathrm{x}}=8.82 \mathrm{~cm}$
$r_{\mathrm{y}}=5.13 \mathrm{~cm}$
$A_{\mathrm{g}}=58.7 \mathrm{~cm}^{2}$
$S_{\mathrm{x}}=497 \mathrm{~cm}^{3}$
$\begin{array}{lll}\text { Elastic modulus about } \mathrm{x}-\mathrm{x} \text { axis } & Z_{\mathrm{x}}=450 \mathrm{~cm}^{3} \\ \text { Elastic modulus about } y-\mathrm{y} \text { axis } & Z_{\mathrm{y}} & =152 \mathrm{~cm}^{3}\end{array}$
Local buckling ratios:
Flange
$b / T=9.25$
Web
$d / t=22.3$

14.2.3 Section classification

Grade of steel $=$ S275
$T<16 \mathrm{~mm}$
Therefore, design strength $p_{\mathrm{y}}=275 \mathrm{~N} / \mathrm{mm}^{2}$
$\varepsilon=\sqrt{\frac{275}{p_{\mathrm{y}}}}=\sqrt{\frac{275}{275}}=1.0$
For the outstand element of a compression flange, the limiting b / T for a class 1 plastic flange is 9ε. Limiting $b / T=9 \varepsilon=9 \times 1.0=9.0$
The actual $b / T=9.25>9.0$
Therefore, the flange is not plastic and needs to be checked to see whether it is compact or not.

For the outstand element of a compression flange, the limiting b / T for a class 2
compact flange is 10ε. Limiting $b / T=10 \varepsilon=10 \times 1.0=10.0$
The actual $b / T=9.25<10.0$
Therefore, the flange is class 2 compact.

Vol 1

Vol 1
Page B-8

Vol 1
Page B-9

Vol 1
Page B-8
3.1.1

Table 9
3.5.2

Table 11
3.5.2

Table 11

Example 14 Continuous column in simple construction using UC
Sheet 3 of 5

For the web of an I-or H -section under axial compression and bending (the "generally" case in Table 11), the limiting d / t for a class 1 plastic web is $\frac{80 \varepsilon}{1+r_{1}}$ but $\geq 40 \varepsilon$
$r_{1}=\frac{F_{\mathrm{c}}}{d t p_{\mathrm{y}}}=\frac{640000}{160.8 \times 7.2 \times 275}=2.91$, but $-1<r_{1} \leq 1$, therefore $r_{1}=1$.
Limiting $d / t=\frac{80 \times 1.0}{1+1}=40$
The actual $d / t=22.3<40$
Therefore, the web is class 1 plastic.
Since the flange is class 2 compact and the web is class 1 plastic, the cross section is class 2 compact.

14.2.4 Slenderness

$\lambda_{\mathrm{x}}=\frac{L_{\mathrm{Ex}}}{r_{\mathrm{x}}}=\frac{4250}{88.2}=48.2$
$\lambda_{\mathrm{y}}=\frac{L_{\mathrm{Ey}}}{r_{\mathrm{y}}}=\frac{5000}{51.3}=97.5$

14.2.5 Check the compression resistance

Basic requirement $\boldsymbol{F}_{\boldsymbol{c}} \leq \boldsymbol{P}_{\mathrm{c}}$
$P_{\mathrm{c}} \quad=A_{\mathrm{g}} p_{\mathrm{c}}$ (for a class 2 compact cross section)
$A_{\mathrm{g}}=58.7 \mathrm{~cm}^{2}$
The compressive strength p_{c} is obtained from the relevant strut curve for buckling about the $\mathrm{x}-\mathrm{x}$ and y - y axes.

Buckling about the $x-x$ axis

Use strut curve b
For $\lambda_{\mathrm{x}}=48.2$ and $p_{\mathrm{y}}=275 \mathrm{~N} / \mathrm{mm}^{2}, \quad p_{\mathrm{cx}}=239 \mathrm{~N} / \mathrm{mm}^{2}$

Buckling about the y - y axis

Use strut curve c
For $\lambda_{\mathrm{y}}=97.5$ and $p_{\mathrm{y}}=275 \mathrm{~N} / \mathrm{mm}^{2}, \quad p_{\mathrm{cy}}=130 \mathrm{~N} / \mathrm{mm}^{2}$
Therefore, $p_{\mathrm{c}}=130 \mathrm{~N} / \mathrm{mm}^{2}$
$p_{\mathrm{c}}=5870 \times 130 \times 10^{-3}$
$F_{\mathrm{c}}=640 \mathrm{kN}$
$640 \mathrm{kN}<763 \mathrm{kN}$
Therefore, the compression resistance is adequate.
3.5.2

Table 11

Example 14 Continuous column in simple construction using UC	Sheet	4	of	5	Rev

14.2.6 Nominal moments due to eccentricity

For columns in simple construction, the beam reactions are assumed to act 100 mm off the face of the columns.

Total moment at level 2 from beam connected to column flange:
$M_{2 \mathrm{x}}=R_{2}(D / 2+100)=160\left(\frac{203.2}{2}+100\right) \times 10^{-3}=32.3 \mathrm{kNm}$
Total moment at level 2 from beams connected to column web:
$M_{2 y}=R_{1}\left(\frac{t}{2}+100\right)-R_{3}\left(\frac{t}{2}+100\right)=\left(R_{1}-R_{3}\right)\left(\frac{t}{2}+100\right)$
$M_{2 y}=(40-30)\left(\frac{7.2}{2}+100\right) \times 10^{-3}=1.04 \mathrm{kNm}$
These moments are distributed between the column lengths above and below level 2, in proportion to the bending stiffnesses of each length.

Stiffness of column 2 to $1=E I / 5$
Stiffness of column 2 to $3=E I / 3$
Assuming the same section size is used between levels 1 and 3, the ratio of these stiffness values is $5 / 3$. Therefore, $3 / 8$ of $M_{2 x}$ and $M_{2 y}$ are transferred into column 2-1 and 5/8 of $M_{2 x}$ and $M_{2 y}$ are transferred into column 2-3.
$M_{\mathrm{x}(2-1)}=\frac{3}{8} M_{2 \mathrm{x}}=0.375 \times 32.3=12.1 \mathrm{kNm}$
$M_{y(2-1)}=\frac{3}{8} M_{2 \mathrm{y}}=0.375 \times 1.04=0.39 \mathrm{kNm}$

14.2.7 Combined axial force and moment check

Since only nominal moments are applied, the column should satisfy the relationship
$\frac{F_{\mathrm{c}}}{P_{\mathrm{c}}}+\frac{M_{\mathrm{x}}}{M_{\mathrm{bs}}}+\frac{M_{\mathrm{y}}}{p_{\mathrm{y}} Z_{\mathrm{y}}} \leq 1$
$M_{\mathrm{x}}=M_{\mathrm{x}(2-1)} \quad=12.1 \mathrm{kNm}$
$M_{\mathrm{y}}=M_{\mathrm{y}(2-1)} \quad=0.39 \mathrm{kNm}$
$M_{\text {bs }}$ is the buckling resistance moment for simple columns. For I- and H sections, it should be taken as the value of M_{b} determined using an equivalent slenderness λ_{LT} given by:
$\lambda_{\mathrm{LT}}=0.5 \mathrm{~L} / \mathrm{r}_{\mathrm{y}}$
$\lambda_{\mathrm{LT}}=0.5(5000 / 51.3)=48.7$
Note: This expression for λ_{LT} uses the actual length L and not the effective length L_{E}. For $p_{\mathrm{y}}=275 \mathrm{~N} / \mathrm{mm}^{2}$ and $\lambda_{\mathrm{LT}}=48.7, p_{\mathrm{b}}=241 \mathrm{~N} / \mathrm{mm}^{2}$
Example 14 Continuous column in simple construction using UC \quad Sheet 5 of 5

For a class 2 compact cross section, M_{b} is given by:
$M_{\mathrm{b}}=p_{\mathrm{b}} S_{\mathrm{x}}=241 \times 497 \times 10^{-3}=120 \mathrm{kNm}$
Therefore, $M_{\mathrm{bs}}=120 \mathrm{kNm}$.
$\frac{640}{763}+\frac{12.1}{120}+\frac{0.39 \times 10^{6}}{275 \times 152 \times 10^{3}}$

Therefore, the combined resistance against axial force and moment is adequate.
$\underline{\text { Adopt } 203 \times 203 \times 46 \text { UC in S275 }}$

14.3 Blue Book approach

The values of $P_{\mathrm{c}}, M_{\mathrm{bs}}$ and $p_{\mathrm{y}} Z_{\mathrm{y}}$ could have been obtained directly from Volume $1^{[2]}$.

Try $203 \times 203 \times 46$ UC in grade S275

14.3.1 Compression resistance

For $L_{\mathrm{E}}=5.0 \mathrm{~m}, \quad P_{\text {cy }}=760 \mathrm{kN}$
Volume 1 does not give P_{c} values for $L_{\mathrm{Ex}}=4.25 \mathrm{~m}$, but the following values are given for $L_{\mathrm{Ex}}=4.0 \mathrm{~m}$ and $L_{\mathrm{Ex}}=5.0 \mathrm{~m}$:

For $L_{\mathrm{Ex}}=4.0 \mathrm{~m}, \quad P_{\mathrm{cx}}=1430 \mathrm{kN}$
For $L_{\mathrm{Ex}}=5.0 \mathrm{~m}, \quad P_{\mathrm{cx}}=1330 \mathrm{kN}$

Clearly $P_{\text {cy }}$ is critical, therefore $P_{\mathrm{c}}=760 \mathrm{kN}$
$F_{\mathrm{c}}=640 \mathrm{kN}$
$640 \mathrm{kN}<760 \mathrm{kN}$
Therefore, the compression resistance is adequate.
14.3.2 Combined axial force and moment check

For $L \quad=5.0 \mathrm{~m}, \quad M_{\mathrm{bs}}=120 \mathrm{kNm}$
$p_{\mathrm{y}} Z_{\mathrm{y}} \quad=41.8 \mathrm{kNm}$
$\frac{640}{760}+\frac{12.1}{120}+\frac{0.39}{41.8}$
$=0.842+0.101+0.009=0.95<1$

Therefore, the combined resistance against axial force and moment is adequate.
$\underline{\text { Adopt } 203 \times 203 \times 46 \text { UC in S275 }}$
Note: Volume 1 only provides values for the terms in the interaction formula. The interaction check itself must still be carried out by hand.

Vol 1
Page C-131

Vol 1

Page C-131

The Steel Construction Institute Silwood Park, Ascot, Berks SL5 7QN Telephone: (01344) 623345 Fax: (01344) 622944	Job No. CDS 153			Sheet	1 of	5	Rev
	Job Title Example no. 15						
	$\begin{array}{ll}\text { Subject } & \begin{array}{l}\text { Continuous column in simple construction using an } \\ \\ \text { RHS }\end{array}\end{array}$ RHS						
	Client		Made by	MDH	Date	Jun	003
CALCULATION SHEET	SCI		Checked by	ASM	Date	Oct	003

15 Continuous column in simple construction using an RHS

15.1 Introduction

Redesign the column shown in Example 14 between levels 1 and 2 using a hot finished square hollow section in S355 (see Figure 15.1). Two solutions are presented; the full calculation and the Blue Book approach.

Figure 15.1

15.1.1 Assumptions

- The column is continuous and forms part of a structure of simple construction.
- The column is effectively pinned at the base.
- Beams are connected to the RHS column by flexible end plates.

15.1.2 Loading (factored)

$F_{2-3}=410 \mathrm{kN}$ (axial force in column between levels 2 and 3)
$R_{1} \quad=40 \mathrm{kN}$ (reaction from beam 1)
$R_{2}=160 \mathrm{kN}$ (reaction from beam 2)
$R_{3}=30 \mathrm{kN}$ (reaction from beam 3)
The total axial load acting on the column between levels 1 and 2 is given by:
$F_{\mathrm{c}} \quad=F_{2-3}+R_{1}+R_{2}+R_{3}$
$F_{\mathrm{c}} \quad=410+40+160+30=640 \mathrm{kN}$

Example 15 Continuous column in simple construction using an RHS \quad Sheet 2 of $5 \quad$ Rev

15.2 Member checks

15.2.1 Determine the effective lengths

About the x-x axis, $L_{\mathrm{Ex}}=0.85 L=0.85 \times 5000=4250 \mathrm{~mm}$
About the y-y axis, $L_{\mathrm{Ey}}=1.0 L=1.0 \times 5000=5000 \mathrm{~mm}$
4.7.3

Table 22

15.2.2 Trial section

The trial section may be obtained from the member capacity tables in Volume $1^{[2]}$ by considering the axial force only (i.e. ignoring the moment due to eccentricity). This section should then be checked for the combined effects of axial force and moment.

Try $150 \times 150 \times 6.3$ HF RHS ($28.1 \mathrm{~kg} / \mathrm{m}$) in $\mathbf{S 3 5 5}$

From member capacity tables:
Compression resistance $\quad P_{\mathrm{c}}=774 \mathrm{kN}$ for $L_{\mathrm{E}}=5.0 \mathrm{~m}$

From section property tables:
Depth
$D=150 \mathrm{~mm}$
Thickness
$t=6.3 \mathrm{~mm}$
Radius of gyration
$r=5.85 \mathrm{~cm}$
$A_{\mathrm{g}} \quad=35.8 \mathrm{~cm}^{2}$
$S=192 \mathrm{~cm}^{3}$
$Z=163 \mathrm{~cm}^{3}$
$d / t=20.8$
$d=D-3 t=150-(3 \times 6.3)=131.1 \mathrm{~mm}$

15.2.3 Section classification

Grade of steel $=$ S355
$t<16 \mathrm{~mm}$
Therefore, design strength $p_{\mathrm{y}}=355 \mathrm{~N} / \mathrm{mm}^{2}$
$\varepsilon=\sqrt{\frac{275}{p_{\mathrm{y}}}}=\sqrt{\frac{275}{355}} \quad=0.88$

The limiting b / t for the flange of a class 1 plastic hot finished RHS is 28ε but $\leq 80 \varepsilon-d / t$
Limiting $b / t=28 \times 0.88=24.6$ which is less than $80-20.8=59.2$
The actual $b / t=d / t=20.8<24.6$
Therefore, the flange is class 1 plastic.
For the web of an RHS under axial compression and bending (the "generally" case in
Table 12), the limiting d / t for a class 1 plastic web is
$\frac{64 \varepsilon}{1+0.6 r_{1}} \quad$ but $\geq 40 \varepsilon$
$r_{1}=\frac{F_{\mathrm{c}}}{2 d t p_{\mathrm{y}}}=\frac{640000}{2 \times 131.1 \times 6.3 \times 355}=1.09$, but $-1<r_{1} \leq 1$, therefore $r_{1}=1$.
Limiting $d / t=\frac{64 \times 0.88}{1+0.6}=35.2$
The actual $d / t=20.8<35.2$
Therefore, the web is class 1 plastic.
Therefore, the cross section is class 1 plastic.
Sheet 3 of 50 Rev

Note: For an RHS, the limiting local buckling ratios for the flange are never greater than the equivalent limits for the web. Since, for the special case of a square hollow section, the ratios b / t and d / t are equal, it follows that the section classification will always be governed by the flange.

15.2.4 Slenderness

$\lambda=\frac{L_{\mathrm{E}}}{r}=\frac{5000}{58.5}=85.5$

15.2.5 Check the compression resistance

Basic requirement $\boldsymbol{F}_{\mathrm{c}} \leq \boldsymbol{P}_{\mathrm{c}}$
$P_{\mathrm{c}}=A_{\mathrm{g}} p_{\mathrm{c}}$ (for a class 1 plastic cross section)
$A_{\mathrm{g}}=35.8 \mathrm{~cm}^{2}$
The compressive strength p_{c} is obtained from the relevant strut curve.
For hot-finished hollow sections, use strut curve a.
(Note that for cold-formed hollow sections, strut curve c should be used).
For $\lambda=85.5$ and $p_{\mathrm{y}}=355 \mathrm{~N} / \mathrm{mm}^{2}, p_{\mathrm{c}}=216 \mathrm{~N} / \mathrm{mm}^{2}$
$P_{\mathrm{c}}=3580 \times 216 \times 10^{-3}=773 \mathrm{kN}$
$F_{\mathrm{c}}=640 \mathrm{kN}$
$640 \mathrm{kN}<773 \mathrm{kN}$
Therefore, the compression resistance is adequate.

15.2.6 Nominal moments due to eccentricity

For columns in simple construction, the beam reactions are assumed to act 100 mm off the face of the columns.

Total moment at level 2 from beam 2 connected to RHS column:
$M_{2 \mathrm{x}}=R_{2}(D / 2+100)=160\left(\frac{150}{2}+100\right) \times 10^{-3}=28.0 \mathrm{kNm}$
Total moment at level 2 from beams 1 and 3 connected to RHS column:
$M_{2 y}=R_{1}\left(\frac{D}{2}+100\right)-R_{3}\left(\frac{D}{2}+100\right)=\left(R_{1}-R_{3}\right)\left(\frac{D}{2}+100\right)$
$M_{2 \mathrm{y}}=(40-30)\left(\frac{150}{2}+100\right) \times 10^{-3}=1.75 \mathrm{kNm}$
These moments are distributed between the column lengths above and below level 2 , in proportion to the bending stiffnesses of each length.

Stiffness of column 2 to $1=E I / 5$
Stiffness of column 2 to $3=E I / 3$
Assuming the same section size is used between levels 1 and 3, the ratio of these stiffness values is $5 / 3$. Therefore, $3 / 8$ of $M_{2 \mathrm{x}}$ and $M_{2 \mathrm{y}}$ are transferred into column 2-1 and 5/8 of $M_{2 x}$ and $M_{2 y}$ are transferred into column 2-3.

Example 15 Continuous column in simple construction using an RHS \quad Sheet 4 of $5 \quad$ Rev

$$
\begin{array}{ll}
M_{\mathrm{x}(2-1)}=\frac{3}{8} M_{2 \mathrm{x}}=0.375 \times 28.0 & =10.5 \mathrm{kNm} \\
M_{\mathrm{y}(2-1)}=\frac{3}{8} M_{2 \mathrm{y}}=0.375 \times 1.75 & =0.66 \mathrm{kNm}
\end{array}
$$

15.2.7 Combined axial force and moment check

Since only nominal moments are applied, the column should satisfy the relationship
$\frac{F_{\mathrm{c}}}{P_{\mathrm{c}}}+\frac{M_{\mathrm{x}}}{M_{\mathrm{bs}}}+\frac{M_{\mathrm{y}}}{p_{\mathrm{y}} Z_{\mathrm{y}}} \leq 1$
$M_{\mathrm{x}}=M_{\mathrm{x}(2-1)} \quad=10.5 \mathrm{kNm}$
$M_{\mathrm{y}}=M_{\mathrm{y}(2-1)} \quad=0.66 \mathrm{kNm}$
M_{bs} is the buckling resistance moment for simple columns. For a square hollow section, there is no need to consider lateral-torsional buckling, so M_{bs} equals M_{c}.

For a class 1 plastic section, M_{c} is given by:
$M_{\mathrm{c}} \quad=p_{\mathrm{y}} S$ but $\leq 1.5 p_{\mathrm{y}} Z$
$p_{\mathrm{y}} S=355 \times 192 \times 10^{-3}=68.2 \mathrm{kNm}$
$1.5 p_{\mathrm{y}} Z=1.5 \times 355 \times 163 \times 10^{-3}=86.8 \mathrm{kNm}$
Therefore, $M_{\mathrm{bs}}=68.2 \mathrm{kNm}$.
$\frac{640}{773}+\frac{10.5}{68.2}+\frac{0.66 \times 10^{6}}{355 \times 163 \times 10^{3}}$
$=0.828+0.154+0.011=0.99<1$
Therefore, the combined resistance against axial force and moment is adequate.
Adopt $150 \times 150 \times 6.3$ HF RHS ($28.1 \mathrm{~kg} / \mathrm{m}$) in S355

Example 15 Continuous column in simple construction using an RHS \quad Sheet 5 of 50 Rev

15.3 Blue Book approach

The values of $P_{\mathrm{c}}, M_{\text {bs }}$ and $p_{\mathrm{y}} Z_{\mathrm{y}}$ could have been obtained directly from Volume $1^{[2]}$.

Try $150 \times 150 \times 6.3$ HF RHS ($28.1 \mathrm{~kg} / \mathrm{m}$) in S355

15.3.1 Compression resistance

For $L_{\mathrm{E}}=5.0 \mathrm{~m}, P_{\mathrm{c}}=774 \mathrm{kN}$
$F_{\mathrm{c}}=640 \mathrm{kN}$
Vol 1
Page D-149
$640 \mathrm{kN}<774 \mathrm{kN}$
Therefore, the compression resistance is adequate.

15.3.2 Combined axial force and moment check

$p_{\mathrm{y}} Z=57.9 \mathrm{kNm}$
$M_{\mathrm{bs}}=M_{\mathrm{c}}=68.2 \mathrm{kNm}$
$\frac{640}{774}+\frac{10.5}{68.2}+\frac{0.66}{57.9}$
$=0.827+0.154+0.011=0.99<1$
Therefore, the combined resistance against axial force and moment is adequate.
Note: Volume 1 only provides values for the terms in the interaction formula. The interaction check itself must still be carried out by hand.

Adopt $150 \times 150 \times 6.3$ HF RHS ($28.1 \mathrm{~kg} / \mathrm{m}$) in S355

Silwood Park, Ascot, Berks SL5 7QN
Telephone: (01344) 623345
Fax: (01344) 622944

CALCULATION SHEET

Job No.	CDS 153	Sheet	1	of	10	Rev
Job Title	Example no. 16					
Subject	Beam subject to combined biaxial bending and compression (compact section)					
Client						
		Made by	MDH	Date	Jun 2003	
		ASM	Date	Oct 2003		

16 Beam subject to combined biaxial bending and compression (compact section)

16.1 Introduction

The beam shown in Figure 16.1 is subject to axial compression applied at its ends, a vertical point load at mid-span and a horizontal uniformly distributed load out of plane. The beam is restrained against lateral movement and torsion at its mid-span by a secondary beam, but is otherwise unrestrained. It is assumed that the beam is pinned at its ends in the major and minor axis directions. Design the beam in S355 steel for the loading shown below. Two solutions are presented; the full calculation and the Blue Book approach.

Figure 16.1

16.1.1 Loading (factored)

Factored compression force
Major axis point load
Major axis distributed load
Minor axis distributed load

$$
\begin{aligned}
F_{\mathrm{c}} & =300 \mathrm{kN} \\
W & =100 \mathrm{kN} \\
w & =2 \mathrm{kN} / \mathrm{m} \text { (assumed self-weight) } \\
\mathrm{w} & =3 \mathrm{kN} / \mathrm{m}
\end{aligned}
$$

16.1.2 Bending moment and shear force

Major axis

The shear force and bending moment diagrams for major axis bending are as shown in Figure 16.2.

Maximum moment occurs at the centre:
$M=\frac{w L^{2}}{8}+\frac{W L}{4}=\frac{2.0 \times 6.0^{2}}{8}+\frac{100 \times 6.0}{4}=159 \mathrm{kNm}$
Shear force at the ends:

$$
F_{\mathrm{ve}}=\frac{w L}{2}+\frac{W}{2}=\frac{2.0 \times 6.0}{2}+\frac{100}{2} \quad=56 \mathrm{kN}
$$

Shear force at the centre:
$F_{\mathrm{vc}}=F_{\mathrm{ve}}-\frac{w L}{2}=50 \mathrm{kN}$

Example 16 Biaxial bending and compression (compact section)	Sheet	2	of	10	Rev

Figure 16.2 Major axis bending

Minor axis

The shear force and bending moment diagrams for minor axis bending are as shown in Figure 16.3.

Figure 16.3 Minor axis bending
Maximum moment occurs at the central support:
$M=\frac{w L^{2}}{8}=\frac{3.0 \times 3.0^{2}}{8}=3.38 \mathrm{kNm}$
From the shear force diagram, the maximum shear force also occurs at the central support.
$F_{\mathrm{v}}=5.63 \mathrm{kN}$

Example 16 Biaxial bending and compression (compact section) \quad Sheet 3 of 10	Rev

16.2 Member checks

16.2.1 Trial section

Try $406 \times 140 \times 46$ UB in grade S355
From section property tables:

Depth	$D=403.2 \mathrm{~mm}$
Width	$B=142.2 \mathrm{~mm}$
Web thickness	$t=6.8 \mathrm{~mm}$
Flange thickness	$T=11.2 \mathrm{~mm}$
Depth between fillets	$d=360.4 \mathrm{~mm}$
Area of cross-section	$A_{\mathrm{g}}=58.6 \mathrm{~cm}^{2}$
Plastic modulus	$S_{\mathrm{x}}=888 \mathrm{~cm}^{3}$
Plastic modulus	$S_{\mathrm{y}}=118 \mathrm{~cm}^{3}$
Elastic modulus	$Z_{\mathrm{x}}=778 \mathrm{~cm}^{3}$
Elastic modulus	$Z_{\mathrm{y}}=75.7 \mathrm{~cm}^{3}$
Radius of gyration	$r_{\mathrm{x}}=16.4 \mathrm{~cm}$
Radius of gyration	$r_{\mathrm{y}}=3.03 \mathrm{~cm}$
Buckling parameter	$u=0.872$
Torsional index	$x=39.0$

Local buckling ratios:
Flange
$b / T=6.35$
Web
$d / t=53.0$

16.2.2 Section classification

Grade of steel $=$ S355
$T<16 \mathrm{~mm}$
Therefore $p_{\mathrm{y}}=355 \mathrm{~N} / \mathrm{mm}^{2}$
$\varepsilon=\sqrt{\frac{275}{p_{\mathrm{y}}}}=\sqrt{\frac{275}{355}}=0.88$
For the outstand element of a compression flange, the limiting b / T for a class 1 plastic flange is 9ε. Limiting $b / T=9 \times 0.88=7.92$

The actual $b / T=6.35<7.92$
Therefore, the flange is class 1 plastic.
For the web of an I- or H -section under axial compression and bending (the "generally" case in Table 11), the limiting d / t for a class 1 plastic web is
$\frac{80 \varepsilon}{1+r_{1}}$ but $\geq 40 \varepsilon$
$r_{1}=\frac{F_{\mathrm{c}}}{d t p_{\mathrm{y}}}=\frac{300 \times 10^{3}}{360.4 \times 6.8 \times 355}=34$, but $-1<r_{1} \leq 1$, therefore $r_{1}=0.34$

Limiting $d / t=\frac{80 \times 0.88}{1+0.34}=52.5$
The actual $d / t=53.0>52.5$
Therefore, the web is not class 1 plastic.

Vol 1
Page B-4

Vol 1
Page B-5

Vol 1
Page B-4
3.1.1

Table 9
3.5.2

Table 11
3.5.2

Table 11

Example 16 Biaxial bending and compression (compact section)
The limiting d / t for a class 2 compact web is $\frac{100 \varepsilon}{1+1.5 r_{1}}$ but $\geq 40 \varepsilon$
Limiting $d / t=\frac{100 \times 0.88}{1+(1.5 \times 0.34)}=58.3$
The actual $d / t=53.0<58.3$
Therefore, the web is class 2 compact.
Since the flange is class 1 plastic and the web is class 2 compact, the cross section is class 2 compact.

16.2.3 Determine the effective length

The member is pinned at both ends about both axes, with an additional restraint against lateral (minor axis) deflection at its mid-span.
$L_{\mathrm{Ex}}=6000 \mathrm{~mm}$
$L_{\mathrm{Ey}}=3000 \mathrm{~mm}$

16.2.4 Slenderness

$\lambda_{\mathrm{x}}=\frac{L_{\mathrm{Ex}}}{r_{\mathrm{x}}}=\frac{6000}{164}=36.6$
$\lambda_{\mathrm{y}}=\frac{L_{\mathrm{Ey}}}{r_{\mathrm{y}}}=\frac{3000}{30.3}=99.0$

16.2.5 Check the compression resistance

Basic requirement $\boldsymbol{F}_{\mathbf{c}} \leq \boldsymbol{P}_{\mathbf{c}}$
$P_{\mathrm{c}}=A_{\mathrm{g}} p_{\mathrm{c}}$ (for a compact cross section)
The compressive strength p_{c} is obtained from the relevant strut curve for buckling about the $x-x$ and $y-y$ axes.

Buckling about the $x-x$ axis

Use strut curve a
For $\lambda_{\mathrm{x}}=36.6$ and $p_{\mathrm{y}}=355 \mathrm{~N} / \mathrm{mm}^{2}, p_{\mathrm{cx}}=336 \mathrm{~N} / \mathrm{mm}^{2}$
$P_{\mathrm{cx}}=5860 \times 336 \times 10^{-3}=1969 \mathrm{kN}$

Buckling about the y - y axis

Use strut curve b
For $\lambda_{\mathrm{y}}=99.0$ and $p_{\mathrm{y}}=355 \mathrm{~N} / \mathrm{mm}^{2}, p_{\text {cy }}=157 \mathrm{~N} / \mathrm{mm}^{2}$
$P_{\text {cy }}=5860 \times 157 \times 10^{-3}=920 \mathrm{kN}$
Therefore, $P_{\mathrm{c}}=920 \mathrm{kN}$

$$
F_{\mathrm{c}}=300 \mathrm{kN}
$$

$300 \mathrm{kN}<920 \mathrm{kN}$
Therefore, the compression resistance is adequate.

16.2.6 Check for shear buckling

If the d / t ratio exceeds 70ε for a rolled section, the web should be checked for shear buckling in accordance with clause 4.4 .5 of BS 5950-1:2000 ${ }^{[1]}$.
$70 \varepsilon=70 \times 0.88=61.6$
$d / t=53.0<61.6$, so there is no need to check for shear buckling.

Example 16 Biaxial bending and compression (compact section)	Sheet	5	of	10	Rev

16.2.7 Check the shear capacity

Major axis

Basic requirement $\boldsymbol{F}_{\mathrm{v}} \leq \boldsymbol{P}_{\mathrm{v}}$
$P_{\mathrm{v}}=0.6 p_{\mathrm{y}} A_{\mathrm{v}}$
$p_{\mathrm{y}}=355 \mathrm{~N} / \mathrm{mm}^{2}$
$A_{\mathrm{v}}=t D=6.8403 .2=2742 \mathrm{~mm}^{2}$
$P_{\mathrm{v}} \quad=0.6 \times 355 \times 2742 \times 10^{-3}=584 \mathrm{kN}$
Maximum shear force $F_{\mathrm{v}}=56 \mathrm{kN}$.
$56 \mathrm{kN}<584 \mathrm{kN}$
Therefore, the major axis shear capacity is adequate.

Minor axis

Basic requirement $\boldsymbol{F}_{\mathrm{v}} \leq \boldsymbol{P}_{\mathrm{v}}$
$P_{\mathrm{v}}=0.6 p_{\mathrm{y}} A_{\mathrm{v}}$
$p_{\mathrm{y}}=355 \mathrm{~N} / \mathrm{mm}^{2}$
$A_{\mathrm{v}}=0.9 A_{\mathrm{o}}$, where A_{o} is the combined area of the two flanges.
$A_{\mathrm{v}}=0.9 \times 2 \times 142.2 \times 11.2=2867 \mathrm{~mm}^{2}$
$P_{\mathrm{v}}=0.6 \times 355 \times 2867 \times 10^{-3}=611 \mathrm{kN}$
Maximum shear force $F_{\mathrm{v}}=5.63 \mathrm{kN}$.
$5.63 \mathrm{kN}<611 \mathrm{kN}$
Therefore, the minor axis shear capacity is adequate.

16.2.8 Check the moment capacity

Major axis

Basic requirement $M_{\mathrm{x}} \leq \boldsymbol{M}_{\mathrm{cx}}$
Check whether the shear is "high" (i.e. $F_{\mathrm{v}}>0.6 P_{\mathrm{v}}$) or "low" at the point of maximum moment.

At the centre of the member, $F_{\mathrm{vc}}=50 \mathrm{kN}$
$0.6 P_{\mathrm{v}}=0.6 \times 584=350 \mathrm{kN}$
$50 \mathrm{kN}<350 \mathrm{kN}$
Therefore, the shear is low.
For low shear, the moment capacity for a class 2 section is given by:
$M_{\mathrm{cx}}=p_{\mathrm{y}} S_{\mathrm{x}}$
$M_{\mathrm{cx}}=355 \times 888 \times 10^{-3}=315 \mathrm{kNm}$
Check limit to avoid irreversible deformation under serviceability loads.
For a simply supported beam $M_{\mathrm{cx}} \leq 1.2 p_{\mathrm{y}} Z_{\mathrm{x}}$
$1.2 p_{\mathrm{y}} Z_{\mathrm{x}}=1.2 \times 355 \times 778 \times 10^{-3}=331 \mathrm{kNm}$
Therefore $M_{\mathrm{cx}}=315 \mathrm{kNm}$
From Figure 16.2, $M_{x}=59 \mathrm{kNm}$
$159 \mathrm{kNm}<315 \mathrm{kNm}$
Therefore, the major axis moment capacity is adequate.

Minor axis

Basic requirement $M_{y} \leq M_{\text {cy }}$
By inspection, the shear is low (i.e. $F_{\mathrm{v}}<0.6 P_{\mathrm{v}}$).
For low shear, the moment capacity for a class 2 section is given by
$M_{\mathrm{cy}}=p_{\mathrm{y}} S_{\mathrm{y}}$
$M_{\mathrm{cy}}=355 \times 118 \times 10^{-3}=41.9 \mathrm{kNm}$

Example 16 Biaxial bending and compression (compact section)	Sheet	6	of	10	Rev

Check limit to avoid irreversible deformation under serviceability loads.
For a continuous beam $M_{\mathrm{cy}} \leq 1.5 p_{\mathrm{y}} Z_{\mathrm{y}}$
$1.5 p_{\mathrm{y}} Z_{\mathrm{y}}=1.5 \times 355 \times 75.7 \times 10^{-3}=40.3 \mathrm{kNm}$
Therefore $M_{\mathrm{cy}}=40.3 \mathrm{kNm}$
From Figure 16.3, $M_{y}=3.38 \mathrm{kNm}$
$3.38 \mathrm{kNm}<40.3 \mathrm{kNm}$
Therefore, the minor axis moment capacity is adequate.

16.2.9 Lateral-torsional buckling

The beam is restrained against lateral-torsional buckling at its supports and at its mid-span. There are, therefore, two segments to consider. However, due to symmetry, it is sufficient to design one segment only in this example. Consider segment length $A B$.

Basic requirements: $\boldsymbol{M}_{\mathrm{x}} \leq \boldsymbol{M}_{\mathrm{b}} / \boldsymbol{m}_{\mathrm{LT}}$
and $\boldsymbol{M}_{\mathrm{x}} \leq \boldsymbol{M}_{\mathrm{cx}}$ (already checked in 16.2.8 above)
The buckling resistance moment M_{b} for a class 2 compact section is given by:
$M_{\mathrm{b}} \quad=p_{\mathrm{b}} S_{\mathrm{x}}$
where p_{b} is the bending strength and is dependent on the design strength p_{y} and the equivalent slenderness $\lambda_{\text {LT }}$.
$\lambda_{\mathrm{LT}}=u v \lambda \sqrt{\beta_{\mathrm{W}}}$
$\lambda / x=\frac{99}{39.0}=2.5$
For a section with equal flanges and $\lambda x=2.5$,
$v=0.93$
For a class 2 compact section, $\beta_{\mathrm{W}}=1.0$
Therefore, $\lambda_{\text {LT }}=0.872 \times 0.93 \times 99.0=80.3$
For $p_{\mathrm{y}}=355 \mathrm{~N} / \mathrm{mm}^{2}$ and $\lambda_{\mathrm{LT}}=80.3$, Table 16 gives $p_{\mathrm{b}}=189 \mathrm{~N} / \mathrm{mm}^{2}$
$M_{\mathrm{b}}=189 \times 888 \times 10^{-3}=168 \mathrm{kNm}$
Since there is no major axis loading between the restraints (apart from the self-weight of the beam, which is considered insignificant for the purpose of evaluating m_{LT}), m_{LT} can be obtained directly from Table 18 for a known value of β.
β is the ratio of the bending moments at points A and B , i.e. $\beta=0$
From Table 18, $m_{\text {LT }}=0.6$
4.3.6.2
4.3.6.4
4.3.6.7

Table 19
4.3.6.9

Table 16
4.3.6.6

Table 18
$M_{\mathrm{b}} / m_{\mathrm{LT}}=168 / 0.6=280 \mathrm{kNm}$
From Figure 16.2, $M_{x} \quad=159 \mathrm{kNm}$
$159 \mathrm{kNm}<280 \mathrm{kNm}$
Therefore, the buckling resistance moment is adequate.

| Example 16 Biaxial bending and compression (compact section) | Sheet | 7 | of | 10 | Rev |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

16.2.10 Interaction between axial load and bending
 Cross section capacity

Basic requirement: $\frac{F_{\mathrm{c}}}{A_{\mathrm{g}} p_{\mathrm{y}}}+\frac{M_{\mathrm{x}}}{M_{\mathrm{cx}}}+\frac{M_{\mathrm{y}}}{M_{\mathrm{cy}}} \leq 1$

At point B

$$
\frac{300 \times 10^{3}}{58.6 \times 10^{2} \times 355}+\frac{159}{315}+\frac{3.38}{40.3}
$$

$=0.144+0.505+0.084=0.73<1$
Therefore, the cross section capacity is adequate.

Member buckling resistance

BS 5950-1:2000 presents two methods for checking the member buckling resistance: the simplified method (Clause 4.8.3.3.1) and the more exact method (Clause 4.8.3.3.2). In the simplified method, the following relationships must be satisfied:

$$
\begin{aligned}
& \frac{F_{\mathrm{c}}}{P_{\mathrm{c}}}+\frac{m_{\mathrm{x}} M_{\mathrm{x}}}{p_{\mathrm{y}} Z_{\mathrm{x}}}+\frac{m_{\mathrm{y}} M_{\mathrm{y}}}{p_{\mathrm{y}} Z_{\mathrm{y}}} \leq 1 \text { and } \\
& \frac{F_{\mathrm{c}}}{P_{\mathrm{cy}}}+\frac{m_{\mathrm{LT}} M_{\mathrm{LT}}}{M_{\mathrm{b}}}+\frac{m_{\mathrm{y}} M_{\mathrm{y}}}{p_{\mathrm{y}} Z_{\mathrm{y}}} \leq 1
\end{aligned}
$$

M_{LT} is the maximum major axis moment in segment $\mathrm{AB}=159 \mathrm{kNm}$.
m_{x} is determined between restraints on the x axis, i.e. A and C , according to the shape of the bending moment diagram (see Figure 16.2).

As this is one of the specific cases listed in BS 5950-1:2000 ${ }^{[1]}$, the value of m_{x} can be obtained directly from Table 26.
$m_{\mathrm{x}}=0.9$
m_{y} is determined between restraints on the y axis, i.e. A and B or B and C, according to the shape of the bending moment diagram between those restraints as shown in Figure 16.4.

Figure 16.4 Minor axis moment
4.8.3.2
4.8.3.3.1
4.8.3.3.1
4.8.3.3.4

Table 26

Example 16 Biaxial bending and compression (compact section)	Sheet	8	of	10	Rev

In this case, m_{y} must be obtained from the following general formula.
$m_{\mathrm{y}}=0.2+\frac{0.1 M_{2}+0.6 M_{3}+0.1 M_{4}}{M_{\max }}$ but $m_{\mathrm{y}} \geq \frac{0.8 M_{24}}{M_{\max }}$
4.8.3.3.4

Table 26

The moments M_{2} and M_{4} are the values at the quarter points and the moment M_{3} is the value at mid-length. $\quad M_{\max }$ is the maximum moment in the segment and M_{24} is the maximum moment in the central half of the segment.

Location	M_{2}	M_{3}	M_{4}	M_{24}	$M_{\max }$
Moment kNm	1.69	1.69	0	1.89	3.38

$m_{\mathrm{y}}=0.2+\frac{0.1 \times 1.69+0.6 \times 1.69+0}{3.38}=0.55$ but $m_{\mathrm{y}} \geq \frac{0.8 \times 1.89}{3.38}=0.45$

Therefore, $m_{\mathrm{y}}=0.55$
$\frac{300}{920}+\frac{0.9 \times 159 \times 10^{6}}{355 \times 778 \times 10^{3}}+\frac{0.55 \times 3.38 \times 10^{6}}{355 \times 75.7 \times 10^{3}}$
$=0.326+0.518+0.069=0.91<1$
$\frac{300}{920}+\frac{0.6 \times 159}{168}+\frac{0.55 \times 3.38 \times 10^{6}}{355 \times 75.7 \times 10^{3}}$
$=0.326+0.568+0.069=0.96<1$
Therefore, the member buckling resistance is adequate.

$\underline{\text { Adopt } 406 \times 140 \times 46 \text { UB in S355 }}$

Note: 1. If appropriate, the web should be checked for bearing and buckling at the supports and at the point of load application, as in Example 2.
2. The deflections should be checked at the serviceability limit state in accordance with the recommendations in clause 2.5.2
Example 16 Biaxial bending and compression (compact section) \quad Sheet 9 of $10 \quad$ Rev

16.3 Blue Book approach

The section capacities and member resistances calculated in section 16.2 could have been obtained directly from Volume $1^{[2]}$.

Try $406 \times 140 \times 46$ UB in grade S355

16.3.1 Compression resistance

For $L_{\mathrm{Ex}}=6.0 \mathrm{~m}, \quad P_{\mathrm{cx}} \quad=1970 \mathrm{kN}$
For $L_{\mathrm{Ey}}=3.0 \mathrm{~m}, \quad P_{\text {cy }}=925 \mathrm{kN}$
Therefore, $\quad P_{\mathrm{c}}=925 \mathrm{kN}$
$F_{\mathrm{c}}=300 \mathrm{kN}$
$300 \mathrm{kN}<925 \mathrm{kN}$
Therefore, the compression resistance is adequate.

16.3.2 Shear Capacity (major axis)

$P_{\mathrm{v}} \quad=584 \mathrm{kN}$ (no value given for minor axis shear)
$F_{\mathrm{v}}=56 \mathrm{kN}$
$56 \mathrm{kN}<584 \mathrm{kN}$
Therefore, the major axis shear capacity is adequate.

16.3.3 Moment capacity

For $F / P_{\mathrm{z}} \quad=0.144$
$M_{\mathrm{cx}} \quad=315 \mathrm{kNm}$
$M_{\mathrm{x}} \quad=159 \mathrm{kNm}$
$159 \mathrm{kNm}<315 \mathrm{kNm}$
Therefore, the major axis moment capacity is adequate.

$$
\begin{array}{ll}
\text { For } F / P_{\mathrm{z}} & =0.144 \\
M_{\mathrm{cy}} & =32.2 \mathrm{kNm} \\
M_{\mathrm{y}} & =3.38 \mathrm{kNm} \\
3.38 \mathrm{kNm} & <32.2 \mathrm{kNm}
\end{array}
$$

Therefore, the minor axis moment capacity is adequate.
The value of $M_{\text {cy }}$ given by Volume1 is considerably lower than that calculated in Section 16.2 above (40.3 kNm) due to the fact that Volume 1 uses the limit of 1.2 $p_{\mathrm{y}} Z$, whereas the higher limit of $1.5 p_{\mathrm{y}} Z$ is more appropriate in this example, since the beam is continuous over a central support for minor axis bending.

16.3.4 Buckling resistance moment

For $L_{\mathrm{E}} \quad=3.0 \mathrm{~m}$ and $F / P_{\mathrm{z}} \quad=0.144$
$M_{\mathrm{b}} \quad=167 \mathrm{kNm}$
For a quick approximation, $m_{\text {LT }}$ may conservatively be taken as 1.0 . However, more accurately, $m_{\text {LT }}$ should be obtained from Table 18 of BS 5950-1:2000 as in Section 16.2.9 of this example.
$m_{\mathrm{LT}}=0.6$
$M_{\mathrm{b}} / m_{\mathrm{LT}}=167 / 0.6 \quad=278 \mathrm{kNm}$
$M_{x}=159 \mathrm{kNm}$
$159 \mathrm{kNm}<278 \mathrm{kNm}$
Therefore, the buckling resistance moment is adequate.

Vol 1
Page D-115

Vol 1
Page D-79

Vol 1
Page D-114

Vol 1
Page D-114

Vol 1
Page D-115

Table 18

Example 16 Biaxial bending and compression (compact section) \quad Sheet 10 of 10 Rev

16.3.5 Interaction between axial load and bending

Cross section capacity at point B

$\mathrm{A}_{\mathrm{g}} p_{\mathrm{y}}=2080 \mathrm{kN}$

$$
\begin{aligned}
& \frac{F_{\mathrm{c}}}{A_{\mathrm{g}} p_{\mathrm{y}}}+\frac{M_{\mathrm{x}}}{M_{\mathrm{cx}}}+\frac{M_{\mathrm{y}}}{M_{\mathrm{cy}}}=\frac{300}{2080}+\frac{159}{315}+\frac{3.38}{32.2} \\
& =0.144+0.505+0.105=0.75<1
\end{aligned}
$$

Therefore, the cross section capacity is adequate.

Member buckling resistance

For a quick approximation, m_{x} and m_{y} may conservatively be taken as 1.0. However, more accurately, m_{x} and m_{y} should be obtained from Table 26 of BS 5950-1:2000 as in Section 16.2.10 of this example.
$\begin{array}{ll}m_{\mathrm{x}} & =0.9 \\ m_{\mathrm{y}} & =0.55 \\ p_{\mathrm{y}} Z_{\mathrm{x}} & =276 \mathrm{kNm} \\ p_{\mathrm{y}} Z_{\mathrm{y}} & =26.9 \mathrm{kNm}\end{array}$

Created on 30 March 2011
This material is copyright - all rights reserved. Use of this document is subject to the terms and conditions of the Steelbiz Licence Agreement
$\frac{F_{\mathrm{c}}}{P_{\mathrm{c}}}+\frac{m_{\mathrm{x}} M_{\mathrm{x}}}{p_{\mathrm{y}} Z_{\mathrm{x}}}+\frac{m_{\mathrm{y}} M_{\mathrm{y}}}{p_{\mathrm{y}} Z_{\mathrm{y}}}=\frac{300}{925}+\frac{0.9 \times 159}{276}+\frac{0.55 \times 3.38}{26.9}$
$=0.324+0.518+0.069=0.91<1$
$\frac{F_{\mathrm{c}}}{P_{\mathrm{cy}}}+\frac{m_{\mathrm{LT}} M_{\mathrm{LT}}}{M_{\mathrm{b}}}+\frac{m_{\mathrm{y}} M_{\mathrm{y}}}{p_{\mathrm{y}} Z_{\mathrm{y}}}=\frac{300}{925}+\frac{0.6 \times 159}{167}+\frac{0.55 \times 3.38}{26.9}$
$=0.324+0.571+0.069=0.96<1$
Therefore, the member buckling resistance is adequate.

Adopt $406 \times 140 \times 46$ UB in S355

Note: 1. If appropriate, the web should be checked for bearing and buckling at the supports and at the point of load application, as in Example 2.
2. The deflections should be checked at the serviceability limit state in accordance with the recommendations in clause 2.5.2.

Vol 1
Page D-115
4.8.3.3.4

Table 26

Vol 1
Page D-115

	Job No.	CD		Sheet	1 of		Rev
	Job Title Example no. 17						
	Subject Beam subject to combined biaxial bending and compression (semi-compact section)						
	Client	SCI	Made by	MDH	Date Jun 2003		
			Checked by	ASM	Date	Oct	003

17 Beam subject to combined biaxial bending and compression (semi-compact section)

17.1 Introduction

The beam considered in Example 16 is required to carry an increased compression force of 1200 kN . Redesign the beam in S355 steel for the new loading. Two solutions are presented; the full calculation and the Blue Book approach.

17.1.1 Loading (factored)

Factored compression force $\quad F_{\mathrm{c}}=1200 \mathrm{kN}$
Major axis point load
$W=100 \mathrm{kN}$
Major axis distributed load $\quad w=2 \mathrm{kN} / \mathrm{m}$ (assumed self-weight)
Minor axis distributed load $\quad w=3 \mathrm{kN} / \mathrm{m}$

17.1.2 Bending moment and shear force

Major axis

The shear force and bending moment diagrams for major axis bending are as shown in Figure 17.1.

Shear forces kN

Figure 17.1 Major axis bending

Maximum moment occurs at the centre:

$$
M=\frac{w L^{2}}{8}+\frac{W L}{4}=\frac{2.0 \times 6.0^{2}}{8}+\frac{100 \times 6.0}{4}=159 \mathrm{kNm}
$$

Shear force at the ends:

$$
F_{\mathrm{ve}}=\frac{w L}{2}+\frac{W}{2}=\frac{2.0 \times 6.0}{2}+\frac{100}{2}=56 \mathrm{kN}
$$

Shear force at the centre:

$$
F_{\mathrm{vc}}=F_{\mathrm{ve}}-\frac{w L}{2}=50 \mathrm{kN}
$$

Minor axis

The shear force and bending moment diagrams for minor axis bending are as shown in Figure 17.2.

Figure 17.2 Minor axis bending

Maximum moment occurs at the central support:
$M=\frac{w L^{2}}{8} \quad=\frac{3.0 \times 3.0^{2}}{8}=3.38 \mathrm{kNm}$
From the shear force diagram, the maximum shear force also occurs at the central support.
$F_{\mathrm{v}}=5.63 \mathrm{kN}$
Example 17 Biaxial bending and compression (semi-compact section) \quad Sheet $\quad 3$ of 10 Rev

17.2 Member checks

17.2.1 Trial section

Try $457 \times 191 \times 67$ UB in grade S355
From section property tables:

Depth	D	$=453.4 \mathrm{~mm}$
Width	B	$=189.9 \mathrm{~mm}$
Web thickness	t	$=8.5 \mathrm{~mm}$
Flange thickness	T	$=12.7 \mathrm{~mm}$
Depth between fillets	d	$=407.6 \mathrm{~mm}$
Area of cross-section	A_{g}	$=85.5 \mathrm{~cm}^{2}$
Plastic modulus	S_{x}	$=1470 \mathrm{~cm}^{3}$
Plastic modulus	S_{y}	$=237 \mathrm{~cm}^{3}$
Elastic modulus	Z_{x}	$=1300 \mathrm{~cm}^{3}$
Elastic modulus	Z_{y}	$=153 \mathrm{~cm}^{3}$
Radius of gyration	r_{x}	$=18.5 \mathrm{~cm}^{2}$
Radius of gyration	r_{y}	$=4.12 \mathrm{~cm}$
Buckling parameter	u	$=0.872$
Torsional index	x	$=37.9$

Vol 1
Page B-4

Vol 1
Page B-5

Vol 1
Page B-4
3.1.1

Table 9
3.5.2

Table 11
3.5.2

Table 11
$r_{1}=\frac{F_{\mathrm{c}}}{d t p_{\mathrm{y}}}=\frac{1200 \times 10^{3}}{407.6 \times 8.5 \times 355}=0.98$, but $-1<r_{1} \leq 1$, therefore $r_{1}=0.98$

Limiting $d / t=\frac{80 \times 0.88}{1+0.98}=35.6$ but $\geq 40 \times 0.88=35.2$
The actual $d / t=48.0>35.6$
Therefore, the web is not class 1 plastic.

Example 17 Biaxial bending and compression (semi-compact section)
The limiting d / t for a class 2 compact web is $\frac{100 \varepsilon}{1+1.5 r_{1}}$ but $\geq 40 \varepsilon$
Limiting $d / t=\frac{100 \times 0.88}{1+(1.5 \times 0.98)}=35.6$ but $\geq 40 \times 0.88=35.2$
The actual $d / t=48.0>35.6$
Therefore, the web is not class 2 compact.
The limiting d / t for a class 3 semi-compact web is $\frac{120 \varepsilon}{1+2 r_{2}}$ but $\geq 40 \varepsilon$
$r_{2}=\frac{F_{\mathrm{c}}}{A_{\mathrm{g}} p_{\mathrm{y}}}=\frac{1200 \times 10^{3}}{8550 \times 355} \quad=40$
Limiting $d / t=\frac{120 \times 0.88}{1+(2 \times 0.40)}=58.7$ but $\geq 40 \times 0.88=35.2$
The actual $d / t=48.0<58.7$
Therefore, the web is class 3 semi-compact.
Since the flange is class 1 plastic and the web is class 3 semi-compact, the cross section is class 3 semi-compact.

17.2.3 Determine the effective length

The member is pinned at both ends about both axes, with an additional restraint against lateral (minor axis) deflection at its mid-span.
$L_{\mathrm{Ex}}=6000 \mathrm{~mm}$
$L_{\mathrm{Ey}}=3000 \mathrm{~mm}$

17.2.4 Slenderness

$\lambda_{\mathrm{x}}=\frac{L_{\mathrm{Ex}}}{r_{\mathrm{x}}}=\frac{6000}{185}=32.4$
$\lambda_{\mathrm{y}}=\frac{L_{\mathrm{Ey}}}{r_{y}}=\frac{3000}{41.2}=72.8$

17.2.5 Check the compression resistance

Basic requirement $F_{\mathrm{c}} \leq \boldsymbol{P}_{\mathrm{c}}$
$P_{\mathrm{c}}=A_{\mathrm{g}} p_{\mathrm{c}}$
The compressive strength p_{c} is obtained from the relevant strut curve for buckling about the $x-x$ and $y-y$ axes.

Buckling about the $x-x$ axis

Use strut curve a
For $\lambda_{\mathrm{x}}=32.4$ and $p_{\mathrm{y}}=355 \mathrm{~N} / \mathrm{mm}^{2}, p_{\mathrm{cx}}=341 \mathrm{~N} / \mathrm{mm}^{2}$
$P_{\mathrm{cx}}=8550 \times 341 \times 10^{-3}=2916 \mathrm{kN}$

Example 17 Biaxial bending and compression (semi-compact section)	Sheet	5	of	10	Rev

Buckling about the y - y axis

Use strut curve b
For $\lambda_{\mathrm{y}}=72.8$ and $p_{\mathrm{y}}=355 \mathrm{~N} / \mathrm{mm}^{2}, p_{\text {cy }}=234 \mathrm{~N} / \mathrm{mm}^{2}$
$P_{\text {cy }}=8550 \times 234 \times 10^{-3}=2001 \mathrm{kN}$
$P_{\mathrm{c}}=\min \left(P_{\mathrm{cx}}, P_{\mathrm{cy}}\right)=2001 \mathrm{kN}$
$F_{\mathrm{c}} \quad=1200 \mathrm{kN}$
1200 kN < 2001 kN
Therefore, the compression resistance is adequate.

17.2.6 Check for shear buckling

If the d / t ratio exceeds 70ε for a rolled section, the web should be checked for shear buckling in accordance with clause 4.4.5 of BS 5950-1:2000 ${ }^{[1]}$.
$70 \varepsilon=70 \times 0.88=61.6$
$d / t=48.0<61.6$, so there is no need to check for shear buckling.

17.2.7 Check the shear capacity

Major axis

Basic requirement $\boldsymbol{F}_{\mathrm{v}} \leq \boldsymbol{P}_{\mathrm{v}}$
$P_{\mathrm{v}}=0.6 p_{\mathrm{y}} A_{\mathrm{v}}$
$p_{\mathrm{y}}=355 \mathrm{~N} / \mathrm{mm}^{2}$
$A_{\mathrm{V}}=t D=8.5 \times 453.4=3854 \mathrm{~mm}^{2}$
$P_{\mathrm{v}}=0.6 \times 355 \times 3854 \times 10^{-3}=821 \mathrm{kN}$
Maximum shear force $F_{\mathrm{v}}=56 \mathrm{kN}$.
$56 \mathrm{kN}<821 \mathrm{kN}$
Therefore, the major axis shear capacity is adequate.

Minor axis

Basic requirement $F_{v} \leq P_{\mathrm{v}}$
$P_{\mathrm{v}}=0.6 p_{\mathrm{y}} A_{\mathrm{v}}$
$p_{\mathrm{y}}=355 \mathrm{~N} / \mathrm{mm}^{2}$
$A_{\mathrm{v}} \quad=0.9 A_{\mathrm{o}}$, where A_{o} is the combined area of the two flanges
$A_{\mathrm{V}}=0.9 \times 2 \times 189.9 \times 12.7=4341 \mathrm{~mm}^{2}$
$P_{\mathrm{v}}=0.6 \times 355 \times 4341 \times 10^{-3}=925 \mathrm{kN}$
Maximum shear force $F_{\mathrm{v}}=5.63 \mathrm{kN}$
$5.63 \mathrm{kN}<925 \mathrm{kN}$
Therefore, the minor axis shear capacity is adequate.

17.2.8 Check the moment capacity

Major axis

Basic requirement $M_{\mathrm{x}} \leq M_{\mathrm{cx}}$
Check whether the shear is "high" (i.e. $F_{\mathrm{v}}>0.6 P_{\mathrm{v}}$) or "low" at the point of maximum moment.

At the centre of the member, $F_{\mathrm{vc}}=50 \mathrm{kN}$
$0.6 P_{\mathrm{v}}=0.6 \times 821=493 \mathrm{kN}$
$50 \mathrm{kN}<493 \mathrm{kN}$
Therefore, the shear is low.
For low shear, the moment capacity for a class 3 section is given by
$M_{\mathrm{cx}}=p_{\mathrm{y}} Z_{\mathrm{x}}$ or alternatively $M_{\mathrm{cx}}=p_{\mathrm{y}} S_{\mathrm{x}, \mathrm{eff}}$

Table 23
Table 24b

Example 17 Biaxial bending and compression (semi-compact section) \quad Sheet $\quad \begin{array}{llllll}6 & \text { of } & 10 & \text { Rev }\end{array}$

$$
S_{\mathrm{x}, \mathrm{eff}}=Z_{\mathrm{x}}+\left(S_{\mathrm{x}}-Z_{\mathrm{x}}\right)\left[\frac{\left(\frac{\beta_{3 \mathrm{w}}}{d / t}\right)^{2}-1}{\left(\frac{\beta_{3 \mathrm{w}}}{\beta_{2 \mathrm{w}}}\right)^{2}-1}\right] \text { but } S_{\mathrm{x}, \mathrm{eff}} \leq Z_{\mathrm{x}}+\left(S_{\mathrm{x}}-Z_{\mathrm{x}}\right)\left[\frac{\frac{\beta_{3 \mathrm{f}}}{b / T}-1}{\frac{\beta_{3 \mathrm{f}}}{\beta_{2 \mathrm{f}}}-1}\right]
$$

The terms are the limiting d / t and b / T ratios obtained from Table 11. The number in the subscript refers to the classification and the w and f refer to web and flange respectively.
$\beta_{2 \mathrm{w}}=35.6$, i.e the limiting d / t for a class 2 compact web (Sheet 3 of this example).
$\beta_{3 \mathrm{w}}=58.7$, i.e. the limiting d / t for a class 3 compact web (Sheet 4 of this example)
$S_{\mathrm{x}, \mathrm{eff}}=1300+(1470-1300)\left[\frac{\left(\frac{58.7}{48.0}\right)^{2}-1}{\left(\frac{58.7}{35.6}\right)^{2}-1}\right]=1349 \mathrm{~cm}^{3}$
$S_{\mathrm{x}, \text { eff }} \leq 1300+(1470-1300)\left[\frac{\frac{13.2}{7.48}-1}{\frac{13.2}{8.8}-1}\right]=1560 \mathrm{~cm}^{3}$

In this case, the first of the two values of $S_{\mathrm{x}, \mathrm{eff}}$ is the lower and should be used. This is usually the case for a UB, since the moment capacity is limited by local buckling in the web. The second equation, which relates to the flanges, yields a value of $S_{\mathrm{x}, \text { eff }}$ greater than S_{x}. This value is meaningless since $S_{\mathrm{x}, \text { eff }}$ must lie between Z_{x} and S_{x} and is due to the fact that, in this case, the flanges are class 1 plastic.
$M_{\mathrm{cx}}=355 \times 1349 \times 10^{-3}=479 \mathrm{kNm}$
Check limit to avoid irreversible deformation under serviceability loads.
For a simply supported beam $M_{\mathrm{cx}} \leq 1.2 p_{\mathrm{y}} Z_{\mathrm{x}}$
$1.2 p_{\mathrm{y}} Z_{\mathrm{x}}=1.2 \times 355 \times 1300 \times 10^{-3}=554 \mathrm{kNm}$
Therefore $M_{\mathrm{cx}}=479 \mathrm{kNm}$
From Figure 17.1, $M_{x}=159 \mathrm{kNm}$
$159 \mathrm{kNm}<479 \mathrm{kNm}$
Therefore, the major axis moment capacity is adequate.

Minor axis

Basic requirement $M_{y} \leq M_{\text {cy }}$
By inspection, the shear is low (i.e. $F_{\mathrm{v}}<0.6 P_{\mathrm{v}}$)
For low shear, the moment capacity for a class 3 section is given by:
$M_{\mathrm{cy}}=p_{\mathrm{y}} Z_{\mathrm{y}}$ or alternatively $M_{\mathrm{cy}}=p_{\mathrm{y}} S_{\mathrm{y}, \text { eff }}$
$S_{\mathrm{y}, \mathrm{eff}}=Z_{\mathrm{y}}+\left(S_{\mathrm{y}}-Z_{\mathrm{y}}\right)\left[\frac{\frac{\beta_{3 \mathrm{f}}}{b / T}-1}{\frac{\beta_{3 \mathrm{f}}}{\beta_{2 \mathrm{f}}}-1}\right]=153+(237-153)\left[\frac{\frac{13.2}{7.48}-1}{\frac{13.2}{8.8}-1}\right]=281 \mathrm{~cm}^{3}$

| Example 17 Biaxial bending and compression (semi-compact section) | Sheet | 7 | of | 10 |
| :--- | :--- | :--- | :--- | :--- | Rev

This value of $S_{\mathrm{y}, \text { eff }}$ is greater than S_{y} and should not be used. As with the second formula for $S_{\mathrm{x}, \text { eff }}$ the unrealistic value is due to the fact that the flanges are class 1 , while these formulae are only designed to work with class 3 elements. In this case, the full plastic modulus S_{y} should be used in place of the calculated $S_{\text {y,eff }}$. This is acceptable since local buckling in the web is unlikely to reduce the minor axis capacity of the section (the web lies along the neutral axis).
$M_{\mathrm{cy}}=355 \times 237 \times 10^{-3}=84.1 \mathrm{kNm}$
Check limit to avoid irreversible deformation under serviceability loads.
For a continuous beam $M_{\mathrm{cx}} \leq 1.5 p_{\mathrm{y}} Z_{\mathrm{y}}$
$1.5 p_{\mathrm{y}} Z_{\mathrm{y}}=1.5 \times 355 \times 153 \times 10^{-3}=81.5 \mathrm{kNm}$
Therefore $M_{\mathrm{cy}}=81.5 \mathrm{kNm}$
From Figure 17.2, $M_{y}=3.38 \mathrm{kNm}$
$3.38 \mathrm{kNm}<81.5 \mathrm{kNm}$
Therefore, the minor axis moment capacity is adequate.

17.2.9 Lateral-torsional buckling

The beam is restrained against lateral-torsional buckling at its supports and at its mid-span. There are, therefore, two segments to consider. However, due to symmetry, it is sufficient to design one segment only in this example. Consider segment length AB .

Basic requirements: $M_{\mathrm{x}} \leq \boldsymbol{M}_{\mathrm{b}} / \boldsymbol{m}_{\mathrm{LT}}$
and $\quad \boldsymbol{M}_{\mathrm{x}} \leq \boldsymbol{M}_{\mathrm{cx}}$ (already checked in 17.2.8 above)
The buckling resistance moment M_{b} for a class 3 semi-compact section is given by:
$M_{\mathrm{b}}=p_{\mathrm{b}} S_{\mathrm{x}, \text { eff }}$
where p_{b} is the bending strength and is dependent on the design strength p_{y} and the equivalent slenderness λ_{LT}
$\lambda_{\mathrm{LT}}=u \nu \lambda \sqrt{\beta_{\mathrm{w}}}$
$\lambda x=\frac{72.8}{37.9}=1.9$
For a section with equal flanges and $\lambda / x=1.9, \quad v=0.96$
$\beta_{\mathrm{w}}=\frac{S_{\mathrm{x}, \text { eff }}}{S_{\mathrm{x}}}=\frac{1349}{1470}=0.918 \quad \sqrt{\beta_{\mathrm{w}}}=0.958$
Therefore, $\lambda_{\mathrm{LT}}=0.872 \times 0.96 \times 72.8 \times 0.958=58.4$
For $p_{\mathrm{y}}=355 \mathrm{~N} / \mathrm{mm}^{2}$ and $\lambda_{\mathrm{LT}}=58.4$, Table 16 gives $p_{\mathrm{b}}=262 \mathrm{~N} / \mathrm{mm}^{2}$
$M_{\mathrm{b}}=262 \times 1349 \times 10^{-3}=353 \mathrm{kNm}$
Since there is no major axis loading between the restraints (apart from the self-weight of the beam, which is considered insignificant for the purpose of evaluating m_{LT}), m_{LT} can be obtained directly from Table 18 for a known value of β.

Example 17 Biaxial bending and compression (semi-compact section) \quad Sheet 8 of 10 Rev
β is the ratio of the bending moments at points A and B , i.e. $\beta=0$
From Table 18, $m_{\text {LT }}=0.6$
$M_{\mathrm{b}} / m_{\mathrm{LT}}=353 / 0.6=588 \mathrm{kNm}$
From Figure 17.2, $M_{x}=159 \mathrm{kNm}$
$159 \mathrm{kNm}<588 \mathrm{kNm}$
Therefore, the buckling resistance moment is adequate.

17.2.10 Interaction between axial load and bending

Cross section capacity

Basic requirement: $\frac{F_{\mathrm{c}}}{A_{\mathrm{g}} p_{\mathrm{y}}}+\frac{M_{\mathrm{x}}}{M_{\mathrm{cx}}}+\frac{M_{\mathrm{y}}}{M_{\mathrm{cy}}} \leq 1$
At point $B \frac{1200 \times 10^{3}}{85.5 \times 10^{2} \times 355}+\frac{159}{479}+\frac{3.38}{81.5}$

$$
=0.395+0.332+0.041=0.77<1
$$

Therefore, the cross section capacity is adequate.

Member buckling resistance

BS 5950-1:2000 presents two methods for checking the member buckling resistance: the simplified method (Clause 4.8.3.3.1) and the more exact method (Clause 4.8.3.3.2). In the simplified method, the following relationships must be satisfied:
$\frac{F_{\mathrm{c}}}{P_{\mathrm{c}}}+\frac{m_{\mathrm{x}} M_{\mathrm{x}}}{p_{\mathrm{y}} Z_{\mathrm{x}}}+\frac{m_{\mathrm{y}} M_{\mathrm{y}}}{p_{\mathrm{y}} Z_{\mathrm{y}}} \leq 1$ and
$\frac{F_{\mathrm{c}}}{P_{\mathrm{cy}}}+\frac{m_{\mathrm{LT}} M_{\mathrm{LT}}}{M_{\mathrm{b}}}+\frac{m_{\mathrm{y}} M_{\mathrm{y}}}{p_{\mathrm{y}} Z_{\mathrm{y}}} \leq 1$
$M_{\text {LT }}$ is the maximum major axis moment in segment $\mathrm{AB}=159 \mathrm{kNm}$
$m_{\mathrm{x}}=0.9$ and $m_{\mathrm{y}}=0.55$ (see Example 16)

$$
\begin{aligned}
& \frac{1200}{2001}+\frac{0.9 \times 159 \times 10^{6}}{355 \times 1300 \times 10^{3}}+\frac{0.55 \times 3.38 \times 10^{6}}{355 \times 153 \times 10^{3}} \\
& =0.600+0.310+0.034=0.94<1
\end{aligned}
$$

$$
\frac{1200}{2001}+\frac{0.6 \times 159}{353}+\frac{0.55 \times 3.38 \times 10^{6}}{355 \times 153 \times 10^{3}}
$$

$0.600+0.270+0.034=0.90<1$
Therefore, the member buckling resistance is adequate.

Adopt $457 \times 191 \times 67$ UB in S355

Note: 1. If appropriate, the web should be checked for bearing and buckling at the supports and at the point of load application, as in Example 2.
2. The deflections should be checked at the serviceability limit state in accordance with the recommendations in clause 2.5.2.
4.3.6.6

Table 18
4.8.3.3.1
4.8.3.3.1
4.8.3.3.4

Table 26
Example 17 Biaxial bending and compression (semi-compact section) \quad Sheet $\quad 9$ of $10 \quad$ Rev

17.3 Blue Book approach

The section capacities and member resistances calculated in section 17.2 above could have been obtained directly from Volume $1^{[2]}$.

Try $457 \times 191 \times 67$ UB in grade S355

17.3.1 Compression resistance

For $L_{\mathrm{Ex}}=6.0 \mathrm{~m}, \quad P_{\mathrm{cx}}=2910 \mathrm{kN}$
For $L_{\mathrm{Ey}}=3.0 \mathrm{~m}, \quad P_{\text {cy }}=2000 \mathrm{kN}$
Therefore, $\quad P_{\mathrm{c}}=2000 \mathrm{kN}$
$F_{\mathrm{c}}=1200 \mathrm{kN}$
$1200 \mathrm{kN}<2000 \mathrm{kN}$
Therefore, the compression resistance is adequate.

17.3.2 Shear Capacity (major axis)

$P_{\mathrm{v}} \quad=821 \mathrm{kN}$ (no value given for minor axis shear)
$F_{\mathrm{v}}=56 \mathrm{kN}$
$56 \mathrm{kN}<821 \mathrm{kN}$
Therefore, the major axis shear capacity is adequate.

17.3.3 Moment capacity

For $F / P_{\mathrm{z}} \quad=0.4$
$M_{\mathrm{cx}} \quad=478 \mathrm{kNm}$
$M_{x} \quad=159 \mathrm{kNm}$
$159 \mathrm{kNm}<478 \mathrm{kNm}$
Therefore, the major axis moment capacity is adequate.
For $F / P_{\mathrm{z}} \quad=0.4$
$M_{\text {cy }} \quad=65.2 \mathrm{kNm}$
$M_{y} \quad=3.38 \mathrm{kNm}$
$3.38 \mathrm{kNm}<65.2 \mathrm{kNm}$
Therefore, the minor axis moment capacity is adequate.
As in Example 16, the difference between the value of $M_{\text {cy }}$ given by Volume 1 and that calculated in Section 17.2 above is due to the fact that Volume 1 uses the limit of $1.2 p_{\mathrm{y}} Z$, whereas this example uses $1.5 p_{\mathrm{y}} Z$. The use of this higher limit is more appropriate, since the beam is continuous over a central support for minor axis bending.

17.3.4 Buckling resistance moment

For $L_{\mathrm{E}} \quad=3.0 \mathrm{~m}$ and $F / P_{\mathrm{z}} \quad=0.4$
$M_{\mathrm{b}} \quad=346 \mathrm{kNm}$
For a quick approximation, m_{LT} may conservatively be taken as 1.0. However, more accurately, $m_{\text {LT }}$ should be obtained from Table 18 of BS 5950-1:2000 as in Section 17.2.9 of this example.
$m_{\mathrm{LT}}=0.6$
$M_{\mathrm{b}} / m_{\mathrm{LT}}=346 / 0.6 \quad=577 \mathrm{kNm}$
$M_{x} \quad=159 \mathrm{kNm}$
$159 \mathrm{kNm}<577 \mathrm{kNm}$
Therefore, the buckling resistance moment is adequate.

Vol 1
Page D-111

Vol 1
Page D-79

Vol 1
Page D-110

Vol 1
Page D-110

Vol 1
Page D-111

Table 18

17.3.5 Interaction between axial load and bending

Cross section capacity at point B
$\mathrm{A}_{\mathrm{g}} p_{\mathrm{y}}=3040 \mathrm{kN}$
$\frac{F_{\mathrm{c}}}{A_{\mathrm{g}} p_{\mathrm{y}}}+\frac{M_{\mathrm{x}}}{M_{\mathrm{cx}}}+\frac{M_{\mathrm{y}}}{M_{\mathrm{cy}}}=\frac{1200}{3040}+\frac{159}{478}+\frac{3.38}{65.2}$
$=0.395+0.333+0.052=0.78<1$
Therefore, the cross section capacity is adequate.

Member buckling resistance

For a quick approximation, m_{x} and m_{y} may conservatively be taken as 1.0 . However, more accurately, m_{x} and m_{y} should be obtained from Table 26 of BS 5950-1:2000 as in Section 17.2.10 of this example.
$m_{\mathrm{x}}=0.9$
$m_{\mathrm{y}}=0.55$
$p_{\mathrm{y}} Z_{\mathrm{x}}=460 \mathrm{kNm}$
$p_{\mathrm{y}} Z_{\mathrm{y}}=54.3 \mathrm{kNm}$
$\frac{F_{\mathrm{c}}}{P_{\mathrm{c}}}+\frac{m_{\mathrm{x}} M_{\mathrm{x}}}{p_{\mathrm{y}} Z_{\mathrm{x}}}+\frac{m_{\mathrm{y}} M_{\mathrm{y}}}{p_{\mathrm{y}} Z_{\mathrm{y}}}=\frac{1200}{2000}+\frac{0.9 \times 159}{460}+\frac{0.55 \times 3.38}{54.3}$
$=0.600+0.311+0.034=0.95<1$
$\frac{F_{\mathrm{c}}}{P_{\mathrm{cy}}}+\frac{m_{\mathrm{LT}} M_{\mathrm{LT}}}{M_{\mathrm{b}}}+\frac{m_{\mathrm{y}} M_{\mathrm{y}}}{p_{\mathrm{y}} Z_{\mathrm{y}}}=\frac{1200}{2000}+\frac{0.6 \times 159}{346}+\frac{0.55 \times 3.38}{54.3}$
$=0.600+0.276+0.034=0.91<1$
Therefore, the member buckling resistance is adequate.

Adopt $457 \times 191 \times 67$ UB in S355

Note: 1. If appropriate, the web should be checked for bearing and buckling at the supports and at the point of load application, as in Example 2.
2. The deflections should be checked at the serviceability limit state in accordance with the recommendations in clause 2.5.2.

Vol 1
Page D-111
4.8.3.3.4

Table 26
Vol 1
Page D-111

The Steel Construction Institute Silwood Park, Ascot, Berks SL5 7QN Telephone: (01344) 623345 Fax: (01344) 622944	Job No. CDS 153			Sheet 1 of 9			Rev
	Job Title Example no. 18						
	Subject	Beam subject to combined biaxial bending and compression (slender section)					
	Client	SCI	Made by	MDH	Date	Jun	003
CALCULATION SHEET			Checked by	ASM	Date	Oct	003

18 Beam subject to combined biaxial bending and compression (slender section)

18.1 Introduction

The beam considered in Example 16 is required to carry an increased compression force of 2400 kN . Redesign the beam in S355 steel for the new loading.

18.1.1 Loading (factored)

Factored compression force
$F_{\mathrm{c}}=2400 \mathrm{kN}$
Major axis point load
$W=100 \mathrm{kN}$
Major axis distributed load
$w=2 \mathrm{kN} / \mathrm{m}$ (assumed self-weight)
Minor axis distributed load $\quad w=3 \mathrm{kN} / \mathrm{m}$

18.1.2 Bending moment and shear force

Major axis

The shear force and bending moment diagrams for major axis bending are as shown in Figure 18.1.

Bending moment kNm

Figure 18.1 Major axis bending

Maximum moment occurs at the centre:
$M=\frac{w L^{2}}{8}+\frac{W L}{4}=\frac{2.0 \times 6.0^{2}}{8}+\frac{100 \times 6.0}{4}=159 \mathrm{kNm}$

Example 18 Biaxial bending and compression (slender section)
Sheet 2 of $9 \quad$ Rev

Shear force at the ends:

$$
F_{\mathrm{ve}}=\frac{w L}{2}+\frac{W}{2}=\frac{2.0 \times 6.0}{2}+\frac{100}{2}=56 \mathrm{kN}
$$

Shear force at the centre:

$$
F_{\mathrm{vc}}=F_{\mathrm{ve}}-\frac{w L}{2}=50 \mathrm{kN}
$$

Minor axis

The shear force and bending moment diagrams for minor axis bending are as shown in Figure 18.2.

Figure 18.2 Minor axis bending
Maximum moment occurs at the central support:
$M=\frac{w L^{2}}{8}=\frac{3.0 \times 3.0^{2}}{8}=3.38 \mathrm{kNm}$
From the shear force diagram, the maximum shear force also occurs at the central support.
$F_{\mathrm{v}}=5.63 \mathrm{kN}$

18.2 Member checks

18.2.1 Trial section

Try $610 \times 229 \times 101$ UB in grade S355
From section property tables:

Depth	D	$=602.6 \mathrm{~mm}$
Width	B	$=227.6 \mathrm{~mm}$
Web thickness	t	$=10.5 \mathrm{~mm}$
Flange thickness	T	$=14.8 \mathrm{~mm}$
Depth between fillets	d	$=547.6 \mathrm{~mm}$
Area of cross-section	$A_{\mathrm{g}}=129 \mathrm{~cm}^{2}$	
Plastic modulus	$S_{\mathrm{x}}=2880 \mathrm{~cm}^{3}$	
Plastic modulus	$S_{\mathrm{y}}=400 \mathrm{~cm}^{3}$	
Elastic modulus	Z_{x}	$=2520 \mathrm{~cm}^{3}$
Elastic modulus	$Z_{\mathrm{y}}=256 \mathrm{~cm}^{3}$	
Radius of gyration	r_{x}	$=24.2 \mathrm{~cm}^{2}$
Radius of gyration	r_{y}	$=4.75 \mathrm{~cm}$
Buckling parameter	u	$=0.863$
Torsional index	x	$=43.1$

Local buckling ratios:
Flange
$b / T=7.69$
Web
$d / t=52.2$

18.2.2 Section classification

Grade of steel $=$ S355
$T<16 \mathrm{~mm}$
Therefore $p_{\mathrm{y}}=355 \mathrm{~N} / \mathrm{mm}^{2}$
$\varepsilon=\sqrt{\frac{275}{p_{\mathrm{y}}}}=\sqrt{\frac{275}{355}}=0.88$
For the outstand element of a compression flange, the limiting b / T for a class 1 plastic flange is 9ε. Limiting $b / T=9 \times 0.88=7.92$

The actual $b / T=7.69<7.92$
Therefore, the flange is class 1 plastic.
For the web of an I-or H -section under axial compression and bending (the "generally" case in Table 11), the limiting d / t for a class 1 plastic web is
$\frac{80 \varepsilon}{1+r_{1}}$ but $\geq 40 \varepsilon$
$r_{1}=\frac{F_{\mathrm{c}}}{d t p_{\mathrm{y}}}=\frac{2400 \times 10^{3}}{547.6 \times 10.5 \times 355}=1.18$, but $-1<r_{1} \leq 1$, therefore $r_{1}=1.0$
3.5.2

Table 11
3.5.2

Table 11
3.5.5

Limiting $d / t=\frac{80 \times 0.88}{1+1}=35.2$
The actual $d / t=52.2>35.2$
Therefore, the web is not class 1 plastic.

Example 18 Biaxial bending and compress
The limiting d / t for a class 2 compact web
Limiting $d / t=\frac{100 \times 0.88}{1+(1.5 \times 1.0)}=35.2$

The actual $d / t=52.2>35.2$
Therefore, the web is not class 2 compact.
The limiting d / t for a class 3 semi-compact web is $\frac{120 \varepsilon}{1+2 r_{2}}$ but $\geq 40 \varepsilon$
$r_{2}=\frac{F_{\mathrm{c}}}{A_{\mathrm{g}} p_{\mathrm{y}}}=\frac{2400 \times 10^{3}}{12900 \times 355}=0.52$

Limiting $d / t=\frac{120 \times 0.88}{1+(2 \times 0.52)}=51.8$
The actual $d / t=52.2>51.8$
Therefore, the web is class 4 slender.
Since the flange is class 1 plastic and the web is class 4 slender, the cross section is class 4 slender.

18.2.3 Determine the effective length

The member is pinned at both ends about both axes, with an additional restraint against lateral (minor axis) deflection at its mid-span.
$L_{\mathrm{Ex}}=6000 \mathrm{~mm}$
$L_{\mathrm{Ey}}=3000 \mathrm{~mm}$

18.2.4 Slenderness

$\lambda_{\mathrm{x}}=\frac{L_{\mathrm{Ex}}}{r_{\mathrm{x}}}=\frac{6000}{242}=24.8$
$\lambda_{y}=\frac{L_{\mathrm{Ey}}}{r_{y}}=\frac{3000}{47.5}=63.2$

18.2.5 Check the compression resistance

Basic requirement $\boldsymbol{F}_{\mathrm{c}} \leq \boldsymbol{P}_{\mathrm{c}}$
$P_{\mathrm{c}} \quad=A_{\text {eff }} p_{\mathrm{c}}$
$A_{\text {eff }}=110 \mathrm{~cm}^{2}$
The compressive strength p_{c} is obtained from the relevant strut curve for buckling about the $x-x$ and y - y axes using the appropriate reduced slenderness in each case.

Buckling about the $x-x$ axis

Use strut curve a
Reduced slenderness $=\lambda_{\mathrm{x}} \sqrt{\frac{A_{\text {eff }}}{A_{\mathrm{g}}}}=24.8 \times \sqrt{\frac{110}{129}}=22.9$

Table 23
4.7.4

Example 18 Biaxial bending and compression (slender section)	Sheet	5	of	9	Rev
For $\lambda=229$			Table 24 a		

Buckling about the y - y axis

Use strut curve b
Reduced slenderness $=\lambda_{\mathrm{y}} \sqrt{\frac{A_{\text {eff }}}{A_{\mathrm{g}}}}=63.2 \times \sqrt{\frac{110}{129}}=58.4$

For $\lambda=58.4$ and $p_{\mathrm{y}}=355 \mathrm{~N} / \mathrm{mm}^{2}, p_{\mathrm{cy}}=277 \mathrm{~N} / \mathrm{mm}^{2}$
$P_{\mathrm{cy}}=11000 \times 277 \times 10^{-3}=3047 \mathrm{kN}$
$P_{\mathrm{c}}=\min \left(P_{\mathrm{cx}}, P_{\mathrm{cy}}\right)=3047 \mathrm{kN}$
$F_{\mathrm{c}}=2400 \mathrm{kN}$
$2400 \mathrm{kN}<3047 \mathrm{kN}$
Therefore, the compression resistance is adequate.

18.2.6 Check for shear buckling

If the d / t ratio exceeds 70ε for a rolled section, the web should be checked for shear buckling in accordance with clause 4.4.5 of BS 5950-1:2000 ${ }^{[1]}$.
$70 \varepsilon=70 \times 0.88=61.6$
$d / t=52.2<61.6$, so there is no need to check for shear buckling.

18.2.7 Check the shear capacity

Major axis

Basic requirement $\boldsymbol{F}_{\mathbf{v}} \leq \boldsymbol{P}_{\mathrm{v}}$
$P_{\mathrm{v}}=0.6 p_{\mathrm{y}} A_{\mathrm{v}}$
$p_{\mathrm{y}}=355 \mathrm{~N} / \mathrm{mm}^{2}$
$A_{\mathrm{v}}=t D=10.5 \times 602.6 \quad=6327 \mathrm{~mm}^{2}$
$P_{\mathrm{v}}=0.6 \times 355 \times 6327 \times 10^{-3}=1348 \mathrm{kN}$
Maximum shear force $F_{\mathrm{v}} \quad=56 \mathrm{kN}$
$56 \mathrm{kN}<1348 \mathrm{kN}$
Therefore, the major axis shear capacity is adequate.

Minor axis

Basic requirement $\boldsymbol{F}_{\mathbf{v}} \leq \boldsymbol{P}_{\mathrm{v}}$
$P_{\mathrm{v}}=0.6 p_{\mathrm{y}} A_{\mathrm{v}}$
$p_{\mathrm{y}}=355 \mathrm{~N} / \mathrm{mm}^{2}$
$A_{\mathrm{v}}=0.9 A_{\mathrm{o}}$, where A_{o} is the combined area of the two flanges.
$A_{\mathrm{v}}=0.9 \times 2 \times 227.6 \times 14.8=6063 \mathrm{~mm}^{2}$
$P_{\mathrm{v}}=0.6 \times 355 \times 6063 \times 10^{-3}=1291 \mathrm{kN}$
Maximum shear force $F_{\mathrm{v}} \quad=5.63 \mathrm{kN}$.
$5.63 \mathrm{kN}<1291 \mathrm{kN}$
Therefore, the minor axis shear capacity is adequate.

18.2.8 Check the moment capacity

Major axis

Basic requirement $\boldsymbol{M}_{\mathrm{x}} \leq \boldsymbol{M}_{\mathrm{cx}}$
By inspection the shear is low (i.e. $F_{\mathrm{v}}<0.6 P_{\mathrm{v}}$)

For low shear, the moment capacity for a class 4 section is given by:

Table 24a

Table 23

Table 24b
$M_{\mathrm{cx}}=p_{\mathrm{y}} Z_{\mathrm{x}, \mathrm{eff}}$

Example 18 Biaxial bending and compression (slender section)	Sheet	6	of	9	Rev

However, when the cross section is non-slender under pure bending (i.e. it is only
3.6.2.3
class 4 in the presence of a high axial load), $Z_{\mathrm{x} \text {, eff }}$ is taken as equal to Z_{x}.

$$
M_{\mathrm{cx}}=355 \times 2520 \times 10^{-3}=895 \mathrm{kNm}
$$

From Figure 18.1, $M_{\mathrm{x}}=159 \mathrm{kNm}$
$159 \mathrm{kNm}<895 \mathrm{kNm}$
Therefore, the major axis moment capacity is adequate.

Minor axis

Basic requirement $M_{y} \leq M_{c y}$

By inspection the shear is low (i.e. $F_{\mathrm{v}}<0.6 P_{\mathrm{v}}$).
For low shear, the moment capacity for a class 4 section is given by:
$M_{\mathrm{cy}}=p_{\mathrm{y}} Z_{\mathrm{y}, \text { eff }}$
Once again, $Z_{\text {eff }}$ is taken as equal to Z, since the section is only class 4 due to the axial load.
$M_{\text {cy }}=355 \times 256 \times 10^{-3}=90.9 \mathrm{kNm}$
From Figure18.2, $M_{y} \quad=3.38 \mathrm{kNm}$
$3.38 \mathrm{kNm}<90.9 \mathrm{kNm}$
Therefore, the minor axis moment capacity is adequate.

18.2.9 Lateral-torsional buckling

The beam is restrained against lateral-torsional buckling at its supports and at its mid-span. There are, therefore, two segments to consider. However, due to symmetry, it is sufficient to design one segment only in this example. Consider segment length $A B$.

Basic requirements: $M_{\mathbf{x}} \leq M_{\mathrm{b}} / \boldsymbol{m}_{\mathrm{LT}}$
and $\quad \boldsymbol{M}_{\mathrm{x}} \leq \boldsymbol{M}_{\mathrm{cx}}$ (already checked in 18.2.8 above)
The buckling resistance moment M_{b} for a class 4 slender section is given by:
$M_{\mathrm{b}}=p_{\mathrm{b}} \mathrm{Z}_{\mathrm{x}, \text { eff }}$
$Z_{\mathrm{x}, \text { eff }}$ is taken as equal to Z_{x}, since the cross section would be non-slender under pure bending.
p_{b} is the bending strength and is dependent on the design strength p_{y} and the equivalent slenderness λ_{LT}.
$\lambda_{\mathrm{LT}}=u \nu \lambda \sqrt{\beta_{\mathrm{w}}}$
$\lambda / x=\frac{63.2}{43.1}=1.5$
For a section with equal flanges and $\lambda / x=1.5, v=0.97$
$\beta_{\mathrm{w}}=\frac{Z_{\mathrm{x}}}{S_{\mathrm{x}}}=\frac{2520}{2880}=0.875 \sqrt{\beta_{\mathrm{w}}}=0.935$
Therefore, $\lambda_{\mathrm{LT}}=0.863 \times 0.97 \times 63.2 \times 0.935=49.5$
For $p_{\mathrm{y}}=355 \mathrm{~N} / \mathrm{mm}^{2}$ and $\lambda_{\mathrm{LT}}=49.5$, Table 16 gives $p_{\mathrm{b}}=294 \mathrm{~N} / \mathrm{mm}^{2}$
$M_{\mathrm{b}}=294 \times 2520 \times 10^{-3}=741 \mathrm{kNm}$

Example 18 Biaxial bending and compression (slender section) \quad Sheet 7 of 9 | of | Rev |
| :--- | :--- |

Since there is no major axis loading between the restraints (apart from the self-weight of the beam, which is considered insignificant for the purpose of evaluating m_{LT}), m_{LT} can be obtained directly from Table 18 for a known value of β.
β is the ratio of the bending moments at points A and B , i.e. $\beta=0$
From Table 18, $m_{\mathrm{LT}} \quad=0.6$
$M_{\mathrm{b}} / m_{\mathrm{LT}}=741 / 0.6=1235 \mathrm{kNm}$
From Figure 18.2, $M_{\mathrm{x}}=159 \mathrm{kNm}$
$159 \mathrm{kNm}<1235 \mathrm{kNm}$
Therefore, the buckling resistance moment is adequate.

18.2.10 Interaction between axial load and bending

Cross section capacity
Basic requirement: $\frac{F_{\mathrm{c}}}{A_{\text {eff }} p_{\mathrm{y}}}+\frac{M_{\mathrm{x}}}{M_{\mathrm{cx}}}+\frac{M_{\mathrm{y}}}{M_{\mathrm{cy}}} \leq 1$
4.3.6.6

Table 18
4.8.3.2

At point B

$$
\frac{2400 \times 10^{3}}{110 \times 10^{2} \times 355}+\frac{159}{895}+\frac{3.38}{90.9}
$$

$=0.615+0.178+0.037=0.830<1$
Therefore, the cross section capacity is adequate.

Member buckling resistance

BS 5950-1:2000 presents two methods for checking the member buckling resistance: the simplified method (clause 4.8.3.3.1) and the more exact method (clause 4.8.3.3.2). In the simplified method, the following relationships must be satisfied:
$\frac{F_{\mathrm{c}}}{P_{\mathrm{c}}}+\frac{m_{\mathrm{x}} M_{\mathrm{x}}}{p_{\mathrm{y}} Z_{\mathrm{x}}}+\frac{m_{\mathrm{y}} M_{\mathrm{y}}}{p_{\mathrm{y}} Z_{\mathrm{y}}} \leq 1$ and
$\frac{F_{\mathrm{c}}}{P_{\mathrm{cy}}}+\frac{m_{\mathrm{LT}} M_{\mathrm{LT}}}{M_{\mathrm{b}}}+\frac{m_{\mathrm{y}} M_{\mathrm{y}}}{p_{\mathrm{y}} Z_{\mathrm{y}}} \leq 1$
M_{LT} is the maximum major axis moment in segment $\mathrm{AB}=159 \mathrm{kNm}$.
$m_{\mathrm{x}}=0.9$ and $m_{\mathrm{y}}=0.55$ (see Example 16)

$$
\begin{aligned}
& \frac{2400}{3047}+\frac{0.9 \times 159 \times 10^{6}}{355 \times 2520 \times 10^{3}}+\frac{0.55 \times 3.38 \times 10^{6}}{355 \times 256 \times 10^{3}} \\
& =0.788+0.160+0.020=0.97<1 \\
& \frac{2400}{3047}+\frac{0.6 \times 159}{741}+\frac{0.55 \times 3.38 \times 10^{6}}{355 \times 256 \times 10^{3}} \\
& =0.788+0.129+0.020=0.94<1
\end{aligned}
$$

Therefore, the member buckling resistance is adequate.

Adopt $610 \times 229 \times 101$ UB in S355

Note: 1. If appropriate, the web should be checked for bearing and buckling at the supports and at the point of load application, as in Example 2.
2. The deflections should be checked at the serviceability limit state in accordance with the recommendations in clause 2.5.2.

Example 18 Biaxial bending and compression (slender section)	Sheet	8	of	9	Rev

18.3 Blue Book approach

The section capacities and member resistances calculated in Section 18.2 above could have been obtained directly from Volume $1^{[2]}$.

18.3.1 Compression resistance

For $L_{\mathrm{Ex}}=6.0 \mathrm{~m}, \quad P_{\mathrm{cx}}=3850 \mathrm{kN}$
For $L_{\mathrm{Ey}}=3.0 \mathrm{~m}, \quad P_{\mathrm{cy}}=3050 \mathrm{kN}$
Therefore, $\quad P_{\mathrm{c}}=3050 \mathrm{kN}$
$F_{\mathrm{c}}=2400 \mathrm{kN}$
$2400 \mathrm{kN}<3050 \mathrm{kN}$
Therefore, the compression resistance is adequate.

18.3.2 Shear Capacity (major axis)

$P_{\mathrm{v}}=1350 \mathrm{kN}$ (no value given for minor axis shear)
$F_{\mathrm{v}}=56 \mathrm{kN}$
$56 \mathrm{kN}<1350 \mathrm{kN}$
Therefore, the major axis shear capacity is adequate.

18.3.3 Moment capacity

For $F / P_{z} \quad 0.52$
$M_{\mathrm{cx}}=407 \mathrm{kNm}$
$M_{x}=159 \mathrm{kNm}$
$159 \mathrm{kNm}<407 \mathrm{kNm}$
Therefore, the major axis moment capacity is adequate.
For $F / P_{z} \quad 0.52$
$M_{\text {cy }}=41.4 \mathrm{kNm}$
$M_{v}=3.38 \mathrm{kNm}$
$3.38 \mathrm{kNm}<41.4 \mathrm{kNm}$
Therefore, the minor axis moment capacity is adequate.

18.3.4 Buckling resistance moment

Volume 1 (Page D-109) does not include M_{b} values for class 4 slender sections.
From 18.2.9 $M_{b}=741 \mathrm{kNm}$

18.3.5 Interaction between axial load and bending

Cross section capacity

$\frac{F_{\mathrm{c}}}{A_{\text {eff }} p_{\mathrm{y}}}+\frac{M_{\mathrm{x}}}{M_{\mathrm{cx}}}+\frac{M_{\mathrm{y}}}{M_{\mathrm{cy}}}=\frac{2400 \times 10^{3}}{110 \times 10^{2} \times 355}+\frac{159}{407}+\frac{3.38}{41.4}$
$=0.615+0.391+0.082=1.09>1$
Therefore, the cross section capacity is NOT adequate.
For slender sections, the moment capacities in Volume 1 are conservative because they have been based on reduced design strength and gross section properties (i.e. $p_{\mathrm{yr}} Z$) instead of $p_{\mathrm{y}} Z_{\mathrm{eff}}$.

However, the full calculation in Section 18.2.10 shows that the cross section is actually adequate in this case.

Vol 1
Page D-3

Vol 1
Page D-78

Vol 1
Page D-108

Vol 1
Page D-108

Example 18 Biaxial bending and compression (slender section)

Sheet	9	of 9	Rev

Member buckling resistance

For a quick approximation, $m_{\mathrm{x}}, m_{\mathrm{y}}$ and m_{LT} may conservatively be taken as 1.0 .
However, more accurately, m_{x} and m_{y} should be obtained from Table 26 of BS 5950-1:2000 and $m_{\text {LT }}$ should be obtained from Table 18 of BS 5950-1:2000.
$m_{\mathrm{x}}=0.9$
$m_{\mathrm{y}}=0.55$
$m_{\mathrm{LT}}=0.6$
$p_{\mathrm{y}} Z_{\mathrm{x}}=893 \mathrm{kNm}$
$p_{\mathrm{y}} Z_{\mathrm{y}}=90.9 \mathrm{kNm}$
4.8.3.3.4

Table 26

Table 18
Vol 1
Page D-109

The Steel Construction Institute Silwood Park, Ascot, Berks SL5 7QN Telephone: (01344) 623345 Fax: (01344) 622944	Job No. CDS 153			Sheet	1 of	5	Rev
	Job Title Example no. 19						
	Subject	Lattice beam					
	Client	SCI	Made by	MDH	Date	Jun 2003	
CALCULATION SHEET			Checked by	ASM	Date	Oct	003

19 Lattice beam

19.1 Introduction

The top chord of a lattice girder supports purlins at A, B and C, as shown in Figure 19.1, resulting in a factored point load of 11.2 kN at each location. The member is a $150 \times 150 \times 5$ hot finished RHS in S275 steel and is continuous at A, B and C. Check the adequacy of the top chord by considering its section capacity and buckling resistance.

Figure 19.1

19.1.1 Loading

The factored compressive force in $\mathrm{ABC}=598 \mathrm{kN}$.
The factored bending moment diagram is shown in Figure 19.2 (moments in kNm).

Figure 19.2

19.1.2 Section properties

Depth
Thickness
Area of section
Radius of gyration
Plastic modulus
Elastic modulus
Local buckling ratio
$D=150 \mathrm{~mm}$
$t=5.0 \mathrm{~mm}$
$A=28.7 \mathrm{~cm}^{2}$
$r=5.90 \mathrm{~cm}$
$S=156 \mathrm{~cm}^{3}$
$Z=134 \mathrm{~cm}^{3}$
$d / t=27.0$

Vol 1
Page B-22

| Example 19 Lattice beam | Sheet | 2 | of | 6 | Rev |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

19.2 Member design

19.2.1 Classify the cross section

Grade of steel = S275
$t<16.0 \mathrm{~mm}$
Therefore $p_{\mathrm{y}}=275 \mathrm{~N} / \mathrm{mm}^{2}$
$\varepsilon=\sqrt{\frac{275}{p_{\mathrm{y}}}}=\sqrt{\frac{275}{275}}=1.0$
For the flange of a HF RHS, the limiting b / t is 28ε, but $\leq 80 \varepsilon-d / t$
Limiting $b / t=28 \varepsilon=28 \times 1.0=28.0$
The actual $b / t=d / t \quad=27.0<28.0$
Therefore, the flange is class $\mathbf{1}$ plastic.
For the web of a HF RHS, the limiting d / t is at least 40ε. Therefore, for a square hollow section, where b / t is always equal to d / t, the classification of the cross section will always be determined by the classification of the flange and there is no need to check the web.
Therefore, the cross section is class 1 plastic.

19.2.2 Determine the effective lengths

In the plane of the girder, there is no vertical restraint at B and the effective length can be assumed to be
$L_{\mathrm{Ex}}=0.85 L_{\mathrm{AC}}=0.85 \times 3.6=3.06 \mathrm{~m}$
Out of plane, the purlin at B provides restraint to the top chord and the effective
length can be assumed to be
$L_{\mathrm{Ey}}=1.0 L_{\mathrm{AB}}=1.0 \times 1.8=1.8 \mathrm{~m}$

19.2.3 Slenderness

$\lambda_{\mathrm{x}}=\frac{L_{\mathrm{Ex}}}{r}=\frac{3060}{59}=51.9$
$\lambda_{\mathrm{y}}=\frac{L_{\mathrm{Ey}}}{r}=\frac{1800}{59}=30.5$

19.2.4 Check the compression resistance

Basic requirement $F_{c} \leq P_{c}$
$P_{\mathrm{c}}=A_{\mathrm{g}} p_{\mathrm{c}}$ (for a class 1 plastic cross section)
The compressive strength p_{c} is obtained from the relevant strut curve for buckling about the $\mathrm{x}-\mathrm{x}$ and y - y axes.

Buckling about the $x-x$ axis

Use strut curve a
For $\lambda_{\mathrm{x}}=51.9$ and $p_{\mathrm{y}}=275 \mathrm{~N} / \mathrm{mm}^{2}, \quad p_{\mathrm{cx}}=249 \mathrm{~N} / \mathrm{mm}^{2}$
$P_{\text {cx }}=2870 \times 249 \times 10^{-3}=715 \mathrm{kN}$
3.1.1

Table 9
3.5.2

Table 12
3.5.2

Table 12
4.7.3

Table 22

Table 24a

Example 19 Lattice beam	Sheet	3	of	6	Rev

Buckling about the y - y axis

Use strut curve a
For $\lambda_{\mathrm{y}}=30.5$ and $p_{\mathrm{y}}=275 \mathrm{~N} / \mathrm{mm}^{2}, p_{\text {cy }}=266 \mathrm{~N} / \mathrm{mm}^{2}$
$P_{\text {cy }}=2870 \times 266 \times 10^{-3}=763 \mathrm{kN}$
P_{c} is the lesser of P_{cx} and $P_{\mathrm{cy}}=715 \mathrm{kN}$
$F_{\mathrm{c}}=598 \mathrm{kN}$
$598 \mathrm{kN}<715 \mathrm{kN}$
Therefore, the compression resistance is adequate.

19.2.5 Check for shear buckling

If the d / t ratio exceeds 70ε for a rolled section, the web should be checked for shear buckling in accordance with clause 4.4 .5 of BS 5950-1:2000 ${ }^{[1]}$.
$70 \varepsilon=70 \times 1.0=70.0$
In this case, $d / t=27.0<70 \varepsilon$, so there is no need to check for shear buckling.

19.2.6 Check the shear capacity

Basic requirement $\boldsymbol{F}_{\mathrm{v}} \leq \boldsymbol{P}_{\mathrm{v}}$
$P_{\mathrm{v}}=0.6 p_{\mathrm{y}} A_{\mathrm{v}}$
$p_{\mathrm{y}}=275 \mathrm{~N} / \mathrm{mm}^{2}$
$A_{\mathrm{v}}=\left(\frac{A D}{D+B}\right)=\frac{2870 \times 150}{150+150}=1435 \mathrm{~mm}^{2}$
$P_{\mathrm{v}}=0.6 \times 275 \times 1435 \times 10^{-3}=237 \mathrm{kN}$
$F_{\mathrm{v}}=11.2 \mathrm{kN}$
$11.2 \mathrm{kN}<237 \mathrm{kN}$
Therefore, the shear capacity is adequate.

19.2.7 Check the moment capacity

Basic requirement $\boldsymbol{M}_{\mathrm{x}} \leq \boldsymbol{M}_{\mathrm{cx}}$
Without calculation, it is clear that the shear is "low" in this case (i.e. $F_{\mathrm{v}}<0.6 P_{\mathrm{v}}$).
For low shear, the moment capacity for a class 1 section is given by:
$M_{\mathrm{cx}}=p_{\mathrm{y}} S_{\mathrm{x}}$
$M_{\mathrm{cx}}=275 \times 156 \times 10^{-3}=42.9 \mathrm{kNm}$
Check limit to avoid irreversible deformation under serviceability loads.
For a continuous beam $M_{\mathrm{cx}} \leq 1.5 p_{\mathrm{y}} Z_{\mathrm{x}}$
$1.5 p_{\mathrm{yx}}=1.5 \times 275 \times 134 \times 10-3=55.3 \mathrm{kNm}$
Therefore $M_{\mathrm{cx}}=42.9 \mathrm{kNm}$
From Figure $19.2, M_{\mathrm{x}}=5.04 \mathrm{kNm}$.
$5.04 \mathrm{kNm}<42.9 \mathrm{kNm}$
Therefore, the moment capacity is adequate.

19.2.8 Lateral-torsional buckling

For square hollow sections, there is no need to consider lateral-torsional buckling and M_{b} is given by:
$M_{\mathrm{b}}=p_{\mathrm{y}} S_{\mathrm{x}}=42.9 \mathrm{kNm}$

Table 23
Table 24a

Example 19 Lattice beam	Sheet	4	of	6	Rev

19.2.9 Interaction between axial load and bending

Cross section capacity
Basic requirement: $\frac{F_{\mathrm{c}}}{A_{\mathrm{g}} p_{\mathrm{y}}}+\frac{M_{\mathrm{x}}}{M_{\mathrm{cx}}}+\frac{M_{\mathrm{y}}}{M_{\mathrm{cy}}} \leq 1$
At point B: $\frac{598 \times 10^{3}}{2870 \times 275}+\frac{5.04}{42.9}+0=0.758+0.117+0=0.88<1$
Therefore, the cross section capacity is adequate.

Member buckling resistance

In the simplified method, the following relationships must be satisfied:
$\frac{F_{\mathrm{c}}}{P_{\mathrm{c}}}+\frac{m_{\mathrm{x}} M_{\mathrm{x}}}{p_{\mathrm{y}} Z_{\mathrm{x}}}+\frac{m_{\mathrm{y}} M_{\mathrm{y}}}{p_{\mathrm{y}} Z_{\mathrm{y}}} \leq 1$ and
$\frac{F_{\mathrm{c}}}{P_{\mathrm{cy}}}+\frac{m_{\mathrm{LT}} M_{\mathrm{LT}}}{M_{\mathrm{b}}}+\frac{m_{\mathrm{y}} M_{\mathrm{y}}}{p_{\mathrm{y}} Z_{\mathrm{y}}} \leq 1$
$P_{\mathrm{c}} \quad$ is the smaller of P_{cx} and P_{cy}
M_{x} is the maximum major axis moment in segment AC $=5.04 \mathrm{kNm}$
M_{LT} is the maximum major axis moment in segment $\mathrm{AB}=5.04 \mathrm{kNm}$
m_{x} is determined between restraints on the x axis, i.e. A and C , according to the shape of the bending moment diagram (see Figure 19.2).
$m_{\mathrm{x}}=0.2+\frac{0.1 M_{2}+0.6 M_{3}+0.1 M_{4}}{M_{\max }} \quad$ but $m_{x} \geq \frac{0.8 M_{24}}{M_{\max }}$
The moments M_{2} and M_{4} are the values at the quarter points and the moment M_{3} is the value at mid-length. $M_{\max }$ is the maximum moment in the segment and M_{24} is the maximum moment in the central half of the segment.

Location	M_{2}	M_{3}	M_{4}	M_{24}	$M_{\max }$
Moment kNm	0	5.04	0	5.04	5.04

$m_{\mathrm{x}}=0.2+\frac{0+0.6 \times 5.04+0}{5.04}=0.8 \quad$ but $m_{x} \geq \frac{0.8 \times 5.04}{5.04}=0.8$
Therefore, $m_{\mathrm{x}}=0.8$
m_{LT} is determined between restraints on the y -y axis, i.e. A and B (or B and C)
$M=5.04, \beta M=-5.04$, therefore $\beta=-1$ and $m_{\mathrm{LT}}=0.44$

$$
\begin{aligned}
& \frac{598}{715}+\frac{0.8 \times 5.04 \times 10^{6}}{275 \times 134 \times 10^{3}}+0=0.836+0.109+0=0.95<1 \\
& \frac{598}{763}+\frac{0.44 \times 5.04}{42.9}+0=0.784+0.052+0=0.84<1
\end{aligned}
$$

4.8.3.3.4

Table 26
4.3.6.6

Table 18
4.8.3.3.1
4.8.3.3.1

Therefore, the member buckling resistance is adequate.
Note: The deflections should be checked as in Example 2.
Adopt $150 \times 150 \times 5$ HF RHS in S275 steel

Example 19 Lattice beam	Sheet	5	of	6	Rev

19.3 Blue Book approach

The member capacities and resistances calculated in section 19.2 could have been obtained directly from Volume $1^{[2]}$.

19.3.1 Compression resistance

For $L_{\mathrm{Ex}}=3.06 \mathrm{~m}, \quad P_{\mathrm{cx}}=714 \mathrm{kN}$
For $L_{\mathrm{Ey}}=1.8 \mathrm{~m}, \quad P_{\mathrm{cy}}=759 \mathrm{kN}($ for 2 m)
Therefore, $\quad P_{\mathrm{c}}=714 \mathrm{kN}$
$F_{\mathrm{c}}=598 \mathrm{kN}$
$598 \mathrm{kN}<714 \mathrm{kN}$
Therefore, the compression resistance is adequate.

19.3.2 Shear capacity

$P_{\mathrm{v}} \quad=237 \mathrm{kN}$
$F_{\mathrm{v}}=11.2 \mathrm{kN}$
$11.2 \mathrm{kN}<237 \mathrm{kN}$
Therefore, the shear capacity is adequate.

19.3.3 Moment capacity

$M_{\text {cx }}=42.9 \mathrm{kNm}$
$M_{\mathrm{x}}=5.04 \mathrm{kNm}$
$5.04 \mathrm{kNm}<42.9 \mathrm{kNm}$
Therefore, the moment capacity is adequate.

19.3.4 Interaction between axial load and bending

Cross section capacity
$A_{\mathrm{g}} p_{\mathrm{y}}=789 \mathrm{kN}$
$\frac{F_{\mathrm{c}}}{A_{\mathrm{g}} p_{\mathrm{y}}}+\frac{M_{\mathrm{x}}}{M_{\mathrm{cx}}}+\frac{M_{\mathrm{y}}}{M_{\mathrm{cy}}}=\frac{598}{789}+\frac{5.04}{42.9}+0 \quad=0.758+0.117=0.88<1$
Therefore, the cross section capacity is adequate.

Member buckling resistance

For a quick approximation, m_{x} and m_{LT} may conservatively be taken as 1.0 . However, more accurately, m_{x} should be obtained from Table 26 of BS 5950-1:2000 and m_{LT} should be obtained from Table 18 of BS 5950-1:2000.
$m_{\mathrm{x}}=0.8$
$m_{\mathrm{LT}}=0.44$
$p_{\mathrm{y}} Z=36.9 \mathrm{kNm}$
Vol 1
Page C-148
Page C-148
Vol 1
Page C-84
Vol 1
Page C-149
-

P

Table 26
Table 18
Vol 1
Page C-149
$\frac{F_{\mathrm{c}}}{P_{\mathrm{c}}}+\frac{m_{\mathrm{x}} M_{\mathrm{x}}}{p_{\mathrm{y}} Z_{\mathrm{x}}}+\frac{m_{\mathrm{y}} M_{\mathrm{y}}}{p_{\mathrm{y}} Z_{\mathrm{y}}}=\frac{598}{714}+\frac{0.8 \times 5.04}{36.9}+0$
$=0.838+0.109+0=0.95<1$

For a square hollow section, $M_{\mathrm{b}}=M_{\mathrm{c}}=42.9 \mathrm{kN}$

$$
\begin{aligned}
& \frac{F_{\mathrm{c}}}{P_{\mathrm{cy}}}+\frac{m_{\mathrm{LT}} M_{\mathrm{LT}}}{M_{\mathrm{b}}}+\frac{m_{\mathrm{y}} M_{\mathrm{y}}}{p_{\mathrm{y}} Z_{\mathrm{y}}}=\frac{598}{759}+\frac{0.44 \times 5.04}{42.9}+0 \\
& =0.788+0.052+0=0.84<1
\end{aligned}
$$

Therefore, the member buckling resistance is adequate.
Adopt $150 \times 150 \times 5$ HF RHS in S275 steel

Vol 1
Page C-148

Silwood Park, Ascot, Berks SL5 7QN
Telephone: (01344) 623345
Fax: (01344) 622944
CALCULATION SHEET

Job No.	CDS 153	Sheet	1	of	22	Rev
Job Title	Example no. 20					
Subject	Gantry girder, using a UB with a plated top flange					

20 Gantry girder, using a UB with a plated top flange

20.1 Introduction

Design a simply supported gantry girder, of span 8.0 m , using a UB and a top flange plate. The gantry girder is to be used in a building to carry an indoor overhead travelling crane for a medium to heavy workshop. The crane is class Q3 as defined in BS 2573-1:1983 ${ }^{[4]}$. The wheels of the crane are flanged on both sides.

The crane details (Figure 20.1) are as follows:

Crane capacity (hook load)	$W_{\text {cap }}=100 \mathrm{kN}$
Weight of crab	$W_{\mathrm{cb}}=20 \mathrm{kN}$
Weight of crane bridge (including end carriages)	$W_{\mathrm{c}}=80 \mathrm{kN}$
Weight of gantry girder	$W_{\mathrm{G}}=15 \mathrm{kN}$
Span of crane bridge	$L_{\mathrm{c}}=15 \mathrm{~m}$
Wheel spacing in end carriage	$a_{\mathrm{w}}=4 \mathrm{~m}$
Minimum hook approach	$a_{\mathrm{h}}=1 \mathrm{~m}$

Figure 20.1 Arrangement of gantry girder and crane

20.1.1 Wheel loads

Note: Section 20.6 of this example gives background and information to gantry girder loading

Vertical wheel load

Maximum unfactored static load (per wheel), $W_{\text {us }}$ (from the crane bridge self-weight plus crab self-weight plus hook load).

Example 20 Gantry girder, using a UB with a plated top flange \quad Sheet 2 of 22 Rev

$$
W_{\mathrm{us}}=\frac{1}{2}\left(\frac{W_{\mathrm{c}}}{2}+\left(W_{\mathrm{cb}}+W_{\text {cap }}\right) \frac{L_{\mathrm{c}}-a_{\mathrm{h}}}{L_{\mathrm{c}}}\right)=\frac{1}{2} \times\left(40+(20+100) \times \frac{14}{15}\right)=76 \mathrm{kN}
$$

Impact factor 1.3

Maximum unfactored dynamic vertical load (per wheel) (see Table 20.5 of this example).
$W_{\mathrm{w}}=1.3 W_{\mathrm{us}}=1.3 \times 76=98.8 \mathrm{kN}$

Horizontal wheel load

Horizontal loads that act both laterally (i.e. transverse) and longitudinally to the rail of the girder need to be considered. Such horizontal loads are the result of surge and crabbing.

Horizontal forces due to surge

This is the same as inertia forces (clause 3.1.5.1 of BS 2573-1:1983 ${ }^{[4]}$).
Transverse surge forces (see Figure 20.2) are developed due to:

1) the acceleration and braking of the crab when moving along the crane bridge
2) lateral pulling by the crab when lifting a load, or swinging of the load.

Longitudinal surge forces (acting along the rails) result from acceleration and braking of the crane bridge and to longitudinal pulling on the lifted loads.

The value of the transverse surge load is taken as 10% of the sum of the crab weight and the lifted load. Where the wheels have single flanges, the transverse surge is carried by only two wheels. Where the wheels have double flanges (i.e. one flange on each side of the wheel), the transverse surge is shared by all four wheels.
N.B. assuming double flanged wheels.

Unfactored horizontal transverse surge load per wheel, $W_{\mathrm{H} 1}$
$W_{\mathrm{H} 1}=\frac{0.1\left(W_{\mathrm{cb}}+W_{\text {cap }}\right)}{\text { No. of wheels }}=\frac{0.1 \times(20+100)}{4}=3 \mathrm{kN}$
Unfactored horizontal longitudinal surge load (along the rails) per wheel, $W_{\mathrm{H} 2}$ (5\% of the static load)
$W_{\text {H2 } 2}=0.05 W_{\text {us }}=0.05 \times 76=3.8 \mathrm{kN}$

Horizontal forces due to crabbing

This is the same as skew loads due to travelling (caluse 3.1.5.2, BS 2573: Part 1:1983 ${ }^{[4]}$) Transverse crabbing forces (see Figure 20.3) are developed due to the oblique or skew travel of the crane bridge along the rail.

Unfactored crabbing force, transverse to the rail per wheel, F_{R}

$$
\begin{aligned}
& F_{\mathrm{R}}=\frac{L_{\mathrm{c}} W_{\mathrm{w}}}{40 a_{\mathrm{w}}} \text { but } F_{\mathrm{R}} \geq \frac{W_{\mathrm{w}}}{20} \\
& F_{\mathrm{R}}=\frac{15 \times 98.8}{40 \times 4}=9.3 \mathrm{kN} \text { but } \geq \frac{98.8}{20}=4.9 \mathrm{kN}
\end{aligned}
$$

Therefore, $F_{\mathrm{R}}=9.3 \mathrm{kN}$
BS 2573-1 ${ }^{[4]}$
Table 4正

\qquad
\qquad
\qquad
\qquad
\qquad

Example 20 Gantry girder, using a UB with a plated top flange	Sheet	3	of	22	Rev

Figure 20.2 Transverse surge force

Figure 20.3 Crabbing forces or skew loads due to travelling

20.2 Design loads: bending moment and shear

The following three crane load combinations will be considered:

1. 1.4 Dead load + 1.6 Vertical crane loads
2. 1.4 Dead load + 1.6 Horizontal crane loads
3. 1.4 Dead load + 1.4 Vertical crane loads + 1.4 Horizontal crane loads

The maximum bending moments and shear forces for each load combination will be determined.

20.2.1 Crane load combination 1:

1.4 Dead load + 1.6 Vertical crane loads

Factored loads

Gantry girder dead load $W^{\prime}{ }_{\mathrm{G}}=1.4 \times W_{\mathrm{G}}=1.4 \times 15=21 \mathrm{kN}$
Vertical crane load (per wheel) $W^{\prime}{ }_{\mathrm{w}}=1.6 \times W_{\mathrm{w}}=1.6 \times 98.8 \quad=158 \mathrm{kN}$
The maximum bending moment and shear force will each need to be determined at two different wheel positions.

Example 20 Gantry girder, using a UB with a plated top flange Sheet 4 of 22 Rev

Maximum bending moment

Figure 20.4 shows the load, bending moment and shear force diagram corresponding to crane load combination 1. The position of the wheel loads result in the maximum bending moment.

Figure 20.4 Crane load combination 1, wheel position 1, for maximum bending moments

Example 20 Gantry girder, using a UB with a plated top flange	Sheet	5	of	22	Rev

Maximum shear force

The maximum shear force occurs when one wheel is almost over a support as shown in Figure 20.5.

Figure 20.5 Crane load combination 1, wheel position 2, for maximum shear force

20.2.2 Crane load combination 2:

1.4 Dead load + 1.6 Horizontal crane loads

The crane load combinations in clause 2.4.1.3 of BS $5950-1: 2000^{[1]}$ are for "gantry girders and their supports". Crane load combination 2 is an important combination for the supports (e.g. longitudinal bracing resisting braking forces when the crane is in another bay) but is not a combination (i.e. horizontal crane loads without vertical crane loads) that can occur on an individual simply supported crane gantry girder. Therefore crane load combination 2 is not checked in this example.

20.2.3 Crane load combination 3:

1.4 Dead load + 1.4 Vertical crane loads +1.4 Horizontal crane loads

To simplify the calculations and remain conservative the maximum bending moment from the vertical crane loads are combined with the maximum bending moments from the horizontal crane loads, even though these do not occur at the same position.

Factored loads

Gantry girder dead load $W_{\mathrm{G}}^{\prime}=1.4 \times W_{\mathrm{G}}^{\prime}=1.4 \times 15=21 \mathrm{kN}$
Vertical crane load (per wheel) $W_{\mathrm{w}}^{\prime}=1.4 \times W_{\mathrm{w}}=1.4 \times 98.8=138 \mathrm{kN}$
Horizontal transverse force (per wheel) due to surge

$$
W_{\mathrm{H} 1}^{\prime}=1.4 \times W_{\mathrm{H} 1}=1.4 \times 3.0=4.2 \mathrm{kN}
$$

Horizontal force (per wheel) due to crabbing.

$$
F_{\mathrm{R}}^{\prime}=1.4 \times F_{\mathrm{R}}=1.4 \times 9.3=13.0 \mathrm{kN}
$$

Bending moment for factored vertical loads

The maximum bending moment for vertical loads is as shown in Figure 20.6.

Figure 20.6 Vertical loads (in crane load combination 3), for maximum bending moment

Example 20 Gantry girder, using a UB with a plated top flange	Sheet	7	of	22	Rev

Bending moment for factored horizontal loads

Worst case for bending moment for horizontal loads is as shown in Figure 20.7 for surge forces and Figure 20.8 for crabbing forces.

3.15 kN
$1.05 \mathrm{kN} \quad 1.05 \mathrm{kN} \quad 5.25 \mathrm{kN}$
$1.05 \mathrm{kN} \quad 1.05 \mathrm{kN} \quad 5.25 \mathrm{kN}$
c) Shear forces

Figure 20.7 Horizontal surge forces (in crane load combination 3), for maximum bending moment.

Figure 20.8 Horizontal crabbing forces (in crane load combination 3), for maximum bending moment.

Example 20 Gantry girder, using a UB with a plated top flange Sheet 8 of 22
Rev

For crane load combination 3, the maximum horizontal bending moment due to crabbing (26.0 kNm from Figure 20.8) was larger than that due to surge $(9.45 \mathrm{kNm}$ from Figure 20.7). Therefore, for crane load combination 3, only the horizontal bending moment due to crabbing will be considered in sections 20.4.3 and 20.4.4.

20.3 Initial sizing of the gantry girder

This is normally a trial and error process, the UB section being chosen having a buckling resistance moment M_{b} approximating to the maximum vertical moment for $m_{\mathrm{LT}}=1$.

For this example try a $610 \times 229 \times 125$ UB grade S275 with a $300 \mathrm{~mm} \times 15 \mathrm{~mm}$ plate grade S275 steel. A top flange plate rather than a channel has been adopted, since welding is easier (see Figure20.9)

Figure 20.9 Trial gantry girder section-UB with plate

20.3.1 Section classification of compound section (UB plus plate)

Grade of steel = S275
$T>16 \mathrm{~mm}$ and $<40 \mathrm{~mm}$ for the UB
Therefore for classification take $p_{\mathrm{y}}=265 \mathrm{~N} / \mathrm{mm}^{2}$ for both the UB and the plate
$\varepsilon=\sqrt{\frac{275}{p_{\mathrm{y}}}} \quad=\sqrt{\frac{275}{265}}=1.02$

Flange classification

3.1.1

Table 9

Example 20 Gantry girder, using a UB with a plated top flange
Sheet 9 of 22

For a compound flange, the following width to thickness ratios should be considered:
(a) The ratio of the outstand of the compound flange to the thickness of the original flange should be classified under "outstand element of compression flange - rolled section".
For the outstand element of a compression flange of a rolled section, the limiting b / T for a class 1 plastic flange is $9 \varepsilon=9 \times 1.02=9.18$

The actual $b / T=\frac{B_{\mathrm{P}} / 2}{T}=\frac{300 / 2}{19.6}=7.7<9.18$
(b) The ratio of the internal width of the plate between the lines of weld or bolts connecting it to the original flange, to the thickness of the plate should be classified under "internal element of compression flange".

For the internal element of a compression flange, the limiting b / T for a class 1 plastic flange is $28 \varepsilon=28 \times 1.02=28.6$

$$
\frac{B}{T_{\mathrm{p}}}=\frac{229}{15}=15.3<28.6
$$

(c) The ratio of the outstand of the plate beyond the lines of welds or bolts connecting it to the original flange, to the thickness T_{p} of the plate should be classified under "outstand element of compression flange - welded section".
For the outstand element of a compression flange of a welded section, the limit for a class 1 plastic flange is $8 \varepsilon=8 \times 1.02=8.16$

$$
\frac{\left(B_{\mathrm{P}}-B\right) / 2}{T_{\mathrm{p}}}=\frac{(300-229) / 2}{15}=2.4<8.16
$$

Therefore, the flange is class $\mathbf{1}$ plastic.

Web classification

The equal area axis and the neutral axis of the compound section lie above the mid-depth of the UB section (see Figure 20.9) because the plate is connected to the top flange of the UB section. Before determining the value of $y_{\text {ea }}$ and $y_{\text {na }}$, the web classification can be checked conservatively by assuming that the neutral axis is at the mid-depth of the UB Section.
The limiting d / t for a class 1 plastic web is
$80 \varepsilon=80 \times 1.02=81.6$
The actual $\frac{d}{t}=\frac{547.6}{11.9}=46.0<81.6$
Therefore, the web is class 1 plastic.
Flange and web are both class 1
Therefore, the cross section is class $\mathbf{1}$, plastic

Example 20 Gantry girder, using a UB with a plated top flange
Sheet 10
22
Rev

20.3.2 Section properties

A summary of the section properties for the top plate, UB section and compound section (UB + top plate) are given in Table 20.1. The calculations are given in Section 20.5 below.

Table 20.1 Section properties

			Plate* $\mathbf{3 0 0} \mathbf{x 1 5}$	UB** $\mathbf{6 1 0 x 2 2 9 x 1 2 5}$	Compound section*** (UB plate)
Area	A	$\mathrm{~cm}^{2}$	45	159	204
Second moment of area x-x	I_{x}	cm^{4}	8.44	98600	133100
Second moment of area y-y	I_{y}	cm^{4}	3375	3930	7305
Torsional constant	J	$\mathrm{~cm}^{4}$	33.8	154	187.8
Radius of gyration x-x	r_{x}	cm	-	24.9	-
Radius of gyration y-y	r_{y}	cm	-	4.97	5.98
Elastic modulus x-x	Z_{x}	cm^{3}	-	3220	Top
				Bottom	3547
Elastic modulus y-y	Z_{y}	cm^{3}	225	343	487
Plastic modulus x-x	S_{x}	cm^{3}	-	3680	4622
Plastic modulus y-y	S_{y}	cm^{3}	337.5	535	-
Warping constant	H	$\mathrm{~cm}^{6}$	-	3.45×10^{6}	-
Torsional index	x		-	34.1	35.3
Buckling parameter	u		-	0.874	0.86
Flange ratio ${ }^{+}$	η		-	-	0.73

Only the properties required in the design are given in the table.

* For calculation of section properties of the plate, see Section 20.5.1.
** Section properties of UB taken from Volume $1^{[2]}$
*** For calculation of section properties of the compound section, see Section 20.5.3.
${ }^{+}$Required for LTB check in section 20.4.2

20.4 Design Checks

20.4.1 Major axis bending

Basic requirement: $M_{\mathrm{x}} \leq M_{\mathrm{cx}}$
The moment capacity for a class 1 plastic section is given by:
$M_{\mathrm{cx}}=p_{\mathrm{y}} S_{\mathrm{x}}$
$M_{\mathrm{cx}}=265 \times 4622 \times 10^{-3}=1225 \mathrm{kNm}$
Check limit to avoid irreversible deformation under serviceability loads.
For a simply supported beam $M_{\mathrm{cx}} \leq 1.2 p_{\mathrm{y}} Z_{\mathrm{x}}$
Z_{x} is the lesser of $Z_{\mathrm{x}, \text { bottom }}$ and $Z_{\mathrm{x}, \text { top }}$
$Z_{\mathrm{x}}=Z_{\mathrm{x}, \text { botom }}=3547 \mathrm{~cm}^{3}$
$1.2 p_{\mathrm{y}} Z_{\mathrm{x}} \quad=1.2 \times 265 \times 3547 \times 10^{-3}=1128 \mathrm{kNm}$
Therefore $M_{\mathrm{cx}}=1128 \mathrm{kNm}$
In crane load combination $1, M_{x}=375 \mathrm{kNm}$ (see Figure 20.4)
$375 \mathrm{kNm}<1128 \mathrm{kNm}$
Therefore, the major axis moment capacity is adequate.
Example 20 Gantry girder, using a UB with a plated top flange \quad Sheet 11 of 22 Rev

20.4.2 Lateral-torsional buckling

Check gantry girder as an unrestrained member for vertical loads.
Due to interaction between crane wheels and crane rails, crane loads need not be treated as destabilizing, assuming that the rails are not mounted on resilient pads.
No account should be taken of the effect of moment gradient i.e. $m_{\text {LT }}$ should be taken as 1.0 .
Hence the basic requirement is $\boldsymbol{M}_{\mathbf{x}} \leq \boldsymbol{M}_{\mathbf{b}}$
The buckling resistance moment M_{b} for a class 1 plastic section is given by:
$M_{\mathrm{b}}=p_{\mathrm{b}} S_{\mathrm{x}}$
where p_{b} is the bending strength and is dependent on the design strength p_{y} and the equivalent slenderness $\lambda_{\text {LT }}$.
$\lambda_{\mathrm{LT}}=u \nu \lambda \sqrt{\beta_{\mathrm{W}}}$
For a class 1 plastic section, $\beta_{\mathrm{w}}=1$
The ends of the girder are torsionally restrained. At the supports the compression flanges are laterally restrained but both the flanges are free to rotate on plan. The effective length L_{E} for normal loading condition, is given as:

$$
\begin{aligned}
& L_{\mathrm{E}}=1.0 L \quad=8.0 \mathrm{~m} \\
& \lambda=\frac{L_{\mathrm{E}}}{r_{\mathrm{y}}} \quad=\frac{8.0}{5.98} \times 10^{2}=133.8
\end{aligned}
$$

$$
\frac{\lambda}{x}=\frac{133.8}{35.3}=3.8
$$

$$
\eta=0.73
$$

For $\frac{\lambda}{x}=3.8$ and $\eta=0.73$, Table 19 gives, $v=0.78$
$\lambda_{\mathrm{LT}}=0.86 \times 0.78 \times 133.8=89.8$
For $p_{\mathrm{y}}=265 \mathrm{~N} / \mathrm{mm}$ and $\lambda_{\mathrm{LT}}=89.9$, Table 17 gives $p_{\mathrm{b}}=131 \mathrm{~N} / \mathrm{mm}^{2}$
$M_{\mathrm{b}}=p_{\mathrm{b}} S_{\mathrm{x}}=131 \times 4622 \times 10^{-3}=605 \mathrm{kNm}$
In crane load combination $1, M_{\mathrm{x}}=375 \mathrm{kNm}$ (see Figure 20.4)
$375 \mathrm{kNm}<605 \mathrm{kNm}$
Therefore, the buckling resistance moment is adequate.

20.4.3 Horizontal moment capacity

Horizontal loads are assumed to be carried by the top flange plate only.
Basic requirement: $M_{\mathrm{R}} \leq M_{\text {c,plate }}$
Moment capacity of the top flange plate, $M_{c, p l a t e}$ is equal to the lesser of $1.2 p_{\mathrm{y}} Z_{\text {plate }}$

$$
Z_{\text {plate }}=\frac{15 \times 300^{2}}{6} \times 10^{-3}=225 \mathrm{~cm}^{3}
$$

4.11.3
4.11.3
4.3.6.3 and
4.3.6.2
4.3.6.4
4.3.6.7(a)
4.3.6.9
4.3.5.1

Table 13

Table 17

Example 20 Gantry girder, using a UB with a plated top flange
Sheet 12 of 22
22 Rev

$$
S_{\text {plate }}=\frac{15 \times 300^{2}}{4} \times 10^{-3}=337.5 \mathrm{~cm}^{3}
$$

The design strength of the flange plate for this check can be taken as $p_{\mathrm{y}}=275 \mathrm{~N} / \mathrm{mm}^{2}$, since the plate thickness $<16 \mathrm{~mm}$.
$1.2 p_{\mathrm{y}} Z_{\text {plate }}=1.2 \times 275 \times 225 \times 10^{-3}=74.2 \mathrm{kNm}$
$p_{\mathrm{y}} S_{\text {plate }}=275 \times 337.5 \times 10^{-3}=92.8 \mathrm{kNm}$
Therefore, $M_{\text {c.plate }}=74.2 \mathrm{kNm}$
Maximum horizontal moment is due to crabbing in crane load combination 3, $M_{\mathrm{R}}=26.0 \mathrm{kNm}$ (see Figure 20.8)
$26.0 \mathrm{kNm}<74.2 \mathrm{kNm}$
Therefore, the minor axis moment capacity is adequate.

20.4.4 Consider combined vertical and horizontal moments

This check should be carried out using the loads calculated for crane load combination 3:
1.4 dead load +1.4 vertical crane loads +1.4 horizontal crane loads

Section capacity

Basic requirement: $\frac{M_{\mathrm{x}}}{M_{\mathrm{cx}}}+\frac{M_{\mathrm{y}}}{M_{\mathrm{cy}}} \leq 1$
For M_{x} and M_{y} see Figures 20.6 and 20.8 respectively.
$M_{\text {cy }}=M_{\text {c,plate }}$

$$
\frac{330}{1128}+\frac{26.0}{74.2}=0.293+0.350=0.64<1
$$

Therefore, the section capacity is adequate.

Buckling resistance

In the "simplified method", the following relationships must be satisfied:
$\frac{m_{\mathrm{x}} M_{\mathrm{x}}}{p_{\mathrm{y}} Z_{\mathrm{x}}}+\frac{m_{\mathrm{y}} M_{\mathrm{y}}}{p_{\mathrm{y}} Z_{\mathrm{y}}} \leq 1 \quad$ and
$\frac{m_{\mathrm{LT}} M_{\mathrm{LT}}}{M_{\mathrm{b}}}+\frac{m_{\mathrm{y}} M_{\mathrm{y}}}{p_{\mathrm{y}} Z_{\mathrm{y}}} \leq 1$
For simplicity take maximum M_{x} and M_{y} (rather than coexistant M_{x} and M_{y}) and assume that the minor axis loads are carried by the plate only.
M_{LT} is the maximum major axis moment in the segment $=330 \mathrm{kNm}$ (see Figure 20.6).
M_{y} is the maximum crabbing moment $=26.0 \mathrm{kNm}$ (see Figure 20.8) $m_{\text {LT }}$ is taken as 1.0.
Example 20 Gantry girder, using a UB with a plated top flange \quad Sheet 13 of 22 Rev

For simplicity take $m_{\mathrm{x}}=m_{\mathrm{y}}=1.0$.
First equation

$$
\frac{330 \times 10^{6}}{265 \times 3547 \times 10^{3}}+\frac{26.0 \times 10^{6}}{275 \times 225 \times 10^{3}}=0.351+0.420=0.77<1
$$

Second equation

$$
\frac{330}{605}+\frac{26.0 \times 10^{6}}{275 \times 225 \times 10^{3}}=0.545+0.420=0.97<1
$$

Therefore, the buckling resistance is adequate.

20.4.5 Web shear at supports

Basic requirement $\boldsymbol{F}_{\mathrm{v}} \leq \boldsymbol{P}_{\mathrm{v}}$
$P_{\mathrm{v}}=0.6 p_{\mathrm{y}} A_{\mathrm{v}}$
In this example, it would be reasonable to assume that the shear is resisted by the UB-section.
$\therefore A_{\mathrm{v}}=t D$ (for rolled I-sections, load parallel to web)
$A_{\mathrm{v}}=11.9 \times 612.2=7285 \mathrm{~mm}^{2}$
$P_{\mathrm{v}}=0.6 \times 265 \times 7285 \times 10^{-3}=1158 \mathrm{kN}$
Maximum shear $F_{\text {vmax }}=248 \mathrm{kN}$ (see Figure 20.5 for crane load combination 1)
Note: Since $F_{\mathrm{vmax}}<0.6 P_{\mathrm{v}}$ no reduction in moment capacity due to shear.
$248 \mathrm{kN}<1158 \mathrm{kN}$
Therefore, the shear capacity of the web at the supports is adequate.

20.4.6 Local compression under wheels

Basic requirement: $f_{\mathrm{w}} \leq p_{\mathrm{y}}$
Local compression on the web may be obtained by distributing the crane wheel load over a length x_{R} where
$x_{\mathrm{R}}=2\left(H_{\mathrm{R}}+T\right)$ but $x_{\mathrm{R}} \leq s_{\mathrm{w}}$
Assume rail height $H_{\mathrm{R}}=100 \mathrm{~mm}$
Combined flange thickness $T=15+19.6=34.6 \mathrm{~mm}$
$x_{\mathrm{R}}=2(100+34.6)=269.2 \mathrm{~mm}$
s_{w} is the distance between adjacent wheels $=a_{\mathrm{w}}=4000 \mathrm{~mm}$
Stress on the web under the wheel $f_{\text {w }}$
$f_{\mathrm{w}}=\frac{W^{\prime}{ }_{\mathrm{w}}}{x_{\mathrm{R}} t}=\frac{158 \times 10^{3}}{269.2 \times 11.9}=49.3 \mathrm{~N} / \mathrm{mm}^{2}$
$W^{\prime}{ }_{\mathrm{w}}=158 \mathrm{kN}$ for crane load combination 1 (see Section 20.2.1)
$49.3 \mathrm{~N} / \mathrm{mm}^{2}<265 \mathrm{~N} / \mathrm{mm}^{2}$
Therefore, the resistance to local compression under the wheels is adequate.

20.4.7 Web bearing and buckling under the wheel

This should be checked in accordance with the rules given in clauses 4.5 .2 and 4.5 .3 of BS 5950-1:2000 ${ }^{[1]}$.
The procedure is similar to that given in worked Example 2 - Restrained Beam.
4.2.3(a)
4.11.4

Example 20 Gantry girder, using a UB with a plated top flange \quad Sheet 14 of 22 Rev

20.4.8 Deflection

Limiting vertical deflection due to static wheel loads $\delta_{\text {vLim }}$

$$
\delta_{\mathrm{vLim}}=\frac{\text { span }}{600}=\frac{8000}{600}=13.3 \mathrm{~mm}
$$

2.5.2

Table 8(c)

Limiting horizontal deflection (calculated on the top flange properties alone) due to crane surge $\delta_{\text {hLim }}$

$$
\delta_{\text {hLim }}=\frac{\text { span }}{500}=\frac{8000}{500}=16.0 \mathrm{~mm}
$$

The deflection of gantry girders can be important and the exact calculations can be complex with a system of rolling loads. For two equal loads, however, a useful assumption is that the maximum deflection occurs at the centre of the span when the loads are positioned equidistant about the centre.
(1) Maximum vertical deflection due to static vertical loads

$$
\delta_{\mathrm{vmax}}=\frac{W_{\mathrm{us}} L^{3}}{6 E I_{\mathrm{x}}}\left(\frac{3}{8}\left(1-\frac{a_{\mathrm{w}}}{L}\right)-\left(\frac{L-a_{\mathrm{w}}}{2 L}\right)^{3}\right)
$$

Maximum, unfactored static load per wheel $W_{\text {us }}=76 \mathrm{kN}$ (see sheet 2)

Modulus of elasticity
Second moment of area of gantry girder
Wheel spacing in end carriage
Span of gantry girder
$E=205 \mathrm{kN} / \mathrm{mm}^{2}$
$I_{\mathrm{x}} \quad=133100 \mathrm{~cm}^{4}$ (see Table 20.1)
$a_{\mathrm{w}} \quad=4.0 \mathrm{~m}$
$L \quad=8.0 \mathrm{~m}$

$$
\delta_{\mathrm{vmax}}=\frac{76 \times 8^{3}}{6 \times 205 \times 133100}\left(\frac{3}{8}\left(1-\frac{4}{8}\right)-\left(\frac{8-4}{2 \times 8}\right)^{3}\right) \times 10^{5}=4.1 \mathrm{~mm}
$$

$4.1 \mathrm{~mm}<13.3 \mathrm{~mm}$
Therefore, the maximum vertical deflection is acceptable.
(2) Maximum horizontal deflection due to crane surge
$\delta_{\text {h.surge }}=\frac{W_{\mathrm{H} 1} L^{3}}{6 E I_{\mathrm{yp}}}\left(\frac{3}{8}\left(1-\frac{a_{\mathrm{w}}}{L}\right)-\left(\frac{L-a_{\mathrm{w}}}{2 L}\right)^{3}\right)$

Maximum unfactored transverse surge load per wheel
$W_{\mathrm{H} 1}=3 \mathrm{kN}($ see Sheet 2$)$
Second moment of area of flange plate only
$I_{\mathrm{yp}}=3375 \mathrm{~cm}^{4}$ (see Table 20.1)
$\delta_{\text {h.surge }}=\frac{3 \times 8^{3}}{6 \times 205 \times 3375}\left(\frac{3}{8}\left(1-\frac{4}{8}\right)-\left(\frac{8-4}{2 \times 8}\right)^{3}\right) \times 10^{5}=6.4 \mathrm{~mm}$
$6.4 \mathrm{~mm}<16.0 \mathrm{~mm}$
Therefore, the maximum horizontal deflection due to crane surge is acceptable.

Example 20 Gantry girder, using a UB with a plated top flange Sheet 15 of 22 Rev
(3) Maximum horizontal deflection due to crabbing

Maximum horizontal deflection at the centre with wheel position as shown in Fig 20.8
$\delta_{\text {h.crab }}=\frac{F_{R} L^{3}}{48 E I_{y p}}$
Unfactored crabbing force per wheel
$F_{\mathrm{R}}=9.3 \mathrm{kN}$ (see sheet 2)
$\delta_{\text {h.crab }}=\frac{9.3 \times 8^{3} \times 10^{5}}{48 \times 205 \times 3375} \quad=14.3 \mathrm{~mm}$
$14.3 \mathrm{~mm}<16.0 \mathrm{~mm}$
Therefore, the maximum horizontal deflection due to crabbing is acceptable.
Adopt $610 \times 229 \times 125$ UB grade $\mathbf{S} 275$ with a $300 \mathrm{~mm} \times 15 \mathrm{~mm}$ plate in S275 steel.

20.5 Appendix: Section properties

20.5.1 Section properties of the plate

Width of plate $\quad B_{\mathrm{p}}=300 \mathrm{~mm}$
Thickness of plate $T_{\mathrm{p}}=15 \mathrm{~mm}$

Cross-sectional area

$$
A_{\mathrm{p}}=300 \times 15 \times 10^{-2} \quad=45 \mathrm{~cm}^{2}
$$

Second moment of area x-x $\quad I_{\mathrm{xp}}=\frac{300 \times 15^{3}}{12} \times 10^{-4} \quad=8.44 \mathrm{~cm}^{4}$
Second moment of area y-y $\quad I_{\mathrm{yp}}=\frac{15 \times 300^{3}}{12} \times 10^{-4} \quad=3375 \mathrm{~cm}^{4}$
Torsional constant $J_{\mathrm{p}}=\frac{1}{3} B_{\mathrm{p}} T_{\mathrm{p}}{ }^{3}=0.33 \times 300 \times 15^{3} \times 10^{-4}=33.8 \mathrm{~cm}^{4}$
Elastic modulus y-y $\quad Z_{\mathrm{yp}}=\frac{I_{\mathrm{yp}}}{B_{\mathrm{p}} / 2}=\frac{3375}{15}$
$=225 \mathrm{~cm}^{3}$

Plastic modulus y-y $\quad S_{\mathrm{yp}}=\frac{15 \times 300^{2}}{4} \times 10^{-3}$

$$
=337.5 \mathrm{~cm}^{3}
$$

20.5.2 Section properties of the UB

From section property tables
Area

$$
\begin{aligned}
A_{\mathrm{B}} & =159 \mathrm{~cm}^{2} \\
I_{\mathrm{xB}} & =98600 \mathrm{~cm}^{4}
\end{aligned}
$$

Vol 1
Page B-2/B-3

$$
\begin{array}{ll}
\text { Second moment of area x-x } & I_{\mathrm{xB}}=98600 \mathrm{~cm}^{4} \\
\text { Second moment of area y-y } & I_{\mathrm{yB}}=3930 \mathrm{~cm}^{4}
\end{array}
$$

$$
\text { Torsion constant } \quad J_{\mathrm{B}}=154 \mathrm{~cm}^{4}
$$

20.5.3 Section properties of compound section (UB + Plate)

Figure 20.11 Trial gantry girder section-UB with plate

Elastic section properties

Neutral axis above the bottom flange, y_{n}
Created on 30 March 2011
This material is copyright - all rights reserved. Use of this document is subject to the terms and conditions of the Steelbiz Licence Agreement

$$
y_{\mathrm{na}}=\frac{A_{\mathrm{B}} \frac{D}{2}+A_{\mathrm{p}}\left(D+\frac{T_{\mathrm{p}}}{2}\right)}{A_{\mathrm{B}}+A_{\mathrm{p}}}=\frac{159 \frac{612.2}{2}+45 \times\left(612.2+\frac{15}{2}\right)}{159+45}=375.3 \mathrm{~mm}
$$

$$
I_{\mathrm{x}}=I_{\mathrm{xB}}+A_{\mathrm{B}}\left(y_{\mathrm{na}}-\frac{D}{2}\right)^{2}+I_{\mathrm{xp}}+A_{\mathrm{p}}\left(D-y_{\mathrm{na}}+\frac{T_{\mathrm{p}}}{2}\right)^{2}
$$

$$
=98600+159 \times\left(375.3-\frac{612.2}{2}\right)^{2} \times 10^{-2}+8.44+45\left(612.2-375.3+\frac{15}{2}\right)^{2} \times 10^{-2}
$$

$$
=133100 \mathrm{~cm}^{4}
$$

$$
Z_{\text {xTop }}=\frac{I_{\mathrm{x}}}{D+T_{\mathrm{p}}-y_{\text {na }}}=\frac{133101}{612.2+15-375.3} \times 10=5284 \mathrm{~cm}^{3}
$$

$$
Z_{\mathrm{xBot}}=\frac{I_{\mathrm{x}}}{y_{\text {na }}}=\frac{133101}{375.3} \times 10=3547 \mathrm{~cm}^{3}
$$

$$
I_{\mathrm{y}}=I_{\mathrm{yB}}+I_{\mathrm{yp}}
$$

$$
I_{\mathrm{yp}}=\frac{T_{\mathrm{p}} B_{\mathrm{p}}^{3}}{12}=\frac{15 \times 300^{3}}{12} \times 10^{-4}=3375 \mathrm{~cm}^{4}
$$

$$
I_{y}=3930+3375=7305 \mathrm{~cm}^{4}
$$

Example 20 Gantry girder, using a UB with a plated top flange

$$
\begin{aligned}
& r_{\mathrm{y}}=\left(\frac{I_{\mathrm{y}}}{A}\right)^{0.5}=\left(\frac{7305}{204}\right)^{0.5}=5.98 \mathrm{~cm} \\
& Z_{\mathrm{y}}=\frac{I_{\mathrm{y}}}{B_{\mathrm{p}} / 2}=\frac{7305}{300 / 2} \times 10=487 \mathrm{~cm}^{3}
\end{aligned}
$$

Plastic section properties

Assume that the UB and the plate have the same design strength.
Equal area axis above the bottom flange $y_{\text {ea }}$
Assuming E-A lies in the web then

$$
y_{\mathrm{ea}}=\frac{D}{2}+\frac{A_{\mathrm{p}}}{2 t}=\frac{612.2}{2}+\frac{45 \times 10^{2}}{2 \times 11.9}=495.2 \mathrm{~mm}
$$

Ignoring the fillets, the plastic modulus of the combined section, S_{x}

$$
\begin{aligned}
& S_{\mathrm{x}}=B T\left(D-y_{\mathrm{ea}}-\frac{T}{2}\right)+t \frac{\left(D-y_{\mathrm{ea}}-T\right)^{2}}{2} \\
& +B T\left(y_{\mathrm{ea}}-\frac{T}{2}\right)+t \frac{\left(y_{\mathrm{ea}}-T\right)^{2}}{2} \\
& +A_{\mathrm{p}}\left(D-y_{\mathrm{ea}}+\frac{T_{\mathrm{p}}}{2}\right) \times 10^{2}
\end{aligned}
$$

$$
=229 \times 19.6\left(612.2-495.2-\frac{19.6}{2}\right)+11.9 \frac{(612.2-495.2-19.6)^{2}}{2}
$$

$$
+229 \times 19.6\left(495.2-\frac{19.6}{2}\right)+11.9 \frac{(495.2-19.6)^{2}}{2}
$$

$$
+45 \times 10^{2} \times\left(612.2-495.2+\frac{15}{2}\right)
$$

$$
=4622000 \mathrm{~mm}^{3}=4622 \mathrm{~cm}^{3}
$$

Torsion constant, J
$J=J_{\mathrm{B}}+J_{\mathrm{p}} \quad=154+33.8=187.8 \mathrm{~cm}^{4}$

Torsional index, x

$x=0.566 h_{\mathrm{s}}\left(\frac{A}{J}\right)^{0.5}$
$h_{\mathrm{s}}=D+T_{\mathrm{p}}-\frac{T}{2}-\left(\frac{\frac{B_{\mathrm{p}} T_{\mathrm{p}}{ }^{2}}{2}+B T\left(T_{\mathrm{p}}+\frac{T}{2}\right)}{B_{\mathrm{p}} T_{\mathrm{p}}+B T}\right)$

| Example 20 Gantry girder, using a UB with a plated top flange | Sheet | 18 of | 22 | Rev |
| :--- | :--- | :--- | :--- | :--- | :--- |

$=\left(612.2+15-\frac{19.6}{2}-\left(\frac{\frac{300 \times 15^{2}}{2}+229 \times 19.6\left(15+\frac{19.6}{2}\right)}{300 \times 15+229 \times 19.6}\right)\right) \times 10^{-1}=59.8 \mathrm{~cm}$
$A=A_{\mathrm{B}}+A_{\mathrm{p}}=159+45=204 \mathrm{~cm}^{2}$
$x=0.566 \times 59.8\left(\frac{204}{187.8}\right)^{0.5}=35.3$

Buckling parameter, u
$u=\left(\frac{4 S_{\mathrm{x}}{ }^{2} \gamma}{A^{2} h_{\mathrm{s}}{ }^{2}}\right)^{0.25}$
$\gamma=1-\frac{I_{\mathrm{y}}}{I_{\mathrm{x}}}=1-\frac{7305}{133100}=0.95$
$u=\left(\frac{4 \times 4622^{2} \times 0.95}{204^{2} \times 59.8^{2}}\right)^{0.25}=0.86$

Flange ratio, η

Figure 20.12 Dimensions of compound flange

$$
\eta=\frac{I_{\mathrm{yc}}}{I_{\mathrm{yc}}+I_{\mathrm{yt}}}
$$

B.2.4.1
and
B.2.3
B.2.4.1
I_{yc} is the second moment of area of compression flange about minor axis of the section.
$I_{\mathrm{yc}}=\left(\frac{T_{\mathrm{p}} B_{\mathrm{p}}^{3}}{12}+\frac{T B^{3}}{12}\right)=\left(\frac{15 \times 300^{3}}{12}+\frac{19.6 \times 229^{3}}{12}\right) \times 10^{-4}=5337 \mathrm{~cm}^{4}$
I_{yt} is the second moment of area of the tension flange about minor axis of the section.
$I_{\mathrm{yt}}=\frac{T B^{3}}{12}=\left(\frac{19.6 \times 229^{3}}{12}\right) \times 10^{-4}=1961 \mathrm{~cm}^{4}$
$\eta=\frac{5337}{5337+1961}=0.73$

Example 20 Gantry girder, using a UB with a plated top flange \quad Sheet 19 of 22 Rev

20.6 Appendix: Crane gantry girder loading

20.6.1 General

The loads to be used for the design of crane gantry girders are not very clearly defined by current British Standards. This section discusses the provisions of BS 5950-1:2000 ${ }^{[1]}$ and proposes a simplified loading to achieve a reasonably economical structure through simple design. BS 5950-1 makes reference to BS 2573-1:1983, Rules for the design of cranes, Part 1, Specification for classification, stress calculations and design criteria for structures ${ }^{[4]}$. In particular, BS 5950-1 uses the BS 2573 crane classifications Q1, Q2, Q3 and Q4. The descriptive definitions given in BS 2573 are as follows :

Table 20.2

Class	Descriptive definition
Q1	Cranes which hoist the safe working load very rarely and, normally, light loads.
Q2	Cranes which hoist the safe working load fairly frequently and, normally, moderate loads.
Q3	Cranes which hoist the safe working load fairly frequently and, normally, heavy loads.
Q4	Cranes which are normally loaded close to safe working load.

20.6.2 Loading in BS 5950-1:2000

The principal clauses on loading from cranes in BS 5950-1:2000 are:
Clause 2.4.1.3, Overhead travelling cranes:
"The γ_{f} factors given in Table 2 (Partial factors for loads γ_{f}) for vertical loads from overhead travelling cranes should be applied to the dynamic vertical wheel loads, ie the static vertical wheel loads increased by the appropriate allowance for dynamic effects."
Clause 2.2.3, Loads from overhead travelling cranes:
"For overhead travelling cranes, the vertical and horizontal dynamic loads and impact effects should be determined in accordance with BS 2573-1. The values for cranes of loading class Q3 and Q4 as defined in BS 2573-1 should be established in consultation with the crane manufacturer."
Clause 4.11.2, Crabbing of trolley
This clause states that gantry girders intended to carry cranes of loading class Q1 and Q2 as defined in BS 2573 need not be designed for crabbing loads. For girders intended to carry cranes of loading class Q3 and Q4 as defined in BS 2573, the design crabbing forces are defined.

20.6.3 Loading in BS 2573-1:1983

Vertical loads in BS 2573-1

BS 2573-1 increases the loads on the hook by a dynamic factor, but does not apply any dynamic factor to the self-weight of the crane. However, it does reduce the allowable design stresses by a "duty factor" to account for effects not considered in the analysis. It is not practical to transfer the entire design procedure of BS 2573 to BS 5950 because BS 2573 is a permissible stress code whereas BS 5950 is a limit state code.

Example 20 Gantry girder, using a UB with a plated top flange \quad Sheet 20 of 22 Rev

Horizontal loads in BS 2573-1

BS 2573-1 covers horizontal loads in clause 3.1.5. This is divided into sub-clauses:
3.1.5.1, Inertia forces, which gives no standard design force but makes it clear that it depends on the drive and brakes of each crane. This inertia force is commonly referred to as the surge load.
3.1.5.2, Skew loads due to travelling, which gives design loads, but BS 5950-1:2000 defines the loads to be used in design of the girder in clause 4.11.2. This is commonly referred to as the crabbing force.
3.1.5.3, Buffer loads, which gives no standard design force but makes it clear that it depends on each crane and gives some design guidance.

From above, it is clear that the best possible information should be sought on the design of the particular crane.

Traditionally, horizontal loads were taken as a transverse load of 10% of the static vertical reactions and a longitudinal load of 5% of the static vertical reactions, but not acting at the same time. These are the loads given in BS $449^{[5]}$ and were included in BS 6399-1:1984 ${ }^{[6]}$, but do not appear in BS 6399-1:1996 ${ }^{[7]}$. One of the reasons for removing these factors is that they under-estimate the forces exerted by some modern cranes. There is anecdotal evidence of rare cases where the horizontal force can be as high as 20% to 30% of the vertical loads.

20.6.4 Concern about the use of BS 2573 impact factor alone for vertical load

BS 2573 is a code for the design of cranes, not of crane gantry girders. As a crane moves along the rails, it will pass over irregularities such as joints in the rails. These will cause dynamic loads on the girder in addition to the static loads. This is a load case that must be considered. If a crane has a high self-weight but only a relatively light lifted load, design loads derived from BS 2573 might underestimate the vertical loads applied to the crane girder. Therefore, the designer should consider whether the dynamic effects of the crane plus lifted load moving along the rail could give a worse vertical load than when the crane is stationary and lifting its load. Where the lifting case clearly gives the worst vertical load, loads from the crane moving need not be calculated. Where the lifting case does not clearly give the worst vertical load, loads from the crane moving should also be calculated as a separate vertical load case. In the absence of better information, it is prudent to use the traditional dynamic factors that have been used for decades to cover any cases that might be omitted by the use of BS 2573.

Traditionally, crane gantry girder design has allowed for dynamic effects by using the values in BS 449, giving an additional 25% on static vertical reactions from the total crane self-weight plus lifted load. Where better information is impossible to obtain at the time of design, these traditional factors may be used in addition to the case using BS 2573 as a reasonable basis of design for any load cases that might be ignored by the use of the BS 2573 impact factor on the lifted load alone.

Example 20 Gantry girder, using a UB with a plated top flange \quad Sheet 21 of 22 Rev
The recommended vertical load cases for the gantry girder can be summarised as follows:

Table 20.3 Factored vertical loads

Vertical load cases	Total wheel load on rail
Crane stationary, lifting load	$F \times \gamma_{\mathrm{f}} \times R_{\mathrm{h}}+\gamma_{\mathrm{f}} \times R_{\mathrm{s}}$
Crane moving with load	$1.25 \times \gamma_{\mathrm{f}} \times R_{\mathrm{h}}+1.25 \times \gamma_{\mathrm{f}} \times R_{\mathrm{s}}$
Where:	
F is the impact factor from BS 2573-1	
γ_{f} is the partial factor for vertical crane loads from BS 5950-1:2000	
R_{h} is the unfactored vertical wheel reaction from the hook load	
R_{s} is the unfactored vertical wheel reaction from the crane self weight	

20.6.5 Loading for this example

This example illustrates design of the crane gantry girders for one of the most common types of crane ratings. This an overhead travelling crane with a vertical impact factor, according to BS 2573-1, of 1.3 This factor appears in BS 2731-1 for medium and heavy duty in warehouses and workshops in Table 4(a) Overhead travelling industrial type cranes (O.T.C.) and for medium duty (general use) in Table 4(c) Transporters

The purpose of this example is to present the design procedure for crane girders so that a reasonable economic design is achieved with reasonable economy of design effort. Because this example is not done by computer, it is important to reduce the number of load cases to as few as possible.

Vertical loads

Where the BS 2573 impact factor is 1.3, the loading for the two load cases from Table 20.3 may be re-summarised as:

Table 20.4 Factored vertical loads

Vertical load cases	Total wheel load on rail
Crane stationary, lifting load	$1.3 \times \gamma_{\mathrm{F}} \times R_{\mathrm{h}}+\gamma_{\mathrm{f}} \times R_{\mathrm{s}}$
Crane moving with load	$1.25 \times \gamma_{\mathrm{f}} \times R_{\mathrm{h}}+1.25 \times \gamma_{\mathrm{r}} \times R_{\mathrm{s}}$

The traditional factor of 1.25 is only slightly less than BS 2753 factor of 1.3. Therefore, to minimise the number of load cases and simplify the calculations as far as possible, this example will use a factor of 1.3 applied simultaneously to both the lifted load and to the self-weight of the crane. This is an envelope case which preserves a balance between economy of structure and economy of design effort while ensuring safety.

Example 20 Gantry girder, using a UB with a plated top flange
Sheet 22 of

Table 20.5 Factored vertical wheel load used in Example 20

Vertical load cases	Total wheel load on rail
Envelope case	$1.3 \times \gamma_{\mathrm{f}} \times R\left(=1.3 \times \gamma_{\mathrm{f}} \times R_{\mathrm{h}}+1.3 \times \gamma_{\mathrm{f}} \times R_{\mathrm{s}}\right)$
Where:	
$R=$is the unfactored vertical wheel reaction from the hook load plus crane self weight (crane bridge + crab $)$	

Horizontal loads

The horizontal loads due to surge or inertia forces are taken as:

1) transverse load of 10% of the combined weight of the crab and the lifted load
2) longitudinal load of 5% of the static vertical reactions (i.e. from the weight of the crab, crane bridge and lifted load).
Crabbing forces acting transverse to the rail are obtained from clause 4.11.2 (BS 5950-1:2000) because the crane is class Q3. If the crane were class Q1 or Q2, then the crabbing forces would not need to be considered.

	Job No. CDS 153			Sheet	1 o	13	Rev
	Job Title Example no. 21						
	Subject Simply supported stiffened plate girder						
	Client	SCI	Made by	JBL	Date	Jun	003
			Checked by	ASM	Date	Oct	2003

21 Simply supported stiffened plate girder

21.1 Introduction

The girder shown in Figure 21.1 is laterally restrained throughout its length. For the loading shown, design a stiffened plate girder in S275 steel. Girder depth unrestricted.

Figure 21.1

21.1.1 Loading (unfactored)

Dead loads:
UDL
Point load
Point load

$$
\begin{aligned}
& w_{\mathrm{d}}=20 \mathrm{kN} / \mathrm{m} \\
& W_{1 \mathrm{~d}}=200 \mathrm{kN} \\
& W_{2 \mathrm{~d}}=200 \mathrm{kN}
\end{aligned}
$$

Imposed loads:
UDL

$$
\begin{array}{ll}
w_{\mathrm{i}} & =40 \mathrm{kN} / \mathrm{m} \\
W_{1 \mathrm{i}} & =300 \mathrm{kN} \\
W_{2 \mathrm{i}} & =300 \mathrm{kN}
\end{array}
$$

21.1.2 Load Factors

Dead load factor $\quad \gamma_{\mathrm{fd}}=1.4$
Imposed load factor $\gamma_{\mathrm{it}}=1.6$

21.1.3 Factored loads

$$
\begin{aligned}
& w^{\prime}=w_{\mathrm{d}} \gamma_{\mathrm{fd}}+w_{\mathrm{i}} \gamma_{\mathrm{fi}}=(20 \times 1.4)+(40 \times 1.6)=92 \mathrm{kN} / \mathrm{m} \\
& W_{1}^{\prime}=W_{1 \mathrm{~d}} \gamma_{\mathrm{fd}}+W_{\text {li }} \gamma_{\mathrm{fi}}=(200 \times 1.4)+(300 \times 1.6)=760 \mathrm{kN} \\
& W_{2}^{\prime}=W_{2 \mathrm{~d}} \gamma_{\mathrm{fd}}+W_{2 \mathrm{i}} \gamma_{\mathrm{i}}=(200 \times 1.4)+(300 \times 1.6)=760 \mathrm{kN}
\end{aligned}
$$

The design shear forces and moments are as shown in Figure 21.2.

Table 2
\qquad
\square

Example 21 Simply supported stiffened plate girder
Sheet 2 of 13

21.1.4 Initial sizing of plate girder

When there is no depth restriction, plate girders usually vary in depth between $1 / 8$ of the span for short girders and $1 / 15$ of the span for long girders. Here the depth will be assumed to be approximately $1 / 12 \times$ span.
Depth, $D \approx$ span $/ 12$ Depth $\approx 25000 / 12 \approx 2000 \mathrm{~mm}$

Figure 21.2 Design loading, shear and moment diagram

21.2 Member checks

21.2.1 Choose a suitable girder size

The initial trial section size is selected to give a suitable moment capacity.
Assume flange thickness between 16 mm and 40 mm , hence $p_{\mathrm{y}}=265 \mathrm{~N} / \mathrm{mm}^{2}$
$A_{\mathrm{f}} \approx M_{\text {max }} / D p_{\mathrm{y}} \quad A_{\mathrm{f}} \approx \frac{14028}{2000 \times 265} \times 10^{6} \approx 26500 \mathrm{~mm}^{2}$
Choice of web thickness is generally a matter of experience and is here taken as depth/150 approximately. $t \approx$ Depth $/ 150 \quad t \approx 2000 / 150 \approx 13 \mathrm{~mm}$

Try girder with flanges $700 \mathrm{~mm} \times 40 \mathrm{~mm}$ and web $1950 \mathrm{~mm} \times 13 \mathrm{~mm}$

Figure 21.3 Plate girder dimensions

21.2.2 Section classification

Flange

Grade of steel $=$ S275
$16 \mathrm{~mm}<T \leq 40 \mathrm{~mm}$
Therefore $p_{\mathrm{yf}}=265 \mathrm{~N} / \mathrm{mm}^{2}$
$\varepsilon=\sqrt{\frac{275}{p_{\mathrm{yf}}}}=\sqrt{\frac{275}{265}} \quad=1.02$
Outstand, $b=\frac{B-t}{2}=\frac{700-13}{2}=343.5 \mathrm{~mm}$
$\frac{b}{T}=\frac{343.5}{40}=8.59$
For the outstand element of a compression flange, the limiting b / T for a welded class 2 compact flange is 9ε.
Limiting $b / T=9 \varepsilon=9.18$
The actual $b / T=8.59<9.18$
Therefore, the flange is class $\mathbf{2}$ compact
Web
Grade of steel $=$ S275
$t \leq 16 \mathrm{~mm}$
Therefore $p_{\mathrm{yw}}=275 \mathrm{~N} / \mathrm{mm}^{2}$

$$
\varepsilon=\sqrt{\frac{275}{p_{\mathrm{yw}}}}=\sqrt{\frac{275}{275}}=1.0
$$

$d / t=1950 / 13=150$
Since the section is symmetrical and subject to pure bending, the neutral axis is at mid-depth. For this case, the limiting d / t for a class 3 semi-compact web is 120ε.
Limiting $d / t=120 \varepsilon=120.0$
The actual $d / t=150>120.0$
Therefore, the web is class 4 slender
3.1.1

Table 9

Figure 5
3.5.2

Table 11
3.1.1

Table 9

Example 21 Simply supported stiffened plate girder	Sheet	4	of	13	Rev

21.2.3 Check for susceptibility to shear buckling

If the web depth-to-thickness ratio d / t of a plate girder exceeds 62ε, the web is susceptible to shear buckling.
Limiting $d / t=62 \varepsilon=62.0$
The actual $d / t=150>62.0$
Therefore, check the web for shear buckling

21.2.4 Dimensions of web and flanges

For webs with transverse stiffeners, assuming stiffener spacing $a>d$, the minimum web thickness t to avoid serviceability problems is $d / 250$
Minimum $t=d / 250=1950 / 250=7.8 \mathrm{~mm}$
The actual $t=13 \mathrm{~mm}>7.8 \mathrm{~mm}$
Therefore, web thickness is adequate for serviceability
For webs with intermediate transverse stiffeners, assuming stiffener spacing $a>1.5 d$, the minimum web thickness to avoid compression flange buckling into the web is $(d / 250)\left(p_{\text {yf }} / 345\right)$
Minimum $t=(\mathrm{d} / 250)\left(p_{\mathrm{yf}} / 345\right)=(1950 / 250)(265 / 345)=6.0 \mathrm{~mm}$
The actual $t=13 \mathrm{~mm}>6.0 \mathrm{~mm}$
Therefore, web is adequate to avoid flange buckling into the web
Note: For hybrid girders, i.e. those using higher grade steel for the flanges than for the web, due account should be taken of the variation in design strength between the component parts, but the classification of the web should be based on p_{yf} and not p_{yw}.

However, in this example $p_{\mathrm{yf}}=265 \mathrm{~N} / \mathrm{mm}^{2}$
and $p_{\mathrm{yw}}=275 \mathrm{~N} / \mathrm{mm}^{2}$

21.2.5 Check the moment capacity

For welded sections with webs susceptible to shear buckling (i.e. $d / t>62 \varepsilon$), three methods for calculating the moment capacity M_{c} of the cross-section are given in the code. In this example the "flanges only" method of clause 4.4.4.2(b) is used. In this method a conservative value of M_{f} for the moment capacity is obtained by assuming that the moment is resisted by the flanges only, with each flange subject to uniform stress not exceeding $p_{\text {yf }}$.

Basic requirement $M_{\mathbf{x}} \leq M_{\text {c }}$
$M_{\mathrm{c}} \quad=M_{\mathrm{f}}=p_{\mathrm{fy}} A_{\mathrm{f}} h_{\mathrm{s}}$
$p_{\text {fy }}=265 \mathrm{~N} / \mathrm{mm}^{2}$
$A_{\mathrm{f}} \quad=B T=700 \times 40=28000 \mathrm{~mm}^{2}$
$h_{\mathrm{s}} \quad=$ distance between centroids $=1990 \mathrm{~mm}$
$M_{\mathrm{f}}=265 \times 28000 \times 1990 \times 10^{-6}=14766 \mathrm{kNm}$
$\therefore M_{\mathrm{c}}=14766 \mathrm{kNm}$
$\mathrm{M}_{\mathrm{x}}=14028 \mathrm{kNm}$
$14028 \mathrm{kNm}<14766 \mathrm{kNm}$
Therefore, the moment capacity is adequate.
4.4.4.2
4.4.5.1
4.4.3
4.4.3.2(b)
4.4.3.3(b)
4.4.2 Note
4.4.4.2

Example 21 Simply supported stiffened plate girder

Sheet 5 of 13

Rev

21.3 Panel checks

For webs with intermediate transverse stiffeners, three methods are given for checking the webs. In this example the simplified method of clause 4.4.5.2 is used.
Try the stiffener spacing shown in Figure 21.4.

Figure 21.4 Stiffener spacing, shear and moment diagram

21.3.1 Check end panel BC

Basic requirement $F_{v}<V_{b}$
From shear force diagram (Figure 21.4), maximum shear force in the panel:
$F_{\mathrm{v}} \quad=1910 \mathrm{kN}$
$V_{\mathrm{b}} \quad=V_{\mathrm{w}}=d t q_{\mathrm{w}}$
$d / t=1950 / 13=150$
$a / d=2500 / 1950=1.28$
From Table 21, $q_{\mathrm{w}}=93.4 \mathrm{~N} / \mathrm{mm}^{2}\left(\right.$ for $p_{\mathrm{y}}=275 \mathrm{~N} / \mathrm{mm}^{2}$)
$\therefore V_{\mathrm{b}}=d t q_{\mathrm{w}}=1950 \times 13 \times 93.4 \times 10^{-3}=2368 \mathrm{kN}$
$1910 \mathrm{kN}<2368 \mathrm{kN}$
Therefore, the shear capacity of panel BC is adequate.

21.3.2 Check panels CD and DE

Although the maximum shear forces on panels CD and DE are less than that on panel BC , both panels should be checked for shear due to increased stiffener spacing, a. However, calculations (not included here) will show that both panels CD and DE are satisfactory in this respect.

Example 21 Simply supported stiffened plate girder
Sheet 6 of 13 Rev
21.3.3 Determine whether end anchorage to panel $B C$ is required

End anchorage need not be provided if either of the following conditions apply:
Condition 1: $\boldsymbol{V}_{w}=\boldsymbol{P}_{\mathrm{v}}$ indicating that the shear capacity is the governing criteria
$V_{\mathrm{w}}=d t q_{\mathrm{w}}=2368 \mathrm{kN}$ (from 21.3.1 above)
$A_{\mathrm{v}}=t d=13 \times 1950=25350 \mathrm{~mm}^{2}$
$P_{\mathrm{v}}=0.6 p_{\mathrm{yw}} A_{\mathrm{v}}=0.6 \times 275 \times 25350 \times 10^{-3}=4183 \mathrm{kN}$
$2368 \mathrm{kN} \neq 4183 \mathrm{kN}$
Therefore condition 1 does not apply
Condition 2: $\boldsymbol{F}_{v} \leq \boldsymbol{V}_{\text {cr }}$ indicating that sufficient shear buckling resistance is available
4.4.5.4(b)
without forming a tension field
If $V_{\mathrm{w}} \leq 0.72 P_{\mathrm{v}}$ then $V_{\text {cr }} \quad=\left(V_{\mathrm{w}} / 0.9\right)^{2} / \mathrm{P}_{\mathrm{v}}$
$0.72 P_{\mathrm{v}}=0.72 \times 4183 \mathrm{kN}=3012 \mathrm{kN}$
$A_{\mathrm{s}} V_{\mathrm{w}} \leq 0.72 P_{\mathrm{v}}$ (i.e. $2368 \mathrm{kN} \leq 3012 \mathrm{kN}$)
$\therefore V_{\mathrm{cr}}=\frac{\left(\frac{V_{\mathrm{w}}}{0.9}\right)^{2}}{P_{\mathrm{v}}}=\frac{\left(\frac{2368}{0.9}\right)^{2}}{4183}=1655 \mathrm{kN}$
At the end of the panel, $F_{\mathrm{v}}=1910 \mathrm{kN}$
$1910 \mathrm{kN}>1655 \mathrm{kN}$
Therefore condition 2 does not apply
Neither condition 1 nor 2 apply therefore end anchorage should be provided.

21.3.4 Check end post $A B$ (providing end anchorage to panel $B C$)

Conservatively, anchor force $H_{\mathrm{q}}=0.5 d t p_{\mathrm{y}}\left(1-\frac{V_{\mathrm{cr}}}{P_{\mathrm{v}}}\right)^{0.5}$
or since $F_{\mathrm{v}}<V_{\mathrm{w}}$ (i.e $1910 \mathrm{kN}<2368 \mathrm{kN}$) the anchor force is given by:

$$
\begin{aligned}
H_{\mathrm{q}} & =0.5 d t p_{\mathrm{y}}\left(\frac{F_{\mathrm{v}}-V_{\mathrm{cr}}}{V_{\mathrm{w}}-V_{\mathrm{cr}}}\right)\left(1-\frac{V_{\mathrm{cr}}}{P_{\mathrm{v}}}\right)^{0.5} \\
& =0.5 \times 1950 \times 13 \times 275 \times 10^{-3}\left(\frac{1910-1655}{2368-1655}\right)\left(1-\frac{1655}{4183}\right)^{0.5}=970 \mathrm{kN}
\end{aligned}
$$

End anchorage will be provided by a twin stiffener end post AB as shown in

Figure 21.5 Twin stiffener end post $A B$

Example 21 Simply supported stiffened plate girder	Sheet	7	of	13	Rev

Basic requirement $R_{\mathrm{ft}} \leq V_{\text {cr.ep }}$
$R_{\mathrm{tf}}=0.75 H_{\mathrm{q}}=0.75 \times 970=728 \mathrm{kN}$
$V_{\text {cr.ep }}$ is the critical shear buckling resistance (see clause 4.4.5.4) of the web of the end post, treated as a beam spanning between the flanges of the girder.
$P_{\text {v.ep }}=0.6 p_{\mathrm{yw}} A_{\mathrm{v} . \mathrm{ep}}=0.6 \times 275 \times 400 \times 13 \times 10^{-3}=858 \mathrm{kN}$
Using the simplified method, $V_{\text {w.ep }}=d_{e p} t q_{\mathrm{w}}$
For $a_{\mathrm{ep}} / d_{\mathrm{ep}}=1950 / 400=4.9$ and $d_{\mathrm{ep}} / t=400 / 13=30.8$
Table 21 gives $q_{\mathrm{w}}=165 \mathrm{~N} / \mathrm{mm}^{2}$
$\therefore \mathrm{V}_{\text {w.ep }}=400 \times 13 \times 165 \times 10^{-3}=858 \mathrm{kN}$
Since $V_{\text {w.ep }}=P_{\text {v.ep }}$ then $V_{\text {cr.ep }}=P_{\text {v.ep }}$
$\therefore V_{\text {cr.ep }} \quad=858 \mathrm{kN}$
$R_{\mathrm{tf}}=728 \mathrm{kN}<858 \mathrm{kN}$
Therefore, the capacity of the end post is adequate.
The end stiffener at A should be designed to resist the following compressive force
$F_{\text {tf }}=0.15 H_{\mathrm{q}}\left(\frac{d}{a_{\mathrm{e}}}\right)=0.15 \times 970 \times\left(\frac{1950}{400}\right)=710 \mathrm{kN}$
Since $F_{\mathrm{ff}}<F_{\mathrm{s}}(710 \mathrm{kN}<1910 \mathrm{kN})$ the stiffener at B should be designed to resist only the support reaction (1910 kN) of the girder.

21.4 Check stiffener at B as bearing stiffener (cl.4.5.2) and load carrying stiffener (cl.4.5.3)

21.4.1 Choose a suitable stiffener size

The stiffener may be designed to resist only the support reaction of the girder (see above).
Design force due to bearing
$F_{\mathrm{x}} \quad=F_{\mathrm{v}}=1910 \mathrm{kN}$
Try stiffener 2 flats $\mathbf{2 0 0 ~ m m ~ x ~} \mathbf{1 6} \mathbf{~ m m}$ grade S275
The effective load carrying stiffener is as shown in Figure 21.6

Figure 21.6 Stiffened web at B
Grade of steel $=$ S275
$t_{\mathrm{s}} \leq 16 \mathrm{~mm}$
Therefore $p_{\mathrm{y}}=275 \mathrm{~N} / \mathrm{mm}^{2}$
H.4.3
4.2.3
4.4.5.2

Table 21
4.5.3.3

Example 21 Simply supported stiffened plate girder
Sheet 8 of 13

Rev

The outstand of the web stiffener should not exceed $19 \varepsilon t_{s}$ from the face of the web.
$\varepsilon=\sqrt{\frac{275}{p_{\mathrm{y}}}}=\sqrt{\frac{275}{275}}=1$
Limiting outstand is $19 \varepsilon t_{\mathrm{s}}=19 \times 1 \times 16=304 \mathrm{~mm}$
Actual outstand is 200 mm
$200 \mathrm{~mm}<304 \mathrm{~mm}$
Therefore, the outstand is acceptable
If the outstand of a stiffener is between $13 \varepsilon t_{\mathrm{s}}$ and $19 \varepsilon t_{\mathrm{s}}$ then its design should be based on an effective cross-section with an outstand of $13 \varepsilon t_{\mathrm{s}}$

Limiting length is $13 \varepsilon t_{\mathrm{s}}=13 \times 1 \times 16=208 \mathrm{~mm}$
Actual outstand is 200 mm
$200 \mathrm{~mm}<208 \mathrm{~mm}$
Therefore, the outstand is fully effective

21.4.2 Check stiffened web

Basic requirement: $\left(\boldsymbol{F}_{\mathrm{x}}-\boldsymbol{P}_{b w}\right) \leq \boldsymbol{P}_{\mathrm{s}}$
$P_{\mathrm{s}}=A_{\text {s.net }} p_{\mathrm{y}}$
Allowing 12 mm cope for web/flange weld
$\mathrm{A}_{\text {s.net }}=2 \times 188 \times 16=6016 \mathrm{~mm}^{2}$
$P_{\mathrm{s}}=6016 \times 275 \times 10^{-3}=1654 \mathrm{kN}$
$P_{\mathrm{bw}}=\left(b_{1}+\mathrm{nk}\right) p_{\mathrm{yw}}$
Assume stiff bearing length $b_{1}=0$
$n \quad=5$ as not at end of member
$k=T=40 \mathrm{~mm}$
$P_{\mathrm{bw}}=(0+5 \times 40) \times(13 \times 275) \times 10^{-3}=715 \mathrm{kN}$
$F_{\mathrm{x}}-P_{\mathrm{bw}}=1910-715=1195 \mathrm{kN}$
$1195 \mathrm{kN}<1654 \mathrm{kN}$
Therefore, the bearing capacity of the stiffened web is adequate.

21.4.3 Check buckling resistance of load carrying stiffener

Basic requirement: $F_{\mathrm{x}} \leq \boldsymbol{P}_{\mathrm{x}}$
Referring to Figure 21.6
$I_{\mathrm{y}}=\frac{16 \times 413^{3}}{12}+\frac{390 \times 13^{3}}{12}-\frac{16 \times 13^{3}}{12}=9400 \times 10^{4} \mathrm{~mm}^{4}$
Effective area of the cruciform section.
$A_{\mathrm{s}}=2 \times 200 \times 16+2 \times 195 \times 13=11470 \mathrm{~mm}^{2}$
$r_{\mathrm{y}}=\left(\frac{I_{\mathrm{y}}}{A_{\mathrm{s}}}\right)^{0.5}=\left(\frac{9400 \times 10^{4}}{11470}\right)^{0.5}=90.5 \mathrm{~mm}$
$L_{\mathrm{E}}=0.7 L=0.7 \times 1950=1365 \mathrm{~mm}$
$\lambda=\frac{L_{\mathrm{E}}}{r_{\mathrm{y}}}=\frac{1365}{90.5}=15.1$
From Table 24, $p_{\mathrm{c}}=275 \mathrm{~N} / \mathrm{mm}^{2}$
$P_{\mathrm{x}}=A_{\mathrm{s}} p_{\mathrm{c}}=11470 \times 275 \times 10^{-3}=3154 \mathrm{kN}$
$F_{\mathrm{x}}=1910 \mathrm{kN}<3154 \mathrm{kN}$
Therefore, the buckling resistance of the stiffener is adequate.
4.5.1.2
4.5.2.2
4.5.3.3
4.5.3.3

Table 24
(strut curve c)

21.5 End stiffener at A

The force required to be resisted by the end stiffener at A is equal to F_{ff} due to anchor (calculated in Section 21.3.4):
$F_{\mathrm{A}}=F_{\mathrm{tf}}=710 \mathrm{kN}$
By inspection, the same size stiffeners as at B (2 flats $200 \mathrm{~mm} \times 16 \mathrm{~mm}$ S275) will be adequate.

21.6 Intermediate stiffener at C

21.6.1 Choose a suitable stiffener size

The minimum stiffness of the intermediate stiffener at \mathbf{C} should satisfy both web panels either side of the stiffener: web panels BC and CD

Panel BC

$\frac{a}{d}=\frac{2500}{1950}=1.28$
$1.28<\sqrt{2}$
\therefore Minimum second moment of area $I_{\mathrm{s}}=1.5(d / a)^{2} d t_{\text {min }}{ }^{3}$
Conservatively, $t_{\min }$ is taken as the actual web thickness rather than the minimum required.
$t_{\text {min }}=13 \mathrm{~mm}$
$I_{\mathrm{s}}=1.5 \times(1950 / 2500)^{2} \times 1950 \times 13^{3}=391 \times 10^{4} \mathrm{~mm}^{4}$

Panel CD

$\frac{a}{d}=\frac{3000}{1950}=1.54$
$1.54 \geq \sqrt{2}$
\therefore Minimum second moment of area $I_{\mathrm{s}}=0.75 \mathrm{dt}_{\text {min }}{ }^{3}$
$t_{\text {min }}=13 \mathrm{~mm}$
$I_{\mathrm{s}}=0.75 \times 1950 \times 13^{3}=321 \times 10^{4} \mathrm{~mm}^{4}$
\therefore Basic requirement: $I_{\mathrm{s}}>391 \times \mathbf{1 0}^{4} \mathbf{m m}^{4}$
Try stiffener 2 flats $\mathbf{1 0 0} \mathbf{~ m m} \times 13 \mathbf{~ m m}$ grade $\mathbf{S 2 7 5}$
For stiffeners only
$I_{\mathrm{s}}=\left(\frac{13 \times 213^{3}}{12}-\frac{13 \times 13^{3}}{12}\right)=1047 \times 10^{4} \mathrm{~mm}^{4}$
$1047 \times 10^{4} \mathrm{~mm}^{4}>391 \times 10^{4} \mathrm{~mm}^{4}$
Therefore, the stiffness of the stiffener at \mathbf{C} is adequate.

Figure 21.7 Intermediate stiffeners at C

Example 21 Simply supported stiffened plate girder \quad Sheet 10 of 13 | Rev |
| :--- |

Grade of steel $=$ S275
$t_{\mathrm{s}} \leq 16 \mathrm{~mm}$
Therefore $p_{\mathrm{y}}=275 \mathrm{~N} / \mathrm{mm}^{2}$
$\varepsilon=\sqrt{\frac{275}{p_{\mathrm{y}}}}=\sqrt{\frac{275}{275}}=1$
The outstand of the web stiffener should not exceed $19 \varepsilon t_{\mathrm{s}}$ from the face of the web.
4.5.1.2

Limiting outstand is $19 \varepsilon t_{\mathrm{s}}=19 \times 1 \times 13=247 \mathrm{~mm}$
Actual outstand is 100 mm
$100 \mathrm{~mm}<247 \mathrm{~mm}$
Therefore, the outstand is acceptable
If the outstand of a stiffener is between $13 \varepsilon t_{\mathrm{s}}$ and $19 \varepsilon t_{\mathrm{s}}$ then its design should be based on an effective cross section with an outstand of $13 \varepsilon t_{\mathrm{s}}$

Limiting length is $13 \varepsilon t_{\mathrm{s}}=13 \times 1 \times 13=169 \mathrm{~mm}$
Actual outstand is 100 mm
$100 \mathrm{~mm}<169 \mathrm{~mm}$
Therefore, the outstand is fully effective

21.6.2 Check stiffened web at C

Figure 21.8 Stiffened web at C

Basic requirement $\boldsymbol{F}_{\mathrm{q}} \leq \boldsymbol{P}_{\boldsymbol{q}}$

$F_{\mathrm{q}} \quad=V-V_{\mathrm{cr}}$
F_{q} is the larger value obtained from panel CB and CD

Panel CB

$F_{\text {q. СB }}=V_{\text {CB }}-V_{\text {cr.CB }}$
$V_{\mathrm{CB}}=1910 \mathrm{kN}$ (Figure 21.4)
$V_{\text {cr.CB }}=1655 \mathrm{kN}($ see Section 21.3.3)
$F_{\mathrm{q} . \mathrm{CB}}=1910-1655=255 \mathrm{kN}$

Panel CD

$F_{\text {q.CD }}=V_{\mathrm{CD}}-V_{\text {cr.CD }}$
$V_{\mathrm{CD}}=1680 \mathrm{kN}$ (Figure 21.4)
Calculation of $V_{\text {cr.CD }}$ for web panel CD:
$d / t=1950 / 13=150$
a/d $=3000 / 1950=1.54$
From Table 21, $q_{\mathrm{w}}=88.9 \mathrm{~N} / \mathrm{mm}^{2}$
$V_{\mathrm{w}} \quad=d t q_{\mathrm{w}}=1950 \times 13 \times 88.9=2254 \mathrm{kN}$
$A_{\mathrm{v}}=t d=13 \times 1950 \quad=25350 \mathrm{~mm}^{2}$
$P_{\mathrm{v}}=0.6 p_{\mathrm{yw}} A_{\mathrm{v}}=0.6 \times 275 \times 2530=4183 \mathrm{kN}$
$0.72 P_{\mathrm{v}}=0.72 \times 4183 \mathrm{kN}=3012 \mathrm{kN}$

Table 21
4.4.5.2
4.2.3

Example 21 Simply supported stiffened plate g
As $V_{\mathrm{w}} \leq 0.72 P_{\mathrm{v}}(2254 \leq 3012)$
$V_{\mathrm{cr} . \mathrm{CD}}=\frac{\left(\frac{V_{\mathrm{w}}}{0.9}\right)^{2}}{P_{\mathrm{v}}}=\frac{\left(\frac{2254}{0.9}\right)^{2}}{4183}=1499 \mathrm{kN}$
$F_{\mathrm{q} . \mathrm{CD}}=1680-1499=181 \mathrm{kN}$
$F_{\mathrm{q}}=\max \left(F_{\mathrm{q} . \mathrm{CB}}, F_{\mathrm{q} . \mathrm{CD}}\right)$
$\therefore F_{\mathrm{q}}=255 \mathrm{kN}$
For calculation of P_{q}, referring to Figure 21.8

$$
\begin{array}{ll}
I_{\mathrm{y}}=\frac{13 \times 213^{3}}{12}+\frac{390 \times 13^{3}}{12}-\frac{13 \times 13^{3}}{12}=1054 \times 10^{4} \mathrm{~mm}^{4} \\
A_{\mathrm{s}}=2 \times 100 \times 13+2 \times 195 \times 13 & =7670 \mathrm{~mm}^{2} \\
r_{\mathrm{y}}=\left(\frac{I}{A_{\mathrm{s}}}\right)^{0.5}=\left(\frac{1054 \times 10^{4}}{7670}\right)^{0.5} & =37.1 \mathrm{~mm} \\
L_{\mathrm{E}}=0.7 L=0.7 \times 1950 & =1365 \mathrm{~mm} \\
\lambda=\frac{L_{\mathrm{E}}}{r_{\mathrm{y}}}=\frac{1365}{37.1} & =36.8
\end{array}
$$

From Table 24, $p_{\mathrm{c}}=244 \mathrm{~N} / \mathrm{mm}^{2}$
$P_{\mathrm{x}}=A_{\mathrm{s}} p_{\mathrm{c}}=7670 \times 244 \times 10^{-3}=1872 \mathrm{kN}$
$P_{\mathrm{q}}=P_{\mathrm{x}} \quad=1872 \mathrm{kN}$
$F_{\mathrm{q}} \quad=255 \mathrm{kN} \leq 1872 \mathrm{kN}$
Therefore, the buckling resistance of the stiffener is adequate.

21.7 Stiffener at E

The stiffener at E should be checked as:
(1) A bearing stiffener (see clauses 4.5.1.1(a), 4.5.2)
(2) An intermediate transverse web stiffener (see clauses 4.5.1.1(d), 4.5.5, 4.4.6.2)

21.7.1 Choose a suitable stiffener size

Try stiffener 2 flats $\mathbf{1 0 0} \mathbf{~ m m} \times 13 \mathbf{m m}$ grade $\mathbf{S 2 7 5}$ as for stiffener at C

Minimum stiffness requirement:
Since the transverse force applied is in line with web, there is no increase in minimum I_{s} required (calculations similar to 21.6 . 1 but not shown here).

21.7.2 Check bearing capacity of the stiffened web

Basic requirement: $\left(F_{\mathrm{x}}-\boldsymbol{P}_{\mathrm{bw}}\right) \leq \boldsymbol{P}_{\mathrm{s}}$
Allowing 12 mm cope for web/flange weld
$A_{\text {s.net }}=2 \times 88 \times 13=2288 \mathrm{~mm}^{2}$
$P_{\mathrm{s}} \quad=A_{\text {s.net }} p_{\mathrm{y}} \quad=2288 \times 275 \times 10^{-3}=629 \mathrm{kN}$
$P_{\mathrm{bw}} \quad=715 \mathrm{kN}$ (same as in 21.4.2)
$F_{\mathrm{x}} \quad=760 \mathrm{kN}$
$F_{\mathrm{x}}-P_{\mathrm{bw}}=760-715=45 \mathrm{kN}$
$\left(F_{\mathrm{x}}-P_{\mathrm{bw}}\right)=45 \mathrm{kN}<629 \mathrm{kN}$
Therefore, the bearing capacity of the stiffened web is adequate.

Table 24
strut curve C
Sheet 12 of 13 Rev

21.7.3 Check buckling resistance of intermediate transverse web stiffeners subject to external forces

If $\boldsymbol{F}_{\mathrm{q}} \leq \boldsymbol{F}_{\mathrm{x}}$ then basic requirement is $\frac{F_{\mathrm{x}}}{P_{\mathrm{x}}}+\frac{M_{\mathrm{s}}}{M_{\mathrm{ys}}} \leq 1$
$F_{\mathrm{x}}=760 \mathrm{kN}$
F_{q} is the larger value obtained from panels ED and EF.

Panel ED

$F_{\text {q.ED }}=V_{\text {ED }}-V_{\text {cr.ED }}$
$V_{\mathrm{ED}} \quad=1404 \mathrm{kN}$ (see Figure 21.4)
$d / t=1950 / 13=150$
$a / d=3500 / 1950=1.79$
From Table 21, $q_{\mathrm{w}}=86 \mathrm{~N} / \mathrm{mm}^{2}$
$V_{\mathrm{w} . \mathrm{ED}}=d t q_{\mathrm{w}} \quad=1950 \times 13 \times 86 \times 10^{-3} \quad=2180 \mathrm{kN}$
$P_{\mathrm{v}} \quad=0.6 p_{\mathrm{yw}} A_{\mathrm{v}}=0.6 \times 275 \times 25350 \times 10^{-3}=4183 \mathrm{kN}$
$0.72 P_{\mathrm{v}}=3012 \mathrm{kN}$
As $V_{\mathrm{w}} \leq 0.72 P_{\mathrm{v}}(2180 \mathrm{kN} \leq 3012 \mathrm{kN})$
$V_{\text {cr.ED }}=\frac{\left(\frac{V_{\mathrm{w}}}{0.9}\right)^{2}}{P_{\mathrm{v}}}=\frac{\left(\frac{2180}{0.9}\right)^{2}}{4183}=1403 \mathrm{kN}$
$F_{\text {q.ED }}=1404-1403=1 \mathrm{kN}$

Panel EF

$F_{\mathrm{q} . \mathrm{EF}}=V_{\mathrm{EF}}-V_{\text {cr.EF }}$
$V_{\mathrm{EF}} \quad=1082 \mathrm{kN}$ (see Figure 21.4)
$d / t=1950 / 13=150$
$a / d=3500 / 1950=1.79$
From Table 21, $q_{\mathrm{w}}=86 \mathrm{~N} / \mathrm{mm}^{2}$
$\begin{array}{lll}V_{\mathrm{w} . \mathrm{EF}}=d t q_{\mathrm{w}}=1950 \times 13 \times 86 \times 10^{-3} & =2180 \mathrm{kN} \\ P_{\mathrm{v}} & =0.6 p_{\mathrm{yw}} A_{\mathrm{v}}=0.6 \times 275 \times 25350 \times 10^{-3} & =4183 \mathrm{kN}\end{array}$
$0.72 P_{\mathrm{v}}=3012 \mathrm{kN}$
As $V_{\mathrm{w}} \leq 0.72 P_{\mathrm{v}}(2180 \mathrm{kN} \leq 3012 \mathrm{kN})$
$V_{\text {cr.EF }}=\frac{\left(\frac{V_{\mathrm{w}}}{0.9}\right)^{2}}{P_{\mathrm{v}}}=\frac{\left(\frac{2180}{0.9}\right)^{2}}{4183}=1403 \mathrm{kN}$
$F_{\mathrm{q}, \mathrm{EF}}=1082-1403=-321 \mathrm{kN}$
(Note: As $F_{\mathrm{q} . \mathrm{EF}}$ is negative, there is no tension field action)
$F_{\mathrm{q}} \quad=\max \left(F_{\mathrm{qED}}, F_{\mathrm{qEF}}\right)$
$\therefore F_{q}=1 \mathrm{kN}$
Therefore $\boldsymbol{F}_{\mathrm{q}} \leq \boldsymbol{F}_{\mathrm{x}}$
As $\boldsymbol{F}_{\mathrm{q}} \leq \boldsymbol{F}_{\mathbf{x}}$, the basic requirement is $\frac{F_{\mathrm{x}}}{P_{\mathrm{x}}}+\frac{M_{\mathrm{s}}}{M_{\mathrm{ys}}} \leq 1$
$F_{\mathrm{x}} \quad=760 \mathrm{kN}$
$P_{\mathrm{x}} \quad=1872 \mathrm{kN}$ (as calculated for C)
$M_{\mathrm{s}} \quad=0 \mathrm{kN}$
$F_{\mathrm{x}} / P_{\mathrm{x}}=760 / 1872=0.41$
$0.41<1$
Therefore, the buckling resistance of the stiffener is adequate.
4.4.6.6

Table 21

Table 21

21.8 Web check between stiffeners

This additional check should be carried out where load is applied between two stiffeners.

Basic requirement $f_{\text {ed }} \leq p_{\text {ed }}$

Since the UDL is constant, it is only necessary to check the largest panel.
$f_{\text {ed }}=w^{\prime} / t=92 / 13=7.1 \mathrm{~N} / \mathrm{mm}^{2}$
It is assumed that the compression flange is restrained against rotation relative to the web.

$$
p_{\mathrm{ed}}=\left(2.75+\frac{2}{\left(\frac{a}{d}\right)^{2}}\right) \frac{E}{\left(\frac{d}{t}\right)^{2}}=\left(2.75+\frac{2}{\left(\frac{3500}{1950}\right)^{2}}\right) \frac{205000}{\left(\frac{1950}{13}\right)^{2}}=30.7 \mathrm{~N} / \mathrm{mm}^{2}
$$

$f_{\text {ed }} \quad=7.1 \mathrm{~N} / \mathrm{mm}^{2} \leq 30.7 \mathrm{~N} / \mathrm{mm}^{2}$
Therefore, the web is adequate for all panels.

21.9 Final plate girder details

Note: (1) The size of the intermediate stiffeners could be reduced, but practical stiffener sizes have been adopted
(2) Intermediate stiffener at F could be left out.
(3) Other positions of stiffeners are possible.

Figure 21.9 Final plate girder details

22 Sway stability

22.1 Introduction

The frame shown in Figure 22.1 consists of steel beams and columns arranged on a $7 \mathrm{~m} \times 7 \mathrm{~m}$ grid. The frame has been designed on the basis of "Simple Design" according to BS $5950-1: 2000{ }^{[1]}$ clause 2.1.2.2. Resistance to sway is provided by two 3.5 m braced bays, one on each 49 m side, as shown in Figure 22.2. In practice, bracing would also be required parallel to the 28 m side, but this is not considered in this example. Once constructed, the frame will be clad to form an office block, but the stiffening effect of the cladding has not been taken into account in the analysis of the frame. Determine whether the frame is "non-sway" or "sway sensitive" according to BS 5950-1:2000 ${ }^{[1]}$ and, if necessary, calculate the amplification factor $k_{\text {amp }}$.

Figure 22.1

Figure 22.2

22.1.1 Unfactored roof and floor loads

Roof:
Dead load $\quad w_{\mathrm{dr}}=3.5 \mathrm{kN} / \mathrm{m}^{2}$
Imposed load $\quad w_{\text {ir }} \quad=1.0 \mathrm{kN} / \mathrm{m}^{2}$
Floor:
Dead load $\quad w_{\mathrm{df}}=3.5 \mathrm{kN} / \mathrm{m}^{2}$
Imposed load $\quad w_{\mathrm{if}} \quad=6.0 \mathrm{kN} / \mathrm{m}^{2}$

Example 22 Sway stability	Sheet	2	of	6	Rev

22.1.2 Factored roof and floor loads

Consider the following three load combinations:
(1) 1.4 dead +1.6 imposed
(2) 1.0 dead +1.4 wind (dead load resisting overturning due to wind)
(3) 1.2 dead +1.2 imposed +1.2 wind

Gravity loads for load combination 1

Roof: $w_{\mathrm{r}}^{\prime}=(3.5 \times 1.4)+(1.0 \times 1.6)=6.5 \mathrm{kN} / \mathrm{m}^{2}$
Floor: $w_{\mathrm{f}}^{\prime}=(3.5 \times 1.4)+(6.0 \times 1.6)=14.5 \mathrm{kN} / \mathrm{m}^{2}$

Gravity loads for load combination 2

Roof: $w_{\mathrm{r}}^{\prime}=3.5 \times 1.0=3.5 \mathrm{kN} / \mathrm{m}^{2}$
Floor: $w_{\mathrm{f}}^{\prime}=3.5 \times 1.0=3.5 \mathrm{kN} / \mathrm{m}^{2}$

Gravity loads for load combination 3

Roof: $w_{\mathrm{r}}^{\prime}=(3.5 \times 1.2)+(1.0 \times 1.2)=5.4 \mathrm{kN} / \mathrm{m}^{2}$
Floor: $w_{\mathrm{f}}^{\prime}=(3.5 \times 1.2)+(6.0 \times 1.2)=11.4 \mathrm{kN} / \mathrm{m}^{2}$

22.1.3 Member sizes

Roof beam $\quad 305 \times 127 \times 37$ UB in grade S275
Floor beam $\quad 406 \times 178 \times 60$ UB in grade S275
Ground to $2^{\text {nd }}$ floor columns $203 \times 203 \times 60$ UC in grade S275
$2^{\text {nd }}$ floor to roof columns $\quad 203 \times 203 \times 46$ UC in grade S275
Bracing $\quad 168.3 \times 6.3$ CHS in grade S275

22.2 Sway Stability

The sway stability of the structure is assessed by performing an elastic analysis on one of the braced bays, under the action of the notional horizontal forces (NHF),
according to the rules in clause 2.4 .2 of BS 5950-1:2000 ${ }^{[1]}$. The notional horizontal
forces are applied as horizontal point loads at every roof and floor level and are taken as 0.5% of the total factored dead + imposed loads for that level. In this example, since the stability is provided by two braced bays, the notional horizontal forces applied to one bracing system should be taken as half the value calculated for the whole floor or roof.

The greatest notional horizontal forces occur in load combination 1 and this case should generally be used when assessing sway stability. However, advantage may be taken of the lower notional horizontal forces in load combinations 2 and 3, if desired. All three combinations are considered below.

22.2.1 Load combination 1 (Dead + Imposed)

Roof level NHF $=0.005 \times 0.5 \times 28 \times 49 \times 6.5=22.3 \mathrm{kN}$
Floor level NHF $=0.005 \times 0.5 \times 28 \times 49 \times 14.5=49.7 \mathrm{kN}$
The result of an elastic analysis on one braced bay (bare frame only) under the action of the notional horizontal forces is shown in Figure 22.3.
2.4.2.4
2.4.2.4

Example 22 Sway stability

Sheet	4	of	6	Rev

For clad frames in which the stiffening effect of the cladding has been ignored, the amplifier $k_{\text {amp }}$ is given by:

$$
\begin{aligned}
& k_{\mathrm{amp}}=\frac{\lambda_{\mathrm{cr}}}{1.15 \lambda_{\mathrm{cr}}-1.5} \text { but } k_{\mathrm{amp}} \geq 1.0 \\
& k_{\mathrm{amp}}=\frac{5.15}{(1.15 \times 5.15)-1.5}=1.16
\end{aligned}
$$

The result of an elastic analysis on one braced bay (bare frame only) under the action of the notional horizontal forces is shown in Figure 22.4.
Roof

Figure 22.4 Deflections due to NHF for load combination 2

Ground - $1^{\text {st }}$ floor: $\quad \lambda_{\mathrm{cr}}=\frac{3500}{200 \times 1.0}=17.5$
$2^{\text {nd }}$ floor $-3^{\text {rd }}$ floor: $\quad \lambda_{\text {cr }}=\frac{3000}{200 \times 0.9}=16.7$
Therefore, $\lambda_{\mathrm{cr}}=16.7$

Since $\lambda_{\mathrm{cr}}>10$, the frame is classed as "non-sway" and there is no need to amplify the forces in the bracing system for load combination 2.

Note: A frame with $\lambda_{\text {cr }}>10$ is only classed as "non-sway" if it is a clad frame that has been analysed as a bare frame in determining $\lambda_{\text {cr. }}$. Bare frames or clad frames where the stiffness of the cladding is allowed for in determining λ_{cr} are always classified as "sway sensitive", irrespective of the value of λ_{cr}.
22.2.3 Load combination 3 (Dead + Wind + Imposed)

Roof level NHF $=0.005 \times 0.5 \times 28 \times 49 \times 5.4=18.5 \mathrm{kN}$
Floor level NHF $=0.005 \times 0.5 \times 28 \times 49 \times 11.4=39.1 \mathrm{kN}$

The result of an elastic analysis on one braced bay (bare frame only) under the action of the notional horizontal forces is shown in Figure 22.5.
Roof

Figure 22.5 Deflections due to NHF for load combination 3

Ground $-1^{\text {st }}$ floor: $\quad \lambda_{\text {cr }}=\frac{3500}{200 \times 2.7}=6.48$
$1^{\text {st }}$ floor $-2^{\text {nd }}$ floor: $\quad \lambda_{\text {er }}=\frac{3000}{200 \times 2.2}=6.82$
Therefore, $\lambda_{\text {cr }}=6.48$
Since $\lambda_{\mathrm{cr}}<10$, the frame is classed as "sway sensitive" for load combination 3.

Example 22 Sway stability

For clad frames in which the stiffening effect of the cladding has been ignored, the amplifier $k_{\text {amp }}$ is given by:

$$
k_{\mathrm{amp}}=\frac{\lambda_{\mathrm{cr}}}{1.15 \lambda_{\mathrm{cr}}-1.5}=\frac{6.48}{(1.15 \times 6.48)-1.5} \quad=1.09
$$

Therefore, the forces in the bracing system must be increased by 9% for load combination 3 .

The Steel Construction Institute Silwood Park, Ascot, Berks SL5 7QN Telephone: (01344) 623345 Fax: (01344) 622944	Job No. CDS 153			Sheet	1 of		Rev
	Job Title Example no. 23						
	Subject Tying and the avoidance of disproportionate collapse						
	Client	SCI	Made by	MDH	Date Jun 2003		
Calculation Sheet			Checked by	ASM		Oct	003

23 Tying and the avoidance of disproportionate collapse

23.1 Introduction

The ten-storey building shown in Figure 23.1 has been designed on the basis of "Simple Design" in accordance with the recommendations of BS 5950-1:2000 ${ }^{[1]}$. All storeys are 4.0 m high, apart from the ground to first floor, which has a height of 5.0 m . The columns are laid out on a $6 \mathrm{~m} \times 9 \mathrm{~m}$ grid with the primary beams spanning 6 m and the secondary beams spanning 9 m as shown in Figure 23.2. The spacing of the secondary beams is 3.0 m . A composite flooring system is used with steel decking spanning between the secondary beams. All the secondary and primary beams are assumed to act compositely with the floor slab. The steel frame is of simple construction, with two braced bays on each of the four sides providing lateral stability.

Check that the building meets the requirements of BS 5950-1:2000 ${ }^{[1]}$ in terms of structural integrity and the avoidance of disproportionate collapse.

2.4 .5

Figure 23.1

In the first instance, check for integrity is achieved by ensuring that the five conditions listed in sub-clause 2.4 .5 .3 of BS $5950-1: 2000^{[1]}$ are satisfied. Where this is not possible, the designer must check that the removal of any individual member does not lead to disproportionate collapse as defined in BS 5950-1:2000 ${ }^{[1]}$. Finally, if the removal of a member would cause disproportionate collapse, this member must be designed as a key element. All three stages of this process are demonstrated in this example.

In practice, these checks must be carried out on all members to ensure adequate robustness throughout the structure. However, in this example, the checks are only performed on a typical secondary beam, an edge column and an internal column. These columns are denoted B and E respectively in Figure 23.2.

Figure 23.2
The composite floor system comprises steel decking spanning between the secondary beams, as shown in Figure 23.3, with a 125 mm thick slab in grade C30 concrete.

Figure 23.3

Example 23 Tying and the avoidance of disproportionate collapse \quad Sheet | | 3 | of | 12 |
| :--- | :--- | :--- | :--- | Rev

23.1.1 Unfactored roof and floor loads

Dead load (assume the same for roof and floor)
S / w concrete $=2.67 \mathrm{kN} / \mathrm{m}^{2}$
S / w decking $=0.17 \mathrm{kN} / \mathrm{m}^{2}$
S / w beams $\quad=0.15 \mathrm{kN} / \mathrm{m}^{2}$
Total $\mathrm{s} / \mathrm{w} \quad=2.99 \mathrm{kN} / \mathrm{m}^{2}$
Allow $0.5 \mathrm{kN} / \mathrm{m}^{2}$ for ceilings and services.
Total unfactored dead load $=3.49 \mathrm{kN} / \mathrm{m}^{2}$

Imposed load

Roof: $1.0 \mathrm{kN} / \mathrm{m}^{2}$
Floor: $5.0 \mathrm{kN} / \mathrm{m}^{2}+1.0 \mathrm{kN} / \mathrm{m}^{2}$ (partitions) $\quad=6.0 \mathrm{kN} / \mathrm{m}^{2}$

23.1.2 Unfactored cladding loads

The external beams carry a brick and block cavity wall plastered on one side. From 4.0 m , the distributed load on each external beam is
$w_{\text {clad }}=4.0 \times 3.76=15.04 \mathrm{kN} / \mathrm{m}$

23.1.3 Factored roof loads

Edge column B

Edge columns support an area of $27 \mathrm{~m}^{2}$
$W_{\text {roof }, \mathrm{B}}^{\prime}=((3.49 \times 1.4)+(1.0 \times 1.6)) \times 27=175 \mathrm{kN}$

Internal column E

Internal columns support an area of $54 \mathrm{~m}^{2}$
$W_{\text {roof, } \mathrm{E}}^{\prime}=((3.49 \times 1.4)+(1.0 \times 1.6)) \times 54=350 \mathrm{kN}$

23.1.4 Factored floor loads on secondary beams

Edge beams

$w^{\prime}=(15.04 \times 1.4)+(1.5 \times 3.49 \times 1.4)+(1.5 \times 6.0 \times 1.6)=42.8 \mathrm{kN} / \mathrm{m}$
Total load per beam $=42.8 \times 9.0=385.2 \mathrm{kN}$

Internal beams

$w^{\prime}=(3.0 \times 3.49 \times 1.4)+(3.0 \times 6.0 \times 1.6)=43.5 \mathrm{kN} / \mathrm{m}$
Total load per beam $=43.5 \times 9.0=391.5 \mathrm{kN}$

23.1.5 Factored floor loads on primary beams

It is assumed that the entire slab loading is carried by the secondary beams and then transferred to the primary beams as point loads. Therefore, the only loads applied to the primary beams are the internal secondary beam reactions. Each internal primary beam supports two secondary beams.

Total load per beam $=2 \times 0.5 \times 391.5=391.5 \mathrm{kN}$

| Example 23 Tying and the avoidance of disproportionate collapse | Sheet | 4 | of | 12 | Rev |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

23.1.6 Factored floor loads on columns

Edge column B

Column B supports 2 edge beams and 1 primary beam and carries half the load from each beam.

$$
W_{\text {floor, } \mathrm{B}}^{\prime}=(2 \times 0.5 \times 385.2)+(0.5 \times 391.5)=581 \mathrm{kN}
$$

Internal column E

Column E supports 2 internal secondary beams and 2 internal primary beams and carries half the load from each beam.
$W_{\text {floor }, \mathrm{E}}^{\prime}=(2 \times 0.5 \times 391.5)+(2 \times 0.5 \times 391.5)=783 \mathrm{kN}$

23.2 Member sizes

The composite beams were designed using the BDES* software and the column sizes were estimated using the member capacity tables in Volume $1^{[2]}$. In sizing the beams, the final composite condition and the construction stage non-composite condition were both checked. Since the internal and external beams experience similar loading, only the internal beams were considered. For simplicity, the columns were sized for compression only. In practice, they would have to be designed as columns in simple construction, following the procedure outlined in Example 14.
*Available from www.corusconstruction.com/page_679.htm

23.2.1 Beam sizes

Secondary beams

$406 \times 140 \times 46$ UB in grade S355.

Primary beams

$457 \times 152 \times 52 \mathrm{UB}$ in grade S355.

23.2.2 Column sizes

The factored loading, effective lengths and selected column sizes for columns B and E are given in Tables 23.1 and 23.2 respectively.

Table 23.1 Edge column B

Column location	$L_{\text {eff }}$ (\mathbf{m})	Factored load ex. column $\mathbf{s} / \mathbf{w}(\mathbf{k N})$	Selected section (all S355)	Factored load inc. column $\mathbf{s} / \mathbf{w}(\mathbf{k N})$	Resistance (kN)
Roof-9	4.0	175	$305 \times 305 \times 97 \mathrm{UC}$	175	3310
$9-8$	4.0	756	$305 \times 305 \times 97 \mathrm{UC}$	761	3310
$8-7$	4.0	1337	$305 \times 305 \times 97 \mathrm{UC}$	1348	3310
$7-6$	4.0	1918	$305 \times 305 \times 97 \mathrm{UC}$	1934	3310
$6-5$	4.0	2499	$305 \times 305 \times 97 \mathrm{UC}$	2520	3310
$5-4$	4.0	3080	$305 \times 305 \times 97 \mathrm{UC}$	3107	3310
$4-3$	4.0	3661	$305 \times 305 \times 137 \mathrm{UC}$	3693	4620
$3-2$	4.0	4242	$305 \times 305 \times 137 \mathrm{UC}$	4282	4620
$2-1$	4.0	4823	$305 \times 305 \times 198 \mathrm{UC}$	4870	6780
$1-0$	5.0	5404	$305 \times 305 \times 198 \mathrm{UC}$	5462	5920

Vol 1
Page D-6

Example 23 Tying and the avoidance of disproportionate collapse	Sheet	5	of	12	Rev

Table 23.2 Internal column E

Column location	$L_{\text {eff }}$ (\mathbf{m})	Factored load ex. column $\mathbf{s} / \mathbf{w}(\mathbf{k N})$	Selected section (all S355)	Factored load inc. column $\mathbf{s / w} \mathbf{(k N)}$	Resistance $(\mathbf{k N})$
Roof-9	4.0	350	$305 \times 305 \times 97 \mathrm{UC}$	350	3310
$9-8$	4.0	1133	$305 \times 305 \times 97 \mathrm{UC}$	1138	3310
$8-7$	4.0	1916	$305 \times 305 \times 97 \mathrm{UC}$	1927	3310
$7-6$	4.0	2699	$305 \times 305 \times 97 \mathrm{UC}$	2716	3310
$6-5$	4.0	3482	$305 \times 305 \times 137 \mathrm{UC}$	3504	4620
$5-4$	4.0	4265	$305 \times 305 \times 137 \mathrm{UC}$	4295	4620
$4-3$	4.0	5048	$305 \times 305 \times 198 \mathrm{UC}$	5085	6780
$3-2$	4.0	5831	$305 \times 305 \times 198 \mathrm{UC}$	5879	6780
$2-1$	4.0	6614	$305 \times 305 \times 283 \mathrm{UC}$	6674	9200
$1-0$	5.0	7397	$305 \times 305 \times 283 \mathrm{UC}$	7473	8030

Vol 1
Page D-6

It is assumed that the columns are spliced every two storeys and that lateral restraint is provided at every floor. It is further assumed that the columns may be treated as pin-ended between the floor levels.

23.3 Disproportionate collapse checks using fin plate beam-to-column connections

Regulations that stipulate that certain buildings should be designed to avoid disproportionate collapse may be assumed to be satisfied if the five conditions listed in 2.4.5.3 of BS 5950-1:2000 ${ }^{11]}$ are met. These five conditions are considered in Sections 23.3.1 to 23.3 .5 below. It is assumed that fin plates are used for all beam-to-column connections.

23.3.1 General tying

Horizontal ties should be arranged in continuous lines throughout each floor and roof level in two approximately perpendicular directions. All members acting as ties and their end connections should be designed to resist a tensile force equal to the end reaction of the member under factored loads or 75 kN , whichever is greater.

Typical secondary beam ($406 \times 140 \times 46$ UB in grade S355)
The connection should be designed to resist the beam-to-column reaction in shear and then checked to ensure that it has an adequate tying capacity. The values of shear capacity and tying capacity used in this example have been obtained from Joints in steel construction: Simple connections ${ }^{[6]}$ and are based on the steel connection alone. No allowance has been made for the capacity of the reinforcement in the concrete to carry some of the load.

Example 23 Tying and the avoidance of disproportionate collapse	Sheet	6	of	12	Rev

Try $290 \times 150 \times 10 \mathrm{~mm}$ fin plate in S 275 with two lines of 4 bolts.
Basic requirement 1: Reaction \leq Shear capacity
Reaction under factored loads $=196 \mathrm{kN}$
Shear capacity $=289 \mathrm{kN}$
$196 \mathrm{kN}<289 \mathrm{kN}$
Therefore the shear capacity is adequate.

Basic requirement 2: Tying force \leq Tying capacity

Required tying force $=196 \mathrm{kN}$
Tying capacity $=488 \mathrm{kN}$
$196 \mathrm{kN}<488 \mathrm{kN}$
Therefore the tying capacity is adequate.
Typical primary beam ($457 \times 152 \times 52$ UB in grade S355)
Try $290 \times 100 \times 10 \mathrm{~mm}$ fin plate in S 275 with a single line of 4 bolts.
Basic requirement 1: Reaction \leq Shear capacity
Reaction under factored loads $=196 \mathrm{kN}$
Shear capacity $=212 \mathrm{kN}$
$196 \mathrm{kN}<212 \mathrm{kN}$
Therefore the shear capacity is adequate.

Basic requirement 2: Tying force \leq Tying capacity

Required tying force $=196 \mathrm{kN}$
Tying capacity $=334 \mathrm{kN}$
$196 \mathrm{kN}<334 \mathrm{kN}$
Therefore the tying capacity is adequate.

23.3.2 Tying of edge columns

Horizontal ties should be provided to hold the vertical perimeter columns in position. These ties should be capable of resisting a tying force, acting perpendicular to the edge, equal to the greater of 1% of the maximum factored vertical load in the column adjacent to that level or the load specified in the general tying requirement.

Consider the lowest level, where the load in the column is greatest.
From Table 23.1, the load in the column $=5462 \mathrm{kN}$
1% of $5462 \mathrm{kN}=54.62 \mathrm{kN}$
The tying force specified in 23.3.1 $=196 \mathrm{kN}$.
Therefore, the general tying requirement is critical in this case.

23.3.3 Continuity of columns

The column splices should be capable of resisting a tensile force equal to the largest factored vertical reaction applied to the column at a single floor level located between the column splice under consideration and the next column splice down.

Basic requirement: Applied vertical floor load \leq Column splice capacity

For the purpose of this example, consider column E as a typical internal column. The factored vertical load applied to the column from each floor is $W_{\text {floor, } \mathrm{E}}^{\prime}=783 \mathrm{kN}$.

Consider the weakest splice in that column (that between $305 \times 305 \times 97 \mathrm{UC}$ and $305 \times 305 \times 97 \mathrm{UC}$). From Table H. 32 of Joints in steel construction: Simple connections ${ }^{[6]}$, the capacity of one external flange cover plate is 794 kN .
Splice capacity $=2 \times 794 \mathrm{kN}=1588 \mathrm{kN}$
$783 \mathrm{kN}<1588 \mathrm{kN}$ Therefore the column splice capacity is adequate.

Table H. 30
P212 ${ }^{[6]}$

Table H. 30

Table H. 29
P212 ${ }^{[6]}$

Table H. 29
$2 \cdot 4.5 .3 \mathrm{~b})$
2.4.5.3 c)

Seet 4
(23.1.6)

Table H. 32
P212 ${ }^{[6]}$

Example 23 Tying and the avoidance of disproportionate collapse	Sheet	7	of	12	Rev

23.3.4 Resistance to horizontal forces

Condition d) of clause 2.4.5.3 states that there must be more than one system of bracing stabilizing the structure in two approximately orthogonal directions. In this Example, this is satisfied by the braced bays shown in Figure 23.1

23.3.5 Heavy floor units

Heavy precast floor units are not used in this Example, so condition e) of clause 2.4.5.3 does not apply. If heavy precast floor units are used, the designer must ensure that they are sufficiently secure against dislodgement.

23.3.6 Conclusion

Having satisfied the five conditions in clause 2.4.5.3 of BS 5950-1:2000 ${ }^{[1]}$, it may be assumed that this building meets the requirements of the regulations for the avoidance of disproportionate collapse.

23.4 Disproportionate collapse checks using flexible end plate beam-to-column connections

As an alternative to fin plate connections, this section considers the use of flexible end plates.

23.4.1 General tying

Typical secondary beam ($406 \times 140 \times 46$ UB in grade S355)
Try $290 \times 150 \times 8 \mathrm{~mm}$ flexible end plate in S275 with 4 rows of bolts.
Basic requirement 1: Reaction \leq Shear capacity
Reaction under factored loads $=196 \mathrm{kN}$
Shear capacity $=378 \mathrm{kN}$
$196 \mathrm{kN}<378 \mathrm{kN}$
Therefore the shear capacity is adequate.
Basic requirement 2: Tying force \leq Tying capacity
Required tying force $=196 \mathrm{kN}$
Tying capacity $=226 \mathrm{kN}$
196 kN < 226 kN
Therefore the tying capacity is adequate.
Now consider the situation in which the designer is unable to use such a deep secondary beam and opts instead for the slightly heavier $305 \times 165 \times 54$ UB in S355.

Try $290 \times 150 \times 8 \mathrm{~mm}$ flexible end plate in S 275 with 3 rows of bolts.
Basic requirement 1: Reaction \leq Shear capacity
Reaction under factored loads $=196 \mathrm{kN}$
Shear capacity $=333 \mathrm{kN}$
196 kN < 333 kN
Therefore the shear capacity is adequate.
Basic requirement 2: Tying force \leq Tying capacity
Required tying force $=196 \mathrm{kN}$
Tying capacity $=175 \mathrm{kN}$
196 kN > 175 kN
Therefore the tying capacity is NOT adequate and it is necessary to check for disproportionate collapse.

Example 23 Tying and the avoidance of disproportionate collapse		Sheet	8	of	12	Rev

23.4.2 Check for disproportionate collapse

If any of the first three conditions listed in clause 2.4.5.3 of BS 5950-1:2000 are not satisfied, the building should be checked to ensure that the removal of any one column would not lead to disproportionate collapse. Collapse is said to be disproportionate if at any given level it exceeds 15% of the floor or roof area or $70 \mathrm{~m}^{2}$. For the purpose of this example, this check has been restricted to column E. In practice, each column should be checked in turn.

The checks performed in Section 23.4.1 have already established that the tying capacity of the flexible end plate connections is inadequate, so the current check becomes one of measuring the area supported by the column. In this case, the removal of column E would lead to the collapse of a section of floor measuring $12 \mathrm{~m} \times 18 \mathrm{~m}$, i.e. $216 \mathrm{~m}^{2}$. Therefore, there is a risk of disproportionate collapse and the member should be designed as a key element using the accident loading specified in BS 6399-1 ${ }^{[7]}$, i.e. $34 \mathrm{kN} / \mathrm{m}^{2}$.

23.4.3 Key element design

The area to which the accidental loading is applied is dependent on the type of cladding or floor decking and, in particular, its integrity under blast loading. In this example, it is assumed that there is partitioning running between columns D, E and F , but none in the perpendicular direction. As the partitioning is not load-bearing, it is reasonable to assume that it is mostly blown out by the blast, leaving only a small section as shown in Figure 23.4. In this case, the breadth of partitioning remaining after the blast is assumed to be $\mathrm{B}+200 \mathrm{~mm}$.

Figure 23.4
In the design of key elements, the accidental loading should be applied in all directions, but only in one direction at a time. This means checking column E in bending about both the major and minor axes. The ordinary dead and imposed loads must also be taken into account (there is no wind loading on column E) and should be applied simultaneously with the accidental loading. However, the imposed load can be reduced to one third of its normal value for this check, with a γ_{f} factor of 1.05 . The same γ_{f} should also be applied to the dead load, but the accidental load should not be factored.

All of the calculations below relate to the column length between ground and first floor levels. In practice, all levels should be checked.

| Example 23 Tying and the avoidance of disproportionate collapse | Sheet | 9 | of | 12 | Rev |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Section properties

The size of the internal column between ground and first floor levels is $305 \times 305 \times 283$ UC, grade S355.

From section property tables:

Depth	$D=365.3 \mathrm{~mm}$
Width	$B=322.2 \mathrm{~mm}$
Web thickness	$t=26.8 \mathrm{~mm}$
Flange thickness	$T=44.1 \mathrm{~mm}$
Depth between fillets	$d=246.7 \mathrm{~mm}$
Area of cross-section	$A_{\mathrm{g}}=360 \mathrm{~cm}^{2}$
Plastic modulus	$S_{\mathrm{x}}=5110 \mathrm{~cm}^{3}$
Plastic modulus	$S_{\mathrm{y}}=2340 \mathrm{~cm}^{3}$
Elastic modulus	$Z_{\mathrm{x}}=4320 \mathrm{~cm}^{3}$
Elastic modulus	$Z_{\mathrm{y}}=1530 \mathrm{~cm}^{3}$
Radius of gyration	$r_{\mathrm{x}}=14.8 \mathrm{~cm}^{2}$
Radius of gyration	$r_{\mathrm{y}}=8.27 \mathrm{~cm}$

Grade of steel $=$ S355
$40 \mathrm{~mm}<T<63 \mathrm{~mm}$
Therefore $p_{\mathrm{y}}=335 \mathrm{~N} / \mathrm{mm}^{2}$

Axial load

For the purpose of key element design, the factored axial loads applied to the column by the roof and each floor level are as follows:

Roof
$W^{\prime}=1.05(3.49+(1.0 / 3)) \times 54=216.8 \mathrm{kN}$
Floor
$W^{\prime}=1.05(3.49+(6.0 / 3)) \times 54=311.3 \mathrm{kN}$

Column self-weight

Unfactored column $\mathrm{s} / \mathrm{w}=((4 \times 4.0 \times 97)+(2 \times 4.0 \times 137)+(2 \times 4.0 \times 198)+(4.0 \times 283)) \times$

$$
9.81 / 1000=52.6 \mathrm{kN}
$$

Factored column s/w $=1.05 \times 52.6=55.2 \mathrm{kN}$

Total factored axial load including self-weight
$F_{\mathrm{c}}=216.8+(9 \times 311.3)+55.2=3074 \mathrm{kN}$

Section classification

According to Volume $1^{[2]}$, the compact F / P_{z} limit for a $305 \times 305 \times 283 \mathrm{UC}$ in grade S355 is 1.0. Therefore, the section is at least compact.

Vol 1
Page B-8

Vol 1
Page B-9
3.1.1

Table 9

Vol 1
PageD-126

Major axis bending

Loading

The accidental loading about the major axis is applied to the section of partitioning shown in Figure 23.4.
$B=322.2 \mathrm{~mm}$. Therefore, the total loaded width $=522.2 \mathrm{~mm}$

Example 23 Tying and the avoidance of disproportionate collapse
Accidental loading $=0.5222 \times 34=17.8 \mathrm{kN} / \mathrm{m}$.
The accidental load is applied uniformly along the column between ground and first floor levels, with the section of column between floors 1 and 2 unloaded. Although the column is continuous across the support at floor level 1, it is a safe approximation to take the maximum moment as $w L^{2} / 8$, where $L=5.0 \mathrm{~m}$. The actual moment will not be greater than this value.
$M_{\mathrm{x}}=17.8 \times 5^{2} / 8=55.6 \mathrm{kNm}$.

Bending

Basic requirement: $M_{\mathrm{x}} \leq \boldsymbol{M}_{\mathrm{cx}}$
From Volume $1^{[2]} 1, M_{\mathrm{cx}}=1710 \mathrm{kNm}$
From above, $\quad M_{x}=55.6 \mathrm{kNm}$
$55.6 \mathrm{kNm}<1710 \mathrm{kNm}$
Therefore, the moment capacity is adequate.
Basic requirement: $\boldsymbol{M}_{\mathbf{x}} \leq \boldsymbol{M}_{\mathrm{b}} / \boldsymbol{m}_{\mathrm{LT}}$
From Volume $1^{[2]}$, for $L_{\mathrm{E}}=5.0 \mathrm{~m}, M_{\mathrm{b}}=1640 \mathrm{kNm}$
$m_{\text {LT }}$ is obtained from Table 18 of BS 5950-1:2000 ${ }^{[1]}$ according to the shape of the bending moment diagram.
$m_{\mathrm{LT}}=0.925$
$M_{\mathrm{b}} / m_{\mathrm{LT}}=1640 / 0.925=1773 \mathrm{kNm}$
From above, $M_{x}=55.6 \mathrm{kNm}$
$55.6 \mathrm{kNm}<1773 \mathrm{kNm}$
Therefore, the buckling resistance moment is adequate.

Interaction checks - section capacity

Basic requirement: $\frac{F_{\mathrm{c}}}{A_{\mathrm{g}} p_{\mathrm{y}}}+\frac{M_{\mathrm{x}}}{M_{\mathrm{cx}}}+\frac{M_{\mathrm{y}}}{M_{\mathrm{cy}}} \leq 1$
From Volume $1^{[2]}, A_{\mathrm{g}} p_{\mathrm{y}}=12100 \mathrm{kN}$
From above, $F_{\mathrm{c}}=3074 \mathrm{kN}$
There is no minor axis loading in this case so the third term in the equation can be ignored.
$\frac{3074}{12100}+\frac{55.6}{1710}+0=0.254+0.033=0.29<1$

Interaction checks - member buckling

Basic requirement: $\frac{F_{\mathrm{c}}}{P_{\mathrm{c}}}+\frac{m_{\mathrm{x}} M_{\mathrm{x}}}{p_{\mathrm{y}} Z_{\mathrm{x}}}+\frac{m_{\mathrm{y}} M_{\mathrm{y}}}{p_{\mathrm{y}} Z_{\mathrm{y}}} \leq 1$
For $L_{\mathrm{E}}=5.0 \mathrm{~m}, P_{\mathrm{c}}=8030 \mathrm{kN}$
m_{x} is obtained from Table 26 of BS 5950-1:2000 ${ }^{[1]}$.
$m_{\mathrm{x}}=0.95$
$p_{\mathrm{y}} Z_{\mathrm{x}}=1450 \mathrm{kNm}$
$\frac{3074}{8030}+\frac{0.95 \times 55.6}{1450}+0.383+0.036=0.42<1$
4.2.5

Vol 1
Page D-126
4.3.6

Vol 1
Page D-127

Table 18
4.8.3.2. a)

Vol 1
Page D-127
4.8.3.3.1

Vol 1
Page D-126
4.8.3.3.4

Table 26
Vol 1
Page D-127

Basic requirement: $\frac{F_{\mathrm{c}}}{P_{\mathrm{cy}}}+\frac{m_{\mathrm{LT}} M_{\mathrm{LT}}}{M_{\mathrm{b}}}+\frac{m_{\mathrm{y}} M_{\mathrm{y}}}{p_{\mathrm{y}} Z_{\mathrm{y}}} \leq 1$
M_{LT} is the maximum major axis moment in the segment $=55.6 \mathrm{kNm}$.
For $L_{\mathrm{E}}=5.0 \mathrm{~m}, \quad P_{\text {cy }}=8030 \mathrm{kN}$
$M_{\mathrm{b}} \quad=1640 \mathrm{kNm}$
$m_{\mathrm{LT}}=0.925$
$\frac{3074}{8030}+\frac{0.925 \times 55.6}{1640}+0=0.383+0.031=0.41<1$

Therefore, the column is adequate when subjected to the accidental load causing bending about the major axis.

Minor axis bending

Loading

The accidental loading about the minor axis is applied to the column and an assumed thickness of partitioning, say 50 mm .
$D=365.3 \mathrm{~mm}$. Therefore, the total loaded width $=415.3 \mathrm{~mm}$, say 415 mm .

Accidental loading $=0.415 \times 34=14.1 \mathrm{kN} / \mathrm{m}$.
Once again, assume the maximum moment is given by $w L^{2} / 8$.
$M_{\mathrm{y}}=14.1 \times 5^{2} / 8=44.1 \mathrm{kNm}$.

Bending

Basic requirement: $\boldsymbol{M}_{\mathrm{y}} \leq \boldsymbol{M}_{\mathrm{cy}}$
From Volume $1^{[2]}, M_{\text {cy }}=615 \mathrm{kNm}$
From above, $M_{y}=44.1 \mathrm{kNm}$
$44.1 \mathrm{kNm}<615 \mathrm{kNm}$

Therefore, the moment capacity is adequate.

Interaction checks - section capacity

Basic requirement: $\frac{F_{\mathrm{c}}}{A_{\mathrm{g}} p_{\mathrm{y}}}+\frac{M_{\mathrm{x}}}{M_{\mathrm{cx}}}+\frac{M_{\mathrm{y}}}{M_{\mathrm{cy}}} \leq 1$
As before, $A_{\mathrm{g}} p_{\mathrm{y}}=12100 \mathrm{kN}$ and $F_{\mathrm{c}}=3074 \mathrm{kN}$

There is no major axis loading in this case so the second term in the equation can be ignored.
$\frac{3074}{12100}+0+\frac{44.1}{615}=0.254+0.072=0.33<1$

Vol 1
Page D-127
Table 18
4.2.5

Vol 1
Page D-126
4.8.3.2. a)

Example 23 Tying and the avoidance of disproportionate collapse
Sheet 12 of 12
Rev

Interaction checks - member buckling

Basic requirement: $\frac{F_{\mathrm{c}}}{P_{\mathrm{c}}}+\frac{m_{\mathrm{x}} M_{\mathrm{x}}}{p_{\mathrm{y}} Z_{\mathrm{x}}}+\frac{m_{\mathrm{y}} M_{\mathrm{y}}}{p_{\mathrm{y}} Z_{\mathrm{y}}} \leq 1$
From above, the column resistance $P_{\mathrm{c}}=8030 \mathrm{kN}$
The shape of the bending moment diagram is identical to that for major axis bending (even though the values are different). Therefore, $m_{y}=0.95$.
$p_{\mathrm{y}} Z_{\mathrm{y}}=512 \mathrm{kNm}$
$\frac{3074}{8030}+0+\frac{0.95 \times 44.1}{512}=0.383+0.082=0.47<1$
Basic requirement: $\frac{F_{\mathrm{c}}}{P_{\mathrm{cy}}}+\frac{m_{\mathrm{LT}} M_{\mathrm{LT}}}{M_{\mathrm{b}}}+\frac{m_{\mathrm{y}} M_{\mathrm{y}}}{p_{\mathrm{y}} Z_{\mathrm{y}}} \leq 1$
$\frac{3074}{8030}+0+\frac{0.95 \times 44.1}{512}=0.383+0.082=0.47<1$
Vol 1
Page D-127

Therefore, the column is also adequate when subjected to the accidental load causing bending about the minor axis.

Note: The calculations given above demonstrate the procedure for designing a key element. However, in the vast majority of circumstances, the recommended approach is to satisfy the tying requirements in clause 2.4.5.3 of BS 5950-1:2000. The key element route should only be followed as a last resort.

REFERENCES

1. BS 5950: Structural use of steelwork in building

BS 5950-1:2000: Code of practice for design. Rolled and welded sections British Standards Institution, 2001
2. Steelwork design guide to BS 5950-1:2000, Volume 1: Section properties, member Capacities. $6^{\text {th }}$ edition (P202)
The Steel Construction Institute and The British Constructional Steelwork Association Ltd, 2001
3. NETHERCOT, D. A., SALTER, P.R. and MALIK, A. S.

Design of members subject to combined bending and torsion (P057) The Steel Construction Institute, 1989
4. BS 2573: Rules for the design of cranes

BS 2573-1:1983: Specification, for classification, stress calculations and design criteria for structures British Standards Institution, 1983
5. BS 449: The use of structural steel in building

BS 449-2:1969: Metric units
British Standards Institution, 1969
6. BS 6399: Loading for buildings

BS 6399-1:1984: Code of practice for dead and imposed loads
British Standards Institution, 1984 (superseded)
7. BS 6399: Loading for buildings

BS 6399-1:1996: Code of practice for dead and imposed loads
British Standards Institution, 1996
8. BS 648:1964: Schedule of weights of building materials British Standards Institution, 1964
9. MALIK, A. S. Editor

Joints in steel construction: Simple Connections (P212)
The Steel Construction Institute and The British Constructional Steelwork Association Ltd, 2002

[^0]: Published by:
 The Steel Construction Institute
 Silwood Park
 Ascot
 Berkshire SL5 7QN

 Tel: 01344623345
 Fax: 01344622944

