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Preface

Recently there has emerged an exciting and rapidly growing field of research
known as quantum information theory. This interdisciplinary field is unified by
the following two goals: first, the possibility of harnessing the principles and laws
of quantum mechanics to aid in the acquisition, transmission, and processing of
information; and second, the potential that these new technologies have for deepen-
ing our understanding of the foundations of quantum mechanics and computation.
Many of the new technologies and discoveries emerging from quantum informa-
tion theory are challenging the adequacy of our old concepts of entanglement,
non-locality, and information. This research suggests that the time is ripe for a
reconsideration of the foundations – and philosophical implications – of quantum
information theory.

Historically, apart from a small group of physicists working on foundational
issues, it was philosophers of physics who recognized the importance of the con-
cepts of entanglement and non-locality long before the mainstream physics com-
munity. Prior to the 1980s, discussions of the infamous “EPR” paper and John
Bell’s seminal papers on quantum non-locality were carried out more often by
such philosophers than by ordinary physicists. In the 1990s that situation rapidly
changed, once the larger community of physicists had begun to realize that entan-
glement and non-locality were not just quirky features of quantum mechanics, but
physical resources that could be harnessed for the performance of various practical
tasks. Since then, a large body of literature has emerged in physics, revealing many
new dimensions to our concepts of entanglement and non-locality, particularly in
relation to information. Regrettably, however, only a few philosophers have fol-
lowed these more recent developments, and many philosophical discussions still
end with Bell’s work.

The purpose of this volume is two-fold. First, our hope is to introduce more
philosophers of physics to the recent discussions about entanglement and non-
locality by making accessible some of the central developments in this field
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“beyond Bell.” While there are many excellent anthologies examining the philo-
sophical implications of Bell’s theorem, the present volume is the first interdisci-
plinary anthology to explore the philosophical implications of entanglement and
non-locality beyond Bell. In this sense the philosophers have much to learn from
the physicists. The second goal of this volume is to encourage more physicists
to reflect critically on the foundations of quantum information theory. The key
concepts of entanglement, non-locality, and information are in need of conceptual
clarification and perhaps even bifurcation. Recent claims that quantum informa-
tion science revolutionizes the foundations of quantum mechanics and solves its
most basic conceptual puzzles need to be critically examined. Here the physicists
have much to learn from the philosophers, who have long been engaged in such
projects of conceptual clarification and logical analysis. Our hope is that pursu-
ing these two goals together will encourage a fruitful dialogue and that a stronger
interdisciplinary field in the philosophy of quantum information will be forged.

The idea for this volume first emerged at a conference on the foundations
of quantum information and entanglement, which was held at the Center for
Philosophy and History of Science at Boston University in 2006. The conference
was a tremendous success, drawing over two hundred attendees, and it emphasized
the need for an interdisciplinary volume in this area. Many of the speakers at this
conference were chosen to be contributors to the present volume. We gratefully
acknowledge the support of the Center for Philosophy and History of Science and
the National Science Foundation for making this conference possible. We would
also like to thank Molly Pinter for her work compiling the index.

We have gathered here twelve original papers, seven of which are by physicists
and five of which are by philosophers, all of whom are actively engaged in quantum
information theory. These papers, which are by many of the leading researchers in
the field, represent a broad spectrum of approaches to the foundations of quantum
information theory and highlight some of the most important developments and
debates. While these papers assume a certain level of scientific literacy, an effort
has been made to present the latest research in a way that is accessible to non-
specialists, physicists and philosophers of physics alike. To this end, the volume
begins with a pedagogical introduction, briefly laying out the relevant historical
background, as well as defining the key philosophical and physical concepts used
in the subsequent papers. While it would be impossible to cover all the important
developments in this rapidly growing field, we hope this volume succeeds in lay-
ing the foundation for further interdisciplinary work in the philosophy of quantum
information and entanglement, by encouraging more physicists and philosophers
to enter into the debate.



Introduction

Entanglement can be understood as an extraordinary degree of correlation between
states of quantum systems – a correlation that cannot be given an explanation in
terms of something like a common cause. Entanglement can occur between two or
more quantum systems, and the most interesting case is when these correlations
occur between systems that are space-like separated, meaning that changes made
to one system are immediately correlated with changes in a distant system even
though there is no time for a signal to travel between them.1 In this case one says
that quantum entanglement leads to non-local correlations, or non-locality.

More precisely, entanglement can be defined in the following way. Consider
two particles, A and B, whose (pure) states can be represented by the state vec-
tors ψA and ψB. Instead of representing the state of each particle individually,
one can represent the composite two-particle system by another wavefunction,
�AB. If the two particles are unentangled, then the composite state is just the
tensor product of the states of the components: �AB = ψA ⊗ ψB; the state is
then said to be factorable (or separable). If the particles are entangled, however,
then the state of the composite system cannot be written as such a product of a
definite state for A and a definite state for B. This is how an entangled state is
defined for pure states: a state is entangled if and only if it cannot be factored:
�AB �= ψA ⊗ ψB. For mixed states, which must be represented by density oper-
ators rather than state vectors, the definition of entanglement is generalized: an
entangled mixed state is one that cannot be written as a convex combination of
products

ρAB =
∑

i

pi (ρAi ⊗ ρBi ),

1 On some conceptions, entanglement can occur even between the different properties of a single quantum sys-
tem, such as in the case of entangling a particle’s position with its spin.

Philosophy of Quantum Information and Entanglement, ed. A. Bokulich and G. Jaeger. Published by
Cambridge University Press. c© Cambridge University Press 2010.
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where the sum of the pi is equal to unity. This definition is for a bipartite system,
that is, a composite system of only two parts, A and B. For multipartite mixed
quantum systems the situation is more complicated; there is no single acceptable
entanglement measure applicable to the full set of possible states of systems having
a greater number of parts.2 The search for a fully general definition and measure of
entanglement remains an active area of research.

Despite the fact that the phenomenon of entanglement was recognized very early
on in the development of quantum mechanics, it remains one of the least under-
stood aspects of quantum theory. It was arguably the well-known “EPR” paper,3 by
Albert Einstein, Boris Podolsky, and Nathan Rosen, published in May of 1935, that
first drew attention to the phenomenon of entanglement.4 For EPR, however, the
possibility of such a phenomenon in quantum mechanics was taken to be a reductio
ad absurdum showing that there is a fundamental flaw with the theory: “since at
the time of measurement the two systems no longer interact, no real change can
take place in the second system in consequence of anything that may be done to
the first system” (Einstein et al. 1935, p. 779); since quantum mechanics implies
such an “absurd” situation, quantum mechanics must be incomplete at best. Quan-
tum entanglement, however, precisely is such a non-classical relationship between
quantum particles whereby changes made to one particle of an entangled pair can
lead to changes in the other particle even though they no longer interact.

Shortly after the appearance of the EPR paper, Erwin Schrödinger coined the
term “entanglement” (Verschränkung) to describe this phenomenon. The first pub-
lished occurrence of the term is in an article of his, written in English, which
appeared in October of 1935. In this article, Schrödinger places the phenomenon
of entanglement at the center of quantum theory:

When two systems, of which we know the states by their respective representatives, enter
into temporary physical interaction due to known forces between them, and when after a
time of mutual influence the systems separate again, then they can no longer be described
in the same way as before, viz. by endowing each of them with a representative of its own.
I would not call that one but rather the characteristic trait of quantum mechanics, the one
that enforces its entire departure from classical lines of thought. By the interaction the two
representatives (or ψ-functions) have become entangled (Schrödinger 1935a, p. 555).

The term appears two months later in German in the second of the triplet of papers
in which he introduces his infamous cat paradox (Schrödinger 1935b).

2 For a technical overview of basic results in entanglement and quantum information see, for example,
Jaeger (2007).

3 See Fine (2008) for a helpful overview of the EPR paper.
4 Regarding the question of when the physics community first became aware of the phenomenon of entangle-

ment, Don Howard (1990) has cogently argued that Einstein had recognized, and been concerned about, the
phenomenon of entanglement long before the 1935 EPR paper.
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Although Schrödinger recognized the importance of the phenomenon of entan-
glement, he certainly did not embrace this feature of quantum theory. His dissat-
isfaction with the phenomenon of entanglement, and with the quantum theory in
general, is evident in his correspondence with Einstein during this time. In a letter
to Einstein, Schrödinger writes as follows regarding the recently published EPR
paper: “I was very happy that, in your work that recently appeared in Phys. Rev.,
you have publicly caught the dogmatic quantum mechanics by the collar, regarding
that which we had already discussed so much in Berlin” (Schrödinger to Einstein,
June 7, 1935).5 Toward the end of the same letter he continues, “The point of my
foregoing discussion is this: we do not have a quantum mechanics that takes into
account relativity theory, that is, among other things, that respects the finite speed
of propagation of all effects” (Schrödinger to Einstein, June 7, 1935). Schrödinger’s
concern is that the phenomenon of entanglement, exhibiting as it does non-local
correlations between separated particles, ultimately would prove to be in conflict
with the first-signal principle of special relativity.

Despite this early recognition of the importance of the phenomenon, very lit-
tle effort or progress was made over the next thirty years in developing a the-
ory of entanglement or in answering Schrödinger’s concerns regarding how this
phenomenon could be consistent with relativity. It would be almost thirty years
before another significant step toward a theory of entanglement would be made
with John Bell’s seminal 1964 paper on quantum non-locality. In that paper Bell
considered a pair of particles in the singlet state that had interacted in the past, had
become entangled, and then had separated. He derived an inequality involving the
probabilities of various outcomes of measurements performed on these entangled
particles that any local definite (i.e., hidden-variable) theory must satisfy. He then
showed that quantum mechanics violates this inequality; that is, the experimentally
well-confirmed quantum correlations among entangled particles cannot be locally
explained. Bell’s theorem does not rule out the possibility of hidden-variable theo-
ries in general, only those hidden-variable theories that are local. Indeed, Bell took
the lesson of his theorem to be that any theory that reproduces the experimentally
well-confirmed predictions of quantum mechanics must be non-local. He writes,

It is the requirement of locality, or more precisely that the result of a measurement on one
system be unaffected by operations on a distant system with which it has interacted in
the past, that creates the essential difficulty . . .This [non-locality] is characteristic, accord-
ing to the result to be proved here, of any theory which reproduces exactly the quantum
mechanical predictions (Bell 1964, p. 14).

5 This translation is taken from a copy of the letter located at the Howard Gotlieb Archival Research Center at
Boston University. The original letter is in German and is held in the Einstein Archives at the Hebrew University
in Jerusalem.
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What is remarkable about Bell’s theorem is that it is a general result arising from an
analysis of the relevant probabilities of various joint measurement outcomes, and
does not depend on the details of any hidden-variable theory or even on the details
of quantum mechanics itself.6 Since then a number of different Bell-type inequal-
ities have been derived, such as the Clauser, Horne, Shimony, and Holt (CHSH)
inequality (1969), which has proven particularly useful for experimental tests of
non-locality. Following Bell, a number of experiments demonstrated not only that
non-locality is a genuine physical phenomenon characteristic of our world (e.g.,
Aspect et al. 1982), but also that non-locality can be experimentally produced,
controlled, and harnessed for various applications.

Another theoretical development came with Jon Jarrett’s (1984) analysis show-
ing that Bell’s locality condition can be viewed as the conjunction of two log-
ically independent conditions: a “controllable” locality, which if violated would
conflict with special relativity, and an “uncontrollable” locality whose violation
might “peacefully coexist” with relativity (see also Shimony (1984); for an oppos-
ing point of view see Maudlin (1994)). Hence, the violation of Bell’s inequality
could logically be due to a violation of one, the other, or both of these locality
conditions. Jarrett’s analysis has been taken by some to provide the solution to
Schrödinger’s worries about a conflict between quantum theory and relativity, as
long as one assumes that the violation is in fact solely a violation of the uncontrol-
lable locality.7

Despite these important advances, it was still only a handful of physicists who
were deeply interested in entanglement. Philosophers of physics recognized the
importance of entanglement and Bell’s work, but many continued to think of entan-
glement as an “all or nothing” phenomenon and described entanglement as simply
a spooky action-at-a-distance or mysterious holism. Moreover, the bulk of philo-
sophical work on non-locality and entanglement has considered developments only
up to and including Jarrett’s analysis and the experiments performed in the mid
1980s. In the last two decades new discoveries – many of which are associated
with the investigation of quantum information – have shown that much philosoph-
ical and foundational work remains to be done to deepen our understanding of
entanglement and non-locality.

Toward the end of the 1980s and the beginning of the 1990s a number of impor-
tant transformations in our understanding of entanglement took place. First, it was
recognized (e.g., Shimony (1995)) that entanglement can be quantified; that is,

6 There are of course many subtleties in analyzing the implications of Bell’s theorem that cannot be covered in
this introduction, but are discussed extensively in the voluminous literature that followed Bell’s work. For an
introduction to the subtleties of interpreting the lessons of Bell’s theorem see Cushing and McMullin (1989)
and Shimony (2008).

7 For an overview of these issues see Cushing and McMullin (1989).
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it comes in degrees ranging from “maximally entangled” to not entangled at all.
Moreover, entanglement can be manipulated in all sorts of interesting ways. For
example, Bennett et al. (1996) have shown that one can take a large number of
electrons that are all partly (that is, “a little bit”) entangled with each other, and
concentrate that entanglement into a smaller number of maximally entangled elec-
trons, leaving the other electrons unentangled (a process known as entanglement
distillation).8 Conversely, one can take a pair of maximally entangled electrons and
spread that entanglement out over a larger number of electrons (so that they are
now only partly entangled) in such a way that the total entanglement is conserved
(a process known as entanglement dilution).

The notion of a “degree of entanglement” seems to have been first recognized
through the related notion of a degree of violation of the Bell inequalities – indeed,
this was used as the first measure of entanglement in the case of pure states: the
greater the degree of violation of the inequalities, the greater the amount of entan-
glement. Nicolas Gisin describes this “quiet revolution” as follows:

In this brief note I prove that the product states are the only states that do not violate any
Bell inequality. When I had the chance to discuss this equivalence between “states that
violate the inequality” and “entangled states” (i.e., “non-product states”) with John Bell
last September, just before his sudden tragic death, I was surprised that he did not know
this result. This motivates me to present today this little note which I have had on my
shelves for many years and which may be part of the “folklore,” known to many people but
(apparently) never published. (Gisin 1991, p. 201)

There are, however, limitations to using a violation of Bell’s inequality as a gen-
eral measure of entanglement. First, there are Bell-type inequalities whose largest
violation is given by a non-maximally entangled state (Acín et al. 2002), so entan-
glement and non-locality do not always vary monotonically. More troublingly,
however, Reinhard Werner (1989) showed that there are some mixed states (now
referred to as Werner states) that, though entangled, do not violate Bell’s inequal-
ity at all; that is, there can be entanglement without non-locality. In an interesting
twist, Sandu Popescu (1995) has shown that even with these local Werner states
one can perform a non-ideal measurement (or series of ideal measurements) that
“distills” a non-local entanglement from the initially local state. In yet a further
twist, the Horodecki family (1998) subsequently showed that not all entanglement
can be distilled in this way – there are some entangled states that are “bound.”
These bound entangled states are ones that satisfy the Bell inequalities (i.e., they
are local) and cannot have maximally entangled states violating Bell’s inequalities
extracted from them by means of local operations.9

8 It is also sometimes referred to as “entanglement concentration” or “entanglement purification.”
9 For a nice review of these developments see Werner and Wolf (2001).
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Not only can one have entanglement without non-locality, but also, as Bennett
et al. (1999) have shown, one can have a kind of “non-locality without entangle-
ment.” There are systems that exhibit a type of non-local behavior even though
entanglement is used neither in the preparation of the states nor in the joint mea-
surement that discriminates the states (see also Niset and Cerf (2006)). This work
highlights another facet of the concept of non-locality, which, rather than involving
correlations for space-like separated systems, involves instead a kind of indis-
tinguishability based on local operations and classical communication. The rela-
tionship between this new notion of non-locality and the traditional one involving
space-like separated systems remains to be worked out.

These recent developments point to the need for a new, more adequate way of
measuring and quantifying entanglement. They show that the concepts of entan-
glement and non-locality are much more subtle and multifaceted than earlier anal-
yses based solely on Bell’s theorem realized. Much philosophical and foundational
work remains to be done on understanding precisely how the important notions of
entanglement and non-locality are related.

These questions of how to quantify entanglement and non-locality – and the
need to clarify the relationship between them – are important not only conceptually,
but also practically, insofar as entanglement and non-locality seem to be different
resources for the performance of quantum information processing tasks. As Brun-
ner and colleagues have argued, it is important to ask “whether in a given quantum
information protocol (cryptography, teleportation, and algorithm . . .) it is better to
look for the largest amount of entanglement or the largest amount of non-locality”
(Brunner et al. 2005, p. 12). Arguably it is this new emphasis on the exploitation
of entanglement and non-locality for the performance of practical tasks that marks
the most fundamental transformation in our understanding of these concepts.

The newly formed field of quantum information theory is devoted to using the
principles and laws of quantum mechanics to aid in the acquisition, transmission,
and processing of information. In particular, it seeks to harness the peculiarly quan-
tum phenomena of entanglement, superposition, and non-locality to perform all
sorts of novel tasks, such as enabling computations that operate exponentially faster
or more efficiently than their classical counterparts (via quantum computers) and
providing unconditionally secure cryptographic systems for the transfer of secret
messages over public channels (via quantum key distribution). By contrast, classi-
cal information theory is concerned with the storage and transfer of information in
classical systems. It uses the “bit” as the fundamental unit of information, where the
system capable of representing a bit can take on one of two values (typically 0 or 1).
Classical information theory is based largely on the concept of information formal-
ized by Claude Shannon in the late 1940s. Quantum information theory, which was
later developed in analogy with classical information theory, is concerned with the
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storage and processing of information in quantum systems, such as the photon,
electron, quantum dot, or atom. Instead of using the bit, however, it defines the
fundamental unit of quantum information as the “qubit.” What makes the qubit dif-
ferent from a classical bit is that the smallest system capable of storing a qubit, the
two-level quantum system, not only can take on the two distinct values |0〉 and |1〉,
but can also be in a state of superposition of these two states: |ψ〉 = α0 |0〉+α1 |1〉.

Quantum information theory has opened up a whole new range of philosophical
and foundational questions. The first cluster of questions concerns the nature of
quantum information. For example, is quantum information just classical informa-
tion stored in a quantum system, or is it a new distinctive type of information? (See
Chapter 8 by Duwell.)

A second cluster of important philosophical questions concerns how it is
that quantum information protocols are able to achieve more than their classi-
cal counterparts. For example, how is that quantum computers are able to com-
pute exponentially faster than classical computers? (See Chapter 11 by Bub.)
Can quantum computers perform calculations that are not Turing computable –
so-called hypercomputation? Another example concerns quantum teleportation,
whereby the complete state of a quantum system (something that would take a
huge amount of information to specify classically) can be transferred to another
distant system using only two bits of information, as long as the two parties at
the different locations share a pair of entangled particles. The prima facie puz-
zle of teleportation is how so much “information” can be transferred so efficiently
(see Penrose (1998), Deutsch and Hayden (2000), and, for critical analyses, Timp-
son (2006) and Jaeger (2009)).

Yet another example of a quantum information technology raising foundational
questions is quantum cryptography or quantum key distribution, which involves
using the principles of quantum mechanics to ensure secure communication (that
is, the transfer of secret information over public channels in a way that cannot
be successfully eavesdropped upon). Some quantum cryptographic protocols make
use of entanglement to establish correlations between systems that would be lost
upon eavesdropping. Moreover, a quantum principle known as the no-cloning the-
orem prohibits making identical copies of an unknown quantum state.10 This the-
orem ensures that an eavesdropper cannot make a copy of the cryptographic key
without the communicating parties knowing that this is happening. One impor-
tant question is whether these quantum principles are really sufficient to provide
unconditional security, that is security in the face of all conceivable attacks. (See
Chapter 6 by Myers and Madjid, and Chapter 12 by Wu.)

10 Quantum teleportation, mentioned earlier, is not in conflict with the no-cloning theorem since the initial state
is automatically destroyed upon teleportation, that is, it does not involve cloning an unknown quantum state.
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A third important cluster of philosophical questions concerns what new insights
recent work in quantum information theory might provide into the foundations
of quantum mechanics. Some authors have argued that an information-theoretic
approach may provide a new axiomatic basis for quantum mechanics and pro-
vide deeper insight into what makes quantum mechanics different from classi-
cal mechanics. Anton Zeilinger (1999) has proposed a new information-theoretic
“foundational principle,” which he believes can explain both the intrinsic random-
ness of quantum theory and the phenomenon of entanglement. (For critical discus-
sions see Chapter 10 by Timpson and Jaeger (2009).) In another approach, Chris
Fuchs (2002) has adopted a Bayesian approach and argued that quantum mechan-
ics just is quantum information theory – a more sophisticated gloss on the old idea
that a quantum state is just a catalogue of expectations. (For a discussion of the
Bayesian approach see Chapter 7 by Henderson.) Yet a third approach that has gen-
erated considerable discussion is a theorem proven by Rob Clifton, Jeff Bub, and
Hans Halvorson (2003). In the context of a C∗-algebraic formulation, they argue
that quantum theory can be characterized in terms of three information-theoretic
constraints: (1) no superluminal signaling via measurement, (2) no cloning (for
pure states) or no broadcasting (mixed states), and (3) no unconditionally secure
bit commitment.11 (For a discussion of the relative strengths and weaknesses of
this approach see Chapter 9 by Myrvold.) Bub (2004) in particular has taken this
(“CBH”) theorem to show that quantum theory is best interpreted as a theory about
the possibilities of information transfer rather than a theory about the non-classical
mechanics of waves or particles. Much philosophical work remains to be done
assessing these various claims that quantum information provides a new, more ade-
quate way of conceiving quantum theory.

All the contributors to this volume are grappling with different facets of the
challenges and opportunities that quantum information theory poses for quantum
mechanics. The papers are organized into the following four topics: quantum entan-
glement and non-locality, quantum probability, quantum information, and quantum
communication and computing.

The three papers in the first section are concerned with expanding and generaliz-
ing the central notions of entanglement and non-locality. The first paper, by Sandu
Popescu, explores the notion of degrees of non-locality by considering the possi-
bility of theories that exhibit even stronger non-local correlations than quantum

11 Bit commitment is a central cryptographic protocol between two mistrusting parties (typically referred to as
Bob and Alice) in which Bob obtains an encoded bit from Alice. It is secure against Bob if Bob cannot decode
the bit until Alice chooses to reveal it by supplying some further information, and it is secure against Alice if
Alice cannot change the bit (it is fixed between commitment and revealment). A theorem by Mayers (1997)
showed that there is no unconditionally secure (i.e., secure against any conceivable attack) standard quantum
bit commitment.
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mechanics and yet still don’t violate the first-signal principle of relativity. One
can see the possibility of these “super-quantum” correlations through conceiv-
able degrees of violation of the Clauser–Horne–Shimony–Holt (CHSH) inequal-
ity (Clauser et al. 1969). Like Bell’s original inequality, the CHSH inequality sets
a bound on a particular linear combination of the set of correlations, E(X, Y ),
between two parties, A and B, that must be respected by any (Bell-)local theory:

−2 ≤ E(A, B)+ E(A, B ′)+ E(A′, B)− E(A′, B ′) ≤ 2.

If a theory produces correlations whose sum exceeds the upper bound of 2 then
the theory is said to be (Bell) non-local. A theorem by Tsirel’son (also sometimes
transliterated Cirel’son) states that the maximum bound on the correlations quan-
tum mechanically is 2

√
2; however, assuming only no signaling, the upper bound

on the correlations could mathematically be as high as 4, and it is the region in
between these two bounds that defines the superquantum correlations, or non-local
correlations that are stronger than quantum mechanics.

A useful tool for investigating degrees of non-locality is the “PR box” named
after Sandu Popescu and Daniel Rohrlich, who first formalized it in response to
a question posed by Abner Shimony concerning whether the conjunction of the
conditions of causality and no signaling uniquely picks out quantum mechanics
from all possible correlation-predicting theories. The PR box can be thought of as
a “black-box” device to which each of the two parties, A and B, has access to half
of. A and B can each select an input from a range of possibilities and then obtain
a particular output (which they cannot control) from the box. The central function
of the box is to determine the joint probability of the two outputs given the two
inputs.

An experimental arrangement to measure a quantum system in a particular state
can be thought of as one example of such a box, where the input is a particular
measurement choice at each wing A and B (such as measuring the polarization
of a photon along a certain direction) and the output is a certain measurement
outcome (such as getting a horizontal polarization). The no-signaling requirement
is imposed on the boxes by requiring that the outcome at A is independent of the
measurement choice at B. In their 1994 paper, Popescu and Rohrlich wrote down
a correlation function for a set of measurements that yielded a value of 4 for the
left-hand side of the CHSH inequality and yet still prohibited signaling, suggesting
that quantum mechanics was just one among a set of possible non-local theories
that are consistent with relativity theory.

These super-quantum correlations are particularly interesting from an
information-theoretic point of view insofar as they would radically reduce the
amount of communication needed for distributed computational tasks (Barrett
et al. 2005). In his paper for this volume (Chapter 1), Popescu further explores what
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advantage superquantum correlations would provide for performing various quan-
tum communication and computing tasks. In particular, Popescu examines “non-
local computation” whereby separated parties A and B must compute a function
without either party learning anything about the inputs. Popescu demonstrates that,
while neither classical mechanics nor quantum mechanics permit such non-local
computations to succeed, any theory with non-locality even just infinitesimally
stronger than quantum mechanics does allow non-local computation to take place.

The second contribution to this volume focuses on the concept of entanglement
and how the notion of entanglement might be generalized for situations in which
the overall system cannot be easily partitioned into separated subsystems A and B.
The standard definition of entanglement for pure states depends on being able to
define two or more subsystems for which the state cannot be factored into product
states. For strongly interacting quantum systems, such as indistinguishable par-
ticles (bosons or fermions) that are close enough together for quantum statistics
to be important, the entangled systems cannot easily be partitioned into subsys-
tems in this way. In response to this problem, Lorenza Viola and Howard Barnum
have developed a notion of “generalized entanglement,” which depends on the
expectation values of a preferred set of observables, rather than on a partition-
ing of the entangled system into subsystems. The intuition behind their approach
is that entangled pure states look mixed to local observers, and the corresponding
reduced state provides expectation values for a set of distinguished observables.
They define a pure state as “generalized unentangled” relative to the distinguished
observables if the reduced state is pure and “generalized entangled” otherwise
(Barnum et al. 2004, p. 1). Similarly a mixed state is “generalized unentangled”
if it can be written as a convex combination of unentangled pure states. Their hope
is that this new approach will lead to a deeper understanding of entanglement by
allowing it to be defined in more general contexts.

In the third chapter of this volume, Lucien Hardy explores how the concepts of
entanglement and information flow will likely have to change in light of attempts
to develop a quantum theory of gravity. Quantum mechanics and general relativ-
ity – though two of our most successful and well-confirmed scientific theories –
are currently inconsistent with one another in certain respects: general relativity
is deterministic but has a non-fixed causal structure, while quantum mechanics
is inherently indeterministic but has a fixed causal structure. The hope is to find
a quantum theory of gravity that unifies these two theories as limiting cases, and
Hardy’s bet is that such a theory will be indeterministic (probabilistic) and yet have
an indefinite causal structure. In a theory with indefinite causal structure, there will
be no fact of the matter about whether two systems are space-like separated, for
example. Hence the notion of entanglement, which requires two space-like sepa-
rated systems, and the notion of information flow, which requires a sequence of
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time-like related regions, will have to be radically modified. Hardy develops a new
formulation of quantum mechanics in terms of what he calls the causaloid frame-
work and then shows how entanglement and information flow can be redefined. He
demonstrates how the quantum theory of pairwise interacting qubits can be formu-
lated in the causaloid framework, permitting universal quantum computation.

The second section of this book, on “quantum probability,” contains four chap-
ters examining various aspects of the central role that probability theory plays in
quantum theory and quantum information science. Not only is quantum mechanics
a probabilistic theory, but also the probabilities occurring in quantum mechanics
are non-standard probabilities, whose conceptual basis has been an ongoing source
of controversy ever since the theory’s introduction. Moreover, in the more recent
context of quantum information theory, the entropy functions involved in quantify-
ing information in the classical and quantum contexts derive from different sorts of
probability, which have distributions of different mathematical forms. Hence, anal-
yses of probability are playing a central role in reexaminations of the foundations
of quantum mechanics and quantum information theory.

In Chapter 4, Andrei Khrennikov argues that the challenges currently facing
quantum information science point to the need for a reconsideration of the very
foundations of quantum mechanics. For example, the security of quantum cryp-
tographic protocols depends on the assumption that standard quantum mechanics
is complete and that the quantum probabilities involve irreducible randomness.
Khrennikov argues that what is required for quantum information science to move
forward is a more rigorous mathematical formulation of probability theory. Khren-
nikov adopts the controversial view that the experimental violations of Bell-type
inequalities do not in fact demonstrate quantum non-locality because the probabil-
ities involved in measurements to test the inequalities are not mathematically well
defined. After providing a more rigorous mathematical formulation of quantum
probability, he concludes that the lesson of Bell-type “no-go” theorems needs to be
modified.

Recent developments in quantum information theory have renewed interest
in finding a new axiomatic formulation of quantum mechanics. In his paper
for this volume, Giacomo Mauro D’Ariano takes up this challenge of find-
ing a new axiomatization. He begins by noting some of the shortcomings of
other recent axiomatizations such as Hardy’s (2001) and the much discussed
Clifton, Bub, and Halvorson (CBH) derivation of quantum mechanics from three
information-theoretic constraints (Clifton et al. 2003). D’Ariano argues that a
more promising approach to an operational axiomatization involves situating
quantum mechanics within the broader context of probabilistic theories whose
non-local correlations are stronger than quantum mechanics and yet are still
non-signaling (see Chapter 1 by Popescu). He outlines such an axiomatization
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in which quantum mechanics is understood as the mathematical representation
of a set of rules enabling experimenters to make predictions regarding future
events on the basis of suitable tests – an approach he calls the “fair operational
framework.”

In Chapter 6, John Myers and Hadi Madjid begin by exploring the relation
between quantum-mechanical operators and the outcome probabilities these opera-
tors generate. In any quantum experiment there is a state preparation, described by
a density operator, and a measurement, described by a set of detection operators.
Both these operators depend on parameters, which represent the choices made by
the experimenters. The trace rule can then be used to determine which parameter-
ized probabilities are the result of a given parameterized density operator and a
given parameterized detection operator. After reviewing their recent result proving
that any given parameterized probability can be generated by infinitely many differ-
ent parameterized operators, Myers and Madjid are led to consider parameterized
probability measures independently, as a useful object of study in their own right.
In their contribution to this volume, Myers and Madjid show how a consideration
of these parameterized probability measures leads to three important results for
quantum information theory. First, they are able to strengthen Holevo’s bound on
quantum communication. Holevo’s bound is a theorem proving that, even though
an arbitrarily large amount of classical information can be encoded in a “qubit,”
(more precisely the state of a quantum two-level system), such as in the process of
defining the direction of a quantum state vector, at most one classical bit of infor-
mation can be accessed through a measurement of that state (more precisely the
accessible information is limited by the von Neumann entropy). Myers and Madjid
are able to strengthen the Holevo bound by deriving a stronger inequality limit-
ing the accessible information even in cases for which the von Neumann entropy
is arbitrarily large (or infinite), making the traditional formulation of the bound
uninformative. Second, they show how this approach can reveal vulnerabilities in
quantum key-distribution protocols. Finally, they show that an examination of the
parameterized probability measures generated by entangled states can reveal hith-
erto overlooked topological features, thus deepening our understanding of entan-
gled states.

Another way in which considerations of probability have been at the center of
foundational debates in quantum information theory is in the analogy that has been
drawn between Bayesian conditionalization and quantum state updating upon mea-
surement (e.g., Bub (1977) and Fuchs (2002)). In the Bayesian approach, named for
the eighteenth-century mathematician and theologian Thomas Bayes, probabilities
are interpreted as subjective degrees of belief, rather than frequencies. Accord-
ing to Bayes’ theorem, or rule, the probability of a hypothesis, H , given some
new data, D, is equal to the probability of that data given the hypothesis (i.e., the
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conditional probability or “likelihood”) times the prior probability of the hypothe-
sis (the “prior”), all divided by the marginal probability of the data:

P(H |D) = P(D|H)P(H)
P(D)

.

In other words, Bayes’ rule tells you how to go about updating a probability distri-
bution in light of new evidence. Prima facie there is an analogy between Bayesian
updating and quantum measurements insofar as the quantum state gives a set of
probabilities for various possible measurement outcomes, and once a measurement
is performed information is gained and the probabilities are updated. In Chapter 7
of this volume Leah Henderson offers a critical analysis of this analogy. Drawing
on the observation that an efficient quantum measurement is not just a refinement
of the probability distribution but also involves an extra unitary transformation,
she argues that there is an important disanalogy. Henderson proves that the mea-
surements which can be interpreted as a Bayesian refinement plus a unitary trans-
formation are precisely those measurements which increase our information about
the quantum state, and conversely those measurements which do not fall into this
category are quantum measurements in which information is actually lost. Such
measurements, which increase the uncertainty about the state of the quantum sys-
tem being measured, are shown to have no direct classical analogue.

The third section of this book turns from foundational questions about prob-
ability to foundational questions about the notion of information. In Chapter 8,
Armond Duwell tackles head on the question of what precisely quantum informa-
tion is. There has been considerable debate in the literature over whether quantum
information just is classical information stored in quantum systems or whether the
classical notion of information, as elaborated by Claude Shannon (1948), is some-
how inadequate in this new context. If the classical conception is inadequate, then
the question becomes that of what new notion of information should replace it?
In his contribution to this volume, Duwell defends what is known as the Schu-
macher concept of quantum information, following the coding theorem of Ben
Schumacher (1995). Duwell divides this notion of quantum information into two
parts: quantum quantity-information, which quantifies the resources required to
communicate, and quantum type-information, which is the kind of token required
to be reproduced at the destination of a communication according to the success
criterion of entanglement fidelity (see Duwell (2008) for further details). After dis-
cussing the theorem of Clifton, Bub, and Halvorson (2003), which derives quantum
theory from three information-theoretic constraints in the context of a C∗-algebraic
framework, Duwell criticizes a proposal by Bub that quantum mechanics should be
reconceived as a theory of quantum information. Specifically, he argues that Bub
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fails to define what notion of quantum information he is using. In a move sympa-
thetic to Bub’s approach, Duwell substitutes his own Schumacher notion of quan-
tum information into Bub’s proposal and explores the advantages of reconceiving
quantum theory in this way.

Quantum information theory is concerned with exploiting the peculiarly quan-
tum features of quantum mechanics to store, process, and transmit information in
ways that cannot be achieved classically. This raises the important perennial ques-
tion of precisely what features of quantum mechanics distinguish it from classical
mechanics. Indeed, recent work in quantum information theory has revealed that
many features that were thought to be peculiarly quantum turn out to have a classi-
cal analogue. In Chapter 9, Wayne Myrvold takes up the task of discovering what
it is that makes quantum mechanics distinctive. In his search for the differences, he
considers two neutral frameworks in which the classical and quantum theories can
be formulated: the algebraic approach and the convex-set approach. He considers
a toy theory developed by Rob Spekkens, which he argues reveals some of the key
differences between these theories when considered in the context of the convex-
set approach. Myrvold draws the intriguing conclusion that, while Schrödinger was
right to identify the treatment of compound systems as the distinguishing feature
of quantum mechanics, he was wrong to identify entanglement per se as what is
distinctively quantum.

It has been argued that quantum information theory may hold the key to solv-
ing the conceptual puzzles of quantum mechanics. In Chapter 10, Chris Timpson
takes stock of such proposals, arguing that many are just the old interpretative
positions of immaterialism and instrumentalism in new guise. Immaterialism is the
philosophical view that the world at bottom consists not of physical objects but
of immaterial ones – in this context, the immaterial stuff of the world is infor-
mation. As Timpson shows, this immaterialist view can be seen underlying John
Wheeler’s (1990) “It from bit” proposal and Zeilinger’s “foundational principle”
(1999). Similarly, instrumentalism is another philosophical approach that it has
long been popular to invoke in the context of quantum mechanics, and has found
new life in the context of quantum information theory. Instrumentalism is the view
that the task of scientific theories is simply to provide a tool for making predic-
tions – not to be a description of the fundamental objects and laws actually oper-
ating in the world. In this context instrumentalism argues that the quantum state
is merely a representation of our information, one that allows us to make predic-
tions about experiments, but which should not be thought of as a description of
any objective features of the world. Timpson argues that merely re-dressing these
well-worn philosophical positions in the new language of information theory does
not in fact gain any interpretive ground. After providing a detailed critical analy-
sis of Zeilinger’s foundational approach, Timpson concludes that there is indeed
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great promise for gaining new insights into the structure and axiomatics of quan-
tum mechanics by focusing on information-theoretic phenomena, as long as one
steers clear of the non-starters of immaterialism and instrumentalism.

The final section of the book, on “quantum communication and computing,”
examines some of the philosophical and foundational questions arising from the
new technologies that are emerging from quantum information theory. One of
the most tantalizing technologies promised by quantum information theory is the
quantum computer. A quantum computer is a computer that exploits the peculiarly
quantum features of quantum systems to aid in the processing of data. Much of the
interest in quantum computing arose when Peter Shor (1994) devised an algorithm
showing that a quantum computer could in principle factor large numbers into
primes exponentially faster than any conceivable classical computer. This appli-
cation is particularly interesting because many current cryptographic protocols for
keeping information secure depend on the fact that classical algorithms for factor-
ing take exponentially long; hence, if such a quantum computer were realized, it
could pose a threat to the security of the large quantities of information protected
in this way.

A few other quantum algorithms have been devised for performing various com-
putations in ways superior to their classical counterparts. Although there are prac-
tical issues surrounding the implementation of a quantum computer, one of the key
foundational questions is that of determining which feature of quantum mechanics
is responsible for the superior computing power of quantum computers. Surpris-
ingly, there is very little agreement over how to answer this question: some have
claimed that the speed-up is due to the superposition rule, some attribute it to entan-
glement, and yet others have claimed that the speed-up of a quantum computer is
direct evidence for the so-called “many-worlds” interpretation of quantum mechan-
ics (Deutsch (1997); for critical reviews see Duwell (2007) and Jaeger (2009)). In
Chapter 11, Jeffrey Bub proposes a new answer to the question of where the speed-
up comes from. According to Bub, the key lies in the difference between classical
logic and quantum logic. More specifically, while a classical disjunction is true (or
false) by virtue of the truth values of its disjuncts, a quantum disjunction can be
true (or false) without any of its disjuncts taking on a truth value at all. Similarly,
in the quantum case, a global or disjunctive property of a function is encoded as a
subspace of Hilbert space, and a quantum state can end up in a particular subspace
without representing any particular pair of input–output values. This is in contrast
to a classical computation, in which a global property is represented as a subset,
and a classical state can end up in that subset only by ending up at a particular point
in the subset (which requires a lot more information, to exclude other points in the
subset). He argues that it is not that the quantum algorithm is somehow computing
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all values of a function at once that makes it more efficient, but rather that it is in a
sense able to avoid computing any values of the function at all.

In the final contribution to the volume, Tai Tsun Wu argues that we need to
fundamentally rethink the way we model quantum computing and quantum cryp-
tography. In particular, he argues that the notion of a quantum memory (or quantum
register) needs to be included. The content of a quantum memory is a pure state
that gets updated to another pure state during a computation via a unitary trans-
formation. The most natural way to model this updating is as a scattering interac-
tion, which is described by the Schrödinger equation and takes the spatial variable
explicitly into account. Wu argues that this more physically realistic way of mod-
eling quantum memory leads to a number of surprising results. For example, in the
case of quantum key distribution, an analysis of quantum memory using scattering
reveals new insecurities. Through a careful examination of the “B92” protocol of
Bennett, Wu shows that, by using scattering with one or more spatial variables,
forbidden operations such as quantum cloning actually become possible.

As we have seen in this brief overview, quantum information science is in the
process of transforming our understanding of both quantum mechanics and infor-
mation theory. The papers collected in this volume mark an important first step,
though there remain many more questions to be explored. Our hope is that this vol-
ume will provide a useful starting point for those entering this new interdisciplinary
field, and will encourage more philosophers and physicists to enter into the dia-
logue on the exciting philosophical implications of quantum information research.
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Quantum entanglement and non-locality
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Non-locality beyond quantum mechanics
Sandu Popescu

For Abner Shimony. Your influence on me goes well beyond physics. Knowing you and
being close to you is one of the greatest privileges and pleasures in my life.

1.1 Introduction

Quantum mechanics is, without any doubt, a tremendously successful theory: it
started by explaining black-body radiation and the photoelectric effect, it explained
the spectra of atoms, and then went on to explain chemical bonds, the structure of
atoms and of the atomic nucleus, the properties of crystals and the elementary
particles, and a myriad of other phenomena. Yet it is safe to say that we still lack
a deep understanding of quantum mechanics – surprising and even puzzling new
effects continue to be discovered with regularity. That we are surprised and puzzled
is the best sign that we still don’t understand; however, the veil over the mysteries
of quantum mechanics is starting to lift a little.

One of the strangest things microscopic particles do is to follow non-local
dynamics and to yield non-local correlations. That particles follow non-local equa-
tions of motion was discovered by Aharonov and Bohm [1], while non-local cor-
relations – which are the subject of this chapter – were discovered by John Bell [2]
and first cast in a form that has physical meaning, i.e., that can be experimentally
tested, by Clauser, Horne, Shimony, and Holt [3]. When they were discovered, both
phenomena seemed to be quite exotic and at the fringe of quantum mechanics. By
now we understand that they are some of the most important aspects of quantum-
mechanical behavior.

Consider two experimentalists, Alice and Bob, situated on different planets, far
from each other. They perform experiments on particles that come from a common
source and are prepared in a so-called entangled state. The experiments are “space-
like separated.” They take a short time compared with the time required for light,
and, according to Einstein, for any other signal, to propagate from Alice to Bob.
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Furthermore, by pre-arrangement, the experiments are timed in such a way that
Alice’s experiment finishes before she could receive any signal from Bob about
the experiment he performed (what experiment he did and what the result was)
and similarly all information from Alice about the experiment she performed can
reach Bob only after he has finished his experiment. Nevertheless, their results turn
out to be correlated (although this can be found out only later, when Alice and
Bob are able to compare their results). The fact that the results are correlated is
not a great surprise – after all, the particles came from a common source. What is
astonishing, however, is that they are correlated in such a way that, if we want to
establish such correlations with any classical devices, they have to communicate
with each other. Owing to the timing of the experiments, this communication has
to be superluminal. We refer to such correlations as non-local.

That non-local correlations can exist at all, and not lead immediately to conflict
with Einstein’s relativity, is possible only because the outcomes of the measure-
ments are probabilistic. It is the fact that quantum mechanics is fundamentally
indeterministic that opens an umbrella under which non-locality can “peacefully
coexist,” as Abner Shimony said, with relativity [4]. This is true not only for
non-local correlations but also for the non-local equations of motion discussed by
Aharonov and Bohm.

While non-locality requires indeterminacy, one can easily imagine indetermin-
istic theories that do not present non-locality. This led Aharonov [5] and Shimony
[6] independently to suggest that non-locality is a deeper aspect than indetermin-
ism, and may be the reason why quantum mechanics is what it is. In effect, they
suggested that relativity and the existence of non-locality could be the axioms that
determine quantum mechanics.

Following these suggestions, Daniel Rohrlich and I asked whether quantum
mechanics is the only possible theory that allows the coexistence of non-locality
and relativity [7]. As a first step we asked whether there could be non-local corre-
lations that do not violate relativity (are “non-signaling”) but cannot be obtained
from quantum mechanics. To our surprise we found that such correlations are the-
oretically possible. But are there such correlations in nature? If yes, where? And if
not, why not?

While, after asking the question, finding out about the theoretical possibility of
non-local correlations stronger than those arising from quantum mechanics proved
to be relatively easy, understanding the significance of this discovery is far more
difficult. Here I will describe some steps toward this goal. The story presented here
is just a small part of the research in this direction. After its discovery, the idea
of non-locality beyond quantum mechanics lay dormant for more than a decade
(despite a breakthrough by van Dam [8], which was not published and hence went
largely unnoticed). The subject was revived by Barrett et al. [9], who established a
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framework for describing these correlations. At present the study of these correla-
tions is a very active research area [10].

1.2 Non-local correlations beyond quantum mechanics

What allows one to derive general statements about the nature of correlations is the
fact that experiments such as those of Alice and Bob can be described in a very
general, model-independent way. For our present purpose, a very convenient way
to view experiments is as input/output devices. Alice has a black box that accepts
as input a number x and yields as output a number a. Similarly, Bob has a black
box that accepts an input y and yields the output b. One can think of these black
boxes as entire automated laboratories, containing particles, measuring devices,
computers, etc. The laboratories are pre-arranged, ready to perform a number of
different experiments. The inputs x and y simply indicate which experiment is to
be performed, while the outputs a and b are the results of the experiments.

We consider that, as a matter of principle, Alice and Bob cannot look inside
the labs and see exactly how the outputs are obtained. Furthermore, all Alice and
Bob can do is to give the inputs – they do not control the outputs. In particular,
when for a given input different outputs are possible, Alice and Bob cannot force
a particular output. This rule mimics the quantum-mechanical behavior – when an
experiment can yield different outcomes, the experimentalist cannot control which
particular outcome will be obtained. We say that such boxes exhibit “fundamental
indeterminacy.”

Given the above setting, the entire physics is encapsulated in P(a, b|x, y; tx , ty),
the conditional joint probabilities of obtaining the outcomes a and b when the
inputs are x , given at time tx , and y, given at time ty .

Throughout this text we are interested only in boxes that are consistent with
relativity. In our context this implies two things. First, that as long as the inputs are
outside the light-cone of each other, the probabilities are independent of the exact
timing, hence they reduce to P(a, b|x, y). Second, that they obey non-signaling
constraints, namely that the probability that Alice obtains a particular outcome a is
independent from Bob’s input and vice versa:∑

b

P(a, b|x, y) = P(a|x),∑
a

P(a, b|x, y) = P(b|y).
(1.1)

The situation is illustrated in Figure 1.1.
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a b

Alice Bobx
P(a, b|x, y)

y

Fig. 1.1 An experimental setup viewed in terms of black boxes.

The case famously considered by Clauser, Horne, Shimony, and Holt is the sim-
plest non-trivial case, in which all the inputs and outputs are binary. For our pur-
poses we find it convenient to associate with x , y, a, and b the values of 0 and 1.
Suppose Alice and Bob input at random, with equal probability, the values 0 and 1.
It is easy to see that, in this language, what CHSH did was to analyze the probabil-
ity with which the boxes succeed in yielding outputs such that

a ⊕ b = xy, (1.2)

where⊕ denotes addition modulo 2. In other words, when x and y are both equal to
1 we succeed if the outputs are different, while in all other cases success is defined
by the outputs being the same. The CHSH inequality tells us that, if the boxes work
according to classical physics, the probability of success is bounded by

Pclassical
success (a ⊕ b = xy) ≤ 3

4
. (1.3)

On the other hand, if the boxes work according to quantum mechanics they can
yield a larger success probability,

Pquantum
success (a ⊕ b = xy) ≤ 2+√2

4
. (1.4)

(All one needs to do to find the above expressions is to convert the expectation
values in the standard form of the CHSH inequality into probabilities and to note
that each pair of inputs occurs with probability 1/4.)

The question Daniel Rohrlich and I asked was whether an even larger success
probability could be obtained, that would be consistent with non-signaling. In the
above language the answer is trivial, non-signaling doesn’t constrain the maximal
value of the success probability at all:

P super-quantum
success (a ⊕ b = xy) ≤ 1. (1.5)

Indeed, note that to each value of the product xy there correspond two different
solutions for a and b: for xy = 0, the two solutions are a = 0, b = 0 and a = 1,
b = 1, while for xy = 1 we have a = 0, b = 1 and a = 1, b = 0. As long
as the devices yield each of the two solutions with equal probabilities, the local
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probabilities for all outcomes are 1/2 regardless of the inputs, so the correlations
are non-signaling.

1.3 Communication complexity

Abner Shimony pointed out to me, and I fully agreed, that the correlations Daniel
Rohrlich and I discovered are just a stand-alone example, and in order for their
meaning to be evaluated they need to be integrated into a full theory that will
explain all the known phenomena, along with instances in which stronger-than
quantum correlations would appear. While this is certainly true, little did we know
just how much one can milk this extremely simple example. The shock came for
me when Wim van Dam showed me his results on communication complexity.

Consider again Alice and Bob. One day, overwhelmed by their “passion at a
distance,” they decide to meet for the first time. But they are very busy, so finding
a day when they are both free is a difficult task. To make things more fun, they
decide that, instead of trying to find a good day directly, they should first find out
whether the total number of convenient days when they are both free this year is
even or odd. Suppose furthermore that it is only Bob who will send information to
Alice, and it is Alice who has the task of finding the result.

Of course, the task can be accomplished if Bob sends Alice his entire schedule.
But this is very redundant: all Alice wants is one bit of information, i.e., “even” or
“odd,” but Bob has to send N bits of information, a “free” or “busy” for each of the
N days of the year. Of course, they could try some other communication strategy,
for example Bob could first tell Alice whether the total number of his free days is
even or odd, then some other information, etc., etc. Unfortunately, it is quite easy
to see that there is no method that requires less communication than sending his
entire schedule.

In mathematical terms, any communication problem in which the answer is a
single bit (i.e., a variable that can take only the value 0 or 1) can be formulated
as follows. Alice and Bob each have N bits; Alice has x1, . . . , xN and Bob has
y1, . . . , yN ; Alice doesn’t know Bob’s bits and Bob doesn’t know Alice’s. Let
f (x, y) be a function of x and y, where f can take only the value 0 or 1 and where
by x and y we denote the sets of N bits x = {x1, . . . , xN } and y = {y1, . . . , yN }.
Alice and Bob know in advance the function f , and the task is for them to collab-
orate such that in the end Alice will find out the value of f (x, y).

To solve the problem, in general, Alice and Bob will have to communicate. We
assume that they agree in advance on a specific communication protocol.

There are different problems we may consider – we are interested here in a one-
way communication problem, in which it is only Bob who sends information to
Alice.
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Obviously, any such task can be accomplished if Bob tells Alice all his N
bits. But, depending on the specific form of the function f , he might not need
to send so much information. For example, if f is independent of y then Bob
doesn’t need to tell Alice anything; if f depends only on p, the parity of Bob’s bits
(p = y1⊕ y2⊕ . . .⊕ yN , where by⊕ we denote addition modulo 2), then Bob need
only send p, a single bit of information. The basic question is to find the most effi-
cient protocol, i.e., the protocol in which Bob needs to communicate the minimum
number of bits. This minimum number represents the complexity of the communi-
cation. Incidentally, the absolute minimum is 1 bit of communication for all cases
except when the function is independent of y. Indeed, since Alice doesn’t have all
the information to start with, she needs to learn at least 1 bit. Furthermore, since
Alice is interested only in finding out a single bit – the value of f – any commu-
nication of more than 1 bit is redundant.1 Finding the best protocol for an arbitrary
function is, in general, a very difficult task, and it is a problem considered in com-
puter science.

In the particular dating problem with which we started our discussion Alice and
Bob need to evaluate the so-called inner product of x and y, that is

f (x, y) = xy = x1 y1 ⊕ x2 y2 ⊕ . . .⊕ xN yN , (1.6)

where xi describes whether Alice’s day i is busy (xi = 0) or free (xi = 1) and
similarly yi describes Bob’s days. Day i is convenient for both Alice and Bob only
if the product xi yi = 1.

As we mentioned before, evaluating the inner product is a very demanding task –
Bob needs to send all his bits. The proof is extremely simple. Among all the pos-
sible patterns of free and busy days, a particular case is when Alice is free only on
day 1, i.e., x1 = 1, x2 = x3 = . . . = xN = 0. In that case xy = y1. So if Alice is
to know this value she must know y1. However, Alice might be free only on day 2
(x2 = 1, x1 = x3 = . . . = xN = 0). In that case xy = y2. So if Alice is to know
this value she must know y2 and so on. But since Alice is not allowed to tell Bob
anything, Bob doesn’t know whether Alice needs to know y1 or y2 . . . or yN , so he
needs to send them all.

But what if Alice and Bob also share pairs of entangled particles? After all,
entangled particles generate correlations that cannot be generated by any classi-
cal means, and the proof considered only classical manipulations. At first sight the
idea that entanglement might help seems hopeless. Indeed, the first thing one learns
about the non-local correlations generated by entangled particles is that they can-
not be used for sending information. The reason for this is that these correlations

1 Here, for simplicity, by bit we mean a binary digit – a “0” or a “1” – not the concept of a bit as a quantity of
information, which takes into account the probabilities for the digit to be 0 or 1.
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are established instantaneously, immediately when Alice and Bob perform mea-
surements on their particles, and if the correlations could send information this
would imply superluminal signaling. However, perhaps they might be useful in
conjunction with classical communication, that is, in protocols that involve both
non-local correlations and classical communication. Waiting for the classical infor-
mation to arrive makes the whole protocol work at speeds slower than light. In
fact Cleve and Buhrman [11] found that quantum entanglement can indeed help in
some communication problems. However, it was also shown by Cleve et al. [12]
that quantum-mechanical non-local correlations cannot help Alice and Bob in their
dating task.

That quantum mechanics cannot help is unfortunate indeed, because Alice and
Bob’s dating problem (the “inner-product” problem) is not just a silly game. In
fact every communication problem in which Alice and Bob want to learn just one
single bit of information can be reduced to this particular problem. Thus, if we
could succeed in reducing the redundancy in communication for the inner-product
problem, we would reduce it in all communication problems.

What van Dam has shown is that, if Alice and Bob were to have access to “max-
imally” super-quantum non-local correlations, i.e., the correlations that reach the
upper bound in (1.5), P super-quantum

success (a ⊕ b = xy) = 1 (so-called PR correlations
or PR boxes), then they could solve their dating problem by using a single bit of
communication, hence completely eliminating the redundancy in communication.
Furthermore, since, as we mentioned before, any other communication problem
in which Alice is interested only in learning 1 bit can be mapped into this dating
problem, it implies that the existence of PR correlations would result in completely
eliminating the redundancy of all communication.

Van Dam’s solution is extremely simple. Recall that a pair of PR boxes are non-
signaling input–output devices that obey the rule xy = a ⊕ b, (1.5). To solve the
inner-product problem, Alice and Bob use N PR-box pairs. They input x1 and y1 in
the first pair, x2 and y2 in the second, and so on. Then the inner product is related
to the outcomes of their boxes by

xy = x1 y1 ⊕ . . .⊕ xN yN = a1 ⊕ b1 ⊕ . . .⊕ aN ⊕ bN . (1.7)

By regrouping the terms in the last equality we obtain

xy = a ⊕ b, (1.8)

where
a = a1 ⊕ . . .⊕ aN ,

b = b1 ⊕ . . .⊕ bN .
(1.9)

Hence all Alice needs from Bob is a single bit, the value of b.
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The maximal non-local correlation used by van Dam is a very particular corre-
lation and a very extreme case. Brassard et al. [13] made the next breakthrough:
they suggested that perhaps every PR box pair with a probability of success above
the quantum limit of (2+√2)/4 ≈ 0.85 leads to eliminating all the redundancy in
communication. Using error-corrections methods they succeeded in showing that
all PR boxes with success probability above approximatively 0.91 lead to eliminat-
ing redundancy in communication. Therefore, at present there is still a gap, from
0.85 to 0.91, about which we don’t know anything.

1.4 Non-local computation

If the status of super-quantum correlations with respect to communication com-
plexity is still unknown, there is another problem, namely non-local computa-
tion [14], where the boundary between quantum and super-quantum correlations
is sharp.

Consider an ordinary computation problem with N input bits, z1, . . . , zN , and a
one-bit output, c = f (z1, . . . , zN ). To this problem there corresponds a non-local
version: the computation is carried out by two devices, one at Alice and one at
Bob. Each device has N bits of input and an output of one bit, x1, . . . , xN and a,
respectively, for Alice, and y1, . . . , yN and b for Bob. Alice and Bob are given the
input bits by some external agents, such that the parity of their inputs equals the
original input

xi ⊕ yi = zi . (1.10)

For every possible value of the original input zi there are two possible combinations
of xi and yi that obey (1.10): when zi = 0 the two combinations are xi = 0, yi = 0
and xi = 1, yi = 1, while for zi = 1 we can have xi = 0, yi = 1 or xi = 1,
yi = 0. The rule of the game is that for each input bit of the original problem, zi ,
we give Alice and Bob one of the two corresponding sets of inputs xi and yi at
random, with equal probability. Consequently, seeing only their own inputs, xi and
yi , respectively, Alice and Bob have no knowledge about the original input zi .

The task of Alice and Bob is to output one bit each, a and b, respectively, such
that their parity equals the result of the original computation

a ⊕ b = c = f (z1, . . . , zN ). (1.11)

Again, for each value of c there are two possible combinations of a and b; we
do not impose any restriction on which combination should occur. The setup for
non-local computation is illustrated in Figure 1.2.

Alice and Bob know in advance the function they have to compute and they
are allowed to communicate in advance, set a common strategy, and prepare their
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x

a

y

b

z = x ⊕ y

c = a ⊕ b

z

c = f(z)

Fig. 1.2 Non-local computation.

devices in whichever way they want. However, they are no longer allowed to com-
municate once they have been given their inputs. To ensure this, we arrange that
the whole procedure performed by Alice, from the moment when she receives
her inputs until she delivers her output, is space-like separated from Bob’s
procedure.

There are three main cases of interest: when Alice and Bob have only classi-
cal devices, when they also use entangled quantum particles, and when they have
access to super-quantum non-local correlations.

In general Alice and Bob cannot always succeed at outputting the correct answer;
their task is to try to do as well as possible. There are various measures of success.
A simple scenario is when Alice and Bob are given inputs at random, with equal
probability, and they try to obtain the best average success probability.

In effect the whole setting we described above is a Bell-inequality experiment
in which Alice can perform one out of 2N experiments, each with a binary output,
and similarly for Bob. Indeed, each of the 2N possible combinations of, say, Alice’s
input bits x1, . . . , xN denotes an experiment she performs on her device. The 2N

experiments may all be different from each other, or some of them may be the
same. The only difference from a usual Bell-inequality experiment is that Alice
and Bob are given their settings by some external party, to avoid Alice and Bob
cheating. The upper bound on the average probability of success when the devices
are classical, Pmax

C , is the generalized Bell inequality, whereas the upper bound
on the average probability of success when the devices are quantum, Pmax

Q , is the
generalized Cirel’son inequality [15].

The astonishing result is that neither classical physics nor quantum mechanics
allows non-local computation, but the very moment we go beyond the quantum-
mechanical limit non-local computation becomes possible. An example suffices.
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x1 y2

y1x2x1x2
y1y2

PR-box pair

a b

PR-box pair

Fig. 1.3 A strategy for computing non-local-AND with two PR-box pairs.

Consider the circuit illustrated in Figure 1.3. When the two PR-box pairs are
perfect this circuit succeeds, with probability 1, at computing the non-local version
of the AND function of two bits. The AND function is f (z1, z2) = z1z2 and its
non-local version is

f (x1⊕, y1, x2 ⊕ y2) = (x1 ⊕ y1)(x2 ⊕ y2). (1.12)

Indeed, (1.12) can be written as

f (x1⊕, y1, x2 ⊕ y2) = x1x2 ⊕ y1 y2 ⊕ x1 y2 ⊕ x2 y1, (1.13)

where the first two terms on the right-hand side are local and the last two terms
can be evaluated by PR boxes. On the other hand, it is very easy to see that the
maximal probability of success obtainable by classical devices is 3/4. Indeed, the
best classical strategy is for Alice’s device to contain a list of pre-prepared outputs
for each of the four input possibilities ({x1 = 0, x2 = 0}, {x1 = 0, x2 = 1}, {x1 =
1, x2 = 0}, and {x1 = 1, x2 = 1}) and similarly for Bob; one can immediately
verify that no assignment can succeed in more than three out of four cases. Now
let the PR boxes be noisy. Whenever they are still above the quantum limit (i.e.,
probability of success larger than (2 + √2)/4) the probability of success for the
complete circuit is larger than 3/4. The very moment that the PR boxes reach the
quantum limit, the circuit reaches the classical limit of 3/4.

Furthermore, it is important to note that the limit of 3/4 effectively means
that non-linear computation is impossible. Indeed, 3/4 is the “best-linear-
approximation” limit, defined as follows. For every function f (z1, . . . , zN ) that
takes only the values 0 and 1, we can associate a “best linear approximation,” that
is, a function

g(z1, . . . , zN ) = α1z1 ⊕ α2z2 ⊕ . . .⊕ αN zN ⊕ β, (1.14)
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where α1, . . . , αN and β are constants equal to 0 or 1 chosen such that g coincides
with f for the maximal possible number of input values. For example g(z1, z2) = 0
is a best linear approximation for the non-linear function AND, i.e., for f (z1, z2) =
z1z2; in this case g coincides with f for three out of four inputs (all inputs except
z1 = z2 = 1). The non-local version of g has the form

g(x1, y1, . . . , xN , yN ) = α1(x1 ⊕ y1)⊕ . . .⊕ αN (xN ⊕ yN )⊕ β. (1.15)

Such a linear non-local function can trivially be computed perfectly even with clas-
sical devices. What was shown in [14] is that neither classical nor quantum devices
can do better than this, i.e., an optimal non-local computation protocol with clas-
sical or quantum devices is simply to compute the best linear approximation. In
the particular case of the AND function discussed above, the best strategy is for
Alice and Bob’s devices to always output 0; in this case the success probability
equals 3/4. Since non-linearity is considered to be the core of computation, we can
say that neither classical nor quantum devices can perform non-local computation.
On the other hand, as shown in the example above, the moment we have access to
some appropriate super-quantum resources (even infinitesimally stronger than the
quantum ones) non-local computation becomes possible.

1.5 Conclusions

When we discovered that super-quantum non-local correlations consistent with rel-
ativity could theoretically exist, the first thought was of finding reasons why they
should not exist in nature. There is no evidence that such correlations exist and, fur-
thermore, quantum mechanics, which forbids them, is a theory that has succeeded
in explaining a tremendously large range of phenomena. It is hard to imagine that
one can find an alternative theory whose predictions would coincide with those of
quantum mechanics in all the places where quantum mechanics has experimentally
been verified, yet allow for such a radical departure as super-quantum correlations.
In other words, the quest was for finding a new and natural axiom that would for-
bid such correlations. After years of making no progress in this quest, the attitude
advocated in [8] and [9], and then followed in the intensive present research, is
different: rather than agonizing over finding reasons why super-quantum correla-
tions (apparently) don’t exist in nature, one should simply take these correlations
seriously, and see what one could do with them if they exist. Understanding their
power helps us to put into better perspective the power and limitations of the more
restricted quantum-mechanical correlations, and might ultimately lead us to find
the reasons why they don’t exist, if they actually don’t.
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Coming back to the particular stories presented here, we found out that commu-
nication in both classical and quantum mechanics is redundant, while certain super-
quantum correlations are strong enough to make communication non-redundant.
It is even possible that all super-quantum correlations make communication non-
redundant. If super-quantum correlations don’t exist in nature, is this the rea-
son why they don’t? Does nature want communication to be redundant? We also
saw that neither quantum nor classical mechanics allows non-local computation,
while super-quantum correlation does allow it. Again, is this a good enough rea-
son for super-quantum correlation not to exist? Or do super-quantum correla-
tions actually exist and all these marvelous things are possible? The search is
still on.

On the way many lessons about communication, computation, cryptography, etc.
have already been learned.
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2

Entanglement and subsystems, entanglement beyond
subsystems, and all that
Lorenza Viola and Howard Barnum

2.1 Introduction

The first realization that the validity of the quantum superposition principle in the
Hilbert space describing a composite quantum system may give rise to fundamen-
tally new correlations between the constituent subsystems came in the landmark
1935 paper by Einstein, Podolsky, and Rosen (EPR) [1], where it was shown how
the measurement statistics of observables in certain quantum states could not be
reproduced by assigning definite wavefunctions to individual subsystems. It was
in response to the EPR paper that Schrödinger, in the same year, coined the term
entanglement (Verschränkung) to acknowledge the failure of classical intuition in
describing the relationship between the “parts” and the “whole” in the quantum
world [2]:

Whenever one has a complete expectation catalog – a maximum total knowledge – a ψ
function – for two completely separated bodies, . . . then one obviously has it also for the
two bodies together. But the converse is not true. The best possible knowledge of a total
system does not necessarily include total knowledge of all its parts, not even when these
are fully separated from each other and at the moment are not influencing each other at all.

While Bell’s strengthening of the original EPR-paradox setting [3] and the sub-
sequent experimental verification of Bell inequalities [4, 5] irreversibly changed
the perception of entanglement from a property of counterintuitive “spookiness” to
(beyond reasonable doubt) an experimental reality, the concept and implications of
entanglement continue to be associated with a host of physical, mathematical, and
philosophical challenges [6]. In particular, investigation of entanglement in both
its qualitative and quantitative aspects has intensified under the impetus of quan-
tum information science (QIS). Building on the discovery of the teleportation and
dense-coding protocols [7, 8], entanglement has nowadays been identified as the
defining resource for quantum communication [8], as well as an essential ingre-
dient for understanding and unlocking the power of quantum computation [9].

Philosophy of Quantum Information and Entanglement, ed. A. Bokulich and G. Jaeger. Published by
Cambridge University Press. c© Cambridge University Press 2010.
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Furthermore, entanglement is gaining a growing status as a key bridging notion
between QIS and various subfields of physics – most notably quantum foundations,
quantum statistical mechanics, quantum gravity, and condensed-matter theory. In
spite of continuous progress, however, the current state of entanglement theory is
still marked by a number of outstanding unresolved problems, which range from
the complete classification of mixed-state bipartite entanglement to entanglement
in systems with continuous degrees of freedom, and the classification and quantifi-
cation of multipartite entanglement for arbitrary quantum states.1

At an even more fundamental level, recent indications show that the very
definition of entanglement as given thus far may be too restrictive to embrace rel-
evant physical and information-theoretic settings in their full generality. From an
operational standpoint, the distinction between entangled and unentangled states of
a composite quantum system largely stems from having acknowledged a separation
between “local” capabilities – thereby regarded as a “cheap” resource – as opposed
to arbitrary “non-local” capabilities – which are not readily available, and hence
come with a cost: were no operational restriction in place, then clearly all pure
states of the system would be equivalent. In the conventional approach to entangle-
ment, local capabilities and degrees of freedom are further (more or less explicitly)
identified with spatially separated distinguishable subsystems. While such identi-
fication is both natural and adequate for the majority of QIS settings, compelling
motivations for critically reconsidering the resulting subsystem-based notion of
entanglement arise in situations where the identification of “local” resources may
not be a-priori obvious or may conflict with additional or different restrictions.
A most prominent example in this sense (and one that has received extensive
attention in the recent literature, see, e.g., [10–13] for representative contribu-
tions) is offered by many-body systems consisting of indistinguishable (bosonic or
fermionic) quantum particles. Whenever the spatial separation between the latter is
small enough for quantum statistics to be important, admissible quantum states and
observables are effectively constrained to lie in a proper (symmetric or antisym-
metric) subspace of the respective tensor products of observable spaces, making
the identification of “local” subsystems and operations far more delicate and, ulti-
mately, ambiguous than in the standard case. So, in general, how can entanglement
be understood in an arbitrary physical system, subject to arbitrary constraints on
the possible operations we may perform for describing, manipulating, and observ-
ing its states?

Our proposed answer builds on the idea that entanglement is an inherently
relative concept, whose essential features may be captured in general in terms

1 See http://www.imaph.tu-bs.de/qi/problems for a current list of such problems.
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of the relationships between different observers – as specified through expecta-
tions of quantum observables in different, physically relevant sets. In the sim-
plest instance, distinguished observables in a preferred set determine the analog
of restricted, “local” capabilities, as opposed to unrestricted, “global” capabili-
ties embodied by the full observable space. Generalized entanglement (GE) of a
quantum state relative to the distinguished set may then be defined without refer-
ence to a decomposition of the overall system into subsystems [14, 15]. That the
role of the observer must be properly acknowledged in determining the distinction
between entangled and unentangled states has been stressed by various authors in
various contexts: in particular, the emergence of distinguished subsystems and of a
preferred tensor-product structure has been related to the set of operationally avail-
able interactions and measurements in [16, 17], whereas the presence of maximal
entanglement in a state has been directly defined in terms of maximal fluctuations
of fundamental observables in [18, 19]. In spite of suggestive points of contact, our
approach differs from the above in (at least) two important ways: physically, the
need for a decomposition into distinguishable subsystems is bypassed altogether;
mathematically, the GE notion rests directly (and solely) on extremality properties
of quantum states in convex sets that are associated with different observers. There-
fore, GE is both directly applicable to arbitrary operator subspaces and algebraic
languages that may be used to specify the relevant quantum system and suitable
for investigations of general operational theories, where convexity plays a key role
[20, 21].

A more rigorous and thorough development of the GE framework is available
in [14, 20, 22]; our main goal here is to informally revisit the key steps and fur-
ther illustrate them through examples that may be especially useful at highlighting
conceptual departures from the standard view.

2.2 Entanglement and subsystems: the standard view

In order to motivate and introduce the concept of GE, we begin by briefly revisiting
the standard setup of entanglement theory. Throughout this paper, our formal treat-
ment of GE properties of quantum systems will be confined to finite-dimensional
quantum systems S, with associated state spaces H, dim(H) = d <∞. In line with
Schrödinger’s original definition, we furthermore assume that best possible knowl-
edge is available for S, thus requiring S to be in a pure state |ψ〉 ∈ H. Let B(H)
denote the space of linear operators on H. The set of (traceless) quantum observ-
ables of S may be naturally identified with the (real) Lie algebra su(d) ⊂ B(H),
with Lie bracket [X, Y ] = i(XY − Y X). Arbitrary states of S are represented by
positive, normalized elements in B(H) (density operators), with ρ = |ψ〉〈ψ | for a
pure state. The setϒ of density operators is a compact convex subset of B(H): thus
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equivalently, ρ is pure if it is an extreme point of ϒ , or the purity of ρ is maximal,
P(ρ)= Tr(ρ2) = 1.

The essential intuition on which the GE notion builds may be appreciated start-
ing from the simplest instance of a composite quantum system, namely a pair
of two-dimensional subsystems (Alice and Bob henceforth), living in a four-
dimensional complex space

H ≡ HAB = HA ⊗HB, (2.1)

where dim(HA) = dim(HB) = 2. Any joint pure state of Alice and Bob that is
separable, that is, able to be expressed in the form

|�〉AB = |ψ〉A ⊗ |φ〉B ≡ |ψφ〉AB, (2.2)

for suitable subsystem states of Alice and Bob alone, is unentangled. Let {|0〉, |1〉}
denote an orthonormal basis in C

2 (computational basis), as usual. Then the fol-
lowing Bell states are well known to be (maximally) entangled [3],

|�±〉AB = |00〉AB ± |11〉AB√
2

,

|	±〉AB = |01〉AB ± |10〉AB√
2

. (2.3)

What distinguishes, at an operational level, states of the form (2.2) from states of
the form (2.3)? While the answer to this question may be phrased in different ways
in principle, it ultimately rests on the distinction between what Alice and Bob may
accomplish in terms of purely local resources as opposed to arbitrary non-local
ones. Let, in particular,


loc = spanR{A ⊗ 11, 11⊗ B | A = A†, B = B†} (2.4)

denote the set of local traceless observables on HAB, so that a generic unitary trans-
formation generated by observables in 
loc is of the form UAB = UA ⊗ UB. (The
traceless condition excludes the identity operator from the distinguished subspace
of observables; it is a somewhat arbitrary decision whether or not to do this, for it
has no effect on the convex structure of the set of reduced states induced by nor-
malized states, since all states take the same value on it. Considering the reduced
states as a base for a cone, however, is equivalent to reintroducing the identity
operator, and considering the reduced states induced by the states in the cone of
unnormalized states.) Note that 
loc may be identified with the Lie algebra


loc � su(2)A ⊕ su(2)B = spanR{σa ⊗ 11, 11⊗ σb}, (2.5)

where σa, a ∈ {x, y, z}, denote spin Pauli operators on C
2. Then no Bell state

may be reached starting from a product state as in (2.2) solely by application of
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operators generated by local observables. Alternatively, imagine that the state of
Alice and Bob is to be determined solely on the basis of access to expectation val-
ues of observables.2 Then any pure product state is completely specified by knowl-
edge of the expectation values 〈σa〉A,B on each subsystem, whereas knowledge of
the same expectations cannot distinguish a Bell state from a mixture of pure states –
containing no entanglement. For instance,

|	−〉AB ≡loc
|01〉AB〈01| + |10〉AB〈10|

2
, (2.6)

where equivalence means indistinguishability by access to expectations of
restricted (local) observables. In order to distinguish, knowledge of appropriate
correlations is required, that is expectations of non-local observables like σx ⊗ σx

in the above example. An equivalent characterization of entanglement may be
obtained in terms of purity of Alice and Bob subsystem states, as given by the
corresponding reduced density operators: pure product states are precisely those
states for which each subsystem remains pure. To state it differently, pure entan-
gled states are those pure states whose reduced states – i.e., the expectation val-
ues they determine for all one-party observables only – are non-extremal, i.e.,
mixed.

Even in the simplest setting under consideration, it is essential to acknowledge
that the characterization of a pure state in H as entangled or not is unambiguously
defined only after a fixed tensor decomposition has been chosen among the dis-
tinct ones that H can a-priori support (as long as its dimension d is a non-prime
integer). By its very nature, (standard) entanglement is relative to a preferred sub-
system decomposition – capturing the specific way in which S is viewed as consti-
tuted of its parts. Physically, one may expect that what makes a given factorization
preferred among others should be naturally linked to the set of operations which
are deemed practically available for control and observation. Indeed, in the bipar-
tite setting discussed above, the availability of arbitrary observables in 
loc may
be intuitively (and formally) related to the identification of local degrees of free-
dom associated with subsystems A and B – as described in general by appropriate
mutually commuting associative algebras of operators [16, 17]. Suppose, however,
that for whatever reason the rule distinguishing what is “cheap” from what is not
changes – in particular, suppose that the accessible observables on H = C

4 are
arbitrary linear combinations in the following set:


′loc = spanR{σx ⊗ σx , σz ⊗ σz, σx ⊗ σy, σy ⊗ σz}. (2.7)

2 This scenario is realistic whenever the system can be accessed only collectively in ensembles involving “uncon-
ditional” (non-selective) measurements on either a large ensemble of individual constituents or a large number
of repetitions starting from identical states, see also [14].
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Then expectation values of observables in 
′loc are clearly sufficient to completely
specify Bell states as given in (2.3), whereas pure states of the form |ψφ〉AB may
become “locally” indistinguishable from mixtures, for instance

|0〉A + i|1〉A√
2

⊗ |0〉B + i|1〉B√
2

≡loc′
|�−〉AB〈�−| + |	+〉AB〈	+|

2
, (2.8)

where equivalence has the same meaning as before under 
′loc. Accordingly, Bell
states should now be regarded as un-entangled with respect to the relevant set of
local capabilities. In fact, it is possible to show in this case [16, 17] that a well-
defined decomposition of H into subsystems still exists relative to the new local
set 
′loc,

H = Hχ ⊗Hλ, (2.9)

where χ , λ specify “virtual” subsystems corresponding to eigenvalue χ ∈ {�,	}
and λ ∈ {+,−}, respectively – so that, for instance, |�+〉 � |�〉χ⊗|+〉λ, and so on.

While the above examples nicely demonstrate how, even within the standard
“subsystem-based” framework, the notion of entanglement is strongly observer-
dependent, a closer scrutiny rapidly leads to the following deeper questions:

Are subsystems general and flexible enough to capture the relativity of entanglement in
full? Once a preferred observer has been specified through the identification of a distin-
guished observable set, is it always possible to relate such an observer to the emergence of
preferred subsystems? If so, is it always necessary or useful?

Several concrete examples may be adduced toward showing the inadequacy of
subsystem-based entanglement in settings involving operational or fundamental
constraints more general than the ones implied by the standard framework [14, 22–
25]. Within the four-dimensional state space considered so far, imagine for instance
that available operations are subject to a conservation law, say conservation of the
total (pseudo)spin angular momentum along a given axis, Sz = (sz⊗11+11⊗sz)/2,
with sa = σa/2. Assume we describe the corresponding observer in terms of the
(smallest) Lie algebra of observables commuting with Sz ,


z
loc = spanR{sz⊗11, 11⊗sz,

√
2(sx⊗sx+sy⊗sy),

√
2 (sx⊗sy−sy⊗sx)} � u(2),

(2.10)
where an orthonormal Hermitian basis has been used for later reference. On the
one hand, because only a subset of local observables is included, only a proper
subspace of product states in HAB may expected to remain “unentangled” given
such capabilities. On the other hand, although in analogy with 
′loc expectations of
observables in 
z

loc continue to determine states like |�±〉, it is also clear that not
all four Bell states are now on the same footing, as long as sz⊗ sz is not included in
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the distinguished set. Hence, 
z
loc corresponds neither to the factorization in (2.1)

nor to that in (2.9). Yet, one would still like a natural and meaningful notion of
entanglement to exist on the basis of the identification of “local” resources such as
the ones described by 
z

loc.
Aside from being desirable on fundamental grounds, compelling motivations

for consistently describing a distinguished u(2) observable algebra (and higher-
dimensional generalizations) arise in the context of defining entanglement in sys-
tems of indistinguishable fermions – in which case the latter is reinterpreted in a
second-quantized language and the Sz-constraint is imposed by fermion-number
conservation (see Section 2.4.4). In general, quantum indistinguishability con-
strains the admissible fermionic states to the fully antisymmetric subspace of H,
preventing a direct identification between particles and subsystems in the standard
tensor-product sense. While factorizations into distinguishable subsystems can still
be defined in terms of appropriate sets of modes, the choice of preferred modes
may be problematic in situations where different sets (e.g., spatial and momentum
modes) are equally relevant to the description. Finally, the possibility that the oper-
ator language which describes the problem may itself be changed – for instance
via isomorphic mappings between spaces of spin and of fermion operators like the
Jordan–Wigner transformation [26] – further adds to the intricacy of applying the
standard entanglement framework to general quantum many-body systems.

Can entanglement be directly defined in terms of distinguished physical observ-
ables, irrespective of and without reference to a preferred subsystem decompo-
sition?

2.3 Entanglement beyond subsystems: the concept of generalized
entanglement

The generalized entanglement setting we are seeking must satisfy two essential
requirements: it must both (i) reduce to the ordinary framework in well-defined
limiting situations, and (ii) identify the presence or absence of entanglement inde-
pendently of the specific operator language in which the distinguished observables
of S may be expressed. The key intuition is to generalize the characterization of
pure-state entanglement as relative mixedness under restricted capabilities.

While we refer to [20] for a more detailed and mathematically more rigorous
account, all relevant GE settings are subsumed as special cases of a general defi-
nition based on distinguished cone-pairs. Recall that a (finite-dimensional) convex
cone is a proper subset of a (finite-dimensional) real vector space closed under mul-
tiplication by non-negative scalars and under addition. In our usage, the term will
refer to regular convex cones, that is, cones that are pointed (contain no subspace
other than {0}), generating (so that the linear span of the cone is the full ambient
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vector space), and topologically closed. Let V and V ∗, respectively, denote a real
linear space and its dual, that is, the space of all linear functionals from V to R.
Given a convex cone C ⊆ V and a distinguished functional λ ∈ V ∗, we asso-
ciate states with normalized elements in x ∈ C , satisfying λ(x) = 1. We require
that λ separate C from −C , equivalently that the only element x ∈ C for which
λ(x) = 0 is x = 0, and we also require that λ(C) ≥ 0. These conditions are
imposed so that (given the regularity of the cone) the set Ĉ of normalized states
in C is a compact convex set. Also, each element of C can be written as αx for
some unique x ∈ Ĉ , α > 0 (in other words, Ĉ is a base for the cone). Thus C
may be thought of as the set of unnormalized states: multiples of the normalized
states which belong to Ĉ . We will use the term extremal state to mean an extremal
element of Ĉ , in the standard sense that it cannot be written as a non-trivial convex
combination of two distinct elements of Ĉ . But, where it is clear that the state is in
general unnormalized, we may use the term extremal state to refer to an unnormal-
ized state belonging to an extremal ray of C , that is, a non-negative multiple of an
extremal normalized state.3

The operational interpretation of the above construction also requires us to con-
sider the dual cone C∗ = {α ∈ V ∗|α(x) ≥ 0 ∀x ∈ C}, which consists of the
functionals non-negative on C . C∗ is interpreted as the set of possible “effects,”
corresponding to “unnormalized” measurement outcomes, for states in C ; α(x),
which is non-negative for all x ∈ C , is interpreted as an (unnormalized) probabil-
ity for outcome α when the state is x . Observe that the distinguished functional λ
(often called the “unit” or “order unit”) belongs to C∗: it is the measurement out-
come that has probability 1 in all states. The interval [0, λ] ⊂ C∗ defined by
{α ∈ C∗|α ∈ C, λ − α ∈ C} corresponds to outcomes normalized so that they
can appear in a measurement, since it is easily verified that [0, λ] is precisely the
set of functionals α such that, for all x ∈ Ĉ , 0 ≤ α(x) ≤ 1, enforcing that prob-
abilities for measurement outcomes lie in [0, 1]. Measurements with a finite set of
outcomes correspond to finite resolutions of the unit into elements of [0, λ]: finite
sequences αi of elements of [0, λ] such that

∑
i αi = λ, which, as is easily checked,

enforces that the probabilities of the measurement outcomes i sum to 1 in all states,
i.e.,
∑

i αi (x) = 1. Note that for many (but not all) purposes it may be easier to
ignore this additional derived structure of a dual cone and a unit interval within it,
viewing V ∗ as simply a set of real-valued linear-in-the-states “observables” and the
states in C as determining their expectation values.

Generalized entanglement may be defined once a pair of distinguished state-
sets – generalizing the distinction between states as accessible to a “local” as

3 We warn the reader that such states (0 aside) are not extremal in the convex-sets sense, in the convex set C .
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opposed to a “global” observer – and a choice of an appropriate normalization-
preserving linear map – generalizing the notion of computing the reduced density
operator for bipartite systems – have been specified.

Definition 1. Let V,W be real linear spaces equipped with distinguished convex
cones C ⊂ V, D ⊂ W and positive linear functionals λ ∈ C∗, λ̃ ∈ D∗ satisfying
the requirements discussed above. Let π : V → W be a normalization-preserving
linear map taking C onto D that is,

(i) π(C) = D, and
(ii) π({x ∈ V |λ(x) = 1}) = {y ∈ W |λ̃(y) = 1}.

A pure (extremal) state x ∈ C is generalized unentangled relative to D if its
image π(x) is pure (extremal) in D. A mixed (non-extremal) state in z ∈ C
is generalized unentangled relative to D if z = ∑a wa xa , for positive numbers
wa ≥ 0 and extreme points xa ∈ C whose images π(xa) are extreme in D.

Note that this definition applies in general to unnormalized states, but includes
normalized ones. If the states are normalized, it coincides with a natural restricted
definition, in which C, D are replaced by Ĉ, D̂ above, and extremality is taken in
the convex-sets sense as extremality in Ĉ, D̂. Condition (ii) on the map π guaran-
tees that this makes sense, by ensuring that Ĉ is mapped onto D̂.

2.3.1 Generalized-entanglement settings

In physical applications, the distinguished functional λ is identified with the trace
map, and the reduced state-set associated with D is obtained by selecting a pre-
ferred subspace 
 ⊆ B(H) of “local” observables for S. In particular, the above
general definition may be specialized to the following relevant entanglement set-
tings [20].

GE1: Distinguished quantum observables setting. C is isomorphic to the convex
cone ϒ of quantum states on H (positive normalized functionals η induced by posi-
tive multiples of density operators), and V ∗ is viewed as the subspace of Hermitian
operators in B(H), with X [η] = Tr(ρηX) giving the expectation value of observable
X in state ρη. Elements in V = (V ∗)∗ are arbitrary linear functionals defined so
that ξ [X ] = X [ξ ], for all X ∈ V ∗, ξ ∈ V . Let the distinguished observable space
be any real linear subspace 
 ≡ W ∗ ⊂ V ∗. Then the cone D ⊂ W of 
-reduced
unnormalized states may be obtained as the image of C under the map π : V �→ W
which restricts elements of V to observables in the distinguished set, i.e., for η ∈ V ,
π(η) is defined by the condition that, for all X ∈ W ∗ = 
, π(η) [X ] = η(X). Thus,
elements in D may be seen as lists of expectation values for observables in 
.
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GE2: Hermitian-closed operator subspace setting. In this case, the distinguished
observable space 
 consists of the Hermitian operators in a linear subspace
V ⊂ B(H) containing the identity and closed under Hermitian conjugation. This
formulation turns out to be fully equivalent to the GE1 setting defined above.

GE3: Lie-algebraic setting. In situations where the Hilbert space H of S may be iden-
tified with the representation space of a (Hermitian-closed) Lie algebra h, it is natural
to identify 
 with the corresponding cone D of reduced h-states consisting of linear
functionals on h induced from positive normalized operators in B(H) upon restric-
tion to W ∗ = 
. By construction, this setting is a special case of GE1. Under the
additional assumptions that h is semi-simple and acts irreducibly on H, this setting
leads to an explicit characterization of the set of pure generalized unentangled states,
which are identical with the set of so-called generalized coherent states (GCSs) of h

[14, 27].
GE4: Associative-algebraic setting. Here, the distinguished set
 consists of the Her-

mitian elements of an associative sub-algebra A of B(H). This case may also be
seen as a special instance of GE1. Under the additional assumption that A partitions
into a collection of independently accessible, mutually commuting associative sub-
algebras {Ai } satisfying ⊗iAi � B(H) (or generalizations where a proper “cod-
ing” subspace C⊂H is considered), this setting is directly relevant to identifying
observable-induced subsystem decompositions as in [17].

2.3.2 Generalized-entanglement measures

As with standard entanglement, no single measure can, in general, uniquely
characterize the GE properties of a state. However, the observation that standard
pure-state entanglement translates into mixedness (loss of purity) of the reduced
subsystem states naturally suggests seeking a way to quantify the degree of purity
relative to the distinguished observable set.

Let 
 be a Hermitian-closed set, and let {Xα} be an orthonormal basis of 
,
Tr(XαXβ) = δαβ . Then, for every density operator ρ on S, the projection of ρ onto

 may be defined via

P
(ρ) =
∑
α

Tr(ρXα)Xα.

P
(ρ) may be regarded as the “
-reduced” density operator associated with ρ,
although (unlike in the standard multipartite case) P
(ρ) is not necessarily positive
semidefinite: the positivity of Tr(P
(ρ)X) does not in general hold for all positive
semidefinite observables X ; although, if we include the identity in 
, it is assured
for those X belonging to 
.

Definition 2. For any density operator ρ ∈ϒ , the purity of ρ relative to 
 (
-
purity) is given by the squared length of its 
-reduced density operator, that is,
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P
(ρ) = Tr(P
(ρ)2) =
∑
α

|Tr(ρXα)|2. (2.11)

In particular, if ρ = |ψ〉〈ψ | is pure, we simply write

P
(|ψ〉) =
∑
α

|〈ψ |Xα|ψ〉|2. (2.12)

By construction, 0≤ P
(ρ)≤ P(ρ)≡Tr(ρ2). Also note that P
(|ψ〉) = 1/d +
P
0(|ψ〉), where 
0 ⊆ 
 denotes the distinguished traceless sector. It is often
convenient to discard the constant trace contribution, in which case the common
normalization constant for the (traceless) Xα is adjusted so as to rescale the max-
imum of P
0 to 1. In the Lie-algebraic setting GE3, the h-purity so constructed
is automatically invariant under arbitrary unitary transformations in the Lie group
generated by h, as is desirable on physical grounds.

The usefulness of the 
-purity as a measure of pure-state GE in various settings
is summarized in the following theorem, which is proved in [14] and [20].

Theorem. (i) In the irreducible Lie-algebraic and associative-algebraic settings, a
pure state |ψ〉 ∈ H is generalized unentangled relative to 
 if and only if P
(|ψ〉)
is maximal. (ii) In the Hermitian-closed operator setting (including reducibly rep-
resented operator algebras), states with maximal
-purity are generalized unentan-
gled relative to 
.

A complete characterization of the relationship between maximal relative purity
and generalized unentanglement still remains an interesting open question in the
general convex-cone framework. We refer the reader to the above-mentioned
papers for an extended discussion of this issue, as well as for the construction
of appropriate mixed-state GE measures. In what follows, we focus on developing
concrete intuition about GE from several illustrative examples.

2.4 Generalized entanglement by example

2.4.1 Entanglement with respect to local observables

Assume that the system S is composed of n distinguishable subsystems, corre-
sponding to a Hilbert-space factorization of the form

H � H1 ⊗ . . .⊗Hn, (2.13)

where for simplicity we take the factors to be isodimensional, dim(H�) = d0 for
all �, dn

0 = d .
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2.4.1.1 The Lie-algebraic setting

Contact with the standard multipartite entanglement framework may be established
by realizing that full local accessibility of individual subsystem states identifies the
set of arbitrary local observables as the physically distinguished set. Let


loc ≡ hloc = su(d0)1 ⊕ . . .⊕ su(d0)n (2.14)

denote the relevant (irreducible) Lie algebra of traceless local observables, gener-
alizing the bipartite qubit case of (2.5). For each su(d0)�, an orthonormal (in the
trace inner product) basis {xα}, α = 1, . . ., d2

0 − 1, may be constructed in analogy
to (normalized) Pauli operators. Thus Tr(xαxβ) = δα,β . An overall orthonormal
basis for hloc is then obtained by extending each x�α to act non-trivially only on
subsystem �, e.g.,

x (1)α = xα ⊗ 11(2) ⊗ . . .⊗ 11(n), 11(�) = 11/
√

d0.

While a formal proof of the equivalence between standard entanglement and GE
relative to arbitrary local observables is given in [14], the basic step follows from
identifying reduced local states with lists of expectations of x�α: because the latter
completely determine reduced density operators (in the usual partial-trace sense),
and a pure state |ψ〉 ∈H is entangled (in the standard sense) if and only if all its
reduced density operators remain pure, the two notions coincide on pure states.
By virtue of convexity, they can also be shown to coincide on mixed states.
Consistently with this, GCSs of hloc may be associated with orbits of a refer-
ence state like |0 . . . 0〉 under the group of local (special) unitary transformations,
SU(d0)1 ⊗ . . .⊗ SU(d0)n .

The connection with the ordinary entanglement framework may be further quan-
titatively appreciated by relating the local purity Ph ≡ Ploc to the conventional
subsystem purities determined by reduced subsystem states. One finds [22]

Ploc(|ψ〉) = d0

d0 − 1

(
1

n

n∑
�=1

Tr(ρ2
� )−

1

d0

)
, (2.15)

where ρl denotes as usual the reduced density operator of subsystem �. Thus, Ploc

is proportional to the average subsystem purity (the first term in the parentheses
in (2.15)). For the special case of qubits (d0 = 2), the local GE as quantified
by Ploc is additionally simply related [23, 28] to a measure of global multipartite
entanglement Q originally proposed in [29], Ploc(|ψ〉) = 1− Q(|ψ〉).

2.4.1.2 A three-qubit case study

It is essential to realize that, in order for the equivalence between multipartite
subsystem entanglement and GE to hold, all and only local observables must be
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distinguished. A concrete example may serve to further illustrate these points. Let
S consist of three qubits. The local algebra is given by


1 = su(2)1 ⊕ su(2)2 ⊕ su(2)3, (2.16)

with corresponding local purity given by

P1(|ψ〉) = 1

3

3∑
�=1

∑
α=x,y,z

〈σ (�)α 〉2.

This distinguishes four classes of states with different multipartite (and GE) prop-
erties: P1(|ψ〉) = 1 on arbitrary product states, which are thus unentangled;
P1(|ψ〉) = 1/3 on so-called bi-separable states – joint states, e.g., of the form

|B12〉 = |Bell〉12 ⊗ |φ〉3,
and similarly for states |B13〉 and |B23〉, where qubits 2 and 3 are factored out,
respectively; P1(|ψ〉) = 1/9 for |ψ〉 belonging to the so-called W-class, e.g.,

|W〉 = 1√
3
(|001〉 + |010〉 + |100〉);

and P1(|ψ〉) = 0 on the Greenberger–Horne–Zeilinger (GHZ) class,

|GHZ〉 = 1√
2
(|000〉 + |111〉),

identifying the latter as maximally entangled with respect to local observables.
Suppose, however, that “local” resources are redefined, so that arbitrary unitary

operations on the first pair are distinguished – that is, we effectively replace 
1

with


2 = su(4)12 ⊕ su(2)3, (2.17)

and, correspondingly, we compute the new “bi-local” purity P2(|ψ〉) by using an
appropriate basis of 
2 – including six bilocal Pauli operators in addition to the
nine operators in 
1. How does the above classification change? Were qubit 3 not
present, then clearly any pure state in H1⊗H2 would be disentangled relative to the
full algebra su(4)12. With qubit 3 included, one still expects any internal structure
within qubits 1 and 2 to be irrelevant, as long as the pair reduced state remains
pure. This intuition is reflected by the behavior of P2(|ψ〉), which now attains its
maximum on both product states as before and the bi-separable class B12 – which
thus becomes extremal. Both B23 and B13 become maximally generalized entangled
relative to this observer, together with |GHZ〉 (P2 = 1/3), whereas the |W〉 class
shows intermediate GE with P2(|W〉) = 11/27.
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Other interesting scenarios may be conceived, which resemble in part ordi-
nary entanglement – in the sense that partial accessibility of subsystems in H is
retained – yet differ in the identification of actual “local” degrees of freedom –
in that observables spaces on different factors overlap. Suppose, for instance, that
qubits 1, 2, 3 are spatially separated and arranged on a line, or reside at the ver-
texes of a triangle, with physical transformations generated by nearest-neighbor
two-body couplings in the first case, or arbitrary two-body couplings in the second
one. Then the resulting operational constraints are naturally captured by distin-
guished observable sets of the form


3 = spanR{σ (1)a ⊗ σ (2)b ⊗ 11(3), 11(1) ⊗ σ (2)b ⊗ σ (3)c }, (2.18)

or, respectively,


4 = spanR{σ (1)a ⊗ σ (2)b ⊗ 11(3), 11(1) ⊗ σ (2)b ⊗ σ (3)c , σ (1)a ⊗ 11(2) ⊗ σ (3)c }. (2.19)

A formal analysis of GE relative to the above distinguished sets is technically more
difficult because neither of 
3,4 is a Lie algebra. While such an analysis is beyond
our current purposes, following the GE behavior of different classes of pure states
as observables are added through the progression 
1 → 
2 → 
3 → 
4 clearly
serves to illustrate how GE is directly observer-dependent irrespective of whether
a direct correspondence between the concept of “locality” and “locally accessible”
subsystem degrees of freedom is possible: note, in particular, that relative to 
4

every bi-separable pure state of the three qubits becomes extremal – thus general-
ized unentangled, consistently with physical intuition.

2.4.1.3 The convex cones setting; GE in Popescu–Rohrlich boxes

Although the convex-cones setting is more general than quantum mechanics, in
this setting one may still define a natural notion of one system’s being a subsys-
tem of another, and of a system’s being a tensor product of two systems. In this
case, however, the notion of tensor product is not unique. For our purposes, we
will (as in [30]) allow as a tensor product of cones C1 ⊂ V2 and C2 ⊂ V2 any
cone � in V1⊗V2, with base �̂ containing the separable tensor product Ĉ1⊗sep Ĉ2,
and contained in the maximal tensor product Ĉ1 ⊗max Ĉ2. Both the separable and
the maximal tensor-product constructions admit a simple interpretation. The sep-
arable tensor product is the convex hull of the products x ⊗ y, x ∈ Ĉ2, y ∈ Ĉ2.
These product states are just the natural generalization of classical product distri-
butions and quantum product states: for any pair of observables on C1 and C2, the
joint probability given by such states, for outcome-pairs, factorizes as a product
of marginal distributions for the two systems. The maximal tensor product is just
(C∗1 ⊗sep C∗2 )

∗, i.e., it is the set of unnormalized states that are non-negative on all
“product outcomes.” States in the maximal tensor product are precisely those that



30 L. Viola and H. Barnum

do not allow signaling. This general notion of a tensor product appeared in [31], and
(in a slightly different but essentially equivalent formalism of test spaces) the no-
signaling construction of the maximal tensor product is done in [32, 33]. A review
of the latter (with additional results on certain tensor products of two quantum sys-
tems) can be found in [34], together with many references to related work, and the
notion of “system combination” independently developed in [35] should also be
noted as closely related.

One can specialize our GE notion (and, correspondingly, generalize the notion of
bipartite quantum entanglement) to such a tensor product, by letting D ⊂ V1 ⊗ V2

be the cone generated by restricting states in � to the space of effects spanned by
{x ⊗ λ, λ⊗ y|x ∈ C∗1 , y ∈ C∗2 }. There is a natural map π satisfying the conditions
stated in the definition of GE. For any state ω in �, its marginal states ω1, ω2 on
system 1 or 2 may be defined as the restrictions of π to the spaces of observables on
system 1 or 2, respectively, i.e., to {x ⊗ λ|x ∈ C1} or {λ⊗ y|y ∈ C∗2 }. The reduced
states π(ω) ∈ D are thus just pairs (ω1, ω2) of marginal states, and whatever tensor
product between the maximal and the separable is chosen, it turns out that, relative
to D and π , the unentangled bipartite states in that tensor product are just the ones
in the separable tensor product. That is, pure unentangled states are just products
of pure (extremal) states, and general unentangled states are convex combinations
of these. This follows from the fact (see, e.g., Lemma 3 of [30], though this is
almost certainly not its first appearance) that, if either marginal state of some state
in a bipartite tensor product, as we have defined it, is pure, the bipartite state is a
product state.

As a concrete non-quantum, non-classical example of the distinction between
product and entangled pure states, consider the extremal states of a pair of two-
output, two-input Popescu–Rohrlich (PR) boxes. In terms of convex sets, a single
such box may be viewed as having a state space that is polyhedral with square base.
This can be visualized in R

3, although it is in some ways more natural to view it
as a non-generating cone in R

4, as the interpretation below will clarify. Suppose
we have chosen an orthonormal basis, and let the distinguished (λ(x) = 1) square
base lie in the plane perpendicular to a line between the center of the square base
and the origin. The cone of unnormalized measurement outcomes (the dual cone to
this) is thus also a square polyhedral cone: if we visualize it in the same space and
represent evaluation of functionals by the Euclidean inner product in this space,
it will be rotated by π/4, relative to the primal cone, around the line through the
center of the square and the origin (and also uniformly dilated or contracted relative
to it). No matter how we affinely embed the primal cone in R

3, it will not coincide
with the dual cone determined by a Euclidean inner product, so this cone does not
enjoy the important property of self-duality, but it is still isomorphic to its dual.

The interpretation of the states is in terms of two alternative measurements,
each having two possible outcomes, the measurements labeled in the usual PR-box
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formalism by an “input” bit specifying which measurement is to be done, and the
outcome of each measurement by an “output” bit – so that, taken together, these
two measurements have a total of four possible measurement outcomes, each cor-
responding to a pair of an input and an output bit. Pictorially, such outcomes corre-
spond to points on the four extremal rays of the dual cones. View the square state
space as embedded in R

2, so that the vertices are (0, 0), (0, 1), (1, 1), (1, 0) as
we go clockwise around the square base, and arbitrary states correspond to points
(p0, p1) ∈ [0, 1]× [0, 1]. Interpret p0 as the probability of measurement 0 yielding
the result 0, (1− p0) as the probability of it yielding the result 1, p1 as the proba-
bility of measurement 1 yielding 0, and (1− p1) as the probability of measurement
1 yielding 1. Thus, the two-parameter representation of the state can be viewed
as the result of an affine embedding of the subset of the four-parameter states
(p0|0, p1|0, p0|1, p1|1), satisfying the normalization constraints p0|0 + p1|0 = 1,
p0|1 + p1|1 = 1, into R

2 (with pi | j denoting conditional probability). Similarly the
cone of unnormalized states in R

3 can be viewed as an isomorphic affine image
(embedding) of the three-dimensional subspace of the four parameter states in the
octant R

4+ satisfying the constraint p0|0 + p1|0 = p0|1 + p1|1.
By a similar construction, analogous boxes can be defined for an arbitrary finite

number of “inputs” N (corresponding to alternative measurements), and numbers
Mi , i ∈ {1, . . . , N } of possible outputs for each measurement (usually taken to
be a number M independent of i). Such sets of alternative measurements are also
known in the quantum-logic literature as semi-classical test spaces [36].

The state space of a pair of such PR boxes is just the maximal tensor product
of the state spaces of two PR boxes: it was introduced [37] in the PR-box litera-
ture as the set of all possible states of correlations between the outcomes of two
PR boxes that do not permit signaling. This state space is a polytope; it has been
studied in [38] and, in particular, its extremal points for the two-input, d-output
case have been explicitly described. For our case, d = 2, there are two types of
extremal states. They are best understood by exhibiting states as 4× 4 matrices of
probabilities pi j |kl , where i j is the pair of Alice’s outcome label, Bob’s outcome
label (“outputs”), and kl is the pair of Alice’s measurement, Bob’s measurement
(“inputs”). Thus the matrix has a natural 2×2 block structure, the i j th block being
the 2× 2 matrix for the probabilities of the four possible Alice/Bob outcome-pairs
when Alice does measurement k, Bob measurement l. That is, explicitly,⎛⎜⎜⎝

p00|00 p01|00 p00|01 p01|01

p10|00 p11|00 p10|01 p11|01

p00|10 p01|10 p00|11 p01|11

p10|10 p11|10 p10|11 p11|11

⎞⎟⎟⎠ . (2.20)

The standard normalization condition is that the probabilities within each block
sum to 1. Bob’s marginal state is the vector of column sums of the upper half of the
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matrix, interpreted as (p0|0, p1|0, p0|1, p1|1); the condition that Alice cannot signal
to Bob translates into the fact that this is equal to the vector of column sums of
the lower half of the matrix (i.e., Bob’s probabilities are independent of Alice’s
choice of measurement). Similarly, Alice’s marginals are the row sums of the left
half of the matrix, equal by virtue of the no-signaling condition to those of the right
half. The fact that these are linear equality constraints, together with the positivity
constraint on probabilities, is what makes the no-signaling state space a polytope
and, consequently, makes the cone of unnormalized states a polyhedral cone.

The extremal points were found and classified in [38] and, as mentioned, are of
two types. One is represented by the following state:⎛⎜⎜⎝

1 0 1 0
0 0 0 0
1 0 1 0
0 0 0 0

⎞⎟⎟⎠ . (2.21)

Alice’s reduced state is just the marginal state (1, 0, 1, 0), as is Bob’s; these are
both extremal states, so this is generalized unentangled by our definition: indeed,
it can also easily be seen to be a product state, pi j |kl = pA

i |k pB
j |l . There are 16 rep-

resentatives of this class, representing products of each of the four local extremal
states for Alice with each of four local extremal states for Bob.

The other class consists of eight entangled extremal states. These are all locally
equivalent to the representative4⎛⎜⎜⎜⎝

1
2 0 1

2 0
0 1

2 0 1
2

1
2 0 0 1

2
0 1

2
1
2 0

⎞⎟⎟⎟⎠ . (2.22)

In this case, both Alice’s and Bob’s marginals are the mixed state ( 1
2 ,

1
2 ,

1
2 ,

1
2),

showing (given that these are extremal overall, as proved in [38]) that this state is
generalized entangled by our definition. Of course, the fact that this is entangled in
the sense that it is a pure non-product state was already observed in [38]. As noted
there, the other 15 pure product states, and the other 7 pure entangled states, can be
obtained from the above two states by local transformations consisting of relabel-
ing the measurements and the outcomes. The entangled states, for example, may
be described via the shorthand A (for anticorrelated) for the 2×2 matrix that looks
like σx/2, and C (for correlated) for the 2 × 2 matrix 11/2. In this way, the above
entangled state reads: (

C C
C A

)
, (2.23)

4 Note that the terminology is not uniform; in particular, extremal entangled states as defined in (2.22) are com-
monly referred to as the “PR box.”
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and all eight entangled states may be obtained by noting that relabeling the mea-
surements just interchanges rows and/or columns – allowing us, with a few such
relabellings, to place the A in any of the four places, whereas relabeling the out-
comes of one of Alice’s or Bob’s measurements interchanges C and A in the row
(for Alice) or column (for Bob) corresponding to that measurement – allowing us
access to the four states having three As and one C .

Reference [38] also describes the single local equivalence class of entangled
pure states of a pair of two-measurement, d-outcome boxes, and some of the 44
local equivalence classes of entangled pure states of three two-measurement, two-
outcome boxes, together with many other interesting results, for example on local
interconversion of various combinations of states of PR boxes. Further properties
of operational theories based on PR boxes are investigated in [35].

2.4.2 Entanglement without locality . . .

The extent to which the GE notion genuinely enlarges the standard subsystem-
based framework may be further appreciated in situations where H is intrinsically
indecomposable – thus no factorization of H exists and conventional entanglement
is not directly applicable. A physically motivated example is offered by a quantum
spin-J system (take for definiteness J ∈ N), whose d = (2J + 1)-dimensional
state space carries an irreducible representation of su(2), with angular-momentum
generators Jα satisfying commutation rules

[
Jα, Jβ

] = 2iεαβγ Jγ , εαβγ denoting
the completely antisymmetric tensor. Because the GE notion rests only on convex
properties of sets of quantum states and observables, the definition of GE is still
applicable as soon as distinguished observable sets are specified. In particular, the
full algebra of traceless observables g is isomorphic to g� su(d): clearly, expecta-
tions in g completely determine an arbitrary pure state in H – accordingly, every
pure state is (extremal) unentangled relative to g.

Imagine, however, that only expectations of observables in the “local” sub-
algebra h= su(2) are available. In this case, h-reduced states may be identified
with three-dimensional vectors of expectation values 〈Jα〉, α = x, y, z, which form
a ball of radius J in R

3. Using the notation J for the vector (Jx , Jy, Jz), these are
vectors 〈J〉. In addition, J2 = J · J = J 2

x + J 2
y + J 2

z . The extremal states correspond
geometrically to points on the surface of such a ball, that is to the GCSs of SU(2) –
also called spin coherent states (SCSs) [27] – which are characterized by maximal
spin projection along a given component,

(n · J)|ψ〉SCS = J |ψ〉SCS, |n| = 1.

For any given choice of spin direction, e.g., n = ẑ, let {|J, J 〉, |J, J − 1〉,
. . . , |J, 0〉, . . . , |J,−J + 1〉, |J,−J 〉} be an orthonormal basis of H consisting of
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joint J2, Jz eigenstates. Then states |J,±J 〉 lie on the surface of the ball and there-
fore are generalized unentangled, whereas the remaining states lie on the inside,
and hence are not extremal: in particular, the state |J, 0〉 lies at the middle of the
ball and is maximally entangled relative to su(2). Mathematically, this is reflected
in minimal su(2)-purity,

Psu(2)(|J, 0〉) = 1

J 2

∑
α=x,y,z

〈J, 0|Jα|J, 0〉2 = 0.

Physically, the presence of GE captures the fact that no “local” unitary operation
(no rotation in SU(2)) is able to connect such a state with extremal states on the
surface: achieving that requires “entangling” operations generated by Hamiltonians
in the full g.

Note that, because h is irreducible, the h-purity coincides, up to an additive con-
stant, with the quantity

(�I)2 =
∑
α

[〈J 2
α 〉 − 〈Jα〉2

] = J (J + 1)− J 2 Psu(2),

which measures the so-called invariant uncertainty of SU(2) and is minimized by
GCSs [27, 39]. From this point of view, generalized unentangled (maximally entan-
gled) states may thus be seen as maximally close to (remote from) “classical real-
ity” – as measured in terms of the corresponding minimal (maximal) amount of
quantum fluctuations [18, 19].

2.4.3 Separability without entanglement . . .

A further element of distinction between conventional and generalized entangle-
ment arises in situations where a local structure exists in H as in (2.13), but opera-
tional capabilities are restricted to a proper subset of local observables.

Consider, for instance, two spin-J particles, with associated bipartite Hilbert
space H = H1 ⊗ H2, d0 = 2J + 1, and full observable Lie algebra g � su(d2).
Arbitrary (subsystem)-local observables correspond to hloc � su(d)1 ⊕ su(d)2. If,
as in the above example, only observables linear in the basic angular-momentum
generators are distinguished for each subsystem, then the accessible “local” sub-
algebra is

h′loc = su(2)1 ⊕ su(2)2 ⊂ hloc.

The set of generalized unentangled states relative to h′loc consists of states of the
form |SCS〉1 ⊗ |SCS〉2. However, other tensor-product states like |J, 0〉1 ⊗ |J, 0〉2
are maximally entangled relative to the local sub-algebra: to fully “resolve” the
product nature of such states requires access to expectations of arbitrary observ-
ables in hloc.
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2.4.4 Fermionic entanglement

As a last example, we reconsider the simplest instance of entanglement in sys-
tems of indistinguishable fermions, which was briefly mentioned at the end of
Section 2.2.

Because the requirement of complete antisymmetry of the joint state vector
under particle exchange is automatically incorporated, identical (spinless) fermions
are most naturally described in a second-quantized language based on canonical
fermion operators. Consider two identical fermions, each of which may occupy
one of two modes [24]. For each mode j = 1, 2, let c†

j and c j denote creation
and annihilation operators, respectively, obeying the following anticommutation
rules: [

ci , c j

]
+ =
[
c†

i , c
†
j

]
+
= 0,[

c†
i , c j

]
+
= δi j ,

where [ , ]+ denotes the anticommutator. Let in addition |vac〉 denote a reference
“vacuum” state containing no fermions. For instance, we may associate mode 1
with Alice and mode 2 with Bob, who reside at spatially separated locations. Then
a state where a fermion is created at Alice’s site corresponds to |c†

1〉 ≡ c†
1|vac〉,

and so on.
What kind of entanglement is physically meaningful in fermionic states? Insight

into this question may be sought by changing the description into a more familiar
spin language, by exploiting the Jordan–Wigner isomorphic mapping between the
above fermionic operators and the Pauli algebra,

S(1)+ = c†
1, S(1)− = (S(1)+ )†,

S(2)+ = (1− 2n1)c
†
2, S(2)− = (S(2)+ )†,

where n̂1 = c†
1c1 is the fermion number operator for mode 1, and the operators

S( j)
± = (σ

( j)
x ± iσ ( j)

y )/2 so constructed obey su(2) commutation rules. Then the
following correspondence may be established between states in the usual spin- 1

2
basis {|0〉, |1〉} and fermionic states:

|00〉 ↔ |vac〉,
|01〉 ↔ c†

1|vac〉,
|10〉 ↔ c†

2|vac〉,
|11〉 ↔ c†

1c†
2|vac〉.

(2.24)

Presumably, we would want none of these states (containing, respectively, zero,
one, one, and two fermions at different locations) to be “entangled” by any
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reasonable definition. What about the set of Bell states given in (2.3)? By applying
the Jordan–Wigner mapping, these can be rewritten as follows:

|	±〉 = 1√
2
(|01〉 ± |10〉)↔ 1√

2
(c†

1 ± c†
2)|vac〉,

|�±〉 = 1√
2
(|00〉 ± |11〉)↔ 1√

2
(11± c†

1c†
2)|vac〉 =

1√
2

(
|vac〉 ± c†

1c†
2|vac〉

)
.

Note that states in the upper line are still states with a fixed number of particles
(one particle), which are described in general by so-called “Slater determinants” in
the condensed-matter terminology. States in the bottom line, in contrast, are linear
combinations of states with zero and two fermions that is, linear combinations of
Slater determinants with different particle number.

Suppose we consider an arbitrary physical scenario or process in which no
change of the fermion number in a state can occur. Then the admissible physical
observables for fermions must commute with the total fermion operator,

N̂ = n̂1 + n̂2 → σ (1)z

2
+ σ

(2)
z

2
− 11 = Sz − 11,

which recovers precisely the conservation law discussed in Section 2.2. In fact,
bilinear fermion operators of the form {c†

i c j , 1 ≤ i, j ≤ 2} may be seen to satisfy
u(2)-commutation rules [23], which makes the latter a natural candidate for a dis-
tinguished fermionic observable set. A larger fermionic algebra arises if arbitrary
bilinear fermion operators are included (e.g., operators of the form c†

i c†
j ), leading

to so(4) ⊃ u(2). Written in the fermionic language, the u(2) Lie algebra given in
(2.10) becomes

u(2) = spanR{n̂1 − 1/2, n̂2 − 1/2, (c†
1c2 + c†

2c1)/
√

2, i(c†
1c2 − c†

2c1)/
√

2}.
The corresponding u(2)-purity, Pu(2) (computed either in the fermionic or in the
spin language), attains its maximum on both the number eigenstates of (2.24) and
the two Bell states |	±〉. Thus, the latter states are certainly “mode-entangled”
with respect to the local spin algebra 
loc, but generalized unentangled relative to
the fermionic algebra, which is consistent with the original intuition about their
one-particle nature. In contrast, states |�±〉 have zero u(2)-purity; thus they are
maximally entangled both in the conventional spin sense and relative to the u(2)
observer. That is, states |�±〉 contain genuine fermionic entanglement – irrespec-
tive of the operator language used. Physically, this expresses the fact that a linear
combination of Slater determinants with different fermion numbers cannot be dis-
tinguished from a mixture by relying solely on expectations in u(2): indeed, distin-
guishing would involve expectations of operators (like, e.g., σ (1)x ⊗ σ (2)x in so(4))
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that have non-zero matrix elements between states of different fermion number,
hence requiring the above conservation law to be broken.5

2.5 Generalized entanglement: applications and implications (so far . . .)

The GE notion has proved so far a powerful unifying framework for linking
entanglement properties to various physical, information-theoretic, and conceptual
aspects of “complexity” and “classicality” emerging in a variety of scenarios.

2.5.1 Complexity implications

Following one of the original motivations underlying GE [23, 24], purity measures
associated to appropriate observable subspaces are providing novel diagnostic tools
for characterizing the “correlations” present in eigenstates of interacting quantum
many-body Hamiltonians – allowing natural contact to be established with state-
complexity notions, such as the number of principal components and the inverse
participation ratio, borrowed from quantum statistical physics [40]. Two situa-
tions are especially relevant in this regard, and have been the subject of intense
investigation recently (see, e.g., [41–44] and references therein). On the one hand,
the correlations present in the ground state of a many-body system may undergo
a structural change as some parameters in the Hamiltonian are changed at zero
temperature across “critical” values – giving rise to so-called “quantum phase tran-
sitions” in the limit of infinite system size. In this case, natural Lie-algebraic GE
measures constructed from fermionic and/or spin operators have made it possible to
successfully identify and characterize the ensuing critical behavior in a large class
of transitions induced by a spontaneous symmetry breaking [23].6 On the other
hand, structural changes may also take place for any typical many-body state if the
addition of a perturbation or disorder to the original Hamiltonian causes a crossover
from a regular, “integrable” regime into non-integrability and so-called “quantum
chaos.” The onset of chaos may in turn manifest itself at both the static level –
in terms, for instance, of different eigenvector statistics as described by so-called
“random matrix theory” [45] – and at the dynamic level – in terms of different
behavior of quantum “fidelity” as a function of time [46–48], or hypersensitivity to

5 Notice that operators commuting with Sz ↔ n̂ suffice for distinguishing states |	±〉 from mixtures. The
importance of taking into account the constraint of fermion-number conservation toward consistently defining
entanglement in states of identical fermions has been stressed independently by Noah Linden (private commu-
nication).

6 For the ground states of a paradigmatic class of one-dimensional critical spin- 1
2 chains with N sites (the so-

called XY model in a transverse field), the N -sites fermionic purity Pu(N ) may be directly related to the

variance of the total fermion-number operator N̂ [23]. Thus, the relevant fermionic entanglement in this case
directly originates from the superposition of states with different fermion number.
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perturbations [49, 50]. Investigations in paradigmatic systems such as disordered
quantum spin lattices [51] and chaotic quantum maps [52] have given clear indica-
tions so far that GE and GE generation with respect to appropriate observables can
serve as reliable indicators for detecting and probing quantum chaos.

Suggestively, the GE notion has also recently shed light on the conditions needed
to unlock the full power of quantum computational models as compared with
purely classical ones. For a large class of “Lie-algebraic quantum computations,”
which are specified through controllable interactions and measurable observables
in a Lie algebra g and initialization of the system in a GCS of g, the results in [53]
demonstrate how GE is required in order for genuinely stronger-than-classical
computational models to emerge.

2.5.2 Classicality implications

If we consider a quantum system with the distinguished set of observables con-
sisting of all those observables diagonal in some fixed basis (a special case of the
associative-algebraic setting, in fact a case where the associative algebra is commu-
tative), the generalized unentangled states are precisely the set of density matrices
diagonal in that basis. Often the selection of such a distinguished basis is viewed
as the selection of a distinguished “classical” set of states because the dynamics
that preserve diagonality of density matrices in such a basis, together with mea-
surements of observables diagonal in the same basis, are equivalent to a classical
theory on a number of classical states equal to the dimension. This notion also gen-
eralizes to the convex-cones setting as follows. In [30], clonable sets of states were
shown to be jointly distinguishable by a single measurement, and vice versa. Also,
broadcastable sets of states were shown to belong [30] to the convex hull of such a
set of jointly distinguishable states (which we term a “simplex generated by distin-
guishable states” (SGDS)). Indeed, for any map B from a convex set 
 to a tensor
product 
 ⊗ 
, the set of states broadcast by B was shown to be precisely such
a simplex (though for some maps it will be the empty set, viewed as a degenerate
case of such a simplex). A (finitely generated) simplex is the convex hull of n or
fewer points in R

n , for some finite n; the theory whose set of normalized states is an
n-simplex in R

n and whose cone of measurements is the dual of this (which is also
based on an n-simplex) is classical. Because the projectors |i〉〈i | onto the states of
some orthonormal basis form a d-dimensional simplex in the d2-dimensional space
of Hermitian operators on a d-dimensional quantum system, and because they are
distinguishable by a single measurement, they are a special case of an SGDS as
defined above. For an SGDS generated by states ωi ∈ C , if ai ∈ C∗ such that∑

i ai = λ is a measurement distinguishing the states ωi , then we may take as our
cone D the cone of reduced states, defined as the restrictions of states in C to the
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space of functionals in the span of the ai . Then states in the SGDS are precisely
the generalized unentangled states relative to the observables generated by the ai :
that is, classical states with respect to this set of distinguished observables.

The problem of identifying classicality aspects of generalized unentangled states
has also been tackled recently by making explicit contact with the open quan-
tum system theory and the decoherence program [54]. Within a Lie-algebraic
formulation of Markovian quantum dynamics, in particular, GCSs are found to
minimize an invariant uncertainty that is closely related to their quantum Fisher-
information content, and they are seen to emerge as most predictable “einselected”
pointer states under appropriate conditions on the interaction between the system
and its surrounding environment – generalizing the characterization of canonical
(harmonic-oscillator) coherent states as most stable (hence most classical) states in
the presence of decoherence [39].

2.5.3 Conceptual implications and unresolved problems

While all the above characterizations consistently tie the absence of GE to aspects
of classicality as different as minimum state complexity, classical simulatability,
minimum uncertainty, and maximum predictability, an independent notion of clas-
sicality is, in principle, failure to violate appropriate inequalities violated by quan-
tum mechanics: for pure states, a Bell-type inequality is violated if and only if the
state is not separable in the conventional sense [55, 56]. Assessing whether the
presence of GE relative to appropriate observables may also be linked to the vio-
lation of suitable “generalized Bell inequalities” is, from both a fundamental and a
philosophical perspective, one of the main open questions about GE at present (see
also [18] for some ideas along these lines). From the point of view of QIS appli-
cations, obtaining a more thorough resource-based characterization of GE, linking
the presence of GE to tasks that would not be achievable otherwise, and/or quanti-
fying the amount and type of GE required to accomplish them constitute important
areas for exploration where additional fundamental insight about GE is expected
to emerge. In particular, a resource-based approach may both further elucidate the
meaning of GE in a single-quantum system [19, 52] and shed light on ways for
distinguishing (conceptually and operationally) between genuinely “quantum” and
“classical” correlation aspects (see, e.g., [57–59]) within GE.

As we stressed throughout this work, the GE approach is naturally suited to
defining entanglement in settings more general than standard quantum mechanics –
in particular, abstract operational theories based on convex structures. It may
be worth observing that, by abandoning objective, absolute notions of proper-
ties such as locality and separability – by acknowledging instead that different
observers can give different descriptions of these concepts and the ensuing notion
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of entanglement, the GE approach also shares some of its motivations with the
recently proposed approach of relational quantum mechanics [60, 61]. While
important differences between the latter and operational theories exist in terms
of how observers themselves are included and described, it could be intriguing to
further scrutinize differences and similarities between the two approaches in the
light of the GE concept. Additional open questions and implications for quantum
foundations are discussed in [14, 21].

2.6 Conclusion

We believe that the richness of applications as well as the numerous questions
raised by the GE program to date speak for themselves about the significance
and potential of GE for properly capturing the unavoidable relativity of entangle-
ment. We hope that the GE approach will provide fresh stimulus for the exploration
of entanglement to be extended into still-unexplored physical, mathematical, and
philosophical regions.
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3

Formalism locality in quantum theory
and quantum gravity

Lucien Hardy

3.1 Introduction

Indefinite causal structure poses particular problems for theory formulation since
many of the core ideas used in the usual approaches to theory construction depend
on having definite causal structure. For example, the notion of a state across space
evolving in time requires that we have some definite causal structure so we can
define a state on a space-like hypersurface. We will see that many of these prob-
lems are mitigated if we are able to formulate the theory in a formalism-local (or
F-local) fashion. A formulation of a physical theory is said to be F-local if, in mak-
ing predictions for any given arbitrary space-time region, we need only refer to
mathematical objects pertaining to that region. This is a desirable property both on
the grounds of efficiency and since, if we have indefinite causal structure, it is not
clear how to select some other space-time region on which our calculations may
depend. The usual ways of formulating physical theories (the time-evolving state
picture, the histories approach, and the local-equations approach) are not F-local.

We set up a framework for probabilistic theories with indefinite causal structure.
This, the causaloid framework, is F-local. We describe how quantum theory can
be formulated in the causaloid framework (in an F-local fashion). This provides
yet another formulation of quantum theory. This formulation, however, may be
particularly relevant to the problem of finding a theory of quantum gravity. The
problem of quantum gravity is to find a theory that reduces in appropriate limits
to general relativity and quantum theory (including, at least, those situations in
which those two theories have been experimentally confirmed). To be significant,
the theory must also make correct predictions for new experiments in the future.

The problem of combining two less fundamental theories into a more fundamen-
tal one is not something for which a simple algorithm can exist and thus we need
a motivating idea to get started. Here we note that general relativity and quantum
theory are each conservative and radical in complementary ways. General relativity
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is conservative in that it is deterministic but radical in that it has non-fixed causal
structure (whether a particular interval is time-like is not fixed in advance but can
be decided only after we have solved for the metric). Quantum theory is conserva-
tive in that it has fixed causal structure built in, but radical in that it is inherently
probabilistic (standard quantum theory cannot be formulated without reference to
probabilities). It seems likely that a theory of quantum gravity must inherit the rad-
ical features of the two component theories. Hence, we are looking for a theoretical
structure that

(1) is probabilistic and
(2) has non-fixed causal structure.

In fact, we expect the situation to be even more radical. In general relativity the
causal structure is not fixed in advance, but, once determined, there is a definite
answer to the question of whether an interval is time-like or not. However, in quan-
tum theory any quantity that is subject to variation is also subject to quantum uncer-
tainty. This means that, in a theory of quantum gravity, there may be no matter of
fact as to whether a particular interval is time-like or not. It is likely that the causal
structure is not only non-fixed, but also indefinite. The fact that we expect the con-
servative features of each component theory to be replaced by the radical features
in the other suggests that a theory of quantum gravity cannot be entirely formu-
lated within general relativity or quantum theory. In this, our program differs from
string theory [1] and loop quantum gravity [2], where the attempt is to formulate
quantum gravity within quantum theory (though there are other approaches that, to
varying extents, do not assume that quantum theory will remain intact [3–6]).

One signature of the fixed causal structure in quantum theory is the fact that
we have a fixed background time t used to evolve the state |ψ(t)〉 = U (t)|ψ(0)〉.
A deeper signature of fixed causal structure in quantum theory can be seen by con-
sidering the different ways in which operators can be put together. The operators
corresponding to two space-like separated regions are combined with the tensor
product A ⊗ B. If a system passes through two immediately sequential time-like
separated regions then the appropriate way to combine the corresponding operators
is with the direct product C B. If a system passes through two time-like separated
regions that have a gap in between (i.e., they are not immediately sequential) then
the appropriate way to combine the operators is with what we will call the question-
mark product [D?B]. This linear operator is defined by [D?B] C ≡ DC B. For
each situation, we must combine the associated operators in a way that depends on
the causal relationship between the two regions. It would be good to have a mathe-
matical framework that treats each type of situation on an equal footing since then
the fixed causal background need not be ingrained into the very structure of the
theory.
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The task becomes one of finding a theoretical framework for probabilistic the-
ories with indefinite causal structure that correlate recorded data. The causaloid
framework set up in [7] (see also [8]) does this. In this framework the causaloid
product is defined. This unifies the three products mentioned above from quantum
theory (in the context of a more general mathematical framework).

In this chapter I will discuss the challenges posed by having indefinite causal
structure and show how the causaloid formalism deals with them. I will indicate
how the quantum theory of pairwise interacting qubits can be dealt with in this
formalism (this is an important example since we can use it to do universal quantum
computation). Finally we will look at the road to formulating quantum gravity in
this framework.

3.2 Dealing with indefinite causal structure

Indefinite causal structure is much more radical than merely having non-fixed
causal structure as in general relativity (GR). In GR the causal structure, whilst not
given in advance, is part of the solution. After solving Einstein’s field equations we
know the metric and therefore the causal structure.

Indefinite causal structure would mark a radical departure from previous physics.
Many of our basic concepts and modes of thought rely on having definite causal
structure. For example, we often think of quantities being conserved (in time) or
increasing (in time), and we think of information flowing (in time). We think of
entanglement (across space), and, most crucially, we often think of a state (across
space) evolving (in time). However, if we have indefinite causal structure there
would, in general, be no matter of fact as to whether a particular interval was space-
like or time-like and so all of these concepts and modes of thought would be placed
under some tension. Nevertheless, one can make a very strong case that quantum
gravity (QG) will have indefinite causal structure and so we need to think suffi-
ciently radically to be able to be in a position to deal with this. Most approaches to
QG do imagine some form of indefinite causal structure. However, there has been
comparatively little thought as to how to really deal with this properly. Generally
the conceptual and mathematical tools handed down to us from previous physics
are encumbered with ingrained notions of definite causal structure. For example,
one might argue that we can model indefinite causal structure by taking a sum over
histories, each having its own definite causal structure, but why require each his-
tory to have definite causal structure rather than giving up this notion altogether at
the fundamental level? We need to be prepared to think radically about this issue.
The causaloid formalism offers a way forward here.

A common attitude is that the equations of physics must tell us how to calculate
the evolution of physical systems in time. If there is indefinite causal structure then
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we cannot think in this way. Instead, we adopt the assertion that a physical theory
must correlate recorded data. This does not commit us to a picture of anything
evolving in time. Thus, we might ask what

prob (data2|data1) (3.1)

is equal to. If we can deal with all such probabilities for any data then we can say
that we have formulated a physical theory (at least that aspect of the theory which
can be empirically verified). By thinking about how data might be correlated, we
are adopting an operational methodology here. However, this is just a methodology
aimed at helping along theory construction. In adopting this approach we do not
commit ourselves to operationalism as a fundamental philosophical outlook on the
world.

We will now discuss two issues that arise when we think in this way (particularly
when there is indefinite causal structure).

3.2.1 Issue 1: the need for a two-step approach

The first issue is the question of when we have sufficient information to be able to
make a prediction. Though this is often not appreciated, physical theories attempt
to answer only a very small fraction of the possible questions about the world
one might put to them. To see this, consider a spin- 1

2 particle subjected to three
sequential spin measurements. The probability that spin up is seen at the second
position given that spin up was seen at the first position, and given that the angles
chosen were θ1 and θ2 (in the first and second positions), can be written

prob(+2|+1, θ1, θ2). (3.2)

This probability can be calculated using quantum theory (QT) (and is equal to
cos2
[
(θ2− θ1)/2

]
). We can say that this probability is well defined. This is an

example of a question that the theory does answer. But now consider the probability
that spin up is seen at the third position given that spin up was seen at the first
position, and given that the angles chosen were θ1 and θ3 (in the first and third
positions). We can write this probability as

prob(+3|+1, θ1, θ3). (3.3)

Note that we are not given any information about the second spin measurement.
This is not part of the conditioning. Under these circumstances we cannot use quan-
tum theory to calculate this probability. This probability is not well defined. This is
a question that QT does not answer, and neither should it. Indeed, generically QT
does not answer most questions. This is true of physical theories in general (even
deterministic ones). In GR, for example, we can make predictions only about data
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that may be recorded in some region R2 given data in region R1 if R2 is a domain
of dependence of R1.

The key difference between the two situations in the spin example is to do with
the causal structure. In the first case one measurement immediately precedes the
other, whereas in the second case there is a gap in time for which we have no infor-
mation. In order to know whether the probability is well defined or not we need to
know what causal situation pertains. If we have definite causal structure then we
can refer to it and know whether we are in the rather special type of situation in
which we can actually make a prediction. However, if we have indefinite causal
structure then we do not know how to proceed.

No doubt there will still be certain conditional probabilities that are well defined
even if we go beyond quantum theory and have indefinite causal structure. One way
we might deal with this is to mathematize the question. Thus we want a formalism
involving two steps:

Step 1 We have a mathematical condition that is satisfied if and only if a probability is
well defined.

Step 2 In the case in which the condition in step 1 is satisfied, we have a formula for
calculating the probability.

The standard picture with definite causal structure is actually an example of this
form. Thus, we have the theory of domains of dependence that tell us whether we
can make predictions about some region R2 on the basis of data in region R1 by
looking at the causal structure. However, we can imagine more general ways in
which we might implement this two-step approach that do not explicitly refer to
causal structure (at least as the latter is usually conceived).

3.2.2 Issue 2: the need for F-locality

The second issue is very much related to the first. Imagine we want to calculate
probabilities pertaining to some arbitrary space-time region R. This space-time
region may be of any shape and may be disconnected (insomuch as we have a
notion of connection in the absence of definite causal structure). For example we
may want to know what the probability of seeing a certain outcome in R is, given
that we performed certain measurements in R and saw certain other outcomes in R.
In the standard formulation of QT we have a state across space evolving in time.
Imagine that R consists of two disconnected parts that are time-like separated. To
make a prediction (to say whether the probability is well defined and, if so, what it
is equal to) we need to evolve the quantum state through intermediate times. There-
fore we necessarily need to refer to mathematical objects and (implicitly) data that
do not pertain to R in the evolving state picture. As we will see, this is also the case
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in other types of formulation of physical theories (such as histories approaches).
If we have some well-defined causal structure then we can use that to tell us what
other region, besides R, we need to be considering in order to implement the math-
ematical machinery of the physical theory. However, this option is not open to us if
we have indefinite causal structure. In that case the only clean approach is to insist
that, in making predictions for R, we refer only to mathematical objects pertaining
to R (for, if not, what do we consider?). This seems like a useful idea and deserves
a name – we will call it formalism locality (or F-locality).

A formulation of a physical theory is F-local if, in using it to make statements (using the
two-step approach) about an arbitrary space-time region R, we need only refer to mathe-
matical objects pertaining to R.

It is possible that a given physical theory can be formulated in different ways.
F-locality is a property of the way the physical theory is formulated rather than of
the theory itself. It is possible that any theory admits a formulation that is F-local.
In the case in which there is a definite causal structure we may be able to provide
both F-local and not-F-local formulations of a theory. However, if there is indefi-
nite causal structure then it seems likely that any fundamental formulation of the
theory will necessarily be F-local.

There are two motivations for attempting to formulate theories in an F-local
fashion:

1. We do not need to refer to some definite causal structure to decide what other region
(besides the region under consideration) to consider.

2. It is more efficient to consider only mathematical objects pertaining to the given region.

Both these reasons are worth bearing in mind when evaluating formulations that
are not F-local.

3.3 How standard formulations of physical theories are not F-local

There are, perhaps, three ways in which physical theories have been formulated
to date.

1. The state-evolving-in-time picture.
2. Histories formulations.
3. The local-equations approach.

None of these is F-local (the third case is a little more debatable), as we will
now see.

In the state-evolving-in-time picture the state is specified at some initial time
and it then evolves according to some equations. Imagine we want to make a state-
ment about a space-time region, R, consisting of two disconnected parts that are
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separated in both space and time. To do this we take a state defined across enough
of space to encompass both spatial regions and evolve it through enough time to
encompass the two regions. Hence, we need to refer to mathematical objects per-
taining to a region of space-time R′ that includes both spatial and temporal regions
that are not part of R.

In histories formulations we consider the entire history from some initial to some
final time. The physical theory makes statements about such entire histories (the
path-integral formulation of quantum theory is one example). If we are interested
only in some particular region R then, clearly, in a history formulation, we need
to make reference to mathematical objects that do not pertain to R and so the
formulation is not F-local. One might claim that, since we can take the history
across all of space-time, we do not need to refer to any definite causal structure to
decide what region to consider – we simply take everything. Even if this does work,
it is still more efficient to aim at an F-local formulation. In practice, we always take
our histories over some limited time interval. Indeed, in the absence of a solution,
we may not know the nature of “all of space-time”and so it is difficult to know how
to give a histories formulation of the theory.

An example of the local-equations approach is Maxwell’s equations. Such equa-
tions constitute a set of local statements about the infinitesimal regions making up
our region R. To actually make a prediction for region R we need to use these
local statements appropriately. Typically this involves solving the equations with
boundary conditions on a boundary that is in the causal past of all of R. Hence, we
need to consider a region bigger than R. There may be other ways to utilize local
equations to make predictions about arbitrary regions that do not require consider-
ation of a larger region. It is clear, in any case, that a local-equations formulation is
not explicitly F-local as defined above because it does not come equipped with an
F-local technique for making predictions for arbitrary regions. There is one sense
in which local equations clearly go against the spirit of F-locality. A local equation
relates quantities in regions that are infinitesimally displaced from one another. The
property of being infinitesimally displaced relates to causal structure. If the causal
structure is indefinite then it is not clear that we can retain this notion (this is one
reason that we may expect whatever plays the role of space-time in a theory of QG
to be discrete rather than continuous).

3.4 An outline of the causaloid framework

It is not clear that physical theories can be formulated in an F-local fashion. In [7, 8]
a framework for probabilistic theories with indefinite causal structure was given.
This framework provides a way of explicitly formulating theories in an F-local
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fashion. Here we will give a bare-bones outline of this framework. In the next
section we will indicate how the QT of interacting qubits can be formulated in the
framework.

3.4.1 Data and regions

Imagine that all the data collected during an experiment are recorded on cards as
triples (x, Fx , Yx). Here x is some recorded data taken as representing space-time
location, Fx is some choice of experiment (knob setting) at x , and Yx is the outcome
of some experiment at x . For example, x might be recorded from a GPS system,
Fx could be the angle at which a Stern–Gerlach apparatus is set, and Yx could be
the outcome of the spin measurement. During a typical experiment, data will be
recorded at many space-time locations. At the end of one run of the experiment
we will collect a stack of cards. Since we are interested in probabilities, we can
imagine running the experiment many times so we can obtain relative frequencies.

Since x constitutes recorded data, it will be discrete. Therefore, we can suppose
that space-time is discrete and comprised of elementary regions Rx . We do not
assume any a-priori causal structure on the x . An arbitrary region R1 consists of
some set of elementary regions Rx ,

R1 =
⋃

x∈O1

Rx . (3.4)

We let F1 denote the list of knob settings Fx for x ∈ O1 and Y1 denote the list
of outcomes for x ∈ O1. F1 denotes the choices made in R1 and Y1 denotes the
outcomes in R1 (sometimes we will use the longhand notation FR1 and YR1 for F1

and Y1, respectively).
We can ask what

prob(Y2|Y1, F1, F2) (3.5)

is equal to. That is, what is the probability of seeing outcomes Y2 in region R2

given that we chose F1 in region R1, chose F2 in R2, and saw outcomes Y1 in
region R1 (this is a more sophisticated version of (3.1))? Here we are trying to
make statements about region R1 ∪ R2. We will now outline how we go about
doing this in an F-local way for R1 ∪ R2.

3.4.2 p-Type vectors and r-type vectors

Let V be the union of all elementary regions. We will assume that the probabilities

prob(YV |FV ) (3.6)
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are well defined (we are glossing over subtle points that are covered in [7]). We can
write

prob(YV |FV ) = prob(YR1, YV−R1 |FR1, FV−R1). (3.7)

We will now label each possible (YR1, FR1) combination in region R1 with α1 ∈ ϒ1.
This label runs over all possible (outcome, choice) combinations in region R1. We
write

pα1 = prob(Y α1
R1
, YV−R1 |Fα1

R1
, FV−R1). (3.8)

We can regard (YV−R1, FV−R1) in V − R1 as a kind of generalized preparation for
region R1 (it is generalized since it pertains to both the future and the past insofar
as those concepts have meaning). Associated with each generalized preparation is
a state. We define the state for region R1 to be that thing which is represented by
any mathematical object that can be used to calculate an arbitrary probability pα1 .
Clearly the object ⎛⎜⎜⎝

...

pα1

...

⎞⎟⎟⎠, α1 ∈ ϒ1, (3.9)

suffices (since it simply lists all the probabilities). However, in general, we expect
that this is much more information than necessary. In general, in physical theories,
all quantities can be calculated from a subset of quantities. We call this physical
compression. In our particular case we expect that a general probability pα1 can
be calculated from a subset of these probabilities. We will restrict ourselves to lin-
ear physical compression (where the probabilities are related by linear equations).
We set

p =

⎛⎜⎜⎝
...

pk1

...

⎞⎟⎟⎠, k1 ∈ 
1 ⊆ ϒ1, (3.10)

such that a general probability pα1 can be calculated from the pk1 (with k1 ∈ 
1)
by a linear equation

pα1 = rα1 · p. (3.11)

We chose the fiducial set
1 of labels such that there is no other choice with smaller
|
1| (this means that every probability in p is necessary in the specification of
the state). There may be many possible choices for the fiducial set 
1. We sim-
ply choose one (for each region) and stick with it. We do not lose generality by
imposing linearity here. In the worst case 
1 = ϒ1. It is possible that non-linear
compression is more efficient. However, for probabilities this is not the case as long
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as one can form arbitrary mixtures. In particular, in QT (and classical probability
theory) linear compression is optimal (so long as we allow mixed states rather than
restrict ourselves to pure states).

Associated with each region R1 is a real vector space of dimension |
1|. Further,
associated with each (Y1, F1) combination there is an r-type vector (which lives in
a dual space to the p-type vectors representing the states), which we can write as

r(Y1,F1)(R1) (3.12)

or rα1 for short. It is these r-type vectors that we use in real calculations. The state
vector, p, is akin to scaffolding – it can be dispensed with once the structure of the
r-type vectors is in place, as we will see shortly.

3.4.3 The causaloid product

If we have two disjoint regions R1 and R2, then we can consider the region R12 ≡
R1 ∪ R2 as a region in its own right. We can denote the outcome and knob settings
for R12 as Y1∪Y2 and F1∪F2 (perhaps we are slightly abusing the ∪ notation here).
Since R1 ∪ R2 is a region in its own right, we will have r-type vectors associated
with each (outcome, choice) combination in this region also.

We can label the (outcome, choice) pairs (Y1∪Y2, F1∪F2)with α1α2 ∈ ϒ1×ϒ2

(where × denotes the Cartesian product of ordered pairs taken from the two sets).
We also have the fiducial set 
12 for this region. There is an important theorem –
namely that it is always possible to choose
12 ⊆ 
1×
2. We will use the notation
l1l2 ∈ 
1 ×
2 and k1k2 ∈ 
12.

In the case that
12 = 
1×
2 we have no extra physical compression when two
regions are considered together. However, if 
12 ⊂ 
1 ×
2 then there is an extra
physical compression (second-level compression) for the composite region over
and above the physical compression (first-level compression) for each component
region considered separately. Physically, this non-trivial case corresponds to causal
adjacency such as when a qubit passes through two sequential regions with no gap
in between.

Second-level compression is quantified by a matrix�k1k2
l1l2

(which depends on the
composite region under consideration) such that

rα1α2

∣∣
k1k2

=
∑

l1l2∈
1×
2

rα1

∣∣
l1

rα2

∣∣
l2
�

k1k2
l1l2
, (3.13)

where rα1

∣∣
l1

denotes the l1 component of rα1 . We write

rα1α2 = rα1 ⊗� rα2, (3.14)
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where the components are given in (3.13). Accordingly, we have defined a new type
of product denoted by⊗�. We call this the causaloid product. It is the sought-after
unification of the various products A ⊗ B, AB, and [A?B] from QT mentioned in
the introduction (though in a more general framework). The form of the product is
the same regardless of the causal structure. However, since the � matrix can differ
for different composite regions, we can still encode the different products in this
one product.

If we have a region regarded as being composed of more than two regions then
we can generalize the above ideas appropriately (calling on, in general, a matrix of
the form �

k1k2k3...
l1l2l3...

).

3.4.4 The two-step approach in the causaloid framework

We note that, using Bayes’ rule,

Prob(Y2|Y1, F1, F2) = Prob(Y2, Y1|F1, F2)∑
X2∼F2

Prob(X2, Y1|F1, F2)
(3.15)

= r(Y2∪Y1,F1∪F2) · p∑
X2∼F2

r(X2∪Y1,F1∪F2) · p
, (3.16)

where the notation X2 ∼ F2 denotes all outcomes in R2 that are consistent with the
choice F2 in R2. In order that the probability Prob(Y2|Y1, F1, F2) be well defined,
it must depend only on the given conditioning in R1 ∪ R2 and not depend on what
happens outside this region. The state, on the other hand, is associated with some
generalized preparation in V − R1 − R2. Hence, this probability is well defined
only if there is no dependence on the state p (strictly we should have included the
conditioning in V − R1 − R2 and then shown that it is irrelevant if there is no
dependence on p). We can use this observation to implement a two-step approach.

1. Prob(Y2|Y1, F1, F2) is well defined if and only if

r(Y2∪Y1,F1∪F2) is parallel to
∑

X2∼F2

r(X2∪Y1,F1∪F2) (3.17)

(since this is the necessary and sufficient condition for there being no dependence on p).
2. If these vectors are parallel, then the probability is given by

Prob(Y2|Y1, F1, F2) =
∣∣r(Y2∪Y1,F1∪F2)

∣∣∣∣∑
X2∼F2

r(X2∪Y1,F1∪F2)

∣∣ . (3.18)

We see that this two-step approach does not require us to refer to some given defi-
nite causal structure (at least as the latter is usually conceived).
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We see that the formulation is F-local since, to make predictions for an arbitrary
space-time region (in this case the region R1 ∪ R2), we need only consider mathe-
matical objects pertaining to this region (the r vectors). Strictly speaking, we need
to be sure we can calculate the r vectors for arbitrary regions without referring to
mathematical objects pertaining to other regions to assert that the formulation is
fully F-local. This will be addressed below.

3.4.5 The causaloid

We can calculate r vectors for an arbitrary region by starting from the r vectors
for the elementary regions comprising that region and using the causaloid product.
Hence, we can calculate any r-vector if we know

(1) all the vectors rαx (which can be regarded as a matrix �kx
αx ) for all elementary regions,

Rx , and
(2) all the matrices �

kx kx ′kx ′′ ...
lx lx ′ lx ′′ ... with x, x ′, x ′′, . . . ∈ O1, for all O1 with |O1| ≥ 2 (since

these pertain to composite regions).

This constitutes a tremendous amount of information (the number of matrices is
exponential in the number of elementary regions and the size of these matrices
grows with the size of the region they pertain to). However, we can apply physical
compression by finding relationships between these matrices (we call this third-
level compression). After applying physical compression, we have a smaller set
of matrices from which all the others can be calculated. We call this smaller set,
augmented by a set of rules for implementing decompression, the causaloid and
denote it by �. Since we want the framework to be F-local, we require that, in
applying decompression to obtain the matrix for a region R1, we need use only
matrices pertaining to regions R̃1 ⊆ R1.

While we have not shown how to calculate the causaloid in general, it has been
shown how to do so for the classical probabilistic theory of pairwise-interacting
classical bits and the QT of pairwise-interacting qubits. We will outline, in the next
section, how this works in the quantum case. The classical case is very similar
(though we will not outline it here).

3.5 Formulating quantum theory in the causaloid framework

In this section we will content ourselves with simply describing how the QT of
pairwise-interacting qubits can be formulated in the causaloid framework without
deriving any of the results. Universal quantum computation can be implemented
with pairwise-interacting qubits and so arbitrary quantum systems can be simulated
to arbitrary accuracy (similar comments apply in the classical case). Hence the
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case we are studying is more than just an example. It demonstrates (with some
appropriate qualifications) that QT in general can be formulated in this framework.

Assume we have a large number of qubits moving to the right labeled (from left
to right) u = 1, 2, 3, . . . and a large number of qubits moving to the left labeled
(from right to left) v = 1, 2, 3, . . . . If this is plotted against time then we will
have a diamond-shaped lattice with each vertex corresponding to the interaction
of a right-moving qubit with a left-moving qubit. We can label these vertices with
x ≡ uv (the Cartesian product of u and v is denoted by uv). They correspond to
our elementary regions Ruv.

We imagine that, at each vertex, the two qubits pass through a box, which imple-
ments a general measurement. The box has a knob that is used to set Fuv and a
display panel recording the outcome, Yuv. As before, we can label all such pairs
with αuv. For a general quantum measurement, an (outcome, choice) pair is asso-
ciated with a superoperator $ (superoperators are trace non-increasing maps on
density operators that take allowed states to allowed states). In this case, we have
a superoperator $αuv associated with αuv. In QT we can write a general superoper-
ator on two qubits such as this as a sum of the tensor product of a fiducial set of
superoperators acting on each qubit separately:

$αuv =
∑

kukv∈
2×
2

�kukv
αuv

$ku ⊗ $kv . (3.19)

Remarkably, we can do this only if we have complex (rather than real or quater-
nionic) Hilbert spaces supporting the superoperators. The set $ku for ku ∈ 
2 is a
fiducial spanning set of superoperators for the qubit (the superscript denotes that
this is a qubit having Hilbert-space dimension 2). We have |
N | = N 4, so for a
qubit we have |
|2 = 24. This is the number of linearly independent superopera-
tors needed to span the space of superoperators for a qubit. For reasons that will be
clear later, we choose $1 = I , where 1 is the first element of 
2 and I is the iden-
tity superoperator. We can solve (3.19) to find the � matrix for each elementary
region Ruv.

Now consider a single right-moving qubit as it goes from vertex (u, v) to the
next vertex (u, v + 1). Assume that it is subject to $lu ⊗ $lv at the first vertex and
$l ′u ⊗ $l ′v+1

at the next, with lu, l ′u, lv, l ′v+1 ∈ 
2. Insofar as the right-moving qubit,
u, is concerned, we can ignore the left-moving qubits with which it interacts (since
the two superoperators just given factorize). The effective superoperator acting on
qubit u is $l ′u ◦ $lu . But this is a superoperator belonging to the space of superoper-
ators acting on a single qubit and can, hence, be expanded in terms of the linearly
independent fiducial set
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$l ′u ◦ $lu =
∑

k′uku∈{1}×
2

�
k′uku

l ′ulu
$k′u ◦ $ku (3.20)

since we have selected $1 to be the identity. We can solve this this equation for the

matrix �
k′uku

l ′ulu
.

This generalizes to more than two sequential vertices in the obvious way. For
three sequential vertices we have

$l ′′u ◦ $l ′u ◦ $lu =
∑

k′′u k′uku∈{1}×{1}×
2

�
k′′u k′uku

l ′′u l ′ulu
$k′′u $k′u ◦ $ku (3.21)

and so on.
It can be shown that, for three sequential vertices,

�
k′′u k′uku

l ′′u l ′ulu
=
∑

n′∈
2

�
k′′u n′u
l ′′u l ′u �

k′uku

n′ulu
. (3.22)

For four sequential vertices,

�
k′′u k′uku

l ′′′u l ′′u l ′ulu
=

∑
n′′∈
2, n′∈
2

�
k′′′u n′′u
l ′′′u l ′′u �

k′′u n′u
n′′ul ′u �

k′uku

n′ulu
(3.23)

and so on. The derivation of these equations relies only on the combinatorics of
how the labels combine rather than on any particular details of QT. The same equa-
tions are found in the treatment of interacting classical bits.

We may have need of the matrix �ku
lu

(where lu, ku ∈ 
2) for a single vertex for
a right-moving qubit. Since

$lu =
∑

ku∈
2

�
ku
lu

$ku (3.24)

we have

�
ku
lu
= δku

lu
. (3.25)

For left-moving qubits we have (3.20)–(3.25) but with v replacing u.
As will be described, the composite-region � matrices for all situations that do

not involve sequential vertices on the same qubit are given by multiplying the �
matrix components for different clumps of vertices. This means that the causaloid
is given by

� = (�kukv
αuv

∀ uv,�
k′uku

l ′ulu
∀ RSV,�k′vkv

l ′vlv ∀ LSV; clumping method), (3.26)

where (LSV) RSV stands for pairs of sequential vertices on (left-) right-moving
qubits. The clumping method allows us to calculate the � matrix for an arbitrary
region R1 with x (= uv) ∈ O1 from this causaloid as follows.
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1. For each qubit (both left- and right-moving) circle all complete groups of sequential
vertices (call these clumps) in O1. There must be a gap of at least one vertex between
each clump and the next for any given qubit.

2. Calculate the � matrix components for each circled clump for each qubit using (3.22)
or one of its generalizations (for a clump of one vertex use (3.25) and for a clump of

two vertices take �
k′uku
l ′ulu

directly from the specification of the causaloid (3.26)).
3. Multiply together all � matrix components for all circled clumps (note that we are

multiplying components rather than performing matrix multiplication). This gives the
components of the � matrix for R1.

We note that the clumping method respects F-locality since, in calculating the �
matrix for R1, we use only � matrices pertaining to regions R̃1 ⊆ R1.

It is worth examining the causaloid given in (3.26) a little more. First we note
that we are required to specify only a tiny subset of the exponential number of
possible � matrices – there is a tremendous amount of third-level compression.
Second, we note the symmetry property that, according to (3.19) and (3.20), the �
matrices of each type are the same. Hence, we can actually specify the causaloid by

� = (�k1k1
α11
,�

k′1k1

l ′1l1
; symmetry, clumping method), (3.27)

where symmetry denotes the property just noted and �
k′1k1

l ′1l1
is one instance of the �

matrix for a pair of right- (or left-) sequential vertices.
Given this causaloid, we can employ the standard techniques of the causaloid

framework (the causaloid product and the two-step approach) to calculate whether
an arbitrary probability is well defined and, if so, what it is equal to. In this sense
we can say that this causaloid fully specifies the QT of interacting qubits. In par-
ticular, note that we separate out the specification of the theory (the causaloid will
be different for different physical theories) from the way the causaloid is used to
make predictions (it is used in the same way for any physical theory).

The causaloid formulation of QT treats arbitrary regions on an equal footing.
In this it is similar to the time-symmetric approach of Aharanov and co-workers
(particularly the latest version due to Aharanov, Popescu, Tollaksen, and Vaidman
in [9], which allows states and measurements to be defined for arbitary regions) and
the general boundary formulation of quantum theory due to Oeckl [10]. Of related
interest are the quantum causal histories approach of Markopoulou [11] and the
quantum causal networks of Leifer [12].

3.6 The road to quantum gravity

In order to formulate a theory of QG we need to have a framework that is hospitable
to such a theory in the first place. We expect that QG will be a probabilistic theory



Formalism locality 59

with indefinite causal structure. The causaloid framework admits such theories (this
does not imply that QG certainly fits within the framework – but at least it is not
ruled out from the outset). The most satisfying way to obtain QG in this (or any)
framework would be to derive it from a set of well-motivated principles (such as
a suitably generalized equivalence principle). It may be that appropriate principles
will carry over from QT and GR (indeed, the equivalence principle is true in New-
tonian gravity). Therefore, a careful study of QT and GR may be the best way of
coming up with such principles.

One particular route that may be taken to finding QG is illustrated in the follow-
ing diagram:

QT −→ QG
↑ ↑

CProbT −→ ProbGR

where CProbT is classical probability theory (of interacting classical bits, for
example), QT is quantum theory (of interacting qubits, for example), and ProbGR
is an appropriately formulated version of general relativity in the case in which we
have arbitary probabilistic ignorance of the values of certain measurable quantities.
We will elaborate on this below. The vertical arrows represent a kind of quantiza-
tion. The horizontal arrows represent what we might call GR-ization. In quantizing
from CProbT to QT we need only alter the structure of the �kukv

αuv
matrices for

the elementary regions (this is what might be regarded as the local structure) by
replacing that structure which corresponds to a classical probability simplex with a
structure that corresponds to the Bloch sphere of the qubit. The structure above this,
for composite regions, is basically constructed in the same way in CProbT and QT.
ProbGR has not yet been satisfactorily formulated. However, we can expect that,
in the GR-ization process from CProbT to ProbGR, the local structure associated
with the classical probability simplices will survive for the elementary regions but
the structure associated with composite regions will be different (since the causal
structure is not fixed). This suggests that we may be able to get a theory of QG by
applying quantization essentially at the local level of the elementary regions and
GR-ization at the level of the composite regions. If quantization and GR-ization do
not interfere with each other too much then the diagram above might not be too
misleading.

This approach depends on having a suitable formulation of ProbGR. An obvious
way to give a probabilistic formulation of GR is to have some probabilistic distri-
bution over the 3-metric specified on some initial space-like hypersurface and then
evolve the distribution employing a canonical formulation of GR. This is unsatis-
factory since (a) it is not F-local, (b) we cannot deal with arbitrary probabilistic
ignorance about measurable quantities, and (c) the time label for the space-like
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hypersurface is not an observable and so it is not clear that the numbers we are
calling “probabilities” represent ignorance about something measurable. Another
approach is to consider a probabilistic distribution over solutions for the metric
for all of space-time. This is problematic since (a) it is manifestly not F-local and
(b) it is not clear how the differently weighted solutions match up from the internal
point of view of somebody who may be making measurements and so, once again,
it is unclear whether the “probabilities” represent ignorance about something mea-
surable. Rather than taking either of these approaches, it seems that we need to
build up ProbGR from scratch using F-locality and, maybe, the causaloid formal-
ism as guidance. Such a theory contains no new empirical content over standard
GR. However, it is possible that the natural mathematical formulation of ProbGR
will look very different from standard GR.

3.7 Conclusions

Many standard notions in QT require reference to some definite causal structure.
For example the notion of entanglement requires two space-like separated systems,
and the notion of information flow requires a sequence of immediately sequential
time-like regions. When we embed QT into the causaloid framework these notions
become special cases of a much richer structure. Entanglement is supported by
the tensor product of QT, but, in the causaloid framework, we have the causaloid
product which allows us to talk about joint properties of any two regions regardless
of their causal relationship. Information flow is supported by the standard product
Â B̂ between sequential time-like separated regions. In the causaloid framework
we have, again, the causaloid product. In quantum circuit diagrams we draw wires
between boxes denoting the path of the qubit. Any two boxes either do, or do not,
have a wire between them. In the causaloid framework we have a � matrix (by
which the causaloid product is defined). For every pair of boxes (or elementary
regions) there is a � matrix between the two boxes. This richer structure is likely
to help in developing a theory of QG since it provides a way round requiring that
the causal structure be definite.

The principle that it should be possible to give an F-local formulation may prove
to be powerful in theory construction. It is encouraging that QT can be formulated
in an F-local fashion. Not only does this add to the list of different ways in which
QT can be formulated but also it provides encouragement that a theory of QG may
share structural similarities with QT.

The next step on the road to QG, if this approach is pursued, is to construct
ProbGR. In tackling the problem of constructing ProbGR we are likely to encounter
many of the same difficulties as would be encountered in constructing a fully
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fledged theory of QG. However, we know that ProbGR is empirically equivalent to
GR (just with arbitrary probabilistic ignorance added) and so we fully expect that
this theory exists.
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Quantum probability





4

Bell’s inequality from the contextual
probabilistic viewpoint

Andrei Khrennikov

4.1 Introduction

4.1.1 Quantum information and quantum foundations

Quantum information science is about the processing of information by the
exploitation of some distinguishing features of quantum systems, such as elec-
trons, photons, ions. In recent years a lot has been promised in the domain of
quantum information. In quantum computing it was promised that NP-problems
would be solved in polynomial time. In quantum cryptography there were
claims that protocols would have practically 100% security. At the moment it
is too early to say anything definitive regarding the final results of this great
project.

In quantum computing a few quantum algorithms and developed devices, “quan-
tum pre-computers” with a few quantum registers, were created. However, diffi-
culties could no longer be ignored. For some reason it was impossible to create
numerous quantum algorithms that could be applied to various problems. Up to
now the whole project is based on two or three types of algorithm, and among
them one, namely, the algorithms for prime factorization, might be interesting for
real-world application. There is a general tendency to consider this situation with
quantum algorithms as an occasional difficulty. But, as the years pass, one might
start to think that there is something fundamentally wrong. The same feelings are
induced by developments in quantum hardware. It seems that the complexity of
the problem of creation of a device with a large number N of quantum registers
increases extremely non-linearly with increasing N .

In quantum cryptography the situation is opposite to that of quantum com-
puting. There were tremendous successes in the development of technologies for
production and transmission of quantum information, especially pairs of entangled
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photons.1 On the other hand, the claim regarding 100% security of quantum proto-
cols is far from being totally justified.

Any careful analysis of this situation implies immediately that the whole project
of “quantum information” should be based on more solid foundations. We recall
that quantum mechanics by itself is a huge building with a sandy foundation –
the orthodox Copenhagen interpretation. On the one hand, an advanced mathe-
matical formalism (calculus of probabilities in the complex Hilbert space) giving
predictions that are supported by all existing experimental data was created. On
the other hand, it is still unclear why this formalism works so well and, more-
over, it is not clear what it really predicts, because in the orthodox Copenhagen
interpretation (which is the conventional interpretation) quantum mechanics is not
about physical reality itself, being rather only about our observations – but of
what? All unsolved problems in quantum foundations are essentially amplified
in the quantum information project. Problems that were of a purely philosophi-
cal interest [1–3] for 100 years have become technological problems of interest to
business.

Therefore “quantum information” gives a new great opportunity for the recon-
sideration of quantum foundations, see, e.g., [4]. Whether this chance will be used
depends on many scientific, psychological, and market factors. Unfortunately, at
the moment there is a tendency to ignore fundamental difficulties and reduce every-
thing to experimental and technological problems. Of course, the development of
quantum technologies, in particular, the manipulation of individual quantum sys-
tems, is an extremely interesting project. But I hope that it could be done essentially
better if quantum computing and cryptography were also considered new tools for
testing the foundations of quantum mechanics.

First of all we should come back to the greatest debate of twentieth-century
physics, namely the debate between Einstein and Bohr on the completeness of
quantum mechanics [5]. Nowadays it is commonly accepted that quantum mechan-
ics is complete: the ψ-function provides the most complete description of the state
of a quantum system. It is impossible to find a more detailed description of quan-
tum reality – to find a model with hidden variables. This is the basis of the orthodox
Copenhagen interpretation and nowadays it is the basis of quantum cryptography.
If one were able to find a model with hidden variables that reproduce quantum
statistics, then the total security of quantum protocols would be questioned!

In probabilistic terms this is the problem of so-called irreducible quantum
randomness. In opposition to classical randomness, it is claimed (since von

1 We emphasize that at the moment photons give the most real basis of quantum cryptography. It is doubtful that
there would be created systems for quantum cryptography that would be based on, e.g., electrons. It is not easy
to imagine refrigerators with electrons that could be used for transportation of quantum information.
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Neumann [1]) that quantum randomness cannot be reduced to conventional
ensemble randomness. I think that there should be a very serious discussion on
the topic of “quantum foundations in light of quantum information” or “quantum
information in light of quantum foundations” [4]. One of the possibilities is to start
with Bell’s inequality, since its violations play the fundamental role in the foun-
dations of quantum information. It is commonly believed that the experimental
violation of Bell’s inequality must be interpreted as proof of action at a distance
or quantum non-locality.2

4.1.2 Bell’s inequality

Bell’s inequality has surpassed all records for publications, citations, discussions,
and controversies. As an organizer of several international conferences on the foun-
dations of quantum theory, I was really disappointed by stormy debates over Bell’s
inequality. I could find no problem in quantum foundations which can be com-
pared with Bell’s inequality in terms of the intensity of discussions and strength of
reactions to opponents’ views, [4, 8–19]. I asked myself many times “What is so
special about Bell’s inequality?”

It seems that the main problem stems from the fact that J. S. Bell formulated
precisely only his aim: to prove the non-locality of quantum mechanics.3 How-
ever, he did not determine precisely the mathematical probabilistic rules which he
used to formalize the problem [6]. This absence of rigor in the mathematical for-
mulation of the problem provides many opportunities for speculation. Each year
people present their own (very different) views on the probabilistic structure of the
EPR–Bohm experiment and, consequently, totally different physical conclusions.

I have had numerous conversations with outstanding physicists about this situ-
ation. It is a rather common opinion that it is pointless to pay attention to proba-
bility theory. Typically such a viewpoint is motivated by considering probability
as a “physically well-defined quantity.” Therefore one need not take care to pro-
vide a mathematically rigorous probabilistic formalization. I totally disagree with
such a viewpoint. In the same way one might say that physicists need not con-
cern themselves with mathematical models of space and geometries. Fortunately,
nobody would say such nonsense nowadays.

2 In fact, modern formulations of the consequences of the Bell theorem are presented in a trickier way. Quantum
mechanics is incompatible with local realism. However, is it easy to understand what “non-local realism”
could mean at all? In any case non-local realism is not realism in physical space. Therefore I support the initial
argument of EPR that precise (anti)correlations give strong support for realism. In such a case the only possible
conclusion from the Bell theorem is non-locality. In fact, it was the original viewpoint of J. S. Bell [6, 7].

3 J. S. Bell was a “non-local realist.” The main aim of his investigations may be seen as finding arguments
supporting the Bohmian model of quantum mechanics. Thus he wanted to save realism even at the price of
locality [6, 7].
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Suppose at the moment that we try to work in physics without determining pre-
cisely the mathematical models of space and the geometries. It is clear that such
an activity would induce permanent debates and even a variety of paradoxes. I
think that a similar thing has happened with Bell’s inequality, simply with prob-
ability, rather than space. Thus the intensity of debates on Bell’s inequality is not
completely determined by the physical importance of this problem. The fact that
the problem was not formulated in a rigorous mathematical framework cannot be
neglected. Nevertheless, during the last 40 years physicists have been trying to
proceed with Bell’s inequalities without describing precisely the probabilistic rules
that they used. Moreover, there is a rather common opinion that it is possible to
work only with frequencies. Hence, again, the rigorous mathematical description
of a corresponding probability model is viewed as unimportant.

In this chapter I shall present a mathematical formalization of the Bell [6] and
von Neumann [1] no-go arguments. By proceeding with such a rigorous mathemat-
ical framework, the common conclusion regarding the disagreement of the quan-
tum formalism with a classical statistical description is shown to be insufficiently
justified.

4.2 Measure-theoretical derivation of Bell-type inequalities

Since our argument includes analysis of standard proofs of the Bell-type inequal-
ities [6, 8], to provide background we first briefly reproduce these well-known
proofs.

4.2.1 Bell’s inequality

By the Kolmogorov axiomatics [20], see also [21–23] the probability space is a
triple

P = (
,F,P),
where 
 is an arbitrary set, F is an arbitrary σ -algebra4 of subsets of 
, and P is a
σ -additive measure on F that yields values in the segment [0, 1] of the real line and
normalized by the condition P(
) = 1. Random variables on P are by definition
measurable functions

ξ : 
→ R. (4.1)

Thus ξ−1(B) ∈ F for every B ∈ B, where B is the Borel σ -algebra on the real
line. Finally, let P = (
,F,P) be a Kolmogorov probability space. For any pair
of random variables u(ω), v(ω), their covariation is defined by

4 In the literature one also uses the terminology σ -field, instead of σ -algebra.
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〈u, v〉 = cov(u, v) =
∫



u(ω)v(ω)dP(ω).

We can now reproduce the proof of Bell’s inequality in a measure-theoretic
framework.

Theorem 4.1. (Bell inequality for covariations) Let ξa, ξb, ξc = ±1 be random
variables on P. Then Bell’s inequality

|〈ξa, ξb〉 − 〈ξc, ξb〉| ≤ 1− 〈ξa, ξc〉 (4.2)

holds.

Proof. Set � = 〈ξa, ξb〉 − 〈ξc, ξb〉. By virtue of the linearity of Lebesgue integrals
we obtain

�=
∫



ξa(ω)ξb(ω)dP(ω)−
∫



ξc(ω)ξb(ω)dP(ω)=
∫



[ξa(ω)− ξc(ω)] b(ω)dP(ω).

(4.3)
Since

ξa(ω)
2 = 1, (4.4)

we have

|�| =
∣∣∣∣∫



[1− ξa(ω)ξc(ω)] ξa(ω)ξb(ω)dP(ω)

∣∣∣∣ ≤ ∫



[1− ξa(ω)ξc(ω)] dP(ω).

(4.5)

4.2.2 Wigner’s inequality

We recall the following simple mathematical result, see Wigner [9].

Theorem 4.2. (Wigner inequality) Let ξa, ξb, ξc = ±1 be arbitrary random vari-
ables on a Kolmogorov space P. Then the following inequality holds:

P(ξa = +1, ξb = +1)+ P(ξb = −1, ξc = +1) ≥ P(ξa = +1, ξc = +1). (4.6)

Proof. We have

P(ω ∈ 
 : ξa(ω) = +1, ξb(ω) = +1)

= P(ω ∈ 
 : ξa(ω) = +1, ξb(ω) = +1, c(ω) = +1)

+ P(ω ∈ 
 : ξa(ω) = +1, ξb(ω) = +1, ξc(ω) = −1),
(4.7)

P(ω ∈ 
 : ξb(ω) = −1, ξc(ω) = +1)

= P(ω ∈ 
 : ξa(ω) = +1, ξb(ω) = −1, c(ω) = +1)

+ P(ω ∈ 
 : ξa(ω) = −1, ξb(ω) = −1, ξc(ω) = +1), (4.8)
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and

P(ω ∈ 
 : ξa(ω) = +1, ξc(ω) = +1)

= P(ω ∈ 
 : ξa(ω) = +1, ξb(ω) = +1, ξc(ω) = +1)

+ P(ω ∈ 
 : ξa(ω) = +1, ξb(ω) = −1, ξc(ω) = +1). (4.9)

If we add together (4.7) and (4.8) we obtain

P(ω ∈ 
 : ξa(ω) = +1, ξb(ω) = +1)+ P(ω ∈ 
 : ξb(ω) = −1, ξc(ω) = +1)

= P(ω ∈ 
 : ξa(ω) = +1, ξb(ω) = +1, ξc(ω) = +1)

+ P(ω ∈ 
 : ξa(ω) = +1, ξb(ω) = +1, ξc(ω) = −1)

+ P(ω ∈ 
 : ξa(ω) = +1, ξb(ω) = −1, ξc(ω) = +1)

+ P(ω ∈ 
 : ξa(ω) = −1, ξb(ω) = −1, ξc(ω) = +1). (4.10)

But the first and third terms on the right-hand side of this equation are just those
which when added together make up the term P(ω ∈ 
 : ξa(ω) = +1, ξc(ω) =
+1) (Kolmogorov probability is additive). It therefore follows that

P(ω ∈ 
 : ξa(ω) = +1, ξb(ω) = +1)+ P(ω ∈ 
 : ξb(ω) = −1, ξc(ω) = +1)

= P(ω ∈ 
 : ξa(ω) = +1, ξc(ω) = +1)

+ P(ω ∈ 
 : ξa(ω) = +1, ξb(ω) = +1, ξc(ω) = −1)

+ P(ω ∈ 
 : ξa(ω) = −1, ξb(ω) = −1, ξc(ω) = +1). (4.11)

By using the non-negativity of probability we obtain the inequality

P(ω ∈ 
 : ξa(ω) = +1, ξb(ω) = +1)+ P(ω ∈ 
 : ξb(ω) = −1, ξc(ω) = +1)

≥ P(ω ∈ 
 : ξa(ω) = +1, ξc(ω) = +1). (4.12)

4.2.3 The Clauser–Horne–Shimony–Holt inequality

Finally, we derive the Clauser–Horne–Shimony–Holt (CHSH) inequality [8].

Theorem 4.3. (CHSH inequality) Let P = (
,F,P) be a Kolmogorov probability
space and let ξ j (ω) and ξ ′j (ω), j = 1, 2, be random variables such that

|ξ j (ω)| ≤ 1, |ξ ′j (ω)| ≤ 1, for almost all ω ∈ 
. (4.13)

Then the following inequality for correlations holds:

〈ξ1, ξ
′
1〉 + 〈ξ1, ξ

′
2〉 + 〈ξ2, ξ

′
1〉 − 〈ξ2, ξ

′
2〉 ≤ 2. (4.14)

Proof. It is easy to prove the following elementary algebraic inequality for num-
bers bounded by 1:

u1v1 + u1v2 + u2v1 − u2v2 ≤ 2.
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Thus

ξ1(ω)ξ
′
1(ω)+ ξ1(ω)ξ

′
2(ω)+ ξ2(ω)ξ

′
1(ω)− ξ2(ω)ξ

′
2(ω) ≤ 2. (4.15)

Finally, we integrate this inequality with respect to the measure P.

4.3 Formalization of rules for correspondence between classical
and quantum statistical models

It is assumed that there exists a space of hidden variables 
 representing states
of individual physical systems. There is fixed a σ -algebra F of subsets of 
. On
this space there are defined classical quantities. These are measurable functions
ξ : 
 → R – random variables on the measurable space (
,F).5 There is also
considered to be a space of physical observables O . In the quantum model they
are represented by self-adjoint operators, e.g., we can represent O by Ls(H) – the
space of bounded self-adjoint operators in the Hilbert space of quantum states H.
We shall distinguish a physical observable and its operator-representative by using
symbols a and â.

The main question concerns the existence of a correspondence between the space
of random variables V (
) and the space of quantum observables Ls(H) – namely
the possibility of constructing a map

j : V (
)→ Ls(H) (4.16)

or a map

i : Ls(H)→ V (
) (4.17)

that has “natural probabilistic properties” (in general j is not a one-to-one map; its
existence does not imply the existence of i and vice versa). The main problem is
that physics does not tell us which features such maps should have. There is a large
realm for mathematical fantasies, presented in the form of no-go theorems. Let us
next recall the history of this problem.

5 In this framework classical is equivalent to the existence of a functional representation. Denote the space of
classical quantities by the symbol V (
). This is some space of real-valued (measurable) functions on 
. The
choice of this functional space depends on a model under consideration. For a system whose state is given by
the hidden variable ω, the value ξ(ω) of a classical quantity ξ gives the objective property ξ of this system. We
shall not distinguish a classical (physical) quantity and its representation by a random variable.
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4.4 Von Neumann postulates on classical–quantum correspondence
and the no-go theorem

Any statistical model contains a space of statistical states. In a pre-quantum
statistical model (which we are looking for) statistical states are represented by
probability measures on the space of hidden variables 
. Denote such a space
of probabilities by S(
). This space is chosen depending on a classical statisti-
cal model under consideration.6 In the quantum model statistical states are rep-
resented by von Neumann density operators. This space is denoted by D(H).
J. von Neumann was the first to present a list of possible features of the classi-
cal→ quantum map j, see [1]:

(VN1) j is a one-to-one map.7

(VN2) For any Borel function f : R → R, we have j ( f (ξ)) = f ( j (ξ)), ξ ∈ V (
).
(VN3) j (ξ1 + ξ2 + . . .) = j (ξ1)+ j (ξ2)+ . . . for any any sequence ξk ∈ V (
).8

Roughly speaking, von Neumann proved that under conditions (VN1)–(VN3)
every operation of statistical averaging on V (
) can be represented as the quan-
tum trace-average on Ls(H) corresponding to a quantum state ρ ∈ D(H). By using
the language of probability measures we can say that every probability measure P
on 
 can be represented by a quantum state ρ and vice versa. Thus we have the
following “theorem.”9

Theorem 4.4. (von Neumann) Under conditions (VN1)–(VN3) (and some addi-
tional technical conditions) there is a well-defined map j: S(
) → D(H) that is
one-to-one and ∫




ξ(ω)dP(ω) = Tr ρ â, ρ = j (P), â = j (ξ). (4.18)

By using Theorem 4.4 J. von Neumann “proved”10 the following [1].

Theorem 4.5. (Von Neumann) Let the space of statistical states S(
) contain
probabilities having zero dispersion. A correspondence map j between a classical
statistical model

6 For example, in classical statistical mechanics S(
) is the space of all probability measures on phase space

 = R2n . In a pre-quantum classical statistical field theory that was developed in a series of works [24, 25]
the space of hidden variables
 is infinite-dimensional phase space, the space of classical fields, and the space
of statistical states S(
) consists of Gaussian measures having very small dispersion.

7 Different random variables from the space V (
) are mapped into different quantum observables (injectivity)
and any quantum observable corresponds to some random variable belonging to V (
) (surjectivity).

8 As J. von Neumann remarked, “the simultaneous measurability of j (ξ1), j (ξ2), . . . is not assumed,” see [1],
p. 314.

9 The quotes are to point out that von Neumann did not proceed in a rigorous mathematical framework in this
case.

10 He did not formulate a theorem, but only an ansatz.
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Mcl = (S(
), V (
))

and the quantum statistical model

Nquant = (D(H),Ls(H))

satisfying the postulates (VN1)–(VN3) (and some additional technical conditions
[1]) does not exist.

4.5 Bell-type no-go theorems

As was later pointed out by several good physicists (e.g., by J. S. Bell [6] and
L. Ballentine [26]), some of the von Neumann postulates of classical → quan-
tum correspondence are non-physical. By contrast to von Neumann’s theorem, in
the Bell-type no-go theorem different classical quantities can correspond to the
same quantum observable. It is not assumed that every self-adjoint operator cor-
responds to some classical quantity. It might be that some self-adjoint operators
have no classical counterpart, or even physical meaning for that matter. The postu-
late (VN1) was deleted from the list for classical→ quantum correspondence. The
most doubtful postulate (VN3) was also excluded from consideration. It was not
assumed that (VN2) holds.

Consider a family of spin operators,

σ̂ (θ) = cos θ σ̂z + sin θ σ̂x ,

where σ̂x , σ̂z are Pauli matrices, θ ∈ [0, 2π). These operators act in the two-
dimensional state space H = C2. Let us also consider spin operators for pairs
of spin- 1

2 particles: σ̂ (θ)⊗ I and I ⊗ σ̂ (θ). They act in the four-dimensional state
space H = C2 ⊗ C2.

Bell’s list of postulates on classical → quantum correspondence can be
described as the following.

(B1) The image j (V (
)) contains spectral projectors for operators σ̂ (θ)⊗ I and I ⊗ σ̂ (θ)
for pairs of spin- 1

2 particles.
(B2) For any random variable ξ ∈ V (
), its range of values ξ(
) coincides with the

spectrum of the operator â = j (ξ).
(B3) The image j (S(
)) contains the singlet spin state11

ψ = 1√
2
(|+〉|−〉 − |−〉|+〉).

11 This state belongs to the four-dimensional state space H = C2 ⊗ C2. By using the tensor notations we can
write ψ = (1/√2) [|+〉 ⊗ |−〉 − |−〉 ⊗ |+〉] .
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Starting with any classical → quantum mapping j , we can construct a map
i from quantum observables to classical random variables by setting, for â ∈
j (V (
)),

i(â) = ξa,

where ξa belongs to the set of random variables j−1(â). Let us also construct a map
(denoted by the same symbol i) from the space of von Neumann density operators
into the space of classical probability measures by choosing a probability measure
Pρ belonging the set j−1(ρ). It should be emphasized that such maps

i : Ls(H)→ V (
)

and

i : D(H)→ S(
)

are not uniquely defined! Let us also note a purely mathematical problem of tran-
sition from classical → quantum to quantum → classical correspondence. Such a
possibility is based on the axiom of choice. For example, for quantum observables
we have the collection of sets j−1(â) of classical random variables corresponding
to self-adjoint operators. We should choose from each of these sets one random
variable and construct a new set – the classical image of quantum observables. The
use of this axiom is not broadly accepted in the mathematical community. Finally,
let us set

ξθ = i(σ̂ (θ)⊗ I ), ξ ′θ = i(I ⊗ σ̂ (θ)).
These are classical pre-images of the spin operators for pairs of spin- 1

2 particles.
J. Bell also proposed use of the following postulates.

(B4) For any quantum state ρ and commuting operators â, b̂, the quantum and classical
correlations coincide:

〈ξa, ξb〉Pρ ≡
∫



ξa(ω)ξb(ω)dPρ(ω) = 〈â b̂〉ρ ≡ Tr ρ âb̂.

(B5) For the singlet state ψ and any θ, random variables ξθ and ξ ′θ are anticorrelated:

ξθ (ω) = −ξ ′θ (ω) (4.19)

almost everywhere with respect to the probability Pψ .

Theorem 4.6. (Bell) Let dim H = 4. Correspondence maps

j : V (
)→ Ls(H) and j : S(
)→ D(H) (4.20)

satisfying the postulates (B1)–(B5) do not exist.
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Proof. We apply Bell’s inequality, Theorem 4.4, to random variables ξθ =
i(σ̂ (θ)⊗ I ), ξ ′θ = i(I ⊗ σ̂ (θ)) and to a probability measure Pψ corresponding to
the singlet state ψ :

|〈ξθ1, ξθ2〉Pψ − 〈ξθ3, ξθ2〉Pψ | ≤ 1− 〈ξθ1, ξθ3〉Pψ .
We remark that the postulate (B2) was used here. To prove Bell’s inequality, we
took into account that random variables ξθ (ω) = ±1. We now apply the anticorre-
lation postulate (B5) and rewrite Bell’s inequality:

|〈ξθ1, ξ
′
θ2
〉Pψ − 〈ξθ3, ξ

′
θ2
〉Pψ | ≤ 1+ 〈ξθ1, ξ

′
θ3
〉Pψ .

Finally, we apply the postulate (B4) and write quantum covariations, instead of
classical:

|Tr(ψ ⊗ ψ)(σ̂ (θ1)⊗ I )(I ⊗ σ̂ (θ2))− Tr(ψ ⊗ ψ)(σ̂ (θ3)⊗ I )(I ⊗ σ̂ (θ2))|
≤ 1+ Tr(ψ ⊗ ψ)(σ̂ (θ1)⊗ I )(I ⊗ σ̂ (θ3)).

But this inequality is violated for a special choice of angles θ1, θ2, θ3 – see the proof
of Theorem 4.7 for details.

The postulate (B4) on the correspondence between classical and quantum corre-
lations can be changed to a postulate about the correspondence between classical
and quantum probabilities.

(W) For any quantum state ρ and commuting operators â, b̂, the quantum and classical
joint probability distributions coincide:

Pρ(ω ∈ 
 : ξa(ω) ∈ A, ξa(ω) ∈ B) = Tr ρ Ea
A Eb

B,

where Ea
A and Eb

B are spectral families of the operators, and A and B are arbitrary
Borel subsets of the real line.

Theorem 4.7. (Wigner) Let dim H = 4. Correspondence maps

j : V (
)→ Ls(H) and j : S(
)→ D(H) (4.21)

satisfying the postulates (B1)–(B3), (W), and (B5) do not exist.

Proof. We shall apply Wigner’s inequality for probabilities, Theorem 2.2:

Pψ(ω ∈ 
 : ξθ1(ω)=+1, ξθ2(ω)=+1)+Pψ(ω ∈ 
 : ξθ2(ω)=−1, ξθ3(ω) = +1)

≥ Pψ(ω ∈ 
 : ξθ1(ω) = +1, ξθ3(ω) = +1). (4.22)
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We remark that the postulate (B2) was taken into account. We now apply the anti-
correlation postulate (B5) and rewrite the Wigner inequality:

Pψ(ω ∈ 
 : ξθ1(ω)=+1, ξ ′θ2
(ω)=−1)+Pψ(ω ∈ 
 : ξθ2(ω)=−1, ξ ′θ3

(ω)=−1)

≥ Pψ(ω ∈ 
 : ξθ1(ω) = +1, ξ ′θ3
(ω) = −1). (4.23)

We apply the postulate (W) and write quantum probabilities, instead of classical
ones:

Tr(ψ ⊗ ψ)E+(θ1)E
′
−(θ2)+ Tr(ψ ⊗ ψ)E−(θ2)E

′
−(θ3)

≥ Tr(ψ ⊗ ψ)E+(θ1)E
′
−(θ3), (4.24)

where E±(θ) and E ′±(θ) are spectral projectors of the operators σ̂ (θ) ⊗ I and
I ⊗ σ̂ (θ). We consider spin observables for pairs of spin- 1

2 particles: σ(θ) and
σ ′(θ) corresponding to measurements on the first and second particle in a pair
s = (s1, s2). These observables are represented by operators σ̂ (θ)⊗I and σ ′(θ)⊗I,
respectively. For the singlet state ψ we have

Pψ(σ (θ1) = +1, σ ′(θ2) = +1) = Tr(ψ ⊗ ψ)E+(θ1)E
′
−(θ2) = cos2

(
θ1 − θ2

2

)
,

Pψ(σ (θ3) = +1, σ ′(θ2) = −1) = Tr(ψ ⊗ ψ)E−(θ2)E
′
−(θ3) = sin2

(
θ3 − θ2

2

)
,

Pψ(σ (θ1) = +1, σ ′(θ3) = +1) = Tr(ψ ⊗ ψ)E+(θ1)E
′
−(θ3) = cos2

(
θ1 − θ3

2

)
.

By (4.24) we have

cos2

(
θ1 − θ2

2

)
+ sin2

(
θ3 − θ2

2

)
≥ cos2

(
θ1 − θ3

2

)
.

We take θ1= 0, θ2= 6θ, θ3= 2θ and we get the following trigonometric inequality:

cos2(3θ)+ sin2(2θ) ≥ cos2 θ.

It is well known [9] that this trigonometric inequality is violated for sufficiently
large θ.

Considering the following weaker form of the postulate (B2),

(CHSH) For any ξ ∈ V (
),

sup{|x | : x ∈ ξ(
)} = sup{|x | : x ∈ Spectrum( j (ξ))},
we have
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Theorem 4.8. (Clauser–Horne–Shimony–Holt) Let dim H = 4. Correspondence
maps

j : V (
)→ Ls(H) and j : S(
)→ D(H) (4.25)

satisfying the postulates (B1), (CHSH), (B3), and (B4) do not exist.

The proof is based on the CHSH inequality. In this no-go theorem we need
neither the precise anticorrelations nor the precise coincidence of ranges of values
for classical variables and quantum observables. On the other hand, the postulate
(B4) contains coupling between classical and quantum algebraic structures, which
is not supposed in (W).

Our attitude with respect to Bell-type no-go theorems is similar to Bell’s atti-
tude with respect to other no-go theorems – the von Neumann, Jauch–Piron and
Gleasons theorems ([6], pp. 4–9). As J. S. Bell did, one could speculate that some
postulates about the correspondence between classical and quantum models (which
were used in Bell-type no-go theorems) are non-physical. There are many things
that can be questioned in Bell’s arguments.

4.6 The range-of-values postulate

The proofs of Bell and Wigner no-go theorems were based on the postulate (B2)
on the coincidence of ranges of values for classical random variables and quantum
observables. Moreover, one can easily construct examples of classical random vari-
ables reproducing the EPR–Bohm correlations in the case of violation of (B2), [27].

Is the postulate (B2) really implied by the physical analysis of the situation? It
seems that it is not at all! For example, Henry Stapp [11] pointed out that “The
problem, basically, is that to apply quantum theory, one must divide the fundamen-
tally undefined physical world into two idealized parts, the observed and observ-
ing system, but the theory gives no adequate description of connection between
these two parts. The probability function is a function of degrees of freedom of the
microscopic observed system, whereas the probabilities it defines are probabilities
of responses of macroscopic measuring devices, and these responses are described
in terms of quite different degrees of freedom.” In such a situation rejection of the
range-of-values condition is quite natural, since, as was pointed by Stapp, a classi-
cal random variable ξ and its quantum counterpart â = j (ξ) depend on completely
different degrees of freedom. Finally, we remark that a classical model reproducing
quantum probabilistic description, but violating (B2), was recently developed, see
[24, 25].
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The derivation of the CHSH no-go theorem was based on the CHSH postulate –
the weaker form of the range-of-values coincidence postulate B2. The CHSH pos-
tulate is also a postulate about the correspondence for ranges of values for classical
random variables and quantum observables, and the above arguments against (B2)
can be applied against (CHSH).

Conclusion. If the range-of-values postulates (in the forms (VN2), (B2), and
(CHSH)) are rejected, then the classical probabilistic description does not con-
tradict quantum mechanics.

4.7 Contextuality

In this section I shall present a very general viewpoint on the role of contextuality
in Bell-type no-go theorems. Bell’s original viewpoint [6] on contextuality will be
presented in Section 4.8. The latter contextuality we can call simultaneous mea-
surement contextuality or Bell-contextuality. We reserve the term contextuality for
our general contextuality – dependence on the whole complex of physical condi-
tions for preparation and measurement. Although it is common in the literature
to find Bell-contextuality called simply contextuality, using such a terminology
is rather misleading because dependence on the measurements of other compati-
ble observables is just a very special case of dependence on the general physical
context.

As was rightly pointed out by Bell, the only reasonable explanation of his con-
textuality is action at a distance. Another possibility is often called “death of real-
ity” [2, 3] – denying the possibility of assigning to quantum systems objective
properties (such as the electron spin or the photon polarization) – but that sounds
unnatural. The observation of precise (anti)correlations for the singlet state evi-
dently contradicts the latter explanation.

In contrast to Bell-contextuality, in general, contextuality does not imply either
action at a distance or “death of reality.” Moreover, if one presents Bell’s arguments
in the general contextual approach, then in the classical (but contextual) probabilis-
tic framework the probability of obtaining statistical data that would violate Bell’s
inequality equals zero, see Theorem 4.9.

4.7.1 Non-injectivity of classical→ quantum correspondence

Let us first concentrate our considerations on the classical variables → quan-
tum observables correspondence. As we remember, Bell, as well as Ballentine,
strongly criticized von Neumann’s postulate (VN1). Both Bell and Ballentine,
as well as many others, emphasized that there were no physical reasons to
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suppose – as von Neumann did – that for a quantum observable â its classical
pre-image

j−1(â) = {ξ ∈ V (
) : j (ξ) = â}
should contain just one random variable. If one considers the quantum-mechanical
description as an approximative description, then it would be quite reasonable to
assume that quantum mechanics cannot distinguish sharply pre-quantum physical
variables. A few different classical random variables ξ, η, . . . can be identified in
the quantum model with the same operator â = j (ξ) = j (η) = . . .. Moreover,
there are no reasons to hope that degeneration of the map j : V (
) → Ls(H)
should be small. The cardinality of the set j−1(â) might be huge (at least for some
operators).

We now consider the classical probabilities→ quantum states correspondence.
In the same way as for variables and observables, there are no physical reasons to
assume injectivity of the map j : S(
) → D(H). By saying that we prepared an
ensemble of systems with the fixed quantum state ρ we could not guarantee that
we really prepared the fixed classical probability distribution. The set

j−1(ρ) = {P ∈ S(
) : j (P) = ρ}
might have huge cardinality.

Our previous considerations would induce no protest from experts in quantum
foundations, and would not have for Bell either, but our following conclusions
might not be appreciated so much. It should be noted that the derivations of all Bell-
type no-go theorems were based on the possibility of selecting, for any quantum
state (at least for the singlet state), one fixed classical probability measure Pρ ∈
j−1(ρ) and for any quantum observable (at least for spin observables) the fixed
random variable ξ ∈ j−1(â).

4.7.2 Contextual opposition against Bell’s approach to no-go theorems

The crucial counterargument is that at the experimental level for all Bell-type
inequalities one should use data obtained in a few different runs of measurements
(at least three, but in the real experimental framework four), see [8, 14, 29]. In
the light of the above discussion of the non-injectivity of the classical→ quantum
correspondence there are no physical reasons to assume that we would be able to
obtain the same classical probability distribution and the same classical random
variables, for example, corresponding to spin observables.12 We are not able to

12 Even if we use the same macroscopic preparation and measurement devices, fluctuations of micro-parameters
can induce different physical conditions [14].
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guarantee that all runs of measurements are performed under the same physical
conditions.

Let us consider a new random variable C describing a complex of physical con-
ditions (context) during a run of measurements. Now let us try to proceed as J.
Bell and his followers did by proving inequalities for correlations and probabil-
ities. Now classical probability measures corresponding to a quantum state ρ (in
particular, to the singlet state) depend on runs C : Pρ ≡ Pρ,C as well as random vari-
ables ξa,C(ω), ξb,C(ω), ξc,C(ω). We start with the correlation inequality. There are
three different complexes of physical conditions C1,C2,C3 inducing correlations
that were considered in Theorem 4.1. Here

〈ξa, ξb〉(C1) =
∫



ξa,C1(ω)ξb,C1(ω)Pρ,C1(ω),

〈ξc, ξb〉(C2) =
∫



ξc,C2(ω)ξb,C2(ω)Pρ,C2(ω).

If C1 �=C2 we are not able to perform operations with integrals, which we
did in Theorem 4.1. We cannot obtain Bell’s inequality involving the third
correlation,

〈ξa, ξc〉(C3) =
∫



ξa,C3(ω)ξc,C3(ω)Pρ,C3(ω)

for a context C3. To derive Bell’s inequality, we should assume that

C1 = C2 = C3. (4.26)

By using the contextual framework we derived in [28, 29], we obtain generaliza-
tions of the Bell-type inequalities. Such generalized inequalities do not contradict
the predictions of quantum mechanics. We also mention that a special form of con-
textuality (the so-called non-reproducibility condition) was also present in argu-
ments of De Baere [14] against Bell’s no-go theorem, see also [15]. The so-called
efficiency-of-detectors (or more general unfair-sampling) argument [17] can also
be considered a special form of contextuality – different contexts produce samples
with different statistical properties.

The very same counterarguments can be used against the derivations of Wigner’s
inequality and CHSH’s inequality. Let us now formalize the procedure of
correspondence between classical and quantum models in the case of context-
dependence. Denote by C the set of contexts under consideration. We suppose
that on C there is defined a probability measure Q. Instead of degenerate maps
j : V (
)→ Ls(H) and j : S(
)→ D(H), we consider random maps:

i : C × Ls(H)→ V (
),



Bell’s inequality 81

i : C ×D(H)→ S(
).

For any context C (considered not as a random parameter) and any quantum
observable â there is uniquely defined a random variable ξ(ω) = i(C, â)(ω)
and for any quantum state ρ there is uniquely defined a probability measure
P = i(C, ρ). In this framework we can formulate an interesting problem, namely,13

What is the probability of obtaining statistical data that would satisfy Bell-type
inequalities?

It is natural to assume that the probability that precisely the same complex of
physical conditions would be obtained is equal to zero. Thus the probability Q is
“continuous”:

Q(C) = 0 (4.27)

for any single point C ∈ C. Such a condition assumes that quantum mechanics
provides only a rough description of the real physical situation.

Theorem 4.9. Under the assumption (4.27) the probability of obtaining statistical
data that would satisfy Bell-type inequalities is zero.

Proof. Since Q(C) = 0, the probability of obtaining in three different experiments
totally identical complexes of physical conditions is zero.

4.7.3 Bell’s inequality and experiment

The standard conclusion from Bell’s considerations is that the experimental viola-
tion of Bell-type inequalities showed a disagreement between classical probabilis-
tic description and experiment. Our probabilistic analysis demonstrated that such
an assumption was not totally justified. In general the existence of a pre-quantum
classical probabilistic model would imply only that Bell-type inequalities could
hold with zero probability.

4.8 Bell-contexuality and action at a distance

In Bell’s approach contexts are completely determined by compatible observ-
ables. Thus all micro-conditions of preparation and measurement are ignored. The
simultaneous measurement of a compatible observable is considered as the only
source of contextuality. Let â ∈ Ls(H). Contexts for the a-measurement are given
by all compatible observables: C = Cb, where b̂ ∈ Ls(H) and [â, b̂] = 0.

13 Thus there are two random parameters: C , describing a complex of physical conditions, and ω, describing the
hidden state of a system.
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In contrast to our previous considerations, Cb does not depend on a quantum
state ρ or a run of preparation or measurement. Nevertheless, Bell-contextuality
(as would any contextuality) also blocks the derivations of all Bell-type
theorems.

As Bell pointed out, if measurements of a and b are performed in separated
regions of space-time, then his contextuality can be interpreted as action at a dis-
tance:

i(Cb, â)(ω) = ξa(Cb, ω).

Thus a classical random variable ξa(Cb, ω) is not determined uniquely by a
and it depends on the measurement of b. The latter acts instantaneously at a
distance.

4.8.1 On the value of Bell’s argument

In principle, Bell’s argument in favor of action at a distance might stimulate inves-
tigations to find direct evidence of such an action. Unfortunately, that hasn’t hap-
pened. Instead, Bell-type no-go theorems were considered as the final proofs of
“quantum non-locality.” However, as we have seen, Bell-contextuality and conse-
quent non-locality is only one of many possibilities for blocking the derivations
of no-go theorems. One could not draw any definite conclusion from Bell-type
theorems besides the evident remark that, since we do not know a pre-quantum
classical statistical model and the rules of classical → quantum correspondence,
we can play a lot with such hypothetical rules. The known no-go theorems are the
result of such games with correspondence rules.

Personally I think that the violation of the postulate regarding coincidence of
ranges of values or (and) general preparation and measurement contextuality pro-
vide essentially more natural possibilities for blocking the Bell-type theorems than
does non-locality. My conclusion is the following. The main value of Bell’s argu-
ments was the great stimulation of experimental technologies for working with
entangled photons.
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Probabilistic theories: What is special about
Quantum Mechanics?

Giacomo Mauro D’Ariano

To my friend and mentor, Professor Attilio Rigamonti.

Unperformed experiments have no results.
Asher Peres

5.1 Introduction

More than a century after its birth, quantum mechanics (QM) remains mysterious.
We still don’t have general principles from which to derive its remarkable mathe-
matical framework, as happened for the amazing Lorentz transformations, which
were rederived by Einstein from the invariance of physical laws in inertial frames
and from the constancy of the speed of light.

Despite the utmost relevance of the problem of deriving QM from operational
principles, research efforts in this direction have been sporadic. The deepest of the
early attacks on the problem were the works of Birkhoff, von Neumann, Jordan,
and Wigner, attempting to derive QM from a set of axioms with as much physical
significance as possible [1, 2]. The general idea in Ref. [1] is to regard QM as a
new kind of prepositional calculus, a proposal that spawned the research line of
quantum logic, which is based on von Neumann’s observation that the two-valued
observables – represented in his formulation of QM by orthogonal projection oper-
ators – constitute a kind of “logic” of experimental propositions. After a hiatus
of two decades of neglect, interest in quantum logic was revived by Varadarajan
[3], and most notably by Mackey [4], who axiomatized QM within an operational
framework, with the single exception of an admittedly ad hoc postulate, which rep-
resents the propositional calculus mathematically in the form of an orthomodular
lattice. The most significant extension of Mackey’s work is the general representa-
tion theorem of Piron [5].

Philosophy of Quantum Information and Entanglement, ed. A. Bokulich and G. Jaeger. Published by
Cambridge University Press. c© Cambridge University Press 2010.
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In the early work [2], Jordan, von Neumann, and Wigner considered the possi-
bility of a commutative algebra of observables, with a product that needs only to
define squares and sums of observables – the so-called Jordan product of observ-
ables a and b: a ◦ b := (a + b)2 − a2 − b2. However, such a product is generally
non-associative and non-distributive with respect to the sum, and the quantum for-
malism follows only with additional axioms with no clear physical significance –
e.g., a distributivity axiom for the Jordan product. Segal [6] later constructed an
(almost) fully operational framework (with no experimental definition of the sum
of observables) that allows generally non-distributive algebras of observables, but
with a resulting mathematical framework largely more general than QM. As a result
of this line of investigation, the purely algebraic formulation of QM gained in pop-
ularity versus the original Hilbert-space axiomatization.

In the algebraic axiomatization of QM, a physical system is defined by its C∗-
algebra of observables (with identity), and the states of the system are identi-
fied with normalized positive linear functionals over the algebra, corresponding
to the probability rules of measurements of observables. Indeed, the C∗-algebra
of observables is more general than QM, since it includes classical mechanics as
a special case, and generally describes any quantum–classical hybrid, thus being
equivalent to QM with super-selection rules. Since in practice two observables are
not distinguishable if they always exhibit the same probability distributions, at the
operational level one can always take the set of states as observable-separating –
in the sense that there are no different observables having the same probability dis-
tribution for all states. Conversely the set of observables is state-separating, i.e.,
there are no different states corresponding to the same probability distribution for
all observables. Notice that, in principle, there exist different observables with the
same expectation for all states, but higher moments will be different.1

The algebra of observables is generally considered to be more “operational”
than the usual Hilbert-space axiomatization; however, little more is gained than a
representation-independent mathematical framework. Indeed, the algebraic frame-
work is unable to provide operational rules for how to measure sums and products
of non-commuting observables.2 The sum of two observables cannot be given an
operational meaning, since a procedure involving the measurements of the two
addenda would unavoidably assume that their respective measurements are jointly
executable on the same system – i.e., the observables are compatible. The same

1 This is not the case when one considers only sharp observables, for which there always exists a state such that
the expectation of any function of the observable equals the function of the expectation. However, operationally
we cannot rely on such a concept to define the general notion of an observable, since we cannot reasonably
assume its feasibility (actual measurements are non-sharp).

2 The spectrum of the sum is generally different from the sum of the spectra of the addenda, e.g., the spectra of
xpy and ypx are both R, whereas the angular-momentum component xpy − ypx has a discrete spectrum. The
same is true for the product.
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reasoning holds for the product of two observables. A sum-observable defined as
the one having expectation equal to the sum of expectations for all states [7] is
clearly not unique, due to the existence of observables having the same expectation
for all states, but with different higher moments. The only well-defined procedures
are those involving single observables, such as the measurement of a function of
a single observable, which operationally consists in just taking the function of the
outcome.

The Jordan symmetric product has been regarded as a great advance in view of
an operational axiomatization, since, in addition to being Hermitian (observables
are Hermitian), it is defined only in terms of squares and sums of observables – i.e.,
without products. The definition of a◦b, however, still relies on the notion of a sum
of observables, which has no operational meaning. Remarkably, Alfsen and Shultz
[8, 9] succeeded in deriving the Jordan product from solely geometrical properties
of the convex set of states – e.g., orientability and faces shaped as Euclidean balls –
however, again with no operational meaning. The problem with the Jordan product
is that, in addition to not necessarily being associative, it is not even distributive,
as the reader can easily check. It turns out that, modulo a few topological assump-
tions, the Jordan algebras can be embedded in the algebra Lin(H) of operators over
the Hilbert space H, whereby a ◦ b = ab + ba. Such assumptions, however, are
still not operational. For a further critical overview of these earlier attempts at an
operational axiomatization of QM, the reader is also directed to the recent books
of Strocchi [7] and Thirring [10].

After a long suspension of research on the axiomatic approach – notably inter-
rupted by the work of Ludwig and his school [11] – in the last few years the new
field of quantum information has renewed interest in the problem of operational
axiomatization of QM, having been boosted by the new experience on multipartite
systems and entanglement. In his seminal paper [12] Hardy derived QM from five
“reasonable axioms,” which, more than being truly operational, are motivated on
the basis of simplicity and continuity criteria, with the assumption of a finite num-
ber of perfectly discriminable states. His axiom 4, however, is still purely mathe-
matical, and is directly related to the tensor-product rule for composite systems. In
another popular paper [13], Clifton, Bub, and Halvorson have shown how three
fundamental information-theoretic constraints – (a) the no-signaling constraint,
(b) the no-broadcasting constraint, and (c) the impossibility of unconditionally
secure bit commitment – suffice to entail that the observables and state space of
a physical theory are quantum mechanical. Unfortunately, the authors started from
a C∗-algebraic framework for observables, which, as already discussed, has lit-
tle operational basis, and already coincides with the quantum–classical hybrid.
Therefore, more than deriving QM, their informational principles just force the
C∗-algebra of observables to be non-Abelian.
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In Ref. [14]3 I showed how it is possible to derive the formulation of QM in
terms of observables represented as Hermitian operators over Hilbert spaces with
the right dimensions for the tensor product, starting from a few operational axioms.
However, it is not clear yet whether such a framework is sufficient to identify QM
(or the quantum–classical hybrid) as the only probabilistic theory resulting from
axioms. Later, in Refs. [17–19], I showed how a C∗-algebraic framework for trans-
formations (not for observables!) naturally follows from an operational probabilis-
tic framework.

A very recent and promising direction for attacking the problem of QM axiom-
atization consists in positioning QM within the landscape of general probabilistic
theories, including theories with non-local correlations stronger than the quantum
ones, e.g., for the Popescu–Rohrlich boxes (PR boxes) [20]. Such theories have
correlations that are “stronger” than the quantum ones – in the sense that they
violate the quantum Cirel’son bound [21] – although they are still non-signaling,
thus revealing the fortuitousness of the peaceful coexistence of QM and spe-
cial relativity, in contrast with the claimed implication of QM linearity from the
no-signaling condition [22]. Within the framework of the PR boxes general ver-
sions of the no-cloning and no-broadcasting theorems have been proved [23]. In
Ref. [24] it has been shown that certain features generally thought of as specif-
ically quantum are indeed present in all except classical theories. These include
the non-unique decomposition of a mixed state into pure states, disturbance on
measurement (related to the possibility of secure key distribution), and the no-
cloning constraint. More recently, necessary and sufficient conditions have been
established for teleportation [25], i.e., for reconstructing the state of a system on
a remote identical system, using only local operations and joint states. In all these
works quantum information has inspired the consideration of task-oriented axioms
in a general operational framework that can incorporate QM, classical theory, and
other non-signaling probabilistic theories (for an illustration of this general point
of view see also Ref. [26]).

In this chapter I will consider the possibility of deriving QM as the mathemat-
ical representation of a fair operational framework, i.e., a set of rules that allows
the experimenter to make predictions regarding future events on the basis of suit-
able tests, in a spirit close to Ludwig’s axiomatization [11]. States are simply the
compendia of probabilities for all possible outcomes of any test. I will consider a
very general class of probabilistic theories, and examine the consequences of two
postulates that need to be satisfied by any fair operational framework:

NSF: no signaling from the future, implying that it is possible to make predictions based
on present tests;

3 Most of the results of Ref. [14] were originally conjectured in Refs. [15] and [16].



Probabilistic theories 89

PFAITH: existence of preparationally faithful states, implying the possibility of prepar-
ing any state and calibrating any test.

NSF is implicit in the very definition of conditional probabilities for cascade
tests, entailing that events are identified with transformations, whence evolution is
identified with conditioning. As we will see, such identifications lead to the notion
of effect of Ludwig, i.e., the equivalence class of events occurring with the same
probability for all states. I will show how we can introduce operationally a linear-
space structure for effects. I will then show how all theories satisfying NSF admit
a C∗-algebra representation of events as linear transformations of effects.

On the basis of a very general notion of dynamical independence, entailing the
definition of a marginal state, it is immediately seen that all these theories are
non-signaling, which is the current way of saying that the theories satisfy the prin-
ciple of Einstein locality, namely that there can be no detectable effect on a system
due to anything done to another non-interacting system. This is clearly another
requirement for a fair operational framework. Postulate PFAITH then implies the
local observability principle, namely the possibility of achieving an information-
ally complete test using only local tests – another requirement for a fair opera-
tional framework. The same postulate also implies many other features that are
typically quantum, such as the tensor-product structure for the linear spaces of
states and effects, the isomorphism of cones of states and effects (a weaker version
of quantum self-duality), the so-called EPR cheating in bit commitment (which in
Ref. [13], we remind the reader, was itself used as a postulate to derive QM), and
many more. Dual to Postulate PFAITH an analogous postulate for effects would
give additional quantum features, such as teleportation. However, all possible con-
sequences of these postulates still need to be investigated, and it is not clear yet
whether one can derive QM from these principles only.

In order to provide a route for seeking new candidates for operational postulates
one can short-circuit the axiomatic framework to select QM using a mathematical
postulate dictated by what is really special about the quantum theory, namely that
not only transformations but also effects form a C∗-algebra (more precisely, this is
true for all hybrid quantum–classical theories, i.e., those corresponding to QM plus
super-selection rules). However, whereas the sum of effects can be operationally
defined, their composition has no operational meaning, since the notion itself of
“effect” abhors any kind of composition. I will then show that with another natural
postulate,

AE: atomicity of evolution,

together with the mathematical postulate

CJ: Choi–Jamiolkowski isomorphism [27, 28],
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it is possible to identify effects with “atomic” events, i.e., elementary events that
cannot be refined as the union of events. Via the composition of atomic events we
can then define the composition of effects, thus selecting the quantum–classical
hybrid among all possible general probabilistic theories (including the PR boxes,
which indeed satisfy both NSF and PFAITH).

The CJ isomorphism looks natural in an operational context, and it is hoped that
it will be converted soon into an operational postulate.

The present operational axiomatization will adhere to the following three general
principles:

(1) (Strongly Copenhagen) Everything is defined operationally, including all mathemat-
ical objects. Operationally indistinguishable entities are identified.

(2) (Mathematical closure) Mathematical completion is taken for convenience.
(3) (Operational closure) Every operational option that is implicit in the formulation is

incorporated in the axiomatic framework.

An example of the application of the strongly-Copenhagen principle is the notion
of system, which here I will identify with a collection of tests – the tests that can
be performed over the system. A typical case of operational identification is that
of events occurring with the same probability and producing the same condition-
ing. Another case is the statement that the set of states is separating for effects and
vice versa. Examples of mathematical closure are the norm closure, the algebraic
closure, and the linear span. It is unquestionable that these are always idealizations
of operational limiting cases, or they are introduced just to simplify the mathe-
matical formulation (e.g., real numbers versus the “operational” rational numbers).
Operational completeness, on the other hand, does not affect the corresponding
mathematical representation, since every incorporated option is already implicit in
the formulation. This is the case, for example, for convex closure, closure under
coarse-graining, etc., which are already implicit in the probabilistic formulation.

5.2 C∗-Algebra representation of probabilistic theories

5.2.1 Tests and states

A probabilistic operational framework is a collection of tests4
A,B,C, . . . each

being a complete collection A = {Ai }, B = {B j }, C = {Ck}, . . . of mutually

4 The present notion of test corresponds to that of experiment of Ref. [14]. Quoted from that reference: “An
experiment on an object system consists in making it interact with an apparatus, which will produce one of a
set of possible events, each one occurring with some probability. The probabilistic setting is dictated by the
need of experimenting with partial a priori knowledge about the system (and the apparatus). In the logic of
performing experiments to predict results of forthcoming experiments in similar preparations, the information
gathered in an experiment will concern whatever kind of information is needed to make predictions, and this,
by definition, is the state of the object system at the beginning of the experiment. Such information is gained
from the knowledge of which transformation occurred, which is the ‘outcome’ signaled by the apparatus.”
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exclusive events Ai ,B j ,Ck, . . . occurring probabilistically5; events that are mutu-
ally exclusive are often called outcomes. The same event can occur in different
tests, with occurrence probability independent of the test. A singleton test – also
called a channel – D = {D} is deterministic: it represents a non-test, i.e., a free
evolution. The union A ∪B of two events corresponds to the event in which either
A or B occurred, but it is unknown which one. A refinement of an event A is a set
of events {Ai } occurring in some test such that A = ∪iAi . The experiment A itself
can be regarded as the deterministic event corresponding to the complete union of
its outcomes, and when regarded as an event it will be denoted by the different
notation DA. The opposite event of A in A will be denoted as A := �AA .6 The
union of events transforms a test A into a new test A

′, which is a coarse-graining
of A, e.g., A = {A1,A2,A3} and A

′ = {A1,A2 ∪A3}. Vice versa, we will call A

a refinement of A
′.

The stateω describing the preparation of the system is the probability ruleω(A )
for any event A ∈ A occurring in any possible test A.7 For each test A we have
the completeness

∑
A j∈A

ω(A j ) = 1. States themselves are considered as special
tests: the state-preparations.

5.2.2 Cascading, conditioning, and transformations

The cascade B◦A of two tests A = {Ai } and B = {B j } is the new test with events
B ◦ A = {B j ◦Ai }, where B ◦A denotes the composite event A “followed by”
B satisfying the following

Postulate NSF (No signaling from the future). The marginal probability∑
B j∈B

ω(B j ◦ A ) of any event A is independent of test B, and is equal to the
probability with no test B, namely∑

B j∈B

ω(B j ◦A ) =: f (B,A ) ≡ ω(A ), ∀B, A , ω. (5.1)

5 Also A. Rényi [29] calls our test “experiment.” More precisely, he defines an experiment A as the pair A =
(X,A) made of the basic space X – the collection of outcomes – and of the σ -algebra of events A. Here, to
decrease the mathematical load of the framework, we conveniently identify the experiment with the basic space
only, and consider a different σ -algebra (e.g., a coarse-graining) as a new test made of new mutually exclusive
events. Indeed, since we are considering only discrete basic spaces, we can put basic space and σ -algebra in
one-to-one correspondence, by taking A = 2X – the power set of X – and, vice versa, X as the collection of
the minimal intersections of elements of A.

6 By adding the intersection of events, one builds up the full Boolean algebra of events (see, e.g., Ref. [29]).
7 By definition the state is the collection of the variables of a system knowledge of which is sufficient to make

predictions. In the present context, it allows one to predict the results of tests, whence it is the probability rule
for all events in any conceivable test.
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NSF is part of the very definition of test-cascade; however, we treat it as a
separate postulate, since it corresponds to the choice of the arrow of time.8 The
interpretation of the test-cascade B ◦ A is that “test A can influence test B but
not vice versa.”9 Postulate NSF allows one to define the conditioned probability
p(B|A ) = ω(B ◦ A )/ω(A ) of event B occurring conditionally on the previ-
ous occurrence of event A . It also guarantees that the probability of B remains
independent of the test B when conditioned.

Conditioning sets a new probability rule corresponding to the notion of a
conditional state ωA , which gives the probability that an event occurs, know-
ing that event A has occurred with the system prepared in the state ω, namely
ωA

.= ω(· ◦ A )/ω(A ).10 We can now regard the event A as transforming with
probability ω(A ) the state ω to the (unnormalized) state11 A ω given by

A ω := ω(· ◦A ). (5.2)

Therefore, the notion of cascade and postulate NSF entail the identification

event ≡ transformation,

which in turn implies the equivalence12

evolution ≡ state-conditioning.

Notice that operationally a transformation A is completely specified by all the
joint probabilities in which it is involved, whence it is unequivocally given by the
probability rule A ω = ω(· ◦ A ) for all states ω. This is equivalent to specifying
both the conditional state ωA and the probability ω(A ) for all possible states ω,
due to the identity

A ω = ω(A )ωA . (5.3)

8 Postulate NSF is not just a Kolmogorov consistency condition for marginals of a joint probability. In fact, even
though the marginal over test B in (5.1) is obviously the probability of A , such probability in principle depends
on the test B, since the joint probability generally depends on it. Indeed, the marginal over entry A does
generally depend on the past test A � A . Such asymmetry of the joint probability under marginalization over
future or past tests represents the choice of the arrow of time. Of course one could have assumed the opposite
postulate of no signaling from the past, considering conditioning from the future instead, thus reversing the
arrow of time. Postulate NSF introduces conditioning from tests, and is part of the very definition of temporal
cascade-tests. The need to consider NSF as a postulate was noticed for the first time by Masanao Ozawa
(private communication).

9 One could also define more general cascades not in time, e.g., the circuit diagram.

A

B

This would have given rise to a probabilistic version of the quantum comb theory of Ref. [30].
10 Throughout, the central dot “·” denotes the location of the pertinent variable.
11 This is the same as the notion of quantum operation in QM, which gives the conditioning ωA =

A ω/(A ω(I )), or, in other words, the analogue of the quantum Schrödinger-picture evolution of states.
12 Clearly this includes the deterministic singleton-tests D = {D} – the analogs of quantum channels, including

unitary evolutions.
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In particular the identity transformation I is completely specified by the rule
Iω = ω for all states ω.

5.2.3 Systems

In a pure Copenhagen spirit we will identify a system S with a collection of
tests S = {A,B,C, . . .}, the collection being operationally closed under coarse-
graining, convex combination, conditioning, and cascading, and will include all
states as special tests. Closure under cascading is equivalent to considering mono-
systemic evolution, i.e., in which there are only tests for which the output system
is the same as the input one.13 The operator has always the option of performing
repeated tests, together with (randomly) alternating tests – say A and B – in differ-
ent proportions – say p and 1 − p (0 < p < 1) – thus achieving the test Cp =
pA+ (1− p)B which is the convex combination of tests A and B, and is given by
Cp = {pA1, pA2, . . ., (1 − p)B1, (1 − p)B2, . . .}, where pA is the same event
as A , but occurring with a probability rescaled by p. Since we will consider always
closure under all the operator’s options (this is our operational closure), we will
take the system also to be closed under such convex combination. In particular, the
set of all states of the system14 is closed under convex combinations and under con-
ditioning, and we will denote by S(S) (S for short) the convex set of all possible
states of system S. We will often use the colloquialism “for all possible states ω”
meaning ∀ω ∈ S(S), and we will do similarly for other operational objects.

In the following we will denote the set of all possible transformations/events
by T(S), T for short. The convex structure of S entails a convex structure for T,
whereas the cascade of tests entails the composition of transformations. The lat-
ter, together with the existence of the identity transformation I , gives to T the
structure of a convex monoid.

5.2.4 Effects

From the notion of a conditional state two complementary types of equivalences
for transformations follow: the conditional and the probabilistic equivalence. The
transformations A1 and A2 are conditioning-equivalent when ωA1 =ωA2∀ω ∈ S,

13 We could have considered more generally tests in which the output system is different from the input one, in
which case the system is no longer closed under a test-cascade, and, instead, there are cascades of tests from
different systems. This would give more flexibility to the axiomatic approach, and could be useful for proving
some theorems related to multipartite systems made of different systems. The fact that there are different sys-
tems would impose constraints on the cascades of tests, corresponding to allowing only some particular words
made of the “alphabet” A,B, . . . of tests, and the system would then correspond to a “language” (see Ref. [31]
for a similar framework). Such generalization will be thoroughly analyzed in a forthcoming publication.

14 At this stage such a set does not necessarily contain all in-principle possible states. The extension will be done
later, after defining effects.
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namely when they produce the same conditional state for all prior states ω. On
the other hand, the transformations A1 and A2 are probabilistically equivalent
when ω(A1) = ω(A2) ∀ω ∈ S, namely when they occur with the same prob-
ability.15 Since operationally a transformation A is completely specified by the
probability rule A ω for all states, it follows that two transformations A1 and A2

are fully equivalent (i.e., operationally indistinguishable) when A1ω = A2ω for
all states ω. We will identify two equivalent transformations, and denote the equiv-
alence simply as A1 = A2. From identity (5.3) it follows that two transforma-
tions are equivalent if and only if they are both conditioning and probabilistically
equivalent.

A probabilistic equivalence class of transformations defines an effect.16 In the
following we will denote effects with lower-case letters a, b, c, . . . and denote by
[A ]eff the effect containing transformation A . We will also write A ∈ a meaning
that “the transformation A belongs to the equivalence class a,” or “A has effect a,”
and write “A ∈ [B]eff” to say that “A is probabilistically equivalent to B.” Since
by definition ω(A ) = ω([A ]eff), hereafter we will legitimately write the variable
of the state as an effect, e.g., ω(a). The deterministic effect will be denoted by e,
corresponding to ω(e) = 1 for all states ω. We will denote the set of effects for a
system S as E(S), or just E for short. The set of effects inherits a convex structure
from that of transformations.

By the same definition of state – as probability rule for transformations –
states are separated by effects (whence also by transformations17), and, conversely,
effects are separated by states. Transformations are separated by states in the sense
that A �= B iff A ω �= Bω for some state. As a consequence, it may happen
that the introduction of a new state via some new preparation (such as introducing
additional systems) will separate two previously indiscriminable transformations,
in which case we will include the new state (and all convex combinations with it)
in S(S), and we will complete the system S accordingly. We will end with S(S)
separating T(S) and E(S), and E(S) separating S(S).

The identity ωA (B) ≡ ωA ([B]eff) implies that ω(B ◦A ) = ω([B]eff ◦A ) for
all states ω, leading to the chaining rule [B]eff ◦ A = [B ◦ A ]eff, corresponding
to the “Heisenberg-picture” evolution in terms of transformations acting on effects.

15 In the papers [14–17] I called the conditional equivalence dynamical equivalence, since the two transforma-
tions will effect the same state change. However, one should more properly regard the “dynamical” change of
the state ω due to the transformation A as the unnormalized state A ω, but the two transformations A and
B will be fully equivalent when A ω = Bω for all states ω. Moreover, in the same papers I called the prob-
abilistic equivalence informational equivalence, since the two transformations will give the same information
about the state. The new nomenclature has a more immediate meaning.

16 This is the same notion of “effect” introduced by Ludwig [11].
17 In fact, A ω �= A ζ for A ∈ T means that there exists an effect c such that A ω(c) �= A ζ(c), whence the

effect c ◦A will separate the same states.
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Notice that transformations act on effects from the right, inheriting the composition
rule of transformations (B ◦ A means “A followed by B”). Notice also that e ◦
A ∈ [I ◦ A ]eff = a. It follows that for D deterministic one has D ∈ e, whence
D ◦A ∈ [A ]eff.

Consistently, in the “Schrödinger picture,” we have Bω(· ◦A ) = ω(· ◦B ◦A ),
corresponding to (B ◦ A )ω = ω(· ◦B ◦ A ). Also, we will use the unambigu-
ous notation Bω(a) = [Bω](a), whence Bω(a) = ω(a ◦ B), and ω(a) =
A ω(e), ∀A ∈ a.

5.2.5 Linear structures for transformations and effects

Transformations A1 and A2, for which one has the bound ω(A1) + ω(A2) � 1,
∀ω ∈ S, can in principle occur in the same test, and we will call them test-
compatible. For test-compatible transformations one can define their addition
A1 +A2 via the probability rule

(A1 +A2)ω = A1ω +A2ω, (5.4)

where we remind the reader that A ω := ω(· ◦ A ). Therefore the sum of two
test-compatible transformations is just the union-event A1 + A2 = A1 ∪ A2,
with the two transformations regarded as belonging to the same test.18 For any
test A we can define its total coarse-graining as the deterministic transformation
DA =∑Ai∈A

Ai . We can trivially extend the addition rule (5.4) to any set of (gen-
erally non-test-compatible) transformations, and to subtraction of transformations
as well. Notice that the composition “◦” is distributive with respect to addition “+.”

We can define the multiplication λA of a transformation A by a scalar
0 � λ � 1 by the rule

ω(· ◦ λA ) = λω(· ◦A ), (5.5)

namely λA is the transformation conditioning-equivalent to A , but occurring with
rescaled probability ω(λA ) = λω(A ) – as happens in the convex combination of
tests. It follows that for every couple of transformations A and B the transforma-
tions λA and (1 − λ)B are test-compatible for 0 � λ � 1, consistently with the
convex closure of the system S. By extending the definition (5.5) to any positive λ,
we then introduce the cone T+ of transformations. We will call an event A atomic

18 The probabilistic class of A1 +A2 is given by

ω(A1 +A2) = ω(A1)+ ω(A2), ∀ω ∈S,

whereas the conditional class is given by

ωA1+A2
= ω(A1)

ω(A1 +A2)
ωA1

+ ω(A2)

ω(A1 +A2)
ωA2

, ∀ω ∈S.
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if it has no non-trivial refinement in any test, namely if it cannot be written as
A = ∑i Ai with Ai �= λiA for some i and 0 < λi < 1. Notice that the identity
transformation is not necessarily atomic.19 The set of extremal rays of the cone
T+ – denoted by Erays(T+) – contains the atomic transformations.

The notions of (i) test-compatibility, (ii) sum, and (iii) multiplication by a scalar
are naturally inherited from transformations to effects via probabilistic equiva-
lence, and then to states via duality. Correspondingly, we introduce the cone of
effects E+, and, by duality, we extend the cone of states S+ to the dual cone of E+,
completing the set of states S to the cone-base of S+ made of all positive linear
functionals over E+ normalized at the deterministic effect, namely all in-principle
legitimate states (in parallel we complete the system S with the corresponding
state-preparations). We call such a completion of the set of states the no-restriction
hypothesis for states, corresponding to the state–effect duality, namely the con-
vex cones of states S+ and of effects E+ are dual each other.20 The state cone S+
introduces a natural partial ordering � over states and over effect (via duality),
and one has a ∈ E iff 0 � a � e. Thus the convex set E is a truncation of the
cone E+, whereas S is a base for the cone S+21 defined by the normalization
condition ω ∈ S iff ω ∈ S+ and ω(e) = 1. In the following it will be useful also
to express the probability rule ω(a) also in its dual form a(ω) = ω(a), with the
effect acting on the state as a linear functional.

By extending (5.5) to any real (complex) scalar λ we build the linear real (com-
plex) span TR = SpanR(T) (TC = SpanC(T)). The Cartesian decomposition
TC = TR⊕ iTR holds, i.e., each element A ∈ TC can be uniquely written as A =
AR + iAI , with AR,AI ∈ TR.22 Analogously, also for effects and states we define
EF,SF for F = R,C. The state–effect duality implies the linear space identifica-
tions SF ≡ EF. Thanks to such identifications and to the identity of the dimension
of a convex cone with that of its complex and real spans, in the following, without
ambiguity, we will simply write dim(S) := dim[S+(S)] ≡ dim[E+(S)]. More-
over, if there is no confusion, then with some abuse of terminology we will simply

19 For example, the identity transformation is refinable in classical Abelian probabilistic theory, where states
are of the form � = ∑l pl |l〉〈l|, with {|l〉} a complete orthonormal basis and {pl } a probability distribution.
Here the identity transformation is given by I = ∑k |k〉〈k| · |k〉〈k|, {|k〉}, which is refinable into rank-one
projection maps.

20 In infinite dimensions one also takes the closure of cones.
21 We remind the reader that a set B ⊂ C of a cone C in a vector space V is called the base of C if 0 �∈ B and for

every point u ∈ C, u �= 0, there is a unique representation u = λv, with v ∈ B and λ > 0. Then, one has that
u ∈ C spans an extreme ray of C iff u = λv, where λ > 0 and v is an extreme point of B (see Ref. [32]).

22 Note that the elements T ∈ TR can in turn be decomposed à la Jordan as T = T+ − T−, with T± ∈ T+.
However, such a decomposition is generally not unique. According to a theorem of Béllissard and Jochum [33]
the Jordan decomposition of the elements of the real span of a cone (with T± orthogonal in TR Euclidean
space) is unique if and only if the cone is self-dual.



Probabilistic theories 97

refer by “states,” “effects,” and “transformations” to the respective generalized ver-
sions that are elements of the cones, or of their real and complex linear spans.

Note that the cones of states and effects contain the origin, i.e., the null vector of
the linear space. For the cone of states one has that ω = 0 iff ω(e) = 0 (since for
any effect a one has 0 � ω(a) � ω(e) = 0, namely ω(a) = 0). On the other hand,
the hyperplane which truncates the cone of effects giving the physical convex set
E is conveniently characterized using any internal state ϑ – i.e., a state that can
be written as the convex combination of any state with some other state – by using
the following lemma.

Lemma 1. For any a ∈ E+ one has a = 0 iff ϑ(a) = 0 and a = e iff ϑ(a) = 1,
with ϑ any internal state.

Proof. For any state ω one can write ϑ = pω + (1 − p)ω′ with 0 � p � 1 and
ω′ ∈ S. Then one has ϑ(a) = 0 iff ω(a) = 0 ∀ω ∈ S, that is iff a = 0. Moreover,
one has ϑ(a) = 1 iff ω(a) = 1 ∀ω ∈ S, i.e., a = e.

5.2.6 Observables and informational completeness

An observable L is a complete set of effects L = {li } summing to the deterministic
effect as

∑
li∈L

li = e, namely li are the effects of the events of a test. An observable
L = {li } is named informationally complete for S when each effect can be written
as a real linear combination of li , namely SpanR(L) = ER(S). When the effects
of L are linearly independent the informationally complete observable is named
minimal. Clearly, since E is separating for states, any informationally complete
observable separates states, that is using an informationally complete observable
we can reconstruct also any state ω ∈ S(S) from the set of probabilities ω(li ). The
existence of a minimal informationally complete observable constructed from the
set of available tests is guaranteed by the following theorem.

Theorem 1. (Existence of minimal informationally complete observable). It is
always possible to construct a minimal informationally complete observable for S
out of a set of tests of S.

For the proof see Ref. [17].

In the following we will take a fixed minimal informationally complete observ-
able L = {li } as a reference test, with respect to which all basis-dependent repre-
sentations will be defined.

Symmetrically to the notion of an informationally complete observable we
have the notion of a separating set of states S = {ωi }, in terms of which
one can write any state as a real linear combination of the states {ωi }, namely
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SR(S) = SpanR(S). Regarded as a test S = {Si } ∈ S the set of states {ωi } corre-
sponds to the state-reduction Siω = ω(Si )ωi , ∀ω ∈ S. When the corresponding
effects [Si ]eff form an informationally complete observable the test S would be an
example of the Quantum Bureau International des Poids et Mesures of Fuchs [34].

5.2.7 Banach structures

On states ω ∈ S introduce the natural norm ||ω|| = supa∈Eω(a), which extends
to the whole linear space SR as ||ω|| = supa∈E |ω(a)|. Then, we can introduce the
dual norm on effects ||a|| := supω∈SR, |ω||�1 |ω(a)|, and then on transformations
||A || := supb∈ER,||b||�1 ||b ◦ A ||. Closures in norm (for mathematical convenience)
make ER and SR a dual Banach pair, and TR a real Banach algebra.23 Therefore,
all operational quantities can be mathematically represented as elements of such
Banach spaces.

5.2.8 The Metric

One can define a natural distance between states ω, ζ ∈ S as follows:

d(ω, ζ ) := sup
l∈E

l(ω)− l(ζ ). (5.6)

Lemma 2. The function (5.6) is a metric on S, and is bounded as 0 � d(ω, ζ )� 1.

Proof. For every effect l, e − l is also a effect, whence

d(ω, ζ ) = sup
l∈E
(l(ω)− l(ζ )) = sup

l ′∈E
((e − l ′)(ω)− (e − l ′)(ζ ))

= sup
l ′∈E
(l ′(ζ )− l ′(ω)) = d(ζ, ω), (5.7)

that is, d is symmetric. On the other hand, d(ω, ζ ) = 0 implies that ζ = ω, since
the two states must give the same probabilities for all transformations. Finally,
one has

d(ω, ζ ) = sup
l∈E
(l(ω)− l(θ)+ l(θ)− l(ζ ))

≤ sup
l∈E
(l(ω)− l(θ))+ sup

l∈E
(l(θ)− l(ζ )) = d(ω, θ)+ d(θ, ζ ), (5.8)

23 An algebra of maps over a Banach space inherits the norm induced by that of the Banach space on which it
acts. It is then easy to prove that the closure of the algebra under such a norm is a Banach algebra.
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that is, it satisfies the triangular inequality, whence d is a metric. By construction,
the distance is bounded as d(ω, ζ ) � 1, since the maximum value of d(ω, ζ ) is
achieved when l(ω) = 1 and l(ζ ) = 0.

The natural distance (5.7) is extended to a metric over SR as d(ω, ζ ) = ||ω− ζ ||
with || · || the norm over SR. Analogously we define the distance between effects
as d(a, b) := supω∈S |ω(a − b)|.24

A relevant property of the metric in (5.6) is its monotonicity, namely that the
distance between two states can never increase under deterministic evolution, as
established by the following lemma.

Lemma 3. (Monotonicity of the state distance). For every deterministic physical
transformation D ∈ T, one has

d(Dω,Dζ ) � d(ω, ζ ). (5.9)

Proof. First we notice that since D ∈ T is a physical transformation, for every
effect a ∈ E one has also a ◦D ∈ E, whence E ◦D ⊆ E. Therefore, we have

d(Dω,Dζ ) : = sup
a∈E
ω(a ◦D)− ζ(a ◦D)

= sup
a∈E◦D

ω(a)− ζ(a) � sup
a∈E
ω(a)− ζ(a) = d(ω, ζ ). (5.10)

Notice that we take the transformation deterministic only to assure that Dω is itself
a state for any ω.

5.2.9 Isometric transformations

A deterministic transformation U is called isometric if it preserves the distance
between states, namely

d(U ω,U ζ ) ≡ d(ω, ζ ), ∀ω, ζ ∈ S. (5.11)

Lemma 4. In finite dimensions, all the following properties of a transformation
are equivalent: (a) it is isometric for S; (b) it is isometric for E; (c) it is an auto-
morphism of S; and (d) it is an automorphism of E.

Proof. By definition a transformation of the convex set (of states or effects) is a
linear map of the convex set in itself. A linear isometric map of a set in itself is
isometric on the linear span of the set.25 (Recall that the natural distance between

24 It is easy to check that such a distance satisfies the trangular inequality.
25 Interestingly, the Mazur–Ulam theorem states that any surjective isometry (not necessarily linear) between

real-normed spaces is affine. Therefore, even if non-linear, it would map convex subsets to convex subsets.
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states has been extended to a metric over the whole SR.) In finite dimensions an
isometry on a normed linear space is diagonalizable [35]. Its eigenvalues must
have unit modulus, otherwise it would not be isometric. It follows that it is an
orthogonal transformation, and, since it maps the set into itself, it must be a linear
automorphism of the set. Therefore, an isometric transformation of a convex set is
an automorphism of the convex set.26

Now, automorphisms of S are isometric for E, since

d(a ◦U , b ◦U ) = sup
ω∈S

|ω((a − b) ◦U )| = sup
ω∈S

|(U ω)(a − b)|
= sup

ω∈U S
|ω(a − b)| = sup

ω∈S
|ω(a − b)| = d(a, b), (5.12)

and, similarly, automorphisms of E are isometric for S, since

sup
a∈E
[ω(a ◦U )− ζ(a ◦U )] = sup

a∈E◦U
[ω(a)− ζ(a)] = d(ω, ζ ). (5.13)

Therefore, automorphisms of S are isometric for E, whence, for the first part of
the proof, they are automorphisms of E, whence they are isometric for S.

The physical automorphisms play the role of unitary transformations in QM.

Corollary 1. (Wigner theorem). The only transformations of states that are
inverted by another transformation must send pure states to pure states, and are
isometric.

5.2.10 The C∗-algebra of transformations

We can represent the transformations as elements of TC regarded as a complex
C∗-algebra. This is obvious, since TC are by definition linear transformations of
effects, making an associative sub-algebra TC ⊆ Lin(EC) of the matrix algebra
over EC. The adjoint and norm can be easily defined in terms of any chosen scalar
product (·, ·) over EC, with the adjoint defined as (a◦A †, b) = (a, b◦A ), and the
norm as ||A || = supa∈EC

||a◦A ||/||a||, with ||a|| = √(a, a). (Notice that these norms
are different from the “natural norms” defined in Section 5.2.7.) We can then extend
the complex linear space TC by adding the adjoint transformations and taking the
norm-closure. We will denote such extension with the same symbol TC, which is
now a C∗-algebra. Indeed, upon reconstructing EC and TC from the original real
spaces via the Cartesian decomposition EC = ER ⊕ iER and TC = TR ⊕ iTR, and
introducing the scalar product on EC as the sesquilinear extension of a real sym-
metric scalar product (·, ·)R over ER, the adjoint of a real element A ∈ TR is just

26 For a convex set, an automorphism must send the set to itself keeping the convex structure, whence it must be
a one-to-one map that is linear on the span of the convex set.
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Test:= set of
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C*-algebra of transformations
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Fig. 5.1 A logical flow chart leading to the representation of any probabilistic
theory in terms of a C∗-algebra of linear transformations over the linear space of
complex effects (see also footnote 27 and Section 5.3.3 for an operational basis
for the scalar product.)

the transposed matrix A t with respect to a real basis orthonormal for (·, ·)R, and
A † := AR

t − iAI
t for a general A = AR+ iAI ∈ TC. A natural choice of matrix

representation for TR is given by its action over a minimal informational complete
observable L = {li } (the scalar product (·, ·)R := (·, ·)L will correspond to declar-
ing L as orthonormal). Upon expanding [li ◦A ]eff again over L = {li } one has the
matrix representation li ◦A =∑ j A j i l j . Using the fact that L is state-separating,
we can write the probability rule as the pairing ω(a) = (ω, a)R between ER and
SR (and analogously for their complex spans).27 In this way we see that for every
probabilistic theory one can always represent transformations/events as elements
of the C∗-algebra TC of matrices acting on the linear space of complex effects EC.
In Figure 5.1 the logical derivation of the C∗-algebra representation of the theory
is summarized.

27 The present derivation of the C∗-algebra representation of transformations is more direct than that in Ref. [17],
and is just equivalent to the probabilistic framework inherent in the notion of a “test” (see also the summary
of the whole logical deduction in the flow chart in Figure 5.1). The specific C∗-algebra in Ref. [17] possessed
operational notions of adjoint and of scalar product over effects, both constructed using a symmetric faithful
bipartite state, needing in this way two additional postulates: (a) the existence of dynamically independent
systems and (b) the existence of faithful symmetric bipartite states. Such construction is briefly reviewed in
Section 5.3.3.
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Conversely, given (1) a C∗-algebra TC, (2) the cone of transformations T+, and
(3) the vector e ∈ EC representing the deterministic effect, we can rebuild the full
probabilistic theory by constructing the cone of effects as the orbit E+ = e ◦ T+,
and taking the cone of states S+ as the dual cone of E+.28

5.3 Independent systems

5.3.1 Dynamical independence and marginal states

A purely dynamical notion of system independence coincides with the possibility of
performing local tests. To be precise, we will call systems S1 and S2 independent
if it is possible to perform their tests as local tests, i.e., in such a way that for every
joint state of S1 and S2 the transformations on S1 commute with transformations
on S2, namely29

A (1) ◦B(2) = B(2) ◦A (1), ∀A (1) ∈ A
(1), ∀B(2) ∈ B

(2). (5.14)

The local tests comprise the Cartesian product S1 × S2, which is closed under
cascade. We will close this set also under convex combination, coarse-graining,
and conditioning, making it a “system,” denote such a system with the same symbol
S1×S2, and call local all tests in S1×S2. We now compose the two systems S1 and
S2 into the bipartite system S1 S2 by adding the local tests into the new system
S1  S2 as S1  S2 ⊇ S1 × S2 and closing under cascading, coarse-graining, and
convex combination. We call the tests in S1  S2\S1 × S2 non-local, and we will
extend the local/non-local nomenclature to the pertaining transformations. In the
following for identical systems we will also use the notation S N = S S . . .
 S (N times), and Z N := Z(S N ) to denote N -partite sets/spaces, with Z =
S,S+,SR,SC,E,E+, . . ..

Since the local transformations commute, we will just put them in a string, as
(A ,B,C , . . .) := A (1) ◦ A (2) ◦ A (3) ◦ . . . (convex combinations and coarse
graining will be sums of strings). Clearly, since the probability ω(A ,B,C , . . .)
is independent of the time ordering of transformations, it is just a function only
of the effects ω(A ,B,C , . . .) = ω([A ]eff, [B]eff, [C ]eff, . . .), namely the joint
effect corresponding to local transformations is made of (sums of) local effects
[(A ,B,C , . . .)]eff ≡ ([A ]eff, [B]eff, [C ]eff, . . .).

The embedding of local tests S1 × S2 into the bipartite system S1  S2 implies
that TF(S1  S2) ⊇ TF(S1) ⊗ TF(S2) and EF(S1  S2) ⊇ EF(S1) ⊗ EF(S2),

28 The “orbit” e ◦T+ is defined as the set e ◦T+ := {e ◦A |A ∈ T+}.
29 The present definition of independent systems is purely dynamical, in the sense that it does not involve sta-

tistical requirements, e.g., the existence of factorized states. This, however, is implied by the mentioned no-
restriction hypothesis for states.
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Fig. 5.2 Illustrations of the notions of a dynamically (left) and a preparationally
(right) faithful state for a bipartite system. A bipartite state	 is dynamically faith-
ful with respect to system S1 when the output state (A ,I )	 is in one-to-one cor-
respondence with the local transformation A on system S1, whereas it is prepa-
rationally faithful with respect to S1 if every bipartite state � can be achieved as
� = (T�,I )	 via a local transformation T� on S1.

both for real and for complex spans F = R,C. On the other hand, since local
tests include local state-preparation (or, otherwise, because of the no-restriction
hypothesis for states) the set of bipartite states S(S1  S2) always includes the
factorized states, i.e., those corresponding to factorized probability rules, e.g.,

(a, b) = ω1(a)ω2(b) for local effects a and b. In parallel with local transforma-
tions and effects, we will denote factorized states as strings
 = (ω1, ω2, . . .), e.g.,
(ω1, ω2)(a, b) = ω1(a)ω2(b). Then, closure under convex combination implies
that SF(S1  S2) ⊇ SF(S1)⊗SF(S2), for F = R,C.

For N systems in the joint state 
, we define the marginal state 
|n of the nth
system as the probability rule for any local transformation A at the nth system,
with all other systems untouched, namely


|n(A ) .= 
(I , . . .,I , A︸︷︷︸
nth

,I , . . .). (5.15)

Clearly, since the probability for local transformations depends only on their
respective effects, the marginal state is equivalently defined as


|n(a) .= 
(e, . . . , e, a︸︷︷︸
nth

, e, . . .) for a ∈ E. (5.16)

It readily follows that the marginal state 
|n is independent of any determinis-
tic transformation – i.e., any test – that is performed on systems different from
the nth: this is exactly the general statement of the no-signaling condition or
acausality of local tests. Therefore, the present notion of dynamical independence
directly implies the no-signaling condition. The definition in (5.15) can be trivially
extended to unnormalized states.30,31

30 Notice that any generally unnormalized state is zero iff the joint state is zero, since 
(e, e, . . ., e) = 
n
(e) = 0.

31 The present notion of dynamical independence is indeed so minimal that it can be satisfied not only by the
quantum tensor product, but also by the quantum direct sum [36]. (Notice, however, that an analogue of
Tsirelson’s theorem [37] for transformations in finite dimensions would imply a representation of dynamical
independence over the tensor product of effects.) In order to extract only the tensor product an additional
assumption is needed. As shown in Refs. [17, 36] two possibilities are either postulating the existence of
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In the following we will use the following identities:

�|2(a) = �(e, a) = �(e, e ◦A ) = (I ,A )�(e, e), ∀A ∈ a. (5.17)

5.3.2 Faithful states

A bipartite state	 ∈ S(S1 S2) is dynamically faithful with respect to S1 when
the output state (A ,I )	 is in one-to-one correspondence with the local trans-
formation A on system S1, that is, the cone-homomorphism32 A ↔ (A ,I )	
from T+(S1) to S+(S1  S2) is a monomorphism.33 Equivalently the map
A �→ (A ,I )	 extends to an injective linear map between the linear spaces
TR(S1) and SR(S1  S2) preserving the partial ordering relative to the span-
ning cones, and this is true also in the inverse direction on the range of the
map. Notice that no physical transformation A �= 0 “annihilates” 	, i.e., gives
(A ,I )	 = 0.

A bipartite state	 ∈ S(S1 S2) is called preparationally faithful with respect
to S1 if every bipartite state � can be achieved as � = (T�,I )	 by a local
transformation T� ∈ T+(S1). This means that the cone-homomorphism A �→
(A ,I )	 from T+(S1) to S+(S1 S2) is an epimorphism. Equivalently, the map
A �→ (A ,I )	 extends to a surjective linear map between the linear spaces
TR(S1) and SR(S1  S2) preserving the partial ordering relative to the spanning
cones.

In simple words, a dynamically faithful state keeps the imprinting of a local
transformation on the output, i.e., from the output we can recover the transforma-
tion. On the other hand, a preparationally faithful state allows us to prepare any
desired joint state (probabilistically) by means of local transformations. Dynami-
cal and preparational faithfulness correspond to the properties of being separating
and cyclic for the C∗-algebra of transformations.

Theorem 2. The following assertions hold.

(1) Any state	 ∈ S(S1 S2) that is preparationally faithful with respect to S1 is dynam-
ically faithful with respect to S2.

(2) For identical systems in finite dimensions any state 	 that is preparationally faithful
with respect to a system is also dynamically faithful with respect to the same system,

bipartite states that are dynamically and preparationally faithful, or postulating the local observability princi-
ple. Here we will consider the former as a postulate, and derive the latter as a theorem.

32 A cone-homomorphism between cones C1 and C2 is a linear map between SpanR(C1) and SpanR(C2) that
sends elements of C1 to elements of C2, but not necessarily vice versa.

33 This means that (A1,I )	 = (A2,I )	 iff A1 = A2, or, in other words, ∀A ∈ TR: (A ,I )	 = 0 ⇐⇒
A = 0.
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and one has the cone-isomorphism34 T+(S) � S+(S 2). Moreover, a local transfor-
mation on 	 produces an output pure (unnormalized) bipartite state iff the transfor-
mation is atomic.

(3) If there exists a state of S1 S2 that is preparationally faithful with respect to S1, then
dim(S1) � dim(S2).

(4) If there exists a state of S1  S2 that is preparationally faithful with respect to both
systems, then one has the cone-isomorphisms E+(S1) � S+(S2) and E+(S2) �
S+(S1).

(5) If for two identical systems there exists a state that is preparationally faithful with
respect to both systems, then one has the cone-isomorphism S+ � E+ (weak self-
duality).

(6) If the state 	 ∈ S(S1  S2) is preparationally faithful with respect to S1, then for
any invertible transformation A ∈ T+(S1) also the (unnormalized) state (A ,I )	
is preparationally faithful with respect to the same system. In particular, it will be a
faithful state for any physical automorphism of S(S1).35

(7) For identical systems in finite dimensions, for	 preparationally faithful with respect to
both systems, the state χ := 	(e, ·) is cyclic in S+(S) under T+(S), and the observ-
ables L = {li } of S2 are in one-to-one correspondence with the ensemble decomposi-
tions {ρi }|L|i=1 of χ , with ρi := 	(li , ·), and χ is an internal state.

Proof.

(1) Introduce the map ω �→Tω where for every ω∈S(S2) one chooses a local trans-
formation Tω on S1 such that (Tω,I )	|2 = ω. This is possible because 	
is preparationally faithful with respect to S1. One has A ω = (Tω,A )	|2 =
(Tω,I )(I ,A )	|2 ∀ω ∈ S(S2). Therefore, from (I ,A )	 one can recover the
action of A on any state ω by first applying (Tω,I ) and then take the marginal, i.e.,
one recovers A from (I ,A )	, which is another way of saying that A �→ (I ,A )	

is injective, namely 	 is dynamically faithful with respect to S2.
(2) Denote by 	 ∈ S 2 a state that is preparationally faithful with respect to S1. Since

the linear map A �→ (A ,I )	 from TR to S 2
R

is surjective, one has dim(TR)

� dim(S 2
R
). However, one has also dim(TR) � dim(S 2

R
) since TR ⊆ Lin(SR) �

S⊗2
R
⊆ S 2

R
, whence dim(TR) = dim(S 2

R
), and, having null kernel, the map is also

injective, whence 	 is dynamically faithful with respect to S1. Since now the state 	
is both preparationally and dynamically faithful with respect to the same system S1, it

34 We say that two cones C1 and C2 are isomorphic (denoted as C1 � C2) if there exists a one-to-one linear
mapping between SpanR(C1) and SpanR(C2) that is cone-preserving in both directions. We will call such a
map a cone-isomorphism between the two cones. Such a map will send extremal rays of C1 to extremal rays
of C2 and positive linear combinations to positive linear combinations, and the same is true for the inverse
map.

35 One may be tempted to consider all automorphisms of S(S1), instead of just the physical ones. However,
there is no guarantee that any automorphism will be also an automorphism of bipartite states when applied
locally. This is the case of QM, where the transposition is an automorphism of S(S1), and nevertheless is not
a local automorphism of S(S1  S2).
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follows that the map A �→ (A ,I )	 establishes the cone-isomorphism T+ � S 2+ .
Since the faithful state establishes the cone-isomorphism T+ � S 2+ , it maps extremal
rays of T+ to extremal rays of S 2+ and vice versa; that is, A ∈ Erays(T+) iff
(A ,I )	 ∈ Erays(S 2+ ).

(3) For 	 preparationally faithful with respect to S1, consider the cone homomorphism
a �→ ωa := 	(a, ·) which associates an (unnormalized) state ωa ∈ S+(S2) with
each effect a ∈ E+(S1). The extension to a linear map a �→ωa between the lin-
ear spaces SR(S2) and ER(S1) preserves the cone structure, and is surjective, since
	 is preparationally faithful with respect to S1 (whence every bipartite state, and,
in particular, every marginal state, can be obtained from a local effect). The bound
dim(S1) � dim(S2) then follows from surjectivity.

(4) Similarly to the proof of item (1), consider the map λ �→ Tλ, where for every marginal
state λ ∈ S(S1) one chooses a local transformation Tλ on S2 such that (I ,Tλ)	|1 =
λ (	 is preparationally faithful with respect to S2). Then, one has

∀λ ∈ S(S1), λ(a) = (I ,Tλ)	(a, e) = 	(a,Tλ) = ωa(Tλ). (5.18)

It follows that ωa = ωb implies that λ(a) = λ(b) for all states λ ∈ S(S1); that
is, a = b, whence the homomorphism a �→ ωa which is surjective (since 	 is
preparationally faithful) is also injective, i.e., is bijective, and, since it maps ele-
ments of E+(S1) to elements of S+(S2) and, vice versa, to each element of S+(S2),
it corresponds to an element of E+(S1) (	 is preparationally faithful), thus it is
a cone-isomorphism. We then have the cone-isomorphism E+(S1)�S+(S2). The
cone-isomorphism E+(S2) � S+(S1) follows on exchanging the two systems.

(5) According to point (4) one has the cone-isomorphism E+(S1) � S+(S2) � S+(S1).
(6) This is obvious, from the definition of a preparationally faithful state.
(7) According to (4) ωa := 	(a, ·) establishes the cone-isomorphism E+(S) � S+(S).

On the other hand, since the state is both preparationally and dynamically faithful
for either system, then for any transformation T on the first system there exists a
unique transformation T ′ on the other system giving the same output state (see also
the definition of the “transposed” transformation with respect to a dynamically faithful
state in the following). Therefore, since any effect a can be written as a = e ◦ Ta for
any Ta ∈ a, one has ωa = 	(e ◦ Ta, ·) = 	(e, · ◦ T ′

a ) = T ′
aχ . The observable–

ensemble correspondence and the fact that χ is an internal state are both immediate
consequences of the fact that ωa := 	(a, ·) is a cone-isomorphism.

The transposed of a transformation (Figure 5.3). For a symmetric bipartite state
	 of two identical systems that is preparationally faithful for one system – hence,
according to Theorem 2, is both dynamically and preparationally faithful with
respect to both systems – one can define operationally the transposed T ′ of a
transformation T ∈ TR through the identity

	(a, b ◦T ) = 	(a ◦T ′, b), (5.19)
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Fig. 5.3 An illustration of the notion of the transposed of a transformation for a
symmetric dynamically and preparationally faithful state.

i.e., (T ′,I )	 = (I ,T )	, namely, operationally the transposed T ′ of a trans-
formation T is the transformation which will give the same output bipartite state
of T if operated on the twin system. It is easy to verify (using the symmetry of 	)
that T ′′ = T and that (B ◦A )′ = A ′ ◦B′.

We are now in position to formulate the main postulate.

Postulate PFAITH (Existence of a symmetric preparationally faithful pure
state). For any couple of identical systems, there exists a symmetric (under per-
mutation of the two systems) pure state that is preparationally faithful.

Theorem 2 guarantees that such a state is both dynamically and preparationally
faithful, and with respect to both systems, as a consequence of symmetry.36 Pos-
tulate PFAITH thus guarantees that to any system we can adjoin an ancilla and
prepare a pure state that is dynamically and preparationally faithful with respect
to our system. This is operationally crucial in guaranteeing the preparability of
any quantum state for any bipartite system using only local transformations, and
to assure the possibility of experimental calibrability of tests for any system.
Notice that it would be impossible, even in principle, to calibrate transforma-
tions without a dynamically faithful state, since any set of input states {ωn} ∈ S′

that is “separating” for transformations T(S′) is equivalent to a bipartite state
	 = ∑n ωn ⊗ λn ∈ S(S′  S′′) that is dynamically faithful for S′, with the
states {λn} working just as “flags” representing the “knowledge” of which state of
the set {ωn} has been prepared. Notice that in QM every maximal Schmidt-number
entangled state of two identical systems is both preparationally and dynamically
faithful for both systems. In classical mechanics, on the other hand, a state of the
form	 =∑l |l〉〈l| ⊗ |l〉〈l| with {|l〉} a complete orthogonal set of states (see foot-
note 19) will be both dynamically and preparationally faithful; however, being not
pure, it would require a (possibly unlimited) sequence of preparations.

On the mathematical side, instead, according to Theorem 2 Postulate
PFAITH restricts the theory to the weakly self-dual scenario (i.e., with the

36 In fact, upon denoting by T� the local transformation such that (T ,I )	 = �, one has (I ,TS�)	 = �,
S denoting the transformation swapping the two systems.
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cone-isomorphism S+ � E+), and in finite dimensions one also has the cone-
isomorphism T+(S) � S+(S 2). In addition, one also has the following very
useful lemma.

Lemma 5. For finite dimensions Postulate PFAITH implies that the linear space
of transformations is full, i.e., TF = Lin(EF). Moreover, one has SF(S 2) =
SF(S)⊗2 and EF(S 2) = EF(S)⊗2 for F = R,C, that is, bipartite states and
effects are cones spanning the tensor products S⊗2

F
and E⊗2

F
, respectively.

Proof. In the following we restrict to finite dimensions, with F = R,C denot-
ing either the real or the complex fields, respectively. According to item (2) of
Theorem 2, for two identical systems the existence of a state that is preparationally
faithful with respect to either one of the two systems implies SF(S 2) � TF(S).
Since transformations act linearly over effects, one has TF ⊆ Lin(EF) � E⊗2

F
,

whence EF(S 2)�SF(S 2) � TF(S)⊆EF(S)⊗2. However, by local-test embed-
ding one also has EF(S 2)⊇EF(S)⊗2, whence EF(S 2) = EF(S)⊗2, which
implies that TF = Lin(EF). Finally, by virtue of state-effect duality one also has
SF(S 2) = S⊗2

F
(S).

The above lemma could have been extended to couples of different systems.
However, this would necessitate the consideration of more general transformations
between different systems (see footnote 13).

We conclude that Postulate PFAITH – i.e., the existence of a symmetric prepara-
tionally faithful pure state for bipartite systems – guarantees that we can repre-
sent bipartite quantities (states, effects, transformations) as elements of the tensor
product of the single-system spaces. This fact also implies the following relevant
principle.

Corollary 2. (Local observability principle). For every composite system there
exist informationally complete observables made of local informationally complete
observables.

Proof. A joint observable made of local observables L = {li } on S1 and M = {m j }
on S2 is of the form L×M = {(li ,m j )}. Then, by definition, the statement of the
corollary is ER(S 2) ⊆ SpanR(L × M) = E⊗2

R
(S), which is true according to

Lemma 5.

Operationally, the local-observability principle plays a crucial role, since it
reduces enormously experimental complexity, by guaranteeing that only local
(although jointly executed) tests are sufficient to retrieve complete information on
a composite system, including all correlations between the components. This prin-
ciple reconciles holism with reductionism in a non-local theory, in the sense that
we can observe a holistic nature in a reductionistic way, i.e., locally.



Probabilistic theories 109

In addition to Lemma 5 and to the local-observability principle, Postulate
PFAITH has a long list of remarkable consequences for the probabilistic theory,
which are given by the following theorem.

Theorem 3. If PFAITH holds, the following assertions are true.

(1) The identity transformation is atomic.
(2) One has ωa◦A ′ = A ωa, or equivalently A ω = 	(aω ◦A ′, ·), where A ′ denotes the

transposed of A with respect to 	.
(3) The transposed of a physical automorphism of the set of states is still a physical auto-

morphism of the set of states.
(4) The marginal state χ is invariant under the transposed of a channel (deterministic

transformation) and hence, in particular, under a physical automorphism of the set of
states.

(5) Alice can perform perfect EPR-cheating in a perfect concealing bit-commitment
protocol.

Proof.

(1) According to Theorem 2 item (2), the map A �→ (A ,I )	 establishes the cone-
isomorphism T+ � S 2+ , whence on mapping extremal rays of T+ to extremal rays
of S 2+ and vice versa it maps the state 	 itself (which is pure) to the identity, which
then must be atomic.

(2) Immediate definition of the transposition with respect to the dynamically faithful
state 	.

(3) Point (2) establishes that the transposed of a state-automorphism is an effect automor-
phism, which, due to the cone-isomorphism, is again a state-automorphism (see also
footnote 35).

(4) For deterministic T one has T ′χ = 	(e, · ◦ T ′) = 	(e · T , ·) = 	(e, ·) = χ . The
last statement follows from (3) (see also footnote 35).

(5) (For the definition of the protocol, see Ref. [38]). For the protocol to be concealing
there must exist two ensembles of states {ρA

i } and {ρB
i } that are indistinguishable by

Bob. For
∑

i ρ
A
i = ∑i ρ

B
i = χ these correspond to the two observables A = {ai }

and B = {bi } with ρA
i = 	(ai , ·) and ρB

i = 	(bi , ·). Instead of sending to Bob a
state from either one of the two ensembles, Alice can cheat by “entangling” her ancilla
(system S1) with Bob’s system in the state 	, and then measuring either one of the
observables A = {ai } and B = {bi }.

Notice that atomicity of identity occurs in QM, whereas it is not true in a classical
probabilistic theory (see footnote 19). In classical mechanics one can gain infor-
mation on the state without making a disturbance thanks to the non-atomicity of
the identity transformation. According to Theorem 3 item (1) the need of distur-
bance for gaining information is a consequence of the purity of the preparationally
faithful state, whence disturbance is the price to be paid for the reduction of the
preparation complexity.
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5.3.3 The Scalar product over effects induced by a symmetric faithful state

In this subsection I briefly review the construction in Ref. [17] of a scalar product
over EC via a symmetric faithful state, together with the corresponding operational
definition of “transposed” and “complex conjugation” – with the composition of
the two giving the adjoint.

According to Theorem 2 item (2), for two identical systems in finite dimensions
any state that is preparationally faithful with respect to a system is also dynami-
cally faithful with respect to the same system. Moreover, according to Postulate
PFAITH, there always exists such a state, say 	, which is symmetric under per-
mutation of the two systems. The state 	 is then a symmetric real form over ER,
whence it provides a non-degenerate scalar product over ER via its Jordan form

∀a, b ∈ ER, 	(b|a)	 := |	|(b, a) = 	(ς(b), a), (5.20)

where ς is the involution ς = π+−π−, π± denoting the orthogonal projectors over
the positive (negative) eigenspaces of the symmetric form, or, explicitly, ς(a) :=∑

j 	(a, f̃ j ) f̃ j and { f̃ j } is the canonical Jordan basis.37 Notice that the Jordan
form is representation-dependent – i.e., it is defined through the reference test L =
{li } – whereas its signature – i.e., the difference between the numbers of positive
and negative eigenvalues – will be a property of the system S, and will generally
depend on the specific probabilistic theory. For transformations T ∈ TR we define
a ◦ ς(T ) := ς(ς(a) ◦T ) =: a ◦Z ◦T ◦Z . For the identity transformation we
have ς(I ) = Z ◦Z = I . Corresponding to a symmetric faithful bipartite state
	 one has the generalized transformation T	, given by

a ◦T	 :=
∑

k

	(lk, a)lk, (5.21)

for a fixed orthonormal basis L = {l j }, and in terms of the corresponding symmet-
ric scalar product (·, ·)L introduced in Section 5.2.10, one has

(a, b ◦T	)L = (a ◦T	, b)L = 	(a, b). (5.22)

Using the dynamical and preparational faithfulness of 	 we have defined oper-
ationally the transposed T ′ of a transformation T ∈ TR. Such an “opera-
tional” transposed is related to the transposed C̃ under the scalar product (·, ·)L
as C ′ = T	 ◦ C̃ ◦T −1

	 . It is easy to check that Z̃ = Z = Z ′.
On the complex linear span TC one can introduce a scalar product as the

sesquilinear extension of the real symmetric scalar product (·, ·)	 over ER via

37 In the diagonalizing orthonormal basis one has s j δi j = 	( f̃i , f̃ j ) = |λ j |−1	( fi , f j ), s j = ±1, f̃ j =
f j /
√|λ j |.



Probabilistic theories 111

the complex conjugation η(T ) = TR − iTI, TR,I ∈ TR, and the adjoint for the
sesquilinear scalar product is then given by

T † = Z ◦ η(T ′) ◦Z = |T	| ◦ η(T̃ ) ◦ |T	|−1, (5.23)

namely T † = Z ◦ T ′ ◦ Z on real transformations T ∈ TR. The Jordan invo-
lution ς thus plays the role of a complex conjugation on TR, which must be anti-
linearly extended to TC.

The faithful state 	 becomes a cyclic and separating vector of a GNS represen-
tation on noticing that (A (2)	)(ηςb, a) = 	(b, a ◦A )	,38 and in (5.23) one can
recognize the Tomita–Takesaki modular operator of the representation [39].

5.4 Axiomatic interlude: exploring Postulates FAITHE and PURIFY

In this section we investigate two additional postulates of a probabilistic theory:
Postulate FAITHE – the existence of a faithful effect (somehow dual to Postulate
PFAITH) – and Postulate PURIFY – the existence of a purification for every state.
As we will see, these new postulates bring the probabilistic theory closer and closer
to QM. However, I was still unable to prove (or to find counterexamples) that with
these two additional postulates the probabilistic theory is QM.

5.4.1 FAITHE: a postulate on a faithful effect

As previously mentioned, Postulate FAITHE is somehow the dual version of Pos-
tulate PFAITH.39

Postulate FAITHE (Existence of a faithful effect). There exists a bipartite effect
F ∈ E(S 2) achieving the inverse of the isomorphism a �→ ωa := 	(a, ·). More
precisely,

38 The action of the algebra of generalized transformations on the first system corresponds to the transposed
representation (A (1)	)(ηςb, a) = 	(ηςb ◦A , a) = 	(ηςb, a ◦A ′) = (A ′(2)	)(ηςb, a).

39 At first sight it seems that the existence of an effect F such that F23	12	34 = α	14 could be derived
directly from PFAITH. Indeed, according to Lemma 5 for finite dimensions and identical systems we have
SF(S

 2) = SF(S)
⊗2 and EF(S

 2) = EF(S)
⊗2 for F = R,C. Moreover, according to Theorem 2

item (4) the map a �→ ωa = 	(a, ·), for	 symmetric preparationally faithful achieves the cone-isomorphism
S+ � E+, whence for the bipartite system one has S+(S 2) � E+(S 2). This leads one to think that it
should be possible to achieve a preparationally faithful state for S 4 as the product 	12	34. However, this
is not necessarily true. In fact, since the map EF(S)

⊗2 � E �→ 
E = E23	12	34 is a linear bijection
between EF(S)

⊗2 and SF(S)
⊗2 (since SpanF{	12(·, a)	34(b, ·)|a, b ∈ E} = SF(S)

⊗2 = SF(S
 2))

is cone-preserving, it sends separable effects to separable states, whence it sends non-separable effects to
non-separable states (since it is one-to-one). However, it doesn’t necessarily achieve the cone-isomorphism
S+(S 2) � E+(S 2), since it is not necessarily true that any bipartite state 
 is the mapped of a bipartite
effect E
 (we remember that a cone-isomorphism is a bijection that preserves the cone in both directions).
If by chance this were the case – i.e., E �→ 
E is a cone-isomorphism for S 2 – then this would mean that
there exists an effect F ∈ E(S 2) such that 
F = α	, with 0 < α � 1.
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F23(ωa)2 = F23	12(a, ·) = αa3, 0 < α � 1. (5.24)

Notice that, since	 establishes an isomorphism between the cones of states and
effects, there must exist a generalized effect F ∈ E⊗2

R
satisfying (5.24), but we are

not guaranteed that it is a physical one, i.e., F ∈ E+(S 2).
Let’s denote by F̂ = α−1 F the rescaled effect in the cone. Equation (5.24) can

be rewritten in different notation as follows:

F̂(ωa, ·) = F̂(	(a, ·), ·) = a, (5.25)

	(aω, ·) = 	(F̂(ω, ·), ·) = ω. (5.26)

(One needs to be careful with the notation in the multipartite case, e.g., in (5.26)
	(F̂(ω, ·), ·) = ω is actually a state, since F̂(ω, ·) is an effect, etc.) Both faithful
state	 and faithful effect F can be used to express the state–effect pairing, namely

ζ(b) = 	(aζ , b) = F̂(ωb, ζ ), aζ := F̂(ζ, ·), ωb := 	(b, ·), (5.27)

or, substituting,

ζ(b) = 	(F̂(ζ, ·), b) = F̂(	(b, ·), ζ ). (5.28)

Equation (5.24) can also be rewritten as follows:

F23	12 = α Swap13, (5.29)

where Swapi j denotes the transformation swapping Si with S j . In Figure 5.4 Pos-
tulate FAITHE is illustrated graphically.

Equation (5.29) means that by using the state	 and the effect F one can achieve
probabilistic teleportation of states from S2 to S4. In fact, one has

F23ω2	34 = F23	12(aω, ·)	34 = α	14(aω, ·) = αω4. (5.30)

Using the last identity we can also see that Postulate FAITHE is also equivalent to
the identity

F23	12	34 = α	14, (5.31)

which by linearity is extended from local effects to all effects, by virtue of E 2 =
E⊗2. With equivalent notation we can write (	,	)(·, F, ·) = α	.

Fig. 5.4 An illustration of Postulate FAITHE.
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The effect F is also completely faithful, in the sense that the correspondence
FA := F ◦ (A ′,I )⇐⇒ A is bijective (in finite dimensions). In fact one has

[F ◦ (A ′,I )]23(	,	) = α(A ,I )	, (5.32)

and, since 	 is dynamically faithful (it is symmetric preparationally faithful), the
correspondence FA := F ◦ (A ′,I )⇐⇒ A is one-to-one and surjective, whence
it is a bijection (in finite dimensions). It is also easy to see that F ◦ (A ′,I ) =
F ◦ (I ,A ), since

[F ◦ (I ,A )]23(	,	) = F23(	, (A ,I )	) = F23(	, (I ,A
′)	)

= α(I ,A ′)	 = α(A ,I )	 = [F ◦ (A ′,I )]23(	,	),

(5.33)

whence transposition can be equivalently defined with respect to the faithful effect
F . The bijection FA := F ◦(I ,A )⇐⇒ A is cone-preserving in both directions,
since to every transformation there corresponds an effect, and to each effect A ∈
E(S 2) there corresponds a transformation, since

A23(	,	) = 
A = (T
A ,I )	 =: (TA,I )	. (5.34)

Therefore, the map A �→ FA realizes the cone-isomorphism E+(S 2) � T+(S),
which is just the composition of the weak self-duality and of the isomorphism
S+(S 2) � T+(S) due to PFAITH. However, as mentioned in footnote 39, the
map

E+(S 2) � A �→ 
A := A23(	,	) ∈ S(S 2) (5.35)

is bijective between SF(S 2) and EF(S 2), but it does not realize the cone-isomor-
phism S+(S 2) � E+(S 2), since it is not surjective over E+(S 2). Indeed, for
A ∈ E(S 2) physical effect, one has A23(	,	) = (TA,I )	 with TA ∈ T(S)
physical transformation. However, there is no guarantee that, vice versa, a physical
transformation always has a corresponding physical effect, e.g., for the identity
transformation in (5.31). It also follows that any bipartite observable A = {Al}
leads to the totally depolarizing channel T(e,e)ω = χ , ∀ω ∈ S.40 Using the
faithfulness of F it is possible to achieve probabilistically any transformation on
a state ω by performing a joint test on the system interacting with an ancilla, i.e.,
(ω	)(FA ′, ·) = αA ω (for Stinespring-like dilations in an operational context see
Ref. [31]).

40 Indeed, one has
∑

l (Al )23ω2	34 = (e, e)23ω2	34 = 	12(aω, e)	34(e, ·) = ω(e)χ .



114 G. M. D’Ariano

More about the constant α. Notice that the number 0 < α � 1 is the probability
of achieving teleportation α = (F23ω2	34)(e). It is independent of the state ω,
and depends only on F , since it is given by α ≡ αF = [F23	12	34](e, e). The
maximum value maximized over all bipartite effects

α(S) = max
A∈E(S 2)

{(	,	)(e, A, e)} (5.36)

is a property of the system S only, and depends on the particular probabilistic
theory.

More on the relation between Postulates PFAITH and FAITHE. Postulate
PFAITH guarantees the existence of a symmetric preparationally faithful state for
each pair of identical systems S 2. Now, consider the bipartite system S 2  S 2,
and denote by � a symmetric preparationally faithful state for it. The map A �→

A := �(A, ·, ·) ∀A ∈ E(S 2) establishes the state–effect cone-isomorphism for
S 2, whence there must exist an effect A	 such that

�(A	, ·, ·) = β	, 0 < β � 1. (5.37)

Suppose now that the faithful state can be chosen in such a way that it maps sepa-
rable states to separable effects as follows:

�(·, ·, (a, b)) = γ (ωa, ωb) = γ	(·, a)	(·, b), γ > 0. (5.38)

Then one has

γ (A	)13(	,	) = �(A	, ·, ·) = β	, (5.39)

namely, according to (5.31) one has β−1γ A	≡ F̂ , which is the effect whose
existence is postulated by FAITHE. Notice, however, that the factorization (5.38)
doesn’t need to be satisfied. In other words, the automorphism relating the cone-
isomorphism induced by � to another cone-isomorphism that preserves local
effects may be unphysical (see also footnote 39). One can instead require a stronger
version of postulate PFAITH, postulating the existence of a preparationally super-
faithful symmetric state	, also achieving a four-partite preparationally symmetric
faithful state � as (	,	) = �. A weaker version of such a postulate is thoroughly
analyzed in Ref. [31], where it is also shown that it leads to Stinespring-like dila-
tions of deterministic transformations.

The case of QM. It is a useful exercise to see how the present framework trans-
lates into the quantum case, and find which additional constraints can arise from
a specific probabilistic theory. For simplicity we consider a maximally entangled
state (with all positive amplitudes in a fixed basis) as a preparationally symmetric
state 	. The corresponding marginal state is given by the density matrix d−1 I , I
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denoting the identity on the Hilbert space. For the constant α one has α = d−2,
where d is the dimension of the Hilbert space. A simple calculation shows that the
identity ωa = T ′

a χ for Ta ∈ a translates to41

ωa = √ας(a), ⇐ in QM, (5.40)

where the involution ς of the Jordan form in (5.20) here is also an automorphism of
states/effects, whence identity (5.40) expresses the self-duality of QM. On rewrit-
ing (5.40) in terms of the faithful effect F (which would be an element of a Bell
measurement), one obtains42

(·, F)(	, ·) = √α|	|, ⇐ in QM. (5.41)

Another feature of QM is that the preparationally faithful symmetric state 	 is
super-faithful, namely � = (	,	) is preparationally faithful for S 4.

5.4.2 PURIFY: a postulate on purifiability of all states

In the present section for completeness I briefly explore the consequences of
assuming purifiability for all states, namely the following postulate.

Postulate PURIFY (Purifiability of states). For every state ω of S there exists a
pure bipartite state 
 of S 2 having it as marginal state, namely

∀ω ∈ S(S), ∃
 ∈ S(S 2) pure, such that 
(e, ·) = ω. (5.42)

Postulate PURIFY has been analyzed in Ref. [31], where the following lemma
is proved.

Lemma 6. If Postulate PFAITH holds, then Postulate PURIFY implies the follow-
ing assertions.

(1) Even without assuming purity of the preparationally faithful state	, the identity trans-
formation is atomic, and purity of 	 can be derived.

(2) S+ ≡ Erays(T+)χ , i.e., each state can be obtained by applying an atomic transfor-
mation to the marginal state χ := 	(e, ·).

(3) E+ ≡ e ◦Erays(T+), i.e., each effect can be achieved with an atomic transformation.

Points (2) and (3) correspond to the square root of states and effects in the quan-
tum case.

41 For 	 = d−1∑
nm |n〉|n〉〈m|〈m| the marginal state is χ = d−1 I and the Jordan involution is the com-

plex conjugation with respect to the orthonormal basis {|n〉}. For quantum operation T = ∑n Tn · T †
n with

corresponding effect a =∑n T †
n Tn , one has T ′χ = d−1∑

n Tn
t T ∗n = d−1∑

n(T
†
n Tn)

∗ = √ας(a).
42 In fact, one has ωa := 	(a, ·) = √

ας(a), namely 	(ς(a), ·) = √
αa, i.e., |	|(a, ·) = √

αa, and, using
(5.25), one has

√
α F̂(	(a, ·), ·) = |	|(a, ·), namely the statement.
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5.5 What is special about quantum mechanics as a probabilistic theory?

The mathematical representation of the operational probabilistic framework
derived up to now is completely general for any fair operational framework that
allows local tests, test-calibration, and state preparation. These include not only
QM and classical–quantum hybrid, but also other non-signaling non-local proba-
bilistic theories such as the PR-boxes theories [20]. Postulate PFAITH has proved
to be remarkably powerful, implying (1) the local observability principle, (2) the
tensor-product structure for the linear spaces of states and effects, (3) weak self-
duality, (4) realization of all states as transformations of the marginal faithful
state 	(e, ·), (5) locally indistinguishable ensembles of states corresponding to
local observables – i.e., EPR-cheating in bit commitment – and more. By adding
FAITHE one even has teleportation! However, despite all these positive landmarks,
it is still unclear whether one can derive QM from these principles only.

What is then special about QM? The peculiarity of QM among probabilistic
operational theories is the following.

Effects can not only be linearly combined, but also can be composed of each other, so
that complex effects make a C∗-algebra.

Operationally the last assertion is odd, since the notion of effect abhors com-
position! Therefore, the composition of effects (i.e., the fact that they make a
C∗-algebra, i.e., an operator algebra over complex Hilbert spaces) must be derived
from additional postulates. What I will show here is the following.

With a single mathematical postulate, and assuming atomicity of evolution, one can
derive the composition of effects in terms of composition of atomic events.

One thus is left with the problem of translating the remaining mathematical postu-
late into an operational one. Let’s now examine the two postulates.

Postulate AE (Atomicity of evolution). The composition of atomic transforma-
tions is atomic.

This postulate is so natural that it looks obvious.43 However, even though for
atomic events A and B the event C = B◦A is not refinable in the corresponding
cascade-test, there is no guarantee that C is not refinable in any other test. We
remember that mathematically atomic events belong to Erays(T+), the extremal
rays of the cone of transformations.

We now state the mathematical postulate.

43 Indeed, when joining events A and B into the event A ∧B, the latter is atomic if both A and B are atomic.
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Fig. 5.5 The Choi–Jamiolkowski isomorphism between the cone T+ of physical
transformations and the cone Lin+(EC) of positive matrices over complex effects
establishes a one-to-one correspondence between extremal-ray points of the two
cones, identifying effects (modulo a phase) with atomic transformations (the lines
over the cones represent a pair of corresponding rays).

Mathematical Postulate CJ (Choi–Jamiolkowski isomorphism (Figure 5.5)).
The cone of transformations is isomorphic44 to the cone of positive bilinear forms
over complex effects [27, 28], i.e., T+ � Lin+(EC).

In terms of a sesquilinear scalar product over complex effects, positive bilinear
forms can be regarded as positive matrices over complex effects, i.e., elements of
the cone Lin+(EC).

The extremal rays Erays(Lin+(EC)) are rank-one positive operators |x〉〈x | ∈
Erays(Lin+(EC)) with x ∈ EC, and the map π : x �→ π(x) := |x〉〈x | is surjective
over Erays(Lin+(EC)). One has π(xeiφ) = π(x), and π−1(|x〉〈x |) = {eiφx} ⊆ EC,
i.e., the set of complex effects mapped to the same rank-one positive operator is
the set of complex effects that differ only by a multiplicative phase factor. We will
denote by |x | ∈ EC a fixed choice of representative for such an equivalence class,45

introduce the phase corresponding to such a choice as x =: |x |eiφ(x), and denote
by EC/φ the set of equivalence classes, or, equivalently, of their representatives.
Now, since the representatives |x | ∈ EC/φ are in one-to-one correspondence with
the points on Erays(Lin+(EC)), the CJ isomorphism establishes a bijective map
between EC/φ and Erays(T+) as follows:

τ : EC/φ � |x | ↔ τ(|x |) ∈ Erays(T+). (5.43)

5.5.1 Building up an associative algebra structure for complex effects

Assuming Postulate AE, we can introduce an associative composition between the
effects in EC/φ via the bijection τ ,

|a||b| := τ−1(τ (|a|) ◦ τ(|b|)). (5.44)

44 For the definition of cone-isomorphisms, see footnote 34.
45 An example of choice of representative is given by ||x |〉 := 〈eι(x)|π(x)|eι(x)〉−1/2π(x)|eι(x)〉, namely |x | :=
|(x, eι(x))|−1(x, eι(x))x , with ι(x) = min{i : (x, ei ) �= 0}, for given fixed basis for EC.
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Notice that, by definition, |a||b| is a representative of an equivalence class in EC,
whence |(|a||b|)| = |a||b|. The above composition is extended to all elements of
EC by taking

ab := |a||b|eiφ(a)eiφ(b), (5.45)

and, since |(|a||b|)| = |a||b|, one has |ab| = |a||b|, and φ(ab) = φ(a) + φ(b). It
follows that the extension is itself associative, since

(ab)c = |ab||c|eiφ(ab)+iφ(c) = |a||b||c|eiφ(a)+iφ(b)+iφ(c)

= |a||bc|eiφ(a)+iφ(bc) = a(bc). (5.46)

The composition is also distributive with respect to the sum, since it follows the
same rules as those of complex numbers. We will denote by ι the identity in EC/φ

when it exists, which also works as an identity for multiplication of effects as in
(5.45). Notice that, since the identity transformation I is atomic, one has ι :=
τ−1(I ) ∈ EC/φ according to (5.44).

5.5.2 Building up a C∗-algebra structure over complex effects

We want now to introduce a notion of adjoint for effects. We will do this in two
steps: (a) we introduce an antilinear involution on the linear space EC; (b) we
extend the associative product (5.45) under such antilinear involution.

(a) First we notice that the complex space EC has been constructed as EC = ER ⊕ iER

starting from real combinations of physical effects ER = SpanR(E+), i.e., one has the
unique Cartesian decomposition x = xR + ixI of x ∈ EC in terms of xR, xI ∈ ER. We
can then define the antilinear dagger involution † on EC by taking x† = x ∀x ∈ ER

and x† := xR− ixI ∀x ∈ EC. Notice that EC is closed under such involution. On taking
the involution of the defining identity x =: |x |eiφ(x) one has |x†| = |x |†e−iφ(x†)−iφ(x),
which is consistently satisfied by choosing |x†| = |x |† and φ(x†) = −φ(x) ∀x ∈ EC

(these identities are satisfied, e.g., for the choice of representative in footnote 45).
(b) The multiplications a†b and ab† are defined via the scalar product over EC as fol-

lows:46

∀c ∈ EC: (c, a†b) := (ac, b), (c, ab†) := (cb, a). (5.47)

This is possible since the scalar product over EC is supposed to be non-degenerate. It
is then easy to verify that one has the identities (ab)† = b†a† and ι† = ι.

In this way EC is closed under complex linear combinations, the adjoint, and asso-
ciative composition, and possibly contains the identity element ι; that is, it is an

46 The right and left multiplications are just special elements of the algebra Lin(EC), whence their adjoints are
definable via the scalar product as usual.
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associative complex algebra with adjoint, closed with respect to the adjoint. The
scalar product on EC in conjunction with the identity leads to a strictly positive lin-
ear form over EC, defined as	 = (ι, ·), and one has	(a†b) = (ι, a†b) = (a, b).47

Such a form is also a trace, i.e., it satisfies the identity	(ba) = 	(ab), which can
be easily verified using definitions (5.47).48 The complex linear space of the alge-
bra closed with respect to the norm induced by the scalar product makes it a Hilbert
space, and the action of the algebra over itself regarded as a Hilbert space makes it
an operator algebra.49 It is a standard result of the theory of operator algebras that
the closure of EC under the operator norm (which is guaranteed in finite dimen-
sions) is a C∗-algebra. We have therefore built a C∗-algebra structure over the
complex linear space of effects EC. This is the cyclic representation [39] given by

	(a) = 〈ι|π	(a)|ι〉, (5.48)

π	 denoting the algebra representation corresponding to 	.50 In our case one has
π	(a)|ι〉= |a〉, along with the trace property 〈ι|π	(a)π	(b)|ι〉= 〈ι|π	(b)π	(a)|ι〉.
The latter can be actually realized as a trace as 	(a†b)=Tr [O(a)† O(b)], via a
faithful representation O: a �→ O(a) ∈ Lin(H) of the algebra EC as a sub-algebra
of Lin(H) of operators over a Hilbert space H with dimension dim(H)2 � dim(EC).
In this way, one has π	(a) = (O(a) ⊗ I ) with the cyclic vector represented as
|ι〉 =∑n |n〉 ⊗ |n〉, {|n〉} being any orthonormal basis for H.

5.5.3 Recovering the action of transformations over effects

In order to complete the mathematical representation of the probabilistic theory, we
now need to define the action of the elements of TC over EC, and to select the cone
of physical transformations T+. We will show that T+ is given by the completely
positive linear maps on EC, namely the linear maps of the Kraus form, i.e., the
atomic transformations act on x ∈ EC as x ◦ τ(|a|) = |a|†x |a| ≡ a†xa.

First, notice that the full span Lin(EC) is recovered from Erays(Lin+(EC)) via
the polarization identity

|a〉〈b| = 1

4

3∑
k=0

ik |(a + ikb)〉〈(a + ikb)|. (5.49)

47 The form is strictly positive since 	(a†a) = (a, a) � 0, with the equals sign only if a = 0, since the scalar
product is non-degenerate.

48 One has 	(ab) = (ι, ab) = (ι, a(b†)†) = (b†, a) and 	(ba) = (ι, ba) = (ι, (b†)†a) = (b†, a).
49 This construction is a special case of the Gelfand–Naimark–Segal (GNS) construction [40], in which the form
	 is a trace. In the standard GNS construction the form 	 may be degenerate, i.e., one can have 	(a†a) = 0
for some a �= 0, and the vectors of the representation are built up as equivalence classes modulo vectors
having 	(a†a) = 0.

50 This means that π	(a)π	(b) = π	(ab) and π	(a†) = π	(a)†.
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Fig. 5.6 An operational axiomatic framework for quantum mechanics: a summary
of the relevant logical implications.

Correspondingly, we introduce the generalized transformations

τ(b, a) := 1

4

3∑
k=0

ikτ(|a + ikb|) ∈ TC. (5.50)

The map

|a〉〈b| �→ χ(|a〉〈b|) := b† · a (5.51)

is a CJ isomorphism: it represents a bijective map between the cones Lin+(EC) and
T+, which can be extended to a cone-preserving linear bijection between Lin(EC)

and TC ≡ Lin(EC).51 As a consequence of (5.44), the CJ isomorphism τ : |a| �→
τ(|a|)will differ from the isomorphism χ by an automorphism U of the C∗-algebra
of effects; that is, one has x ◦ τ(|a|) = U(a†)xU(a), with U(a) = u†au with
uu† = u†u = ι. It follows that the probabilistic equivalence classes are given by
[τ(|a|)]eff = e ◦ τ(|a|) = u†a†au. Notice that [τ(ι)]eff = u†ι†ιu = ι; that is, ι
coincides with the deterministic effect ι = e. Complex effects are thus recovered
from atomic transformations via the identity e◦τ(e, a) = u†au. Figure 5.6 is a flow
diagram summarizing the relevant logical implications of the present operational
axiomatic framework for QM.

51 This can be directly checked using the operator algebra representation built over EC, whereas the isomor-
phism corresponds to the map O(b†xa)=χ(|a〉〈b|)(x)=Tr 1[(O(x) ⊗ I )|a〉〈b|], and, reversely, |a〉〈b| =
χ−1(τ (b, a)) = (τ (b, a)⊗I )(|ι〉〈ι|).
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5.5.4 Reconstructing quantum mechanics from the probabilistic theory

It is now possible to reconstruct from the probability tables of the systems the full
C∗-algebra of complex effects EC as an operator algebra EC ⊆ ⊕i Lin(Hi). Here is
the recipe.

(1) Look for all sub-cones (E+)i invariant under T+.
Then, for each i :

(2) introduce a complex Hilbert space Hi such that (EC)i ⊆ Lin(Hi), i.e., with
dim(Hi ) =

⌈√
dim[(EC)i ]

⌉
, &x' the smallest integer greater than x ;

(3) represent e as the identity over ⊕i Hi ;
(4) build (TC)i ⊆ Lin(Lin(Hi));
(5) look for atomic transformations Erays(T+)i ;
(6) for a given atomic transformation A ∈ Erays(T+)i take an operator A ∈ Lin(Hi) to

represent A as A† · A ∈ Lin(Lin(Hi));
(7) represent [A ]eff as A† A;
(8) repeat steps 6 and 7 for another transformation B;
(9) compose C = B ◦A and represent C as C† · C , with C = AB;

(10) repeat steps 8 and 9 to build the whole algebra of effects and the corresponding rep-
resentation of the algebra of transformations; and

(11) construct states as density operators using the Gleason-like theorem [41] for effects
[42, 43].

5.6 Conclusions

Theoretical physics should be, in essence, a mathematical “representation” of real-
ity. By “representation” we mean describing one thing by means of another, to
connect the object that we want to understand – the thing-in-itself – with an object
that we already know well – the standard. In theoretical physics we lay down mor-
phisms from structures of reality to corresponding mathematical structures: groups,
algebras, vector spaces, etc., each mathematical structure capturing a different side
of reality.

Quantum mechanics somehow goes differently. We have a beautiful simple
mathematical structure – Hilbert spaces and operator algebras – with unprece-
dented predictive power in the entire physical domain. However, we don’t have
morphisms from the operational structure of reality into a mathematical struc-
ture. In this sense we can say that QM is not yet truly a “representation” of
reality. A large part of the formal structure of QM is a set of formal tools for
describing the process of gathering information in any experiment, independently
of the particular physics involved. It is mainly a kind of information theory, a
theory about our knowledge of physical entities rather than about the entities
themselves. If we were to strip off this informational part from the theory, what
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Table 5.1 A summary of notation

Symbol(s) Meaning Related quantities

S1  S2 Bipartite system obtained by
composing S1 with S2

S = {A,B,C, . . .} System
A,B,C, . . . Tests A = {A j }, Test := set of

possible events
A ,B,C , . . . Events ≡ transformations
ω States, S convex set of

states
ω(A ): probability that

event A occurs in state ω
T Convex monoid of

transformations/events
TR,TC: linear spans of T,

T+: convex cone
[A ]eff Effect containing event A
a, b, c, . . . Effects e: deterministic effect
E Convex set of effects ER, EC: linear spans of E,

E+: convex cone
L = {l j } observable

∑
li∈L li = e

TC C∗-algebra of
transformations/events

a ◦T Operation of
transformation T over
effect a

ωA Conditioned states ωA := ω(· ◦A )/ω(A ),
A ω = ω(· ◦A )

Lin+(EC) Cone of linear maps
corresponding to positive
bilinear forms over EC

Lin+(EC) ={T ∈ TC : (a, a ◦T ) � 0,
∀a ∈ EC}

would be left should be the true general principle from which QM should be
derived.

In the present work I have analyzed the possibility of deriving QM as the math-
ematical representation of a fair operational framework made of a set of rules
that allows one to make predictions about future events on the basis of suitable
tests. The two postulates NSF and PFAITH need to be satisfied by an operational
framework that is fair, the former in order for one to be able to make predictions
that are based on present tests, the latter to allow calibrability of any test and
preparability of any state. We have seen that all theories satisfying NSF admit a
C∗-algebra representation of events as linear transformations of complex effects.
On the basis of a very general notion of dynamical independence, all such theories
are non-signaling. The C∗-algebra representation of events is just the informational
part of the theory. We have then added Postulate PFAITH. Postulate PFAITH has
been proved to be remarkably powerful, implying the local observability princi-
ple, the tensor-product structure for the linear spaces of states and effects, weak
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self-duality, and a list of features such as realization of all states as transformations
of the marginal faithful state 	(e, ·), locally indistinguishable ensembles of states
corresponding to local observables – i.e., EPR-cheating in bit commitment, and
more. We have then explored a postulate dual to PFAITH, Postulate FAITHE for
effects, thus deriving additional quantum features, such as teleportation. We feel
that we are really close to QM: maybe we are already there and we only need to
prove it! All the consequences of these postulates need to be explored further. I
have also reported some consequences of a postulate about the purifiability of all
states. In any case, we have seen that, whatever the missing postulate is, it must
establish a one-to-one correspondence between complex effects and atomic trans-
formations, which, assuming atomicity of evolution (Postulate AE) will make also
effects a C∗-algebra. This is what is special about QM (and all hybrid quantum–
classical theories), and will exclude other non-signaling probabilistic theories of
the kind of the PR boxes.52 We have seen that the correspondence between effects
and atomic transformations is established by the Choi–Jamiolkowski isomorphism,
which is hoped to be not too far from an operational principle.

The notation used is summarized in Table 5.1
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What probabilities tell about quantum systems, with
application to entropy and entanglement

John M. Myers and F. Hadi Madjid

6.1 Introduction

The use of parameters to describe an experimenter’s control over the devices used
in an experiment is familiar in quantum physics, for example in connection with
Bell inequalities. Parameters are also interesting in a different but related context,
as we noticed when we proved a formal separation in quantum mechanics between
linear operators and the probabilities that these operators generate. In comparing
an experiment against its description by a density operator and detection opera-
tors, one compares tallies of experimental outcomes against the probabilities gen-
erated by the operators but not directly against the operators. Recognizing that the
accessibility of operators to experimental tests is only indirect, via probabilities,
motivates us to ask what probabilities tell us about operators, or, put more pre-
cisely, “what combinations of a parameterized density operator and parameterized
detection operators generate any given set of parametrized probabilities?”

Here, we review and augment recent proofs that any given parameterized prob-
abilities can be generated in very diverse ways, so that a parameterized probability
measure, detached from any of the (infinitely many) parameterized operators that
generate it, becomes an interesting object in its own right. By detaching a param-
eterized probability measure from the operators that may have led us to it, we (1)
strengthen Holevo’s bound on a quantum communication channel and (2) clarify
a role for multiple levels of modeling in an example based on quantum key distri-
bution. We then inquire into some parameterized probability measures generated
by entangled states and into the topology of the associated parameter spaces; in
particular we display some previously overlooked topological features of level sets
of these probability measures.

As described quantum mechanically, an actual or contemplated experimental
trial parses into (1) “a preparation” expressed by a density operator (for a pure
or mixed quantum state) and (2) “a measurement” expressed by the detection

Philosophy of Quantum Information and Entanglement, ed. A. Bokulich and G. Jaeger. Published by
Cambridge University Press. c© Cambridge University Press 2010.
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operators associated with a positive operator-valued measure (POVM) [1–3]. By a
convention of quantum physics, one combines a density operator ρ and a detection
operator M(ω) in the “trace” formula by which these two generate a probability
μ(ω) for a measurable event ω:

μ(ω) = Tr [ρM(ω)]. (6.1)

(A special case is that of pure states (wavefunctions) |ψ〉 for which the density
operator has the form ρ = |ψ〉〈ψ |; on the POVM side, a special case is that in
which the detection operators are projections.)

In comparing an experiment against its description by a density operator and
detection operators, one compares tallies of experimental outcomes [4] not against
the operators directly but against the probabilities calculated from the density
operator and the detection operators per (6.1). Recognizing that the operators are
tested experimentally only indirectly by way of probabilities, we wondered what
can given probabilities tell us about density operators and detection operators?
(To begin with, we ask this question without the “tensor-product” restrictions
imposed on the detection operators in some prior investigations [5].) A little
thought shows that any given probability μ(ω) can be generated by distinct choices
of ρ and M(ω), but we wanted to know how the dependence of μ, ρ, and M on
experimental control affects this freedom of choice. Characterizing control over an
experiment by some list k of parameter values, we introduced a set K of lists of
parameter values as the domain of three functions:

(1) a function that assigns to each parameter list k ∈ K a density operator ρ(k);
(2) a function that assigns to each k a POVM M (k); and
(3) a function that assigns to each k a probability measure μ(k).

In partial answer to our question, we proved that no assignment of probability
measures to parameter lists can ever uniquely determine the density operators and
POVMs [6]. This proof reveals a logical gap between parameterized probabilities
and the parameterized operators that generate them, thereby making parameterized
probability measures objects of interest in their own right, as will be demonstrated
in the following sections. In Sections 6.3.1 and 6.3.2, we give two examples of
uses of parameterized probability measures independently of the particular quan-
tum states and POVMs that led us to them. The first example pertains to the
information capacity of a quantum channel, while the second pertains to quantum
cryptography.

In Section 6.4 we study parameterized probability measures associated with
some entangled states. While pure entangled states violate Bell inequalities [7–9],
these inequalities pertain directly not to quantum states as density operators but
to the parameterized probability measures ensuing from these states conjoined to
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parameterized POVMs. We inquire into the topology of the associated parameter
spaces and we display topological features of level sets of the probability measures
as functions on the parameter space. Some open questions are sketched. In the next
section we begin with definitions, some probably novel, others previously known
but perhaps unfamiliar.

6.2 Parameter spaces and quantum models

In setting up an experiment, say on an optics bench, one reaches not for a den-
sity operator or a POVM, but for lenses and lasers. Yet neither “lens” nor “laser”
is a term in the language of quantum mechanics. Indeed, if the devices of an
experiment – lasers, detectors, filters, and so on – were fixed, a quantum theo-
rist would abstract the devices used in the experiment into a single point to which
he or she attaches a density operator and a POVM. Generally, however, the experi-
menter adjusts the devices: by turning one knob to rotate a polarizing filter, another
knob to change the position of a lens, another to control the temperature of a crys-
tal, etc. Correspondingly, the experiment tallies detections not just for a run of trials
corresponding to a single value of a parameter list, but for runs corresponding to
a variety of values. We express the possible positions of the “knobs” for some
particular experiment, actual or contemplated, by a set K; for some fixed positive
integer �, any element k ∈ K is a list {k1, k2, . . ., k�} in which k j can be either a
continuous (real-valued) parameter or a discrete parameter. In most cases there is
a topology on K, in which case we speak of a parameter space. We will see an
example in which K is a torus. For the sake of simplicity, here we restrict atten-
tion to experimental parameters that, while they can change in value from trial to
trial, are held constant during any one trial. (In contrast, Berry phases arise from
modeling what happens to a quantum state when parameters are changed during a
trial [10].)

An experimenter can have occasion to add a device or to replace a device with
one that works over a wider range of parameter values. Such an extension of the
experiment calls for extending its description, including extending the set K into a
bigger set K′ via one or both of two types of injective mapping  : K ↪→ K′:

(1) K′ increases the range of one or more of the parameters of the list in K, so that K ⊂ K′;
and/or

(2) the lists in K′ contain more parameters, so that, for some extra parameters in a set
K′′, we have K′ = K × K′′. (Any parameter list k′ ∈ K′ has the form k′ = k‖k′′,
where k ∈ K, k′′ ∈ K′′ and “‖” indicates concatenation.) In this type of extension
of a parameter set, the injection can immerse (or even embed) a lower-dimensional
manifold into one of higher dimension.
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Rather than extending it, an experimenter sometimes simplifies an experiment,
which leads a theorist to simplify a parameter space, for instance by making some
of the parameters on the list dependent on others. The simplest case is to fix the
values of certain parameters of the list; then a simplified parameter set K′ comes
from deleting the parameters whose values are fixed, and the injection goes the
other way, K′ ↪→ K.

6.2.1 Measure spaces

Experimental outcomes, whether viewed as discrete or on a continuum, are
expressed in theory by points of some “outcome” set 
 equipped with a σ -algebra
of measurable subsets. In the finite case of n binary detectors, any point of 
 is
a string of n bits, the j th bit being 1 if the j-detector fired and otherwise 0. In
this case 
 consists of the 2n possible strings of n bits. By 
̃ we denote measur-
able subsets of 
, that is, the things that are assigned probabilities by a probability
measure. Whenever 
 is a finite or countably infinite set, we can take 
̃ to be all
the subsets of 
. To make our formulation more general we include uncountable
outcome sets, such as the real line. When 
 is uncountable, then not all of its sub-
sets can be measurable, so that the set 
̃ of measurable subsets of 
 is instead a
σ -algebra [11].

An example of an outcome is a position as a number of meters; another example
is momentum as a number of kg m s−1. We take each outcome – whether a binary
number, an integer, a real number, or a list of real numbers – to be numerical; that
is, we detach the outcome as a numerical entity from units, such as meters or sec-
onds, required to interpret its significance. By this trick we avoid requiring distinct
measure spaces for measurements of variables that are interpreted in distinct units.

A probability measure μ: 
̃ → [0, 1] is a positive measure of total measure 1;
i.e., it assigns to each ω ∈ 
̃ a real number between 0 and 1, subject to axioms for
unions and intersections [11]. Thus by μ we denote a probability measure, while
by μ(ω) we denote a probability, meaning a number between 0 and 1, inclusive.
We denote the set of all probability measures on measurable sets 
̃ by PM(
̃).

Describing some extensions of an experiment requires expanding the outcome
set. For example, adding detectors corresponds to a new outcome set
′ = 
×
′′,
with a surjection (think of a projection) back to 
, ξ : 
′ → 
, such that, if ω is
measurable in 
, then ξ−1(ω) is measurable in 
′; that is, we have

(∀ω ∈ 
̃) ξ−1(ω) ∈ 
̃′. (6.2)

The idea is that
 lacks detail definable in
′. Here is a simple example in which

models a single binary detector while 
′ models two detectors: let 
 = {0, 1},

′ = {00, 01, 10, 11}, and define ξ by ξ(i j) = i for i, j ∈ {0, 1}.
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Thinking of
′ as expressing an extension of an experiment by adding detectors,
we expect a correspondence between a probability measure μ′ on 
′ and μ on 

under the surjection ξ :

(∀ ω ∈ 
̃) μ′(ξ−1(ω)) = μ(ω). (6.3)

When this holds, we say the probability measure μ′ refines the probability measure
μ via the mapping ξ .

The set of probability measures PM(
̃) can be equipped with a metric D
̃,
which defines for any two measures μ, λ ∈ PM(
̃) a distance D(μ, λ). An option
for a metric is the L1 distance. For this, let s denote a finite or countably infinite
partition of the outcome set 
 into pairwise disjoint measurable subsets ω. Let S
be the set of all such partitions. Then the L1 distance between PMs μ and ν on 
̃
is defined by a supremum over partitions:

L1,
̃(μ, ν) =
1

2
sup
s∈S

∑
ω∈s

|μ(ω)− ν(ω)|. (6.4)

6.2.2 Parametrized probability measures

Given a parameter space K and measurable sets 
̃, let a function that assigns to
each k ∈ K a probability measure (PM) on 
̃ be called a parameterized probability
measure (PPM) on the pair (K, 
̃). Sometimes we look at a PPM as a function
K→ PM(
̃); alternatively we can see any PPM as a function K× 
̃→ [0, 1] that
assigns to k and ω a probability. We often let μ(·) denote a PPM; then we denote the
probability measure that it assigns to the parameter list k by μ(k), and we denote
the probability that μ(k) assigns to a measurable set ω by μ(k)(ω). In what follows
it is necessary to distinguish among μ(·) as a PPM, μ(k) as a PM, and μ(k)(ω) as a
probability.

The mappings  : K ↪→ K′ and ξ : 
′ → 
 allow us to define the envelopment
of one PPM by another. Suppose we have

(∀k ∈ K)(∀ω ∈ 
̃) μ′( (k))(ξ−1(ω)) = μ(k)(ω). (6.5)

In this case we say the PPMμ′(·) envelops the PPMμ(·) via and ξ . Entailed in this
envelopment is that μ′( (k)) refines μ(k). Except when the injection  is surjective,
there are elements of K′\ (K) that correspond to parameter values in K′ that are
unavailable in K.

6.2.3 Quantum models

The term model is employed in both physics and mathematics, but differently, and
within physics two uses of model are worth distinguishing. One use in physics
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has to do with thinking about how to arrange the devices of an experiment: e.g.,
an experimenter may think of (model) the introduction of a polarization rotator
as inserting a matrix (say as an element of the group SU(2)). In its other use in
physics, which is of most concern here, “to model” is to use a PPM as a model
of the relative frequencies of experimental outcomes in relation to experimentally
controlled parameters. In contrast to both these uses, in mathematics, a model of
a mathematical system of axioms consists of relations among entities defined in
some other system of axioms.

PPMs serve as models in the sense of physics: they model relative frequencies
of experimental outcomes in relation to experimentally controlled parameters. As
we shall show shortly, given a probability measure, one can choose a density oper-
ation and a POVM that generate the probability measure (via (6.1)). Such a density
operator and POVM constitute a model, in the sense of mathematics, of the given
probability measure. By similarly dealing with probability measures, density oper-
ators, and the POVMs that are all functions of parameter lists, we arrive at quantum
models as mathematical models of PPMs; we build up to their definition as follows.

1. By a POVM on measurable subsets 
̃ and a Hilbert space H, we mean a function
M : 
̃ → {positive, bounded operators on H}, satisfying the following condition: if
{ω j } is a finite or countably infinite partition of the outcome set
 into pairwise disjoint
measurable subsets, then ∑

j

M(ω j ) = 1H. (6.6)

(See the discussion of “generalized observables” in [12].) We denote the set of all
POVMs on 
̃ and H by POVM(
̃,H).

2. By a density operator on H we mean a bounded, positive, trace-class operator having
unit trace. Denote the set of all density operators on H by DensOps(H).

3. Suppose a PPM μ(·) on (K, 
̃) is given. Adjusting our previous concept of a quantum
model [4, 6], we now define a quantum model to be a mathematical model of a PPM,
consisting of

(a) a separable Hilbert space Hα ,
(b) a density-operator function ρ(·)α : K→ DensOps(Hα), and
(c) a POVM-function M (·)

α : K→ POVM(
̃,Hα),
such that

(∀k ∈ K)(∀ω ∈ 
̃) Tr[ρ(k)α M (k)
α (ω)] = μ(k)(ω). (6.7)

Given a PPM μ(·) on (K, 
̃), we define the class of models that generate this μ(·)

to be

MODELS(μ(·),K, 
̃) = {(H, ρ(·),M (·))|(∀ω ∈ 
̃) Tr
[
ρ(·)M (·)(ω)

] = μ(·)(ω)},
(6.8)
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with the understanding that, for all k ∈K, ρ(k) ∈DensOps(H) and M (k) ∈
POVM(
̃,H). Note that the designation MODELS(μ(·),K, 
̃) specifies no par-
ticular Hilbert space, and this is important: distinct models having non-isomorphic
Hilbert spaces can belong to the same class of models. Usually, each parameter list
k is a concatenation of a sublist kprep for “state preparation” and a disjoint sublist
kmeas for “measurement”: k = kprep‖kmeas, in which case (6.7) specializes to

(∀k ∈ K)(∀ω ∈ 
̃) Tr[ρ(kprep)
α M (kmeas)

α (ω)] = μ(k)(ω). (6.9)

6.3 Many quantum models of any PPM

When some PPM μ(·) on (K, 
̃) has been abstracted from experimental data, one
may want to choose a model to fit it. As proved in [6], this choice is highly non-
unique. For instance, define the overlap of two density operators ρ and ρ ′ by

Overlap(ρ, ρ ′) def= Tr[ρ1/2ρ ′1/2]. (6.10)

Then, by Proposition 2 of [6], whenever MODELS(μ(·),K, 
̃) contains a model
α with the property that for some lists k1 and k2 the density operators ρ(k1)

α and
ρ(k2)
α have a positive overlap, MODELS(μ(·),K, 
̃) also contains a model β for

which the overlap of ρ(k1)
β and ρ(k2)

β is zero. Another interesting question is this:
does every PPM have a quantum model? At least when K is finite or countably
infinite, the answer is “yes,” as follows.

Proposition. Let μ(·) be any PPM on (K, 
̃) with K finite or countably infinite;
then MODELS(μ(·),K, 
̃) is not empty.

Proof. Without loss of generality, let H be a Hilbert space with an orthonormal
basis | j〉, j ∈ K. Let ρ(k) = |k〉〈k| and define a POVM (independent of k) by

(∀ω ∈ 
̃) M(ω) =
∑
k′∈K

μ(k
′)(ω)|k ′〉〈k ′|. (6.11)

Then we have

(∀k ∈ K)(∀ω ∈ 
̃) Tr[ρ(k)M(ω)] = μ(k)(ω). (6.12)

Suppose now that K ⊂ Kprep × Kmeas, so that each list of parameters splits into
two sublists: k = kprep‖kmeas. Does every PPM on such a K have a quantum model
that respects this split, in the sense that kprep ∈ Kprep specifies a density operator
while kmeas ∈ Kmeas specifies a POVM?

Proposition. Let μ(·) be any PPM on (K, 
̃) with K = Kprep × Kmeas; if Kprep

is finite or countably infinite, MODELS(μ(·),K, 
̃) contains a model that respects
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the splitting of K; that is, there exists a Hilbert space H, a density-operator function
ρ(·): Kprep → DensOps(H), and a POVM-function M (·): Kmeas → POVM(
̃,H)
satisfying

(∀k ∈ K)(∀ω ∈ 
̃) Tr[ρ(kprep)M (kmeas)(ω)] = μ(k)(ω). (6.13)

Proof. Let H be a Hilbert space with an orthonormal basis | j〉, j ∈ Kprep. For any
kprep ∈ Kprep, let ρ(kprep) = |kprep〉〈kprep| and define a POVM function on Kmeas by

(∀ω ∈ 
̃) M (kmeas)(ω) =
∑
kprep

μ(kprep‖kmeas)(ω)
∣∣kprep〉〈kprep

∣∣ . (6.14)

(Because of the sum, M (kmeas) is independent of kprep.) Then we have

(∀k ∈ K)(∀ω ∈ 
̃) Tr[ρ(kprep)M (kmeas)(ω)] = μ(k)(ω). (6.15)

Remark. If one adds the requirement that the detection operators are tensor prod-
ucts, as in [5], then no such proposition holds.

Remark. Belonging to the same class MODELS(μ(·),K, 
̃) is a much looser rela-
tion among models than is unitary equivalence. For two models α and β of a given
class, the Hilbert spaces Hα and Hβ can differ in dimension, and the inner products
of pure states of model α need not match those of model β [6]. In addition, one
encounters models α and β of the same class with unequal von Neumann entropies:
for some k ∈ K, one has

S(ρ(k)α ) �= S(ρ(k)β ), (6.16)

where S denotes the von Neumann entropy of a density operator

S(ρ)
def= −Tr[ρ log2(ρ)], (6.17)

with the understanding that S(ρ) can be infinite. In particular, there are cases of
two models in the same class with S(ρ(k)α ) infinite while S(ρ(k)β ) is finite.

Remark. In choosing a model within a given class, the fit to probabilities offers
no guidance, for all models in the class exhibit the same probability measures
over K.

Remark. Rather than choosing a density-operator function and a POVM function
to fit a given PPM, often a theorist goes the other way by thinking first in terms
of quantum states (for instance, wavefunctions) and operators. These can be put in
the form of a pair (ρ(·),M (·)) – a density-operator function and POVM function –
which generate a PPM via (6.16). Indeed, this is the path of prediction. The theorist
can invoke concepts of particles, leading to quantum states for electrons, photons,
etc. When a PPM calculated from particle-associated states matches a subsequently
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performed experiment, the PPM is confirmed as a prediction. But what does this
tell us about the particles and their associated quantum states? One confirms that
the particles lead to a PPM that fits the experiment, but as proved in [6], there
are lots of other configurations of particles and their quantum states that serve as
alternative models of the same PPM. See Ref. [13] for an example of the merit of
attending to alternative hypotheses in evaluating claims for the security of quantum
key distribution.

6.3.1 Application of non-uniqueness of models to the Holevo bound

Invoked in quantum communication [14] is a model α of a quantum channel, in
which Alice with probability p(i)α prepares a state ρ(i)α transmitted to a receiver Bob
described by a fixed POVM Mα, as illustrated in Figure 6.1.

Bob’s outcome set
α is finite or countably infinite and consists of disjoint mea-
surable events j = 1, 2, . . .. Model α generates the conditional probability of Bob’s
outcome j given that Alice prepares ρ(i)α as

μ(i)α ( j) = Tr[ρ(i)α Mα( j)]. (6.18)

We denote the mutual information between A (for Alice) and B (for Bob) ascribed
by model α by Iα(A,B). The definition of this mutual information makes use
of Shannon entropy, defined for any discrete probability measure μ (alternatively
written μ(·)) by

H(μ(·)) def= −
∑

j

μ( j)log2[μ( j)]. (6.19)

Bob

Alice

p(1) p(2)

ρ (1) ρ (2)

μ (1)(1) μ(2)(2)

μ (1)(2) μ (2)(1)

M(1) M(2)

Fig. 6.1 The quantum communication channel (binary case).
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Note that, if μ(i) is a probability measure, so is
∑

i p(i)μ(i). From the definition of
the mutual information [15] we have

Iα(A,B) = H

(∑
i

p(i)α μ
(i)
α (·)
)
−
∑

i

p(i)α H
(
μ(i)α (·)

)
= H

(∑
i

p(i)α Tr[ρ(i)α Mα(·)]
)
−
∑

i

p(i)α H
(
Tr[ρ(i)α Mα(·)]

)
. (6.20)

For mutual information derived from density operators and POVMs, Holevo [16]
showed an upper bound:

I (A,B) ≤ χ(A,B) def= S

(∑
i

p(i)ρ(i)
)
−
∑

i

p(i)S
(
ρ(i)
)
, (6.21)

where S is the von Neumann entropy defined in (6.17). This bound is useful in
many cases, but, when frequency is accounted for [17], the von Neumann entropy
can be arbitrarily large, indeed infinite, in which case the Holevo bound tells us
nothing. Notice, however, that, in (6.20) for mutual information, the density oper-
ators enter only as factors in products with the POVM detection operators. For this
reason, for any models α and β, we have

μ(·)α = μ(·)β ⇒ Iα(A,B) = Iβ(A,B). (6.22)

From this follows the tighter bound on mutual information

Iα(A,B) ≤ min
β∈[α]χβ(A,B), (6.23)

where we write [α] as shorthand for MODELS(μ(·)α ,K, 
̃).

6.3.2 An example from quantum cryptography of an enveloping PPM

The envelopment of one PPM by another has application to showing a likely vul-
nerability to a widely discussed design for quantum key distribution (QKD) [18].
In its simplest form, QKD calls for Alice to transmit key bits together with some
extra bits to Bob. Each bit is carried by a signal modeled as a quantum state, with
the promise that, if Alice and Bob compare notes on the extra bits (over a public
channel), any significant eavesdropping must induce errors that Alice and Bob’s
comparison will reveal to them. The promise is of security against undetected
eavesdropping.

For quantum states as light states, Bennett and Brassard [19] posit a sequence
of trials, at each of which Alice prepares one of four possible single-photon light
states, chosen at random. In the original design (BB84), this is expressed by a
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model α with a Hilbert space Hα taken as a two-dimensional real vector space;
each bit is expressed by a density operator ρ(θ)α = |θ〉〈θ |, where, for orthonormal
basis states |x〉 and |y〉,

|θ〉 = cos θ |x〉 + sin θ |y〉; (6.24)

here the four allowed values of θ are given by

θ ∈ Kα,prep = {0, π/4, π/2, 3π/4}. (6.25)

For present purposes we consider only vulnerabilities in the face of an intercept–
resend attack [18], in which an eavesdropper Eve, interposed between Alice and
Bob, measures the state that Alice prepares and then sends to Bob whatever she
chooses. For pointing to a vulnerability present in some implementations of BB84,
it suffices to assume that (1) the transmission is lossless; (2) Eve’s measurements
are made by a pair of orthogonally oriented detectors of perfect efficiency and zero
dark count; and (3) Eve can freely choose the orientation of her detectors, so that
one detector responds optimally to light states polarized at any angle θ ′ of Eve’s
choice, while the other detector responds optimally to the light state polarized at
θ ± π/2.

Under these assumptions, Eve’s outcome set
α = {0, 1}, with 1 for the event of
detection for polarization angle θ ′ and 0 for the event of detection at a polarization
angle perpendicular to θ ′. Eve’s measurement is expressed by the projection-valued
POVM function defined on θ ′ ∈ Kα,meas = S1, where S1 denotes the unit circle
[0 ≤ θ ′ < 2π):

M (θ ′)
α (1) = |θ ′〉〈θ ′|,

M (θ ′)
α (0) = 1− |θ ′〉〈θ ′|. (6.26)

This POVM function combines with the density-operator function to generate a
PPM defined by

μ(θ,θ
′)

α (1) = Tr[ρ(θ)M (θ ′)] = |〈θ |θ ′〉|2 = cos[2(θ − θ ′)],
μ(θ,θ

′)
α (0) = 1− μ(θ,θ ′)α (1) = 1− |〈θ |θ ′〉|2 = sin[2(θ − θ ′)]. (6.27)

The claim of BB84 for security against undetected eavesdropping depends on
positive inner products such as 〈θ = 0|θ =π/4〉= 2−1/2. Given these inner prod-
ucts as they enter the PPM of (6.28), there appears no way for an eavesdropper
to detect with certainty what state Alice transmits. (For the secret of how Bob
manages to extract a good key, see Ref. [19].) Now comes the implementation
of BB84 with lasers and optical fibers and so on. In this, one encounters chal-
lenges unexpressed by model α, and meeting these challenges demands models
that envelop model α. Here is a case in point. BB84 calls for pulse-to-pulse changes
in polarization, which are technically difficult to arrange. To evade this difficulty,
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one implementation employs four separate lasers, each transmitting one of the four
needed polarizations. The complication is that this implementation demands pre-
cisely matched laser frequencies, an issue invisible to model α, which leaves the
frequency spectrum of the light pulses unexpressed.

To think about light frequency, we envelop μ(·)α by a finer-grained PPM μ
(·)
β pro-

duced by a model β that explicitly expresses frequency spectra. In model β (which
invokes a Hilbert space Hβ of infinite dimension) a single-photon state linearly
polarized at an angle θ is expressed [17] by

|θ, f 〉 =
∫

dω f (ω)a†
θ (ω)|0〉, (6.28)

where a†
θ (ω) is a creation operator for light at the angular frequency ω, polarized

at angle θ [17]). (Apologies for using the variable ω here for the angular frequency
of a light spectrum; we depend on context to distinguish this use from our main
use of ω as a measurable subset of an outcome set.) Correspondingly, we have
ρ
(θ, f )
β = |θ, f 〉〈θ, f |. The outcome set is the same:
β = {0, 1}; however, the space

of preparation parameters is a lot bigger:

Kβ,prep = S1 × { f | f ∈ L2(R),
∫

I
dω | f (ω)|2 = 1}, (6.29)

where by L2(R) we mean square-integrable functions on the real line. Suppose
we limit attention to a class of functions on R for which we have a complete set
of orthonormal functions f j . Choosing an orthonormal set of f j to slice up the

frequency band as narrowly as possible, we construct a POVM function M (θ ′)
β with

the same parameter space Kβ,meas = Kα,meas but a larger outcome space 
β =

α × Z+ defined for j ∈ Z+ = {1, 2, . . .} by

M (θ ′)
β (1, j) = |θ ′, f j 〉〈θ ′, f j |,

M (θ ′)
β (0, j) = |θ ′⊥, f j 〉〈θ ′⊥, f j |,

(6.30)

where θ⊥ is an angle perpendicular to θ in the plane of linear polarization. The
POVM function defined in (6.30) combines with the density-operator function to
generate a PPM on Kβ,prep ×Kβ,meas, defined by

μ
(θ, f,θ ′)
β (1, j) = Tr[ρ(θ, f )M (θ ′)(1, j)] = |〈θ, f |θ ′, f j 〉|2

= cos2(θ − θ ′)
∣∣∣∣∫

I
dω f ∗(ω) f j (ω)

∣∣∣∣2 ,
μ
(θ, f,θ ′)
β (0, j) = |〈θ, f |θ ′⊥, f j 〉|2

= sin2(θ − θ ′)
∣∣∣∣∫

I
dω f ∗(ω) f j (ω)

∣∣∣∣2 .
(6.31)
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Now μ
(·)
β envelops μ(·)α via the obvious projection of 
β onto 
α that ignores

frequency spectra and, for example, the injection of Kα into Kβ,prep defined by
 (θ)= (θ, f1). But Kβ,prep contains lots of elements outside the image of this
injection. For example, if Alice’s lasers of nominal wavelength 1.5 nm and pulses
of duration 1 ns are imperfectly matched in frequency by one part in 10−5, then
the inner products that in model α appear to be 2−1/2 can all become essentially
zero, as expressed in model β by virtue of the integrals in (6.31). Under this cir-
cumstance the transmission is vulnerable to an intercept–resend attack, because
the four choices of signals for transmission, although not distinguishable clearly
on the basis of polarization, become essentially perfectly distinguishable by their
frequency spectra, which were ignored in model α. (For a different way in which
the envelopment of one PPM by another can challenge claims of cryptographic
security, see Ref. [20].)

6.4 Parameter spaces and PPMs associated with entangled states

Ten years after Born discussed them [21], interest in non-factorizable quantum
states jumped when Einstein, Podolsky, and Rosen (EPR) [22] examined the theory
of their measurement. Decades later interest in such states, now called entangled,
jumped again when Bell displayed certain correlations visible in what in our words
is a PPM associated with an entangled state [23] – correlations that violate inequal-
ities satisfied by local hidden-variable theories. Later still Gisin showed that any
entangled pure state can be associated with a PPM that violates generalized Bell
inequalities [7, 24].

From a few well-known examples in which quantum states strongly violate Bell
inequalities, we extract parameter spaces and PPMs to see patterns in places where
we had never before thought to look. While a wider variety of patterns invites future
attention, the patterns displayed here are primarily topological. Of interest are the
topological features of the parameter spaces and also features of what we call a
level set of the PPM over a parameter space K, meaning a subset [k] ⊂ K over
which the probability measure assigned by the PPM takes a particular value; more
formally, any PPM μ(·) over K partitions K into level sets [k] by

[k] def= {k ′ ∈ K|μ(k′) = μ(k)}. (6.32)

6.4.1 Formulation

We limit our attention to cases of a pure state |ψ〉, corresponding to density oper-
ator ρ = |ψ〉〈ψ |, so that, for any POVM M on the Hilbert space H in which |ψ〉
resides, we have
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Tr[ρM(ω)] = 〈ψ |M(ω)|ψ〉. (6.33)

Given any tensor-product factorization of the Hilbert space H into

H = HA ⊗HB, (6.34)

one conventionally calls a pure state |ψ〉 unentangled (with respect to this factor-
ization) if

(∃|ψA〉 ∈ HA, |ψB〉 ∈ HB) |ψ〉 = |ψA〉 ⊗ |ψB〉; (6.35)

otherwise it is said to be entangled.

6.4.2 EPR

Reporting on the theory of measuring what we now call an entangled state, EPR
speak of two particles, 1 and 2, that interact for a limited time and then separate,
after which they are expressed by a wavefunction of a sort that is now called entan-
gled. EPR discuss measurements made in two parts, one part at one location for
particle 1, the other part at a location widely separated from the first for particle
2. Each local measurement involved a choice of parameter, corresponding in the
language here of a choice of k ∈ Kmeas. For their example of an entangled state,
EPR showed that the variance of a probability measure for outcome events at one
location varied with the choice of measurement made at the other location.

Following the EPR notation, we set aside for the moment our use of the letters
A and B. Note also that, instead of POVMs, which came later, EPR used Hermi-
tian operators to express measurements, so that rather than dealing with probability
measures they dealt with only expectation values and variances. They wrote A for
the momentum operator for particle 1, B for the position operator of particle 1, P
for the momentum operator for particle 2, and Q for the position operator of par-
ticle 2. The issue is the circumstances under which the variance in the probability
measure for outcomes is narrow or wide. They show that the choice of whether A
or B is measured at 1 changes which of P or Q yields a narrow variance at 2.

Rephrasing this in the language of this chapter, rather than limiting attention to
expectation values, variances, and possibly higher moments associated with Her-
mitian operators for “quantities,” we note that, from each such operator, via the
spectral decomposition [25], one arrives at a POVM. In this way the EPR notion of
a “quantity that has with certainty the value” x translates to a probability measure
having a sharp peak that concentrates its mass at or near the value x . From our
viewpoint, EPR dealt with discrete parameters (k1, k2) with k1 ∈ {A, B} ∼= {0, 1}
and k2 ∈ {P, Q} ∼= {0, 1}. Taking the outcome sets to be 
1 = 
2 = R (real
numbers), regardless of whether the outcome pertains to meters or to momentum,
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ω1 ∼ p1

ω2 ∼ p2

(Relative probability
 concentrated on 
 ω1 = −ω2)

kmeas = (0, 0)  ≅  (P1, P2)

kmeas = (1, 0)  ≅  (Q1, P2)

kmeas = (0, 1)  ≅  (P1, Q2)

kmeas = (1, 1)  ≅  (Q1, Q2)

ω1 ∼ p1

ω2 ∼ x2

(Relative probability
 uniform)

ω1 ∼ x1

ω2 ∼ p2

(Relative probability
 uniform)

ω1 ∼ x1

ω2 ∼ x2

(Relative probability
 concentrated on 
 ω1 = ω2 − x0)

(0, −x0)

Fig. 6.2 EPR parameterized probabilities.

their state and measurement operators generate a PPM over the four combinations
(k1, k2) as shown in Fig. 6.2. (Note that EPR used δ-functions, leading to relative
probabilities; in the rest of our work, we smear any δ-functions to get plain proba-
bilities.)

6.4.3 Generalized Bell inequalities and their violation

As with EPR, Bell’s and many later studies of entangled states [24] also invoke
measurement operators, mostly projections, which we view as a specialization of
POVMs. Viewed this way, these studies show features of PPMs derived from sep-
arating a measurement into separate measurements in two locations A and B. The
separation is expressed in part by

(1) a parameter space Kmeas ⊂ KA ×KB ; and
(2) an outcome space 
 = 
A ×
B, each Cartesian-product factor having its own mea-

surable subsets, 
̃A and 
̃B, respectively.

This partitioning of parameter lists and of measurable sets implies a PPM of the
form

μ(kA,kB)(ωA, ωB).
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In addition, the PPM μ(·,·) inherits restrictions that follow from the form of any
of the models involving entangled states that generate it. In any such model the
separation into locations A and B finds additional expression as

(1) a Hilbert space H = HA ⊗HB; and
(2) a POVM function with POVMs M (kA,kB)=M (kA)

A ⊗ M (kB)
B , where M (kA)

A ∈
POVM(
̃A,HA) and M (kB)

B ∈(
̃B,HB).

This factorization imposes on the PPM the form

μ(kA,kB)(ωA, ωB) = 〈ψ |M (kA)

A (ωA)⊗ M (kB)
B (ωB)|ψ〉. (6.36)

(Because we focus on a single state, we hold kprep fixed and omit writing it.)
For any entangled state there exists a set of four unentangled POVMs for which

the corresponding four probability measures violate a generalized Bell inequal-
ity [7]. Combined with the proof that the PPM that displays violations can be gen-
erated by disparate quantum models, this makes the PPM μ(·,·) itself an interesting
object to study.

6.4.4 The no-signaling condition

The assumption of factorization of POVMs has an implication for the probabil-
ity measures involving them; namely, the well-known “no-signaling condition” is
satisfied by the marginal probabilities:

(∀ωA ∈ 
̃A) μ
(kA,�kB,... )(ωA)

def= μ(kA,�kB,... )(ωA, 
B) is independent of kB,

(∀ωB ∈ 
̃B) μ
(�kA,kB,... )(ωB)

def= μ(�kA,kB,... )(
A, ωB) is independent of kA,

(6.37)
where we put a slash through a parameter sublist to which the indicated parameter-
ized probabilities are insensitive.

6.4.5 Case study of a toroidal parameter space

To within questions of detector inefficiencies and how to model them, a series of
experiments demonstrates clear violations of Bell inequalities. We focus on one
discussed in [26] and depicted in Fig. 6.3. A light source radiates entangled single-
photon states in two oppositely directed beams, A and B. Each beam impinges
on a measuring assembly consisting of a polarizing beam splitter followed by
two sensitive light detectors, which we call 1 and 2. For purposes of appreci-
ating the theory of entangled states, we pretend that the detectors have no dark
counts and perfect efficiency and that the transmission involves no losses. Then,
following [27], we arrive at a model for which the outcome set 
A consists of just
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Detector A2 Detector B2

Light Source
Detector A1 Detector B1

PBS PBSθA θB

Fig. 6.3 An experiment to detect polarization-entangled photons (PBS, polarizing
beam splitter).

the two points {1, 2} that correspond to one and only one detector firing, and the
same for 
B.

Suppose for a moment that each assembly can be rotated to any angle θ/2 around
the beam axis; this would correspond to detector 1 responding to light linearly
polarized at angle θ/2 and detector 2 responding to light linearly polarized at angle
(θ + π)/2, leading to a family of POVMs M (θA)

A on the outcome set 
A = {1, 2},
and a similar family for B. The most convenient expression of this can be found in
[27], where one deals with a model light state

|ψ〉 = 1√
2
(|xA〉|xB〉 + |yA〉|yB〉). (6.38)

For this state one considers (projection-valued) POVMs, with the POVM M (kA)

(where kA = θA) defined by

M (θA)

A (1) =
(

cos

(
θA

2

)
|x〉 + sin

(
θA

2

)
|y〉
)(

cos

(
θA

2

)
〈x | + sin

(
θA

2

)
〈y|
)
,

M (θA)

A (2) = 1− M (θA)

A (1) =
(

sin

(
θA

2

)
|x〉 − cos

(
θA

2

)
|y〉
)

×
(

sin

(
θA

2

)
〈x | − cos

(
θA

2

)
〈y|
)
.

(6.39)
Replacing A by B throughout yields M (θB)

B . Via (6.1), this defines a PPM on a torus
K = S1 × S1, with coordinates (θA, θB), corresponding to detectors set to respond
to linearly polarized light with polarization angles θA/2 at A and θB/2 at B. Thus,

μ(θA,θB)(1A, 1B) = μ(θA,θB)(2A, 2B) = 1

4
[1+ cos(θA − θB)],

μ(θA,θB)(1A, 2B) = μ(θA,θB)(2A, 1B) = 1

4
[1− cos(θA − θB)].

(6.40)

A kind of “correlation” is defined on K in terms of this PPM by

E(θA, θB) = μ(θA,θB)(1A, 1B)+ μ(θA,θB)(2A, 2B)− μ(θA,θB)(1A, 2B)− μ(θA,θB)(2A, 1B)

= cos(θA − θB). (6.41)
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E = 1
E = 0
E = −1

(−π, −π)

(π, −π) (π, π)

(π, −π)

× =
θB

θA

S1 S1

θB

θA

Fig. 6.4 Parameter space S1 × S1 and contours of constant probability measure
E on a torus with marked points (θA, θB) = {(−3π/8,−π/8), (π/8,−π/8),
(π/8, 3π/8), (−3π/8, 3π/8)} for a maximal violation of the Bell inequality.

The generalized Bell inequality at issue involves the correlation E evaluated at
four pairs of values of the angles:

− 2 ≤ SBell ≤ 2, (6.42)

for

SBell
def= E(θA, θB)− E(θA, θ

′
B)+ E(θ ′A, θB)+ E(θ ′A, θ

′
B). (6.43)

As shown at the top in Fig. 6.4, the parameter space with points (θA, θB) is a
torus. By skinning the surface of the donut and stretching it out, we get the square
area in Fig. 6.4, which shows the contours of constantμ, namely the lines θA−θB =
constant. The level sets of μ(·) as a function on K are thus closed loops that wind
once around the torus. Figure 6.4 also shows values of θA and θB for which SBell

maximally violates the inequality.
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6.4.6 Allowing for elliptical polarization: SO(3)

Linear polarization is needlessly restrictive. To display the drama ensuing from
general elliptical polarization, we need a different light state. By inserting a suitable
element in the path toward detector B, one can change the light modeled by the |ψ〉
defined in (6.38) into something modeled by a singlet state

|ψ ′〉 = 1√
2
(|xA〉|yB〉 − |yA〉|xB〉), (6.44)

where now we view |x〉 and |y〉 as orthonormal vectors in the complex vector space
C2. The advantage of the state |ψ〉 is its invariance under the same SU(2) transfor-
mation applied to both the A- and the B-factor states. We now expand the parameter
space Kmeas to allow for detections not just of linearly polarized light but also of
light of arbitrary elliptical polarization. With the same assumptions as above about
perfectly efficient detectors and no dark counts, one has a detector assembly mod-
eled by a POVM with an additional parameter φ:

M (θA,φA)

A (1) =
(

cos

(
θA

2

)
|x〉 + eiφA sin

(
θA

2

)
|y〉
)

×
(

cos

(
θA

2

)
〈x | + e−iφA sin

(
θA

2

)
〈y|
)
,

M (θA,φA)

A (2) = 1− M (θA,φA)

A (1) (6.45)

=
(

sin

(
θA

2

)
|x〉 − eiφA cos

(
θA

2

)
|y〉
)

×
(

sin

(
θA

2

)
〈x | − e−iφA cos

(
θA

2

)
〈y|
)
,

together with the same expression in which A is replaced by B throughout. Here
the ranges of the parameters are 0 ≤ θA,B ≤ π and 0 ≤ φ < 2π .

The general unit ray for an elliptically polarized state, which is represented by
cos(θA/2)|x〉 + eiφA sin(θA/2)|y〉, corresponds to a point on the Poincaré sphere: φ
corresponds to longitude while θ corresponds to latitude measured down from the
North pole. By this mapping, the orthogonal state goes to the polar opposite point
on the sphere. The selection of a POVM thus corresponds to the selection of two
points, with coordinates (θA, φA) on a sphere for A, and (θB, φB) on a sphere for B.
Instead of the torus S1×S1 as the parameter space when polarization is constrained
to be linear, for elliptical polarization we find a parameter space that is a product
of two spheres:

Kmeas = S2 × S2. (6.46)
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It is straightforward to calculate the PPM on S2 × S2 for this case:

μ(θA,φA,θB,φB)(1A, 1B) = μ(θA,φA,θB,φB)(2A, 2B)

= 1

4
[1− cos θA cos θB − sin θA sin θB cos(φA − φB)],

μ(θA,φA,θB,φB)(1A, 2B) = μ(θA,φA,θB,φB)(2A, 1B) (6.47)

= 1

4
[1+ cos θA cos θB + sin θA sin θB cos(φA − φB)].

On recognizing a little spherical trigonometry, one notices the following about
the level sets of probability measures of the PPM defined by (6.47) on Kmeas =
S2× S2. We can view S2× S2 as a space in which each element is a pair of points,
(θA, φA) and (θB, φB), on one unit sphere. Let ζ be the angle between the unit
vectors to these points; 0 ≤ ζ ≤ π . Then we have

cos ζ = cos θA cos θB + sin θA sin θB cos(φA − φB), (6.48)

so that (6.47) simplifies to

μ(θA,φA,θB,φB)(1A, 1B) = μ(θA,φA,θB,φB)(2A, 2B) = 1

4
(1− cos ζ ),

μ(θA,φA,θB,φB)(1A, 2B) = μ(θA,φA,θB,φB)(2A, 1B) = 1

4
(1+ cos ζ ). (6.49)

This PPM maximally violates a Bell inequality.
In the previous case, limited to linear polarization, all the level sets of probability

measures on the torus S1 × S1 were, apart from location on the torus, the same
one-dimensional loop; but here with the parameter space S2 × S2 we have some
variety. Any pair of points defines an angle ζ between the rays from the origin of the
sphere to the points, and any level set for probability measures over K = S2 × S2

is the locus of all pairs having any fixed angle ζ between them, 0 ≤ ζ ≤ π .
For the open interval 0 < ζ < π , this level set is a manifold of dimension 3
obtained as follows. Starting from any pair of points (θA, φA) and (θB, φB) on the
unit sphere separated by angle ζ in the open interval, every other pair separated
by ζ can be reached by one and only one rotation acting on the starting pair, so
the level set is the orbit under an effective action of the rotation group SO(3).
The manifold of all these pairs – the level set – is isomorphic to SO(3) as a Lie
group, which, like the circle, is connected but not simply connected. In contrast
for ζ = 0 (where (θA, φA)= (θB, φB)) or for ζ =π (where they are polar images
of one another), SO(3) has an isotropy group of SO(2) and instead of the three-
dimensional manifold of SO(3), the level set is just the simply connected two-
dimensional manifold, the sphere S2.



What probabilities tell about quantum systems 147

6.4.7 The property of local reach

The PPMs of the preceding two subsections dealing with violations of Bell inequal-
ities have a special property (not shared by some other PPMs derived from entan-
gled states): by holding kA fixed at any one value and varying kB (or vice versa)
one covers the whole space of measures. For example, the probability measures
involved in the simplest model above of polarization-entangled light are functions
of (kA−kB), where kA ≡ θA and kB ≡ θB are single numbers that express the angles
to which polarizing filters are set [3]. More generally we will say that a PPM μ(·,·)

has the property of “local reach” if

(∀kA, kB, k
′
B)(∃ k ′A) μ

(kA,kB) = μ(k′A,k′B), (6.50)

(∀kA, kB, k
′
A)(∃ k ′B) μ

(kA,kB) = μ(k′A,k′B). (6.51)

Proposition. Consider any PPM μ(·) on some K = Kprep × Kmeas, with Kmeas =
KA × KB , and suppose that this PPM satisfies the no-signaling condition and has
the property of local reach; then the marginal probabilities for all its probability
measures are invariant over Kmeas.

Proof. Evaluate (6.51) for the probability of (ωA, 
B) to get

(∀kA, kB, k
′
A)(∃k ′B)(∀ωA ∈ 
̃A) μ

(kA,kB)(ωA, 
B) = μ(k′A,k′B)(ωA, 
B). (6.52)

By virtue of the assumed no-signaling equation, the marginal probability is insen-
sitive to kB, whence we have

(∀kA, k
′
A)(∀ωA ∈ 
̃A) μ

(kA,�kB)(ωA, 
B) = μ(k′A,�kB)(ωA, 
B), (6.53)

where the slash through kB indicates that its value makes no difference. Hence we
have that μ(kA,�kB)(ωA, 
B) depends neither on kA nor on kB; thus we can write
μ(�kA,�kB)(ωA, 
B). The same argument holds for μ(�kA,�kB)(
A, ωB).

6.4.8 Allowing for light frequency, etc.

As discussed in the example of quantum cryptography in Section 6.3.2, light
involves more degrees of freedom than just polarization. Not only do light pulses
come with frequency spectra, implying an infinite-dimensional Hilbert space,
but also models can posit states of more than one photon [17]. As we saw
in Section 6.3.2, under various special assumptions, such as that of frequency-
independent detectors, models invoking the infinite-dimensional spaces provide
PPMs that envelop those discussed in the preceding two subsections. These finer-
grained models provide a much bigger class of PPMs, the characterization of which
awaits future work.
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6.4.9 Metrical properties

Bell inequalities express metrical properties of μ(·). For instance, as it works in the
example of a toroidal parameter space, (6.42) expresses an L1 distance between
μ(θA,θB) and μ(θA,θ

′
B) together with more complicated properties that quantify how

much and in what ways a PPM varies both with kmeas and with ω. It is worth noting
that the hidden-variable model discussed in [27] has the same toroidal parameter
space as discussed in Section 6.4.5, but with contours such that no violation of the
Bell inequality (6.42) is possible.

As is well known in quantum decision theory [14], a metric on PM(
̃) also pro-
vides a basis for deciding between one value of a parameter and another value.
For example, consider the situation a little more general than that sketched in
Figure 12.1. This situation, which arises not only when Alice and Bob are com-
municating parties, but also when they are opponents, is described by a PPM μ(·)

over some (K, 
̃B) with K = KA × KB. Alice chooses kA ∈ KA, Bob chooses
kB ∈ KB. Then Bob’s probability of outcome ωB ∈ 
̃B is μ(kA,kB)(ωB). How well
can Bob distinguish Alice’s parameter values kA and k ′A? We say that these values
are ε-separable for Bob’s choice of measurement kB when

ε ≤ D
̃

(
μ(kA,kB), μ(k

′
A,kB)
)
. (6.54)

As an avenue for future work, we are interested in the case in which the preparation
parameters to be decided include space-time coordinates.

Also for future exploration is the issue of PPMs that are “close together.” To
quantify the difference between two such PPMs over a given parameter set and
given measurable sets, one defines a metric on them. A plausible metric is based
on the value of k at which the two probability measures most differ. That is, given
a distance D
̃ on probability measures, we get a distance between two PPMs. For
μ(·) and μ′(·) over K × 
̃ a distance between them can be defined by

D
(
μ(·), μ′(·)

) def= sup
k

D
̃

(
μ(k), μ′(k)

)
. (6.55)

Such a distance is useful in comparing a PPM from a model against a second PPM
extracted from experimental relative frequencies.
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7

Bayesian updating and information gain in
quantum measurements

Leah Henderson

7.1 Introduction

In many situations, learning from the results of measurements can be regarded
as updating one’s probability distributions over certain variables. According to
Bayesians, this updating should be carried out according to the rule of condition-
alization. In the theory of quantum mechanics, there is a rule that tells us how
to update the state of a system, given observation of a measurement result. The
state of a quantum system is closely related to probability distributions over poten-
tial measurements. Therefore we might expect there to be some relation between
Bayesian conditionalization and the quantum state-update rule. There have been
several suggestions that the state change just is Bayesian conditionalization, appro-
priately understood, or that it is closely analogous.

Bub was the first1 to make the connection between quantum measurement and
Bayesian conditionalization in a 1977 paper ([1], see also [2]), using an approach
based on quantum logic. The connection is renewed in discussions by Fuchs [3] and
also Jacobs [4] in 2002, where again the analogy between the quantum state update
and Bayesian conditionalization is pointed out. At the same time, Fuchs draws
attention to a disanalogy – namely that there is an “extra unitary” transformation
as part of the measurement in the quantum case. In this chapter, I will first review
the proposals of Bub, Jacobs, and Fuchs. I will then show that the presence of the
extra unitaries in quantum measurement leads to a difference between classical and
quantum measurement in terms of information gain, drawing on results by Nielsen
[5] and Fuchs and Jacobs [6].

We begin with a brief introduction to Bayesian conditionalization in Section 7.2,
and quantum measurement in Section 7.3.

1 To the best of my knowledge.

Philosophy of Quantum Information and Entanglement, ed. A. Bokulich and G. Jaeger. Published by
Cambridge University Press. c© Cambridge University Press 2010.
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7.2 Bayesian conditionalization

Suppose we have an initial probability distribution p(h) over some propositions h
in a hypothesis space H . If we gather new evidence, given by proposition d, then
the initial probability distribution may need to be updated. The rule of Bayesian
conditionalization says that the initial probability distribution p(h) (known as the
“prior”) should be replaced by the conditional distribution p(h|d), (called the “pos-
terior”),

p(h)→ p(h|d). (7.1)

The posterior distribution p(h|d) can be calculated using Bayes’ rule

p(h|d) = p(d|h)p(h)
p(d)

, (7.2)

where p(h) is the prior probability distribution over the hypotheses, p(d|h) is
known as the likelihood of the evidence d, and p(h|d) is the posterior probabil-
ity. The denominator p(d) is given by

p(d) =
∑

h

p(d|h)p(h). (7.3)

The posterior probability for h will be higher if there is a high prior probability for
h or if the hypothesis renders the observed evidence d highly likely (the likelihood
p(d|h) is high). Also, if the evidence d is initially rather improbable (low p(d)),
then it is relatively unlikely to be obtained given any of the alternative hypotheses.
Therefore in this case too, the posterior probability will be higher.

The most common interpretation of the probabilities here is that they represent
degrees of belief in the proposition held by some agent, perhaps idealized. Then
Bayesian conditionalization can be taken to characterize the process by which an
agent learns in a rational manner from measurement results given by d.

7.3 Quantum measurement

In quantum mechanics, the state of a system is updated after a measurement has
been performed on it. To specify a measurement of a particular physical quantity,
one first needs to know the possible measurement outcomes and their probabilities.
The most general quantum measurements can be described using the formalism
of positive operator-valued measures (POVMs). A measurement A is represented
by positive operators Ed , which satisfy the completeness equation

∑
d Ed = 1.

Possible outcomes of the measurement are denoted by d, and associated with each
operator Ed .
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There is a quantum-mechanical rule for how the state of the system changes on
measurement. In the POVM formalism, if outcome d is obtained, then the system
after measurement is described by a new density matrix ρ ′d ,

ρ ′d =
1

pd

∑
d ′

Add ′ρA†
dd ′, (7.4)

where Add ′ are measurement operators such that

Ed =
∑

d ′
A†

dd ′ Add ′ . (7.5)

An important special case of POVMs is projective measurements. Such mea-
surements are represented by positive operators that are orthogonal projectors, Pd .
The projectors satisfy the orthogonality relation Pd Pd ′ = δdd ′ Pd . After obtaining
the result d, the state of the system is projected into the state associated with the
projector Pd .

It will be useful later to distinguish between “efficient” and “inefficient” mea-
surements. In an efficient measurement, no information is lost. If the initial state is
pure, the state of the system after measuring any result will still be pure after the
measurement. Projective measurements are all efficient. Efficient measurements
can be expressed using just one index, so that the post-measurement states are

ρ ′d =
AdρA†

d

pd
. (7.6)

In an inefficient measurement, on the other hand, the final state is a sum of differ-
ent possible states indexed by d ′. By not distinguishing these states, an inefficient
measurement throws away some of the information that would in principle have
been available.

7.4 Quantum measurement as Bayesian updating

We now review the proposals by Bub [1, 2] and Fuchs [3] for connecting the quan-
tum state-update rule with Bayesian conditionalization. As we have seen, the usual
view of Bayesian probabilities is that they are subjective degrees of belief. Both
Bub and Fuchs take this view of the probabilities associated with a quantum state.

In Bub’s view, quantum-mechanical probabilities are different from classical
probabilities because the algebra of events on which they are defined is differ-
ent. In the usual probability model, due to Kolmogorov, propositions are repre-
sented by subsets of a space, and probabilities are defined on these subsets, which
form a Boolean algebra. However, the algebra of quantum-mechanical proposi-
tions is non-Boolean. One approach then is to generalize the usual probability
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model so that it is defined on a non-Boolean algebra. Then quantum probabilities
become generalized probabilities. Bub suggests that, when the appropriate connec-
tion between the quantum state and quantum probabilities is made, quantum state
updating does correspond exactly to Bayesian conditionalization of the generalized
probabilities on the non-Boolean quantum algebra.

We first briefly review some of the background from quantum logic and general-
ized probability, and then outline Bub’s strategy. This involves defining a classical
operator playing the role of the quantum density operator, and considering how it
is updated when probabilities are conditionalized. The update rule for the quantum
density operator is then argued to be the natural analog of the update rule for the
classical operator.

Both classically and in quantum mechanics, probabilities may be assigned to
propositions such as “the value of the physical quantity A lies in the range�.” Such
propositions can be combined using the standard logical connectives ∧ (“and”),
and ∨ (“or”).

Classically, the proposition can be represented as the subset of those states in the
state space which are such that, if A were measured on the system in the state, the
result would be within the range�. In this representation, the logical connective ∧
(“and”) corresponds to set intersection ∩, and ∨ (“or”) corresponds to set union ∪.
The propositions or subsets form a Boolean algebra.

The standard model for probability is the Kolmogorov probability space. Sup-
pose E is a set of elementary events. A field on E is a set of subsets of E that
has E as a member, and that is closed under complementation and finite union. A
Kolmogorov probability space is a triple 〈E,F, p〉, where E is a set, F is a field
of subsets of E , and p is a mapping p: F → [0, 1] satisfying the properties

• p(E) = 1
• p(Ai ) ≥ 0 for all Ai ∈ F
• p(Ai ∪ A j ) = p(Ai )+ p(A j ) for all Ai , A j ∈ F such that Ai ∩ A j = ∅.

The mapping p is known as a “probability function.” It is common to extend
these axioms to the case in which E is infinite by taking F to be a σ -field and
extending the final axiom to countable addivitity.

• If {Ai } is any countable family of pairwise disjoint members of F that are disjoint
subsets, (Ai ∩ A j = ∅ whenever i �= j) then p(∪i {Ai }) =∑i p(Ai ).

In quantum mechanics, the proposition “the value of the physical quantity A lies
with in the range �” is not represented by a subset of the state space, as it is clas-
sically, but rather by a subspace of the Hilbert space, H. In this representation, the
logical connective∧ (“and”) corresponds to intersection of subspaces, and∨ (“or”)
corresponds to the span of subspaces. Let us call the set of subspaces of H, L(H).
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The algebraic structure of L(H) is non-Boolean, unlike the algebraic structure of
subsets in the classical case. Notably, it violates the distributivity property

a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c), (7.7)

which is an axiom of a Boolean algebra. For a fuller explanation of the difference
between the algebras of quantum and classical events, see [7], or [8].

When an algebra is Boolean, it is isomorphic to a field of subsets,2 which is
what classical Kolmogorov probabilities must be defined over. When the algebra
is non-Boolean, there is no longer necessarily such an isomorphism. It is possi-
ble, however, to define a generalized probability model over L(H). A generalized
probability function on L(H) is a mapping p :→ [0, 1] satisfying the properties

• p(I ) = 1, where I is the identity mapping on H
• if Pi ∈ L(H) are orthogonal projectors, then

p(⊕i Pi ) =
∑

i

p(Pi ). (7.8)

Suppose now that we want to represent the state of a system, from which we
can generate the probabilities for the outcome of any measurement. The state in
quantum mechanics can be described by a density operator ρ that is a weighted
combination of the one-dimensional projectors spanning the space, which each
correspond to an elementary event

ρ =
∑

j

w j Pj . (7.9)

Classically, a similar operator can also be defined, where the Pj are replaced
by indicator functions I j for the sets associated with the elementary classical
events X j :

I j (x) =
{

1 if x ∈ X j ,

0 otherwise.
(7.10)

Then the classical operator ρ is

ρ =
∑

j

w j I j , (7.11)

where
∑

j w j = 1, w j ≥ 0, ∀ j . Therefore ρ(xk) =∑ j w j I j (xk).
In both the classical and quantum cases, the probabilities for outcomes of a mea-

surement on a system in the state can be generated from this operator. In quantum
mechanics, as we have seen, the measurement A is represented by a set of POVM

2 Stone’s theorem, see [7], p. 186.



156 L. Henderson

operators {Ed}. The probability of obtaining outcome d on measuring A is given
by the trace rule:

pd = tr(ρEd), (7.12)

where ρ is the density operator representing the initial state of the system.
Classically, the probabilities for the outcomes of a measurement can be gener-

ated from the classical operator ρ. Suppose we have a set of mutually exclusive and
collectively exhaustive events that comprise the possible outcomes of a measure-
ment. We denote these as a1, a2, . . .with indicator functions Iai satisfying

∑
i Iai

= 1 and Iai Ia j = 0 for i �= j . The classical operator ρ generates a probability for
these events according to

pμ(a) = μ(Xa) =
∑

j

ρ(x j )Ia(x j ) (7.13)

or

pρ(a) =
∑

ρ Ia (7.14)

for short.3

We now determine the update in the classical operator ρ which is associated with
Bayesian updating on the probabilities. The conditional probability of an outcome
b given a measurement of ai is

pρ(b|ai ) =
∑
ρ Iai Ib∑
ρ Iai

. (7.15)

Bayesian updating

pρ(b)→ pρ(b|ai ) =
∑

ρ ′ Ib (7.16)

corresponds to a transition in the classical operator

ρ → ρ ′ = ρ Iai∑
ρ Iai

. (7.17)

Bub then claims that the symmetric expression

ρ → ρ ′ = Iaiρ Iai∑
Iaiρ Iai

(7.18)

is the update rule which is appropriate to represent conditionalization with respect
to ai when the algebra may be non-commutative. Therefore, he says, the quantum
state-update rule

ρ → ρ ′ = PaiρPai

tr(PaiρPai )
(7.19)

3 See [2], p. 85.
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that specifies the change in the density operator ρ on measurement of A with result
ai is just the conditionalization of ρ with respect to event ai ([2], p. 87).

Bub’s account applies only to projective measurements. It is interesting to con-
sider the classical analog of the POVMs. In a POVM, the subspaces corresponding
to the different measurement outcomes need not be orthogonal. This corresponds
to a classical measurement where the outcomes of the measurement are not neces-
sarily mutually exclusive. This is expressed by the condition on indicator functions
that Iai Ia j = 0 for i �= j . We now drop this restriction, while still maintaining∑

i Iai = 1. A function that satisfies these constraints is a conditional probabil-
ity p(ai |x j ), where we no longer restrict the possible values to zero and one. This
means that an elementary event is no longer definitely in the subset correspond-
ing to a measurement outcome – rather there is some probability that it is in this
subset, rather than in that corresponding to a different measurement outcome. On
replacing Iai (x) by p(ai |x j ), (7.13) becomes

pρ(a) =
∑

j

ρ(x j )p(a|x j ). (7.20)

The conditional probability of an outcome b given a measurement of ai is

pρ(b|ai ) =
∑

j ρ(x j )p(ai |x j )p(b|x j )∑
j ρ(x j )p(ai |x j )

(7.21)

(outcomes ai and b are conditionally independent given atomic events x j ). There-
fore the update rule for the statistical operator ρ is

ρ(x j )→ ρ ′(x j ) = ρ(x j )p(ai |x j )∑
j ρ(x j )p(ai |x j )

. (7.22)

The same strategy as Bub uses for projective measurements suggests that the quan-
tum POVM operator Ei is the quantum counterpart of the conditional probability
p(ai |x j ).

This association also appears in the treatment of Jacobs and Fuchs. They both
make the connection between quantum measurement and Bayesian updating for
POVMs, not just projective measurements, but they focus on the case of effi-
cient POVMs. As we have noted earlier, all projective measurements fall into this
category.

Jacobs proceeds by first writing classical measurements in a similar language to
generalized quantum measurements. The initial probability vector p(h) is written
as a diagonal matrix ρ, with (ρ)hh = p(h), and the distribution p(d|h) is written
in a diagonal matrix Ed such that (Ed)hh = p(d|h). Then the conditionalized
probability distribution is given by another diagonal matrix ρd such that (ρd)hh =
p(h|d). In this terminology, the classical Bayes rule becomes
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ρd = Edρ

pd
. (7.23)

To get to quantum measurements, Jacobs suggests relaxing the restriction that
the matrices involved must be diagonal, while keeping the restriction that they
must be positive [7]. Since in the classical case all the matrices commute, Jacobs
points out that a symmetrized version of (7.23) in the non-commuting case can be
written as

ρ ′d =
√

Edρ
√

Ed

pd
. (7.24)

This establishes that the quantum state-update rule is a non-commutative gener-
alization that reduces to classical Bayesian updating when the operators commute.
Bub establishes a similar point in claiming that (7.18) is a non-commutative gener-
alization of (7.19). However, to make the stronger claim that the quantum state
update is Bayesian conditionalization in the non-commutative case, one would
have to also show that there is some reason why this, and not other symmetrized
versions of (7.23), is the appropriate generalization. In particular, another sym-
metrized version of (7.23) is

ρ̃d = ρ1/2 Edρ
1/2

pd
. (7.25)

It is interesting that the quantum state-update rule takes us to a final state ρ ′d that is
just a unitary transformation away from ρ̃d ,

ρ ′d = Ud ρ̃dU †
d . (7.26)

Fuchs points out that a transition to ρ̃d , rather than ρ ′d would correspond exactly
to Bayesian updating of the probabilities associated with the states. The initial
probabilities associated with ρ for measurements of the POVM {Eh} are

p(h) = tr(ρEh). (7.27)

If the updated state after measuring d were ρ̃d , then the new probabilities would be

pd(h) = tr(ρ̃d Eh). (7.28)

It follows from the completeness relation
∑

d Ed = 1 that

ρ =
∑

d

pd ρ̃d . (7.29)

Therefore, p(h) = tr(ρEh) =∑d pd tr(ρ̃d Eh). Comparing this equation to p(h) =∑
d p(d)p(h|d) gives

p(h|d) = tr(ρ̃d Eh). (7.30)
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Therefore, Bayesian updating p(h)→ p(h|d) corresponds to the transition in the
state ρ → ρ̃d . However, the quantum state update is not ρ → ρ̃d , but ρ → ρ ′d ,
where ρ ′d = Ud ρ̃dU †

d , so it involves an “extra unitary” transformation.
Fuchs therefore interprets the quantum measurement as conceptually comprising

two parts:

(1) a “refinement” as in the classical case,

ρ
d→ ρ̃d; (7.31)

(2) a further “mental readjustment” of the observer’s beliefs,

ρ̃d
Ud→ ρd . (7.32)

Fuchs says “Quantum measurement is nothing more, and nothing less, than a
refinement and a readjustment of one’s initial state of belief” ([3], p. 34).

This conceptual breakdown of the measurement applies to efficient measure-
ments only, where there is only one index. An inefficient measurement cannot be
regarded as comprising these two steps because the final state

ρ ′d =
∑

d ′

E1/2
dd ′ ρE1/2

dd ′

pdd ′
(7.33)

is neither a unitary transformation away from a state ρ̃dd ′ = (1/pdd ′) ρ
1/2 Edd ′ρ

1/2

produced by a refinement of the initial state

ρ =
∑
dd ′

pdd ′ ρ̃dd ′ (7.34)

nor is it a unitary transformation away from the state

ρ̃d =
∑

d ′

ρ1/2 Edd ′ρ
1/2

pdd ′
. (7.35)

The reason is that the final state is a mixture of states, where each state ρdd ′ is
a unitary transformation away from ρ̃dd ′ . However, we have lost the information
about which d ′ the state is associated with. Therefore, there is no way to apply
a single unitary to retrieve the original state. We will refer to the measurements
for which the refinement-plus-unitary interpretation is appropriate “generalized
Bayesian measurements.”
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7.5 Quantum measurement and information gain

In this section we will show that the extra unitary transformation appearing in
quantum measurement gives rise to an interesting disanalogy between classical
and quantum cases in terms of information gain on measurement.

7.5.1 Information gain

There are several different measures of information gain in measurement (e.g.,
[6, 9, 10]). Here we will be interested in a particular type of information gain that
can be expressed either in terms of a majorization relation, or in terms of an entropy
inequality. The property of interest concerns how the final uncertainty (averaged
over all the possible final states) compares with the uncertainty in the initial state.
In particular, one hopes that the uncertainty after a measurement is less than the
uncertainty before. We will now give a brief explanation of how this property can
be represented using majorization and entropy inequalities.

The intuitive interpretation of the majorization relation ≺ is that, if x ≺ y, then
x is more “mixed,” “disordered,” or “uncertain” than y. It is defined as follows.

Definition 1. Suppose x = (x1, x2, . . . , xd) and y = (y1, y2, . . . , yd) are two
vectors. If we reorder the components of x to be in non-increasing order, we denote
the new vector by x↓ = (x↓1 , x↓2 , . . . , x↓d ), with x↓1 ≥ x↓2 ≥ . . . ≥ x↓d . Then we say
that x is majorized by y, x ≺ y, if

k∑
j=1

x↓j ≤
k∑

j=1

y↓j (7.36)

for k = 1, . . . , d − 1, and equality for k = d.

The connection to mixedness or disorder is expressed in the following theorem.4

Theorem 1. x ≺ y iff x = ∑ j p j Pj y for some probability distribution p j and
permutation matrices Pj .

This means that x is more disordered than y because it can be obtained by apply-
ing various permutations to y and then mixing the results.

We can apply the concept of majorization to quantum states via the following
definition.

Definition 2. Suppose ρ and σ are Hermitian operators. Then we say that ρ ≺ σ if
the vector λ(ρ) of eigenvalues of ρ is majorized by the vector λ(σ) of eigenvalues
of σ , λ(ρ) ≺ λ(σ).

4 For a proof of this theorem, see [11], p. 574.
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The majorization relation

λ(ρ) ≺
∑

d

pdλ(ρ
′
d) (7.37)

therefore expresses the idea that the initial state ρ is more mixed on average than
the states ρ ′d comprising the post-measurement ensemble.

The second way to express this idea is in terms of an inequality of entropies.
Suppose we have a random variable X which can take values x1, . . . , xn with prob-
abilities p1, . . . , pn . The Shannon entropy associated with this probability distri-
bution is

H(X) = −
∑

d

pd log pd . (7.38)

Intuitively the Shannon entropy may be thought of as a measure of our uncertainty
about the random variable before we learn what value it takes. Each choice of
measurement {Ei } on a quantum state ρ produces a random variable corresponding
to the outcomes X with probabilities given by {pi = tr(ρEi }, and Shannon entropy
Hρ(X) = −∑i pi log pi . The entropy of the state ρ itself may be defined as

S(ρ) = −tr(ρ log ρ). (7.39)

This quantity is called the “Von Neumann entropy.” It is equal to the Shannon
entropy of the probability distribution arising from a projective measurement onto
the state’s eigenvectors. In fact, this measurement produces the lowest Shannon
entropy of any projective measurement on the state, and so S(ρ) ≤ H(X), where
X is the random variable of measurement outcomes for other projective measure-
ments. The von Neumann entropy provides a measure of the uncertainty in a quan-
tum state, just as the Shannon entropy provides a measure of the uncertainty in a
probability distribution.

It can be shown that there is a close connection between majorization and
entropies. If we have two quantum states ρ and σ such that ρ ≺ σ , then
S(ρ) ≥ S (σ ), where S(ρ) is the von Neumann entropy of the state ρ. There-
fore the property that the initial state is more mixed than the final state on average
in a measurement, given by the majorization relation (7.37), can also be expressed
by the entropy inequality5

S(ρ) ≥
∑

d

pd S(ρ ′d). (7.40)

5 The difference S(ρ)−∑d pd S(ρ′d ) is a quantity of interest in quantum feedback control, where it serves as an
indication of the purifying power of the measurement, or the amount of state reduction [9].
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(Classically we can define a similar relation, using Shannon entropies in place of
von Neumann entropies.) We now have a precise formulation of the information-
theoretic property of interest, expressed by either the majorization relation (7.37)
or the entropy inequality (7.40). I will refer to this informally as the property of
“decreasing our uncertainty” or “increasing our information” about the state on
measurement.

7.5.2 Information gain in quantum measurements

Nielsen has proved results that allow us to find necessary and sufficient condi-
tions on the form of a quantum measurement that satisfies the majorization relation
(7.37). Nielsen shows that for efficient measurements, relation (7.37) always holds
between the initial and final states, i.e., the following theorem holds.

Theorem 2. Suppose {Ad} is a set of measurement matrices satisfying
∑

d A†
d Ad =

1. Then

λ(ρ) ≺
∑

d

pdλ(ρ
′
d), (7.41)

where ρ ′d = AdρA†
d/tr(AdρA†

d) and pd = tr(AdρA†
d).

This theorem was proved also by Fuchs and Jacobs [6], using a different method.
In addition, Nielsen showed that there is a partial converse, given by the follow-

ing theorem.

Theorem 3. Suppose ρ is a density matrix with vector of eigenvalues λ, and ρ ′d
are density matrices with vectors of eigenvalues λd . Suppose pd are probabilities
such that λ(ρ) ≺ ∑d pdλd . Then there exist {Add ′ } and a probability distribution
pdd ′ such that ∑

dd ′
A†

dd ′ Add ′ = I, (7.42)

pdd ′ρ
′
d = Add ′ρA†

dd ′, (7.43)

pd =
∑

d ′
pdd ′ . (7.44)

This is not a full converse, because there are some information-increasing mea-
surements that cannot be expressed with just one index. Nielsen gives the following
example. Let ρ = I/2 and ρ ′ = |0〉〈0|. Then λ(ρ) ≺ λ(ρ ′). Yet there is no one-
index measurement that takes ρ to ρ ′. However, there is a two-index measurement
that does, namely {|0〉〈1|, |0〉〈0|}.
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The conditions on the form of the measurement in Theorem 3 are not just a nec-
essary condition for majorization relation (7.37), but are also sufficient. Showing
this is a simple extension of the proof of Theorem 4 by Fuchs and Jacobs [6].

Suppose there exist {Add ′ } and a probability distribution pdd ′ such that∑
dd ′

A†
dd ′ Add ′ = I, (7.45)

pdd ′ρ
′
d = Add ′ρA†

dd ′, (7.46)

pd =
∑

d ′
pdd ′ . (7.47)

Multiplying (7.45) on the left and right by ρ1/2 gives

ρ =
∑
dd ′

pdd ′ ρ̃dd ′, (7.48)

where

ρ̃dd ′ = 1

pdd ′
ρ1/2 A†

dd ′ Add ′ρ
1/2. (7.49)

For any convex combination of quantum states ρi with probabilities pi , the
majorization relation λ(ρ) ≺∑i piλ(ρi ) holds (see Theorem 1 of [5]). Therefore

λ(ρ) ≺
∑
dd ′

pdd ′λdd ′, (7.50)

where λdd ′ = λ(ρ̃dd ′). Now, since X† X and X X† have the same eigenvalues for
any operator X , it follows that λ(ρ̃dd ′) = λ(ρ ′d), where

ρ ′d =
1

pdd ′
Add ′ρA†

dd ′ (7.51)

and
∑

d ′ pdd ′ = pd , and therefore

λ(ρ) ≺
∑

d

pdλ(ρ
′
d). (7.52)

7.5.3 Generalized Bayesian measurements and information gain

We now show that the necessary and sufficient conditions for measurements satis-
fying the majorization relation are also necessary and sufficient conditions for the
measurement to be a “generalized Bayesian measurement” comprising a refine-
ment and unitary transformation. Thus generalized Bayesian measurements always
decrease our uncertainty about the state, and conversely, if we decrease uncertainty,
on going from a particular initial state to a set of final states, then there must be



164 L. Henderson

a generalized Bayesian measurement between these states. This is shown in the
following theorem.

Suppose there exists a measurement on an initial state ρ and the final states are
ρ ′d with probability distribution pd . If the measurement can be interpreted as a
generalized Bayesian updating, then the relation for the initial state

ρ =
∑

d

pdUdρ
′
dU †

d (7.53)

must hold for some unitaries Ud . One refines the initial state to Udρ
′
dU †

d , and then
performs a unitary transformation Ud to obtain the final state ρ ′d . Let B be the
condition that there exists a measurement satisfying (7.53).

Let M be the majorization condition

λ(ρ) ≺
∑

d

pdλ(ρ
′
d). (7.54)

Then we have the following theorem.

Theorem 4.

B ⇔ M. (7.55)

Proof. (⇒) Suppose ρ = ∑d pdUdρ
′
dU †

d for some unitaries Ud . Let ρ̃d =
Udρ

′
dU †

d . Since ρ =∑d pd ρ̃d

λ(ρ) ≺
∑

d

pdλ(ρ̃d) =
∑

d

pdλ(ρ
′
d) (7.56)

by Theorem 1 of [5], and λ(ρ ′d) = λ(ρ̃d).
(⇐) Suppose λ(ρ) ≺ ∑d pdλ(ρ

′
d). Then, by Nielsen’s Theorem 2 above, there

exist matrices {Add ′ } and a probability distribution pdd ′ such that∑
dd ′

A†
dd ′ Add ′ = I, (7.57)

pdd ′ρ
′
d = Add ′ρA†

dd ′, (7.58)

pd =
∑

d ′
pdd ′ . (7.59)

The matrix ρ ′d has the same eigenvalues as ρ̃d = (1/pdd ′)ρ
1/2 A†

dd ′ Add ′ρ
1/2, there-

fore there is a unitary Ud , such that

ρ̃d = Udρ
′
dU †

d , (7.60)
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and we know from the completeness relation
∑

dd ′ A†
dd ′ Add ′ = 1 that

ρ =
∑
dd ′

pdd ′ ρ̃d,

=
∑

d

pdUdρ
′
dU †

d . (7.61)

7.5.4 Inefficient measurements and information loss

It follows from this theorem that measurements which do not correspond to gener-
alized Bayesian updating can actually increase our uncertainty about the state.6

An example is the POVM E11 = 1
2 |0〉〈0|, E12 = 1

2 |+〉〈+|, E21 = 1
2 |1〉〈1|,

E22 = 1
2 |−〉〈−|. Then

ρ ′1 =
√

E11ρ
√

E11 +
√

E12ρ
√

E12

= 1

2
(〈0|ρ|0〉|0〉〈0| + 〈+|ρ|+〉|+〉〈+|) (7.62)

and

ρ ′2 =
√

E21ρ
√

E21 +
√

E22ρ
√

E22

= 1

2
(〈1|ρ|1〉|1〉〈1| + 〈−|ρ|−〉|−〉〈−|). (7.63)

Such a measurement can increase our uncertainty.
The possibility of an inefficient measurement that can increase our uncertainty

contrasts with the classical situation. In classical measurements, the final probabil-
ity distribution, averaged over all outcomes, is the same as the initial probability
distribution p(h) =∑d p(d)p(h|d). This is true even if the measurement is inef-
ficient and throws away some information. Consider making a measurement that
gives

∑
d ′ p(h|d, d ′) for a given outcome d. Then∑

d

p(d)
∑

d ′
p(h|d, d ′) = p(h). (7.64)

Therefore in the classical case, the majorization relation (7.37) expressing infor-
mation gain is trivially satisfied (associating

∑
d ′ p(h|d, d ′) with ρd and p(h) with

ρ). The measurement does not reduce certainty about the final state.
It is possible that (7.37) is not satisfied in the classical case, but only if a

more general operation is allowed, where a permutation �dd ′ is applied before
the coarse-graining. Then the new probability distribution after measuring d is
given by

6 Jacobs also notes that some inefficient measurements can increase uncertainty about the state [12].
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1

p(d)

∑
d ′
�dd ′ p(d, d

′|h)p(h) (7.65)

and the classical version of inequality (7.40) fails.
Classically, inefficient measurements cannot increase uncertainty about the state,

unless extra permutations of this kind are introduced before the coarse-graining.
The quantum analog of adding permutations is adding unitary transformations7

ρ ′d =
∑

d ′

Udd ′
√

Edd ′ρ
√

Edd ′U
†
dd ′

pd
. (7.66)

However, the states involved in an inefficient quantum measurement can violate
(7.37), even without the introduction of further unitaries. In the example we have
just given the final states have the form

ρ ′d =
∑

d ′

√
Edd ′ρ

√
Edd ′

pd
. (7.67)

In a quantum measurement, there are already built-in “extra unitaries” that function
something like the permutations in the classical case, allowing that, in an inefficient
measurement, the uncertainty about the state may increase.

7.6 Conclusion

We have seen that Bub and Fuchs share a subjective interpretation of the quan-
tum probabilities as degrees of belief for an observer. However, Bub argues that
the Kolmogorovian probability model needs to be generalized in the quantum case
so that probabilities may be defined over a non-Boolean algebra. Fuchs, on the
other hand, does not propose that the probability model be generalized. In both
approaches, there is a close analogy between Bayesian updating and quantum
measurement. However, as Fuchs highlights, there is not a full analogy between
Bayesian updating and quantum measurement since an efficient quantum measure-
ment is not just a refinement of the probability distribution, but also involves an
extra unitary transformation. We have seen that the measurements which can be
interpreted as a Bayesian refinement with extra unitary are exactly those measure-
ments which increase the information about the state. On the other hand, there
are some quantum measurements that do not fall in this category and that may
lose information. This is because averaging over the built-in unitaries has an effect
that is similar to what one gets by applying randomizing permutations classically.
Nonetheless, the information-losing measurements have no direct classical analog.

7 See [4] for a more detailed discussion of the role of permutations and unitary transformations.
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Schumacher information and the philosophy
of physics

Armond Duwell

8.1 Introduction

Many philosophers and physicists have expressed great hope that quantum infor-
mation theory will help us understand the nature of the quantum world. The general
problem is that there is no widespread agreement on what quantum information is.
Hence, such pronouncements regarding quantum information theory as the sav-
ior of the philosophy of physics are hard to evaluate. Much work has been done
producing and evaluating concepts of information.1

In [7] I have defended and articulated the Schumacher [17] concept of quantum
information. Roughly speaking, quantum information is construed as the statisti-
cal behavior associated with the measurement of a quantum system. Hence it is a
coarse-grained operational description of quantum systems, with no recourse to the
fundamental ontological features of quantum systems responsible for such behav-
ior. From this perspective, construing quantum mechanics as a theory of quantum
information departs from the traditional interpretive endeavors of philosophers and
physicists. The question is whether there is any motivation for taking such a view.

The theorem of Clifton, Bub, and Halvorson (CBH) [5] provides just such a
motivation. The theorem guarantees that, if a theory T satisfies certain conditions,
there will exist an empirically equivalent C∗-algebraic theory that has a concrete
representation in Hilbert space, which it is notoriously difficult to interpret as a con-
structive or mechanical theory. In such a case, any underlying ontologies philoso-
phers develop that are compatible with T will be undermined by the C∗-algebraic
equivalent. Bub [2, 3] suggests in light of this in-principle uncertainty regarding
ontology that we re-conceive of quantum mechanics as a theory about quantum
information.

1 See Jozsa [16], Deutsch and Hayden [6], Vaidman [24], Duwell [8–10], Fuchs [11], Brukner and Zeilinger [1],
and Timpson [20–22].
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Bub fails to provide a concept of quantum information, and his proposal is cor-
respondingly difficult to evaluate. In this paper, I substitute the concept of quantum
information I advocate into Bub’s proposal and tentatively explore the advantages
of such a re-conception of quantum theory. In Section 8.2 the theorem of CBH [5]
is sketched, and the epistemological problem the theorem generates is discussed. In
Section 8.3 the concept of information advocated in [8] is outlined. In Section 8.4
I advocate a partial re-conception of quantum theory as a theory of quantum infor-
mation. I suggest that it alleviates the epistemological problem generated by the
CBH theorem and suggests interesting new work for philosophers and physicists.

8.2 The CBH theorem

CBH [5], together with the supplementary result of Halvorson [14], characterized
quantum theories in terms of information-theoretic constraints.2 By “quantum the-
ory,” CBH mean a C∗-algebra with the following features.

(i) Observables are represented by the self-adjoint operators in a non-commutative alge-
bra, but where observables for separate systems commute.

(ii) States are represented by positive normalized linear functionals where there exist
entangled states of space-like separated systems.

(iii) Dynamical changes are represented by completely positive linear maps ([3], p. 7).

CBH proved that C∗-algebras will have these features if and only if they satisfy
the following information-theoretic constraints:

(i′) no superluminal information transfer via measurement;
(ii′) no broadcasting; and

(iii′) no bit commitment ([3], pp. 7–8).

Constraint (i′) ensures that no measurement interactions on a system can
change the statistics associated with measurements on space-like separated sys-
tems. Changing the statistics associated with measurements on a system is requisite
for information transfer to be possible. Constraint (ii′) prohibits the cloning of pure
and mixed states of quantum systems. Constraint (iii′) prohibits certain types of
security protocols. Roughly speaking, the constraint forbids making a secure com-
mitment (1 or 0 for instance) such that the commitment cannot be altered by the
one making the commitment, nor so that the commitment is impossible to discover
unless revealed by the one that made the commitment.

2 The complete result will be referred to as the CBH theorem, and is taken to include Halvorson’s supplementary
work.
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Perhaps one of the most important consequences of the theorem is that, given
any quantum theory that satisfies the information-theoretic constraints, there will
exist an empirically equivalent C∗-algebraic theory. Now, that C∗-algebraic theory
will have features (i)–(iii) above and a concrete representation in a Hilbert space
where value assignments to observables are severely restricted along the lines of
Kochen and Specker (1957), Bell (1964), and Bub and Clifton (1996) [4]. So, for
any theory that satisfies the information-theoretic constraints, there exists an empir-
ically equivalent theory that is subject to all the interpretive problems that challenge
standard quantum mechanics.

This situation raises delicate epistemological issues. The philosopher of quan-
tum mechanics is challenged typically with taking an abstract formal framework
used for representing quantum systems and deciding more or less which features
of that formal framework correspond to genuine features of quantum systems and
which are mere artifacts, and then has to discern which ontologies are compat-
ible with the framework, i.e., to provide an interpretation of that framework. The
ontologies discovered through such a process are typically taken to be the best con-
tenders for the real physical ontology, but what licenses such a conclusion is the
amazing empirical success of a theory. The existence of empirical equivalents of a
theory challenges such conclusions. As a practical matter, all but trivial empirical
equivalents are usually hard to come by. Many competing quantum theories that are
on the table now, namely GRWP theories, Bohm’s theory, no-collapse theories, etc.,
are not empirically equivalent, but crucial tests to distinguish between these com-
peting theories are not currently possible. In practice, the problem of in-principle
empirical equivalents can often be dismissed, but the CBH theorem essentially
forces us to confront the problem. It guarantees the existence of an empirically
equivalent theory for any theory that satisfies the information-theoretic constraints.
So, for any two theories T and T′, which are both acceptable at a particular time,
but are not empirically equivalent to each other, if they satisfy the information-
theoretic constraints, there will exist a C∗ theory empirically equivalent to theory
T, as well as one equivalent to T′.

The issue of empirical equivalence hits philosophers of quantum mechanics
hardest with respect to the measurement problem. That is where philosophers
attempt to spell out how the ontology compatible with their favored quantum the-
ory is able to recover the phenomena. But, if their favored theory satisfies the
information-theoretic constraints, there will be an empirically equivalent rival that
can make the right predictions, but without postulating any extra structure or ontol-
ogy, as for example Bohm’s theory does with definite values for position as well
as a new field. Since the theories are empirically equivalent, there is no empiri-
cal evidence that will decide one is better than another. So, the CBH result seems
to give philosophers of quantum mechanics a fundamental tradeoff: postulate the
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extra structure that secures our experience but without any empirically detectable
consequences, or forget the extra structure at the expense of having the appearances
remain mysterious.

Bub [3, 4] suggests that the rational epistemological stance is to regard all con-
structive theories (those that postulate extra structure) as unacceptable. According
to Bub, measurement devices are to be treated as black boxes that simply produce
a sequence of outcomes according to a probability distribution, which is tanta-
mount to treating measurement devices as Shannon information sources. Hence,
Bub advocates re-conceiving quantum mechanics as a theory about the represen-
tation and manipulation of physical systems as sources of information, as opposed
to a theory about the fundamental constituents of the world, i.e., the fundamental
ontology. Physicists and philosophers should forget about articulating an underly-
ing ontology compatible with the observable phenomena in favor of a predictively
adequate representation of them. Hence, he is advocating a new role for physics,
which many think is not only a great departure from what physics has done, but
also from what physics ought to do.

Against Bub, one might argue that physics is in the business not only of produc-
ing the right predictions about the world, but also of explaining something. While,
on predictive grounds alone, the CBH theorem might make us question the creden-
tials of one theory over another, given C∗-algebraic equivalents’ seeming lack of
explanatory resources concerning the phenomena, one might easily dismiss them,
just as Bub dismisses the theories that postulate “extra” structure.

What constitutes an explanation is in some sense in the eye of the beholder, and
that will be discussed below, but there is a fundamental flaw with Bub’s proposal.
As a general metaphysical tenet, there are physical features of systems that give
rise to the dispositions a system has to behave in certain ways in measurement
contexts. It would seem a strange creative limitation to not allow physicists and
philosophers to explore the underlying ontology. The only way this can be some-
what justified is if the assumptions of the CBH theorem hold, and thus the existence
of a C∗-algebraic theory empirically equivalent to a successful constructive theory
is guaranteed. That said, it is a completely open question whether the constraints
do actually hold. So, the view Bub advocates seems not only too restrictive, but
also epistemologically unjustifiable given the uncertain nature of the constraints.3

Between these two extreme positions lies interesting middle ground that respects
conflicting intuitions regarding the epistemological problem created by the CBH
theorem. It involves re-conceiving quantum mechanics as a theory of information,
but is an approach that regards foundational work on developing candidates for the

3 See Duwell [8], Timpson [22], Spekkens [19], Smolin [18], Halvorson and Bub [15], and Halvorson [13] for
discussions of the assumptions of the CBH theorem.
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fundamental ontology that secures the phenomena as essential to that work. More
will be said about this new conception after an appropriate concept of quantum
information has been articulated.

8.3 Quantum information

In 1995 Schumacher developed a concept of quantum information that was quite
analogous to Shannon’s concept of information [17]. The concept of quantum
information was developed in the context of a quantum communication system.
A quantum communication system consists of a quantum source, which produces
a sequence of quantum systems, which are individually in pure states or part of
a larger system in a pure state according to a probability distribution; a quantum
compression device, which operates on the system produced by the source to min-
imize the resources required to communicate quantum information; the quantum
signal, which is the connection between the two wings of the communication sys-
tem; and a decompression device, which reproduces the quantum message from
the quantum signal.

Timpson [22] has developed a very useful characterization of communication
systems utilizing the well-known type/token distinction. Timpson characterizes
information sources as producing tokens of different types. The goal of commu-
nication is to reproduce tokens of the types that the information source produced
tokens of, at the opposite end of the communication system.

Similarly to Shannon’s theory, where the Shannon coding theorem provides part
of the interpretation of Shannon information, the Schumacher coding theorem pro-
vides part of the interpretation of Schumacher information. Schumacher was able
to show that the von Neumann entropy associated with a quantum source with aver-
age density operator ρ, S(ρ), quantifies the resources necessary and sufficient to
reproduce quantum information. In particular, it quantifies the minimal dimension
of a Hilbert space requisite to represent the quantum information associated with
the system produced by the source.

The minimal resources requisite for communication depend on the criterion of
success that is adopted for the communication system. The success criterion that
is advocated here is that the entanglement fidelity for the transmission process
approaches unity as the length of the sequence produced by the source goes to
infinity. The entanglement fidelity of a process is a measure of how well preserved
quantum information associated with a system is, as the system undergoes the pro-
cess. The entanglement fidelity has an operational interpretation as the probability
that the initial system and the system after the process will pass a test of same-
ness. “Sameness” in this context is interpreted probabilistically. Two systems are
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considered the same if they behave identically from a statistical point of view in all
measurement contexts. What is crucial is that these measurement contexts include
not only measurements on the individual systems that compose the sequence, but
measurements on parts of the sequence, and even on the sequence with other
systems. That means that any entanglement that the initial sequence has, either
between the systems that compose the sequence or as part of a larger system, will
be preserved if the entanglement fidelity of the process is high.

The descriptive resources are in place to describe what the Schumacher con-
cept of quantum information is. It is that which is quantified by the von Neumann
entropy, what I call the quantum quantity-information, in order to distinguish it
from that which is required to be reproduced for successful communication, what I
call the quantum type-information. Hence the Schumacher concept breaks into two
subconcepts. The quantum-quantity information is simply the minimal resources
required for successful communication. The quantum type-information is the sta-
tistical behavior of the system produced by the source in all measurement contexts.

It deserves emphasis that the quantum quantity-information is not a quantity that
somehow inheres in the quantum signal. It is a quantity that describes the quan-
tum information source, not the particular sequences produced by the source. For a
quick verification, note that the von Neumann entropy associated with a source will
generally be non-vanishing even when the source produces only systems that are
individually in pure states. Hence the quantum quantity-information is not a quan-
tity of substance associated with some particular quantum system whose progress
may be tracked through a communication system.

The quantum type-information is the type of token produced by the quantum
information source, not the token, and hence one cannot talk of the location of
the quantum type-information because it is an abstract entity. One can, of course,
talk of the location of tokens of particular quantum type-information or instanti-
ations of quantum type-information. It should be noted that quantum information
on this analysis is not some kind of substance, unlike in some other concepts of
information [16].

It is quite obvious that the quantum type-information can be considered quite
independently of quantum quantity-information, and this independence allows
the Schumacher conception of quantum information to make contact with Bub’s
re-conception of quantum mechanics as a theory of quantum information.

8.4 Re-conceiving quantum mechanics

In this section, a particular re-conception is advocated, which deviates from Bub’s
extreme proposal but nonetheless respects the epistemological problem facing
philosophers of quantum mechanics if the assumptions of the CBH theorem hold. I
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will advocate a partial re-conception of quantum mechanics as a theory of quantum
information. I will discuss the advantages and debits of such a proposal.

The concept of quantum information elaborated has obvious connections to
Bub’s view of quantum mechanics in light of the CBH theorem. Bub suggests
that we ought to view measurement devices as black boxes that produce results
according to a probability distribution. Quantum mechanics is to be re-conceived
as a theory about representation and manipulation of quantum systems as sources
of information. Reconstrued using the concept of information articulated above,
quantum mechanics should be conceived of as a theory about the representation and
manipulation of quantum information. In terms of the terminology above, quantum
measurement devices are those instruments which reveal the properties of a token
of particular quantum type-information.4

The question many will pose given this re-conception of quantum theory is
“Why would it be of any interest, especially to philosophers of physics, to avoid
trying to describe the fundamental ontology compatible with our best physical the-
ory in favor of the more coarse-grained quantum information-theoretic approach?”
First off, that question sets up a false dichotomy. Unlike Bub, I am not advocating
a reorientation of the subject matter of physics, or of philosophy for that matter.
Exploring the information-theoretic approach to quantum theories does not entail
giving up traditional foundational work. A better question is “What do we gain
from considering the information-theoretic perspective in addition to traditional
foundational concerns?”

When a philosopher or physicist provides an explanation of a phenomenon, they
typically refer to a constructive theory. A mere derivation of a result from stan-
dard quantum mechanics is seen as explanatorally vacuous. For example, standard
quantum mechanics predicts the right correlations in EPR experiments, but hardly
anyone would admit that it explains anything. Similar goes for any C∗-algebraic
theories that CBH consider. Constructive theories of quantum phenomena are
turned to in order to provide an explanation. Now, one of the traditional desiderata
of explanations is that the explananda are true. Well, what confidence should be
placed in one of these constructive explanations of a quantum phenomenon in this
epistemological situation? Very little, I think. As mentioned above, there are sev-
eral empirically inequivalent quantum theories that are currently empirically indis-
tinguishable, and some that are empirically equivalent. This is where the quantum
information perspective may be very useful.

Currently, all empirically acceptable quantum theories share a wide range of pre-
dictions within the bounds of current experimental abilities. Hence, the behavior of

4 Of course, we know that generally no measurement can reveal the identity of the quantum type the measured
system is a token of.
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quantum information is shared between all of these currently acceptable theories
at this restricted level. This is especially obvious from the operational definition of
quantum type-information. Hence quantum information provides a unifying thread
to these theories. From that perspective, they are equivalent. Perhaps this equiv-
alence can be used to provide explanations of quantum phenomena utilizing true
desiderata without depending on the constructive details of the phenomena. The
laws of quantum information supervene on the constructive facts or laws (depend-
ing on your metaphysical predilections) and may provide explanations that avoid
the problems generated by our current epistemological situation.

Consider an analogous case of explanations of thermal phenomena utilizing ther-
modynamics instead of statistical mechanics. Suppose that one wants to explain
what happens when one throws a hot rock into a pool of cold water. A constructive
explanation in terms of the underlying statistical physics is completely intractable,
and hardly illuminating. By appealing to the thermodynamic laws, which presum-
ably supervene on the underlying statistical-mechanical behavior of the system,
one can make quick work of the phenomenon. The model of explanation that it
seems must be appealed to in this case is the unification model. The thermody-
namic laws unify a wide range of phenomena under a few simple principles. Simi-
larly, perhaps the laws of quantum information can unify a wide range of quantum
phenomena under a few simple principles.

What are the laws of quantum information? Well, no one knows right now, but it
is a fascinating and burgeoning area of research. For a taste, consider some recent
developments on extensions of the no-cloning theorem. It is well known that quan-
tum states cannot be cloned, hence quantum type-information cannot be cloned.
But that is true only if we want perfect clones. Recent work has established how
well quantum type-information can be distributed.

Consider a quantum cloning machine that begins the cloning process with N
qubits all in the same arbitrary state, i.e., |ψ〉 = sin(θ/2)exp (iφ)|0〉+cos(θ/2)|1〉,
where the distribution over the states is flat, and is required to produce M > N
clones that are all in the same state. To describe how effective the cloning process
is, one must use a concept of fidelity. The average fidelity of clones, which is an
average over all of the various initial states, is given by

F =
∫

d
〈ψ |ρout|ψ〉,

where d
 = ∫ 2π
0 dφ

∫ π
0 dθ sin(θ)/(4π). Gisin and Massar [12] have shown that

one can produce clones with fidelity

F = M(N + 1)+ N

M(N + 2)
.
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Making a clone of a single system is effective. Choosing M = 2, the fidelity of
the clones is 5/6. Cloning from N to N + 1 is quite effective. The fidelity of the
clones tends to unity as N grows. Making clones from a single qubit is surpris-
ingly effective. The fidelity of the 1-to-M cloner goes to 2/3 as M becomes large.
One might have expected that when one tries to distribute quantum information
as widely as possible the average state of the qubits would bear no relation to the
initial state. This example gives one a flavor of the laws of quantum information
distribution.

8.5 Conclusion

As remarked at the beginning of this chapter, philosophers and physicists have
expressed great hope that quantum information theory will offer great insight into
the nature of quantum physics. Whether that is true or not remains to be decided.
What is certainly true, though, is that quantum information theory seems to offer
interesting prospects for dealing with the epistemological problems of currently
acceptable quantum theories, as well as the epistemological problem created by
the CBH theorem. In particular, it has been suggested that the concept of quan-
tum information above, coupled with the laws of distribution of quantum informa-
tion, may provide explanations of quantum phenomena that do not commit one to
any particular quantum theory or interpretation thereof. The scope of explanatory
power that quantum information theory has to offer remains to be seen. Minimally
I hope that quantum information theory is seen by philosophers as a potentially
useful philosophical resource, not simply an instrument of application of quantum
mechanics.
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From physics to information theory and back
Wayne C. Myrvold

9.1 Introduction

Quantum information theory is the study of how the peculiar features of quantum
mechanics can be exploited for the purposes of information processing and trans-
mission. A central theme of such a study is the ways in which quantum mechan-
ics opens up possibilities that go beyond what can be achieved classically. This
has in turn led to a renewed interest in, and a new perspective on, the differences
between the classical and the quantum. Although much of the work along these
lines has been motivated by quantum information theory – and some of it has been
motivated by the conviction that quantum theory is essentially about possibilities
of information processing and transmission – the results obtained, and the frame-
works developed, have interest even for those of us who are not of that conviction.
Indeed, much of the recent work echoes, and builds upon, work that predates the
inception of quantum information theory. The significance of such work extends
beyond the setting of quantum information theory; the work done on distinguish-
ing the quantum from the classical in the context of frameworks that embrace both
is something worthy of the attention of anyone interested in the foundational issues
surrounding quantum theory.

One of the striking features of quantum mechanics lies in its probabilistic char-
acter. A quantum state yields, not a definite prediction of the outcome of an exper-
iment, but a probability measure on the space of possible outcomes. Of course,
probabilities occur also in a classical context. In this context they have to do with
situations in which the experimenter does not have complete control over the clas-
sical state to be prepared, and, as a consequence, we do not have complete knowl-
edge of the classical state of the system subjected to the preparation procedure. The
question which arises, therefore, is whether quantum probabilities can be construed
as being like this. One way of framing this question is in terms of hidden vari-
ables: ought we to think of quantum-mechanical pure states as being probabilistic

Philosophy of Quantum Information and Entanglement, ed. A. Bokulich and G. Jaeger. Published by
Cambridge University Press. c© Cambridge University Press 2010.
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mixtures of states of a more encompassing theory, whose pure states would ascribe
definite values to all variables? It is interesting to ask which of the peculiar fea-
tures of quantum mechanics are traceable to ineliminable statistical dispersion in
its states. Such features will be reproducible in an essentially classical theory with
suitable restrictions on possibilities of state preparation.

Some of the recent work in quantum information theory has shown that some
of the features of quantum mechanics that one might be inclined to think of as
peculiarly quantum can, indeed, be recovered from a theory in which the preparable
states are probabilistic mixtures of such classical states. The no-cloning theorem is
a case in point. Arbitrary pairs of quantum states cannot be cloned; those pairs that
can be cloned are orthogonal pairs. Though originally formulated in the context of
quantum mechanics, it admits of a formulation applicable to classical mixed states,
which are probability measures over a classical phase space. A pair of classical
states is orthogonal iff the probability measures have disjoint support, and it can
be shown that clonable pairs are orthogonal in this sense. The similarity between
these two theorems suggests that they are special cases of a more general theorem,
and this is indeed the case. Implicit in the proof of Lemma 3 of Clifton, Bub, and
Halvorson [11] is a proof that a pair of pure states of a C∗-algebra are clonable
iff they are orthogonal. Barnum, Barrett, Leifer, and Wilce [5] prove a theorem
of much greater generality. Within the convex-sets framework (see Section 9.4),
they prove that a finite set of states on a compact, finite-dimensional state space is
clonable if and only if it is a jointly distinguishable set of states.

Some, notably Fuchs [13] and Spekkens [29, 30], have found in this fact –
that some phenomena that might be thought to be distinctively quantum can be
reproduced in a classical theory by imposing restrictions on state preparation –
encouragement for the view that quantum probabilities are just like classical
probabilities, epistemic probabilities bound up with limitations on state prepara-
tion. A natural alternative is to conclude that those features that can be reproduced
in an essentially classical setting ought not to have been considered distinctively
quantum in the first place. This is, I think, the right lesson to draw. If this is right,
then we must seek deep distinctions between the classical and the quantum else-
where. To anticipate a conclusion to be drawn below, a case can be made that
Schrödinger [27] was right to locate the essential difference between the classical
and the quantum in the treatment of combined systems. However, Schrödinger’s
conclusion that it is entanglement that distinguishes the quantum from the classical
requires qualification – as we shall see.

In this paper, I will compare and contrast two approaches to the construction
of neutral frameworks in which theories can be compared. The first is the alge-
braic framework, which begins with an algebra, among the elements of which are
included the observables of the theory. The second is the operational approach,
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which motivates the introduction of the convex-sets framework. I will end with
a discussion of one particular model, the toy theory devised by Rob Spekkens
[29, 30], which, with minor modifications, fits neatly within the convex-sets frame-
work and displays, in an elegant manner, some of the similarities and differences
between classical and quantum theories.

9.2 Algebraic frameworks

Clifton, Bub, and Halvorson [11] (henceforth CBH) undertook the task of char-
acterizing quantum mechanics in terms of information-theoretic constraints. They
adopted a framework in which a physical theory is associated with a C∗-algebra,
the self-adjoint elements of which represent the bounded observables of the theory.
For the definition of a C∗-algebra, see the appendix to this chapter; for our pur-
poses it suffices to know that the set of all bounded operators on a Hilbert space is
a C∗-algebra, as is any sub-algebra of these that is closed under the operation of tak-
ing adjoints, and is complete in the operator norm. Moreover, the set of all bounded,
continuous complex-valued functions on a classical phase space is a C∗-algebra,
as is the set of all bounded, measurable complex-valued functions on a classical
phase space. Thus, classical mechanics also admits of a C∗-algebra representation,
as was shown by Koopman in 1931. The difference between the quantum case and
the classical case is that, in the classical case, the algebra is Abelian.

A state on a C∗-algebra A is a positive linear functional ρ: A → C, normalized
so that ω(I ) = 1. For self-adjoint A, the number ω(A) is to be interpreted as
the expectation value of the observable corresponding to A, in state ω. The set of
states is a convex set: for any states ρ, σ , and any real λ ∈ (0, 1), the functional
defined by

ω(A) = λ ρ(A)+ (1− λ) σ(A)
is also a state, a mixture of ρ and σ . A state that is not a mixture of any two distinct
states is called pure. General state evolution is represented by completely positive
norm-preserving linear maps, also known as non-selective operations.

A state is dispersion-free iff ρ(A2)= ρ(A)2 for all self-adjoint A. Any
dispersion-free state is pure. It can be shown that a C∗-algebra is Abelian iff all
its pure states are dispersion-free. It can be shown also that a theory involving
an Abelian C∗-algebra admits of an essentially classical representation, in which
the states are probability distributions on the set of its pure states. Thus, within
the C∗-algebraic framework, the classical theories are those whose algebras are
Abelian.

Within this framework, CBH characterize quantum theory via three properties
of the algebra.
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(i) Algebras associated with distinct physical systems commute.
(ii) Any individual system’s algebra of observables is non-commutative.

(iii) Space-like separated systems at least sometimes occupy entangled states.

As CBH ([11], p. 1570) point out, the first two conditions entail that the state
space of a composite system contains non-locally entangled states. What the third
requirement is meant to do is to guarantee that these states are physically accessi-
ble. Thus, CBH allow for theories in which the set of preparable states is a proper
subset of the full state space of the algebra of observables. If the set of preparable
states is taken to be the full set of states of a C∗-algebra, then the third condition is
redundant.

Though CBH describe their conditions as “definitive of what it means to be
a quantum theory in the most general sense” ([11], p. 1563), it should be noted
that these three properties do not suffice to characterize quantum mechanics. In
a quantum theory, there are no states that are dispersion-free in all observables.
This is not entailed by CBH’s conditions, as can be shown by the following simple
example. Let A and B be two separated systems, and associate with each of these
the algebra M(C)⊕M(C2) – that is, the algebra of 3× 3 complex matrices of
the form ⎛⎝α 0 0

0 β γ

0 δ ε

⎞⎠.
Associate with the composite system the algebra that is the tensor product of the
algebras associated with A and B.

All three of CBH’s conditions are satisfied. However, unlike in either quantum
mechanics or classical mechanics, some of the pure states are dispersion-free and
some are not. The state corresponding to the vector⎛⎝1

0
0

⎞⎠
is an eigenvector of every observable. To ensure that the state space of our theory
is quantum mechanical, some additional condition is needed. Plausible candidates
are symmetry conditions; one might impose, for example, the condition that, for
any pair of pure states ρ, σ on A (or B), there is an automorphism of the alge-
bra A taking ρ into σ . This condition would entail that either all pure states are
dispersion-free (in which case the algebra is Abelian, and the state space is a clas-
sical simplex), or that none are (as in the quantum case).

The virtues of the C∗-algebraic formulation are that there is a rich and
well-worked-out theory of C∗-algebras, and that both classical and quantum
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theories – including quantum mechanics and quantum field theories – are readily
formulated in such terms. This rich theory comes at a price, however. The assump-
tion that the set of observables be the self-adjoint part of a C∗-algebra requires that
sums and products of observables be well defined even when the observables are
incompatible ones. When self-adjoint operators A, B fail to commute, the prod-
uct AB will not correspond to any observable; nevertheless, our definition of a
state requires that states assign numbers to such products, numbers that are not
interpretable as expectation values of the results of measurement. The embedding
of our observables into an algebra imposes non-trivial algebraic relations between
expectation values assigned to observables.

It would be difficult to argue – or at least, at this point nobody knows how to
argue – that any plausible physical theory would admit of a C∗-algebraic formula-
tion. If we further require that the set of preparable states be the full state space of
some C∗-algebra, then the C∗-algebraic framework becomes decidedly too restric-
tive. Halvorson [16] discusses the case of a theory that he calls the Schrödinger the-
ory, in which elementary systems are like quantum systems, but in which entangled
states decay into mixtures when the systems are separated. Such a theory is locally
quantum, but admits of no Bell-inequality-violating correlations. Such a theory
was suggested by Schrödinger [27], who pointed out that at the time there was
little in the way of experimental evidence of non-locally entangled states. Though
there is now abundant evidence of non-local entanglement, it does not seem that
the Schrödinger theory is one that could, or should, have been ruled out in advance
of experiment. Moreover, we would like a framework in which we can consider
some admittedly artificial constructions, such as Spekkens’ toy theory, discussed
in Section 9.5. As Halvorson [16] has shown, the state space of the Spekkens theory
is not the state space of a C∗-algebra.

Within the algebraic approach, one can also consider weakening of the alge-
braic assumptions. One can, for example, consider Jordan–Banach (JB) algebras,
or Segal algebras (see Halvorson [16] for definition and discussion), both of which
contain C∗-algebras as special cases. Seeking a further widening of the algebraic
framework, with constraints limited to those that, arguably, any reasonable physical
theory must share, one is led naturally to effect algebras.1

An effect algebra is meant to represent the set of yes–no tests that can be per-
formed on a physical system. It contains distinguished elements 0 and u (the unit
element), representing the two trivial tests whose outcomes, independently of the
state, are “no” and “yes,” respectively. There is a partial operation ⊕. a ⊕ b is

1 The notion of an effect algebra has occurred in the writings of many authors working on the foundations of
quantum mechanics. The presentation here is based on that of Beltrametti and Bugajski [10]. It should be
pointed out that, despite the name, an effect algebra is not an algebra: mutiplication is not defined, and addition
is a partial operation.
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defined when a and b can represent alternative outcomes of a single experiment.
The partial operation ⊕ is assumed to be symmetric and associative. Moreover,
it is assumed that, for each effect a, there is a complementary effect ā such that
a⊕ ā = u. As a final condition, a⊕ u is defined only when a = 0. A resolution of
the identity is a set {ai , . . . , an} such that

n∑
i=1

ai = u.

Associated with an n-outcome experiment is a resolution of the identity represent-
ing its possible outcomes.

An element a of a C∗-algebra A is said to be positive iff a = b∗b for some b ∈ A.
We can define a partial order ≤ on A by a ≤ b iff a + c = b for some positive c.
The set of positive elements a of A such that 0 ≤ a ≤ I forms an effect algebra,
with a ⊕ b defined to be a + b when 0 ≤ a + b ≤ I , and undefined otherwise.

The conditions defining an effect algebra, unlike those defining C∗-algebras or
JB algebras, have clear significance in terms of their intended association with
experiments. This gives us a broad framework within which we add conditions to
delimit interesting classes of physical theories.

Though restricting ourselves to the C∗-algebraic framework excludes some the-
ories that we might want to consider, such a framework nonetheless has a role
to play. As mentioned, the C∗ framework is broad enough to include both classi-
cal and quantum theory. Moreover, it lends itself readily to hybrid theories, since it
permits hybrid systems, composite systems having both classical and quantum sub-
systems. This is useful for considering what can be done by a combination of clas-
sical and quantum information processing. Moreover, a deep theorem by Alfsen,
Hanche-Olsen, and Shultz, discussed in Section 9.4, shows that the C∗-assumption
entails that the simplest systems are equivalent either to a classical bit or to a qubit.
This is an indication that the theory is too restrictive to be regarded as a general
framework for physical theories, and suggests rather that it is the minimally general
framework that is broad enough to include both the classical and the quantum.

9.3 The operational approach

Lucien Hardy ([19, 20]) sets out to characterize quantum mechanics within a
framework whose basic concepts are framed in terms of performable operations.
Hardy invites the reader to imagine concrete devices (state-preparation devices,
transformation devices, and measurement devices), and characterizes quantum
mechanics in terms of relations between possibilities of state preparation, transfor-
mation, and measurement. States, in this approach, are associated with preparation
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devices, and are regarded as compendia of probabilities regarding the outcomes
of any measurement that can be performed. Similar discussions can be found in
Holevo [21], Ludwig [24], and D’Ariano [12].

To take such concepts as basic may seem to smack of an operationalism that
eschews on principle any talk of a reality not directly accessible to observation
and manipulation. This is not, however, a necessary concomitant of this approach.
If one wishes to construct a framework capable of embracing as wide an array
as possible of physical theories, it can be a useful strategy to restrict one’s atten-
tion to the features that any physical theory might be expected to have. What-
ever else it might do, a physical theory should specify a set of possible states
of a physical system, and say something about operations that can be performed
on systems and experiments that can be done. The states, however (or irrespec-
tive of whether) they may be conceived ontologically, ought, in the context of the
physical theory, to yield probabilities for outcomes of any experiment that might
be performed. The operationalism associated with this approach can be thought
of as a methodological operationalism. Someone who takes as the goal of the-
orizing an account of a reality existing independently of us and our experimen-
tal manipulations might nonetheless wish to adopt a framework that begged no
questions about what that reality is like. The framework itself is neutral between
an attitude on which operational concepts are the only meaningful ones, and one
that seeks to use them as a springboard for theorizing about the nature of physical
reality.

It is also neutral between an attitude that rests content with taking the concepts
of preparation, transformation, and experiment as primitives, and does not seek to
explain them within the theory to be constructed, and an attitude that seeks to “close
the circle,” to borrow a phrase from Abner Shimony [28], by construing the experi-
mental apparatus as among the physical systems to be dealt with by the theory, and
the processes by which states are prepared and experimental results obtained to be
among the dynamical evolutions allowed by the theory. It is the latter, of course,
that has proved problematic in connection with quantum mechanics!

States are associated with preparation procedures, and yield probabilities over
the results of experiments, given the preparation procedure. These probabilities
might or might not represent the epistemic state of some human agent. An agent
might be in doubt about what probabilities are most appropriate to associate with
a given preparation procedure. She might, for example, be uncertain whether a
given combination of a preparation and a two-outcome experiment yielded equal
probabilities for both outcomes. The conjecture that the probabilities are equal can
be subjected to test; by repetition our agent can satisfy herself, to any degree of
precision and confidence required, about what probabilities she ought to associate
with a given combination of preparation and experiment.
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Proponents of a subjectivist interpretation of probability in quantum mechanics
sometimes assert that it is nonsensical to speak of an unknown quantum state (see,
e.g., Fuchs and Schack [14]). Indeed, if the probabilities associated with a state had
to be epistemic probabilities, then a state could be unknown only if an agent were
ignorant of her own state of mind. However, it is surely not nonsensical to say that
a system has been subjected to some state-preparation procedure, though no-one
knows what procedure was applied. In quantum information theory situations are
routinely invoked in which one agent has prepared a state, and another has to guess
what state it is. This situation would not be fundamentally different if it were
automated; we can imagine a machine subjecting a system to some preparation
procedure, making a record of which procedure was applied.

The operational approach gives us the following picture: we have a set of states,
associated with preparation procedures; a set of possible transformations of the
states; and a set of possible experiments that can be performed. The mathematical
framework that lends itself naturally to this picture is the convex-sets framework,
to be discussed in the next section.

9.4 The convex-set approach

Given any two preparation procedures ρ, σ and any real number λ∈ (0, 1), there
will be a third, according to which one utilizes either procedure ρ or σ , with proba-
bilities λ and 1−λ, respectively. Thus, we expect the set of states of any reasonable
physical theory to be convex: it will contain all mixtures of all states that it contains.

The convex-set approach starts with a convex state space 
.2 Extremal points
of this state space – that is, states that cannot be expressed as non-trivial mixtures
of other states – are called pure. An affine linear functional on 
 is a mapping
a: 
→ R that respects mixtures; that is,

a(λρ + (1− λ)σ) = λa(ρ)+ (1− λ)a(σ ),
for all ρ, σ ∈
, λ∈ (0, 1). Among affine linear functionals are the constant func-
tionals, taking on the same value on every state; we single out the unit functional
u and the zero functional 0. There is a natural partial ordering on A(
), the set of
affine linear functionals: a ≤ b iff a(ω) ≤ b(ω) for all ω ∈ 
. If 0 ≤ a ≤ u, a is
called an effect. The set of effects on a state space 
 will be denoted by E(
). The
notion of an effect generalizes the notion, which is familiar from the quantum con-
text, of an effect as a positive operator with spectrum in [0, 1]. A resolution of the

2 The presentation of the convex-set framework presented here is heavily indebted to the presentations in
Beltrametti and Bugajski [10], and in Barnum et al. [5].
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identity u in terms of effects generalizes the notion of a positive operator-valued
measure (POVM).

The set of effects has a natural structure as an effect algebra in the sense of
Section 9.2, and, conversely, the set of all probability measures on an effect alge-
bra forms a convex state space. Relations between these frameworks are further
discussed in Beltrametti and Bugajski [10].

There is a natural affine structure on the set of effects: for any effects a, b, and
any λ ∈ (0, 1), the functional c defined by

c(ω) = λa(ω)+ (1− λ)b(ω)
is also an effect. Thus, we can distinguish between effects that can be written
as non-trivial mixtures of other effects and those that cannot. The former are
called mixed effects, the latter, pure. A resolution of the identity in terms of pure
effects is what corresponds, in the context, to a quantum projection-valued measure
(PVM).

Effects map states to probabilities. Equivalently, we can think of states as map-
ping effects to probabilities. For any state ω ∈ 
, there is an affine linear mapping
ω̂: E(
)→ R defined by

ω̂(a) = a(ω).

It will be convenient, when defining the tensor-product space, to work with these
dual states, which map effects to probabilities.

To specify an observable A, one specifies a measure space 〈sp(A),MA〉 and an
affine mapping αA from states to probability measures on 〈sp(A),MA〉. The set
sp(A) is the outcome space of A, the set of possible results of an A-experiment,
MA, a σ -algebra of subsets of A, which are the measurable subsets of sp(A). For
any measurable set � ∈MA, we can define pA

�: 
→ R by

pA
�(ω) = αA(ω)(�).

This is an affine mapping yielding the probability, in state ω, that a measurement
of A will yield a result in �. Since 0 ≤ pA

�(ω) ≤ 1 for all ω ∈ 
, pA
� is an effect.

Functions of an observable are readily definable; for any measurable function f
on sp(A), f (A) is defined to be the observable whose outcome space is f (sp(A)),
with the probability that f (A) ∈ � equal to the probability that A ∈ f −1(�). A
set {Ai } of observables is said to be a compatible set iff there is an observable C
and measurable functions { fi } on sp(C) such that Ai = fi (C). Where A is real-
valued – that is, sp(A) ⊆ R – we will write ω(A) for the expectation value of A in
state ω.

One also specifies a set of affine linear mappings of the state space into
itself, representing the physically possible operations on the system. Given a
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transformation T : 
 → 
, we define the conjugate transformation T †: E(
) →
E(
), which maps effects to effects, by

T †a(ω) = a(Tω)

for all ω ∈ 
. Obviously, the identity will be among the possible transformations,
and it is assumed that transformations can be composed. It is not assumed that all
transformations are invertible.

To sum up: with a physical system is associated a triplet 〈
,O, T 〉, where 
 is
a convex set representing the state space of the system, O is a set of observables on

, and T is a semi-group of transformations of 
.

Given two physical systems S=〈
,O, T 〉 and S′ = 〈
′,O′, T ′〉, there is a plu-
rality of choices of state space for the composite system. At minimum the set of
experiments that can be performed on the combined system should include experi-
ments performed on S and S′ separately. Consider the set of experiments in O with
outcome space {0, 1} (the set of “yes–no” experiments). For any such experiment
A, there is an effect a ∈ E(
) such that, for any ω ∈ 
, a(ω) is the expectation
value of A in state ω. Since we want to consider theories in which the set of per-
mitted observables falls short of all observables definable on the state space 
, we
want to leave open the possibility that not every effect in E(
) yields the expecta-
tion value for some yes–no experiment. Let E(
) be the set of effects on 
 that do
figure in this way in some experiments in O. We specify a state in a tensor-product
space 
 ⊗ 
′ by specifying, for every pair a ∈ E(
), b ∈ E(
′), an expectation
value for the product observable a ⊗ b: a ⊗ b is measured by measuring a and b
separately, and the outcome of the a ⊗ b experiment is taken to be the product of
the component experiments. A state ω in 
⊗
′ is defined to be an affine bilinear
mapping ω: E(
) × E(
′) → [0, 1], normalized so that ω(u, u′) = 1.3 Given
α ∈ 
,β ∈ 
′, we define the product state α ⊗ β by

(α ⊗ β)(a, b) = α(a)β(b)
for all a ∈ E(
), b ∈ E(
′). The minimal tensor product 
⊗sep


′ is defined to be
the convex hull of the set of product states. A state in
⊗
′ is said to be separable
iff it is in this minimal tensor product; entangled, otherwise. The maximal tensor
product 
 ⊗max 


′ contains all normalized affine bilinear mappings ω: E(
) ×
E(
′) → R. In general, a theory may specify a tensor-product space that is a
convex proper subset of the maximal tensor-product space. The quantum tensor
product, since it includes entangled states, exceeds the minimal tensor product.

3 Here we depart slightly from Barnum et al. [5], who define a tensor-product state as an affine bilinear mapping
defined on all pairs of effects on the component spaces.
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It falls short of the maximal tensor product, however; see Barnum et al. [6] for
discussion.

The possible transformations of the composite system should, at minimum,
include transformations performed separately on the individual systems. For any
transformations T ∈ T , T ′ ∈ T ′, define the transformation T ⊗ T ′: 
⊗max 


′ →

⊗max 


′ by

(T ⊗ T ′)ω(a, b) = ω(T †a, T ′†b). (9.1)

We will require our tensor-product space to be closed under T ⊗ T ′, for all
T ∈ T , T ′ ∈ T ′.

In his opening lecture at the Boston University conference on Foundations of
Quantum Information and Entanglement held in 2006, Abner Shimony raised the
question of whether there could be entanglement without potentiality. If by “poten-
tiality” we mean that there are pure states in which some pure observables do not
take on definite values, then it becomes a theorem in the convex-set framework that
there is no entanglement without potentiality.

Theorem 1. Let A and B be physical systems, with state spaces 
A and 
B.
If ψ is an entangled pure state in 
A⊗
B, then there exists a pure effect
a ∈ E(
A⊗
B) such that 0 < ψ(a) < 1.

Proof. Let ψA and ψB be the marginals of ψ , defined by

ψA(a) = ψ(a, uB),

ψB(b) = ψ(u A, b)

for all effects a ∈ E(
A), b ∈ E(
B). Here u A and uB are the unit effects
in E(
A) and E(
B), respectively. By Lemma 3 of Barnum et al. [5], if either
marginal is pure, then ψ is a product state. Since, by assumption, ψ is entangled,
both marginals are mixed.

As ψA is a mixed state, let it be a non-trivial mixture of distinct states ρ, σ ∈

A. If ρ(a) = σ(a) for all pure effects a, then ρ(a) = σ(a) for all effects a,
and ρ = σ . Therefore, there exists a pure effect a such that ρ(a) �= σ(a). It
follows from this that ψA(a) is not equal to 0 or 1, as it could take on one of these
extremal values only if both ρ(a) and σ(a) took on the same extremal value. Thus,
ψ(a, uB) = ψA(a) ∈ (0, 1).

The state space of an algebra, be it a C∗-algebra, a JB algebra, or a Segal algebra,
is a convex set. Alfsen and Shultz [2] characterize the state spaces of JB algebras
among convex sets, and Alfsen, Hanche-Olsen, and Shultz [1] characterize those
convex sets that are the state spaces of C∗-algebras. This gives us a way of linking
the convex-set approach to the algebraic approach. We will here not go into the full
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details of these characterizations, which are presented in Alfsen and Shultz [3], but
focus instead on a central feature of these characterizations.

First, some definitions. A face of a convex set 
 is a convex subset F ⊆ 
 that
is such that, if any state in F is a mixture of states ρ, ω ∈ 
, then ρ and ω are
also in F . The face generated by ρ, ω, is the smallest face containing ρ and ω. In
a simplex, the face generated by two pure states is just the one-dimensional sim-
plex consisting of ρ, ω, and all mixtures of the two. The face generated by two
pure quantum states, represented by state vectors |ψ〉 and |φ〉, consists of a set
of pure states comprising all linear superpositions of |ψ〉 and |φ〉, together with
all mixtures of these. Thus, it is affinely isomorphic to the Bloch sphere. A face
F ⊆ 
 is norm exposed iff there is an effect a ∈ E(
) such that F is pre-
cisely the set of states on which a takes on the value 0. A Hilbert ball is a convex
set of states that is affinely isomorphic to the closed unit ball of some (finite- or
infinite-dimensional) real Hilbert space. The Hilbert ball Bn is the closed unit ball
in R

n .
If 
 is the state space of a JB algebra, or, as a special case, a C∗-algebra, then

the faces generated by pairs of pure states take on a simple form.

Theorem 2. If a convex set 
 is the state space of a JB algebra, then for any
distinct pure states ρ, ω ∈ 
, the face generated by ρ, ω is a norm-exposed Hilbert
ball.

For proof, see Alfsen et al. [2], or Alfsen and Shultz ([3], Proposition 9.10).
For discussion of the significance of this result for the Spekkens and Schrödinger
theories, see Halvorson [16].

Theorem 3. If a convex set 
 is the state space of a C∗-algebra, then, for any
distinct pure states ρ, ω ∈ 
, the face generated by ρ, ω is norm exposed, and is
either B1 or B3.

See Alfsen et al. [1], or Alfsen and Shultz [3], Theorem 11.59.
Theorem 3 entails that, in the state space of a C∗-algebra, the face generated

by a pair of pure states ρ and ω is either the one-dimensional simplex consist-
ing of ρ and ω and all mixtures of these, or else is affinely isomorphic to the
Bloch sphere. Thus, within the C∗-algebra framework, the state space of quan-
tum mechanics can be completely characterized by the condition that any two pure
states ρ and σ are connected by a continuous path through the set of pure states
within the face generated by ρ and σ – a cousin of Hardy’s [19] continuity axiom.
For a classical theory, on the other hand, the set of pure states is totally discon-
nected: any state that is “intermediate” between two classical states is a mixture of
the two.
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Consider a system S, with state space 
S , and let A be some subsystem of S.
The state space 
S will be 
A ⊗ 
E , where E is the “environment” of A, that
is, everything in S that is not included in the subsystem A. For any pure state
ε ∈ 
E , the set 
A ⊗ ε is a face of 
S that is affinely isomorphic to 
A. Thus, the
state space of any subsystem of S will be affinely isomorphic to a face of 
S . The
simplest subsystems will be those whose state spaces are the faces generated by a
pair of distinguishable states. Theorem 3 therefore says that, in the state space of a
C∗-algebra, these simplest systems will have state spaces that are equivalent either
to the state space of a classical bit, or to that of a qubit. Composite systems might
be hybrids of the two.

This is another reason for regarding the C∗-algebraic framework as too restric-
tive for a framework meant to embrace physical theories in general. This limita-
tion is also a strength. Though it can make no claims to physical generality, the
C∗-framework is a useful one for comparing classical and quantum theories, and
for discussing information processing and transmission possibilities afforded by a
combination of classical and quantum operations, precisely because it is a frame-
work in which the simplest systems are constrained to be either classical bits or
qubits.

The work of Clifton, Bub, and Halvorson [11] was motivated by a suggestion,
which they attribute to Chris Fuchs and Gilles Brassard, that quantum mechan-
ics can be derived from an appropriately chosen set of cryptographic principles.
The C∗-algebraic framework is too restrictive a starting point for such a project.
A more appropriate starting point is the convex-set approach. The following ques-
tion arises: is there a set of principles, with clear operational (cryptographic or
otherwise) significance, that distinguishes quantum state spaces among the convex
sets?

Alfsen and Shultz [2] and Araki [4] tell us how to single out, among convex sets,
those that are the state spaces of JB algebras. Alfsen et al. [1] tell us how to distin-
guish, among these, those that are state spaces of C∗-algebras. The further condi-
tion that the face generated by any pair of pure states is affinely isomorphic to the
Bloch sphere distinguishes the quantum state spaces among these. These theorems,
therefore, could form a useful starting point for a project that seeks to characterize
quantum mechanics in terms of information-theoretic principles. Araki’s work may
be useful in this regard because his conditions are expressed in terms more directly
connected with operations than those of Alfsen et al. The information-theoretic
principles proposed by Clifton, Bub, and Halvorson do not suffice to characterize
quantum mechanics, because, even within the C∗-framework, they do not entail
that there are no states that are dispersion-free in all observables. The task of char-
acterizing quantum mechanics in terms of possibilities of information processing
and transfer remains to be achieved.
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9.5 The Spekkens toy theory

Consider a ball that can be in one of four boxes. A state of this system is specified
by four probabilities (p1, p2, p3, p4). Extremal states are those in which the ball is
definitely in one of the boxes. The state space is therefore a simplex consisting of
four pure states and mixtures of these, and can be depicted as a tetrahedron.

Now, suppose we impose a restriction on state preparations, to the effect that
the probability of the ball being in any one of the boxes cannot exceed 1

2 . This
restriction chops the vertices off our tetrahedron, leaving an octahedron whose ver-
tices are the midpoints of each edge of our original tetrahedral state space (see
Figure 9.1). These six states, which are the extremal points of the new state space,
are those in which the probability is equally divided between two of the boxes.
These are the pure states of elementary systems in the toy theory constructed
by Spekkens [29, 30], the “states of maximal knowledge,” as Spekkens puts it.
In Spekkens’ theory, arbitrary mixtures of these pure states are not permitted;
Spekkens permits as a mixture only the state in which the probability is equally
divided among all four boxes. This seems to be an inessential restriction. Moreover,
it is one of questionable coherence, if the states are interpreted, as Spekkens would
have them be, as possible states of knowledge. A theory whose states are intended
as states of knowledge ought to include states of less-than-maximal knowledge.
Suppose Alice’s belief state is a Spekkens maximal-knowledge state about an ele-
mentary system of Spekkens’ theory, that Bob knows nothing about the system
except that Alice’s belief state is either ρ1 or ρ2, and that Bob’s degree of belief in
the former is λ, in the latter 1− λ. Then Bob’s epistemic state about the system is
the corresponding mixture of states of maximal knowledge.

We will, therefore, take as a state space the convex hull of Spekkens’ pure states,
as suggested by Halvorson [16]. This is the octahedron we have just described,
depicted again in Figure 9.2. Note that, though we started with a simplex, the state
space we have ended up with is not a simplex. In particular, the maximally mixed

4

x−

y−

z−

z+

2
y+

x+

1

3

Fig. 9.1 The state space of the Spekkens toy theory.
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x−
y−

z−

z+

y+
x+

Fig. 9.2 The octahedron reoriented.

state in the center (call it ω0), can be decomposed as an equally weighted mixture
of {x+, x−}, or of {y+, y−}, or of {z+, z−}.

Given this state space, one can define observables that do not extend to observ-
ables on our original tetrahedral simplex, and hence do not correspond to observ-
able quantities in the Spekkens theory. There is, for example, an affine functional
on the octahedron that takes on the value 0 on the (x+, y+, z+) face and the value
1 on the (x−, y−, z−) face. Were such a function extended to the embedding tetra-
hedron, it would have to take on a value greater than 1 on vertex 4. The set of
permitted observables will be a proper set of the observables definable on the state
space. Define the affine functionals4

ax(x+) = 1, ax(x−) = 0, ax(y+) = ax(z+) = 1

2
,

ay(y+) = 1, ay(y−) = 0, ay(x+) = ay(z+) = 1

2
, (9.2)

az(z+) = 1, az(z−) = 0, az(x+) = az(y+) = 1

2
.

We define the observables {σμ|μ = x, y, z} analogous to the quantum spin observ-
ables. The outcome space of σμ is {−1,+1}, and the probability in state ω of
obtaining outcome +1 upon measuring σμ is aμ(ω). Take as our set of observables
these three, together with the identity observable I , which yields with certainty the
result +1 in any state.

4 The affine dimension of the Spekkens state space, like that of the Bloch sphere, is four. That is, to specify any
affine function, it suffices to specify its value on a set of four linearly independent states. We could have chosen
the same set of four for the definition of each of these functionals, say, {x+, y+, z+, ω0}.
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Now suppose we start with the Bloch sphere, which represents the state space
of a single qubit (equivalently, a spin- 1

2 particle), and impose a restriction that the
only preparable pure states are spin eigenstates in one of three mutually orthogonal
directions: our state-preparation device is a Stern–Gerlach apparatus whose mount-
ing permits only these three orientations. Call these directions (x, y, z). Label the
six preparable pure states {x+, x−, y+, y−, z+, z−}. The convex hull of these
states is once again our octahedron. We place the same restrictions on measure-
ment: only spin measurements in the same three directions are permitted. What we
thereby obtain is a state space and set of observables that are isomorphic to those
of elementary systems of the Spekkens theory. Thus, the same structure, consisting
of state space plus set of permitted observables, is obtainable on the one hand by
starting from a simplex, that is, an essentially classical state space, and imposing
restrictions on state preparation, and on the other by starting from a quantum state
space and imposing restrictions on state preparation and measurement. Moreover,
as Spekkens [29] demonstrates in detail, many of the features of quantum theo-
ries that one might be tempted to think of as characteristic of quantum mechanics
already exist within this reduced state space.

Though we have obtained the same structure of state space and observables in the
two cases, the resulting theories will nevertheless be different if the permitted trans-
formations of the state spaces are different, and, since we require tensor-product
spaces to be closed under transformations of the component systems, this will have
consequences for the state spaces of composite systems. Unitary transformations
of the quantum state space of a qubit correspond to rotations of the Bloch sphere.
The transformations permitted in the Spekkens theory are permutations of the four
boxes. We thus have two natural choices for the group of permitted transformations
of our octahedral state space: TS , the group of transformations resulting from per-
mutations of the four boxes, or Tq , the set of rotations that take the octahedron into
itself. It turns out that these are distinct representations of the same group.5

Obviously, any automorphism of the state space will have to leave the unique
totally mixed state ω0 fixed. To specify an automorphism, therefore, it suffices to
specify its action on the set of pure states {x+, y+, z+}, which any automorphism
will take into a set of pure states containing no pair of opposite states. Both groups
of transformations include cyclic permutations of x+, y+, z+. Let T1 be the trans-
formation 〈x+ → y+, y+ → z+, z+ → x+〉. This corresponds, in the quantum
domain, to a rotation of 2π/3 about the axis pointing in the direction of x̂ + ŷ + ẑ.
It is achieved by the Spekkens transformation that leaves box 4 invariant and per-
mutes the other three by 〈1 → 3 → 2 → 1〉. Let T2 be the transformation that takes
x+ to x− and y+ to y−, and leaves z+ invariant. This is achieved, in the group

5 I would like to thank Rob Spekkens for pointing this out.
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Table 9.1 Generators of TS and Tq

T T †

x+ y+ z+ σx σy σz

T1 y+ z+ x+ σz σx σy

T2 x− y− z+ −σx −σy σz

T S
3 y+ x− z− −σy σx −σz

T q
3 y+ x− z+ −σy σx σz

of rotations, by a rotation of π about the z-axis, and, in the group of Spekkens
permutations, by the swap 〈1 ↔ 2, 3 ↔ 4〉. Rotations about the other axes can
be achieved by combining this rotation with cyclic permutations of the axes; we
thereby achieve any transformation that inverts two axes while leaving the other
invariant.

Let T q
3 be a counterclockwise rotation of π/2 about the z-axis. This takes x+ to

y+ and y+ to x−, and leaves z+ invariant. It is not achievable via any permutation
of boxes, and so does not belong to the Spekkens group of transformations. We
do, however, have in the Spekkens group a transformation that consists of a π/2
rotation about the z-axis followed by a reflection in the xy plane; this is achieved
by the permutation 1 → 3 → 2 → 4 → 1. Call this T S

3 . Note that T q
3 and T S

3 ,
applied twice, both yield T2.

The reader will be able to verify that the sets {T1, T S
3 } and {T1, T q

3 } suffice to
generate the Spekkens and quantum groups of transformations, respectively. We
summarize the generating sets of the Spekkens and quantum transformations in
Table 9.1, in which, for each automorphism T of the state space
, we include also
the conjugate automorphism T †.

Let us now begin to construct tensor-product spaces for the two theories. A state
is specified by specfying its value on the effects aμ⊗aν , μ, ν ∈ {0, x, y, z} (where
we take a0 to be the unit effect u), or, equivalently, by specifying the expectation
value it assigns to the observables σμ ⊗ σν , μ, ν ∈ {0, x, y, z}, where σ0 is the
observable yielding outcome 1 in all states. The minimal tensor product contains
all product states and convex combinations of product states. In addition to these,
Spekkens allows states whose marginals are maximally mixed, but with maximal
correlations between the states of the component systems. One such state is the
state (call it χ ) in which it is certain that both balls are in boxes with the same
label (that is, if ball 1 is in its box 1, then ball 2 is in its box 1 also, etc.), with
probabilities equally divided among the four possibilities. This state is symbolized
in Figure 9.3. In this 4 × 4 array, system 1’s box states are along the vertical axis,
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Fig. 9.3 The maximally correlated state χ .

and system 2’s box states along the horizontal; for the joint system to occupy the
box (i, j) thus represents a state in which ball 1 is in box j and ball 2 is in box i .
The state χ is defined by

χ(σμ ⊗ σν) = δμν, μ, ν ∈ {0, x, y, z}. (9.3)

That is, the three observables {σx ⊗ σx , σy ⊗ σy, σz ⊗ σz} take on dispersion-free
values, equal to 1. Note that, since, quantum-mechanically,

(σx ⊗ σx)
(
σy ⊗ σy

) = −σz ⊗ σz, (9.4)

this is not a state in the standard quantum tensor product.
If we include the state χ in our tensor-product space, then all states obtain-

able from it by permutations of the boxes will also be in the tensor-product space
(we can restrict our attention to permutations on one subsystem, since we will
not obtain any new states by considering permutations of both subsystems). This
gives us a set of 24 pure, maximally entangled states, each of which can be repre-
sented by a 4 × 4 array with one element of each row and each column shaded.
For example, since we have the state χ , application of T2 produces the state
in which σx ⊗ σx and σy ⊗ σy have definite value −1, and σz ⊗ σz has def-
inite value +1, and, by combining T1 with T2, we obtain common eigenstates
of these observables for other combinations of eigenvalues that multiply to +1
(note that, since the only sign-changing element of our generating set for the
Spekkens group is T S

3 , and this changes two signs, we will not be able to change
the sign of the product of the three eigenvalues). These four states are depicted in
Figure 9.4.

By application of T S
3 to χ , we get the − + − common eigenstate of {σy ⊗

σx , σx ⊗ σy, σz ⊗ σz}, and via applications of T1 and T2, the other eigenstates with
eigenvalues that multiply to +1. These states are depicted in Figure 9.5. By con-
tinuing the process, we obtain, for each of the rows and each of the columns of
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+++ +−− −+− −−+
Fig. 9.4 Common eigenstates of σx ⊗ σx , σy ⊗ σy, σz ⊗ σz .

+++ +−− −+− −−+
Fig. 9.5 Common eigenstates of σx ⊗ σy, σy ⊗ σx , σz ⊗ σz .

the following array of observables, four common eigenstates of the observables in
that row (column), corresponding to each combination of eigenvalues multiplying
to +1,

σx ⊗ σx σy ⊗ σy σz ⊗ σz

σz ⊗ σy σx ⊗ σz σy ⊗ σx

σy ⊗ σz σz ⊗ σx σx ⊗ σy

(9.5)

These states are the 24 pure entangled states of the Spekkens theory. Call the tensor-
product space whose pure states consist of the product states together these 24
maximally entangled states, �S . Note that the rows and columns of (9.5) are, in
quantum theory, also sets of observables having joint eigenstates. In the quantum
theory, however, eigenvalues of observables in a row will multiply, not to +1, but
to −1.

Suppose that we begin constructing a quantum-like tensor-product space for our
theory by starting with a pair of systems having our octahedral state space, and
endowing it with a state that is in the quantum tensor product. For example, we
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could start with the state ξ , common to both the quantum and the Spekkens tensor
product, defined by

ξ(σx ⊗ σy) = ξ(σy ⊗ σx) = ξ(σz ⊗ σz) = +1,

ξ(σμ ⊗ σν) = 0, all other combinations.
(9.6)

Application of the quantum group of transformations again yields common eigen-
states for each of the rows and columns of the array (9.5). For example, applying
T q

3 to ξ yields the state φ−, with

φ−(σx ⊗ σx) = −1, φ−(σy ⊗ σy) = +1, φ−(σz ⊗ σz) = +1.

Pairwise sign changes (combining applications of T1 and T2) yield the other com-
mon eigenstates of {σx ⊗ σx , σy ⊗ σy, σz ⊗ σz}, forming the set of Bell states
{φ+, φ−, ψ+, ψ−}, which are defined by the conditions

φ+(σx ⊗ σx) = +1, φ+(σy ⊗ σy) = −1, φ+(σz ⊗ σz) = +1,

φ−(σx ⊗ σx) = −1, φ−(σy ⊗ σy) = +1, φ−(σz ⊗ σz) = +1,

ψ+(σx ⊗ σx) = +1, ψ+(σy ⊗ σy) = +1, ψ+(σz ⊗ σz) = −1,

ψ−(σx ⊗ σx) = −1, ψ−(σy ⊗ σy) = −1, ψ−(σz ⊗ σz) = −1,

(9.7)

together with the condition that, for μ �= ν, φ+(σμ ⊗ σν) = φ−(σμ ⊗ σν) =
ψ+(σμ ⊗ σν) = φ−(σμ ⊗ σν) = 0. Let �q be the tensor-product space whose set
of pure entangled states is the closure of the set of Bell states under Tq ⊗ I . Like
the Spekkens tensor product, �q contains 24 pure entangled states, consisting of
four common eigenstates for each of the rows and columns of (9.5). It shares with
�S the eigenstates of observables in the columns of the array; it differs from �S in
having eigenvalues of observables in any row of (9.5) that multiply to −1.

An alternative tensor product (call it �̃q) can be constructed by including the
state χ and taking the closure under the quantum set of transformations. In this ten-
sor product, joint eigenstates of the rows of (9.5) will have eigenvalues multiplying
to +1, with eigenvalues of the columns multiplying to −1; this set of entangled
states consists of those obtainable from the quantum states by a parity inversion on
one of the component systems. Choosing one or the other of these tensor products
amounts to a choice of relative orientation on the two systems – that is, given an
orientation of one, a choice of which orientation of the other will be regarded as
the “same” orientation. We can also construct a tensor product by including both
sets of entangled states.
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Similar remarks apply to tensor products closed under the Spekkens transforma-
tions: there is one such space, �S , containing χ and eigenstates of all rows and
columns of (9.5) with sets of eigenvalues multiplying to +1; another, �̃S , contain-
ing the Bell states and eigenstates of all rows and columns of (9.5) with eigenvalues
multiplying to −1; and one that is the convex hull of �S ∪ �̃S .

Which tensor product we use will have consequences for whether or not a
Kochen–Specker obstruction will be forthcoming – it will be possible to con-
struct a Kochen–Specker obstruction in the spaces �q and �̃q , but not in �S

or �̃S .
Mermin’s simple Kochen–Specker obstruction [25], which is applicable to the

Hilbert space of a pair of qubits, begins with the observation that, in the following
array, each row and each column consists of mutually compatible quantum observ-
ables:

σx ⊗ I I ⊗ σx σx ⊗ σx

I ⊗ σy σy ⊗ I σy ⊗ σy

σx ⊗ σy σy ⊗ σx σz ⊗ σz

(9.8)

Because of the algebraic relations

σxσy = −σyσx = iσz, (9.9)

we have

(σx ⊗ σx)(σy ⊗ σy) = −σz ⊗ σz,

(σx ⊗ σy)(σy ⊗ σx) = σz ⊗ σz.
(9.10)

The product of the elements of each row of the array (9.8) is the identity I ⊗ I , as
is the product of the elements of each of the first two columns, whereas the product
of the elements of the third column is −I ⊗ I . This means that, if we try to assign
definite values to these nine observables, satisfying the product rule that, whenever
A and B are compatible observables, v(AB) = v(A)v(B), we cannot succeed; the
product of all nine of these values would have to be both +1 and −1.

Return now to the convex-set framework and the tensor products we have con-
structed for pairs of octahedral state spaces. We have not introduced any notion of
multiplication of observables, and it is not clear how to make sense, in the general
setting, of multiplication of incompatible observables. Algebraic relations among
compatible observables, however, do make sense. Recall that a set {Ai } of observ-
ables is a compatible set if and only if there is an observable C such that each Ai

is a function of C . This will give rise to functional relations among the observ-
ables Ai .
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Consider, now, the four Bell states {φ+, φ−, ψ+, ψ−}. For each of these states,
there is an affine functional that takes on the value 1 on that state and 0 on the
others: define {aφ+, aφ−, aψ+, aψ−} by

aφ+(ω) = 1
4

(
1+ ω (σx ⊗ σx)− ω

(
σy ⊗ σy

)+ ω (σz ⊗ σz)
)
,

aφ−(ω) = 1
4

(
1− ω (σx ⊗ σx)+ ω

(
σy ⊗ σy

)+ ω (σz ⊗ σz)
)
,

aψ+(ω) = 1
4

(
1+ ω (σx ⊗ σx)+ ω

(
σy ⊗ σy

)− ω (σz ⊗ σz)
)
,

aψ−(ω) = 1
4

(
1− ω (σx ⊗ σx)− ω

(
σy ⊗ σy

)− ω (σz ⊗ σz)
)
.

(9.11)

These four affine functionals sum to the unit functional,

aφ+ + aφ− + aψ+ + aψ− = u. (9.12)

If they are effects – that is, if their values on any state are confined to the interval
[0, 1] – then we will be able to define a discrete observable C with outcome space
sp(C) = {1, 2, 3, 4}, with probabilities for the four outcomes yielded by the four
effects {aφ+, aφ−, aψ+, aψ−}. If there is such an observable C , the Bell states are a
distinguishable set of states. The observables {σx ⊗ σx , σy ⊗ σy, σz ⊗ σz} will be
functions of C : take fi to be the functions on sp(C), defined by

f1(n) = 2(δ1n + δ3n)− 1,
f2(n) = 2(δ2n + δ3n)− 1,
f3(n) = 2(δ1n + δ2n)− 1.

(9.13)

Then we will have

σx ⊗ σx = f1(C),
σy ⊗ σy = f2(C),
σz ⊗ σz = f3(C).

(9.14)

Moreover, since

f1(x) f2(x) = − f3(x), (9.15)

for all x ∈ sp(C), we will have the functional relation

f1(C) f2(C) = − f3(C), (9.16)

or

(σx ⊗ σx)
(
σy ⊗ σy

) = −σz ⊗ σz. (9.17)
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It is easy to check that, on the tensor product �q , the functionals
{aφ+, aφ−, aψ+, aψ−} are indeed effects. Therefore, we can add to the observables
on �q an observable C that distinguishes the Bell states, and, having done so, we
will obtain the algebraic relations (9.17). In the tensor product �̃q , each of these
functionals takes on the value−1/2 on some state, so they are not effects. We will,
however, be able to define effects on �̃q that lead to the “anti-quantum” functional
relation (σx ⊗ σx)

(
σy ⊗ σy

) = σz ⊗ σz .
In a similar manner, we can define affine functionals that distinguish �q’s com-

mon eigenstates of {σx⊗σy, σy⊗σx , σz⊗σz} and, on�q , are effects, and use these
to add an observable that induces the functional relation

(
σx ⊗ σy

)(
σy ⊗ σx

) = σz ⊗ σz. (9.18)

It is worth noting in passing that, if we move to the larger tensor-product space
that is the convex hull of �q ∪ �̃q , it will no longer be possible to introduce an
observable that distinguishes the Bell states. This can be seen from the fact that
any affine functional that takes on the value 1 on φ+ and 0 on the other Bell states
will take on the value −1/2 on the state φ̃+, defined by

φ̃+(I ⊗ σi ) = φ̃+(σ j ⊗ I ) = 0

φ̃+(σi ⊗ σ j ) = −φ+(σi ⊗ σ j ).
(9.19)

for i, j ∈ {x, y, z}. This follows from the fact that the totally mixed state ω0 ⊗ ω0

can be written either as an equally weighted mixture of the Bell states, or as an
equally weighted mixture of φ+ and φ̃+:

ω0 ⊗ ω0 = 1

4

(
φ+ + φ− + ψ+ + ψ−) = 1

2

(
φ+ + φ̃+

)
. (9.20)

Similar remarks hold for the convex hull of �S ∪ �̃S . On this space, there can be
no positive affine functional that takes on the value 1 on the state ξ and 0 on all the
other eigenstates of {σx ⊗ σx , σy ⊗ σy, σz ⊗ σz}.

By adding to the set of observables on �q an observable that distinguishes the
Bell states, and one that distinguishes the common eigenstates of {σx ⊗ σy, σy ⊗
σx , σz ⊗ σz}, we induce the algebraic relations (9.17) and (9.18), which lead
to a Mermin-style Kochen–Specker obstruction. It is worth noting that we have
obtained these relations, not by reference to the quantum relation (9.9), which
involves products of incompatible observables, but by considerations of relations
between compatible observables.
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In a similar manner, we can induce algebraic relations among the same observ-
ables in the Spekkens tensor product �S . We will, in this space, have the relation
(9.18). However, instead of the quantum relation (9.17), we will have

(σx ⊗ σx)
(
σy ⊗ σy

) = σz ⊗ σz, (9.21)

and no Kochen–Specker obstruction will be forthcoming.
Thus, starting with the same state space for elementary systems, we obtain,

depending on which tensor-product space we bestow on pairs of systems, either
a theory whose pure states are those of the Spekkens toy theory, which admit of
representations as mixtures of classical states, or a theory, obtained by using one
of the quantum tensor products, that admits of no non-contextual hidden-variables
theory. Similarly, it is clear that whether or not our theory will contain states with
correlations that violate a Bell inequality will depend on the tensor product used –
though the tensor products we have so far constructed contain no Bell-inequality-
violating correlations, we can, without contradiction (and without disrupting the
algebraic relations between observables we have obtained) extend our tensor space
(be it Spekkens or quantum) to include them.

All this begins to suggest that Schrödinger was right to find the essential dis-
tinction between classical and quantum theory in the way that the latter treats
compound systems. However, it is not entanglement per se that is distinctively
quantum; it matters which entangled states the theory contains.

9.6 Appendix

9.6.1 C∗- and JB algebras

A Banach space is a normed linear vector space that is complete with respect to the
norm. That is, every Cauchy sequence converges to a limit.

A Banach algebra A is a Banach space that is also an algebra with identity I , such that
the operation of multiplication is separately continuous. That is, for each B ∈ A, if
An → A, then An B → AB, and, for each A ∈ A, if Bn → B, then ABn → AB.

An involution is a mapping A → A∗ such that

(i) (a A + bB)∗ = ā A∗ + b̄B∗
(ii) (AB)∗ = B∗A∗

(iii) (A∗)∗ = A

A C∗-algebra is a complex Banach algebra with an involution that satisfies
‖A∗A‖ = ‖A‖2.

A Jordan algebra is a vector space with a commutative bilinear product ◦ satisfying

(a2 ◦ b) ◦ a = a2 ◦ (b ◦ a).



From physics to information theory and back 205

A JB algebra is a Jordan algebra equipped with a norm ‖ ‖ satisfying

(i) ‖a ◦ b‖ ≤ ‖a‖b‖
(ii) ‖a2‖ = ‖a‖2

(iii) ‖a2‖ ≤ ‖a2 + b2‖,
which is complete with respect to this norm.

The self-adjoint elements of any C∗-algebra form a JB algebra, with the symmetric
product

a ◦ b = 1

2
(ab + ba).

9.6.2 C∗-algebraic no-cloning

Theorem 4. If {ρ, ω} are a clonable pair of distinct pure states of a C∗-algebra
then they are orthogonal.

Proof. We define the transition probability of a pair of pure states by

p(ρ, ω) = 1− 1

4
‖ρ − ω‖2.

A non-selective operation cannot increase the norm distance between two states;
therefore, the transition probability cannot decrease under a non-selective opera-
tion. Hence, if there is a non-selective operation that clones {ρ, ω},

p(ρ ⊗ ρ, ω ⊗ ω) ≥ p(ρ, ω).

However, it follows from CBH’s Lemma 2 that, for pure states ρ, ω,

p(ρ ⊗ ρ, ω ⊗ ω) = p(ρ, ω)2.

This gives us

p(ρ, ω)2 ≥ p(ρ, ω),

or

p(ρ, ω)(1− p(ρ, ω)) ≤ 0.

Since p(ρ, ω) lies with in the interval [0, 1], this is possible only if p(ρ, ω) is equal
to 0 or 1.
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Information, immaterialism, instrumentalism:
Old and new in quantum information

Christopher G. Timpson

We live, we are told, in an information age. We are told this, perhaps, less often
than once we were; but no doubt only because the phrase has become worn from
use. If ours is an age of information, then quantum information theory is a field
propitiously in tune with the spirit of the times: a rich and sophisticated physical
theory that seeks to tame quantum mysteries (no less!) and turn them to ingenious
computational and communication ends. It is a theory that hints, moreover, at the
possibility of finally rendering the quantum unmysterious; or at least this is a con-
clusion that many have been tempted to draw.

Yet, for all its timeliness, some of the most intriguing of the prospects that quan-
tum information science presents are to be found intertwining with some surpris-
ingly old and familiar philosophical themes. These themes are immaterialism and
instrumentalism; and in this chapter we shall be exploring how these old ideas fea-
ture in the context of two of the most tantalizing new questions that have arisen
with the advent of this field. Does quantum information theory finally help us to
resolve the conceptual conundrums of quantum mechanics? And does the theory
indicate a new way of thinking about the world – one in which the material as
the fundamental subject matter of physical theory is seen to be replaced by the
immaterial: information?

The moral I will suggest is that it is only once the influence of these old ideas
is explicitly recognized for what it is and treated accordingly that one can begin
to hope for genuine new insights stemming from quantum information theory.
Shannon, in the 1950s, warned against uncritical appeal to the concept of infor-
mation [18]. We do well to heed his warning now.

10.1 Two thoughts

Why do our two tantalizing questions arise? Why should one think that quantum
information theory – a branch of quantum mechanics intersecting with computer

Philosophy of Quantum Information and Entanglement, ed. A. Bokulich and G. Jaeger. Published by
Cambridge University Press. c© Cambridge University Press 2010.
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science and communication theory – might have any particular philosophical con-
sequences in the first place? There are several reasons,1 but the two most central to
our concerns might be introduced in the following way.

Let us call the thought that information might be the basic category from
which all else flows informational immaterialism. In this view, the new task of
physics, foreshadowed in the development of quantum information theory, will be
to describe the various ways in which information can evolve and manifest itself.
Why might one be led to such a view? The thought could be as straightforward as
this: we now have a fundamental – that is to say, a quantum – theory of information;
so perhaps the fundamental theory of the world could just be about information
(immaterial) rather than about things (material).2

Wheeler, with his “It from Bit” proposal is the cheerleader for this sort of view
(it = physical thing; bit = information):

No element in the description of physics shows itself as closer to primordial than the ele-
mentary quantum phenomenon . . . in brief, the elementary act of observer participancy . . .
It from Bit symbolizes the idea that every item of the physical world has at bottom – at very
deep bottom, in most instances – an immaterial source and explanation; that which we call
reality arises in the last analysis from the posing of yes–no questions that are the registering
of equipment evoked responses; in short, that all things physical are information-theoretic
in origin and this is a participatory universe. ([26], pp. 3–5)

Or compare Steane:

It now appears that information may have a much deeper significance. Historically, much
of fundamental physics has been concerned with discovering the fundamental particles of
nature and the equations which describe their motions and interactions. It now appears
that a different programme may be equally important: to discover the ways that nature
allows . . . information to be expressed and manipulated, rather than particles to move.
([20], pp. 120–121)

Finally, Zeilinger:

So, what is the message of the quantum? I suggest we look at the situation from a new
angle. We have learned in the history of physics that it is important not to make distinctions
that have no basis – such as the pre-Newtonian distinction between the laws on Earth
and those that govern the motion of heavenly bodies. I suggest that in a similar way, the

1 See [23] for an introduction to the theory that seeks to emphasize various issues of philosophical interest.
2 I make no claim that this is a good argument. Far from it. But it does seem to represent at least one strand

of thought – largely unarticulated, perhaps – operative amongst those pursuing these idealist lines. Notice that
it equivocates between two senses of the term “information,” namely “information” as a technical term intro-
duced by an information theory, quantum or classical; and “information” as the everyday semantic/epistemic
term. These are importantly distinct (see [22–25] for discussion). To be the grounds for an immaterialist meta-
physics “information” will need to refer to the semantic/epistemic concept: pieces of information would be the
correlate – in modern terminology – of good old sense data, but “information” as it features in information
theory has no direct link to any semantic or epistemic concept.
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distinction between reality and our knowledge of reality, between reality and information
cannot be made. [30]

Mixed in here, in the quotations from Wheeler and Zeilinger, is another important
element in the immaterialist drive: strands of Copenhagen thought on the meaning
of quantum mechanics. This is something we shall be returning to as we proceed.

The second thought arises perhaps more intuitively. It is very natural to think
that the advent of quantum information theory might shed light on the conceptual
troubles of quantum mechanics. After all, the central problem in quantum mechan-
ics, the problem on which all else turns, is the measurement problem. Yet what is
a measurement? Zurek sets the question up nicely:3

Quantum measurements are usually analysed in abstract terms of wavefunctions and
Hamiltonians. Only a very few discussions of the measurement problem in quantum the-
ory make an explicit effort to consider the crucial issue – the transfer of information. Yet
obtaining knowledge is the very reason for making a measurement. [31]

So a measurement is an attempt to gain knowledge (information). But now we
have a quantum theory of information: enlightenment is sure to follow! Or so the
thought.

So much by way of introduction. We will begin the main discussion by exploring
in more detail some of the ways in which it has been argued that appeal to the con-
cept of information will aid our understanding of the basic conundrums in quantum
mechanics: specifically the problems of measurement and non-locality. Hartle [10]
illustrates a common strategy: if the quantum state is understood to represent infor-
mation rather than an objective feature of the world, our troubles seem to disappear.
However, I will suggest that this strategy proves problematic. It would seem either
tacitly to invoke hidden variables, or to slide into a form of instrumentalism. But
instrumentalism is not in itself a particularly edifying interpretive option: if this is
all that appeal to information would amount to, we would not have succeeded in
articulating a position of any interest. A further problem for the strategy can be
noted: the factivity of the term “information” implies that the objectivity it was the
express aim of the approach to avoid is inevitably reintroduced. It follows that, if
one is to make any progress by associating the quantum state with some cognitive
state, it must be the state of belief that is chosen, not that of knowledge.

One might take a different tack. It is possible to avoid the unedifying descent
into instrumentalism by focusing instead on the question of whether information-
theoretic principles might play the role of providing a perspicuous axiomatic
basis for quantum mechanics, as some authors have urged (e.g., [6, 9]). Here we
shall focus on Zeilinger’s proposed information-theoretic foundational principle

3 Although beware again of the possibility of equivocation between different senses of the term “information.”
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for quantum mechanics [29]. His hope is to explain the appearence of intrinsic
randomness and entanglement in the theory; and ultimately to answer Wheeler’s
(1990) question “Why the quantum?” in a way congenial to the Bohrian intuition
that the structure of quantum theory is a consequence of limitations on what can
be said about the world. On consideration, however, this approach proves want-
ing, both formally and conceptually: appeal to the Foundational Principle cannot
achieve the results desired.

We will close by exploring in more detail the links between Zeilinger’s program,
informational immaterialism, and certain strands of Copenhagen thought, specif-
ically the remark infamously attributed to Bohr: “There is no quantum world.” A
good way of understanding what is going on in this remark is by viewing it as an
example of semantic ascent. Thus understood, it becomes very clear that moves
towards immaterialism are not supported by any such ascent.

10.2 The quantum state as information

Our two themes are immaterialism and instrumentalism. For better or worse, these
are themes that have always been associated, more or less strongly, with the
Copenhagen school of thought deriving from Bohr.4 The notion of information
has, in addition, often been appealed to by those working in this tradition. For this
reason, Copenhagen-flavored interpretations have enjoyed something of a renais-
sance in recent years, on the back of quantum information theory (thereby buck-
ing, to some extent, a contrary trend dating from the late 1960s toward broadly
realist philosophies of science), since a quantum theory of information would
seem to make such appeals to information more precise, and more scientifically
respectable.

The thought typically proceeds by suggesting that, far from the central theoret-
ical element of quantum theory – the quantum state – representing how things are
in an external, objective world, it merely represents what information one has. Ref-
erences [12, 13, 26, 29] have all endorsed this kind of view. Hartle provides an
excellent summary:

The state is not an objective property of an individual system but is that information,
obtained from a knowledge of how a system was prepared, which can be used for mak-
ing predictions about future measurements.

4 Needless to say, perhaps, it is very hard to discern any one thing that one might call the Copenhagen Interpre-
tation of quantum mechanics. It is better to see a pattern of views centered around – and diverging in different
ways from – Bohr’s own. (For recent studies one might consult [3, 11].) Furthermore, of course, the exact
nature of Bohr’s own views (neo-Kantian? idealist? entity realist? patch-work realist?) is a matter of contro-
versy. What is undeniable is that he took an instrumentalist view of the quantum formalism itself and had no
straightforwardly realist metaphysics.
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. . . A quantum mechanical state being a summary of the observer’s information about an
individual physical system changes both by dynamical laws, and whenever the observer
acquires new information about the system through the process of measurement. The exis-
tence of two laws for the evolution of the state vector . . . becomes problematical only if it
is believed that the state vector is an objective property of the system . . . The “reduction of
the wavepacket” does take place in the consciousness of the observer, not because of any
unique physical process which takes place there, but only because the state is a construct
of the observer and not an objective property of the physical system. ([10], p. 709)

Adopting this approach would seem to transform familiar, difficult, problems into
non-problems. We may illustrate with two examples.

Consider one of the common formulations of the measurement problem:
Wigner’s friend [28]. Here we imagine two scientists, Wigner and friend, one of
whom – the friend – is going to perform some quantum experiment and observe its
outcome, whilst the other – Wigner – waits outside the (sealed) laboratory, unable
to observe proceedings. How should we describe this scenario quantum mechani-
cally? Suppose the experiment is a measurement of the z-component of spin of an
electron prepared spin-up in the x-direction. Then the electron’s initial state is the
superposition

|ψ〉initial =
1√
2
(|↑〉 + |↓〉), (10.1)

corresponding to no definite value of spin in the z-direction. On performing the
measurement, Wigner’s friend will see a definite outcome corresponding either to
spin-up or to spin-down in the z-direction; accordingly he will assign one of the two
spin states |↑〉 or |↓〉 to the post-measurement particle, corresponding to a definite
z-spin value:

|ψ〉final = |↑〉, or |ψ〉final = |↓〉. (10.2)

But how will Wigner describe things? Since the electron-plus-apparatus-plus-
friend-plus-lab consitutes a closed physical system, Wigner will describe the evo-
lution of this system unitarily. Thus, according to him, the post-measurement state
is not one in which the z-spin of the particle is definite, but is one in which the
contents of the lab – electron, apparatus, and friend all included – is in one big
superposition: the initial superposition of the spin is just amplified up to infect
everything else:

|�〉lab,final = 1√
2

(|↑〉electron|“up”〉apparatus|sees “up”〉friend

+ |↓〉electron|“down”〉apparatus|sees “down”〉friend

)
. (10.3)

Who is right? Does Wigner’s friend see a definite outcome, or is he left suspended
in limbo until Wigner opens the door to say hello? Do we need to appeal to collapse
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to reconcile the two views? If so, how, when, and why does collapse occur? Why
isn’t Wigner right to treat a closed physical system as unitarily evolving? And so
on. These are the familiar kinds of worries.5

The informational approach aims to undercut this dialectic neatly. The thought
is that there need be no disagreement between Wigner and friend. If the quantum
state does not represent how things are in the world but what information somebody
possesses, then Wigner can assign a state like (10.3) and his friend can assign one
of the states (10.2) without them thereby making contradictory or contrary state-
ments. They are not disagreeing about how things are, they merely have access to
different information – Wigner outside the laboratory and his friend inside. When
Wigner gains more information by intrepidly entering the lab, he will update his
state accordingly, but, since that update does not correspond to a change in any-
thing in the world, it is not a mysterious change, or one in need of explanation.
Thus the argument proceeds.

The second illustrative example is non-locality. Take a familiar EPR scenario.
Two parties, Alice and Bob, are space-like separated and each possess one half of
an entangled pair of particles, e.g., one of a pair of spin- 1

2 systems in the singlet
state:

|ψ〉AB =
1√
2
(|↑〉A|↓〉B − |↓〉A|↑〉B). (10.4)

Alice will then perform a measurement on her system. Prior to measurement both
Alice and Bob will assign the maximally mixed state to both of the subsystems of
the pair:

ρA = ρB = 1

2
|↑〉〈↑| + 1

2
|↓〉〈↓| = 1

2
1. (10.5)

The standard story [7] is that the effect of Alice’s measurement will be to change
the state of Bob’s system instantaneously and at a distance. If she measured in the
z-spin basis, for example, obtaining the “up” outcome, the state ascribed to Bob’s
system will now be |↓〉B rather than (1/2)1.

Again, the informational approach will suggest that this conclusion of action
at a distance is predicated on a false assumption: that the quantum states repre-
sent how things are in the world. If they do not, then we no longer have action
at a distance. Post-measurement, Alice will assign a different state to Bob’s sys-
tem than he himself does, for example the pure state |↓〉B, while he still assigns
the mixed state (1/2)1; but these differences merely represent differences in the

5 Recall that Wigner’s own view was that one does need to invoke a process of collapse, but it is in some sense
a partially non-physical process, being brought about by the effect of conscious mind (and not just one’s own
mind, as Wigner preferred not to conceive solipsistically of his friend hanging in limbo if left to his own
devices).
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information the two possess. The change in the global state from the singlet to
the post-measurement state |↑〉A|↓〉B (or equivalently the change in the state of
Bob’s system from (1/2)1 to |↓〉B) does not, in this view, represent a change in
the world, a change in Bob’s system, but merely an update of Alice’s informa-
tion; a fortiori the change does not involve non-locality. Bob will have no oppor-
tunity to update his information about his system until he later meets up with
Alice and she reports the outcome of her measurement; but the fact that they
assign different states need not mean that they are disagreeing about how the
world is.

10.3 Against “information”

So we can see why it might seem appealing to call on the notion of information
when trying to make sense of the quantum state. Some thorny problems seem to be
dissolved, revealed to be the result of a jejune literalism about the quantum formal-
ism. But things are not really so straightforward. With characteristic perspicacity
and concision, John Bell put his finger right on the nub of the central problem with
this approach.

“Information” features as one of the bad words on Bell’s famous list of terms
having “no place in a formulation with any pretence to physical precision” [2].
Why? Bell indicated the source of his disquiet by posing two questions: if infor-
mation, then information about what? And whose information?

I take the first of these to be the most pressing. It presents the informational
approach with a troublesome dilemma. If the quantum state represents one’s infor-
mation, there seem to be only two sorts of answer possible to “information about
what?”:

(1) information about what the outcome of experiments will be; or
(2) information about how things are with a system prior to measurement.

Neither of these, I suggest, can happily be adopted by our would-be informationist.
Consider answer (2). The information concerns properties of a system that are pos-
sessed prior to measurement and aren’t described by the quantum state (in this case
because the state doesn’t have a world-describing role). What is the more familiar
name for such properties? Hidden variables, of course. But recall: the whole point
of taking the quantum state as information was to mollify its bad behavior, its
jumping here and there we know not when, its non-local collapse. But if to do that
we need to introduce hidden variables – to be what it is that the state represents
information about – then we are even worse off than we were before. Because, as
we all know, hidden variables have to be very badly behaved indeed in quantum
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mechanics (non-locality, contextuality). Thus it would seem to be self-defeating
for the informationist to take option (2).6

Let’s turn then to the first answer. If the information the state represents is infor-
mation about what the results of experiments will be, then the difficulty now is to
say anything interesting that doesn’t simply slide into instrumentalism. Instrumen-
talism, of course, is the general view that scientific theories do not seek to describe
the laws governing unobservable things, but merely function as devices for pre-
dicting the outcomes of experiments. An instrumentalist view of the quantum state
understands the state merely as a device for calculating the statistics of measure-
ment outcomes. How is the current view any different, apart from having co-opted
the vogue term “information”? If all that appeal to information were ultimately to
amount to is a form of instrumentalism then we would not have achieved a partic-
ularly interesting – and certainly not a novel – interpretive doctrine. It would be
an error to let a superficial repackaging in fancy wrappings convince one that a
product was worth buying after all. To the founding fathers of quantum mechan-
ics, instrumentalism might conceivably have seemed a progressive epistemological
doctrine, but that can scarcely be said to be the case now. As an option for inter-
preting quantum mechanics it arguably amounts more to a refusal to ask questions
than to taking quantum mechanics seriously.

10.3.1 The problem of factivity

But perhaps we have been a little too precipitate in our analysis. Might there be a
subtlety of the informational approach that we have so far missed? Possibly. It is
perhaps useful to highlight a subdivision in instrumentalist views that I have been
glossing over.

Consider once more what might be called standard instrumentalism about the
quantum state. This works as an interpretation of quantum mechanics (insofar as
it works, that is) by witholding any descriptive claims at the level of individual
systems. It restricts itself to making claims only about measurement results on
ensembles of systems. (So in this view it would be a badly posed question to ask
in quantum mechanics something like how does an individual electron travel in a
two-slit experiment? One can only ask about what observable results one might
expect to see for very many electrons.)

6 A caveat. If one adopted an informational view of the state not in order to address the measurement problem;
and not in order to relieve problems over non-locality; if one could argue that it was natural for quite other
reasons, perhaps, to take the state to represent information, then one might not be so moved by this objec-
tion; and one might willingly embrace the charge that one was dealing with hidden variables. See [19]. Of
course, one must then admit that it’s not really the notion of information that is doing any of the interesting
work.
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So what if we were to insist that, in contrast with this, the distinctive job of infor-
mation talk is to allow one to talk about individual systems, not just ensembles
(look again at Hartle’s wording above). Perhaps this is what would make the infor-
mational approach a worthwhile novel approach. Sadly, this approach faces a deci-
sive objection.

Let us begin by noting that descriptions of the quantum state in terms of a per-
son’s knowledge or information will typically involve what might be called mixed
ascriptions. That is, they will involve both the everyday semantic/epistemic concept
of information and, at the same time, the distinct technical concept of information
introduced in information theory. We see this when we recognize that one will need
to answer the question about what information the state represents (Bell’s question
again); and will answer by talking of information that p or about q , both locutions
signaling the everyday concept. At the same time, one might be interested in how
much information the state represents, a phrase typically signaling the technical
concept.7

However, once we have the everyday concept of information in play, we need to
recognize that the term “information” is, just as the term “knowledge” is, factive.
That is, having the information that p entails that p is the case. Just as I can’t know
that p unless it is true that p, no more can I have the information that p unless p.
The difficulty that this presents for those wishing to understand the quantum state
of an individual system as information is that this factivity entails just the sort of
objectivity it was the original aim of the approach to avoid.

The standard instrumentalist does not face quite this problem. The problems
associated with measurement and non-locality are avoided by remaining at the level
of statistics only. One doesn’t describe individual systems at all and collapse will
not be thought of as a real process, merely a change in what statistics one will
expect. But, for the proponent of the quantum state as information about individual
systems, the essence of their approach, as we have seen above, is that different
agents can assign different states to a given system because they have different
information regarding it, but without disagreeing. In the Wigner’s-friend scenario,
there would be no mysterious collapse, both agents simply ascribe a different state
to the system being measured; and there is no one correct state that is an objective
property of the system. Similarly with the EPR case.

But the factivity of information and knowledge put paid to these forms of argu-
ment: if the quantum state represents what one knows, or what information one
has, then things have to be as they are known to be. If I know what the probability

7 As noted above, consult [22–25] for more on the distinction between these concepts. It is plausible to suppose
that at least part of the common failure to distinguish sufficiently between the everyday and technical concepts
of information may be traced to the existence of mixed contexts in which the two distinct concepts are employed
in the same breath; and, confusingly, using the same word.
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distributions for measurements on a system are, then they must objectively be thus-
and-so. It is a matter of right or wrong determined by what the properties of the
system are. Or again, if Alice performs a measurement on her half of the entangled
pair and therefore subsequently knows the pure state of Bob’s system, then his sys-
tem objectively has to be in that state. It is now a determinate matter of fact that
some measurement at Bob’s location will have a definite outcome whereas before
it didn’t. We are forced once more, like it or not, to talk about objective proper-
ties that systems possess; moreover, objective properties that can be changed at a
distance.

So it seems that this approach runs aground. Adopting “information” does not,
after all, free us from the objectivity that was causing the trouble in the first place.
If there is to be any mileage, therefore, in approaches that analyze the quantum
state in terms of cognitive states, one can’t choose knowledge; and one must drop
information. The state to choose would instead be belief, for believing that p does
not entail p. For an approach that does just this, see the quantum Bayesianism of
Caves, Fuchs, and Shack (e.g., [5, 8, 24]).

10.4 If not instrumentalism, axiomatics instead?

Let us change tack. Steering between the horns of the dilemma of hidden variables
versus instrumentalism proves difficult, maybe impossible. Perhaps we would do
better to explore instead the possibility that the concept of information might have
a role to play in rendering quantum mechanics more perspicuous via a suitable
axiomatization in information-theoretic terms. We shall focus on Zeilinger’s ver-
sion of this project because it links in interesting ways with our two overall themes.

Zeilinger [29] suggests that we can render quantum mechanics more readily
intelligible when we see how various of its fundamental and distinctive features
can be derived from a simple principle:

Foundational Principle: an elementary system represents the truth value of one
proposition.

This is also expressed as the claim that elementary systems carry only one bit
of information. The idea is that we have here something akin to the principle of
relativity in special relativity, or to the principle of equivalence in general relativ-
ity; namely a simple and intuitively compelling principle that plays a key role in
deriving the structure of the theory. In particular, Zeilinger argues that the prin-
ciple allows us to understand both where the irreducible randomness of quantum
mechanics and where entanglement come from. (Both, surely, centrally quantum –
and centrally mysterious – features.) Elementary systems are components that are
arrived at as the end point of a process of analysis. One begins by analyzing a
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composite system into smaller component parts. Zeilinger then suggests that it is
natural to assume that each consituent system will require fewer propositions for its
description than the composite8 and we might furthermore expect to reach a limit:

. . . the limit is reached when an individual system represents the truth value to one propo-
sition only. Such a system we call an elementary system. ([29], p. 635)

We might term the propositions in question elementary propositions too. Notice
that the Foundational Principle is now revealed to be a tautology, or perhaps an
analytic truth: a definition of “elementary system.” One might be surprised that
much could then follow from this on its own. This attitude proves warranted.

Zeilinger means something quite specific by “proposition.” As in the quantum-
logical tradition, it means something that represents an experimental question; and
a truth-value assignment to a proposition corresponds to a yes/no answer to the
experimental question. This allows us to formulate the principle more perspicu-
ously as the following claim:

The state of an elementary system specifies the answer to a single yes/no experimental
question.

One might not agree that this is a suitably unrestricted conception of the state of a
system (compare this with the de Broglie–Bohm theory, for example, whose ele-
ments of holism and contextuality render this conception quite inapposite) but let us
put this worry to one side and focus instead on what work the Foundational Prin-
ciple is supposed to do within its own domain. The proposed explanation of the
genesis of quantum randomness is very simple. Given the Foundational Principle,

. . . an elementary system cannot carry enough information to provide definite answers to
all questions that could be asked experimentally. ([29], p. 636)

Those questions which don’t receive a definite answer must then receive a random
answer; and, furthermore, that randomness must be irreducible, since, if it could be
reduced to hidden properties, then the system would really be carrying more than
one bit of information, in violation of the principle (assuming that the system was
in fact elementary).

For the explanation of entanglement, suppose we have N systems and they have
N bits of information associated with them. Entanglement results when all those

8 Is it? Only relative to a fixed system of concepts adequate to describe all levels of physical complexity; i.e.,
in which one begins with elementary propositions describing basic objects; and more complex objects are
described by truth-functional combinations of these elementary propositions. (Consider: one could plausibly
maintain that it takes fewer propositions to describe a table adequately than it does to describe an electron.
Doesn’t the sheer effort involved in science show that it typically gets harder to describe things the smaller
they are?) Zeilinger’s approach here bears marked similarities to Wittgenstein’s views in the Tractatus Logico-
Philosophicus.
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Table 10.1 The four Bell
states, a basis of maximally
entangled two-party states

|φ+〉 = (1/√2)(|↑〉|↑〉 + |↓〉|↓〉)
|φ−〉 = (1/√2)(|↑〉|↑〉 − |↓〉|↓〉)
|ψ+〉 = (1/√2)(|↑〉|↓〉 + |↓〉|↑〉)
|ψ−〉 = (1/√2)(|↑〉|↓〉 − |↓〉|↑〉)

bits of information are used up in specifying joint properties of the system, rather
than individual properties, or, more generally, when more information is in the joint
properties than is possible classically [4].

To illustrate the claim about entanglement we may use the case of two qubits.
Consider the four maximally entangled bipartite quantum states known as the Bell
states (Table 10.1). Each of these is a joint eigenstate of the observables σx ⊗ σx

and σy ⊗ σy . From the Foundational Principle, only two bits of information are
associated with our two systems, i.e., the states of these systems can specify the
answer to two experimental questions only. If the two questions whose answers are
specified are “Are both spins in the same direction along x?” ((1/2)(1⊗1+σx⊗σx))
and “Are both spins in the same direction along y?” ((1/2)(1⊗ 1+ σy ⊗ σy)), then
we end up with a maximally entangled state. The answer “yes, yes” would give use
the state |φ+〉; “yes, no”, the state |ψ+〉; “no, yes”, the state |φ−〉; and “no, no”, the
singlet state |ψ−〉.

By contrast, if the two questions had been “Are both spins in the same direction
along x?” and “Is the spin of particle 1 up along x?,” the information would not
have all been used up specifying joint properties and we would have instead a
product state, a joint eigenstate of σx ⊗ σx and σx ⊗ 1. “Yes, yes” would give us
the state |↑〉|↑〉; “yes, no” would give us |↓〉|↓〉; “no, yes” the state |↑〉|↓〉; and
“no, no” the state |↓〉|↑〉. The way the information is distributed over the systems
is crucial in determining whether we have an entangled or a non-entangled state.

At first glance, these explanations might appear to have something going for
them, but only at first glance. Unfortunately they suffer from a deep flaw. No atten-
tion has been paid to the structure of the set of experimental questions on individ-
ual and joint systems, yet it is precisely this which is essential to the appearance of
randomness and entanglement. The Foundational Principle places no constraints
on the set of experimental questions at all, so it cannot do the job of explaining the
existence of quantum randomness and entanglement.9

9 These objections were presented in [21].



220 C. Timpson

Consider: irreducible randomness would arise only if there were more experi-
mental questions to be asked of an elementary system than its most detailed state
description would provide an answer for.10 But what determines how many exper-
imental questions there are and how they relate to one another? Certainly not the
Foundational Principle. The principle doesn’t explain why it is that, having given
the finest-grained description of the system that is possible, any space for random-
ness still remains. Why isn’t the one bit enough on its own, for example? In the
quantum case, because the set of experimental questions is in one-to-one correla-
tion with projectors onto a complex Hilbert space and the simplest non-trivial state
space is two-dimensional. But that is the structure we are supposed to be deriving,
it is not something we can help ourselves to. Why should the set of experimental
questions be structured like that? Compare this with the state space of a classical
Ising-model spin: these objects have only two states: up or down; here the one bit
we are allowed per system is quite sufficient to answer all experimental questions
that could be asked. The Foundational Principle is clearly powerless to distinguish
between the two cases.

The case of entanglement is similar. If we return to the starting point and con-
sider our N elementary systems, all that the Foundational Principle tells us regard-
ing these systems is that their individual states specify the answer to a single yes/no
question concerning each system individually. There is, as yet, no suggestion of
how this relates to joint properties of the combined system. Some assumption needs
to be made before we can go further. For instance, we need to enquire whether there
are supposed to be experimental questions regarding the joint system that can be
posed and answered that are not equivalent to questions and answers for the sys-
tems taken individually. (We know that this will be the case, given the structure
of quantum mechanics, but again we are not allowed to assume this structure, if
we are engaged in a foundational project.11) If this is the case then there can be
a difference between the information associated with correlations (i.e., regarding
answers to questions about joint properties) and the information regarding individ-
ual properties. But then we need to ask the following question: why is it that there
exist sets of experimental questions to which the assignment of truth values is not
equivalent to an assignment of truth values to experimental questions regarding
individual systems?

Because such sets of questions exist, more information can be “in the correla-
tions” than in individual properties. Stating that there is more information in corre-
lations than in individual properties is then to report that such sets of non-equivalent

10 Suppose, for simplicity, that we have some kind of independent access to the notion of an elementary system,
so we can tell whether a system really is supposed to be elementary or not.

11 To illustrate, a simultaneous truth-value assignment for the experiments σx ⊗ σx and σy ⊗ σy cannot be
reduced to one for experiments of the form 1⊗ a · σ , b · σ ⊗ 1.
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questions exist, but it does not explain why they do so. However, it is surely this that
demands explanation – why is it not simply the case that all truth-value assignments
to experimental questions are reducible to truth-value assignments to experimental
questions regarding individual properties, as they are in the classical case? That is,
why does entanglement exist? In the absence of an answer to the question when
posed in this manner, the suggested explanation following from the Foundational
Principle seems dangerously close to the vacuous claim that entanglement results
when the quantum state of the joint system is not a separable state.

As it stands, the Foundational Principle is wholly unsuccessful. Might we be
able to salvage something from the approach, however? Perhaps if we were to
add further axioms that entailed something about the structure of the set of exper-
imental questions, progress could be made. A possible addition might be a pos-
tulate Rovelli adopts: it is always possible to acquire new information about a
system [17]. One wouldn’t be terribly impressed by an explanation of irreducible
randomness invoking the Foundational Principle and this postulate, however, since
it would look rather too much like putting the answer in by hand. But there might
be other virtues of the system to be explored.

This consideration raises a final point. Evidently more axioms need to be added
if we are to derive any useful work from the Foundational Principle. But recall
that to provide a perspicuous information-theoretic axiomatization, we will need
intuitively compelling axioms (or at least some of them) that also play a substantial
role. It would not do simply to add any old axioms that would have the effect of
recovering the correct structure of experimental questions, otherwise there is no
explanatory gain to be had. Recall that there has been considerable progress in
the quantum-logical tradition of providing axiomatizations of quantum mechanics
(see, e.g., [1] for a succinct review), but it is not clear that these approaches render
quantum mechanics any less mysterious or any more intuitively understandable. It
is not clear, in any case, that this is really their purpose.

10.5 Why the quantum?

We have seen that there are formal difficulties with Zeilinger’s approach; let us now
consider some of its more philosophical underpinnings. There are clear affinities
between the views Zeilinger expresses and Wheeler’s It from Bit proposal. For
example, Zeilinger states that, as he intends it, the statement

that a system “represents” the truth value of a proposition . . . only implies what can be said
about possible measurement results. ([29], p. 635)

Moreover, in his view, the results of measurement do not pertain to an exter-
nally existing mind-independent world; rather his view is an immaterialist one:
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properties are assigned to objects only on the basis of observation and are held
only as long as they do not contradict further observation; and “In fact, the object
therefore is a useful construct connecting observations” ([29], p. 633).12 Extreme
subjectivism is kept in check by the requirement that there be intersubjective
agreement between different agents’ “mentally constructed objects” ([29], p. 634).
Clearly, this kind of immaterialist setting would make the Foundational Principle
more plausibly appear a good starting point for theorizing.

So Zeilinger and Wheeler seem to share an immaterialist metaphysics. Of par-
ticular interest, however, is a striking passage in which Zeilinger suggests that his
Foundational Principle might provide an answer to Wheeler’s question “Why the
quantum?” in a way that chimes with the Bohrian thought that the structure of
quantum theory is a consequence of limitations on what can be said about the
world:

The most fundamental viewpoint here is that the quantum is a consequence of what can
be said about the world. Since what can be said has to be expressed in propositions and
since the most elementary statement is a single proposition, quantization follows if the
most elementary system represents just a single proposition. ([29], p. 642)

Of course, we have already, in effect, seen that there is a crucial non-sequitur here.
Quantization follows only if the propositions are projection operators on a com-
plex Hilbert space. Why the world has to be described in that way is the question
that would really need to be answered in answering Wheeler’s question; and the
Foundational Principle does not help us. But it is interesting to delve a little further
into why this non-sequitur is present. Reflect on the similarity between Zeilinger’s
statement and that famously attributed to Bohr by Petersen:

There is no quantum world. There is only an abstract quantum physical description. It is
wrong to think that the task of physics is to find out how nature is. Physics concerns what
we can say about nature. ([14], p. 12)

The last sentence is particularly pertinent: “Physics concerns what we can say
about nature.” Compare this, again, with another statement of Zeilinger’s, “. . .what
can be said about Nature has a constitutive contribution on what can be ‘real.’ ”
(reported in [9], p. 615).

I think we find in these sentiments a crucial strand contributing to the thought
that the rise of quantum information theory supports an informational immaterial-
ism. If quantum mechanics reveals that the true subject matter of physics is what
can be said, rather than how things are, then this seems very close to saying that

12 It is perhaps unnecessary to add that, if the foregoing is supposed to be an argument for the immaterialist
position, it is an extremely weak one, failing as it does, for example, to distinguish between the grounds on
which one might assert a proposition and what would thereby have been asserted.
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what is fundamental is the play of information across our psyches. The develop-
ment of a quantum theory of information merely exacerbates this thought stemming
from the Copenhagen tradition.

However, it is important to recognize that there is a very obvious difficulty with
the thought that what can be said provides a constitutive contribution to what can
be real and that physics correspondingly concerns what we can say about nature.
Simply reflect that some explanation needs to be given of where the relevant con-
straints on what can be said come from. Surely there could be no other source for
these constraints than the way the world actually is – it can’t merely be a matter of
language.13 It is because of the unbending nature of the world that we find the need
to move, for example, from classical to quantum physics; that we find the need to
revise our theories in the face of recalcitrant experience. Zeilinger and Bohr (in
the quotation above) would thus seem to be putting the cart before the horse, to
at least some degree. Schematically, it’s the way the world is (independently of
our attempted description or systematization of it) that determines what can use-
fully be said about it, and that ultimately determines what sets of concepts will
prove most appropriate in our scientific theorizing. It is failure to recognize this
simple truth that accounts, I suggest, for the otherwise glaring non-sequitur in the
proposed answer to “Why the quantum?.” One can’t expect a substantive empiri-
cal truth (e.g., about the correct structure of the set of experimental questions) to
follow from a simple definitional statement like the Foundational Principle.

Another point can be drawn from the Petersen quotation. With its focus on the
level of physical description and what can be said about nature (as opposed to how
nature is) this passage can be seen to provide us with an example of what is often
known as semantic ascent.

Semantic ascent is the move from what Carnap called the material mode to the
formal mode, that is, roughly speaking, from talking about things to talking about
words. As Quine says, “semantic ascent . . . is the shift from talking in certain
terms to talking about them” ([16], p. 271). Bohr, it would seem, would have us
ascend from the level of using words within our theory to the level of describing
our descriptions. This, the suggestion is, is the true task of physics.

13 Of course, what statements can be made depends on what concepts we possess; and, trivially, in order to
succeed in making a statement, one needs to obey the appropriate linguistic rules. But the point at issue is
what can make one set of concepts more fit for our scientific theorizing than another? For example, why do we
have to replace commuting classical physical quantities with non-commuting quantum observables? As Quine
perspicuously notes “. . . truth in general depends on both language and extra-linguistic fact. The statement
‘Brutus killed Caesar’ would be false if the world had been different in certain ways, but it would also be false
if the word ‘killed’ happened to have the sense of ‘begat.’ ”([15], p. 36). The world is required to provide the
extra-linguistic component that will make one set of concepts more useful than another; furthermore, without
an extra-lingustic component to truth, we could only ever have analytic truths – and that would no longer be
physics.
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But does such semantic ascent really achieve very much here? Far from it. It is
true, but entirely trivial, that our subject matter will not be the world if we seman-
tically ascend. It would be just as true in classical mechanics, say, as in quantum
mechanics. There is indeed a sense in which there would be no quantum world at
the level of our interest, but only because we are talking about words rather than
the world; talking about various terms rather than in them.

Crucially, the fact that one has ascended doesn’t make the level one has ascended
from go away: notice that one can always force descent by asking “So, what was
said?.” It might perhaps be felt that here lies the real import of the Bohr quote
and what serves to distinguish the quantum from the classical case. In the quan-
tum case, we might be supposed to imagine that one can intelligibly kick away
the lower level, having made the semantic ascent. But such a suggestion (“ver-
tiginous semantic ascent,” as it might be called) is in fact incoherent. It would
amount to the claim that the “descent” question “So, what was said?” becomes
unintelligible, but this would entail that the terms under discussion have to become
entirely devoid of meaning, and as such they would have no role whatsoever in
physics.

The upshot is that we can’t shirk any of the problems of interpreting quantum
mechanics by indulging in semantic ascent. It doesn’t remove us from the fray
or amount to an interpretation of quantum mechanics in itself. The world doesn’t
disappear because we may be talking about the terms in which we describe it. The
interpretational questions that have always plagued quantum theory concern what
stance should be taken to claims made using the terms within a theory; and all
the usual options (realism, instrumentalism, and hybrids thereof) will remain open
irrespective of ascent.

If this reading I have suggested is indeed the most intelligible reading of the Bohr
quotation then it becomes clear that “there is no quantum world” and “physics con-
cerns what we can say about nature” are not after all immaterialist mantras. Rather
they are truistic consequences of an innocuous semantic ascent. In fact it’s hard to
see how they could be anything else while retaining the least hint of plausibility.

10.6 Conclusion

My aim in this essay has been to clear the ground a little. Quantum information
theory is indeed a rich and intriguing subject for philosophical study, but, if we
are to be sensitive to what new consequences it may have for our understanding of
quantum mechanics in particular and physics in general, then we do better if we
are able to separate new from old; and if we turn a suitably skeptical eye toward
the claims of our familiar pair instrumentalism and immaterialism.
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Elsewhere I have distinguished direct from indirect approaches to securing
a philosophical dividend from quantum information theory. Among the direct
approaches we can count taking the quantum state to be information and taking
quantum information to support informational immaterialism. More interesting and
plausible than these proposals, I suggest, are the indirect approaches. Amongst
these are attempts such as Zeilinger’s to learn something useful about the structure
or axiomatics of quantum theory by reflecting on quantum information-theoretic
phenomena; approaches that might look to quantum information theory to pro-
vide new analytic tools for investigating that structure; and approaches that look
to suggested constraints on the power of computers, including quantum comput-
ers, as potential constraints on new physical laws. Whilst Zeilinger’s particular
program suffers from the rather severe problems we have seen and is tangled up
with instrumentalist and immaterialist threads of broadly Copenhagen origin, in
general, the indirect approaches look by far the most promising potential sources
of new insights stemming from quantum information theory. By contrast the two
direct approaches that we have been considering are not in good shape. The
informational approach to the quantum state seems unable to survive the hidden-
variables/instrumentalism dilemma; and the thought that quantum information the-
ory does lend support to a form of immaterialism really seems to have very little to
commend it.
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Quantum computation: Where does the speed-up
come from?

Jeffrey Bub

11.1 Introduction

Discussions of quantum-computational algorithms in the literature refer to various
features of quantum mechanics as the source of the exponential speed-up rela-
tive to classical algorithms: superposition and entanglement, the fact that the state
space of n bits is a space of 2n states while the state space of n qubits is a space
of 2n dimensions, the possibility of computing all values of a function in a sin-
gle computational step by “quantum parallelism,” or the possibility of an efficient
implementation of the discrete quantum Fourier transform. Here I propose a dif-
ferent answer to the question posed in the title, in terms of the difference between
classical logic and quantum logic, i.e., the difference between the Boolean classi-
cal event structure and the non-Boolean quantum event structure. In a nutshell, the
ultimate source of the speed-up is the difference between a classical disjunction,
which is true (or false) in virtue of the truth values of the disjuncts, and a quantum
disjunction, which can be true (or false) even if none of the disjuncts is either true
or false.

In the following, I will discuss the information-processing in Deutsch’s XOR
algorithm [6] (the first genuinely quantum algorithm) and related period-finding
quantum algorithms (Simon’s algorithm [14, 15] and Shor’s factorization algorithm
[12, 13]). It is well known that these algorithms can be formulated as solutions to a
hidden-subgroup problem (see [9, 10]). Here the salient features of the information-
processing are presented from the perspective of the way in which the algorithms
exploit the non-Boolean logic represented by the projective geometry (the subspace
structure) of Hilbert space.

A particular period partitions the domain of a periodic function – the input val-
ues for the algorithm – into mutually exclusive and collectively exhaustive subsets.
Distinguishing the period from alternative possible periods amounts to distinguish-
ing the corresponding partition from alternative possible partitions. A classical
algorithm requires the evaluation of the function for a subset of input values
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Cambridge University Press. c© Cambridge University Press 2010.
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to determine the partition – a computational task that involves an exponentially
increasing number of steps as the size of the input increases. The trick in Simon’s
quantum algorithm, as we will see below, is to represent the alternative possible
partitions by Hilbert-space subspaces that are orthogonal except for overlaps or
intersections. Each subspace is spanned by states of the input register representing
the different subsets in the associated partition. A measurement in the computa-
tional basis can provide sufficient information to identify the subspace containing
the state (after a suitable transformation) and hence the partition associated with the
period without evaluating the function at all (in the sense of producing a value in the
range of the function for a value in its domain). The algorithm generally has to be
run several times because the measurement might be inconclusive, corresponding
to an outcome associated with the overlap region, but achieves success in a number
of steps that is a polynomial function of the size of the input. In Shor’s algorithm,
the alternative possible partitions are associated with a family of nested subspaces.
The algorithm works as a randomized algorithm by providing a candidate value for
the period in polynomial time, which can be tested in polynomial time.

At first sight, Deutsch’s XOR problem is quite different. It involves the determi-
nation of a disjunctive property of a Boolean function. But note that determining
the period of a function also amounts to determining a disjunctive property of the
function: the disjunction over the different subsets si of a particular partition of
the domain of the function, as opposed to alternative such disjunctions. As we will
see below, Deutsch’s XOR algorithm works by associating the alternative disjunc-
tions with two Hilbert-space planes that are orthogonal except for an intersection
in a ray. From this perspective, the XOR algorithm appears directly as a special
case of Simon’s algorithm, and all three algorithms can be seen as exploiting the
non-Boolean logic represented by the projective geometry of Hilbert space in a
similar way.

11.2 Deutsch’s XOR algorithm

Deutsch’s original XOR algorithm was the first quantum algorithm with a demon-
strated speed-up over any classical algorithm performing the same computational
task. The algorithm has an even probability of failing, so the improvement in
efficiency is achieved only if the algorithm succeeds. A subsequent variation by
Cleve [4] avoids this feature, although the speed-up is rather modest: one run of
the quantum algorithm versus two runs of a classical algorithm. The Deutsch–
Jozsa algorithm [5] achieves an exponential speed-up for a generalized version of
the XOR problem known as Deutsch’s problem.1

1 But even here, a probabilistic classical algorithm yields a solution with high probability after a few runs – see
[11].
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In Deutsch’s XOR problem [6], a “black box” or oracle computes a Boolean
function f : B→B, where B = {0, 1} is a Boolean algebra (or the additive group
of integers mod 2). The problem is to determine whether the function is “con-
stant” (takes the same value for both inputs) or “balanced” (takes a different value
for each input). The properties “constant” and “balanced” are two alternative dis-
junctive properties of the function f (for “constant,” 0→ 0 and 1→ 0 or 0→ 1
and 1→ 1; for “balanced,” 0→ 0 and 1→ 1 or 0→ 1 and 1→ 0). Classically, a
solution requires two queries to the oracle, for the input values 0 and 1, and a
comparison of the outputs.

Deutsch’s algorithm begins by initializing 1-qubit input and output registers to
the state |0〉|0〉 in a standard basis (the computational basis). A Hadamard transfor-
mation

|0〉 → |0〉 + |1〉, (11.1)

|1〉 → |0〉 − |1〉 (11.2)

is applied to the input register (yielding a linear superposition of states correspond-
ing to the two possible input values 0 and 1) followed by a unitary transformation
U f : |x〉|y〉 → |x〉|y ⊕ f (x)〉 applied to both registers that implements the Boolean
function f :

|0〉|0〉 H→ 1√
2
(|0〉 + |1〉)|0〉, (11.3)

U f→ 1√
2
(|0〉| f (0)〉 + |1〉| f (1)〉). (11.4)

The final composite state of both registers is then one of two orthogonal states,
either (constant)

|c1〉 = 1√
2
(|0〉|0〉 + |1〉|0〉), (11.5)

|c2〉 = 1√
2
(|0〉|1〉 + |1〉|1〉) (11.6)

or (balanced)

|b1〉 = 1√
2
(|0〉|0〉 + |1〉|1〉), (11.7)

|b2〉 = 1√
2
(|0〉|1〉 + |1〉|0〉). (11.8)

Note that the constant states |c1〉, |c2〉 are not orthogonal to the balanced states
|b1〉, |b1〉. So it is not possible to determine whether the function is constant or
balanced by a measurement that identifies, with certainty, the output state as a
constant state or a balanced state. The states |c1〉, |c2〉 and |b1〉, |b2〉 span two planes
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in H2 ⊗ H2, the constant plane Pc and the balanced plane Pb, represented by the
projection operators

Pc = P|c1〉 ∨ P|c2〉, (11.9)

Pb = P|b1〉 ∨ P|b2〉. (11.10)

Although the states |c1〉, |c2〉 are not orthogonal to the states |b1〉, |b2〉, the planes –
which represent quantum disjunctions2 – are orthogonal, except for an intersection,
so their projection operators commute. The intersection is the line (ray) spanned
by the vector

1

2
(|00〉 + |01〉 + |10〉 + |11〉) = 1√

2
(|c1〉 + |c2〉) = 1√

2
(|b1〉 + |b2〉). (11.11)

In the prime basis spanned by the states |0′〉 = H |0〉, |1′〉 = H |1〉, the intersec-
tion is the state |0′〉|0′〉, the constant plane is spanned by

|0′〉|0′〉 = 1√
2
(|c1〉 + |c2〉), (11.12)

|0′〉|1′〉 = 1√
2
(|c1〉 − |c2〉) (11.13)

and the balanced plane is spanned by

|0′〉|0′〉 = 1√
2
(|b1〉 + |b2〉), (11.14)

|1′〉|1′〉 = 1√
2
(|b1〉 − |b2〉) (11.15)

i.e.,

Pc = P|0′〉|0′〉 ∨ P|0′〉|1′〉, (11.16)

Pb = P|0′〉|0′〉 ∨ P|1′〉|1′〉. (11.17)

So to decide whether the function f is constant or balanced we could measure
the observable with eigenstates |0′0′〉, |0′1′〉, |1′0′〉, |1′1′〉 on the final state, which
is in the three-dimensional subspace orthogonal to the vector |1′0′〉, either in the
constant plane or in the balanced plane. If the state is in the constant plane, we
will obtain either the outcome 0′0′ with probability 1/2 (since the final state is at an
angle π/4 to |0′0′〉), in which case the computation is inconclusive, or the outcome
0′1′ with probability 1/2. If the state is in the balanced plane, we will obtain either

2 Since P|c1〉 and P|c2〉 are orthogonal, Pc = P|c1〉 ∨ P|c2〉 = P|c1〉 + P|c2〉, where “∨” represents quantum
disjunction: the infimum or span (the smallest subspace containing the two component subspaces). Similarly
for Pb.
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the outcome 0′0′ with probability 1/2, in which case the computation is inconclu-
sive, or the outcome 1′1′ with probability 1/2. So in either case, with probability
1/2, we can distinguish whether the function is constant or balanced in one run of
the algorithm by distinguishing between the constant and balanced planes, without
evaluating the function at any of its inputs (i.e., without determining in the constant
case whether f maps 0 to 0 and 1 to 0, or whether f maps 0 to 1 and 1 to 1, and
similarly in the balanced case).3

Now, in evaluating the efficiency of the algorithm, we would have to take account
of the fact that a computation is required to determine the prime basis, and we
would have to count the number of computational steps required for this compu-
tation. We would also have to consider whether the measurement could be imple-
mented efficiently. These sorts of issues might be trivial for the XOR algorithm, but
in general will not be. To avoid this sort of problem, the number of relevant com-
putational steps in a quantum algorithm is conventionally counted as the number
of applications of unitary transformations and measurements required for the suc-
cessful implementation of the algorithm, where the unitary transformations belong
to a standard set of elementary unitary gates that form a universal set, and the mea-
surements are in the computational basis.

Notice that a Hadamard transformation to the final state amounts to dropping
the primes in the representation (11.16), (11.17) for the constant and balanced

planes (since H 2= I , so |0′0′〉 H−→ |00〉, etc.). More precisely, the relationship
between the states |c1〉, |c2〉, |b1〉, |b2〉 in (11.5)–(11.8) and the constant and bal-
anced planes Pc= P|0′〉|0′〉 + P|0′〉|1′〉 and Pb= P|0′〉|0′〉 + P|1′〉|1′〉 is the same, after
the Hadamard transformation of the state, as the relationship between the states
H |c1〉, H |c2〉, H |b1〉, H |b2〉 and the planes defined by Pc= P|0〉|0〉 + P|0〉|1〉 and
Pb = P|0〉|0〉 + P|1〉|1〉. That is, under the Hadamard transformation,

|c1〉 → 1√
2
(|0〉|0〉 + |0〉|1〉), (11.18)

|c2〉 → 1√
2
(|0〉|0〉 − |0〉|1〉) (11.19)

and

|b1〉 → 1√
2
(|0〉|0〉 + |1〉|1〉), (11.20)

|b2〉 → 1√
2
(|0〉|0〉 − |1〉|1〉). (11.21)

3 Equivalently, we could measure the output register. If the outcome is 0′, the computation is inconclusive. If the
outcome is 1′, we measure the input register. The outcome 1′ or 0′ then distinguishes whether the function is
constant or balanced.
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So the transformed constant plane H Pc is spanned by

|0〉|0〉 = 1√
2
(H |c1〉 + H |c2〉), (11.22)

|0〉|1〉 = 1√
2
(H |c1〉 − H |c2〉) (11.23)

and the transformed balanced plane H Pb is spanned by

|0〉|0〉 = 1√
2
(H |b1〉 + H |b2〉), (11.24)

|1〉|1〉 = 1√
2
(H |b1〉 − H |b2〉). (11.25)

This allows the transformed constant and balanced planes to be distinguished
(with probability 1/2) by a measurement in the computational basis. The outcome
00, when the final state is projected by the measurement onto |0〉|0〉 is inconclu-
sive. The outcome 01, when the final state is projected onto |0〉|1〉, reveals that the
final state after the Hadamard transformation was in the transformed constant plane
H Pc. It follows that the final state before the Hadamard transformation was in the
constant plane Pc, and hence that the function f is constant. The outcome 11, when
the final state is projected onto |1〉|1〉, reveals that the final state after the Hadamard
transformation was in the transformed balanced plane H Pb, and hence by similar
reasoning that the function f is balanced. Now, to evaluate the efficiency of mea-
surement, we need only count the number of elementary unitary gates required to
implement the Hadamard transformation.

In Cleve’s variation, the two registers are initialized to |0〉 and |1〉, respec-
tively (instead of to |0〉 and |0〉). It is easy to see that, instead of the final state
of the two registers ending up as one of two orthogonal states in the constant
plane, or as one of two orthogonal states in the balanced plane, the final state
now ends up as ±|0′1′〉 in the constant plane, or as ±|1′1′〉 in the balanced plane,
and these states can be distinguished because they are orthogonal. We can dis-
tinguish these two possibilities by simply measuring the input register in the
prime basis, but since a final Hadamard transformation on the state of the input
register takes |0′〉 to |0〉 and |1′〉 to |1〉), we can distinguish the two planes by
measuring the input register in the computational basis. So we can decide with
certainty whether the function is constant or balanced after only one run of the
algorithm.

Deutsch’s XOR problem can be generalized to the problem (“Deutsch’s prob-
lem”) of determining whether a Boolean function f : Bn→ B is constant or
whether it is balanced, where it is promised that the function is either constant
or balanced. “Balanced” here means that the function takes the values 0 and 1 an
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equal number of times, i.e., 2n−1 times each. By exploiting the Cleve variation of
the XOR algorithm, the Deutsch–Jozsa algorithm [5] determines whether f is con-
stant or balanced in one run. Since the initial and final Hadamard transformations
can be implemented efficiently, i.e., with a number of elementary unitary gates that
is only a polynomial function of the size of the input, the algorithm is exponen-
tially faster than any classical algorithm. For a discussion of the Deutsch–Jozsa
algorithm from the quantum-logical perspective adopted here, see [3].

11.3 Period-finding algorithms

Simon’s problem is to find the period r of a periodic Boolean function f : Bn →
Bn , i.e., a function for which

f (xi ) = f (x j ) if and only if x j = xi ⊕ r , for all xi , x j ∈ Bn. (11.26)

Note that, since x ⊕ r ⊕ r = x , the function is 2-to-1.
Since f is periodic, the possible outputs of f – the values of f for the different

inputs – partition the set of input values into mutually exclusive and collectively
exhaustive subsets, and these subsets depend on the period. So, determining the
period of f amounts to distinguishing the partition corresponding to the period
from alternative partitions corresponding to alternative possible periods. Simon’s
algorithm solves the problem efficiently, with an exponential speed-up over any
classical algorithm (see [14, 15]).

Shor’s factorization algorithm [12, 13] exploits the fact that the two prime fac-
tors p, q of a positive integer N = pq can be found by determining the period of
a function f (x) = ax mod N , for any a < N that is coprime to N , i.e., has no
common factors with N (other than 1). The period r of f (x) depends on a and N .
Once we know the period, we can factor N if r is even and ar/2 �= −1 mod N ,
which will be the case with probability greater than 1/2 if a is chosen randomly.
(If not, we choose another value of a.) The factors of N are the greatest common
factors of ar/2±1 and N , which can be found in polynomial time by the Euclidean
algorithm. (For these number-theoretic results, see [11, Appendix 4].) So the prob-
lem of factorizing a composite integer N that is the product of two primes reduces
to the problem of finding the period of a certain function f : Zs → Zn , where Zn is
the additive group of integers mod n (rather than Bn , the n-fold Cartesian product
of a Boolean algebra B, as in Simon’s algorithm). Note that f (x + r) = f (x)
if x + r ≤ s. The function f is periodic if r divides s exactly, otherwise it is
almost periodic. This adds a complication, but does not change anything essential
in the analysis. Shor’s algorithm is exponentially faster than any known classical
algorithm.
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I begin with Simon’s algorithm. Here is a sketch of the usual formulation. The
input and output registers are initialized to the state |0〉|0〉 in the computational
basis (where |0〉 is an abbreviation for |0〉 . . . |0〉 = |0 . . . 0〉) and the state is evolved
as follows:

|0〉|0〉 H−→ 1√
2n

2n−1∑
x=0

|x〉|0〉, (11.27)

U f−→ 1√
2n

∑
x

|x〉| f (x)〉 (11.28)

= 1√
2n−1

∑
xi

|xi 〉 + |xi ⊕ r〉√
2

| f (xi )〉, (11.29)

where U f is the unitary transformation implementing the Boolean function as

U f : |x〉|y〉 → |x〉|y ⊕ f (x)〉. (11.30)

A measurement of the output register would leave the input register in a state of
the form4

|xi 〉 + |xi ⊕ r〉√
2

. (11.31)

This state contains the information r , but summed with an unwanted randomly
chosen offset xi that depends on the measurement outcome. A direct measurement
of the state label would yield any x ∈ Bn equiprobably, providing no information
about r .

The application of a final Hadamard transformation yields

|xi 〉 + |xi ⊕ r〉√
2

H−→ 1√
2n

∑
y∈Bn

(−1)xi ·y + (−1)(xi ⊕ r)·y
√

2
|y〉 (11.32)

=
∑

y:r ·y=0

(−1)xi ·y
√

2n−1
|y〉 (11.33)

where the last equality follows because terms interfere destructively if r · y = 1.
A measurement of the input register in the computational basis yields a value y
(equiprobably) such that r · y = 0. Repeating the algorithm sufficiently many times
yields enough values yi so that r can be determined by solving the linear equations
r · y1 = 0, . . ., r · yk = 0.

To see how the algorithm works quantum logically in terms of the subspaces
representing the relevant quantum propositions, consider the case n = 2. There

4 Considering a measurement of the output register here is simply a pedagogical device, for clarity. Instead, we
could refer to the reduced state of the input register, which is a mixture of states of the form (11.31). No actual
measurement of the output register is required, only a measurement of the input register.
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are 22 − 1 = 3 possible values of the period r : 01, 10, 11, and the corresponding
partitions are

r = 01: {00, 01}, {10, 11},
r = 10: {00, 10}, {01, 11},
r = 11: {00, 11}, {01, 10}.

The corresponding states of the input and output registers after the unitary trans-
formation U f are

r = 01: 1
2 (|00〉 + |01〉)| f (00)〉 + 1

2 (|10〉 + |11〉)| f (10)〉,
r = 10: 1

2 (|00〉 + |10〉)| f (00)〉 + 1
2 (|01〉 + |11〉)| f (01)〉,

r = 11: 1
2 (|00〉 + |11〉)| f (00)〉 + 1

2 (|01〉 + |10〉)| f (01)〉.
Notice that this case reduces to the same construction as in Deutsch’s XOR algo-

rithm. For r = 10 the input register states are

|c1〉 = 1√
2
(|00〉 + |10〉), (11.34)

|c2〉 = 1√
2
(|01〉 + |11〉) (11.35)

and for r = 11 the input register states are

|b1〉 = 1√
2
(|00〉 + |11〉), (11.36)

|b2〉 = 1√
2
(|01〉 + |10〉) (11.37)

depending on the outcome of a measurement of the output register. Here the
orthogonal states |c1〉, |c2〉 represent the two subsets of the partition associated
with the period r = 10, the orthogonal states |b1〉, |b2〉 represent the two sub-
sets of the partition associated with the period r = 11, and the orthogonal states
|00〉 + |01〉, |10〉 + |11〉 represent the two subsets of the partition associated with
the period r = 01.

The three partitions associated with the three possible periods are represented
by three planes in H2⊗H2, which correspond to the constant and balanced planes
in Deutsch’s XOR algorithm, and a third orthogonal plane. While the states rep-
resenting subsets of different partitions associated with different periods are non-
orthogonal, the three planes (spanned by these states) are mutually orthogonal,
except for an intersection in the ray spanned by the vector |0′0′〉 in the prime basis
(i.e., their projection operators commute):

r = 01: plane spanned by |0′0′〉, |1′0′〉,
r = 10: plane spanned by |0′0′〉, |0′1′〉 (corresponds to “constant” plane),
r = 11: plane spanned by |0′0′〉, |1′1′〉 (corresponds to “balanced” plane).
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We cannot identify the period by a measurement that identifies the state of the
input register as a state representing a particular subset of a particular partition,
because the states representing subsets of different partitions associated with dif-
ferent periods are non-orthogonal. We could identify the plane corresponding to the
period by measuring the input register in the prime basis, but – as in Deutsch’s XOR
algorithm – the final Hadamard transformation (which, as we have seen, amounts

to dropping the primes: |0′0′〉 H→ |00〉, etc.) allows the plane corresponding to the
period to be identified by a measurement in the computational basis. The three
possible periods can therefore be distinguished by measuring the observable with
eigenstates |00〉, |01〉, |10〉, |11〉, except when the state of the register is projected
by the measurement onto the state |00〉 (which occurs with probability 1/2). So
the algorithm will generally have to be repeated until we find an outcome that is
not 00.

The n= 2 case of Simon’s algorithm essentially reduces to Deutsch’s XOR
algorithm. In the n= 3 case (which suffices to exhibit the general feature of the
algorithm) there are 23−1= 7 possible periods: 001, 010, 011, 100, 101, 110, 111.
For the period r = 001, the state of the two registers after the unitary transforma-
tion U f is

1

2
√

2
(|000〉 + |001〉)| f (000)〉 + 1

2
√

2
(|010〉 + |011〉)| f (010)〉

+ 1

2
√

2
(|100〉 + |101〉)| f (100)〉 + 1

2
√

2
(|110〉 + |111〉)| f (110)〉. (11.38)

A measurement of the output register would leave the input register in one of four
states, depending on the outcome of the measurement:

1√
2
(|000〉 + |001〉) = 1

2
(|0′0′0′〉 + |0′1′0′〉 + |1′0′0′〉 + |1′1′0′〉),

1√
2
(|010〉 + |011〉) = 1

2
(|0′0′0′〉 − |0′1′0′〉 + |1′0′0′〉 − |1′1′0′〉),

1√
2
(|100〉 + |101〉) = 1

2
(|0′0′0′〉 + |0′1′0′〉 − |1′0′0′〉 − |1′1′0′〉),

1√
2
(|110〉 + |111〉) = 1

2
(|0′0′0′〉 − |0′1′0′〉 − |1′0′0′〉 + |1′1′0′〉).

Applying a Hadamard transformation amounts to dropping the primes. So if the
period is r = 001, the state of the input register ends up in the four-dimensional
subspace of H2 ⊗H2 ⊗H2 spanned by the vectors |000〉, |010〉, |100〉, |110〉.

A similar analysis applies to the other six possible periods. The corresponding
subspaces are spanned by the following vectors:
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r = 001: |000〉, |010〉, |100〉, |110〉,
r = 010: |000〉, |001〉, |100〉, |101〉,
r = 011: |000〉, |011〉, |100〉, |111〉,
r = 100: |000〉, |001〉, |010〉, |011〉,
r = 101: |000〉, |010〉, |101〉, |111〉,
r = 110: |000〉, |001〉, |110〉, |111〉,
r = 111: |000〉, |011〉, |101〉, |110〉.

These subspaces are orthogonal except for intersections in two-dimensional
planes. The period can be found by measuring in the computational basis. Rep-
etitions of the measurement will eventually yield sufficiently many distinct values
to determine the subspace containing the final state. In this case, it is clear by
examining the above list that two values distinct from 000 suffice to determine the
subspace, and these are just the values yi for which yi · r = 0.

Shor’s algorithm involves the following steps. A k-qubit input register (whose
states are represented on an s-dimensional Hilbert space Hs , where s = 2k) is
initialized to the state |0〉 ∈ Hs and the output register to the state |0〉 ∈ HN . A
k-fold Hadamard transformation is applied to the input register, followed by the
unitary transformation U f which implements the function f (x) = ax mod N :

|0〉|0〉 H−→ 1√
s

s−1∑
x=0

|x〉|0〉, (11.39)

U f−→ 1√
s

s−1∑
x=0

|x〉|x + ax mod N 〉. (11.40)

Suppose r divides s exactly. A measurement of the output register in the
computational basis would leave the input register in a state of the form

1√
s/r

s/r−1∑
j=0

|xi + jr〉. (11.41)

The value xi is the offset, which depends on the outcome i of the measurement of
the output register. The sum is taken over the values of j for which f (xi + jr) = i .
Since the state label contains the random offset, a direct measurement of the label
yields no information about the period.

A discrete quantum Fourier transform for the integers mod s is now applied to
the input register, i.e., a unitary transformation

|x〉 UDFTs−→ 1√
s

s−1∑
y=0

e2π i xy
s |y〉, for x ∈ Zs . (11.42)
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Note that a Hadamard transformation is a discrete quantum Fourier transform for
the integers mod 2, so this step is analogous to the application of the Hadamard
transformation in Simon’s algorithm. Under the Fourier transformation, the state
of the input register undergoes the transition

1√
s/r

s/r−1∑
j=0

|xi + jr〉 UDFTs−→ 1√
r

r−1∑
k=0

e2π i
xi k
r |ks/r〉, (11.43)

where, similarly to the derivation of (11.33), the amplitudes are non-zero only if y

is not a multiple k of s/r (i.e.,
∑s/r−1

j=0 e2π i jr y
s = s/r if y = ks/r ;

∑s/r−1
j=0 e2π i jr y

s =
0 if y �= ks/r ). The effect is to shift the offset into a phase factor and invert the
period as a multiple of s/r . A measurement of the input register in the computa-
tional basis then yields c = ks/r , where the value of k is chosen equiprobably by
the measurement of the output register. The algorithm is run a number of times
until a value of k coprime to r is obtained. Cancelling out c/s to lowest terms then
yields k and r as k/r .

Suppose r does not divide s exactly. Then some of the states in (11.41) will have
an additional term. For example, suppose s = r + d, where d < r . Then d of the
states in (11.41) will have an extra term and take the form

1√
s/r + 1

s/r∑
j=0

|xi + jr〉. (11.44)

After the Fourier transformation, the expression (11.43) will contain additional
terms with negligible amplitudes for values of s �= k (k = 0, 1, . . ., r − 1) if s/r is
large.

Since the value of r is unknown in advance of applying the algorithm, we do not,
of course, recognize when a measurement outcome yields a value of k coprime to r .
The idea is to run the algorithm, cancel out c/s to lowest terms to obtain a candi-
date value for r and hence a candidate factor of N , which can then be tested by
division into N . Even when we do obtain a value of k coprime to r , some val-
ues of a will yield a period for which the method fails to yield a factor of N ,
in which case we randomly choose a new value of a and run the algorithm with
this value. The point is that all these steps are efficient, i.e., can be performed in
polynomial time, and, since only a polynomial number of repetitions is required
in order to determine a factor with any given probability p< 1, the algorithm is
a polynomial-time algorithm, achieving an exponential speed-up over any known
classical algorithm.

The analysis of the algorithm from a quantum-logical perspective is similar to
the above discussion for Simon’s algorithm. The essential difference is that the
alternative possible partitions are represented by nested subspaces. See [3] for an
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account. The algorithm works as a randomized algorithm, producing a candidate
value for the period r and hence a candidate factor of N , which can be tested (in
polynomial time) by division into N .

11.4 Conclusion

Simon’s algorithm and Shor’s algorithm work as period-finding algorithms by
encoding alternative partitions of the domain of a function, defined by alternative
possible periods, as quantum propositions represented by subspaces in a Hilbert
space, which are orthogonal except for overlaps. The subspace corresponding to a
particular partition is spanned by orthogonal linear superpositions of states asso-
ciated with the elements in the (mutually exclusive and collectively exhaustive)
subsets of the partition. The period-finding algorithm is designed to produce an
entangled state in which such superpositions, representing states of an input regis-
ter, are correlated with distinct orthogonal states of an output register. The reduced
state of the input register is then an equal-weight mixture of states spanning the
subspace corresponding to the partition, where each state encodes a subset in the
partition as a linear superposition of the elements in the subset. Since the subspaces
are represented by commuting projection operators, a measurement of the state of
the input register in a certain basis can reveal the subspace containing the state,
and hence the period associated with the partition, except when the measurement
projects the state onto the overlap region. This measurement basis is unitarily
related to the computational basis by a known unitary transformation that can be
implemented efficiently, so a measurement in the computational basis after this
unitary information will yield the same information. This is the function of the
final Hadamard transformation or discrete quantum Fourier transformation, and
the possibility of an efficient implementation of this transformation is crucial to
the efficiency of the algorithm. By contrast with the classical “fast Fourier trans-
form,” it is a remarkable feature of the discrete quantum Fourier transform that it
can be implemented efficiently.

The information-processing in Deutsch’s XOR algorithm has a similar quantum-
logical interpretation in terms of the subspace structure of Hilbert space. The
problem here is to distinguish two alternative disjunctive properties of a func-
tion (0→ 0 and 1→ 0 or 0→ 1 and 1→ 1 for a constant function, versus 0→ 0
and 1→ 1 or 0→ 1 and 1→ 0 for a balanced function), which are encoded as
two planes in a four-dimensional Hilbert space (orthogonal except for an over-
lap). Each disjunct in the disjunction is a conjunction of two elements (e.g., 0→ 0
and 1→ 0). The plane corresponding to a particular disjunction is spanned by a
pair of states that encode the elements of the conjunctions as linear superpositions.
The algorithm is designed to produce one of these states, depending on which
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disjunction is true of the function. From this perspective, the XOR algorithm
appears directly as a special case of Simon’s algorithm.

The first stage of a quantum algorithm designed to evaluate some global property
of a function involves the creation of an entangled state of the input and output
registers in which every value in the domain of the function is correlated with
a corresponding value in its range. This is referred to as “quantum parallelism”
and is often cited as the source of the speed-up in a quantum computation. The
idea is that a quantum computation is something like a massively parallel classical
computation, for all possible values of a function. This appears to be Deutsch’s
view [7]: in an Everettian many-worlds interpretation of quantum mechanics, the
parallel computations can be regarded as taking place in parallel universes. (For a
critique, see [16].)

From the quantum-logical perspective outlined here, the picture is entirely differ-
ent. Rather than “computing all values of a function at once,” a quantum algorithm
achieves an exponential speed-up over a classical algorithm precisely by avoiding
the computation of any values of the function at all. This is redundant informa-
tion for a quantum algorithm but essential information for a classical algorithm.
A quantum algorithm works by exploiting the non-Boolean logic represented by
the projective geometry of Hilbert space to encode a global property of a function
(such as a period, or a disjunctive property) as a subspace in Hilbert space, which
can be efficiently distinguished from alternative subspaces, corresponding to alter-
native global properties, by a measurement (or sequence of measurements) that
identifies the target subspace as the subspace containing the final state produced
by the algorithm. The point of the procedure is precisely to avoid the evaluation
of the function in the determination of the global property, in the sense of produc-
ing a value in the range of the function for a value in its domain, and it is this
feature – impossible in the Boolean logic of classical computation – that leads to
the speed-up relative to classical algorithms.

In a sense, evaluating the efficiency of a quantum algorithm relative to a classical
algorithm is like comparing apples and oranges because the information process-
ing is so different – hence the convention of counting the number of steps in a
quantum computation as the number of applications of unitary gates from a stan-
dard set of elementary unitary gates, and restricting measurements to a standard
basis. The efficient implementation of the final Fourier or Hadamard transform
is, of course, crucial to the efficiency of the algorithm – if this were not possi-
ble, there would be no point in building a quantum computer. Nevertheless, even
before the application of the final transformation, the subspace representing the
global property of the function already contains the state, i.e., the quantum propo-
sition representing a particular global property, as opposed to alternative possible
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global properties, has already been selected as true by the state. It is then sim-
ply a question of determining, by a suitable measurement, which of the alternative
propositions is true, i.e., which of the alternative propositions is represented by the
state.

This is quite different from the claim that the quantum state already contains
the information correlating all values in the domain of the function with corre-
sponding values in the range. There is, in principle, no way of extracting this infor-
mation by any measurement, whereas the information about the global property
encoded in a subspace can be extracted by a suitable measurement. While we
certainly need to consider the question of the efficiency of this measurement in
comparing a quantum computation with a classical computation, there is a real
sense in which the source of the exponential speed-up in a quantum computation
ultimately turns on the different logical structures of the classical and quantum
event spaces.

It is this difference that makes possible the representation of a global or dis-
junctive property of a function as a subspace containing the quantum state of a
computer register in a quantum computation, while a classical computation rep-
resents such a property as a subset containing the classical state. The possibility
of an exponential speed-up arises because the classical state can end up in a par-
ticular subset only by ending up at a particular point in the subset, representing
a particular pair of input–output values correlated by the function. So the evolu-
tion of the state to that point necessarily involves a computation that keeps track
of the information required to exclude all the other points in the subset. By con-
trast, a quantum state can end up in a particular subspace that represents a global or
disjunctive property without representing a particular pair of input–output values
correlated by the function, i.e., without keeping track of the information required
by a classical computation. If the size of the subset representing the global property
in a classical computation grows exponentially with the size of the input, one can
see the possibility of an exponential slow-down relative to a quantum computa-
tion, assuming the efficient extraction of the information about the global property
represented in the final quantum state.
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12

Quantum mechanics, quantum computing,
and quantum cryptography

Tai Tsun Wu

12.1 Introduction

Quantum mechanics is much more than the superposition of states. Since quantum
computing and quantum cryptography both involve quantum effects in essential
ways, they are necessarily dealing with quantum systems, which need to be studied
on the basis of quantum mechanics. It is the purpose of this chapter to initiate such
a study with the spatial variable taken into account [1].

The physics of quantum mechanics is described by the Schrödinger equation.
In the simple case of a particle of mass m in an external potential V (r), the time-
independent Schrödinger equation is

− h̄2

2m
∇2ψ(r)+ V (r)ψ(r) = k2ψ(r). (12.1)

When there is only one spatial dimension x instead of the usual three, then (12.1)
reduces to

− h̄2

2m

d2ψ(x)

dx2
+ V (x)ψ(x) = k2ψ(x). (12.2)

It is customary to choose units so that

h̄ = 1 and 2m = 1.

With such units, (12.2) is

− d2ψ(x)

dx2
+ V (x)ψ(x) = k2ψ(x). (12.3)

In this chapter, we shall deal extensively with (12.3). It is the use of the Schrödinger
equations (12.1)–(12.3) that distinguishes this chapter from most of the other chap-
ters in this book.

Consider next the second topic in the title of this chapter: quantum computing.
This is a deep and rapidly developing topic. As is appropriate for such fields, many

Philosophy of Quantum Information and Entanglement, ed. A. Bokulich and G. Jaeger. Published by
Cambridge University Press. c© Cambridge University Press 2010.
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Fig. 12.1 Quantum memory.

of the theoretical studies are based on the simplest possible models [2, 3]. These
models typically do not take the spatial variables into account. In this chapter,
some aspects of quantum computers are to be treated with the Schrödinger equation
(12.3), which involves a spatial variable explicitly.

No quantum computer has ever been built; indeed, none has ever been designed.
However, no matter how quantum computers develop in the future, two compo-
nents are likely to be essential.

A first necessary component is the quantum memory – sometimes called the
quantum register. While the content of a classical memory is a number, that of a
quantum memory is a pure quantum state. The central role of the quantum memory
in the context of quantum computing and quantum cryptography is shown schemat-
ically in Figure 12.1. The Schrödinger equation (12.3) is to be used to analyze some
simple cases of quantum memory.

A second necessary component of a quantum computer is the connection
between the various components. On the basis of the present knowledge, these
components are likely to be connected by optical fibers. Although it seems natural
to apply quantum electrodynamics to study the properties of such optical fibers,
there are many unresolved problems and therefore it is at present premature to treat
this topic here. In other words, nothing further will be said in this chapter about
such connections between the components.

In summary, the Schrödinger equation is to be used to analyze some simple cases
of quantum memories, and the result of this analysis is to be applied to quantum
cryptography.

12.2 Quantum memory

In classical computing, the content of a classical memory needs to be altered as the
computation proceeds; in quantum computing, the content of a quantum memory is
similarly altered. Since the content of a quantum memory is a pure quantum state,
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the change from one pure state to another is described by a unitary transform.
In other words, mathematically we apply unitary transforms to the content of a
quantum memory.

From the engineering point of view, the more important issue is how to apply a
unitary transform to the content of a quantum memory.

Since a quantum memory is necessarily small, the most natural and practical
way to change its content is to send a signal from outside of the memory to interact
or scatter from this. This interaction or scattering, being quantum in nature, must
be described by the Schrödinger equation, such as (12.1). Equation (12.1) involves
spatial coordinates and differentiations with respect to these variables.

Why is the inclusion of spatial variables so important? First, spatial variables
are physically present in any case. Secondly, and perhaps more importantly, the
presence of spatial variables makes it possible to apply the powerful and well-
developed theory of scattering [4] to the study of quantum memory. In scattering
theory, it is essential to have at least one spatial variable; otherwise it is not possible
to give a meaning to the in and out states [5].

The use of scattering theory in the context of quantum memory has one more
major advantage. In addition to the contents of the quantum memory before and
after scattering, there are also the incoming and outgoing wavefunctions ψ in(r)
and ψout(r) of the signal from outside the memory. These ψ in(r) and ψout(r) have
no analog in the treatments without spatial dimensions, and they contain valuable
information about the quantum memory. In particular, some of the operations that
have been deemed impossible in previous models are found to present no difficulty
from the present point of view with spatial dimensions.

One of the major differences between a classical memory and a quantum mem-
ory is the following. While, by now, almost all classical memories are digital, any
quantum memory, with a pure quantum state as its content, is necessarily non-
digital. Therefore, while a classical memory can be read, for example, exactly, the
reading of a quantum memory necessarily involves errors. A prevalent form of error
in the case of quantum memory is decoherence, i.e., its content deviates from being
a pure quantum state. An especially simple form of decoherence will be considered
in Section 12.5.

Since the content of a quantum memory is a pure quantum state, this must be
true both before and after scattering. This condition limits severely what incident
waves are allowed to scatter from the quantum memory. This basic concept of an
admissible incident wave has the following origin [1, 6].

Let | j〉 be linearly independent quantum states for the memory; a state, which
must be a pure state, for the memory is of the form

∑
j a j | j〉. In order to per-

form any operation on the memory, a wave or equivalently a particle, or perhaps
several particles, is sent from the outside to interact with the memory. Let ψ in(r)
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denote the wavefunction for this incident wave. Then the in field for the scattering
process is

� in =
(∑

j

ain
j | j〉
)
ψ in(r). (12.4)

Note that ψ in(r) is our choice to accomplish whatever the purpose of the scatter-
ing is.

The corresponding out state is in general a sum of products

�out =
∑

j

| j〉ψout
j (r). (12.5)

This �out contains information about the state of the memory after scattering and
the behavior of the scattered wave. Later, the scattered wave as described byψout

j (r)
moves away from the memory and the information contained there is no longer
available. This means that the final state of the memory is given by �out averaged
over this information that is no longer available. On the other hand, in order for the
quantum memory to function, the final state of the memory must be a pure state.
This condition of being a pure state must mean that the various ψout

j (r)s are related
to each other. Intuitively, we expect that �out must also be of the form of (12.4),
i.e., (12.5) must reduce to

�out =
(∑

j

aout
j | j〉
)
ψout(r). (12.6)

In other words, not only the in state but also the out state is unentangled. This leads
to the important concept of admissible ψ in. The proof of (12.6) can be found in
Refs. [1, 6].

A ψ in is defined to be admissible if, for all
∑

j ain
j | j〉 of interest, the correspond-

ing �out is of the form of (12.6).
When ψ in(r) is an admissible incident field, then it follows from (12.4) and

(12.6) that the initial state of the quantum memory is
∑

j ain
j | j〉, while the final

state is
∑

j aout
j | j〉. In other words, the use of this admissibleψ in(r) performs a uni-

tary transform on the content of the quantum memory, changing it from
∑

j ain
j | j〉

to
∑

j aout
j | j〉.

An important phrase in the above definition of an admissible ψ in is “for all∑
j ain

j | j〉 of interest.” The reason for the inclusion of this phrase in the defini-
tion is that in general it is not known what the content of the quantum memory,∑

j ain
j | j〉, is initially. If (12.6) holds for some

∑
j ain

j | j〉 but not for others of
interest, then it is necessary to perform the task of determining what the state is in
the quantum memory before applying ψ in(r) to interact with it.
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On the other hand, the inclusion of this phrase leads immediately to the following
question: is there any admissibleψ in at all? In fact, what is needed is not merely the
existence of one or a few admissible ψ in. In order to perform the unitary transforms
on the quantum memory to carry out the quantum computations, it is necessary to
have a sufficiently large collection of admissible ψ in.

The central question is therefore the following: is there a sufficiently large col-
lection of admissible ψ in so that the necessary operations of quantum computing
can be performed through scattering? An alternative way of asking this question
is as follows: is the present way of interrogating and controlling the content of a
quantum memory through scattering self-consistent or not?

In order to answer this question of self-consistency, it is essential to have an
explicit example. Such examples are discussed in the next section. Note that this
self-consistency is guaranteed by the construction of a single non-trivial example.

12.3 A potential model of quantum memory

That the out state is unentangled means that the right-hand side of (12.5) always
reduces to that of (12.6). This is most easily satisfied if there is only one possible
form forψout

j (r). What this means is that, no matter what j is, thisψout
j (r) is always

proportional to a specific function of r. As an example, consider scattering by a
spherical potential. If the incident wave is a plane wave, then the scattered wave is
in general complicated, being a superposition of the partial waves. If, however, the
in wave contains only one partial wave, then the out wave also contains only this
particular partial wave. Therefore, that there is only one possible form for ψout

j (r)
is closely related to symmetry.

In this section, the model for quantum memory is to be sought in the context of
potential scattering [1, 6]. Since there are at least two linearly independent quan-
tum states for the memory, it is necessary to consider coupled-channel scattering.
With the idea of constructing the simplest model, the number of channels should
be chosen to be the smallest, namely two, and the number of spatial dimensions
should also be chosen this way, namely one. Thus we are using the one-dimensional
Schrödinger equation (12.3), where the wavefunction ψ has two components,

ψ(x) =
[
ψ1(x)
ψ2(x)

]
, (12.7)

and the potential V (x) is a 2× 2 Hermitian matrix

V (x) =
[

V11(x) V12(x)
V21(x) V22(x)

]
. (12.8)



252 T. T. Wu

If the two channels are not coupled, then (12.3) reduces to two scalar equations and
thus cannot describe a non-trivial quantum memory. To avoid this uninteresting
case, the potential V (x) of (12.8) is chosen such that it cannot be diagonalized
simultaneously for all x .

Thus the scattering problem under consideration, in the time-independent case,
deals with the coupled Schrödinger equations [7, 8]

−d2ψ1(x)

dx2
+ V11(x)ψ1(x)+ V12(x)ψ2(x) = k2ψ1(x),

−d2ψ2(x)

dx2
+ V21(x)ψ1(x)+ V22(x)ψ2(x) = k2ψ2(x).

(12.9)

The one-dimensional analog of a spherical potential is a symmetric potential.
Thus, the 2× 2 potential of (12.8) is chosen to be an even function of x , i.e.,

V (−x) = V (x). (12.10)

With condition (12.10), the scattering processes for the even and odd incident
waves are independent. For example, consider the even case, in which the � in and
�out of (12.4) and (12.6) take the forms

� in =
[

ain
1

ain
2

]
e−ik|x | and �out =

[
aout

1

aout
2

]
eik|x |. (12.11)

Thus, the 2× 2 scattering matrix S+(k) is defined by[
aout

1

aout
2

]
= S+(k)

[
ain

1

ain
2

]
. (12.12)

The scattering matrix S−(k) for the odd case is defined similarly. This shows that,
in this potential model, there are many admissible ψ in.

It is instructive to have an explicit example where the existence of this S is
verified directly. Such an example is provided by using the simplest potential in
the form of a Fermi pseudo-potential. This has been carried out in great detail in
Ref. [1]. See Section 12.7 below.

Thus the two-channel Schrödinger equations (12.9) together with (12.8) and
(12.10) give a simple potential model for the quantum memory.

12.4 Write, read, and reset

Returning to the general case, consider an admissible ψ in so that (12.4) and (12.6)
both hold. This means that the unitary transform that changes the pure quantum
state
∑

j ain
j | j〉 in the memory to the pure quantum state

∑
j aout

j | j〉 can be carried
out using the admissible ψ in. This ψ in is designated by
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ψ in

⎛⎝∑
j

ain
j | j〉 →

∑
j

aout
j | j〉
⎞⎠ . (12.13)

Let

|X〉 =
∑

j

x j | j〉 and |Y 〉 =
∑

j

y j | j〉 (12.14)

be two possible pure states of a quantum memory. In general, there is no
ψ in(|X〉 → |Y 〉), i.e., there is no ψ in that can be scattered from the quantum mem-
ory to carry out the unitary transform from |X〉 to |Y 〉. This can be seen most
easily by counting the number of continuous parameters. Let n be the number of
linearly independent states in a quantum memory; then the number of real param-
eters for the unitary transform is n2. If the number of independent real parameters
for all admissible ψ in is less than n2, then there are not enough admissible ψ in

to give ψ in(|X〉 → |Y 〉) for all |X〉 and |Y 〉. As a specific example, for the case
of Section 12.3 n = 2 but there is only one real continuous parameter for the
admissible ψ in.

Therefore, the unitary transform from |X〉 to |Y 〉 is to be accomplished by a
sequence of admissible ψ in. Let φin denote such a finite sequence:

φin = {ψ in(1), ψ in(2), ψ in(3), . . . , ψ in(N )}. (12.15)

The notation of (12.13) is generalized to

φin(|X〉 → |Y 〉) (12.16)

to mean that the sequence (12.15) of admissible incident waves can be used to
accomplish the unitary transform from the state |X〉 to the state |Y 〉. More precisely,
(12.16) means that there is a sequence of pure states |Xi 〉, i = 0, 1, 2, . . ., N , such
that

|X0〉 = |X〉, |X N 〉 = |Y 〉,
and

ψ in( j)(|X j−1〉 → |X j 〉) (12.17)

in the sense of (12.13) for j = 1, 2, . . ., N .
From here on, it will be assumed that, for any pair of quantum states |X〉 and |Y 〉

in the memory, there is a φin of a finite sequence of admissible incident waves such
that φin(|X〉 → |Y 〉). The operations of writing, reading, and resetting a quantum
memory are to be discussed here under this assumption.

For a classical memory, the most basic operations that can be performed are
write, read, and reset. More precisely, in this case, there is a standard number,
usually chosen to be 0. Writing means changing the content of the classical memory
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from this 0 to whatever number we want to put into it. Reading means determining
what number is in the classical memory. Resetting means replacing the content of
the classical memory by 0.

For a quantum memory, these three operations have the following analogous
meanings. One particular pure quantum state is chosen to be the standard state, to
be designated as s. Writing in this case means changing the content of a quantum
memory from this s to a desired given superposition of quantum states. Reading
means determining what superposition of quantum states has been written there.
Resetting means replacing the content of the quantum memory by the standard
state s.

More precisely, these three operations may be described as follows.

Writing. The issue here is how a given superposition of quantum states can be written
on a quantum memory after the memory has been reset to s.

Reading. In this case the issue is how to extract from the memory whatever superposi-
tion of states has been written there.

Resetting. For a quantum memory in an arbitrary superposition of quantum states, it is
desired to erase this information and replace it by s. This should be done without
violating unitarity and time-reversal invariance. It may be noted that, while time
reversal is not an invariance of nature, its violation involves the second and third
generations of quarks [9–12], which are not expected to play any significant role in
quantum memory.

These desired operations are to be accomplished through scattering as follows.
(a) Writing. The simplest of these three operations is writing. Since the quantum

memory has been reset beforehand, let
∑

j a(0)j | j〉 be the given quantum state to
be written on the memory. Then, writing can be accomplished by using φin

(
s →∑

j a(0)j | j〉
)
.

(b) Reading. Reading from a quantum memory is very different from, and more
complicated than, writing on such a memory. Consider a quantum memory in a
state

∑
j ain

j | j〉. It is desired to determine the values of these coefficients ain
j by

interrogating this memory. More precisely, using the sequence of admissible ψ ins
as given by (12.15), consider the successive scattering processes:∑

j ain(1)
j | j〉ψ in(1)(r)→∑ j aout(1)

j | j〉ψout(1)(r)→ aout(1)
j = ain(2)

j

→ ∑
j ain(2)

j | j〉ψ in(2)(r)→∑ j aout(2)
j | j〉ψout(2)(r)→ aout(2)

j = ain(3)
j

→ ∑
j ain(3)

j | j〉ψ in(3)(r)→∑ j aout(3)
j | j〉ψout(3)(r)→ aout(3)

j = ain(4)
j

→ · · ·
→ ∑

j ain(N )
j | j〉ψ in(N )(r)→∑ j aout(N )

j | j〉ψout(N )(r). (12.18)
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The meanings of the arrows in (12.18) are as follow. Similarly to in (12.4),
the quantity in the upper left corner is the in field for the first scattering pro-
cess. The first arrow on the first line means that the in field to the left of the
arrow leads to the corresponding out state to the right of the arrow, namely,∑

j aout(1)
j | j〉ψout(1)(r). This is the first scattering. As indicated by the second arrow

on the first line, after this first scattering the coefficients aout(1)
j of the quantum state

in the memory describe the initial state
∑

j ain(2)
j | j〉 of the memory for the second

scattering. Thus each line of (12.18) describes one scattering process, and there are
altogether N successive scatterings.

It is seen from (12.18) that, corresponding to the list (12.15), we have the list of
ψout(r)s, i.e.,

ψout(1)(r), ψout(2)(r), ψout(3)(r), . . . , ψout(N )(r). (12.19)

From the quantities listed in (12.15) and (12.19) together with their interfer-
ence, the values of ain

j are obtained. Once the ain
j are found, then the aout(N )

j

can be calculated. An additional scattering using any one of the admissible
φin
(∑

j aout(N )
j | j〉 →∑ j ain

j | j〉
)

returns the quantum memory to its initial state.
(c) Resetting. With reading as prescribed above, resetting is now straightfor-

ward. Suppose we want to reset a quantum memory in the initial state
∑

j ain
j | j〉

to the standard state s. This resetting consists of the following two steps. (i) Read
the memory as described above. (Note that, after this process of reading has been
performed, the memory is in the original initial state

∑
j ain

j | j〉.) (ii) Apply an addi-
tional scattering using φin(

∑
j ain

j | j〉 → s). This leaves the memory in the desired
standard state s.

This completes the description of the quantum memory together with writing,
reading, and resetting, all performed through scattering from the memory.

These three operations of writing, reading, and resetting depend crucially on
each other: writing requires the ability to reset, reading that of writing, and resetting
that of reading.

The importance of interference cannot be overemphasized. In the description of
the scattering process, there are not only the in field � in of (12.4) and the out field
�out of (12.6), but also the total field �. While � in and �out are unentangled, � is
not. When the spatial coordinates are neglected, there is no analog to �.

Interference can occur in different ways. For example, the two fields interfering
with each other can be going in opposite directions or the same direction. In the
case of one spatial dimension, these two cases are described respectively by

f1(x) = Aeikx + Be−ikx , (12.20)
and

f2(x) = Aeikx + Beikx , (12.21)
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Fig. 12.2 A schematic diagram for the use of interference of waves going in the
same direction.

where A and B may be taken to be column vectors. Thus,

f †
1(x) f1(x) = A†A + B†B + 2 Re(B†Ae2ikx) (12.22)

and
f †
2(x) f2(x) = A†A + B†B + 2 Re(B†A). (12.23)

In both cases, interference gives information about B†A.
Interference has been discussed in Ref. [1] on the basis of (12.20). A schematic

diagram for using (12.21) instead is shown in Figure 12.2.

12.5 Decoherence due to the finite length of the pulse

All the developments so far are based on the time-independent Schrödinger equa-
tion. In this sense, time has not been introduced. On the other hand, in order to
obtain a unitary transform that changes the content of a quantum memory from
|X〉 to |Y 〉, a sequence (12.15) of admissible incident waves is used, as seen explic-
itly from (12.17). Physically, this means that these admissible incident waves must
scatter from the quantum memory sequentially in time.

When a segment in time of an admissible incident wave is used to scatter from
a quantum memory, the out field is no longer of the form of (12.6), i.e., there is
unavoidably some entanglement between the quantum state in the memory and the
ψout. In other words, there is decoherence in the quantum memory, meaning devi-
ation from a pure quantum state [6, 13]. The shorter this segment in time is, the
larger the decoherence. On the other hand, the longer these incident fields in time
are, the slower the quantum memory operates. Such slow-down in the quantum
memory also reduces the speed of any system that makes essential use of quantum
memories, including quantum computing and quantum communication. A com-
promise is therefore necessary.

In the potential model of Section 12.3, the underlying equations are given by
(12.9), which are time-independent. In order to study the scattering by a pulse, the
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k2 in (12.9) must be replaced by a suitable time derivative. There are two ways to
do this, namely,

k2 → i
∂

∂t
, (12.24)

or
k → i

∂

∂t
. (12.25)

These two replacements lead respectively to the non-relativistic[
− ∂2

∂x2
+ V (x)

]
ψ(x, t) = i

∂

∂t
ψ(x, t) (12.26)

and the relativistic Schrödinger equation[
− ∂2

∂x2
+ V (x)

]
ψ(x, t) = − ∂

2

∂t2
ψ(x, t). (12.27)

In both cases, the complex wavefunction ψ(x, t) is

ψ(x, t) =
[
ψ1(x, t)

ψ2(x, t)

]
. (12.28)

The question is which one of these two replacements should be used in studying
quantum memory in general and the decoherence due to the finite length of the
pulse in particular?

The answer is that the replacement (12.25) should be used, not (12.24). There
are several reasons for this answer, and some of them are as follows.

(1) Nature is relativistic. Although non-relativistic approximations are useful under many
circumstances, they have to be avoided when they cause unnecessary complications.

(2) More specifically, there is a practical reason for quantum memory in general. While
there are, in principle, various choices for the wave or particle used to scatter from
the memory, the most practical one at present is to use the electromagnetic wave or
photon. Since the photon is massless, it is never non-relativistic.

(3) If (12.24) is used, the propagation on the basis of (12.26), even in the absence of a
scatterer, widens the individual pulses without limit. This has the consequence that the
pulses merge together.

(4) In order to understand decoherence within the present context, it is essential to give
a meaning to “the duration of the incoming wave.” While this term does not have a
unique interpretation, the “duration” should not vary greatly as a function of time. This
is automatically satisfied if the relativistic Schrödinger equation (12.27) is used. If one
insists on using the non-relativistic Schrödinger equation (12.26), then it is necessary
to introduce an additional parameter, which limits the time interval when the waves
are allowed to propagate. With this maximum allowed time interval, the spreading of
any incident wave of a finite duration can be controlled. The price to be paid is that the
desired solutions then depend on this new parameter.
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Consider x < 0 for definiteness. Then the e−ik|x | that appears in the � in of
(12.11) is eikx . With the desired replacement (12.25), this eikx becomes

eikx → eikx e−ikt = e−ik(t−x). (12.29)

This is an infinitely long progressive wave. In order to get a pulse of finite length
T , this in field is further replaced by

e−ik(t−x)→ e−ik0(t−x)g(t − x), (12.30)

where the scalar function g(t) has the property

g(t) = 0, for |t | ≥ 1
2 T . (12.31)

In (12.30), k0 is the central frequency. When the right-hand side of (12.30) is used
with a g(t) that is not identically zero, the content of the quantum memory is no
longer a pure state.

Let g(t) be normalized by ∫ T/2

−T/2
|g(t)|2 dt = T . (12.32)

Then it is a well-defined problem to find the g(t), taken to be real, such that the
decoherence is a minimum.

The answer is that, in the limit of large T , i.e., for long pulses, the decoherence
is minimal when the pulse shape g(t) is chosen to be

g(t) = √2 cos(π t/T ), for |t | ≤ 1
2 T . (12.33)

Furthermore, this minimal decoherence is proportional to 1/T 2. Note that this
pulse shape (12.33) is not only very simple but also independent of the poten-
tial V (x).

Since this type of decoherence cannot be avoided even in principle, there is nec-
essarily one more operation on the quantum memory besides write, read, and reset
[6]. When a quantum memory is operated on more and more times, the decoherence
necessarily accumulates and becomes more and more significant. It is impossible
to use scattering to remove or reduce such decoherence.

It is therefore essential to have quantum memories periodically “cleaned up,”
and this clean-up operation is outside of the operations of writing on, reading, and
resetting the memory. In other words, in order for the quantum memory, and hence
quantum computing and quantum cryptography, to continue to function, additional
operations must be provided, this cleaning-up being one of them.

Consider for definiteness the simplest example where in the memory the two
quantum states are degenerate. Suppose an external macroscopic field is applied to
this memory to lift the degeneracy; after a time much longer than the lifetime of
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the upper state, the memory goes into a pure state. Let the external macroscopic
field be removed adiabatically; then the memory remains in a pure state. This is
one way in which the clean-up of the memory can be accomplished.

12.6 Quantum cryptography

One of the most interesting and practically important applications of quantum
memory is to quantum cryptography, where signals are sent from A (Alice) to B
(Bob) with an eavesdropper Eve in between trying to learn what signals are being
sent. In the case of quantum key distribution (QKD), as proposed for example in
Refs. [14–21], Alice selects a sequence of characters from a finite alphabet and
causes a transmitter to send the corresponding signals to Bob. The issue is how
much Eve can learn about the signals without letting Alice and Bob know that she
is getting that much information.

There are two distinct types of security, conveniently referred to as classical
security and quantum security. Classical security means that the eavesdropper
needs to have much more extensive resources in order to find out what information
is sent. The simplest example is that, while it is easy to carry out the multiplication
of two large prime numbers, much more computer power is needed to factorize
the resulting product into the two prime numbers. By contrast, quantum security
means that, no matter how much of her resources Eve uses, she cannot obtain the
desired information without alerting Alice and Bob that there is an eavesdropper.

In the usual proof of quantum security, Eve is assumed to know beforehand all
the possible signals that Alice may choose to send. Therefore, if Eve can inter-
cept Alice’s transmission and determine with high accuracy which signal it is, then
she can retransmit this signal to Bob. In this way, Bob does not know about Eve’s
intervention, except possibly for a time delay. Such delay is not invoked in the pub-
lished proofs claiming security of QKD against undetected eavesdropping attacks,
i.e., claiming quantum security.

It seems natural that Eve may let the signal from Alice scatter from a quantum
memory that has been set beforehand to the standard state s [22]. This is similar to
the process of writing discussed in Section 12.2. She can then “read” what is in the
quantum memory to ascertain which signal Alice has sent, because in general dif-
ferent signals from Alice lead to different states in the quantum memory. However,
this description is oversimplified, because the signal from Alice is usually not an
admissible one, meaning that after scattering the state in the quantum memory is
no longer a pure state.

At this point, it may be worthwhile to mention the reason why the use of quan-
tum memory requires the reexamination of quantum security in quantum cryp-
tography. The basic reason is that there are more possibilities with the present
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formulation. In Section 12.5, the writing, reading, and resetting of a quantum mem-
ory have been discussed in some detail. Once a quantum memory has been read,
the result can be written on, say, two other quantum memories. This violates the
so-called no-cloning theorem [23–25]. This is an example where the use of scat-
tering with one or more spatial variables makes it possible to carry out opera-
tions previously considered to be impossible on the basis of models without spatial
dimensions.

It should be emphasized that many options are available to Eve, and Eve must
choose her action wisely in order to be successful in her endeavor to eavesdrop.
Here is the most straightforward use of the quantum memory. This simplest proce-
dure for Eve is to

(1) let the signal from Alice scatter from a quantum memory, which has previously been
set to a suitably chosen state;

(2) send in successively N admissible incident waves to scatter from this quantum mem-
ory, and record the information from the scattered waves;

(3) find out from this information approximately the state of the memory, which is
described by a density matrix, after scattering in step (1);

(4) determine which one of the characters Alice has sent; and
(5) send this character to Bob.

In this way Eve retransmits a quantum state to Bob that, so far as Bob can tell,
is what he would have received from Alice without Eve’s intervention, except
possibly for a time delay. This procedure of Eve is shown schematically in
Figure 12.3.

In order to avoid irrelevant complications, the discussion here shall be focused
on the QKD two-state protocol B92 of Bennett [16]. In this case, Alice has two
signals to choose from, i.e., for each quantum key, Alice can choose either one of
the two signals available to her. It is the job of Eve to decide which one of the two
Alice has chosen.

Alice BobM

Alice Bob

Eve’s
resend

Eve reads memory M 
by scattering and then 
retransmits to Bob

Fig. 12.3 Intercept–resend attack by Eve.
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If these two signals available to Alice are orthogonal to each other, then Eve is
expected to have no difficulty in determining which one Alice has sent. Therefore,
Alice’s two signals are always assumed to be non-orthogonal.

The first step is to give a precise description of these two signals. Since Alice
and Bob are located at different places (otherwise Bob can merely look over Alice’s
shoulder), the signals must take the forms of two waves propagating from Alice to
Bob. Therefore, the simplest possibility is for the signals to be traveling waves. In
the case of one spatial dimension as discussed in Section 12.5, these two signals
are described by the real functions

φα(t − x), for α = 1, 2. (12.34)

It has been assumed that there is no dispersion, and thus the velocity of propagation
can be chosen to be 1 without loss of generality.

Let these φα of (12.34) be normalized so that∫ ∞

−∞
dt[φα(t)]2 = 1, for α = 1, 2. (12.35)

Then their inner product is

γ =
∫ ∞

−∞
dt φ1(t)φ2(t); (12.36)

this γ is the quantity that is chosen to be non-zero.
Instead of attempting to distinguish directly φ1 from φ2 of Alice’s possible sig-

nals, Eve lets these signals scatter from a quantum memory. Since there is only one
spatial dimension as seen from (12.34), it is appropriate to use the model of the
quantum memory as described by the Schrödinger equations (12.9). This applica-
tion of quantum memory to eavesdropping raises two major novel points vis-à-vis
the case treated so far: (i) the signals used by Alice as described by (12.34)–(12.36)
are in general not admissible, and (ii) it is necessary only to distinguish between
these two signals. The novel point (i) complicates the task for Eve, while point (ii)
makes it easier. Since Alice’s signals (12.34) depend on time, the time-dependent
Schrödinger equation (12.27) should be used.

In order to use the results of Section 12.3, it is appropriate to apply the Fourier
transform to the signals (12.34). Thus define, for α = 1, 2,

φα(t) = (2π)−1/2
∫ ∞

−∞
dk fα(k)e

−ikt . (12.37)

By virtue of (12.35) and (12.36), the fα(k) have the properties∫ ∞

−∞
dk | fα(k)|2 = 1, for α = 1, 2, (12.38)
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and ∫ ∞

−∞
dk f ∗1 (k) f2(k) = γ. (12.39)

Let [
ain

1

ain
2

]
be the initial state in the quantum memory. Then the in field for the scattering of
Alice’s φα is, for the even case,[

ain
1

ain
2

]
φα(t + |x |) = (2π)−1/2

[
ain

1

ain
2

] ∫ ∞

−∞
dk fα(k)e

−ik(t+|x |). (12.40)

It then follows from (12.12) that the out state is given by

(2π)−1/2
∫ ∞

−∞
dk fα(k)e

−ik(t−|x |)S+(k)

[
ain

1

ain
2

]
. (12.41)

Unlike the cases treated in Section 12.3, this is not a pure state. Averaging over the
wave fα(k)e−ik(t−|x |) then shows that the density matrix for the quantum memory
after scattering is given by

ρα+ =
[
ρα+11 ρα+12

ρα+21 ρα+22

]
=
∫ ∞

−∞
dx [Expression (12.41)][Expression (12.41)]†,

(12.42)

which is explicitly

ραi =
∫ ∞

−∞
dk | fα(k)|2Si (k)

[
ain

1

ain
2

] [
ain∗

1 ain∗
2

]
S†

i (k), (12.43)

after slight generalization to include the case of the odd wave: i = + or −. Note
that the right-hand side of (12.43) is independent of t .

The aim of Eve is to distinguish ρout
1+ from ρout

2+ and/or ρout
1− from ρout

2− .
With a density matrix ραi , α = 1 or 2 and i = + or −, in the quantum memory,

the next step is to interrogate the memory by scattering in order to determine which
of the ραi is actually in the memory. In Section 12.4, the required scattering is
accomplished using admissible ψ ins; similarly, in general only the admissible ψ ins
are to be used here, even though the present case of the density matrix is more
complicated.

One might raise the question of why, in the present context, it is desirable to
choose the ψ ins to be admissible ones. For the successive scattering process as
described by (12.18), the ψ ins of (12.15) have to be admissible so that the content
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of the quantum memory remains a pure state. For the present case, although the
content of the quantum memory is in general not a pure state after scattering by the
signal from Alice, it is nevertheless usually advantageous to use admissible ψ ins.
The reason is that using an inadmissible ψ in leads to a loss of information about
the content of the quantum memory. It should, however, be kept in mind that there
may be circumstances in which this loss of information is not serious and thus
non-admissible ψ ins can be used.

For the admissible ψ in to be used to scatter from the quantum memory, the
choices consist of a wave number k and also an even or an odd wave. Thus this
scattering is described by Sj (k) with j = + or −, leading from (12.41) to

(2π)−1/2
∫ ∞

−∞
dk ′ fα(k

′)e−ik′(t−|x |)Sj (k)S+(k ′)

[
ain

1

ain
2

]
. (12.44)

It is the interference between the expressions (12.41) and (12.44) that contains most
directly the needed information.

From (12.41)–(12.44), interference leads to the quantity of interest

Ai j
α (k) = Tr [1+ eiθ Sj (k)] ραi [1+ eiθ Sj (k)]†, (12.45)

where an extra factor eiθ has been introduced.
From (12.45) it is seen that Ai j

α (k) depends not only on the continuous variable
k and the α = 1, 2 with i, j = +,−, but also on the values of ain

1 , ain
2 , and θ . The

task is to choose these available variables such that Ai j
1 (k) and Ai j

2 (k) are maxi-
mally different so that whether Alice has sent φ1 or φ2 of (12.34) can be efficiently
distinguished.

The result of this section challenges the notion that quantum security can fol-
low from inner products alone. In other words, questions are hereby raised about
the validity of the usual claim that the γ of (12.36) being non-zero is sufficient to
ensure quantum security. While the published analyses have dealt with simplified
models of spin- 1

2 particles and with simplified models of light for a variety of proto-
cols, they have not specifically addressed wavefunctions of particles. Nonetheless,
such particles are fair candidates for the analysis of quantum security because such
wavefunctions for particles can have any of the inner products that have been fea-
tured in previous analyses.

While the lack of quantum security presented here has focused on the QKD
two-state protocol B92 of Bennett [16], the reasoning applies to all the known
two-, four-, and six-state protocols. The essential assumption is that Eve knows
beforehand all the possible signals that Alice may choose to send.
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12.7 The Fermi pseudo-potential in one dimension

The above six sections constitute an introduction to the application of the
Schrödinger equation to the analysis of some aspects of quantum computing and
quantum cryptography, especially quantum memory. Emphasis has been placed on
the appearance of spatial variables in the Schrödinger equation, so that the well-
developed theory of scattering can be used.

When this present approach was initiated, the Fermi pseudo-potential in one
dimension played a central role; it has continued to play an essential role in our
understanding of this approach. For this reason, the Fermi pseudo-potential in one
dimension will be described briefly in this section.

Since the calculation of the scattering from this case is straightforward but
lengthy, there is no point in giving the details here; such details can be found in
Ref. [1]. Instead, we shall concentrate on pointing out the salient features and short-
comings.

The Fermi pseudo-potential is well known in three dimensions; it can be written
in the form

δ3(r)
∂

∂r
r, (12.46)

as given by Blatt and Weisskopf [26]. The most far-reaching application of this
Fermi pseudo-potential is to the study of many-body systems, as initiated by Huang
and Yang [27]. For the ground-state energy per particle of a Bose system of hard
spheres, the low-density expansion is known to be

4πaρ

[
1+ 128

15
√
π
(ρa3)1/2 + 8

(
4π

3
−√3

)
ρa3 ln(ρa3)+ O(ρa3)

]
. (12.47)

In this expansion, the second term was first obtained by Lee and Yang [28] using the
method of binary collision, but the derivation by Lee, Huang and Yang [29] using
the Fermi pseudo-potential is somewhat simpler; the third term, which involves the
logarithm, was first obtained by using the Fermi pseudo-potential [30].

As can be seen explicitly from (12.46), the Fermi pseudo-potential is different
from zero only at the one point r = 0. Indeed, in the mathematics literature, the
Fermi pseudo-potential is often called the “point interaction” in three dimensions.
This property is taken over also for the case of one dimension [1].

(a) In one dimension, there is the delta-function potential δ(x) of Dirac, which
has this property. Whether this delta-function potential is called a pseudo-potential
or not is a matter of terminology. For the present purpose, it is considered to be a
Fermi pseudo-potential. Thus the first and simplest pseudo-potential is

V1(x) = g1δ(x). (12.48)
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Let f (x) be a continuous function of x , such as a Schrödinger wavefunction. For
the present purposes, instead of V (x) f (x), it is more convenient to consider∫ ∞

−∞
dx ′ V (x, x ′) f (x ′). (12.49)

For example, if V (x) is a continuous potential, then

V (x, x ′) = V (x)δ(x − x ′). (12.50)

For the first pseudo-potential of (12.48), the corresponding V1(x, x ′) is

V1(x, x ′) = g1δ(x)δ(x − x ′), (12.51)

or equivalently

V1(x, x ′) = g1δ(x)δ(x
′). (12.52)

(b) In three dimensions, the potential δ3(r) is not acceptable, and this is the
reason why the Fermi pseudo-potential takes the form of (12.46). Entirely similarly,
in one dimension, the potential δ′(x) is not acceptable, and instead leads to the
second Fermi pseudo-potential. In (12.46), the operator (∂/∂r)r serves the purpose
of removing a term proportional to 1/r . Let the second Fermi pseudo-potential in
one dimension be written as

V2(x) = g2δ
′
p(x), (12.53)

where what δ′p(x) does is

δ′p(x)g(x) = δ′(x)g̃(x), (12.54)

where

g̃(x) =
⎧⎨⎩ g(x)− lim

x→0+
g(x), for x > 0,

g(x)− lim
x→0−

g(x), for x < 0.
(12.55)

This removes the discontinuity of g(x) at x = 0, which is precisely what is needed.
Because of (12.51), the corresponding V2(x, x ′) is

V2(x, x ′) = g2δ
′
p(x)δ(x − x ′). (12.56)

(c) At the beginning of the present investigation it was thought that, in one
dimension, there was one pseudo-potential in addition to the Dirac delta-function
potential. It was the detailed analysis of the resolvent equation that shows the pres-
ence of three independent parameters, and hence three independent Fermi pseudo-
potentials including the Dirac delta function.
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The expressions (12.50) and (12.51) for the first two pseudo-potentials suggest
that the third Fermi pseudo-potential may be given by

V3(x, x ′) = g3δ
′
p(x)δ

′
p(x

′). (12.57)

(This was not the way this third pseudo-potential was originally found; in fact
(12.57) was the result of a direct calculation. This calculation also shows that there
is no additional pseudo-potential in one dimension.)

It is indeed the appearance of this V3(x, x ′) that makes the theory of the one-
dimensional Fermi pseudo-potential applicable to the study of quantum memory.

In summary, the three potentials V1, V2, and V3 are given by (12.50), (12.56),
and (12.57). Thus the most general Fermi pseudo-potential for the interaction at
one point in one dimension is

V (x, x ′) = V1(x, x ′)+ V2(x, x ′)+ V3(x, x ′)

= g1δ(x)δ(x − x ′)+ g2δ
′
p(x)δ(x − x ′)+ g3δ

′
p(x)δ

′
p(x

′). (12.58)

From the experience of working with δ′p(x) and the fact that the product of δ′(x)
and a function discontinuous at x = 0 is not meaningful, from this point on the
convention will be adopted that δ′(x) always means δ′p(x). With this convention,
(12.58) is written as

V (x, x ′) = g1δ(x)δ(x − x ′)+ g2δ
′(x)δ(x − x ′)+ g3δ

′(x)δ′(x ′). (12.59)

Equation (12.59) can be rewritten in a more symmetric form as follows. Since

δ(x)δ(x − x ′) = δ(x)δ(x ′)
and

δ′(x)δ(x − x ′) = δ′(x)δ(x ′ − x)

= δ′(x)[δ(x ′)− xδ′(x ′)]
= δ′(x)δ(x ′)+ δ(x)δ′(x ′), (12.60)

where use has been made of the identity δ′(x)x = −δ(x), the general Fermi
pseudo-potential (12.59) can be written as

V (x, x ′) = g1δ(x)δ(x
′)+ g2[δ′(x)δ(x ′)+ δ(x)δ′(x ′)] + g3δ

′(x)δ′(x ′). (12.61)

The first and last terms are even while the middle term is odd. That is, under space
inversion

x →−x and x ′ → −x ′, (12.62)

the coupling constants transform as

g1 → g1; g2 →−g2; g3 → g3. (12.63)
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Let this Fermi pseudo-potential (12.61) be used to construct a model for quantum
memory. As discussed in Section 12.3, the model is to be based on the two-channel
one-dimensional Schrödinger equations (12.9). In view of (12.49), the potential V
should be replaced by an integral operator; thus (12.9) take the form

−d2ψ1(x)

dx2
+
∫ ∞

−∞
dx ′[V11(x, x ′)ψ1(x

′)+ V12(x, x ′)ψ2(x
′)] = k2ψ1(x),

−d2ψ2(x)

dx2
+
∫ ∞

−∞
dx ′[V21(x, x ′)ψ1(x

′)+ V22(x, x ′)ψ2(x
′)] = k2ψ2(x),

(12.64)

and (12.8) is replaced by

V (x, x ′) =
[

V11(x, x ′) V12(x, x ′)
V21(x, x ′) V22(x, x ′)

]
.

The g1, g2, and g3 in the pseudo-potential (12.61) should be reinterpreted as 2× 2
matrices. Furthermore, the condition (12.10) that the potential should be an even
function of x implies that g2 must be zero.

In Section 12.3, the potential must also satisfy the condition that it cannot be
diagonalized simultaneously for all x . In the case of the pseudo-potential, this con-
dition translates into the statement that the matrix coefficients of the first and third
pseudo-potentials should not commute. Therefore for this application

V (x, x ′) = g1δ(x)δ(x
′)α1 + g3δ

′(x)δ′(x ′)α3, (12.65)

where α1 and α3 are two 2×2 Hermitian matrices that do not commute. This poten-
tial (12.65) has the following nice property: since g2 = 0, the part of the potential
g1δ(x)δ(x ′) does not act on the odd wave, and similarly the part g3δ

′(x)δ′(x ′) does
not act on the even wave. The first part of this claim is easy to obtain, and the
second part follows from the definition (12.54) of δ′p(x).

One of the simplest choices of α1 and α3 consists of the Pauli matrices, i.e.,

α1 = σ1 =
[

0 1
1 0

]
and α3 = σ3 =

[
1 0
0 −1

]
. (12.66)

This case has been studied in detail in Ref. [1], leading explicitly, from (12.12), to

S+(k) = (4k2 − g2
1)− 4ig1kσ1

4k2 + g2
1

= exp
[
−iσ1

(
2 tan−1

( g1

2k

))]

=

⎡⎢⎢⎢⎣
4k2 − g2

1

4k2 + g2
1

−4ig1k

4k2 + g2
1

−4ig1k

4k2 + g2
1

4k2 − g2
1

4k2 + g2
1

⎤⎥⎥⎥⎦ (12.67)
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and

S−(k) = (4− g2
3k2)− 4ig3kσ3

4+ g2
3k2

= exp

[
−iσ3

(
2 tan−1

(
g3k

2

))]

=
⎡⎢⎣

2− ig3k

2+ ig3k
0

0
2+ ig3k

2− ig3k

⎤⎥⎦ . (12.68)

When neither g1 nor g3 is zero, any given element S of SU(2) can be expressed as
a finite product of S+(k) and S−(k), i.e.,

S = S(k1) S(k2) · · · S(km), (12.69)

where each S(ki ) is suitably chosen as S+(ki ) or S−(ki ).
What (12.69) means is that, for the model described by (12.66), any unitary

transform with determinant equal to 1 can be performed on the quantum memory
by a sequence of scattering using the k1, k2, . . ., km . See also (12.15).

It is natural to ask the following question: how can unitary transforms be carried
out if the determinant is not equal to 1? For the choice (12.66), when det S �= 1,
the expression (12.69) cannot hold, because

det S+(k) = det S−(k) = 1, (12.70)

as seen from (12.67) and (12.68). Indeed, (12.70) is a consequence of the fact that
Tr σ1 = Tr σ3 = 0. For more general choices of α1 and α3, the first lines of (12.67)
and (12.68) still hold, i.e.,

S+(k) = (4k2 − g2
1)− 4ig1kα1

4k2 + g2
1

= exp

[
−iα1

(
2 tan−1

(
g1

2k

))]
,

S−(k) = (4− g2
3k2)− 4ig3kα3

4+ g2
3k2

= exp

[
−iα3

(
2 tan−1

(
g3k

2

))]
.

(12.71)

When the traces of α1 and α3 are not zero, (12.69) holds for all unitary transforms S.
So far in this chapter, especially in Section 12.3 and the present section, the

number of linearly independent quantum states for the memory has been taken to
be two. With the present development of the Fermi pseudo-potential in one dimen-
sion, there is no longer any difficulty in generalizing to any finite number n of
linearly independent quantum states. For example, the coupled one-dimensional
Schrödinger equation (12.64) is generalized to be

− d2ψ j (x)

dx2
+
∫ ∞

−∞
dx ′

n∑
j ′=1

Vj j ′(x, x ′)ψ j ′(x
′) = k2ψ j (x), for j = 1, 2, . . . , n,

(12.72)

and V (x, x ′) is now an n × n Hermitian matrix.
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The Fermi pseudo-potential (12.65) still holds, except that the matrices α1 and
α3 are now two n × n Hermitian matrices that do not commute. When they are
properly chosen, and there are many such choices, then the decomposition (12.69)
holds also for any n. Indeed, most of the choices are fine, while the unacceptable
choices are rather exceptional.

12.8 Conclusion and discussions

The present approach to quantum memory has several new features, and leads to
many new directions for further investigation. In this section, we summarize and
discuss some of these features, and try to give a partial list of interesting unsolved
problems.

(1) Perhaps the most important, novel feature of the present approach to quantum
computing and quantum cryptography is the central role played by the Schrödinger
equation. In particular, it is realized that spatial variables are of fundamental impor-
tance. In the earliest work on quantum computing by Benioff [2] 30 years ago,
spatial dimensions were taken into account. However, in much of the later work on
this subject, spatial variables have been neglected.

While the Schrödinger equation implies unitary transformations, it contains
more information. Its use makes it possible to apply the powerful theory of scat-
tering to perform operations on the quantum memory that are not possible without
the spatial dimension. It should perhaps be emphasized that in any case spatial
dimensions are physically present.

(2) The analysis of quantum cryptography in Section 12.6 constitutes at most
an introduction to this field. It should be noted that Eve has many choices for her
purpose of eavesdropping. In particular, there are many different ways Eve can
make use of quantum memory. What is described here is by far the simplest way,
perhaps it should be described as an oversimplified way. In particular, Eve uses
only the density matrix from the content of her quantum memory after scattering
by Alice’s signal. That γ does not appear emphasizes the fact that the density
matrix does not contain all of the information that Eve can retrieve using quantum
memory.

(3) In view of this situation, as described under (2), it is tempting to speculate that
the following analog from particle physics may prove to be instructive. In particle
physics, there are various types of detectors, including in particular scintillators
and also chambers such as the time-projection chamber [31]. In the case of a single
scintillator, the output when a particle passes through it is typically a single number.
For any one of the chambers, the output takes the form of an entire track. The
measurement usually considered in the context of quantum computing is analogous
to the case of a scintillator in the sense that typically only one number is obtained.
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In contrast, the “measurement” as described for example by the scattering sequence
(12.15) is closer to that of a chamber, where the output consists of the list (12.19).

In this analogy, the present treatment of quantum cryptography makes use of a
chamber only, without any scintillator. The above problem with the absence of the
quantity γ in the present approach is perhaps an indication that a better treatment
must make use of both scintillators and chambers, as is almost always the case for
modern experiments involving high-energy particles. It is likely there will be some
interesting developments in the near future in this direction.

(4) The present approach to quantum memory and quantum cryptography by
utilizing the Schrödinger equation with at least one spatial variable has many man-
ifestations. Let us mention just one of many that are interesting and important, from
both the practical and the theoretical points of view.

As discussed in Section 12.7, with suitable choice of the potential (12.69) holds
for all unitary transforms S. Usually, there are many choices for the S(k j ) on the
right-hand side, and different choices lead to different values of m. Let w(S, V ; n)
be the minimum value of m for the given unitary transform S and the potential V ,
which is an n × n matrix and may, but need not, be a Fermi pseudo-potential.

From this w(S, V ; n), we obtain the following quantities:

w(V ; n) = max
S
w(S, V ; n) (12.73)

and

W (n) = min
V
w(V ; n). (12.74)

Thus w(V ; n) is the maximum number of terms needed on the right-hand side of
(12.69) for any S when V is given, and then the potential V is chosen such that
W (n) minimizes this maximum number of terms. It is the asymptotic behavior of
this function W (n) for large n that is of importance to quantum computing.

In order to perform a unitary transform S, it is necessary to carry out m scatter-
ings in succession. As can be seen from (12.74), this number of scattering processes
can be minimized by a suitable choice of the n × n potential V . Therefore a uni-
tary transform on the content of a quantum memory involves W (n) steps, not just
a single step.

To a large extent, the power of a quantum computer comes from the possibility
of operating on a number of quantum memories simultaneously. For example, if
there are two linearly independent quantum states in each of N quantum memo-
ries, then the number of linearly independent quantum states is 2N when they are
taken together. Therefore, when N quantum memories are operated on together,
the number of steps is W (2N ). Since N is a large number in order to make full
use of the power of quantum computation, it is the asymptotic behavior of this
W (2N ) that determines the speed of quantum computation. If W (n) increases as
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a polynomial of n, then the argument of Shor [32] and others remains valid when
this number of scattering operations is taken into account. On the other hand, if
W (n) increases exponentially with n for large n, then the present method of oper-
ating on a quantum memory is likely to cause a significant reduction in the speed
of quantum computing.

If W (n) does increase rapidly for large n, then it may be necessary to take the
next step in the study of quantum memory. It is at present not known what this step
should be, but here is one possibility among many.

In the discussion here of operating on the quantum memory through scattering,
the potential V (x) is the same for each of the successive scatterings. For example,
in the definition (12.74) of the important function W (n), the minimum is taken
over all V (x). There is no reason why this V (x) should be the same for every
scattering on the quantum memory. Varying the V (x) seems not only desirable but
also natural; however, at present we are unable to offer any idea whatsoever as to
how to think about this variation of V (x) from scattering to scattering.

There are perhaps two aspects to this problem. The first one is theoretical: how
should the problem of changing V (x) be formulated in a useful way? The second
one is practical: what type of variation of V (x) can be performed rapidly? This is
just one example of the many future directions of investigation [33].

(5) Finally, it should be emphasized that the present application of quantum
mechanics has far-reaching consequences for fundamental aspects of quantum
computing and quantum cryptography. These consequences remain to be studied
and understood. For example, with writing, reading, and resetting as discussed in
Section 12.4, even the way numbers, especially integers, should be efficiently rep-
resented in a quantum memory and how arithmetic is to be carried out need to be
investigated ab initio.
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