

Lecture Notes in
Computer Science
Edited by G. Goos and J. Hartmanis

189

Mark Steven Sherman

Paragon:
A Language Using Type Hierarchies for the Specification,
Implementation and Selection of Abstract Data Types

I I

Springer-Verlag
Berlin Heidelberg New York Tokyo

Editorial Board
D. Barstow W. Brauer R Brinch Hansen D. Gries D. Luckham
C. Moler A. Pnueli G. Seegm(Jller .1. Stoer N. Wirth

Author

M. Sherman
Department of Mathematics and Computer Science
Dartmouth College, Bradley Hall
Hanover, NH 03?55, USA

CR Subject Classification (1982): D.3.2, D.3.3, D.3.4, E2, 1.2.2, D.2.2

ISBN 3-540-15212-1 Springer-Verlag Berlin Heidelberg New York Tokyo
ISBN 0-387-15212-1 Springer-Verlag New York Heidelberg Berlin Tokyo

This work is subject to copyright. All rights are reserved, whether the whole or part of the material
is concerned, specifically those of translation, reprinting, re-use of illustrations, broadcasting,
reproduction by photocopying machine or similar means, and storage in data banks. Under
§ 54 of the German Copyright Law where copies are made for other than private use, a fee is
payable to "Verwertungsgesellschaft Wort", Munich.
© by Springer-Verlag Berlin Heidelberg 1985
Printed in Germany
Printing and binding: Bettz Offsetdruck, HemsbachlBergstr.
2145/3140-543210

Table of Contents

Acknowledgements
Abstract

1. Introduct ion
1.1. Motivation

1.1.1. The Use of Abstraction and Refinement
1.1.2. Data Abstraction

1.1.2.1. The Simple Model of Data Abstraction
1.1,2.2. The Limitations Imposed on Abstract Data Type Specifications
1.1,2.3. The Limitations Imposed on Abstract Data Type Implementations

1.2. Summary of Thesis
1.2.1. Data Abstraction Features
1.2,2, Representation Selection Features
1.2.3. Prototype Translator

1.3. Organization of the Thesis
2. Goals of Paragon and Their Relation to Previous Efforts

2.1. Goals o~ Paragon
2.1.1. F;:efinements of Specifications
2.1.2, Combined Specifications
2.1.3. Multiple Implementations
2.1.4. Simultaneous Implementations
2.1.5. Interacting Implementations
2.1.6. Shared Implementations
2.1.7. Distinguishing Implementations
2.1.8, Variable Description
2.1,9. Programmer Accessibility
2.1.10. Static Type Checking
2:.1.11, Automatic Selection of Representation
2:.1,12. Compile-Time Checking of Program Feasibility

2.2. Preliminary Design Restrictions for Paragon
21.2.1. Use of a Type Hierarchy
2.2.2. Single Identifier/Object Binding
2.2.3, Automatic Creation of Representations
2.2.4, Automatic Conversion between Representations
2.2.5. Run-Time Selection of Representations
2.2.6. Prototype Translator

3. The Basics of Paragon

3.1. Overview of Elaborations
3.2. Objects

1
3
5
5
6
7
8
8

10
12
13
14
16
16
19
19
2O
22
22
23
24
25
25
26
26
27
27
28
28
29
29
30
3O
3O
31
33
34
34

IV

3.2.1. Classes and Simple Objects
3.2.2. Inheritance
3.2.3. Nested Classes and Objects

3.3. Name Expressions
3.3.1. Generation of Instances
3.3.2. Description of Objects
3.3.3. Selection of Objects
3.3.4. Other Name Components
3.3.5. Other Expressions
3.3.6. Integer Literals

3.4. Parameters
3.4.1. Syntax of Parameters
3.4.2. Comparing Objects

3.4.2.1. Simple Object Matching
3.4.2.2. Object Matching

3.4.3. Type Parameters
3.4.4. Parameters to Classes

3.5. Procedure Specifications
3.5.1. Overall Syntax of Procedure Specifications
3.5.2. Parameters
3.5.3. Return Expression
3.5.4. Constraints

3.6. Procedure Implementations
3.6.1. Overall Syntax of Procedure Implementations
3.6.2. Parameters
3.6.3. Return Statement
3.6.4. Procedure Invocation

3.7. tterators
3.7.1. Overview of Iterators
3.7.2. Iterator Specifications
3.7.3. Iterator Implementations
3.7.4. Yield Statement
3.7.5. Return Statement
3.7.6. For Statement and Iterator Invocations
3.7.7. Exitloop Statement

3.8. Conventional Statements
3.8.1. Labels
3.8.2. Procedure Invocation
3.8.3. Conditional Looping
3.8.4. If Statement
3.8.5. Goto Statement

4. The Object-Manager Model and Its Implementation
4.1. Object Managers and Nested Classes

4.1.1. Classes as Manager and Individuals
4.1.2. Cross-Implementation Procedures

4,2. The Manager Model in Other Languages
4.3. Hierarchies for Specifications

4.3.1. Generalizations
4.3.2. Specifications of Abstract Data Types

38
4O
42
43
44
44
45
45
46
47
48
48
49
49
52
53
54
55
56
56
56
57
56
56
58
59
59
62
62
63
63
64
64
65
66
67
67
87
67
68
69
71
71
71
73
74
76
77
78

V

4,4. Problems with Hierarchies for Specifications
4.4.1. Constraints in Procedure Specifications
4.4.2. Return Objects of Procedure Specifications
4.4.3. Heterogeneous Data Structures
4.4.4. Adding Classes to an Existing Hierarchy
4.4.5. Refinement by Derivation

4.5, Hiierarchies for Implementations
4,5.1. Multiple Implementations
4.5.2. Partial Implementations
4.5.3. Shared Implementations

4,5.,3.1. Shared Implementations via Shared Specifications
4.5.3.2. Shared Implementations via Previous Implementations
4.5,3.3, Shared Implementations for Unrelated Specifications

4.6. Problems with Hierarchies for Implementations
4.6.1. Incomplete Implementations
4.6.2. Organizing Multiple Implementations

4.6.2.1. Using a Single Manager
4,6.2.2, Using Multiple Managers

4.6.3. Sharing a Representation
5. Selection o9 Implementations

5.1. Elaborations
5.1.1. Elaboration with Specifications
5.1.2. Implementation Selection
5.1,3. Elaboration with Implementations
5.1.4, Elaboration with Realizations

5.2. Variable Declarations and Object Creations
5.2.1. Selecting a Variable Implementation
5.2.2. Constraints on Variables
5.2.3. Checking the Feasibility of Variable Declarations
5.2.4. Elaboration of Object Creations with Realizations

5.3. Describing Classes and Procedures-- Attributes
5.3.1. Purpose of Attributes
5.3.2, Attribute Variables
5.3.3. Attribute Procedures
5,3.4. Attributes in Classes
5,3.5. Procedure Respecifications
5.3.6, Attributes in Procedures
5.3.7, Attribute Variables in Expressions
5.3.8. Variables with Attributes

5.4. Representing the Implementation Choices-- The Possibility Tree
5,4.1. Abstract Possibility Trees
5.4,2. Instances and Instance Classes

5.4.2.1. Realized Instance Objects
5.4.2.2. Object Instantiations
5.4.2.3. Procedure Invocations

5.4.3, Bridging Instance Objects and Doppelgangers
5.5. Making the Implementation Choices-- The Policy Procedure

5.5.1. Syntactic Properties of the Policy Procedure
5,5.2. Executing a Policy Procedure

78
78
79
8O
82
84
85
87
9O
92
92
93
94
96
96
98
98

101
103

107
107
108
108
108
109
109
110
116
116
119
120
120
121
122
123
124
125
128
128
130
130
139
140
142
146
147
148
148
150

Vl

5.5.3. Attribute-Procedure Invocations
5.5.4. The Pattern Matching Statement
5.5.5. Feasibility of a Program

5.5.5.1. Selecting a Procedure Invocation
5.5.5.2, Limiting the Size of the Possibility Tree
5.5.5.3. Selecting the Implementations of Return Objects
5,5.5.4. Hidden Implementations
5.5.5.5. Another Way to Terminate Recursive Procedure Calls

6. A Complete Example Using Paragon

6,1. Program Structure and Processing
6.2. Predefined Environment

6.2.1. Input and Output
6.2.2, Assignment
6.2.3. Logical Objects
6.2.4. Ordered Objects
6.2.5. Hashable Objects
6.2.6. Integer Objects
6.2.7. Word Objects
6.2.8. Arrays
6.2.9. Pointers
6.2.10. Selection Facilities

6.3. An Abstract Data Type: List
6.3.1. A Specification for Lists

6.3.1.1. Redundant Attributes
6,3.1.2. Attributes that Abstract Representation Differences
6.3.1.3. Gathering Usage Data
6.3.1.4. Default Attributes

6.3.2. An Implementation of Lists with Arrays
6.3.2.1. Local Declarations and Statements
6.3.2.2. Refining an Attribute
6.3.2.3. Use of a Manager Parameter
6,3.2.4. Requiring an Implementation Class as a Parameter
6.3.2.5. Implementing Generalization Classes

6.4. A Program: Sort
6.4.1. Explicit Manager Presence
6.4.2. User-Defined Representation Information

6.5. A Policy: Minimum Time and Space
6.5.1. Policy Algorithm
6.5.2. Global Properties

6.5.2,1. Separate Evaluation Functions
6.5.2.2. Use of Local Procedures
6.5.2.3. Block-at.a-Time Analysis

6.5.3. Local Properties
6.5.3.1. Selections within a Block
6.5.3.2. Using Attributes
6.5.3.3. Trying all Implementations

6.6. Transformed Program
6.6,1. Annotated Program
6.6.2. Object Listings

151
154
155
156
158
160
163
164

167
167
168
168
168
169
170
170
171
172
173
174
175
175
176
179
180
181
182
182
185
t86
186
186
187
187
188
189
190
t93
t94
194
195
195
195
195
196
196
196
197
201

VII

6.7. General Procedures
6,8, IF:lecursive Procedures

6.8,1. Application Program
6.8.2, Object Listings

6.9, ',Some Alternative Policies
6,9.1. Dynamic Programming
6.9;2. Branch and Bound
6.9.3. Hill-Climbing Heuristic
6.9.4. Simple Constraint

7. Implementation
7.1. Phase Descriptions

7.1.1. ML: Parser
7.1.2. PURIFY: Input Reader
7.1.3. NAME: Scope Linking
7.1.4. SETUPC: Setup Class Declarations
7.1.5. SETUPP: Setup Procedure Declarations
7.1.6. SETUPI: Setup Procedure Implementations
7.1.7. ELABS: Type Checking and Semantic Analysis
7.1.8. PREDEF: Locate and Bind Predefined Identifiers
7.1.9. MAR KC: Create ClassDecl Objects
7.1.10. RPOLIC: Implementation Selection
7.1.11. ELABI: Feasibility Checking
7.1.12. WALK: Write Implementation Decisions

7.2. Component Descriptions
7.2.1. Name Components

7.2.1.1. Create_Class
7.2.1.2. Create_Call
7.2.13. Create_Local Instance

7.2.2. MYLET: Function Call Utility
7.2.3. LOOKUP: Symbol Table Processing
7.2.4. COMP: Comparing Objects
7.2.5. GC: Garbage Collector, TIMER: Metering, SW: Switches

7.3. Translator Performance
7.3.1. Static Measurements of the Translator
7.3.2. Static Measurements of Some Programs

7.3.2.1. Predefined Environment
7.3.2.2. Abstract Data Type Specifications
7.3.2.3. Abstract Data Type Implementations
7.3.2.4. Application Programs
7.3.2.5. Measured Sizes of Programs

7.3.3. Dynamic Measurements of Translator
7.3.3.1. Measuring Elaboration with Specifications
7.3.3.2. Measuring Elaboration with Implementations
7.3.3.3. Measuring Elaboration with Realizations

7.4. Conclusions about the Prototype
8. Retrospective on the Language Design and Implementation

8.1. Abstract Data Type Features
8.2. Describing and Selecting Abstract Data Types

8.2.1. Attributes

204
207
207
208
210
210
213
216
221

225

225
227
228
228
229
229
229
230
230
231
231
231
231
232
232
232
233
233
233
233
234
234
234
235
237
238
238
238
239
239
240
240
246
246
253

255
255
253
253

VIII

8,2.2. Policies and Possibility Trees
8.2.3. Anonymous Possibility Tree Nodes
8.2.4. Parse Tree Availability
8.2.5. Decorating the Possibility Tree
8.2.6. Simpler Models
8.2.7. External Selection Language
8,2,8. Program Creation Systems

8.3. Automatic Processing of Paragon Programs
8.3.1. Heterogeneous Data Structures
8.3,2, Global Feasibility Checking

8.4. Summary
8.4.1. Contributions: Abstract Data Types

8.4.1.1. Refining Specifications
8.4.1.2, Implementing Abstract Data Types
8.4,1.3. Combining Representations
8.4.1.4. Uniform Object Notation

8.4.2. Contributions: Representation Selection
8.4.2.1. Describing Abstract Data Types
8.4,2.2. Organizing Global Program Optimization
8.4.2.3. Programmer Control of Selection Criteria
8.4.2.4. Feasibility Analysis

8.4.3. Future Areas for Related Work
8.4.3.1. Uniform Procedure, Iterator, Object Semantics
8,4.3.2. Value of Multiple Representations
8.4.3.3. Program Representations for Programmer Manipulation

8.4.4. Conclusions
Bibliography
Appendix A. Additional Paragon Features

A.1. Lexical Elements
A.1.1. Character Set
A.1.2. Identifiers
A.1.3. Literals
A.1.4. Special Symbols
A.1.5. Reserved words
A.1.6. Comments

A.2. Object Creation Expressions
A.3. Most Preferred Match
A.4. Initial Environments
A.5. Restricting Environments
A.6. Environments for Parameter Elaboration
A.7. Inheriting Parameters
A.8. Sharing Implementations

A.8.1. Subsuming Implementation Paths
A.8.2. The Environment of the Object
A.8.3. Parameters in a Shared Implementation
A,8.4. Variable Interaction
A.8.5. Elaboration of a Shared Implementation

A.9. Procedure Constraints
A.9.1. Constraints that Check Matching

259
260
261
263
263
265
266
266
267
267
269
269
269
270
27O
270
271
271
271
271
272
272
273
273
273
274

275
283
283
283
283
284
284
284
284
285
285
287
287
288
29O
293
294
295
296
296
296
297
297

IX

A.9.2. Combining Constraints
A.10. Self.References
A.11. Statements

A.11.1, Statement Structure
A.11.;.~. Expressions as Statements
A.11.3. Subprogram Control Statements

A.11.3.1, Return Statement
A.11.3.2, Yield Statement

A.11.4. Conditional Statement
A.11.5. Leop and Loop Control Statements

A.11.5.1, For Loops
A.11.5,2. While Loops
A.11.5.3. Exiting Loops

A.11.6. Goto Statement
Appendix B. Paragon BNF

B.I. Notation
B.2. Program Structure
B.3. Declarations
B.4. Statements
B.5. Expressions
B.6. Name Components

Appendix C, Conventional Design Issues

C.1. Iterators
C.2. Type Parameters
C.3. Literals
C.4. Declaration Verbosity
C.5. Expression Verbosity

Appendix D. Glossary
Appendix E. Abstract Data Types Used in the Examples

E.I. Overview of Sets
E.2. Overview of Lists
E.3. Assumptions about Attribute Procedures

Appendix F. Applications Programs

F.I. Set Maximum
F,2. Insertion Sort # 1
F.3. Insertion Sort #2
F.4. Merge Sort
F.5. Transitive Closure
F.6. Huffman Encoding

Appendix G. Sample Output of Translator
Index

297
298
299
299
299
3O0
3O0
301
302
303
3O3
304
3O5
305

307

307
3O8
3O8
310
311
311

313

313
314
316
318
319

321
331
331
332
332

335
335
336
336
337
338
339

343
357

List of Figures

Figure 3-1
Figure 3-2:
Figure 3-3:
Figure 3-4:
Figure 5-1:
Figure 5-2:
Figu re 5-3:
Figure 5-4:
Figu re 5-5:
Figu re 5-6:
Figure 5-7:
Figu re 5-8:
Figu re 5-9:
Figure 7-1:

: .An Object Consisting of 3 Simple Objects
Nested Simple Objects that are not an Object
Another Object with 3 Simple Objects
A Simple Object with Parameters
Simple Possibility Tree
Selecting Implementation I for x
Changing x to Implementation2
Adding Procedure Implementations to the Possibility Tree
Reusing old Procedure Local Instances in a Possibility Tree
A Possibility Tree with only Implementation4
A Possibility Tree with Implementation4 and LVl
Picking Implementation3 after Implementation4
Part of an Infinite Possibility Tree
Phase Diagram for the Paragon Translator

35
36
36
37

132
134
135
136
137
138
138
139
159
226

List of Tables

Table 7-1:
Table 7-2:
Table 7-3:
Table 7-4:
TablE; 7-5:
TablE; 7-6:
TablE; 7-7:
TablE; 7-6:

Static Sizes of Translator Phases
Static Sizes of Translator Components
Static Sizes of Program Fragments
Phase Measurements for Semantic Analysis
Component Measurements for Semantic Analysis
Dynamic Performance of Feasibility Checking
Dynamic Performance of Policy Procedure Execution
Unit Execution Times of Policy Procedure

235
236
240
241
243
247
251
252

Acknowledgements

Let your house be a meeting place
for scholars,
and sit in the dust of their feet,
and drink in their words with thirst.

Pirkei Avos 1:4

One usually acknowledges ones committee, friends and relatives in the acknowledgement
section of a thesis. Such a narrow view unfairly reflects the way that research is conducted at
CMU. During my tenure here in Pittsburgh, I have spent a great deal of time listening to and
learning from other people: fellow students, faculty, official visitors and random hanger.ons.
Each contributed to my education and is in some way responsible for my completing my Ph.D.
degree. The wealth of opportunities at the Computer Science Department made my studies
an exciting and memorable adventure.

Nevertheless, my day-to-day contact with several people helped organize and advance my
work on this thesis. Andy Hisgen and Jonathan Rosenberg were always willing to listen to
each bizarre new idea and provide helpful suggests and criticisms. Elaine Kant patiently
watched my research go through its ups and downs and provided me with technical feedback
and encouragement whenever each was needed. Peter Hibbard and John Nestor reminded
me that the art of language design is still largely an art. Like all apprentices, I was glad to
have these masters around me for advice and help. Cynthia Hibbard read through hundreds
of pages of drafts, checking my writing and offering suggestions to improve the writing style.
Michael Conner carefully read initial drafts of this thesis and offered helpful technical
suggestions.

Nearly everyone who works on a thesis can attest to the frustrating and overwhelming effort
it requires. My wife Vera took care to ensure that I never let this thesis oppress me. Without
her, this thesis might have never been finished. Last, but not least, I wish to thank her.

Mark Sherman
July 6, 1983

Abstract

This tl~esis describes a set of language features that supports the specification,

implementation and selection of data abstractions. The effectiveness of these features is

illustrated through a language, called Paragon, developed for the thesis. Novel features of

Paragon include:

• Multiple inheritance of classes (the basic encapsulation mechanism);

• Multiple procedure implementations for a procedure specification;

• Iterators;

• User-provided descriptions of abstract data types;

• User-provided strategies for making representation-selection decisions;

• Compile-time selection of a procedure implementation for each procedure call;

• Compile-time selection of variable representations.

Representative Paragon programs illustrate how this language can be used for defining

multiple, simultaneous and interacting implementations of abstract data types. In addition,

some refinements of the data abstraction paradigm, such as generalized specifications and

shared specifications, are defined in the thesis and illustrated with Paragon programs. I then

show how the type-hierarchy facilities in Paragon can be combined with a semi-automated,

representation.selection mechanism and some representation-selection strategies using

Paragon's notation are provided. To show how Paragon can be implemented, I describe the

design of a translator and provide some measurements of a prototype. This prototype

demonstrates that the conventional compiler technology can be used for implementing type

hierarchies, though it does illustrate possible problems with separate compilation when using

multiple, simultaneous implementations of abstract data types. Finally, a critique of the

language is provided,

Chapter 1
Introduction

This thesis discusses a new programming language called Paragon that supports the

specification, implementation and selection of data abstractions. The language uses type

hierarchies to specify and implement abstract data types. Further, the Paragon language

design integrates the abstract data type facilities with a semi-automatic procedure for making

implementation choices for the variables in a program. A prototype for the Paragon design

was written and run on several example programs. All of these aspects are considered in

detail in this thesis.

In this introductory chapter, the motivation for pursuing this work is presented, followed by a

summary of the main results of the thesis. This chapter ends with a discussion of how the rest

of the thesis is organized.

1.1. Motivation

Modem software has grown to such size and complexity that programmers can no longer

manage all of the details of the programs they write. This lack of management causes the

programs being created to be improperly specified (they do not accomplish what the user

intended), incorrectly implemented (they do not accomplish what the programmer intended),

and inefficient (they produce the wrong answer slowly and at great cost). Programming

methods that promote the management of the details of a program can help control the size

and complexity of modern software, and in turn, promote the production of correct and

efficient systems.

Section 1.1.t Motivation 6

1.1.1. The Use of Abstraction and Refinement

A successful method of controlling complexity in other disciplines is abstraction, that is, the

suppression of irrelevant details. Various abstraction methods have been introduced into the

programming task, notably control abstraction and procedural abstraction. Control

abstraction usually takes the form of while loops, repeat loops, and if statements, each of

which suppress the details of specifying nonsequential program flow. Procedural abstraction

provides a way for a programmer to specify a black box that can transform some set of values

into another set of values while suppressing the details of how the transformation is

accomplished.

Although the abstractions initially suppress some details, these details are needed in the

final program. The process of introducing details is called refinement. Sometimes the

refinement is automated, as when a compiler automatically translates a while loop into an

appropriate sequence of test and jump instructions. Sometimes the refinement is performed

by the programmer, as when the programmer writes the code that describes how the

specified black box actually works.

Refinement does more than introduce the details suppressed by abstraction. Refinement is

also a selection and binding process. There are usually many different models that meet the

requirements of an abstraction. For example, a common procedural abstraction is Sort. In an

abstract sense, a sort procedure accepts a sequence of data and produces a permutation of

that sequence that meets a specified ordering relation. There are many different algorithms

that meet such a specification, any one of which meets the abstract requirements. The

binding of a sort black box in a program to the selected algorithm is a refinement of the

program.

Binding details to abstractions reduces the number of choices that a programmer can make

for further refinements in the program. For example, if a choice is made to represent an

ordered sequence of data as a linked list, a search procedure operating on that sequence can

not use a binary search method. The refinement of the abstract sequence to a linked list

reduces the number of choices for a searching procedure. As a program is refined further, the

program becomes less abstract, more filled with details and more constrained. Therefore

refining a program introduces inflexibility.

This inflexibility adversely affects program development and maintenance. As a. program is

Section 1.1.1 Motivation 7

being developed, a programmer may not know which refinement to choose but a programmer

has to choose one so that development may continue. Later the programmer might discover

that the 'wrong decision was made, but the inflexibility introduced by previous refinements

hinders a better approach from being implemented. This problem is exacerbated for program

maintenance since only the fully refined program is available. Because the costs of

maintaining a program are far greater than the cost for initial development, inflexibility in a

program can exact a high price over the lifetime of a program.

Clearly, an approach is needed that introduces the refinements for constructing a program

without eliminating the abstractions. Techniques for introducing details without obscuring

control and procedural abstraction are being widely adopted. In control abstraction, the

abstraction is provided by the programmer using structured programming techniques and the

details are mechanically generated by a compiler. Because of the mechanical nature of the

refinement process, a programmer can confidently change an abstraction and rely on the

compiler to insert faithfully new details as necessary. In procedural abstraction, the

programmer adopts a convention that the interface of a subroutine will remain an invariant

abstraction that may be used by the rest of a program. Further, only the abstract interface of

the procedure may be used by the rest of the program. Because the program using the

subprogram relies only on the abstract interface, the refinements inside of the subprogram

may be changed without affecting the rest of the program. So for both control and procedural

abstractiion, there are refinement techniques that retain much of the abstraction, and hence,

much of the flexibility.

However, control and procedural abstractions have been used for many years. A newer

form of abstraction, data abstraction, is becoming widespread and its refinement techniques

are not well developed.

1.1.2. Data Abstraction

Data abstraction is based on the observation that programs conceptually operate on

abstract objects that have specific properties unrelated to a computer. For example, a

program simulating a traffic intersection operates on objects that represent cars, trucks,

streets, and traffic lights. Since the program is ultimately run on a computer and does not

manipulate concrete cars, some transformation must be made from the abstract objects to

concrete objects that a computer manipulates. The refinements that effect this

transformation usually require the addition of a great number of details, and unless carefully

Section 1.1.2 Motivation 8

done, will cause confusion in the programmer, inflexibility in the program and ultimately,

errors in the finished product.

1.1.2.1. The Simple Model of Data Abstraction

There are emerging methods for refining data abstractions that provide a limited way to

control the inflexibility and confusion that results from transforming program objects into

computer objects. These methods require that each kind of object manipulated by the

program have two parts: a specification that describes the actions that may be performed on

the object, for example, start a car or stop a car; and a representation of the object in terms of

computer objects, for example, a car is represented by three integers that hold data about the

number of people in the car, the serial number of the car and the make of the car. A special

piece of a program, called a modu/e, provides a set of subprograms that implement 1 the

operations that may be performed on a car. Inside of this module, a programmer may refer to

the representation of the object in terms of the computer objects. Outside of this module, only

the specified operations may be used to manipulate the representation of the object.

Unfortunately, the view that each kind of object be split into two parts is too simple.

Although the methodology for building systems recognizes the need for layering for many

purposes [Cheatham 79, Parnas 74], the view of providing layers of specifications for abstract

objects has not been widely embraced. Yet the single layer of specification is inadequate for

many kinds of specifications. Further, multiple representations of an object are not well

supported and interactions between representations are not permitted. Each of these

problems will be considered in turn.

1.1.2.2. The Limitat ions Imposed on A bst rac t Data Type Speci f icat ions

The single, isolated specification in a module is too restrictive. Other kinds of specifications

that a programmer may wish to write include a specification that is a refinement of another,

related specifications that are not refinements of one another and implementation.

independent specifications. Each of these three kinds of specifications is illustrated below.

First, one kind of program object may be a refinement of another. For example, a Plymouth

1The data abstraction literature sometimes uses the word representation for the definition of local storage of an
object and the word implementation for the code that makes up the procedures in a module. It is now becoming
accepted that the information in an abstract object may be encoded in either the state of the local storage or in
procedures that operate on local storage and so the words imp/ementation and representation have become
interchangeable. They are used interchangeably in this thesis.

Section 1.1.2.2 Motivation 9

object is refinement of an Automobile object. Thus the specification for a Plymouth should be

some refinement of the specification for an Automobile. Yet the described method of data

abstraction allows only disjoint pairs of specifications and representations, not collections of

related specifications and representations. The simple data abstraction method requires

different kinds of program objects to be refined independently even when one specification

may be a refinement of another's specification.

Second, objects may be related even if one is not a refinement of another. This relationship

might be made explicitly by the specification of several objects in a singla module or might be

made implicitly, by the specification of type parameters a module. Neither is permitted in the

simple model of data abstraction.

In the simple model of data abstraction, each module may specify exactly one kind of object.

However, some specifications are related, such as keyboards and displays. They are clearly

separate objects: one might desire many displays to be attached to one keyboard or many

keyboards to share a display. Yet they are related: when operating in half-duplex mode,

typing a character on a keyboard causes a character to appear on the display. Since the

abstract objects, keyboard and display, are related, their specifications should be related and

a data abstraction facility should allow both specifications to appear in a single module.

The simple model of data abstraction also provides no facilities for families of specifications.

Yet many objects have similar structures. For example, nearly all symbol tables have the same

structure: a collection of pairs, where each pair consists of a key and some data. Typically,

the keys belong to one type and the data to another type. In the simple approach of data

abstraction, every symbol table that uses a different key type must have its own specification

and representation. There is no way of defining a class of symbol tables that can be related

with another c~ass of objects, namely the different types of keys. Yet the specifications and

representations for all symbol tables are nearly identical. It should be possible to factor out

the common parts of the specifications and representations into a single specification and

representation° Later, a programmer should introduce those details necessary for any

particular symbol table as parameters rather than by creating new specifications and

representations.

A third way in which specifications in the simple model are too restrictive is their lack of

implementation independence. The simple model places strict rules on the relationship

between specifications and implementations. In particular, the information available to an

Section 1.1.2.2 Motivation 10

implementation is exactly that information provided by the specification, no more and no less.

A simple example can illustrate this. The specification of a typical sort procedure requires that

the elements to be sorted have a comparison procedure. Any implementation of the sort

procedure may use such a comparison procedure, but nothing else. Because the

specification is not restrictive, it prohibits bucket sorting, since the bucket sort algorithm

requires that the elements to be sorted come from a cross product of ordered sets and that

the set of resulting tuples be well founded. Sometimes the opposite problem occurs and the

specification is to too restrictive. The specification for sorting might require that the elements

to be sorted be tuples in a well found set. This limits the types of elements that may be sorted

since many objects may be compared without having a tuple structure. Such a specification

effectively prohibits sorting to be done on objects where bucket sort is not feasible. These

problems also occur with data abstractions. The specifications for the elements to be stored

in a symbol table may require the elements to have a hash procedure defined on them (for

example, see the symbol table example on page t64 of the Alphard Book [Shaw 81]). Such

specifications limit the possible implementations of symbol tables to those that use hashing

functions and those that do not use any element specific functions. In all of these cases, the

problem is that information about the refinement process has leaked from the implementation

to the specification. A more general facility would include details of refinement where they are

appropriate. 2

1.1.2.3. The Limitat ions Imposed on Abst rac t Data Type I m p l e m e n t a t i o n s

Besides the inadequate support for writing specifications, the simple model of data

abstraction does not adequately support multiple implementations of a specification.

However, these multiple implementations can be quite useful, For example, an abstract array

object allows the assignment and retrieval of data via a list of indices. Two common

representations of arrays in linear memory are r0w-major order and column-major order.

Normally it makes little difference which order is used. Sometimes one representation gives a

better program performance, for example, because of paging requirements, Sometimes a

representation is necessary for properties unrelated to the operations given in the

specification. For example, another program may be providing the array in a predetermined

format, such as a Fortran subroutine providing an array in column-major order. Therefore it is

2The restriction imposed by the simple model is not unmotivated. By insisting that all specifications available for
the implementation be present in the specification, a compiler may separately check at compile time that the use of a
data abstraction is legal, that an implementation that meets the specification, and that both checks are sufficient for
guaranteeing that the resulting program can execute.

Section 1.1.2.3 Motivation 11

desirable to associate many different representations with each specification and to select a

representation for an object as appropriate.

Despite their potential usefulness, the simple model of data abstraction does not allow

multiple representations to be included in a program, since the specification and

representation are in one, textually-combined module. But even where one may separate the

representations from the specifications and thereby have a way to write different

representations, most systems use the same name for the different representations. Therefore

these systems have difficulty in distinguishing one representation from another. To deal with

this problem, languages impose a series of restrictions. Initially, a language may prohibit

multiple implementations from appearing in a program. For example, Ada [ichbiah 80] permits

only a single package body to be bound to a package specification. But even if multiple

implementations are permitted in a language, they may not interact in procedures that use

only abstract properties of the object. For example, Low's implementation of sets in Sail [Low

74] prohibits two sets with differing implementations from having intersection performed on

them, even though set intersection may be written using only abstract operations of sets.

Finally, even when full facilities for multiple representations are provided, there is no way of

obtaining information about the different representations to aid in selecting an appropriate

representation, The literature contains dozens of different implementations for sets. Each of

these implementations is appropriate in a different circumstance. The writer of the

implementation should be able to describe the behavior.of the implementation so that an

intelligent selection is possible.

In addition to the inadequacies of specifications and multiple representations in the simple

model, the simple model cannot adequately handle interacting representations. This

deficiency occurs in two ways: interactions between different implementations of a

specification cannot be defined or used, and a shared implementation for separate

specifications cannot be provided.

Even when languages permit different implementations for a single specification, they do

not permit a single procedure to use the concrete details of more than one representation. As

a simple example, assume that a module implementing complex numbers were specified and

that two implementations were written: cartesian and polar representations, Following the

simple model, the module for each representation may manipulate either the cartesian

representation or the polar representation but not both. It might be useful in a program to

Section 1.1.2.3 Motivation 12

write an addition procedure that can work on polar and cartesian representations, yet the

simple model does not allow any one representation access to the details of another

representation.

Besides the ability to have multiple implementations for each specification, it is desirable to

allow a single representation for multiple specifications. Representations are sometimes

related even if the specifications are not. For example, a program may manipulate objects that

represent disks and drums but it may be necessary that the representations used for data

encoding for both devices be identical. The specifications should be separate, since different

kinds of operations are performed on disks and drums. But the representations for disks and

drums are interrelated because data are transferred between them. While it should be

possible to selectively combine representations as necessary, the simple data abstraction

method requires a separate representation to be associated with each specification. This

adds inflexibility to the program since there is an implicit connection between the modules for

disks and drums; a decision made for one module must be reflected in the other.

Although the simple model for data abstraction has limitations, the underlying ideas are

sound and are slowly being put into practice. But because of the relative youth of data

abstraction techniques in the programming community at large, little work has been done to

extend the basic refinement method beyond the simple approach and to explore the

implications of those extensions. The initial attempts at creating languages with data

abstraction facilities, such as Clu and Atphard, followed the simple model very closely. Some

limited extensions, such as generics, are included to try to solve some of these problems, but

no general language mechanism has been developed th~.t permits muttiple levels of

refinement and the retention of abstraction in the final program. This thesis proposes a set of

language features base on a type hierarchy that effectively support the data abstraction

techniques and allow a more flexible refinement paradigm to be used with data abstraction.

1.2. Summary of Thesis

The theme of this thesis .is that type hierarchies are a useful linguistic construct for

specifying abstract data types, refining specifications of abstract data types into

implementations, and selecting an implementation of an abstract data type for a given

specification. The vehicle for exploring this theme is a new programming language, Paragon,

which I designed and implemented as part of the research.

Section 1.2 Summary of Thesis 13

There are three main pieces of research. The first part discusses the design of features in

Paragon that support specifications of data abstractions and refinements of specifications.

The second part presents the features of Paragon that support selection of an appropriate

refinement from a collection of possible refinements. The third part describes the

implementation of a prototype translator for Paragon that processes the data abstractions and

makes selections of refinements for program objects. Together these parts demonstrate how

type hierarchies can be used in programming languages to provide a more flexible and useful

refinement process for data abstraction.

1.2.1. Data Abst ract ion Features

There are four basic data abstraction features in Paragon: classes, class inheritance, class

nesting and class parameters. Supporting these basic features are the separation of

procedure specifications and procedure implementations, multiple implementations of

procedures, and a uniform object notation and semantics.

Classes are the basic encapsulation mechanism for modules and contain declarations of

procedures that may operate on instances of the class and local state. A class may inherit the

declarations of other classes 3 and may add new declarations, such as a procedure

implementation for a procedure specification. Such a derived class is considered to be a

refinement of the parent classes. When a variable declaration uses a class, the named class

defines the abstract properties of the object denoted by the variable. Any refinement of the

class used in the declaration may be used as the implementation for the object.

Classes may also contain local class declarations, which give rise to nested classes. When

these nested classes are instantiated, they create nested objects. By selective use of class

inheritance and class nesting, it is possible to arrange scopes in several useful ways. Two

ways are discussed in this thesis. One way permits procedure implementations to be written

so they can access different concrete refinements of the same specification. Another way

permits a shared refinement to be written for separate specifications.

A class may also have parameters. Parameters permit families of specifications and

refinements to be defined. Because the uniform object notation provides different syntax for

3Since a class may inherit the declarations from more than one class at a time, the classes form a directed acyclic
graph of types and not a strict hierarchy. However. the phrase type hierarchy is more commonly used in the literature
and is used throughout the thesis rather than the technically correct phrase directed acyc/ic graph of types.

Section 1.2.1 Summary of Thesis 14

denoting a "type ''4 and an object, and because these different syntactic constructions may be

used in parameters, Paragon permits the parameters to classes to be used as conventional

parameters and as type parameters, eliminating the need for a special generic facility.

To illustrate these data abstraction features, examples in the thesis show how layers of

specifications, combined specifications, multiple representations for a specification and a

combined representation for multiple specifications, can be expressed in Paragon.

The class features are described in more detail in Chapters 3 and 4.

1.2,2. Representation Selection Features

There are four basic features for selecting representations s in Paragon: attributes, a

possibility tree, a policy procedure and a feasibility checker.

Attributes are compile-time procedures and variables that a programmer may add to class

declarations and procedure declarations. Such attributes are intended to provide information

that a selection mechanism could use. For example, each class might contain an attribute

Space that is a procedure that returns the amount of storage that the class uses, or it may

contain a procedure named Performance_Measured that returns a boolean value indicating if

that particular class keeps track of its performance.

The possibility tree is a data structure for organizing the selection decisions made for a

program. It resembles an unrolled call graph of the program. Each node represents an

instance of a class or an invocation of a procedure. Edges lead from a class instance (or

procedure invocation) to instances and invocations within that class instance (or procedure

invocation). The tree changes as different representation selections are made for objects and

procedure invocations. The presence of such a data structure is an advance over previous

representation-selection systems in that it provides a way to make representation selections

for local variables in local procedure invocations rather than to make only selections of

variables in the program that calls the procedure.

4Actually, an indefinite instance. See Section 3.2.1.

5In the context of Paragon, a refinement of a class is a representation of that class, hence the words refinement
and representation are used interchangeably.

Section 1.2.2 Summary of Thesis 15

The policy procedure is a Paragon program that actually performs the representation

selection for the user's program. This procedure is interpreted at compile time and operates

on the possibility tree, making selections for variables and gathering data about the selection

possibilities through the execution of attributes.

Not all choices of representations result in a refined program that can actually execute. For

example, it is possible that an incorrect procedure implementation was selected, an

incompatible choice of data representations was chosen or that a needed procedure

implementation was missing. The translation system contains a procedure that performs a

feasibility check of the user's program to guarantee that all necessary representations are

present and that the selected representations are compatible. This procedure may be called

from the policy procedure as well so that the policy procedure may ensure that its selections

result in an executable program.

Selection is completed at compile time. Once the translation process has finished, all

choices of procedure implementations and object representations have been determined. No

run-time selection is necessary. Further, the translation system can guarantee that no run-

time er~rors will occur because of a missing procedure implementation or an incompatible

representation. 6

To illustrate the utility of these representation-selection features, several example programs

have been programmed in Paragon. These examples were drawn from the literature

describing multiple representations for a data abstraction. Algorithms that were implemented

by previous data structure selection systems have also been programmed as policy

procedures.

The representation selection facilities are described in more detail in Chapter 5. Chapter

6 contains a worked-out example program and policy.

6Unlike, for example, the virtual procedure feature in Simuta-67.

Section t .2.3 Summary of Thesis 16

1,2.3. Prototype Translator

The motivations for constructing a translator were pragmatic. Since the construction of a

translator requires the language to be fully defined, it therefore serves as a way to insure the

completeness of the language definition. In addition, the design of the translator illustrates

problems that may occur when building compilation systems that use type-hierarchy features,

so the prototype serves as a feasibility test. Finally, the operation of the translator can also

pinpoint any relations between language features and performance degradations.

The prototype translator written for Paragon processes the entire language. It performs

parsing, semantic analysis, policy interpretation and feasibility checking. The translator does

not produce object code that runs; as output, it produces a transformed program where all

selections of procedures and variable representations are indicated. Because the language

definition requires the translator to contain an interpreter for the entire language (to interpret

the policies and attributes), an entire run time package does exist and Paragon code can be

(and has been) executed. However, there was no effort to produce a final code generator for

the translator.

The design of the translator resembles that of conventional compilers, however, it contains

three new phases that are not present in current compilers: the possibility tree creator, the

policy executor and the feasibility checker. Since these new phases perform analogs of

conventional compiler phases, namely call-graph creation, source-language interpretation

and type checking respectively, there is no new compiler technology needed to translate type

hierarchies in programming languages. Because the translator is an interpreted Lisp

program, it runs slowly (about 10 lines of Paragon per minute of Vax 11/780 CPU time).

However, its speed is comparable to values for other such prototype systems [Gillman 83].

Details about the design of the translator and its performance can be found in Chapter 7.

1.3. Organization of the Thesis

Chapter 2 outlines the goals of Paragon's design and places them in relation to past work

with abstract data type languages and representation selection systems. The next two

chapters present the basics of the Paragon language and show how those basics are applied

for creating abstract data types. Attributes - - which describe implementations - - and policies

which guide the selection of representations - - are both discussed in the next chapter.

Section 1.3 Organization of the Thesis 17

Chapter 6 presents a complete example, showing how an abstract data type, complete with

attributes, an application program and a policy, are used together. Then Chapter 7 describes

the implementation of a translator for the Paragon languages and its performance on a

selection of abstract data types, application programs, and policies. Finally, the last chapter

provides a retrospective and a prospective view of the work, analyzing how well the language

met its goals and what future areas of research might be explored.

The thesis aJso contains a number of appendices giving the syntax of Paragon, some

additional semantics for Paragon, a glossary of the technical terms used in the thesis, and

listings of the programs used for the performance measurements of the translator.

Chapter 2
Goals of Paragon

and
Their Relation to Previous Efforts

There is a great deal of previous work on the design of programming languages, on data

abstraction and on selection of data representations. Most of this work has concentrated on

one of these aspects, for example, abstract data types in a language or selection of table

representations in a database. This current work attempts to synthesize these different efforts

into a coherent language design, incorporating the experience gained from the previous

efforts. As Paragon represents a synthesis, it has a set of goals that transcend, and sometimes

contradict, some specific goals of previous research. To place the past efforts in a proper

perspective, it is necessary to understand the specific goals that the design of Paragon is

intended to meet, to isolate the goals that past efforts have tried to attain, to consider how the

past work has advanced Paragon's goals and to point out the previous limitations that

Paragon's design should overcome.

This chapter, therefore, presents an explicit statement of the goals of Paragon's design,

including some related but tangential goals *that Paragon does not address. Along with

Paragon's goats, the goals and methods of two previous approaches to Paragon's overall

objectives are considered and compared with Paragon: the design and implementation of

abstract data type facilities in languages, and the automatic selection of representations.

2.1. Goals of Paragon

The goals of Paragon can be grouped into four broad classes: abstract data type

specification goals, abstract data type representation goals, representation-selection goals

and automatic-processing goals. These goals are listed below, followed by a discussion of

each:

Section 2.1 Goals of Paragon 20

Abstract Data Type Specification Goals

• Refinements of specifications of abstract data types may be written.

• Related specifications may be combined in a single module.

Abstract Data Type Representation Goals

• Multiple implementations of an abstract data type may be written.

• Several implementations of an abstract data type may be used simultaneously in a
program (one implementation t~er variable).

• If several implementations of an aostract data type are used for different
variables, those variables may interact.

• A single implementation may be written for several separate specifications.

Representation-Selection Goals

• An implementation of an abstract data type should contain information describing
the implementation without permitting direct, unrestricted access to the
implementation.

Declarations of variables should contain information describing the constraints
that an implementation of the variable's type must meet without having to
explicitly name an implementation.

• The selection mechanisms should be available to the programmer in a convenient
manner.

Automatic-Processing Goals

• Static type checking of all variable declarations (object creations) and procedure
calls should be supported.

The representation information present in abstract data type implementations and
variable declarations should be processed automatically, so that a compiler can
choose an appropriate implementation of an abstract data type.

• Compile-time checking should ensure that all representation-selection decisions
result in a program that can execute without run-time errors.

2.1.1. Refinements of Specifications

Paragon should permit a very abstract specification to be refined into more concrete

specifications. Initially, properties of objects may be defined in a very abstract way. Some

initial properties might include assignability, hashability, transmissibility over a network,

commitment of operations, the ability to be stored in a file system and orderings. Each of

Section 2.1.1 Goals of Paragon 21

these specifications should be able to be refined as a way to add details to the specifications

without adding implementation-specific details. For example, a record may be specified as

containing a number of fields. The operations on the record might include field selection and

record assignment. Then the specification for the record is a refinement of the specification

for assignability: fields and field selection have been added.

This goal is partially met by the object-oriented language designs in Simula [Dahl 68] and

Smalltalk [Goldberg 81, Ingalls 78, Ingalls 81, Morgan 81, Xerox 81], the use of clusters in

Enhanced C [Katzenetson 83a, Katzenelson 83b], the Traits additions to Mesa [Curry 82] and

the Flavors facility for Lisp [Weinreb 81]. A similar kind of hierarchy was proposed by Smith

and Smith [Smith 77] and in Taxis [Mylopoulos 80] for organizing relations, views and objects

in a database. Further, the Program Development System [Cheatham 79] uses a refinement

hierarchy for writing system modules. But all of these systems use the refinements only as a

way to refine objects or system components however, and not as refinements of

specifications with the intention of later refining the specifications into implementations. With

the exception of the PDS system, each level of these hierarchies defines both abstract and

concrete properties of program objects. There is no intention to provide the absolute

separation of abstract and concrete aspects that is required by data abstraction methodology.

In some cases, such as the Smalltalk design, there is not even a way to provide this

separation. For example, there are no procedure specifications, only implementations. Thus

the details for the concrete representation are present where only the abstract details should

be allowed. Although the PDS system does separate abstract properties from concrete

properties, refinements in PDS may only be performed on modules that contain concrete

details. PDS do,os not intend that the user refine only specifications. Further, PDS is intended

to work on system modules and not necessarily on abstract data types, that is, on objects that

are declared many times by a programmer and manipulated by an application program.

Program transformation systems represent another approach for adding the refinement

paradigm into a language. Some program transformation systems, such as PECOS/LIBRA

[Barr 82, Kant 83] and the interactive system developed by Balzer's group [Balzer 81],

generate refinements of specifications. However, these systems encode their refining rules in

a separate language from the data-type description language and perform the refinement as

part of the translation process. In practice, these rules represent ways that a program may be

refined rather than ways in which data abstractions may be refined. Therefore these systems

are considering a much larger domain than merely specifying data types. In fact, their domain

Section 2,1.1 Goals of Paragon 22

is sufficiently rich that various forms of heuristic search are required to perform the

refinement process. In more conventional program development, the user provides some

static refinements which can then be used for specifying a program. It is this conventional

model of program development that Paragon is supporting. Hence the more static refinement

paradigm should be provided by Paragon.

The proposed layers of specifications are a departure from most languages that provide

data abstraction facilities. For example, Clu [Liskov 81], Alphard [Shaw 8t] and Ada [lchbiah

80] all use a single level of refinement, the upper level being the abstract specification and the

lower level being, the concrete implementation. An extension of Simula proposed by

Ingargiola [Ingargiola 75] allows, in a very restricted way, layers of specifications. This first

goal of Paragon is an attempt to generalize the approaches used in these other languages.

2.1.2. Combined Specifications

When appropriate, related objects should be specified in the same module. One example

frequently encountered is a keyboard data type and a screen data type, that is, an input and

output device. Logically, the functions of reading and writing may be separate, but for many

systems, such as those using half.duplex, local-echo terminal protocols, the specifications of

reading and writing are closely coupled. Thus these two objects, screens and keyboard,

should be able to be specified in the same module. Hence another of Paragon's goals is to

allow a combined specification in a module.

This too is a departure from several data abstraction languages, such as Clu and Alphard,

and from object oriented languages such as Simula and Smalltalk, where each module

(cluster, form, class and class respectively) specifies a single kind of object. The goal is to

emulate the private type facility of Ada or the type facility of Euclid [Chang 78]where a single

module (package and module respectively) may contain several specifications for related

objects.

2.1.3. Multiple Implementations

Current data abstraction languages focus on the separation of a data type from its

implementation. A natural outgrowth of this separation is the ability to substitute one

representation for another. Many languages, such as Alphard, force a single implementation

to be associated with a specification. One can change the representation only by removing

Section 2.1.3 Goals of Paragon 23

the entire module (form), which contains both the specification and implementation, and by

replacing it with a module that contains the same specification and a new implementation.

Other languages, such as Ada, permit different implementations (package bodies) of an

abstract data type to be written, but only one may be associated with a specification (package

specification) for any particular program. One of the goals of Paragon is to eliminate these

restrictions and allow multiple representations to be associated simultaneously with a single

specification for an abstract data type in a single program.

As explained in Section 1.1.2.2, different representations should be allowed access to

additiona~ details about their composition and use. This goal represents a substantial

departure from current data abstraction methodology. However, the goal is very similar in

concept to the representation selection systems such as the systems built by Low [Low 74],

and by Gotlieb and Tompa [Gotlieb 74]. In Low's system, the selection mechanism takes into

account the composition of a set's elements. Gotlieb's and Tompa's system performs an

initial pass over different table representations to select those that have the necessary

operations implemented for the particular use of a table. Therefore these systems can use

details at)out a data type's composition when selecting a representation. But unlike the

design of these systems, the design of Paragon strives to integrate the selection of

representations with the rest of the language. The selection process is not to be the activity of

an extrinsic, representation-selection system..

2.1.4. Simultaneous Implementations

Beyond the ability to define multiple representations in a program, another goal of Paragon

is the ability to use multiple representations in a program. Although some language designs

permit multiple representations to be present in a source program, they require that each

variable in a program be assigned the same implementation. For example, Ada requires that

the same representation (package body) be associated with a specification (generic package

specification) for each object specified (instantiation of the package). This decision is

motivated by implementation complications caused by different representations of an abstract

data being passed in the same procedure call, discussed in the next section (Section 2.1.5),

since the prohibition of simultaneous, different implementations for a single abstract data type

guarantees that the resulting program wilt have no interacting implementations. The design

goals for Paragon differ from these previous design goals. Instead, a Paragon design goal

insists that different instances (variables) of the same abstract data type may use different

implementations in a single program.

Section 2.1.4 Goals of Paragon 24

2.1.5. Interacting Implementations

Allowing variables with different implementations to interact is another design goal of

Paragon. But this goal normally presents a problem if two variables with different

implementations interact. In general, there is either no guarantee that an appropriate

implementation for the interacting operation will exist or there must be an enormous number

of operation implementations: for n variable implementations, there needs to be n 2 operation

implementations. The use of set implementations illustrates this problem. First, assume that

two popular implementations for sets, bit vectors and hash tables, are available to implement

set variables. Then suppose that two variables are implemented, one with each of the

implementations, and that there exist proper implementations for the intersection operation

for each of the two implementations. Although a selection of either representation for all set

variables results in a program that has procedure implementations for all calls, there is still no

guarantee that there exists an implementation for an intersection operation applied to a hash

table and a bit vector. The alternative is to provide procedures for all combinations of set

implementations. Thus the interaction of the differently implemented variables causes

problems, which is a reason why many languages exclude this goal. The design of Paragon is

intended to solve this problem so that interacting implementations may be used.

Several approaches to the problem have been suggested: automatic conversion from one

representation to another; a canonical representation; an implementation of intersection that

uses only abstract operations; and the addition of extra implementations of intersection for

the different combinations of sets. However, none has ever been incorporated into a complete

language design. In fact, previous work tends to ignore this goat explicitly. Low's system, the

SETL optimizer [Freudenberger 83] and the Algol-68 extensions proposed by Banatre, et al.

[Banatre 81] use variable interactions as a way to decide that different variables should have

the s a m e representations. One design that permitted interacting representations was an

Algol.68 extension designed by Ghezzi and Paolini [Ghezzi 77] but this system requires the

programmer to direct explicitly the language system to use different representations. A

design goal of Paragon is to remove these restrictions and to provide the facilities that allow

different variables to have different implementations of abstract data types, even if they

interact in some operation.

Section :2.1.6 Goals of Paragon 25

2.1.6. Shared Implementations

Distinct abstract data types sometimes have a shared representation. For example, the set

facility in SETL uses a combined representation for integers and sets. In this combined

representation, there is a single hash table that contains all integers used in a program. Some

of these integers are contained in sets; some of these integers are currently assigned to

integer variables; some are assigned to both; some are assigned to neither. Each integer in

the hash table contains information about its value and all the sets it is contained in. All set

variables and integer variables contain specific information for retrieving information from this

single hash table (details can be found in the description of SETL's implementation [Dewar

79]). Thus the hash table is part of a combined representation for integers and sets. Besides

SETL, this kind of sharing is frequently desirable in memory allocation systems, message

transmission systems, file systems and transaction logging systems, where a particular facility

needs to have representation control over many kinds of abstract data types. Yet this ability is

not provided in data abstraction languages.

Thus another of Paragon's design goals is to support shared implementations for distinct

specifications. Related ideas have been proposed by Katz and Rosenchein [Katz 81] and by

Rowe and Tonge [Rowe 78] where two distinct data structures are joined into a single data

structure and this single data structure is viewed as having two different uses. However, there

has been no exploitation of the idea that a single representation may simultaneously

implement several specifications. This goal is, therefore, another departure from the usual

data abstraction facilities found in most languages.

2.1.7. Distinguishing Implementations

One of the immediate consequences of permitting alternative implementations of abstract

data types is that a way to evaluate them must be present. Most representation-selection

systems have a way to distinguish representations, such as formulae that indicate a

representation's performance. However, these differences are usually not available to the

programmer and the programmer may not alter them. In fact, these descriptions are usually

external to the language being implemented and instead belong to the translation system or

representation selection system.

When a programmer creates a new type, the programmer should be able also to specify the

ways in which the representation should be used. Unfortunately, most languages permit the

Section 2.1.7 Goals of Paragon 26

control of different implementations for only predefined types. One such example is

Pascal [Jensen 78], which allows the programmer to select a packed representation for some

of the data types. Other languages fail to distinguish between different representations within

the program and create an entirely separate configuration language in which the different

implementations can be described [Mitchell 79].

To ameliorate these restrictions, the design of Paragon strives to introduce ways to let the

programmer describe and distinguish between the different representations without giving

direct access to the details of representation.

2.1.8. Variable Description

To assist in making a representation selection, the programmer should be able to provide

the selection system with some kind of information about the variables used in a program.

Most languages only permit the programmer to provide some crude, predefined attributes of a

variable, such as in Ada, where certain kinds of monitoring of variables can be control by the

programmer. Representation-selection systems usually permit the programmer to provide

some better information: for example, the PSI system asks the programmer about the

program [McCune 77], but the selection of information is still not under programmer control.

Unlike these systems, Paragon should allow the programmer to specify what kinds of

information should be provided when declaring a variable and then to describe how that

information is to be used by the selection system.

2.1.9. Programmer Accessibility

Representation-selection systems are usually associated with very high-level languages that

provide very abstract objects (compared with the level of abstractions provided in typical

high-level languages). The representation.selection system provides many representations for

these very high-level features but limits the access that a programmer may have to these

representations [Schonberg 77], to the descriptions of the representations [Rowe 78] or to the

optimization criterion that the representation-selection system is using [Low 74]. These

systems further limit the programmer's interference with the selection decisions because only

predefined types in the very high-level language associated with representation-selection

systems may be used. There are no facilities for user-provided types, user-provided

representations or user-provided optimization criteria.

Section 2.1.9 Goals of Paragon 27

The motivations for these restrictions are the complexity of the data structure that

represents th~ e program during representation selection and the complexity of the selection

algorithm operating on this data structure. Usually, this data structure is an abstract syntax

tree of tlhe pr(~jram, and the actual representation selection process has the complexity of a

compiler phase. Writing a piece of a compiler is thought to be beyond the concern of a typical

programmer, hence the lack of programmer-provided, representation-selection mechanisms.

Because a data abstraction language, such as Paragon, is designed to allow programmers

to create new high-level abstractions, it should allow programmers to control the

representation selection. This programmer control requires programmer-accessible

mechanisms 1For describing the differences between representations and for describing the

optimization criteria to be applied. However, the complexity of the resulting mechanism must

be limited so that the mechanism is within easy grasp of a typical programmer.

2.1.10. Static Type Checking

Static type checking (checking the compatibility of actual parameters with formal

parameters before a program is executed) helps ensure that a program meets its specification

and limits the possible kinds of run-time errors. The Paragon design therefore attempts to

have al~ type checking performed during the compilation process and to have no type errors

possible during execution.

The goal of static type checking is also a departure from the procedure-call checking

performed in typical object-oriented, hierarchy-based systems, such as for

SmaUtalk's methods and Simula's virtual procedures. There is a tradeoff in these designs

between safety and efficiency, and flexibility. Because the parameter matching for procedure

calls can be verified duringcompilation, static checking is considered safer, and because

more is known about the program being checked, a more efficient program should result.

Therefore Paragon opts for a safe and efficient language rather than for flexibility.

2.1.1 1. Automatic Selection of Representation

If a language provides a way to distinguish between representations, then a natural

extension of the language should provide some automated way to select an appropriate

representation using the distinctions. Since a goal of Paragon is to provide descriptions that

distinguish between data type representations, the Paragon language and its translator

Section 2.1.11 Goals of Paragon 28

should also include some mechanisms for automatically selecting a representation for each

variable.

There is a problem in defining the term automatically. At one extreme, it might mean that the

compiler checks the decisions stated by the programmer in the same way that type checking

is automatically processed once the program defines all identifiers in declarations. One such

example is Mesa [Mitchell 79], which relies on an additional file, called a configuration file, to

• specify which implementation should be used with each specification (interface module) by

naming it. At the other extreme are program transformation systems, such as PSi and

Rovner's Sail compiler [Rovner 76], which make a decision by using processes that are

internal to the translation system.

Paragon's goal lies somewhere in between. The programmer should be able to describe a

method for making selection decisions, for example, to attempt to minimize the time and

space product of the variables that the programs use. However, the programmer should not

have to state explicitly which implementation should be associated with each variable.

2.1.1 2. Compile-Time Checking of Program Feasibility

The philosophy of abstract data types dictates that compile-time checking should guarantee

that the implementations of an abstract data type can be used when the specification is used.

In applying this philosophy to a language with multiple representations of abstract data types,

the design of Paragon should allow compile-time checking of implementations, guaranteeing

that all variables have a representation. Further the design of Paragon should allow compile-

time verification that appropriate procedure implementations exist for the procedure calls

using those representations. The idea that this kind of checking be performed independently

of the semantic analysis is another departure from conventional language designs.

2.2. Preliminary Design Restrictions for Paragon

Even with the goals that are set forth explicitly, there is still a wide range of choices for the

scope of the research. In order to limit this scope, several design restrictions were arbitrarily

imposed.

The restrictions were based on a priori guesses about what features might enlarge the

scope of the language design. Each restriction could be lifted in order to generate another

Section ;.>.2 Preliminary Design Restrictions for Paragon 29

direction of research that synthesizes abstract data types and representation selection. A

brief description and motivation for each restriction follows the list below.

• A type hierarchy will be the basis of the language design.

• An identifier within a scope will have exactly one object bound to it.

• No attempts at automatic creation of representations for abstract data types will
be made,

• No attempts at automatic conversion between representations of abstract data
types wil~ be made.

• There will be no run-time selection of representations of abstract data types.

• The prototype translator is intended to represent an existence proof of feasibility,
not the last word in efficient algorithms.

2.2.1, Use of a Type Hierarchy

This work might have been built on other data abstraction languages, such as Ada, Clu or

Alphard, each with its own method of writing the specifications and implementation of

abstract data types. Because my thesis is that many levels of refinement are appropriate for

specifying and representing abstract data types and because the class mechanism in

Simula p~rovides a layering mechanism, I was drawn to Simula-67 as a model. Thus I arbitrarily

chose to exploit and explore this particular approach to this problem.

I did not, however, use Simula as my base language design, though the current design of

Paragon has many resemblances to Simula. Initially, I wanted to make a clear distinction

between types and objects. As a model for this distinction, I used the Red programming

language [Nestor 79]. Some initial designs of Paragon resembled a cross between Red and

Simula, hut these designs were significantly different from Red and Simula that no effort was

made to use either language as a base from which to design Paragon.

2.2.2. Single identifier/Object Binding

Because the eventual translator system needed to select particular implementations for

variables and follow their use throughout the program (or block in which the identifiers were

bound), I insisted that each binding of identifier to an object, within a block, be immutable.

This meant that the choice of representation made for a variable when the variable was

created would remain invariant throughout the block. This was an attempt to isolate the object

Section 2.2.2 Preliminary Design Restrictions for Paragon 30

creations to the variable declarations in a block, and hence simplify the analysis of the block

for later selection decisions. If one permitted the representation of the object to change at

arbitrary places in the program, then one might be unable to determine at compile time which

representation a variable might have during a procedure call. Therefore one could possibly

increase either the work at compile time to check that an implementation exists or the work at

run time to select an appropriate procedure.

2.2.3. Automatic Creation of Representations

A widely pursued research topic is the creation of representations of abstract data types

given a formal specification. Although this topic is interesting, a proper treatment of it requires

a formal specification language, a processor for that language and some assumptions about

the way that data types are implemented. Paragon strives to take advantage of programmer.

provided knowledge of representation and not to create new representations. Thus the goal

of automatic creation was considered beyond the scope of this work.

2.2.4. Automatic Conversion between Representations

Along with automatic creation of representations, the automated conversion from one

representation to another is considered an important research topic. Attempting to pursue

this goal raises a large number of problems that have not yet been satisfactorily solved. First,

there is the problem of specifying the implementations and their equivalencies. Second a

technique must be chosen for the conversion operations: for example, using a canonical

representation; using a different conversion routine for each possible conversion between

representations; or automatically creating the conversion routines. Third, there is an unsolved

question of when to perform the conversion. Because of these issues, the design of Paragon

did not explicitly consider automatic conversions between representations, but left the topic

open for further research.

2.2.5. Run-Time Selection of Representations

Allowing the run-time selection of representations forces the design of Paragon to answer

many additional questions and solve additional problems that were beyond the scope of the

research. For example, allowing the run-time selection of representations can hamper the

feasibility checking of a program at compile time. Under typical circumstances, every possible

implementation must be available at every use of the variable since no compile.time

Section 2.2.5 Preliminary Design Restrictions for Paragon 31

informatlion may be available. Because a goal of Paragon is to guarantee the existence and

type correctness of all necessary procedures at compile time, and because allowing run-time

selection of representations makes this guarantee difficult to enforce, run-time selection of

representation is prohibited. Further, there are open questions about the methods that

should be used in making a run.time selection. For example, the cost of making a decisions

may be more expensive than the savings from the choice. Finally, there is usually some

additional run-time expense in making a selection of a procedure given particular

representations for its parameters - - an expense I felt that Paragon programs should avoid.

Therefore, I limited the scope of this work to compile-time selection.

2.2.6. Prototype Translator

As evidence that the Paragon design was complete and translatable, I constructed a

prototype translator. The art of creating efficient translation schemes is another area of

research that is logically related to language design, but the creation of an efficient translator

was not essential for my demonstration of feasibility. Thus minimal effort was expended to

make the translation system efficient, although there was an effort made to ensure that the

entire language could be translated and executed. In addition, there was an effort made to

ensure that the prototype would show that there are no inherent inefficiencies for processing

or executing Paragon.

With these sets of goals and restrictions in hand, I proceeded through several designs of

Paragon. The basics of the last version of Paragon are provided in the next chapter, followed

by a chapter which illustrates some of the more complex featuresof the language,

Chapter 3
The Basics of Paragon

This chapter describes the basics of the ~aragon programming language. I have assumed

that the reader is familiar with algebraic languages such as Pascal or Simula, and with

extended BNF notations. No emphasis will be placed, therefore, on describing the exact

syntax of various language features or the BNF metalanguage. Instead the discussion will

assume that the reader can read the examples without such comments.

Paragon is defined in terms of a process called e/aboration. Therefore, this chapter starts

with a brief description of the three kinds of elaboration that Paragon uses. The basics of

Paragon are concerned with the objects and their manipulation, so the notion of object is then

introduced a~ong with some examples of how a simple object may be defined and created.

Two ways of defining relationships between objects, inheritance and nesting, are also

discussed. Then the chapter provides a discussion of how expressions and objects interact

througl~ the use of parameters.

Once objects and expressions are introduced, a brief discussion of procedures is

presented. Procedures provide a general mechanism for manipulating objects. One special

kind of procedure, an iterator, is then described. The discussion of iterators is followed by a

description of other control abstractions in Paragon: the usual statements found in an

algebraic language.

With this level of introduction, a programmer should be able to read the Paragon programs

in this thesis. For the interested, a BNF description of the syntax can be found in Appendix

B and additional language details can be found in Appendix A.

Section 3.1 Overview of Elaborations 34

3.1. Overview of Elaborations

The semantics of Paragon are defined in terms of elaborations that are performed on a

program. Three kinds of elaborations are defined in Paragon: elaborations with

specifications, elaborations with implementations and elaborations with

realizations. Although Section 5.1 gives a more complete description of these different kinds

of elaborations in Paragon, a brief introduction is needed for understanding this chapter.

Elaborating a program with specifications and implementations can be thought of as

performing various kinds of semantic analysis. Thus elaboration of a procedure invocation

with specifications is the technical way of describing the type checking for a procedure call.

When a program cannot be elaborated with specifications, perhaps because of some

semantic error, the program is called ill specified, otherwise the program is called well

specified. Elaboration of a procedure call with implementations corresponds to feasibility

checking. This elaboration checks that an acceptable procedure implementation exists for

the procedure call. If an acceptable procedure implementation cannot be found, perhaps

because it is never declared, then the program is called infeasible. If there are no errors

during elaboration with implementations, then a program is called feasible. The concept of

feasibility checking is described in Section 5.5.5. Finally, elaboration with realizations

corresponds to the actual running of a program; the term executing is used synonymously

with the phrase elaboration with realizations. A program without run-time errors is called

defined. A program that generates a run-time error is called erroneous. At various times

throughout the discussion in this chapter, these terms will be used when a precise statement

of Paragon's semantics is required.

3.2. Objects

There is a rich structure to objects that are manipulated by Paragon programs. The parts of

the structure are simple objects, objects, local instances and parameters. Their relationships

are discussed below.

Objects in Paragon consist of nested simple objects. Some colloquial examples of simple

objects include houses, kitchens and refrigerators. An object is represented by a list of nested

simple objects, such as a house that contains a kitchen that contains a refrigerator. The figure

Section 3.2

below illustrates this relationship: 7

Objects 35

Frig. I
Kitchen
House

Figure 3-1 : An Object Consisting of 3 Simple Objects

An object is defined in terms of a single nested simple object inside each nested simple

object. Many other relationships between simple objects may exist in a program. Most of these

relationships have no special value in the definition of Paragon and hence are notnamed in

this thesis. For example, the following figure shows a possible relationship among simple

objects; in Paragon, but the figure does not represent an object:

7As discussed in Section 3.2.3 on page 42, a textual representation of the same object would be
(House, Kitchen, Fdg).

Section 3.2 Objects 36

I } lS,ove 1
Kitchen

House

Figure 3-2: Nested Simple Objects that are not an Object

However, the same simple objects may be used in more than one object. For example, the

following figure illustrates the same simple objects for House and Kitchen in a different object

than the one shown in Figure 3-1:

Stove

Kitchen

House

Figure 3-3: Another Object with 3 Simple Objects

This structure permits simple objects to be shared by other simple objects. In particular, an

outer simple object can be thought of as a manager or owner of all of the simple objects

inside of it. An object can be viewed as the most deeply nested simple object along with its

Section ,'3.2 Objects 37

manager(s). This view of "managers controlling individuals" is developed in Chapter 4 and is

essential to the definition of abstract data types in Paragon.

As shown above, a simple object may contain other simple objects. Another, unrelated way

to analyze simple objects is by considering the local instances and parameters in simple

objects, s Each simple object contains a set of /oca/ instances and some parameters s.

Parameters provide a way for one simple object to share objects with another simple object.

The details of parameters are deferred until Section 3.4. Each local instance provides some

set of properties for the simple object. For example, the kitchen simple object may contain

local instances that describe properties of "being something with four walls", "being

something with a floor" and "being a place where appliances reside." In programming.

language terms, a local instance consists of a set of variables and procedures, where these

variables and procedure describe some properties of the simple object. A simple object is

illustrated in the figure below:

- - - . r a m

L I - I L I - 2 L I - 3 L.ocol

. . . . instonces]

Figure 3-4: A Simple Object with Parameters

So far, simple objects have been described colloquially. Paragon actually defines four

8There i5; a relationship between local instances, simple objects and objects, but it is far too complex is repreeent
two dimensionally and has no use in this thesis. Therefore. the reader is advised to merely consider the relationship
between objects and nested simple objects and the relationship between simple objects and local instsnce,,z to be
unrelated.

9A simpke object may also have a label if the creating name component is labeled in a parameter. See Section
3.4.1.

Section 3.2 Objects 38

different kinds of simple objects. Each simple object can be either specified or realized, and

can be either definite or indefinite. The first choice of specified or realized is determined by

the kind of elaboration that created the simple object. If the simple object results from

elaboration with specifications or implementations, then it is specified. If the simple object

results from elaboration with realizations, then it is realized. Thus specified can be viewed as

a compile-time simple object; realized can be viewed as a run-time simple object.

The adjectives definite and indefinite indicate whether the simple object is considered

unique. In a more conventional sense, indefinite simple objects are the "types" of definite

simple objects. In English, = House denotes any House; it is indefinite. The House denotes a

particular House; it is definite. Similarly in Paragon, it is possible to denote a definite simple

object, that is, a particular simple object, and it is possible to denote an indefinite simple

object, that is, a simple object that represents some unspecified member of a set of simple

objects.

Expressions are elaborated inside of simple objects. The simple objects that enclose the

expression contain bindings between identifiers and either procedures, classes or objects.

Thus an object is also an environment. The two words are used interchangeably in this thesis.

The basic Paragon feature for defining an object is a class. The ways that classes are used

to create local instances, simple objects and objects are discussed in the next sections.

3.2.1. Classes and Simple Objects

Classes serve as templates or models of simple objects. Much like classes in Simula, they

may contain parameters, declarations and statements. An example is shown below:

c lass V e h i c l e i s 1 A c lass d e c l a r a t i o n ;
begin

var S ize => IM . new I n t e g e r ; 1 A v a r i a b l e d e c l a r a t i o n ;
Size := O; I A statement;

end;

This example declares a class that represents a Vehic/e. The class contains one declaration,

an integer variable Size 1°, and one statement, that initializes Size.

lODescriptions of variables are deferred until Section 5,2 when distinctions between specifications and
implementations are discussed.

Section 3.2.1 Objects 39

Like Algol-68 [VanWijngaarden 69], Paragon uses a kind of generator function on classes in

variable declarations to create new, definite simple objects. This generator function is

denoted new and appears in simple-object creations. For example, the following simple-

object creation: 11

new Veh i c] e

creates a definite Vehicle simple object. When a simple object is created, one local instance

for the class and one for each of its ancestors are created. Because no classes are inherited

by Vehicle, this simple object consists of one local instance which is the result of elaborating

the declarations and statements in the class declaration for Vehicle. After creation, the simple

object is said to have Vehicle as an underlying class.

A simple object (or instance) that is formed from a simple-object creation is termed a

definite instance. There are two other kinds of instances that need to be defined: indefinite

instances and any instances.

An indefinite instantiation creates an indefinite instance and merely has the class name

without the reserved word new. For example,

Vehicle

represents an indefinite instantiation of Vehicle. It too results in a simple object, and as will be

illustrated later, is the way in which types are denoted in parameters. The main difference

between indefinite instances and definite instances is that the internal declarations and

statements of definite instances are completely elaborated, whereas only selected

declarations are elaborated in indefinite instances. Like definite instances, indefinite

instances have an underlying class, namely the class denoted by the identifier in the

expression specifying the instantiation.

A third instance is an any instance. The instantiation has the simple representation:

any

and it results in an indefinite instance of the special any class. 12 One can think of this simple

object as the most indefinite indefinite object. It is used when a programmer wishes to

11More properly, object-creation name component, see Section 3.3.1.

12For completeness, the underlying class of an any instance is defined to be the special any class which is
otherwise inaccessible to the programmer.

Section 3,2.1 Objects 40

express the notion that some kind of object is present, but does not wish even to specify a

class to which the simple object will belong.

3.2.2. Inher i tance

Like Simula and Smalttalk, the classes in Paragon may inherit other classes. Inheritance is

used to include the declarations and statements from another class. For example, a tank

object is a special kind of vehicle and should contain the properties associated with any other

vehicle. This is accomplished by inheriting the Vehicle class in the declaration for Tank, as

shown below:

c lass Tank of V e h i c l e is
begin

var CrewSize => IM . new
end;

integer;

A Tank simple object has both the properties specified in the declarations for Vehicle and the

properties specified for Tank. More than one parent may be specified and parents are

accumulated, that is, inheritance is transitive. 13 This can be illustrated with the following

classes that represent ships:

c l ass Ship is
beg in

var D isp lacement => IM .
end;

new i n t e g e r ;

c lass Mon i to r o f Ship, Tank is
beg in

Cannon => IN . new i n t e g e r ;
end;

Objects with an underlying class of Monitor inherit the properties from both classes Ship and

Tank, 14 and since Tank inherits properties from Vehicle, Monitor inherits Vehicle's properities

as well.

When a simple object is created, the various classes that are inherited are elaborated, one

13The set of all inherited parents is called the ancestors of the class.

14The Monitor was among the first class of armor plated ships introduced during the U,S. Civil War.

Section 3.2.2 Objects 41

at a time, starting with the furthest ancestor of the leftmost parent. 15 The order of elaboration

matches the order of inheritance. In the example above, the order is Ship, Vehicle, Tank and

last, Monitor. This order is called /eftmost elaboration order, t6 The elaboration of each

ancestor creates a local instance and the collection of local instances from the elaboration of

each ancestor and the class itself are grouped together in the simple object.

It is conceivable that a ancestor class may be inherited more than once. The Ship class in

the previous example might have been written:

c lass Ship of V e h i c l e is
begin

var Displacement => IN , new integer;
end ;

c lass Moni tor of Ship, Tank is
beg i n

Cannon => IM . new i n t e g e r ;
end ;

in which case the Monitor class would inherit the Vehic/e class twice, once from Ship and

once from Tank. In this circumstance, onty one local instance for the shared class would be

elaborated and that elaboration would occur the first time that the shared class is

encountered. In this example, the elaboration order of classes for a Monitor object creation is

Vehic/e, Ship, Tank and last, Monitor.

Although the semantics for Paragon would be simpler if an ancestor could not be inherited

more than once, this feature allows a programmer to refine abstractions one level at a time

without having to rearrange an entire tree of refinements. In the example above, the

programmer's view of the abstract world is that Ships and Tanks are special kinds of Vehicles

and that Monitors really are a special kind of Ships and Tanks. If Vehicle could not be

inherited more than once, then the programmer would have to change the declaration(s) for

either Tank, Ship or Monitor. Although this makes Paragon simpler, this rewriting no longer

reflects the programmer's abstract model of the world. Further, in Chapter 4, this same ability

is exploiited to provided multiple implementation of abstract data types. Therefore, the design

of Paragon permits aclass to inherit an ancestor more than once.

t5Leftmost has been the convention adopted by other languages, in particular Flavors and Traits, and so is
adopted by Paragon as well. Rightmost would not produce a radical change in the semantics, but since English is
read from left to dght, there is a stight tendency to examine the parents of a class in the order in which they are read,
left to right. If programmers thought like LALR parsers, perhaps rightmost order would make more sense.

16Also :see leftmost parent order, page 325.

Section 3.2.2 Objects 42

3.2.3. Nested Classes and Objects

In the examples given so far, the only declarations in a class were integer variables. Classes

may also be declared in classes which leads to a structure of nested simple objects. For

example, nested rooms inside houses might be specified as below:

class House is
begin

class Room is
begin
end;

end;

An object creation that uses the House class, that is new House, creates a simple object in

which other simple objects may be created, namely Room simple objects. The House simple

object in which a Room is created is also called the environment for the creation of rooms.

The expressions denoting nested objects are straightforward. For example, a programmer

can write the following expressions (which use the House and Room declarations):

var MellonMansion => new House;
var MasterBedRoom => MellonMansion . new Room;

The first expression creates a House simple object (and the variable declaration causes the

identifier Mel/onMansion to be bound to the simple object). The second expression creates a

Room simple object inside the previous created House simple object. Note that a full

description of the newly created Room requires some reference to the enclosing House

simple object. Paragon therefore defined the concept of object to mean the simple object

along with the environment in which it was created. Thus, an object is a list of simple objects,

one created inside another.

In this thesis, a list notation is used to represent objects. Each element of the list denotes a

simple object. If the simple object resulting from the first simple object creation is denoted MM

and the simple object resulting from the second creation denoted MBR, then the object

denoted by the identifier MasterBedRoom is represented by (MM, MBR). Rather than always

creating a name for every simple object, the class name alone will sometimes be used to

represent a definite instance of that class in a list of simple objects. Thus the object denoted

by MasterBedRoom would be given as (House, Room). Since there is only one definite

instantiation for each class in the example above, there is no ambiguity about which

instantiation of House is meant. In cases where some ambiguity exists between definite

Section 3.2.3 Objects 43

instances of the same class, the list notation will be abused a little by using the variable

identifier associated with the creation name component for the innermost simple object. Thus

the object denoted by MasterBedRoom might also be represented by

(MellonMansion, MasterBedRoom). This last convention will suffice since definite instances

are only permitted in variable declarations, and only one object instantiation is permitted per

variable, = declaration.

3.3. Name Expressions

Name expressions denote actions that are to be performed during elaboration. Each name

expression consists of a sequence of name components separated by periods (.) where each

component performs a single action in a specified environment, and returns another

environment in which the next name component is to be elaborated. Such actions include

object creation, binding of identifiers to objects and invocation of procedures.

Because no previous component returns an environment for use by the first name

component in an expression, it is elaborated in the environment of the object in which it

appears. If the House class mentioned above were modified a bit as follows:

c lass House is
begin

c lass Room is
beg in
end;

var K i t chen => new Room; =~:~1
end;

then the simple object creation for Room (notation 1) has as its environment the House simple

object in which the variable declaration Kitchen is being elaborated. Generally, the initial

environment for a name expression is the scope in which the first identifier in the name

component is declared. In the example, the identifier Room is declared in the class House, SO

the environment is the enclosing House object. Section A.4 gives a complete description of

how this environment is established.

Within its environment, each name component specifies one specific action, such as

creation of & simple object, selection of an object, description of an object or invocation of a

procedure. The first three kinds of name components are discussed below. The discussion of

procedure invocation is postponed until Section 3.6.4 where procedure implementations are

discussed.

Section 3.3 Name Expressions 44

3.3.1. Generation of Instances

Generation of instances results from the elaboration of an object.creation name component.

The syntax for this kind of name component is the reserved word new followed by an identifier

representing the underlying class for the simple object. Several examples of this kind of name

component were shown in previous examples, such as new Tank. The environment that

results from the creation of a simple object is the environment for the object creation

appended by the simple object. In a previous example, Me//onMansion . new Room, the

resulting environment is the resulting object, (House, Room).

There are several restrictions on the name expressions that may contain an object creation

name component. Briefly, the environment in which the creation takes place may have been

neither newly created by another object-creation name component in the same name

expression nor the result of a procedure call in the same name expression. The details of

these restrictions can be found in Section A.2.

3.3.2. Description of Objects

Paragon provides two kinds of name components to describe an object. Intuitively, these

name components provide a way to denote a type. t7 One way uses a class identifier in a name

component; this corresponds to explicitly naming a type. The other way uses the reserved

word structure as a name component; this corresponds to extracting the type of an

expression.

More precisely, if a clas.3 identifier is used in a componer, t without the reserved word new,

the class identifier is denoting the creation of an indefinite instance. An example of this kind

of name component is shown by the name expression Me//onMansion. Room. The lack of the

reserved word new before the class identifier Room causes an indefinite instantiation of

Room and the resulting environment is the list of the definite instance denoted by

Me//onMansion followed by an indefinite instance of Room. As a notational convention, an

indefinite instance is represented in a list of simple objects as the name of class preceded by

the reserved word any. Thus the object resulting from the indefinite instance in the previous

name expression is (House, any Room).

17Each of these name components results in an object whose innermost simple object is an indefinite simple
object.

Section 3.3.2 Name Expressions 45

The reserved word structure as a name component uses the current environment to

describe an object. The innermost simple object of the current environment is removed and a

new indefinite instance of the underlying class of the innermost simple object is created and

appended to the remaining environment. The resulting object looks similar to the environment

given to the structure component except that the innermost simple object has been changed

(probably from a definite instance but not necessarily) to an indefinite instance. This can be

illustrated by the continuing the example on page 42:

. . . Me]]onMansion. Room . , .

. . . Mas te rBedRoom.s t ruc tu rs . , .

The two expressions use the variable declarations of Me//onMansion and MasterBedRoom.

These expressions result in similar objects. Both have an outer definite simple object denoted

by Me//onMansion. Both have an inner indefinite simple object denoted by any Room. Thus

"type" of the irmermost simple object is retrieved by the structure name component.

Because descriptions of objects act like types, these descriptions of objects are especially

useful in parameters, as wilt be shown later.

3.3.3• Selection of Objects

When the identifier in a name component is declared as a variable or in a parameter, and the

reserved word new is absent, the name component is selecting an object. The algorithm for

elaboration is simple: the identifier is found and the object bound to it during the declaration

elaboration is used as the environment for the next component. This is identical to ordinary

field selection in records of Ada and Pascal, and in classes of Simula. This is illustrated by the

following continuation of the example on page 38:

var MyCar => new V e h i c l e ;

• . . MyCar .S ize . . , ;

Here the integer denoted by Size is selected from the simple object denoted by MyCar.

3.3.4. Other Name Components

There are several other kinds of name components, some of which deal with attributes and

are discussed in Section 5.3.7. The rest are syntactic sugaring for various procedure calls.

Their replacements are given here only for completeness. The reader should probably just

glance at the left hand column for now and refer back to this chart as necessary in later

chapters.

Section 3.3.4 Name Expressions 46

Nam~ Comoonent Replacement
t Value
[s] Element(s)
L 16 Literal(&L)

In the above chart, s is any expression, L is any integer literal and &L is the name of a special

predefined procedure (see Section 3.3,6),

3 . 3 . 5 . Other Expressions

There are several other expression besides name expressions. All of them are syntactic

sugaring for an equivalent name expression that contains a procedure call. Like the chart

above, the reader may wish to just glance at the left hand column and refer back to the chart

as necessary whi le reading later chapters. The fol lowing chart gives the translations:

Exoression ReDlacement
(e l) e l
e l := e2 IM.Assign(el,e2) 19
e l = e2 IM.Equal(el,e2)
e l + e2 IM.Plus(el,e2)
e l . e2 IM,Minus(el,e2)
e l / e2 IM.Divide(el,e2)
e l * e2 IM.Times(el,e2)
e l rein e2 IM.Remainder(el ,e2)
- e l IM.UnaryMinus(el)
e l ..e2 IM.Sequence(el ,e2) 2°
el < e2 IM.LessThan(el ,e2)
e l > e2 IM.GreaterThan(el ,e2)
e l < = e2 IM.LessThanEqual(el ,e2)
e l > = e2 IM.GreaterThanEqual(el,e2)
e l and e2 Booleans.LogicalAnd(el ,e2) 21
e l or e2 Booteans.LogicalOr(el,e2)
not e l Booteans.LogicalNot(el)

18This a qualified literal, such as in App/eManager.3, which is interpreted as a three that belongs to the
App/eManager. This is how different managers use literais. Managers and their use are discussed in Chapter 4.

19permitted only when the expression is used as a statement.

IM is the predefined/nteger Manager (See Section 6.2.6). The syntactic sugaring is only provided for predefined
integers and booleans.

20Since iterators are only permitted in for statements, this notation is permitted only when the expression is the
iterator in a for statement.

21Boo/eans is the predefined manager of booleans. See Section 6.2.3.

Section ;3.3.5 Name Expressions 47

L 22 IM.Literal(&L)

where el and e2 are any expressions, L is any integer literal and &L is the name of a special

predefined procedure (see Section 3.3.6). The parser uses standard arithmetic precedence

and association for these expressions. The order of parsing may be changed by parentheses

in the conventional way.

3.3.6. In teger Li terals

Integer literals may be used as name components and as expressions, z3 though they play an

unusual role. Each literal represents an unnameable, predefined procedure that returns a

Word object (a predefined class, see Section 6.2.7) which contains the appropriate integer

value in it. Further, the presence of a literal causes a call to another predefined procedure,

Literal, to be made. The specification for the Literal procedure is

p rocedure L i t e r a] (C M . W o r d) z4 r e t u r n I n t e g e r ;

Literal transforms a word into an integer, using whatever implementation is appropriate. Thus

Paragon, interprets the name expression AppleManager.3 as AppleManager.Literal(&3) w h e r e

&3 is the function that returns a new word with three in it. Therefore a literal first causes a new

word of memory to be created and the literal to be placed in it. Then a representation-specific

conversion routine is called, Literal, which may transform this word into any representation for

Integer that is ,desired.

As I explain in the next chapter, Paragon uses an object manager model for data

abstraction. One predefined variable is a manager for ;ntegers, called IM (integer manager).

These details are not important yet, except as an explanation of some syntactic sugaring that

Paragon provides. Because predefined integers are used so frequently, Paragon has a further

transformation of expressions that are only used for integer literals. Specifically, should an

integer literal appear as the first (or only) name component, the component IM will be

prepended to it. Thus the expression 3 is rewritten as IM.Literal(&3).

22This i=s an unqualified literal, thus as the replacement shows, it becomes qualified as a predefined integer.

23The expressions are transformed into two name components as defined in the previous section.

24CM is the predefined manager for Computer Memory.

Section 3.4 Parameters 48

3.4. Parameters

Parameters are objects that are shared with other objects or procedures to provide some

flexibility in object creation and procedure invocation. Parameters can be used when

declaring procedures, declaring Classes, invoking a procedure and instantiating a class, In

this section, the basic syntax of parameters is discussed, followed by a description of the way

in which parameters are passed. The section concludes with a discussion of how type

parameters are provided in Paragon.

3.4.1 . Syntax of Parameters

A parameter is a name expression with one restriction and one addition. The restriction is

that no definite object may be created in a parameter. Thus the reserved word new may not
.

appear anywhere in a name expression used as a parameter. The addition is that name

components may be labeled, When comparing two parameters, the identifiers used as labels

become bound to objects and these identifiers may be used inside of classes or procedures

that declared the labeled parameters. Labels in parameters are defined by placing an

identifier followed by a colon (:) before a component. Two labels, one for each simple object

in a nested object, are illustrated below:

H: House . R: Room

Note that more than one name component in a name expression may be labeled. However,

only one label per name component is permitted. An identifier that labels a name component

is said to be impl ic i t ly declared.

The only additional semantics for elaborating a parameter describe the effects of a labeling.

Most of the semantics concern what happens when two parameters are compared which is

discussed in the next section. There are some additional esoteric semantics concerning class

inheritance that are not discussed here. 2s

25When a name component is labeled, the corresponding innermost simple object that results from the
elaboration of that name component is also labeled (with the same identifier). The labeling used in the object notation
parallels the notation in the name component: the identifier followed by a colon. Thus the object that results from
elaborating the previous example is (H: any House. F~: any Room). This labeling of simple object is used only for
ensuring that parameters are properly inherited by subclasses, and that procedure implementations match their
specifications.

Section 3.4.2 Parameters 49

3,4.2. Comparing Objects

Although comparison of objects is used for many purposes, it forms the basis for parameter

passing and so will be discussed here.

A relation called matching or conforming may exist between an actual object and a formal

object. The terms actual and formal are used in the conventional sense. Unlike the type

equivalency relation in many programming languages, this relation is not symmetric. When an

actual matches a formal, there is no implication that the formal matches the actual.

Matching is used for comparing parameters. At different times, the same parameter may be

used as a formal and an actual. The following table summarizes the kinds of comparisons that

occur in Paragon.

Actual

Procedure Call Parameter
Procedure Call Parameter
Class Instantiation
Subclass Declaration Parameter
Procedure Implementation Parameter

3.4.2.1. Simple Object Matching

Formal

Procedure Specification Parameter
Procedure Implementation Parameter
Class Declaration Parameter
Class Declaration Parameter
Procedure Specification Parameter

The basis for matching is the comparison of two simple objects. Intuitively, an actual simple

object matches a formal simple object if the underlying class of the formal is a ancestor of, or

the same as, the underlying class of the actual simple object. As will be shown in Chapter 4,

'his permits general procedures 26 to be written and provides a way to write multiple

implementations for abstract data types. To ensure compatibility between definite and

indefinite instances, one of the following constraints must also be met:

• The formal is an any instance,

• The formal is an indefinite instance and the underlying class of the formal is a
ancestor of, or the same class as, the underlying class of the actual, or

• The formal is a definite instance and the actual is the same definite instance.

26Procedures that use only abstract properties of their parameters.

Section 3.4.2.1 Parameters 50

These rules can be illustrated using the following declarations and procedure calls 27

procedure
procedure
procedure
procedure

Wash(any);
DriveUninsured(Vehicle);
DriveUnqualified(Tank);
DriveInsured(MyCar);

var YourCar => new Vehicle;

Wash(MyCar); I OK;
Wash(Vehicle); I OK;
Wash(any); I OK;

OriveUninsured(MyCar); I OK;
DriveUninsured(YourCar); ! OK;
DriveUninsured(Tank); I OK;

D r i v e U n q u a l i f i e d (M y C a r) ; I Not OK;
D r i v e U n q u a l i f i e d (T a n ' k) ; I OK;
D r i v e U n q u a l i f i e d (V e h i c l e) ; I Not OK;

O r i v e l n s u r e d (M y C a r) ; I OK;
O r i v e l n s u r e d (Y o u r C a r) ; I Not OK;
D r i v e l n s u r e d (T a n k) ; I Not OK;

In the example above, the procedure Wash has an any parameter, thus the definite instance

denoted by MyCar (see page 45), the indefinite Vehicle and the any instance all match the

formal. For the calls of DriveUninsured, the formal is an indefinite Vehicle, thus definite

instances MyCar and YourCar match because they have Vehicle as their underlying classes.

Further, the indefinite instance Tank matches since it is a subclass of the formal, Vehicle 28.

The formal of DriveUnqualified specifies that a Tank must be passed. Thus the definite

instance of MyCar and the indefinite instance of Vehicle do not match. However, the indefinite

instance Tank does match since it is the same class as the formal. The final procedure,

Drivelnsured has a definite object in its parameter, denoted by MyCar. Therefore, only that

definite object may be used as an actual. Thus the actual in the call using MyCar matches the

formal, the other two do not.

Another set of constraints ensures that parameters in the actual match the parameters in

the formal. Thus one of the following must be met for two simple objects to match:

• The formal is an any instance without parameters, or

27Although procedures are not discussed until Section 3.5, I assume that the reader can understand these simple
examples.

28This is how type parameters are passed.

Section 3.4.2.1 Parameters 51

• The formal is an any instance with parameters, the number of parameters in the
formal object equals the number of parameters in the actual object, and from left
to right, each parameter object in the actual object matches the corresponding
paJrameter object in the formal object, or 29

• The formal is a definite instance and the actual is the same definite instance, or

• The formal is an indefinite instance, and for each parameter in the formal, the
corresponding parameter actual object matches the formal parameter object. 3°

Some examples of these rules are shown below:

class CarCarrier(v: Vehicle) is begin end;
var RoadWays => new CarCarrier(MyCar);

procedure
procedure
procedure
procedure

RunAnything(any);
RunVehicle(any(Vehicle));
RunRoadWays(RoadWays);
RunMyCar(CarCarrier(Vehicle));

RunAnything(RoadWays) I OK;
RunVehicle(RoadWays) I OK;
RunVehicle(MyCar); I Not OK;
RunRoadWays(RoadWays) I OK;
RunMyCar(RoadWays) I OK;

The class CarCarrier has one parameter, so the definite instance RoadWays has one

parameter. Here, the parameter is the definite instance denoted by MyCar. The definite simple

object denoted by RoadWays is used as an actual in five procedure calls. The first call,

RunAnything has a formal that is an any instance with no parameters. Thus the actual

matches the formal by the first rule. The second call, RunVehicle is also an any instance, but

the actual must match the one parameter of the any instance, here Vehicle. The parameter in

the actual, MyCar, matches the parameter in the formal Vehicle, sO actual matches the formal.

The third call, also of RunVehicle, is not permitted. The formal of RunVehicle requires one

parameter and the instance denoted by MyCar has no parameters. Thus MyCar does not

match any(Vehicle). The actual in the call of RunRoadWays is the same instance as the

formal in RunRoadWays, thus it matches as stated in the third rule. The formal in the last call

requires the parameter to CarCarrier to be an indefinite Vehicle. Because the parameter in the

29This is used primarily in pattern statements. See Section 5.5.4.

30It is possible that the formal has fewer parameters than the actual and the actual still matches the formal. This
fascinating situation requires several class and variables to illustrate it. These cannot be declared with only the
knowledge of the current discussion, Thus no example will be illustrated here; I iust wanted to point out why the
second rule includes a clause requiring the same number of parameters while the last rule only requires
"corresponding" parameters to match.

Section 3.4.2.1 Parameters 52

actual, MyCar, matches an indefinite Vehicle, the actual matches the formal as stated in the

fourth rule.

Finally, there is a rule to ensure that labels match:

• If the actual simple object is labeled, then the formal simple object must be
labeled with the same identifier.

This rule is used primarily when checking a procedure implementation against its

specifications, as shown below:

procedure DriveVehicle(v:Vehicle);
procedure DriveVehicle(v:Vehicle) is
procedure DriveVehicle(x:Vehicle) is

I Procedure Spec.;
; ! OK Impl.;
; I OK Impl.;

procedure D r i veTank (Tank) ; t Procedure Spec . ;
procedure DriveTank(t:Tank) is . . . ; I OK Impl.;

The first procedure specification, DriveVehicle, has two implementations. The first is legal

because its parameter is labeled like its specification; the second is illegal because its

parameter is labeled differently. The second procedure, DriveTank, has one implementation.

The parameter in that implementation matches the parameter in its specification since the

parameter in the specification is unlabeled. As the rule states, the labels must match only if

the formal has a label. 31

The process of comparing simple objects also causes a binding of objects to identifiers to

happen. In particular, if ~ e formal simple object is labeled, then a side effect of a successful

comparison is a binding of the identifier in the label, to the object which consists of the actual

simple object and its environment, in more conventional terms, all binding in Paragon is by

reference.

3.4.2.2. Object Matching

For most purposes, an actual object matches a formal object if the two objects have the

same number of simple objects and corresponding simple objects match. There are

circumstances where an actual object may have more simple objects that a formal, such as

illustrated below:

31Recall that when comparing implementations to specifications, the specification acts as a formal and the
implementation as an actual.

Section 3.4.2.2 Parameters 53

c lass House is
begin

class Furniture is
begin

procedure Polish(House
end;

class Kitchen is
begin

class Refrigerator
end;

end;

Furniture);

of Furniture is begin end;

vat MyHouse :> new House;
var MyKi tchen => MyHouse new K i t c h e n ;
var MyFr ig => MyKi tchen new R e f r i g e r a t o r ;

. . . P o l i s h (M y F r i g) . . .

The formal parameter in the declaration of Polish is the object (any House, any Furniture)

while the actual parameter in the invocation of Polish is the object

(House, Kitchen, Refrigerator). Intuitively, the formal object states the requirements for the

procedu~re's parameter, namely that an object that is a house containing a piece of furniture

(refrigerator) must be passed. Clearly, the actual meets this criterion but it happens to have

some extra stFucture that procedure Polish does not require, the Kitchen simple object.

Paragon allows skipping of such simple objects in the actual object. Full details of how simple

objects are skipped during comparison are given in Section A.3 in an appendix.

3.4.3. Type Parameters

Because Paragon represents parameters as merely another object, it is possible to simulate

type parameters by passing a name expression containing indefinite instantiations as an

actual parameter, This is illustrated with the following piece of Paragon:

class MyType is begin end;

procedure F(t: any) . . . is
begin

var Local => new t;

end;

. . . F(MyType) . . .

The formal parameter for the procedure F, that is, t, is later used in an object creation, hence t

is used like a type name in most languages. The invocation of F has an actual parameter that

Section 3.4.3 Parameters 54

is an uninstantiated instance of MyType and therefore does not have the definite, object.

creation elaborations associated with it. Thus, the object being passed to F appears like, and

is used as, a type. 32 Through the use of indefinite instances, Paragon permits the structure of

classes to be exploited without any definite instances being created, thus Paragon

parameters can effectively simulate type parameters.

3.4 .4 . Parameters to Classes

As alluded to in the beginning of Section 3.4, class declarations may have parameters. Any

object creation, whether an indefinite instance or a definite instance, must provide directly or

indirectly the same number of actual parameters in the name component as there are formal

parameters in the class declaration. The actuals are directly provided if they are explicitly

written in the name component between parentheses: for example, new array(I,100). The

actuals are indirectly provided if no parenthesized list of expressions is provided in the name

component and the identifier in the name component is bound to an object, for example, a

variable. This is illustrated below by extending the examples on pages 53 51:

. . . F(RoadWays)

In this example, the instance denoted by RoadWays is used as a type inside of F when

creating the instance for Loca/. However, the underlying class for RoadWays, that is

CarCarrier, requires a parameter. None is specified in the name component new T in F, so the

parameter comes from the instance denoted by T, which is the instance denoted by

RoadWays. Therefore the parameter becomes MyCar. In general, the actuals to be used then

come from the innermost simple object in the creation environment that has the same

underlying class as the simple object being created. In short, the parameters are copied from

the current environment. &~

A class declaration with parameters may have subclasses, each of which inherits the

parameters of the parent and may declare additional parameters. This is illustrated below:

32Although a definite object may also be passed, to do so is unnecessary. If a definite instance is passed, only its
"type" wilt be used.

33A previous version of Paragon permitted default expressions to be declared in parameters. These defaults would
be used when actual parameters were indirectly specified. However, it was difficult to define the environment in
which the default expressions should be elaborated, so this feature was removed from the design.

Section 3.4.4 55

c lass
begin
end;

No example in the main body of this thesis both defines and inherits parameters. However.

such parameters are illustrated in Section A.7.

Parameters

ArmyCarrier(v:Vehicle,Tank) of CarCarrier is

Assuming that a class inherits parameters from at most one parent and does not declare

more parameters, then the objects denoted by the subclass parameters must match the

corresponding parameters in that one parent class. This is illustrated below:

class TankCarrier(v:Tank) of CarCarrisr is
begin
end;

The parameter in TankCarrier matches the parameter in CarCarrier, that is, v:Tank matches

v:Vehicle. For more examples, see the class declarations on page 111.

However, it is possible to inherit parameters from more than one parent, even if the parent

classes share an ancestor that has a parameter. The process for ensuring that the parameters

of the subclass properly match the parameters of the parents is more complicated. To

properly discuss the algorithm requires a precise definition of defined and inherited

parameters, and a description of the correspondence between a defined parameter in a class

and an inherited parameter in a subclass. For all examples in this thesis, one may use the

intuitive concepts of "defined" and "inherited" parameters and assume that

"corresponding" means pairwise, that is, the ith parameter in one list of parameters matches

the ith parameter in another list. Section A.7 gives all of the details of parameter inheritance,

parameter correspondence and parameter matching.

3.5. Procedu re Specif ications

Procedures in Paragon provide the conventional procedural abstraction associated with

high-level languages. Unlike most languages, procedures are separately specified and

implemented. This section discusses procedure specifications while the next section

(Section 3.6) discusses procedure implementations. Further, Paragon uses procedures to

specify and implement iterators but a discussion of iterators is postponed until Section 3.7.

Each section gives an overall view of the syntax and semantics of the corresponding feature.

Section 3.5.t Procedure Specifications 56

3.5.1. Overall Syntax of Procedure Speci f icat ions

Procedure specifications consist of an identifier, some optional formal parameters, an

optional specification for a returned or yielded object and some optional constraints. An

example of a procedure specification is given below:

p rocedure Compare(L :any ,R:any) r e t u r n B o o l e a n s . B i t
such t h a t L . s t r u c t u r e same as R . s t r u c t u r e ;

The specification for the procedure Compare states that it takes two parameters which may

be any objects at all and returns an object that matches the predefined boolean object. It also

has one constraint. Roughly speaking, the constraint states that the two parameters must

have the same structure, that is, two Vehicles or two Tanks, but not a Ship and a Tank.

More detailed descriptions of each of these pieces of a specification are given in the next

sections.

3.5.2. Parameters

The parameters in a procedure specification are name expressions that have neither name

components with the reserved word new (that is, no definite instantiations) nor any procedure

invocations. 34 Intuitively, a formal parameter is supposed to define the structure that actual

parameters must match.

3.5.3. Return Expression

The return expressio~ is an expression that describes the object that the procedure

provides. Like the parameters of the procedure specification, it may not contain definite

instantiations or procedure calls. However, it may use identifiers that are used as labels in the

parameters of the procedure specification. Such a use is convenient for expressing the fact

that a return object has a similar structure to one of the parameters. In the following

procedure specification:

procedure Copy(A:any) return A.structure;

the return expression for the Copy procedure describes the returned object as having the

same structure as the parameter.

34This means that array(im.integer) is permitted but array(lO) is not permitted, since 10 is an implicit procedure
call.

Section 3.5.4 Procedure Specifications 57

3.5.4. Constraints

Constraints can be used to specify some relationship between parameters. This is

necessary because the ordinary parameter passing mechanism does not always provide the

appropriate information that a procedure requires. One example of this problem occurs when

specifying addition for numbers, as illustrated with the following declarations: 35

c lass Number is begin end;
procedure Plus(L:Number,R'.Number) re tu rn Number;

The class declaration for Number iS intended to be used to describe any kind of object that

meets some minimal abstract property (in the programmer's mind): for example, the group

axioms. The group axioms also define the existence of a binary operation that may be used

on elements of the group, here Plus.

The programmer may refine Number into more precise specifications of real numbers and

complex numbers, as shown below:

c lass Rea| of Number is begin end;
c lass Complex of Number is begin end;

However, this additional level of abstraction has no notion that elements from two different

groups should be allowed to interact. Even though Plus should operate on two Reals and two

Complex numbers, there is no intention for Plus to work on a Real and a Complex together.

To enforce this desire, a constraint is added, as illustrated below:

procedure Plus(L:Number,R:Number) re tu rn Number
such tha t L . s t r u c t u r e same as R . s t r u c t u r e ;

Constraints return a truth value, that is, true or false. In this example, the value is

determined by elaborating the name expressions in the constraint, that is. L.structure and

R.structurel and then checking to see if each matches the other. Thus this constraint ensures

that Reals may only be added to Reals, Complex numbers to Complex numbers,

Paragon provides for other kinds of constraints, but they are rarely used. The interested

reader iis referred to Section A.9. All procedure constraints are elaborated only when

procedure calls are elaborated with specifications.

35These declarations are not those used in Paragon for predefined integers.

Section 3.6 Procedure Implementations 58

3.6. Procedure Implementations

A procedure implementation describes how a particular operation should be performed.

Each procedure implementation implements a single procedure specification. However, there

may be several implementations for each specification in a program. An appropriate

implementation wilt be chosen for each call of the procedure, though a discussion of the

selection process is deferred until Section 5.5.5. In this section, the syntax and semantics of

procedure implementations and procedure calls will be given.

3.6.1. Overall Syntax of Procedure Implementations

Unlike other declarations, procedure implementations may appear only in the same class as

the procedure specification or in any subclass of the class that contains the procedure

specification. This ensures that each procedure implementation has a readily identifiable

procedure specification that it is implementing.

Syntactically, a procedure implementation resembles a class declaration. The ubiquitous

factorial procedure illustrates this syntax:

procedure Factorial(IM . n :integer) return IM.integer is
begin

i f n <= 1 then
re tu rn 1;

else
re turn n * Fac to r i a l (n - 1);

f i ;
end;

The syntax is conventional: There is an identifier followed by optional parameters. A return

expression, if present, is next, followed by the body of the implementation. The body may have

any number of declarations followed by any number of statements.

3.6.2. Parameters

The same restrictions and admissions for parameters in a procedure specification apply to

parameters in a procedure implementation. Unlike most languages, the parameters in the

implementation need not be identical to the parameters in the specification. All that is

required is that the parameters of an implementation match the corresponding parameters of

the specification. In the same manner, the return expression of a procedure implementation

must match the return expression of the specification. Either both or neither must have a

return expression.

Section 3.6.2 Procedure Implementations 59

No constraints are permitted in a procedure implementation, Unlike procedure

specifications, procedure implementations may be intended to work on several different

implementations. Since each implementation would have a different structure, a constraint

that checked tlleir structures would return false. Thus the constraint would forbid the desired

action: a procedure working with different implementations. In retrospect however, the

decision to eliminate constraints in procedure implementations may have been unwise.

Section 4.6.1 discusses some possible uses of constraints in procedure implementations.

3.6.3. Return Statement

A procedure may contain a return statement. The expression in the return statement must

match the return expression. If no return expression is present in the procedure

implementation, then no return statement may contain an expression. Conversely, if the

procedure implementation has a return expression, then each return statement must have a

matching expression.

3 .6 .4 . Procedu re Invocat ion

A procedure invocation causes an instance of a procedure to be created, elaborated,

possibly suspended (if an iterator, see Section 3.7.1) and eventually terminated. These actions

take place for both procedure specifications and procedure implementations, though these

invocations occur during different elaborations. 36

Like the elaboration of all name components, a name component that denotes a procedure

invocation 37 starts by locating the appropriate procedure in its environment. During

elaboration with specifications, an appropriate procedure specification is found; during

elaboration with implementations, an appropriate implementation or specification is found,

and during elaboration with realizations, an appropriate implementation is used. Therefore

the elaboration with specifications checks that the procedure call meets the procedure's

specification, the elaboration with implementations finds a feasible implementation and the

the elaboration with realizations uses the implementation chosen during elaboration with

implementations as the procedure to actually execute,

361n particular, invocations of procedure specifications occur only during elaborations with specifications and
implementations while invocations of procedure implementations occur only during elaborations with
implementations and realizations.

37A name component that denotes a procedure invocation is a procedure-invocation name component.

Section 3.6.4 Procedure Implementations 60

After the appropriate declaration is found, the formal and actual parameters for the

procedure invocation are elaborated and compared. Assuming that the parameters match, an

instance for the procedure is created and appended to the environment in which the

invocation name expression is being elaborated. The body of the procedure, if any, is then

elaborated. During elaboration with specifications and implementations, the procedure

invocation is terminated when the end of the declaration is reached. Then the return

expression in the procedure declaration, if any, is elaborated. The object that results from the

elaboration of the return expression is then used as the environment for the next component.

Alternatively, it can be used as the object that results from the elaboration of the name

expression for which this invocation is the last component.

These elaborations areillustrated bythefollowing examples:

class Example is
begin

class Inner is begin end;

procedure Copy(Example) return Example;
procedure Copy(Example) return Example is

procedure Endit(Example);
end;

var vl => new Example;
vat v2 => new Example;
vat v3 => new Example;

I Spec.;
. . . ; I Impl . ;

I Spec.;

vl . Endit(vZ.Copy(v3).Copy(vl));] Statement;

When the statement is elaborated with specifications, the specification for End/t in vl is found.

The actuats for this call are elaborated with specifications which causes the specification of

Copy inside of v2 to be found. During elaboration with specifications, the return expression of

Copy is elaborated (here Examp/e) and returned as the environment for the next component,

which is another call of Copy. This process is repeated, and again the return expression

Examp/e is elaborated with specifications. This results in an indefinite instance of Examp/e

which is the actual parameter for the call for Endlt.

During elaboration with implementations, this process is repeated, except that the

implementation for Copy is found wherever the specification was found. A search for an

implementation of End/t occurs, but none are defined here. Thus the specification is reused

during elaboration with implementations. The exact way that an implementation is selected for

a procedure call is described in Section 5.5.5.1.

Section 3.6.4 Procedure Implementations 61

During elaboration with realizations, the invocation is terminated when a return statement in

the implementation is elaborated. If an expression is present in the return statement, it is

elaborated with realizations and is used as the environment for the next name component. If

the end of the procedure is reached without a return statement being elaborated, the

procedure is terminated and no object is returned. Under these circumstances, the procedure

declaration must not have a return expression.

Like the instantiatJon of classes, a procedure invocation is said to create a simple object.

There is always exactly one local instance, namely the one that results from the elaboration of

the decllarations and statements in the procedure's declaration. A procedure specification

also has a local instance, though it is empty as there are no declarations or statements in a

specification. This simple object is appended to the environment 3a in which the procedure

call was made to form the environment in which the procedure body is elaborated. This is

illustrated below using the declarations for Example above:

w~r I in VI => vl new Inner;
v l . C o p y (. . .) ;

In the variable declaration, a definite simple object is created inside of the definite simple

instance denoted by vl. In the procedure call, a definite simple object for the invocation of the

Copy procedure is created inside of the definite simple instance denoted by vl. Both objects

consist of two nested simple objects. The innermost simple object for the first came from

instantiating a class. The innermost simple object for the second came from invoking a

procedure. The local instances for the first come from the ancestors of the class declaration

and the class itself. The local instances for the second come from the declaration of the

procedure specification. As shown in Section 5.4, the local instances in both simple objects

may change. This view of procedure invocations is useful for making representation

selections and the pattern matching statement. This last use is discussed in Section 5.5.4.

38Recall that an environment is an object.

Section 3.7 Iterators 62

3.7. Iterators

Because iterators are not present is most languages, this section first gives a brief

description of iterators and then discusses how they are declared in Paragon. Some special

statements that are associated with iterators, for, yie/d and return, are then described. Lastly,

termination of iterators, especially through the use of an exit/oop statement, is discussed.

3.7.1. Overv iew of iterators

An iterator can be thought of as a black box that, once started, produces a sequence of

objects on request. The starting of an iterator is termed invocation or call, and the process of

providing the next object in the sequence is termed yielding. After the iterator has returned an

object, the iterator may be continued, either to provide another object or to terminate. When

no more objects are to be yielded and the iterator may not be continued, the iterator has

terminated. After the last object has been yielded, an iterator may be continued to perform

some actions that do not result in the yielding of an object but instead result in termination of

the iterator. A terminated iterator may not be continued.

In Paragon, this process only happens in a for statement, such as illustrated below:

for" i in Sequence (I , 10) do
• = =

end f o r ;

Here the iterator is called Sequence and the invocation of the iterator starts when the for

statement is elaborated. The process of calling an iterator is identical to calling a procedure:

a simple object is created, the parameters checked and identifiers bound, a local instance

created and added to the simple object, the simple object is appended to the calling

environment and elaboration of the declarations and statements within the iterator's body

commences.

Unlike a procedure, an iterator may have a yie/d statement which causes suspension of the

iterator. The yie/d statement contains an expression which is executed when the yie/d

statement is executed. The object that results from the expression is bound to the loop

identifier in the for statement, for example, i in the example above. The statements inside the

for statement are then elaborated. When the last statement in the for loop is elaborated (and

assuming that no exit/oop, return or goto statement is executed), the previously started

invocation of the iterator continues its execution as if the yie/cl statement had completed its

Section 3.7.1 Iterators 63

execution. This cycle continues until one of the following occurs: the iterator executes a

return statement; the iterator reaches the end of its implementation; a goto statement is

executed that transfers control out of the loop; or the for loop executes an exit/oop statement.

3.7.2. Iterator Specifications

The specifications for an iterator are identical to other procedure specifications except that

a yield expression must be present where the optional return expression is written. A

specification for Sequence might be:

procedure Sequence(IM.integer,IM.integer) y ie ld IM,integer;

Like other procedures, an iterator may have constraints applied to its parameters and its yield

expression may use identifiers that are bound in the parameters.

3.7.3. Ite rato r Implementations

The implementations of iterators are identical to other procedure implementations except

that the yield statement is permitted in an iterator implementation, but not in any other kind of

procedure implementation, and that there must be a yield expression where the optional

return expression is written. Like a procedure implementation with a return expression, the

yield expression in the implementation must match the yield expression in the specification. A

possible implementation for Sequence illustrates the syntax:

procedure Sequence(IM. low: integer,IM, high: integer)
yield IM.integer is

begin
var temp => IM . new integer;
tamp := low;
while tamp < high do

y ie ld temp;
tamp := temp+ I;

end;
end;

In combination with the previous for statement, this procedure yields the integers from low to

high and then terminates, ending the for statement. Thus this iterator matches the

conventional for statement found in most languages.

Section 3.7.4 Iterators 64

3 . 7 . 4 . Yie ld S t a t e m e n t

The yie/d statement is the way in which an iterator may suspend its operation, The general

form of the yield statement has two parts: a yielded expression and a conditional statement.

This is shown by the following BNF:

yield <expression> { when exitloop <statement> }?39

The expression in a yield statement denotes the object that the iterator returns. It is bound

to the index identifier in the for loop that invoked the iterator. This object must match the

object denoted by the yield expression in the heading of the iterator.

An iterator may be terminated by the execution of an exitloop, return or goto statement in

the for statement's body. When this happens, the optional when exitloop ~statement> permits

the iterator to perform some last actions before it is terminated. The statement following the

reserved word exitloop is usually a goto statement which jumps to a part of the iterator that

performs some final action. If the statement does not cause any transfer of control, execution

after the statement continues just after the yield statement. (However, the iterator may not

execute any more yield statements. It must terminate by executing a return statement or by

reaching the end of the procedure.) If no optional statement is present and an exitloop, return

or goto statement causes a loop to terminate, then the iterator will be terminated without any

further execution.

3 . 7 . 5 . R e t u r n S t a t e m e n t

The return statement provides an explicit way for an iterator to terminate itself. Unlike the

return statement used in other procedures, the return statement may not have the optional

expression. Thus the syntax is trivial and is simply the reserved word return. Recall that an

iterator may also terminate itself by reaching the end of its body.

39The notation { x }? means that x is optional.

Section 3.7.6 Iterators 65

3.7.6. I'or Statement and Iterator Invocations

The for statement invokes and continues an iterator, binding an index parameter each time,

and executing the statements in its body. An example of a for loop is shown below:

war i => IM . new integer;

w~r iZ => IM . new integer;

fo r i in Sequence(I,100) do
i 2 := i * i ;

end;

This for loop calculates the square for each value between 1 and 100.

The object denoted by the index identifier in the for loop must match the object that results

from elaborating the yield expression in the iterator. During execution, the returned object

from the iterator is bound to the index identifier, superseding any previous binding to that

identifier. During elaboration with specifications and implementations, the processing of an

iterator call is identical to the processing of a procedure call except the results from the yield

expression rather than the return expression are used as the result of the expression

elaboration. During these two kinds of elaboration, there is no notion of suspension or

termination of an iterator. Naturally, the object returned by elaborating the expression

following the reserved word in must come from an invocation of an iterator.

The for loop continues the iterator after each execution of the statements in the for loop. If

the iterator is continued because an exit/oop, return or goto statement was executed in the

body of the for statement, then the iterator must terminate without yielding any more objects.

Failure to terminate under these circumstances renders a program erroneous and continued

execution is undefined. If the iterator is continued because the last statement of the for loop is

finished and the for loop is performing the next iteration, then the iterator may yield another

object. When an object is yielded, it is rebound of the index identifier and the statements of

the loop are reexecuted. However, when the iterator is continued, it may terminate, causing

the execution to continue after the end of the for loop. When an iterator terminates, all

bindings that were set up during its execution are released, thus the index identifier becomes

undefined when the iterator terminates.

Section 3.7.7 Iterators 66

3.7.7. Exitloop Statement

The exitloop statement, whose syntax is shown below, is used to leave an enclosing loop.

exitloop { <identifier> }?

Although exit/oop statements may appear inside both while loops and for loops, only their

actions inside for loops are discussed here. Section 3.8.3 presents a discussion of exit/oop

statements in while loops.

The primary action of an exitloop statement is to terminate the loop in which it appears.

However, an exitloop statement also forces the continuation of the iterator of the for loop that

contains the exitloop. As explained in Section 3.7.6, the execution of the exitloop statement

causes any optional statement in the iterator's last executed yield statement to be executed.

However, the iterator may no longer yield any more values; it must terminate•

If an optional identifier is present in an exitloop statement, the actions performed by the

exit/oop statement may apply to several loops. The processing of each loop enclosing the

exit/oop statement is performed from innermost loop to outermost, until the loop that is

labeled with the identifier is found (see Section 3.8.1 for the syntax of labels.). An example is

shown below:

Outer =>
for i in Sequence(I,100) do

Inner =>
for J" in Sequence(i , lO0) do

. , =

ex i t l oop Inner;
. , •

ex t t loop Outer;
• •

end for;
end fo r ;

In this example, the execution of the statement exit/oop/nner will cause the inner invocation

of the Sequence iterator to be continued with the caveat that it must terminate, and then

execution Continues after the end of the inner loop. The execution of the statement

exit/oop Outer first causes the inner invocation of the Sequence iterator to be continued (with

the caveat that it must terminate) and then causes the outer invocation of the Sequence

iterator to be continued, again, with the caveat that it must terminate. Execution would then

proceed after the end of the outer loop. In general, after all of the relevant iterators have been

terminated because of an exitloop statement, execution continues immediately after the end

of the labeled (or innermost) loop.

Section 3.7.7 Iterators 67

3.8. Conventional Statements

Paragon also contains the usual complement of control structures and facilities which are

described in this section.

3.8.1. Labels

Any stlatement in Paragon may be labeled. The syntax is an identifier followed by -- >, and is

illustrated below:

InnerLoop => wh i l e True do . . . end loop;
LabelA => LabelB => i f True then n u l l ; f i ;

As shown, any number of labels may be prepended to a statement. However, identifiers for all

labels within a block of a procedure or class must be unique.

The labels are used in exitfoop statements and goto statements.

3.8.2. Procedu re Invocation

The simplest kind of statement is an expression. Perhaps the most common expression

used as a statement is assignment, for example:

var i => IM . new integer;

var .i => IM . new integer;

° . .

i := j ; ! R e a l l y the same as I M . A s s i g n (i , j) ;

N~ object may be returned by an expression used as a statement.

3.8.3. Condit ional Looping

In addition to the for loop, Paragon also provides a while loop, with a conventional syntax,

illustrated in the example Sequence implementation in Section 3.7.3. The conditional

expression must return an object that matches the predefined boolean object, that is, the

object resulting from the expression Boo/eans. Bit where Boo/eans is a predefined variable

identifier and Bit is a predefined class identifier. Like conventional while statements, the

statements in the loop will be executed once each time the conditional expression returns an

object with a True value. 40

40Such objects come from the predefined procedure True. Similarly, objects with a False value come from the
predefined procedure False.

Section 3.8.3 Conventional Statements 68

Transfer of control may also leave a white lOOp if a goto statement with target outside of the

while loop is executed, or an exitloop or return statement is executed. When such a goto

statement is executed, execution continues with appropriately labeled statement. When an

exitloop statement is executed, the execution of the program continues after the end of the

loop labeled with the same identifier as present in the exitloop statement. If no target label is

present in the exitloop statement, execution continues after the end of the loop containing the

exitloop statement.

3 . 8 . 4 , I f S t a t e m e n t

The /f statement provides a single, conditional execution of a sequence of statements.

Through the use of additional clauses, a list of conditions may be expressed. Like the while

statement, a conventional syntax for if statements is used, as defined by the following BNF:

if <expression> then
{ <statement> ; }.41

elseif <expression> then
{ <statement> ; }* }*

else
{ <statement> ; }* }?

fi

The conditional expressions following the reserved words ff and etseff must meet the same

criteria as the while loops' conditional expressions. Any number of statements may be present

following the reserved words then or else, any number of clauses beginning with elseif may be

present and an optional else clause may be present. Unlike many languages, the if statement

ends with the reserved word ft.

The execution of an ff statement is also conventional. Each conditional expression is

executed until one that has the truth value True is found. The statements following that

conditional expression are then executed. If no such conditional expression is found, and

there is an else clause present, then the statements in the else clause are executed. After the

appropriate sequence of statements are executed, and no goto, exitloop or return statement

has altered the flow of contro~ out of the clause, execution continues immediately following

the reserved word ft.

41The notation { x } ° means zero or more xs.

Section 3.8.5 Conventional Statements 69

3.8,5. Goto Statement

The goto statement causes unconditional transfer of control from the current statement to

the statement labeled by the identifier in the goto statement. The syntax is illustrated below:

goto End of Program;

The target of a goto statement, that is, the statement that is labeled with the identifier, must

be in the same class or procedure declaration as the goto statement. Further, the target

statement may not be in a loop that does not contain the goto statement (though the goto

statement may be nested inside of a deeper loop), nor may it be in an if clause (if, elseif, else)

that doe,s not contain the goto statement. However, the converse to these statements is not

true. One may write a goto statement that transfers control out of a loop or ff statement.

These conventional statements, along with procedures and classes, describe the basic

parts of Paragon, much of whose power lies in the ways that these basic parts can be

combined into sophisticated data structures. The next chapter discusses a particular data

structure that serves as the basis for writing abstract data types in Paragon, and illustrates

how some of goals of Chapter 2 can be realized.

Chapter 4
The Object-Manager Model

and
its Implementation

The language described in Chapter 3 provides a great deal of flexibility. In this thesis, a

particular model of programming, usually termed the object-manager model, is used. Nested

classes are used in several ways to implement this model: as generalization classes; as

specification classes; as implementation classes; and as cross-implementation classes. This

chapter describes this model of programming and shows how the simple features of Paragon

are applied to implement this model.

4.1. Object Managers and Nested Classes

The object-manager model divides program objects into two categories: managers and

individuals. The manager is created first and contains data and procedures that are shared

among all individuals. For each manager, there may be any number of individuals created,

and each individual has a single manager. Naturally, each individual may have private data

and procedures not shared with other individuals.

As an example of this model, consider integers. Each individual integer can be represented

as a word in memory. Further, there exists a procedure, Addition, that is shared among all the

individual integers, and so this procedure belongs to the manager of all integers,

4.1.1. Classes as Manager and Individuals

Within the Paragon language, classes are used for all objects, and so are used for both

managers and individuals. The shared declarations belong to the manager, and to allow

access to the shared declarations, the class for individuals is declared inside the class

declared for the manager. The integer example is illustrated with Paragon below;

Section 4.1.1 Object Managers and Nested Classes 72

class IntegerManager is
begin

I Shared data and,procedures go here ;
procedure Addition(Integer, Integer) return Integer;

I And the class definition for individuals ;
c lass I n t ege r i s
begin

var Rep => CM 42 . new Word;
end;

end;

With this model, it is necessary to create a manager before any individuals are created. Thus

to use any integers, a program must first create the manager:

var MylntegerManager => new In tegerManager ;

and only then can it create the individuals:

varn => MylntegerManager new Integer;
var Size => MyIntegerManager . new Integer;
var Low => MylntegerManager . new I n t e g e r ;

One uses shared data and operations by selecting them from the object manager. Addition of

two integers would look like:

. . . M y l n t e g e r M a n a g e r . A d d i t i o n (S i z e , n) . . .

This approach offers a great deal of flexibility, For example, it is possible to express that

certain kinds of integers may not interact. A frequently cited example of this requirement

concerns integers that represent counts of apples and oranges. One wishes the compiler to

enforce the rule that apples and oranges do not mix. Using the previous declarations this can

be accomplished as follows:

var AppleManager => new I n t ege rManage r ;
var OrangeManagar => new In tegerManager ;

var L i sa => AppleManager . new I n t e g e r ;
va r Mac in tosh => AppleManager . new I n t e g e r ;

var Navel => OrangeManager . new I n t e g e r ;
var Seedless => OrangeManager . new. I n t e g e r ;

With these variable declarations, the compiler for Paragon can check the legality of these

expressions:

42CM is a predefined variable for Computer memory Manager.

Section 4.1.1 Object Managers and Nested Classes 73

. . . A p p l e M a n a g e r . A d d i t i o n (L i s a , M a c I n t o s h) . . . I L e g a] ;

. . . OrangeManager .Addi t ion(Navet ,Seed]ess) . . . I Legal ;

, , . A p p l e M a n a g e r . A d d i t i o n (M a c I n t o s h , N a v e l) . . . { I l l e g a l ;

, , . O r a n g e M a n a g e r . A d d i t i o n (L i s a , S e e d l e s s) . , . I I l l e g a l ;
. . . A p p l e M a n a g e r . A d d ~ t i o n (N a v e l , S e e d l e s s) . . . I I l l e g a l ;

Note how the language catches the illegal procedure call of AppleManager.Addition with the

Macintosh and Navel parameters. The expressions for the parameters in the Addition

procedure are Integer which is declared in the IntegerManager class. Thus the Integer

indefinite simple object resides inside of the same simple object as the procedure Addition. In

the call of AppteManager.Addition, the containing simple object is (AppteManager), SO the

object tl~at results from the elaboration of each formal parameter during the procedure call is

(AppleManager,any Integer). The declaration for Navel shows that the definite Integer was

created inside the object denoted by OrangeManager, hence the object denoted by Navel

and an actuaJ parameter to this procedure call w is (OrangeManager, Navel). According to

the object comparison rules in Section 3.4.2.1, two simple definite objects match only if they

are the same definite object. OrangeManager and AppleManager are two different definite

instances of tntegerManager, so OrangeManager does not match AppteManager. Since the

two simple objects do not match, the two objects do not match and the procedure call is not

well specified.

4.1.2. Cross-Implementation Procedures

Under some circumstances, one might want to permit the intermingling of the different

integers. One may also specify such procedures in the class for the manager. The

CrossAddition procedure meets this requirement:

c lass IntegerManager is
begin

I Parameters from any manager ;
procedure CrossAddition(IntegerManager . Integer,

IntegerManager . Integer)
r e tu rn I n tege r ;

I The res t of the d e c l a r a t i o n s are unchanged ;
, , o

end:

With such a declaration of CrossAddition, one may add apples and oranges. This is because

the expressions in the formal parameters now contain an indefinite instantiation for the outer

simple object IntegerManager instead of the enclosing definite instance of IntegerManager.

Section 4.1.2 Object Managers and Nested Classes 74

With the particular declaration given above, the integer returned will belong to the manager

from which the procedure was selected. This is illustrated in the following code fragment:

. . . A p p l e M a n a g e r . C r o s s A d d i t i o n (M a c I n t o s h , N a v e l) . . .
I Re tu rns an App leManager I n t e g e r ;

. . . O r a n g e M a n a g e r . C r o s s A d d i t i o n (L i s a , S e e d] e s s) . . .
i Re tu rns an OrangeManager I n t e g e r

. . . App leManager . C r o s s A d d i t i o n (N a v e l , S e e d l e s s) . . .
I Re tu rns an App leManager I n t e g e r ;

The call AppleManager.CrossAddition(Maclntosh, Navel) is now legal because elaboration of

each formal parameter results in the object (any IntegerManager, any Integer), against which

the object (OrangeManager, Navel) now matches.

Paragon also allows for other combinations of managers and individuals. For example,

instead of using the manager from which the procedure was selected as the manager of the

returned individual, it is possible to select the manager of one of the parameters to explicitly

specify the return manager. Such an alternative declaration for CrossAddition and its use are

shown below:

procedure

return

CrossAddition(InManager: IntegerManager . Integer,
IntegerManager Integer)

InManager . Integer;

. . . AppleManager. CrossAddi t ion(MacIntosh,Nave]) . . .
I Returns an AppleManager Integer ;

... OrangeManager.CrossAddition(Lisa,Seedless) ...
! Returns an AppleManager Integer ;

. . . AppleManager.CrossAddit ion(Navel,Seedless) . . .
I Returns an OrangeManager Integer ;

4.2. The Manager Model in Other Languages

The object-manager model approach to programming abstract data types is supported in

many languages. For example, Ada provides a nearly identical facility, where the outer class

(that is, the manager) is declared as a generic package and the inner class is declared as a

type. Rewriting the examples of/ntegerManager above in Ada would look like:

generic package IntegerManager is
begin

type Integer is new Standard. In teger ;
function A d d i t i o n (L : I n t e g e r , R : I n t e g e r) returns In teger ;

end;

package AppleManager is new IntegerManager;
package OrangeManager is new IntegerManager:

Section .4.2 The Manager Model in Other Languages 75

Lisa: AppleManager . I n t e g e r ;
Macintosh: AppleManager . I n t e g e r ;
Navel : OrangeManager I n t e g e r ;
Seedless: OrangeManager I n tege r ;

. . , App leManager .Add i t ion (L isa ,Mac In tosh) . . .

. . , OrangeManager .Addi t ion(Navel ,Seedless) . . .

Clu, Atphard and Model [Johnson 76] give similar approaches, though the identifiers are

located in different places. In Clu, for example, the name of the inner class (the individual)

becomes the name of the cluster (the manager declaration), the reserved word rep is used for

the individual declaration, and variables are declared with the name of the manager. Shared

data among all individuals are declared to be owned by the cluster and are semantically

identical to variables declared in the outer class. Alphard uses the term static for such data in

the manager (form). Model terms the manager a space and the individual a type. In nearly all

languages that provide data abstraction, there are two separate language features: one for

the manager (outer class), and one for the individual (inner class).

Each of these pairs of constructions is similar to but not identical to classes. In particular,

there usually are restrictions on the different constructions that eliminate some capabilities.

For example, one cannot express the CrossAddition procedure in Clu. In Alphard, one can

only provide a single inner class declaration where, as we will see later, allowing multiple

inner classes permits a programmer to combine abstractions sele(~tively. Model and Ada limit

the kinds of parameters and declarations that may be used in the inner classes. In short, each

language embodies a certain sets of constraints that programmers are to follow when

applying the object-ma'lager model.

These constraints were not unmotivated. One motivation was conservatism. Model had a

goal to extend Pascal to include a data abstraction facility while leaving the rest of the

language largely intact; Ada had a specific requirement that its design should not extend the

state of the art. This thesis is intended to explore the object-manager model and type

hierarchies as much as possible, so a very general approach is taken.

Other language designs were also motivated by conciseness. In Paragon programs, a

rather large number of declarations must be written to declare an integer variable. The

restrictions of other languages can eliminate the need to create the manager explicitly

(Alphard, Ada), to specify implicitly the manager everywhere an operation is used (Clu) and to

eliminate (an explicit) inner declaration (Clu, Alphard, Model). In a production environment,

Section 4.2 The Manager Model in Other Languages 76

extreme verbosity might cause programmers to shy away from a language, thus it is

appropriate that these other languages made such restrictions. As an investigation of the

properties of type hierarchies, the Paragon design opted for the verbosity and flexibility.

The subject of the tradeoff between verboseness and flexibility will recur as this model is

explored further.

4.3. Hierarchies for Specifications

The integer example on page 72 so far lacks a number of operations that one normally

expects for integers, for example, more arithmetic operations, comparison operations,

transput operations and simple assignment. In most data abstraction languages, if an abstract

data type were to include such operations, they would all be specified in the outer class (form,

cluster, model, and so on). Some languages, such as Ada and Clu, do not require certain

operations to be named explicitly in the manager's declaration. In Ada, a nonlimited private

type automatically has the assignment and equality operations defined for it. In Clu, the

presence of certain external representations (xrep) imply that encode and decode operations

have been defined for use by the Transmit procedure in a Port cluster. These special features

are not required in Paragon. For example, the special features in Clu can be represented in

Paragon as follows:

class Transmissible_Type is
begin

c]ass Internal_Rep is begin end;
class Externa]_Rep is begin end;
procedure Encode(Internal_Rep) return External_Rep;
procedure Decode(Externa]_Rep) re turn In te rna l Rep;

end;

class Port_Manager is
begin

class Port is
begin

procedure Transmit(Transmissible_Type , In ternal_Rep);
end;

end;

The Transmit procedure in the Port class can guarantee that its parameter can use the

Encode procedure without recourse to additional features in Paragon for the Encode

procedure or the Transmissib/e_Type class.

In practice, there are many such groups of related operations. In addition to assignment

Section 4.3 Hierarchies for Specifications 77

and me~age passing, one might consider the ability to be ordered, hashed and stored in a file

to be properities that may or may not apply to newly declared abstract data types. Rather than

select some predefined sets of operations and give them special treatment, Paragon uses the

inheritance mechanism for specifying such properties.

4.3.1. Generalizations

By properly defining a set of classes for each set of operations that one might want to inherit

later, one can provide the same predefined features that other languages do without limiting

the choices of operations. For example, a set of declarations that simulate the concept of

nontimited in Ada is shown below:

class AssignableManager is
class Assignable is begin end;
procedure Ass ign(Ass ignab le ,Ass ignab le) ;
procedure Equal(Assignable,Assignable) re turn Booleans.B i t ;

end;

An object manager that inherits the AssignableManager class would then define an unlimited

type. Extending the previous IntegerManager example shows this property:

class IntegerManager of AssignableManager is
begin

I Shared data and procedures go here ;
procedure Addit ion(Integer, lnteger) return

! And the class def in i t ion for
class Integer of Assignable is
begin

var Rep => CM new Word;
end;

individuals

Integer;

end;

One could then write

AppleManager.Assign(Lisa,MacIntosh);

just as if one had included an Assign procedure specification in the declaration of

IntegerManager.

By examing the predefined environment for Paragon in Section 6.2, one can examine a

number of these prefix classes declared for later use in the program. Classes used in this way

that is, where the programmer intends these classes to be inherited by other specifications

- - are termed generalization classes.

Section 4.3.2 Hierarchies for Specifications 78

4.3.2. Specifications of Abstract Data Types

In the previous section, a general overview of the object-manager model was provided and a

simple example for integers given. In fact, the example illustrates poor practice of data

abstraction because the representation of the individuals is visible. For example, there is

nothing that prevents a programmer from writing

. . . CM.P]us(L isa. Rep,Nave].Rep) . . .

thus directly manipulating the representation and violating the intended separation between

implementation and representation, A better declaration would have been:

class IntegerManager of Assignab]eManager is
begin

! Shared data and procedures go here ;
procedure Addition(Integer,lnteger) return Integer;

I And the class definition for individuals ;
c lass In teger of Ass ignable is begin end;

end;

These declarations still allow the programmer to create managers and individuals, and to use

the procedures declared in their respective classes. However, the new declarations prevent

the programmer, who specifies an integer variable, from manipulating the representation

directly. Later, in Section 4.5, I will discuss how to declare the representation for the

specification of an abstract data type.

4.4. Problems with Hierarchies for Specifications

Although the type hierarchy can express specifications for data abstractions, it does not

capture all the details of refining abstractions that 1 would like. Several inadequacies are

discussed in the following sections.

4.4.1. Const raints in P rocedu re Specifications

As first shown in Section 3.5.4, constraints must be added to procedure declarations to

capture the idea that the use of a subclass in a procedure parameter should be substituted for

each use of a class in the original specification. An naive attempt to provide a general

specification for the addition operation illustrates this problem:

Section 4.4.1 Problems with Hierarchies for Specifications 79

1 A genera] s p e c i f i c a t i o n

class AO Manager is
begin

class Addable_Object is begin end;
procedure Plus(L:Addable_Object,R:Addable_Object)

re turn Addable_Object;
end;

I Two refinements of the specification ;

class Number_Manager of AO_Manager is
begin

class Number of Addable_Object is begin end;
end;

class Matrix_Manager of AO_Manager is
begin

class Matrix of Addable_Object is begin end;
end;

By the rules of parameter matching, one may add Numbe~ and Ma~ces, which was probably

not intended by the programmer. The way to solve this problem is by adding constraints to the

specification of ~us, as follows:

procedure Plus(L:Addable_Object,R:Addable_Object)
re turn Addable_Object
such that L . s t r uc tu re same as R .s t ruc tu re ;

This has the effect of refining the specification of Plus along with the classes in its

parameters. An unwary programmer would leave out these constraints. The language should

provide some other way to refine the procedure's parameters.

4.4.2. Return Objects of Procedure Specifications

But the constraints were not enough for refining the parameters. As the specification is

written, the return expression specifies that the result of adding any two objects is an object

which is an Addab/eObject. However, if two Numbers are added, one expects a Number

result; if twO Matrices, then a Matrix. Not only must the parameters be refined when the

classes mentioned in the parameters are refined, but the return expression must also be

refined. This is accomplished by using the structure name component in the return

expression, as illustrated below:

Section 4.4.2 Problems with Hierarchies for Specifications 80

procedure Ptus(L:Addable_Object,R:Addable_Object)
return L .s t ruc tu re
such that L.structure same as R.structure;

With the specification above, the return object for the Plus procedure will reflect the class of

one of the parameters. Thus the last specification captures the probable interpretation of the

programmer.

A glance at the predefined environment in Section 6.2 shows that this is a rather common

situation. An alternative was to provide some kind of renaming rule, such as Ada provides for

derived types. In Ada, these renaming rules caused confusion during the test and evaluation

period of the language, and took a long time to settle into their final form. Thus it seemed risky

to try to conceive of a careful set of rules that easily capture the programmer's desires.

Instead, the more explicit method was selected.

4.4,3. Heterogeneous Data Structures

One goal relating to automatic program processing requires that static type checking of all

variables declarations (object creations) and procedure calls should be supported. However,

the requirement that all checking being performed statically, that is, without any reference to

execution of the program, results in a type system that is less flexible than other object-

oriented systems, such as Smalltalk. In Paragon, when an object is retrieved from a collection

of objects, the most information that can be discerned about the retrieved object is shared

information about any object in the collection. In the case of a single procedure call, more

information can be gleaned from the parameters of the procedure. This was illustrated in

Section 4.4.2 and is repeated below:

procedure Plus (L:Addabl e_Ob~ect, R :Addab] e_Object)
return L.structure
such that L.structure same as R.structure;

Normally, the Plus procedure maps two Addable_Objects into another Addable_Object.

However, by using one of the parameters in the return expression, the P/us procedure can

supply more information, namely that the object to be returned has the same structure as the

first parameter. Thus the addition of two Numbers will result in a Number; two Matrices, a

Matrix. The precise description of the return object can be examined by static type checking

since a procedure declaration closely couples the objects used as parameters with the object

coming from the procedure.

Section 4.4.3 Problems with Hierarchies for Specifications 81

Frequently, the insertion and retrieval of objects from a collection are not closely coupled in

a single procedure call. Then the static type checking cannot determine the precise structure

of the retrieved object and a more general description must be used. This situation is shown

below, where a symbol table is being defined for use in APL.

class APLSymboITableNanager(AO_Manager. t : Addable_Object) is
class APLSymboITable is begin end;

procedure Insert(IM. In teger , t) ;
procedure Retr ieve(IN,Integer) return t ;

end;

Identifiers in APL (represented here as predefined Paragon integers) may represent either a

number or a matrix, so one should be to create symbol tables that can insert and retrieve

Numbers and Matrices. If the symbol table is used for only Numbers or Matrices, then the

APLSymbolTableManager can be instantiated with the appropriate parameter as shown

below:

var MyMatrixManager => new Matrix_Manager;
wLr MyMatrix => MyMatrixManager new Matr ix;

vat MatrixTableManager =>
new APLSymboITableManager(MyMatrixManager . Matr ix)

var ST => MatrixTableManager . new APLSymboITable;

Si '° Insert(2,MyMatr ix);

ST. Ret r ieve(2) . . .

The underlying class of the returned object for a call of the Retrieve procedure can be

determined statically by examining the parameter for ST's manager, which here is

MyMatrixManager. Matrix. Thus the call of Retrieve will return a Matrix object. By the same

reasoning, static type checking will permit only Matrix objects to be inserted into the symbol

table.

But one may wish ~ include both Numbem and Matr~es in the same symboltable. An

in.ant i . ion ofAPLSymbolTabfeManagerwhich providesthiscapabilityisiltustra~d below:

var TSO => new APLSymbolTableManager(AO_Manager.Addable_Object);

vat ST => TSO. new APLSymboITable;

vat MyNumberManager => new Number Manager;
var MyNumber => MyNumberManager new Number;

Section 4.4.3 Problems with Hierarchies for Specifications 82

var MyMatrixManagsr => new Matrix_Manager;
var MyMatrix => MyMatrixManager new Matrix;

STiInsert(1,MyNumber);
ST.Insert(2,MyMatrix) ;

.ST.Retrieve(%)...
• . .ST.Retr ieve(2). . .

In this example, both calls of Insert are well specified, since the both second parameters meet

the specification AO_Manager.Addable_Object. Unfortunately, when the two calls of Retrieve

are performed, the structure of the returned object also is specified as

AO_Manager.Addable_Object, which is the common ancestor of Numbers and Matrices.

However, the program context of the retrieval operation may depend on the specific class of

the object that is being retrieved and use some specific information about it, such as inverting

a returned Matrix object. Another possibility is that the statement which includes the Retrieve

may wish to test at run time the kind of Addable_Object that is returned in order to perform

some representation-specific operation. But in Paragon, there is no way to distinguish the

kinds of objects that may be returned during elaboration with specifications, so any other

procedure calls that require more information about the return object from Retrieve will be ill

specified. Thus, the general description may be insufficient. Hence the requirement of static

type checking in Paragon makes general collection facilities, such as heterogeneous symbol

tables, difficult to write.

4.4.4. Adding Classes to an Existing Hierarchy

Besides the inconvenience of carefully specifying procedure specifications, the current

design makes a previously defined hierarchy difficult to change. There are two kinds of

changes that one might want to make which are difficult: one may want to add another

generalization class, and one may want to inherit only part of a class.

In the first suggested change, a new class is added that is intended to provide a property

that is inherited by other classes, such as hashing. Then all classes which might inherit this

new property, forexample, integers, logical values and pointers, must be changed to include

the new class. Similarly, all of the implementations of these classes might have to include

procedure implementations for the newly inherited specifications, here, probably a hashing

function. This is a lot of distributed work that must be performed to add another class to the

Section 4.4.4 Problems with Hierarchies for Specifications 83

hierarchy. Because changes to systems should be as local as possible, this effect of changing

many classes to add a new feature is undesirable.

The second change suggests that a class may not wish to inherit all of the specifications in a

parent class. As a simple example, suppose that an assignment procedure is needed by a

new class, but not an equality procedure. Then one might like to add the new class without

altering any other class. In fact, one must either inherit the equality procedure specification

with the assignment specification or split the class that has the assignment and equality

procedures into (in the worse case) three new classes: one class holds the specifications to

be inherited, one class the specifications that used to be inherited, and the third class inherits

the other two classes so that other classes that used to inherit the original specification can

now inherit this new combined class. The two program fragments below (with severely

abbreviated procedure declarations) illustrate this transformation:

l Old form

class Assignable_Manager is
begin

class Assignable is begin end;
procedure Ass ign(Ass ignab le ,Ass ignab le) ;
procedure Equal (Ass ignable,Assignable) re turn Booleans.B i t ;

end;

After the transformation:

I New form

class 0nly_Assign_Manager is
begin

class Only_Assign is begin end;
procedure Assign(Only_Assign,Only_Assign) ;

end;

I . ;

class All_Other_Specs_Manager is
begin

class A l l Other_Specs is begin end;
procedure Equa1(A11_Other_Specs,A11_Other_Specs)

re turn Booleans.B i t ;
end;

1 . • t

Section 4.4.4 Problems with Hierarchies for Specifications 84

class Assignable_Manager
of Only_Assign_Manager, All_Other_Specs_Manager is

begin
class Assignable of Only Assign, Al l_Other Specs is begin

end;
end;

With this transformation, one can now specify the new class as inheriting only assignment

without inheriting equality as follows:

class Strange_Manager
begin

. o ,

end;

of Only_Assign_Manager is

No other classes need to be changed with this transformation, but the breaking of a class into

several classes to accomplish the selective inheritance is aesthetically displeasing,

4.4.5. Refinement by Derivation

Actually, the last example is a particular example of commonly used paradigm for creating

specifications, which I call Derivation. One derives a specification by relating it to other

specifications and giving differences. Paragon only permits one to add new specifications,

thus restricting the kinds of objects that meet the specification, and does not allow one to

remove or alter a previous specification, thus changing the kinds of objects that meet the

specification. In the previous example, one wants to specify an object that it just like

Assignable except that no Equal procedure is available. As pointed out by other authors

[Lamb 83], this kind of derivation is useful in practice. Unfortunately, Paragon does not

provide a complete derivation facility.

Although the previous discussion illustrates that there are some ways of manipulating

specifications of abstract data types that are not supported by Paragon, the language does

support refinements of specifications and does allow multiple kinds of objects to be specified

in a single module.

Starting with generalization classes, a programmer can construct refinements that act as

specifications of abstract data types. Such classes are termed specification classes since they

provide a convenient way to specify abstract data types. The normal scope rules for Paragon

give the desired effect of allowing the programmer, who declares variables of a specification

class, access only to certain parts of a data object: namely those in the abstract data types

specifications. But a working program must have a representation for the abstract data type

Section 4.4.5 Problems with Hierarchies for Specifications 85

somewhere. In the next section, one way of writing implementations for a specification is

presented.

4.5. Hierarchies for Implementations

As specifications are refined from generalizations, implementations are refined from

specifications. This is accomplished through the use of subclasses. Typically, a subclass th~

is intended to implement an abstract data type contains the implement~ions for those

procedures specified in iS ancestors and contains subclasses for the nested classes.

Assuming that a full specification and implementation for computer words exists called CM,

an implementation for the IntegerManager/Integer classes is:

class WordlntegerManager.of IntegerManager is
begin

procedure Assign(L:WordInteger, R:WordInteger)
re turn WordInteger is

begin
CM.Assign(L.Rep,R.Rep);

end;

procedure Equal(L:WordInteger, R:WordInteger)
re turn Booleans.Bi t is

begin
re turn CM.Equal(L.Rep,R.Rep);

end;

procedure Add i t ion(L :WordIn teger , R:WordInteger)
re turn WordInteger is

begin
re turn CM.Plus(L,Rep,R.Rep);

end;

I And the class d e f i n i t i o n for i nd i v i dua l s ;

c lass WordInteger of Integer is
begin

var Rep => CM , new Word;
end;

end;

The conventional methodology for implementing an abstract data type requires that all

operations in the specification must be implemented, that a representation for the object must

be described and that there is some way to separate the abstract object from the concrete

object. Procedure implementations for Assign, Equal and Addition are declared, the class

Section 4.5 Hierarchies for Implementations 86

Wordlnteger defines the representation of Integer and use of the names Integer and

Wordlnteger separates the abstract object from the concrete object. Thus all of the

requirements for an abstract data type implementation are met in the example above. Classes

intended to be used in this way (though not necessarily as complete as this example) are

called implementation classes.

The example above also illustrates a feasible implementation for IntegerManager, In

WordlntegerManager, procedure implementations are provided for the procedure

specifications in all inherited ancestors: here the Assign, Equal and Addition procedures from

the lntegerManager and AssignabteManager classes. This is not required by Paragon but

does guarantee that this subclass may be used as an implementation anywhere the

specification is used. If some operation had been missing, and if a program used that

operation on abstract integers, then the implementation subclass for the specification could

not be used. An attempt to use such an incomplete subclass in this circumstance would

render the program infeasible. A more complete discussion of the feasibility of programs can

be found later in Section 5.5.5.

The distinction between the abstract use of a object and the concrete use of an object is

also illustrated by this example. The example above specifies the class Word/nteger in all of

the procedures' parameters in the Word/ntegerManager class. This implies that only the

Word/nteger representation of Integer can be used with these procedures and provides a

boundary between the abstract and concrete representations. Some languages, such as Clu,

provide an operation (in Clu called cvt) that is supposed to translate between an abstract

object and a concrete one. Within the implementation of the abstract data type, one may

restrict the implementation to use only the abstract properties of the object by omitting the

special operation. Other languages reverse the convention and allow the programmer access

to the representation unless the programmer specifies that only the abstract operations

should be allowed. Ada uses still another approach by unconditionally permitting access to

the representation of an object within the implementation of the abstract data type. Paragon

attempts to strike a balance by using the names in the class declarations. Should only the

abstract operations be permitted, then the programmer may specify this by writing the name

of the specification class in the parameter. If access to the representation is required, then the

name of the class used as a representation should be written in the parameter. Because each

procedure specifies that Wordlnteger objects may be used as parameters, it may use the

details of Wordlnteger objects, such as selecting the Rep field. Had the procedures merely

Section .4.5 Hierarchies for Implementations 87

required Integer objects, then access to the Rep field would have been denied, even if an

instance of Wordlnteger had been given to the procedure.

The use of names rather than conventions for the abstract/concrete decision permits a

greater flexibility in the definition of implementations. This is more fully explored in the next

section where some methods for providing multiple implementations of abstract data types

are con-~=idered.

4.5.1. Multipae Implementations

There are times when a programmer may wish to have more than one implementation for an

abstract data type. This can be illustrated with the previously specified IntegerManager. Many

computers have more than one size of data representation provided by the hardware so it

seems reasonable that different integer variables might be able to take advantage of these

differences in order to improve a program's performance. Each different sized representation

has its own representation class and its own procedure implementations. Most data

abstraction languages allow only one representation for each specification. If the one word

representation for integers were present in a program, such languages would prohibit the

inclusion of a half word integer and a double word integer.

Paragon does not have such a rule. A new representation may be provided by declaring a

new set of nested classes. For example, a program might contain the following declarations

for integers requiring less than a word of storage:

Section 4.5.1 Hierarchies for Implementations 88

class ShortWordlntegerManager of IntegerManager is
begin

procedure Assign(L:ShortWordInteger, R:ShortWordInteger)
return Wordlnteger is

begin.
CMSW. Ass i gn (L. Rep, R. Rep) ;

end;

procedure Equal(L:ShortWordInteger, R:ShortWordInteger)
return Booleans.Bit is

begin
return CMSW. Equal (L. Rep, R.Rep) ;

end;

procedure Addition(L:ShortWordInteger, R:ShortWordInteger)
return ShortWordInteger is

begin
return CMSW.PIus(L.Rep,R.Rep);

end;

I And the class def in i t ion for individuals ;

class ShortWordlnteger of Integer is
begin

var Rep => CMSW new ShortWord;
end;

end;

The ShortWordlntegerManager/ShortWordlnteger classes represent another implementation

of the integer abstract data type. Two factors are present which allow the second

implementation to be declared and included in a program. First, the explicit separation of the

specification and implementation of the abstract data type provide a way to bind an

implementation to a specification. Many previous data abstraction languages require the

specification and implementation to be bound together in single language construction. Thus

there is no place to include an additional implementation. Second, the ability to name the

representation explicitly circumvents a problem of controlling the access to the concrete

object. Languages such as Ada, which give unconditional access to the representation, or

Clu, which gives access through representation independent functions cvt, up and down,

have no way to distinguish between concrete representations. Without such a mechanism,

one concrete representation could manipulate the internal representation of another. This

violates the paradigm of data abstraction that permits only the piece of a program defining the

representation access to the underlying representation of the objects.

Section 4.5.1 Hierarchies for Implementations 89

The ability to name explicitly the representations or specifications in parameters permits

multiple representations to be used in a more common setting: differing type compositions.

Frequently cited examples are set implementations where alternative representations of the

set is caused by differing compositions with the element type[Johnson 76, Low

74, Schonberg 77, Wulf 81]. A typical (partial) specification for sets in Paragon appears

below:

class SetManager(any) is
begin

class Set is begin end;
I

procedure Union(Set ,Set) re turn Set;
! . "

end;

The element type of the set may be any class. However, certain classes have special

properties that an implementation may wish to exploit. For example, if the element type is

totally ordered, a B-Tree or discrimination net may be an appropriate implementation. If it can

be hashed, a hash table may prove efficient. Sets of a small number of enumerated values are

usually represented as a bit vector. Thus one wants the implementation to be able to take

advantage of knowledge of the element type.

Other languages, such as Clu and Alphard, do not permit this exploitation in an

implementation, or more precisely, they insist that such requirements appear in the

specification o~ the abstract data type. One of the motivations for this insistence is that the

additional operations required by the implementation must be provided when using the

specification so that those operations may be later used in the implementation. For example; if

one wanted to implement sets with a hash table, then the specification of the abstract data

type set would include a parameter for the element type and a (procedure) parameter for the

hash fum:tion. When one uses this abstract data type, one must specify the procedure to be

used for hashing so the implementation has a hashing procedure available to it. This seems

inappropriate, as such requirements are clearly leaking implementation details to the user of

the data type while simultaneously limiting the writer of implementations of the data type to

the operations in the specification.

Paragon permits the specification to be as broad as required and the implementation to be

as narrow as required by allowing the parameters in subclasses merely to match the

parameters in the parent class, and not to be identical. A discrimination.net implementation of

the previous SetManager could look like the following:

Section 4.5.1 Hierarchies for Implementations 90

c lass D isc r imi na t ionSetManager (OrderedManager. Ordered)
of SetManager is

begin

c lass D iscSet of Set is
begin
end;

p rocedure U n i o n (D i s c S e t , D i s c S e t) r e t u r n D iscSe t is
begin

I Imp1 of Union o p e r a t i o n ;
end;

end;

The DiscriminationSetManager class may only be used as an implementation for Setmanager

when the element type of the set is ordered. However, all available information about ordered

objects (as expressed in the specification for OrderedManager) may be used inside

DiscriminationSetManager in its manipulation of the set's element type. This use of a subclass

in the parameter of the implementation class also eliminates the need for procedure

parameters since the composed data type and its operations are combined in a class

declaration. Therefore the user can use the abstract data type without needing to consider

the constraints required by any particular implementation. Such considerations are

automatically processed by the translation system.

Having provided the ability to have multiple implementations, and ways to name the different

representations, Paragon further allows some more advanced approaches to implementing

abstract data types than those permitted in conventional languages. Two of these

approaches, partial implementations and shared implementations, are discussed next.

4.5.2. Partial Implementations

A partial or incomplete implementation of an abstract data type is an implementation that

does not have a procedure implementation for every procedure specification in its ancestors

and self. In most languages, an implementation must be able to be used wherever the

specification is used. To guarantee such use, every implementation must be complete.

However, the existence of an incomplete implementation does not immediately imply that the

program cannot execute or more precisely, that the program is infeasible. 43 As long as there

43As will be ex!otained in Section 5.5.5, the presence of only partial implementations does not guarantee that a
program is infeasible, nor does the presence of a complete implementation guarantee that a program is feasible,

Section 4.5.2 Hierarchies for Implementations 91

is a procedure implementation for each procedure that is used, the implementation may be

used. This flexibility becomes important as some representations of abstract data types may

take advantage of partial implementations.

A partJial implementation of Set illustrates the usefulness of partial implementations. One of

the more useful operations on a set is enumeration, that is, the generation of all elements in a

set. Some languages, such as Sail (with Leap [Reiser 76]) and SETL [Schwartz 73]

provide this operation. In both of these languages, several different implementations of sets

are possible, Some of these implementations are complete, some are not. The incomplete

implementations usually distribute the information concerning sets throughout variables of

the element type of the set rather than concentrate the information about the elements in

some set storage. For example, if one had a set of integers in the program, every integer value

in the program would have two pieces of information: the concrete representation of the

actual number and a bit indicating if that value is currently in the set. Integer variables would

then refer to this block of information as the representation for the integer variable. When

such an approach is taken, a procedure implementation for the "for all elements" iterator is

difficult to write: 44 every possible value that can be in the domain of the set must be examined

to locate its information regarding set inclusion. In Sail/Leap and SETL, the compiler makes

the decision about representations for set variables, knows that certain representations do

not have "for all elements" procedures available, and knows if the program uses such an

operation. Thus the compiler may reject the incomplete implementation in favor of a

complete representation whenever the "for all elements" iterator is used. Data abstraction

languages that permit only a single implementation insist that it be complete since no

substitutiions can be made if a procedure without an implementation is used. Because

Paragon allows multiple representations and wishes to allow programmers the flexibility

provided by partial implementations, the language does not require all procedure

implementations to be present in implementation classes.

44But not impossible. See the description of SETL's set implementations for a full discussion of this particular
problem [Dewar 79|.

procedure
procedure
procedure
procedure

end;

Section 4.5.3 Hierarchies for Implementations 92

4.5.3. Shared Implementations

The examples given in the previous sections for integers and sets bring up another topic:

the sharing of representations. Because the class mechanism does not restrict the way in

which specifications and representations may be combined, several arrangements of classes

prove useful in selective sharing between the specifications of abstract data types, between

the representations of abstract data types, and between the specifications and the

representations of abstract data types. Each of these kinds of sharing is considered in turn.

4.5.3.1. Shared Implementations via Shared Specifications

Selective sharing of specifications is quite common in practice and supported in some

languages, such as Ada. This usually takes the form of a single manager being used for

several different kinds of individuals. For example, one can consider the keyboard and display

of a terminal to be separate individuals but belonging to the same terminal manager (see

Section 2.1.2). Another example is a computer memory, as illustrated below:

class MemoryManager is
begin

class Byte is begin end;
class Word is begin end;

Read(Byte) :
Write(Byte,IM. Integer) ;
LeftByte(Word) return Byte;
RightByte(Word) return Byte;

The single manager MemoryManager provides the shared declarations for two related

individuals, Byte and Word. Words and bytes are closely coupled in a memory and should be

considered connected in some way. Some languages, such as Clu, have no provisions for this

selective sharing. Paragon permits multiple inner classes that are declared in an outer class to

denote different kinds of individuals for the same manager.

The implementation of MernoryManager could contain further subclasses for Byte and Word

and implementations for Read, Write, LeftByte and RightByte, each of which could access the

concrete representation for both bytes and words.

Section 4.5.3.2 Hierarchies for Implementations 93

4.5.3.2. Shared Implementations via Previous Implementations

Another way of combining classes gives the programmer the ability to write procedure

implementations that can access multiple representations. Like the MemoryManager example

above where one can write a single subclass of the specification class that has access to

representations of multiple kinds of objects, one can provide a subclass of implementation

subclasses that permits access to multiple, concrete representations of the same abstract

object. This can be illustrated by extending the IntegerManager implementations given in

Section 4.5.1 (page 87). To include a procedure that can add integers regardless of the

implementations of the abstract integer, one can write:

class CombinedWordlntegerManager of
WordlntegerManager, ShortWordIntegerManager is

begin
I ... ;

procedure Addition(L:ShortWordlnteger, R:Wordlnteger)
return WordInteger is

begin

end;

procedure Addi t ion(L:WordZnteger, R:ShortWordInteger)
return WordInteger is

begin
, . °

end;

end;

If CombinedWordlntegerManager were to be selected as the implementation for an abstract

tntegerManager object, then abstract integers could be implemented with either the

ShortWordlnteger or the Wordlnteger subclasses of Integer. Regardless of the

implementation selected for two abstract integers, there will exist an implementation of the

Addition procedure that can operate on them. However, as the example is currently written,

there is no way to assign between the two different kinds of concrete integers. If one wanted

the ability to apply any operation to every combination of operations, then one must either

provide an operation that uses only abstract operations on abstract objects, or one must

provide a procedure for each combination of concrete representations that are passed as

parameters. In practice, it is anticipated that some small number of such interrelated

operations will need to be provided, but not all of them.

Section 4.5.3.3 Hierarchies for Implementations 94

4.5.3.3. Shared Implementations for Unrelated Specifications

A third way of sharing in Paragon allows an implementation class to be used as an

implementation for multiple specification classes. A previous example illustrated this sharing

in the SETL system where sets are implemented by altering the representation of the elements

of the set (Section 2.1.6 on page 25). This is a unique approach to implementing sets and

integers as it requires a shared implementation for two specifications that are not otherwise

related: one specification for sets, one specification for the elements of the set. The use of

classes and inheritance provides a way to specify this capability as well. Given two separate

sets of specification classes, say for integers and sets, one creates a single class that acts as

the manager for both and that class contains the representations for the union of the inherited

individuals and procedures. An abbreviated illustration is given below:

I Specification Classes for Integers ;

c lass IntegerManager of AssignableManager is
begin

procedure A d d i t i o n (I n t e g e r , I n t e g e r) r e t u r n I n t ege r ;
c lass In teger of Ass ignable is begin end;

end;

I S p e c i f i c a t i o n Classes fo r Sets ;

c lass SetManager(any) is
begin

procedure Un ion(Set ,Se t) r e tu rn Set;
c lass Set is begin end;

end;

With these specifications, one may write the following shared implementation for sets and

integers (adapted from [Dewar 79]):

Sect ion 4.5.3,3 H ie ra rch ies for I m p l e m e n t a t i o n s 95

c l a s s I n t e g e r S e t M a n a g e r (T M : I n t e g e r M a n a g e r . T : I n t e g e r)
of IntegerManager, SetManager is

b e g i n

c l a s s I n t B l o c k i s
b e g i n

Reps f o r t h e i n t e g e r and s e t i n d i c a t i o n ;
e n d ;

var' RIBM => new RefManager(IntBlock);
var IntValueList => RIBM . new Reference;

I Integer Implementations ;
I . ;

class SharedInteger of Integer is
begin

var IntValueBlock => RIBM . new Reference;
end;

procedure Addition(SharedInteger, Sharedlnteger)
return SharedInteger is

begin
Implementation for Addition operation;

end;

I Set Implementations ;

class\SharedSet of Set is
begin

var SetNum => CM. new Word;
e n d ;
I . ;

p r o c e d u r e U n i o n (S h a r e d S e t , S h a r e d S e t) r e t u r n S h a r e d S e t
b e g i n

I I m p l e m e n t a t i o n f o r U n i o n o p e r a t i o n ;
e n d ;

e n d ;

i s

A l t hough the deta i ls a re miss ing, 45 the e x a m p l e a b o v e s h o w s tha t r ep resen ta t i on

45This combined representation keeps a linked list of all integer values that have ever appeared during the
execution of a program. When an arithmetic operation is performed, the values in the appropriate IntBIocks are
retrieved, the arithmetic performed, an/ntB/ock for the result is found (or created and linked in) and an appropriate
Sharecl/nteger (containing a pointer to the/ntB/ock) is returned. For set operations, the list of values given by the
/ntVa/ueUst variable is examined and the appropriate operations performed. For an operation that spans both types
- - for example Membership - - the special representation for the integer gives access directly to the corresponding
IntB/ock, which in turn can be directly examined to determine =f the integer value is present in the specified set. in
practice, this sort of combined representation has many more details which will not be presented here. For example,
the/ntB/ocks are not kept on a list but are hashed. Details of such a representation can be found in an article about
SETL [Dewar 79],

Section 4.5.3.3 Hierarchies for Implementations 96

combinations of this form can be expressed via the class mechanism whereas most

approaches to data abstraction have no way of describing a combined representation.

4.6. Problems with Hierarchies for Implementations

However, the generality of the class mechanism can lead to problems when writing

implementation classes. Some of these problems are discussed below.

4.6.1. Incomplete Implementations

The design of parameter matching and inheritance features of Paragon permit a careless

programmer to write an incomplete, yet feasible implementation for an abstract data type

when a complete implementation was desired. This occurs when a programmer creates a new

representation by inheriting a previous representation and does not reimplement all of the

necessary procedures. This can be illustrated with the abstract data type sets. A specification

of sets, followed a single-link list implementation is provided below:

I S p e c i f i c a t i o n fo r Sets

c lass Set_Manager of Assignable_Manager is
begin

class Set of Assignable is begin end;
procedure Insert(Set,IM.Integer);
procedure IsMember(Set,IM.Integer)

return Booleans.Bit;
procedure Intersect(Set,Set) return Set;

p rocedu re
begin . . .

end;

Intersect(L:Set,R:Set) return L.s.tructure is
end;

I Single Link Implementation for Sets ;

class SingleLinkSetManager of Set_Manager is
begin

c lass S ing leL inkSet of Set is begin . . . end;

procedure Insert(SingleLinkSet,IM.Integer) is
begin . . . end;

procedure IsMember(SingleLinkSet,IM.Integer)
return Boo leans .B i t is

begin . . . end;

Sectior~ 4.6.1 Problems with Hierarchies for Implementations 97

p rocedure A s s i g n (S i n g l e L i n k S e t , S i n g l e L i n k S e t)
beg in . . . 1 copy l i n k ; . . , end;

end;

is

The implementation above provides implementations for the Assign, lsMember and Insert

procedures, and inherits an implementation for Intersect, so if a program only requires those

four operations, the use of Sing/eLinkSet as an implementation will be feasible.

However, a programmer may decide later to provide a doubly-linked list implementation of

sets. One approach to writing the second implementation would be to inherit the

SingleLinkSet implementation, as shown below:

l . ;

I Double L ink Imp lemen ta t i on f o r Sets ;

c l ass Doub leL inkSetManager of S i ng l eL inkSe tManage r ts
beg i n

c lass Doub leL inkSe t o f S i n g l e L i n k S e t is beg in . . . end;

p rocedure I n s e r t (D o u b l e L i n k S e t , I M . I n t e g e r) is
beg in . . , end;

end;

The motivation for deriving the implementation is that some of the previous implementations

would still be valid. For example, the IsMember procedure may only need one link to walk

down the list to search for an element. Thus the doubly-linked list implementation may use the

single-linked list implementation of IsMember and not write a new one. Because every

DoubleLinkSet is also a SingleLinkSet, the use of the previous lsMember implementation is

feasible. However, by the same reasoning, every procedure implementation for SingfeLinkSet

is a feasible implementation for DoubleLinkSet. In the implementation above, there is no

implementation for the Assign procedure. Presumably the Assign procedure for SingleLinkSet

will copy only one link, not both. Yet the absence of an Assign procedure for DoubleLinkSet

will cause the Paragon to use the SingleLinkSet version, which is feasible but probably not

what the programmer wanted. Instead, the programmer probably wanted to include another

Assign procedure that manipulated both links, for example:

p rocedure A s s i g n (O o u b l e L i n k S e t , D o u b l e L i n k S e t) is
beg in . . . I copy both l i n k s ; . . . end;

Thus a feasible program will probably not execute properly, and the programmer will have a

very difficult time finding the problem.

Section 4.6.1 Problems with Hierarchies for Implementations 98

One approach to correcting this problem would be to add constraints to procedure

implementations. Thus the Assign procedure implementation would look like:

procedure Ass ign(L :S i ng]eL inkSet , R :S i ng l eL inkSe t)
such tha t L . s t r u c t u r e same as S ing leL inkSe t &

R . s t r u c t u r e same as S ing leL inkSe t is
begin . . . I copy l i n k ; . . , end;

This constraint requires that both parameters be implemented as Sing/eLinkSets, and not as

any subclass of SingleLinkSet. Now a program that used Doub/eLinkSet and the Assign

procedure without providing a new implementation for Assign would be infeasible and the

programmer alerted to the mistake.,

4°6.2. Organizing Multiple Implementations

Even where new representations are not derived from old ones, the facilities that Paragon

provides for specifying multiple representations can cause some worries for programmers.

The problems occur when trying to organize several implementations for use by the selection

system and revolves around the need to have a single manager for the shared

representations. This is illustrated by the program fragment below:

var MySetManager => new SetManager

var Se t l => MySetManager . new Set ;
var Set2 => MySetManager . new Set;
var Set3 => MySetManager . new Set ;

One must pick representations for the three set variables, Set1, Set2, and Set3, but only one

object is needed for the manager of all three sets. Thus only one representation is required

for MySetManager. The problem is how to distribute the possible representations for the sets

in possible representations for the set manager. Two general approaches are discussed

below in more detail: combine the set representations in a single manager; and provide a

single set representation per manager.

4.6.2.1. Using a Single Manager

A typical example of providing multiple set implementations inside of a single

implementation of a set manager is shown below:

Section 4.6.2,1 Problems with Hierarchies for Implementations 99

0

I Mult iple Implementations for Sets
I - - - - - - ' ' " " " "

t

class MultilmplSetManager of Set_Manager is
begin

I F i r s t Implementat ion

c lass S ing leL inkSe t of Set is begin , . . end;

I Shared state for SingleLinkSet Manager ;
. , ,

procedure Insert(SingleLinkSet,IM.Integer) is
begin . . . end;

procedure IsMember(SingleLinkSet,IM.Integer)
return Booleans.Bit is

begin . . . and;

procedure Intersect(SingleLinkSet,SingleLinkSet)
return SingleLinkSet is

begin . . . end;

procedure Assign(SingleLinkSet,SingleLinkSet) is
begin . . . I copy l ink ; . . . end;

I Second Implementation

class ArraySet of Set is begin . . . end;

I Shared s ta te fo r ArraySet Manager ;
o . .

procedure Insert(ArraySet,IM.Integer) is
begin . . . end;

procedure IsMember(ArraySet,IM.Integer)
return Boo leans .B i t is

begin . . . end;

procedure I n t e r s e c t (A r r a y S e t , A r r a y S e t)
re tu rn ArraySet is

begin . . . end;

procedure A s s i g n (A r r a y S e t , A r r a y S e t) is
begin . . . I copy a r ray ; . . . end;

Section 4.6.2.1 Problems with Hierarchies for Implementations 100

! Third Implementation

class BTreeSet of Set i s beg in . . . end;

I Shared state for BTreeSet Manager ;

procedure
begin . . .

procedure
return

begin ...

procedure
return

begin ...

Insert(BTreeSet,IM.Integer) is
end;

IsMember(BTreeSet,IM.Integer)
BooleansoBit is
end;

Intersect(BTreeSet,STreeSet)
BTreeSet is
end;

procedure A s s i g n (B T r e e S e t , B T r e e S e t) i s
begin , . . I copy l i n k s ; . . . end;

end;

Using the strategy where all of the representations are in a single manager, the selection

mechanism can easily select a representation for the manager, since there is only one

available, here MultilmplSetManager. Because this outer class contains three subclasses for

the individuals, here SingleLinkSet, ArraySet and BTreeSet, a selection of any of these

classes is locally feasible for variables specified with the Set class. 46 Thus different variables

may have different representations. Further, cross-representation procedures may be

declared in the one manager, since such procedures can have access to the internal

definitions of all of the implementations.

Unfortunately, this strategy results in a manager that contains too much state. For example,

a policy may choose the same representation for all of the individuals managed by a manager.

Thus each Set variable might be implemented as an ArraySet. However the manager contains

shared declarations needed for all possible representations. The empty tree needed for a

BtreeSet will still be part of the single manager, even if no sets are implemented as BTrees.

The strategy of using one manager also reduces module separation. The addition of a new

implementation should not require the changing of previous implementations, yet this strategy

requires the programmer to change an already existing class to add a new implementation for

46Local feasibility is discussed in Section 5.2.3.

Section 4.6 .2 .1 Problems with Hierarchies for Implementations 101

an abstract data type, Thus this strategy violates a notion principle of system building, namely

separating program components as much as possible,

4.6.2.2. Using Multiple Managers

The alternative strategy is to provide a different manager implementation for each individual

implementation. If multiple implementations are desired, then the implementations should be

inherited by another class. As an example, two implementations are declared and then

combined in the program text below:

I Single Link Implementation for Sets ;

class SingleLinkSetManager of Set_Manager is
begin

class SingleLinkSet of Set is begin . . . end;

procedure Inser t (S ing leL inkSet , IM. In teger) is
begin . . . end;

procedure
return

begin ...

IsMember(SingleLinkSet,IM.Integer)
Booleans.Bit is
end;

procedure
return

begin . . .

In tersect (S ing leL inkSet ,S ing leL inkSet)
SingleLinkSet is
end;

procedure Assign(SingleLinkSet,SingleLinkSet) is
begin . . . i copy l ink ; . . . end;

end;

Section 4.6 .2 .2 Problems with Hierarchies for Implementations 102

I Array Implementation for Sets

class ArraySetManager of Set_Manager is
begin

class ArraySet of Set is begin . . . end;

procedure Insert(ArraySet,IM.Integer) is
begin . . . end;

procedure IsMember(ArraySet,IM.Integer)
return Booleans.Bit is

begin . . . end;

procedure Intersect(ArraySet,ArraySet)
return ArraySet is

begin . , . end;

procedure Assign(ArraySet,ArraySet) is
begin . . . t copy l ink ; . . . end;

end;

I . ;

I Combined Implementation for Sets

class CombinedSetManager
of ArraySetManager, SingleLinkSetManager is

begin
end;

Again using the variables declarations for MySetManager, Set1, Set2 and Set3, an

implementation must be selected for the manager and then implementations must be selected

for the individuals. However, only one implementation may be selected for the manager. For

both representations to be available for set variables, the manager must be implemented with

CombinedSetManager.

However, this strategy of providing a separate manager for each implementation and then

combining them into other classes for multiple representations has two drawbacks. First,

there are many different combinations of representations that need to be defined and

selected. Second, some space in the manager may still be wasted,

If one has many different implementations for an abstract data type and wants to consider

all implementation possibilities, there would be an enormous number of possible

combinations that would have to be defined. In this small example, only two representations

Section 4.6.2.2 Problems with Hierarchies for Implementations 103

were defined, and they could be combined with a single, extra class declaration. In general, if

one had n implementations, then 2n-(n+ 1) additional sets of classes would have to be

declared to capture all of the possible ways that multiple representations could be

combined. 47 This is far too many to be practical, so representations might be selectively

combined.

But selectively combining implementations has the same problems as having one all-

encompassing manager, some state for a manager that is not used may be wasted. Suppose

that the CombinedSetManager were selected as the implementation for MySetManager but

ArraySet were selected as the representation for all three variables: Set1, Set2 and Set3.

Then the local storage required for the SingleLinkSetManager would be unnecessary. In

order to obtain a manager that contains all of the desired implementations, a manager that

contains additional, unused implementations may have to be selected. Thus a selective

combination of implementations may result in a manager that contains unnecessary state.

4.6.3 . Sharing a Representat ion

The last goal for representations of abstract data types is that a single representation should

be able to be written for several specifications, and in Section 4.5.3.3, an example was

prov id~ showing how a single representation could be written for two specifications:

integers and sets. Though the combined implementation may be written, unfortunately it

cannot be selected by the selection system described in Chapter 5.

The problem with selecting the combined representation comes from a combination of the

manager model and the restriction that every identifier denotes a distinct object. When two

separate specifications are used, two different managers are required. This is illustrated

below:

v a t MySetManager => new SetManager;
va t MyIntManager => new In tManager ;

var S e t l => MySetManager . new Se t ;
v a t Set2 => MySetManager . new Set ;

v a t I n t l => MylntManager . new I n t ;
v a t I n t 2 => MyIntManager . new I n t ;

47Because each combination contains a subset of n implementations, there could be 2 n possible subsets of
implementations. But the classes that represent a smgte implementation are already declared, and the specification
serves as the subset where no ~mplementations are declared. Therefore n + 1 is subtracted from 2 n.

Section 4.6.3 Problems with Hierarchies for Implementations 104

Although the programmer may provide a single implementation that can serve both

MySetManager and MylntManager, the selection system will try to make separate object

selection choices for each variable. The combined implementation surely can be used for

both variables, but such an assignment of implementations would result in two instances of

the combined implementation, one for each manager, and not a single shared instance.

One of the difficulties in providing this sharing of objects is providing a rule that states when

an object may be shared and where it may not. This raises issues of the proper way to treat

intermediate elaborations between the two object instances, as shown below:

var MySetManager => new SetManager;
var Problem => new Something(SideEffectFunctionCal]);
var MylntManager => new IntManager;

Here, the elaboration of the shared implementation may cause side effects that could interact

with the intermediate calculations of SideEffectFunctionCa//. The criteria that Paragon uses

for sharing objects ameliorate elaboration-order effects. (These criteria are listed in Appendix

A.8.) However, these criteria were never integrated into the selection system. To do so, the

selection system would have to be able to inquire if these criteria were met by some selection

of implementations and if so, to then force a sharing of an object.

A related situation comes up when trying to share implementation for the same manager.

For example, a programmer may want to use the same implementation for multiple instances

of a manager. An example is shown below:

vat OrangeManager => new Integer_Manager;
var AppleManager => new Integer_Manager;

var Lisa => AppleManager . new In tege r ;
var Nave] => OrangeManager . new In tege r ;

In this circumstance, one may want to share the /nteger_Manger object for both the

OrangeManager and App/eManager. Paragon only deals with this problem tangentially by

considering the two manager objects to be different specifications and then permitting two

different representations of Integer_Manager to be combined into a single manager, like

CombinedSetManager in Section 4.6.2.2. Under these circumstances, a shared instance

could be used for both managers. The same criteria given in Appendix A.8 would be used. A

future direction of research may consider the entire problem of sharing implementations in

more detail than Paragon.

Section 4.6.3 Problems with Hierarchies for Implementations 105

Despite some problems with combining representations, a type hierarchy has been shown

to be useful in describing generalization classes, specification classes, implementation

classes, shared specifications and shared implementations. A programmer using the type

hierarchy would provide several representations for the abstract data types in his program,

each tailored for a particular circumstance. The next step in refining a program is the

selection of an appropriate representation for each variable and each procedure call in the

program. To fulfil this need, Paragon provides a representation selection mechanism that the

programmer may use to guide the translator in picking appropriate implementations. This

mechanism is discussed in the next chapter.

Chapter 5
Selection of Implementations

The discussion so far has been limited to the use of basic features of Paragon for creating

abstract data types. In this chapter, I start to consider the processing of a program. As a

large part of the processing is concerned with selection of implementations, this aspect will

be described in detail. But first I present some more details about elaborations in Paragon 48.

These details are then used to describe the elaboration of variable declarations. After

variable declarations have been described, the three aspects of implementation selection are

discussed: class and procedure descriptions via attributes; program representation via a

possibility tree; and control of the selection process through a policy procedure. The

discussion of implementation features of Paragon completes the description of the Paragon

language started in Chapter 3.

5.1. Elaborations

A program is processed in four stages:

• The entire program is elaborated with specifications;

• A policy procedure makes implementation selections for variables;

• After the policy procedure finishes, the entire program is elaborated with
implementations;

• Finally, the entire program is elaborated with realizations.

Each of the these stages is outlined below.

48Section 3,1 provides an overview of elaborations.

Section 5.1.1 Elaborations 108

5.1.1. Elabo ration with Specifications

Initially, a program is e/aborated with specifications. In other languages, this corresponds to

having the semantic analysis and type checking performed. During this phase, the objects

that are created and manipulated by the program are specified by the class identifier used in

the program text. Thus, a variable declared with the class Set will have a simple object

created that has the underlying class Set. In addition to performing parameter checking,

elaborating a procedure invocation with specifications causes a simple object to be created

that contains one local instance: namely, the local instance created by elaborating the

declaration of the procedure specification. These simple objects created by elaborating

name components that denote definite instantiations and procedure invocations are collected

in the containing simple object (or environment) for later use. If elaboration with

specifications is successful, that is, no object mismatch or other semantic error is

encountered, 49 then the program is said to be we// specified otherwise the program is ill

specified.

5.1.2. Implementation Selection

After a program is elaborated with specifications, a policy procedure (see Section 5.5.1)

makes implementation selections for the variables in the program. An implementation choice

for a variable,, or more precisely, for the innermost simple object being instantiated in the

object-creation name component in the variable declaration, is made from the subclasses of

the specified class. 5° For example, if the class Set has a subclass ArraySet, then a variable

declared with the class Set may use ArraySet as an implementation. After this selection, the

innermost simple object that the variable denotes has the underlying class ArraySet.

5.1.3, Elaboration with Implementations

After all selections of variable implementations have been made, elaboration of the program

with implementations occurs. When elaborating name components that denote object

instantiations, the translation system processing the program verifies that the selected

implementation is feasible (see Section 5.2.3). When elaborating a name component that

4~
Some semantic errors that are not related to object matching are finding an undefined identifier or a misplaced

goto label.

50The subclass relation is meant to be reflexive here, so the class itself may be used as its own implementation.
Such a selection is said to be ~efqmp/ementing,

Section 5.1.3 Elaborations 109

denotes a procedure invocation, an appropriate implementation for a given procedure is

chosen (see Section 5.5.5.t). If elaboration with implementations is successful, the program

is said to be feasible. Should a procedure implementation be missing where required or

should a selected implementation class not conform properly to its environment or

parameters, then the program is infeasible.

5.1.4. Elaboration with Realizations

After a program is elaborated with implementations, it is elaborated with realizations. This

corresponds to conventional program execution. The implementations for objects and

procedures used during this phase come from the decisions made during elaboration with

implementations. If the program attempts to perform some action not permitted in the

language, the program is termed erroneous, otherwise the program is considered to be

defined.

These definitions may appear unmotivated without the context of the selection process, but

as they are applied to different pieces of the program during representation selection, the

interactions and the motivations should become clear.

5.2. Variable Declarations and Object Creations

This thesis has been using variable declarations in examples without explaining their syntax

or interpretation. In this section, a description of variable declarations is given as well as an

explanation of how the different elaborations process these declarations.

A variable declaration is used to bind an identifier to an object. The simplest form of a

variable declaration is an identifier, followed by = ,~, followed by an expression that has a

definite object creation as its last name component. This can be illustrated by using the

previous class declarations for Vehicle, Tank, Ship and Monitor in Section 3.2.2, for example:

var i => new V e h i c l e ;

When the declaration above is elaborated with specifications, the identifier i will be bound to a

new definite Vehicle object. Informally, this object is referred to as the type of i. Since an

implementation is a subclass of the class specified in the variable declaration, a subclass of

Vehicle may be used to implement i. To select an implementation for i, the policy procedure

will associate a subclass of Vehicle with the Vehicle simple object created during elaboration

Section 5.2 Variable Declarations and Object Creations 110

with specifications. For example, if Tank is selected as the implementation, all of the classes

that form Tanks but that are missing from Vehicles will be elaborated with specifications and

added to the local instance set for the simple object associated with i, Finally, if this variable

declaration is elaborated with realizations, a new simple object will be created by elaborating,

with realizations, the expression following the = >. However, this elaboration will assume that

the implementation class was written where the specification class was written, that is,

substituting Tank for Vehicle.

The description above of how an implementation for a simple object is processed is

simplified. Some of the complicating problems deal with changes of parameters when

,selecting an implementation and with changing an already selected implementation. These

become important since a program may be elaborated with implementations many times, at

the discretion of the policy. All that Paragon guarantees is that after the policy procedure is

finished, the entire program will be elaborated with implementations to check the program for

feasibility.

In each of the next three sections, some details will be given about the selection of a

variable implementation, the checking of a variable declaration for feasibility, and the

elaboration of a variable declaration with elaborations.

5.2.1. Selecting a Variable Implementation

For purposes of selecting an implementation and of describing the different elaborations,

simple objects have two varieties. The first kind of simple object results from elaboration with

specifications, the second results from elaboration with realizations. In this section, only the

first kind is discussed. The other is considered in Section 5.2.4.

Like all simple objects, simple objects created during elaboration with specifications contain

a set of local instances, and in addition, have a (possibly empty) set of currently unused local

instances. 51 The local instances in a simple object come from two sources:

1. The elaboration of the name component containing a definite-object instantiation.

51These unused local instances are created as different implementations are selected for a variable. See page
114.

Section 5.2.1 Variable Declarations and Object Creations 111

2. The selection of an implementation for a variable. 52

When either of these actions is performed, the set of local instances and the set of unused

local instances in a simple object may change. Each of these actions is discussed below.

When a simple object is created during elaboration with specifications, the set of local

instances that results from elaborating both the class declarations of the ancestor classes and

the specified class are added to the simple object. Initially, the set of unused local instances is

empty.

When the implementation of a simple object is changed, the sets of local instances may also

have to be changed. This can be illustrated by considering the following class declarations: 53

I This is a g e n e r a l i z a t i o n c l ass ;

clrass AssignableManager is
begin

c lass Ass ignab le is begin end;
end;

m

I . '
t

X This is a s p e c i f i c a t i o n c l ass ;

c lass I . i s tManager (any) of AssignableManager is
begin

c lass L i s t of Ass ignab le is begin end;
end;
I . "

9

52paragon permits name components that denote object creations only as the last name component in the
expression of a variable declaration. Further, this last component must be a definite-object creation. Therefore there
is a bijection between definite-object creations and variable declarations. Thus the discussion will interchangeably
associate an implementation with the variable and with the definite object creation,

53These declarations are somewhat strange for purposes of illustration.

Section 5.2.1 Variable Declarations and Object Creations 112

I . ;

I The next two c lasses are implementation c lasses ;
I . ;

class ArrayListManager(type:Tank) of ListManager is
begin

class ArrayList of List is begin end;
end;

class LinkedListManager(type:Vehicle) of ListManager
begin

class LinkedList of List is begin end;
end;

is

I . ;

t The f o l l o w i n g v a r i a b l e s use the above classes;

vat MyListManager => new L i s t M a n a g e r (T a n k) ;
vat L i s t 1 => MyListManager . new L i s t ;
var List2 :> MyListManager . new List ;

In this example, there are four classes that act as managers: AssignabteManager,

ListManager, ArrayListManager and LinkedListManager along with four classes that act as

individuals: Assignable, List, ArrayList and LinkedList. The three variable declarations first

create a manager for lists of Tanks and then create two such lists.

As in the previous description of elaborating variable declarations with specifications, the

elaboration with specifications of the variable declaration for MyListManager causes a new

simple object to be created and two local instances to be elaborated with specifications and

then to be added to the simple object: one for AssignableManager and one for ListMana~'er.

The si~nple object creation for List1 is similar. After elaboration with specifications, the simple

object contains two local instances: one for Assignable and one for List. Both simple objects

have empty unused local instance sets. Once elaboration with specifications is completed,

selection may proceed.

When an implementation is selected for a variable, it must first be checked for local

feasibility, then the local instance sets may be modified. Each step is discussed below and

then illustrated with the example above.

Checking for local feasibility is a combination of elaborating the definite instantiation with

specifications and with implementations. The following five steps are taken:

1. The environment in which the creation is to take place is searched for the

Section 5.2.1 Variable Declarations and Object Creations 1 t3

selected implementation class 54, If the class is not found, then the selection is not
locally feasible.

2. The parameters in the declaration for the implementation class are elaborated
with implementations.

3. The objects that are associated with the simple object are compared with the
objects that result from the elaboration above. If the comparison is successful,
then all resulting bindings of identifiers to objects replace the old bindings in the
simple object. If the comparison is not successful, then the selection is not locally
feasible.

4. If the selection is still locally feasible, then a new set of local instances is created
to replace the current set of local instances. This is done by placing all of the
local instances from the old local instance set into the unused local instance set
and then moving, in leftmost elaboration order, local instances for the
implementation class from the unused local instance set to the new local instance
set. If a local instance for a class is not available in the unused local instance set,
it is created, its body elaborated with specifications, and then added to the local
instance set. (The local instances in the unused local instance set may be later
retrieved if an implementation that uses them is later (re)selected.)

5. All constraints in the variable declaration are executed (elaborated with
realizations). If any False object is returned by a constraint, then the selection is
not locally feasible, and the old set of local instances is restored (as well as the
old parameter bindings). Variable constraints are discussed fully in Section 5.2.2.

This process of selecting an implementation can be illustrated with the variable declarations

for MyList~Manager and List1. The discussion starts w ~ the details of elaborating those

declarations with specifications. Then a series of locally-feasible implementation selections

for MyListManager and List1 are examined. Finally, the actions that result from some locally

infeasible implementation selections for these variables are considered.

Like all object instantiations during elaboration with specifications, each new simple object

contains a set of local instances. The new simple object for MyListManager is created and has

two local instances corresponding to the classes in the leftmost elaboration order: one for

AssignableManager and one for ListManager. in a corresponding manner, the new simple

object for List1 is created in the environment of MyListManager and has two local instances:

one for Assignable and one for List. Neither simple object has an unused local instance.

Now consider the effects of implementing MyListManager with the LinkedListManager class.

54The search takes place in leftmost parent order.

Section 5.2.1 Variable Declarations and Object Creations 114

The check for local feasibility (step 1) first ensures that the LinkedListManager class iS

available in the environment. Since the class LinkedListManager is visible where the variable

declaration is written, the class is available in the environment. The parameter for

LinkedListManager is elaborated with implementations (step 2) which yields an indefinite

Vehicle object. The actual parameter that has already been elaborated, an indefinite Tank

object, is then compared with the formal object, a Vehicle object. The comparison succeeds,

and as a result of the comparison, a binding between type and the indefinite Tank object in

the actual object is added to the simple object (step 3). As the last step (step 4), the local

instances in the simple object for MyListManager (which are AssignableManager and

ListManager, as mentioned above) are moved to its unused local instance set, and for each

class in the leftmost elaboration order for LinkedListManager, the corresponding local

instance is moved from the unused local instance set to the local instance set. For a simple

object with the underlying class of LinkedListManager, the leftmost elaboration order is

AssignableManager, ListManager, LinkedListManager. Note that one necessary local

instance is missing: the local instance for LinkedListManager. Therefore, the selection of

LinkedListManager as the implementation for MyListManager will cause a new local instance

of LinkedListManager tO be created and elaborated with specifications, and then added to the

local instance set for MyListManager. There are no constraints to be elaborated, so the

selection process is complete and MyListManager has the representation LinkedListManager.

It is possible to change the implementation of MyListManager from LinkedListManager to

ArrayListManager. As before, the environment is checked, the parameters elaborated and

compared, and all of the local instances moved to the unused local instance set. Similarly, a

new local instance for ArrayListManager will be added eventually to the local instance set of

the simple object for MyListManager. Unlike all the previous examples, the resulting unused

local instance set is not empty. It contains a local instance for LinkedListManager. Should the

implementation change from ArrayListManager back to LinkedListManager, the local instance

for ArrayListManager would be present in the unused local instance set and the previously

unused local instance for LinkedListManager would be in the local instance set of

MyListManager. Thus no new local instances would be created under these circumstances.

So far, all of the implementation selections have been locally feasible. Next, two locally

infeasible selections are illustrated. They result from an improper environment and

mismatched parameters.

Section 5.2.1 Variable Declarations and Object Creations 115

One kind of infeasibility results from the violation of the first rule which requires that the

implementation be found in its creation environment. Suppose that the selection of

LinkedListManager has been made for MyListManager and a selection of ArrayList is about to

be made for List1. As required in the first step for local feasibility, the creation environment

for List1 is examined for the impleTnentation class. Here the creation environment for List1 is

the object denoted by MyListManager, a LinkedListManager. ArrayList is available in

ArrayListManager, not in LinkedListManager, thus an attempt to assign ArrayList as the

implementation for List1 is not locally feasible.

Another possible impediment to local feasibility is a parameter mismatch. Assume for a

moment that the declaration for MyListManager is

yap MyListManager => new ListManager(Vehic le) ;

If a selection of ArrayListManager were made for MyListManager, the comparison of the

indefinite Vehicle object would not match the indefinite Tank object specified in

ArrayListManager. Thus the choice is not locally feasible. However, LinkedListManager may

accept a Vehicle parameter and so may be selected as a feasible implementation for

MyListManager.

One should note that an implementation being locally feasible does not guarantee that the

implementation is feasible. It is trivial to change one implementation that would render

another selection infeasible. For example, if MyListManager were first assigned the

LinkedListManager class, then List1 were assigned the LinkedList class, and then the

implementation for MyListManager were to be changed to the ArrayListManager class, the

choice of LinkedList for List1 would not be feasible though it was locally feasible. The reason

is the class LinkedList is not in the environment for Listl which is now an ArrayListManager,

not a LinkedListManager as it was during the selection of LinkedList for List1. Although the

notion of local feasibility of an implementation selection is similar to elaboration with

implementations, it is not identical. A more complete description of elaborating an object

creation with implementation is considered in Section 5.2.3. However, the program does have

some ability to control local feasibility through the use of variable constraints, which are

considered next.

Section 5.2.2 Variable Declarations and Object Creations 116

5.2.2. Constraints on Variables

One form of control that a programmer has over the feasibility of a variable implementation

is a variable constraint. This section provides an overview of this feature.

The syntax of a constraint expression in a variable declaration consists of the reserved

words such that followed by any expression, An example is given below:

var MyList :> MyListManager . new L i s t
such that desc (MyList) IsDebugging return (Boo leans.B i t) ;

This example shows how a variable declaration can use an attribute procedure in its

implementation to check for a particular feature. (The use of attribute procedures is

discussed later in Section 5.5.3.) Here, the constraint attempts to ensure that the

implementation for MyList has debugging capabilities.

The semantics of a variable constraint are designed to permit the programmer to control the

feasibility of an implementation selection beyond the methods provided by the type hierarchy.

The constraints of a variable declaration are elaborated with specifications after the

expression containing the object instantiation is elaborated with specifications. However, the

constraints are elaborated with realizations during two circumstances: when the expression

containing the object instantiation is elaborated with implementations and when an

implementation choice for the variable declaration is checked for local feasibility. The

constraint expression must return an object that matches the predefined boolean object, that

is Booteans.Bit, and if a False object is returned during elaboration with realizations, the

variable declaration is considered infeasible.

5.2.3. Checking the Feasibility of Variable Declarations

Elaboration with implementations is used to check that all necessary implementation

decisions have been made and are compatible with one another. There are two facets to this

checking: making sure that object instantiations are compatible with one another and making

sure that an appropriate procedure implementation exists for each procedure invocation. In

this section, only the means for elaborating an object instantiation with implementations will

be described. Section 5.5.5 will discuss how an appropriate procedure implementation is

found,

Elaboration of object instantiation with implementations differs from elaboration with

Section 15.2.3 Variable Declarations and Object Creations 117

specifications in two significant ways. First, the selected implementation class is used instead

of the class specified by the name component that contains the reserved word new. Second,

all related elaborations are carried out with implementations and not specifications. In detail,

this means:

1. If the last assignment of an implementation for the object instantiation was locally
infeasible, then the object instantiation is infeasible.

2. The environment in which the instantiation is taking place is searched for the
selected implementation class of the simple object. If the implementation class is
not found, the object instantiation is infeasible.

3. The parameters in the name component for the object instantiation are
elaborated with implementations, if any of these elaborations are infeasible, then
the instantiation is infeasible.

4. The parameters in the declaration of the selected implementation class are
elaborated with implementations. If any of those elaborations are infeasible, then
the instantiation is infeasible.

5. The objects that result from the elaboration of the actual parameters are
compared with the objects that result from the elaboration of the formal
parameters. If the comparison fails, then the instantiation is infeasible. If the
comparison succeeds, the actual parameters and any bindings that result from
the comparison replace the parameters and the bindings that exist in the simple
object.

6. In leftmost elaboration order of the selected implementation class, each local
instance in the local instance set is elaborated with implementations. A local
instance is elaborated with implementations by elaborating each of its
(nonattribute) variable declarations with implementations, and then each of its
statements with implementations. If any of these elaborations are infeasible, the
object instantiation is infeasible.

There are four aspects of this elaboration that deserve more discussion: the reuse of

definite simple objects, the applicability only to definite simple objects, the finality of locally

infeasible implementation selections and the elaboration of the local instances making up the

object.

None o~ the steps above directs the creation of a new definite simple object during the

elaboration of an object instantiation name component with implementations. All of the

necessaql local instances have been created when an implementation for a variable is

selected, so no new local instances are necessary during elaboration with implementations.

Each time an object instantiation is elaborated with implementations, and it may be so

elaborated many times during a compilation, the same simple definite object is used.

Section 5.2.3 Variable Declarations and Object Creations 118

Only definite instances have an elaboration different with implementations than with

specifications. The elaboration of indefinite instances with implementations is defined to be

identical to their elaboration with specifications. Since these indefinite objects act as

representatives of definite objects, they may take any implementation. Thus for feasibility, an

implementation that assumes the least information about them is used. Such an

implementation is the specification itself. In addition, since there is no way of assigning a

particular implementation to an indefinite instance, there is no need to maintain the local

instance set between assignments of implementations in an unused local instance set.

Therefore, the expedient of equating the elaboration of specifications and of implementations

for indefinite simple objects is adopted.

The fact that an implementation selection is locally infeasible, if it is not changed by another

implementation selection for the same simple object, forces the object creation to be

infeasible whenever the creation is elaborated with implementations. This unchangable status

of infeasibility could be counterintuitive when a later selection makes the originally infeasible

selection into a feasible selection, as illustrated by the following circumstance.

In the previous example, assume that MyListManager has the LinkedListManager

implementation selected and then List1 had the ArrayList implementation selected. Clearly,

this second choice is locally infeasible. However, one may change the implementation of the

MyListManager to ArrayListManager. The selection of ArrayList for List1 now seems

reasonable. The language defines this circumstance to result in an infeasible program,

primarily for ease of language definition. If this rule were not included in Paragon and a once

locally infeasible selection could become feasible through a change in its environment, any

implementation selection for an object in an environment could cause a reanalysis of all the

selection decisions made for objects created in that environment. This is potentially a large

amount of complicated checking. Further, because some of these elaborations might cause

side effects (see Section 5.;3.2), some order of the rechecking would have to be provided and

reelaboration prevented when necessary (or reasonable). As a practical matter, this situation

is unexpected, Because Paragon requires variables to be declared before they are used, it

seems reasonable to expect that the implementations of variables will be selected before

those variables are used in further object creations. Thus a changing environment for an

already implemented individual is not expected to occur, and in fact, never occurs in any

example in this thesis. However, if Paragon were to permit such a situation, the language

would require extra rules and complications. Hence Paragon adopts the rule that a locally

infeasible implementation selection causes the object creation to be infeasible.

Section 5.2.3 Variable Declarations and Object Creations 119

The last important aspect of elaborating object instantiations with implementations is the

recursive nature of the check. When checking an instantiation for feasibility, all of the local

instances that make up the simple object must also be checked, which includes all of their

variable declarations. This differs from the check for local feasibility which is concerned

primarily with the parameters for the implementation and the relation between the

implementation and its environment. Thus local feasibility is seen as a heuristic measure of

the feasibility of an implementation selection and not as a guarantee of feasibility.

Once all choices in a program are made and the program has been checked for feasibility, it

may be elaborated with realizations. The details of this kind of elaboration of object creations

is discussed in the next section.

5.2.4. Elaboration of Object Creations with Realizations

Elaboration with realizations is intended to capture the effects of execution. Definite objects

are newly created in the same way as objects are created during elaboration with

specifications. The difference between the two is that the classes used when elaborating the

creation with realizations are determined by the last elaboration with implementations.

Elaboration with realizations is defined only if a program is well specified and feasible. A brief

outline of the actions that occur during this elaboration for object instantiation are as follows:

1. If any simple object in the creation environment is an indefinite instance, then the
creation is erroneous.

2. A new simple object is created.

3. The parameters in the name component for the object creation are elaborated
with realizations.

4. The parameters of the implementation class for this variable are elaborated with
realizations. 55

5. The corresponding objects from the parameter elaborations are compared and
the resulting binding of objects to identifiers is saved in the new simple object.

6. In leftmost elaboration order of the implementation class, each ancestor class of
the implementation is elaborated with realizations and added to the new simple
object.

'5"SAs a practical matter, because Paragon does not allow definite object creations or procedure invocations in
formal parameters, no action is needed to perform this step in compiled Paragon code, All of the information
necessary for determining the results of later steps is available from information gathered during elaboration with
implementations. However, this list defines what the effects should be, not how they are accoml31ished.

Section 5.2.4 Variable Declarations and Object Creations 120

Elaboration of indefinite instances is similar except that no elaboration of local instances is

performed and the creation environment may contain indefinite instances. Once the

parameters have been saved, the process of creating an object is finished.

Conventional translation systems perform elaborations with specifications, implementation

selection and feasibility analysis before creating the translated program. Then elaboration

with realizations is confined to the program created by the translation system. In Paragon

however, certain pieces of a program are elaborated with realizations during elaboration with

specifications and implementations, and also during policy execution. One feature that is

elaborated with realizations before the program as a whole is called an attribute, and is

discussed in the next section.

5.3 . Descr ib ing Classes and Procedures - - At t r ibutes

Attributes are the primary feature that Paragon provides for describing classes and

procedures. An introductory discussion is followed by descriptions of how attribute variables

and attribute procedures are defined in classes and procedures. Then some uses of

attributes in expressions and variables are illustrated. The use of these attributes in policy

procedures is deferred until Section 5.5.3.

5.3.1. Purpose of Attributes

Attributes are unlike much of Paragon in that there is no clear analog between attributes in

Paragon and features in other languages. In some sense, attributes are a generalization of

compile.time switches, pragmata, hints and compiler options that other translator systems

employ. Unlike other systems, the definitions of attributes are completely under the control of

the programmer. The distinction can be illustrated with some examples from other languages.

The Pascal language defines certain reserved words, like packed, that a programmer may

use to inform the compiler that a particular data structure should use a space efficient

representation. Ada provides a host of information for the compiler via the pragma construct.

In both of these cases, the programmer is providing some limited information to the compiler

about the way certain parts of the program should be behave. Unfortunately, there is no way

of generalizing this property. For example, Pascal does not allow a programmer to inform the

compiler to pick a time efficient representation for a data structure. Thus current systems

strongly relate the ways that the programmer can provide information to the compiler with the

Section 5.3.t Describing Classes and Procedures - - Attributes 121

kinds of information that the compiler will process. The attribute facility in Paragon is

intended to provide a flexible way to give information to the compiler and to provide as few

restrictions as possible to the ways in which the information may be used.

Simply, one may view attributes as describing differences between one class and another,

and between one procedure and another. The examples in the previous paragraph illustrate

such differences as time efficiency of a representation and space efficiency of a

representation. Some other distinctions one typically encounters are the amount of

debugging assistance provided, the amount of error detection provided, the amount of

performance monitoring provided, a tradeoff between time and space, and the choice of

interface to other languages. Some of these distinctions will be illustrated in the next chapter.

Paragon provides two kinds of attributes: attribute variables and attribute procedures.

These can be viewed as compile-time variables and procedures that are provided by the

programmer. Before illustrating their uses, a description of the syntax and interpretation of

attribute variables and procedures is needed; this is provided in the following sections.

5.3.2. Attribute Variables

The syntax for attribute variable declarations is nearly identical to that for variable

declarations: the presence or absence of the reserved word attribute. But there are two

important semantic differences: the order of elaborations and the ability to use procedure

invocations. The syntax and semantics are considered below.

The syntax for declarations of attribute variables resembles variable declarations, except

that it contains the reserved word attribute before the reserved word vat, as illustrated below:

at t r ibute var Total_Space_Used => IM new Integer;

Like a variable declaration, an attribute variable declaration causes an identifier, here

Total_Space_Used, to be bound to an object, here a definite Integer object. The primary

difference lies in when the different elaborations of this declaration occur. The expressions in

variable .declarations are elaborated with specifications, implementations and realizations

when the enclosing class or procedure declaration is elaborated with specifications,

implementations and realizations respectively. The expressions in attribute variable

declarations are elaborated only with specifications and realizations. These two elaborations

of the expressions happen in tandem when the attribute variable declaration is elaborated

Section 5 . 3 . 2 Describing Classes and Procedures - - Attributes 122

with specifications. No action is taken when an attribute variable declaration is elaborated

with implementations or realizations. In a colloquial sense, therefore, attribute variables exist

only during the compile.time processing of the program.

A secondary, but important difference between attribute variable declarations and

nonattribute variable declarations is the ability of the former to include a name component

that denotes a procedure invocation in the expression. For example, one may write:

a t t r i b u t e var Expected_Size => 10;

while one may not write:

var Expect_Size => 10;

since the literal 10 is an implicit procedure invocation (see Section 3.3.6).

Paragon attaches no predefined meaning to any identifier declared as an attribute variable.

Although the examples shown here use predefined integer and boolean objects, nearly any

kind of object may be present. More precisely, any class that is self.implementing may be

used. The notion of self-implementing is discussed further with policy procedures (see

Section 5.5.2).

5.3,3. Attribute Procedures

Attribute procedures provide a way to attach more sophisticated information to classes and

procedures. Attribute variables denote a single value but attribute procedures may be as

complex as any other procedure in Paragon. As will be discussed later (Section 5.4.3), an

attribute procedure has access to a representation of the entire program. Thus an attribute

procedure may provide information based not only on local information in the attribute

procedure, but also on the structure of the program as well. In this section, only the syntax

and semantics of attribute procedures will be discussed. A description of attribute procedure

invocations is postponed until Section 5.5.3.

The syntax of attribute procedures resembles procedure implementations, though like

attribute variables, the semantics of using attribute procedures differ from procedures. These

differences are described below.

The syntax of an attribute procedure is like a procedure implementation except that the

reserved word attribute must precede the reserved word procedure, and there must be a

return expression present. A simple example is shown below:

Section 5.3.3 Describing Classes and Procedures - - Attributes 123

attr ibute
begin

return
end;

procedure Total_Time return IM .

100;

integer is

As one might expect, this parameterless attribute procedure will always return 100.

Unlike nonattribute procedures, attribute procedures do not have any specifications. Their

invocations provide any necessary specifications which must be met by the attribute

procedure.

The semantic differences between nonattribute procedure and attribute procedures involve

the ways in which they are called. A more detailed discussion of how attribute procedures are

invoked is provided in Section 5.5.3.

5.3,4. Attributes in Classes

Adding an attribute declaration to a class is identical to adding any other kind of declaration

to the class: one merely adds the declaration in the declaration list. An example is shown

below:

c lass ListManager(t:any) is
begin

attr ibute var Maximum_List_Size => 100;

class List is
begin

attr ibute vat Average_List_Size => 50;

end;

end;

The ListManager class has an attribute variable describing the maximum list size for individual

lists from this manager, and the inner class, List, has one describing the average size of those

lists. Naturally, all such interpretations of attribute variables are provided by the programmer.

Section 5 . 3 . 5 Describing Classes and Procedures m Attributes

5.3.5. Procedure Respecifications

124

The notion of refinement has been used extensively in this thesis, but most of the emphasis

has been on refinements using subclasses. Many levels of subclasses may be used to refine

an abstract data type. But the only refinement for procedure specifications discussed so far

has been procedure implementations. Paragon provides another refinement for procedure

specifications, namely procedure respecifications.

A procedure respecification lies between a procedure specification and a procedure

implementation. The syntax of a procedure specification looks like a procedure

implementation except that the reserved words specified with appear before the reserved

word begin and no statements, classes or nonattribute variables or procedures may be

declared. Thus like a procedure specificat!on a procedure respecification Contains a

description of the interface for calling the procedure and like a procedure implementation, a

procedure respecification may have different expressions for its parameters, so long as the

parameters match the specification. A somewhat contrived example of a procedure

specification, respecification and implementation is shown below:

I Three classes that form a l i s t of specif ications ;

class General is begin end;
class Middle of General is begin end;
class Lowest of Middle is begin end;

I A procedure specif ication that uses the ;
I most abstract level of the tree ;

procedure f(General) ;

I A procedure respecif ication that uses the ;
I f i r s t refinement of General;

procedure f(Middle) is specified with begin end;

I A procedure implementation that uses the ;
I f inal refinement of General;

procedure f(Lowest) is begin . . . end;

The motivations for including the procedure respecification are based on the ability to add

attributes to procedure declarations. The way this may occur is discussed in the next section,

which also contains a more realistic example of the procedure respecifications.

Section 5.3.6 Describing Classes and Procedures- Attributes 125

5.3.6. Attributes in Procedures

In all three kinds of procedure declarations, it is possible to annotate the declaration with

attributes. One may add attributes for several reasons: to a procedure specification to

provide some initial description of the procedure; to a procedure respecification to change

and refine the initial description based on some more information about possible procedure

calls; and to a procedure implementation to refine further the description based on the final,

chosen implementation. In this section, the ways that attributes are added to procedure

specifications, respecifications and implementations are discussed.

As it is possible to add attributes to any class, attributes in procedures are declared in the

block between the begin and end reserved words. In the case of a procedure specification,

where no block is normally present, a dummy block is used which is prefixed with the

reserved words specified with, just like a procedure respecification. Such a procedure

specification is shown below:

procedure I n s e r t (L : L i s t , E: t) i s
specified with begin

at t r ibute vat Checks_Parameters => True;
end;

Only attributes may be declared in such dummy blocks. No other declarations and no

statements are permitted.

The use of the reserved words specified with to denote both procedure respecifications and

procedure specifications (with attributes) can be confusing. 56 Usually, a block in a procedure

declaration that starts with the reserved words specified with denotes a procedure

respecification. As illustrated above, it may be used as a procedure specification. The choice

is determined by context. If there exists a procedure specification with the same identifier as

the procedure respecification in the current class or procedure, in an enclosing class or

procedure or in one of the ancestors of the current (or an enclosing) class, then the presence

of a specified with prefix indicates a procedure respecification, otherwise a procedure

56perhaps another revision of the language design woutd eliminate this ambiguity by introducing different syntax
for respecification and initial specification. Another change would permit a procedure implementation to act implicitly
as a procedure specification if no specification was present.

Sect ion 5.3.6 Descr ib ing Classes and P r o c e d u r e s - At t r ibutes 126

speci f icat ion, s7 An i l lustrat ion of this c i r cums tance is shown be low:

I Specif ication for Table objects ;
class Table is
b e g i n

a t t r i b u t e v a t A v e r a g e _ S i z e => 100;
p r o c e d u r e I n s e r t ; I S p e c i f i c a t i o n f o r I n s e r t ;

e n d ;

I Two general implementation approaches: Arrays and Trees ;

class Table_with_Arrays of Table is
begin

procedure Insert is
specified with begin

a t t r ibute procedure Time return im.integer is
begin

r e t u r n A v e r a g e _ S i z e ;
e n d ;

e n d ;
e n d ;

class Table_with_Trees of Table is
begin

procedure Insert is
specified with begin

a t t r ibute procedure Time return im.integer is
begin

return log2(Average_Size);
end;

end;
e n d ;

I Some specif ic array implementations ;

57This rule makes the hiding of procedures difficult if one wants to provide initial attributes. In particular, to
guarantee that the procedure declaration will be interpreted as a specification and not as a respeciflcation while still
providing initial attributes, the following ruse must be coded:

! New s p e c i f i c a t i o n :
procedure foo;
! New r e s p e c i f i c a t i o n . i t h same s ignature to hold a t t r i b u t e s ;
procedure foo is spec i f ied with
begin

! Add a t t r i b u t e s here ;
end;

The first declaration ensures the specification hides previous specifications; the second guarantees the presence of
the initial attributes.

Section 5.3.6 Describing Classes and Procedures - - Attributes 127

class Table_with_Arrays_Imp11 of Table_with_Arrays
begin

p rocedure I n s e r t is
beg in

a t t r i b u t e p rocedure Time r e t u r n i m . i n t e g e r is

end;
end;

is

class Table_with_Arrays_Imp12 of Table_with_Arrays iS
begin

procedure Insert is
begin

attribute procedure Time return im.integer ...

end;

I More specific array and tree implementations ;

e~r~d ;

The class Table serves as a specification for objects that are tables. There is one procedure in

table objects, Insert, which is specified in the Table class. The Insert procedure has a single

attribute, Time, which reports the amount of time the procedure requires to execute. Given a

particular implementation of Table, it is possible to select the appropriate implementation or

respecification of Insert for each of its invocations, and to invoke its corresponding Time

attribute procedure.

If one merely picked a complete implementation for Table, say Table_with_Arrays_lmpl2,

then the Time attribute procedure associated with the Insert procedure implementation would

be used. But one may use a stepwise-refinement technique, similar to the one in

PECOS [Barstow 79], for selecting an implementation. Thus one would first consider whether

to use arrays or trees to implement tables and select either Table_with_Arrays or

Table_with_Trees as the interim implementation of Tree. Such a selection would also cause

the respecification of Insert in the selected class to be used as a refinement of the

specification of the Insert procedure. With this technique, one can ask about the time that an

Insert procedure might take with each approach and receive a linear time with arrays and a

log time with trees, s8 Such information, when combined with data on other implementations

and the frequency of operations, could be used to decide whether to pursue further

refinements of tree implementations or array implementations.

58Only for the sake of argument. The examples are necessarily simple so that they can be easily understood.

Section 5 . 3 . 6 Describing Classes and Procedures - - Attributes

5.3.7. Attribute Variables in Expressions

128

Since attribute variables denote objects that exist only at compile time (although they are

run time in nature), attribute variables may be used in expressions that exist only at compile

time. Thus they may be used only in expressions in the statement parts of attribute

procedures and in expressions of other attribute variable declarations. Their use in a name

expression is syntactically identical to the use of a nonattribute variable: merely the identifier.

This is demonstrated below:

class List is
begin

attribute var Average_List_Size => 50;
attribute procedure Get_Size return IM.integer is
begin

re turn Average_List_Size;
end;

end;

When the attribute procedure Get_Size is called, it will obtain the current (realized) value of

Average_List_Size and return that object. However, Average_List_Size may not appear in the

statement list of the List class since those statements would be executed at run time when

Average_List_Size no longer denotes an object.

5.3.8. Variables with Attributes

Another way to manipulate attribute variables is available through the use of attribute

associations. As attribute variables represent some information about the object being

created, it is reasonable to allow a programmer to alter the attribute variables on an instance

by instance basis. For example, a programmer may wish to indicate that the average size for a

particular list is not the 100 specified by the Average_List_Size attribute variable in the class

declaration for List, but i s rather 50. This altering can be done by the attribute association

feature of variable declarations.

Each association has the syntax attribute identifier = > attribute value where the attribute

identifier is any identifier and the attribute value is any expression (also called the value

expression). A list of associations is preceded by the reserved word where. An example that

changes the 100 for Average_List_Size to 50 is shown below:

I First create a manager for integer lists ;
var MyListMansger => new ListManager(IM integer);

Section 5.3.8 Describing Classes and Procedures-- Attributes 129

var MyList => MyListManager . new L i s t
where Average_List_Size => 50;

The process Iby which the new object replaces the old object is a bit complicated. In short,

there is a check made to ensure that the new object is somehow the same "type" as the old,

and then the object replacement is made. The details for the example above are provided

below.

When the declaration for MyList is elaborated with specifications, the classes associated

with List will be elaborated with specifications and any attribute variables in those classes will

also be elaborated with realizations. After the classes are elaborated with specifications, each

attribute association is elaborated as follows:

1. The attribute identifier is located in the object returned for the object instantiation
expression of the variable declaration.

2. The attribute value expression in the attribute association is elaborated first with
specifications and then with realizations.

3. The object bound to the attribute identifier has its innermost component altered
to an indefinite instance if it is a definite instance.

4. The object returned by the elaboration of the attribute value expression with
realizations is compared with the altered object originally bound to the attribute
identifier.

If all of the previous elaborations are well specified, feasible and defined, and if the

comparison is successful, then the object returned by elaborating the value expression with

realizations is bound to the attribute identifier in the newly created definite instance, The

previous binding is discarded. If the elaborations are ill specified, infeasible or erroneous, or

if the Comparison between objects fails, then the variable declaration containing the attribute

association is ill specified.

The use of attribute variables to attach information to classes and procedures, and the use

of attribute procedures to provide values based on calculations using attdbute variables,

provide a powerful way to distinguish different implementations of an abstract data type as

they are used in a program. In fact, the attributes serve as decorations on a tree structure,

called the Possibility Tree, that resembles the program. Because of the pervasiveness of this

data structure, it is described next.

Section 5.4 Representing the Implementation Choices-- The Possibility Tree 130

5.4. Representing the Implementation Choices - - The
Possibility Tree

After a program has been elaborated with specifications, each variable declaration and

each procedure invocation has been associated with some set of local instances. The

structure of these variable declarations and procedure invocations form a tree, with each

node of the tree being a simple object associated with a variable declaration or a procedure

invocation and each edge leading to local variable declarations and procedure invocations of

the parent node. This tree, called a Possibility Tree, is the data structure that the policy

procedure operates on. In this section, a detailed description of the possibility tree for a

program is given.

5.4.1. Abstract Possibility Trees

Throughout this section, a rather contrived, but illustrative program will be used to show

how possibility trees are constructed and changed. The beginning of this program is shown

below, followed by its initial possibility tree.

Section 5,4.1 Representing the Implementation Choices -- The Possibility Tree 131

class MainProgram is
begin

class Generality is begin end;

class Specification of Generality is
begin

procedure MyProc; I This is the specification ;
end;

class Implementation! of Specification is
begin

procedure MyProc is I This is implementation # 1;
begin
end;

end;

class Implementation2 of Specification is
begin

procedure MyProc is ' This is implementation # Z;
begin
end;

end;

class Implementation3 of Specification is
begin

I No MyProc implementation;
end;

var x => new S p e c i f i c a t i o n ;
v a r y => new S p e c i f i c a t i o n ;
x.MyProc;
y.MyProc;

end;

! Procedure c a l l # I ;
I Procedure c a l l #Z ;

Section 5.4.1 Representing the Implementation Choices - - The Possibility Tree 132

f v ! p
__....,2, y

-Gen. =Spec. ~ Gen. i Spec. I * My Proc.(S) My Proc. (S)

V [P

Key

~,Locol Instance for Gen. ((s) indicates procedure specification)

~ , P ~ Indicates in current local instance list.

~tGen. ~Spec.

V l P V1 P ~ s leoding out for all procedure calls in

J
Edges leading out for all variable declarations in Gen.

Figu re 5-1 : Simple Possibility Tree

This diagram illustrates several of the previous terms. There are five nodes in this tree: one
forthe instance of the main program, one for the simple object that × denotes, one for the
simple object that y denotes, and one for each procedure call in the main program. Each

node consists of a set of local instances. Each local instance consists of three parts: a name

(for identification); some indication about whether that local instance is in the simple object's

local instance set (* present) or unused local instance set (*missing); and edges to other
instances-- one for each variable declaration and procedure invocation in that instance.

Parts of the structures of the program and its objects are also illustrated by Figure 5-1. The
simple object for the main program has only one local instance, hence the single local

instance for MainProgram. There are two edges for variables, one for x and one for y, which

lead to simple objects with Specification as an underlying class. Note that such simple objects
have two local instances, one for the Genera/ity class and one for the Specification class.

There are no variable declarations in Specification or Generality, so no edges for variables

Section 5.4.1 Representing the Implementation Choices - - The Possibility Tree 133

lead from those local instances. The local instance for the main program also has two edges

leading to nodes for the two procedure calls. The edges are labeled with the number of the

procedure call in the parent instance since there is no separate identification of each call.

Initially, the node for each call contains a local instance for the procedure specification

(denoted by the parenthesized S).

A possibility tree is not a static structure. It represents in part, a flow graph of the program,

in part, an abstract syntax tree, and in part, a dependency graph. Thus as implementation

decisions are made, the flow graph of a program is changed and the possibility tree changes.

The exact way that the possibility tree changes depends on the kind of node of that is being

processed. The changes for the two kinds of nodes, object instances and procedure-

invocation instances, are in considered in turn.

When a node in the possibility tree represents an object instance, it is changed by selecting

a new implementation for the object. As explained in Section 5.2, new local instances may

have to be created or some local instances may have to be moved between the local instance

set and the unused local instance set. These changes are reflected in the possibility tree.

When a new local instance is created for addition to the local instance set, the new local

instance is added to the simple object node and marked with an asterisk. Local instances that

were previously in the unused local instance set but which moved to the local instance set are

also marked with an asterisk. Conversely, local instances that are moved from the local

instance set to the unused local instance set are so marked by removing any asterisk.

Continuing the example that is shown in Figure 5-1, the implementation for x is set to

Implementation1, so a new local instance for the class Implementation1 would be created,

appended to the simple object for x and marked as in the local instance set. This is shown in

Figure 5-2.

Section 5.4.1 Representing the Implementation Choices- The Possibility Tree 134

F Mvin Program

, I ~ . ~;pec. 5mp'l "Gen. p •

vl P v I P vlP r IP vlP

Figu re 5-2: Selecting Implementation I for x

Should the implementation of x be changed back to Specification (that is, no choice of

implementation), then the local instance for Implementation I would no longer be marked as
being on the local instance set, but it would not be removed from the possibility tree. Only the
asterisk in the local instance for Imp/ementation I would be removed. If the Implementation 1

were reselected, then the possibility tree would return to the one shown in Figure 5-2.

Changing the implementation of x from Implementation I to Implementation2 causes similar

changes. First, the local instance associated with /mp/ementationl is marked as no longer

being in the local instance set. Then a new local instance for/mp/ementation2 is created and

added to the local instance set, The resulting tree is shown in Figure 5-3. Note that the local

instance for/mp/ementation 1 is still present, though marked as being in the unused local

instance set.

Section 5,4.1 Representing the Implementation Choices -- The Possibility Tree 135

Proqram I

Gen. * Spe¢. Imp' I ~ Imp' 2 ~' Gen.

rip

Figure 5-3: Changing x to/mp/ementation2

Should /mp/ementationl be selected again, then the local instance for /mp/ementation2

would no longer be marked as being in the local instance set and the local instance for

/mp/ementationl would be remarked. Should the Specification be selected as the

implementation - - that is, the class implements itself - - then the local instances for both

/mp/ementation 1 and/mp/ementation2 would be moved to the unused local instance set.

A similar process occurs when a procedure implementation (or specification or

respecification) is selected for a procedure-invocation instance during elaboration with

implementations. To illustrate this, assume that the implementation /mp/ementationl has

been initially selected for x and/mp/ementation2 has been selected for y. After elaborating the

main program with implementations, a selection of implementation 159 will have been made

for the call x.MyProc and a selection of implementation '2 will have been made for the

invocation y.MyProc. The resulting possibility tree is shown in Figure 5.4.

59Procedure specifications, resgecifications and implementations have the same name, so to distinguish them,
they are given numbers in comments next to the declarations.

Section 5.4.1 Representing the Implementation Choices - - The Possibility Tree 136

I'M°in ,oQ,.m]

ii
(My Proc (S) ~ M y Pro¢. 121

Y] lP V 1P v llll P v l

Figu re 5-4: Adding Procedure Implementations to the Possibility Tree

In this possibility tree, a local instance for implementation 1 is part of the simple object node

for x.MyProc and a local instance for implementation 2 is part of the simple object node for

y.MyProc. Note that the local instances for the specifications of the procedure are no longer

considered to be part of the simple objects' local instance sets but are considered part of the

unused local instance sets. Should the implementation for the procedure invocation

x.MyProc change, say because/mp/ementation3 was selected for x and the main program

was reelaborated with implementations, then the specification could again be associated with

the procedure invocation and be moved to the local instance set from the unused local

instance set, This situation is illustrated below in Figure 5-5.

Section 5A.1 Representing the Implementation Choices-- The Possibility Tree 137

e Main Pr°gram ,,, !
........ X y" ~

e Gain. •Spec. Impl I " Imp' 3 "My Proc(S) My Proc(l) . ~ . .

Figu re 5-5: Reusing old Procedure Local Instances in a Possibility Tree

The saving of previous local instances preserves implementation decisions that were made

for local instances in case those local instances are needed again. This feature is not readily

visible in the previous possibility trees because the example classes had no local variables or

procedure calls. To expand the example, consider the following additional class declarations:

1 Some classes fo r use as local va r iab les ;
1 in f u r t he r implementat ions ;

c lass LocalVar iable is begin end;
c lass LVi of LocalVar iable is begin end;
class LV2 of LocalVariable is begin and;

I Some more implementations for the class

class Implemention4 of Specification is
begin

vat MyLocal => new LocalVar iable
end;

Ifthe only

variablex,

Spec i f i ca t i on ;

implementation selection made in the main program were Imp/ementation4 for the

then the resulting possibility tree would appear as follows:

Section 5.4.t Representing the Implementation Choices - - The Possibility Tree 138

,lain Program
v i P

v t P

Figure 5-6: A Possibility Tree with only Implementation4

Note that the local variable for the instance of/mp/ementation4 is also present, It is possible

that the next implementation decision be a selection of LV1 for the variable MyLoca/. Thus the

possibility tree would look like the following:

F Moin Program I
v I F 1#2

y #1

IV';ll lll iv" l V'lll; I '

I My local

I~Local Vat, ! ~' LVI
V ! P l V I P ' I

Figure 5-7: A Possibility Tree with Implementation4 and LVl

Some effort has been expended to make the choice of LVI. Some time later, however, a

different decision for x may be made u say to use Implementation3 instead of

Implementation4. The resulting tree would then appear as follows:

Section 5.4.1 IRepresenting the Implementation Choices-- The Possibility Tree 139

~~)~==MOin Program I

P G.n ' = " ,m, 31 Gen. Spe¢. l \
L v l P l v l P l v l P v lP] v l P viPI ' ' "

I My Lo=I

ILocol Vor.l* LV I
v l,,p ! v l"PI

Figure 5-8: Picking/mp/ementation3 after/mp/ementation4

Although the local instance for/mp/ementation4 is in the unused local instance set, the

choices made for its local variables are unchanged. Should/mp/ementation4 be reselected as

the implementation for x, the decisions made for the variable MyLoca/are also preserved,

saving the effort that was used to make that selection,

The instances in the possibility tree have been described as abstract nodes that are

manipulated by the programmer. Actually, the tree is composed of instances of Paragon

classes. The details of the predefined classes that make up the possibility tree are described

in the next section.

5.4.2. Instances and Instance Classes

In this section, the predefined classes used to describe possibility trees are described. In

one sense, possibility-tree nodes are like any other object realization 6° in the language. There

is a class that defines them and they are manipulated like other Paragon class instances. But

they are different in that they are created by the underlying translation system and not by the

program that uses them. Possibility-tree nodes also correspond to specified objects in

addition to being realized objects. For each realization of the /nstance class (called an

/nstance object), there is a simple object that resulted from the elaboration of a class or

procedure with specifications. This simple object is called the doppe/ganger of the realization

60An obiect realization, or a realized object, is an object that was created when elaborating expressions with
realizations. A specified object is one that was created when elaborating expressions with specifications.

Section 5.4.2 Representing the Implementation Choices - - The Possibility Tree 140

of the Instance object. Thus a tree node in the possibility tree simultaneously represents two

objects instantiations: a realized instance of the class Instance and a specified instance of a

variable declaration or procedure invocation. The realized Instance object and its

doppelganger are always manipulated together, though the policy procedure usually

manipulates the realized version while attribute procedures manipulate the doppelganger.

The discussion in this section starts with a presentation of how the realized versions may be

manipulated. In Section 5.4.3, a brief discussion of the manipulations of the doppelganger

will be provided.

5 . 4 . 2 . 1 . Realized Instance O b j e c t s

Each node in the possibility tree is a realized instance of the predefined class Instance. The

declaration of this class is given below:

class Instance(IM. NumV: In teger , IM. NumP: In teger) is
begin

vat VarDecls => VAM 61 . new array(1,NumV);
var ProcCalls => PAM . new array(1,NumP);
procedure BindProcs return Booleans.Bi t ;

end;

The meaning of most of the identifiers in the class corresponds to the pictorial representation

of a tree node. NumV is the number of variable edges from all of the local instances in the

local instance set (but not from any unused local instances). NurnP is the number of

procedure invocation edges from all of the local instances in the local instance set (but not

from any unused local instances). VarOecls and ProcCails are arrays of pointers to the

instance realizations that represent the corresponding variable and procedure-invocation

simple objects. The elements in the VarDecls array are ordered by appearance of the

variables in the leftmost elaboration order of the current implementation of the simple object.

Similarly, the elements in the ProcCalls array are ordered by appearance of the procedure

calls in the leftmost elaboration order of the current implementation of the simple object.

61The identifiers before arrays and reference instantiations in class declarations for possibility-tree nodes
represent managers for these arrays and references, The declarations of these managers are:

v a r VAM => new A r r a y M a n a g e r (V a r D e c l) ;
var OAM => new A r r a y M a n a g e r (O b j D e c l) ;
var PAN => new A r r s y M s n a g e r (P r o c C a l l) ;
var CDRM => new Re fManager (C lassOec l) ;
va t CDRAM => new Ar rsyMansger (CDRM.Rsferenca) ;

Arrays and references are discussed in Sections 6.2,8 and 6.2.9.

Section 5.4.2.1Representing the implementation Choices - - The Possibility Tree 141

In addition to the structure of the possibility tree, the class Instance also defines BindProcs

which is one of two procedures that control the elaboration of the program with

implementations. The second predefined procedure, CheckFeasibility, is not defined in any

class; that is, it is a global procedure, and it has the following declaration:

procedure CheckFeasibi l i ty return Booleans.Bit;

Both procedures cause pieces of a program to be elaborated with implementations. The

former, BindProcs, causes the doppelganger of the instance object to be elaborated with

implementations without elaborating the procedure implementations used for the procedure

invocation in the instance. The CheckFeasibflity procedure causes the entire program to be

elaborated with implementations. Both procedures return a logical object. If True is returned,

then the program part that was elaborated with implementations is feasible. False is returned

if some part of the program being elaborated with implementations is infeasible.

One consequence of elaborating an instance with implementations is that the

implementation of some procedures may change, thus changing its local instance set. In the

simplest case, an implementation is selected where a specification was previously used. As

procedure specifications have no variable declarations or procedure invocations, the

parameters NumV and NumP are initially bound to zero and the corresponding arrays are

empty. However, most procedure impiementations have local variables and local procedure

invocations, so these bindings must change. After elaborating an instance with

implementations, the translation system will alter the Instance objects bound to these

identifiers (and their corresponding arrays) so that they correctly represent the local instance

set in the possibility tree.

The possibility tree that is accessible via the Instance objects represents only the last choice

made for each variable or procedure. There is no way for a programmer to manipulate the

local instances in the unused local instance list. These local instances were omitted from the

tree since identifiers in these local instances may refer to parameters in the specified object

which ceased to exist when the implementation was changed.

Although the class Instance defines the basic structure of the possibility tree, it does not

fully represent the nodes. There are therefore three additional subclasses that are used to

provide a more detailed description of the tree: ObjDecl, VarDecl and ProcCall. Each of these

classes is discussed in turn.

Section 5.4.2.~epresenting the Implementation Choices - - The Possibility Tree 142

5 .4 .2 .2 . Object Instant ia t ions

The ObjDecl and VarDecl classes are used to define nodes that represent class instances.

As a practical matter, there are no ObjDecl instances that are not also instances of VarDecl

and so the discussion will assume that every ObjDecl object is also a VarDect object. 62 These

two classes are declared below:

class ObjOecl(IM. NumV: Integer, IM. NumP:
of Instance is

begin
procedure GetSpec return CDRM.Reference;
procedure Getlmpl return CDRM.Reference;

end;

Integer)

class VarDecl(IM. NumV: Integer, IM.
of ObjDecl is

begin
vat ImpISet => IM . new Integer;

NumP: Integer)

procedure
procedure

return

Setlmpl(CDRM.Reference);
LocallyFeasible(CDRM.Reference)
Booleans.Bit;

ImplSet := O;
end;

No more tree structure is introduced by these classes, only some more procedures and a

variable ImplSet. The procedures are used to examine and set the implementations of the

variables as appropriate. Since these classes inherit the class Instance, variable objects

naturally have arrays of pointers to the Instance objects for local variables and procedure

invocations.

The procedures declared in the ObjDecl and VarDecl class manipulate the implementations

for the variables associated with the instance objects. These implementations are denoted by

pointers to objects that represent the class declarations in the program. To explain the

procedures, it is useful to consider the representation of class declarations as well.

Each class in the program, including predefined classes, is represented as an instance of a

predefined class C/assDec/which has the following declaration:

621n an earlier design, Instance objects also contained an array of pointers to parameters of the simple object.
Each pointer referred to instances of the ObjDecl class, Because actual parameters could be indefinite instances,
these ObiDec/ objects were not necessarily also instances of VarDec/. This would have permitted policies and
attribute procedures to get information from attributes in parameters being used as type parameters. Since this was
never fully completed, only the remnants of the design in the form of the class declaration ObjOecl remains.

Section 5.4.2.'~epresenting the Implementation Choices - - The Possibility Tree

c lass C lassDec l (IM . NumC: I n t e g e r , IM. NumP:
begin

var C h i l d r e n => CDRAM. new Ar ray(1 ,NumC);
var Parents => CDRAM. new Ar ray(1 ,NumP) ;

end;

I n t e g e r)

143

is

The form is similar to the Instance class declaration, only the two arrays contain pointers to

instances of ClassDecl for the immediate parents and immediate children of the denoted class

declaration. Whenthe GetSpec and Getlmpt procedures are invoked, they return pointers to

ClassDecl objects for the classes used as the specification and the current implementation of

the variable. Initially, the class used as the implementation of a variable is the same as its

specification. By using the Children and Parents arrays in ClassDecl objects, it is possible to

denote different implementations for a variable and to set the implementation of the variable

by passing the appropriate pointer to the Setlmpl procedure.

The Setlmpl procedure can cause other effects in the possibility tree besides changing the

implementation of variable. For example, if the designated class is not a locally feasible

implementation for the variable, the variable is marked as infeasible and no change is made in

its implementation. Even if the class is locally feasible, the change in the local instances may

cause the NumV and NumC values to change with corresponding changes to the arrays

VarDecls and ProcCatls. Note however, the objects will not change, only the internals of those

objects. Thus if those objects were passed as parameters to another class or procedure, the

class or procedure will also see the change in the possibility tree and the objects in the

Instance, class in which Setlmpl has been invoked.

Unfortunately, some selections of children of a specification c!ass may not result in a

feasible program. Many times, this can be determined by checking only the local feasibility of

a variable declaration, as defined in Section 5.2.1. The LocattyFeasible procedure provides

the facility to check if an implementation choice is locally feasible for a variable declaration

before se{ecting that particular implementation for a variable. If the passed parameter denotes

a class that is not a locally feasible implementation for the variable, the procedure will return

False, otherwise it will return True. In neither case will the current implementation of the

variable be changed.

The last declaration in VarDecl is for the variable ImpfSet. This integer variable has no

special meaning to the translator system. It is provided as a kind of limited tree decoration for

use by the programmer writing a policy. However, the single ImplSet variable is sometimes not

enough.

Section 5.4.2.,1Representing the Implementation Choices - - The Possibility Tree 144

Typically a compiler records a large information about the program directly on the internal

form of the program (usually termed "decorating the tree"). This is a very convenient tactic

for organizing any information that is collected about the program. The analogous operation

for a policy procedure would be to decorate the possibility tree with information it gathers

from the execution of attributes. Unfortunately, the predefined classes for VarDect, ObjDect,

ProcCall, and ClassDecl do not permit any additional information to be recorded with the

exception of the special integer variable Imp/Set in VarDecf. Thus a programmer must devise

some other mechanism for recording program information, such a tree parallel to the

possibility tree.

For this problem, an earlier design of Paragon did contain a solution. The policy

manipulated the same classes, but the currently predefined classes were prefixes of

programmer-provided classes used for the policy. For example, the following declarations

were used for the possibility tree:

I . °
t

I Instance Declarations
I . "

class InstancePrefix(IM. NumV: Inteqer, IM.
begin

var VarDecls => YAM . new array(1,NumV);
var ProcCalls => PAM . new array(l,NumP);
procedure BindProcs return Booleans.Bit;

end;

NumP: Integer) is

class Instance(IM. NumV: Integer, IM. NumP: Integer)
of In zncePrefix is

begin
i programmer provided declarations and statements;
end;

Section 5.4.2.~epresenting the Implementation Choices - - The Possibility Tree 145

I ObjDecl Declarations

class ObjDeclPrefix(IM. NumV: Integer, IM. NumP: Integer)
of Instance is

begin
procedure GetSpec return CDRM.Reference;
procedure GetImpl return CDRM.Reference;

end;

class ObjDecl(IM. NumV: Integer, IM. NumP: Integer)
of ObjDecIPrefix is

begin
I Programmer provided declarations and statements ;

end;

I VarDecl Declarations
I . ;

class VarOeclPrefix(IM. NumV: Integer, IM. NumP: Integer)
of ObjDecl is

begin
procedure Setlmpl(CDRM.Reference);
procedure LocallyFeasible(CDRM.Reference) return Booleans.Bit;

end;

c lass VarDec1(IM. NumV: Integer, IM. NumP: Integer)
of VarDecIPrefix is

begin
I Programmer provided declarations and statements ;
end;

! IProcCall Declarations

class ProcCallPrefix(IM. NumV: Integer, IM. NumP: Integer)
of Instance is

begin
procedure AlreadySeen return Booleans.Bit;
procedure Frequency return IM.Integer;
procedure IsImplementation return Booleans.Bit;

end;

c lass ProcCa l l (IM. NumV: I n t ege r , IM. NumP: I n t e g e r)
of ProcCallPrefix is

begin
I Programmer provided declarations and statements ;
end;

As before, when the possibility tree is created, appropriate instances of Instance would be

Section 5.4.2.~epresenting the Implementation Choices - - The Possibility Tree 146

created, each of which would contain the information from InstancePrefix (filled in the by the

translator) and the information from Instance, to be manipulated by the policy procedure. The

reason for the elimination of this scheme was size. It requires twice as many classes as

before, half of which need to be provided by the programmer: During testing of the translation

system, the need to provide extra class declarations seemed very inconvenient , thus they

were eliminated. Thus the ImplSet variable is a compromise to let the programmer add some

programmer.defined decorations to the possibility tree. If Paragon were to be used in a

production system, then it might be reasonable to keep this strategy and automatically to

provide empty Instance, ObjDecl, VarDect and ProcCall subclasses should the programmer

leave them out.

5.4.2.3. Procedure Invocations

Just as the special subclasses for object instances provide procedures for manipulating

variable declarations, so the ProcCall subclass declares procedures for manipul~ing

procedure invoc~ions. The declaration of ProcCatl is shown below:

class ProcCall(IH. NumV: Integer, IM. NumP: Integer)
of Instance is

begin
procedure AlreadySeen return Booleans.Bit;
procedure Frequency return IM.Integer;
procedure IsImplementation return Booleans.Bit;

end;

Again, no more tree structure is defined by the class, only some procedures are defined.

However, some relations between this procedure invocation and others are provided by the

AlreadySeen and Frequency procedures,

The AlreadySeen procedure provides a way for the programmer to determine if a recursive

call has already been encountered in the call chain. The algorithm used by the translation

system for pruning a possibility tree is performed to verify if the corresponding procedure

invocation is a recursive call of a similar procedure invocation. The appropriate True or False

object is returned. The details concerning similar procedure invocations are postponed until

a general discussion of feasibility in Section 5.5.5.

The Frequency procedure is used to provide some measure of how often the invocation is

elaborated during the execution of the program. Normally this would be tied to some kind of

performance-evaluation scheme, such as simulation results suggested by Low [Low 74] or a

performance verifier suggested by Shaw [Shaw 79]. Because this thesis does not intend to

Section 5.4.2.3:lepresenting the Implementation Choices - - The Possibility Tree 147

address the ways in which such data are collected, the implemented translation system

causes an invocation of this procedure to ask the user what value should be returned.

The third procedure in the ProcCall class, Islmplementation, returns True if the local

instance for the simple object is an instance of a procedure implementation. It returns False if

the local instance is an instance of a procedure specification or respecification. Thus this

procedure provides an analog to the LocaltyFeasible procedure in the VarDecl class in that it

is a heuristic approximation of feasibility.

5.4.3. Bridging Instance Objects and Doppelgangers

Each Instance object in the possibility tree corresponds to a specified simple object that

results from an object instantiation or a procedure invocation. Since the underlying class

declaration or procedure declaration of the doppelganger might contain attribute

declarations, it is desirable to gain access to the doppelganger from an Instance object to use

the attribute procedures. But an attribute procedure must be invoked in an Instance

environment (see Section 5.5.3) so it is also desirable to gain access to an Instance object

inside of a doppelganger. One half of the bridge, from Instance objects to doppelgangers, is

provided by attribute procedure invocations. The other half of the bridge, from doppelgangers

to Instance objects, is discussed below.

Since attribute invocations take place inside Instance ob,~ects, the nonlocal identifiers they

refer to must also be Instance objects. This is illustrated below:

class Example is
begin

var Temp => new MyClass;
a t t r ibute procedure Get_Time
begin

. . . Temp . . .
end;

end;

is

When the attribute Get_Time is being executed, the reference to Temp is a reference to an

object that exists only as a result of elaborating the variable declaration with specifications.

There should be a way to access the Instance object associated with Temp ~ that is, the

Instance object which has as its doppelganger the object denoted by Temp ~ and description

name components are the Paragon facility for doing so.

The description name component is used to bridge between doppelgangers - - that is,

Section 5.4.3 Representing the Implementation Choices- The Possibility Tree 148

objects elaborated with specifications o and Instance objects. The syntax of a description

name component is simply the reserved word desc followed by a parenthesized expression.

An example is given below:

desc (IM . i n t ege r)

The semantics of the description name component are quite simple. When a description name

component is elaborated with specifications, the parenthesized expression is elaborated with

specifications and then an instance of the any object is returned as the resulting environment.

When a description name component is elaborated with realizations, the parenthesized

expression is still elaborated with specifications, which results in the doppelganger of some

Instance object. Then that Instance object is returned as the environment for the next

component. Elaborating a description name component with implementations causes the

program to be ill specified,

With attributes, possibility trees and descriptions, the programmer has all of the tools

needed to describe different pieces of a program and represent some selection of

implementations. As yet, there is no way for the programmer to specify how the selections

should be made. The mechanism for specifying such decisions is called the policy procedure

and is discussed in the next section.

5.5. Making the Implementation Choices - -The Policy
Procedure

Global manipulation of the possibility tree is performed by a policy procedure, which is

described in this section. The policy procedure makes further use of some special features of

Paragon, such as invocations of attributes, pattern matching of nodes in the possibility tree

and feasibility checking, also described in this section. With these mechanisms, a

programmer may specify the criteria that should be applied when making decisions about

implementation selections.

5,5.1. Syntactic Properties of the Policy Procedure

The policy procedure is a user provided procedure that is executed (elaborated with

realizations) at compile time and selects the implementations for variables in the user's

program. It is written in Paragon and is interpreted by the translation system, The Paragon

specification for the policy procedure is:

Section 5.5.1 Making the Implementation Choices - - The Policy Procedure 149

procedure Pol icy(i : Instance);

and the user procedure must use the same header for the provided policy procedure

implementation. Although the language permits multiple implementations of a procedure

specification, only one implementation of Policy is permitted in a program.

The parameter to the policy procedure is an Instance object for the main program. When the

policy procedure finishes execution, that is, returns, the entire program is elaborated with

implementations to check for program feasibility (in case the policy procedure made

infeasible implementation selections). After elaboration with implementations, a transformed

version of the program can be given to a code generation system. This transformed version

has all procedure invocations associated with particular procedure implementations and all

variables associated with particular implementation classes. The current prototype merely

writes out a stylized version of the program along with all of the implementation decisions.

The goal of this design of a policy procedure is to give the programmer a mechanism with

which the programmer can enforce any selection policy. The mechanism for implementation

selection is merely a procedure written in Paragon. Thus most data structure selection

algorithms that are expressed in other algebraic languages can be expressed as policies for

Paragon. In Sections 6.5 and 6.9, sample policy procedures are given that implement the

following strategies:

• Any set of implementations that makes the program feasible.

• Minimum product of time and space for a feasible program.

• Low's Heuristic (Hill Climbing time/space product) for a feasible program [Low
74~.

• Ramirez's Dynamic Programming Algorithm (Minimizing Cost function along with
time and space constraints) [Ramirez 80].

• Branch-and.Bound search for a feasible implementation selection that minimizes
a cost function [Winston 77].

The primary differences between other data structure selection systems and Paragon's

policy procedures are the method in which program specific information is provided and the

control of the algorithm that uses the program specific information. Typically, this information

is specially coded in a table or set of rules known to the translation system (along with the

translator system's internal representation of the program). This is sufficient for specific,

Section 5.5.1 Making the Implementation Choices - - The Policy Procedure 150

predefined data types, such as associative stores, and specific selection methods, such as hill

climbing heuristics. However this method does not integrate well with abstract data type

methodology.

5.5.2. Executing a Policy Procedure

Like all Paragon programs that are executed, variables and procedures in the policy

procedure and the attribute procedures must have implementations. Normally, such

implementations are chosen before elaboration with realizations by the policy procedure, but

that clearly leads to an infinite regression of selection decisions. To avoid making

implementation selections in policy and attribute procedures, Paragon insists that all classes

used in policies and attributes be self-implementing.

A self-implementing class is one where the implementation class is the same as the

specification class and where all procedure specifications have the necessary procedure

implementations. More precisely, a class is self-implementing if it is a predefined class, or if

for every procedure specification in the class and for every procedure specification in the

claas's ancestors, there is exactly one procedure implementation declared in the class (not in

the ancestors of the class).

To ensure that a policy can execute, Paragon insists that every object creation in a policy

procedure, attribute procedure or attribute variable use the class given as the specification

for the implementation. At a practical level, therefore, there is no separation of specification

and implementation of user-defined types for the policy procedure.

Procedure invocations during policy execution are handled much like elaborations with

implementations. When a procedure invocation is elaborated, the environment is searched

for the unique procedure implementation for the specified procedure. If exactly one such

implementation is found, then that implementation is used for the invocation. Should this

implementation be infeasible for this invocation (and thereby cause an error during

elaboration with realizations), then the program being processed is considered infeasible. If

the underlying class of the environment is predefined, then the translation system will

provided an appropriate implementation. For example, any use of a predefined integer object

(IM.new integerl) with the predefined Assign procedure will be implemented by the translation

system, but any user-provided subclass of Assignable must include an implementation of the

procedure Assign for the class to be self-implementable and hence usable in a policy or

attribute.

Section 5.5.2 Making the Implementation Choices-- The Policy Procedure 151

Paragon attempts to provide sufficient mechanisms of program description as primitive

operations so that policy procedures may implement a wide range of criteria for its selection

decisions. Most of these mechanisms were discussed in this chapter and include the

possibility tree, user provided attribute procedures and variables that provide information

about implementations, and some predefined procedures that provide information about the

feasibility of the program. Two additional mechanisms are attribute procedure invocations

and a predefined iteration construct for matching certain patterns in the possibility tree.

These additional mechanisms are considered next.

5.5.3. Attribute-Procedure Invocations

Attribute procedures are invoked by a special kind of name component. Both the syntax

and the semantics of this name component differ markedly from other procedure invocation

name components.

The syntax of an attribute-procedure invocation component contains a specification of the

return object that the attribute should return. Like other invocations, first the name of the

attribute procedure is given followed by the parameters for the invocation. For an attribute

procedure, the reserved word r¢~urn is then written followed by a parenthesized expression.

This expression describes the object to be returned by the attribute. A typical attribute

procedure invocation is given below:

Time return (IM.integer)

When the Time attribute procedure terminates, it will return an object that matches the

expression IM.integer.

The semantics of an attribute-procedure invocation component differ from other procedure

invocations in threemain ways: the invocation environment is implied and possibly changing;

the return object is specified by the name component describing the invocation and not by the

declaration of the invoked procedure; and only elaborations with specifications and

realizations are defined. These interrelated differences are discussed below.

When an attribute-procedure invocation is elaborated with specifications, the environment

in which the invocation is to take place is ignored. Thus the identifier in the name component

is not searched for in any environment. However, the parameters are elaborated with

specifications to ensure that they are well specified. But since there is no declaration found in

Section 5.5.3 Making the Implementation Choices - - The Policy Procedure 152

the environment, the resulting objects are not compared with any other objects. Finally, the

expression following the return reserved word is elaborated and used as the environment for

the next name component.

If an attribute-procedure invocation is elaborated with implementations, then the program is

ill specified. This check ensures that no compile-time facilities of Paragon are present during

the actual execution of the user'; program.

An attribute-procedure invocation may be elaborated with realizations only in the

environment of an Instance object; that is, the environment must be an object that has an

instantiation of the predefined class Instance in its local instance set. Recall that Instance

objects are associated with a class instance or a procedure call in a Paragon program called

the doppelganger of the Instance object. When an attribute invocation occurs in the

environment of an Instance object, the doppetganger of the Instance object is searched for

the attribute procedure. If the identifier cannot be found, or if the identifier does not denote

an attribute procedure, then the program is erroneous.

The searching of the doppelganger is what makes invocation of attribute procedures very

different from other procedure invocations. Normally, a procedure invocation causes the

environment, which resulted from elaboration with specifications, to be search for an

appropriate procedure specification. Although the implementation of the object used as the

environment changes, the procedure specification denoted by the name component does not

change. However, as the implementation of the object changes, some attribute procedures

may be added and others hidden or eliminated. Thus each attribute-procedure invocation

must search for an appropriate attribute procedure in its doppelganger. In many ways, this

process resembles the invocation of Simula virtual procedures or Smatltalk methods.

Once an attribute procedure is found, the actual parameters and return expression in the

name component are elaborated with realizations and the formal parameters and return

expression of the attribute procedure are elaborated with realizations. The resulting actual

objects are compared with the corresponding formal objects. If a match occurs, then the

attribute procedure is elaborated with realizations. The object that is returned by the attribute

procedure is used either as the environment for the name component following the attribute-

procedure invocation or as the result of the expression. If any of the elaborations of

parameters or return expressions are ill specified or erroneous, or if the comparison of

objects fails, then the attribute-procedure invocation is erroneous.

Section 5.5.3 Making the implementation Choices - - The Policy Procedure 153

Because of the possibility that an attribute-procedure invocation can be erroneous through

a parameter mismatch (which for nonattribute procedure invocations are checked during

elaboration with specifications and not during elaboration with realizations), the check name

component is provided. This component is a modification of the name component used for

attribute-procedure invocation. The syntactic difference between these two components is

that the reserved word check appears before the identifier for the attribute in the name

component. This is illustrated below:

check Time return (IM. integer)

This check name component effectively checks to see if an appropriate Time procedure is

available in the calling environment.

There are some small, semantic differences between a check name component and an

attribute-procedure invocation name component. A different method is used for determining

the resulting object of the name component. For a check component, the new environment is

an instance of the predefined boolean object: that is, the object that results from elaborating

the expression Booteans.Bit with specifications. Normally, the returned object results from

elaborating the return expression in the name component.

Another difference occurs when elaborating with realizations. Initially, the same actions are

performed for check components as for attribute-procedure invocation components, till the

time when the actual elaboration of the attribute procedure with realizations occur. If the

elaboration is well specified and defined until that time, then a realized object from the True

procedure is returned as the environment for the next component and the elaboration of the

check component is finished. If the actions preceding the actual elaboration of the attribute

procedure are ill specified or erroneous in any way, then a realized object for the Fa/se object

is returnecl as the environment for the next component.

Typically, checks would be used in tandem with an actual attribute-procedure invocation, as

illustrated below:

i f check Time return (IM. integer) then
totaITime := Time return (IM. in teger) ;

e lse
totaITime := Defa,ultTime;

end i f ;

In the example above, the program ensures the existence of a Time attribute procedure

before using it. If the attribute for calculating the Time of an object exists, then its value is

used in the calculation, otherwise some default value is used.

Section 5.5.3 Making the Implementation Choices - - The Policy Procedure

5.5.4. The Pattern Matching Statement

154

The pattern matching statement provides a special kind of predefined iterator for use by

policy and attribute procedures. The syntax resembles ordinary for statements and is defined

below:

let <identifier> match <expression> in <expression> do
{ <statement> ; }*

end let

Following the reserved word/et is an identifier that denotes a particular ProcCa//instance and

is called the index identifier of the pattern matching statement. Like all identifiers, it must be

declared before it is used, but unlike other variable declarations, it is declared with an

indefinite instance of the ProcCa//class, as illustrated below:

var Call => ProcCall;

The expression following the reserved word match is called the pattern expression and

represents the pattern that should be searched for. The expression following the reserved

word in is called the target expression and represents the Instance class in which the search

should be carried out.

After elaborating pattern and target expressions, the object that results from elaborating the

pattern expression is compared with each procedure invocation instance in the Instance

object (that is, the ProcCafl instances referenced by the ProcCalls array in the Instance

object) that resulted from elaborating the target expression. All of the matching instances are

saved. Then, one at a time, each matching instance is bound to the index identifier and the

statements after the reserved word do in the pattern matching statement are elaborated.

A typical use of the pattern matching statement is shown below:

class SetManager(T: any) of AssignableManager is
begin

attribute procedure ManagerTime(i:instance)
return IM.integer is

begin
var TotalTime => IM . new in teger ;
var call => ProcCa11;

Section 5.5.4 Making the Implementation Choices - - The Policy Procedure 155

TotaITime := O;
le t call match desc(this B3 SetManager) in i do

i f call.check Time
return (IM.integer) then

TotaITime := call.Frequency * call.Time
return (IM. in teger)+ TotaITime

f i ;
end let ;
return TotaITime;

end;
end;

The pattern statement in the example above performs a search of the Instance object that is

passed to the attribute. Through the use of the description expression, the corresponding

Instance for the enclosing SetManager can be found in the pattern expression. Thus the

passed tree node of the possibility tree is searched for any procedure calls that occur in the

particular SetManager that contains the attribute procedure being called. Because matching

of objects allows holes in objects, this iterator effectively provides a list of all procedure calls

in i that use this SetManager as an environment. Similar kinds of use of the pattern matching

statement can retrieve all the uses of particular data abstraction in some part of the program

for further analysis.

The use of attribute invocations and pattern matching statements provide some local

information about the program to the policy procedure. Information about a global property

of the program, feasibility, can also be deduced and given to the program. This is discussed

in the next section.

5.5.5. Feasibility of a Program

Feasibility is a property that a program has where all of the selection decisions that have

been made for variables and procedure invocations result in a program that can be executed.

The details of feasibility checking for variable declarations were provided in Section 5.2.3. In

this section, the checking of feasibility for procedure invocations will be discussed.

63This refers to the object in which this attribute is being elaborated.

Section 5.5.5.1 Making the Implementation Choices-- The Policy Procedure 156

5.5.5.1. Selecting a Procedure Invocation

Unlike variable implementations which are selected explicitly by the policy procedure,

procedure implementations are selected implicitly by the translation system during

elaboration with implementations. The process is similar to elaboration of procedure

invocations with specifications (see Section 3.6.4) and consists of four steps. First, the

environment is searched to gather up all available implementations of the procedure, then

each of the implementations is examined for feasibility until an appropriate one is found, third,

the selected implementation is elaborated with implementations and finally the return

expression of the implementation, if any, is elaborated with implementations and used as the

environment for the next name component.

When a procedure invocation is elaborated with implementations, the environment in which

the invocation occurs has also been elaborated with implementations and thus reflects the

implementation choices made for previous components of the name expression. This

environment is searched for all procedure implementations that implement the procedure

specified in the name component. For this purpose alone, procedure respecffications and

specifications also implement the specification. There may have been other procedures

specified in the implementation environment with the same identifier, but only the procedures

that implement the procedure originally specified are considered. These procedure

implementations are placed in a list, where implementations' that occur in different classes are

listed in leftmost parent order while implementations in the same class are listed in reverse

declaration order, that is, bottom up in the class declaration. This is illustrated by the

following example:

class Parent is
begin

Procedure P; I Specif icat ion ;
Procedure P is begin end; I Implementation 1;

end;

class Implementationl of Parent is
begin

Procedure P is begin end;
Procedure P is specified with begin end;

end;

I Implementation Z;
I Implementation 3;

class Implementation2 of Parent is
begin

Procedure P is begin end;
Procedure P is begin end;

end;

I Implementation 4;
I Implementation 5;

Section 5.5.5.1 Making the Implementation Choices-- The Policy Procedure 157

class Both of Implementationl, Implementation2 is
begin

Procedure P is begin end; ~ Implementation 6;
end;

Ira procedureinvocation ofPtakes placeinaninstance ofBoth, thentheimptementationsfor

P would beexaminedinthefollowing o~er: 6,3,2,1,Spec, 5,4.

Once a list of possible implementations is constructed, the implementations are examined in

order until one with an appropriate set of parameters is located. Before the examination may

occur, the parameters in the procedure invocation name component (actual parameters) are

elaborated with implementations. Then for each implementation in the list, the (formal)

parameters are elaborated with implementations and compared with the objects that resulted

from elaborating the actual parameters with implementations. If the comparisons are

successful then the implementation being considered is selected as the appropriate

implementation and the search is terminated. Because the specification of the procedure is in

the list of implementations to be checked, there is a guarantee that some implementation (if

nothing etse, the original specification) will match.

Once an implementation has been selected, elaboration of the procedure invocation

continues by elaborating the declarations and body of the procedure implementation with

implementations. This is done to ensure that local variables and procedure invocations are

also feasible. Should any local declarations or procedure invocations not be feasible, then the

program is also infeasible.

After the procedure implementation has been elaborated with implementations, the return

expression in the declaration is used as the environment for the next name component or as

the result of the expression in which the procedure invocation occurs.

Like the choosing of an implementation for a variable, the selection of a procedure

implementation may cause changes both in the local instance set and the unused local

instance set of the simple object for the procedure invocation. Before any choice is made, the

local instance for the current selection (usually the specification) is moved from the local

instance set to the unused local instance set. If the selected procedure implementation has

been previously selected, its local instance is moved from the unused local instance set to the

local instance set. If the selected procedure implementation has never beer~ previously

selected for this invocation, then a new local instance for this procedure declaration is

Section 5,5.5.1 Making the Implementation Choices - - The Policy Procedure 158

created, elaborated with specifications and added to the local instance set. Note that the

simple object for a procedure invocation always has exactly one local instance in its local

instance set: the last selected procedure implementation.

Although the programmer can explicitly control the selection of implementations for

variables, the programmer has no way to chose among feasible implementations for

procedures. Instead the system will select a feasible implementation based on its way of

searching for a procedure implementation. This division of labor between the programmer

and the translation system was created to limit the amount of processing done by the

programmer. If the policy had to chose an implementation for each procedure call then the

amount of time the policy requires would be a function of the number of procedure calls in a

program rather than the number of variable declarations and the policy would require too

much time for execution. Thus a special, relatively fast method of finding a procedure

implementation is built into the system.

An interesting feature of elaboration with implementations is that it closely resembles

elaboration with realizations. Procedure invocations actually have their declarations and

bodies elaborated rather than merely returning as during elaboration with specifications. This

presents no problems for variables, since Paragon prohibits recursive instantiations of

classes. However, recursion in procedures is quite natural and permitted in Paragon. Unlike

execution, there is no conditional procedure invocation; all invocations must be checked for

feasibility. Thus the elaboration of a recursive procedure implementation with

implementations wilt never terminate. Fortunately, an infinite recursion of procedure

invocations is not necessary for f~asibility checking. Instead, procedure invocations that are

similar to previous invocations need not be checked since they have already been checked.

The exact meaning of "similar" is considered in the next section.

5.5.5.2. Limiting the Size of the Possibility Tree

As described in the previous section, the possibility tree that results from the selection of a

recursive procedure implementation is a possibly infinite data structure. A program that can

generate such a tree is illustrated below:

Section 5.5.5.2 Making the Implementation Choices - - The Policy Procedure 159

c lass MainProgram i s
begin

procedure Recur;
procedure Recur is
begin

Recur;
end;

Recur;
end;

If the main program were to be elaborated with implementations without any concern for

recursion, the tree would continue forever, expanding the specification for the procedure

Recur into the implementation of Recur. The initial part of this tree is shown below:

l~-MOvn Program t

t Recur(S) "Recur(I1
\ l= ~ V' t P V l P

Invocotion ~ " - \

~, Recur (S) *Recur(I) /
vl p r i p /

2nd / I~ecur(S) * Recur(I)
invocotion 5rd invocation--'~ V I P V i P #1

Figure 5-9: Part of an Infinite Possibility Tree

This recursion is ended when elaborating a program with implementations when the

elaborator finds a procedure invocation that is similar to a previous procedure invocation in

the call chain, that is, on a path from the root of the possibility tree to the current invocation, tf

the invocation is similar to a previous invocation, then it is assumed that the decisions made

for that previous invocation should be made for this invocation and no further elaboration with

implementations is done. Two procedure invocations are similar if the same procedure

implementation is invoked, if the objects passed as parameters for both invocations are

Section 5.5.5.2 Making the implementation Choices - - The Policy Procedure 160

similar, and if the environment of both invocations are similar. Two objects (environments)

are similar if each of their simple objects are similar, and simple objects are similar if they

have the same underlying class, have similar parameters and have similar objects bound to all

variables defined in those objects. In Figure 5-9, the circled part of the tree is all that is

elaborated with implementations. The third invocation of Recur is similar to the second

invocation of Recur and so elaboration with implementations would not be performed for the

simple object for the third invocation of Recur.

Note how the checking for similarity of procedure invocations guarantees that appropriate

implementations exist for the recursive call of a procedure. The only objects that may be

referenced by a procedure are those in its parameters and in its environment. Based on the

implementations for these objects, certain procedure implementations must be guaranteed in

the implementation of the procedure. Assuming the previous invocation is feasible, then the

same selections of procedure implementations and variables can be made for the recursive

invocation of the procedure with the knowledge that the resulting procedure implementation

is feasible. If the previous invocation is not feasible, then the program is will not be considered

feasible and there is no sense in wasting resources checking another invocation of the same

procedure. Further, since there is a finite number of procedure implementations, parameters,

class declarations and scope nesting (which corresponds to the maximum number of levels in

an object), there are a finite number of possible procedure invocations and so there must

eventually exist a similar procedure invocation in an infinite call chain. Thus the feasibility

check is guaranteed to terminate.

Although the method used for elaborating procedure invocations with implementations can

guarantee the feasibility of a program, there are subtleties when performing the processing.

Three subtle facets, determining the return object of a procedure call, hidden

implementations, and stopping infinite recursion, are discussed below.

5.5.5.3. Selecting the Implementations of Return Objects

Typically there is no problem to determine the return object of a procedure call, since the

procedure implementation explicitly names the return implementation, as illustrated below:

procedure In te rsec t (S ing leL inkSe t ,S ing] eLinkSet)
re turn SingleLinkSet is

begin . . . end;

The return object for this implementation of /ntersect has the structure Sing/eLinkSet.

Section 5.5.5.3 Making the Implementation Choices-- The Policy Procedure 161

However, this information is not generally available in general procedure implementations. In

a general implementation for Intersect that uses only abstract operations on Sets, the return

expression (typically) specifies only Set, as shown below:

procedure In te rsec t (L :Se t ,R :Se t) return Set is
begin . . . end;

Assuming that the result of the Intersect procedure will be used in another procedure call,

more information about the implementation of return object will be needed to guarantee

feasibility of the next procedure call.

Two alternatives were considered for determining the implementation of the return object:

explicitly and implicitly.

The explicit method uses the return expression to provide explicitly the implementation of

the return object. For the general procedure implementation, the return expression usually is

an expression containing one of the parameters, in analogous way that procedure

specifications specify their return object when used for subclasses in Section 4.4.3. This is

illustrated below:

procedure In te rsec t (L :Se t ,R :Se t) return L . s t ruc tu re is
begin . . . end;

The example above specifies that the implementation of the return object will be the same

structure as the implementation of the first parameter, L.

The implicit method, which was rejected, determines the return object by examining all of

the return statements in a procedure implementation. When elaborating a call of a procedure

implementation with elaborations, the expression in each return statement will be elaborated

with implementations. All of the resulting objects are collected and each is used in turn as the

return object for further elaboration of the expression containing the procedure call. The

further elaboration of the expression would be considered feasible only if all of the resulting

objects would result in a feasible elaboration of the expression.

The implicit method was rejected for two reasons. First, the implicit method requires more

processing during elaboration with implementations. If only two return statements were found

in a procedure and four levels of procedure nesting were present, as for example: 64

64Recall that literals create an implicit call of Literal.

Section 5.5.5.3 Making the Implementation Choices-- The Policy Procedure 162

x := Square(2) + 3; I Real ly: IM.Ass ign(x , IM.P lus(Square(2)) ,3) ;

then the expression would have to be elaborated with implementations 2 4 or 16 times.

Second, the implicit method would add run time costs to the compiled code. With the

explicit method, exactly one procedure implementation is associated with each procedure

call. Thus the compiler can generate code to call that one procedure at the call site. With the

implicit method, the returned object has to be examined to determine which procedure

implementation will be used next. Because the language design attempts to reduce run-time

checking, the implicit method for determining a return object's implementation was rejected.

Nevertheless, run-time selection of procedure implementations has value in a general-

purpose programming language. Although Paragon was not intended to be a complete,

production language, it already contains the rudiments of dynamic procedure selection in the

attribute-procedure mechanism. If one were to permit attribute procedures to exist after

representation selection, and also allow attribute call expressions to be elaborated with

implementations, that is, permit attribute calls in the user's program, then attribute

procedures could be used in circumstances where a dynamic selection of a procedure is

desired.

One result of the design that emerged from the above considerations is a rather baroque

way of ensuring that implementations exist when using type parameters. The underlying

problem is that no implementation is selected for an indefinite instance, so any return object

that is expressed in terms of an indefinite instance is nearly always infeasible. This occurs in

the symbol table example in Section 4.4.3. The creation of the table manager and a use of the

table is shown again below:

var TSO => new APLSymbolTableManager(AO_Manager.Addable_Object);
o o •

ST.Re t r i eve (1) . . .

During elaboration with specifications, the return object for Retrieve is

AO_Manager.Addable_Object, which is adequate for many purposes. But no representation

selection is ever performed for AO_Manager since it is an indefinite instance. In this

declaration, AO_Manager contains no implementations for any operations. Thus during

elaboration with implementations, the returned object for Retrieve has a manager that

contains no implementations. More than likely, such an object will prove to be infeasible when

the next operation is applied to it, as for example, when the result of the Retrieve procedure is

Section 5.5.5.3 Making the Implementation Choices--The Policy Procedure 163

assigned to a temporary variable. A Paragon programmer can solve this problem by creating a

variable whose sole purpose is to be used as a type parameter. This is illustrated below:

var FakeManager => new AO_Manager;
var FakeIndiv idual => FakeManager . new Addable_Object;

var TSO => new APLSymbolTableManager(FakeIndiv idual .s t ructure) ;

S T . R e t r i e v e (t) . . .

During elaboration with specifications, the use of Fake/ndividua/.structure takes the place of

the underlying class AddableObject, yet is still an indefinite instance. However, the policy will

make an implementation selection for Fake/ndividua/ and during elaboration with

implementations, that choice will be propagated when reelaborating the variable declaration

for TSO, thus providing the Retrieve procedure with an object that has an implementation.

This problem clearly indicates that types should not be treated as object expressions as

Paragon attempts to do. Another approach is suggested in Section C.2.

5.5.5.4. Hidden Implementations

Because of the way that procedure implementations are selected, it is possible that some

operations may be hidden. This occurs when using the multiple manager strategy discussed

in Section 4.6.2.2. Recall that implementations for a procedure are considered in a leftmost

parent order, and that specifications are included in the list of implementations to ensure that

every procedure call is associated with some procedure declaration during elaboration with

implementations. However if a class has multiple parents that have a common ancestor, a

leftmost parent search uses declarations in the common ancestor before the declarations in a

second parent. This was first demonstrated in Section 5.5.5.1. A more compelling example

can be generated by the declarations in Sections 4.6.1 (page 96), 4.6.2 (page 98) and

4.6.2.2 (page 101). If the CombinedSetManager were chosen for MySetManager and

Sing/eLinkSet were chosen for Set1 and Set2, and a call on Intersect were made with Set1

and Set2, the general implementation of Intersect in Set_Manager would always be selected

before the ArraySet.specific implementation in ArraySetManager. Worse, a call of the Insert

procedure made with Set1 would always be matched with the specification of Insert in

Set_Manager and never with the implementation in ArraySetManager, thus always rendering

the call infeasible.

This last problem results from implementations being considered in leftmost parent order.

Section 5.5.5.4 Making the Implementation Choices-- The Policy Procedure 164

This decision was casually made based on the observation that other languages with multiple

inheritance, such as Flavors/Lisp [Weinreb 80] and Traits/Mesa [Curry 82] used this order

for searching for procedure implementations. However, both of these systems were looking

only for a single implementation and not necessarily trying to locate an appropriate

implementation out of a set of possible implementations. Thus they do not suffer as does

Paragon. There are two alternatives to a leftmost parent order search. The first would merely

take the list of implementation choices as generated by the leftmost parent order list, extract

the specifications and place them last. This eliminates the problem where no call of Insert

would be feasible, but does not effectively place the representation-specific implementation

for Intersect before the general implementation. Further, this alternative does not properly

place procedure respecifications in the list of implementations. The second alternative is to

abandon the leftmost parent order and instead use a reverse leftmost elaboration order of

classes for conducting the search. Then the specific implementation would be used before

the general implementation, and the general implementation before the specification. This

change would be adopted if Paragon were to undergo another design iteration.

5 .5 .5 .5 . Another Way to Terminate Recursive Procedure Calls

Although Paragon defines the notion of similar procedure calls which is used to terminate

mutually recursive calls, there are two ways in which similar procedure calls could be applied.

The adopted choice requires that a similar procedure call exist in the call chain of the

procedure call under examination. The rejected alternative was to permit the similar

procedure call to exist anywhere else in the possibility tree. Initially, this approach seems

better since I believe fewer procedure calls would have to be elaborated with

implementations. Only one recursive call of a procedure would have to be kept; all others

would be similar to it.

The alternative above was rejected because the translation system should guarantee that

the call that was similar would not be altered by later elaboration with implementations. If the

translation system requires only that some other call be similar, then a later elaboration of the

procedure call with implementations might choose a different implementation for that call,

thus invalidating the motivation for omitting the feasibility checking of the call under

consideration. However, a call in the call chain already has its selection made and cannot be

changed: the call under consideration is reached only by the previous selection in the call

chain. Therefore the first alternative is used as the termination criterion for elaborating

procedure calls with implementations.

Section 5.5.5,5 Making the Implementation Choices w The Policy Procedure 165

In this chapter, the various mechanisms that Paragon provides for describing and selecting

appropriate implementations for variables and procedure in a program have been discussed.

In the next chapter, a full example using all of these mechanisms will be presented as an

illustration of the useful of the features.

Chapter 6
A Complete Example Using Paragon

This chapter illustrates the processing of an example program which demonstrates all of the

features presented in the previous chapters. The chapter starts with a description of the

structure of a program, and then gives the parts for a typical program: the predefined

environment, a specification for an abstract data type, an implementation for an abstract data

type, an application program that uses the abstract data type, and a policy for making

representation selections. After these descriptions, some pieces of the transformed program

are provided, showing the results of processing the program.

Following the simple example, the processing for a more complicated example is presented,

and some alternative policies are described.

Frequently, the program text in this chapter is abbreviated to conserve space, and make the

examples manageable. The full text for all examples is reproduced in Appendices E and F.

6.1. Program Structure and Processing

Programs in Paragon are a single class, called the Universal_Environment. Inside of the

universal environment are the predefined classes, variables and procedures for Paragon,

programmer-provided declarations for specifications and implementations of abstract data

types, a programmer.provided policy procedure and the programmer's application program.

The application program is a parameterless, parentless class declared as MainProgram.

The elaboration with specifications consists of elaborating the declaration for

UniversalEnvironment with specifications. The policy procedure is executed by elaborating

the UniversatEnvironment with realizations, creating a call to the Policy procedure, and then

elaborating the call with realizations. When the policy procedure terminates, the MainProgram

class declaration is elaborated with implementations. A file containing all of the decisions

Section 6.1 Program Structure and Processing 168

made for the user's program is then written, though in a production system, the transformed

program would be retained internally and used for final code generation.

6.2. Predefined Environment

The predefined environment contains declarations for the objects one normally expects in a

general purpose algebraic language, such as integers, booleans, arrays and pointers. The

specific declarations for these facilities are presented below.

6.2.1. Input and Output

Objects that are capable of being read or written may inherit the generalization classes for

TransputManager. Many of the predefined objects, such as integers, also inherit this class,

providing Paragon with primitive terminal input and output capabilities. The actual

declarations are shown below:

c lass TransputManager is
begin

c lass Transpor tab le is begin end;
procedure Read(Transpor tab le) ;
procedure Wr i r e (T r a n s p o r t a b l e) ;

end;

6.2.2. Assignment

A frequently used capability is assignment, and Paragon provides the generalization classes

for assignment, as shown below:

c lass AssignableManager is
begin

c lass Assignable is begin end;

procedure Ass tgn (L :Ass ignab le , R:Ass ignab le)
such that L.structure same as R.structure;

procedure Equa l (L :Ass ignab le , R:Ass ignab le)
r e tu rn Boo leans .B i t
such t h a t L . s t r u c t u r e same as R . s t r u c t u r e ;

end;

Note that the Assign procedure specifies that the two objects passed to it must have the same

structure. This prevents variables declared with two different specification classes from being

used in an assignment operation. The same comment applies to comparing two objects with

the Equal procedure. Since these constraints are only applied during elaboration with

Section 6.2.2 Predefined Environment

specifications, two objects may be implemented differently and still have

performed from one to the other. However, there must be an Assign

implementation available for the relevant procedure call.

169

assignment

procedure

6.2.3. Logical Objects

Paragon also provides class, procedure and variable declarations for truth (or logical or

boolean) object , called Bits. Bits inherit Assignable and so may have ass~nment performed

on them as well as the usual logical operations declared in their manager, BitManager. The

language provides an implementation for Bit objects, though it is not wri~en in Paragon, and

so is not shown here. The actual text for the declarations of Bits is given below:

class BitManager of AssignableManager is
begin

class Bit of Assignable is begin end;

procedure LogicaIAnd(b1: Bit , b2: Bi t)
return b1.structure
such that b1.structure same as bZ.structure;

procedure LogicalOr(bl: Bit , b2: Bit)
return bl .s t ructure
such that b l .s t ructure same as b2,structure;

procedure LogicaINot(b: Bit)
return b.structure;

end;

vat Booleans => new BitManager;
I var PredefinedBooleans => Booleans.Bit;

procedure True return Booleans . Bit ;
procedure False return Booleans . Bi t ;

Bits provide the first opportunity to illustrate some predefined declarations of variables. The

Boo/eans variable defines the manager for all predefined logical values that Paragon uses

when logical values are needed, for example, in if statements, while statements, Check

expressions and variable constraints. The variable PredefinedBoo/eans defines the precise

object that is used in these circumstances, but as the declaration for PredefinedBoo/eans is

not.legal Paragon, it is shown here as a comment, ss

65Recall that the last comoonent of the expression in a variable declaration must be an object instantiation. Here it
is an indefinite instance.

Section 6.2.4 Predefined Environment 170

6.2.4. Ordered Objects

A third kind of generalization class that is predefined by Paragon is Ordered objects. These

are objects that can be compared and are totally ordered. The usual relational operations are

provided, as declared below:

class OrderedManager of AssignableManager is
begin

class Ordered of Assignable is begin end;

procedure LessThan(L: Ordered, R: Ordered)
re turn Booleans.Bi t
such that L . s t ruc tu re same as R .s t ruc tu re ;

procedure GreaterThan(L: Ordered, R: Ordered)
return Booleans.Bi t
such that L.structure same as R.structure;

procedure LessThanEqual(L: Ordered, R: Ordered)
return Booleans.Bit
such that L.structure same as R.structure;

procedure GreaterThanEqual(L: Ordered, R: Ordered)
return Booleans.Bit
such that L.structure same as R.structure;

end;

Because OrderedManager inherits AssignableManager, the Equal procedure is also available

for Ordered objects.

6.2.5. Hashable Objects

A fourth generalization class provided by Paragon declares objects on which a hashing

operation may be performed. This class illustrates the general way that a particular kind of

procedure, here hashing, can be provided in a generalization class. Particular specification

or implementation classes for an abstract data type may inherit this generalization class as a

way to indicate that the specification or implementation class can perform the generalized

procedure (and naturally, the implementations a!so provide an implementation for the

generalized procedure). One such use, for hashing, occurs for predefined integers, shown in

Section 6.2.6.

The declarations for Hashable objects are shown below:

class HashableManager of AssignableManager is
begin

class Hashable of Assignable is begin end;

Section 6.2.5 Predefined Environment 171

procedure Hash(H: Hashable)
re turn IM. In teger ;

end;

6.2.6. Integer Objects

Paragon provides predefined integers through the declarations of the DiscreteManager

class, the Discrete class and the IM variable. The usual operations, except for exponentiation,

are declared as well. Two iterators are also provided: Sequence for counting upwards from

one integer value to another, and ReverseSequence for counting down. Together with the for

statement, these two iterators provide the usual indexed for loops found in many languages.

The manager class also contains two procedure declarations that are used for

transformations between abstract integer objects and machine words: Value and Literal. The

use of Literal was described in Section 3.3.6. The Value procedure is intended to provide an

inverse function as necessary, though it is not used in any example in this thesis.

The actual text of these declarations is provided below:

c]ass DiscreteManager of
OrderedManager, TransputManager, Hashab]eManager is

begin
c]ass In teger of Ordered, Transpor tab]e, Hashab]e is
begin
end;

Section 6.2.6 Predefined Environment 172

procedure Plus(L: Integer, R: Integer)
return L.structure
such that L . s t ruc tu re same as R .s t ruc tu rs ;

procedure Minus(L: In teger , R: In teger)
return L .s t r uc tu re
such that L . s t ruc tu re same as R .s t ruc tu re ;

procedure UnaryMinus(L: In teger)
return L.structure;

procedure Times(L: Integer, R: Integer)
return L.structure
such that L.structure same as R.structure;

procedure Oivide(L: Integer, R: Integer)
return L.structure
such that L.structure same as R.structure;

procedure Remainder(L: Integer, R: Integer)
return L.structure
such that L.structure same as R.structure;

procedure Sequence(Lower: Integer, Upper: Integer)
yield Lower.structure
such that~Lower.structure same as Upper.structure;

procedure ReverseSequence(Lower: Integer, Upper: Integer)
yield Lower.structure
such that Lower.structure same as Upper.structure;

procedure Literal(OH 1: word)
return Integer;

procedure Va lue(i : In teger)
return CM.word;

end;

var IM => new OiscreteManager; I IntegerManager ;

The translation system guarantees an implementation for the DiscreteManager and Integer

classes, as well as for all procedures visible in DiscreteManager.

6.2.7. Word Objects

The basic storage element that is predefined in Paragon is a Word. In fact, implementations

for Bits and Integers have been written in terms of Words, but for efficiency, the

implementations for these two categories of objects were built directly into the translation

system. In principle, however, one could insist that only Word objects be provided and write

implementations for Bits and Integers in terms of Words. The Paragon declarations for

defining Words are shown below:

Section 6.2.7 Predefined Environment 173

class WordManager of AssignableManager, TransputManager is
begin

class Word of Assignable, Transportable is begin end;

procedure Plus(L: Word, R: Word)
return L.s t ructure

such that L.s t ructure same as R.structure;
procedure Minus(L: Word, R: Word)

return L.s t ructure
such that L.s t ructure same as R.structure;

procedure Times(L: Word, R: Word)
return L.s t ructure
such that L.st ructure same as R.structure;

procedure Divide(L: Word, R: Word)
return L.s t ructure
such that L.s t ructure same as R.structure;

procedure Remainder(L: Word, R: Word)
return L.s t ructure
such that L.st ructure same as R.structure;

end;

vat CM => new WordManager; I CM = Computer Memory, ;

In the oFiginal design of Paragon, the operations for Word objects were supposed to be

implementable by a single instruction on a machine. Because the final code generation phase

in the prototype was never constructed, this supposition remains untested.

6.2.8. Arrays

Arrays form one of two sets of class declarations that are intended to be used as type

constructors, the other being pointers (see Section 6.2.9). The classes that provide the array

facility are shown below:

class ArrayManager(Elt: any) is
begin

class Array(IM . LowerBound: Integer,
IM . UpperBound: Integer) is

begin
procedure Element(IM. Index: Integer)

return E l t . s t ruc tu re ;
end;

end;

Arrays are declared in a two step process. First, the element type of the array is established by

creating a manager with the appropriate parameter, then individual arrays are created. For

example, to declare integer arrays, one would create the following manager:

var IntArrayManager => new ArrayManager(IM.Integer);

Section 6.2.8 Predefined Environment 174

Once the manager of the array has been declared, individual arrays may be declared like any

other individual object, for example;

var MyArray => IntArrayManager. new Array(l,10);
var BigArray => IntArrayManager. new Array(l,1000);

Elements of arrays are selected by the predefined procedure Element. Without any syntactic

transformations, one can refer to an element of an array by calling Element, for example

MyArray.Element(l). Note thatthis predefined Element procedure does not belong to

manager, but instead belongs to individual array objects. This is because elements belong to

arrays, and are not shared among all arrays.

Because programmers are not used to using a procedure call notation to select an element

of an array, Paragon provides the transformation of [] to ElementO, thus a programmer may

write MyArray.[1] instead of MyArray.Element(1).

Some example programs use unexpected type parameters when creating array managers.

Frequently, an actual object will be used to represent the element type to the manager instead

of an indefinite instance. For example, the following code might be present to declare the

manager for integer arrays:

var Fakelnteger => IM . new Integer;
var IntArrayManager => new ArrayManager(Fakelnteger.structure);

This is done to aid selection analysis. The reasoning behind this seemingly baroque code is

provided in Section 5.5.5.3. tn short, the implementation of Paragon guarantees an

implementation for array objects if there is an implementation for the passed type parameter.

6.2.9. Pointers

The second type constructor provided by Paragon is used to create typed pointers which

are called References. The declarations are shown below:

c lass RefManager(Elt: any) of AssignableManager is
begin

class Reference of Assignable ts
begin

procedure Value return E l t . s t r u c t u r e ;
end;

Section 6.2.9 Predefined Environment 175

procedure A l l o c a t e re tu rn Reference;
procedure Free(r : Reference) ;
procedure Ni l re tu rn Reference;

end;

The use of pointers is very similar to arrays. One first creates a manager that defines the type

of object: that the references will point at, then one can create pointer variables.

Through the use of the Allocate and Free procedures, one can dynamically create and

release objects. Paragon guarantees an implementation for pointers, but the implementation

of the referred object matches the implementation used for the parameter to the manager. For

this reason, an expression containing a definite instance is usually used, just like for arrays.

The manager for References also provides a special Reference that can be used to point at

no object, namely a Reference returned by the procedure Nil.

Unlike arrays, References inherit Assignable, and so may be assigned and tested for

equality.

6.2,1 O, Selection Facilities

The ctasses and procedures used for the selection facility are also declared in the

Universal_Environment class, and are elaborated along with the rest of the predefined

environment. Since these declarations were discussed Chapter 5, they will not be repeated

here.

The first declarations in Universal_Environment are for predefined identifiers; user defined

abstract data types are declared next. A typical abstract data type is discussed in the next

section,

6.3. An Abstract Data Type: List

The application program in Section 6.4 uses two programmer provided abstract data types:

Lists and Sets. In this section, part of the specification for lists is presented and discussed.

Later in this section, an implementation for lists that uses arrays is presented and discussed.

The complete text for the list abstract data type can be found in Appendix E.2.

Section 6.3.1 An Abstract Data Type: List 176

6.3.1. A Specification for Lists

This section provides a brief specification for lists. The complete specification is not given

here; only those operations ~,ctuatty required by the application program, Clear, Length,

Getlndex, AddBeforelndex and Members are given, The text for the declaration follows below

(the discussion continues on page 179). In the text, there are some numbers against the right

hand margin that are used in the following discussion.

class ListManager(TManager : AssignableManager . T
of AssignableManager is

begin
a t t r ibu te procedure ManagerTime(i:instance)

return im.integer is
begin

var TotaITime => im . new integer;
vat cal l => ProcCall;

: Assignable)

9 1

TotaITime := O;
le t cal l match th is ListManager in i do

i f cal l .check Time return (im. integer) then
TotaITime := call,Frequency *

call.Time return (im. i n t e g e r) +
TotaITime ;

f i ;
end le t ;
return TotalTime;

end; I of a t t r i bu te procedure ManagerTime ;

!

~6A

a t t r i bu te
return

begin
return

end;

procedure Time(i : instance)
im,integer is

1;

~ i 2 A

t

c lass Lis t of Ass ignable is
begin

Section 6.3.1 An Abstract Data Type: List 177

a t t r i bu te vat ListSize => I00;

a t t r ibu te procedure Space return IM.Integer is
begin

return ListSize ' 100;
end;
II . ;

a t t r ibu te procedure GetSize return IM.Integer is
begin

return ListSize;
end;

a t t r ibu te procedure Time(i: instance)
return im.integer is

begin
var TotaITime => im . new integer;
var Call => ProcCall;

9 4

~-'15

~-12B

Section 6.3.1 An Abstract Data Type: List 178

TotaITime := O;
I List operations have one, two and three parameters;
le t call match any(this List, any) in i do ~ 6 B

i f call.check Time return (im.integer) then
TotaITime := call.Frequency •

call.Time return (im. i n teger)+
TotaITime ;

f i ;
end let ;
le t call match any(any, this List) in i do

i f call.check Time return (im. integer) then
TotaITime := call.Frequency •

call.Time return (im.integer) +
TotaITime ;

f i ;
end let ;
! "Charge" each List object hal f / to avoid double;
! counting of binary operations;
TotaITime := TotaITime / 2;
le t call match any(this List) in i do

i f call.check Time return (im.integer) then
TotaITime := call.Frequency •

call.Time return (im. i n teger)+
TotalTime ;

f i ;
end l e t ;
I When 3 parameters, l i s ts are only in f i r s t posit ion;
le t call match any(this List,any,any) in i do

i f call.check Time return (im.integer) then
TotaITime := call.Frequency •

call.Time return (im.integer) +
TotaITime ;

f i ;
end let ;
return TotaITime;

end; I of at t r ibute procedure Time ;
end; I of class List ;

I . ;

procedure AddBeforelndex(L: List, IM. Position: Integer,
T. NewElt: Structure) is

specified with begin ~ 7
at t r ibute procedure Time return IM.Integer is
begin

re tu rn desc (L) . GetSize re tu rn (I M . I n t e g e r) • 100; ~ 8
end;

end;

Section 6.3.1 An Abstract Data Type: List 179

procedure Clear(L: L is t) is
specified with begin

a t t r ibute procedure Time return
begin

return 1001
end;

end;

IM.Integer is

i . i

procedure GetIndex(L: L is t , IM . Position: Integer)
return T.Structurs is

specified with begin
a t t r ibu te procedure Time return IM.Integsr is
begin

return desc (L) . GetSize return (IM.Integer) * 100;
end;

end;

procedure Length(L: L is t) return IM.Integer is
specified with begin

at t r ibute procedure Time return IM.Integsr is
begin

return 100;
end;

end;

procedure Members(L: L is t) y ie ld T.Structure is
specified with begin

at t r ibute procedure Time return IM.Integer is
begin

return desc (L) GetSize return (IM.Integer)
end;

end;
I . ;

end; I of class ListManagsr ;

• 100;

This specification illustrates how attributes interact with the class facility and policy

procedures through the use of redundant attributes, abstract description of space

requirements, analysis of object usage and default attributes for procedures.

6 . 3 . 1 . 1 . Redundant A t t r i b u t e s

Notations 1, 2A and 2B refer to redundant attributes that describe time requirements of the

abstract data type. The three attribute procedures, ManagerTime, Time and Time, are

intended to be used with two different policy strategies. The first strategy does not take

advantage of the manager model in programming abstract data types, and so uses the

Section 6.3.1.1 An Abstract Data Type: List 180

attribute Time for determining the amount of time required by each variable in the program,

regardless of whether the variable is being used as a manager or individual. Thus both

manager and individual classes must contain attributes for Time. In this circumstance, the

time required by the manager is merely the time object creation takes. For simplicity, the value

1 is returned. The time required for an individual list is calculated by the Time attribute

procedure in the List class, which contains a number of pattern matching statements which

will be discussed later.

The second strategy exploits the manager model. Only those variables that are used as

managers will have attributes called for describing possible implementations. For a policy

designed to exploit the manager model, a second attribute procedure called ManagerTime is

provided. This attribute understands how that particular data type can be used and so can

report data on all uses of individuals in that manager.

In general, there may be many attributes describing an abstract data type that are

redundant. The exact attributes to be provided depends on the strategy that the policy will

use. To use Paragon effectively, policies and attributes must be coordinated.

6.3.1.2. Attributes that Abstract Representation Differences

Notations 3, 4 and 5 illustrate how attributes can interact to provide some abstract

information about representation properties. These three attributes, ListS/ze, Space and

GetSize, attempt to provide information about the abstract number of elements in a list and

provide a measure of the space that these elements will require. The use of an attribute

variable permits a variable declaration to change the attribute value as appropriate while the

use of procedures allows representations to change the procedure declaration associated

with the identifier to provide a more accurate analysis of the data. Thus a policy may get

information about the space required by a representation without having to examine the

internal details of the implementation. Further, the programmer using the abstract data type

may provide necessary information, via the attribute variables, that act as parameters to the

attribute procedures. Together, these declarations provide an abstract way to describe the

hidden details of a representation. Naturally, if no representation is chosen, the attribute

procedures in the specification class, here List, will be used as default values, in this example,

the default is an estimate of the size required by a list representation: 100 units per element.

Section 6.3.1.3 An Abstract Data Type: List 181

6.3.1.3. Gathering Usage Data

Notations 6A and 6B refer to places where attribute procedures use a pattern matching

statement to gather data about an object's usage. At 6A, an environment is searched for the

use of a manager as a container for procedure calls; At 6B, the environment is searched for

the use of an individual as a parameter. These represent two common uses of pattern

statemenlts.

When a manager is looked for, no particular procedure call is mentioned. Instead, any

procedure call that starts with the manager is found by the match. This is possible because a

procedure invocation results in the creation of an object where the innermost simple object is

an instance of the procedure. The outer classes in such an object are the manager (and its

enclosing environment). All of the procedure calls in an Instance object are such objects. In

this example, the object that results from elaborating the pattern expression is merely the

manager with no inner simple object. During elaboration of the pattern statement, the objects

for the calls are compared with the object that results from elaborating the pattern expression.

The call objects are larger, because they have the innermost simple object for the call.

Because the innermost simple object may be discarded when comparing two objects when

the actual object (call) has more simple objects that the formal object (pattern expression),

the innermost simple object for the call can be discarded during object comparison.

Therefore calls within a manager will match a pattern expression that contains only the

manager. In this example, all procedures declared by the manager's implementation will be

examined during execution of the pattern loop. As is illustrated at 6A, the resulting pattern

loop is quite simple.

In contrast, the use of pattern loops after 6B is more complex. Here, no manager is specified

in the pattern to be matched. Instead, all uses of the individual as a parameter are found. Thus

there may appear uses of the individual outside of the manager. For example, if this attribute

procedure were present in the Integer class instead of the List class (and the pattern

expression were any(any, this Integer) instead of any(this List, any)) a call of the attribute

procedure would find all calls where the integer was used in a list operation, as well as in an

arithmetic operation.

For this strategy to be effective, all combinations of the individual must be searched for.

Thus one loop has the individual as the first parameter, another loop has the individual as the

second parameter, followed by an assignment that attempts to prevent double counting

Section 6.3.1.3 An Abstract Data Type: List 182

across all individual Lists. 66 In some sense, the value calculated by this attribute is more

accurate than the value calculated by the manager oriented strategy, but this attribute

procedure is also more complicated.

6.3,1.4. Default Attributes

Notation 7 indicates a default attribute for a procedure. Since the procedure specification

will be placed in the possibility tree whenever an implementation is not available for a

procedure call, this default attribute will be available if no procedure implementation is

available. Thus this attribute procedure may be called by the policy to provide some limited

kinds of information about the procedure without having a specific implementation available.

Note that this default attribute can use some information about the specific call, and

perhaps, about implementations already chosen for the containing procedure's parameters.

Notation 8 illustrates how the Time attribute can base its calculation of the size of the first

parameter. The key feature is the use of the Desc facility to gain access to the node in the

possibility tree for the first parameter. This feature is used throughout attributes in the

example abstract data types, and so represents a typical way that information about the

possibility tree is gathered by attribute procedures.

6.3.2. An Implementation of Lists wi th Arrays

Each class that is not self implementing should have a representation class declared for it.

In this section, such an implementation of lists using arrays is discussed. Like its specification,

the representation is abbreviated, with procedure implementations provided for only the

procedures that were specified in ancestor classes. Noteworthy parts of the representation

are indicated by the notation at the right margin, (The discussion continues on page 185.)

c]ass A r r a y L i stManager (TManager : Ass ignab l eManager. T :Ass ignab] e)
of ListManager is

begin

var MaxArraySize => IN . new In teger ; 9 1
var AM => new ArrayManager(T . s t r uc tu re) ;

66This guarantees that the total time counted by executing this attribute over all List individuals does not count the
same call of a binary operation twice. Otherwise the pattern would match the call on two Lists twice, once when
executing the attribute tor the first List (in the first loop), once when executing the attribute for the second List {in the
second loop).

Section 6.3.2 An Abstract Data Type: List 183

class ArrayList of L is t is
begin

a t t r ibu te procedure Space return IM.Integer is
begin

return I + 2 • desc (th is ArrayList)
• GetSize return (IM. Integer) ;

end;

var Elts => AM . new Array(1,MaxArraySize);
var NumElts => IM new Integer;

NumElts := O;
end;

procedure LocalCopy(L:ArrayList, R:ArrayList) ;
procedure LocaICopy(L.:ArrayList, R:ArrayList) is
begin

vat i => im . new integer;

for i in l..MaxArraySize do
TManager .Ass ign (L .E l t s . [i] ,R .E l t s . [i]) ;

end for;
end;

I . "

procedure AddBeforeIndex(L: ArrayList , im. Pos i t ion : in teger ,
T. NewElt:structure) is

begin
a t t r i bu te procedure Time return IM.Integer is
begin

return 3 + desc (L) . GetSize return (IM. In teger) ;
end;

var i => IM . new Integer;

i f L.NumElts < MaxArraySize and Posit ion >= I and
Position <= (L.NumElts + I) then
for i in IM.ReverseSequence(Position,L.NumElts) do

TManager .Ass ign (L .E l t s . [i + l] , L .E l t s . [i]) ;
end for ;
TManager,Assign(L.Elts.[Posit ion],NewElt);
L.NumElts := L.NumElts + I;

f i ;
end;

t

procedure Clear(L: ArrayList) is
begin

a t t r i bu te procedure Time return IM.Integer is
begin

return 1;
end;

~12

9~13

~14

95

~16

Section 6.3.2 An Abstract Data Type: List 184

L.NumElts := 0;
end;

procedure GetIndex(L: ArreyList, im. Position:integer)
return T.Structure is

begin
at tr ibute procedure Time return IM.Integer is
begin

return I;
end;

return L.El ts . [Posi t ion] ;
end;

procedure Length(L: ArrayList)
return IM.Integer is

begin
attr ibute procedure Time return IM.Integer is
begin

re turn 1;
end;

return L.NumElts;
end;

procedure Members(L: ArrayList)
yield T.Structure is

begin
a t t r i b u t e procedure Time return IM. In teger is
begin

return 2 * desc (L) . GetSize return (IM.Integer);
end;

var i => IM . new In teger ;

for i in IM.Sequence(1,L.NumE1ts) do
yield L . E l t s . [i] ;
i f i > L.NumE1ts then exitloop; f i ;

end for;
return;

end;

procedure Assign(L: A r rayL i s t , R: A r r a y L i s t) is
begin

a t t r i b u t e procedure Time return IM. In teger is
begin

re turn 1 + desc (R) . GetSize re turn (I M . I n t e g e r) ;
end;

IE~7A

Section 6.3.2 An Abstract Data Type: List 185

var i => im . new integer;

L.NumElts := R.NumElts;
for i in 1..R.NumElts do

TManager .Ass ign(L .E l t s , [i] ,R .E l ts . [i]) ;
end for ;

end;

procedure Equal(L: ArrayList , R: ArrayList) ~47B
return Booleans.Bit is

begin
at t r ibu te procedure Time return IM.Integer is
begin

return 2 + 3 • desc (L) . GetSize return (IM. In teger) ;
end;

var i => IM . new Integer;

i f not (L.NumElts = R.NumElts) then return False; f i ;
for i in IM.Sequence(1,L.NumElts) do

i f not TManager. E q u a l (L . E l t s . [i] , R . E l t s . [i]) then
return Fa]se;

f i ;
end for ;
return True;

end;
I . ;

MaxArraySize := 100;

end;

This implementation for lists illustrates the use of local variable and procedure declarations,

and the use of initialization statements. It also demonstrates how attributes may be refined,

how managers are passed as parameters, how procedure declarations specify that only

certain implementation classes are required as parameters and how generalization classes

are implemented.

6.3.2.1. Local Declarations and Statements

Notations 1, 4 and 8 pinpoint local declarations and initialization statements for the

implementation class. The variable declarations starting at notation 1 represent shared data

for the manager that are available to the procedure implementations but unavailable to the

application program. These variables are created at notation 1 but only one of them is

initialized by the statement at notation 8. Should this representation be selected, the

statement at notation 8 would be elaborated when the variable declaration for the list manager

was elaborated.

Section 6.3.2.1 An Abstract Data Type: List 186

The procedure declarations at notation 4 give the specification and representation of

LocalCopy, which is a procedure that may be used only inside of the ArrayListManager. None

of the other procedures in the shown excerpt actually use it, but other procedures in the

complete implementation do require the LocalCopy procedure, so the declarations were left

in as an illustration of local procedures.

6.3.2.2. Refining an Attribute

Notation 2 shows where an attribute is refined. The specification class List contained an

attribute procedure Space for determining the amount space required by an individual list, but

that attribute procedure could not use implementation specific information. The Space

attribute in ArrayList has access to the implementation of individual lists, and so may provide a

better estimate. Notation 3 shows that the calculation actually depends on the size of the list

associated with the individual, and so illustrates how one attribute procedure may call

another. Recall that an ArrayList simple object must also have a List local instance, and since

the List class contains a declaration for the GetSize attribute, the GetSize attribute that is to

be called will certainly exist.

6.3.2.3. Use of a Manager Parameter

The reason for having the TManager identifier in the ArrayListManager parameter becomes

clear when the line at notation 5 is examined. The manager that is passed in a parameter is

used for manipulating the individual elements in the list. In particular, it is necessary to assign

one element to another and the passed manager provides the necessary assignment

procedure. Therefore it is common that a parameter will have more than one component

labeled, since any object that is passed must also have its manager present for operations to

be performed on individuals.

6,3.2.4, Requiring an Implementation Class as a Parameter

Notation 6 shows how a procedure implementation requires that the objects it manipulates

be implemented with a certain class. Here, the Clear procedure will only work on List objects

that are implemented as ArrayLists (or subclasses of ArrayLists). This restriction usually eases

the process of making representation selections for procedure implementations, since all of

the variables and parameters in a procedure implementation may be specified with

implementation classes.

Section 6.3.2.5 An Abstract Data Type: List 187

6.3.2.5. Implementing Generalization Classes

Because the ListManager class inherits the AssignableManager class, the ListManager

class inherits the specifications for the Assign and Equal procedures as well. The

ListManager class, acting as a specification class, does not provide implementations for any

classes. But ArrayListManager, acting as a representation class, should provide

implementations for all procedures that are specified in all of its ancestors. Therefore

ArrayListmanager should provide implementations for the Assign and Equal procedures. As

suggested, these implementation are provided, and can be found at notations 7A and 7B.

In the complete example, the declarations for the specification and implementation of lists

are followed by' a specification and implementation for sets, which is the other programmer-

provided, abstract data type required by the example application. The classes for sets will not

be discussed here. They can be found in Appendix E.4.

6.4. A Program: Sort

A small application program was copied from the literature discussing representation

selection. The program reads in a collection of numbers, sorts them by successively inserting

them into an ordered list (linear search of the list) and then writes out the sorted list [Low 74].

The text of the program is shown below:

I . ;

! INSRT2 example main program
I . ;

class MainProgram is
begin

var IntSetManager => new SetManager(IM.Integer);
vat IntListManager => new ListManager(IM.Integer);

var UnSorted => TntSetManager . new Set
where Se tS ize => 50;

var Sor ted => I n t L i s t M a n a g e r . new L i s t
where L i s t S i z e => 50;

var Count => IM . new I n t e g e r ;
va t i => IM . new I n t e g e r ;
var 0 b j l => IM. new I n t e g e r ;
var Obj2 => IM. new Integer;

~ t l I

~12

[F i r s t c o n s t r u c t an Unsor ted se t ;

Section 6,4 A Program: Sort 188

IntSetManager. Clear(Unsorted);
IM.Read(Count);
for I in IM.Sequence(1,Count) do

IM.Read(Objl);
IntSetManager. Insert(Unsorted,Objl);

end for;

~13A

IntListManager.Clear(Sorted); ~I3B

I Sort the values;

for Objl in IntSetManager.Members(Unsorted) do
Count := I;
while Count <= IntListManager.Length(Sorted) do

Obj2 := IntListManager.Getlndex(Sorted,Count);
i f Obj2 >= Objl then

exitloop;
else

Count := Count + I;
f i ;

end loop;
IntListManager.AddBeforeIndex(Sorted,Count,Objt);

end for;

! Write the sorted l i s t ;

for Obj2 in IntListManager.Members(Sorted) do
IM.Write(ObjZ);

end for:

end;

This application program illustrates several unconventional aspects of Paragon programs,

such as the presence of manager creations, explicit manager denotation for operations and

user-defined representation information. All of these features are missing in the original

version of this program which was written in Sail.

6.4.1. Explicit Manager Presence

Because the manager model is explicit in Paragon, the presence of managers must also be

explicit. This is illustrated at the points in the program noted 1 and 3.

Notation 1 shows where a manager is explicitly created by the programmer. In other

languages, the manager exists without any special actions by the programmer. In the original

version of this example, the manager was provided by the translation system in terms of

assembly language code. Therefore there was no programmer control over the initialization of

Section 6.4.1 A Program: Sort 189

the local data. in the manager. In Paragon, there may be concerns about the order of

initialization of managers, and so the translation system cannot merely create a manager

whenever an individual is declared. Instead, a programmer must explicitly provide a manager

creation.

Notations 3A and 3B show other examples where the explicitness of the manager is evident.

Here, the Clear procedure must be called within a particular manager. Because there are two

Clear procedures, one in the set manager and one in the list manager, the prefixed manager

denotes the appropriate procedure to be used. Other languages, such as Clu and Ada,

attempt to solve this problem by deriving the manager implicitly by the type of the parameter.

Because the use of classes to emulate the manager model is merely a programming

convention in Paragon, Paragon instead requires explicit managers to be present in an

expression.

6,4.2. User-Defined Representation Information

Because Paragon has a representation-selection mechanism designed into it, an application

program can have some representation-selection information present. In particular, the

variable at notation 2 contains an attribute association informing the selection system of the

expected size of the list. Although other languages permit the programmers to add

representation information to variable declarations, for example, iJse a packed vs unpacked

representation, Paragon is different in that the kinds of programmer-provided information are

determined by the programmer, not by the translation system. Because the programmer

provided the ListSize attribute in the List class, the programmer may provide the selection

system with information by making an attribute association with ListSize.

So far, the programmer has provided specifications of abstract data types, implementations

of abstract data types and an application program that uses the abstract data types. All that

remains for a complete program is a policy procedure for making representation selections.

One possible policy procedure is considered next.

Section 6.5 A Policy: Minimum Time and Space 190

6.5. A Policy: Minimum Time and Space

The policy below illustrates features found in many different policies that were written for

this thesis. The goal of the policy is to minimize the time-space product of program cost. An

exhaustive analysis is performed on all possible implementations in order to find the optimal

collection of representations. As usual, interesting features are marked with notations on the

right margin. (The discussion continues on pages 193.)

I . ;

I MinimumTimeSpace
I This is the minimum time space pol icy.
I I t is minimized over a block at a time.

procedure CalcTS(i:Instance) return im.
procedure CalcTS(i:Instance) return im.
begin

var TempTime => im . new integer;
var TempSpace => im . new integer;
var j => im . new integer;

in teger ; ~ 1
in teger is

TempTime := O;
TempSpace := O;
I For each ca l l , i f there is a ~me a t t r i bu te , then

accumulate time*frequency product;
for j in 1..i.NumP do ~]2A

i f i . P r o c C a l l s . [j] , check time return (im. integer) then~Eil3A
TempTime := TempTime +

(i . P r o c C a l l s . [j] , time return (im. in teger)) " ~I3B
(i .ProcCal ls [j] .Frequency);

f i ;
end for ;
for j in l..i.NumV do ~I2B

i f i .Va rDec l s . [j] , check Space return (im. integer) then
TempSpace := TempSpace +

i .VarDecls. [j] .Space return (im. integer) ;
f i ;

end for ;
return TempTime * TempSpace;

end; I of CalcTS ;

I - - - - - - - - - - - - - ;

procedure p o l i c y (i : i n s t a n c e) ;
procedure p o l i c y (i : i n s t a n c e) is
begin

var PreviousMin => im , new in teger ;
var vartemp => im . new integer;
var ind => im . new integer;

~ 1 4

Section 6.5 A Policy: Minimum Time and Space 191

procedure DoEval return booleans.bit;
procedure DoEval return booleans.bit is
beg~n

var ts => im , new integer;

I! Try to select procedure implementations and see i f a
! feasible selection is possible.;
i f i.BindProcs then

t Yes, have selection, so get s- t product;
ts := CalcTS(i);

else
I No feas ib le proc. impl. se lec t ion , so re jec t cho ices. ;
return false;

f i ;
t Got new s-t value, but is i t smaller than previous?;
i f ts < PreviousMin then

I Yes, smaller, so save this better value and note
I that this implementation should be saved.;
PreviousMin := t s ;
return True;

else
I Not smal ler , punt t h i s set of cho ices. ;
return False;

f i ;
end; I of DoEval ;

TryAllImpls procedure f i r s t lets the class be
self-implementing and t r ies al l implementation
combinations of al l other variable
declarations beyond this one. (Current declaration is the
jth variable declaration in the class or procedure which is
the doppelganger of i.) After i t t r ies
self-implementing, TryAllImpls t r ies every implementation
for i ts variable declaration.
After each implementation selection for i t s e l f , a l l other
possible implementations for variable declarations beyond
the jth declaration are considered.

The test in the f i r s t statement stops the recursion when
no more variable declarations are available in the
block that i denotes. Thus the evaluation function
is applied (and the current set of implementations are
noted as being better than what had been seen before).

As an optimization, the TryAlllmpls procedure rejects
implementations that are not local ly feasible instead of
later discovering that they globally infeasible. ;

Section 6.5 A Policy: Minimum Time and Space 192

procedure TryAl I Impls(i : Instance, IM . j : Integer)
return Booleans.Bit;

procedure TryAl l Impls(i : Ins tance, IM . j : Integer)
return Booleans.Bit is

begin
var NextVar => im .new integer;
ver temp => CDRM . new reference;
var k => im . new integer;
var FoundBetter => Booleans . new b i t ;

~P_46

I Assume you c a n ' t f i n d any th ing b e t t e r . ;
B o o l e a n s . A s s i g n (F o u n d B e t t e r , F a l s e) ;
I A11 v a r i a b l e s in i s e l e c t e d ? ;
i f j > i.NumV then

I Yes, so see i f a b e t t e r c h o i c e . ;
r e t u r n DoEval;

e l se
I No. more v a r i a b l e to s e l e c t i o n in i.
I We are up to j th v a r i a b l e d e c l a r a t i o n . ;
NextVar := j + 1;

Leave c u r r e n t var dec1 a lone (s e l f - i m p l e m e n t i n g) and
try a l l other variable d e c l a r a t i o n s . ;

Booleans.Assign(FoundBetter,TryAlllmpls(i,NextVar));
t See if worked. If so, save the implementation;
if FoundBetter then

i.VarOecls.[j].ImplSet := O;
fi;
I But keep looking for something better.;
i Get the specification class for the jth declaration,;
CDRM.Assign(temp,i.VarDecls.[j].GetSpec);
I Try a l l children of the spec i f i ca t i on . ;
for k in 1..temp.~.NumC do

I Is this chi ld l oca l l y feasible?;
i f i .VarDec ls . [j]

.Local lyFeasib le(temp. t .Chi ldren. [k]) then
I Yes, so set current var decl to th is ch i l d . ;
i .VarDec ls . [j] .Se t Imp l (temp. t .Ch i ld ren . [k]) ;
I And t ry rest of the var decls in th is block.;
i f TryAlI Impls(i ,NextVar) then

I I f found a better set of impl, save i t . ;
i .VarDec ls . [j] . ImpISet := k;
Booleans.Assign(FoundBetter,True);

f i ;
f i ;

end for ;
f i ;
I Let previous ca l le rs know i f a better impl. was found;
return FoundBetter;

end; t of TryA111mpls ;

Section 6.5 A Policy: Minimum Time and Space 193

PreviousMin := 999999999; ~E~7
i Try al l implementations for al l variables in i,
I start ing with variable I. Ignore whether anything
I was feasible or not.;
i f TryAll Impls(i ,1) then nul l ; f i ; ~E~I8A
I For each vat, use the best impl that was found.
I (whole set of impls, not indiv idual ly the best.) ;
for ind in 1..i.NumV do ~zIBB

vartemp := i.VarDecls.[ind],ImpISet;
! See i f a child or the spec was found.;
i f vartemp > 0 then

i Yes, use that child number (get the specif icat ion
! class, then get the vartempth child and assign that
! child as the implementation for the indth var iable. ;
i .VarDecls, [ind],SetImpl(

i .VarDecls.[ind].GetSpec.t.Children.[vartemp]) ;
f i ;

end for;
! Have made the variable selections, selection the
! procedure implementations. (Assume that i t is feas ib le .) ;
i f i.BindProcs then nul l ; f i ; ~c[18C
! All done with this block, now do the same for the internal
I variables in the variable in this block.
for ind in 1.,i.NumV do ~=~II8D

Policy(i ,VarDecls.[ind]);
end for;
I Now do the same for the internal
! variables in the procedure calls in this block.
for ind in 1.,i.NumP do ~ 8 E

i f not i.ProcCalls.[ind].AlreadySeen then
Policy(i .ProcCalls.[ind]) ;

f i ;
end for;

end;

The example shows several features that are found in many procedures. Some of these

features are local to a couple of statements, while some represent a basic design of the

policy. Before examining these local and global features of the policy, a brief overview of the

policy's algorithm is provided.

6.5.1. Policy Algorithm

The actual policy procedure declaration starts at notation 4, though the executable part of

the policy begins with notation 7. The notations 8A through 6E labels each of the basic pieces

of the algorithm.

Section 6.5.1 A Policy: Minimum Time and Space 194

Notation 8A refers to the statement that calls a procedure which tries every possible

implementation for each variable in the block passed to the policy procedure. When the

TryAIllmpls procedure returns, the lmplSet variable contains the index of the implementation

that provided the minimum time-space product for that block. Thus the policy assumes that

only one level of implementations will be provided, since this index is used to pick a child

class of the specification class. A value of 0 indicates that no feasible child was found, thus

the selected specification should remain untouched.

Notation 8B refers to a loop where all of the selected implementations are actually assigned

to the variables in the block. The call of BindProcs in the statement following the loop, noted

with 8C, then causes the block to be elaborated with implementations. This forces all the

appropriate procedure implementations to be selected for the procedure calls in the block.

Once the current block is processed, each object chosen for a variable and each procedure

implementation has the policy performed on it for selection of representations for local

variables. The loops noted by 8D and 8E perform the policy on the variables and procedure

calls respectively.

The way that this algorithm is implemented illustrates some general strategies about policy

design. These are considered next.

6.5.2. Global Properties

Like other procedures, policy procedures use various kinds of abstraction to make them

easier to write and understand. Some special abstractions that relate to policy procedures are

the separation of the evaluation function, the use of local procedures and the block-at-a.time

analysis. Each of these is considered in turn.

6.5.2.1. Separate Evaluation Functions

This policy bases its selection of representations on calculations of the space and time

product of the block. However, it may be useful to minimize (or maximize) some other

evaluation function, for example, just time or just space. Thus one wants the policy

procedure to be insensitive to the exact evaluation function.

In the example, the evaluation function is literally removed from the main body of the policy.

The CalcTS procedure, noted 1, takes a block and calculates a value for that block. This

Section 6.5.2.1 A Policy: Minimum Time and Space 195

procedure could be changed to return any measure that is desirable and the rest of the

system will minimize that value. Thus it is easy to separate the measure used for making

selection decisions. Paragon allows the policy to use procedures not declared in it, such as

CalcTS, and in fact, CalcTS was raised to the level of a separate procedure because it is used

in several policies. However, policies may also contain local procedures, and local

procedures are also a widely used feature.

6.5.2.2. Use of Local Procedures

Policies may contain local procedures and this policy declares two such procedures, DoEval

and TryAIllmpls, as noted at 5 and 6 respectively. Each performs a limited function, such as

checking for a feasible minimum value and trying all implementations. Many different policies

contain local procedures, and thus resemble any moderately sized procedure in any

programming language.

6.5.2.3. Biock-at-a.Time Analysis

Another common strategy illustrated by this policy is the block-at-a-time analysis. When

faced with a possibly changing possibility tree, it is difficult to determine the order in which

blocks should be examined. The approach used throughout the example policies is to make

selections for the variable declarations in application program first, and then for the variables

inside of classes and procedure calls in the application program. This resembles a depth-first

search of the possibility tree.

6.5.3. Local Properties

There are several groups of statements that recur in policies, including the example above.

These statements are used to make selection within a block, to use attributes and to try all

implementations. Each of these groups of statements is considered.

6.5.3.1. Selections within a Block

Whatever the evaluation function used for choosing a selection, the process of making a

selection usually requires performing that evaluation over all of the variables and procedure

calls in a block. The for statements noted at 2A and 2B are frequently found as a way to gather

information about variable and procedure calls. Each iterates over their respective arrays in

the/nstance object passed to the containing procedure.

Section 6.5.3.2 A Policy: Minimum Time and Space 196

6.5.3.2. Using Attributes

The policy procedure uses attributes to gather information about a program. However,

Paragon does not require any given attribute to be present in any given instance. Thus a

policy must check to see if an attribute exists before it is called. The frequent, tandem

operations of checking and then using an attribute are noted at 3A and 3B.

6.5.3.3. Trying all Implementations

Another common, local phenomenon in policy procedures is the trial of all implementations

for all variables. Although both implementations and variable declarations may be stepped

through, a coroutine structure is needed for trying each representation for each variable in

turn and not a simple for loop. One alternative is provided by recursion, and this is the

structure used in the TryA///mp/s procedure. For each possible implementation of a variable

declaration, all the following variable declarations have all of their implementations tried. Thus

every combination of implementations is covered. A similar algorithm is found in several

example policies,

Having all of the pieces for Paragon to process a program, the programmer's application

can be analyzed by the translator. The results of running the prototype system on this

example are presented in the next section.

6.6. Transformed Program

One of the results of the prototype translation system is a listing of all of the decisions made

by the selection system. In this section, some of these listings produced by the prototype are

presented.

There are two kinds of listing that are provided: an annotated, pretty-printed 67 version of the

source, and a listing of objects and their representations. Each kind of listing will be illustrated

and described. The complete output of the translation system from its processing of the

example program is provided in Appendix G.

67perhaps formatted is a better term, since the annotated programs are not pretty.

Section 6.6.1 Transformed Program 197

6.6.1. Annotated Program

The first output of the translator is an annotated, pretty-printed program that can be used for

later interpretation of objects. 68 The first excerpt, for part of the ListManager specification, is

shown below:

class listmanager(tmanager : assignablemanager.t : assignable)
of assignablemanager is

begin
class l i s t of assignable is
begin

a t t r i bu te var l i s t s i z e =>
im. l i te ra l (spec ia l_make_ l i te ra l (100)) ;

end;

procedure addbe fo re index#1653 : (I : l i s t ,
i m . p o s i t i o n : integer,
t .newel t : s t ructure) ;

procedure clear#1677: (l : l i s t) ;
procedure getindex#1712: (l : l i s t , i m . p o s i t i o n : integer)

return t . s t ruc tu re ;
procedure length#1722:(1 : l i s t) return im.integer ;
procedure members#1751: (I : l i s t) y ie ld t . s t ruc tu re ;

end;

9 1

For clarity, most of the declarations have been removed.

There are two details worth noting about the excerpt above. First, each procedure identifier

is transformed into a unique identifier. A unique identifier is needed since each procedure

specification and implementation is declared with the same identifier. This unique identifier

allows later reference to a procedure when procedure implementations are selected. To refer

to the procedure specification of Length, other parts of the listing will refer to length # 1722:

(see notation 2).

The second detail worth noting is the presence of a procedure special_make_literal

(notation 1). This procedure is used to handle literals. Recall that Paragon defines a literal to

be a predefined function that returns an appropriate word object. In the current

implementation, this result is accomplished by a built-in function Speciat_MakeLiteral that

takes an integer string and returns an appropriate word object. This procedure is not available

to the programmer; it is merely the way that the prototype implements all of the literal

functions. But since Special_Make_Literal looks like any other function, the system will select

a (predefined) implementation for it and lists a call to the function whenever a literal is used.

68The formatting shown in the thesis is not exactly the same as produced by the prototype translator. The
formatting was changed to fit on smaller and fewer pages.

Section 6.6.1 Transformed Program 198

An excerpt of the implementation for ListManager is shown below:

c lass arraylistmanager(tmanager:assignablemanager.
t:assignable)

of listmanager is
begin

vat maxarraysize => im.new integer;
var am => new arraymanager(t.structure);

class ar ray l is t of l i s t is
begin

var elts =>
am.new array(im.l i teral#Z(special_make_literal#1(t)),

maxarraysize);
vat numelts => im.new integer;
im.assign#5(numelts,

im.literal#4(special_make_literal#3(O)));
end;

Section 6.6.1 Transformed Program 199

I Source vers ion of addbeforeindex is on page 183.;

procedure addbeforeindex#3173: (l : a r r a y l i s t ,
im .pos i t i on : i n teger ,
t.newelt : structure) is

begin
var i => im.new integer;
i f booleans.logicaland#10(

booleans.logicaland#5(
im.lessthan#1(l.numelts,maxarraysize),
im.greaterthanequa]#4(position,

im.literal#3(
special_make_literal#2(1)))),

im.lessthanequal#9(position,
im.plus#8(l.numelts,

im.literal#7(
special_make_literal#6(1))))) then

for i in im.reversesequence#11(position,
l.numelts) do

tmanager.assign#17(
l.elts.element#15(

im.plus#14(i,
im.literal#13(

special_make_literal#t2(1)))),
l.elts.element#16(i));

end for;
tmanager.assign#1g(l.elts.element#18(position),

newelt);
im.assign#23(l.numelts,

im.plus#22(l.numelts,
im.literal#Z%(

special_make_literal#20(
I)))) ;

f i ;
end;

9 1

im.assign#3(maxarraysize,
i m . l i t e r a l # Z (s p e c i a l _ m a k e _ l i t e r a] # l (l O 0))) ;

end;

9 2

Two more details become evident from the excerpt above. First, all of syntactic sugar is

missing (notation 1). For comparison, the reader may want to examine the implementation

given in Section 6.3.2 on page 182. Second, every procedure call in a class and procedure is

numbered. For example, the class ArrayListManager has three calls at the very end of the

fragment above: special_make_literal # 1, l i teral#2 and assign #3 (notation 2). The numbers

serve to identify the calls when an object's representation is listed, since different calls of the

same specified procedure will have different numbers appended to them. The numbers also

reflect the order of elaboration of the procedure calls in the class or procedure.

Section 6.6.1 Transformed Program 200

The final excerpt of the pretty-printed source is the application program, shown below. Note

that the procedure calls in attribute associations are not numbered. This is because no

selection is necessary for them and they do not appear in the program after selection is

performed. The pretty printer includes them to aid in recaltingthe original source.

class mainprogram is
begin

var intsetmanager => new setmanager(im.integer);
vat intlistmanager => new listmanager(im.integer);
vat unsorted => intsetmanager.new set

where setsize => im.literal(special_make_literal(100));
var sorted => intlistmanager.new l i s t

where l is ts ize => im.literal(special_make_literal(100));
vat count => im.new integer;
vat i => im.new integer;
var ob31 => im.new integer;

var obj2 => im.new integer;

intsetmanager.clear#1(unsorted);
im.read#Z(count);
for i in im.sequence#5(im.literal#4(

special make_literal#3(1)),
count) do

im.read#6(objl);
intsetmanager.insert#7(unsorted,objl);

end for;

intlistmanager.clear#8(sorted);
for objl in intsetmanager.members#g(unsorted) do

im .ass ign#12(count ,
im.literal#11(special_make_literal#10(1)));

while im.lessthanequal#14(count,
intlistmanager.length#13(
so r t ed)) do

im.ass ign#16(ob jZ ,
intlistmanager.getindex#15(sorted,

c o u n t)) ;
i f im.greaterthanequal#17(obj2,objl) then

exitloop;
else

im.ass ign#21(count ,
im .p lus#20(coun t ,

im.literal#19(
special_make_literal#18(

1))));
f i ;

end loop;
i n t l i s t m a n a g e r . a d d b e f o r e i n d e x # Z Z (s o r t e d , c o u n t , o b j l) ;

end f o r ;
fo r ob~2 in in t l i s tmanager .members#Z3(sor ted) do

im.write#Z4(objZ);
end for;

end;

Section 6.6.2 Transformed Program 201

6.6.2. Object Listings

In addition to the an annotated source, the translation system gives the results of the policy

procedure. For each simple object and procedure call, a listing of the representations of all

variables and procedure calls in the simple object or procedure call is produced. The simple

object that represents the application program is shown below:

instance x12384:, object instance of mainprogram.
local instance x12385: of mainprogram.
I vat intsetmanager => arraysetmanager (x12393:)
2 vat intlistmanager => arraylistmanager (x12404:)
3 vat unsorted => arrayset (x12411:)
4 vat sorted => array l is t (x12477:)
5 var count => integer (x12543:)
6 vat i => integer (x12550:)
7 vat objl :> integer (x12567:)
8 vat obj2 => integer (x12564:)
I proc clear :> clear#231Z: of arraysetmanager (x12571:)
2 proc read :> read#13: of transputmanager (x12618:)
3 proc special_make_literal => special_make_literal#746:

of universal_environment (x12623:)
4 proc l i te ra l => literal#B21: of discretemanager (x12630:)
5 proc sequence => sequence#562: of discretemanager (xIZ643:)
6 proc read => read#13: of transputmanager (x12680:)
7 proc insert => insert#2176: of arraysetmegager (x12684:)
8 proc clear => clear#3466: of arraylistmabager (x12738:)
9 proc members :> members#g707: of arraysetmanager (xIg785:)
10 proc special_make_literal => special_make_literal#746:

of universal_environment (x12840:)
11 proc l i te ra l => literal#621: of discretemanager (xIg847:)
12 proc assign => assign#50: of assignablemanager (xIZ860:)
13 proc length => length#3526: of arraylistmanager (x12880:)
14 proc lessthanequal => lessthanequal#324:

of orderedmanager (xIZ934:)
15 proc getindex => getindex#3511:

of arraylistmanager (x1295g:)
16 proc assign => assign#50: of assignablemanager (x13020:)
17 proc greaterthanequal => greaterthanequal#351:

of orderedmanager (x13040:)
18 proc special_make_literal => special_make_litera1#746:

of universal_environment (x13066:)
19 proc l i t e ra l => literal#621: of discretemanager (x13073:)
20 proc plus => plus#424: of discretemanager (x13086:)
ZI proc assign => assign#50: of assignablemanager (x13123:)
2Z proc addbeforeindex => addbeforeindex#3173:

of arraylistmanager (x13143:)
23 proc members => members#3747: of arraylistmanager (x13Z04:)
24 proc write => write#17: of transputmanager (x13258:)

Each o~ect has associated a unique identifier. For the main program, i t i s x12384:. The

simple objectfor mainprogmm has only onelocalinstance, sincethe application program has

Section 6.6.2 Transformed Program 202

no parents, As indicated, the main program has eight variables and 24 procedure calls. For

each, the listing provides the name of the specification, the name of the implementation, the

location of the implementation and the unique identifier of the simple object associated with

the implementation. For example, the second variable is intlistmanager and is implemented as

an arraylistmanager. The definite simple object that is associated with the creation

component in the variable declaration can be found in the simple object labeled x12404:,

which is shown below:

instance x12404:,
local instance
local instance
local instance
I
2
I

object instance of arraylistmanager.
x12409: of assignablemanager.
x12410:,of listmanager.
x17880: of arraylistmanager,

var maxarraysize => integer (x17881:)
vat am => arraymanager (x17895:)
proc special_make l i te ra l => special_make_literal#746:

of universal_environment (x17899:)
proc l i t e ra l => literal#621: of discretemanager (x17906:)
proc assign => assign#50: of assignablemanager (x17919:)

Unlike the application program, the arraylistmanager has two ancestors, and so a simple

object for an Arraylistmanager object has three local instances: assignablemanager,

listmanager and arraytistmanager. As the first two local instances contain no variable

declarations or procedure calls, there is no further information beyond the line listing the local

instance. However, the local instance for the arraylistmanager class has two variables and

three procedure calls, all of which are shown above.

A procedure call has a similar format, except there are no explicit local instances. The listing

below gives the selection details for the call of addbeforeindex in the application program (the

22nd call). Note that implementation addbeforeindex#3173: was selected, tf no

implementation had been available, the call would have been associated with its specification,

here addbeforeindex # 1653:.

Section 6.6.2 Transformed Program 203

instance x13143:, procedure ca l l of addbeforeindex#3173:
of a r ray l is tmanager .

1 v a r i => in teger (x20438:)
1 proc lessthan => lessthan#252: of orderedmanager (x20445:)
Z proc special_make_literal => special_make_literal#746:

of universal_environment (x20457:)
3 proc l i t e ra l => literal#621: of discretemanager (x20464:)
4 proc greaterthanequal => greaterthanequal#351:

of orderedmanager (x20477:)
5 proc 1ogicaland => logicaland#133: of bitmanager (x20488:)
6 proc special make_literal => special_make_literal#746:

of universal_environment (x20500:)
7 proc l i te ra l => literal#621: of discretemanager (x20507:)
8 proc plus => plus#424: of discretemanager (x20520:)
9 proc lessthanequal => lessthanequal#324:

of orderedmanager (x20543:)
10 proc logicaland => logicaland#133: of bitmanager (x20554:)
11 proc reversesequence => reversesequence#607:

of discretemanager (x20565:)
12 proc special_make_literal => special_make_literal#746:

of universal_environment (x20589:)
13 proc l i te ra l => literal#621: of discretemanager (xZ0596:)
14 proc plus => plus#424: of discretemanager (x20609:)
15 proc element => element#676: of array (x2063Z:)
16 proc element => element#676: of array (x20648:)
17 proc assign => assign#50: of assignablemanager (x20664:)
18 proc element => element#676: of array (x20670:)
19 proc assign => assign#50: of assignablemanager (x20686:)
20 proc special_make_literal => special_make_literal#746:

of universal_environment (x20693:)
21 proc l i te ra l => literal#621: of discretemanager (x20700:)
22 proc plus => plus#424: of discretemanager (x20713:)
23 proc assign => assign#50: of assignablemanager (x20736:)

In these examples, only predefined procedures were used in the procedure implementations

for lists, so the possibility tree is not very deep, and all of the procedure calls of the same

procedure implementation look identical. However, Paragon permits one to write a procedure

implementation that uses only abstract properties of an object and further allows multiple

calls of that procedure with different implementations of parameters. This results in a more

interesting possibility tree and is considered next.

Section 6.7 General Procedures 204

6.7. General Procedures

In this example, a program uses the set intersection operation of the abstract data type Set

in its calculations. Two implementations of sets are provided and are allowed to interact in the

intersection procedure. To provide a feasible implementation of the program, a general

implementation for the intersection procedure is provided. This procedure implementation

uses only abstract operations of its parameters. However, to limit the size of the example, only

the barest outline of a program is presented below.

A pretty-printed version of the specification for sets is shown below. In all of the following

declarations, the manager declaration is suppressed.

Members, IsElement, Insert and Intersection.

class set is begin end;

procedure
procedure
procedure
procedure

Only four operations are provided,

members#1771: (set) yield im.integer ;
iselement#2004: (set, im.integer) return booleans.bit ;
insert#2013: (set, im.integer) ;
intersection#2024: (set,set) return set ;

Two implementations for sets are provided, called Set1 and Set2. The implementations do

not perform any processing; they consist of empty procedure implementations merely as a

way to illustrate the selection system.

class set1 of set is begin end;

procedure members#Z115: (set l) yield im.integer is begin end;
procedure iselement#2130: (set l , im. integer) return booleans.bit

is begin end;
procedure insert#2137: (set l , im. integer) is begin end;

Like the first implementation, the second implementation is missing the Intersection

procedure.

class set2 of set is begin end;

procedure members#2152: (set2) y i e l d im. in teger is begin end:
procedure iselement#Z165: (s e t 2 , i m . i n t e g e r) re turn boo leans .b i t

is begin end;
procedure insert#Z174: (setZ,im.integer) is begin end;

The interesting aspect of this example is the general Intersection procedure. Its

implementation is shown below:

Section 6.7 General Procedures 205

procedure intersection#2102:
return l .s t ruc ture is

beg in
va t temp => new 1;
var e :> im.new integer;

(I : s e t , r : s e t)

f o r e in members#1(r) do
i f i s e l e m e n t # Z (l , e) then

i n s e r t # 3 (t e m p , e) ;
f i ;

end f o r ;
return tempi

end;

The application program contains two sets, and those sets interact in two calls to the

Intersection procedure, as shown below: 69

c l ass mainprogram is
beg in

var smanager => new setmanager;
var svl :> smanager.new s e t ;
var sv2 => smanager.new se t ;
var i => im.new i n t e g e r ;

i f smanage r . i se l emen t#2
(s m a n a g e r , i n t e r s e c t i o n # 1 (s v l , s v 2) , i) then

n u l l ;
e l s e i f

smanager.iselement#4
(smanager.intersection#3(sv2,svl),i) then

nul l ;
f i ;

end;

A policy is used that forces the first variable, svl, to use representation set1 and the second

variable, sv2, to use representation set2. After checking for feasibility, the following selections

were made:

69The two calls of intersection would normally return the same set. Both calls are included to demonstrate the
selection process.

Section 6.7 General Procedures 206

instance
local
I var
2 var
3 vat
4
1

x2593:, object instance of mainprogram.
instance x2594: of mainprogram.
smanager => setimplmanager (x2595:)
svl => set% (x2597:)
sv2 => se t2 (x2599:)

vat i => integer (x2601:)
proc intersection =>

intersection#2102: of setimplmanager
2 proc
3 proc

4 proc

(x2856:)
ise lement => iselement#2130: of set implmanager (x2864:)
intersection =>

intersection#2102: of setimplmanager (x2878:)
iselement => iselement#Z165: of setimplmanager (x2886:)

As expected, the two calls of the intersection procedure use the general implementation

intersection#2102:. However, two different sets of parameters are used, so the two

procedure calls be dissimilar. As shown below, this is exactly what happens.

The first call had implementations Set1 for the left parameter and Set2 for the right

parameter. The resulting selections for the local variables and procedure calls within

intersection #2102 for first call of intersection (call 1 in the mainprogram, x2856:) are shown

below:

ins tance x2856:, procedure c a l l of i n t e r sec t i on#2102 :
of set implmanager.

1 var temp => set1 (x7354:)
2 var e => in teger (x7357:)
I proc members => members#Z152: of set implmanager (x7364:)
2 proc ise lement => iselement#2130: of set implmanager (x7375:)
3 proc i n s e r t => inser t#2137: of set implmanager (x7389:)

The variable temp should have the same implementation as the left parameter, and indeed it is

implemented as Set1. As the first call, members, uses the right parameter, only the

implementation members#2152: is feasible, and it is chosen. The calls of iselement and

insert use the left parameter, and so the selected implementations are iselement # 2130: and

insert#2137, respectively. Finally, since the returned object from the catl of intersection is

declared to have the same structure as the left parameter, one would expect that the call of

the iselement procedure on the return object to use the same implementation as for the

iselement procedure in the call of intersection. Examining the second call in the application

program shows that implementation iselement#2130: is selected, which is the same

implementation used in the intersection call above.

As the second call of intersection ~which corresponds to call 3 in the mainprogram) has the

parameters reversed, one would expect the opposite implementation choices being made for

Section 6,7 General Procedures 207

the procedure calls within intersection#2102. The second call of intersection in the

application program is shown, and matches these expectations:

instance xZ878:, procedure call of intersection#210Z
of setimplmanager.

I var temp => set2 (x7432:)
2 var e => integer (x7435:)
I proc members => members#2115: of setimplmanager (x7442:)
2 proc iselement => iselement#2165: of setimplmanager (x7453:)
3 proc insert => insert#2174: of setimplmanager (x7467:)

As this example illustrates, the Paragon design permits the flexibility of using multiple

representations for variables while retaining the efficiency of statically determined procedure

implementations.

6.8. Recursive Procedures

Another more complicated possibiF*y tree occurs when a program contains recursion. As

mentioned in Section 5,5.5.2, the possibility tree would normally be infinite in the presence of

recursive procedures. However, Paragon contains a rule that controls the elaboration of

procedure calls with implementations, which in turn effectively limits the size of the possibility

tree. tn this section, the results Of processing a program with recursion are illustrated.

6 . 8 . 1 . A p p l i c a t i o n P r o g r a m

This recursive application program defines the well-known factorial function. The source for

the program, followed by the annotated version, is shown below:

class mainprogram is
begin

procedure Factorial(IM. N:
procedure Factorial(IM. N:
begin

i f N <= 0 t h e n

return O;
e l s e

return N * Factor ia l (N- l) ;
f i ;

end:

Integer) return IM.Integer;
Integer) return IM.Integer is

IM.Write(Factorial(3)) ;
end ;

! ;

Section 6.8.1 Recursive Procedures 208

class mainprogram is
begin

procedure factorial#1474:
return im.integer ;

(im.n : integer)

procedure factorial#1537: (im,n : integer)
return im.integer is
begin

i f im.lessthanequal#3(n,
im,l i teral#2(special_make_li teral#1(O))) then

return im,l i teral#5(special_make_l i teral#4(O));
else

return im.times#10(n,
factorial#9(im,minus#8(n,

im. l i te ra l#7(
special_make_l i teral#6(1))))) ;

f i ;
end;

im.write#4(factorial#3(
im. l i teral#Z(special_make_l i teral#1(3)))) ;

end;

6.8.2. Object Listings

The application program above was found to be feasible when it was elaborated with

implementations. Three object listings from the resulting translator output are produced

below, one for the main program, one for the call of factorial in mainprogram, and one for the

call of factorial in the factorial program.

The listing for mainprogram, shown below, contains no surprises. The one implementation

for factorial, that is, factorial # 153 7:, is chosen.

instance x1462:, object instance of mainprogram.
local instance x1463: of mainprogram.
I proc special_make_literal => special_make_literal#1137:

of universal_environment (x1684:)
2 proc l i t e r a l => l i teral#646: of discretemanager (x169t:)
3 proc fac tor ia l => factorial#1537: of mainprogram (x1704:)
4 proc write => write#17: of transputmanager (x1720:)

The call of factorial in the main program is shown below in the listing for object x1704.. Note

that this call of factorial takes place inside of the mainprogram. However, the call in the

factorial procedure, that is, call number 9 below, takes place in the nested environment of the

a factorial procedure inside of the main program. As noted below, the corresponding object

for this call is x4949:.

Section 68.2 Recursive Procedures 209

instance
I pr,oc

2 proc
3 proc

4 proc

5 proc
,6 proc

7 proc
8 proc
9 proc
10

x1704: procedure call of factorial#1537: of mainprogram,
special_make_literal => special_make_literal#1131:

of universal_environment (x4853:)
l i te ra l => literal#646: of discretemanager (x4860:)
lessthanequal => lessthanequal#324:

of orderedmanager (x4873:)
special_make_literal => special_make_literal#%137:

of universal_environment (x4885:)
l i te ra l => literal#646: of discretemanager (x4892:)
special_make_literal => special_make_literal#1131:

of universal_environment (x4906:)
l i te ra l => literal#646: of discretemanager (x4913:)
minus => minus#451: of discretemanager (x4926:)
factorial => factorial#1537: of mainprogram (x4949:)

proc times => times#506: of discretemanager (x4965:)

Object ×4949: is shown below. Like the li~ing above, it contains a call of the ~ctorial

procedure. However, this call takes places inside of a factorial procedure inside of the main

program. Hence, this call is similar to the call made in object x1704:. Examination of the object

associ~ed with the ~h call in object x4949: reveals th~ the call rears to i~elf. Thus ~ e same

implementation decisions made for the call that originally gener~ed object x4949: should be

repeated for the call inside of x4949:. Because the procedure call is similar, no fu~her

elaboration of the call with implementations is necessary. Thus there are no more in~ances of

~ctor~l in the ~i~ing.

instance x4949: procedure ca]l of factorial#t537: of mainprogram.
1 proc special_make_literal :> special_make_literal#113/:

of universal_environment (x5085:)
2 proc l i te ra l => literal#646: of discretemanager (x5092:)
3 proc lessthanequal :> lessthanequal#324:

of orderedmanage r (x5105:)
4 proc special_make_literal => special_make_literal#1137:

of universal_environment (x5117:)
5 proc l i t e ra l =~ literal#646: of discretemanager (x5124:)
6 proc special_make_literal => special_make_literal#%13/:

of universal_environment (x5138:)
7 proc l i te ra l => literal#646: of discretemanager (x5145:)
8 proc minus => minus#451: of discretemanager (x5158:)
9 proc factorial :> factorial#1537: of mainprogram (x4949:)
10 proc times => times#506: of discretemanager (x5197:)

The ability to terminate a possibility tree is necessary for a complete analysis of all possible

representations in every procedure call. As this example illustrates, termination should come

quite quickly as a recursive call is usually "similar" to its previous invocation.

Section 6.9 Some Alternative Policies 210

6.9. Some Alternative Policies

The policy in Section 6.5 represents a straightforward implementation of one common

criterion for making representation selections. Other criteria and algorithms for selecting

representations have been published in the literature. In this section, several of the these

other algorithms are presented as a demonstration of how policies can be written in

Paragon.7°

6.9.1. Dynamic Programming

An algorithm developed by Raut Ramirez [Ramirez 80] uses a dynamic-programming

algorithm for making representation choices. This section provides a policy that implements

his published algorithm.

The policy below actually has three parts. The first part, noted 1, calculates space and time

matrices for use by the dynamic.programming algorithm. The published algorithm assumes

that tables of spaces and times for the various representations are available for use by the

dynamic-programming algorithm. That is not necessarily true in Paragon, so the first part of

the policy makes an approximation of the time and space requirements for different

representations. No specific evaluation function is provided in the published algorithm, so a

space.time product is used.

The second part of the policy, noted 2, provides the initial conditions for the dynamic-

programming algorithm. The third part, noted 3, performs the analysis using the recurrence

equations in the algorithm. Finally, the fourth part, noted 4, takes the results of the dynamic-

programming algorithm and makes the selected choices.

p rocedure policy(i:Instance) i s
begin

procedure Ramirez(im. MaxSpace;integer, im. MaxTime:integer,
im. Maxlmpls: integer);

procedure Ramirez(im. MaxSpace:integer, im. MaxTime:integer,
im. MaxImpls" integer) is

begin

70As a very cursory test to see if the policies were well specified, they were elaborated as main programs and later
used to make selections for a program with one variable that had one possible implementation.

Section (3,9.1 Some Alternative Policies 211

var CurSpace => im . new In teger ;
var CurTime => im . new In teger ;
var I n f i n i t y => im . new In teger ;
vat MinCost => im . new In teger ;
vat MinImpl => im . new In teger ;
va.r NewSpace => im . new In teger ;
vat Impl => im . new In teger ;
vat V => im . new In teger ;

var AM => new ArrayManager(im. integer) ;
var AM2 => new ArrayManager(AM.Array(0,MaxTime));
var AM3 => new ArrayManager(AM2.Array(0,MaxSpace));
vBr f => AM3.new Array(1,MaxImpls);
vat ImpIMatr ix => AM3.new Array(1,MaxImpls);

vat AM4 => new ArrayManager(AM.Array(0,MaxImpls));
var S => AM4 . new Array(1, i .NumV);
var T => AM4 . new Array(1, i .NumV);
var Cost => AM4 . new Array(lo i .NumV);

I F i r s t , create the matrices fo r the a lgor i thm to use:
I Space (S), Time (T), and Cost (noth ing spec i f i ed in thes is ,
I use S*T as an example) ;

fo r V in %..i.NumV do ~ I
fo r Impl in l . . i .VarDecls. [V] .GetSpec.+.NumC do

i .Va rDec ls . [V] .Se t Imp l (i .Va rDec ls . [V] .Ge tSpec
. t . C h i l d r e n . [I m p l]) ;

i f i .BindProcs then f i ;
S . [V] . [I m p l] := i .Va rDec l s . [V] . Space return (i m . i n t e g e r) ;
T . [V] . [I m p l] := i .Va rDec l s . [V] . Time return (i m . i n t e g e r) ;
C o s t . [V] . [I m p l] := S . [V] . [I m p l] * T . [V] . [I m p l] ;
i .Va rDec l s . [V] .Se t Imp l (i .Va rDec l s . [V] .Ge tSpec) ;

end fo r ;
end f o r ;

! Ramirez's Dynamic Programming Algor i thm fo r
I Data Structure Se lec t ion ;

i I n i t i a l i z e the Matr ix ;

Section 6.9.1 Some Alternative Policies 212

for CurSpace in O..MaxSpace do
for CurTime in O..MaxTime do

MinCost := I n f i n i t y ;
MinImpl := I;
for Impl in 1..i.VarDecls.[i,NumV].GetSpec,t.NumC do

i f S.[i.NumV].EImpl] <= CurSpace and
T.[i ,NumV].[Impl] <= CurTime and
Cost.[i ,NumV].[Impl] < MinCost then

MinCost := Cost.[i.NumV].EImpl];
MinImpl := Impl;

f i ;
end for ;
f.[i ,NumV].[CurSpace].[CurTime] := MinCost;
Imp,Matrix.[i.NumV].[CurSpace].[CurTime] := MinImpl;

end for ;
end for;

I F i l l in the Matrix ;

for V in i.NumV - I ,,1 do
for CurSpace in O.oMaxSpace do

for CurTime in O,.MaxTime do
MinCost :: I n f i n i t y ;
MinImpl := 1;
for Impl in 1.,i.VarDecls.[V].GetSpec.~.NumC do

i f S , [V] . [Imp l] <= CurSpace and
T , [V] . [Imp l] <= CurTime and
Cost . [V] . [Impl] +

f.[V+1].[CurSpace - S , [V] . [Imp l]] .
[CurTime - T . [V] . [Imp l]]
< MinCost then

MinCost := Cost . [V] , [Imp l] +
f . [V+l] . [CurSpace - S . [V] . [Imp l]] .
[CurTime - T . [V] . [I m p l]] ;

MinImpl := Impl;
f i ;

end for ;
f . [V]. [CurSpace].[CurTime] := MinCost;
ImplMatrix.[V].[CurSpace].[CurTime] := MinImpl;

end for ;
end for ;

end for;

I And read the matrix for the appropriate implementations ;

~c~2

Section 6.9.1 Some Alternative Poticies 213

CurSpace := MaxSpace;
CurTime := MaxTime;
for V in 1.,i.NumV do

i .VarDecls. [V] .Set Impl(i .VarDecls. [V] .GetSpec. t .Chi ldren.
[ImpIMatr ix. [V] . [CurSpace]. [CurTime]]) ;

NewSpace := CurSpace -
S. [V] . [ImplMatr ix . [V] . [CurSpace] , [CurTime]] ;

CurTime := CurTime -
T. [V] . [ImpIMatr ix . [V] . [CurSpace] . [CurTime]] ;

CurSpace := NewSpace;
end for ;
end; I end of Dynamic Programming ;

Ramirez(lO0,100,10);

end;

-~_j4

6.9.2. Branch and Bound

The general technique of branch-and-bound is used throughout artificial intelligence as a

way to control the search of a large space [Winston 77]. A branch-and-bound algorithm for

making representation choices is presented below. The path being incrementally searched is

the list of procedure calls in a given Instance object. Note how the evaluation procedure Evat

is separated from the rest of the policy procedure. Thus it is quite simple to change the

optimization criterion as necessary.

Section 6.9.2 Some Alternative Policies 214

I Branch and Bound

procedure BNB(inst : ins tance, im . varnum : i n t e g e r) ;
procedure BNB(inst : ins tance, im . varnum : i n t ege r) is
begin

procedure E v a l (i n s t : i n s t a n c e , i m . varnum: i n t ege r ,
im . implNum: i n t e g e r , im . procNum: i n t e g e r)
re tu rn im . i n t e g e r ;

procedure E v a l (i n s t : i n s t a n c e , i m . varnum: i n t ege r ,
im . implNum: i n tege r , im . procNum: i n t e g e r)
re~urn im . i n t e g e r is

begin

i f ins t .VarOec ls . [varNum 3.
L o c a l l y F e a s i b l e (S p e c O e c l . t . C h i l d r e n . [i m p l N u m]) then
ins t .Va rDec ls . [va rNum] .

Se t Imp l (SpecDec l .~ .Ch i l d ren . [imp lNum]) ;
i f i ns t .B indProcs then n u l l ; f i ;
i f inst. ProcCalls.[procNum].

check Cost return (im.integer) then
return inst. ProcCalls.[procNum].

Cost return (im.integer);
else

return I n f i n i t y ;
f i ;

else
re tu rn I n f i n i t y ;

f i ;
end;

Section 6.9.2 Some Alternative Policies 215

procedure DoSingle; procedure DoSingle is
begin

var impINum :> im . new integer;
var Minlndex => im . new integer;
var aim => new arraymanager(im, in teger) ;
vat Cost => aim . new Array(1,NumDecls);
var LastConsidered => aim . new Array(1,NumDecls);

! Final i n i t i a l value for a l l branches ;
for impINum in 1..NumDecls do

Cost.[impINum] := Eval(inst,varnum,implNum,%);
LastConsidered.[implNum] := I ;

end for ;
whi le True do

! Find current minimum path ;
MinIndex := 1;
for impINum in 2..NumDecls do

i f Cost.[impINum] < Cost. [MinIndex] then
Minlndex := impINum;

f i ;
end for ;
! See i f done (no more proc to examine) ;
i f LastConsidered.[MinIndex] = i n s t . NumP then

ex i t l oop ;
f i ;
! Not done, so extend path by one ;
LastConsidered.[MinIndex] :=

LastConsidered.[MinIndex] + I ;
Cost. [Minlndex] := Cost.[MinIndex] +

Eval(inst,varnum,implNum,
LastConsidered.[MinIndex]);

end loop;
CDRM.Assign(MinClass,SpecDecl.~.Children.[MinIndex]);

end;

var NumOecls => im . new integer;
var SpecDecl => CDRM new Reference;
var MinClass => CDRM new Reference;
var I n f i n i t y => im . new integer;

I n f i n i t y := 999999999;
CDRM.Assign(SpecDecl,inst.VarDecls.[varnum].GetSpec);
NumDecls := SpecDecl.~.NumC;
i f NumDecls > 0 then

DoSingle;
inst.Va.rDecls.[varnum].SetImpl(MinClass);

f i ;
end;

Section 6.9,2 Some Alternative Policies 216

I Policy procedure starts here;

procedure p o l i c y (i : i n s t a n c e) ;
procedure p o l i c y (i : i n s t a n c e) is
begin

var c => im . new integer;

for c in 1..NumV do
BNB(i,c);

end f o r ;
f o r c in 1 . . i .NumV do

P o l i c y (i . V a r D e c l s . [c]) ;
end f o r ;
f o r c in l..NumP do

i f not i . P r o c C a l l s . [c] . A l r e a d y S e e n then
Pol icy(i .ProcCal ls. [c]) ;

f i ;
end for;

end;

6.9.3. Hill-Climbing Heuristic

Another popular ~chnique for controlling the search of ai~rn~ives in a large space ~ hill

climbing. A simple hill-climbing (or since the evaluation function is being minimized, hole-

falling) algorithm is presented below.

I The s teepes t descent h i l l c l imb tng

procedure P o l i c y (i : I n s t a n c e) ;
procedure P o l i c y (i : I n s t a n c e) i s
begin

var c => IN . new I n t e g e r ;
var j => IM . new I n t e g e r ;
var BestClass => CDRM . new Reference;
var CurClass => CDRM . new Reference;
var Change => Booleans. new B i t ;
var Dummy => Booleans . new B i t ;
var TempSpace => IM . new I n t e g e r ;
var TempTime => IM. new Integer:
var MinSpaceTime => IM. new I n t e g e r ;
var HaveSpaceTime => Booleans. new B i t ;

Section 6.9.3 Some Alternative Policies 217

for c in 1..i.NumV do
CDRM.Assign(BestClass,i.VarOects.[c].GetSpec);
i f i .VarDec ls . [c] .check Space return (IM. In teger) and

i .VarDec ls . [c] .check Time(i) return (IM.Tnteger) then
MinSpaceTime := 99999999;
Booleans.Assign(Change,True);
while Change do

Booleans.Assign(Change,False);
CDRM.Assign(CurClass,BestClass);
for j in 1..CurClass.t.NumC do

i .Va~Dec ls . [c] .Se t Imp l (CurC lass .~ .Cht ld ren . [j]) ;
Booleans.Assign(Dummy,i.BindProcs);
TempSpace := i.VarDecls.[c].Space

return (IM. In teger) ;
TempTime := i .VarDec ls . [c] .T ime(i)

return (IM. In teger) ;
i f tempSpace*tempTime < MinSpaceTime then

Booleans.Assign(Change,True);
CDRM.Assign(BestClass,CurClass.t .Chi ldren.[J]) ;
MinSpaceTime := tempSpace'tempTlme;

f i ;
end for ;

end loop;
i ,VarDecls,[c].SetImpl(BestClass);

else
CDRM.Assign(CurClass,i.VarDecls.[c].GetSpec);
while CurClass.t.NumC > 0 do

CDRH.Assign(CurClass,CurClass.t.Children.[t]);
end loop;
i.VarDecls.[c].SetImpl(CurClass);

f i ;
end for;
Booleans.Assign(Dummy,i.BindProcs);
for c in 1.,i.NumV do

Pol icy(i .VarDecls . [c]) ;
end for;
for c in 1..NumP do

i f not i.ProcCalls.[c].AlreadySeen then
Po l icy (i .ProcCal ls . [c]) ;

f i ;
end for;

end;

A particular variant of the hill-climbing algorithm was published by Low [Low 74] for

representation selection. An initial hill-climbing procedure assigns representations to all

variables. Then each representation is perturbed. After each perturbation, the resulting

program is reevaluated to see if a better selection resulted. Low's algorithm in Paragon is

expressed below. Note how this particular policy exploits the use of managers mentioned in

Section 6.3.1.1 (notation 1),

Section 6.9.3 Some Alternative Policies 218

Z " . ;

I Low's pol icy, again on one block at a time.

procedure CalcTS(i:Instance) return im. integer;
procedure CalcTS(i:Instance) return im. integer is
begin

var TempTime => im . new integer;
var TempSpace => im . new integer;
var j => im , new integer;

TempTime := O;
TempSpace := O;
f o r j in 1..i.NumP do

i f i . P r o c C a l l s . [j] check t ime re tu rn (i m . i n t e g e r) then
TempTime := TempTime +

(i . P r o c C a l l s . [j] time return (im. in teger)) *
(i .ProcCal ls . [j] .F requency) ;

f i ;
end for;
for j in l . . i .numV do

i f i .Va rDec ls . [j] , check Space return (im. integer) then
TempSpace := TempSpace +

i .VarDecls. [j] .Space return (im. in teger) ;
f i ;

end for;
return TempTime * TempSpace;

end;

procedure Ca]cVTS(im . v: integer, i:Instance)
return im. integer;

procedure CalcVTS(im . v: integer, i:Instance)
return im. integer is

begin
var call => ProcCa11;
var TempTime => im . new integer;
var TempSpace => im . new integer;
var j => im . new integer;

Section 6.9.3 Some Alternative Policies 219

TempTime := O;
TempSpace := O;
l e t ca l l match i ,VarDec ls . [v] in i do

i f ca l l . check ManagerTime(i) return (im. integer) then ~ i1
TempTime := TempTime +

ca l l . ManagerTime(i) return (im . in teger) ;
f i ;

end l e t ;
for j in v..i.NumV do

i f v = i .VarDec ls . [j] . ImpISet and
i .Va rDec l s . [j] , check space return (im. in teger) then
TempSpace := TempSpace +

i .VarDecls . [j] .Space return (im. in teger) ;
f i ;

end for ;
i f i .VarDec ls . [v] check space return (im. in teger) then

TempSpace := TempSpace +
i .VarDecls. [v] .Space return (im . in teger) ;

f i ;
return TempTime * TempSpace;

end;

procedure MarkManagers(i:Instance);
procedure MarkManagers(i:Instance) is
begin

var k => im . new integer;
var j => im . new integer;

for j in 1..i.NumV do
for k in j+1..i,NumV do
i f Enc los ingOb jec t (i .VarOec ls . [j] , i .Va rDec ls . [k]) then

i .VarDecls . [k] , ImpISet : : j ;
f i ;
end for ;

end for ;
eno;

procedure PerformOnePolicy(i:instance,im . index: integer,
Booleans. DoingGlobal: B i t) ;

procedure PerformOnePolicy(i : instance,im . index: integer,
Booleans. DoingGlobal: B i t) is

begin
var ManSpec => CDRM . new reference;
vat KidSpec => CDRM, new reference;
var KidImpl => CDRM. new reference;
vat Best => im . new integer;
var MinTS => im . new integer;
var TS => im . new integer;
var j => im . new integer;
var k => im . new integer;
var KidNum => im , new integer;

Section 6.9.3 Some Alternative Policies 220

procedure SetKids;
procedure SetKids is
begin

I First f ind a kid ;
for k in index+1..i.NumV do

i f index = i.VarDecls.[k].ImpISet then
CDRM.Assign(KidSpec,i.VarDecls,[k].GetSpec);
KidNum := k;
exit!oop;

f i ;
end for;
I Now find an impl ;
for k in 1..KidSpec;t.NumC do

i f i.VarDecls.[KidNum].
LocallyFeasible(KidSpec.t.Children,[k])

CDRM.Assign(KidImpl,KidSpec.~.Children.[k]);
exit loop;

f i ;
end for;
! And assign the impl to al l of the kids ;
for k in KidNum..i.NumV do

i f index = i.VarDecls.[k].ImpISet then
i.VarDecls.[k].SetImpl(KidImpl);

f i ;
end for;

end;

CORM.Assign(ManSpec,i.VarOecls.[index].GetSpec);
Best := O;
MinTS := 99999999;
for j in 1..ManSpec.f. NumC do

i.VarDecls.[index].SetImpl(ManSpec.e.Children.[j]);
SetKids;
i f DoingGlobal then

TS := CalcTS(i);
else

TS := CalcVTS(index,i);
f i ;
i f TS < MinTS then

MinTS := TS;
Best := J;

f i ;
end for;
i f Best > 0 then

i,VarDecls.[index].Setlmpl(ManSpec.t.Children.[Best]);
SetKids;

f i ;
end;

then

Section 6.9.3 Some Alternative Policies 221

procedure po l icy(i : ins tance) ;
procedure po l icy(i : ins tance) is
begin

var ind => im . new integer;

MarkManagers(i) ;
f o r ind in 1. . i .NumV do

i f i . V a r D e c l s . [i n d] . I m p l S e t = 0 then
P e r f o r m O n e P o l i c y (i , i n d , F a l s e) ;

f i ;
end f o r ;
f o r ind in 1. . i .NumV do

i f i . V a r D e c l s . [i n d] . I m p l S e t = 0 then
P e r f o r m O n e P o l i c y (i , i n d , T r u e) ;

f i ;
end f o r ;
i f i .B indProcs then n u l l ; f i ;
f o r ind in 1. . i .NumV do

P o l i c y (i . V a r D e c l s . [i n d]) ;
end f o r ;
for ind in 1..i.NumP do

i f not i .ProcCalls.[ind],AlreadySeen
Po l i c y (i .P rocCa l l s . [i ' d]) ;

f i ;
end for;

end;

then

6.9.4. Simple Constraint

Probably the simplest kind of policy is one that explicitly selects a particular representation.

In Paragon, this can only be done by convention between the abstract data type, the variable

and the policy. The abstract data type must have an attribute that indicates the

implementation, a variable wishing to use explicitly an implementation must use the attribute

in its constraint, and the policy procedure must only search for feasible implementations.

This approach is error prone and requires a lot of coordination between the abstract data

type, policy and variable declaration. However, this approach is developed in this section.

First, a class declaration might be written as shown below:

class Complex is
begin

attribute procedure IsPolar
begin re tu rn False; end;

return Boo leans .B i t is

Section 6.9.4 Some Alternative Policies 222

attribute procedure
begin return False;

end;

IsCartesian return
end;

Booleans,Bit is

class Polar of Complex is
begin

at t r ibute procedure IsPolar
begin return True; end;

end;

return Booleans.Bit is

class Cartesian of Complex is
begin

at t r ibute procedure IsCartesian
begin return True; end;

end;

return Booleans.Bit is

The variable using these declarations would choose its implementation by calling the

appropriate attribute in its constraint, for example:

var MyComplex => new Complex
such that desc (MyComplex) . IsPolar return (Booleans.Bit);

The constraint allows only the the Polar implementation of Complex to be feasible. Thus a

policy would need to only pick a feasible implementation. Such a policy is shown below:

Section 6.9.4 Some Alternative Policies 223

I ExhaustiveFindAnything

procedure po l i c y (i : i ns tance) ;
procedure po l i cy (i : i ns tance) is
begin

var Completed => Booleans. new Bi t ;

procedure TryAlIImpls(IM . ~: In teger) ;
procedure TryAlIImpls(IM . j : Integer) is
begin

vat NextVar => im .new integer;
vat temp => CDRH . new reference;
vat k => im . new integer;
vat ind => im . new integer;

i f j > i.NumV then
i f i,BindProcs then

for ind in l. . i .NumV do
Po l i cy (i .Va rDec l s . [i nd]) ;

end for ;
for ind in 1..i.NumP do

i f not i .ProcCal ls . [ind] ,Al readySeen then
P o l i c y (i . P r o c C a l l s . [i n d]) ;

f i ;
end for ;
Booleans.Assign(Completed,CheckFeasibil i ty);

f i ;
else

NextVar := j + 1;
TryAlIImpls(NextVar);
i f Completed then return; f i ;
CDRM.Assign(temp,i,VarDecls.[j],GetSpec);
for k in l . . t emp . t . NumC do

i f i , V a r D e c l s . [j] .
Local lyFeas ib le(temp,~.Chi ldren. [k]) then
i .VarDec ls . [3] .Se t Imp l (temp.~ .Ch i ld ren . [k]) ;
TryAlI Impls(NextVar);
i f Completed then return; f i ;

f i ;
end f o r ;

f i ;
end;

Booleans.Assign(Completed,False);
TryAl l Impls(1) ;

end;

The programmer should not be required to write convoluted code to be able to select

directly an implementation. The current design resulted from my belief that the programmer

Section 6.9,4 Some Alternative Policies 224

should not have direct access to the implementations; only attributes should be used. In

retrospect, the lack of direct control over the selection of representation may have been a bit

too extreme. There are times when a programmer wishes to explicitly select an

implementation. One way to provide this ability would be to make the same as constraint

expressions used in procedure specifications available in any expression (and defining it to

return a value that matches Booleans.B i t) . This would allow one to use any kind of expression

in constraints for procedure declarations and permit the use of same as expressions to simply

state the programmer's intentions, as illustrated below:

var MyVar => new Ob.1
such that MyVar.structure same as Obj_Impl_1;

Another iteration of the Paragon design would probably include this modification.

The programs in this chapter have been processed by a prototype translator for the Paragon

language. The next chapter contains a description of the design of the prototype and some

measurements performed on it.

Chapter 7
Implementation

The prototype translation system consists of two programs, an LALR(1) parser produced by

a parser generation system [Nestor 82] for lexical and syntax analysis and a Lisp program for

semantic analysis, feasibility analysis and interpretation.

The parser runs only on Decsystem-20s and produces an intermediate text file (in TCOL

format [Newcomer 79]) that is used by the Lisp program. The Lisp program is written in a

subset of the Maclisp [MIT 78] and Franzlisp [Foderaro 80] dialects, and runs on both

Decsystem-20s and VAX/Unix systems.

This chapter provides a detailed discussion of this prototype translator. I first provide a list

of the translator's phases and components. Some static measurements of these phases and

components are provided and discussed. Finally, I present some example programs that were

processed with the translator. The programs are described and the performance of the

translator on these programs evaluated.

7.1. Phase Descriptions

The compiler consists of twelve phases, where phase roughly means "a single pass over the

program text". These phases are shown below:

Section 7.1 Phase Descriptions 226

''''L~
M L] [-o I_..a, URI FY NAME SETUP C

(Parser) I - I (.I.l:utRl~ler)l I(Scol~Linki~)l - I (Se t~ Class
I I~ I [1 L ue©,u

'"' S L~
(Bind Predef. Imld.) . /

, , , , J-k.r,.c.,,4-1,.,.,,.,,
MARKC • RPOLIC ELABI W A L K

D e c .] ,

Figu re 7-1: Phase Diagram for the Paragon Translator

The phases are executed in order, but may contain pieces or components that are used in

other parts of the system. For example, phase ELABI contains procedures for checking the

feasibility of a class instantiation or procedure call. These procedures are always executed

when the ELABI phase is run, but they are also executed if a policy procedure calls the

CheckFeasibi/ity procedure during the RPOLIC phase. Some of the interesting components

that may appear in more than one phase are discussed in Section 7.2.

An important fact is illustrated by the phase diagram: the design of a Paragon translation

system is conventional. After parsing (ML, PURIFY), several bookkeeping phases create links

between scopes, classes, and procedure specifications and implementations (NAME,

SETUPC, SETUPP, SETUPI). Semantic analysis is then performed (ELABS), the predefined

environment is created (PREDEF) and object representations are chosen (RPOLIC). Finally

the processed program is made available to later stages of a compiler (WALK).

The only two phases omitted in most systems are MARKC and ELABt. Neither phase is

difficult to construct. The former phase exists only to provide information to the policy

procedure and hence is an unconventional addition to the translation process. However, the

MARKC phase redecorates the class declarations with more links between parent classes and

Section 7.1 Phase Descriptions 227

subclasses. Thus the MARKC phase is another bookkeeping phase which is similar to

SETUPC. The difference is that the additions to the class declarations are accessible to the

policy procedure whereas the decorations added by previous bookkeeping phases are only

for internal use.

The ELABI phase is needed because Paragon separates the ideas of specification and

implementation all the way to the procedure call level. This phase is not difficult to construct.

In most languages, if a procedure call is checked to ensure that it meets specification, and if

an implementation meets its specification, then the translation system may conclude that the

program is feasible. This is not true for Paragon. Instead an additional pass over the program

is required to verify that implementations are present for all procedure calls. But as explained

in Sections 5.2.3 and 5.5.5, the algorithm for feasibility checking (elaboration with

implementations) is very similar to the algorithm for type checking (elaboration with

specifications), so the addition of the ELABI phase requires no breakthrough in compiler

technology.

One can therefore conclude that constructing of a Paragon compiler is no more difficult

than constructing a compiler for most algebraic languages. One of the significant differences

between Paragon and other languages is the presence of the type hierarchy. Thus the use of

a type hierarchy should not be eliminated from a language design for fear of implementation

difficulties.

Like the overall design of the translator, the designs of individual phases are also quite

conventional. The remainder of this section describes each phase of the implemented

system.

7.1.1 . ML: Parser

The first phase is the parser, called ML 71. It is a Bliss-36 program automatically created by a

parser generator system. The parser accepts text files written in Paragon and produces a

TCOL tree in an LG (linear graph) notation, essentially another text file. The TCOL tree also

contains a name table for later phases of the translator, The BNF description of Paragon that

is used by the parser generator is provided in Appendix B.

71ML stands for My Language. At the time the parser was created, I had no name for Paragon and had to call the
parser Something.

Section 7.1.2 Phase Descriptions 228

7.1.2. PURIFY: Input Reader

The second phase of the translator is called PURIFY. This phase reads the TCOL file

produced by the parser and creates an internal tree representation. The tree representation

used is quite simple: The tree nodes are represented as unique atoms, and the various

attributes and pointers attached to a tree node are placed on the property list of the atom. For

example, an ff statement with the following tree fragment:

node3: < i f statement>
(tes t) (statement)
/ \

/ \
node4: node5:

would have the internal representation:

node3: (tes t node4: statement nodeS:)
node4:
nodeS:

In addition to reading the file, the PURIFY phase also does some simple tree rearranging,

usually renaming property identifiers produced by the parser generator and ridding the tree of

syntactic sugar. An example of the former transformation is the renaming of the LIST and

LISTA properties that are produced by the parser generator into DECLARATION_LIST and

STATEMENT_LIST properties, which are used by later phases. Some examples of the latter

transformations are changing the symbol ~ into the identifier value and rewriting the

expression a + b into the more verbose IM.plus(a,b). Sections 3.3.4 and 3.3.5 list all of the

syntactic transformations performed by PURIFY.

7.1.3. NAME: Scope Linking

The third phase of the translator, NAME, is responsible for creating pointers between a

scope and its enclosing scope, and between each declaration and the scope containing the

declaration. These pointers are used during identifier lookup, because if an identifier is not

found in one scope, the enclosing scope may eventually be searched as well.

In addition to linking the scopes together, the NAME phase also makes some simple checks

for illegal duplicate declarations of identifiers. This is done as an aid to the programmer and is

unnecessary for the proper operation of the translator on correct programs.

Section 7.1.4 Phase Descriptions 229

7.1.4. SETUPC: Setup Class Declarations

The fourth phase of the translator, SETUPC, performs some preprocessing of class

declarations for later use in type checking.

First, the ancestors of each class are found and two lists, the leftmost parent order and the

leftmost elaboration order, are added to each class declaration. These lists are used primarily

for creating simple objects and locating declarations.

With the aid of these lists, the SETUPC phase also tags each class parameter as inherited or

defined. All inherited parameters are also tagged with references to their defining parameters

for later semantic checking. (See Appendix A.7 for a discussion of how parameters are

inherited.)

This phase also numbers the variables in each class and procedure declaration, although

the processing is not directly related to class declarations. When a local instance is created,

the objects associated with it are placed in a list; the indices created during this phase are

used to retrieve the objects during elaboration with specifications, with implementations and

with realizations.

7.1.5. SETUPP: Setup Procedure Declarations

The fifth phase in the translator is called SETUPP. Using the links created by SETUPC,

SETUPP associates each procedure implementation with its corresponding specification.

Since there is no overloading in Paragon, this can be done by merely examining the names of

the procedure specifications in the ancestor classes.

7.1.6. SETUPI: Setup Procedu re Implementations

The SETUPI phase creates a list of possible procedure implementations for each procedure

specification on a scope.by.scope basis. Initially, a list of all visible procedure specifications

is attached to each class and procedure declaration. Then all visible procedure

implementations for each visible procedure specification are also gathered and attached to

each class and procedure. During feasibility checking, a list of possible implementations for a

procedure call can then be located by merely examining the declaration for the innermost

simple object of the environment in which the call is appearing. The inclusion of this phase in

the translation system is efficient if one assumes that the use of space to hold the lists of

Section 7.1.6 Phase Descriptions 230

implementations is better than the use of time to search the entire environment each time a

procedure call is made to collect possible procedure implementations. Because the

translator is running on a Vax with a slow processor but with a large address space, the

decision was made to trade space for time.

7.1.7. ELABS: Type Checking and Semantic Analysis

The seventh phase of the translator performs the butk of the semantic analysis, or more

technically, elaboration with specifications. Thus this phase elaborates the universal class

declaration and the user's program with specifications. At a practical level, the following tests

are included:

• Procedure implementations match their corresponding specifications.

• Classes are properly derived from their parents.

• Object creations are well specified.

• Procedure calls match the appropriate specifications,

• All identifiers denote an appropriate variable, class, procedure or label.

Naturally, the ELABS phase contains procedures for elaborating procedures and classes

with specifications. These procedures are used in several components mentioned in other

sections. Similarly, elaborating classes and procedures, with specifications may require

elaboration of attribute variables, so the ELABS phase may use components from the RPOLIC

phase.

7.1.8. PREDEF: Locate and Bind Predefined Identifiers

The eighth phase of the translator, PREDEF, is used to locate and bind the predefined

classes, variables and procedures in the universal class declaration. Thus the phase finds all

predefined declarations such as: the predefined boolean object for use in if and while

statements; the IM integer manager; and the ClassDecl, Instance, VarDecl, ObjDecl and

ProcCatl classes for use in the MARKC and RPOLIC phases. Similarly, this phase finds all

user required declarations: the policy procedure for the selection of object implementations;

and the user's main program.

Section 7.t .9 Phase Descriptions 231

7.1,9. MARKC: Create ClassDecl Objects

The ninth phase of the translator, MARKC, creates ClassDecl realizations that represent

class declarations in the program being processed. References to these ClassDecl objects

are manipulated by policy procedures to inquire about variable specifications and

implementations, and to select implementation classes for object creations.

7.1.10. RPOLIC: Implementation Selection

RPOLIC, the tenth phase of the translator, first elaborates with realizations an Instance

object for the main program and then executes the policy procedure implementation, passing

the new~y created Instance object as the actual parameter. This phase of the translator

contains all of the procedures and run-time support for elaborating Paragon with realizations.

Since the elaboration with realizations of indefinite instances is identical to elaboration with

specifications, this phase uses some components from the ELABS phase.

7.1.1 1. ELABh Feasibility Checking

The eleventh phase, ELABt, checks the program for feasibility. This phase ensures that any

implementation choices made by the programmer for variables (via the policy) are compatible

with the specifications of those variables and that there is a feasible procedure

implementation for every procedure call in the program. Since various components in the

ELABI phase are used to check the feasibility of class instantiations and procedure calls,

these components may also be executed during the RPOLIC phase during calls of the

predefined CheckFeasibility and BindProcs procedures.

7.1.1 2. WALK: Write Implementation Decisions

The last phase of the translator, WALK, records all of the choices made for object creations

and procedure calls. For every kind of object creation and procedure call, the WALK phase

prints a list of variables along with the selected representations, and a list of procedure calls

along with the selected implementations. Excerpts of this printout are provided in Section 6.6.

In a production system, the transformed program would be passed to a code generation

phase,

Section 7.2 Component Descriptions 232

7.2. Component Descriptions

There are parts of the translator that either do not belong to a particular phase, or are the

primary piece of one phase and a minor piece of other phases, or represent a facility that is

needed in several phases. These parts of the translator are termed components to distinguish

them from phases. The prominent components in the translator are described below,

7.2.1. Name Components

Three related components, ES Name, El_Name, and ER_Name, are responsible for

elaborating name expressions with specifications, implementations and representations

respectively. As name expressions are used to express parameters, variables and procedure

calls, name expressions are truly the center of the translator for processing Paragon.

These three components are interrelated. For example, when a name expression contains

an object creation, and when that object creation is elaborated with specifications, the class

mentioned in the name expression will be elaborated with specifications, and any attribute

variables in it will be elaborated with realizations. Thus ES_Name could cause ER Name to be

evaluated. Further, these components can be evaluated recursively.

The Name translator components contain three subcomponents. One subcomponent

controls the processing of class instances, one controls the processing of procedure calls

and one controls the processing of local instances. Each set of subcomponents is described

below.

7.2.1.1. Create_Class

One set of translator subcomponents, ES_Create_Class, El_Create Class and

ER_Create_Class, is responsible for the processing of class declarations and name

components that denote class instantiations or indefinite instances. Like the three translator

components for processing names, each of these three components may call another or

recursivelycall itself. As a simple example, an object creation may contain some parameters

that in turn contain an indefinite instance. Thus during the processing of the object creation,

a recursive call on a Create_Class subcomponent will be made for the indefinite instance.

Section 7.2.1 ~2

7.2.1.2. Create_Call

Another set of related

ER_Create_Call. These are

Component Descriptions 233

procedure declarations and invocations are processed instead of object creations.

subcomponents is ES_Create_Call, Et_Create_CaU and

analogous to the CreateClass components except that

Like

object creations, one procedure call may require the processing of another procedure call.

7.2.1.3. Create_Local_Instance

The last set of related subcomponents that is discussed here is ES_Create_Locat_lnstance,

El_Create Local_Instance and ER_Create_Local_lnstance. These subcomponents are

responsible for the processing of a block with its declarations and its statements, and are

used by both the Create_Object and the Create_Call subcomponents.

7.2.2. MYLET: Function Call Util ity

The MYLET 72 component of the translator is used to allow a Lisp function to return multiple

values and is completely unrelated to Paragon. In essence, the MYLET function takes a list of

identifiers and a function call, evaluates the function, takes the result of the function, which is

expected to be a list, and assigns each element of the returned list to the corresponding

identifier in the identifier list. MYLET is used widely throughout the translator.

7.2.3. LOOKUP: Symbol Table Processing

The LOOKUP component corresponds to the usual symbol table routines found in most

compilers. This component is bit more complicated than symbol table routines in most

compilers. In most compilers, a scope is searched to find a declaration that corresponds to a

given identifier. Because objects in Paragon have a rather rich structure, the search can be

very time consuming. To ameliorate the amount of time spent in searching for an identifier,

the LOOKUP component saves various pieces of state information about identifiers in the

program tree as it looks them up in an object. This information is used to speed up future

searches of identifiers when a class declaration is reelaborated during an object creation or

when a procedure declaration is reelaborated during a procedure call.

72The name MYLET comes from the standard LET macro in Maclisp from which this component waS inspired.

Section 7.2.4 Component Descriptions 234

7.2.4. COMP: Comparing Objects

The COMP component is responsible for comparing two objects and reporting whether or

not they match, and for returning any identifier bindings that result from the matching

process. Because object comparison in Paragon is more complicated than the usual name

equivalence rule found in most abstract data type languages, the procedures used for

determining whether two objects match are correspondingly more complicated. Hence, the

translator has a separate component for comparing objects.

7.2.5. GC" Garbage Collector, TIMER: Metering, SW: Switches

Three additional parts of the system do not depend on the details of Paragon but are

required in nearly any prototype written in Lisp: GC, the garbage collector; TIMER, the

translator metering tool; and SW: the translator debugging switches. Each of the components

is briefly described.

Because most of the system is written in Lisp, the style of programming used in the

prototype creates a lot of temporary data structures that must be garbage collected when no

longer needed, Because the garbage collector belongs to no specific phase, it is considered a

distributed component of the translator. The TIMER component records the entrance and

exit of various functions in the translator. This component provides the statistics reported in

Section 7.3.3. The SW component controls the setting of various debugging switches that the

translation system uses.

7.3. Translator Performance

Some measurements of the implemented prototype were performed in an attempt to locate

hidden design flaws in the language. These measurements also give some indication of the

relative amounts of effort needed to build different pieces a Paragon translator and the

relative amounts of processing that is needed for different aspects of Paragon.

Three varieties of measurements are reported: static measurements of the translator, static

measurements of the sample programs and dynamic measurements of the translator

processing the sample programs. The static measurements reflect the sizes of the phases,

components or programs being described. The dynamic measurements reflect the amount of

time required to process certain programs by certain pieces of the translator. As the

Section 7.3 Translator Performance 235

measurement process consumes resources, these numbers should be taken as

approximations. A more useful exercise consists of comparing the numbers in the tables to

obtain relative sizes and speeds between pieces of the prototype rather than to obtain some

absolute performance measurements with which to compare other translators,

7.3.1. Static Measu rements of the Translator

Tables 7-1 and 7-2 below give some static measurements of the translator. For each phase

and component, a measure of the size of the source code in lines of Lisp source is given,

followed by the size of the loaded code in kilobytes of memory.

Phase # Lines Lisp # Kilobytes

ML 73 452 70
PURIFY 613 174
NAME 94 3
SETUPC 235 5
SETUPP 216 7
SETUPI 70 2
ELABS 2050 53
PREDEF 308 9
MARKC 118 3
RPOLIC 2777 70
ELABI 1604 37
WALK 560 19

Table 7-1: Static Sizes of Translator Phases

No effort was made to place the source code into some specific format, such as, elimination

of comments or blank lines. Rather, the values for the sizes of source code were simple

counts of lines of all of the appropriate files that make up the entry.

The sizes of the loaded programs were calculated by loading them individually into a

Franzlisp system. Unless otherwise indicated, the values for the Lisp part of the translator

were made using interpretive Lisp programs on a Franzlisp interpreter, running on a Vax

73Since the parser was generated by a parser generator and is written in Bliss, there is no value for the number of
lines of Lisp the ML phase requires. Instead of the number of lines of Lisp, the number of lines of SOurce for the
parser generator are given, The memory size is the resulting parser in OecSystem-20 kilowords.

74This phase uses compiled Lisp code. It requires 31 kilobytes when not compiled.

Section 7,3.1 Translator Performance 236

11/780 with the Berkeley Unix 4.1 operating system. 75

Component # Lines Lisp # Kilobytes

Lisp System n /a 599
Utilities 76 213877 55
COMP 451 11
LOOKUP 344 10
MYLET 28 1
SW 76 0.278
TIMER 51 0.179

Total 8°

Tab le 7.2:

118O3 885

Static Sizes of Translator Components

As one might expect, the bulk of the system consists of the sources concerned with

elaboration (ELABI, ELABS and RPOLIC) which" together comprise about 6355 lines of Lisp,

or about 54% of the system source. Similarly, these pieces require about 158 kilobytes or

approximately 55% of the total system memory (excluding the underlying Lisp system).

Although the memory size seems rather large, one should recall that most of the Lisp code

is interpreted. Compiled Franzlisp is much smaller (and faster) than interpreted Franzlisp.

Three pieces of the system were compiled: PURIFY, SW and TIMER. The memory size

reductions ran between 80% and 97% for the resulting pieces. Thus a product ion Paragon

translator that was fully compiled would be substantially smaller: between 57 kilobytes (80%)

75Only three pieces were compiled: PURIFY, SW and TIMER. All measurements for these pieces refer to the
compiled versions.

76The utilities include a set package, a Lisp debugger, a trace package, a stepper package, a control procedure
for running the translator, file handling functions, some special functions and macros for ensuring the program's
compatibility with both Mactisp and Franztisp, access functions for internal data structures, control flow macros,
string manipulation functions and error handling functions.

77Some of the utilities were provided to me by various people. I have no source size measurements for these
utilities. The given number represents the total lines of sources I had access to.

78This component uses compiled Lisp code. It requires 1 kilobyte when not compiled.

79This component uses compiled Lisp code. It requires 3 kilobytes when not compiled.

80All phases and components of the Lisp Dart of system.

Section 7.3.1 Translator Performance 237

and 9 kilobytes (97%), excluding the underlying Lisp system. 8t Further, there is a great deal of

similarity between the three pieces that perform elaboration, so a production design might

combine them into a single piece of code, further reducing the final size of the translator. By

comparison, the Pascal compiler on the same Unix system requires about 13 kilobytes of

memory space and the C compiler requires about 10 kilobytes, 82

7.3.2. Stat ic Measurements of Some Programs

Several example program fragments were processed by the prototype to measure the

dynamic performance of the prototype. This section discusses the program fragments that I

used for measuring the performance of elaboration with specifications and implementations.

The program fragments used for measuring the performance of elaboration with realizations I

defer until Section 7.3.3.3.

Four kinds of program fragments were processed: the predefined environment for Paragon,

some specifications of abstract data types, some implementations of abstract data types and

some application programs that use abstract data types. Each set of test fragments is

described, and then a table listing their static characteristics is provided. The sources for

these programs are provided in Appendices E and F.

Although some program fragments may not be translated without others, all of the figures in

the tables represent incremental values. For example, an application program may require the

predefined environment and some abstract data types to be defined, but the measured values

for the predefined environment and the abstract data types are subtracted from the measured

values for the entire program. The revised measurements are presented in the tables for the

application program fragment.

81Several attempts were made to compile the entire translation system. Several errors in the compiled code
prevented the use of a compiled version of the entire translation system. Some of these resulted from the slightly
different semantics of interpreted and compiled Lisp and some were untraceable compiler errors. With enough
perseverance, the entire system could have been compiled, but such effort did not seem warranted for the limited
number of tests.

82One should remember that the Pascal and C compilers contain a parser and a final code generator which the
Lisp part of the Paragon system omits. However, the Paragon system contains an additional tree builder in the
PURIFY phase and an interpreter that the Pascal and C compilers omit.

Section 7.3.2.1 Translator Performance 238

7.3.2.1. Predefined Environment

The first program fragment is the predefined environment that is declared in the universal

environment, and is denoted Base in the tables. The Base program fragment includes the

declarations of classes for integer objects and boolean objects, the declaration of classes that

can be used as type constructors for pointers and arrays, and the class declarations required

by the policy procedure. The corresponding procedures for arithmetic, relational operations,

logical operations and transput are also declared. The program text for the predefined

environment is provided in Section 6.2.

7.3.2.2. Abstract Data Type Specifications

I constructed two general purpose abstract data types for use in application programs: sets

and lists. The design of both matched the design in Low's systems as much as possible [Low

74]. Thus the specifications contain a large number of procedures, most of which are not

used in the application programs, tn addition, the specifications also contain attribute

declarations. The interpretation of the attributes is explained with the entire program texts in

Appendices E.4 and E.11. Measurements referring to set specifications are denoted SetSpec

in the tables. ListSpec entries in the tables refer to measurements performed on list

specifications.

7.3.2.3. Abstract Data Type Implementations

For each abstract data type specification, I programmed several implementations in

Paragon. Again, the design of the implementations was taken largely from Low's system [Low

741. For sets, the following implementations were written:

• An unsorted, singly linked list, SetULink

• An sorted, singly linked list, SetSLink

+ An unsorted array, SetUArray

+ An sorted array, SetSArray

• Shared elements with attribute bits, SetAttBit

+ BTree, SetBTree

The prototype measured the processing of the first five implementations. The program text for

all of the implementations can be found in Appendix E.1.

Section 7.3.2.3 Translator Performance 239

The following implementations were written for lists:

• Singly linked list, ListILink

• Doubly linked list, List2Link

• Array, ListArray

The prototype measured the processing of all of the implementations. The program text for

the list implementations can be found in Appendix E.2.

Like their specifications, the implementations of abstract data types also contain attribute

declarations which may be used by a policy procedure during the selection process.

7.3.2.4. Application Programs

For application programs, I chose programs that previously appeared in the representation

selection literature and rewrote them in Paragon. Three sorting programs (Insrt2, Insrt3,

Merge) were copied from Low's thesis [Low 74], a Huffman encoding program (Huffman) was

copied from a SETL paper [Freudenberger 83]and a transitive closure algorithm (TransClo)

was taken from Rovner's thesis [Rovner 76]. A simple program to find the maximum of a set

(SetMax) was also written. The full text of the application programs can be found in Appendix

F.

7.3.2.5. Measured Sizes of Programs

Table 7-3 presents some measures of the program fragments in terms of the number of

source lines of the text, the number of TCOL nodes produced by the parser, the number of

classes declared and the number of procedures declared.

A glance at Table 7-3 above reveals that application programs are significantly shorter than

abstract data type specifications and representations. This is due primarily to the absence of

local class and procedure declarations in the application programs. The Huffman program

does declare some local classes and procedures, and its size is significantly larger than that

of the other programs.

Section 7.3.3 Translator Performance 240

Program Source Lines TCOL Nodes # Classes # Procedures

Base 241 944 26 51

SetSpe¢ 220 762 2 35
ListSpec 232 788 2 39

SetULink 294 1290 3 27
SetSLink 313 1372 3 27
SetUArray 227 800 2 27
SetSArray 356 1906 2 27
SetAttBit 334 1560 3 31

List1 Link 465 2502 3 34
List2Link 427 2510 3 34
ListArray 290 1602 2 35

Insrt2 47 168 0 0
I nsrt3 45 153 0 0
SetMax 35 127 0 0
TransCIo 78 295 2 2
Merge 91 406 0 0
Huff man 220 980 6 8

Total 3915 18165 59 377

Table 7.3: Static Sizes of Program Fragments

7.3.3. Dynamic Measurements of Translator

The translation system was exercised in various ways to measure its performance while

elaborating program text with specifications, implementations and realizations. Because each

of these kinds of elaborations are used in different amounts in different circumstances, three

different kinds of measurements were gathered, one for each kind of elaboration.

7.3.3.1. Measuring Elaboration with Specifications

For measuring elaboration with specifications, each program fragment was parsed and

semantically checked which corresponds to processing the fragment from the ML phase

through the ELABS phase. No representation selection or feasibly checking is appropriate,

so the prototype operated on fragments that contained an empty policy and nothing in the

main program to instantiate. The performance of the prototype as it operated on these

program fragments is reported in two tables: Table 7-4 shows the phase measurements

through the ELABS phase; and Table 7-5 shows the measurements for the GC, COMP,

Section 7.3.3.1 Translator Performance 241

LOOKUP and MYLET components. All the numbers represent seconds of CPU time on a

VAX 11/780 interpreting Franzlisp.

These tables give measures of the prototype's performance when doing semantic checking

of a program. It should be noted that the measurements in the two tables are not mutually

exclusive. For example, some of the time in the ELABS phase was spent doing garbage

collection (GC), comparing objects (COMP), looking up identifiers (LOOKUP) and returning

multiple values from Lisp functions (MYLET). Thus, the figures should should be viewed as

different ways to break down the total time spent in processing the program.

Program ML PURIFY NAME SETUPC SETUPP SETUPI ELABS Total

Base 15 145 3 20 2 10 421 616

SetSpec 13 158 083 7 4 8 790 980
ListSpec 13 162 1 9 5 9 697 896

SetULink 19 269 1 12 4 4 1207 1516
SetSLink 20 297 0 12 1 5 1748 2083
SetUArray 14 237 1 15 4 4 1585 1860
SetSArray 24 479 1 19 4 5 2133 2665
SetAttBit 22 353 1 18 6 5 1990 2395

ListlLink 31 512 5 27 6 9 1951 2541
List2Link 32 5t3 1 19 6 8 2226 2805
ListArray 22 331 1 15 7 7 1323 1706

I nsrt2 5 28 1 2 1 1 62 100
Insrt3 4 34 0 0 0 1 40 79
SetMax 3 45 1 3 1 1 78 132
TransCIo 6 57 1 4 1 1 243 313
Merge 8 100 0 3 0 0 604 715
Huffman 16 223 0 13 6 0 1692 1950

Total 267 3943 18 198 58 78 18790 23352
Total % 1% 17% 0.1% 0.8% 0.2% 0.3% 80%

Tab le 7- 4: Phase Measurements for Semantic Analysis

From the table above and Table 7-3, we can calculate the overall performance of the

semantic analysis at 10 lines of source per minute, or 47 TCol nodes per minute. A more

detailed analysis is presented below.

83
alue of 0 means that the amount of time required was less than 1 second.

Section 7.3.3.1 Translator Performance 242

The parsing and bookkeeping phases consume a small fraction of the processing time: less

than 3%. Although the elaboration with specifications (ELABS) seems to require over four

times the time required by the input reader (PURIFY), one should remember that the PURIFY

phase is compiled. Several interpreted versions of PURIFY were run on a subset of the

program sources; the interpreted versions ran between 5.4 and 25 times slower than the

compiled version. 84 If the ELABS phase were similarly compiled, one should expect a factor of

5 to 25 speedup. Under a 5 fold speedup, the elaboration of Huffman (a 220 line program) with

specifications would require about five and a half minutes. Although still a rather large value

for processing, the speed becomes comparable to the processing required for file reading

and minor tree manipulations. Assuming that PURIFY and ELABS still perform equivalent

amounts of processing in a production-quality compiler, and given the speed of production.

quality tree manipulators [Lamb 80], a produc-tion-quality Paragon compiler should be able to

type check and semantically process a program quickly.

Another way to analyze the performance of the translator is to consider how much time is

spent by various components. Table 7-5 below gives some component measurements (along

with a repetition of the total time required for semantic analysis).

84The different interpreted versions use different combinations of macros and fexprs. The compiled version uses
only macros.

Section 7.3.3.1 Translator Performance 243

Program GC COMP LOOKUP MYLET Total

Base 308 157 110 114 616

SetSpec 279 234 111 96 980
ListSpe¢ 256 266 t00 101 896

SetULink 456 988 154 148 1516
SetSLink 632 996 240 293 2083
SetUArray 577 344 252 193 1860
SetSArray 777 727 321 241 2665
SetAttBit 676 1305 290 293 2395

List1 Link 767 1803 238 263 2541
List2Link 831 1938 292 300 2805
ListArray 496 541 221 149 1706

I nsrt2 214 49 93 39 100
Insrt3 52 0 69 71 79
SetMax 62 0 87 24 132
TransCIo 237 113 61 126 313
Merge 452 265 171 192 715
Huffman 991 791 320 326 1950

Total 8063 10517 3130 2969 23352
Total % 35% 45% 13% 13%

Time for Semantics

Table 7-5: Component Measurements for Semantic Analysis

The times add to more than 100% because the components are not independent. For

example, garbage collection (GC) and Lisp function evaluation (MYLET) occur throughout the

COMP and LOOKUP components.

Two interesting facts emerge from the data in Table 7-5: garbage collection consumes much

of the processing time and comparing two objects is an important operation in the system.

Each of these results is discussed below.

Because the system is written in Lisp, it uses many lists to hold intermediate and temporary

structures. For example, every time a procedure call or object instantiation is made, the

environment in which the corresponding procedure or class is to be elaborated, is created by

making a new list whose CAR is the newly created call or class instance and whose CDR is the

call or creation environment. When the call finishes, or the object can no longer be

referenced, the storage for this list that describes the new environment may be reclaimed.

Normally, this reclamation may be done when the Lisp routine processing the call or

Section 7.3.3. rransiator Performance 244

instantiation exits wl[h a conventionai stack discipline. Lisp has no such stack discipline for

the created tists, so they must be garbage collected. The huge number of object creations

and procedure calls in a typical program thus creates an enormous number of lists. 85 Another

place where the translator creates a lot of lists and then discards them is during MYLET,

where the results of a function are packaged in a list, the function returns, the list is taken

apart and assigned to individual variables, and then the list is discarded. This occurred about

a third of a mittion times during the experiments. A third occasion when there is a large usage

of temporary lists occurs during object comparison, and is discussed in more detail next.

Object comparison takes about half of all of the processing time according to Table 7-5.

This seems to be partly the result of garbage collection problems, which are caused by

normalizing operations, partly the cost of individual comparison operations, and partly the

result of a large number of object comparisons.

Since the comparison functions create many intermediate tists, a lot of garbage collection

occurs during execution of the comparison functions. These lists are created because

objects, which are represented as ~ists of simple objects, are subjected to several kinds of

normalizing operations. For example, one normalizing operation is the removal of certain

simple objects from each fist before performing an element-by.element analysis of the lists. 86

Because each normalizing operation may require the creation of a new temporary list, there is

an enormous potential for creating a large number of lists, each of which will need to be

garbage collected, and the creation of each may cause a garbage collection.

Object matching is also intrinsically expensive. As mentioned in Section 3.4.2.2, two objects

may match if they have different number of simpre objects. The matching process will ignore

some of the simple objects in the actual object during the matching process. The algorithm

by which these holes are found could require an exponential number of test comparisons, aT

This searching for holes is one of the reasons that the prototype translator spends

approximately 2 tenths of a second per object comparison. Although the example in Section

85The translation system processed approximately 25 thousand expressions, each of which contained at least one
procedure call or object instantiation.

88See Appendix A.3 for a complete discussion of how two objects are compared.

87The number of tests is exponential in the number of simple objects in the actual object. ~n particular, if there are
a simple objects in the actuat object and f simple objects in the formal object, then there are a choose f ways that the
objects may be compared.

Section 7.3.3.1 Translator Performance 245

3.4.2.2 is a bit contrived, the circumstances when a hole appears are quite common, as

illustrated below:

class universal is
begin

I . ;

! Predefined Assignment classes
J . o

t

class AssignableManager is
begin

class Assignable is begin end;
procedure Assign(Assignable,Assignable);

end;

I . .

i User's Main program

class MainProgram is
begin

I . !

I Local "Type" Declaration
I . "

class LocalObjectManager of AssignableManager is
class LocalObject of Assignable is begin end;

end;

var L0M => new Local0bjectManager;
var 0bj l => LOM . new Local0bject;
vat 0bj2 => LOM . new LocalObject;

LOM.Assign(Objl,0bj2);
end;

end;

The program above is an abbreviated version of the predefined environment which contains

the predefined assignment classes and procedure, and the user's program. The user's

program declares some kind of local objects that are also assignable. However, the parameter

matching for the call of the Assign procedure has the same hole problem illustrated with

Kitchens. Here it is the MainProgram simple object that is skipped. Both the TransCIo and

Huffman programs have such local declarations. Because nearly every nontrivial program will

contain local declarations that are assignable, this problem is recurrent.

Even if object comparison did not require garbage collection and was intrinsically fast, the

comparison operation is still a frequently used component and thus accounts for a large

fraction of the processing time. Object comparison is performed on every object instantiation

and procedure call. In these experiments, for example, about 50 thousand object

Section 7.3.3.1 Translator Performance 246

comparisons were performed. A combination of the garbage co{lection requirements and the

frequency and complexity of the comparison operation accounts for the 45% of the

translator's time spent doing object comparison.

These probtems are not insotubJe. With some slight changes in the language, the number of

normalizing operations during object comparison may also be reduced, thus eliminating some

of the processing needed for object comparison. Such changes are discussed in Section 8.t.

Further, inefficient garbage collection is not needed to reclaim intermediate lists. The

comparison algorithm knows exactly when the intermediate list is no longer needed and thus

when its storage can be reclaimed. The translation system could also merge the compare and

skip-simple-object operations and not create the intermediate list. Therefore a production

system wilt not spend as much time doing object comparison as it would in the prototype.

7.3.3.2. Measuring Elaboration with Implementations

So far, the discussion of translator performance has onty considered semantic processing.

A rather new kind of processing required by Paragon is feasibility checking. This ~hecking is

performed by the ELABI phase, so several experiments were performed to calibrate the

amount of work required for this phase against the amount of processing required for

semantic checking, These experiments and their results are discussed in turn.

The six application programs were translated under two sets of circumstances. Initially,

each was checked for feasibility when no selections were performed for the variables in the

programs. This represents the minimum amount of time necessary for feasibility checking

since the fewest r, umber of procedure implementations will be considered. Under these

circumstances, none of the programs were feasible. The application programs were then

translated with a single available representation for each of the set and list abstract data types

(SetUArray and ListArray), and with a policy that selected the one available implementation for

each variable. Each program was then checked for feasibility, and in fact, all of the programs

are feasible with these selections. Thus these experiments provide some measures of the

minimum and typical 88 resources required for checking a program's feasibility.

Table 7.6 below gives the raw data (in VAX 11/780 CPU seconds) for the experiments, along

with some comparisons between the efforts for feasibility checking and semantic checking.

88A feasible program is assumed to be typical

Section 7.3.3.2 Translator Performance 247

Program ELABS ELABI % of ELABS ELABI % of ELABS % of Infeasible
(Infeasible) (Feasible)

Insrt2 62 134 216% 451 727% 337%
Insrt3 40 123 307% 453 1132% 368%
SetMax 78 85 109% 228 292% 268%
TransCIo 243 448 184% 958 394% 214%
Merge 604 560 93% 31 O0 513% 554%
Huffman 1692 893 53% 3798 224% 425%

Total 2719 2243 82% 8988 331% 401%

Table 7-6: Dynamic Performance of Feasibility Checking

The data above reinforce some expectations about execution times for feasibility checking,

especially as the proportion of executable statements in a program increases, as the

possibility tree grows and as the implementation selections change an infeasible program into

a feasible program. A more detailed discussion of these data follows.

Because elaboration with implementations resembles the symbolic execution of a

program, 89 one would expect that the higher the proportion of executable statements and

object declarations to unexecutable class and procedure declarations, the more time would

be spent during elaboration with implementations as compared to elaboration with

specifications. Further, one would expect that feasible programs would require more

processing than infeasible programs, since a feasible program would have procedure

implementations for all procedure calls that would also have to be elaborated with

implementations. This is borne out by the data. For example, Huffman contains a sizable

amount of local class and procedure declarations and thus the processing required for

checking tl~e feasibility of an infeasible version of Huffman by the ELABI phase is less than for

its semantic checking by the ELABS phase. On the other hand, the two insertion sort

procedures, Insrt2 and Insrt3, have neither local class nor procedure declarations, so the

amount of time for their semantic checking is far less than for feasibility checking.

One would also expect the amount of execution time spent during feasibility checking to

increase as the size of the possibility tree increases. When a feasible program is elaborated

with implementations, the entire call graph is traced, and thus individual procedures may be

elaborated many times during the ELABI phase (once for each call where the selected

procedure is used as the implementation), whereas each implementation is elaborated exactly

89Although the statements in loops are elaborated exactly once and recursion is guaranteed to terminate.

Section 7.3.3.2 Translator Performance 248

once during the ELABS phase (when checking the declaration of the procedure

implementation). Further, the deeper the call graph, the greater the time that is required as

compared with ELABS processing. This is again borne out by the data where programs that

perform sorting (Insrt2, Insrt3, Merge) require several times as much processing for feasibility

checking as for elaboration with specifications. This is so striking here (62 vs 451, 40 vs 453,

604 vs 3100) because the list and set operations that are used have internal calls to other

procedures, thus these applications have a fairly deep possibility tree to be examined.

The data also indicate that a feasible program generally requires more processing than an

infeasible program. Typically, a feasible program has more procedure implementations to

consider while an infeasible program may be missing some implementations. These data

show an extreme situation; in practice, some infeasible programs may be closer in their

processing needs to feasible programs if only a few implementations are missing. Under

other circumstances, different implementations may have different call graphs, and thus an

infeasible program could require more processing than a feasible program with different

selection decisions.

The disquieting fact from these data is that feasibility checking is quite expensive: it varies

from approximately the same cost as semantic processing to three times the cost of semantic

processing. If performed once, this would not be such a great burden, but the process of

checking the feasibility of a program is used to associate attributes with nodes in the

possibility tree. Recall that the paradigm for making selections has three steps: pick an

implementation; elaborate the program with implementations; and then execute the attributes

to gather information about the decisions. Considering many different implementations would

require reelaborating the program with implementations many times, at possibly prohibitive

cost. The compromise provided by the Paragon system is a facility for checking the feasibility

of a block (see BindProcs in Section 5.4.2.1), thus limiting the examination to a single node in

the possibility tree. In practice, this may not be sufficiently fast for considering many different

implementations.

7.3.3.3. Measuring Elaboration with Realizations

Elaboration with realizations takes place when executing the policy procedure and when

executing attributes. Because policies and programs can vary widely, there is no general

measurement of the time required by any particular policy operating on a particular program.

Instead, some measurements were made of the relative speeds of some basic constructs.

Section 7.3.3.3 Translator Performance 249

The six measu~men~ in Table 7-7 on page 251 w e ~ made during the execution of small

policy procedures ope~t ing on a null application program. To provide a baseline, the

execution of a policy with two declarations (for I~er use) was measured. Specifically, the

following policy was executed:

procedure po l i cy (i : i ns tance) is
begin

var j => im new integer;
vat k => im . new integer;

end;

To minimize the effects of calling the policy procedure, the other tests were constructed by

placing the construction of interest in a for loop. The basic shell with a for loop is:

procedure po l i cy (i : i ns tance) is
begin

var j => im new integer;
var k => im new integer;

for j in I . , I000 do

end for ;
end;

In the first nonempty test, the policy procedure declares a local procedure and executes it.

The source for this third test is

procedure po l i c y (i : i ns tance) is
begin

procedure TestProc; procedure TestProc is begin return;
vat j => im new integer;
vat k => im . new integer;

for j in I . . I000 do
TestProc;

end for ;
end;

end;

The fourth test adds some more complexity: a single assignment statement. Recall that a

literal is actually a function call, as is the assignment statement, so two procedure calls are

being made for each execution of the assignment statement. Unlike the previous example,

the procedure Assign also has parameters, which makes its call more costly to execute than

that in the previous example. 9° The complete text is shown below:

90The fully expanded name expression for the call would be IM.Assign(k,IM.Litera/(Special_Make_Literal(1))).

Section 7.3.3.3 Translator Performance 250

procedure p o l i c y (i : i n s t a n c e) is
begin

var j => im . new in teger ;
var k => im . new in teger ;

fo r j in 1. .1000 do
k := 1;

end f o r ;
end;

So far, the policies have dealt with nonattribute procedure calls. Since policies may also use

attributes, I performed an experiment to measure the time required for an attribute call.

Initially, a baseline policy was executed. Because attributes always return an object, the

baseline must also accommodate a returned value so that the way in which the return value is

used will not affect the timings. This is accomplished by placing the attribute call in an / f

statement, so that the returned value is used as the test. The baseline can contain the

equivalent of the returned value in the same i f test, thus isolating the differences between the

baseline and the sample program to only an attribute call. The actual text of the baseline and

the sample programs are shown below:

I This is the basel ine ;

procedure p o l i c y (i : i n s t a n c e) is
begin

var j :> im . new in teger ;
var k => im . new in teger ;

fo r j in 1 . . I000 do
i f True then f i ;

end f o r ;
end;

class mainprogram is
begin

attribute procedure MyAttribute return Booleans.Bit is
begin return True; end;

end;

Section 7.3.3.3 Translator Performance 251

I The sample containing an a t t r i bu te ca l l .
| ;

procedure po l i cy (i : i ns tance)
begin

var j => im . new integer;
vat k => im . new integer;

is

for j in I..1000 do
i f i .MyAt t r ibute return (Booleans. B i t) then f i ;

end for ;
end;

c lass mainprogram is
beg in

a t t r i b u t e p rocedure M y A t t r i b u t e r e t u r n B o o l e a n s . B i t is
beg in r e t u r n True; end;

end;

The results of the all of the experiments are tabulated below:

Policy Policy Execution Time

2 Declarations 33
1000 Iteration For Loop, empty 689
1000 Iteration For Loop, single proc, call 1422
1000 Iteration For Loop, assignment stat. 5117
1000 Iteration For Loop, if statement 1570
1000 Iteration For Loop, attribute call 3376

Table 7-7: Dynamic Performance of Policy Procedure Execution

From these experiments, we can deduce the time required for the continuation of an

iterator, the invocation of a procedure, the passing of a parameter and the invocation of an

attribute. A discussion of these calculations is presented below, followed by a summary in

Table 7-8.

Relatively little time is spent elaborating the empty policy with two declarations: 33 seconds.

The elaboration of an iterator adds another 656 seconds of execution time, about half a

second per iteration of the for loop, which is only continuing an iterator. 91 A single procedure

call adds another 733 seconds, or about three-quarters of a second per loop. Thus a

parameterless procedure call is about 50% more time consuming than restarting an iterator.

91Recatl that the notation 1_1000 is syntactic sugar for the invocation of a predefined iterator,
IM.Sequence(1,1000).

Section 7.3.3.3 Translator Performance 252

The assignment statement adds another 3695 seconds, or about 3.7 seconds per loop.

However, this measurement really corresponds to three procedure calls. In the prototype,

literals are implemented in a two procedure call process. The first procedure call emulates the

construction of the special literal functions mentioned in Seclion 3.3.6 by taking the integer

literal as a string and returning a Word object. The second procedure calf is the Literal

procedure which, as defined by Paragon, takes the Word object and returns an Integer object.

The Integer object in turn is the second parameter to the third procedure, namely the Assign

procedure. Thus there are three procedure calls and a total of four procedure parameter

bindings: one for the literal string, one for the Value procedure, and two for the Assign

procedure. If each procedure call without parameters accumulates733 seconds, then 2199 of

the 3695 additional seconds are used for the three procedures' execution overhead and 1496

seconds are used to bind four parameters during the thousand iterations of the loop, or about

0.4 seconds per parameter bindingl

The last two policies are used to measure the execution time of an attribute call in the for

loop. Because the attribute body contains an expression which is identical to the expression

in the ff statement of the baseline, namely True, we can subtract the time of the fifth test from

the sixth test, giving 1806 seconds for a thousand executions of the attribute call. Thus each

attribute call required about 1.8 seconds.

These results are summarized below:

Function

Iteration Continuation
Parameterless Procedure Call
Parameter Binding
Parameterless Attribute Call

Unit Execution Time

0.66
0.73
0.37
1.81

Table 7-8: Unit Execution Times of Policy Procedure

Although the prototype's speed is too slow for interactive use, its speed is sufficiently fast

for testing the policy procedures used in these experiments in a batch-mode operation. The

primary reason for the slow speed is the implementation of the interpreter. The program tree

is merely walked as necessa:ry to perform the required actions. In addition, the added level of

Franzlisp interpretation slows execution of Parago n sources. However, Paragon procedures

are no more complicated than Pascal or Simula procedures and so a production-quality

translator that generates native machine code should do as well as compilers for those

languages.

Section 7.4 Conclusions about the Prototype 253

7.4. Conclusions about the Prototype

The implemented prototype served its purpose, namely as an illustration that the type

hierarchies can be added to current languages without radical changes to the compiler

design. Although the current implementation is slow, the design is conventional, and by

comparing the processing requirements consumed by new features of the system, for

example, ELABI, with well understood features, for example, ELABS and PURIFY, one can

conclude that a production quality version of the new phases should not consume more

resources than the more conventional parts of the compiler.

Chapter 8
Retrospective on the Language Design

and Implementation

This research was predicated on my belief that type hierarchies provide a natural way to

express the refinement process for abstract data types, from specification, to implementation,

to selecting a particular implementation. One expression of this belief is the current Paragon

design which uses type hierarchies as the basis for its abstract data type features.

On page 20, Chapter 2 provided four sets of specific goals that a language design using

type hierarchies should meet. The first two sets of goals dealt with the ways that data

abstractions could be specified and used. The third set of goals direct the way that

representations for a data abstraction should be selected. The fourth set of goals outlined

some requirements that an implementation of a system based on type hierarchies should

meet; tn this chapter, the Paragon design will be evaluated with respect to these goals. Where

imperfections remain, some suggestions for future work are given.

8.1. Abstract Data Type Features

Several goals were presented for the abstract data type features: specifications could be

refined; related specifications could be combined in a single module; multiple

implementations for an abstract data type could be written, multiple implementations for an

abstract data type could be used simultaneously in a program; multiple implementations for

an abstract data type could interact in a program; and a single representation could be written

for multiple specifications.

These goals were met by the use of classes to define a type hierarchy. Classes allows a

programmer to express generalizations. These generalization classes are inherited by

specification classes to provide class declarations that serve as specifications for variables.

Further refinements of classes, that is, subclasses, can add implementations of the procedure

Section 8.1 Abstract Data Type Features 256

specifications provided in the generalization and specification classes. These subclasses

serve as implementations for variables.

Nested classes support the object-manager model of programming. This model uses one

class declaration to define a manager of objects and a nested class declaration to define the

individuals handled bY the manager. The use of nested classes to implement the object-

manager model also allows the managers to be inherited by one class while keeping the

individuals in separate classes. This shared manager may then have access to both

representations of the individuals, Thus the use of nested classes allows a programmer to

express multiple representations of a data type that can not only be used simultaneously in a

program, but may interact as well.

The packaging of abstract data types in classes also permits details of refinements to be

introduced at the proper time. A Set could be specified as holding any kind of element while

each implementation could specify exactly what additional properties were required of the

element for that implementation of Set to work.

Many of these effects come naturally because the same mechanism, namely the class

declaration, is used for both managers and individuals. For example, class nesting and

inheritance permits procedures to be declared in shared managers where they can affect

different individuals. Further managers are treated no differently than other instances of

classes and so may be created as necessary, passed as parameters and returned from

functions.

My major criticism of the class feature in Paragon is that it does not correspond exactly to

the object-manager model of programming. Instead, the classes may be used to simulate this

model, much in the same way that goto and if statements may be used to simulate more

abstract control statements such as while, case and repeat. Like the goto features in

assembly languages, the class features in Paragon are probably too general to act as the only

data structuring mechanism in the language. The problems with this generality becomes

evident upon reflection of some of the implications of the design:

o Constraints are required in procedure specifications for refining procedure
specifications along with their managers and individuals (Sections 3.5.4 and
4.4.1).

• The expressions in return expressions of procedure declarations must use
identifiers declared in parameters to properly express the return object of the
procedure (Section 4.4.2).

Section 8.1 Abstract Data Type Features 257

Comparison of objects is complicated by holes in objects. Holes appear in
objects, because of intervening declarations of classes and procedures between
specification and implementation classes (Sections 3.4.2.2 and 7.3.3.1).

• The language is extremely verbose (every example, also Sections C.4 and C.5).

• Specifications may only be added to the hierarchy, never removed. Therefore the
hierarchy becomes very rigid and difficult to change (Sections 4.4.4 and 4.4.5).

• Implementations are difficult to organize in useful fashion for sharing (Section
4.6.2).

One possible approach towards solving these problems would be to provide more explicit

support for the object-manager model. Some salient features of this support include:

• Explicit distinction between managers and individuals;

• Explicit distinction between specifications and implementations;

• Close the scopes that define managers;

• Explicit separation of types and objects;

• Explicit import and expor: lists for the encapsulation mechanism.

• Implicit combining of managers for implementations;

• Implicit use of managers in expressions;

These features would eliminate the need for nested classes and the all of the notations and

semantics that is required for them. Further, these features eliminate differently sized objects

so object matching should be much faster. The use of explicit export and import lists can help

reduce the cost of feasibility analysis by limiting the possible interactions between

representations. The implicit combining of managers and the implicit use of managers in

expressions should make the language more concise than Paragon. The separation of types

would eliminate the bizarre run-time error where an indefinite instance is used as an

environment when invoking a procedure. Instead, compile-time analysis could guarantee that

a definite instance was present when necessary.

A language design that includes those suggestions might be able to avoid many of the

problems that befell Paragon. Without such a complete language, however, I would hesitate

to state that those specific criteria are enough to ensure a consistent and concise language.

Section 8.2 Describing and Selecting Abstract Data Types 258

8.2. Describing and Selecting Abstract Data Types

Another set of goals for the design of Paragon is that a programmer should be able to

describe and select abstract data types without giving direct access to the implementation.

Attributes, policies and possibility trees provide the features that allow the programmers to

describe and select abstract data types.

8.2.1. Attributes

Attributes provide a way to describe abstract data types, especially if the specification

contains an attribute that may be redeclared by the implementations. The programmer may

then use attributes to describe the ways in which implementations differ while protecting the

internal details against unauthorized access.

The inclusion of a programmer controlled facility for describing data types is a significant-

departure from data abstraction languages. Usually, only predefined types have descriptive

information available for the different implementations. Thus the attribute facility in Paragon is

quite innovative.

Unfortunately, the attribute facility is very verbose. The kinds of information that attributes

provide are usually very simple: a formula that defines the amount of space required by a

representation; whether performance measurements are being carried out; whether the

implementation is a debugging version. Most representation selection systems use a specific

format for encoding this data in a readily usable format. In Paragon, general procedures must

be written for any piece of information, even simple boolean values. Thus a large amount of

program text is consumed providing very little information. An approach for dealing with this

problem is presented in Section 8.2.7.

Another problem with attributes is their distributed nature. A programmer cannot readily

determine what sorts of representation information are available for an abstract data type

without reading all of the implementations of that data type. Unlike most representation

selection systems, the representation description is stored with the representation and not

collected in some place external to the representations. Further, there is no guarantee that all

representations have the same attributes. If one wants to perform a space optimization

algorithm in the policy, it would be helpful to guarantee that each representation provides a

measure of the space it required. Unfortunately, there is no such method in Paragon for

Section 8.2.1 Describing and Selecting Abstract Data Types 259

insisting that some set of classes all provide the same set of attributes. The compromise

provided by the language is the dynamic selection of attribute procedures. If one wants all

representations of an abstract data type to contain a certain attribute, one declares that

attribute in the specification. This attribute declaration then serves as a default value. Should

any implementation not declare the needed attribute, the attribute declared in the

specification can be used by the policy.

An alternative design for attributes would require attribute specifications and

implementations just like nonattribute procedures. This has two problems. First, some groups

of implementations may have attributes that are not meaningful to all implementations.

Therefore it is not appropriate for all implementations to declare that attribute. For example,

one may want to include the notion that an implementation performs timing measurements.

Only those implementations that have measuring capability should contain attributes that

describe the kinds of measurements that are performed, not all implementations.

A second problem is the size of change required when a new attribute is added because of

new implementation. Suppose that a new implementation were added that contains a new

facility: the new implementation measures performance. No other implementations measure

performance. One would want to add an attribute to that new implementation describing the

fact that it measured performance. If specifications and implementations for attributes were

required, then the original specification of the abstract data type and every other

implementation of the abstract data type would have to be changed to add a specification or

implementation, respectively, for this new attribute. Because the addition of a new

implementation should rot cause such a drastic modification of existing implementations, the

approach of using attribute specifications and implementations was rejected.

8.2.2. Policies and Possibility Trees

The design of Paragon included a goal of allowing automatic selection of representations.

This is achieved by the policy procedure, which provides the programmer with the ability to

specify the criteria for making representation choices. The translation system uses the policy

to make the actual representation selections for variables. The primary motivation for the

design of the current system was to separate policy and mechanism in the same sense as

Hydra [Wulf 74]. t feel that selecting out particular syntactic features of the language for the

selection mechanism, such as loop depth, would bias the selection strategy. However, the

more features that are made available by the selection mechanism, the greater the

Section 8.2.2 Describing and Selecting Abstract Data Types 260

convenience for the programmer. One extreme of this situation exists in current compilers: a

programmer merely specifies that a program should be optimized for space, leaving to the

compiler all of the decisions as to how to make a procedure space efficient. Yet all of the

goals for integrating representation selection with data abstraction suggest that the

programmer should be deciding how selections should be made, not the compiler. Therefore

the translation system should provide the programmer with data about the program and let

the programmer institute whatever policy is appropriate. The extreme design is to provide the

policy writer, that is, the programmer, with complete access to the parse tree. Such an

approach turns the policy writer into a compiler writer, which is considered too inconvenient

for the typical programmer. Thus current design of Paragon reflects a compromise to relieve

the tension between flexibility and convenience.

The construction of a possibility tree to represent the program and the execution of a policy

procedure to make selections are features that attempt to provide the programmer with

enough facilities to describe popular selection strategies without requiring the programmer to

be a compiler writer. As shown in Sections 6.5 and 6.9, many different selection strategies

can be written. Thus the Paragon design subsumes and generalizes many previous

representation selection systems.

However, the integration of the selection facilities with the abstract data type features has

several problems. At best, the selection facilities represent further compromises between

completeness and convenience. These problems can be grouped into three categories:

descriptions of the program's variables, descriptions of the program's structure, and storage

of intermediate selection decisions.

8.2.3. Anonymous Possibility Tree Nodes

Variables in a program are described by nodes in the possibility tree. But the policy

procedure and possibility tree provide only anonymous descriptions of the program's

variables and implementations. Because of this anonymity, the policy procedure can either

deal ~in only generalities, or the programmer has to provide many obscure attribute

procedures to describe surreptitiously the variable declarations in the program. Because a

policy procedure may wish to only deal with certain variables or certain uses of a class, a

clearer mechanism is needed. For example, a programmer may know that only the variable

Symbo/Tab/e is important and may wish the policy procedure to consider carefully only that

declaration, choosing any feasible implementation for all other variables. A programmer may

Section 8.2.3 Describing and Selecting Abstract Data Types 261

also wish to write different kinds of policies that work on certain kinds of specifications. One

example is a policy that can deal well with selecting set implementations or list

implementations. To use such a policy, it is necessary to isolate those variables in the

program that are set or list variables, yet all variable declarations look alike to the current

policy procedure. A new mechanism should provide direct information about the program's

variables' identifiers and specifications, and about the identities of all class declarations,

The reason why the design of this new mechanism is difficult is scope rules. The policy

procedure is executed inside of the universal environment, in which all of the policy's

identifiers are defined. The class and variable declarations that are manipulated by the policy

procedure usually exist in nested scopes that are generally inaccessible to the policy

procedure. Thus there is no convenient way to associate the identify of classes or variables in

the policy procedure with specific declarations. In the current design, this mapping is

provided through the possibility tree and the use of doppelgangers.

tn other representation selection systems, this scope problem can be minimized since only

one scope, the main program, is analyzed. Thus a special rule can permit the selection system

to examine the one scope. In Paragon, the selection process is applied also to local

procedures and local data of objects, which gives rise to the possibility tree and nested

scopes. Therefore the design of Paragon considers a larger problem than other

representation selection systems. I believe that using some abstract representation of the

program, such as the possibility tree, is the appropriate data structure for making selection

decisions. However, the information represented in the possibility tree is incomplete and

anonymous. Therefore more work is needed to provide a more complete data structure and

to include specific knowledge about the program's declarations by name rather than by

reference.

8.2.4. Parse Tree Availability

The second problem prohibiting convenient use of the selection system is the lack of access

to the parse tree of the program. Instead, the writer of a policy sees a possibility tree, which

bears resemblance to a call graph. There are many natural questions that can be answered by

examining a parse tree and that a policy writer might want to ask:

• tn what order are procedures called?

• Are some procedures never called?

Section 8.2.4 Describing and Selecting Abstract Data Types 262

• Are there constants in some parameters?

• Is one variable always used in a certain position of a procedure?

• Is a procedure conditionally executed?

• Is a procedure inside of a loop (Possibly an "inner" loop)?

At a more general level of analysis, a policy procedure may wish to perform some kind of

control flow reasoning about the program to use some special implementations when

appropriate [Hisgen 82], to determine if some constants may be folded which in turn may

affect an implementation decision, and to perform assertion propagation in an attempt to

supplement attribute-procedure information. Clearly, a piece of the program that is in an

inner loop should deserve more attention than a piece of the program that is not. Yet, the

policy cannot know which pieces of a program are in such a location. Typical compilers

perform these kinds of analyses to determine low level selection details. Higher level

decisions, such as whether to use a binary tree or a hash table for an implementation, can

also benefit from this information.

Some of these questions can be answered by careful, painstaking analysis of program using

the pattern-matching statement. This seems to be a poor substitute for a rather direct

question. Similarly, the translation system provides a predefined procedure that returns the

number of a times a procedure is called instead of the ability to detect inner loops. In

principle, this procedure might invoke a performance verifier as suggested by

Shaw [Shaw 79] but in practice no such facility exists. The current system merely asks the

programmer for the answer. More realistic approaches in actual systems use a heuristic such

as loop depth, a symbolic analysis of the program [Kant 83] or a limited kind of simulation of

the system [Low 74]. None of these approaches were added this system.

Other kinds of information cannot be derived from the possibility tree, even with careful and

contrived use of pattern matching and attributes. Current compilers gather this information

during a flow analysis of the program, during which certain assertions are proposed and

propagated through the parse tree and call graph. The current system does not readily admit

the collection of. such information. Some propagations require intimate knowledge of the

operations whereas all operations in Paragon are identically content-free (to the selection

algorithm). Many assertions interact strongly with the flow graph of the program through

loops and conditions, none of which are available to the policy writer. All of these problems

represent future research possibilities for representation selection systems.

Section 8.2.5 Describing and Selecting Abstract Data Types 263

8.2.5. Decorating the Possibility Tree

The third major inconvenience in the current selection mechanisms isthe presentation of

the program structure in the possibility tree. There are two problems with this presentation: no

new information may be added to the tree, and the tree may not be altered. The first problem

is fairly easy to solve; An alternative design that permits the programmer to add arbitrary

decorations to the tree is provided in Section 5.4.2.2.

However, the fact that the structure of the possibility tree is under control of the translation

system alone and not the policy is a more difficult problem. Through the use of attributes, a

policy may determine that some tree rearranging is appropriate, eliminating some procedure

calls, substituting one for another, combining variables, and so on. However, the translation

system does not permit the policy to change the tree. Doing so violates the informal

specifications for the Instance class. 92 One alternative is to provide the programmer with

direct access to the parse tree which the policy could then manipulate. When a programmer

changes the possibility tree, the corresponding program would be transformed as well. This

alternative would eliminate the idea of doppetgangers as well but forces the policy to

resemble a compiler phase, a situation that was a priori rejected as being too complex for

convenience. Thus the compromise represented by the Paragon design allows the possibility

tree to be changed only by the translation system during elaboration with implementations.

Several approaches for solving the shortcomings in the sections above center on different

models for making representation selections. Several of these approaches, and their

motivations, are described.

8.2.6. Simpler Models

At an empirical level, it is still not clear that multiple representations of abstract data types,

let alone multiple and simultaneous representations, have any practical value when dealing

with moderately-sized programs. Further, there is little empirical evidence that any selection

that is made should be determined at compile time. If true, these observations would .suggest

a very simple model for making selections of representations.

92The syntax of Paragon allows the policy to assign any references it desires to the pointers in the tree. However,
if such general references were permitted, the underlying translation system would no longer guarantees that the
tree will properly match the doppelgangers in the program being analyzed.

Section 8.2.6 Describing and Selecting Abstract Data Types 264

It is difficult to show empirically that moderately sized programs do not use large numbers of

representations. Some simple observations are possible: None of the example programs in

this thesis, which were drawn from the representation-selection literature, really contain a

large number of the same data structure that requires radically different implementations. The

literature on abstract data types does not seem to require multiple implementations as welt.

For example, in a widely referenced Clu paper [Liskov 77], there is only one use of each

abstract data types: wordbag, wordtree and sortedbag. If no more than one instance of each

abstract data type is present in a program, then there is no need for more than one

representation to be present in the program at the same time. Further, there is no clear need

for more than one representation to even be defined.

There are two places where one does find multiple instances of objects and multiple

representations of those instances: in systems with dynamic selection of representations and

in systems where the number of abstractions is limited to a small collection of predefined

objects.

The applications that use multiple representation of objects make their selection based on

some kind of input data, and perform the selection during object creation. For example, as a

compiler builds a syntax tree of a program, it may pick different representations of symbols for

a symbol table, or different expression nodes for the abstract syntax tree [Sherman 80].

Another example is contained in the Smalltalk system. Here, the entire graphics facility is

geared towards the dynamic selection of an appropriate representation of a "displayable"

object [Rentsch 83]. In both of these systems, there is no need for a separate selection

system, since the program explicitly chooses an appropriate representation based on factors

beyond a selection system's realm of knowledge.

The other place where representation selection seems important is when a language or a

system provides very few abstractions that have to be used in many ways. This happens in

Fortran, where numbers and arrays are the only data abstraction mechanism provided, in data

base systems, where tables are the only data abstraction mechanism provided, and in SETL,

where sets are the primary data abstraction mechanism. Because these abstractions are

used so heavily, there is a significant advantage to having multiple representations for them.

For Fortran, a wide body of literature has been developed attacking this specific problem of

selecting an appropriate representation for integers, both for the size of the integer and the

memory placement of the integer (which are orthogonal aspects of an integer's

Section 8.2.6 Describing and Selecting Abstract Data Types 265

representation) [Leverett 81]. Similarly, the selection problem for data base systems has been

discussed for years [Gotlieb 74, Smith 77] and the implementations of SETL have included a

large amount of processing for choosing an appropriate set implementation under many

differem circumstances [Freudenberger 83]. In these circumstances, the selection system

may be simplified by making it more specialized. By needing only to concern itself with

integers, or tables, or sets, it may provide explicit facilities for manipulations of those kinds of

objects and their operations. With the need to express all possible data abstractions and their

uses, the selection mechanism becomes general and difficult to use. Thus a restricted domain

could simplify the system.

8.2.7. External Selection Language

Although there may not be a great need for automated selection at compile time, there still

exists a need for manual selection of some data types. For example, one can think of a

terminal as being an abstract data type and different representations as being different

manufacturers' models. A user would like to manipulate an abstract terminal and later

manually associate a specific terminal driver with the abstract definition so that the program

works on the terminal that the programmer is currently using.

Such an association should be provided by an external selection language. A large amount

of work has already been performed on the syntax and semantics that an external selection

(or configuration) language should contain, so a discussion wilt not be presented here. The

interested reader may examine some of the previous surveys [Schwanke 82, Tichy 80].

However, the use of an external selection language is not appropriate in all circumstances.

When simple module or configuration selection is needed, this approach works well. For

more general selection algorithms, the external selection language must contain some

notions from the programming language so that it can manipulate the program objects. For

Paragon, this includes variable declarations, procedure implementations, and classes.

Similarly, the programming language part might have to contain some elements of the

external selection language since it must be able to describe the different properties of the

implementations and representations. In the past, this approach has been limited to mere

naming conventions, where some relation is defined between the names of program entities,

such as class names, and the names in the external selection language. Therefore most of

these other issues have not been addressed, but are areas for future research.

Section 8.2.8 Describing and Selecting Abstract Data Types 266

8.2.8. Program Creation Systems

Another approach to representation selection is through the use of a program generator,

either table driven like the PQCC system [Leverett 80, Wulf 80] or expert system driven, such

as PSI [Barr 82]. These systems create a program, along with any necessary abstractions,

from some description of the task to be completed. Since the program creators have all of the

information available about the program that exists, these systems could also make

representation choices based on the same information. In many respects, such an approach

mimics the manual selection of representations, since in both situations, the program creator

is also performing the representation selection. The motivation for separating the tasks of

program development and representation selection is no longer present. A program creation

system does not become bored or make clerical mistakes during the refinement process,

whereas people do. Thus a separation of tasks that is useful for people may not be

appropriate when those tasks are performed by machine. Under these circumstances, a

representation system would be integrated in the program creation system, and not a

separate system as in Paragon.

8.3. Automatic Processing of Paragon Programs

The fourth set of design goals requires that Paragon programs should be compilable. The

existence of the prototype translator provides tangible evidence of attaining this goal. The

entire language can be semantically checked, representations chosen and the resulting

program run. Further, very stringent requirements are place on the translator: each procedure

call and object instance may have different implementations; for every procedure call and

object instance, the translator must guarantee that a consistent implementation exists; no

run-time selection of implementations is permitted. These specific requirements for the

translator affected the design of the language and the speed of the resulting translator.

The concept of the three kinds of elaborations is one of the innovations that resulted from

the compiler requirements for Paragon. To my knowledge, Paragon is the first language to

define elaboration with implementations as a way of ensuring (and expressing) a program's

feasibility, that is, as a way to guarantee that a program has all of the necessary

implementations for execution.

But with the separation of a program's semantics into three elaborations, and with the

requirement that elaboration with specifications and implementations must occur before

Section 8.3 Automatic Processing of Paragon Programs 267

elaboration with realizations, some programmer convenience is sacrificed. First,

heterogeneous data structures are difficult to construct. Second, the global analysis required

by feasibility checking makes translation slow and difficult to partition.

8.3.1. Heterogeneous Data Structures

First, the way that a procedure call is elaborated with specifications makes heterogeneous

data structures difficult to construct. The difficulty is the direct result of the requirements for

automatic processing of programs, in particular, the requirement that the single return type of

a function be statically determined. As shown in Section 4.4.3, the elaboration algorithm

cannot always determine the exact type of the returned object when more than one kind of

object may be returned.

One alternative for solving this problem is to permit the programmer to qualify the results of

name components. This is done in Simula through the use of the QUA notation (read

qualified). In Paragon, one might write f(x) quafif ied as Matrix to specify that the return object

of f(x) should be considered to be a Matrix. In general, this assertion must be checked at run

time, hence the adoption of this feature violates another goal of guaranteeing no run-time

checking or selection.

Once a "qualifying" feature is added, Paragon should also include a way to test the type of

an object. As suggested in Section 6.9.4, this could be done by allowing constraint

expressions to appear anywhere that other expressions may appear.

8.3.2. Global Feasibility Checking

A second problem with the translation requirements of Paragon is that feasibility checking,

that is, elaborating a program with implementations, requires a global analysis of a program.

One would like to perform small amounts of separable processing during the analysis of a

program, such as the processing of a single procedure or a single class. Instead, all of the

calls and object instances must be examined as a whole to determine program feasibility,

which causes two problems. First, elaboration with implementations is inefficient. As

documented in Table 7-6, feasibility analysis can require three times as much processor time

as semantic analysis. Second, the required global analysis renders separate compilation

nearly impossible. Usually one can accomplish separate compilation by extracting some small

part of each separately compiled piece of a program which can be easily checked with other

Section 8.3.2 Automatic Processing of Paragon Programs 268

separately compiled pieces. Because Paragon permits different calls of the same procedure

implementation (and different instantiations of the same class) to use different implementation

selections for internal variables and procedure calls, the entire implementation of procedures

(and classes) must be completed elaborated each time they are used to ensure program

feasibility. In short, a separate compilation facility for Paragon would apply only to elaboration

with specifications, and a rather sophisticated loader would have ~.o perform elaboration with

implementations to ensure feasibility. By contrast, current loaders can usually perform this

analysis by merely resolving external references.

One possible solution to this problem would be to force representation selection for each

use of a procedure implementation and class to be identical. This would allow the translation

system to process a single declaration independently of its use, and hence permit separate

compilation. This would also simplify the possibility tree, since only a single block would be

considered at a time. There would be no need to perform selection of local procedure calls or

class instances and so they could be removed from the tree.

This solution was rejected for two reasons: it eliminated general procedure implementations

and it removed the ability to exploit type parameters.

If every procedure implementation had exactly one statically-determined representation

choice made for it, then general procedures would be useless. Recall that a general

procedure is one that only uses abstract properties of its parameters, such as the Intersect

procedure below:

procedure Intersect(L:Set,R:Set) return Set is
begin

var i => IM . new Integer ;

i f " IsMember(L, i) then

end;

A single implementation choice for the call of lsMember would force a single implementation

choice for L or else probably be infeasible. Both circumstances are unacceptable. Instead,

the implementation of IsMember should be based on the implementation of L, which can

change from call to call.

The second reason for rejecting the single implementation of locals in procedures is that I

wanted to permit different implementations of local variables when type parameters are used.

Section 8.3.2 Automatic Processing of Paragon Programs 269

In the example for APLSymbolTable in Section 4,4.3 (on page 81), the local variables inside of

(hypothetical) implementations for the Insert procedure may use different implementations

that depend on the object passed as a parameter. If exactly one representation were

permitted for local variables and procedure calls in each class and procedure implementation,

then the Insert procedure could not contain a different local variable when the symbol table is

created to hold integers than for when the symbol table is created to hold matrices. Thus

efficiency of feasibility checking can be obtained at the expense of program inflexibility.

Paragon makes a different tradeoff, and allows a flexible set of selection choices at the

expense of a large amount of feasibility checking,

8.4. Summary

The significant contributions of this thesis can be grouped into two categories:

contributions dealing with language support for abstract data types and contributions dealing

with representation selection.

8.4.1. Contributions: Abstract Data Types

Paragon illustrates several innovations using the type hierarchy facility for the specification

and implementation of data abstractions. Some of these innovations come directly from the

use of the type hierarchy, other comes from the integration of other standard programming

language features, such as parameters, with the type hierarchy. Four of these innovations are

discussed below.

8.4.1.1. Refining Specifications

The use of multiply inherited classes and the separation of procedure specifications and

implementations allows the programmers to write very general specifications and later refine

the specifications without adding any implementation details. For example, one may start with

the specification that an object may be assigned, then later add specifications that the object

is ordered, and finally add specifications that the object is an integer. Thus Paragon provides

a general mechanism for writing and refining specifications. The different refinements of

specifications are especially useful in parameters, as illustrated by the discrimination-net

implementation for sets discussed on page 89.

Section 8.4,1,2 Summary 270

8.4.1.2. Implementing Abstract Data Types

The class hierarchy and the parameter matching rules provide a new way to refine

specifications into implementations of abstract data types. These features allow a

programmer to write multiple implementations of abstract data types that may be present

simultaneously in a program. Because each refinement for an implementation is named, there

is a natural way of distinguishing between different concrete implementations and of defining

which details of the concrete implementation are available to a procedure implementation.

Because the parameter matching rules are not symmetric, an implementation for an abstract

data type may list additional specifications that its parameters must meet. Thus the

refinements necessary for the implementation appear with the implementation and are not

leaked to the specification of the abstract data type.

8.4.1.3. Combining Representations

The parameter matching rules, the multiple inheritance of classes and the ability to provide

multiple procedure implementations for a specification allow a program to use combined

representations in a program. Like the implementations of abstract data types, the

implementations of procedures may list additional specifications that their parameters must

meet, and thus an appropriate procedure implementation can be used when different

representations of variables are present. Procedure implementations that specify different

concrete representations for their parameters may be written in combined representations.

Thus variables that interact may use a procedure that can properly deal with whatever

representations those variables use, even if the representations are different.

Further, Paragon allows representations to be combined for unrelated specifications. This is

useful when the implementations are related but the specifications are not. One such example

is a transaction log, where many different abstract objects must be written into the same log.

Thus the log must use a combined representation for all of the abstract objects.

8.4.1.4. Uniform Object Notation

Paragon uses a uniform object notation in variable declarations, parameters and

statements. This notation combines the type of an object with the procedures that may

operate on that object. Thus this notation eliminates the need for procedure parameters that

are usually found in data abstraction languages. Further, the notation distinguishes indefinite

from definite objects. This has the effect of eliminating the need for type parameters and of

providing the ability to restrict formal parameters to particular object. One way that this last

Section 8.4.1.4 Summary 271

feature can be used is to require that all arrays passed to a procedure have a lower bound of

one.

8,4,2. Contributions: Representation Selection

Paragon advances the state of the art of representation selection in many ways. Some of

these innovations come directly from the use of a type hierarchy; others were driven by the

goals in Chapter 2. Four of these innovations are discussed below.

8.4.2.1. Describing Abstract Data Types

The attributes are used to describe the classes and procedures in an abstract data type.

Because attributes are defined by the programmer, they represent an advance over current

compilers that usually provide only predefined attributes. Further, attributes in Paragon may

use the entire language, and not merely some scalar values. Thus attributes may describe

complex information about a data type. Finally, attributes may be used with any abstract data

types and not only predefined types. Thus attributes provide a way to describe the differences

between multiple representations of user-defined abstract data types.

8.4.2.2. Organizing Global Program Optimization

A major innovation in Paragon is the ability of the translation system to perform

representation selection for all variables and procedure calls in a program. Most

representation selection systems perform selection analysis only on the variables in the main

program. In Paragon, variables and procedure calls in local procedures and classes also have

their representations selected by the same mechanism as the variables and procedure calls in

the main program. The Paragon translation system provides a data structure, called the

possibility tree, to organize these representation decisions. In addition to providing an

organization for the current selection choices, the possibility tree also retains information

about previous, rejected selection decisions. This is valuable since old choices are frequently

reexamined.

8.4.2.3. Programmer Control of Selection Criteria

Another innovation of the Paragon design is the use of a programmer.provided policy to

control the selection of representations, Most compilers or representation selection systems

contain predefined algorithms for making representation selection decisions. The criteria

embodied by these algorithms may not reflect the criteria that the programmer desires. To

Section 8.4.2.3 Summary 272

change the algorithm requires the programmer to alter the translation system. The design of

the translation system for Paragon extracts the algorithm used for making selection decisions

from the translator and lets the programmer specify the algorithm using the criteria that the

programmer feels are important. The thesis gives several examples of policies that make

selection based on a number of criteria using widely differing techniques, such as dynamic

programming, hill climbing, step-wise refinement, branch-and-bound searching, exhaustive

analysis and direct selection of representations.

8.4.2.4. Feasibility Analysis

Another significant innovation in the Paragon language design is the definition and

implementation of feasibility analysis. Feasibility refers to the property that a program has

when all selection decisions result in a program that can execute. For example, all variables

and procedure calls must have implementations, interacting variables that use different

representations must use procedure implementations that can operate on the different

concrete representations, and representations for abstract data types that require some

special properties of their parameters must ensure that they received the proper kinds of

actual parameters. Most languages and systems add restrictions to simplify or eliminate

feasibility analysis. For example, one restriction is that any implementation may be used

wherever its specification is used. As explained on page 10, such a restriction limits the

possible implementations that may be written. Another restriction is that interacting variables

must use the same representation. But this ignores other considerations for making selection

decisions. This restriction also eliminates the advantages of writing general procedures that

use only abstract properties of their parameters. Paragon makes no such restrictions, but

instead defines the concept of elaboration with implementations to describe how a program

can be checked for feasibility. Further, this thesis describes a translator that implements

feasibility checking. Measurements of a prototype show that feasibility checking can require

up to three times as much computation as required for semantic analysis.

8 .4 .3 . Futu re A reas for Related Work

As I was working on this thesis, I thought of several other major directions that could be

pursued which would have resulted in a very different thesis, In this section, I briefly discuss

some of these related areas where further work might be pursued.

Section 8.4.3.1 Summary 273

8.4.3.1 Uniform Procedure, Iterator, Object Semantics

Paragon makes a distinction between classes and procedures in several ways: the way that

they are declared, the way that they are refined (subclasses vs implementations), the way that

they are used (instantiation vs invocation) and the way that their representations are selected

(by the policy vs by feasibility analysis). Yet many of the manipulations of classes and

procedures are similar: an object is created, the parameters are bound, the local declarations

are elaborated and the statements are elaborated. The differences usually concern the

lifetime of the created object and the ability to reference the object after its statements have

been elaborated. Other languages, such as Beta [Kristensen 83] and SL5 [Hanson 78] try to

provide a uniform syntax and semantics for procedures, objects and iterators. Another

language design might try to use this uniform approach for defining the storage and

operations of an abstract data type and apply a uniform selection technique for picking a

representation.

8.4.3.2. Value of Multiple Representations

As I read the literature describing representation selection system, and as I tried to use

multiple representations in application programs, I came to have seriously doubts about the

need for multiple representations in a program. Clearly, if multiple representations are not

needed, then languages do not need to support them and translators do not need to select a

representation for variables. Perhaps early researchers who suggested that a dozen or so

commonly used data structures such be primitively supported, and that all of the analysis and

selection should be moved into the computer and compiler, are correct [Feustal 73]. To

understand the need for multiple representations of abstract data types, some empirical

research is needed on how abstract data type features are actually used. Unfortunately, there

is a tot of question begging here. If one surveys users who do not have languages that support

data abstraction or who do not know data abstraction, then the survey will only document the

programmers' ignorance or lack of facilities and not the effectiveness of data abstraction.

8.4.3.3. Program Representations for Programmer Manipulation

There are many different ways that programmers make selection decisions. A large variety

of these methods can be adapted to Paragon's set of general representation selection

features. However, the policy procedure, the attributes and the possibility tree cannot

express all the different ways that programmers make decisions. An interesting research area

is the analysis of the kinds of information that are necessary for different selection strategies.

Section 8.4.4 Summary 274

8.4.4. Conclusions

The thesis has demonstrated how a type hierarchy can be integrated into a general purpose

language design. The thesis demonstrates how a type hierarchy can be used for writing

programs using the object-manger model to specify abstractions, refine the specifications,

write representations for the abstractions and combine representations as desired. A number

of programs were written and translated with a prototype system that processes Paragon.

The prototype provides evidence that the language design is well defined and that only

conventional compiler technology is necessary for translating languages that include type

hierarchies.

There is a lot of intuitive appeal to the model of type hierarchies. Many of the ways that

specifications and representations are specified fall naturally into a tree of abstractions, and

many refinement paradigms for selecting a representation also search a tree-like structure. All

of these are modeled very well by the class hierarchy.

The problems with such an approach are its generality. Although nested and inherited

classes nicely express a tree structure, they also express some less useful combinations.

Thus a future effort would probably concentrate on the use of an explicit manager model for

specifying, representing and selecting abstract data types.

Bibliography

[Balzer 81]

[Banatre 81]

[Barr 82]

[Barstow 79]

[Chang 78]

[Cheatham 79]

[Curry 82]

[Dah168]

[Dewar 79]

Balzar, Robert.
Transformational Implementation: An Example.
IEEE Transactions of Software Engineering SE-7(1):3-14, January, 1981,

Bantare, M., Couvert, A., Herman, D., and Raynal, M.
An Experience in Implementing Abstract Data Types.
Software - - Practice and Experience 11 (3):315-320, March, 1981.

Barr, Avron and Feigenbaum, Edward A. (editor).
The Handbook of Artificial Intelligence.
William Kaufmann, Inc., Los Altos, California, 1982.

Barstow, David (editor).
Knowledge-Based Program Construction.
Elsevier, Amsterdam, 1979.

Chang, Ernest, Kaden, Nell E. and Elliott, W. David.
Abstract Data Types in Euclid.
Sigplan Notices 13(3):34-42, March, 1978.

Cheatham Jr., Thomas E., Townley, Judy A. and Hotloway, Glenn H.
A System for Program Refinement.
In Proceedings of the 4th International Conference on Software

Engineering, pages 53-62. IEEE Computer Society, September, 1979.

Curry, Gael, Baer, Larry, Lipkie, Daniel and Lee, Bruce.
Traits: An Approach to Multiple-Inheritance Subclassing.
In Limb, J.O. (editor), Proceedings, SIGOA Conference on Office

Information Systems, pages 1-9. ACM, SIGOA, June, 1982.
Also SIGOA Newsletter, Vol. 2, Nos. 1 and 2.

Dahl, O.-J.
Simula 67 Common Base Language.
Technical Report, Norwegian Computing Center, Oslo, 1968.

Dewar, Robert B. K., Grand, Arthur, Liu, Ssu-Cheng and Schwartz, Jacob T.
Programming by Refinement, as Exemplified by the SETL Representation

Sublanguage.
ACM Transactions on Programming Languages and Systems 1(1):27-49,

July, 1979.

Bibliography 276

[Feusta173] Feustal, E. A.
On the Advantages of Tagged Architecture.
IEEE Transactions on Computers C-22(7):644-656, July, 1973.

[Foderaro 80] Foderaro, John K.
The FRANZ LISP Manual
Department of Electrical Engineering and Computer Science, University of

California at Berkeley, 1980.
Distributed with Berkeley/Unix Documentation.

[Freudenberger 83]
Freudenberger, Stefan M., Schwartz, Jacob T. and Sharir, Micha.
Experience with the SETL Optimiser.
ACM Transaction on Programming Languages and Systems 5(1):26-45,

January, 1983.

[Ghezzi 77] Ghezzi, Carlo and Paolini, Paolo.
A Language Supporting Abstrac.tion Implementations.
In Andre, Jacques and Banatre, Jean-Pierre (editor), Implementation and

Design of Algorithmic Languages: Proceedings of the 5th Annual Iii
Conference, pages 54-70. IRISA, May, 1977.

[Gillman 83] Gillman, Robert.
tNFO-ADA Group Message, Arpanet.
May, 1983
private communication.

[Goldberg 81] Gotdberg, Adele.
Introducing the Smalltalk.80 System.
Byte 6(8):14-22, August, 1981.

[Gotlieb 74] Gotlieb, G. C. and Tornpa, Frank. W.
Choosing a Storage Schema.
Acta Informatica 3:297-319, 1974.

[Hanson 78] Hanson, David Ro and Griswold, Ralph E.
The SL5 Procedure Mechanism.
Communications of the ACM 21(5):392.400, May, 1978.

[Hisgen 82] Hisgen, Andy.
Towards Optimizations for User-Defined Types: A Program Transformation

Approach.
Department of Computer Science, Carnegie-Mellon University.
May, 1982
Ph.D. Thesis Proposal.

Ichbiah, Jean, et. al.
Reference Manua/ for the Ada Programming Language.
US Government, Washington, D.C., 1980.

[Ichbiah 80]

Bibliography 277

[Ingalls 78] Ingalls, Daniel H. H.
The Smalitalk-76 Programming System: Design and Implementation,
In Conference Record of the Fifth Annual ACM Symposium on Principles of

Programming Languages, pages 9-16. ACM, January, 1978.

[Ingalls 81] Ingalls, Daniel H. H.
Design Principles Behind Smalltalk.
Byte 6(8):286-298, August, 1981.

[Ingargiola 75] Ingargiola, Giorgio P.
Implementations of Abstract Data Types.
In Proceedings of the Conference on Computer Graphics, Pattern

Recognition, & Data Structure, pages 108-113. IEEE Computer Society,
May, 1975.

[Jensen 78] Jensen, K. and Wirth, N.
Pascal User Manual and Report.
Springer-Verlag, Mew York, N.Y., 1978.

[Johnson 76] Johnson, Robert T. and Morris, James B.
Abstract Data Types in the MODEL Programming Language.
In Proceedings of Conference on Data: Abstraction, Definition and

Structure, pages 36-46. ACM, March, 1976.
Also Sigplan Notices, Vol. 8, No. 2, 1976.

[Kant 831 Kant, Elaine.
On the Efficient Synthesis of Efficient Programs.
Artificial Intelligence 20:253-305, 1983.

[Katz 81] Katz, Shmuek and Zimmerman, Ruth.
An Advisory System for Developing Data Representations.
In Proceedings of the Seventh International Joint Conference on Artificial

Intelligence, pages 1030-1036. August, 1981.

[Katzenelson 79] Katzenelson. Jacob.
Clusters and Dialogues for Set Implementations.
IEEE Transactions on Software Engineering SE-5(3):256-275, May, 1979.

[Katzenelson 83a] Katzenelson, J.
Introduction to Enhanced C (EC).
Software ~ Practice and Experience 13(7), July, 1983.

[Kat7_enelson 83b]Katzenelson, J.
Higher Level Programming and Data Abstractions - - A Case Study Using

Enhanced C.
Software m Practice and Experience 13(7), July, 1983.

[Kristensen 83] Kristensen, Bent Bruun, Madsen, Ole Lehrmann, Moller-Pedersen, Birger
and Nygaard, Kristen.
Abstraction Mechanisms in the Beta Programming Language.
In Conference Record of the lOth Annual ACM Symposium on Principles of

Programming Languages, pages 285-298. ACM, January, 1983.

Bibliography 278

[Lamb 80]

[Lamb 83]

[Leverett 80]

[Leverett 81]

[Liskov 77]

[Liskov 81]

[Low 74]

[Low 76]

[Low 78]

[McCune 77]

Lamb, David Alex, Hisgen, Andy, Rosenberg, Jonathan, Sherman, Mark and
Borkan, Martha.
The Charrette Ada Compiler.
Technical Report CMU-CS-80-148, Carnegie.Mellon University, Computer

Science Department, October, 1980.

Lamb, David Alex,
Sharing Intermediate Representations: The Interface Description

Language.
Technical Report CMU-CS-83-129, Department of Computer Science,

Carnegie-Melton University, May, 1983.

Leverett, Bruce W., Cattell, Roderic G. G., Hobbs, Steven 0., Newcomer,
Joseph M., Reiner, Andrew H., Schatz, Bruce R. and Wulf, William A.
An Overview of the Production-Quality Compiler-Compiler Project.
Computer 13(8):38-49, August, 1980.

Leverett, Bruce W.
Register Allocation in Optimizing Compilers.
Technical Report CMU-CS.81.103, Department of Computer Science,

Carnegie-Mellon University, February, 1981.

B. Liskov, A. Snyder, R. Atkinson and C. Schaffert.
Abstraction Mechanisms in CLU.
Communications of the ACM 20(8), August, 1977.

Liskov, B., Moss, E., Schaffert, C., Scheifler, R. and Snyder, A.
The CLU Reference Manual.
Springer-Verlag, New York, N.Y., 1981.
Lecture Notes in Computer Science No. 114.

Low, James R.
Automatic Coding: Choice of Data Structures,
Technical Report CS-452, Stanford University Computer Science

Department, August, 1974.

Low, James and Rovner, Paul.
Techniques for the Automatic Selection of Data Structures,
In Conference Record of the 3rd ACM Symposium on Principles of

Programming Languages, pages 58-67. ACM, January, 1976.

Low, James R.
Automatic Data Structure Selection: An Example and Overview.
Communications of the ACM 21(5):376-385, May, 1978.

McCune, Brian P.
The PSI Program Model Builder: Synthesis of Very High-Level Programs.
In Proceedings of the Symposium on Artificial Intelligence and

Programming Languages, pages 130-139. ACM, August, 1977.
Also Sigplan Notices, Vol. 12, No. 8, August 1977.

Bibliography 279

[MIT 78]

[Mitchell 79]

[Morgan 81]

[Moss 78]

[Mytopoulos 80]

[Nestor 791

[Nestor 811

[Nestor 82]

[Newcomer 79]

[Parnas 74]

Unknown MIT Author.
Maclisp Manual
Department of Electrical Engineering and Computer Science,

Massachusetts Institute of Technology, 1978.
Transcribed INFO file.

Mitchell, James G., Maybury, William and Sweet, Richard.
Mesa Language Manual.
Technical Report CSL.79-3, Xerox Palo Alto Research Center, Systems

Development Department, April, 1979.
Version 5.0.

Morgan, Chris.
Smalltatk: A Language for the 1980s.
Byte 6(8):6-10, August, 1981.

Moss, John Eliot Blakeslee.
Abstract Data Types in Stack Based Languages.
Tech nicat Report MIT/LCS/TR. 190, Laboratory for Computer Science,

Massachusetts Institute of Technology, February, 1978.

Mylopoulos, John, Bernstein, Philip A. and Wong, Harry K. T.
A Language Facility for Designing Database-Intensive Applications.
ACM Transactions on Database Systems 5(2):185-207, June, 1980.

Nestor, John and Van Deusen, Mary.
Red Language Reference Manual
Intermetrics, Inc., 701 Concord Ave., Cambridge, MA. 02138, 1979.
tR-310-2.

Nestor, J.R. and Beard M.
Front End Generator User's Guide
Department of Computer Science, Carnegie-Mellon University, 1981.
PQCC Internal Documentation.

Nestor, John R. and Beard, Margaret A.
Front End Generator System.
In Burks, Sharon (editor), Computer Science Research Review, pages

75-92. Department of Computer Science, Carnegie-Mellon University,
Pittsburgh, PA. 15213, 1982.

Newcomer, Joseph M., Cattell, Roderic G. G., Hilfinger, Paul N., Hobbs,
Steven O., Leverett, Bruce W., Reiner, Andrew H., Schatz, Bruce R. and
Wulf, William A.
PQCC Implementor' s Handbook
Carnegie-Mellon University, Computer Science Department, 1979.
PQCC Internal Documentation.

Parnas, David L.
On a "Buzzword": Hierarchical Structure.
In Proceedings of the IFtP Congress 74, pages 336-339. North-Holland

Publishing Co., August, 1974,

Bibliography 280

[Ramirez 80]

[Reiser 76]

[Rentsch 83]

[Rovner 76]

[Rowe 78]

[Schonberg 77]

[Schwanke 82]

[Schwartz73]

[Shaw 79]

[Shaw 81]

Ramirez, Raul Javier.
Efficient Algorithms for Selecting Efficient Data Storage Structures.
Technical Report CS-80-18, Faculty of Mathematics, University of Waterloo,

March, 1980.

Reiser, John F.
Sail.
Technical Report AIM-289, Stanford Artificial Intelligence Laboratory,

Stanford University, August, 1976.

Rentsch, Tim.
Object Oriented Programming Languages.
In Horowitz, Ellis (editor), Programming Languages: A Grand Tour,,

Computer Science Press, 11 Taft Center, Rockville, MD 20850, 1983.
Second Edition, to be published.

Rovner, Paul D.
Automatic Representation Selection for Associative Data Structures.
PhD thesis, Harvard, 1976.

Rowe, Lawrence A. and Tonge, Fred M.
Automating the Selection of Implementation Structures.
IEEE Transactions on Software Engineering SE-4(6):494-506, November,

1978.

Schonberg, E. and Liu, S. C.
Manual and Automatic Data-Structuring in SETL.
In Andre, Jacques and Banatre, Jean-Pierre (editor), Implementation and

Design of Algorithmic Languages: Proceedings of the 5th Annual III
Conference, pages 284-304. IRISA, May, 1977.

Schwanke, Robert W.
Execution Environments in Programming Languages and Operating

Systems.
Technical Report CMU-CS.81-147, Department of Computer Science,

Carnegie-Mellon University, May, 1982.

Schwartz, J. T.
On Programming: An Interim Report on the SETL Projech Installment 1.

Generalities; Installment 2. The SETL Language and Examples of its
Use.

Research Report, Courant Institute of Mathematical Sciences, Department
of Computer Science, New York University, 1973.

Shaw, M.
A Formal System for Specifying and Verifying Program Performance.
Technical Report CMU-CS-79-129, Carnegie-Mellon University, June, 1979.

Shaw, Mary (editor).
ALPHARD: Form and Content.
Springer Verlag, New York, New York, 1981.

Bibliography 281

[Sherman 80] Sherman, Mark and Borkan, Martha,
A Flexible Semantic Analyzer for Ada.
In Symposium on the Ada Programming Language, pages 62-71, ACM,

Boston, December, 1980.

[Smith 77] Smith, John Miles and Smith, Diane C. P.
Database Abstractions: Aggregation and Generalization.
A CM Transactions on Database Systems 2(2): 105-133, June, 1977.

[Tichy 80] Tichy, Walter F.
Software Development Control Based on System Structure Descripton.
Technical Report CMU-CS.80-120, Department of Computer Science,

Carnegie-Melton University, January, 1980.

[VanWijngaarden 69]
Van Wijngaarden, A., Mailloux, B., Peck, J. and Koster, C.
Report on the Algorithmic Language Algol 68.
Numerische Mathematik 14(2):79-218, 1969.

[Weinreb 80] Weinreb, Daniel and Moon, David.
Flavors: Message Passing in the Lisp Machine.
A.I. Memo 602, Artificial Intelligence Laboratory, Massachusetts Institute of

Technology.
November, 1980
Also a chapter in the Lisp Machine Manual, [Weinreb 81].

[Weinreb 81] Weinreb, Daniel and Moon, David.
Lisp Machine Manual
Symbolics Inc., California, 1981.
Fourth Edition.

[Welsh 79] Welsh, J. and Bustard, D. W.
Pascal-Plus-- Another Language for Modular Multiprogramming.
Software --Practice and Experience 9:947.957, 1979.

[Winston 77] Winston, Patrick Henry.
Artificia/ /nte//igence.
Addison.Wesley, Reading, Massachusetts, 1977.

Wulf, W., Cohen, E., Corwin, W., Jones, A., Levin, R., Pierson, C. and
Pollack, F.
Hydra: The Kernel of a Muttiprocessor Operating System.
Communications of the ACM 17, June, 1974.

Wulf, Wm. A.
PQCC: A Machine-Relative Compi/er Techno/ogy.
Technical Report CMU-CS.80-144, Carnegie-Mellon University, September,

1980.

Wulf, W.A., Shaw, M, Hitfinger, P.N. and Flon, L.
Fundamental Structures of Computer Science.
Addison-Wesley, 1981.

[Wulf 74]

[Wulf 80]

[Wulf 81]

Bibliography 282

[Xerox81] Xerox Learning Research Group.
The Smalftalk-80 System.
Byte 6(8):36-48, August, 1981.

Appendix A
Additional Paragon Features

This appendix provides some more details about the Paragon language that were omitted in

the main body of the thesis. These miscellaneous topics include the lexical elements of

Paragon, matching objects with differing levels of nesting, the initial environments for name

expressions, restricting environments in name expressions, environments for parameter

elaboration, inheriting class parameters, sharing implementations, procedure constraints, self

references and statements. Each of these is discussed in turn.

A.1. Lexical Elements

A.1.1. Character Set

The ascii character set is used. All control characters, that is, characters without graphic

representation, are semantically equivalent to blanks.

Characters are grouped together to form tokens. A token is an identifier, a numeric literal, a

reserved symbol, or a reserved word. White space must separate two consecutive identifiers,

reserved words or numeric literals.

A.1.2. identifiers

An identifier is the symbol associated with a procedure declaration, variable declaration,

implicit parameter declaration or class declaration when that entity is declared. Reserved

words (given later in Section A.1.5) may not be used as identifiers. Two identifiers are

identical if they consist of the same sequence of case-independent letters, digits, and

underscores.

<identifier> :: = <letter> { { _ }? { <letter> 1 <digit> } }*
<letter> ::= A I B l . . . I Y l Z l a l b l . . . l Y l z
<digit> :: = 1 12 I... 181910

Appendix A.1.3 Lexical Elements 284

A.1.3. Li terals

The only literals permitted in Paragon represent integers, Their semantics are defined in

Section 3.3.6.

Two literals are identica ~ : they consist of the same sequence of digits after all underscores

and leading zeros have been removed.

<integer> :: = { { <digit> } + # _ } +

A.1.4. Special Symbols

Some characters and combinations of characters represent tokens in Paragon. These are

listed below. The longest possible sequence of cha, .:cters is interpreted as a token. Thus the

characters < = represents one token and not the two tokens < and =.

; => : () I & ~
= < > <= >= - - + • /

: [] , 1

A.1.5. Reserved words

The following sequences of letters are reserved by the language for special purposes and

may not be used by the programmer as identifiers.

and any as attribute begin check class comment
desc do else elseif end exitloop fi for
goto if in is let loop match matches
new not null of or procedure rem return
same such specified structure that then this var
when where while with yield

A. 1.6. Comments

Comments may appear before or after any token in the program. They do not alter the

meaning of the program.

<comment> :: = { comment J f } <space> { <any character except ;> }* ;

Appendix A.2 Object Creation Expressions 285

A.2. Object Creation Expressions

In the thesis, various kinds of expressions are used to create objects in variable declarations

without describing which expressions are permitted by the language. Paragon defines

several rules that restrict the expressions that may be used as the "type" in variable

declarations. This section presents those rules.

Like all expressions, the name expression used as a type is composed of several name

components. All but the last name component must be either a parameter or a variable. The

last component must have the reserved word new and have an identifier that denotes either a

class, variable or parameter. No other name component in the expression or in any of its

parameters may use the reserved word new.

If a variable or parameter identifier is used in the last component, then the environment for

the object creation will be the denoted object with the innermost simple object removed, and

the underlying class for the object creation will be the class of the innermost simple object

denoted by the parameter or variable.

If the class requires parameters for creation, and there are no parameters in the last

component of the name expression, then the parameters from the class declaration, variable

or parameter denoted in the last name component wilt be reused. Otherwise the parameters in

the name component will be used.

These rules ensure that exactly one new object will be created for each variable declaration

and that type parameters may be used to create local variables in a class or procedure.

A.3. Most Preferred Match

The matching rules in Section 3.4.2 apply only to objects that consist of the same number of

nested simple objects. Paragon permits objects with different numbers of nested simple

objects to match, as mentioned in Section 8.1. This section discusses the additional rules for

matching when objects have different numbers of nested objects.

First, a slight change in terminology is needed. Define the relation where two objects match

and have the same number of nested simple objects as pairwise matching. The rules in

Section 3.4.2 define this relation. Then actual object A matches a formal object F if A has

Appendix A.3 Most Preferred Match 286

exactly n more nested simple objects than F, and if after removing some n simple objects from

A, then the smaller A pairwise matches F.

However, there may be more than one way that n simple objects may be removed from an

actual object for it to match a formal object. Thus Paragon includes two more distinctions in

the matching process: preferred match and most preferred match.

A preferred match occurs when comparing the two different, successful removals of simple

objects during the matching process of differently sized objects. The outermost pair of

removed simple objects is examined. The removed simple object that was less nested (further

out) belongs to the preferred match. If the positions of the outermost removed simple objects

are identical, then the same criterion is applied to the next pair of removed simple objects.

This process continues until all of the removed simple objects have been considered.

Because of the assumption that two different sets of simple objects were removed, there must

be some pair of removed simple objects that differ. In the illustration below, the outermost

simple object is listed first and the removed simple objects are underlined. The letters refer to

the underlying class of the simple object:

Formal: (A, B,
ActUatMatch 1: (A, A_, B,
ActUalMatch 2: (A, A, B,
ActUalMatch 3: (A, A, B_,

In example above, Match 1 is preferred to Match

out (less nested) than the B in Match 1. Match

matched in Match 3 is further out than the A in

c)
8, C)
B_, C)
B, C)

2 since the B matched in Match 2 is further

3 is also preferred to Match 2 since the A

Match 1. Similarly, Match 3 is preferred to

Match 2 because the A in Match 3 is less nested than the A in Match 2.

The most preferred match is a match which is preferred to all others. In the example above,

Match 3 is actually the preferred match of the actual object and formal object. (There is one

possible combination of removed simple objects that is not shown, but Match 3 is preferred to

it as well as being preferred to Match 1 and Match 2). When binding parameters during the

comparison of two objects, the preferred match is used when more than one match is

possible.

Appendix A.4 Initial Environments 287

A.4. Initial Environments

Section 3,3 postponed a description of the way in which the environment is established for

the first component in a name expression. The description is given in this section.

A search for the identifier in the first name component is performed in various scopes until

an appropriate declaration is found. That declaration then controls the environment to be

used for further elaboration, This search is very similar to that used for looking up identifiers

in statically scope languages, such as Algol-60, with additional rules for classes. Specifically,

the procedure for determining the declaration of the identifier in the first name component is:

1. The procedure or the fully extended class declaration 93 enclosing the expression
is examined for a declaration of the identifier. An identifier implicitly declared in a
parameter is consider as being declared in its corresponding procedure or class,

2. If more than one declaration was found, then one of the found declarations must
be a procedure specification and the others must be procedure respecifications
or implementations. Otherwise at most one declaration must be found and it may
not be a procedure implementation. (Recall that a procedure respecification is
considered a procedure specification in the absence of a procedure
specification. See Section 5.3.5.)

3. If no declaration was found, repeat the first two steps for enclosing blocks, be
they procedures or classes. If the universal environment was reached without
finding an appropriate declaration, the program is not well specified.

The innermost simple object (and its containing environment) in the environment in which

the declaration is found becomes the environment (or more precisely, the declaration

environment, see Section A.6) for elaboration of the first name component. Any inner simple

objects that were skipped in the search process are ignored.

A.5. Restricting Environments

The returned environment may be restricted for use by the next component in an

expression. The syntax of a resti'iction is the reserved word as followed by a class identifier.

Some example classes and the use of as are shown below:

93The fully extended class declaration is constructed by concatenating all of the class declarations of all
ancestors of class along with the class, in leftmost elaboration order.

Restricting Environments 288 Appendix A.5

c lass Pa ren t t i s
begin

procedure p;
end;

c lass Parent2 i s
begin

procedure p;
end;

c lass Son of Parent1, ParentZ i s begin end;

var x => new Son;

x as Parent1 . p; ! Ca l l o f p in Parent 1;
x as Parent2 . p; ! C a l l o f p in Parent Z;

In a restriction, the class identifier denotes an ancestor of the underlying class of the last

component of the object. When a restriction is present, the search for a declaration of the

identifier in the next component is confined to the class declaration of that ancestor. Without

a restriction, the procedure of searching the fully extended class declaration for a declaration

of the identifier is followed.

To simplify the BNF description in Appendix B, the as restriction was deleted. It is never

used in any example in the thesis.

A.6. Environments for Parameter Elaboration

In Sections 3.6.4, 5.2.1, 5.2.3 and 5.2.4, a description of procedure invocation or class

instantiation was described that includedelaboration of parameters. 94 Like all elaborations,

elaboration of parameters must occur in some environment. This section defines two kinds of

environments, the statement environment and the declaration environment, and defines how

parameters are to be elaborated in these environments.

Every statement is contained in a class or a procedure. Before a statement can be

elaborated, the containing class must be instantiated or the containing procedure must be

invoked. When either of these events occurs, a new environment is formed and the

statements are elaborated in this environment, hence the name statement environment.

94For purposes of discussion, the return expression in 8, procedure and the yield expression in an iterator are also
parameters.

Appendix A.6 Environments for Parameter Elaboration 289

As a name expression is elaborated, each name component returns an object that is used as

the environment for the next name component. This environment is call the declaration

environment, since this environment is where the declaration for the identifier in the next

name component will be found. For the first name component, a special set of searching rules

is used to find the declaration environment, as described in Section A.4.

When elaborating a procedure call or class instantiation, the actual parameters in the name

component and the formal parameters in the procedure or class declaration are elaborated.

The formals are elaborated in the declaration environment and the actuals are elaborated in

the statement environment. This is illustrated by the following declarations and procedure

calls:

c lass c l (t : a n y) is
begin

procedure f l r e tu rn t ;
end;

class cZ is
begin

procedure f 2 (c 2) ;
v l => IM . new In teger ;

end;

vat v l => new c1(c2);
vat v2 => new c2;

v Z . f Z (v l . f l) ;

Initially v2 is found, which denotes a c2 object. Thus f2 is to be found in the declaration

environment c2, which it is. Then a procedure call of f2 is to be elaborated. Thus {he

parameters in the declaration of f2 are elaborated in the declaration environment c2 and the

actuals in the statement environment, which is assumed to be the universal class containing

the declarations in the program fragment above. The result of elaborating the formal

parameter in f2 in the declaration environment is an indefinite c2 object. Now the actual

parameter must be elaborated in the statement environment. Thus vl is found and serves as

the declaration environment for the call of f l . Repeating the invocation algorithm for the call

of f l , the return expression for f l is elaborated in the declaration environment, and since t is

bound to an indefinite c2 object in this environment (because the declaration of vl used c2 as

a parameter), the returned object from f l is an indefinite c2 object. Therefore this object is

the result from elaborating the actual parameter for the call of f2 and can be compared with

the formal parameter for the call of f2, also an indefinite instance of c2. The two objects

match, and the call of f2 is well specified.

Appendix A.6 Environments for Parameter Elaboration 290

Note that if the return expression of f l had been elaborated in the statement environment,

the identifier t would have not been found and the name expression would have been ill

specified. Had the actual parameter for the call of f2 been elaborated in the declaration

environment, the wrong object would have been selected for vl, namely the integer inside of

c2 and not the variable vl inside of the universal class. To avoid these, and other kinds of

difficulties, Paragon defines the statement and declaration environments and uses them for

the two different kinds of parameter elaborations.

A.7. Inheriting Parameters

Section 3.4.4 provides the basics of declaring and inheriting parameters in classes. That

section omitted the details of inheriting parameters from multiple parents and the details of

defining new parameters when inheriting already defined parameters. In this section, these

details are provided.

All parameters listed in a class declaration are either inherited or defined. Unlike

declarations and statements inherited from ancestor classes, parameters inherited from all

ancestors are explicitly represented in a class declaration. Also unlike declarations and

statements, inherited parameters come from the ancestors in which the parameters are

defined, not from the immediate parents. This is because some parameters of an immediate

parent may also be inherited instead of defined, whereas all declarations and statements in an

immediate parent are defined in the immediate parent. The distinction between inherited and

defined parameters, and the way in which parameters are inherited, are discussed below.

The distinction between inherited and defined parameters is made by position in the

parameter list. First, the inherited parameters are given in the parameter list, then the defined

parameters. The inherited parameters are listed in leftmost elaboration order. If an ancestor

defines more than one parameter, then the class declaration lists the corresponding inherited

parameters in the same order. Parameters that are not inherited from an ancestor are said to

be defined in the class declaration. This is illustrated below:

comment Classes to be used as parameter descriptions.

Appendix A.7 Inheriting Parameters 291

c lass A1 is beg in end;
c lass B1 is beg in end;
c lass Cl is beg in end;
c lass D1 is begin end;

comment Classes that

class A(x : At)
begin
end;

class B(x : At,
begin
end;

class C(x : At,
begin
end;

class D(x : A1,
begin
end;

is

have parameters.;

y : BI) of A is

z : CI) of A is

y : B1, z : C1, w: Dr) of B, C is

Here, class A has no parents, and hence no inherited parameters. Thus the the only

parameter for A is the defined parameter in A 1. Classes B and C each have two parameters.

By examining their ancestors in leftmost elaboration order (here, just A), exactly one defined

parameter is found, namely the first parameter in class A. Thus the first parameter in classes B

and C is inherited (from A). Since B and C have two parameters, the second parameter in

each class is a defined parameter.

In a more complicated example, class D has three inherited parameters, one each from A, B,

and C, and one defined parameter. Because the leftmost elaboration order for parameters is

used, here A, B, C, the first parameter for D is inherited from A, the second from B and the

third from C. Note that the parameter from A appears in two different immediate parents, but is

only mentioned once in the declaration of class D.

The expression for an inherited parameter need not be identical with the expression used in

its defining ancestor class, nor with the expression used in any immediate parent. The objects

the expressions denote may be more restrictive than the original parameter. Thus checking

between each inherited parameter and the form of the inherited parameter in immediate

parents is required. More precisely, if an inherited parameter Pc.i is the ith defined Parameter

for some ancestor class c 95, then the object denoted by the parameter expression must match

951n general, one can say nothing about where in the parameter list of the class declaration that Pc, i will appear.

Appendix A.7 Inheriting Parameters 292

the object denoted by any parameter expression in an immediate parent that is inherited from

or is defined as Pc, i" The rule ensures that the objects for parameters in the child are the same

as or more restrictive than the objects used in for an immediate parent. The rule can be

illustrated by altering the previous example as follows:

comment Classes to be used as parameter descr ip t ions. ;

class A1 is begin end;
class AIB of A1 is begin end;
class AIC of AI is begin end;
class AID of AIB, AlC is begin end;

class B1 is begin end;
class BID of B1 is begin end;

class C1 is begin end;
class C1D of C1 is begin end;

class D1 is begin end;

comment Classes that have parameters.;

class A(x : A1) is
begin
end;

class B(x
begin
end;

: AIB, y : B1) of A is

class C(x
begin
end;

: AIC, z : C1) of A is

class D(x :A ID , y : BlO, z : ClD, w: D1) of B, C is
begin
end;

The labeling of parameters as defined or inherited is unchanged from the previous example.

But different expressions are used for each parameter, so checking must occur to insure that

the parameters are properly inherited. Specifically, the checking for the first parameter in B

and C checks that A 1B and A lC respectively match A 1. For class D, there are three inherited

parameters and one defined parameter. The first parameter, A 1D, is inherited from class A,

Because both immediate parents B and C also have inherited the first (defined) parameter of

A, checking of A 1D must be made against both A 1B and A 1C. Checks must also be made that

B 1D and ClD match B1 and C1 respectively. In this example, all of the objects in the inherited

parameters are compatible with the corresponding parameters in their immediate parents.

Appendix A.7 Inheriting Parameters 293

There is one last rule for parameters that has not been mentioned. There may be at most

one declaration for each identifier implicitly declared in parameters for a class. Among the

implications of this rule, no class may inherit parameters from two different ancestors that

define the same identifier in the parameter list.. This is done to eliminate rules for

discriminating between identical identifiers in the parameter list. Because the following

declaration has two Is declared in its parameters, the class declaration is ill specified:

class lllegal(IM . I: Integer, IM . I: Integer) is
begin
end ;

A.8. Sharing Implementations

As described in Section 4.5.3.3, a single class declaration may be declared that may serve

as an implementation class for more than one specification class. However, as Section

4.6.3 noted, there is no way for the selection mechanism to select a single object to be shared

for more than one variable, although sets of rules were devised to permit such sharing. In this

section, a more detailed discussion of object sharing among variable is provided, including

the rules under which such sharing may take place.

Recall that a shared implementation occurs if a single object is able to meet the

specifications of more than one variable. As a simple example, assume that there are two

kinds of objects: a keyboard, which is an input device, and a display, which is an output

device. Corresponding declarations might be:

class Keyboard is
begin

procedure Read;
end;

c lass Display Is
begin

procedure Wrtte;
end;

Although Keyboard and Display represent two conceptual classes of objects, they frequently

may be combined in a single object, say a particular kind of terminal. A corresponding

declaration might be:

Appendix A.8 Sharing Implementations

class T e l e t y p e of Keyboard, D i s p l a y is
beg in

p rocedure Read is beg in end;
procedure Wr i t s is beg in . . , end;

end;

The class Teletype can be used for variables specified as Keyboards, Displays and Teletypes.

If a program required a Keyboard variable and a Display variable, it is reasonable to allow

them to share a Teletype object. Consider the following program fragment:

var k => new Keyboard;
v a r d => new D i s p l a y ;
. , ,

k. Read;
d . W r i t e ;

The objects denoted by k and d might share a single object that was created by instantiating

the Teletype class. Teletype would then be the Implementation for both k and d.

Paragon permits variables to share a single object for more than one variable. However,

indiscriminant sharing of objects is not wise. Consider the following program fragment:

var k => new Keyboard;
var t => new T e l e t y p e ;

k. Read;
t . Read;

Sharing a single object that is an instance of Teletype is not appropriate here, since the calls

to Read are conceptually shared by both the keyboard k and the teletype t. To prevent this

kind of interference, Paragon allows only limited kinds of sharing. Specifically, Paragon

provides four criteria that must be met for an object to be shared among several variables.

Each of these criteria is discussed below. Following the criteria, the method by which a

shared object is elaborated is discussed.

A.8.1. Subsuming Implementation Paths

One criterion for deciding if variables interfere with one another when sharing an object

depends of the notion of an implementation path. This notion is developed in the following

series of definitions:

Path A path is a list of class identifiers such that each class in the list is an
immediate parent of next class in the list.

Subsume A path is said to subsume another path if the second path is a sublist of
the first.

Appendix A.8.1 Sharing Implementations 295

Implementation path
An implementation path is a path with the ends of the list being the
identifiers of the specification (class used in the variable declaration) and
the implementation (class chosen as the implementation).

These definitions are illustrated below:

class Company is begin end;
class ServiceCompany of Company is begin end;
class Manufacturer of Company is begin end;
class Conglomerate of ServiceCompany, Manufacturer is
begin
enE{J;

var x => new Company;
v a r y => new ServiceCompany;
var z => new Manufacturer;

One defined path is (Company, ServiceCompany, Conglomerate). If the variable x is

implemented as a Conglomerate, then this path is an implementation path for x. Another path

derived from these class definitions is (ServiceCompany, Conglomerate). This path is

subsumed by the first path.

Note that there may be more than one implementation path given a specification and an

implementation. For example, the path (Company, Manufacturer, Conglomerate) is also an

implementation path for x. Under this interpretation, the path

(ServiceCompany, Conglomerate) would not be subsumed by the implementation path for x.

To prevent interference between the variables that are sharing the object, there must be an

implementation path associated with each variable and the implementation for the shared

object such that no path subsumes another.

A.8.2. The Environment of the Object

A second criterion requires that the environments for each simple object creation be

identical. This is because when an object is shared, the environment containing that object

must also be shared.

Appendix A.8.3 Sharing Implementations 296

A.8.3. Parameters in a Shared Implementation

The third criterion tries to ensure that the parameters in the shared object are not

improperly shared between any two variables. This is done by partitioning the parameters of

the underlying implementation, with a partition being associated with each underlying

specification. Thus:

• The inherited parameters in the implementation must not be shared among the
specifications, and

• Every parameter in the implementation must appear in the specification of exactly
one of the variables.

These rules imply that the parameters only be disjoint outside of the implementation path. To

allow a shared parameter outside of the implementation path leaves no way to determine

which parameter expression in a variable declaration should be used when a shared object is

created.

A.8.4, Variable Interaction

The fourth criterion attempts to prevent use of variables before their declarations have been

elaborated.

The order of elaboration of variable declarations can have effects on the results of a

program. To minimize undesired interactions, Paragon further limits the use of a shared

object to situations where the order of conceptual object creation may be effectively changed.

Specifically, the variables declared between the declaration for the first variable and for the

last variable sharing an object may not be used in the "type" expression of those variables

sharing the object. This effectively allows the moving of all variables that share an object to

be placed in the point in the program where the first such variable is declared.

A.8.5. Elaboration of a Shared Implementation

When variables share an object, that object is created and its implementation class

elaborated (with implementations or realizations) at the time when the declaration for first

variable sharing the object is elaborated. (Sharing is not permitted during elaboration with

specifications.) All of the parameters for this implementation, gathered from the

corresponding parameters in the variable declarations, are elaborated at this time. When the

declarations of the other variables sharing this implementation are reached, their identifiers

Appendix A.8.5 Sharing Implementations 297

will be associated with the already created object. No further elaboration of the object takes

place.

With these rules and definitions, Paragon has provided a way to share objects. Before these

rules can be effectively applied, however, some way must be developed to integrate the rules

into the :selection mechanism. This was never accomplished.

A.9. Procedure Constraints

Section 3.5.4 provided the most useful procedure constraint that is defined in Paragon.

Although not used in any examples, the language does define other kinds of procedure

constraints, and they are defined in this section. Further, ways in which constraints may be

combined also discussed.

A.9.1. Constraints that Check Matching

In Section 3.5.4, the comparison operation same as was defined to test if two objects each

matched the other. For example,

r . s t r u c t u r e same as] . s t r u c t u r e

checks to ensure that r and / have the same underlying class. In addition, one may perform a

one-sided comparison, that is, see if one object matches the other without insisting on each

matching the other. This is done by using the matches operation instead of the same as

operation. For example:

r . s t r u c t u r e matches] . s t r u c t u r e

checks to ensure that the underlying class of r matches the the underlying class of I, but

makes no guarantees that the underlying class of I matches the underlying class of r.

A.9.2. Combining Constraints

Constraints may also be connected using the logical operations &, / and ~, meaning and, or

and not respectively. - has the highest precedence (performed first), followed by &, followed

by/. The logical operations are associated from left to right. Parentheses may also be used to

control the order of comparison and logical operations.

As an example, if the expressions contain no side effects, then

Appendix A.9.2

r.structure

isthesameas

r.structure

Procedure Constrains 298

matches l.structure & l .structure matches r.structure

same as 1 , s t r u c t u r e

A.IO. Self-References

In Section 3.2.1, three kinds of simple objects were discussed: definite instances, indefinite

instances and any instances. Paragon provides a fourth kind of simple object, called a self-

reference. When used as a name component, a self-reference has the syntax of the reserved

word this followed by a class or procedure identifier, as illustrated below:

c]ass c is
begin

° , •

this c

end;

A self-reference may appear only in the class or procedure declaration referred to by the

identifier, though the declaration need not be the immediately enclosing scope. Further, a

self-reference must be the first name component in a name expression.

When elaborated, a self-reference causes the declaration environment to be searched for

an instance of the named class or procedure, which in turn becomes the environment

returned by the elaboration of the self-reference name component.

Self-references are also used during the checking of class and procedure declarations.

Although not mentioned in the main text of the thesis, all declarations are checked to ensure

that they are well specified. When a procedure or class declaration is checked, a new simple

object for that declaration is made and is called a self-referent for the declaration. This self-

referent is appended to the environment in which the declaration is being checked (usually

another self-referent) and the declarations and statements are elaborated with specifications

in this environment. For purposes of comparing objects, self-referents are considered to be

the same as definite instances, except that a self-referent of a child class is defined as

matching the self-referent of an ancestor class, even though they appear to be two distinct,

definite simple objects.

Appendix A. 11 Statements 299

A. 1 1. Statements

Statements provide control flow among the expressions to be elaborated in a Paragon

program. After a brief description of statement structure, each kind of statement is described

along with its elaborations.

A.1 1.1. Statement Structure

Each statement may be preceded by any number of labels. A BNF description is shown

below:

<statement> :: = { <identifier> = "> }* <simple statement>

A simple statement is one that has no labels, There are eleven different kinds of simple

statements in Paragon, shown below:

<simple statement> :: =
<assignment statement> [
<subprogram form statement> [
<return statement> [
<null statement> [
<if statement>]
<while statement> J
<for statement> J
<exit statement>]
<goto statement> J
<yield statement> [
<pattern statement>

The discussion of these statements is grouped into five categories: name expressions,

subprogram control statements, conditional statements, loop statements, and goto

statements.

A.1 1.2. Expressions as Statements

<assignment statement> :: = <expression> : = <expression>

<subprogram form statement> :: = <expression>

<null statement> :: = null

There are three simple statements that are merely expressions: assignment statements,

name expressions and null statements. The assignment statement is syntactic sugar for a

name expression as defined in Section 3.3.5.

Appendix A.11.2 Statements 300

The null statement is always well specified, feasible and defined. For a statements that is an

expression, the three kinds of elaboration are performed on the expression whenever the

statement is appropriately elaborated. If elaboration of the expression was ill specified,

infeasible or erroneous, then the statement is ill specified, infeasible or erroneous

respectively, No object may be returned. If an object is returned, the statement is not well

specified. No implicit declarations are permitted in the expressions used in the assignment or

subprogram form statements. The presence of an implicit declaration renders the statement ill

specified.

A.1 1.3. Subprogram Control Statements

Paragon provides two statements that control the elaboration of procedures, return

statements and yie/d statements. Return statements terminate the invocation of a procedure

while yie/d statements suspend a procedure's execution. Each statement is described in more

detail below.

A.1 1.3.1. Return Statement

<return statement> :: = return {<expression>}?

The return statement is used to terminate execution of the procedure, and if the procedure

is specified to return an object, to provide an object to be returned. The return statement may

only appear in procedures, not in classes.

If the procedure in which the return statement appears specifies no return expression, then

no expression may be specified in the return statement. Since iterators have a yie/d

expression and not a return expression, return statements in iterators may not have an

expression. If the procedure in which the return statement appears specifies a return object,

then every return statement in the procedure must have an expression. No implicit

declarations are permitted in the expression of a return statement. The presence of implicit

declarations in the expression renders the return statement ill specified.

When a return statement is elaborated with specifications, the expression in it is elaborated

with specifications and compared with the object that results from elaborating, with

specifications, the return expression in the procedure declaration. If the elaboration is ill

specified or the comparison fails, then the return statement is ill specified.

Appendix A.11.3.1 Statements 301

When a return statement is elaborated with implementations, the expression in it is

elaborated with implementations and compared with the object that results from elaborating,

with implementations, the return expression in the procedure declaration. If the elaboration is

infeasible or the comparison fails, then the return statement is infeasible.

When a return statement is elaborated with realizations, the expression in it is elaborated

with realizations. If elaboration of the expression is erroneous, then the return statement is

erroneous. The object that results from elaborating the expression is returned as the

declarat~ion environment for the next name component and the invocation of the procedure is

terminated, that is, no other statements or expressions in the procedure are elaborated. If no

expression is present, no object is returned. If the return statement appears in an iterator,

then the iterator is terminated and elaboration continues with the statement immediately

following the for loop that invoked the iterator.

A procedure without a return expression need not terminate with a return statement. Such a

procedure may also terminate by reaching the end of the procedure's declaration. However, a

return statement must be executed for terminating a procedure that specifies a return

expression. If execution reaches the end of such a procedure without executing a return

statement, then the invocation of the procedure is erroneous.

A.1 1.3.2. Yield Statement

<yield statement> :: = yield <expression> { when exitloop <statement> }?

The yield statement is used to suspend an iterator that is invoked in a for statement.

Yield statements may appear only in procedures that yield an object, that is an iterator,

though a yield statement is not required in an iterator. (An iterator that never executes a yield

statement will never have the statements in the corresponding for loop executed.) Iterators

and for loops are discussed in Sections 3.7 and A.11.5.1.

When a yield statement is elaborated with specifications, the expression is elaborated with

specifications and the resulting object compared with the object that results from elaborating,

with specifications, the yield expression in the iterator declaration. If the elaboration of the

expression is ill specified or if the comparison fails, then the yield statement is ill specified.

The optional statement is then elaborated with specifications. If the optional statement is ill

specified, then the yield statement is ill specified. No implicit declarations are permitted in the

Appendix A. 11.3.2 Statements 302

expression of a yield statement. The presence of implicit declarations in the expression

renders the the yield statement ill specified,

When a yield statement is elaborated with implementations, the expression is elaborated

with implementations and the resulting object compared with the object that results from

elaborating, with implementations, the yield expression in the iterator declaration, if the

elaboration of the expression is infeasible or if the comparison fails, then the yield statement

is infeasible. The optional statement is then elaborated with implementations. If the optional

statement is infeasible, then the yield statement is infeasible.

When a yield statement is elaborated with realizations, the expression is elaborated with

realizations and the resulting object bound to the identifier in the for loop that caused the

iterator to be invoked. If the elaboration of the expression is erroneous, then the yield

statement is erroneous. When the for loop that invoked the iterator continues the iterator,

elaboration of the yield statement is completed and control flow resumes in the iterator.

If control passes out of the for loop because of the elaboration of a goto, return or exitloop

statement, and if the last yield statement elaborated for that for loop has a statement, then

before the loop is exited (but after any expression in the return statement is elaborated), then

elaboration continues with the statement in the last elaborated yield statement. If this

statement is erroneous, then the iterator invocation is erroneous. After the optional statement

in a yield statement has been executed, no other yield statement in that iterator may be

executed.

A.1 1.4. Conditional Statement

<if statement> ..-" -
if <expression> then

{ <statement> ; } "
{ etseif <expression> then

{ <statement> ; }* }*
{ else

{ <statement> ; }* }?
fi

The if statement causes conditional execution of statements.

During elaboration with specifications, each expression and statement in the if statement is

elaborated with specifications in the order in which it appears. The expressions following the

Appendix A.11.4 Statements 303

reserved words ff and e/serf must result in objects that match the predefined boolean object

Booleans.Bit. If any expression did not match the predefined boolean object, the if statement

is ill specified. If any of the expressions contained implicit declarations, the if statement is ill

specified.

The statements in an ff statement must not return an object, otherwise the ff statement is not

well specified. If any elaboration is not well specified, then the if statement is not well

specified.

During elaboration with implementations, each expression and statement in the if statement

is elaborated with implementations in the order in which it appears, tf any elaboration is

infeasible, then the if statement is infeasible.

Elaboration with realizations is discussed in Section 3.8.4.

A.1 1.5. Loop and Loop Control Statements

Paragon provides three kinds of looping statements: for loops, while loops and pattern

loops. For and while loops are discussed in this section. Since pattern loops are inextricably

related to the representation selection process, they are discussed completely in Sectiod

5.5.4 and will not be repeated here. A statement that can control the execution of the loop

statements, the exitloop statement, is also discussed in this section.

A.11.5.1, For Loops

~for statement> :: =
for <identifier> in <expression> { .. <expression> }? do

{ <statement>; } "
end for

When a for loop is elaborated with specifications, the expression following the reserved

word in is elaborated with specifications (after any transformation because of the syntactic

sugaring provided by the .. notation), and the resulting object is compared with the object

denoted by the identifier after the for reserved word, and then bound to that identifier. If the

expression yielding the object was ill specified, then the for loop is ill specified. If the

expression yielding the object had implicit declarations, then the for loop is ill specified. If the

object did not result from an iterator invocation, then the for loop is ill specified. If the

comparison failed, the for loop is ill specified. Then the statements in the for loop are

Appendix A.11.5.1 Statements 304

elaborated with specifications. If any of them were ill specified, then the for loop is ill

specified.

When a for loop is elaborated with implementations, the expression following the reserved

word in is elaborated with implementations and the resulting object is bound to the identifier

following the reserved word for. If the elaboration of the expression was infeasible, then the

for loop is infeasible. Then the statements in the for loop are elaborated with

implementations. If any of them were infeasible, then the for loop is infeasible.

Elaborating a for loop with realizations is discussed in Section 3.7.6.

A.1 1.5.2. While Loops

<while statement> :: =
while <expression> do

{ <statement> ; }*
end loop

A while loop provides repeated execution of a group of statements while a certain condition

is met.

\When a while statement is elaborated with specifications, the expression following the

reserved word while is elaborated with specifications. If the elaboration was ill specified, then

the while statement is ill specified. If the expression had implicit declarations, then the while

statement is ill specified. The object that results from the expression elaboration is compared

with the predefined boolean object, Booleans.Bit. If the comparison failed, then the while

statement is ill specified. Each statement in the while is then elaborated with specifications. If

any of these statements were ill specified then the while statement is ill specified.

When a while statement is elaborated with implementations, the expression following the

reserved word while is elaborated with implementations. If the elaboration was infeasible, then

the while statement is infeasible. Each statement in the while is then elaborated with

implementations. If any of these statements was infeasible then the while statement is

infeasible.

When a while statement is elaborated with realizations, the expression following the

reserved word while is elaborated with realizations. If the elaboration was erroneous, then the

while statement is erroneous. If the object returned by elaborating the expression is equal to

Appendix A.11.5.2 Statements 305

an object returned by the predefined procedure True, then each statement in the while loop is

elaborated with realizations. If any of these statements were erroneous then the while

statement is erroneous. This two step process (elaborate the expression, elaborate the

statements) repeats as long as the elaboration of the expression results in an object that is

equal to an object returned by the predefined procedure True, or until a goto, return or

exitloop statement inside of the while loop is elaborated with realizations that causes control

to leave the while loop.

A.1 1.5.3. Exiting Loops

<exit statement> :: = exitloop { <identifier> }?

The exitloop statement forces the elaboration of a loop to be terminated. This statement

may appear only inside of a for loop, while loop or pattern loop, with no intervening procedure

or class declarations (though intervening statements, such as an if statement, are permitted).

When elaborated with specifications, and if no identifier is present, the statement is well

specified if it occurs inside of a loop as specified above. If an identifier is present, that

identifier must label a loop that is enclosing : ,9 exitloop statement (without any intervening

procedure or class declarations) for the exittoop statement to be well specified.

Elaboration of an exitloop statement with implementations requires no action. If an exitloop

statement was well specified, then it is also feasible.

Elaboration of an exitloop with realizations finishes the elaboration of the statements in the

enclosing loop. If the exitloop statement contains an identifier, then all enclosing loops up to

the loop labeled with the identifier are finished. If iterators in for loops are being terminated

(see Sections 3.7.6 and A.11.5.1), the loops are terminated from the innermost to the

outermost.

A.1 1.6. Goto Statement

<goto statement) :: = goto <identifier)

The goto statement causes a transfer of control to the statement that has the identifier as a

label.

When a goto statement is elaborated with specifications, the identifier is searched for as a

Appendix A.11.6 Statements 306

statement label in an enclosing loop, ff statement, class declaration or procedure declaration.

Although intervening ff statements and loops may be skipped, only the immediately enclosing

procedure or class declaration will be examined for the label. If the label cannot be found,

then the goto statement is ill specified. Note that the search procedure prohibits goto

statements from specifying a label in a different part of an /f statement than the part

containing the goto statement, a label inside of loop that does not contain the goto statement,

a label outside of the class or procedure declaration that contains the goto statement, and a

label inside of a class or procedure declaration that does not contain the goto statement.

Elaboration of a goto statement with implementations requires no action. If a goto

statement was well specified, then it is also feasible.

Elaboration of a goto statement with realizations causes the execution to continue with the

statement labeled with the identifier. If a for loop is exited by a goto statement, any optional

statement in the yield statement in the corresponding iterator is first executed (see Sections

3.7.6 and A.11.5.1).

Appendix B
Pa ragon BNF

This appendix gives a slightly edited version of the BNF description used by the parser

generator to create the Paragon parser (Phase ML, see Section 7.1.1). After giving the details

of the BNF notation, the productions used by the parser generator are listed. The rules have

been divided into fives sections: program structure, declarations, statements, expressions

and name components.

B.1. Notation

The syntax for Paragon is described in a notation that is an extended BNF with the following

conventions [Nestor 81]:

• Nonterminals are enclosed in angle brackets, for example, <identifier> is the
nonterminal representing identifiers.

Terminal symbols are represented as themselves. When a terminal symbol or
character conflicts with a nonterminal symbol or character, the terminal symbol
will be preceded by a double quotation mark ("). For example, "< denotes the
terminal character ~ and not the beginning of a nonterminal symbol.

• Production rules are written with a single nonterminal on the left of a :: = symbol
followed by sequence of terminal or nonterminal symbols, for example,

<expression> :: = <primary> "* <expression>

• Alternative right hand sides of a production rule with the same nonterminal on the
left hand side may be separated by a vertical bar, that is, the I symbol, in a single
production. For example:

<expression> :: = <primary> I <primary> ** <expression>

• A sequence of symbols may be bracketed by surrounding it with braces. For
example, { <identifier> : <name> } brackets the three symbols <identifier>, :, and
<name>.

Appendix B. 1 Notation

• A sequence of symbols is optional in a production if it is surrounded by braces
that are immediately followed by a question mark. For example { <identifier> }?
denotes an optional identifier.

• A list of zero or more of a sequence of symt~r}ls is represented by enclosing the
sequence in braces that are immediately f~lowed by an asterisk. For example
{ <letter> } " indicates zero or more <letter>s.

• A list of one or more of a sequence of symbols is represented by enclosing the
sequence in braces that are immediately followed by a plus mark (+) . For
example { <digit> } + indicates zero or more <digit>s.

• A list of zero or more of a sequence of symbols, separated by another sequence
of symbols is represented as two sequences, separated by a hash mark (#) and
enclosed by a pair of braces that immediately precede an asterisk (*). For
example, the notation

{ <identifier> # , } *

denotes a list of zero or more <identifier>s separated by commas (,).

• A list of one or more of a sequence of symbols, separated by another sequence of
symbols is represented as the above list except that a plus mark (+) is used
instead of an asterisk. For example, the notation

{ <parameter> # , } +

denotes a list of one or more <parameter>s separated by commas (,)o

B.2. Program Structure

<compilation> :: = { <declaration> ; } +

B.3. Declarations

<declaration> :: =
<object declaration>

I <class declaration>
I <procedure declaration>

<object declaration> :: =
{ attribute }? var <identifier> = "> <expression>

{ such that <expression> }?
{ where { <attribute association> # , } + }?

<attribute association> :: = <identifier> = "> <expression>

308

Appendix B.3 Declarations 309

<class declaration> :: =
class <identifier> { ({ <type name> # , } +) }?

{ of { <identifier> # , } + }? is
<block>

<procedure choice> :: = { return <type name> } I { yield <type name> }

<instance formal> :: = <type name>

<type name> :: = <expression>

<instance constraints> :: =
such that
{ <or set expression> # , } +

<or set expression> :: = {<and set expression> # "1 } +

<and set expression> :: = { <not set expression> # & } +

<not set expression> :: = { - } * <parened set expression>

<parened set expression> :: =
{ <expression>

{ matches I same as } <expression> } I
((<or set expression>) }

<procedure declaration> :: =
{ attribute }? procedure <identifier> { ({ <instance formal> # , } +)}?

{<procedure choice>}?
{of <identifier>}?
{<instance constraints>}?
{ is <block> }')

<block> :: =
{specified with}?
begin

{ <declaration> ; } *
{ <statement> ; } *

end

Appendix B.4 Statements 310

B.4. Statements

<statement> :: = { <identifier> = "> }* <simple statement>

<simple statement> "'..--
<assignment statement> J
<subprogram form statement> J
<return statement> I
<null statement> J
<if statement> I
<while statement> I
<for statement> I
<exit statement> J
<goto statement> I
<yield statement> I
<pattern statement>

<assignment statement> :: = <expression> : = <expression>

<subprogram form statement> :: = <expression>

<return statement> :: = return { <expression> }?

<yield statement> :: = yield <expression> { when exit loop <statement> }?

<null statement> :: = null

<exit statement> :: = exitloop { <identifier> }?

<goto statement> :: = goto <identifier>

<if statement> :: =
if <expression> then

{ <statement> ; }*
{ elseif <expression> then

{ <statement> ; } " } *
{ else

{ <statement> ; } " }?
fi

<for statement> :: =
for <identifier> in <expression> { ,. <expression> }? do

{ <statement> ; } *
end for

<pattern statement> :: =
let <identifier> match <expression> in <expression> do

{ <statement> ; } "
end let

Appendix B.4 Statements 311

<while statement> :: =
whi le <expression> do

{ <statement> ; } *
end loop

B.5. Expressions

<expression> :: = <factor>

<expression> :: = <expression> <logical operator> <factor>

<logical operator> :: = and I or

<factor> :: = <term>

<factor> :: = <term> <relat ional operator> <term>

<relat ional operator> :: = = I "< l "> I "< =] "> =

<term> :: = <primary>

<term> :: = <unary operator> <primary>

<term> :: = <term> <addit ive operator> <primary>

<unary operator> :: = not [m

<addit ive operator> :: = + J - -

<primary> :: = <component>

<primary> :: = <primary> <mult ip l icat ive operator> <component>

<mult ip l icat ive operator> :: = * I / I rein

<component> :: = <name> I (<expression>)

B.6. Name Components

<name> :: = { <name component> # . } +

% Descr ipt ion Name Componen t
<name component> :: = desc (<expression>)

% Numer ic Literal Name Componen t
<name component> :: = <numeric l iteral>

Appendix B.6 Name Components 312

% Definite object name component (this/new)
<name component> :: =

{ { <identifier> : }?
{this I new} <identifier>
{ ({ <expression> # , } +) }?

}

% Structure (Get class) component
<name component> :: =

{ { <identifier> : }?
structure
{ ({ <expression> # , } +) }? }

% Any component
<name component> :: =

{ { <identifier> : }? any
{ ({ <expression> # , } +) }?

}

% "Check" name components
<name component> "'.. --

{ { <identifier> : }?
check <identifier>

{ ({ <expression> # , } +) }?
{return (<expression>) }? }

% Array element selection
<name component> :: = [<expression>]

% Pointer Dereference
<name component> :: = t

% Variable, function call, indefinite instance
<name component> :: = <identifier>
<name component> :: = <identifier> : <identifier>
<name component> :: = <identifier> ({ <expression> # , } +)
<name component> :: = <identifier> : <identifier> ({ <expression> # , } +)

% attribute call
<name component> :: = <identifier> return (<expression>)
<name component> :: = <identifier> : <identifier> return (<expression>)
<name component> :: = <identifier> ({ <expression> # , } +)

return (<expression>)
<name component> :: = <identifier> : <identifier> ({ <expression> # , } +)

return (<expression>)

Appendix C
Conventional Design Issues

Besides the main areas of research, the design of Paragon contained many little details that

always appear in a language design. Some of these details were easy to create, since many

previous language designs had already worked them out and I could pick the ones I liked.

Other features of Paragon were not as common in other languages and so the details were

not as easy to define. In some cases, the wrong details were added the language. This section

presents some of these uncommon, yet conventional language components, namely iterators,

type parameters and literals. This discussion is intended largely as an aid to future language

designers, and does not represent research topics, just some friendly advice I learned from

this experience.

C.1. Iterators

Iterators were provided as a generalization of the for loop construction that is usually

present in a language. Unfortunately in Paragon, the index variable used in a for loop was

designed improperly. First, the for loop mechanism violates the one object per identifier rule

in Section 2.2.2. Second, an unused object is elaborated and attached to the index identifier.

Third, selection analysis is performed on index identifier.

Each of these problems was caused by not realizing that the index variable in the for loop is

really part of the iterator, and not part of the program that contains the for loop. A better way

to view the entire iteration process is to consider the for loop to be a procedure that takes one

parameter, the index variable, and that the iterator calls this procedure every time a yield

statement appears in the iterator [Moss 78]. The object associated with the index variable is

determined solely by iterator and not by the program containing the for loop. in fact, different

calls may associate different objects with the index identifier, but this is permitted where the

for loop becomes a procedure, since it is perfectly reasonable to allow different objects to be

passed as parameters to any other procedure. However, this view implies that index variables

Appendix C. 1 Iterators 314

should not be declared in the program containing the for loop, and this is the key mistake in

the iterator design.

Because the index variable is declared in an accessible scope of the for loop, it will have an

object created when that declaration is elaborated. Yet that object will be discarded when the

for loop is executed the first time. Because the for loop makes the previous Object

unreachable, the declaration creates a wasted object (unless the object was created and used

before the for loop with the intention of never using the object after the for loop, a dubious

practice at best). Therefore, no object instantiation should be permitted in the variable

declaration for an index variable.

if the variable declaration were present, even without an instantiation name component, it

would be represented in the possibility tree and the selection mechanism would attempt to

perform object selection on it. But the implementation for the index variable is determined

solely by the returned implementation of the iterator, and like all procedure return objects, this

implementation is determined by elaborating the call with implementations and not by the

policy procedure. Thus no selection should be performed for index variables, and they should

not even be declared in the program. Instead, index variables should be implicitly declared in

the for loop, deriving their specifications and implementations implicitly from the iterator call.

C.2. Type Parameters

The use of type parameters represents a novel aspect of Paragon, since types are passed

through t!~e use of indefinite instances. The motivation for this technique was the additional

number of names that were present when an extra level of generic instantiation was required

to pass type parameters, as in Ada or Clu. In the initial design, a prototype was instantiated

with types, to create more types, and then types were instantiated with objects to create more

objects. Thus another level of declaration and instantiation was required for each type. This

worsened the declaration verbosity problem mentioned in Section C.4 even beyond my

patience.

As a result of the decision to use indefinite instances as types, an unusual parameter

passing situation could occur and an unusual run-time error was possible. The basis of both

of these circumstances is in the inability to determine at compile time if a parameter is a type

or an object. A rather contrived example illustrates this:

Appendix C.2 315

c lass c i s
begin

procedure pc;
end;

procedure f (p : c) i s
begin

var x => new p;

p .pc;
end ;

var Global => new c;

f (G l o b a]) ;
f (c);

The procedure f has one parameter, which is an indefinite instance of c. The two calls of f are

well specified, since the definite object G/oba/matches the indefinite instance of c and the

indefinite instance c matches itself. Inside of f, the parameter p is used in two different ways.

First, the variable declaration creates a new object with the same structure as the parameter.

Thus p is used as a type parameter. Second, the procedure call invokes a procedure inside of

the parameter, hence using p as a definite object: procedures may not be invoked inside of

indefinite instances, in general, there is no way at compile time to determine if the passed

object w, iH be a definite instance or an indefinite instance. Thus the first call of f(Globa/) is

defined but the second call, f(c) causes a run-time error when the call of pc is attempted

inside of an indefinite instance.

Type Parameters

The facility shown above permits a programmer to use the same parameter as a type and as

an object. However, I have yet to see any value for that specific ability. But, it does cause the

described run-time error, so it should probably be corrected in a future language design. The

way to deal with this problem is to separate type parameters from nontype (definite object)

parameters in expressions. If this could be done without adding another level of explicit

instantiation, it would be a better alternative to the current Paragon design. As of this writing, I

have not completed a design that I feel would be an adequate substitute for the current

design, but I believe that some thought would provide one.

Appendix C.3 Literals 316

C.3. Literals

Because Paragon contains only objects, and no values, titerals represent something of a

problem. Usually, one can consider a literal as representing the object with that value. This

view leads to problems when parameters are passed by reference, which is the only way that

Paragon parameters are passed. The famous early Fortran problem of changing a literal value

would result if Paragon adopted the view that literals were names for predefined objects, as is

illustrated below:

c lass c(IM. p: Integer) is
begin

p := 5;
end;
, , ,

v a r v => new c (4) ;

The creation of the object for the variable v would cause the assignment statement in class c

to be executed, changing the value of the object 4 to the value of the object 5.

To eliminate this problem, Paragon adopted the strategy of letting literals denote functions

that return new objects with the appropriate value. Thus every time 4 was called, a new object

with a value that acted as a four was created and returned. Thus assignment, or any other

operation using integers, could be performed on the new object without affecting the value of

the literal 4. 96

This approach has an unusual drawback: it prevents the use of literals in formal parameters.

Because Paragon permits definite instances to appear in formal parameters, one may want to

use this facility to restrict actuals to include only objects that are composed with a definite

instance. A typical example would be specifying a sorting procedure that only worked with

arrays having a lower bound of one. One would like to write:

procedure Sor t (Ar rayManager . A: A r r a y (l , IM . N: I n t e g e r)) ;

which would specify that an array may be passed with a lower bound of one (and the upper

bound being bound to the identifier N). In Paragon, however, each occurrence of the literal 1

is a function call that always returns a new object,, so when creating an array with a lower

bound of t, a new Integer object would result as the lower bound for the Array object. This

new object is different from the object created for the function call of 1 that is specified in the

96This also permits the bizarre but well specified statement 1 : = 2.

Appendix C.3 Literals 317

procedure declaration above. A call on Sort using that array would not be well specified since

the two definite instances are not identical. To achieve the desired result, the following code

fragment would have to be present:

var One => TM . new In tege r ;
var MyArray => AM . new Ar ray(One, lO0) ;

procedure Sort(ArrayManager . A: Array(One, IM . N: I n t e g e r) ;

One := 1;

Sort(MyArray) ;

This is extremely clumsy and unreliable. After all, there is nothing that prohibits some other

assignment statement changing the value of One to some other value. Unfortunately, I was

unable to devise a better scheme for dealing with this problem. As this use of definite objects

in actuals was never used in the example programs, I did not need to place much effort into a

better design of literals.

A second problem with literals stems from their status as objects with types and managers.

Unlike other variables and procedures, literals have no clearly identified manager to whom

they belong. As illustrated throughout the thesis, integers may be used to represent pure

numbers or counts of apples or sizes of oranges. Thus a literal must be associated with one of

these managers. Paragon defines a literal with no explicit manager to belong to the

predefined integers; all other uses of integer literals must have an explicit manager, for

example, AppleManager.4. Although not convenient, the notation serves well enough for the

example programs. In general, the determination of the type of literals can create problems.

There was a great deal of discussion during the Ada design about the proper way to handle

aggregates, which are another form of literals. Although a seemingly trivial point, future

designers of abstract data type languages should give careful consideration to the definition

of literals. For the Paragon design, I have two suggestions.

First, add the concept of immutability from Clu. Objects can be specified as immutable or

mutable, and parameters can be specified as immutable or mutable. The object matching

rules can include another set of tests to ensure that two objects are compatible with respect

to mutab~llty. Then integer literals can represent predefined variables that denote immutable

objects. I would probably adopt this concept if Paragon were to undergo another design

iteration,

Appendix C.3 Literals 318

A second approach would require a slightly different interpretation for elaborating

procedure calls in parameters. The object that is normally returned when a procedure call is

elaborated is the object that results from elaborating the return expression. However, the

procedure invocation actually creates a simple object as well for the elaboration of the body

of the procedure (this simple object is present in the possibility tree). In parameters, this

simple object might be used instead of the returned object. Then matching is done by

comparing the simple objects used for the procedure and not by comparing the returned

objects, or perhaps, by comparing both pairs of simple objects. I believe this approach is too

complex to be used in general.

C.4. Declaration Verbosity

Another general problem with the Paragon approach is the need to explicitly name

everything before it is used. The declaration of a variable with a new type requires five

auxiliary declarations: a class to act as a specification for the manager, a class to act as a

specification for the individual, a class to act as a representation for the manager, a class to

act as a representation for the individual, and a variable declaration that instantiates the

manager class. As noted in Section 4.2, other languages contain anonymous manager or

individual declarations, and anonymous or implicit manager creations. Much of the verbosity

and clumsiness of Paragon could be alleviated by adoption of these techniques.

A similar, but trivial problem, is the lack of multiple object declarations. Each variable

declaration created exactly one object. Thus, to declare three integers, one had to write:

var i => IM . new Integer;

var j => IM . new Integer;

var k => IM . new Integer;

It would have been convenient, and not difficult, to allow multiple object declarations, such

as:

var i,j,k => IM . new Integer;

which could have the same semantics as the first piece of program text. Another iteration of

the Paragon design would have included this feature.

Appendix C.5 Expression Verbosity 319

C.5. E×p ression Ve rbosity

Another' drawback in Paragon'$ use of the manager model is the use of managers

throughout expressions to denote the manager in which an operation is declared. The

ubiquitous presence of the manager names clutters the program text immensely. Some better

syntactic sugar is needed to eliminate the need to explicitly mention the manager.

Clu contains such a rule by which the manager (referred to as the type in Clu) is determined

by the first parameter to the procedure. This was not adopted in Paragon because the

manager was not a type, but a separate object. Taking the outermost simple object of the first

parameter of a procedure call as the manager may not be correct if the first parameter is

composed of more than two simple objects. Further, it is desirable that all such syntactic

sugaring be transformable into an identical program. This is not possible since Paragon

permits managers to be returned from a procedure call. For example, suppose a programmer

wrote f(a) - = b. A simple rewriting would take the form manager(f(a)).Assign(f(a),b). However,

there is no guarantee that the manager returned by the first call of f is the same as returned by

the second call of f. Yet a simple analysis following the Clu example would process each

parameter and then use the manager of the first, thereby guaranteeing that the manager for

the Assign procedure had to be identical to the manager of the first parameter, a situation that

the programmer could not normally express. In retrospect, this criticism does not seem worth

the elimination of this kind of syntactic sugar.

In summary, another approach should concentrate on explicitly providing the manager

model of data abstraction, and then include necessary syntactic sugaring and anonymous

Instantiations to provide conciseness as necessary.

Appendix D
Glossary

Almost Identical Same as similar.

Ancestors All classes that are inherited transitively (through parents).

An}/Instance An object that results from the instantiation of the predefined, but
undenotable class, any. All objects match the parameterless any instance.
If the any instance has parameters, then any object that has parameters
that match the parameters of the any object also matches the any object.

Capsule Red [Nestor 79] term for module.

Class SmaUtalk, Simula and Paragon term for module.

Class Instantiation The process of creating a simple object from a class.

Cluster Clu term for (data abstraction) module.

Compatible An object is compatible with another if it matches the other. A component
of an object is compatible with another if it matched the other component.

Component A component is a single layer or piece in an environment, object,
composition, structure or expression.

Compose To use a parameter, usually a type parameter. Sets are composed with a
type to create sets of that type.

Composition The composition of an object is a list of the unique identifiers, any
notations and this notations that correspond to each of its simple objects.
(any notation is used when an indefinite instance is <present, this notation
is used when a self reference is present.)

Creation Environment
The environment in which a class instantiation takes place. This is the
same as the declaration environment for the name component specifying
the simple object creation.

Appendix D 322

Declaration Environment
The environment in which the formal parameters are elaborated during an
object creation or a procedure invocation, tt is so called because the
declaration environment provides a simple object for each self reference
that is present when the original declaration was elaborated or checking if
the declaration (of the class or procedure) was well specified.

Defined Parameters
All parameters in a class declaration that are not inherited.

Definite Instance A simple object that results from the elaboration of definite simple object
creation name component, that is, a name component with the reserved
word new.

Description Name Component
A description name component provides a way to access the Instance
object associated with a doppelganger.

Doppelganger The simple object that results when elaborating object creations or
procedure invocations with specifications. A doppelganger is associated
with a realization of an Instance which is in the possibility tree.

Elaboration with Implementations
One of three kinds of elaboration performed on a program. Elaboration
with implementations performs feasibility checking of program. This
includes, but is not limited to, finding feasible procedure implementations
for every procedure call and checkings that the implementations selected
for variables nest properly.

Elaboration with Realizations
One of three kinds of elaboration performed on a program. Elaboration
with realizations corresponds roughly to conventional run-time execution
of a program.

Elaboration with Specifications
One of three kinds of elaboration performed on a program. Elaboration
with specifications corresponds roughly to the semantic analysis of a
program.

Envelop Pascal.Plus [Welsh 79] term for module.

Environment An environment is an object, i.e., same as Object.

Execution Same as Elaboration with realizations.

Expression Name expressions and syntactic forms that can be transformed into name
expressions.

Appendix D 323

Extended Class Declaration
The list of declarations that results if one concatenates all of the
declarations of a class and its ancestors, in leftmost elaboration order.

Form Alphard term for module.

Function A procedure that has a return expression in its specification.

General Procedure 1. A procedure implementation that only uses abstract properties of an
object. An example is a procedure that implements set intersection using
only iteration, membership and insertion operations on sets. More
precisely, only procedure specifications and other general procedures are
visible for all procedure calls in the general procedure declaration

2. A procedure specified in a generalization class, such as Assign is in the
AssignableManager.

Generalized Specification
A specification that is to be further refined into
specification before being used to declare objects.

a more restrictive

Generalization Class
A class that is inherited by specification classes. Note: this is really a use
of a class. A class may be used as a generalization, specification or
implementation class.

Identical Simple Object
Two simple objects are identical if they resulted from the same
instantiation of a class or the same invocation of a procedure. (Because
the same elaboration of the object instantiation or procedure invocation
name expression created the identical simple objects, their parameters
must be identical as welt.)

Identical Objects Two objects are identical if the corresponding simple objects in each
component of the object are identical.

Implementation Class
The class selected as the representation for a variable.

Implementation Path
An .implementation path for a variable declaration is a path where one end
is the class used as the specification of the variable and the other end is
the class used as the implementation of the variable.

Implicit DeclarationAn implicit declaration of an identifier occurs when a name component is
labeled with an identifier followed by a colon. This notation implicitly
declares the identifier to denote the object that results from elaboration of
the name expression up to and including that name component, or to

Appendix D 324

denote the object that matches the same resulting object during
parameter comparison. Implicit declarations are only permitted in
parameters.

Indefinite Instance An instance that did not come from a definite (or concrete) object
creation. It results from elaborating an indefinite instance name
component and corresponds to "any" definite instance of the class in the
name component. Operationally, the differences between a concrete or
definite instance and an indefinite instance is that only the attribute
variables are elaborated in an indefinite instance while all variables are
elaborated in a definite instance.

Indefinite Instantiation
The process of creating an indefinite instance.

Inherited Parameters
Parameters that are not defined in a class declaration. Inherited
parameters are defined in one of the class's ancestors, though any
inherited parameter need not be identical with the parameter so defined in
the ancestor. (Inherited parameters need only match the corresponding
parameters in immediate parents.)

Instance 1. A simple object that results from elaborating an indefinite instance,
object creation, any or self-reference name component,

2. A predefined class used for realizations in the Possibility Tree.

ln;ocation Environment
The object in which a procedure invocation takes place.

Interface Module Mesa phrase for module specification.

Iterator A procedure that has a yield expression in its specification.

Leftmost Elaboration Order
An ordered list of inherited classes in which all transitively inherited
parents (that is, ancestors) are listed. It is created by concatenating the
leftmost elaboration order of each parent of the class (in order that the
parents are given), eliminating duplicate class names when they appear a
second time in the list, and appending the class for which the leftmost
elaboration order is beingdefined. The leftmost elaboration order for the
example below is Top, Middle t, Middle2, Bottom.

class Top ts begin end;
class Middle1 of Top is begin end;
class MfddteZ of Top is begin end;
class Bottom of Middte l , Middle2 is begin end;

Appendix O 325

Leftmost Parent Order
An ordered list of inherited classes in which all transitively inherited
parents (that is, ancestors) are listed. It is created by starting with the
class for which the order is being defined and then concatenating the
leffmost parent order for each parent in the parent list, eliminating
duplications when they appear a second time in the list. The leftmost
parent order for the example below is Bottom, Middle 1, Top, Middle2.

class Top is begin end;
class Riddle1 of Top ts begfn end;
class Middle2 of Top is begin end;
class Bottom of Hiddlel, Middle2 is begin end;

Local Instance A piece of storage that results when making a simple object. There is a
bijection between the local instances in a simple object and the class
declarations that make up the extended class declaration for the
underlying class of the simple object,

Local Instance Set The set of local instances that make up a simple object.

Match An object matches another if by removing some number of components
(including none) of the first, it then pairwise matches the second.

Module Encapsulation mechanism in a language in which some collection of
information is written. Frequently, but not always, modules have identifier
visibility rules that permit some subset of the information defined inside of
the module to be available to parts of the program outside of the module.
Also the Modula and Mesa term for module.

Most Preferred Match
The match that is used for parameter binding when more than one set of
deletions of simple objects between differently sized objects (in nesting
levels) results in a successful match.

Name Component A syntactic unit between two periods (.) in a name expression. This is the
basic unit of action in a Paragon program. There are name components
for object creation, indefinite instances, any instances, self references,
procedure invocation, attribute invocation, attribute checking, description
and structure extraction. Several kinds of name components are syntactic
sugar for other name components, such as integer literals (for example,
3), array element selection (for example, [i]) and pointer dereferencing (~).

Name Expression A list of name components separated by periods.

Object An object is an environment. An object is also a set of nested simple
objects. Each of the nested objects was instantiated from a class
declaration that was nested in the underlying class of the enclosing
object.

Appendix D 326

Object Creation Same as class instantiation when a new name component is elaborated.

Package Ada term for module.

Package Body Ada term for module implementation.

Package Specification
Ada term for module specification.

Pairwise Compatible
An object is pairwise compatible with another if the two objects have the
same number of simple objects and corresponding simple objects are
compatible. Compatibility may take place at either the structural
(underlying class only) or compositional (creation or invocation
expression) level of an object.

Pairwise Match

Parameter

Same as pairwise compatible.

One expression in a list of expressions that follow a procedure or class
identifier in a declaration, procedure invocation or class instantiation.
Identifiers may be implicitly declared in a parameter by placing them in
front of a name component and placing a colon (:) between the identifier
and the name component. For example, the expression/M, i :/nteger may
be used as a parameter which implicitly declares i,

Path A list of class identifiers such that each identifier denotes a class that is an
immediate parent of the class denoted by the following identifier.

Policy Procedure A user.provided Paragon procedure that is interpreted by the translation
system for performing representation selections for variables in the user's
program.

Possibility Tree A data structure that is manipulated by the policy procedure. The
possibility tree represents the user's program.

Preferred Match Given two ways that two objects match, the preferred match is the one
which compares the innermost simple objects available and deletes the
outermost simple objects available.

Procedure Implementation
1. A procedure that may be used during elaborations with realizations.
This is a procedure that is declared with a block (begin/end) and is not a
respecification (lacking specified with.)

2. A procedure declaration that is selected for a procedure call during
elaborations with implementations.

Appendix D 327

Realized Instance 1. A instance that results from elaborating an object creation name
component with realizations.

2. A definite instance of the predefined Instance class that results when
the translation system creates the possibility tree.

Realized Simple Object
An instance that results from elaborating an object creation name
component with realizations. (Only the first definition for realized
instance.)

Restricted Class Declaration
The declarations in a single class, excluding the ancestors of the class.

Self Reference 1, A name component that contains the reserved word this.

2. A simple object that denotes the containing simple object that results
when elaborating a name component that contains the reserved word this.
These simple objects only result when processing class and procedure
declarations,

Shared Specification
A specification that describes more than one kind of object.

Similar Environments
Same as Similar objects.

Similar Invocations Same as Similar procedure calls.

Similar Objects Two objects are similar if they have the same number of simple objects
and their simple objects are similar.

Similar Procedure Calls
Two procedure calls are similar if they use the same procedure
implementations, their parameters are similar and their environments are
similar.

Similar Simple Objects
Two simple objects are similar if they have the same underlying class, if
the objects denoted by their variables are similar and if the parameters are
similar.

Simple Object A simple object is created by instantiating a class or invoking a procedure.
Simple objects are contained in other simple objects which together make
up an environment (or object).

Specific Object Creation
Same as object creation.

Appendix O 328

Specification ClassThe class denoted by the identifier following the reserved word new in an
object-creation name component in a variable declaration.

Specified tnstance 1. A instance that results from elaborating an instantiation name
component with specifications,

2. The instance of an object that results when elaborating the class
mentioned in the type of the variable rather then the simple object that
results when using the implementation class for the variable,

Specified Simple Object
Same as specified instance.

Statement Environment
The environment in which the actual parameters in a name component are
elaborated. So called because it is the environment in which the statement
containing the parameter is elaborated.

Structure A list of the underlying classes that were used in the instantiations of an
object.

Subsume One path subsumes another if one path is a sublist of the other.

This Notation A way to denote that the simple object being referenced is the enclosing
definite instance of the named class. For example, the notation this Set
inside of the Set class denotes the current definite instance in which the
name component this Set is being elaborated. The same notation is used
when a self reference is represented in the list of simple objects for an
object.

Type The object that results from elaborating, with specifications, the
expression fo'.lowing the special symbol = > in a variable declaration.

Type Parameter A parameter that contains implicitly-declared identifiers that are used in
formal parameters or object.creation name components.

Underlying Class The class from which a simple object was instantiated.

Underlying Implementation
The class used as the underlying class for the simple object created or
shared in an object-creation name component during elaborations with
implementations and realizations.

Underlying Specification
The class specified in the object specification in a specific object creation
component, for example, the identifier Classname in new Classname.

Appendix O 329

Uninstantiated Environment
The composition consisting of only self references that denotes the
environment of a declaration that is independent of any object
instantiations,

Universal Class The class in which the predefined identifiers, the policy procedure
implementation and the user program are declared.

Unrestricted Identifier
An identifier not in an expression or not preceded by a dot (.) in an
expression.

Unspecified Instance
An instance that did not come from a definite (or concrete) object
creation. It results from elaborating an unspecified instance name
component and corresponds to "any" definite instance of the class in the
name component. Operationally, the differences between a concrete or
definite instance and an unspecified instance is that only the attribute
variables are elaborated in an unspecified instance while all variables are

elaborated in a specific instance.

Unspecified Instantiation
The process of creating an unspecified instance.

Unused Local Instance Set
The unused local instance set consists of those local instances that were
once used for the simple object associated with a variable but have been
removed because classes associated with the local instances are no
longer ancestors of, or the same as the implementation class of the
variable.

Appendix E
Abstract Data Types Used in the Examples

This appendix gives a brief description of two abstract data types, sets and lists, used in the

example programs in Appendix F. First, a brief description of each abstract data type is

provided, followed by a short discussion of how attribute procedures perform their

measurements. The rest of the appendix contains program text for the specifications and

implementations of sets and lists.

E.1. Overview of Sets

The specifications for the sets used as an abstract data type are modeled after the sets

specified by Low in his system [Low 74]. The same operations are present, though the names

may differ. For example, the membership procedure is called lsMember while in Low's system

there is explicit syntactic sugaring that corresponds to conventional set notation.

As much as possible, the implementations for sets are also taken from Low's system. One

deviation is the use of B-Trees instead of AVL Trees, but this does not invalidate the general

goal of providing a reasonable collection of set implementations.

One difference in the semantics between Low's sets and Paragon's sets is that Low allowed

the sets to grow to arbitrary sizes while Paragon does not specify if the sets are finite or

infinite. Different implementations provide different kinds of sets.

After the specifications for sets, six different implementations are provided. The

implementations consist of unsorted and sorted singly-linked lists, unsorted and sorted

arrays, a B-Tree implementation and an attribute-bit implementation.

Appendix E.2 Overview of Lists 332

E.2. Overview of Lists

The specifications for the lists used as an abstract data type are modeled after the lists

specified by Low in his system [Low 74]. The same operations are present, though the names

may differ. For example, the insertion procedure is called AddBeforetndex in Paragon while in

Low's system there is explicit syntactic sugaring that corresponds to list insertion.

One difference in the semantics between Low's lists and Paragon's lists is that Low allowed

the lists to grow to arbitrary sizes while Paragon does not specify if the lists are finite or

infinite. Different implementations provide different kinds of lists.

As much as possible, the implementations for lists are also taken from Low's system.

Because the program text for sets illustrates most of the features of Paragon, the list

representations need not be extensive for illustrating the language. Therefore, only three

implementations of lists are given: singly-linked lists, doubly-linked lists and arrays. These

implementations are given after the program text for the list's specification.

E.3. Assumptions about Attribute Procedures

The attribute procedures had to include some measures of time and space requirements so

the policy procedures could make selection decisions. Since the thesis is not trying to break

new ground in representation-selection algorithms, the values returned by the attribute

procedures need not be accurate. Therefore the attributes provide only rough approximations

of the space and time requirements. The values returned by the attributes try to capture the

asymptotic nature of the implementations. To achieve these approximations, the following

guidelines were used for measuring the cost of attributes in implementations:

• Every integer requires I unit of space.

• Every bit requires I unit of space.

• Every pointer requires I unit of space.

• Every array requires the number of elements times the size of the element units of
space.

• Every statement requires 1 unit of time.

• Only the first bracket of a bracketed statement is counted for time units, not both.
Thus in a while loop, the while counts as I unit of time and the end loop counts as
0 units of time.

Appendix E.3 Assumptions about Attribute Procedures 333

• The unit counts for statements in a loop are multiplied by a factor which
represents the number of times a loop is executed. In most examples, this is a
linear, square or log 2 factor.

These rules are only guidelines. In some procedures, some extra units are arbitrarily added

because an assignment statement has many procedure calls in it.

Attributes in specifications were intended to reflect a large but appropriately scaled value.

For example, iteration over all elements of a list is proportional to the length of the list, but a

large constant factor is included so that the specification appears to perform worse than an

implementation.

(Sections E.4 tllrough E.14 have been omitted in this edition. An unabridged version of this

thesis is available from Carnegie-Mellon University and contains the complete Paragon text

for each implementation.)

Appendix F
Applications Programs

This appendix gives the sources of the application programs described in Section 7.3.2.4.

Six programs are provided: a program that finds a set maximum, two insertion sort programs

adapted from programs that Low wrote [Low 74], a merge sort program, also written by Low, a

transitive closure algorithm adapted from one of Rovner's examples [Rovner 76] and a

Huffman encoding program adapted from by a paper by Freudenberger [Freudenberger 83].

F.1. Set Maximum

$e~Hax example main program

c l a s s HatnProgrem ts
begin

v a r IntSetHanager => new SetManager(XM. Tnteger) ;
v a t WorktngSet => TntSetNanager , new Set;
van t => XM , new Tnteger;
v a r j =) IM . new In teger ;
v a t $etStze => IM . new In tege r ;
v a t HaxSeen => IM . new In teger ;
v z r Total => IN . new In tege r ;

IH,Read(SetStze);
f o r ~ ~n IM,Sequence(1.Se~Stze) do

tM,Read(1);
IntSetMeeager, Inse~, (Work lngSe~, t) ;

end f o r ;

Total : " O;
f o r j ~n ZntSetManeger.Members(WorktngSe~) do

Total :~ Total + J;
end for;

I N . w r i t e (T o t a l) ;

M~xSeen := -1 ;
f o r ~ tn lotSetManeger,Members(WorkingSet) d o

tf J > MaxSeen then
MaxSeen := J ;

f+;
end f o r ;

IH.Wrtte(MaxSeen);
end;

Appendix F.2 Insertion Sort # 1 336

F.2. Insertion Sort # 1

| . ;

I INSRT2 exemple main program
] . ;

c lass MatnProgram ts

begin

vat IntSetHanager => new $etManager(IM.Tnteger) ;
va t In tL is tHenager => new L i s tManager (IH . In tege r) ;

va t UnSorted => IntSetHanager • new Set
where SetSize => 100;

vat Sorted => TntListHaoeger . new L iSt
where L is tS tze => 100;

vat Count => IM . new In teger ;
va t i => IN . new In teger ;
va t Obj l => TM. new Integer;
va t Obj2 => ZM. new In teger ;

comment F i r s t construct an Unsorted set :

In tSetManager.Clear(Unsor ted) ;
IH,Read(Count);
f o r I in IH.Sequence(1,Count) do

IH.Reed(Obj l) ;
In tSetMenager . Inser t (Unsor ted,Ob~l) ;

end f o r ;

I n tL i s tManager .C lea r (Sor ted) ;

f o r Obj l in IntSetHanager.Members(Unsorted) do
Count := 1;
wh] le Count <= ZntListManager, Length(Sorted) do

Obj2 := In tL is tHanager ,GetZndex(Sor ted,Count) ;
i f Obj2 >= Ob~l then

ex t t] oop ;
e lse

Count := Count + 1;
t i ;

end loop;
ZntLtstMeneger,AddBeforelndex(Sorted.Coun¢,Ob~l);

end f o r ;

f o r ObJ2 tn IntLtstManager.Members(Sorted) do
IM.Wrt te(Obj2) ;

end f o r ;

end;

F.3. Insertion Sort # 2

| . ;

! INSRT3 example main program
| . ;

class HatnProgram Is

begin

var IntSetHanager => new SetManager(IM. In teger) ;
va t IntLtstMnnager =) new LtstMan&ger(IM.Znteger) ;

yap UnSorted => IetSetNanager . new Set
where SetSize => 100;

yap Sorted => In tL ts tMaeager , new L i s t
where L ts tS tze => 100;

vat t => IM . new In teger ;
va t Obj l => IN. new In teger ;
yap ObJ2 => IM. new In teger ;
va t Count => IN, new In teger ;

cement F i r s t construct an Unsorted set ;

Appendix F.3 Insertion Sort # 2 337

In tSetM~nager .C lear (L~sor ted) ;
IH.Reed(Count); ~
For I tn IM.Sequence(1,Count) do

IM.Reod{Obj l) ;
IntSetHenager. Inse~(Unsorted,ObJl);

end foP;

In tL ts tManager .C lear (Sor ted) ;

f o r Obj l Jn IntSetManager.Members(Unsorted) do
Count := 1;
fop ObJ2 in IntL istNanager.Members(Sorted) do

if ObOE >= Obj l then
e x t t l o o p ;

e lse
Count := Count + 1;

end f o r ;
In tLts tHanager .Addeefore lndex{Sor ted,Coun~,Ob~l) ;

and f o r ;

f o r Ob~2 tn IntL~stManaoer.Members(Sorted) do
IM.Wr~te{Ob~2);

end fo r ;

end;

F.4. Merge Sort

! NERGE example main program
t . ;

c lass MetnProgram t$

be91n

yap [ntSetManager -> new SetMenager(IM.Znteger) ;
yap IntL~stManager ,> new L ts tManager (IN . In teger) ;
yap LtstLtstMnnn9er =) new L ts tMana9er (In tL t s tMansger ,L t s t) ;

yap UnSorted => IntSetManager . new Sat
where SetStze ,> 100;

va t Sorted => In tL ts tManager . new L i s t
where LtstSJze => 100;

yap L~tM1 => In tL ts tManager . flaw L i s t ;
yap L~tM2 => In tL ts tManager . new L t e t ;
yap Merger => IntL~stMnnaoer . new L i s t ;

v a t 01dLts ts => L fs tL ls tMannger . new L~et;
v e t NewLtsts => L ts tL ts tManager . new L i s t ;

yap Count -> IM . new In tege r ;
va t t n r t n t t y => IH . new In tege r ;
van Objl => IN. new In teger ;
yap Obj2 => IN, new In tege r ;
yap I => IN. new Tnteger;

(:olsment F t r s t cons t ruc t on Unsorted sot ;
~ntSetMnneger.Cleer(Unsorted);
IN.Read(Count);
f o r I ~n IM.Sequence(1,Coont) do

ZM.Read(ObJZ);
lntSetMannger. Znser t (Unsor ted,ObJ l) ;

end f o r ;

comment Create l ~ s t o f 1 le t s to be merged;
L t s tL t s tNanage r .C lea r (O ldL t s t s) ;
for ObJl in IntSetMannger.Nembers(Unserted } do

L is tL ts tHeneger .kddAf te r Index(O ldL ts ts ,O ,Zn tL ts tNenager .Cons t ru t tL i s t (ObJ1)) ;
comment put new({ { ObjE } }) to te 01dLts ts a f t e r O;

end for ;

Lts tL ts tMsnager .C lear (NewLts ts) ;
En f l n l t y := 999999;

Appendix F.4 Merge Sort 338

while LtstListXanager.Lenflth(OldL~sts) > 1 dO
whi le LtstListHanager.Length(OtdLfsta) > I dO

comment The fol lowlng two are Lops ;
In tL is tManager ,Ass~gn(L i tHt ,L is tL ts tManager .Greb(OldLt l ts)) ;
IntListManager.Asstgn(L|tMZ,ListListHanaRer.Grab(OidLtsts));
IntLtstHanager,Clear(Merger) ;
whi le (IntL is tManager.Length(Lt tMl) > 0) or (IntLtstHanaRer.Length(LttH2) > O) do

i f IntLtstManager.Length(LttH1) - 0 then
ObJ1 := I n f i n i t y ;

else
Obj1 := TntLtstManager. F t r s t (L t tN1) ;

f t ;
i f lntLtstManager. Len9th(LttM2) = 0 thee

Ob~2 := I n f i n i t y ;
else

ObJ2 : : In tL ts tNanager .F i rs t (L i tN2) ;
f t ;
i f Ob~l < Ob~2 then

In tLts tHanager .AddAf ter Index(~erger , In t l ts tHanager . Length{Merger) , Ob~l);
IntLtstNanager.Removelndex(LttMl,1);

else
ZntListXanager.AddAfterIndex(Merger,IntLtstXanager. Length(Merger), ObJ2);
IntLtstXanager.RemoveIndex(LitM2,t) ;

f t :
end]cop;
LtstLtstHanager,AddArterIndex(NewLtsts,O,Xerger);

end loop;
i f LtstLtstManager.Length(OldLists)) 0 then

ListListManager,AddArterZndex(HewLists.O,ListLtstManager,Grab(OldLtsts));
f t ;
LtstListManager.Asslgn(OldLtsts,NewLtsta);
LfstListManager.Cleer(NewLtsts);

end loop~

IntL ls tXanager .Asstgn(Sor ted,Lts tLts tXaneger .Grab(OldLls ts)) ;

comment Pr in t sorted l i s t ;
f o r Ohm2 tn IntLtstNanager.Members(Sorted) do

IM.Wrtte(Ob~2);
end fo r ;

end;

F.5. Transit ive Closu re

! . ;
! TransClo example main program

class MslnPregram ts
begtn

class PatrManager of AsstgnableMamsger ts
begin

c]ass Pair or Assignable ts
begin

v a t Domain => IN. new ~nteger;
var Range => IN, new Xnteger:

end;

procedure Asslgn(L:Petr , R:Pa|r) is
begin

L.Doms4n := R,Dometn;
L.Range : - R.Raege;
re turn;

end;

procedure Equal (L:Patr ,R:Patr) return Booleans.Btt |S
begin

return (L.Domatn = R.Oomatn) and (L.Range - R.Range);
end;

end;

ve t LocelPefrMeneger ~> new Pai r Manager;
va t Psf rSet~neger => new SetManager(LecelPa~rManeger , Pale);

ve t IntSetHanager => new SetXanager(IM . I n tege r) ;

Appendix F,5 Transitive Closure 339

yap Count =) IM . new In teger ;
va t t => IM , new In teger ;
va t Relat ion => PalrSetManeger . new Set;
ve t Re~ated :) IntSetNanager . new Set;
va t NewlyRe]ated :) IntSetManager. new Set;
va t Found =>]ntSetHanageP , new Set;
va t Base => Z~ztSetHanager . new Set;
va t Tamp :> Loca]PairManager . new Pa i r ;

con~ent Read in the r e l a t i o n ;
IN,Read(Count);
f o r ~ in ZM.Seq,ence(1,Count) do

IM.~ead(Temp.Doma~n);
IH.Read(Temp.Range);
Pa~rSetNanager. lnsert (Re]at]on,Temp);

end f o r ;

commenL Read In the base fop the t r a n s | t t v e c losu re . ;
IN.Read(Count);
f o r t in IM.Sequence(1.Count) do

IM.Read(Temp.Domatn);
IntSetManager. Insert(Bese,Temp.Domatn);

end fo~;

lntSetManagep.C]ear(Related);
lntSetManager.AssJgn(NewlyRelated,Base);
whi le]ntSetManager.Size(NewlyRelated) > 0 do

IntSetManager.Clear(Found);
f o r t in IntSetHanager,Members(NewlyRelated) do

~or Tamp Jn PaJrSetManag~r,Hembers(Relat~on) do
t f Temp.Domain = ~ then

lntSetManager. Znsert(Found, t) ;
f t ;

end fo r ;
end foP;
In tSetNanager.Asstgn(Releted, IntSetManeger.Unton{Related,Newl~Related)) ;
IntSetHanager.Assign(Newl~Related,IntSetManager,Subtract~on(Found,Related));

and loop;

contmen~ Pr in t out the resu l t s ;
f o r ~ in ZntSetManager,Members(Re]ated) do

IM,Nr~ te (~) ;
end fo~;

end;

F.6. Huffman Encoding

I Huffman example main program

c lass MafnProgram is
beg~n

commen~ This p¢ogram cteates a Huffmen encod~n 9
Of an in teger str~n 9 ;

va t ln~LtstHanager => new LtstHenager(IM , I n tege r) ;

class CharHapManager o f Ass~gnebteHanager iS
begin

c lass ChavMap of Assignable tS
begin

va t Domatn => In tL is tManager . new L t s t ;
va t Range :> ZM. new In tege r ;

end;

procedure AssJgn(L:ChaPNap, R:CharMap) IS
begin

ZntListManager.Asstgn(L,D0ma~n,R,Domatn);
L.Range := R. Range;
re turn;

end;

Appendix F.6 Huffman Encoding 340

procedure Equat(L:CherMep,R:CherHep) re~urn 8ooleans.8| t ~s
begin

return IntLtstManeger.Equel(L.Domat,:,R.Domate) and (L.Range = R.Range);
end;

end;

var LocalCharMapManager => new CharMapMana9er;
var CharMapSetMana9er => new SetNana9er(LocalCharHapManager . CharMap);

class HTreeNodeManeger of Asst9nableMana9er ts
begin

class HTNode of AsstDuable iS
bogle

var Domain => IutLfstManeger. new L i s t ;
var Next ~> ZntLtstHanager . new L i s t :
vat Value ~> IH , new Znteger;

end;

procedure Ass~gn(L:HTNode, R:HTNode) is
begin

IntLtstManager,Assign(L.Domatn,R,Oomatn);
IntLtstMan~ger.Assign(L.Next,R,Next) ;
L.Valoe := R.Velue;
re turn;

end;

procedure Equal(L:HTUode.R:HTNode) return Booleens.Ntt iS
begin

return ZntLtstManager.Equal(L.Domatn,R,Domstn) end
IntListManaDer. Equal(L.Next,R.Next) end
L,Value • R,Value;

end;
end;

vat HTManager => new HTreeNodeHanegor;
vat HTSetHanager ~> new $etMenager(HTNeneger . HTNode);

class HCodeManeger of AsstgnableManeger |S
begin

class HCharCode of Assignable is
begin

var Source => IntListManager . new L is t ;
var CodeValue => [ntLtstManaDer . now L ts t ;

end;

procedure AssiDn(L:HCharCode, R:HCherCode) is
begin

IntListHanager.Asstgn(L.Source,R,Source);
IntLtstHaneger.Aas~ge(L.CodeValue,R.CodeVe)ue);
r e a m ;

end;

procedure Equa](L:HChaKode,R:HCharCode)
return Booleans,Btt is

beDtn
return IntListMaaager,Equal(L.Source,R.Source) and

IntLlstManager. Equal(L.CodeValue,R.CodeVelue);
end;

end;

vet LocalCodeHanager => new HCodeManeger;
vat CodeSetMan&ger -> new Set#eneger(LocalCodeMeeeger . HChePCode);
vet lntListSetManeger => new SetMenager(ZntListHenager . L t s t) ;

Appendix F.6 Huffman Encoding 341

van Temp => LocalCharHapHanager . new ChanHap;
van Tamp1 => LocalCharHapManageT . new CharMap;
va t Temp2 => LocalChanRapManager . new CharMer;
yap CelJnt =)]N . new In tege r ;
yap t =>]M . new In teger ;
van Va'lue => ZH , new Znteger;
ear ¢ => In tL is tHanager . new L i s t ;
van S => ZntListHanager . new L i s t ;
vae Freq => ChacHapSetHanager . new Set;
ear Chars => rn tL is tSetHanager . new Set;
va t TempList =) IntLisLHanager , new L i s t ;
va t HTree =) HTSe tHansgen . new Set;
van TeMpHT => HTHanager . new HTNode;
van HCode => CodeSetHanager . new Set;
van lED => lntLtstManagen . new L i s t ;
van Te~pCodn => LocalCodeHanager. new HCharCode;
van B => In tL is tHnnager , new L i s t ;
van Hiss ing => Booleans. new B i t ;
ear Found =) Booleans. new B i t ;

procedure GetMin(CharMapSetHanager . F: Set)
return LocslCharHapManager. CharMap;

procedure GetMin(CharHapSetManager . F: Set)
return LocslCharMapMannger.CharMap is

begin
van g => ZH . new In teger ;
va t A => In tL is tHanager . new L t s t ;
yap Tamp =) LocalCharMapMsnager . new CharNnp;
van FtrstTtme => Booleans . new B t t ;

ZntL is tMana9er .C lear (C) ;
N :® 0;
Booleens.Assign(FfnstTtme,Trua) ;
f o r Tamp in ChaH4apsetHsnager.Hembers(F) do

Sf FtPstTtme thee
8oo leans.Ass tgn(F |¢s tT tme.Fa lse) ;
N := Temp.Range;
IntLtstManager,Asstgn(C,Temp.Domatn);

e l se t¢ Temp,Range < N then
N := Temp,Range;
ZntLlstHenager.Asstgn(C,Temp,Oomatn);

f t ;
end f o r ;
Tamp.Range : - N;
Int l tstManager.Assign(Temp.Oomain ,C);
CharMapSetHanager.Delete(F,Temp);
retuPn Temp;

end;

comment Read in the s t r t ng ;
IM.Reed(Count);
fOr t in IM.Sequence(1,Coun~) do

IH.Read(Value);
l n tL ts tHanager .AddBefo re lndex (s , t ,Va lue) ;

end f o r ;

CharMapSetManager. CleaP(Freq);
~ntListSetManager.CleaP(Chars);
f o r Value in ZntLtstManager.Hembers(s) do

Bnoleans.Asstgn(Misstng,Teue);
In tL is tManager .C lear (TempLts t) ;
ZntLts tManager.AddAfter Index(TnmpLtst ,O,Value) ;
f o r Tamp in CharMapSetHnnagar.HembePs{Freq) do

t f ln tL ts tMenager . Equal(Temp.Domain,TempL4st) then
Boolesns.Asslgn(M1sslng,False) ;
CharHapSetNanager.Oelete(Freq,Temp);
Temp.Range :® Temp.Range + t ;
CharMapSetManager,Insert(Freq,Temp);
e x t t l o o p ;

f t ;
end fOP;
t f Missing then

IntLts tSetManager. Znser t (Chars,TempLtst) ;
IntLtstManager.Asstgn(Temp.Domatn,TempLtst) ;
Temp. Range := t ;
CharMnpSetHanager. Znsert(Fneq,Temp);

f t ;
end fo r ;

Appendix F.6 Huffman Encoding 342

HTSetHanager.Clear(HTree);
while CharHapSetHanager. Stze(Freq) > I do

LocalCharMapManager.Asstgn(Templ,GetMtn(Freq));
LocalCharHapHanager,Asstgn(Temp2,GetHtn(Freq));
~ntListMana~r.Assi~n(Temp~D~main~ntLis~ana9er~C~n~t~nate(Temp1~D~main~Temp2~D~ma~n));
Temp,Range ~= Templ.Ran9e + TempZ.Range;
CharMapSetHanager, Znsert(Frnq.Temp);

IntLtstManager.Assign(TempHT.Domatn,Teept.Oomnin);
IntLtstManager.Assign(TempHT.Hext.Tnmp.Domain);
TempiiT.Value := 01
HTSeLManager.lnsert(HTre~,TempHT);
IntListManager. Assign(TempHT.Domain,Temp2,Domatn);
TnmpHT,Value := 1;
HTSetflanager.Insert(HTree,TempHT)~

end loop;

CodeSetHanager.Clear(HCode);
for TempList in IntLtstSetManager,Members(Chars) do

IntListHanager.Clear(HCD);
IntListNanager.Assign(B,Temptist);
BooZeans.Assign(Found,True);
while Found do

Booleans,Assign(Found,False);
for TempHT in HTSetHana9er,Hembers(HTree) do

t f IntLis~Hanager. Equal(B,TempHT,Domatn) then
Booteans.Assign(Found,Troe);
]ntListHanager. Asstgn(B,TempHT.Next);
]ntListManager.AddBeforeIndex(HCD,O,TempHT.Value);
exttloop;

f] :
end for;

end loop;
XntLtstHana9er.Asstgn(TempCodo.Soorce,TempList);
IntLtstManager.Assi9n(TempCodo.CodeVnlun,HCD);
CodeSetHanager. Insert(HCode,TempCodo);

end for;

coemen~ Prtn~ out the results;
for TempCode tn CodeSetN~nager.Members(HCode) do

IM,Wrlte(IntLtstMansger.GerLIndex(TempCade.Source,1));
for t in XntListHanager, Wembers{TempCode,CodeValue) do

IN,Write(t);
end for;

end For;
end;

Appendix G
Sample Output of Translator

This appendix gives a minimally edited output from the prototype translator as it operated on

the examples in Chapter 6.

; ; output from comptler 2,0 Hon 3un 13 13:05:55 1983

; ; leg version 0

;,; input f~ le was f i n t Z f , t c l

; ; compilat ion of f t n ~ 2 f , t r n

comleet ~ f t n t Z f . t r e ;

.

template output f o r reedte 0 |nstences.
.

class u n i v e r s a l e n v t r n n N n t IS
begtn

class transputmenager ~s
begin

class t ranspor table ts begta end;

procedure read#13: (t ranspor tab le) ;
procedure wr~te#17: (t ranspor tab le) ;

and;

class ssstgnablemoneger ts
begtn

class assignable ts begin end;

procedure sssign#50: (I : ess lgnable, r : ess|gneble)
such tha t 1 ,s t ruc ture same as r . s t ruc tu re ;

procedure equal#77: (1 : esstgnable, r : assignable)
return booleens.bl t

SUCh tha t 1 .s t ruc tu re same AS r .s t ruc tu~e ;
end;

closs b~tmanoger of asstgnablemanaQer |s
begin

class b~t of assignable is begtn end;

proce~urn logteeland#133: (b l : b t t , b2 : b~t)
return b l . s t r uc tu re

such that h i , s t r uc tu re same as bZ.s t ruc ture ;
procedure logtcelor#160: (b l : b i t , b2 : b t t)

return h i . s t r u c t u r e
such tha t h i , s t r uc tu re same as bZ.s t ruc ture ;

procedure log ics]not# IT1: (b : b i t)
return b .s t ruc tu re ;

end;

ve t booleans => new bttmeneger;

procedure true#213: return booleans.bt t ;
procedure false#221: retlJrn booleans.b l t ;

Appendix G 344

Class erderedmauager Of asstgnablemansger ts
begin

class ordered of ass4gnable ts begin e,,d;

procedure lessthen~252:(1 : ordered,r : ordered)
return booleans.bt t

such that] , s t r u c t u r e same as r,strueture;
procedure greeterthan#277:(1 : ordered.r : ordered)

re turn booleans.b i t
such tha t l . s t r uc tu re same as r .s~ructure;

procedure lessthanequal#324: (1 : o rdered. r : ordered)
return booleans.bt t

such that 1 ,s t ruc ture same as r , s t r uc tu re ;
procedure greater thanequa]#351:(1 : ordered, r : ordered)

return booleans,btt
such tha t t . s t rue tu re same as r . s t r uc tu ro ;

end;

class hashablemanager Of asstgnablemenager Is
begin

class hashable of assignable is begtn end:

procedure hash#372: (h : hashable)r return tm. t n t e g e r ;
end;

class d~scretemanager uf orderedmaasger, transpu~nnager, hashablemanager tS
begin

class integer of ordered, t ranspor tab le , hashable is begin end;

procedure plus#424: (] : i n t ege r , r : In teger)
return 1 .s t ruc ture

such that 1 ,s t ruc ture same as r . s t r uo tu re ;
procedure minus#451: (1 : t n t e g e r . P : In teger)

re turn 1 .s t ruc tu re
such tha t] . s t r u c t u r e same as r, s t ruc tu re ;

procedure unarymtaos#461:.(1 t in teger)
re turn 1 .s t ruc ture ;

procedure t imes#506: (1 : t n t ege r , r : in teger)
return l . s t r u c t u r e

such tha t 1 .s t ruc ture same as r , s t ruc te re ;
procedure d i v ide#533 : (1 : t n t ege r , r : in teger)

return] . s t r u c t u r e
such tha t i . s t r u c t u r e sane as r . s t r uc tu re ;

procedure sequence#562: (lower : ~nteger.upper : In teger)
~leld lower ,s t ruc ture

such that lower ,s t ruc ture same as upper .s t ruc ture ;
procedure reversesequenco#607: (lower : Integer,upper : in teger)

y i e l d lower .s t ructure
such tha t lower .s t ruc ture same as upper .s t ruc ture ;

procedure l t t e r a l g 6 2 t : (cm.1 : word) return in teger ;
procedure value#632: (f : te teger) return cm,word ;

end;

va t im => new dtscretemanager;
class wordmanager

of assignablemanager, transputmanager ts
begin

class word
of assignable, t ranspor table tS

beg~n
end;
comment Al l o f the word operations were deleted fn th is run.;

and;

va t cm => sew wordmaeager;
class arraymanager(elt : any) ts
begin

class array(tm.lowerbound :]nteger,~m,upperbuund : in teger) ts
begin

procedure element#676: (tm.todex : in teger)
return e l f . s t r u c t u r e ;

end;

end;

Appendix G 345

class refmanager(elt : ae~)
of assiguable~enager IS

begin
cls:ss reference

of assignab]e ts
begtn

procedure value#713: return e l t , s t r u c t u r e ;

end;

procedure allucateNTZZ: return reference ;
procedure free#726: (r : reference) ;
procedure n11#733: return reference ;

end;

~rocedure special make l i t e r a l # ' 4 6 : (t : any) return cm.word ;

procedure logZN1271: (im. i : tnteger) re turn tm. tnteoer ;
procedure log2#%417: (tm.t : tnteger) return tm.tnteger is
begin

vat temp => im.new tnteger;
vat resul t => im.new integer ;
vat one => tm.new integer :
vat two :> im.new tuteger ;
lm.assignN3(one,tm.literal#Z(speciel_makellteral#l(1)));
im.ess ig,#6(two. im.1 i tera l#5(specia lmake_11tera1~4(2))) ;
tm.asstf ln#9(result . im, l t t e p s l f 8 (s p e c i e l m a k e l t t e r a l # 7 (O))) ;
im.assign#10(temp.t);
w~ile im.greeterthen#11(tem~,one) do

im.asstgn#13(result,tm.plus#12(result,one));
im.asstgn#lS(temp,im.dtvidee14(temp,two));

end loop;
return resu l t ;

end;

procedure squere#1430: (]m. t : in teger) re turn im.tnteger ;
procedure square#1451: (tm. t : in teger) return Im. tnteger Is
begin

return im . t tmes# t (i , i) ;
end;

class setmanager(t : any)
of assignablemanager iS

begtn
class set

of assignable ts
begin

a t t r i bu te ve t sets ize => im . l t t e ra i (spec te l_moke_ i t t e ra l (lO)) ;
end;

procedure insert#1475: (s : s e t , t . e : s t ruc tu re) ;
procedure delete#1504: (s : s e t , t . e : s t ruc tu re) ;
procedure ctear#1510: (s : sat} ;
procedure size#IS20: (s : set) return tm,tnteger :
procedure tsmember#1533: (s : s e t , t . e : s t ruc ture) return booleees,bt t ;
procedure unton#1544:(1 : s e t , r : set) return sat ;
procedure subt rac t ion#1555: (1 : s e t , r : set) return set ;
procedure members#1565: (e : set) y ie]d t .structure ;

procedure esstgn#1620:(1 : s e t , r : set) |s
begin

va t e l i ~> new b;
c l ea r# I (1) ;
fop e l t t n members#2(r) do

t nse r t#3 (1 ,e l t) ;
end f o r ;

end;

end:

class ltstmanager(tmenager : essignablemann9er.t : assignable)
of asstgnablemanager tS

begin
class l i s t

of assignable ts
begin

e t t r t bu te ver] t s t s t z e :) tm , l t t e re l (spec ta l .mnke_ t t t e ra l (lO0)) ;
end;

Appendix G 346

procedure addberoretndex#1653: (1 : l t s t , im .pos t t t on : tn teger , t .newel t : s t ructure) ;
procedure addafter index#1665:(1 : I t s t , lm ,pos t t t oe : tn teger , t ,newul t : s t ructure) ;
procedure removetndex#1674:(1 : l t s t , i m , p o s t t l o n : i n t e g e r) ;
procedure c loar#1677:(1 : l t s t) ;
procedure get|ndex#1712:(1 : l t s t , tm ,pos t t t oo : integer)

reture t , s t r uc tu ru ;
procedure length#1722:(1 : l i s t) return tin. Integer ;
procedure f i r s t J 1 7 3 2 : (1 : l i s t) return t . s t r uc te re ;
procedure grab#IT42:(1 : l i s t) return t . s t r uc tu re ;
procedure meebers#1751: (1 : l i s t) y i e l d t . s t r uc tu ru ;
procedure construct l ts t#1761: (t . e l t : s t ructure) return l i s t ;

end;

class arreyset~ansger(tmenoger : asst9nablemanager.t : osstgneble)
Of setmenagor ts

begin
ver errayofob~ectmeoeger -> new erreymeneger(t ,structure);
yer maxarreystze => tm,new integer:
class erreyset

of set is
begin

vat e l t s ,) arra~0rob~ectmenager,new ar rey (tm. l i t e rs l#2 (spec ta lmeke_ l t te ra l# l (l)) .maxar raye tze) ;
YaP lastused => t~.new integer;
tm,ass ign#5(los tused, tm, l t te ra l#4(spec ie lmake l t te re l#3(O))) ;

end;

procedure locatcopy#2040:(1 : e r rsyse t , r : erreyset) ;
procedure loce lcow#2101: (1 ~ s r reyse t . r : erreyset) is
begtn

ver t => tm.new integer;
top t in tm.seqoence#3(tm. l t te re l#Z(spec ia lmake l i te ro l# l (1)) , r . l as tused) do

t~onager .ass tgn#6(1 .e l ts .e leMnt#4(t) , roo l ts .e lemuot#5(t)) ;
and fo r ;

end;

procedure insert#21?6: (s : a r re~sot , t .u : s t ructure) ts
begtn

yaP t => tin.new integer;
fo r t in]m.sequence#3(tm,litorel#2(spectel_muke 11tere l# t (1)) ,s , lns tused) de

i f tmaneger.eqoel#5(s.e]ts.element#4(t) ,e} then
future ;

r t ;
end fo r ;
im~ssi~n#9(s.1~st~s~d~im.p1~s#8~s~1~stused~m~1te~1#7(speci~1-make-1itere1#6(~))));
tmansger.ssstgn#l l (s.el ts.element#lO(s.1ostusnd),e);

end;

procedure delete#2277: (s : e r raysn t , t . e : s t ructure) is
begin

vat t -> tm.new tntegor;
fop t In tm.sequence#3(tm. l t te ra l#2(spec ta lmake l t te ro l# l (1)) ,s , l ss tused) dO

t f tmanager,equsl#5(s.el ts.element#4(t) ,e) then
tmaneger.esstgn#8(s.elts.element#6(t),s.elts,element#7(s.lestused));
im.essign#12(s.lestosed,

tm.m~nus#ll(s.lestused,tm,ltteret#lO(special_mskelfterel#9(1))));
return ;

i t ;
end fo r ;

end;

procedure clear#2312: {e : erre~set) is
begin

lm,usstgn#3(s.lostused,lm.1 t te ra l#2(spec te lmake_ l t te re l#1(O))) ;
end;

procedure size#2327: (s : mrruyset)
return tm,tnteger ts

beets
return s.tostueed;

end;

Appendix G 347

procedure tsmember#2405: (s : e r r a y s e t , t . e : s t ruc tu re)
return boo]ears .b i t ts

begtn
ver ~ => tLnew tnteger~
f o r 1 tn tm.sequence13(tm. l t te ra lH2(specta lmake_1t te re1#1(l)) .s . l&s tused) do

i f tmana9er .equal#5(s .e l ts .e lement#4(t) ,e) then
return t rue#6;

f t ;
end fo r ;
re turn fa lse#7;

end;

procedure union#2536: (1 : a r r a y s e t , r ; ar rays#t)
re turn ar raysat ts

beg~n
ve t o => new arrayset ;
va t t :> tm,new in teger ;
l o c , l copy# l (o ,1) ;
tm.ass ign#2(o .]as tused. l . tes tused) ;
f o r t in tm.sequence#5(Im.literal#4(special make l t t e r a l # 3 (1)) , r . l a s t u s e d) do

i f booleans.logica],ot#8(ismember#7(o.r.elts.element#6(t))) then
im.ass ignH12(o. }astused, im.pIus# l l {o . las tused,

im. l t tera l# lO(spedia lmakel t tern l#9(1)))) ;
tmaneger.asstgn#15(o.elts.element#13(o.lastused) ,

r . e l t s . e l emen t#14 (l)) ;
f t ;

end fo r ;
re turn O;

end;

procedure subtractton#2547: (1 : a r r e y e e t , r : a r rayset)
re turn arrayset ts

~egtn
va t O :> now arrays#t ;
vat 4 :> lm.ne* tn teger ;
f o r 4 tn t m , s e q u e n c e # 3 (t m . l t t e r e l # 2 (s p e o l e l m a k e l i t e r e l # l (;)) . l . l a s t u s e d) do

i f booleans.logtcaIaot#6(tsmember#5(r,l.e]ts~element#4(t))) thee
im~ssi~n#1~(~astused~im~p1~s#~(~1estus~d~im~1ite~1#8~specia1make1itera1#~(~))));
tmanager.asstgn#13(o.elts.element#lZ(o.lastused).l.elts.eloment#12(t));

f t ;
end fo r ;
re turn O;

end;

procedure members#2707: (s : erreyse~)
y i e l d t . s t r u c t u r e IS

begin
ver t => tm.new In teger ;
f o r | in tm.sequence#3(tm, l t tora le2(specta lmakel | teraI# l (1)) ,s . tastused) do

y~eld s .e l t s .e lemen t#4 (t) ;
end fo r ;
re turn ;

end;

~m.asstgn#3(maxerra,ystze. t m . l ~ t e r a l # 2 (s p e c t a l m n k e l t t e r a 1 # 1 (l O 0))) ;
end;

class arra¥1istmenager(tmanager : assigneblemnnager.t : assignable)
of 14stmanager ts

begin
vat mexerraystze -> 4m.new In teger ;
var am :> new ar raymanager (t .s t ruc tu re) ;

class arra¥14el;
of l l s t ts

begin
ve t # I t s => lm.new e r r a y (t m . l l t e r e l # 2 (s p e c t e l m l k e l t t e r e t # 1 (t)) , m a x a r r l . y e t z e) ;
ve t numelts -> tm.oew in teger ;
tm ,ass ign#5(nume l t s , tm . l t t e ra l#4 (spec te l_weke l t t e re l#3 (O))) ;

end;

procedure Tocelcopy#2771:(1 : 8 r rny14s¢ , r : a r ra¥1 Is t) ;
procedure 1ocalcopy#3031: (1 : e r r a y l l s t , r : a r r a y l i s t) ts
begin

ver t ~> tm,new in teger ;
f o r i in tm.sequence#3(tm. l t te ra l#Z(spec ie lmake_ l t te ra l#1(t)) ,maxnr ra ,ys tze) do

tmanager .ess tgemS(I .e l t s .e lement#4(f) . r .e l t s .e lement#5(f)) ;
end fo r ;

end;

Appondix G 348

~rocedure addberoreindex#3173: (1 : arrayltat, tm.posit ton : integer,t.newett : structure) ts
begin

var i => im,new |nLeger;
t r booleans.logicaland#lO(

bneteans.logtcaland#5(
tm.tessthan#l(1,uumelts,maxarrays~ze),
im.greaterthanequal#4(position,tm.lfteral#3(spectalmakeliteral#2(1)))),

im,lessthanequal#9(posttion.
im.plus#8(1.numelts,im.litePal#7(spectel make l i tera l#6(%))))) then

for t in im,reversesequence#l%(position,l,numelts) do
tmanager.assign#17(

1.elts.ele~e~:#lS(im.plos#14(i.tm.liLeratH13(spe¢talmaketi~erai#12(1)))),
l .elts.elemenL#16(i));

elld for;
Lmanager. assign#tg(1.elts.elementN18(position).newult);
im~assi~#~3(~.nume~ts~im.p1us~2(~.n~me1ts~im~1itera1#21(speci~1make~itera1#~(1~)));

f t ;
end;

procedure addafterindex#3341:(1 : arra~ltst . im.pesi t ion : tnteger,t.newelt : structure) ts
begin

ear i => tm.eew integer;
i f booleans.logicalnnd#?(

booleans.logicatand#5 (
im.lessthanHl(1.numelts.maxarPaysize).
im,greaterthanequal#4(posit ion,tm.l t teral#3(specialmakel i teral#2(O)))),

im,lessthanequal#B(positionol.nu~elts)) then
fop i ~fl im.reversesequence~11(

im.plus#lO(posi t ton, im. l i teral#9{specielmakel t teral#8(1))) , l .numelts) do
tmanege~.essign#17(1.elts.eiement#lS(im.plus~14(t.im, llteral#13(special make l i t e r a l # l Z (t)))) ,

1.elts.element#16(~));
end for;
tmanager.esstgn#22(1.elts.element#21(

t~.plus#20(positton,lm.lt teral#lg(speclal_make_lfteral#18(1)))),
newelt);

im~assi~#26~1~nume~ts~im~s#~5(~n~me1ts~im~1it~ra1#24(s~ecia1m~ke1ite~e~N~3(~))));
f t ;

end;

procedure removetedex#3453:(1 : arra.yltst, tm.postttoo : integer) | |
begin

vat t => im,new integer;
i t booleans,le9tcaland#5 (

tm.greaterthanequal#3(positton,tm.lttere1#2(specte1_make_ltteral#l(1))),
tm.lessthenequel#4(posltton ,1.numelts)) then

fOr t in tm.sequence#9(
im.plus#8(pos~tion,im.l~terel#7(apectalmakeltterel~r6(t))},l.eumelts) do
tmanager, asstgn#15(

1.olts,element#lO(t),
1,elts.elementW)4(tm.plusW13(t,tm.1iterel~12(spectalmake.1ttera1#11(%)))));

end for;
im~ssign#19~ume1~s~im~mi~us#18~1~n~me~ts~m~1itera~#17(specie~-mak~-1itera1#16(1))~);

end;

procedure clear#3466:(1 : orrayl~st) ts
begtn

tm,assign#3(t,nLmelts.tm.l t teret#Z(spectalmakettterel#l{O)));
end;

procedure
re~urn

begin
re~ur~

end;

procedure
return

begtn
return

end;

procedure
refute

begin
return

end;

getlndex#3511: (1 : orrayl lst , im.posi t ton : Integer)
t .strocture ts

1,elts.etement#l(pos~tlon);

1ength#3526:(1 : ar roy l le t)
tm,~nteger ts

t.numolto;

first#3546: (I : array11$$)
t ,structure |s

1.etts.elementg3(te. l t terel#2(spectal_makelt terol#%(1)));

Appendix G 349

procedure grab#3674:(1 : erreyl tst)
return t . s&rectero ~e

begtn
vat temp -) now ~;
vet i => im,new integer:
t f ie.greaterthsn#3(1.numelts.tm,ltteral#Z(spectal.make_ltterai#l(O))) then

tman~ger.assign~(temp~1.e1ts.e1ement#6(im~er~1#5(spe~ial-make11ter~1#4(1))));
for t in tm,sequence#13(

tm.l i teralHg(spectalmakelttera1#8(1)).
im,minus#12(1.nnmelts,im, l i t e ra t~ l t (spec ts lmake l t te re l# lO(1)))) do
tmenager.asstgn#lg(

1.elts.element#14(t),
t .elts.element#le(tm.plus#tT(i, im,l~terel#l§(specialmake_ltterelN15{1)))));

end for;
~m`~ss~n#23~1~nUme1ts~im~mlnU~#22~1~n~me1ts~im~1lter~1#21(spec~a1-make1~ter~1#2~(1))));
return re=p:

f t ;
end;

procedure members#3747:(1 : 4rrs$1tst)
¥|sld t ,s t ructure tS

begin
vat t ~> tm.new tnteger;
for] in tm,seqoence#3(tm, l t tera l#2(specta lmakel t tera l# l (1)) , l .nueel ts) do

yield 1.e|tsoelement#4(t);
i f tm.greaterthnnN5(t,l.numelts) then

extt loop;
f t ;

end for;
return ;

end;

procedure constructltst#4012: { t . e l t : structure)
return erre¥1tst ~e

begin
vet t l -> new errey14st:
lm.asstgn#3(t l .numelts, te. l t teral#2(spectel .makel t terel# l (l))) ;
tm~n~er.~ss~9n#7(t1.e1ts.e1ement#6(im.11t~r~1#5(sp~cie1-make-1~tera1#4(1))).e1t);
return t) ;

end;

procedure assign#40§3:(1 : erra~yHst, r : er ray l ts t) t |
begin

ear t ~> ~m,new tnteger;
4m.esstgn#l(1.numelts,r.numolts);
for t t n tm.sequence#4(lm.ltterel#3(spectnl_mekeltteral#Z(1)),r.numelts) do

tmenager, esstgn#7(1,elts.elemnt#5(t),r .el ts.element#6(t)) ;
end for;

end;

procedure eque1#4166:(1 : a r r e y l t s t , r : arr~yl tet)
return benisons.bit ts

begin
vet 4 ") to.new integer;
t f booleans.logtcalnot#2(tm.equellt(1.numelts.r.numnlte)) then

return false#3;
i t ;
for I tn tm.sequence~6(in.l~terel#5(spnctelmakeltterel#4(1)),l,numolts) do

t f b~o1ee~s~l~i~1n~t~1~(tme~e~er~que1~(1~e1ts`e1ement#7~i)~r~e1ts~1e~ent#8~i))) then
return false#lie

i t ;
end for;
return tree#IZ:

end;

tLass~gn#3(mexarr~ystzo.tLl|terole2(spectel_make_ltterel#l(lO0)));
on~;

ctass lainprogree te
begtn

e l f tnlsetmanagor z) now setaeneger(tm.intoger);
vat tntltstmsnager =) new ltstmaneger(tm.tntegur);
vet unsorted =) tntse~maneger.new sot

where setslze -) im.l t terol(spec~sl_mekeltterel(lO0));
vat sorted => tntltst~ennger.new t te t

where 11stsize => tm. l t tere l (specJelm~kel t tore l (tO0)) ;
vet count z> iffi.new tnteger;
vat t => tm.new integer;
rer ob~ "> ~m.new tntogor;
vet ebb2 ,> tm.now ~nteger;

Appendix G 350

]ntsetmana9er.clnarll(unsorted);
tm,reed#Z(count);
for t in tm.sequence#5(tm.1Itera1#4(spectelmake_1Itera113(1)),count) do

Im.reedn(obJl|;
~ntsetmenager. InsertJ?(unsorted.obJl);

end for;

tntlistmanager.clear#8(sorted);

for obj l tn tntsetmanager.members#9(unsorted) do
im.ess*gn#12(cnunt. Im. l i te ra l# l l (spec ta lmake l * te ra l# lO(1))) ;
while *m,lessthenequa~14(count,intltstmanager.length#13(sorted)) do

Im.assIgn#lS(obj2.tntltstmenoger.gettndexHIS(sorted.count));
tr to.gresterthanequa1#17(ohJ2,obJl) then

exttloop;
else

Im.~ssI~nj21(c~tmt~m.p1us#2~c~unt~im.1~ter~1#1~(sPec~a1-make-1Iter~1#18(~))));
f t ;

end loop;
fntltstmeneger.eddberoretndex#22(sorted.count.ob~1);

end for;

for obJ2 ~n tnt14stmanager.members#23(sorted) do
tm,wrIte#24(obj2);

end for;
end;

end;

the user's program
.

Instance x12384:, object Instance of mntnproOrem.
local instance x12385: of emtnprogrtm.
1 var tntaetmenoger ,) arreysetmanager (x12393:)
2 vet tntltstmane9er =) arreyltstmanager (x12404:)
3 vor unsorted ,) orrsyset (s12411:)
4 vat sorted s) 8rreyl]st (x12477:)
5 vat count =) Integer (x12543:)
§ v&r] -> I n t ~ e r {x12550:)
7 ¥8r obJl z) tnteger (x12567:)
8 ver ebb2 ,) Integer (x12564:)
1 proc clear =) clear#Z312: or arraysetmanager (x12671:)
2 proc road *) read#13: of trensputmanager (x12618:)
3 proc special make l i t e ra l s> special make]deers1#746: of universal_environment (x12623:)
4 proc 1Item1 -> ltteroT#bZl: of d~scretemanager (x12630:)
b proc sequence.-> sequencelb62: of discrotemensger (x12643:)
§ proc read ,) reed#13: of trensputmanoger (x12680:)
7 proc insert ,) tnsert#2175: of errnysetmanagor (xlZC84:)
8 proc clear ,) clear13466: of errnyltstmaneger (x12736:)
9 proc members -> members#Z707: of srreysetmanager (x1278&:)
lO-proc spec~nl_make.1ttersl => speciel_mskeltteral#746: of universal_environment (x12840:)
11 proc t~terel :) 11retellS21: of dtscretemenager (x12847:)
12 proc assign -> assign#50: of asstgneblemenager (x12880:)
13 proc length -> length#3526: of arrayltstnanager (x12880:)
14 proc lesstheneqoal -> lessthanequal#324: of orderedmenager (x12934:)
15 proc 9etIndex =) gettndex#3511: of arrs~ltstnaneger (x12959:)
16 proc assign =) asstgnNbO: ot 8sstgnablemaneger (x13020:)
17 proc greaterthonequ81 ,) greeterthenequal#351: of orderedmenager (x13040:)
16 proc special_make l i t e ra l ,> spectn] make l i teral#746: or universe1 environment (x13066:)
19 proc l t te re t -> l i teral#621: oY dtscretemanager (x13073:)
20 proc plus =) plos1424: of dtseretemdneger (x13086:)
21 proc assign -) assign#50: of esstgneblomeneger (x13123:)
22 proc eddbeforetndex => eddbeforetndex#3173~ or errayltstmnneger (x13143:)
23 proc members -) members#3747: of erre¥11stmuneger (x13204:)
24 prnc write -) mrIte#17: of trensputmaneger (x13258:)

Instance x12393:, abject Instance or erraseetmeneger.
loci1 Instance x12395: of asstgnablmneoer.
lace| instance x12396: of setmeneger.
local instance x17568: of arreysetmentoer.
1 vsr errayofobJectmsneger "> arrnymunoger (x17576:)
2 ver mexarraysIze .) Integer (x17579:)
I proc special_make l i ters1 ,) spectal makelitere1#746: of universal environment (x17587:)
2 proc l i t e ra l -> Tttorol1621: of dtscrntemenuger (x17694:)
3 proc assign -) essfgnlCO: aT nss~gneblestaneger (x17607:)

i#stence x17676:, object instance of errLymensoer.
local Instance x17578: of 8rreymanuger.

Appendix G 351

instance x17579:, object instance of in teger .
local 'instance x17583: of assignable.
local instance x17581: of ordered.
local l~nstance x17582: of t ranspor tab le ,
local ~nstance x17583: of assignable,
inca1 ~nstance x17584: of hsshable,
inca1 ~nstance xt7585: of in teger .

tnstance x17587:, procedure ca l l of special make_li teral#746: of universal_environment.

instance x17594;, procedure ca l l of l t t e r a l # 6 Z l : o f diacretomaneger.

instance x17607:, procedure ce l l Of assign#50: Of essigneblemansger.

instance x12404:, object instance of arrayt istmaneger.
local instance x1240g: of asstgnablemanager.
~ocal instance x124tO: of Ztstm~nager.
~ocal instance x17880: of arrayl istmanager.

vat maxarraysize => integer (x17881:)
2 vat am =) arrayn~anager (x17895:)
1 proc special make l i t e r a l => special_make_li teral#746: of universal environment (x17899:)
2 proc l i t e r a l => l i t e ra l#621 : of dtscretemanager (x17906:)
3 proc assign => assign#50: of Osslgnablemanager (x17919:)

instance x17881:, object instance of in teger .
local instance x17885: of assignable,
local instance x17883: Of ordered,
local instance x17884: of t ranspor tab le .
]ora l instance x17885: Of assignable,
local instance x17886: of haah4ble.
local instance x17887: of in teger .

instance xt7895:, object instance of arraymenager.
local instance x17897: of err~Lymanager,

instance xt78gg:, procedure ca l l of special make_li teral#748: of univeraal_envtnonment.

instance x17906:, procedure ce l l of l t t e r a l # 6 2 t : Of dtscretemanager.

instance x~7919:, procedure ca l l of assign#SO: of asstgnablemanager.

instance x~2411:, object instance of arrayset ,
local instance x12412: of assignable.
]ocal instance x12413: of set.
local instance x18188: of ar rayset .
I vat e l ts => array (x18210:)
2 var lastused => integer (x18225:)
1 proc special..make_liceral => special_make_li teral#746: of un iversa lenv i ronment (x181gO:)
2 proc l i t e r a l =) l i t e ra l#621 : of dtscretemanager (xt8197:)
3 proc special_make_l i teral => special_meke_ltteral#746: of universal_environment (x laZ34:)
4 proc l i t e r a l => l i t e ra l#621 : of discretemanager (x18241:)
5 proc assign => assign#50: of assignablemanager (x18Z54:)

instance x1821O:, object instance of array.
local instance x18225: of array.

tnstance x18226:, object instance of in teger .
local instance x18230: of assignable,
local instance x18228: of ordered.
local instance x1822g: of t ranspor tab le.
local instance xlaZ30: of assignable.
local instance x18231: of bashabte.
'local tnstance x18232: of in teger .

instance x18190:, procedure ca l l of spec le lmake l l te ra1#746 : of universal_envlronment,

instance x18197:, procedure ca l l of l t tere1#621: of dtscretemanager.

instance x18234:, procedure ca l l of special make l i teral#746: of universal_environment.

instance x18241:, procedure ca l l Of l t t e ra l#621 : of dtscretemenager,

instance x18254:, procedure ca l l of assign#50: of asstgnablemaneger,

Appendix G 352

instance x12477:, object instance of arra¥1tst.
local instance x12478: of assignable,
local instance x12479: of l t s t .
1oral instance xZ8523: of a r ray l ts t .
1 v a t elts => a r r a y (X18545:)
2 vat IIUme]ts =} ieteger (x18561:)
1 proc special make_literal :> special.make l i teral#746: of universal environment (x18525:)
Z proc l t te ra l => l i te ra l#62[: of discretemanager (x18532:)
3 pros special make l i t e ra l :> special make_literal#745: of universalenviroement (x18569:)
4 proc l i t e ra l => l i teral#621: of dtscretemanager (x18576:)
5 proc assign => assign#50: of assignoblemanager (x18589:)

instance x18545:, object instance of array.
local instance x18560: of array.

instance x18561:, object*instance of integer.
local instance x18565: Of assignable.
local instance xt8563: of ordered.
local instance x18564: of transpo~Lable.
local instance x18565: of assignable,
local instance x18566: of hashable.
local instance x18567: Of integer.

instance x18525:, procedure c&11 of spectolmakelt teral#746: of universal_environment.

instance X18532:. procedure cal l Of l t teral#621: or dtscretemanager.

instance x18569:, procedure cal l of special_make l i teral#746: of universal environment,

instance x18576:, procedure call of l i teral#621: of dtscretemanager.

instance x18589:, procedure cetl of assign#50: or esst9oeblemanager,

instance x12543:, object instance of integer,
local instance x12547: of assignable.
local tnstonce xt2545: of ordered.
local instance x12546: of transportable.
local instance x12547: of assignable.
local instance x12548: of heshable.
local instance x12549: of tnteger.

instance x12550:, object instance of integer.
local instance x12554: of assignable,
local instance x12552: of ordered.
local instance x12553: of transportable.
local instance x12554: of assignable.
local instance x12555: of hashable.
local instance x12556: of integer.

instance x12557:, object instance of ~nteger.
local instance x12561: of assignable.
local instance x12559: of ordered.
local instance x12560: Of transportable.
local instance x12561: of assigneble,
local instance x12562: of hoshable.
local instance x12563: of integer,

instance x12564:, object instance of integer.
local instance x12568: Of assignable,
local instance x12566: of ordered,
local instance x12567: of transportable.
local instance x12568: of assignable,
local instance x12569: of hashablo.
local instance x12570: of tnteger.

tnstance x12571:, procedure cal l of clear#2312: of arraysetmanager.
t proc spectal makellter81 :) special make l i teral#746: of universal environment (x19469:)
2 proc l i t e ra l :> l i teral#621: of dtscretemooeger (x19476:)
3 pros assign => assign#50: oT assignablemanager (x19489:)

instance x19469:, procedure cal l of special make l i teral#746: Of universal_environment.

instance x19476:, procedure c811 of l t toral#621: of dtscretemanager.

instance x19489:, proceduro cel l of assign#50: of essioneblemaneger,

instance x12618:, procedure cal l of read#13: of transputmanager,

instance x12623:, procedure cal l of special make l i teral#746: of universal.environment.

Appendix G 353

instance x12630:, procedure cull Or l i teraln621: of discretemanager.

instance x12643:, procedure cal l of sequenceH562: of discretemanager.

instance x12580:, procedure cal l of reud#13: of transpu%manager.

instance x12584:, procedure call of insert#2176: of arraysetmanager.
1 vat I => integer (xt9612:)
1 pros special_make l i t e ra l => specia1_makeliteral#746: of universal_environment (x19620:)
2 proc l i t e r a l => l i terul#621: of discretemunager (x19627:)
3 proc sequence => sequence#562: of d~scretemanager (x)9640:)
4 proc element => element#576: of array (x19663:)
5 proc equal => equal#?7: of assignablemanager (x19679:)
6 prac special_make l i t e ra l => special_make l i teral#746: of universal_environment (x19689:)
7 proc l i t e ra l => l i teral#621: of dlscretemanager (x19696:)
8 proc plus => plus#424: Of discretemunager (x19709:)
9 pros assign => assign#50: of ~ssignablemanagor (x19732:)
10 proc element =) element#676: of array (x19738:}
t t proc assign => assign#SO: of assignablemanager (x19754:)

instance x196)2:, object instance of integer.
local instance x19616: of assignable.
local instance x19514: of ordered.
local instance x19615: of transportable.
local iostance x19~16: of assignable.
local instance x19617: of hashable.
local instance x19618: of integer.

instance x19620:, procedure call of special make_literal#745: of universulenvironment.

instance xt9627:, procedure call of ttteral#G21: of discretemenager.

instance x19640:, procedure call Of sequence#562: of dtscretemanagor.

instance x19663:, procedure cal l Of element#676: of stray.

instance x19679:, procedure call Of equal#77: of assignablemanager.

instance x19689:, procedure call of special make 1tterul#746: of universal environment.

instance x19596:. ,rocedure call Of l t teral#621: of dtscretemanager.

instance x19709:. ~rocedure cul l of plus#424: of discretemena9or.

instance x19732:, brocedure call of assign#50: of assignablemanager.

instance x]9738:.)rocedure call of element#676: of array.

instance x19754:. ~rocedure cal l of assign#50: of asstgnablemanager,

instance x12738:. ~rocedure call of clear#3466: of arra¥1tstmanager.
1 proc special make l i t e ra l => special_make_literal#746: of universal environment (x19927:)
2 proc l i t e r a l => l i teral#621: of discretemanager (x19934:)
3 proc assign => assign#50: of asstgneblemanager (x19947:)

tnstuoce x19927:, procedure cal l of speciulmakel i teral#74B: of uoiversalenvirenment.

instance x19934:, procedure call of l i teral#621: of discretemenager.

instance x19947:, procedure call of assign#SO: of asstgnablemenager.

instance x12785:, procedure cal l o¢ members#Z707: of errayseCmanager.
I vat i => integer (x20021:)
1 proc special_make_literal => special_make.literal#746: of universal_envi ronment (x20029:)
2 proc l i t e r a l :> l i teral#621: of d}scretemanager (x20036:)
3 proc sequence => sequence#562: of dtseretemanager (x20049:)
4 proc element => element#676: Of array (x20072:)

instance x20021:.
local instance
1oral instance
locul instance
local instance
local instance
local instunce

instance x20029:.

instance x20036:o

instence x20049:,

object instance of integer.
x20025: or assignable,
x20023: of ordered.
x20024: of transportable.
x20025: of assignable.
x20026: of hasheble.
x20027: of integer.

procedure call of speciulmakel i teral#746: of universal_environment.

procedure call of l i teral#621: Of discretemenager.

procedure cal l of sequence#562; Of dtscretemunager.

Appendix G 354

instance x20072:.

instance x12840:.

Instance xlZ847:.

instance x12860:.

instance x12880:.

instance x12934:.

instance x12959:.

)rocedure ca l l of element#676: of array,

)rocedure ca l l of special make l i t e ra l#746 : of un iverse lenvt roument .

~rocedure ca l l of l t t e r e l # 6 Z l : of dJscretemanager.

)rocedure ca l l of assign#50: of asstgnablemanager.

)rocedure ca l l of length#3526: of arrayl istmunuger.

)rocedure ca l l of lesethenequal#324: of orderedmanager,

)rocedure ca l l of getindex#3511: of errayl istmanager.
1 proc element :> element#676: of array (x20285:)

instance x20285:, procedure ca l l

instance x13020:, procedure ca l l

instance x13040:, procedure ce l l

instance x13066:. "procedure ce l l

instance x13073:, procedure ce l l

instance x13086:, procedure calZ

instance x13123:, procedure ca l l

instance x13143:, procedure ca l l
I v a t t => integer (x20438:)

of element#676: of array,

of assign#50: of aesignablemanager.

of greaterthnnequal#351: of orderedmanager.

of special make l i t e ra l#746 : of universal_environment.

of l i t e ra l#621 : of discretemanager,

of plus#424: of discretemanager.

of assign#50: of assignablemanager,

of eddbefo.'eindex#3173: of nrreyltstmeneger.

I proc
2 proc
3 proc
4 proc
5 proc
6 proc
7 proc
8 proc
9 proc
10 proc
11 proc
12 proc
13 proc
14 proc
15 proc
16 proc
17 proc
18 proc
19 proe
20 proc
21 proc
22 proc
23 proc

instance
local
local
local
local
local
local

instance

instance

instance

instance

instance

instance

instance

instance

instance

lessthan => 1essthen#252: of orderedmanager (x20445:)
special_make_li teral => specia]_make_1itera1#746: of universal_environment (x20457:)
l i t e r a l => l i t e ra l#621 : of discretemanager (x20464:)
greaterthanequal => greaterthanequa1#351: of orderedmanager (x20477:)
logicnland => logicalend#133: of bitmanager (x20488:)
special_make_li teral => special make_l i teral#746: of universal_environment (xZ0500:)
l i t e r a l => l i t e r a l # 6 Z l : of discretemanager (x20507:)
plus => plus#424: of discretemaneger (x20520:)
lesschanequal => 1essthanequal#324: of orderedmanager (x20543:)

logicaland =>]ogicaland#133: of bitmanager (x20554:)
reversesequence => reversesequence#607: of discretemaneger (x20565:)
special make l i t e r a l => special_makei i tera1#746: of un iverso lenv i ronment (x20589:)
l i t e r a l => l i te ra l#621 : of discretemanager (x20596:)
p]us => plus#424: of discretemanager (x20609:)
element => element#676: of array (x20632:)
element => element#670: of array (x20648:)
assign => assign#50: of assignablemanager (x20664:)
element => element#676: of array (x20670:)
assign => assign#50: of aasignablemsnager (xZ0686:)
special make l i t e r a l => special make l i t e ra l#746 : of u n i v e r s e l e n v t ronment (x20693:)
l i t e r a l => l i te ra l#621 : of discretemanager (xZ0700:)
plus => plus#424: of discret~manager (x20713:)
assign => assign#50: of assignablemanager (x20736:)

x20438:.
instance
instance
instance
instance
instance
instance

x20445:.

x20457:

x20464:

x20477:

X20488:

X20500:

x20507:

X20520:

X20543:

object instance of tnteger.
x20442: of assignable.
x20440: of ordered.
x20441: of t ransportable.
x20442: of assignable,
x20443: of heshable,
x20444: of in teger .

procedure ca l l of lessthen#252: of orderedmanager.

procedure ca l l of spectal mnke.1tteral#746: of u n t v e r s e l e n v t torment.

procedure ca l l of l i teral#621: of dtscretemanager.

procedure ca l l of 9reaterthanequal#351: of orderedmanoger.

procedure ca l l of logtcalaud#133: of bttmanager.

procedure ca l l of special_make_li teral#746: of universal_environment.

procedure ca l l of l i t e ra l#621 : of dtscretemanager.

procedure ce l l of plus#424: of dtscretemanager.

procedure ca l l of 1essthanequa1#324: of orderedmenager.

Appendix G 355

instance x20554:, procedure call of le9tcaland~133: of bttmanager.

Instance x;!0565:, procedure call o, reversasequence#607: of dtscreteeoneger.

tnstanoe x~0589:, procedure call of spec|almake_11tersl#746: of universal.environment.

instance x;!0596:, procedure call of l i terel#621: of dtscretemanager.

tustance x20609:, procedure call of plus#424: of dtscretemansger.

fnstence x20632:, procedure call Uf elemont#GTG: of array,

instance x20648:, procedure call of eloment#676: of orrey,

tnstance x~0664:, procedure call of assign#50: of ass~gnableoanager.

instence x20670:, procedure call of element#67G: of array.

instance x20686:, procedure call of assign#50: or esslgnablamanager.

insteoce x20693:, procedure call Of spects l~skel | tera l#746: of universal environment.

tnstance x~0700:, procedure call Of ltterelN621: or dtscreteeonager.

instance xZ0713:, procedure call of plus#424: of dtscretemanager.

tnstance x20736:, procedure call of assign#50: Of asstgnablemanager.

instance x13204:, procedure call Of members#3747: of arrayltstmeneger.
1 vat t => integer (x21040:)
1 proc spectal maket]terel -) specie1 make l i teral#746: of universal_environment (x21048:)
2 proc l i te ra l =) ltterol#521: Of dtscretemaeager {x21056:)
3 proc sequence =) sequence#S62: of dtscretemanager (x21068:)
4 proc element =) olement1675: of array (x21091:)
5 proc 9reaterthan => 9restorthau#277: of orderedmanager (x21107:)

instance x21040:.
local tostance
locat instance
local |uatance
loCO1 instance
local instance
local |nstance

instance x21048:.

instance x21055:.

instance x21068:.

instance X21091:.

instance x21107:,

tnstance X13258:.

object instance of tnteoer.
x21044: or assignable.
x21042: of ordered.
x2~043: of transportable.
x2~044: Of assignable,
x21045: of hashsble.
x21046: of integer,

procedure

procedure

procedure

procedure

procedure

procedure

coll of spectal makel l teral t746: of untverealenvtrooeent.

call or 11tore1#621: Or dtscretNonager,

call of sequence~562: of dascretemaeager.

call Of element~lS76: of array.

call of greaterthan#277: of orderedmanager.

call 0f write#t7: of transputmanager.

Index

Bepa 1

Abstraction 6
Actual object 49
Ada 22, 23, 26, 29, 45, 74, 86, 88, 92, 120, 189, 314, 317
Algol-68 24, 39
Allocate 175
Almost identical 32 ~.
Alphard 10, 22, 29, 75, 89
AlreadySeen 146
Ancestor 40
Ancestors 321
And 169
Any instance 39, 321
Arithmetic operations 46
Array 173
Array element selection 46
ArrayManager 173
Arrays 173
Assign 168
Assignable 168
AssignableManager 168
Attribute association 128
Attribute identifier 128
Attribute procedure invocation 151,
Attribute value 128
Attributes 14, 120

Balzer 21
Banatre 24
Barr 21,266
Barstow 127
Beta 273
BindProcs 141
Bit 169
BitManager 169

Capsule 321

Chang 22
Cheatham 8, 21
Check name component 153
CheckFeasibility 141
Children 143
Class 13, 321
Class instantiation 321
Class parameters 54
ClassDecl 143
Ctu 22, 29, 75, 86, 88, 89, 92, 189, 264, 314, 317, 319
Cluster 321.
CM 173
Combined specifications 22
Compatible 321
Component 321
Compose 321
Composition 321
Conform 49
Conner 1
Control abstraction 6
Corresponding parameters 55
Creation environment 42, 321
Cross-implementation classes 93
Curry 21,164

Dahl 21
Data abstraction 7
Declaration environment 288, 322
Defined 109
Defined parameter 55
Defined parameters 322
Definite instance 39, 322
Derivation 84
Description name component 147, 322
Dewar 25, 91,94, 95
Directed acyclic graph of types 13
DiscreteManager 171
Divide 172
Doppelganger 139, 152, 322

Elaboration 33, 107
Elaboration with implementations 34, 108, 322
Elaboration with realizations 34, 109, 322
Elaboration with specifications 34, 108, 322
Element 173
Enhanced C 21
Envelop 322
Environment 38, 322
Equ~d 168

358

Er,roneous 109
Euclid 22
Executing 34
Execution 322
Expression 322
Extended class declaration 323

Feasible 109
Feustal 273
Flavors 21,41,164
Foderaro 225
Form 323
Formal object 49
Free 175
Frequency 146
Freudenberger 24, 239, 335
Function 323

General procedure 323
Generalization class 77,323
Generalized specification 323
Getlmpl 142
GetSpec 142
Ghezzi 24
Gillman 16
Goldberg 21
Gotlieb 23, 265
GreaterThan 170
GreaterThanEqual 170

Hanson 273
Hash 171
Hashable 170
HashableManager 170
Heterogeneous data structures 80
Hibbard, Cynthia 1
Hibbard, Peter 1
Hisgen 1,262
Hydra 259

Ichbiah 11,22
Identical objects 323
Identical simple object 323
Identifier 283
If statement 68
Itl specified 108
Implementation 8
Implementation class 85, 86, 323
Implementation path 294, 295, 323

359

Implicit declaration 48, 293, 323
ImplSet 142
Incomplete implementation 90
Indefinite instance 324
Indefinite instantiation 39, 324
Index identifier 154
Infeasible 109
Ingalls 21
Ingargiola 22
Inherited parameter 55
Inherited parameters 324
Instance 140, 324
Integer 171
Interface module 324
Invocation environment 324
Invocation, similar 160
Islmplementation 146
Iterator 324
iterator invocation 62
Iterators 62

Jensen 26
Johnson 75, 89

Kant 1, 21,262
Katz 25
Katzenelson 21
Kristensen 273

Labeled name component 48
Lamb 84, 242
Leap 91
Leftmost elaboration order 41,324
Leftmost parent order 325
LessThan 170
LessThanEqual 170
Leverett 265, 266
LIBRA 21
Liskov 22, 264
Lisp 21,164
Literal 172
Local feasibility 112
Local instance 34, 37, 41,325
Local instance set 325
LogicalAnd 169
LogicalNot 169
LogicalOr 169
Low 11, 23, 26, 89, 146, 149, 187, 217, 238, 239, 262, 331,332, 335

360

361

Match 49, 325
McCune 26
Mesa 21, 26, 28, 164
Minus 172
MIT 225
Mitchell 26, 28
Model 75
Module 8, 325
Morgan 21
Most preferred match 286, 325
Multiple implementations 22
Mylopoulos 21

Name component 43, 325
Name expression 43, 325
Nestor 1,29, 225, 321
Newcomer 225
Nil 175
NumC 143
NumP 140, 143
NumV 140

ObjDecl 142
Object 34, 325
Object conforming 49
Object creation 326
Object matching 49
Object realization 139
Object-manager model 71
Or 169
Ordered 170
OrderedManager 170

Package 326
Package body 326
Package specification 326
Pairwise compatible 326
Pairwise match 326
Pairwise matching 285
Paolini 24
Parameter 34, 326
Parents 143
Parnas 8
Partial implementation 90
Pascal 26, 45, 120
Pascal-Plus 322
Path 294, 326
Pattern expression 154
Pattern matching statement 154

PDS 21
PECOS 21,127
Plus 172
Pointer dereference 45
Pointers 174
Policy procedure 15, 148, 326
Possibility tree 14, 130, 326
Preferred match 286, 326
ProcCall 146, 154
ProcDecls 140
Procedural abstraction 6
Procedure constraints 297
Procedure implementation 326
Procedure respecifications 124
Program Development System 21
PSI 26, 28, 266

Ramirez 149, 210
Read 168
Realized instance 327
Realized object 139
Realized simple object 327
Red 29
Reference 174
Refinement 6
Refinements of specifications 29
RefManager 174
Reiser 91
Relational operations 46
Remainder 172
Rentsch 264
Representation 8
Restricted class declaration 327
ReverseSequence 172
Rosenberg 1
Rovner 28, 239, 335
Rowe 25, 26

Sail 26, 28, 91,188
Schonberg 26, 89
Schwanke 265
Schwartz 91
Self implementing 122, 150
Self reference 298, 327
Self-implementing class 150
Self.referent 298
Sequence 172
Setlmpl 142
SETL 24, 25, 91, 94, 95, 239, 265

362

Shared specification 327
Shaw 10, 22, 146, 262
Sherman 264
Similar environments 159, 327
Similar invocations 159, 327
Similar objects 159, 327
Similar procedure calls 327
Similar simple objects 159, 160, 327
Simple object 34, 61,327
Simple objects, similar 160
Simula 21, 22, 27, 29, 38, 40, 45, 152
SL5 273
Smalltalk 21, 22, 27, 40, 152, 264
Smith 21,265
Specific object creation 327
Specification 8
Specification class 78, 84, 328
Specified instance 328
Specified object 139
Specified simple object 328
Statement environment 288, 328
Structure 328
Structure name component 44
Subsume 328
Subsume path 294
Syntactic sugar 45

Target expression 154
Taxis 21
This notation 328
Tichy 265
Times 172
Tokens 283
Tompa 23
Tonge 25
Traits 21,41,164
Transportable 168
TransputManager 168
Type 14, 109, 328
Type hierarchy 13
Type parameter 328

UnaryMinus 172
Underlying class 328
Underlying implementation 328
Underlying specification 328
Uninstantiated environment 329
Universal class 167,329
Universal environment 167

363

364

Unrestricted identifier 329
Unspecified instance 329
Unspecified instantiation 329
Unused local instance set 329

Value 174
Value expression 128
VanWijngaarden 39
VarDecl 142
VarDecls 140
Vera 1

Weinreb 21,164
Well specified 108
Welsh 322
Winston 149, 213
Word 172, 173
WordManager 173
Write 168
Wuif 89, 259, 266

Xerox 21

Yielding 62

	3540152121
	Lecture Notes in Computer Science, 189
	Paragon: A Language Using Type Hierarchies for the Specification, Implementation, and Selection of Abstract Data Types
	Table of Contents
	Acknowledgements
	Abstract
	1. Introduction
	2. Goals of Paragon and Their Relation to Previous Efforts
	3. The Basics of Paragon
	4. The Object-Manager Model and Its Implementation
	5. Selection of Implementations
	6. A Complete Example Using Paragon
	7. Implementation
	8. Retrospective on the Language Design and Implementation
	Bibliography

