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Abstract 

This tl~esis describes a set of language features that supports the specification, 

implementation and selection of data abstractions. The effectiveness of these features is 

illustrated through a language, called Paragon, developed for the thesis. Novel features of 

Paragon include: 

• Multiple inheritance of classes (the basic encapsulation mechanism); 

• Multiple procedure implementations for a procedure specification; 

• Iterators; 

• User-provided descriptions of abstract data types; 

• User-provided strategies for making representation-selection decisions; 

• Compile-time selection of a procedure implementation for each procedure call; 

• Compile-time selection of variable representations. 

Representative Paragon programs illustrate how this language can be used for defining 

multiple, simultaneous and interacting implementations of abstract data types. In addition, 

some refinements of the data abstraction paradigm, such as generalized specifications and 

shared specifications, are defined in the thesis and illustrated with Paragon programs. I then 

show how the type-hierarchy facilities in Paragon can be combined with a semi-automated, 

representation.selection mechanism and some representation-selection strategies using 

Paragon's notation are provided. To show how Paragon can be implemented, I describe the 

design of a translator and provide some measurements of a prototype. This prototype 

demonstrates that the conventional compiler technology can be used for implementing type 

hierarchies, though it does illustrate possible problems with separate compilation when using 

multiple, simultaneous implementations of abstract data types. Finally, a critique of the 

language is provided, 



Chapter 1 
Introduction 

This thesis discusses a new programming language called Paragon that supports the 

specification, implementation and selection of data abstractions. The language uses type 

hierarchies to specify and implement abstract data types. Further, the Paragon language 

design integrates the abstract data type facilities with a semi-automatic procedure for making 

implementation choices for the variables in a program. A prototype for the Paragon design 

was written and run on several example programs. All of these aspects are considered in 

detail in this thesis. 

In this introductory chapter, the motivation for pursuing this work is presented, followed by a 

summary of the main results of the thesis. This chapter ends with a discussion of how the rest 

of the thesis is organized. 

1.1. Motivation 

Modem software has grown to such size and complexity that programmers can no longer 

manage all of the details of the programs they write. This lack of management causes the 

programs being created to be improperly specified (they do not accomplish what the user 

intended), incorrectly implemented (they do not accomplish what the programmer intended), 

and inefficient (they produce the wrong answer slowly and at great cost). Programming 

methods that promote the management of the details of a program can help control the size 

and complexity of modern software, and in turn, promote the production of correct and 

efficient systems. 
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1.1.1. The Use of Abstraction and Refinement 

A successful method of controlling complexity in other disciplines is abstraction, that is, the 

suppression of irrelevant details. Various abstraction methods have been introduced into the 

programming task, notably control abstraction and procedural abstraction. Control 

abstraction usually takes the form of while loops, repeat loops, and if statements, each of 

which suppress the details of specifying nonsequential program flow. Procedural abstraction 

provides a way for a programmer to specify a black box that can transform some set of values 

into another set of values while suppressing the details of how the transformation is 

accomplished. 

Although the abstractions initially suppress some details, these details are needed in the 

final program. The process of introducing details is called refinement. Sometimes the 

refinement is automated, as when a compiler automatically translates a while loop into an 

appropriate sequence of test and jump instructions. Sometimes the refinement is performed 

by the programmer, as when the programmer writes the code that describes how the 

specified black box actually works. 

Refinement does more than introduce the details suppressed by abstraction. Refinement is 

also a selection and binding process. There are usually many different models that meet the 

requirements of an abstraction. For example, a common procedural abstraction is Sort. In an 

abstract sense, a sort procedure accepts a sequence of data and produces a permutation of 

that sequence that meets a specified ordering relation. There are many different algorithms 

that meet such a specification, any one of which meets the abstract requirements. The 

binding of a sort black box in a program to the selected algorithm is a refinement of the 

program. 

Binding details to abstractions reduces the number of choices that a programmer can make 

for further refinements in the program. For example, if a choice is made to represent an 

ordered sequence of data as a linked list, a search procedure operating on that sequence can 

not use a binary search method. The refinement of the abstract sequence to a linked list 

reduces the number of choices for a searching procedure. As a program is refined further, the 

program becomes less abstract, more filled with details and more constrained. Therefore 

refining a program introduces inflexibility. 

This inflexibility adversely affects program development and maintenance. As a. program is 
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being developed, a programmer may not know which refinement to choose but a programmer 

has to choose one so that development may continue. Later the programmer might discover 

that the 'wrong decision was made, but the inflexibility introduced by previous refinements 

hinders a better approach from being implemented. This problem is exacerbated for program 

maintenance since only the fully refined program is available. Because the costs of 

maintaining a program are far greater than the cost for initial development, inflexibility in a 

program can exact a high price over the lifetime of a program. 

Clearly, an approach is needed that introduces the refinements for constructing a program 

without eliminating the abstractions. Techniques for introducing details without obscuring 

control and procedural abstraction are being widely adopted. In control abstraction, the 

abstraction is provided by the programmer using structured programming techniques and the 

details are mechanically generated by a compiler. Because of the mechanical nature of the 

refinement process, a programmer can confidently change an abstraction and rely on the 

compiler to insert faithfully new details as necessary. In procedural abstraction, the 

programmer adopts a convention that the interface of a subroutine will remain an invariant 

abstraction that may be used by the rest of a program. Further, only the abstract interface of 

the procedure may be used by the rest of the program. Because the program using the 

subprogram relies only on the abstract interface, the refinements inside of the subprogram 

may be changed without affecting the rest of the program. So for both control and procedural 

abstractiion, there are refinement techniques that retain much of the abstraction, and hence, 

much of the flexibility. 

However, control and procedural abstractions have been used for many years. A newer 

form of abstraction, data abstraction, is becoming widespread and its refinement techniques 

are not well developed. 

1.1.2. Data Abstraction 

Data abstraction is based on the observation that programs conceptually operate on 

abstract objects that have specific properties unrelated to a computer. For example, a 

program simulating a traffic intersection operates on objects that represent cars, trucks, 

streets, and traffic lights. Since the program is ultimately run on a computer and does not 

manipulate concrete cars, some transformation must be made from the abstract objects to 

concrete objects that a computer manipulates. The refinements that effect this 

transformation usually require the addition of a great number of details, and unless carefully 
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done, will cause confusion in the programmer, inflexibility in the program and ultimately, 

errors in the finished product. 

1.1.2.1. The Simple Model of Data Abstraction 

There are emerging methods for refining data abstractions that provide a limited way to 

control the inflexibility and confusion that results from transforming program objects into 

computer objects. These methods require that each kind of object manipulated by the 

program have two parts: a specification that describes the actions that may be performed on 

the object, for example, start a car or stop a car; and a representation of the object in terms of 

computer objects, for example, a car is represented by three integers that hold data about the 

number of people in the car, the serial number of the car and the make of the car. A special 

piece of a program, called a modu/e, provides a set of subprograms that implement 1 the 

operations that may be performed on a car. Inside of this module, a programmer may refer to 

the representation of the object in terms of the computer objects. Outside of this module, only 

the specified operations may be used to manipulate the representation of the object. 

Unfortunately, the view that each kind of object be split into two parts is too simple. 

Although the methodology for building systems recognizes the need for layering for many 

purposes [Cheatham 79, Parnas 74], the view of providing layers of specifications for abstract 

objects has not been widely embraced. Yet the single layer of specification is inadequate for 

many kinds of specifications. Further, multiple representations of an object are not well 

supported and interactions between representations are not permitted. Each of these 

problems will be considered in turn. 

1.1.2.2. The Limitat ions Imposed on A bst rac t  Data Type Speci f icat ions 

The single, isolated specification in a module is too restrictive. Other kinds of specifications 

that a programmer may wish to write include a specification that is a refinement of another, 

related specifications that are not refinements of one another and implementation. 

independent specifications. Each of these three kinds of specifications is illustrated below. 

First, one kind of program object may be a refinement of another. For example, a Plymouth 

1The data abstraction literature sometimes uses the word representation for the definition of local storage of an 
object and the word implementation for the code that makes up the procedures in a module. It is now becoming 
accepted that the information in an abstract object may be encoded in either the state of the local storage or in 
procedures that operate on local storage and so the words imp/ementation and representation have become 
interchangeable. They are used interchangeably in this thesis. 
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object is refinement of an Automobile object. Thus the specification for a Plymouth should be 

some refinement of the specification for an Automobile. Yet the described method of data 

abstraction allows only disjoint pairs of specifications and representations, not collections of 

related specifications and representations. The simple data abstraction method requires 

different kinds of program objects to be refined independently even when one specification 

may be a refinement of another's specification. 

Second, objects may be related even if one is not a refinement of another. This relationship 

might be made explicitly by the specification of several objects in a singla module or might be 

made implicitly, by the specification of type parameters a module. Neither is permitted in the 

simple model of data abstraction. 

In the simple model of data abstraction, each module may specify exactly one kind of object. 

However, some specifications are related, such as keyboards and displays. They are clearly 

separate objects: one might desire many displays to be attached to one keyboard or many 

keyboards to share a display. Yet they are related: when operating in half-duplex mode, 

typing a character on a keyboard causes a character to appear on the display. Since the 

abstract objects, keyboard and display, are related, their specifications should be related and 

a data abstraction facility should allow both specifications to appear in a single module. 

The simple model of data abstraction also provides no facilities for families of specifications. 

Yet many objects have similar structures. For example, nearly all symbol tables have the same 

structure: a collection of pairs, where each pair consists of a key and some data. Typically, 

the keys belong to one type and the data to another type. In the simple approach of data 

abstraction, every symbol table that uses a different key type must have its own specification 

and representation. There is no way of defining a class of symbol tables that can be related 

with another c~ass of objects, namely the different types of keys. Yet the specifications and 

representations for all symbol tables are nearly identical. It should be possible to factor out 

the common parts of the specifications and representations into a single specification and 

representation° Later, a programmer should introduce those details necessary for any 

particular symbol table as parameters rather than by creating new specifications and 

representations. 

A third way in which specifications in the simple model are too restrictive is their lack of 

implementation independence. The simple model places strict rules on the relationship 

between specifications and implementations. In particular, the information available to an 



Section 1.1.2.2 Motivation 10 

implementation is exactly that information provided by the specification, no more and no less. 

A simple example can illustrate this. The specification of a typical sort procedure requires that 

the elements to be sorted have a comparison procedure. Any implementation of the sort 

procedure may use such a comparison procedure, but nothing else. Because the 

specification is not restrictive, it prohibits bucket sorting, since the bucket sort algorithm 

requires that the elements to be sorted come from a cross product of ordered sets and that 

the set of resulting tuples be well founded. Sometimes the opposite problem occurs and the 

specification is to too restrictive. The specification for sorting might require that the elements 

to be sorted be tuples in a well found set. This limits the types of elements that may be sorted 

since many objects may be compared without having a tuple structure. Such a specification 

effectively prohibits sorting to be done on objects where bucket sort is not feasible. These 

problems also occur with data abstractions. The specifications for the elements to be stored 

in a symbol table may require the elements to have a hash procedure defined on them (for 

example, see the symbol table example on page t64 of the Alphard Book [Shaw 81]). Such 

specifications limit the possible implementations of symbol tables to those that use hashing 

functions and those that do not use any element specific functions. In all of these cases, the 

problem is that information about the refinement process has leaked from the implementation 

to the specification. A more general facility would include details of refinement where they are 

appropriate. 2 

1.1.2.3. The Limitat ions Imposed on Abst rac t  Data Type I m p l e m e n t a t i o n s  

Besides the inadequate support for writing specifications, the simple model of  data 

abstraction does not adequately support multiple implementations of a specification. 

However, these multiple implementations can be quite useful, For example, an abstract array 

object allows the assignment and retrieval of data via a list of indices. Two common 

representations of arrays in linear memory are r0w-major order and column-major order. 

Normally it makes little difference which order is used. Sometimes one representation gives a 

better program performance, for example, because of paging requirements, Sometimes a 

representation is necessary for properties unrelated to the operations given in the 

specification. For example, another program may be providing the array in a predetermined 

format, such as a Fortran subroutine providing an array in column-major order. Therefore it is 

2The restriction imposed by the simple model is not unmotivated. By insisting that all specifications available for 
the implementation be present in the specification, a compiler may separately check at compile time that the use of a 
data abstraction is legal, that an implementation that meets the specification, and that both checks are sufficient for 
guaranteeing that the resulting program can execute. 
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desirable to associate many different representations with each specification and to select a 

representation for an object as appropriate. 

Despite their potential usefulness, the simple model of data abstraction does not allow 

multiple representations to be included in a program, since the specification and 

representation are in one, textually-combined module. But even where one may separate the 

representations from the specifications and thereby have a way to write different 

representations, most systems use the same name for the different representations. Therefore 

these systems have difficulty in distinguishing one representation from another. To deal with 

this problem, languages impose a series of restrictions. Initially, a language may prohibit 

multiple implementations from appearing in a program. For example, Ada [ichbiah 80] permits 

only a single package body to be bound to a package specification. But even if multiple 

implementations are permitted in a language, they may not interact in procedures that use 

only abstract properties of the object. For example, Low's implementation of sets in Sail [Low 

74] prohibits two sets with differing implementations from having intersection performed on 

them, even though set intersection may be written using only abstract operations of sets. 

Finally, even when full facilities for multiple representations are provided, there is no way of 

obtaining information about the different representations to aid in selecting an appropriate 

representation, The literature contains dozens of different implementations for sets. Each of 

these implementations is appropriate in a different circumstance. The writer of the 

implementation should be able to describe the behavior.of the implementation so that an 

intelligent selection is possible. 

In addition to the inadequacies of specifications and multiple representations in the simple 

model, the simple model cannot adequately handle interacting representations. This 

deficiency occurs in two ways: interactions between different implementations of a 

specification cannot be defined or used, and a shared implementation for separate 

specifications cannot be provided. 

Even when languages permit different implementations for a single specification, they do 

not permit a single procedure to use the concrete details of more than one representation. As 

a simple example, assume that a module implementing complex numbers were specified and 

that two implementations were written: cartesian and polar representations, Following the 

simple model, the module for each representation may manipulate either the cartesian 

representation or the polar representation but not both. It might be useful in a program to 
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write an addition procedure that can work on polar and cartesian representations, yet the 

simple model does not allow any one representation access to the details of another 

representation. 

Besides the ability to have multiple implementations for each specification, it is desirable to 

allow a single representation for multiple specifications. Representations are sometimes 

related even if the specifications are not. For example, a program may manipulate objects that 

represent disks and drums but it may be necessary that the representations used for data 

encoding for both devices be identical. The specifications should be separate, since different 

kinds of operations are performed on disks and drums. But the representations for disks and 

drums are interrelated because data are transferred between them. While it should be 

possible to selectively combine representations as necessary, the simple data abstraction 

method requires a separate representation to be associated with each specification. This 

adds inflexibility to the program since there is an implicit connection between the modules for 

disks and drums; a decision made for one module must be reflected in the other. 

Although the simple model for data abstraction has limitations, the underlying ideas are 

sound and are slowly being put into practice. But because of the relative youth of data 

abstraction techniques in the programming community at large, little work has been done to 

extend the basic refinement method beyond the simple approach and to explore the 

implications of those extensions. The initial attempts at creating languages with data 

abstraction facilities, such as Clu and Atphard, followed the simple model very closely. Some 

limited extensions, such as generics, are included to try to solve some of these problems, but 

no general language mechanism has been developed th~.t permits muttiple levels of 

refinement and the retention of abstraction in the final program. This thesis proposes a set of 

language features base on a type hierarchy that effectively support the data abstraction 

techniques and allow a more flexible refinement paradigm to be used with data abstraction. 

1.2. Summary of Thesis 

The theme of this thesis .is that type hierarchies are a useful linguistic construct for 

specifying abstract data types, refining specifications of abstract data types into 

implementations, and selecting an implementation of an abstract data type for a given 

specification. The vehicle for exploring this theme is a new programming language, Paragon, 

which I designed and implemented as part of the research. 
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There are three main pieces of research. The first part discusses the design of features in 

Paragon that support specifications of data abstractions and refinements of specifications. 

The second part presents the features of Paragon that support selection of an appropriate 

refinement from a collection of possible refinements. The third part describes the 

implementation of a prototype translator for Paragon that processes the data abstractions and 

makes selections of refinements for program objects. Together these parts demonstrate how 

type hierarchies can be used in programming languages to provide a more flexible and useful 

refinement process for data abstraction. 

1.2.1. Data Abst ract ion Features 

There are four basic data abstraction features in Paragon: classes, class inheritance, class 

nesting and class parameters. Supporting these basic features are the separation of 

procedure specifications and procedure implementations, multiple implementations of 

procedures, and a uniform object notation and semantics. 

Classes are the basic encapsulation mechanism for modules and contain declarations of 

procedures that may operate on instances of the class and local state. A class may inherit the 

declarations of other classes 3 and may add new declarations, such as a procedure 

implementation for a procedure specification. Such a derived class is considered to be a 

refinement of the parent classes. When a variable declaration uses a class, the named class 

defines the abstract properties of the object denoted by the variable. Any refinement of the 

class used in the declaration may be used as the implementation for the object. 

Classes may also contain local class declarations, which give rise to nested classes. When 

these nested classes are instantiated, they create nested objects. By selective use of class 

inheritance and class nesting, it is possible to arrange scopes in several useful ways. Two 

ways are discussed in this thesis. One way permits procedure implementations to be written 

so they can access different concrete refinements of the same specification. Another way 

permits a shared refinement to be written for separate specifications. 

A class may also have parameters. Parameters permit families of specifications and 

refinements to be defined. Because the uniform object notation provides different syntax for 

3Since a class may inherit the declarations from more than one class at a time, the classes form a directed acyclic 
graph of types and not a strict hierarchy. However. the phrase type hierarchy is more commonly used in the literature 
and is used throughout the thesis rather than the technically correct phrase directed acyc/ic graph of types. 
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denoting a "type ''4 and an object, and because these different syntactic constructions may be 

used in parameters, Paragon permits the parameters to classes to be used as conventional 

parameters and as type parameters, eliminating the need for a special generic facility. 

To illustrate these data abstraction features, examples in the thesis show how layers of 

specifications, combined specifications, multiple representations for a specification and a 

combined representation for multiple specifications, can be expressed in Paragon. 

The class features are described in more detail in Chapters 3 and 4. 

1.2,2. Representation Selection Features 

There are four basic features for selecting representations s in Paragon: attributes, a 

possibility tree, a policy procedure and a feasibility checker. 

Attributes are compile-time procedures and variables that a programmer may add to class 

declarations and procedure declarations. Such attributes are intended to provide information 

that a selection mechanism could use. For example, each class might contain an attribute 

Space that is a procedure that returns the amount of storage that the class uses, or it may 

contain a procedure named Performance_Measured that returns a boolean value indicating if 

that particular class keeps track of its performance. 

The possibility tree is a data structure for organizing the selection decisions made for a 

program. It resembles an unrolled call graph of the program. Each node represents an 

instance of a class or an invocation of a procedure. Edges lead from a class instance (or 

procedure invocation) to instances and invocations within that class instance (or procedure 

invocation). The tree changes as different representation selections are made for objects and 

procedure invocations. The presence of such a data structure is an advance over previous 

representation-selection systems in that it provides a way to make representation selections 

for local variables in local procedure invocations rather than to make only selections of 

variables in the program that calls the procedure. 

4Actually, an indefinite instance. See Section 3.2.1. 

5In the context of Paragon, a refinement of a class is a representation of that class, hence the words refinement 
and representation are used interchangeably. 
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The policy procedure is a Paragon program that actually performs the representation 

selection for the user's program. This procedure is interpreted at compile time and operates 

on the possibility tree, making selections for variables and gathering data about the selection 

possibilities through the execution of attributes. 

Not all choices of representations result in a refined program that can actually execute. For 

example, it is possible that an incorrect procedure implementation was selected, an 

incompatible choice of data representations was chosen or that a needed procedure 

implementation was missing. The translation system contains a procedure that performs a 

feasibility check of the user's program to guarantee that all necessary representations are 

present and that the selected representations are compatible. This procedure may be called 

from the policy procedure as well so that the policy procedure may ensure that its selections 

result in an executable program. 

Selection is completed at compile time. Once the translation process has finished, all 

choices of procedure implementations and object representations have been determined. No 

run-time selection is necessary. Further, the translation system can guarantee that no run- 

time er~rors will occur because of a missing procedure implementation or an incompatible 

representation. 6 

To illustrate the utility of these representation-selection features, several example programs 

have been programmed in Paragon. These examples were drawn from the literature 

describing multiple representations for a data abstraction. Algorithms that were implemented 

by previous data structure selection systems have also been programmed as policy 

procedures. 

The representation selection facilities are described in more detail in Chapter 5. Chapter 

6 contains a worked-out example program and policy. 

6Unlike, for example, the virtual procedure feature in Simuta-67. 
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1,2.3. Prototype Translator 

The motivations for constructing a translator were pragmatic. Since the construction of a 

translator requires the language to be fully defined, it therefore serves as a way to insure the 

completeness of the language definition. In addition, the design of the translator illustrates 

problems that may occur when building compilation systems that use type-hierarchy features, 

so the prototype serves as a feasibility test. Finally, the operation of the translator can also 

pinpoint any relations between language features and performance degradations. 

The prototype translator written for Paragon processes the entire language. It performs 

parsing, semantic analysis, policy interpretation and feasibility checking. The translator does 

not produce object code that runs; as output, it produces a transformed program where all 

selections of procedures and variable representations are indicated. Because the language 

definition requires the translator to contain an interpreter for the entire language (to interpret 

the policies and attributes), an entire run time package does exist and Paragon code can be 

(and has been) executed. However, there was no effort to produce a final code generator for 

the translator. 

The design of the translator resembles that of conventional compilers, however, it contains 

three new phases that are not present in current compilers: the possibility tree creator, the 

policy executor and the feasibility checker. Since these new phases perform analogs of 

conventional compiler phases, namely call-graph creation, source-language interpretation 

and type checking respectively, there is no new compiler technology needed to translate type 

hierarchies in programming languages. Because the translator is an interpreted Lisp 

program, it runs slowly (about 10 lines of Paragon per minute of Vax 11/780 CPU time). 

However, its speed is comparable to values for other such prototype systems [Gillman 83]. 

Details about the design of the translator and its performance can be found in Chapter 7. 

1.3. Organization of the Thesis 

Chapter 2 outlines the goals of Paragon's design and places them in relation to past work 

with abstract data type languages and representation selection systems. The next two 

chapters present the basics of the Paragon language and show how those basics are applied 

for creating abstract data types. Attributes - -  which describe implementations - -  and policies 

which guide the selection of representations - -  are both discussed in the next chapter. 
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Chapter 6 presents a complete example, showing how an abstract data type, complete with 

attributes, an application program and a policy, are used together. Then Chapter 7 describes 

the implementation of a translator for the Paragon languages and its performance on a 

selection of abstract data types, application programs, and policies. Finally, the last chapter 

provides a retrospective and a prospective view of the work, analyzing how well the language 

met its goals and what future areas of research might be explored. 

The thesis aJso contains a number of appendices giving the syntax of Paragon, some 

additional semantics for Paragon, a glossary of the technical terms used in the thesis, and 

listings of the programs used for the performance measurements of the translator. 



Chapter 2 
Goals of Paragon 

and 
Their Relation to Previous Efforts 

There is a great deal of previous work on the design of programming languages, on data 

abstraction and on selection of data representations. Most of this work has concentrated on 

one of these aspects, for example, abstract data types in a language or selection of table 

representations in a database. This current work attempts to synthesize these different efforts 

into a coherent language design, incorporating the experience gained from the previous 

efforts. As Paragon represents a synthesis, it has a set of goals that transcend, and sometimes 

contradict, some specific goals of previous research. To place the past efforts in a proper 

perspective, it is necessary to understand the specific goals that the design of Paragon is 

intended to meet, to isolate the goals that past efforts have tried to attain, to consider how the 

past work has advanced Paragon's goals and to point out the previous limitations that 

Paragon's design should overcome. 

This chapter, therefore, presents an explicit statement of the goals of Paragon's design, 

including some related but tangential goals *that Paragon does not address. Along with 

Paragon's goats, the goals and methods of two previous approaches to Paragon's overall 

objectives are considered and compared with Paragon: the design and implementation of 

abstract data type facilities in languages, and the automatic selection of representations. 

2.1. Goals of Paragon 

The goals of Paragon can be grouped into four broad classes: abstract data type 

specification goals, abstract data type representation goals, representation-selection goals 

and automatic-processing goals. These goals are listed below, followed by a discussion of 

each: 



Section 2.1 Goals of Paragon 20 

Abstract Data Type Specification Goals 

• Refinements of specifications of abstract data types may be written. 

• Related specifications may be combined in a single module. 

Abstract Data Type Representation Goals 

• Multiple implementations of an abstract data type may be written. 

• Several implementations of an abstract data type may be used simultaneously in a 
program (one implementation t~er variable). 

• If several implementations of an aostract data type are used for different 
variables, those variables may interact. 

• A single implementation may be written for several separate specifications. 

Representation-Selection Goals 

• An implementation of an abstract data type should contain information describing 
the implementation without permitting direct, unrestricted access to the 
implementation. 

Declarations of variables should contain information describing the constraints 
that an implementation of the variable's type must meet without having to 
explicitly name an implementation. 

• The selection mechanisms should be available to the programmer in a convenient 
manner. 

Automatic-Processing Goals 

• Static type checking of all variable declarations (object creations) and procedure 
calls should be supported. 

The representation information present in abstract data type implementations and 
variable declarations should be processed automatically, so that a compiler can 
choose an appropriate implementation of an abstract data type. 

• Compile-time checking should ensure that all representation-selection decisions 
result in a program that can execute without run-time errors. 

2.1.1. Refinements of Specifications 

Paragon should permit a very abstract specification to be refined into more concrete 

specifications. Initially, properties of objects may be defined in a very abstract way. Some 

initial properties might include assignability, hashability, transmissibility over a network, 

commitment of operations, the ability to be stored in a file system and orderings. Each of 



Section 2.1.1 Goals of Paragon 21 

these specifications should be able to be refined as a way to add details to the specifications 

without adding implementation-specific details. For example, a record may be specified as 

containing a number of fields. The operations on the record might include field selection and 

record assignment. Then the specification for the record is a refinement of the specification 

for assignability: fields and field selection have been added. 

This goal is partially met by the object-oriented language designs in Simula [Dahl 68] and 

Smalltalk [Goldberg 81, Ingalls 78, Ingalls 81, Morgan 81, Xerox 81], the use of clusters in 

Enhanced C [Katzenetson 83a, Katzenelson 83b], the Traits additions to Mesa [Curry 82] and 

the Flavors facility for Lisp [Weinreb 81]. A similar kind of hierarchy was proposed by Smith 

and Smith [Smith 77] and in Taxis [Mylopoulos 80] for organizing relations, views and objects 

in a database. Further, the Program Development System [Cheatham 79] uses a refinement 

hierarchy for writing system modules. But all of these systems use the refinements only as a 

way to refine objects or system components however, and not as refinements of 

specifications with the intention of later refining the specifications into implementations. With 

the exception of the PDS system, each level of these hierarchies defines both abstract and 

concrete properties of program objects. There is no intention to provide the absolute 

separation of abstract and concrete aspects that is required by data abstraction methodology. 

In some cases, such as the Smalltalk design, there is not even a way to provide this 

separation. For example, there are no procedure specifications, only implementations. Thus 

the details for the concrete representation are present where only the abstract details should 

be allowed. Although the PDS system does separate abstract properties from concrete 

properties, refinements in PDS may only be performed on modules that contain concrete 

details. PDS do,os not intend that the user refine only specifications. Further, PDS is intended 

to work on system modules and not necessarily on abstract data types, that is, on objects that 

are declared many times by a programmer and manipulated by an application program. 

Program transformation systems represent another approach for adding the refinement 

paradigm into a language. Some program transformation systems, such as PECOS/LIBRA 

[Barr 82, Kant 83] and the interactive system developed by Balzer's group [Balzer 81], 

generate refinements of specifications. However, these systems encode their refining rules in 

a separate language from the data-type description language and perform the refinement as 

part of the translation process. In practice, these rules represent ways that a program may be 

refined rather than ways in which data abstractions may be refined. Therefore these systems 

are considering a much larger domain than merely specifying data types. In fact, their domain 
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is sufficiently rich that various forms of heuristic search are required to perform the 

refinement process. In more conventional program development, the user provides some 

static refinements which can then be used for specifying a program. It is this conventional 

model of program development that Paragon is supporting. Hence the more static refinement 

paradigm should be provided by Paragon. 

The proposed layers of specifications are a departure from most languages that provide 

data abstraction facilities. For example, Clu [Liskov 81], Alphard [Shaw 8t] and Ada [lchbiah 

80] all use a single level of refinement, the upper level being the abstract specification and the 

lower level being, the concrete implementation. An extension of Simula proposed by 

Ingargiola [Ingargiola 75] allows, in a very restricted way, layers of specifications. This first 

goal of Paragon is an attempt to generalize the approaches used in these other languages. 

2.1.2. Combined Specifications 

When appropriate, related objects should be specified in the same module. One example 

frequently encountered is a keyboard data type and a screen data type, that is, an input and 

output device. Logically, the functions of reading and writing may be separate, but for many 

systems, such as those using half.duplex, local-echo terminal protocols, the specifications of 

reading and writing are closely coupled. Thus these two objects, screens and keyboard, 

should be able to be specified in the same module. Hence another of Paragon's goals is to 

allow a combined specification in a module. 

This too is a departure from several data abstraction languages, such as Clu and Alphard, 

and from object oriented languages such as Simula and Smalltalk, where each module 

(cluster, form, class and class respectively) specifies a single kind of object. The goal is to 

emulate the private type facility of Ada or the type facility of Euclid [Chang 78]where a single 

module (package and module respectively) may contain several specifications for related 

objects. 

2.1.3. Multiple Implementations 

Current data abstraction languages focus on the separation of a data type from its 

implementation. A natural outgrowth of this separation is the ability to substitute one 

representation for another. Many languages, such as Alphard, force a single implementation 

to be associated with a specification. One can change the representation only by removing 
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the entire module (form), which contains both the specification and implementation, and by 

replacing it with a module that contains the same specification and a new implementation. 

Other languages, such as Ada, permit different implementations (package bodies) of an 

abstract data type to be written, but only one may be associated with a specification (package 

specification) for any particular program. One of the goals of Paragon is to eliminate these 

restrictions and allow multiple representations to be associated simultaneously with a single 

specification for an abstract data type in a single program. 

As explained in Section 1.1.2.2, different representations should be allowed access to 

additiona~ details about their composition and use. This goal represents a substantial 

departure from current data abstraction methodology. However, the goal is very similar in 

concept to the representation selection systems such as the systems built by Low [Low 74], 

and by Gotlieb and Tompa [Gotlieb 74]. In Low's system, the selection mechanism takes into 

account the composition of a set's elements. Gotlieb's and Tompa's system performs an 

initial pass over different table representations to select those that have the necessary 

operations implemented for the particular use of a table. Therefore these systems can use 

details at)out a data type's composition when selecting a representation. But unlike the 

design of these systems, the design of Paragon strives to integrate the selection of 

representations with the rest of the language. The selection process is not to be the activity of 

an extrinsic, representation-selection system.. 

2.1.4. Simultaneous Implementations 

Beyond the ability to define multiple representations in a program, another goal of Paragon 

is the ability to use multiple representations in a program. Although some language designs 

permit multiple representations to be present in a source program, they require that each 

variable in a program be assigned the same implementation. For example, Ada requires that 

the same representation (package body) be associated with a specification (generic package 

specification) for each object specified (instantiation of the package). This decision is 

motivated by implementation complications caused by different representations of an abstract 

data being passed in the same procedure call, discussed in the next section (Section 2.1.5), 

since the prohibition of simultaneous, different implementations for a single abstract data type 

guarantees that the resulting program wilt have no interacting implementations. The design 

goals for Paragon differ from these previous design goals. Instead, a Paragon design goal 

insists that different instances (variables) of the same abstract data type may use different 

implementations in a single program. 
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2.1.5. Interacting Implementations 

Allowing variables with different implementations to interact is another design goal of 

Paragon. But this goal normally presents a problem if two variables with different 

implementations interact. In general, there is either no guarantee that an appropriate 

implementation for the interacting operation will exist or there must be an enormous number 

of operation implementations: for n variable implementations, there needs to be n 2 operation 

implementations. The use of set implementations illustrates this problem. First, assume that 

two popular implementations for sets, bit vectors and hash tables, are available to implement 

set variables. Then suppose that two variables are implemented, one with each of the 

implementations, and that there exist proper implementations for the intersection operation 

for each of the two implementations. Although a selection of either representation for all set 

variables results in a program that has procedure implementations for all calls, there is still no 

guarantee that there exists an implementation for an intersection operation applied to a hash 

table and a bit vector. The alternative is to provide procedures for all combinations of set 

implementations. Thus the interaction of the differently implemented variables causes 

problems, which is a reason why many languages exclude this goal. The design of Paragon is 

intended to solve this problem so that interacting implementations may be used. 

Several approaches to the problem have been suggested: automatic conversion from one 

representation to another; a canonical representation; an implementation of intersection that 

uses only abstract operations; and the addition of extra implementations of intersection for 

the different combinations of sets. However, none has ever been incorporated into a complete 

language design. In fact, previous work tends to ignore this goat explicitly. Low's system, the 

SETL optimizer [Freudenberger 83] and the Algol-68 extensions proposed by Banatre, et al. 

[Banatre 81] use variable interactions as a way to decide that different variables should have 

the s a m e  representations. One design that permitted interacting representations was an 

Algol.68 extension designed by Ghezzi and Paolini [Ghezzi 77] but this system requires the 

programmer to direct explicitly the language system to use different representations. A 

design goal of Paragon is to remove these restrictions and to provide the facilities that allow 

different variables to have different implementations of abstract data types, even if they 

interact in some operation. 
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2.1.6. Shared Implementations 

Distinct abstract data types sometimes have a shared representation. For example, the set 

facility in SETL uses a combined representation for integers and sets. In this combined 

representation, there is a single hash table that contains all integers used in a program. Some 

of these integers are contained in sets; some of these integers are currently assigned to 

integer variables; some are assigned to both; some are assigned to neither. Each integer in 

the hash table contains information about its value and all the sets it is contained in. All set 

variables and integer variables contain specific information for retrieving information from this 

single hash table (details can be found in the description of SETL's implementation [Dewar 

79]). Thus the hash table is part of a combined representation for integers and sets. Besides 

SETL, this kind of sharing is frequently desirable in memory allocation systems, message 

transmission systems, file systems and transaction logging systems, where a particular facility 

needs to have representation control over many kinds of abstract data types. Yet this ability is 

not provided in data abstraction languages. 

Thus another of Paragon's design goals is to support shared implementations for distinct 

specifications. Related ideas have been proposed by Katz and Rosenchein [Katz 81] and by 

Rowe and Tonge [Rowe 78] where two distinct data structures are joined into a single data 

structure and this single data structure is viewed as having two different uses. However, there 

has been no exploitation of the idea that a single representation may simultaneously 

implement several specifications. This goal is, therefore, another departure from the usual 

data abstraction facilities found in most languages. 

2.1.7. Distinguishing Implementations 

One of the immediate consequences of permitting alternative implementations of abstract 

data types is that a way to evaluate them must be present. Most representation-selection 

systems have a way to distinguish representations, such as formulae that indicate a 

representation's performance. However, these differences are usually not available to the 

programmer and the programmer may not alter them. In fact, these descriptions are usually 

external to the language being implemented and instead belong to the translation system or 

representation selection system. 

When a programmer creates a new type, the programmer should be able also to specify the 

ways in which the representation should be used. Unfortunately, most languages permit the 
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control of different implementations for only predefined types. One such example is 

Pascal [Jensen 78], which allows the programmer to select a packed representation for some 

of the data types. Other languages fail to distinguish between different representations within 

the program and create an entirely separate configuration language in which the different 

implementations can be described [Mitchell 79]. 

To ameliorate these restrictions, the design of Paragon strives to introduce ways to let the 

programmer describe and distinguish between the different representations without giving 

direct access to the details of representation. 

2.1.8. Variable Description 

To assist in making a representation selection, the programmer should be able to provide 

the selection system with some kind of information about the variables used in a program. 

Most languages only permit the programmer to provide some crude, predefined attributes of a 

variable, such as in Ada, where certain kinds of monitoring of variables can be control by the 

programmer. Representation-selection systems usually permit the programmer to provide 

some better information: for example, the PSI system asks the programmer about the 

program [McCune 77], but the selection of information is still not under programmer control. 

Unlike these systems, Paragon should allow the programmer to specify what kinds of 

information should be provided when declaring a variable and then to describe how that 

information is to be used by the selection system. 

2.1.9. Programmer Accessibility 

Representation-selection systems are usually associated with very high-level languages that 

provide very abstract objects (compared with the level of abstractions provided in typical 

high-level languages). The representation.selection system provides many representations for 

these very high-level features but limits the access that a programmer may have to these 

representations [Schonberg 77], to the descriptions of the representations [Rowe 78] or to the 

optimization criterion that the representation-selection system is using [Low 74]. These 

systems further limit the programmer's interference with the selection decisions because only 

predefined types in the very high-level language associated with representation-selection 

systems may be used. There are no facilities for user-provided types, user-provided 

representations or user-provided optimization criteria. 
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The motivations for these restrictions are the complexity of the data structure that 

represents th~ e program during representation selection and the complexity of the selection 

algorithm operating on this data structure. Usually, this data structure is an abstract syntax 

tree of tlhe pr(~jram, and the actual representation selection process has the complexity of a 

compiler phase. Writing a piece of a compiler is thought to be beyond the concern of a typical 

programmer, hence the lack of programmer-provided, representation-selection mechanisms. 

Because a data abstraction language, such as Paragon, is designed to allow programmers 

to create new high-level abstractions, it should allow programmers to control the 

representation selection. This programmer control requires programmer-accessible 

mechanisms 1For describing the differences between representations and for describing the 

optimization criteria to be applied. However, the complexity of the resulting mechanism must 

be limited so that the mechanism is within easy grasp of a typical programmer. 

2.1.10. Static Type Checking 

Static type checking (checking the compatibility of actual parameters with formal 

parameters before a program is executed) helps ensure that a program meets its specification 

and limits the possible kinds of run-time errors. The Paragon design therefore attempts to 

have al~ type checking performed during the compilation process and to have no type errors 

possible during execution. 

The goal of static type checking is also a departure from the procedure-call checking 

performed in typical object-oriented, hierarchy-based systems, such as for 

SmaUtalk's methods and Simula's virtual procedures. There is a tradeoff in these designs 

between safety and efficiency, and flexibility. Because the parameter matching for procedure 

calls can be verified duringcompilation, static checking is considered safer, and because 

more is known about the program being checked, a more efficient program should result. 

Therefore Paragon opts for a safe and efficient language rather than for flexibility. 

2.1.1 1. Automatic Selection of Representation 

If a language provides a way to distinguish between representations, then a natural 

extension of the language should provide some automated way to select an appropriate 

representation using the distinctions. Since a goal of Paragon is to provide descriptions that 

distinguish between data type representations, the Paragon language and its translator 
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should also include some mechanisms for automatically selecting a representation for each 

variable. 

There is a problem in defining the term automatically. At one extreme, it might mean that the 

compiler checks the decisions stated by the programmer in the same way that type checking 

is automatically processed once the program defines all identifiers in declarations. One such 

example is Mesa [Mitchell 79], which relies on an additional file, called a configuration file, to 

• specify which implementation should be used with each specification (interface module) by 

naming it. At the other extreme are program transformation systems, such as PSi and 

Rovner's Sail compiler [Rovner 76], which make a decision by using processes that are 

internal to the translation system. 

Paragon's goal lies somewhere in between. The programmer should be able to describe a 

method for making selection decisions, for example, to attempt to minimize the time and 

space product of the variables that the programs use. However, the programmer should not 

have to state explicitly which implementation should be associated with each variable. 

2.1.1 2. Compile-Time Checking of Program Feasibility 

The philosophy of abstract data types dictates that compile-time checking should guarantee 

that the implementations of an abstract data type can be used when the specification is used. 

In applying this philosophy to a language with multiple representations of abstract data types, 

the design of Paragon should allow compile-time checking of implementations, guaranteeing 

that all variables have a representation. Further the design of Paragon should allow compile- 

time verification that appropriate procedure implementations exist for the procedure calls 

using those representations. The idea that this kind of checking be performed independently 

of the semantic analysis is another departure from conventional language designs. 

2.2. Preliminary Design Restrictions for Paragon 

Even with the goals that are set forth explicitly, there is still a wide range of choices for the 

scope of the research. In order to limit this scope, several design restrictions were arbitrarily 

imposed. 

The restrictions were based on a priori guesses about what features might enlarge the 

scope of the language design. Each restriction could be lifted in order to generate another 
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direction of research that synthesizes abstract data types and representation selection. A 

brief description and motivation for each restriction follows the list below. 

• A type hierarchy will be the basis of the language design. 

• An identifier within a scope will have exactly one object bound to it. 

• No attempts at automatic creation of representations for abstract data types will 
be made, 

• No attempts at automatic conversion between representations of abstract data 
types wil~ be made. 

• There will be no run-time selection of representations of abstract data types. 

• The prototype translator is intended to represent an existence proof of feasibility, 
not the last word in efficient algorithms. 

2.2.1, Use of a Type Hierarchy 

This work might have been built on other data abstraction languages, such as Ada, Clu or 

Alphard, each with its own method of writing the specifications and implementation of 

abstract data types. Because my thesis is that many levels of refinement are appropriate for 

specifying and representing abstract data types and because the class mechanism in 

Simula p~rovides a layering mechanism, I was drawn to Simula-67 as a model. Thus I arbitrarily 

chose to exploit and explore this particular approach to this problem. 

I did not, however, use Simula as my base language design, though the current design of 

Paragon has many resemblances to Simula. Initially, I wanted to make a clear distinction 

between types and objects. As a model for this distinction, I used the Red programming 

language [Nestor 79]. Some initial designs of Paragon resembled a cross between Red and 

Simula, hut these designs were significantly different from Red and Simula that no effort was 

made to use either language as a base from which to design Paragon. 

2.2.2. Single identifier/Object Binding 

Because the eventual translator system needed to select particular implementations for 

variables and follow their use throughout the program (or block in which the identifiers were 

bound), I insisted that each binding of identifier to an object, within a block, be immutable. 

This meant that the choice of representation made for a variable when the variable was 

created would remain invariant throughout the block. This was an attempt to isolate the object 
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creations to the variable declarations in a block, and hence simplify the analysis of the block 

for later selection decisions. If one permitted the representation of the object to change at 

arbitrary places in the program, then one might be unable to determine at compile time which 

representation a variable might have during a procedure call. Therefore one could possibly 

increase either the work at compile time to check that an implementation exists or the work at 

run time to select an appropriate procedure. 

2.2.3. Automatic Creation of Representations 

A widely pursued research topic is the creation of representations of abstract data types 

given a formal specification. Although this topic is interesting, a proper treatment of it requires 

a formal specification language, a processor for that language and some assumptions about 

the way that data types are implemented. Paragon strives to take advantage of programmer. 

provided knowledge of representation and not to create new representations. Thus the goal 

of automatic creation was considered beyond the scope of this work. 

2.2.4. Automatic Conversion between Representations 

Along with automatic creation of representations, the automated conversion from one 

representation to another is considered an important research topic. Attempting to pursue 

this goal raises a large number of problems that have not yet been satisfactorily solved. First, 

there is the problem of specifying the implementations and their equivalencies. Second a 

technique must be chosen for the conversion operations: for example, using a canonical 

representation; using a different conversion routine for each possible conversion between 

representations; or automatically creating the conversion routines. Third, there is an unsolved 

question of when to perform the conversion. Because of these issues, the design of Paragon 

did not explicitly consider automatic conversions between representations, but left the topic 

open for further research. 

2.2.5. Run-Time Selection of Representations 

Allowing the run-time selection of representations forces the design of Paragon to answer 

many additional questions and solve additional problems that were beyond the scope of the 

research. For example, allowing the run-time selection of representations can hamper the 

feasibility checking of a program at compile time. Under typical circumstances, every possible 

implementation must be available at every use of the variable since no compile.time 
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informatlion may be available. Because a goal of Paragon is to guarantee the existence and 

type correctness of all necessary procedures at compile time, and because allowing run-time 

selection of representations makes this guarantee difficult to enforce, run-time selection of 

representation is prohibited. Further, there are open questions about the methods that 

should be used in making a run.time selection. For example, the cost of making a decisions 

may be more expensive than the savings from the choice. Finally, there is usually some 

additional run-time expense in making a selection of a procedure given particular 

representations for its parameters - -  an expense I felt that Paragon programs should avoid. 

Therefore, I limited the scope of this work to compile-time selection. 

2.2.6. Prototype Translator 

As evidence that the Paragon design was complete and translatable, I constructed a 

prototype translator. The art of creating efficient translation schemes is another area of 

research that is logically related to language design, but the creation of an efficient translator 

was not essential for my demonstration of feasibility. Thus minimal effort was expended to 

make the translation system efficient, although there was an effort made to ensure that the 

entire language could be translated and executed. In addition, there was an effort made to 

ensure that the prototype would show that there are no inherent inefficiencies for processing 

or executing Paragon. 

With these sets of goals and restrictions in hand, I proceeded through several designs of 

Paragon. The basics of the last version of Paragon are provided in the next chapter, followed 

by a chapter which illustrates some of the more complex featuresof the language, 



Chapter 3 
The Basics of Paragon 

This chapter describes the basics of the ~aragon programming language. I have assumed 

that the reader is familiar with algebraic languages such as Pascal or Simula, and with 

extended BNF notations. No emphasis will be placed, therefore, on describing the exact 

syntax of various language features or the BNF metalanguage. Instead the discussion will 

assume that the reader can read the examples without such comments. 

Paragon is defined in terms of a process called e/aboration. Therefore, this chapter starts 

with a brief description of the three kinds of elaboration that Paragon uses. The basics of 

Paragon are concerned with the objects and their manipulation, so the notion of object is then 

introduced a~ong with some examples of how a simple object may be defined and created. 

Two ways of defining relationships between objects, inheritance and nesting, are also 

discussed. Then the chapter provides a discussion of how expressions and objects interact 

througl~ the use of parameters. 

Once objects and expressions are introduced, a brief discussion of procedures is 

presented. Procedures provide a general mechanism for manipulating objects. One special 

kind of procedure, an iterator, is then described. The discussion of iterators is followed by a 

description of other control abstractions in Paragon: the usual statements found in an 

algebraic language. 

With this level of introduction, a programmer should be able to read the Paragon programs 

in this thesis. For the interested, a BNF description of the syntax can be found in Appendix 

B and additional language details can be found in Appendix A. 
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3.1. Overview of Elaborations 

The semantics of Paragon are defined in terms of elaborations that are performed on a 

program. Three kinds of elaborations are defined in Paragon: elaborations with 

specifications, elaborations with implementations and elaborations with 

realizations. Although Section 5.1 gives a more complete description of these different kinds 

of elaborations in Paragon, a brief introduction is needed for understanding this chapter. 

Elaborating a program with specifications and implementations can be thought of as 

performing various kinds of semantic analysis. Thus elaboration of a procedure invocation 

with specifications is the technical way of describing the type checking for a procedure call. 

When a program cannot be elaborated with specifications, perhaps because of some 

semantic error, the program is called ill specified, otherwise the program is called well 

specified. Elaboration of a procedure call with implementations corresponds to feasibility 

checking. This elaboration checks that an acceptable procedure implementation exists for 

the procedure call. If an acceptable procedure implementation cannot be found, perhaps 

because it is never declared, then the program is called infeasible. If there are no errors 

during elaboration with implementations, then a program is called feasible. The concept of 

feasibility checking is described in Section 5.5.5. Finally, elaboration with realizations 

corresponds to the actual running of a program; the term executing is used synonymously 

with the phrase elaboration with realizations. A program without run-time errors is called 

defined. A program that generates a run-time error is called erroneous. At various times 

throughout the discussion in this chapter, these terms will be used when a precise statement 

of Paragon's semantics is required. 

3.2. Objects 

There is a rich structure to objects that are manipulated by Paragon programs. The parts of 

the structure are simple objects, objects, local instances and parameters. Their relationships 

are discussed below. 

Objects in Paragon consist of nested simple objects. Some colloquial examples of simple 

objects include houses, kitchens and refrigerators. An object is represented by a list of nested 

simple objects, such as a house that contains a kitchen that contains a refrigerator. The figure 
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below illustrates this relationship: 7 

Objects 35 

Frig. I 
Kitchen 
House 

Figure 3-1 : An Object Consisting of 3 Simple Objects 

An object is defined in terms of a single nested simple object inside each nested simple 

object. Many other relationships between simple objects may exist in a program. Most of these 

relationships have no special value in the definition of Paragon and hence are notnamed in 

this thesis. For example, the following figure shows a possible relationship among simple 

objects; in Paragon, but the figure does not represent an object: 

7As discussed in Section 3.2.3 on page 42, a textual representation of the same object would be 
(House, Kitchen, Fdg). 
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I } lS,ove 1 
Kitchen 

House 

Figure 3-2: Nested Simple Objects that are not an Object 

However, the same simple objects may be used in more than one object. For example, the 

following figure illustrates the same simple objects for House and Kitchen in a different object 

than the one shown in Figure 3-1: 

Stove 

Kitchen 

House 

Figure 3-3: Another Object with 3 Simple Objects 

This structure permits simple objects to be shared by other simple objects. In particular, an 

outer simple object can be thought of as a manager or owner of all of the simple objects 

inside of it. An object can be viewed as the most deeply nested simple object along with its 
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manager(s). This view of "managers controlling individuals" is developed in Chapter 4 and is 

essential to the definition of abstract data types in Paragon. 

As shown above, a simple object may contain other simple objects. Another, unrelated way 

to analyze simple objects is by considering the local instances and parameters in simple 

objects, s Each simple object contains a set of /oca/ instances and some parameters s. 

Parameters provide a way for one simple object to share objects with another simple object. 

The details of parameters are deferred until Section 3.4. Each local instance provides some 

set of properties for the simple object. For example, the kitchen simple object may contain 

local instances that describe properties of "being something with four walls", "being 

something with a floor" and "being a place where appliances reside." In programming. 

language terms, a local instance consists of a set of variables and procedures, where these 

variables and procedure describe some properties of the simple object. A simple object is 

illustrated in the figure below: 

- - -  . r a m  

L I - I  L I -  2 L I - 3  L.ocol 

. . . .  instonces ] 

Figure 3-4: A Simple Object with Parameters 

So far, simple objects have been described colloquially. Paragon actually defines four 

8There i5; a relationship between local instances, simple objects and objects, but it is far too complex is repreeent 
two dimensionally and has no use in this thesis. Therefore. the reader is advised to merely consider the relationship 
between objects and nested simple objects and the relationship between simple objects and local instsnce,,z to be 
unrelated. 

9A simpke object may also have a label if the creating name component is labeled in a parameter. See Section 
3.4.1. 
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different kinds of simple objects. Each simple object can be either specified or realized, and 

can be either definite or indefinite. The first choice of specified or realized is determined by 

the kind of elaboration that created the simple object. If the simple object results from 

elaboration with specifications or implementations, then it is specified. If the simple object 

results from elaboration with realizations, then it is realized. Thus specified can be viewed as 

a compile-time simple object; realized can be viewed as a run-time simple object. 

The adjectives definite and indefinite indicate whether the simple object is considered 

unique. In a more conventional sense, indefinite simple objects are the "types" of definite 

simple objects. In English, = House denotes any House; it is indefinite. The House denotes a 

particular House; it is definite. Similarly in Paragon, it is possible to denote a definite simple 

object, that is, a particular simple object, and it is possible to denote an indefinite simple 

object, that is, a simple object that represents some unspecified member of a set of simple 

objects. 

Expressions are elaborated inside of simple objects. The simple objects that enclose the 

expression contain bindings between identifiers and either procedures, classes or objects. 

Thus an object is also an environment. The two words are used interchangeably in this thesis. 

The basic Paragon feature for defining an object is a class. The ways that classes are used 

to create local instances, simple objects and objects are discussed in the next sections. 

3.2.1. Classes and Simple Objects 

Classes serve as templates or models of simple objects. Much like classes in Simula, they 

may contain parameters, declarations and statements. An example is shown below: 

c lass  V e h i c l e  i s  1 A  c lass  d e c l a r a t i o n ;  
begin 

var  S ize  => IM . new I n t e g e r ;  1 A  v a r i a b l e  d e c l a r a t i o n ;  
Size := O; I A statement; 

end; 

This example declares a class that represents a Vehic/e. The class contains one declaration, 

an integer variable Size 1°, and one statement, that initializes Size. 

lODescriptions of variables are deferred until Section 5,2 when distinctions between specifications and 
implementations are discussed. 
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Like Algol-68 [VanWijngaarden 69], Paragon uses a kind of generator function on classes in 

variable declarations to create new, definite simple objects. This generator function is 

denoted new and appears in simple-object creations. For example, the following simple- 

object creation: 11 

new Veh i c ] e  

creates a definite Vehicle simple object. When a simple object is created, one local instance 

for the class and one for each of its ancestors are created. Because no classes are inherited 

by Vehicle, this simple object consists of one local instance which is the result of elaborating 

the declarations and statements in the class declaration for Vehicle. After creation, the simple 

object is said to have Vehicle as an underlying class. 

A simple object (or instance) that is formed from a simple-object creation is termed a 

definite instance. There are two other kinds of instances that need to be defined: indefinite 

instances and any instances. 

An indefinite instantiation creates an indefinite instance and merely has the class name 

without the reserved word new. For example, 

Vehicle 

represents an indefinite instantiation of Vehicle. It too results in a simple object, and as will be 

illustrated later, is the way in which types are denoted in parameters. The main difference 

between indefinite instances and definite instances is that the internal declarations and 

statements of definite instances are completely elaborated, whereas only selected 

declarations are elaborated in indefinite instances. Like definite instances, indefinite 

instances have an underlying class, namely the class denoted by the identifier in the 

expression specifying the instantiation. 

A third instance is an any instance. The instantiation has the simple representation: 

any 

and it results in an indefinite instance of the special any class. 12 One can think of this simple 

object as the most indefinite indefinite object. It is used when a programmer wishes to 

11More properly, object-creation name component, see Section 3.3.1. 

12For completeness, the underlying class of an any instance is defined to be the special any class which is 
otherwise inaccessible to the programmer. 
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express the notion that some kind of object is present, but does not wish even to specify a 

class to which the simple object will belong. 

3.2.2. Inher i tance 

Like Simula and Smalttalk, the classes in Paragon may inherit other classes. Inheritance is 

used to include the declarations and statements from another class. For example, a tank 

object is a special kind of vehicle and should contain the properties associated with any other 

vehicle. This is accomplished by inheriting the Vehicle class in the declaration for Tank, as 

shown below: 

c lass  Tank of  V e h i c l e  is  
begin 

var CrewSize => IM . new 
end; 

integer; 

A Tank simple object has both the properties specified in the declarations for Vehicle and the 

properties specified for Tank. More than one parent may be specified and parents are 

accumulated, that is, inheritance is transitive. 13 This can be illustrated with the following 

classes that represent ships: 

c l ass  Ship is  
beg in  

var  D isp lacement  => IM . 
end; 

new i n t e g e r ;  

c lass  Mon i to r  o f  Ship,  Tank is  
beg in  

Cannon => IN . new i n t e g e r ;  
end; 

Objects with an underlying class of Monitor inherit the properties from both classes Ship and 

Tank, 14 and since Tank inherits properties from Vehicle, Monitor inherits Vehicle's properities 

as well. 

When a simple object is created, the various classes that are inherited are elaborated, one 

13The set of all inherited parents is called the ancestors of the class. 

14The Monitor was among the first class of armor plated ships introduced during the U,S. Civil War. 
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at a time, starting with the furthest ancestor of the leftmost parent. 15 The order of elaboration 

matches the order of inheritance. In the example above, the order is Ship, Vehicle, Tank and 

last, Monitor. This order is called /eftmost elaboration order, t6 The elaboration of each 

ancestor creates a local instance and the collection of local instances from the elaboration of 

each ancestor and the class itself are grouped together in the simple object. 

It is conceivable that a ancestor class may be inherited more than once. The Ship class in 

the previous example might have been written: 

c lass  Ship of  V e h i c l e  is  
begin 

var Displacement => IN , new integer; 
end ; 

c lass  Moni tor  of  Ship,  Tank is  
beg i n 

Cannon => IM . new i n t e g e r ;  
end ; 

in which case the Monitor class would inherit the Vehic/e class twice, once from Ship and 

once from Tank. In this circumstance, onty one local instance for the shared class would be 

elaborated and that elaboration would occur the first time that the shared class is 

encountered. In this example, the elaboration order of classes for a Monitor object creation is 

Vehic/e, Ship, Tank and last, Monitor. 

Although the semantics for Paragon would be simpler if an ancestor could not be inherited 

more than once, this feature allows a programmer to refine abstractions one level at a time 

without having to rearrange an entire tree of refinements. In the example above, the 

programmer's view of the abstract world is that Ships and Tanks are special kinds of Vehicles 

and that Monitors really are a special kind of Ships and Tanks. If Vehicle could not be 

inherited more than once, then the programmer would have to change the declaration(s) for 

either Tank, Ship or Monitor. Although this makes Paragon simpler, this rewriting no longer 

reflects the programmer's abstract model of the world. Further, in Chapter 4, this same ability 

is exploiited to provided multiple implementation of abstract data types. Therefore, the design 

of Paragon permits aclass to inherit an ancestor more than once. 

t5Leftmost has been the convention adopted by other languages, in particular Flavors and Traits, and so is 
adopted by Paragon as well. Rightmost would not produce a radical change in the semantics, but since English is 
read from left to dght, there is a stight tendency to examine the parents of a class in the order in which they are read, 
left to right. If programmers thought like LALR parsers, perhaps rightmost order would make more sense. 

16Also :see leftmost parent order, page 325. 
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3.2.3. Nested Classes and Objects 

In the examples given so far, the only declarations in a class were integer variables. Classes 

may also be declared in classes which leads to a structure of nested simple objects. For 

example, nested rooms inside houses might be specified as below: 

class House is 
begin 

class Room is 
begin 
end; 

end; 

An object creation that uses the House class, that is new House, creates a simple object in 

which other simple objects may be created, namely Room simple objects. The House simple 

object in which a Room is created is also called the environment for the creation of rooms. 

The expressions denoting nested objects are straightforward. For example, a programmer 

can write the following expressions (which use the House and Room declarations): 

var MellonMansion => new House; 
var MasterBedRoom => MellonMansion . new Room; 

The first expression creates a House simple object (and the variable declaration causes the 

identifier Mel/onMansion to be bound to the simple object). The second expression creates a 

Room simple object inside the previous created House simple object. Note that a full 

description of the newly created Room requires some reference to the enclosing House 

simple object. Paragon therefore defined the concept of object to mean the simple object 

along with the environment in which it was created. Thus, an object is a list of simple objects, 

one created inside another. 

In this thesis, a list notation is used to represent objects. Each element of the list denotes a 

simple object. If the simple object resulting from the first simple object creation is denoted MM 

and the simple object resulting from the second creation denoted MBR, then the object 

denoted by the identifier MasterBedRoom is represented by (MM, MBR). Rather than always 

creating a name for every simple object, the class name alone will sometimes be used to 

represent a definite instance of that class in a list of simple objects. Thus the object denoted 

by MasterBedRoom would be given as (House, Room). Since there is only one definite 

instantiation for each class in the example above, there is no ambiguity about which 

instantiation of House is meant. In cases where some ambiguity exists between definite 
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instances of the same class, the list notation will be abused a little by using the variable 

identifier associated with the creation name component for the innermost simple object. Thus 

the object denoted by MasterBedRoom might also be represented by 

(MellonMansion, MasterBedRoom). This last convention will suffice since definite instances 

are only permitted in variable declarations, and only one object instantiation is permitted per 

variable, = declaration. 

3.3. Name Expressions 

Name expressions denote actions that are to be performed during elaboration. Each name 

expression consists of a sequence of name components separated by periods (.) where each 

component performs a single action in a specified environment, and returns another 

environment in which the next name component is to be elaborated. Such actions include 

object creation, binding of identifiers to objects and invocation of procedures. 

Because no previous component returns an environment for use by the first name 

component in an expression, it is elaborated in the environment of the object in which it 

appears. If the House class mentioned above were modified a bit as follows: 

c lass  House is  
begin 

c lass  Room is  
beg in  
end; 

var K i t chen  => new Room; =~:~1 
end; 

then the simple object creation for Room (notation 1) has as its environment the House simple 

object in which the variable declaration Kitchen is being elaborated. Generally, the initial 

environment for a name expression is the scope in which the first identifier in the name 

component is declared. In the example, the identifier Room is declared in the class House, SO 

the environment is the enclosing House object. Section A.4 gives a complete description of 

how this environment is established. 

Within its environment, each name component specifies one specific action, such as 

creation of & simple object, selection of an object, description of an object or invocation of a 

procedure. The first three kinds of name components are discussed below. The discussion of 

procedure invocation is postponed until Section 3.6.4 where procedure implementations are 

discussed. 



Section 3.3 Name Expressions 44 

3.3.1. Generation of Instances 

Generation of instances results from the elaboration of an object.creation name component. 

The syntax for this kind of name component is the reserved word new followed by an identifier 

representing the underlying class for the simple object. Several examples of this kind of name 

component were shown in previous examples, such as new Tank. The environment that 

results from the creation of a simple object is the environment for the object creation 

appended by the simple object. In a previous example, Me//onMansion . new Room, the 

resulting environment is the resulting object, (House, Room). 

There are several restrictions on the name expressions that may contain an object creation 

name component. Briefly, the environment in which the creation takes place may have been 

neither newly created by another object-creation name component in the same name 

expression nor the result of a procedure call in the same name expression. The details of 

these restrictions can be found in Section A.2. 

3.3.2. Description of Objects 

Paragon provides two kinds of name components to describe an object. Intuitively, these 

name components provide a way to denote a type. t7 One way uses a class identifier in a name 

component; this corresponds to explicitly naming a type. The other way uses the reserved 

word structure as a name component; this corresponds to extracting the type of an 

expression. 

More precisely, if a clas.3 identifier is used in a componer, t without the reserved word new, 

the class identifier is denoting the creation of an indefinite instance. An example of this kind 

of name component is shown by the name expression Me//onMansion. Room. The lack of the 

reserved word new before the class identifier Room causes an indefinite instantiation of 

Room and the resulting environment is the list of the definite instance denoted by 

Me//onMansion followed by an indefinite instance of Room. As a notational convention, an 

indefinite instance is represented in a list of simple objects as the name of class preceded by 

the reserved word any. Thus the object resulting from the indefinite instance in the previous 

name expression is (House, any Room). 

17Each of these name components results in an object whose innermost simple object is an indefinite simple 
object. 
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The reserved word structure as a name component uses the current environment to 

describe an object. The innermost simple object of the current environment is removed and a 

new indefinite instance of the underlying class of the innermost simple object is created and 

appended to the remaining environment. The resulting object looks similar to the environment 

given to the structure component except that the innermost simple object has been changed 

(probably from a definite instance but not necessarily) to an indefinite instance. This can be 

illustrated by the continuing the example on page 42: 

. . .  Me] ]onMansion.  Room . , .  

. . .  Mas te rBedRoom.s t ruc tu rs  . , .  

The two expressions use the variable declarations of Me//onMansion and MasterBedRoom. 

These expressions result in similar objects. Both have an outer definite simple object denoted 

by Me//onMansion. Both have an inner indefinite simple object denoted by any Room. Thus 

"type" of the irmermost simple object is retrieved by the structure name component. 

Because descriptions of objects act like types, these descriptions of objects are especially 

useful in parameters, as wilt be shown later. 

3.3.3• Selection of Objects 

When the identifier in a name component is declared as a variable or in a parameter, and the 

reserved word new is absent, the name component is selecting an object. The algorithm for 

elaboration is simple: the identifier is found and the object bound to it during the declaration 

elaboration is used as the environment for the next component. This is identical to ordinary 

field selection in records of Ada and Pascal, and in classes of Simula. This is illustrated by the 

following continuation of the example on page 38: 

var MyCar => new V e h i c l e ;  

• . .  MyCar .S ize . . , ;  

Here the integer denoted by Size is selected from the simple object denoted by MyCar. 

3.3.4. Other Name Components 

There are several other kinds of name components, some of which deal with attributes and 

are discussed in Section 5.3.7. The rest are syntactic sugaring for various procedure calls. 

Their replacements are given here only for completeness. The reader should probably just 

glance at the left hand column for now and refer back to this chart as necessary in later 

chapters. 
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Nam~ Comoonent Replacement 
t Value 
[s] Element(s) 
L 16 Literal(&L) 

In the above chart, s is any expression, L is any integer literal and &L is the name of a special 

predefined procedure (see Section 3.3,6), 

3 . 3 . 5 .  Other  Expressions 

There are several other expression besides name expressions. All of them are syntactic 

sugaring for an equivalent name expression that contains a procedure call. Like the chart 

above, the reader may wish to just glance at the left hand column and refer back to the chart 

as necessary whi le reading later chapters. The fol lowing chart gives the translations: 

Exoression ReDlacement 
(e l )  e l  
e l  := e2 IM.Assign(el,e2) 19 
e l  = e2 IM.Equal(el,e2) 
e l  + e2 IM.Plus(el,e2) 
e l .  e2 IM,Minus(el,e2) 
e l  / e2 IM.Divide(el,e2) 
e l  * e2 IM.Times(el,e2) 
e l  rein e2 IM.Remainder(el ,e2) 
- e l  IM.UnaryMinus(el ) 
e l  ..e2 IM.Sequence(el ,e2) 2° 
el < e2 IM.LessThan(el ,e2) 
e l  > e2 IM.GreaterThan(el ,e2) 
e l  < = e2 IM.LessThanEqual(el ,e2) 
e l  > = e2 IM.GreaterThanEqual(el,e2) 
e l  and e2 Booleans.LogicalAnd(el ,e2) 21 
e l  or e2 Booteans.LogicalOr(el,e2) 
not e l  Booteans.LogicalNot(el)  

18This a qualified literal, such as in App/eManager.3, which is interpreted as a three that belongs to the 
App/eManager. This is how different managers use literais. Managers and their use are discussed in Chapter 4. 

19permitted only when the expression is used as a statement. 

IM is the predefined/nteger Manager (See Section 6.2.6). The syntactic sugaring is only provided for predefined 
integers and booleans. 

20Since iterators are only permitted in for statements, this notation is permitted only when the expression is the 
iterator in a for statement. 

21Boo/eans is the predefined manager of booleans. See Section 6.2.3. 
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L 22 IM.Literal(&L) 

where el and e2 are any expressions, L is any integer literal and &L is the name of a special 

predefined procedure (see Section 3.3.6). The parser uses standard arithmetic precedence 

and association for these expressions. The order of parsing may be changed by parentheses 

in the conventional way. 

3.3.6. In teger  Li terals 

Integer literals may be used as name components and as expressions, z3 though they play an 

unusual role. Each literal represents an unnameable, predefined procedure that returns a 

Word object (a predefined class, see Section 6.2.7) which contains the appropriate integer 

value in it. Further, the presence of a literal causes a call to another predefined procedure, 

Literal, to be made. The specification for the Literal procedure is 

p rocedure  L i t e r a ] ( C M . W o r d )  z4 r e t u r n  I n t e g e r ;  

Literal transforms a word into an integer, using whatever implementation is appropriate. Thus 

Paragon, interprets the name expression AppleManager.3 as AppleManager.Literal(&3) w h e r e  

&3 is the function that returns a new word with three in it. Therefore a literal first causes a new 

word of memory to be created and the literal to be placed in it. Then a representation-specific 

conversion routine is called, Literal, which may transform this word into any representation for 

Integer that is ,desired. 

As I explain in the next chapter, Paragon uses an object manager model for data 

abstraction. One predefined variable is a manager for ;ntegers, called IM (integer manager). 

These details are not important yet, except as an explanation of some syntactic sugaring that  

Paragon provides. Because predefined integers are used so frequently, Paragon has a further 

transformation of expressions that are only used for integer literals. Specifically, should an 

integer literal appear as the first (or only) name component, the component IM will be 

prepended to it. Thus the expression 3 is rewritten as IM.Literal(&3). 

22This i=s an unqualified literal, thus as the replacement shows, it becomes qualified as a predefined integer. 

23The expressions are transformed into two name components as defined in the previous section. 

24CM is the predefined manager for Computer Memory. 
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3.4. Parameters 

Parameters are objects that are shared with other objects or procedures to provide some 

flexibility in object creation and procedure invocation. Parameters can be used when 

declaring procedures, declaring Classes, invoking a procedure and instantiating a class, In 

this section, the basic syntax of parameters is discussed, followed by a description of the way 

in which parameters are passed. The section concludes with a discussion of how type 

parameters are provided in Paragon. 

3.4.1 .  Syntax of Parameters 

A parameter is a name expression with one restriction and one addition. The restriction is 

that no definite object may be created in a parameter. Thus the reserved word new may not 
. 

appear anywhere in a name expression used as a parameter. The addition is that name 

components may be labeled, When comparing two parameters, the identifiers used as labels 

become bound to objects and these identifiers may be used inside of classes or procedures 

that declared the labeled parameters. Labels in parameters are defined by placing an 

identifier followed by a colon (:) before a component. Two labels, one for each simple object 

in a nested object, are illustrated below: 

H: House . R: Room 

Note that more than one name component in a name expression may be labeled. However, 

only one label per name component is permitted. An identifier that labels a name component 

is said to be impl ic i t ly  declared.  

The only additional semantics for elaborating a parameter describe the effects of a labeling. 

Most of the semantics concern what happens when two parameters are compared which is 

discussed in the next section. There are some additional esoteric semantics concerning class 

inheritance that are not discussed here. 2s 

25When a name component is labeled, the corresponding innermost simple object that results from the 
elaboration of that name component is also labeled (with the same identifier). The labeling used in the object notation 
parallels the notation in the name component: the identifier followed by a colon. Thus the object that results from 
elaborating the previous example is (H: any House. F~: any Room). This labeling of simple object is used only for 
ensuring that parameters are properly inherited by subclasses, and that procedure implementations match their 
specifications. 
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3,4.2. Comparing Objects 

Although comparison of objects is used for many purposes, it forms the basis for parameter 

passing and so will be discussed here. 

A relation called matching or conforming may exist between an actual object and a formal 

object. The terms actual and formal are used in the conventional sense. Unlike the type 

equivalency relation in many programming languages, this relation is not symmetric. When an 

actual matches a formal, there is no implication that the formal matches the actual. 

Matching is used for comparing parameters. At different times, the same parameter may be 

used as a formal and an actual. The following table summarizes the kinds of comparisons that 

occur in Paragon. 

Actual 

Procedure Call Parameter 
Procedure Call Parameter 
Class Instantiation 
Subclass Declaration Parameter 
Procedure Implementation Parameter 

3.4.2.1. Simple Object Matching 

Formal 

Procedure Specification Parameter 
Procedure Implementation Parameter 
Class Declaration Parameter 
Class Declaration Parameter 
Procedure Specification Parameter 

The basis for matching is the comparison of two simple objects. Intuitively, an actual simple 

object matches a formal simple object if the underlying class of the formal is a ancestor of, or 

the same as, the underlying class of the actual simple object. As will be shown in Chapter 4, 

'his permits general procedures 26 to be written and provides a way to write multiple 

implementations for abstract data types. To ensure compatibility between definite and 

indefinite instances, one of the following constraints must also be met: 

• The formal is an any instance, 

• The formal is an indefinite instance and the underlying class of the formal is a 
ancestor of, or the same class as, the underlying class of the actual, or 

• The formal is a definite instance and the actual is the same definite instance. 

26Procedures that use only abstract properties of their parameters. 
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These rules can be illustrated using the following declarations and procedure calls 27 

procedure 
procedure 
procedure 
procedure 

Wash(any); 
DriveUninsured(Vehicle); 
DriveUnqualified(Tank); 
DriveInsured(MyCar); 

var YourCar => new Vehicle; 

Wash(MyCar); I OK; 
Wash(Vehicle); I OK; 
Wash(any); I OK; 

OriveUninsured(MyCar); I OK; 
DriveUninsured(YourCar); ! OK; 
DriveUninsured(Tank); I OK; 

D r i v e U n q u a l i f i e d ( M y C a r ) ;  I Not OK; 
D r i v e U n q u a l i f i e d ( T a n ' k ) ;  I OK; 
D r i v e U n q u a l i f i e d ( V e h i c l e ) ;  I Not OK; 

O r i v e l n s u r e d ( M y C a r ) ;  I OK; 
O r i v e l n s u r e d ( Y o u r C a r ) ;  I Not OK; 
D r i v e l n s u r e d ( T a n k ) ;  I Not OK; 

In the example above, the procedure Wash has an any parameter, thus the definite instance 

denoted by MyCar (see page 45), the indefinite Vehicle and the any instance all match the 

formal. For the calls of DriveUninsured, the formal is an indefinite Vehicle, thus definite 

instances MyCar and YourCar match because they have Vehicle as their underlying classes. 

Further, the indefinite instance Tank matches since it is a subclass of the formal, Vehicle 28. 

The formal of DriveUnqualified specifies that a Tank must be passed. Thus the definite 

instance of MyCar and the indefinite instance of Vehicle do not match. However, the indefinite 

instance Tank does match since it is the same class as the formal. The final procedure, 

Drivelnsured has a definite object in its parameter, denoted by MyCar. Therefore, only that 

definite object may be used as an actual. Thus the actual in the call using MyCar matches the 

formal, the other two do not. 

Another set of constraints ensures that parameters in the actual match the parameters in 

the formal. Thus one of the following must be met for two simple objects to match: 

• The formal is an any instance without parameters, or 

27Although procedures are not discussed until Section 3.5, I assume that the reader can understand these simple 
examples. 

28This is how type parameters are passed. 
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• The formal is an any instance with parameters, the number of parameters in the 
formal object equals the number of parameters in the actual object, and from left 
to right, each parameter object in the actual object matches the corresponding 
paJrameter object in the formal object, or 29 

• The formal is a definite instance and the actual is the same definite instance, or 

• The formal is an indefinite instance, and for each parameter in the formal, the 
corresponding parameter actual object matches the formal parameter object. 3° 

Some examples of these rules are shown below: 

class CarCarrier(v: Vehicle) is begin end; 
var RoadWays => new CarCarrier(MyCar); 

procedure 
procedure 
procedure 
procedure 

RunAnything(any); 
RunVehicle(any(Vehicle)); 
RunRoadWays(RoadWays); 
RunMyCar(CarCarrier(Vehicle)); 

RunAnything(RoadWays) I OK; 
RunVehicle(RoadWays) I OK; 
RunVehicle(MyCar); I Not OK; 
RunRoadWays(RoadWays) I OK; 
RunMyCar(RoadWays) I OK; 

The class CarCarrier has one parameter, so the definite instance RoadWays has one 

parameter. Here, the parameter is the definite instance denoted by MyCar. The definite simple 

object denoted by RoadWays is used as an actual in five procedure calls. The first call, 

RunAnything has a formal that is an any instance with no parameters. Thus the actual 

matches the formal by the first rule. The second call, RunVehicle is also an any instance, but 

the actual must match the one parameter of the any instance, here Vehicle. The parameter in 

the actual, MyCar, matches the parameter in the formal Vehicle, sO actual matches the formal. 

The third call, also of RunVehicle, is not permitted. The formal of RunVehicle requires one 

parameter and the instance denoted by MyCar has no parameters. Thus MyCar does not 

match any(Vehicle). The actual in the call of RunRoadWays is the same instance as the 

formal in RunRoadWays, thus it matches as stated in the third rule. The formal in the last call 

requires the parameter to CarCarrier to be an indefinite Vehicle. Because the parameter in the 

29This is used primarily in pattern statements. See Section 5.5.4. 

30It is possible that the formal has fewer parameters than the actual and the actual still matches the formal. This 
fascinating situation requires several class and variables to illustrate it. These cannot be declared with only the 
knowledge of the current discussion, Thus no example will be illustrated here; I iust wanted to point out why the 
second rule includes a clause requiring the same number of parameters while the last rule only requires 
"corresponding" parameters to match. 
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actual, MyCar, matches an indefinite Vehicle, the actual matches the formal as stated in the 

fourth rule. 

Finally, there is a rule to ensure that labels match: 

• If the actual simple object is labeled, then the formal simple object must be 
labeled with the same identifier. 

This rule is used primarily when checking a procedure implementation against its 

specifications, as shown below: 

procedure DriveVehicle(v:Vehicle); 
procedure DriveVehicle(v:Vehicle) is 
procedure DriveVehicle(x:Vehicle) is 

I Procedure Spec.; 
; ! OK Impl.; 
; I OK Impl.; 

procedure  D r i veTank (Tank ) ;  t Procedure Spec . ;  
procedure DriveTank(t:Tank) is . . .  ; I OK Impl.; 

The first procedure specification, DriveVehicle, has two implementations. The first is legal 

because its parameter is labeled like its specification; the second is illegal because its 

parameter is labeled differently. The second procedure, DriveTank, has one implementation. 

The parameter in that implementation matches the parameter in its specification since the 

parameter in the specification is unlabeled. As the rule states, the labels must match only if 

the formal has a label. 31 

The process of comparing simple objects also causes a binding of objects to identifiers to 

happen. In particular, if ~ e  formal simple object is labeled, then a side effect of a successful 

comparison is a binding of the identifier in the label, to the object which consists of the actual 

simple object and its environment, in more conventional terms, all binding in Paragon is by 

reference. 

3.4.2.2. Object Matching 

For most purposes, an actual object matches a formal object if the two objects have the 

same number of simple objects and corresponding simple objects match. There are 

circumstances where an actual object may have more simple objects that a formal, such as 

illustrated below: 

31Recall that when comparing implementations to specifications, the specification acts as a formal and the 
implementation as an actual. 
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c lass  House is 
begin 

class Furniture is 
begin 

procedure Polish(House 
end; 

class Kitchen is 
begin 

class Refrigerator 
end; 

end; 

Furniture); 

of Furniture is begin end; 

vat  MyHouse :> new House; 
var MyKi tchen => MyHouse new K i t c h e n ;  
var  MyFr ig => MyKi tchen new R e f r i g e r a t o r ;  

. . .  P o l i s h ( M y F r i g )  . . .  

The formal parameter in the declaration of Polish is the object (any House, any Furniture) 

while the actual parameter in the invocation of Polish is the object 

(House, Kitchen, Refrigerator). Intuitively, the formal object states the requirements for the 

procedu~re's parameter, namely that an object that is a house containing a piece of furniture 

(refrigerator) must be passed. Clearly, the actual meets this criterion but it happens to have 

some extra stFucture that procedure Polish does not require, the Kitchen simple object. 

Paragon allows skipping of such simple objects in the actual object. Full details of how simple 

objects are skipped during comparison are given in Section A.3 in an appendix. 

3.4.3. Type Parameters 

Because Paragon represents parameters as merely another object, it is possible to simulate 

type parameters by passing a name expression containing indefinite instantiations as an 

actual parameter, This is illustrated with the following piece of Paragon: 

class MyType is begin end; 

procedure F(t: any) . . .  is 
begin 

var Local => new t; 

end; 

. . .  F(MyType) . . .  

The formal parameter for the procedure F, that is, t, is later used in an object creation, hence t 

is used like a type name in most languages. The invocation of F has an actual parameter that 
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is an uninstantiated instance of MyType and therefore does not have the definite, object. 

creation elaborations associated with it. Thus, the object being passed to F appears like, and 

is used as, a type. 32 Through the use of indefinite instances, Paragon permits the structure of 

classes to be exploited without any definite instances being created, thus Paragon 

parameters can effectively simulate type parameters. 

3.4 .4 .  Parameters  to Classes 

As alluded to in the beginning of Section 3.4, class declarations may have parameters. Any 

object creation, whether an indefinite instance or a definite instance, must provide directly or 

indirectly the same number of actual parameters in the name component as there are formal 

parameters in the class declaration. The actuals are directly provided if they are explicitly 

written in the name component between parentheses: for example, new array(I,100). The 

actuals are indirectly provided if no parenthesized list of expressions is provided in the name 

component and the identifier in the name component is bound to an object, for example, a 

variable. This is illustrated below by extending the examples on pages 53 51: 

. . .  F(RoadWays) 

In this example, the instance denoted by RoadWays is used as a type inside of F when 

creating the instance for Loca/. However, the underlying class for RoadWays, that is 

CarCarrier, requires a parameter. None is specified in the name component new T in F, so the 

parameter comes from the instance denoted by T, which is the instance denoted by 

RoadWays. Therefore the parameter becomes MyCar. In general, the actuals to be used then 

come from the innermost simple object in the creation environment that has the same 

underlying class as the simple object being created. In short, the parameters are copied from 

the current environment. &~ 

A class declaration with parameters may have subclasses, each of which inherits the 

parameters of the parent and may declare additional parameters. This is illustrated below: 

32Although a definite object may also be passed, to do so is unnecessary. If a definite instance is passed, only its 
"type" wilt be used. 

33A previous version of Paragon permitted default expressions to be declared in parameters. These defaults would 
be used when actual parameters were indirectly specified. However, it was difficult to define the environment in 
which the default expressions should be elaborated, so this feature was removed from the design. 
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c lass  
begin 
end; 

No example in the main body of this thesis both defines and inherits parameters. However. 

such parameters are illustrated in Section A.7. 

Parameters 

ArmyCarrier(v:Vehicle,Tank) of CarCarrier is 

Assuming that a class inherits parameters from at most one parent and does not declare 

more parameters, then the objects denoted by the subclass parameters must match the 

corresponding parameters in that one parent class. This is illustrated below: 

class TankCarrier(v:Tank) of CarCarrisr is 
begin 
end; 

The parameter in TankCarrier matches the parameter in CarCarrier, that is, v:Tank matches 

v:Vehicle. For more examples, see the class declarations on page 111. 

However, it is possible to inherit parameters from more than one parent, even if the parent 

classes share an ancestor that has a parameter. The process for ensuring that the parameters 

of the subclass properly match the parameters of the parents is more complicated. To 

properly discuss the algorithm requires a precise definition of defined and inherited 

parameters, and a description of the correspondence between a defined parameter in a class 

and an inherited parameter in a subclass. For all examples in this thesis, one may use the 

intuitive concepts of "defined" and "inherited" parameters and assume that 

"corresponding" means pairwise, that is, the ith parameter in one list of parameters matches 

the ith parameter in another list. Section A.7 gives all of the details of parameter inheritance, 

parameter correspondence and parameter matching. 

3.5.  Procedu re Specif ications 

Procedures in Paragon provide the conventional procedural abstraction associated with 

high-level languages. Unlike most languages, procedures are separately specified and 

implemented. This section discusses procedure specifications while the next section 

(Section 3.6) discusses procedure implementations. Further, Paragon uses procedures to 

specify and implement iterators but a discussion of iterators is postponed until Section 3.7. 

Each section gives an overall view of the syntax and semantics of the corresponding feature. 
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3.5.1. Overall Syntax of Procedure Speci f icat ions 

Procedure specifications consist of an identifier, some optional formal parameters, an 

optional specification for a returned or yielded object and some optional constraints. An 

example of a procedure specification is given below: 

p rocedure  Compare(L :any ,R:any)  r e t u r n  B o o l e a n s . B i t  
such t h a t  L . s t r u c t u r e  same as R . s t r u c t u r e ;  

The specification for the procedure Compare states that it takes two parameters which may 

be any objects at all and returns an object that matches the predefined boolean object. It also 

has one constraint. Roughly speaking, the constraint states that the two parameters must 

have the same structure, that is, two Vehicles or two Tanks, but not a Ship and a Tank. 

More detailed descriptions of each of these pieces of a specification are given in the next 

sections. 

3.5.2. Parameters 

The parameters in a procedure specification are name expressions that have neither name 

components with the reserved word new (that is, no definite instantiations) nor any procedure 

invocations. 34 Intuitively, a formal parameter is supposed to define the structure that actual 

parameters must match. 

3.5.3.  Return Expression 

The return expressio~ is an expression that describes the object that the procedure 

provides. Like the parameters of the procedure specification, it may not contain definite 

instantiations or procedure calls. However, it may use identifiers that are used as labels in the 

parameters of the procedure specification. Such a use is convenient for expressing the fact 

that a return object has a similar structure to one of the parameters. In the following 

procedure specification: 

procedure Copy(A:any)  return A.structure; 

the return expression for the Copy procedure describes the returned object as having the 

same structure as the parameter. 

34This means that array(im.integer) is permitted but array(lO) is not permitted, since 10 is an implicit procedure 
call. 
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3.5.4.  Constraints 

Constraints can be used to specify some relationship between parameters. This is 

necessary because the ordinary parameter passing mechanism does not always provide the 

appropriate information that a procedure requires. One example of this problem occurs when 

specifying addition for numbers, as illustrated with the following declarations: 35 

c lass Number is begin end; 
procedure Plus(L:Number,R'.Number) re tu rn  Number; 

The class declaration for Number iS intended to be used to describe any kind of object that 

meets some minimal abstract property (in the programmer's mind): for example, the group 

axioms. The group axioms also define the existence of a binary operation that may be used 

on elements of the group, here Plus. 

The programmer may refine Number into more precise specifications of real numbers and 

complex numbers, as shown below: 

c lass Rea| of Number is  begin end; 
c lass Complex of Number is begin end; 

However, this additional level of abstraction has no notion that elements from two different 

groups should be allowed to interact. Even though Plus should operate on two Reals and two 

Complex numbers, there is no intention for Plus to work on a Real and a Complex together. 

To enforce this desire, a constraint is added, as illustrated below: 

procedure Plus(L:Number,R:Number) re tu rn  Number 
such tha t  L . s t r u c t u r e  same as R . s t r u c t u r e ;  

Constraints return a truth value, that is, true or false. In this example, the value is 

determined by elaborating the name expressions in the constraint, that is. L.structure and 

R.structurel and then checking to see if each matches the other. Thus this constraint ensures 

that Reals may only be added to Reals, Complex numbers to Complex numbers, 

Paragon provides for other kinds of constraints, but they are rarely used. The interested 

reader iis referred to Section A.9. All procedure constraints are elaborated only when 

procedure calls are elaborated with specifications. 

35These declarations are not those used in Paragon for predefined integers. 
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3.6. Procedure Implementations 

A procedure implementation describes how a particular operation should be performed. 

Each procedure implementation implements a single procedure specification. However, there 

may be several implementations for each specification in a program. An appropriate 

implementation wilt be chosen for each call of the procedure, though a discussion of the 

selection process is deferred until Section 5.5.5. In this section, the syntax and semantics of 

procedure implementations and procedure calls will be given. 

3.6.1. Overall Syntax of Procedure Implementations 

Unlike other declarations, procedure implementations may appear only in the same class as 

the procedure specification or in any subclass of the class that contains the procedure 

specification. This ensures that each procedure implementation has a readily identifiable 

procedure specification that it is implementing. 

Syntactically, a procedure implementation resembles a class declaration. The ubiquitous 

factorial procedure illustrates this syntax: 

procedure Factorial(IM . n :integer) return IM.integer is 
begin 

i f  n <= 1 then 
re tu rn  1; 

else 
re turn n * Fac to r i a l (n  - 1); 

f i ;  
end; 

The syntax is conventional: There is an identifier followed by optional parameters. A return 

expression, if present, is next, followed by the body of the implementation. The body may have 

any number of declarations followed by any number of statements. 

3.6.2. Parameters 

The same restrictions and admissions for parameters in a procedure specification apply to 

parameters in a procedure implementation. Unlike most languages, the parameters in the 

implementation need not be identical to the parameters in the specification. All that is 

required is that the parameters of an implementation match the corresponding parameters of 

the specification. In the same manner, the return expression of a procedure implementation 

must match the return expression of the specification. Either both or neither must have a 

return expression. 
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No constraints are permitted in a procedure implementation, Unlike procedure 

specifications, procedure implementations may be intended to work on several different 

implementations. Since each implementation would have a different structure, a constraint 

that checked tlleir structures would return false. Thus the constraint would forbid the desired 

action: a procedure working with different implementations. In retrospect however, the 

decision to eliminate constraints in procedure implementations may have been unwise. 

Section 4.6.1 discusses some possible uses of constraints in procedure implementations. 

3.6.3. Return Statement  

A procedure may contain a return statement. The expression in the return statement must 

match the return expression. If no return expression is present in the procedure 

implementation, then no return statement may contain an expression. Conversely, if the 

procedure implementation has a return expression, then each return statement must have a 

matching expression. 

3 .6 .4 .  Procedu re Invocat ion 

A procedure invocation causes an instance of a procedure to be created, elaborated, 

possibly suspended (if an iterator, see Section 3.7.1) and eventually terminated. These actions 

take place for both procedure specifications and procedure implementations, though these 

invocations occur during different elaborations. 36 

Like the elaboration of all name components, a name component that denotes a procedure 

invocation 37 starts by locating the appropriate procedure in its environment. During 

elaboration with specifications, an appropriate procedure specification is found; during 

elaboration with implementations, an appropriate implementation or specification is found, 

and during elaboration with realizations, an appropriate implementation is used. Therefore 

the elaboration with specifications checks that the procedure call meets the procedure's 

specification, the elaboration with implementations finds a feasible implementation and the 

the elaboration with realizations uses the implementation chosen during elaboration with 

implementations as the procedure to actually execute, 

361n particular, invocations of procedure specifications occur only during elaborations with specifications and 
implementations while invocations of procedure implementations occur only during elaborations with 
implementations and realizations. 

37A name component that denotes a procedure invocation is a procedure-invocation name component. 
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After the appropriate declaration is found, the formal and actual parameters for the 

procedure invocation are elaborated and compared. Assuming that the parameters match, an 

instance for the procedure is created and appended to the environment in which the 

invocation name expression is being elaborated. The body of the procedure, if any, is then 

elaborated. During elaboration with specifications and implementations, the procedure 

invocation is terminated when the end of the declaration is reached. Then the return 

expression in the procedure declaration, if any, is elaborated. The object that results from the 

elaboration of the return expression is then used as the environment for the next component. 

Alternatively, it can be used as the object that results from the elaboration of the name 

expression for which this invocation is the last component. 

These elaborations areillustrated bythefollowing examples: 

class Example is 
begin 

class Inner is begin end; 

procedure Copy(Example) return Example; 
procedure Copy(Example) return Example is 

procedure Endit(Example); 
end; 

var vl => new Example; 
vat v2 => new Example; 
vat v3 => new Example; 

I Spec.; 
. . . ;  I Impl . ;  

I Spec.; 

vl .  Endit(vZ.Copy(v3).Copy(vl)); ] Statement; 

When the statement is elaborated with specifications, the specification for End/t in vl is found. 

The actuats for this call are elaborated with specifications which causes the specification of 

Copy inside of v2 to be found. During elaboration with specifications, the return expression of 

Copy is elaborated (here Examp/e) and returned as the environment for the next component, 

which is another call of Copy. This process is repeated, and again the return expression 

Examp/e is elaborated with specifications. This results in an indefinite instance of Examp/e 

which is the actual parameter for the call for Endlt. 

During elaboration with implementations, this process is repeated, except that the 

implementation for Copy is found wherever the specification was found. A search for an 

implementation of End/t occurs, but none are defined here. Thus the specification is reused 

during elaboration with implementations. The exact way that an implementation is selected for 

a procedure call is described in Section 5.5.5.1. 
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During elaboration with realizations, the invocation is terminated when a return statement in 

the implementation is elaborated. If an expression is present in the return statement, it is 

elaborated with realizations and is used as the environment for the next name component. If 

the end of the procedure is reached without a return statement being elaborated, the 

procedure is terminated and no object is returned. Under these circumstances, the procedure 

declaration must not have a return expression. 

Like the instantiatJon of classes, a procedure invocation is said to create a simple object. 

There is always exactly one local instance, namely the one that results from the elaboration of 

the decllarations and statements in the procedure's declaration. A procedure specification 

also has a local instance, though it is empty as there are no declarations or statements in a 

specification. This simple object is appended to the environment 3a in which the procedure 

call was made to form the environment in which the procedure body is elaborated. This is 

illustrated below using the declarations for Example above: 

w~r I in VI => vl new Inner; 
v l . C o p y ( . . . )  ; 

In the variable declaration, a definite simple object is created inside of the definite simple 

instance denoted by vl. In the procedure call, a definite simple object for the invocation of the 

Copy procedure is created inside of the definite simple instance denoted by vl. Both objects 

consist of two nested simple objects. The innermost simple object for the first came from 

instantiating a class. The innermost simple object for the second came from invoking a 

procedure. The local instances for the first come from the ancestors of the class declaration 

and the class itself. The local instances for the second come from the declaration of the 

procedure specification. As shown in Section 5.4, the local instances in both simple objects  

may change. This view of procedure invocations is useful for making representation 

selections and the pattern matching statement. This last use is discussed in Section 5.5.4. 

38Recall that an environment is an object. 
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3.7. Iterators 

Because iterators are not present is most languages, this section first gives a brief 

description of iterators and then discusses how they are declared in Paragon. Some special 

statements that are associated with iterators, for, yie/d and return, are then described. Lastly, 

termination of iterators, especially through the use of an exit/oop statement, is discussed. 

3.7.1. Overv iew of iterators 

An iterator can be thought of as a black box that, once started, produces a sequence of 

objects on request. The starting of an iterator is termed invocation or call, and the process of 

providing the next object in the sequence is termed yielding. After the iterator has returned an 

object, the iterator may be continued, either to provide another object or to terminate. When 

no more objects are to be yielded and the iterator may not be continued, the iterator has 

terminated. After the last object has been yielded, an iterator may be continued to perform 

some actions that do not result in the yielding of an object but instead result in termination of 

the iterator. A terminated iterator may not be continued. 

In Paragon, this process only happens in a for statement, such as illustrated below: 

for" i in Sequence ( I , 10 )  do 
• = = 

end f o r ;  

Here the iterator is called Sequence and the invocation of the iterator starts when the for 

statement is elaborated. The process of calling an iterator is identical to calling a procedure: 

a simple object is created, the parameters checked and identifiers bound, a local instance 

created and added to the simple object, the simple object is appended to the calling 

environment and elaboration of the declarations and statements within the iterator's body 

commences. 

Unlike a procedure, an iterator may have a yie/d statement which causes suspension of the 

iterator. The yie/d statement contains an expression which is executed when the yie/d 

statement is executed. The object that results from the expression is bound to the loop 

identifier in the for statement, for example, i in the example above. The statements inside the 

for statement are then elaborated. When the last statement in the for loop is elaborated (and 

assuming that no exit/oop, return or goto statement is executed), the previously started 

invocation of the iterator continues its execution as if the yie/cl statement had completed its 
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execution. This cycle continues until one of the following occurs: the iterator executes a 

return statement; the iterator reaches the end of its implementation; a goto statement is 

executed that transfers control out of the loop; or the for loop executes an exit/oop statement. 

3.7.2. Iterator Specifications 

The specifications for an iterator are identical to other procedure specifications except that 

a yield expression must be present where the optional return expression is written. A 

specification for Sequence might be: 

procedure Sequence(IM.integer,IM.integer) y ie ld IM,integer; 

Like other procedures, an iterator may have constraints applied to its parameters and its yield 

expression may use identifiers that are bound in the parameters. 

3.7.3. Ite rato r Implementations 

The implementations of iterators are identical to other procedure implementations except 

that the yield statement is permitted in an iterator implementation, but not in any other kind of 

procedure implementation, and that there must be a yield expression where the optional 

return expression is written. Like a procedure implementation with a return expression, the 

yield expression in the implementation must match the yield expression in the specification. A 

possible implementation for Sequence illustrates the syntax: 

procedure Sequence(IM. low: integer,IM, high: integer) 
yield IM.integer is 

begin 
var temp => IM . new integer; 
tamp := low; 
while tamp < high do 

y ie ld temp; 
tamp := temp+ I;  

end; 
end; 

In combination with the previous for statement, this procedure yields the integers from low to 

high and then terminates, ending the for statement. Thus this iterator matches the 

conventional for statement found in most languages. 
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3 . 7 . 4 .  Yie ld S t a t e m e n t  

The yie/d statement is the way in which an iterator may suspend its operation, The general 

form of the yield statement has two parts: a yielded expression and a conditional statement. 

This is shown by the following BNF: 

yield <expression> { when exitloop <statement> }?39 

The expression in a yield statement denotes the object that the iterator returns. It is bound 

to the index identifier in the for loop that invoked the iterator. This object must match the 

object denoted by the yield expression in the heading of the iterator. 

An iterator may be terminated by the execution of an exitloop, return or goto statement in 

the for statement's body. When this happens, the optional when exitloop ~statement> permits 

the iterator to perform some last actions before it is terminated. The statement following the 

reserved word exitloop is usually a goto statement which jumps to a part of the iterator that 

performs some final action. If the statement does not cause any transfer of control, execution 

after the statement continues just after the yield statement. (However, the iterator may not 

execute any more yield statements. It must terminate by executing a return statement or by 

reaching the end of the procedure.) If no optional statement is present and an exitloop, return 

or goto statement causes a loop to terminate, then the iterator will be terminated without any 

further execution. 

3 . 7 . 5 .  R e t u r n  S t a t e m e n t  

The return statement provides an explicit way for an iterator to terminate itself. Unlike the 

return statement used in other procedures, the return statement may not have the optional 

expression. Thus the syntax is trivial and is simply the reserved word return. Recall that an 

iterator may also terminate itself by reaching the end of its body. 

39The notation { x }? means that x is optional. 
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3.7.6. I'or Statement and Iterator Invocations 

The for statement invokes and continues an iterator, binding an index parameter each time, 

and executing the statements in its body. An example of a for loop is shown below: 

war i => IM . new integer; 

w~r iZ => IM . new integer; 

fo r  i in Sequence(I,100) do 
i 2  := i * i ;  

end; 

This for loop calculates the square for each value between 1 and 100. 

The object denoted by the index identifier in the for loop must match the object that results 

from elaborating the yield expression in the iterator. During execution, the returned object 

from the iterator is bound to the index identifier, superseding any previous binding to that 

identifier. During elaboration with specifications and implementations, the processing of an 

iterator call is identical to the processing of a procedure call except the results from the yield 

expression rather than the return expression are used as the result of the expression 

elaboration. During these two kinds of elaboration, there is no notion of suspension or 

termination of an iterator. Naturally, the object returned by elaborating the expression 

following the reserved word in must come from an invocation of an iterator. 

The for loop continues the iterator after each execution of the statements in the for loop. If 

the iterator is continued because an exit/oop, return or goto statement was executed in the 

body of the for statement, then the iterator must terminate without yielding any more objects. 

Failure to terminate under these circumstances renders a program erroneous and continued 

execution is undefined. If the iterator is continued because the last statement of the for loop is 

finished and the for loop is performing the next iteration, then the iterator may yield another 

object. When an object is yielded, it is rebound of the index identifier and the statements of 

the loop are reexecuted. However, when the iterator is continued, it may terminate, causing 

the execution to continue after the end of the for loop. When an iterator terminates, all 

bindings that were set up during its execution are released, thus the index identifier becomes 

undefined when the iterator terminates. 
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3.7.7. Exitloop Statement 

The exitloop statement, whose syntax is shown below, is used to leave an enclosing loop. 

exitloop { <identifier> }? 

Although exit/oop statements may appear inside both while loops and for loops, only their 

actions inside for loops are discussed here. Section 3.8.3 presents a discussion of exit/oop 

statements in while loops. 

The primary action of an exitloop statement is to terminate the loop in which it appears. 

However, an exitloop statement also forces the continuation of the iterator of the for loop that 

contains the exitloop. As explained in Section 3.7.6, the execution of the exitloop statement 

causes any optional statement in the iterator's last executed yield statement to be executed. 

However, the iterator may no longer yield any more values; it must terminate• 

If an optional identifier is present in an exitloop statement, the actions performed by the 

exit/oop statement may apply to several loops. The processing of each loop enclosing the 

exit/oop statement is performed from innermost loop to outermost, until the loop that is 

labeled with the identifier is found (see Section 3.8.1 for the syntax of labels.). An example is 

shown below: 

Outer => 
for  i in Sequence(I,100) do 

Inner => 
for  J" in Sequence(i , lO0) do 

. , = 

ex i t l oop  Inner;  
. ,  • 

ex t t loop  Outer; 
• • 

end for; 
end fo r ;  

In this example, the execution of the statement exit/oop/nner will cause the inner invocation 

of the Sequence iterator to be continued with the caveat that it must terminate, and then 

execution Continues after the end of the inner loop. The execution of the statement 

exit/oop Outer first causes the inner invocation of the Sequence iterator to be continued (with 

the caveat that it must terminate) and then causes the outer invocation of the Sequence 

iterator to be continued, again, with the caveat that it must terminate. Execution would then 

proceed after the end of the outer loop. In general, after all of the relevant iterators have been 

terminated because of an exitloop statement, execution continues immediately after the end 

of the labeled (or innermost) loop. 
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3.8. Conventional Statements 

Paragon also contains the usual complement of control structures and facilities which are 

described in this section. 

3.8.1.  Labels 

Any stlatement in Paragon may be labeled. The syntax is an identifier followed by -- >, and is 

illustrated below: 

InnerLoop => wh i l e  True do . . .  end loop;  
LabelA => LabelB => i f  True then n u l l ;  f i ;  

As shown, any number of labels may be prepended to a statement. However, identifiers for all 

labels within a block of a procedure or class must be unique. 

The labels are used in exitfoop statements and goto statements. 

3.8.2.  Procedu re Invocation 

The simplest kind of statement is an expression. Perhaps the most common expression 

used as a statement is assignment, for example: 

var i => IM . new integer; 

var .i => IM . new integer; 

° . .  

i := j ;  ! R e a l l y  the same as I M . A s s i g n ( i , j ) ;  

N~ object may be returned by an expression used as a statement. 

3.8.3. Condit ional Looping 

In addition to the for loop, Paragon also provides a while loop, with a conventional syntax, 

illustrated in the example Sequence implementation in Section 3.7.3. The conditional 

expression must return an object that matches the predefined boolean object, that is, the 

object resulting from the expression Boo/eans. Bit where Boo/eans is a predefined variable 

identifier and Bit is a predefined class identifier. Like conventional while statements, the 

statements in the loop will be executed once each time the conditional expression returns an 

object with a True value. 40 

40Such objects come from the predefined procedure True. Similarly, objects with a False value come from the 
predefined procedure False. 
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Transfer of control may also leave a white lOOp if a goto statement with target outside of the 

while loop is executed, or an exitloop or return statement is executed. When such a goto 

statement is executed, execution continues with appropriately labeled statement. When an 

exitloop statement is executed, the execution of the program continues after the end of the 

loop labeled with the same identifier as present in the exitloop statement. If no target label is 

present in the exitloop statement, execution continues after the end of the loop containing the 

exitloop statement. 

3 . 8 . 4 ,  I f  S t a t e m e n t  

The /f statement provides a single, conditional execution of a sequence of statements. 

Through the use of additional clauses, a list of conditions may be expressed. Like the while 

statement, a conventional syntax for if statements is used, as defined by the following BNF: 

if <expression> then 
{ <statement> ; }.41 

elseif <expression> then 
{ <statement> ; }*  }*  

else 
{ <statement> ; }* }? 

fi 

The conditional expressions following the reserved words ff and etseff must meet the same 

criteria as the while loops' conditional expressions. Any number of statements may be present 

following the reserved words then or else, any number of clauses beginning with elseif may be 

present and an optional else clause may be present. Unlike many languages, the if statement 

ends with the reserved word ft. 

The execution of an ff statement is also conventional. Each conditional expression is 

executed until one that has the truth value True is found. The statements following that 

conditional expression are then executed. If no such conditional expression is found, and 

there is an else clause present, then the statements in the else clause are executed. After the 

appropriate sequence of statements are executed, and no goto, exitloop or return statement 

has altered the flow of contro~ out of the clause, execution continues immediately following 

the reserved word ft. 

41The notation { x } ° means zero or more xs. 
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3.8,5. Goto Statement 

The goto statement causes unconditional transfer of control from the current statement to 

the statement labeled by the identifier in the goto statement. The syntax is illustrated below: 

goto End of  Program; 

The target of a goto statement, that is, the statement that is labeled with the identifier, must 

be in the same class or procedure declaration as the goto statement. Further, the target 

statement may not be in a loop that does not contain the goto statement (though the goto 

statement may be nested inside of a deeper loop), nor may it be in an if clause (if, elseif, else) 

that doe,s not contain the goto statement. However, the converse to these statements is not 

true. One may write a goto statement that transfers control out of a loop or ff statement. 

These conventional statements, along with procedures and classes, describe the basic 

parts of Paragon, much of whose power lies in the ways that these basic parts can be 

combined into sophisticated data structures. The next chapter discusses a particular data 

structure that serves as the basis for writing abstract data types in Paragon, and illustrates 

how some of goals of Chapter 2 can be realized. 



Chapter 4 
The Object-Manager Model 

and 
its Implementation 

The language described in Chapter 3 provides a great deal of flexibility. In this thesis, a 

particular model of programming, usually termed the object-manager model, is used. Nested 

classes are used in several ways to implement this model: as generalization classes; as 

specification classes; as implementation classes; and as cross-implementation classes. This 

chapter describes this model of programming and shows how the simple features of Paragon 

are applied to implement this model. 

4.1. Object Managers and Nested Classes 

The object-manager model divides program objects into two categories: managers and 

individuals. The manager is created first and contains data and procedures that are shared 

among all individuals. For each manager, there may be any number of individuals created, 

and each individual has a single manager. Naturally, each individual may have private data 

and procedures not shared with other individuals. 

As an example of this model, consider integers. Each individual integer can be represented 

as a word in memory. Further, there exists a procedure, Addition, that is shared among all the 

individual integers, and so this procedure belongs to the manager of all integers, 

4.1.1. Classes as Manager and Individuals 

Within the Paragon language, classes are used for all objects, and so are used for both 

managers and individuals. The shared declarations belong to the manager, and to allow 

access to the shared declarations, the class for individuals is declared inside the class 

declared for the manager. The integer example is illustrated with Paragon below; 
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class IntegerManager is 
begin 

I Shared data and,procedures go here ; 
procedure Addition(Integer, Integer) return Integer; 

I And the class definition for individuals ; 
c lass  I n t ege r  i s  
begin 

var  Rep => CM 42 . new Word; 
end; 

end; 

With this model, it is necessary to create a manager before any individuals are created. Thus 

to use any integers, a program must first create the manager: 

var MylntegerManager => new In tegerManager ;  

and only then can it create the individuals: 

varn => MylntegerManager new Integer; 
var Size => MyIntegerManager . new Integer; 
var  Low => MylntegerManager . new I n t e g e r ;  

One uses shared data and operations by selecting them from the object manager. Addition of 

two integers would look like: 

. . .  M y l n t e g e r M a n a g e r . A d d i t i o n ( S i z e , n )  . . .  

This approach offers a great deal of flexibility, For example, it is possible to express that 

certain kinds of integers may not interact. A frequently cited example of this requirement 

concerns integers that represent counts of  apples and oranges. One wishes the compiler to 

enforce the rule that apples and oranges do not mix. Using the previous declarations this can 

be accomplished as follows: 

var  AppleManager => new I n t ege rManage r ;  
var OrangeManagar => new In tegerManager ;  

var  L i sa  => AppleManager . new I n t e g e r ;  
va r  Mac in tosh => AppleManager . new I n t e g e r ;  

var  Navel => OrangeManager . new I n t e g e r ;  
var  Seedless => OrangeManager . new. I n t e g e r ;  

With these variable declarations, the compiler for Paragon can check the legality of these 

expressions: 

42CM is a predefined variable for Computer memory Manager. 
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. . .  A p p l e M a n a g e r . A d d i t i o n ( L i s a , M a c I n t o s h )  . . .  I L e g a ] ;  

. . .  OrangeManager .Addi t ion(Navet ,Seed]ess)  . . .  I Legal ; 

, , .  A p p l e M a n a g e r . A d d i t i o n ( M a c I n t o s h , N a v e l )  . . .  { I l l e g a l  ; 

, , .  O r a n g e M a n a g e r . A d d i t i o n ( L i s a , S e e d l e s s )  . , .  I I l l e g a l  ; 
. . .  A p p l e M a n a g e r . A d d ~ t i o n ( N a v e l , S e e d l e s s )  . . .  I I l l e g a l  ; 

Note how the language catches the illegal procedure call of AppleManager.Addition with the 

Macintosh and Navel parameters. The expressions for the parameters in the Addition 

procedure are Integer which is declared in the IntegerManager class. Thus the Integer 

indefinite simple object resides inside of the same simple object as the procedure Addition. In 

the call of AppteManager.Addition, the containing simple object is (AppteManager), SO the 

object tl~at results from the elaboration of each formal parameter during the procedure call is 

(AppleManager,any Integer). The declaration for Navel shows that the definite Integer was 

created inside the object denoted by OrangeManager, hence the object denoted by Navel 

and an actuaJ parameter to this procedure call w is (OrangeManager, Navel). According to 

the object comparison rules in Section 3.4.2.1, two simple definite objects match only if they 

are the same definite object. OrangeManager and AppleManager are two different definite 

instances of tntegerManager, so OrangeManager does not match AppteManager. Since the 

two simple objects do not match, the two objects do not match and the procedure call is not 

well specified. 

4.1.2. Cross-Implementation Procedures 

Under some circumstances, one might want to permit the intermingling of the different 

integers. One may also specify such procedures in the class for the manager. The 

CrossAddition procedure meets this requirement: 

c lass IntegerManager is 
begin 

I Parameters from any manager ; 
procedure CrossAddition(IntegerManager . Integer, 

IntegerManager . Integer) 
r e tu rn  I n tege r ;  

I The res t  of  the d e c l a r a t i o n s  are unchanged ; 
, , o  

end: 

With such a declaration of CrossAddition, one may add apples and oranges. This is because 

the expressions in the formal parameters now contain an indefinite instantiation for the outer 

simple object IntegerManager instead of the enclosing definite instance of IntegerManager. 
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With the particular declaration given above, the integer returned will belong to the manager 

from which the procedure was selected. This is illustrated in the following code fragment: 

. . .  A p p l e M a n a g e r . C r o s s A d d i t i o n ( M a c I n t o s h , N a v e l )  . . .  
I Re tu rns  an App leManager  I n t e g e r  ; 

. . .  O r a n g e M a n a g e r . C r o s s A d d i t i o n ( L i s a , S e e d ] e s s )  . . .  
i Re tu rns  an OrangeManager  I n t e g e r  

. . .  App leManager .  C r o s s A d d i t i o n ( N a v e l , S e e d l e s s )  . . .  
I Re tu rns  an App leManager  I n t e g e r  ; 

The call AppleManager.CrossAddition(Maclntosh, Navel) is now legal because elaboration of 

each formal parameter results in the object (any IntegerManager, any Integer), against which 

the object (OrangeManager, Navel) now matches. 

Paragon also allows for other combinations of managers and individuals. For example, 

instead of using the manager from which the procedure was selected as the manager of the 

returned individual, it is possible to select the manager of one of the parameters to explicitly 

specify the return manager. Such an alternative declaration for CrossAddition and its use are 

shown below: 

procedure 

return 

CrossAddition(InManager: IntegerManager . Integer, 
IntegerManager Integer) 

InManager . Integer; 

. . .  AppleManager. CrossAddi t ion(MacIntosh,Nave])  . . .  
I Returns an AppleManager Integer ; 

... OrangeManager.CrossAddition(Lisa,Seedless) ... 
! Returns an AppleManager Integer ; 

. . .  AppleManager.CrossAddit ion(Navel,Seedless) . . .  
I Returns an OrangeManager Integer ; 

4.2. The Manager Model in Other Languages 

The object-manager model approach to programming abstract data types is supported in 

many languages. For example, Ada provides a nearly identical facility, where the outer class 

(that is, the manager) is declared as a generic package and the inner class is declared as a 

type. Rewriting the examples of/ntegerManager above in Ada would look like: 

generic package IntegerManager is 
begin 

type Integer is new Standard. In teger  ; 
function A d d i t i o n ( L : I n t e g e r , R : I n t e g e r )  returns In teger ;  

end; 

package AppleManager is new IntegerManager; 
package OrangeManager is new IntegerManager: 
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Lisa:  AppleManager . I n t e g e r ;  
Macintosh: AppleManager . I n t e g e r ;  
Navel : OrangeManager I n t e g e r ;  
Seedless: OrangeManager I n tege r ;  

. . ,  App leManager .Add i t ion (L isa ,Mac In tosh)  . . .  

. . ,  OrangeManager .Addi t ion(Navel ,Seedless)  . . .  

Clu, Atphard and Model [Johnson 76] give similar approaches, though the identifiers are 

located in different places. In Clu, for example, the name of the inner class (the individual) 

becomes the name of the cluster (the manager declaration), the reserved word rep is used for 

the individual declaration, and variables are declared with the name of the manager. Shared 

data among all individuals are declared to be owned by the cluster and are semantically 

identical to variables declared in the outer class. Alphard uses the term static for such data in 

the manager (form). Model terms the manager a space and the individual a type. In nearly all 

languages that provide data abstraction, there are two separate language features: one for 

the manager (outer class), and one for the individual (inner class). 

Each of these pairs of constructions is similar to but not identical to classes. In particular, 

there usually are restrictions on the different constructions that eliminate some capabilities. 

For example, one cannot express the CrossAddition procedure in Clu. In Alphard, one can 

only provide a single inner class declaration where, as we will see later, allowing multiple 

inner classes permits a programmer to combine abstractions sele(~tively. Model and Ada limit 

the kinds of parameters and declarations that may be used in the inner classes. In short, each 

language embodies a certain sets of constraints that programmers are to follow when 

applying the object-ma'lager model. 

These constraints were not unmotivated. One motivation was conservatism. Model had a 

goal to extend Pascal to include a data abstraction facility while leaving the rest of the 

language largely intact; Ada had a specific requirement that its design should not extend the 

state of the art. This thesis is intended to explore the object-manager model and type 

hierarchies as much as possible, so a very general approach is taken. 

Other language designs were also motivated by conciseness. In Paragon programs, a 

rather large number of declarations must be written to declare an integer variable. The 

restrictions of other languages can eliminate the need to create the manager explicitly 

(Alphard, Ada), to specify implicitly the manager everywhere an operation is used (Clu) and to 

eliminate (an explicit) inner declaration (Clu, Alphard, Model). In a production environment, 
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extreme verbosity might cause programmers to shy away from a language, thus it is 

appropriate that these other languages made such restrictions. As an investigation of the 

properties of type hierarchies, the Paragon design opted for the verbosity and flexibility. 

The subject of the tradeoff between verboseness and flexibility will recur as this model is 

explored further. 

4.3. Hierarchies for Specifications 

The integer example on page 72 so far lacks a number of operations that one normally 

expects for integers, for example, more arithmetic operations, comparison operations, 

transput operations and simple assignment. In most data abstraction languages, if an abstract 

data type were to include such operations, they would all be specified in the outer class (form, 

cluster, model, and so on). Some languages, such as Ada and Clu, do not require certain 

operations to be named explicitly in the manager's declaration. In Ada, a nonlimited private 

type automatically has the assignment and equality operations defined for it. In Clu, the 

presence of certain external representations (xrep) imply that encode and decode operations 

have been defined for use by the Transmit procedure in a Port cluster. These special features 

are not required in Paragon. For example, the special features in Clu can be represented in 

Paragon as follows: 

class Transmissible_Type is 
begin 

c]ass Internal_Rep is begin end; 
class Externa]_Rep is begin end; 
procedure Encode(Internal_Rep) return External_Rep; 
procedure Decode(Externa]_Rep) re turn  In te rna l  Rep; 

end; 

class Port_Manager is 
begin 

class Port is 
begin 

procedure Transmit(Transmissible_Type , In ternal_Rep);  
end; 

end; 

The Transmit procedure in the Port class can guarantee that its parameter can use the 

Encode procedure without recourse to additional features in Paragon for the Encode 

procedure or the Transmissib/e_Type class. 

In practice, there are many such groups of related operations. In addition to assignment 
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and me~age passing, one might consider the ability to be ordered, hashed and stored in a file 

to be properities that may or may not apply to newly declared abstract data types. Rather than 

select some predefined sets of operations and give them special treatment, Paragon uses the 

inheritance mechanism for specifying such properties. 

4.3.1. Generalizations 

By properly defining a set of classes for each set of operations that one might want to inherit 

later, one can provide the same predefined features that other languages do without limiting 

the choices of operations. For example, a set of declarations that simulate the concept of 

nontimited in Ada is shown below: 

class AssignableManager is 
class Assignable is begin end; 
procedure Ass ign(Ass ignab le ,Ass ignab le) ;  
procedure Equal(Assignable,Assignable)  re turn  Booleans.B i t ;  

end; 

An object manager that inherits the AssignableManager class would then define an unlimited 

type. Extending the previous IntegerManager example shows this property: 

class IntegerManager of AssignableManager is 
begin 

I Shared data and procedures go here ; 
procedure Addit ion(Integer, lnteger) return 

! And the class def in i t ion for 
class Integer of Assignable is 
begin 

var Rep => CM new Word; 
end; 

individuals 

Integer; 

end; 

One could then write 

AppleManager.Assign(Lisa,MacIntosh);  

just as if one had included an Assign procedure specification in the declaration of 

IntegerManager. 

By examing the predefined environment for Paragon in Section 6.2, one can examine a 

number of these prefix classes declared for later use in the program. Classes used in this way 

that is, where the programmer intends these classes to be inherited by other specifications 

- -  are termed generalization classes. 
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4.3.2. Specifications of Abstract Data Types 

In the previous section, a general overview of the object-manager model was provided and a 

simple example for integers given. In fact, the example illustrates poor practice of data 

abstraction because the representation of the individuals is visible. For example, there is 

nothing that prevents a programmer from writing 

. . .  CM.P]us(L isa.  Rep,Nave].Rep) . . .  

thus directly manipulating the representation and violating the intended separation between 

implementation and representation, A better declaration would have been: 

class IntegerManager of Assignab]eManager is 
begin 

! Shared data and procedures go here ; 
procedure Addition(Integer,lnteger) return Integer; 

I And the class definition for individuals ; 
c lass In teger  of Ass ignable  is begin end; 

end; 

These declarations still allow the programmer to create managers and individuals, and to use 

the procedures declared in their respective classes. However, the new declarations prevent 

the programmer, who specifies an integer variable, from manipulating the representation 

directly. Later, in Section 4.5, I will discuss how to declare the representation for the 

specification of an abstract data type. 

4.4. Problems with Hierarchies for Specifications 

Although the type hierarchy can express specifications for data abstractions, it does not 

capture all the details of refining abstractions that 1 would like. Several inadequacies are 

discussed in the following sections. 

4.4.1. Const raints in P rocedu re Specifications 

As first shown in Section 3.5.4, constraints must be added to procedure declarations to 

capture the idea that the use of a subclass in a procedure parameter should be substituted for 

each use of a class in the original specification. An naive attempt to provide a general 

specification for the addition operation illustrates this problem: 
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1 A genera] s p e c i f i c a t i o n  

class AO Manager is 
begin 

class Addable_Object is begin end; 
procedure Plus(L:Addable_Object,R:Addable_Object)  

re turn  Addable_Object; 
end; 

I Two refinements of the specification ; 

class Number_Manager of AO_Manager is 
begin 

class Number of Addable_Object is begin end; 
end; 

class Matrix_Manager of AO_Manager is 
begin 

class Matrix of Addable_Object is begin end; 
end; 

By the rules of parameter matching, one may add Numbe~ and Ma~ces, which was probably 

not intended by the programmer. The way to solve this problem is by adding constraints to the 

specification of ~us, as follows: 

procedure Plus(L:Addable_Object,R:Addable_Object)  
re turn Addable_Object 
such that  L . s t r uc tu re  same as R .s t ruc tu re ;  

This has the effect of refining the specification of Plus along with the classes in its 

parameters. An unwary programmer would leave out these constraints. The language should 

provide some other way to refine the procedure's parameters. 

4.4.2. Return Objects of Procedure Specifications 

But the constraints were not enough for refining the parameters. As the specification is 

written, the return expression specifies that the result of adding any two objects is an object 

which is an Addab/eObject. However, if two Numbers are added, one expects a Number 

result; if twO Matrices, then a Matrix. Not only must the parameters be refined when the 

classes mentioned in the parameters are refined, but the return expression must also be 

refined. This is accomplished by using the structure name component in the return 

expression, as illustrated below: 
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procedure Ptus(L:Addable_Object,R:Addable_Object) 
return L .s t ruc tu re  
such that L.structure same as R.structure;  

With the specification above, the return object for the Plus procedure will reflect the class of 

one of the parameters. Thus the last specification captures the probable interpretation of the 

programmer. 

A glance at the predefined environment in Section 6.2 shows that this is a rather common 

situation. An alternative was to provide some kind of renaming rule, such as Ada provides for 

derived types. In Ada, these renaming rules caused confusion during the test and evaluation 

period of the language, and took a long time to settle into their final form. Thus it seemed risky 

to try to conceive of a careful set of rules that easily capture the programmer's desires. 

Instead, the more explicit method was selected. 

4.4,3. Heterogeneous Data Structures 

One goal relating to automatic program processing requires that static type checking of all 

variables declarations (object creations) and procedure calls should be supported. However, 

the requirement that all checking being performed statically, that is, without any reference to 

execution of the program, results in a type system that is less flexible than other object- 

oriented systems, such as Smalltalk. In Paragon, when an object is retrieved from a collection 

of objects, the most information that can be discerned about the retrieved object is shared 

information about any object in the collection. In the case of a single procedure call, more 

information can be gleaned from the parameters of the procedure. This was illustrated in 

Section 4.4.2 and is repeated below: 

procedure Plus (L:Addabl e_Ob~ect, R :Addab] e_Object) 
return L.structure 
such that L.structure same as R.structure;  

Normally, the Plus procedure maps two Addable_Objects into another Addable_Object. 

However, by using one of the parameters in the return expression, the P/us procedure can 

supply more information, namely that the object to be returned has the same structure as the 

first parameter. Thus the addition of two Numbers will result in a Number; two Matrices, a 

Matrix. The precise description of the return object can be examined by static type checking 

since a procedure declaration closely couples the objects used as parameters with the object 

coming from the procedure. 
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Frequently, the insertion and retrieval of objects from a collection are not closely coupled in 

a single procedure call. Then the static type checking cannot determine the precise structure 

of the retrieved object and a more general description must be used. This situation is shown 

below, where a symbol table is being defined for use in APL. 

class APLSymboITableNanager(AO_Manager. t :  Addable_Object) is 
class APLSymboITable is begin end; 

procedure Insert( IM. In teger , t )  ; 
procedure Retr ieve(IN,Integer)  return t ;  

end; 

Identifiers in APL (represented here as predefined Paragon integers) may represent either a 

number or a matrix, so one should be to create symbol tables that can insert and retrieve 

Numbers and Matrices. If the symbol table is used for only Numbers or Matrices, then the 

APLSymbolTableManager can be instantiated with the appropriate parameter as shown 

below: 

var MyMatrixManager => new Matrix_Manager; 
wLr MyMatrix => MyMatrixManager new Matr ix; 

vat MatrixTableManager => 
new APLSymboITableManager(MyMatrixManager . Matr ix) 

var ST => MatrixTableManager . new APLSymboITable; 

Si '° Insert(2,MyMatr ix);  

ST. Ret r ieve(2) . . .  

The underlying class of the returned object for a call of the Retrieve procedure can be 

determined statically by examining the parameter for ST's manager, which here is 

MyMatrixManager. Matrix. Thus the call of Retrieve will return a Matrix object. By the same 

reasoning, static type checking will permit only Matrix objects to be inserted into the symbol 

table. 

But one may wish ~ include both Numbem and Matr~es in the same symboltable. An 

in.ant i . ion ofAPLSymbolTabfeManagerwhich providesthiscapabilityisiltustra~d below: 

var TSO => new APLSymbolTableManager(AO_Manager.Addable_Object); 

vat ST => TSO. new APLSymboITable; 

vat MyNumberManager => new Number Manager; 
var MyNumber => MyNumberManager new Number; 
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var MyMatrixManagsr => new Matrix_Manager; 
var MyMatrix => MyMatrixManager new Matrix; 

STiInsert(1,MyNumber); 
ST.Insert(2,MyMatrix) ; 

.ST.Retrieve(%)... 
• . .ST.Retr ieve(2). . .  

In this example, both calls of Insert are well specified, since the both second parameters meet 

the specification AO_Manager.Addable_Object. Unfortunately, when the two calls of Retrieve 

are performed, the structure of the returned object also is specified as 

AO_Manager.Addable_Object, which is the common ancestor of Numbers and Matrices. 

However, the program context of the retrieval operation may depend on the specific class of 

the object that is being retrieved and use some specific information about it, such as inverting 

a returned Matrix object. Another possibility is that the statement which includes the Retrieve 

may wish to test at run time the kind of Addable_Object that is returned in order to perform 

some representation-specific operation. But in Paragon, there is no way to distinguish the 

kinds of objects that may be returned during elaboration with specifications, so any other 

procedure calls that require more information about the return object from Retrieve will be ill 

specified. Thus, the general description may be insufficient. Hence the requirement of static 

type checking in Paragon makes general collection facilities, such as heterogeneous symbol 

tables, difficult to write. 

4.4.4. Adding Classes to an Existing Hierarchy 

Besides the inconvenience of carefully specifying procedure specifications, the current 

design makes a previously defined hierarchy difficult to change. There are two kinds of 

changes that one might want to make which are difficult: one may want to add another 

generalization class, and one may want to inherit only part of a class. 

In the first suggested change, a new class is added that is intended to provide a property 

that is inherited by other classes, such as hashing. Then all classes which might inherit this 

new property, forexample, integers, logical values and pointers, must be changed to include 

the new class. Similarly, all of the implementations of these classes might have to include 

procedure implementations for the newly inherited specifications, here, probably a hashing 

function. This is a lot of distributed work that must be performed to add another class to the 
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hierarchy. Because changes to systems should be as local as possible, this effect of changing 

many classes to add a new feature is undesirable. 

The second change suggests that a class may not wish to inherit all of the specifications in a 

parent class. As a simple example, suppose that an assignment procedure is needed by a 

new class, but not an equality procedure. Then one might like to add the new class without 

altering any other class. In fact, one must either inherit the equality procedure specification 

with the assignment specification or split the class that has the assignment and equality 

procedures into (in the worse case) three new classes: one class holds the specifications to 

be inherited, one class the specifications that used to be inherited, and the third class inherits 

the other two classes so that other classes that used to inherit the original specification can 

now inherit this new combined class. The two program fragments below (with severely 

abbreviated procedure declarations) illustrate this transformation: 

l Old form 

class Assignable_Manager is 
begin 

class Assignable is begin end; 
procedure Ass ign(Ass ignab le ,Ass ignab le) ;  
procedure Equal (Ass ignable,Assignable)  re turn  Booleans.B i t ;  

end; 

After the transformation: 

I New form 

class 0nly_Assign_Manager is 
begin 

class Only_Assign is begin end; 
procedure Assign(Only_Assign,Only_Assign) ;  

end; 

I . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ; 

class All_Other_Specs_Manager is 
begin 

class A l l  Other_Specs is begin end; 
procedure Equa1(A11_Other_Specs,A11_Other_Specs) 

re turn  Booleans.B i t ;  
end; 

1 . . . . . . . . . . . . . . . . . . . . . . . . . . .  • t 
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class Assignable_Manager 
of Only_Assign_Manager, All_Other_Specs_Manager is 

begin 
class Assignable of Only Assign, Al l_Other  Specs is begin 

end; 
end; 

With this transformation, one can now specify the new class as inheriting only assignment 

without inheriting equality as follows: 

class Strange_Manager 
begin 

. o ,  

end; 

of Only_Assign_Manager is 

No other classes need to be changed with this transformation, but the breaking of a class into 

several classes to accomplish the selective inheritance is aesthetically displeasing, 

4.4.5. Refinement by Derivation 

Actually, the last example is a particular example of commonly used paradigm for creating 

specifications, which I call Derivation. One derives a specification by relating it to other 

specifications and giving differences. Paragon only permits one to add new specifications, 

thus restricting the kinds of objects that meet the specification, and does not allow one to 

remove or alter a previous specification, thus changing the kinds of objects that meet the 

specification. In the previous example, one wants to specify an object that it just like 

Assignable except that no Equal procedure is available. As pointed out by other authors 

[Lamb 83], this kind of derivation is useful in practice. Unfortunately, Paragon does not 

provide a complete derivation facility. 

Although the previous discussion illustrates that there are some ways of manipulating 

specifications of abstract data types that are not supported by Paragon, the language does 

support refinements of specifications and does allow multiple kinds of objects to be specified 

in a single module. 

Starting with generalization classes, a programmer can construct refinements that act as 

specifications of abstract data types. Such classes are termed specification classes since they 

provide a convenient way to specify abstract data types. The normal scope rules for Paragon 

give the desired effect of allowing the programmer, who declares variables of a specification 

class, access only to certain parts of a data object: namely those in the abstract data types 

specifications. But a working program must have a representation for the abstract data type 
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somewhere. In the next section, one way of writing implementations for a specification is 

presented. 

4.5. Hierarchies for Implementations 

As specifications are refined from generalizations, implementations are refined from 

specifications. This is accomplished through the use of subclasses. Typically, a subclass th~ 

is intended to implement an abstract data type contains the implement~ions for those 

procedures specified in iS ancestors and contains subclasses for the nested classes. 

Assuming that a full specification and implementation for computer words exists called CM, 

an implementation for the IntegerManager/Integer classes is: 

class WordlntegerManager.of IntegerManager is 
begin 

procedure Assign(L:WordInteger,  R:WordInteger) 
re turn  WordInteger is 

begin 
CM.Assign(L.Rep,R.Rep); 

end; 

procedure Equal(L:WordInteger,  R:WordInteger) 
re turn  Booleans.Bi t  is 

begin 
re turn  CM.Equal(L.Rep,R.Rep); 

end; 

procedure Add i t ion(L :WordIn teger ,  R:WordInteger) 
re turn WordInteger is 

begin 
re turn CM.Plus(L,Rep,R.Rep); 

end; 

I And the class d e f i n i t i o n  for  i nd i v i dua l s  ; 

c lass WordInteger of Integer is 
begin 

var  Rep => CM , new Word; 
end; 

end; 

The conventional methodology for implementing an abstract data type requires that all 

operations in the specification must be implemented, that a representation for the object must 

be described and that there is some way to separate the abstract object from the concrete 

object. Procedure implementations for Assign, Equal and Addition are declared, the class 
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Wordlnteger defines the representation of Integer and use of the names Integer and 

Wordlnteger separates the abstract object from the concrete object. Thus all of the 

requirements for an abstract data type implementation are met in the example above. Classes 

intended to be used in this way (though not necessarily as complete as this example) are 

called implementation classes. 

The example above also illustrates a feasible implementation for IntegerManager, In 

WordlntegerManager, procedure implementations are provided for the procedure 

specifications in all inherited ancestors: here the Assign, Equal and Addition procedures from 

the lntegerManager and AssignabteManager classes. This is not required by Paragon but 

does guarantee that this subclass may be used as an implementation anywhere the 

specification is used. If some operation had been missing, and if a program used that 

operation on abstract integers, then the implementation subclass for the specification could 

not be used. An attempt to use such an incomplete subclass in this circumstance would 

render the program infeasible. A more complete discussion of the feasibility of programs can 

be found later in Section 5.5.5. 

The distinction between the abstract use of a object and the concrete use of an object is 

also illustrated by this example. The example above specifies the class Word/nteger in all of 

the procedures' parameters in the Word/ntegerManager class. This implies that only the 

Word/nteger representation of Integer can be used with these procedures and provides a 

boundary between the abstract and concrete representations. Some languages, such as Clu, 

provide an operation (in Clu called cvt) that is supposed to translate between an abstract 

object and a concrete one. Within the implementation of the abstract data type, one may 

restrict the implementation to use only the abstract properties of the object by omitting the 

special operation. Other languages reverse the convention and allow the programmer access 

to the representation unless the programmer specifies that only the abstract operations 

should be allowed. Ada uses still another approach by unconditionally permitting access to 

the representation of an object within the implementation of the abstract data type. Paragon 

attempts to strike a balance by using the names in the class declarations. Should only the 

abstract operations be permitted, then the programmer may specify this by writing the name 

of the specification class in the parameter. If access to the representation is required, then the 

name of the class used as a representation should be written in the parameter. Because each 

procedure specifies that Wordlnteger objects may be used as parameters, it may use the 

details of Wordlnteger objects, such as selecting the Rep field. Had the procedures merely 
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required Integer objects, then access to the Rep field would have been denied, even if an 

instance of Wordlnteger had been given to the procedure. 

The use of names rather than conventions for the abstract/concrete decision permits a 

greater flexibility in the definition of implementations. This is more fully explored in the next 

section where some methods for providing multiple implementations of abstract data types 

are con-~=idered. 

4.5.1. Multipae Implementations 

There are times when a programmer may wish to have more than one implementation for an 

abstract data type. This can be illustrated with the previously specified IntegerManager. Many 

computers have more than one size of data representation provided by the hardware so it 

seems reasonable that different integer variables might be able to take advantage of these 

differences in order to improve a program's performance. Each different sized representation 

has its own representation class and its own procedure implementations. Most data 

abstraction languages allow only one representation for each specification. If the one word 

representation for integers were present in a program, such languages would prohibit the 

inclusion of a half word integer and a double word integer. 

Paragon does not have such a rule. A new representation may be provided by declaring a 

new set of nested classes. For example, a program might contain the following declarations 

for integers requiring less than a word of storage: 
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class ShortWordlntegerManager of IntegerManager is 
begin 

procedure Assign(L:ShortWordInteger, R:ShortWordInteger) 
return Wordlnteger is 

begin. 
CMSW. Ass i gn (L. Rep, R. Rep) ; 

end; 

procedure Equal(L:ShortWordInteger, R:ShortWordInteger) 
return Booleans.Bit is 

begin 
return CMSW. Equal (L. Rep, R.Rep) ; 

end; 

procedure Addition(L:ShortWordInteger, R:ShortWordInteger) 
return ShortWordInteger is 

begin 
return CMSW.PIus(L.Rep,R.Rep); 

end; 

I And the class def in i t ion for individuals ; 

class ShortWordlnteger of Integer is 
begin 

var Rep => CMSW new ShortWord; 
end; 

end; 

The ShortWordlntegerManager/ShortWordlnteger classes represent another implementation 

of the integer abstract data type. Two factors are present which allow the second 

implementation to be declared and included in a program. First, the explicit separation of the 

specification and implementation of the abstract data type provide a way to bind an 

implementation to a specification. Many previous data abstraction languages require the 

specification and implementation to be bound together in single language construction. Thus 

there is no place to include an additional implementation. Second, the ability to name the 

representation explicitly circumvents a problem of controlling the access to the concrete 

object. Languages such as Ada, which give unconditional access to the representation, or 

Clu, which gives access through representation independent functions cvt, up and down, 

have no way to distinguish between concrete representations. Without such a mechanism, 

one concrete representation could manipulate the internal representation of another. This 

violates the paradigm of data abstraction that permits only the piece of a program defining the 

representation access to the underlying representation of the objects. 
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The ability to name explicitly the representations or specifications in parameters permits 

multiple representations to be used in a more common setting: differing type compositions. 

Frequently cited examples are set implementations where alternative representations of the 

set is caused by differing compositions with the element type[Johnson 76, Low 

74, Schonberg 77, Wulf 81]. A typical (partial) specification for sets in Paragon appears 

below: 

class SetManager(any) is 
begin 

class Set is begin end; 
I 

procedure Union(Set ,Set)  re turn Set; 
! . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  " 

end; 

The element type of the set may be any class. However, certain classes have special 

properties that an implementation may wish to exploit. For example, if the element type is 

totally ordered, a B-Tree or discrimination net may be an appropriate implementation. If it can 

be hashed, a hash table may prove efficient. Sets of a small number of enumerated values are 

usually represented as a bit vector. Thus one wants the implementation to be able to take 

advantage of knowledge of the element type. 

Other languages, such as Clu and Alphard, do not permit this exploitation in an 

implementation, or more precisely, they insist that such requirements appear in the 

specification o~ the abstract data type. One of the motivations for this insistence is that the 

additional operations required by the implementation must be provided when using the 

specification so that those operations may be later used in the implementation. For example; if 

one wanted to implement sets with a hash table, then the specification of the abstract data 

type set would include a parameter for the element type and a (procedure) parameter for the 

hash fum:tion. When one uses this abstract data type, one must specify the procedure to be 

used for hashing so the implementation has a hashing procedure available to it. This seems 

inappropriate, as such requirements are clearly leaking implementation details to the user of 

the data type while simultaneously limiting the writer of implementations of the data type to 

the operations in the specification. 

Paragon permits the specification to be as broad as required and the implementation to be 

as narrow as required by allowing the parameters in subclasses merely to match the 

parameters in the parent class, and not to be identical. A discrimination.net implementation of 

the previous SetManager could look like the following: 
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c lass  D isc r  imi na t ionSetManager  (OrderedManager.  Ordered)  
of SetManager is 

begin 

c lass  D iscSet  of  Set is  
begin 
end; 

p rocedure  U n i o n ( D i s c S e t , D i s c S e t )  r e t u r n  D iscSe t  is  
begin 

I Imp1 of  Union o p e r a t i o n ;  
end; 

end; 

The DiscriminationSetManager class may only be used as an implementation for Setmanager 

when the element type of the set is ordered. However, all available information about ordered 

objects (as expressed in the specification for OrderedManager) may be used inside 

DiscriminationSetManager in its manipulation of the set's element type. This use of a subclass 

in the parameter of the implementation class also eliminates the need for procedure 

parameters since the composed data type and its operations are combined in a class 

declaration. Therefore the user can use the abstract data type without needing to consider 

the constraints required by any particular implementation. Such considerations are 

automatically processed by the translation system. 

Having provided the ability to have multiple implementations, and ways to name the different 

representations, Paragon further allows some more advanced approaches to implementing 

abstract data types than those permitted in conventional languages. Two of these 

approaches, partial implementations and shared implementations, are discussed next. 

4.5.2. Partial Implementations 

A partial or incomplete implementation of an abstract data type is an implementation that 

does not have a procedure implementation for every procedure specification in its ancestors 

and self. In most languages, an implementation must be able to be used wherever the 

specification is used. To guarantee such use, every implementation must be complete. 

However, the existence of an incomplete implementation does not immediately imply that the 

program cannot execute or more precisely, that the program is infeasible. 43 As long as there 

43As will be ex!otained in Section 5.5.5, the presence of only partial implementations does not guarantee that a 
program is infeasible, nor does the presence of a complete implementation guarantee that a program is feasible, 



Section 4.5.2 Hierarchies for Implementations 91 

is a procedure implementation for each procedure that is used, the implementation may be 

used. This flexibility becomes important as some representations of abstract data types may 

take advantage of partial implementations. 

A partJial implementation of Set illustrates the usefulness of partial implementations. One of 

the more useful operations on a set is enumeration, that is, the generation of all elements in a 

set. Some languages, such as Sail (with Leap [Reiser 76]) and SETL [Schwartz 73] 

provide this operation. In both of these languages, several different implementations of sets 

are possible, Some of these implementations are complete, some are not. The incomplete 

implementations usually distribute the information concerning sets throughout variables of 

the element type of the set rather than concentrate the information about the elements in 

some set storage. For example, if one had a set of integers in the program, every integer value 

in the program would have two pieces of information: the concrete representation of the 

actual number and a bit indicating if that value is currently in the set. Integer variables would 

then refer to this block of information as the representation for the integer variable. When 

such an approach is taken, a procedure implementation for the "for all elements" iterator is 

difficult to write: 44 every possible value that can be in the domain of the set must be examined 

to locate its information regarding set inclusion. In Sail/Leap and SETL, the compiler makes 

the decision about representations for set variables, knows that certain representations do 

not have "for all elements" procedures available, and knows if the program uses such an 

operation. Thus the compiler may reject the incomplete implementation in favor of a 

complete representation whenever the "for all elements" iterator is used. Data abstraction 

languages that permit only a single implementation insist that it be complete since no 

substitutiions can be made if a procedure without an implementation is used. Because 

Paragon allows multiple representations and wishes to allow programmers the flexibility 

provided by partial implementations, the language does not require all procedure 

implementations to be present in implementation classes. 

44But not impossible. See the description of SETL's set implementations for a full discussion of this particular 
problem [Dewar 79|. 



procedure 
procedure 
procedure 
procedure 

end; 

Section 4.5.3 Hierarchies for Implementations 92 

4.5.3. Shared Implementations 

The examples given in the previous sections for integers and sets bring up another topic: 

the sharing of representations. Because the class mechanism does not restrict the way in 

which specifications and representations may be combined, several arrangements of classes 

prove useful in selective sharing between the specifications of abstract data types, between 

the representations of abstract data types, and between the specifications and the 

representations of abstract data types. Each of these kinds of sharing is considered in turn. 

4.5.3.1. Shared Implementations via Shared Specifications 

Selective sharing of specifications is quite common in practice and supported in some 

languages, such as Ada. This usually takes the form of a single manager being used for 

several different kinds of individuals. For example, one can consider the keyboard and display 

of a terminal to be separate individuals but belonging to the same terminal manager (see 

Section 2.1.2). Another example is a computer memory, as illustrated below: 

class MemoryManager is 
begin 

class Byte is begin end; 
class Word is begin end; 

Read(Byte) : 
Write(Byte,IM. Integer) ; 
LeftByte(Word) return Byte; 
RightByte(Word) return Byte; 

The single manager MemoryManager provides the shared declarations for two related 

individuals, Byte and Word. Words and bytes are closely coupled in a memory and should be 

considered connected in some way. Some languages, such as Clu, have no provisions for this 

selective sharing. Paragon permits multiple inner classes that are declared in an outer class to 

denote different kinds of individuals for the same manager. 

The implementation of MernoryManager could contain further subclasses for Byte and Word 

and implementations for Read, Write, LeftByte and RightByte, each of which could access the 

concrete representation for both bytes and words. 
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4.5.3.2. Shared Implementations via Previous Implementations 

Another way of combining classes gives the programmer the ability to write procedure 

implementations that can access multiple representations. Like the MemoryManager example 

above where one can write a single subclass of the specification class that has access to 

representations of multiple kinds of objects, one can provide a subclass of implementation 

subclasses that permits access to multiple, concrete representations of the same abstract 

object. This can be illustrated by extending the IntegerManager implementations given in 

Section 4.5.1 (page 87). To include a procedure that can add integers regardless of the 

implementations of the abstract integer, one can write: 

class CombinedWordlntegerManager of 
WordlntegerManager, ShortWordIntegerManager is 

begin 
I ............................................... ; 

procedure Addition(L:ShortWordlnteger, R:Wordlnteger) 
return WordInteger is 

begin 

end; 

procedure Addi t ion(L:WordZnteger,  R:ShortWordInteger) 
return WordInteger is 

begin 
, .  ° 

end; 

end; 

If CombinedWordlntegerManager were to be selected as the implementation for an abstract 

tntegerManager object, then abstract integers could be implemented with either the 

ShortWordlnteger or the Wordlnteger subclasses of Integer. Regardless of the 

implementation selected for two abstract integers, there will exist an implementation of the 

Addition procedure that can operate on them. However, as the example is currently written, 

there is no way to assign between the two different kinds of concrete integers. If one wanted 

the ability to apply any operation to every combination of operations, then one must either 

provide an operation that uses only abstract operations on abstract objects, or one must 

provide a procedure for each combination of concrete representations that are passed as 

parameters. In practice, it is anticipated that some small number of such interrelated 

operations will need to be provided, but not all of them. 
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4.5.3.3. Shared Implementations for Unrelated Specifications 

A third way of sharing in Paragon allows an implementation class to be used as an 

implementation for multiple specification classes. A previous example illustrated this sharing 

in the SETL system where sets are implemented by altering the representation of the elements 

of the set (Section 2.1.6 on page 25). This is a unique approach to implementing sets and 

integers as it requires a shared implementation for two specifications that are not otherwise 

related: one specification for sets, one specification for the elements of the set. The use of 

classes and inheritance provides a way to specify this capability as well. Given two separate 

sets of specification classes, say for integers and sets, one creates a single class that acts as 

the manager for both and that class contains the representations for the union of the inherited 

individuals and procedures. An abbreviated illustration is given below: 

I Specification Classes for Integers ; 

c lass IntegerManager of  AssignableManager is  
begin 

procedure A d d i t i o n ( I n t e g e r , I n t e g e r )  r e t u r n  I n t ege r ;  
c lass In teger  of Ass ignable  is  begin end; 

end; 

I S p e c i f i c a t i o n  Classes fo r  Sets ; 

c lass SetManager(any) is  
begin 

procedure Un ion(Set ,Se t )  r e tu rn  Set; 
c lass Set is  begin end; 

end; 

With these specifications, one may write the following shared implementation for sets and 

integers (adapted from [Dewar 79]): 



Sect ion 4.5.3,3 H ie ra rch ies  for I m p l e m e n t a t i o n s  95 

c l a s s  I n t e g e r S e t M a n a g e r ( T M :  I n t e g e r M a n a g e r  . T : I n t e g e r )  
of IntegerManager, SetManager is 

b e g i n  

c l a s s  I n t B l o c k  i s  
b e g i n  

Reps f o r  t h e  i n t e g e r  and s e t  i n d i c a t i o n  ; 
e n d ;  

var' RIBM => new RefManager(IntBlock); 
var IntValueList => RIBM . new Reference; 

I Integer Implementations ; 
I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ; 

class SharedInteger of Integer is 
begin 

var IntValueBlock => RIBM . new Reference; 
end; 

procedure Addition(SharedInteger, Sharedlnteger) 
return SharedInteger is 

begin 
Implementation for Addition operation; 

end; 

I Set Implementations ; 

class\SharedSet of Set is 
begin 

var SetNum => CM. new Word; 
e n d ;  
I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ; 

p r o c e d u r e  U n i o n ( S h a r e d S e t ,  S h a r e d S e t )  r e t u r n  S h a r e d S e t  
b e g i n  

I I m p l e m e n t a t i o n  f o r  U n i o n  o p e r a t i o n ;  
e n d ;  

e n d ;  

i s  

A l t hough  the  deta i ls  a re  miss ing,  45 the  e x a m p l e  a b o v e  s h o w s  tha t  r ep resen ta t i on  

45This combined representation keeps a linked list of all integer values that have ever appeared during the 
execution of a program. When an arithmetic operation is performed, the values in the appropriate IntBIocks are 
retrieved, the arithmetic performed, an/ntB/ock for the result is found (or created and linked in) and an appropriate 
Sharecl/nteger (containing a pointer to the/ntB/ock) is returned. For set operations, the list of values given by the 
/ntVa/ueUst variable is examined and the appropriate operations performed. For an operation that spans both types 
- -  for example Membership - -  the special representation for the integer gives access directly to the corresponding 
IntB/ock, which in turn can be directly examined to determine =f the integer value is present in the specified set. in 
practice, this sort of combined representation has many more details which will not be presented here. For example, 
the/ntB/ocks are not kept on a list but are hashed. Details of such a representation can be found in an article about 
SETL [Dewar 79], 
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combinations of this form can be expressed via the class mechanism whereas most 

approaches to data abstraction have no way of describing a combined representation. 

4.6. Problems with Hierarchies for Implementations 

However, the generality of the class mechanism can lead to problems when writing 

implementation classes. Some of these problems are discussed below. 

4.6.1. Incomplete Implementations 

The design of parameter matching and inheritance features of Paragon permit a careless 

programmer to write an incomplete, yet feasible implementation for an abstract data type 

when a complete implementation was desired. This occurs when a programmer creates a new 

representation by inheriting a previous representation and does not reimplement all of the 

necessary procedures. This can be illustrated with the abstract data type sets. A specification 

of sets, followed a single-link list implementation is provided below: 

I S p e c i f i c a t i o n  fo r  Sets 

c lass Set_Manager of Assignable_Manager is 
begin 

class Set of Assignable is begin end; 
procedure Insert(Set,IM.Integer); 
procedure IsMember(Set,IM.Integer) 

return Booleans.Bit; 
procedure Intersect(Set,Set) return Set; 

p rocedu re  
begin . . .  

end; 

Intersect(L:Set,R:Set) return L.s.tructure is 
end; 

I Single Link Implementation for Sets ; 

class SingleLinkSetManager of Set_Manager is 
begin 

c lass S ing leL inkSet  of Set is begin . . .  end; 

procedure Insert(SingleLinkSet,IM.Integer) is 
begin . . .  end; 

procedure IsMember(SingleLinkSet,IM.Integer) 
return Boo leans .B i t  is 

begin . . .  end; 
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p rocedure  A s s i g n ( S i n g l e L i n k S e t , S i n g l e L i n k S e t )  
beg in  . . .  1 copy l i n k  ; . . ,  end; 

end; 

is  

The implementation above provides implementations for the Assign, lsMember and Insert 

procedures, and inherits an implementation for Intersect, so if a program only requires those 

four operations, the use of Sing/eLinkSet as an implementation will be feasible. 

However, a programmer may decide later to provide a doubly-linked list implementation of 

sets. One approach to writing the second implementation would be to inherit the 

SingleLinkSet implementation, as shown below: 

l . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ; 

I Double L ink  Imp lemen ta t i on  f o r  Sets ; 

c l ass  Doub leL inkSetManager  of  S i ng l eL inkSe tManage r  ts  
beg i n 

c lass  Doub leL inkSe t  o f  S i n g l e L i n k S e t  is  beg in  . . .  end; 

p rocedure  I n s e r t ( D o u b l e L i n k S e t , I M . I n t e g e r )  is  
beg in  . . ,  end; 

end; 

The motivation for deriving the implementation is that some of the previous implementations 

would still be valid. For example, the IsMember procedure may only need one link to walk 

down the list to search for an element. Thus the doubly-linked list implementation may use the 

single-linked list implementation of IsMember and not write a new one. Because every 

DoubleLinkSet is also a SingleLinkSet, the use of the previous lsMember implementation is 

feasible. However, by the same reasoning, every procedure implementation for SingfeLinkSet 

is a feasible implementation for DoubleLinkSet. In the implementation above, there is no 

implementation for the Assign procedure. Presumably the Assign procedure for SingleLinkSet 

will copy only one link, not both. Yet the absence of an Assign procedure for DoubleLinkSet 

will cause the Paragon to use the SingleLinkSet version, which is feasible but probably not 

what the programmer wanted. Instead, the programmer probably wanted to include another 

Assign procedure that manipulated both links, for example: 

p rocedure  A s s i g n ( O o u b l e L i n k S e t , D o u b l e L i n k S e t )  is  
beg in  . . .  I copy both l i n k s  ; . . .  end; 

Thus a feasible program will probably not execute properly, and the programmer will have a 

very difficult time finding the problem. 



Section 4.6.1 Problems with Hierarchies for Implementations 98 

One approach to correcting this problem would be to add constraints to procedure 

implementations. Thus the Assign procedure implementation would look like: 

procedure Ass ign(L :S i  ng ]eL inkSet ,  R :S i ng l eL inkSe t )  
such tha t  L . s t r u c t u r e  same as S ing leL inkSe t  & 

R . s t r u c t u r e  same as S ing leL inkSe t  is 
begin . . .  I copy l i n k  ; . . ,  end; 

This constraint requires that both parameters be implemented as Sing/eLinkSets, and not as 

any subclass of SingleLinkSet. Now a program that used Doub/eLinkSet and the Assign 

procedure without providing a new implementation for Assign would be infeasible and the 

programmer alerted to the mistake., 

4°6.2. Organizing Multiple Implementations 

Even where new representations are not derived from old ones, the facilities that Paragon 

provides for specifying multiple representations can cause some worries for programmers. 

The problems occur when trying to organize several implementations for use by the selection 

system and revolves around the need to have a single manager for the shared 

representations. This is illustrated by the program fragment below: 

var MySetManager => new SetManager 

var Se t l  => MySetManager . new Set ;  
var Set2 => MySetManager . new Set;  
var Set3 => MySetManager . new Set ;  

One must pick representations for the three set variables, Set1, Set2, and Set3, but only one 

object is needed for the manager of all three sets. Thus only one representation is required 

for MySetManager. The problem is how to distribute the possible representations for the sets 

in possible representations for the set manager. Two general approaches are discussed 

below in more detail: combine the set representations in a single manager; and provide a 

single set representation per manager. 

4.6.2.1. Using a Single Manager 

A typical example of providing multiple set implementations inside of a single 

implementation of a set manager is shown below: 
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0 

I Mult iple Implementations for Sets 
I - - - - - - ' ' "  . . . . . . . . . . . . . . . . .  " . . . . . . . .  " . . . . . . .  " 

t 

class MultilmplSetManager of Set_Manager is 
begin 

I F i r s t  Implementat ion 

c lass S ing leL inkSe t  of Set is  begin , . .  end; 

I Shared state for SingleLinkSet Manager ; 
. , ,  

procedure Insert(SingleLinkSet,IM.Integer) is 
begin . . .  end; 

procedure IsMember(SingleLinkSet,IM.Integer) 
return Booleans.Bit is 

begin . . .  and; 

procedure Intersect(SingleLinkSet,SingleLinkSet) 
return SingleLinkSet is 

begin . . .  end; 

procedure Assign(SingleLinkSet,SingleLinkSet) is 
begin . . .  I copy l ink ; . . .  end; 

I Second Implementation 

class ArraySet of Set is begin . . .  end; 

I Shared s ta te  fo r  ArraySet  Manager ; 
o . .  

procedure Insert(ArraySet,IM.Integer) is  
begin . . .  end; 

procedure IsMember(ArraySet,IM.Integer) 
return Boo leans .B i t  is 

begin . . .  end; 

procedure I n t e r s e c t ( A r r a y S e t , A r r a y S e t )  
re tu rn  ArraySet  is 

begin . . .  end; 

procedure A s s i g n ( A r r a y S e t , A r r a y S e t )  is 
begin . . .  I copy a r ray  ; . . .  end; 
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! Third Implementation 

class BTreeSet  of  Set i s  beg in  . . .  end; 

I Shared state for BTreeSet Manager ; 

procedure 
begin  . . .  

procedure 
return 

begin ... 

procedure 
return 

begin ... 

Insert(BTreeSet,IM.Integer) is 
end; 

IsMember(BTreeSet,IM.Integer) 
BooleansoBit is 
end; 

Intersect(BTreeSet,STreeSet) 
BTreeSet is 
end; 

procedure  A s s i g n ( B T r e e S e t , B T r e e S e t )  i s  
begin , . .  I copy l i n k s  ; . . .  end; 

end; 

Using the strategy where all of the representations are in a single manager, the selection 

mechanism can easily select a representation for the manager, since there is only one 

available, here MultilmplSetManager. Because this outer class contains three subclasses for 

the individuals, here SingleLinkSet, ArraySet and BTreeSet, a selection of any of these 

classes is locally feasible for variables specified with the Set class. 46 Thus different variables 

may have different representations. Further, cross-representation procedures may be 

declared in the one manager, since such procedures can have access to the internal 

definitions of all of the implementations. 

Unfortunately, this strategy results in a manager that contains too much state. For example, 

a policy may choose the same representation for all of the individuals managed by a manager. 

Thus each Set variable might be implemented as an ArraySet. However the manager contains 

shared declarations needed for all possible representations. The empty tree needed for a 

BtreeSet will still be part of the single manager, even if no sets are implemented as BTrees. 

The strategy of using one manager also reduces module separation. The addition of a new 

implementation should not require the changing of previous implementations, yet this strategy 

requires the programmer to change an already existing class to add a new implementation for 

46Local feasibility is discussed in Section 5.2.3. 
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an abstract data type, Thus this strategy violates a notion principle of system building, namely 

separating program components as much as possible, 

4.6.2.2. Using Multiple Managers 

The alternative strategy is to provide a different manager implementation for each individual 

implementation. If multiple implementations are desired, then the implementations should be 

inherited by another class. As an example, two implementations are declared and then 

combined in the program text below: 

I Single Link Implementation for  Sets ; 

class SingleLinkSetManager of Set_Manager is 
begin 

class SingleLinkSet of Set is begin . . .  end; 

procedure Inser t (S ing leL inkSet , IM. In teger )  is 
begin . . .  end; 

procedure 
return 

begin ... 

IsMember(SingleLinkSet,IM.Integer) 
Booleans.Bit is 
end; 

procedure 
return 

begin . . .  

In tersect (S ing leL inkSet ,S ing leL inkSet)  
SingleLinkSet is 
end; 

procedure Assign(SingleLinkSet,SingleLinkSet) is 
begin . . .  i copy l ink  ; . . .  end; 

end; 
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I Array Implementation for Sets 

class ArraySetManager of Set_Manager is 
begin 

class ArraySet of Set is begin . . .  end; 

procedure Insert(ArraySet,IM.Integer) is 
begin . . .  end; 

procedure IsMember(ArraySet,IM.Integer) 
return Booleans.Bit is 

begin . . .  end; 

procedure Intersect(ArraySet,ArraySet) 
return ArraySet is 

begin . , .  end; 

procedure Assign(ArraySet,ArraySet) is 
begin . . .  t copy l ink ; . . .  end; 

end; 

I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ; 

I Combined Implementation for Sets 

class CombinedSetManager 
of ArraySetManager, SingleLinkSetManager is 

begin 
end; 

Again using the variables declarations for MySetManager, Set1, Set2 and Set3, an 

implementation must be selected for the manager and then implementations must be selected 

for the individuals. However, only one implementation may be selected for the manager. For 

both representations to be available for set variables, the manager must be implemented with 

CombinedSetManager. 

However, this strategy of providing a separate manager for each implementation and then 

combining them into other classes for multiple representations has two drawbacks. First, 

there are many different combinations of representations that need to be defined and 

selected. Second, some space in the manager may still be wasted, 

If one has many different implementations for an abstract data type and wants to consider 

all implementation possibilities, there would be an enormous number of possible 

combinations that would have to be defined. In this small example, only two representations 
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were defined, and they could be combined with a single, extra class declaration. In general, if 

one had n implementations, then 2n-(n+ 1) additional sets of classes would have to be 

declared to capture all of the possible ways that multiple representations could be 

combined. 47 This is far too many to be practical, so representations might be selectively 

combined. 

But selectively combining implementations has the same problems as having one all- 

encompassing manager, some state for a manager that is not used may be wasted. Suppose 

that the CombinedSetManager were selected as the implementation for MySetManager but 

ArraySet were selected as the representation for all three variables: Set1, Set2 and Set3. 

Then the local storage required for the SingleLinkSetManager would be unnecessary. In 

order to obtain a manager that contains all of the desired implementations, a manager that 

contains additional, unused implementations may have to be selected. Thus a selective 

combination of implementations may result in a manager that contains unnecessary state. 

4.6.3 .  Sharing a Representat ion 

The last goal for representations of abstract data types is that a single representation should 

be able to be written for several specifications, and in Section 4.5.3.3, an example was 

prov id~ showing how a single representation could be written for two specifications: 

integers and sets. Though the combined implementation may be written, unfortunately it 

cannot be selected by the selection system described in Chapter 5. 

The problem with selecting the combined representation comes from a combination of the 

manager model and the restriction that every identifier denotes a distinct object. When two 

separate specifications are used, two different managers are required. This is illustrated 

below: 

v a t  MySetManager => new SetManager;  
va t  MyIntManager => new In tManager ;  

var  S e t l  => MySetManager . new Se t ;  
v a t  Set2 => MySetManager . new Set ;  

v a t  I n t l  => MylntManager  . new I n t ;  
v a t  I n t 2  => MyIntManager . new I n t ;  

47Because each combination contains a subset of n implementations, there could be 2 n possible subsets of 
implementations. But the classes that represent a smgte implementation are already declared, and the specification 
serves as the subset where no ~mplementations are declared. Therefore n + 1 is subtracted from 2 n. 
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Although the programmer may provide a single implementation that can serve both 

MySetManager and MylntManager, the selection system will try to make separate object 

selection choices for each variable. The combined implementation surely can be used for 

both variables, but such an assignment of implementations would result in two instances of 

the combined implementation, one for each manager, and not a single shared instance. 

One of the difficulties in providing this sharing of objects is providing a rule that states when 

an object may be shared and where it may not. This raises issues of the proper way to treat 

intermediate elaborations between the two object instances, as shown below: 

var MySetManager => new SetManager; 
var Problem => new Something(SideEffectFunctionCal]); 
var MylntManager => new IntManager; 

Here, the elaboration of the shared implementation may cause side effects that could interact 

with the intermediate calculations of SideEffectFunctionCa//. The criteria that Paragon uses 

for sharing objects ameliorate elaboration-order effects. (These criteria are listed in Appendix 

A.8.) However, these criteria were never integrated into the selection system. To do so, the 

selection system would have to be able to inquire if these criteria were met by some selection 

of implementations and if so, to then force a sharing of an object. 

A related situation comes up when trying to share implementation for the same manager. 

For example, a programmer may want to use the same implementation for multiple instances 

of a manager. An example is shown below: 

vat OrangeManager => new Integer_Manager; 
var AppleManager => new Integer_Manager;  

var Lisa => AppleManager . new In tege r ;  
var Nave] => OrangeManager . new In tege r ;  

In this circumstance, one may want to share the /nteger_Manger object for both the 

OrangeManager and App/eManager. Paragon only deals with this problem tangentially by 

considering the two manager objects to be different specifications and then permitting two 

different representations of Integer_Manager to be combined into a single manager, like 

CombinedSetManager in Section 4.6.2.2. Under these circumstances, a shared instance 

could be used for both managers. The same criteria given in Appendix A.8 would be used. A 

future direction of research may consider the entire problem of sharing implementations in 

more detail than Paragon. 
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Despite some problems with combining representations, a type hierarchy has been shown 

to be useful in describing generalization classes, specification classes, implementation 

classes, shared specifications and shared implementations. A programmer using the type 

hierarchy would provide several representations for the abstract data types in his program, 

each tailored for a particular circumstance. The next step in refining a program is the 

selection of an appropriate representation for each variable and each procedure call in the 

program. To fulfil this need, Paragon provides a representation selection mechanism that the 

programmer may use to guide the translator in picking appropriate implementations. This 

mechanism is discussed in the next chapter. 



Chapter 5 
Selection of Implementations 

The discussion so far has been limited to the use of basic features of Paragon for creating 

abstract data types. In this chapter, I start to consider the processing of a program. As a 

large part of the processing is concerned with selection of implementations, this aspect will 

be described in detail. But first I present some more details about elaborations in Paragon 48. 

These details are then used to describe the elaboration of variable declarations. After 

variable declarations have been described, the three aspects of implementation selection are 

discussed: class and procedure descriptions via attributes; program representation via a 

possibility tree; and control of the selection process through a policy procedure. The 

discussion of implementation features of Paragon completes the description of the Paragon 

language started in Chapter 3. 

5.1. Elaborations 

A program is processed in four stages: 

• The entire program is elaborated with specifications; 

• A policy procedure makes implementation selections for variables; 

• After the policy procedure finishes, the entire program is elaborated with 
implementations; 

• Finally, the entire program is elaborated with realizations. 

Each of the these stages is outlined below. 

48Section 3,1 provides an overview of elaborations. 
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5.1.1. Elabo ration with Specifications 

Initially, a program is e/aborated with specifications. In other languages, this corresponds to 

having the semantic analysis and type checking performed. During this phase, the objects 

that are created and manipulated by the program are specified by the class identifier used in 

the program text. Thus, a variable declared with the class Set will have a simple object 

created that has the underlying class Set. In addition to performing parameter checking, 

elaborating a procedure invocation with specifications causes a simple object to be created 

that contains one local instance: namely, the local instance created by elaborating the 

declaration of the procedure specification. These simple objects created by elaborating 

name components that denote definite instantiations and procedure invocations are collected 

in the containing simple object (or environment) for later use. If elaboration with 

specifications is successful, that is, no object mismatch or other semantic error is 

encountered, 49 then the program is said to be we// specified otherwise the program is ill 

specified. 

5.1.2. Implementation Selection 

After a program is elaborated with specifications, a policy procedure (see Section 5.5.1) 

makes implementation selections for the variables in the program. An implementation choice 

for a variable,, or more precisely, for the innermost simple object being instantiated in the 

object-creation name component in the variable declaration, is made from the subclasses of 

the specified class. 5° For example, if the class Set has a subclass ArraySet, then a variable 

declared with the class Set may use ArraySet as an implementation. After this selection, the 

innermost simple object that the variable denotes has the underlying class ArraySet. 

5.1.3, Elaboration with Implementations 

After all selections of variable implementations have been made, elaboration of the program 

with implementations occurs. When elaborating name components that denote object 

instantiations, the translation system processing the program verifies that the selected 

implementation is feasible (see Section 5.2.3). When elaborating a name component that 

4~ 
Some semantic errors that are not related to object matching are finding an undefined identifier or a misplaced 

goto label. 

50The subclass relation is meant to be reflexive here, so the class itself may be used as its own implementation. 
Such a selection is said to be ~efqmp/ementing, 



Section 5.1.3 Elaborations 109 

denotes a procedure invocation, an appropriate implementation for a given procedure is 

chosen (see Section 5.5.5.t). If elaboration with implementations is successful, the program 

is said to be feasible. Should a procedure implementation be missing where required or 

should a selected implementation class not conform properly to its environment or 

parameters, then the program is infeasible. 

5.1.4.  Elaboration with Realizations 

After a program is elaborated with implementations, it is elaborated with realizations. This 

corresponds to conventional program execution. The implementations for objects and 

procedures used during this phase come from the decisions made during elaboration with 

implementations. If the program attempts to perform some action not permitted in the 

language, the program is termed erroneous, otherwise the program is considered to be 

defined. 

These definitions may appear unmotivated without the context of the selection process, but 

as they are applied to different pieces of the program during representation selection, the 

interactions and the motivations should become clear. 

5.2. Variable Declarations and Object Creations 

This thesis has been using variable declarations in examples without explaining their syntax 

or interpretation. In this section, a description of variable declarations is given as well as an 

explanation of how the different elaborations process these declarations. 

A variable declaration is used to bind an identifier to an object. The simplest form of a 

variable declaration is an identifier, followed by = ,~, followed by an expression that has a 

definite object creation as its last name component. This can be illustrated by using the 

previous class declarations for Vehicle, Tank, Ship and Monitor in Section 3.2.2, for example: 

var i => new V e h i c l e ;  

When the declaration above is elaborated with specifications, the identifier i will be bound to a 

new definite Vehicle object. Informally, this object is referred to as the type of i. Since an 

implementation is a subclass of the class specified in the variable declaration, a subclass of 

Vehicle may be used to implement i. To select an implementation for i, the policy procedure 

will associate a subclass of Vehicle with the Vehicle simple object created during elaboration 
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with specifications. For example, if Tank is selected as the implementation, all of the classes 

that form Tanks but that are missing from Vehicles will be elaborated with specifications and 

added to the local instance set for the simple object associated with i, Finally, if this variable 

declaration is elaborated with realizations, a new simple object will be created by elaborating, 

with realizations, the expression following the = >. However, this elaboration will assume that 

the implementation class was written where the specification class was written, that is, 

substituting Tank for Vehicle. 

The description above of how an implementation for a simple object is processed is 

simplified. Some of the complicating problems deal with changes of parameters when 

,selecting an implementation and with changing an already selected implementation. These 

become important since a program may be elaborated with implementations many times, at 

the discretion of the policy. All that Paragon guarantees is that after the policy procedure is 

finished, the entire program will be elaborated with implementations to check the program for 

feasibility. 

In each of the next three sections, some details will be given about the selection of a 

variable implementation, the checking of a variable declaration for feasibility, and the 

elaboration of a variable declaration with elaborations. 

5.2.1. Selecting a Variable Implementation 

For purposes of selecting an implementation and of describing the different elaborations, 

simple objects have two varieties. The first kind of simple object results from elaboration with 

specifications, the second results from elaboration with realizations. In this section, only the 

first kind is discussed. The other is considered in Section 5.2.4. 

Like all simple objects, simple objects created during elaboration with specifications contain 

a set of local instances, and in addition, have a (possibly empty) set of currently unused local 

instances. 51 The local instances in a simple object come from two sources: 

1. The elaboration of the name component containing a definite-object instantiation. 

51These unused local instances are created as different implementations are selected for a variable. See page 
114. 
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2. The selection of an implementation for a variable. 52 

When either of these actions is performed, the set of local instances and the set of unused 

local instances in a simple object may change. Each of these actions is discussed below. 

When a simple object is created during elaboration with specifications, the set of local 

instances that results from elaborating both the class declarations of the ancestor classes and 

the specified class are added to the simple object. Initially, the set of unused local instances is 

empty. 

When the implementation of a simple object is changed, the sets of local instances may also 

have to be changed. This can be illustrated by considering the following class declarations: 53 

I This is  a g e n e r a l i z a t i o n  c l ass ;  

clrass AssignableManager is  
begin 

c lass  Ass ignab le  is  begin end; 
end; 

m 

I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ' 
t 

X This is  a s p e c i f i c a t i o n  c l ass ;  

c lass  I . i s tManager (any)  of  AssignableManager is  
begin 

c lass  L i s t  of  Ass ignab le  is  begin end; 
end; 
I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  " 

9 

52paragon permits name components that denote object creations only as the last name component in the 
expression of a variable declaration. Further, this last component must be a definite-object creation. Therefore there 
is a bijection between definite-object creations and variable declarations. Thus the discussion will interchangeably 
associate an implementation with the variable and with the definite object creation, 

53These declarations are somewhat strange for purposes of illustration. 



Section 5.2.1 Variable Declarations and Object Creations 112 

I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ; 

I The next two c lasses  are implementation c lasses ;  
I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ; 

class ArrayListManager(type:Tank) of ListManager is 
begin 

class ArrayList of List is begin end; 
end; 

class LinkedListManager(type:Vehicle) of ListManager 
begin 

class LinkedList of List is begin end; 
end; 

is 

I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ; 

t The f o l l o w i n g  v a r i a b l e s  use the above classes; 

vat  MyListManager => new L i s t M a n a g e r ( T a n k ) ;  
vat  L i s t 1  => MyListManager . new L i s t ;  
var List2 :> MyListManager . new List ;  

In this example, there are four classes that act as managers: AssignabteManager, 

ListManager, ArrayListManager and LinkedListManager along with four classes that act as 

individuals: Assignable, List, ArrayList and LinkedList. The three variable declarations first 

create a manager for lists of Tanks and then create two such lists. 

As in the previous description of elaborating variable declarations with specifications, the 

elaboration with specifications of the variable declaration for MyListManager causes a new 

simple object to be created and two local instances to be elaborated with specifications and 

then to be added to the simple object: one for AssignableManager and one for ListMana~'er. 

The si~nple object creation for List1 is similar. After elaboration with specifications, the simple 

object contains two local instances: one for Assignable and one for List. Both simple objects 

have empty unused local instance sets. Once elaboration with specifications is completed, 

selection may proceed. 

When an implementation is selected for a variable, it must first be checked for local 

feasibility, then the local instance sets may be modified. Each step is discussed below and 

then illustrated with the example above. 

Checking for local feasibility is a combination of elaborating the definite instantiation with 

specifications and with implementations. The following five steps are taken: 

1. The environment in which the creation is to take place is searched for the 
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selected implementation class 54, If the class is not found, then the selection is not 
locally feasible. 

2. The parameters in the declaration for the implementation class are elaborated 
with implementations. 

3. The objects that are associated with the simple object are compared with the 
objects that result from the elaboration above. If the comparison is successful, 
then all resulting bindings of identifiers to objects replace the old bindings in the 
simple object. If the comparison is not successful, then the selection is not locally 
feasible. 

4. If the selection is still locally feasible, then a new set of local instances is created 
to replace the current set of local instances. This is done by placing all of the 
local instances from the old local instance set into the unused local instance set 
and then moving, in leftmost elaboration order, local instances for the 
implementation class from the unused local instance set to the new local instance 
set. If a local instance for a class is not available in the unused local instance set, 
it is created, its body elaborated with specifications, and then added to the local 
instance set. (The local instances in the unused local instance set may be later 
retrieved if an implementation that uses them is later (re)selected.) 

5. All constraints in the variable declaration are executed (elaborated with 
realizations). If any False object is returned by a constraint, then the selection is 
not locally feasible, and the old set of local instances is restored (as well as the 
old parameter bindings). Variable constraints are discussed fully in Section 5.2.2. 

This process of selecting an implementation can be illustrated with the variable declarations 

for MyList~Manager and List1. The discussion starts w ~ the details of elaborating those 

declarations with specifications. Then a series of locally-feasible implementation selections 

for MyListManager and List1 are examined. Finally, the actions that result from some locally 

infeasible implementation selections for these variables are considered. 

Like all object instantiations during elaboration with specifications, each new simple object 

contains a set of local instances. The new simple object for MyListManager is created and has 

two local instances corresponding to the classes in the leftmost elaboration order: one for 

AssignableManager and one for ListManager. in a corresponding manner, the new simple 

object for List1 is created in the environment of MyListManager and has two local instances: 

one for Assignable and one for List. Neither simple object has an unused local instance. 

Now consider the effects of implementing MyListManager with the LinkedListManager class. 

54The search takes place in leftmost parent order. 
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The check for local feasibility (step 1) first ensures that the LinkedListManager class iS 

available in the environment. Since the class LinkedListManager is visible where the variable 

declaration is written, the class is available in the environment. The parameter for 

LinkedListManager is elaborated with implementations (step 2) which yields an indefinite 

Vehicle object. The actual parameter that has already been elaborated, an indefinite Tank 

object, is then compared with the formal object, a Vehicle object. The comparison succeeds, 

and as a result of the comparison, a binding between type and the indefinite Tank object in 

the actual object is added to the simple object (step 3). As the last step (step 4), the local 

instances in the simple object for MyListManager (which are AssignableManager and 

ListManager, as mentioned above) are moved to its unused local instance set, and for each 

class in the leftmost elaboration order for LinkedListManager, the corresponding local 

instance is moved from the unused local instance set to the local instance set. For a simple 

object with the underlying class of LinkedListManager, the leftmost elaboration order is 

AssignableManager, ListManager, LinkedListManager. Note that one necessary local 

instance is missing: the local instance for LinkedListManager. Therefore, the selection of 

LinkedListManager as the implementation for MyListManager will cause a new local instance 

of LinkedListManager tO be created and elaborated with specifications, and then added to the 

local instance set for MyListManager. There are no constraints to be elaborated, so the 

selection process is complete and MyListManager has the representation LinkedListManager. 

It is possible to change the implementation of MyListManager from LinkedListManager to 

ArrayListManager. As before, the environment is checked, the parameters elaborated and 

compared, and all of the local instances moved to the unused local instance set. Similarly, a 

new local instance for ArrayListManager will be added eventually to the local instance set of 

the simple object for MyListManager. Unlike all the previous examples, the resulting unused 

local instance set is not empty. It contains a local instance for LinkedListManager. Should the 

implementation change from ArrayListManager back to LinkedListManager, the local instance 

for ArrayListManager would be present in the unused local instance set and the previously 

unused local instance for LinkedListManager would be in the local instance set of 

MyListManager. Thus no new local instances would be created under these circumstances. 

So far, all of the implementation selections have been locally feasible. Next, two locally 

infeasible selections are illustrated. They result from an improper environment and 

mismatched parameters. 
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One kind of infeasibility results from the violation of the first rule which requires that the 

implementation be found in its creation environment. Suppose that the selection of 

LinkedListManager has been made for MyListManager and a selection of ArrayList is about to 

be made for List1. As required in the first step for local feasibility, the creation environment 

for List1 is examined for the impleTnentation class. Here the creation environment for List1 is 

the object denoted by MyListManager, a LinkedListManager. ArrayList is available in 

ArrayListManager, not in LinkedListManager, thus an attempt to assign ArrayList as the 

implementation for List1 is not locally feasible. 

Another possible impediment to local feasibility is a parameter mismatch. Assume for a 

moment that the declaration for MyListManager is 

yap MyListManager => new ListManager(Vehic le) ;  

If a selection of ArrayListManager were made for MyListManager, the comparison of the 

indefinite Vehicle object would not match the indefinite Tank object specified in 

ArrayListManager. Thus the choice is not locally feasible. However, LinkedListManager may 

accept a Vehicle parameter and so may be selected as a feasible implementation for 

MyListManager. 

One should note that an implementation being locally feasible does not guarantee that the 

implementation is feasible. It is trivial to change one implementation that would render 

another selection infeasible. For example, if MyListManager were first assigned the 

LinkedListManager class, then List1 were assigned the LinkedList class, and then the 

implementation for MyListManager were to be changed to the ArrayListManager class, the 

choice of LinkedList for List1 would not be feasible though it was locally feasible. The reason 

is the class LinkedList is not in the environment for Listl which is now an ArrayListManager, 

not a LinkedListManager as it was during the selection of LinkedList for List1. Although the 

notion of local feasibility of an implementation selection is similar to elaboration with 

implementations, it is not identical. A more complete description of elaborating an object 

creation with implementation is considered in Section 5.2.3. However, the program does have 

some ability to control local feasibility through the use of variable constraints, which are 

considered next. 
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5.2.2. Constraints on Variables 

One form of control that a programmer has over the feasibility of a variable implementation 

is a variable constraint. This section provides an overview of this feature. 

The syntax of a constraint expression in a variable declaration consists of the reserved 

words such that followed by any expression, An example is given below: 

var MyList :> MyListManager . new L i s t  
such that  desc (MyList) IsDebugging return (Boo leans.B i t ) ;  

This example shows how a variable declaration can use an attribute procedure in its 

implementation to check for a particular feature. (The use of attribute procedures is 

discussed later in Section 5.5.3.) Here, the constraint attempts to ensure that the 

implementation for MyList has debugging capabilities. 

The semantics of a variable constraint are designed to permit the programmer to control the 

feasibility of an implementation selection beyond the methods provided by the type hierarchy. 

The constraints of a variable declaration are elaborated with specifications after the 

expression containing the object instantiation is elaborated with specifications. However, the 

constraints are elaborated with realizations during two circumstances: when the expression 

containing the object instantiation is elaborated with implementations and when an 

implementation choice for the variable declaration is checked for local feasibility. The 

constraint expression must return an object that matches the predefined boolean object, that 

is Booteans.Bit, and if a False object is returned during elaboration with realizations, the 

variable declaration is considered infeasible. 

5.2.3. Checking the Feasibility of Variable Declarations 

Elaboration with implementations is used to check that all necessary implementation 

decisions have been made and are compatible with one another. There are two facets to this 

checking: making sure that object instantiations are compatible with one another and making 

sure that an appropriate procedure implementation exists for each procedure invocation. In 

this section, only the means for elaborating an object instantiation with implementations will 

be described. Section 5.5.5 will discuss how an appropriate procedure implementation is 

found, 

Elaboration of object instantiation with implementations differs from elaboration with 
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specifications in two significant ways. First, the selected implementation class is used instead 

of the class specified by the name component that contains the reserved word new. Second, 

all related elaborations are carried out with implementations and not specifications. In detail, 

this means: 

1. If the last assignment of an implementation for the object instantiation was locally 
infeasible, then the object instantiation is infeasible. 

2. The environment in which the instantiation is taking place is searched for the 
selected implementation class of the simple object. If the implementation class is 
not  found, the object instantiation is infeasible. 

3. The parameters in the name component for the object instantiation are 
elaborated with implementations, if any of these elaborations are infeasible, then 
the instantiation is infeasible. 

4. The parameters in the declaration of the selected implementation class are 
elaborated with implementations. If any of those elaborations are infeasible, then 
the instantiation is infeasible. 

5. The objects that result from the elaboration of the actual parameters are 
compared with the objects that result from the elaboration of the formal 
parameters. If the comparison fails, then the instantiation is infeasible. If the 
comparison succeeds, the actual parameters and any bindings that result from 
the comparison replace the parameters and the bindings that exist in the simple 
object. 

6. In leftmost elaboration order of the selected implementation class, each local 
instance in the local instance set is elaborated with implementations. A local 
instance is elaborated with implementations by elaborating each of its 
(nonattribute) variable declarations with implementations, and then each of its 
statements with implementations. If any of these elaborations are infeasible, the 
object instantiation is infeasible. 

There are four aspects of this elaboration that deserve more discussion: the reuse of 

definite simple objects, the applicability only to definite simple objects, the finality of locally 

infeasible implementation selections and the elaboration of the local instances making up the 

object. 

None o~ the steps above directs the creation of a new definite simple object during the 

elaboration of an object instantiation name component with implementations. All of the 

necessaql local instances have been created when an implementation for a variable is 

selected, so no new local instances are necessary during elaboration with implementations. 

Each time an object instantiation is elaborated with implementations, and it may be so 

elaborated many times during a compilation, the same simple definite object is used. 
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Only definite instances have an elaboration different with implementations than with 

specifications. The elaboration of indefinite instances with implementations is defined to be 

identical to their elaboration with specifications. Since these indefinite objects act as 

representatives of definite objects, they may take any implementation. Thus for feasibility, an 

implementation that assumes the least information about them is used. Such an 

implementation is the specification itself. In addition, since there is no way of assigning a 

particular implementation to an indefinite instance, there is no need to maintain the local 

instance set between assignments of implementations in an unused local instance set. 

Therefore, the expedient of equating the elaboration of specifications and of implementations 

for indefinite simple objects is adopted. 

The fact that an implementation selection is locally infeasible, if it is not changed by another 

implementation selection for the same simple object, forces the object creation to be 

infeasible whenever the creation is elaborated with implementations. This unchangable status 

of infeasibility could be counterintuitive when a later selection makes the originally infeasible 

selection into a feasible selection, as illustrated by the following circumstance. 

In the previous example, assume that MyListManager has the LinkedListManager 

implementation selected and then List1 had the ArrayList implementation selected. Clearly, 

this second choice is locally infeasible. However, one may change the implementation of the 

MyListManager to ArrayListManager. The selection of ArrayList for List1 now seems 

reasonable. The language defines this circumstance to result in an infeasible program, 

primarily for ease of language definition. If this rule were not included in Paragon and a once 

locally infeasible selection could become feasible through a change in its environment, any 

implementation selection for an object in an environment could cause a reanalysis of all the 

selection decisions made for objects created in that environment. This is potentially a large 

amount of complicated checking. Further, because some of these elaborations might cause 

side effects (see Section 5.;3.2), some order of the rechecking would have to be provided and 

reelaboration prevented when necessary (or reasonable). As a practical matter, this situation 

is unexpected, Because Paragon requires variables to be declared before they are used, it 

seems reasonable to expect that the implementations of variables will be selected before 

those variables are used in further object creations. Thus a changing environment for an 

already implemented individual is not expected to occur, and in fact, never occurs in any 

example in this thesis. However, if Paragon were to permit such a situation, the language 

would require extra rules and complications. Hence Paragon adopts the rule that a locally 

infeasible implementation selection causes the object creation to be infeasible. 
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The last important aspect of elaborating object instantiations with implementations is the 

recursive nature of the check. When checking an instantiation for feasibility, all of the local 

instances that make up the simple object must also be checked, which includes all of their 

variable declarations. This differs from the check for local feasibility which is concerned 

primarily with the parameters for the implementation and the relation between the 

implementation and its environment. Thus local feasibility is seen as a heuristic measure of 

the feasibility of an implementation selection and not as a guarantee of feasibility. 

Once all choices in a program are made and the program has been checked for feasibility, it 

may be elaborated with realizations. The details of this kind of elaboration of object creations 

is discussed in the next section. 

5.2.4. Elaboration of Object Creations with Realizations 

Elaboration with realizations is intended to capture the effects of execution. Definite objects 

are newly created in the same way as objects are created during elaboration with 

specifications. The difference between the two is that the classes used when elaborating the 

creation with realizations are determined by the last elaboration with implementations. 

Elaboration with realizations is defined only if a program is well specified and feasible. A brief 

outline of the actions that occur during this elaboration for object instantiation are as follows: 

1. If any simple object in the creation environment is an indefinite instance, then the 
creation is erroneous. 

2. A new simple object is created. 

3. The parameters in the name component for the object creation are elaborated 
with realizations. 

4. The parameters of the implementation class for this variable are elaborated with 
realizations. 55 

5. The corresponding objects from the parameter elaborations are compared and 
the resulting binding of objects to identifiers is saved in the new simple object. 

6. In leftmost elaboration order of the implementation class, each ancestor class of 
the implementation is elaborated with realizations and added to the new simple 
object. 

'5"SAs a practical matter, because Paragon does not allow definite object creations or procedure invocations in 
formal parameters, no action is needed to perform this step in compiled Paragon code, All of the information 
necessary for determining the results of later steps is available from information gathered during elaboration with 
implementations. However, this list defines what the effects should be, not how they are accoml31ished. 
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Elaboration of indefinite instances is similar except that no elaboration of local instances is 

performed and the creation environment may contain indefinite instances. Once the 

parameters have been saved, the process of creating an object is finished. 

Conventional translation systems perform elaborations with specifications, implementation 

selection and feasibility analysis before creating the translated program. Then elaboration 

with realizations is confined to the program created by the translation system. In Paragon 

however, certain pieces of a program are elaborated with realizations during elaboration with 

specifications and implementations, and also during policy execution. One feature that is 

elaborated with realizations before the program as a whole is called an attribute, and is 

discussed in the next section. 

5.3 .  Descr ib ing Classes and Procedures  - -  At t r ibutes  

Attributes are the primary feature that Paragon provides for describing classes and 

procedures. An introductory discussion is followed by descriptions of how attribute variables 

and attribute procedures are defined in classes and procedures. Then some uses of 

attributes in expressions and variables are illustrated. The use of these attributes in policy 

procedures is deferred until Section 5.5.3. 

5.3.1. Purpose of Attributes 

Attributes are unlike much of Paragon in that there is no clear analog between attributes in 

Paragon and features in other languages. In some sense, attributes are a generalization of 

compile.time switches, pragmata, hints and compiler options that other translator systems 

employ. Unlike other systems, the definitions of attributes are completely under the control of 

the programmer. The distinction can be illustrated with some examples from other languages. 

The Pascal language defines certain reserved words, like packed, that a programmer may 

use to inform the compiler that a particular data structure should use a space efficient 

representation. Ada provides a host of information for the compiler via the pragma construct. 

In both of these cases, the programmer is providing some limited information to the compiler 

about the way certain parts of the program should be behave. Unfortunately, there is no way 

of generalizing this property. For example, Pascal does not allow a programmer to inform the 

compiler to pick a time efficient representation for a data structure. Thus current systems 

strongly relate the ways that the programmer can provide information to the compiler with the 
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kinds of information that the compiler will process. The attribute facility in Paragon is 

intended to provide a flexible way to give information to the compiler and to provide as few 

restrictions as possible to the ways in which the information may be used. 

Simply, one may view attributes as describing differences between one class and another, 

and between one procedure and another. The examples in the previous paragraph illustrate 

such differences as time efficiency of a representation and space efficiency of a 

representation. Some other distinctions one typically encounters are the amount of 

debugging assistance provided, the amount of error detection provided, the amount of 

performance monitoring provided, a tradeoff between time and space, and the choice of 

interface to other languages. Some of these distinctions will be illustrated in the next chapter. 

Paragon provides two kinds of attributes: attribute variables and attribute procedures. 

These can be viewed as compile-time variables and procedures that are provided by the 

programmer. Before illustrating their uses, a description of the syntax and interpretation of 

attribute variables and procedures is needed; this is provided in the following sections. 

5.3.2.  Attribute Variables 

The syntax for attribute variable declarations is nearly identical to that for variable 

declarations: the presence or absence of the reserved word attribute. But there are two 

important semantic differences: the order of elaborations and the ability to use procedure 

invocations. The syntax and semantics are considered below. 

The syntax for declarations of attribute variables resembles variable declarations, except 

that it contains the reserved word attribute before the reserved word vat, as illustrated below: 

at t r ibute var Total_Space_Used => IM new Integer; 

Like a variable declaration, an attribute variable declaration causes an identifier, here 

Total_Space_Used, to be bound to an object, here a definite Integer object. The primary 

difference lies in when the different elaborations of this declaration occur. The expressions in 

variable .declarations are elaborated with specifications, implementations and realizations 

when the enclosing class or procedure declaration is elaborated with specifications, 

implementations and realizations respectively. The expressions in attribute variable 

declarations are elaborated only with specifications and realizations. These two elaborations 

of the expressions happen in tandem when the attribute variable declaration is elaborated 
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with specifications. No action is taken when an attribute variable declaration is elaborated 

with implementations or realizations. In a colloquial sense, therefore, attribute variables exist 

only during the compile.time processing of the program. 

A secondary, but important difference between attribute variable declarations and 

nonattribute variable declarations is the ability of the former to include a name component 

that denotes a procedure invocation in the expression. For example, one may write: 

a t t r i b u t e  var Expected_Size => 10; 

while one may not write: 

var Expect_Size => 10; 

since the literal 10 is an implicit procedure invocation (see Section 3.3.6). 

Paragon attaches no predefined meaning to any identifier declared as an attribute variable. 

Although the examples shown here use predefined integer and boolean objects, nearly any 

kind of object may be present. More precisely, any class that is self.implementing may be 

used. The notion of self-implementing is discussed further with policy procedures (see 

Section 5.5.2). 

5.3,3. Attribute Procedures 

Attribute procedures provide a way to attach more sophisticated information to classes and 

procedures. Attribute variables denote a single value but attribute procedures may be as 

complex as any other procedure in Paragon. As will be discussed later (Section 5.4.3), an 

attribute procedure has access to a representation of the entire program. Thus an attribute 

procedure may provide information based not only on local information in the attribute 

procedure, but also on the structure of the program as well. In this section, only the syntax 

and semantics of attribute procedures will be discussed. A description of attribute procedure 

invocations is postponed until Section 5.5.3. 

The syntax of attribute procedures resembles procedure implementations, though like 

attribute variables, the semantics of using attribute procedures differ from procedures. These 

differences are described below. 

The syntax of an attribute procedure is like a procedure implementation except that the 

reserved word attribute must precede the reserved word procedure, and there must be a 

return expression present. A simple example is shown below: 
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attr ibute 
begin 

return 
end; 

procedure Total_Time return IM . 

100; 

integer is 

As one might expect, this parameterless attribute procedure will always return 100. 

Unlike nonattribute procedures, attribute procedures do not have any specifications. Their 

invocations provide any necessary specifications which must be met by the attribute 

procedure. 

The semantic differences between nonattribute procedure and attribute procedures involve 

the ways in which they are called. A more detailed discussion of how attribute procedures are 

invoked is provided in Section 5.5.3. 

5.3,4. Attributes in Classes 

Adding an attribute declaration to a class is identical to adding any other kind of declaration 

to the class: one merely adds the declaration in the declaration list. An example is shown 

below: 

c lass  ListManager(t:any) is 
begin 

attr ibute var Maximum_List_Size => 100; 

class List is 
begin 

attr ibute vat Average_List_Size => 50; 

end; 

end; 

The ListManager class has an attribute variable describing the maximum list size for individual 

lists from this manager, and the inner class, List, has one describing the average size of those 

lists. Naturally, all such interpretations of attribute variables are provided by the programmer. 
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The notion of refinement has been used extensively in this thesis, but most of the emphasis 

has been on refinements using subclasses. Many levels of subclasses may be used to refine 

an abstract data type. But the only refinement for procedure specifications discussed so far 

has been procedure implementations. Paragon provides another refinement for procedure 

specifications, namely procedure respecifications. 

A procedure respecification lies between a procedure specification and a procedure 

implementation. The syntax of a procedure specification looks like a procedure 

implementation except that the reserved words specified with appear before the reserved 

word begin and no statements, classes or nonattribute variables or procedures may be 

declared. Thus like a procedure specificat!on a procedure respecification Contains a 

description of the interface for calling the procedure and like a procedure implementation, a 

procedure respecification may have different expressions for its parameters, so long as the 

parameters match the specification. A somewhat contrived example of a procedure 

specification, respecification and implementation is shown below: 

I Three classes that form a l i s t  of specif ications ; 

class General is begin end; 
class Middle of General is begin end; 
class Lowest of Middle is begin end; 

I A procedure specif ication that uses the ; 
I most abstract level of the tree ; 

procedure f(General) ; 

I A procedure respecif ication that uses the ; 
I f i r s t  refinement of General; 

procedure f(Middle) is specified with begin end; 

I A procedure implementation that uses the ; 
I f inal  refinement of General; 

procedure f(Lowest) is begin . . .  end; 

The motivations for including the procedure respecification are based on the ability to add 

attributes to procedure declarations. The way this may occur is discussed in the next section, 

which also contains a more realistic example of the procedure respecifications. 
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5.3.6. Attributes in Procedures 

In all three kinds of procedure declarations, it is possible to annotate the declaration with 

attributes. One may add attributes for several reasons: to a procedure specification to 

provide some initial description of the procedure; to a procedure respecification to change 

and refine the initial description based on some more information about possible procedure 

calls; and to a procedure implementation to refine further the description based on the final, 

chosen implementation. In this section, the ways that attributes are added to procedure 

specifications, respecifications and implementations are discussed. 

As it is possible to add attributes to any class, attributes in procedures are declared in the 

block between the begin and end reserved words. In the case of a procedure specification, 

where no block is normally present, a dummy block is used which is prefixed with the 

reserved words specified with, just like a procedure respecification. Such a procedure 

specification is shown below: 

procedure I n s e r t ( L : L i s t ,  E: t )  i s  
specified with begin 

at t r ibute vat Checks_Parameters => True; 
end; 

Only attributes may be declared in such dummy blocks. No other declarations and no 

statements are permitted. 

The use of the reserved words specified with to denote both procedure respecifications and 

procedure specifications (with attributes) can be confusing. 56 Usually, a block in a procedure 

declaration that starts with the reserved words specified with denotes a procedure 

respecification. As illustrated above, it may be used as a procedure specification. The choice 

is determined by context. If there exists a procedure specification with the same identifier as 

the procedure respecification in the current class or procedure, in an enclosing class or 

procedure or in one of the ancestors of the current (or an enclosing) class, then the presence 

of a specified with prefix indicates a procedure respecification, otherwise a procedure 

56perhaps another revision of the language design woutd eliminate this ambiguity by introducing different syntax 
for respecification and initial specification. Another change would permit a procedure implementation to act implicitly 
as a procedure specification if no specification was present. 
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speci f icat ion,  s7 An i l lustrat ion of this c i r cums tance  is shown be low:  

I Specif ication for Table objects ; 
class Table is 
b e g i n  

a t t r i b u t e  v a t  A v e r a g e _ S i z e  => 100;  
p r o c e d u r e  I n s e r t ;  I S p e c i f i c a t i o n  f o r  I n s e r t  ; 

e n d ;  

I Two general implementation approaches: Arrays and Trees ; 

class Table_with_Arrays of Table is 
begin 

procedure Insert is 
specified with begin 

a t t r ibute  procedure Time return im.integer is 
begin 

r e t u r n  A v e r a g e _ S i z e ;  
e n d ;  

e n d ;  
e n d ;  

class Table_with_Trees of Table is 
begin 

procedure Insert is 
specified with begin 

a t t r ibute  procedure Time return im.integer is 
begin 

return log2(Average_Size); 
end; 

end; 
e n d ;  

I Some specif ic array implementations ; 

57This rule makes the hiding of procedures difficult if one wants to provide initial attributes. In particular, to 
guarantee that the procedure declaration will be interpreted as a specification and not as a respeciflcation while still 
providing initial attributes, the following ruse must be coded: 

! New s p e c i f i c a t i o n :  
procedure foo; 
! New r e s p e c i f i c a t i o n  . i t h  same s ignature to hold a t t r i b u t e s  ; 
procedure foo is spec i f ied  with 
begin 

! Add a t t r i b u t e s  here ; 
end; 

The first declaration ensures the specification hides previous specifications; the second guarantees the presence of 
the initial attributes. 
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class Table_with_Arrays_Imp11 of Table_with_Arrays 
begin  

p rocedure  I n s e r t  is  
beg in  

a t t r i b u t e  p rocedure  Time r e t u r n  i m . i n t e g e r  is  

end; 
end; 

is 

class Table_with_Arrays_Imp12 of Table_with_Arrays iS 
begin 

procedure Insert is 
begin 

attribute procedure Time return im.integer ... 

end; 

I More specific array and tree implementations .... ; 

e~r~d ; 

The class Table serves as a specification for objects that are tables. There is one procedure in 

table objects, Insert, which is specified in the Table class. The Insert procedure has a single 

attribute, Time, which reports the amount of time the procedure requires to execute. Given a 

particular implementation of Table, it is possible to select the appropriate implementation or 

respecification of Insert for each of its invocations, and to invoke its corresponding Time 

attribute procedure. 

If one merely picked a complete implementation for Table, say Table_with_Arrays_lmpl2, 

then the Time attribute procedure associated with the Insert procedure implementation would 

be used. But one may use a stepwise-refinement technique, similar to the one in 

PECOS [Barstow 79], for selecting an implementation. Thus one would first consider whether 

to use arrays or trees to implement tables and select either Table_with_Arrays or 

Table_with_Trees as the interim implementation of Tree. Such a selection would also cause 

the respecification of Insert in the selected class to be used as a refinement of the 

specification of the Insert procedure. With this technique, one can ask about the time that an 

Insert procedure might take with each approach and receive a linear time with arrays and a 

log time with trees, s8 Such information, when combined with data on other implementations 

and the frequency of operations, could be used to decide whether to pursue further 

refinements of tree implementations or array implementations. 

58Only for the sake of argument. The examples are necessarily simple so that they can be easily understood. 
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Since attribute variables denote objects that exist only at compile time (although they are 

run time in nature), attribute variables may be used in expressions that exist only at compile 

time. Thus they may be used only in expressions in the statement parts of attribute 

procedures and in expressions of other attribute variable declarations. Their use in a name 

expression is syntactically identical to the use of a nonattribute variable: merely the identifier. 

This is demonstrated below: 

class List  is 
begin 

attribute var Average_List_Size => 50; 
attribute procedure Get_Size return IM.integer is 
begin 

re turn  Average_List_Size;  
end; 

end; 

When the attribute procedure Get_Size is called, it will obtain the current (realized) value of 

Average_List_Size and return that object. However, Average_List_Size may not appear in the 

statement list of the List class since those statements would be executed at run time when 

Average_List_Size no longer denotes an object. 

5.3.8. Variables with Attributes 

Another way to manipulate attribute variables is available through the use of attribute 

associations. As attribute variables represent some information about the object being 

created, it is reasonable to allow a programmer to alter the attribute variables on an instance 

by instance basis. For example, a programmer may wish to indicate that the average size for a 

particular list is not the 100 specified by the Average_List_Size attribute variable in the class 

declaration for List, but i s rather 50. This altering can be done by the attribute association 

feature of variable declarations. 

Each association has the syntax attribute identifier = > attribute value where the attribute 

identifier is any identifier and the attribute value is any expression (also called the value 

expression). A list of associations is preceded by the reserved word where. An example that 

changes the 100 for Average_List_Size to 50 is shown below: 

I First create a manager for integer lists ; 
var MyListMansger => new ListManager(IM integer); 
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var MyList => MyListManager . new L i s t  
where Average_List_Size => 50; 

The process Iby which the new object replaces the old object is a bit complicated. In short, 

there is a check made to ensure that the new object is somehow the same "type" as the old, 

and then the object replacement is made. The details for the example above are provided 

below. 

When the declaration for MyList is elaborated with specifications, the classes associated 

with List will be elaborated with specifications and any attribute variables in those classes will 

also be elaborated with realizations. After the classes are elaborated with specifications, each 

attribute association is elaborated as follows: 

1. The attribute identifier is located in the object returned for the object instantiation 
expression of the variable declaration. 

2. The attribute value expression in the attribute association is elaborated first with 
specifications and then with realizations. 

3. The object bound to the attribute identifier has its innermost component altered 
to an indefinite instance if it is a definite instance. 

4. The object returned by the elaboration of the attribute value expression with 
realizations is compared with the altered object originally bound to the attribute 
identifier. 

If all of the previous elaborations are well specified, feasible and defined, and if the 

comparison is successful, then the object returned by elaborating the value expression with 

realizations is bound to the attribute identifier in the newly created definite instance, The 

previous binding is discarded. If the elaborations are ill specified, infeasible or erroneous, or 

if the Comparison between objects fails, then the variable declaration containing the attribute 

association is ill specified. 

The use of attribute variables to attach information to classes and procedures, and the use 

of attribute procedures to provide values based on calculations using attdbute variables, 

provide a powerful way to distinguish different implementations of an abstract data type as 

they are used in a program. In fact, the attributes serve as decorations on a tree structure, 

called the Possibility Tree, that resembles the program. Because of the pervasiveness of this 

data structure, it is described next. 
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5.4. Representing the Implementation Choices - -  The 
Possibility Tree 

After a program has been elaborated with specifications, each variable declaration and 

each procedure invocation has been associated with some set of local instances. The 

structure of these variable declarations and procedure invocations form a tree, with each 

node of the tree being a simple object associated with a variable declaration or a procedure 

invocation and each edge leading to local variable declarations and procedure invocations of 

the parent node. This tree, called a Possibility Tree, is the data structure that the policy 

procedure operates on. In this section, a detailed description of the possibility tree for a 

program is given. 

5.4.1. Abstract Possibility Trees 

Throughout this section, a rather contrived, but illustrative program will be used to show 

how possibility trees are constructed and changed. The beginning of this program is shown 

below, followed by its initial possibility tree. 



Section 5,4.1 Representing the Implementation Choices -- The Possibility Tree 131 

class MainProgram is 
begin 

class Generality is begin end; 

class Specification of Generality is 
begin 

procedure MyProc; I This is the specification ; 
end; 

class Implementation! of Specification is 
begin 

procedure MyProc is I This is implementation # 1; 
begin  
end; 

end; 

class Implementation2 of Specification is 
begin 

procedure MyProc is ' This is implementation # Z; 
begin 
end; 

end; 

class Implementation3 of Specification is 
begin 

I No MyProc implementation; 
end; 

var  x => new S p e c i f i c a t i o n ;  
v a r y  => new S p e c i f i c a t i o n ;  
x.MyProc; 
y.MyProc; 

end; 

! Procedure c a l l  # I  ; 
I Procedure c a l l  #Z ; 
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Figu re 5-1 : Simple Possibility Tree 

This diagram illustrates several of the previous terms. There are five nodes in this tree: one 
forthe instance of the main program, one for the simple object that × denotes, one for the 
simple object that y denotes, and one for each procedure call in the main program. Each 

node consists of a set of local instances. Each local instance consists of three parts: a name 

(for identification); some indication about whether that local instance is in the simple object's 

local instance set (* present) or unused local instance set (*missing); and edges to other 
instances-- one for each variable declaration and procedure invocation in that instance. 

Parts of the structures of the program and its objects are also illustrated by Figure 5-1. The 
simple object for the main program has only one local instance, hence the single local 

instance for MainProgram. There are two edges for variables, one for x and one for y, which 

lead to simple objects with Specification as an underlying class. Note that such simple objects 
have two local instances, one for the Genera/ity class and one for the Specification class. 

There are no variable declarations in Specification or Generality, so no edges for variables 
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lead from those local instances. The local instance for the main program also has two edges 

leading to nodes for the two procedure calls. The edges are labeled with the number of the 

procedure call in the parent instance since there is no separate identification of each call. 

Initially, the node for each call contains a local instance for the procedure specification 

(denoted by the parenthesized S). 

A possibility tree is not a static structure. It represents in part, a flow graph of the program, 

in part, an abstract syntax tree, and in part, a dependency graph. Thus as implementation 

decisions are made, the flow graph of a program is changed and the possibility tree changes. 

The exact way that the possibility tree changes depends on the kind of node of that is being 

processed. The changes for the two kinds of nodes, object instances and procedure- 

invocation instances, are in considered in turn. 

When a node in the possibility tree represents an object instance, it is changed by selecting 

a new implementation for the object. As explained in Section 5.2, new local instances may 

have to be created or some local instances may have to be moved between the local instance 

set and the unused local instance set. These changes are reflected in the possibility tree. 

When a new local instance is created for addition to the local instance set, the new local 

instance is added to the simple object node and marked with an asterisk. Local instances that 

were previously in the unused local instance set but which moved to the local instance set are 

also marked with an asterisk. Conversely, local instances that are moved from the local 

instance set to the unused local instance set are so marked by removing any asterisk. 

Continuing the example that is shown in Figure 5-1, the implementation for x is set to 

Implementation1, so a new local instance for the class Implementation1 would be created, 

appended to the simple object for x and marked as in the local instance set. This is shown in 

Figure 5-2. 
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Figu re 5-2: Selecting Implementation I for x 

Should the implementation of x be changed back to Specification (that is, no choice of 

implementation), then the local instance for Implementation I would no longer be marked as 
being on the local instance set, but it would not be removed from the possibility tree. Only the 
asterisk in the local instance for Imp/ementation I would be removed. If the Implementation 1 

were reselected, then the possibility tree would return to the one shown in Figure 5-2. 

Changing the implementation of x from Implementation I to Implementation2 causes similar 

changes. First, the local instance associated with /mp/ementationl is marked as no longer 

being in the local instance set. Then a new local instance for/mp/ementation2 is created and 

added to the local instance set, The resulting tree is shown in Figure 5-3. Note that the local 

instance for/mp/ementation 1 is still present, though marked as being in the unused local 

instance set. 
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Figure 5-3: Changing x to/mp/ementation2 

Should /mp/ementationl be selected again, then the local instance for /mp/ementation2 

would no longer be marked as being in the local instance set and the local instance for 

/mp/ementationl would be remarked. Should the Specification be selected as the 

implementation - -  that is, the class implements itself - -  then the local instances for both 

/mp/ementation 1 and/mp/ementation2 would be moved to the unused local instance set. 

A similar process occurs when a procedure implementation (or specification or 

respecification) is selected for a procedure-invocation instance during elaboration with 

implementations. To illustrate this, assume that the implementation /mp/ementationl has 

been initially selected for x and/mp/ementation2 has been selected for y. After elaborating the 

main program with implementations, a selection of implementation 159 will have been made 

for the call x.MyProc and a selection of implementation '2 will have been made for the 

invocation y.MyProc. The resulting possibility tree is shown in Figure 5.4. 

59Procedure specifications, resgecifications and implementations have the same name, so to distinguish them, 
they are given numbers in comments next to the declarations. 
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Figu re 5-4: Adding Procedure Implementations to the Possibility Tree 

In this possibility tree, a local instance for implementation 1 is part of the simple object node 

for x.MyProc and a local instance for implementation 2 is part of the simple object node for 

y.MyProc. Note that the local instances for the specifications of the procedure are no longer 

considered to be part of the simple objects' local instance sets but are considered part of the 

unused local instance sets. Should the implementation for the procedure invocation 

x.MyProc change, say because/mp/ementation3 was selected for x and the main program 

was reelaborated with implementations, then the specification could again be associated with 

the procedure invocation and be moved to the local instance set from the unused local 

instance set, This situation is illustrated below in Figure 5-5. 
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Figu re 5-5: Reusing old Procedure Local Instances in a Possibility Tree 

The saving of previous local instances preserves implementation decisions that were made 

for local instances in case those local instances are needed again. This feature is not readily 

visible in the previous possibility trees because the example classes had no local variables or 

procedure calls. To expand the example, consider the following additional class declarations: 

1 Some classes fo r  use as local  va r iab les  ; 
1 in f u r t he r  implementat ions ; 

c lass LocalVar iable is begin end; 
c lass LVi of LocalVar iable is begin end; 
class LV2 of LocalVariable is begin and; 

I Some more implementations for the class 

class Implemention4 of Specification is 
begin 

vat MyLocal => new LocalVar iable 
end; 

Ifthe only 

variablex, 

Spec i f i ca t i on  ; 

implementation selection made in the main program were Imp/ementation4 for the 

then the resulting possibility tree would appear as follows: 
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Figure 5-6: A Possibility Tree with only Implementation4 

Note that the local variable for the instance of/mp/ementation4 is also present, It is possible 

that the next implementation decision be a selection of LV1 for the variable MyLoca/. Thus the 

possibility tree would look like the following: 

F Moin Program I 
v I F  1#2 

y #1 

IV';ll lll iv" l V'lll; I ' 

I My local 

I~Local Vat, ! ~' LVI 
V ! P l  V I P ' I  

Figure 5-7: A Possibility Tree with Implementation4 and LVl 

Some effort has been expended to make the choice of LVI. Some time later, however, a 

different decision for x may be made u say to use Implementation3 instead of 

Implementation4. The resulting tree would then appear as follows: 
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Figure 5-8: Picking/mp/ementation3 after/mp/ementation4 

Although the local instance for/mp/ementation4 is in the unused local instance set, the 

choices made for its local variables are unchanged. Should/mp/ementation4 be reselected as 

the implementation for x, the decisions made for the variable MyLoca/are also preserved, 

saving the effort that was used to make that selection, 

The instances in the possibility tree have been described as abstract nodes that are 

manipulated by the programmer. Actually, the tree is composed of instances of Paragon 

classes. The details of the predefined classes that make up the possibility tree are described 

in the next section. 

5.4.2.  Instances and Instance Classes 

In this section, the predefined classes used to describe possibility trees are described. In 

one sense, possibility-tree nodes are like any other object realization 6° in the language. There 

is a class that defines them and they are manipulated like other Paragon class instances. But 

they are different in that they are created by the underlying translation system and not by the 

program that uses them. Possibility-tree nodes also correspond to specified objects in 

addition to being realized objects. For each realization of the /nstance class (called an 

/nstance object), there is a simple object that resulted from the elaboration of a class or 

procedure with specifications. This simple object is called the doppe/ganger of the realization 

60An obiect realization, or a realized object, is an object that was created when elaborating expressions with 
realizations. A specified object is one that was created when elaborating expressions with specifications. 
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of the Instance object. Thus a tree node in the possibility tree simultaneously represents two 

objects instantiations: a realized instance of the class Instance and a specified instance of a 

variable declaration or procedure invocation. The realized Instance object and its 

doppelganger are always manipulated together, though the policy procedure usually 

manipulates the realized version while attribute procedures manipulate the doppelganger. 

The discussion in this section starts with a presentation of how the realized versions may be 

manipulated. In Section 5.4.3, a brief discussion of the manipulations of the doppelganger 

will be provided. 

5 . 4 . 2 . 1 .  Realized Instance O b j e c t s  

Each node in the possibility tree is a realized instance of the predefined class Instance. The 

declaration of this class is given below: 

class Instance(IM. NumV: In teger ,  IM. NumP: In teger )  is 
begin 

vat VarDecls => VAM 61 . new array(1,NumV); 
var ProcCalls => PAM . new array(1,NumP); 
procedure BindProcs return Booleans.Bi t ;  

end; 

The meaning of most of the identifiers in the class corresponds to the pictorial representation 

of a tree node. NumV is the number of variable edges from all of the local instances in the 

local instance set (but not from any unused local instances). NurnP is the number of 

procedure invocation edges from all of the local instances in the local instance set (but not 

from any unused local instances). VarOecls and ProcCails are arrays of pointers to the 

instance realizations that represent the corresponding variable and procedure-invocation 

simple objects. The elements in the VarDecls array are ordered by appearance of the 

variables in the leftmost elaboration order of the current implementation of the simple object. 

Similarly, the elements in the ProcCalls array are ordered by appearance of the procedure 

calls in the leftmost elaboration order of the current implementation of the simple object. 

61The identifiers before arrays and reference instantiations in class declarations for possibility-tree nodes 
represent managers for these arrays and references, The declarations of these managers are: 

v a r  VAM => new A r r a y M a n a g e r ( V a r D e c l ) ;  
var  OAM => new A r r a y M a n a g e r ( O b j D e c l ) ;  
var  PAN => new A r r s y M s n a g e r ( P r o c C a l l ) ;  
var  CDRM => new Re fManager (C lassOec l ) ;  
va t  CDRAM => new Ar rsyMansger (CDRM.Rsferenca) ;  

Arrays and references are discussed in Sections 6.2,8 and 6.2.9. 
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In addition to the structure of the possibility tree, the class Instance also defines BindProcs 

which is one of two procedures that control the elaboration of the program with 

implementations. The second predefined procedure, CheckFeasibility, is not defined in any 

class; that is, it is a global procedure, and it has the following declaration: 

procedure CheckFeasibi l i ty return Booleans.Bit; 

Both procedures cause pieces of a program to be elaborated with implementations. The 

former, BindProcs, causes the doppelganger of the instance object to be elaborated with 

implementations without elaborating the procedure implementations used for the procedure 

invocation in the instance. The CheckFeasibflity procedure causes the entire program to be 

elaborated with implementations. Both procedures return a logical object. If True is returned, 

then the program part that was elaborated with implementations is feasible. False is returned 

if some part of the program being elaborated with implementations is infeasible. 

One consequence of elaborating an instance with implementations is that the 

implementation of some procedures may change, thus changing its local instance set. In the 

simplest case, an implementation is selected where a specification was previously used. As 

procedure specifications have no variable declarations or procedure invocations, the 

parameters NumV and NumP are initially bound to zero and the corresponding arrays are 

empty. However, most procedure impiementations have local variables and local procedure 

invocations, so these bindings must change. After elaborating an instance with 

implementations, the translation system will alter the Instance objects bound to these 

identifiers (and their corresponding arrays) so that they correctly represent the local instance 

set in the possibility tree. 

The possibility tree that is accessible via the Instance objects represents only the last choice 

made for each variable or procedure. There is no way for a programmer to manipulate the 

local instances in the unused local instance list. These local instances were omitted from the 

tree since identifiers in these local instances may refer to parameters in the specified object 

which ceased to exist when the implementation was changed. 

Although the class Instance defines the basic structure of the possibility tree, it does not 

fully represent the nodes. There are therefore three additional subclasses that are used to 

provide a more detailed description of the tree: ObjDecl, VarDecl and ProcCall. Each of these 

classes is discussed in turn. 



Section 5.4.2.~epresenting the Implementation Choices - -  The Possibility Tree 142 

5 .4 .2 .2 .  Object  Instant ia t ions 

The ObjDecl and VarDecl classes are used to define nodes that represent class instances. 

As a practical matter, there are no ObjDecl instances that are not also instances of VarDecl 

and so the discussion will assume that every ObjDecl object is also a VarDect object. 62 These 

two classes are declared below: 

class ObjOecl(IM. NumV: Integer, IM. NumP: 
of Instance is 

begin 
procedure GetSpec return CDRM.Reference; 
procedure Getlmpl return CDRM.Reference; 

end; 

Integer) 

class VarDecl(IM. NumV: Integer, IM. 
of ObjDecl is 

begin 
vat ImpISet => IM . new Integer; 

NumP: Integer) 

procedure 
procedure 

return 

Setlmpl(CDRM.Reference); 
LocallyFeasible(CDRM.Reference) 
Booleans.Bit; 

ImplSet := O; 
end; 

No more tree structure is introduced by these classes, only some more procedures and a 

variable ImplSet. The procedures are used to examine and set the implementations of the 

variables as appropriate. Since these classes inherit the class Instance, variable objects 

naturally have arrays of pointers to the Instance objects for local variables and procedure 

invocations. 

The procedures declared in the ObjDecl and VarDecl class manipulate the implementations 

for the variables associated with the instance objects. These implementations are denoted by 

pointers to objects that represent the class declarations in the program. To explain the 

procedures, it is useful to consider the representation of class declarations as well. 

Each class in the program, including predefined classes, is represented as an instance of a 

predefined class C/assDec/which has the following declaration: 

621n an earlier design, Instance objects also contained an array of pointers to parameters of the simple object. 
Each pointer referred to instances of the ObjDecl class, Because actual parameters could be indefinite instances, 
these ObiDec/ objects were not necessarily also instances of VarDec/. This would have permitted policies and 
attribute procedures to get information from attributes in parameters being used as type parameters. Since this was 
never fully completed, only the remnants of the design in the form of the class declaration ObjOecl remains. 
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c lass  C lassDec l ( IM .  NumC: I n t e g e r ,  IM. NumP: 
begin 

var  C h i l d r e n  => CDRAM. new Ar ray(1 ,NumC);  
var Parents  => CDRAM. new Ar ray(1 ,NumP) ;  

end; 

I n t e g e r )  
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is 

The form is similar to the Instance class declaration, only the two arrays contain pointers to 

instances of ClassDecl for the immediate parents and immediate children of the denoted class 

declaration. Whenthe GetSpec and Getlmpt procedures are invoked, they return pointers to 

ClassDecl objects for the classes used as the specification and the current implementation of 

the variable. Initially, the class used as the implementation of a variable is the same as its 

specification. By using the Children and Parents arrays in ClassDecl objects, it is possible to 

denote different implementations for a variable and to set the implementation of the variable 

by passing the appropriate pointer to the Setlmpl procedure. 

The Setlmpl procedure can cause other effects in the possibility tree besides changing the 

implementation of variable. For example, if the designated class is not a locally feasible 

implementation for the variable, the variable is marked as infeasible and no change is made in 

its implementation. Even if the class is locally feasible, the change in the local instances may 

cause the NumV and NumC values to change with corresponding changes to the arrays 

VarDecls and ProcCatls. Note however, the objects will not change, only the internals of those 

objects. Thus if those objects were passed as parameters to another class or procedure, the 

class or procedure will also see the change in the possibility tree and the objects in the 

Instance, class in which Setlmpl has been invoked. 

Unfortunately, some selections of children of a specification c!ass may not result in a 

feasible program. Many times, this can be determined by checking only the local feasibility of 

a variable declaration, as defined in Section 5.2.1. The LocattyFeasible procedure provides 

the facility to check if an implementation choice is locally feasible for a variable declaration 

before se{ecting that particular implementation for a variable. If the passed parameter denotes 

a class that is not a locally feasible implementation for the variable, the procedure will return 

False, otherwise it will return True. In neither case will the current implementation of the 

variable be changed. 

The last declaration in VarDecl is for the variable ImpfSet. This integer variable has no 

special meaning to the translator system. It is provided as a kind of limited tree decoration for 

use by the programmer writing a policy. However, the single ImplSet variable is sometimes not 

enough. 
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Typically a compiler records a large information about the program directly on the internal 

form of the program (usually termed "decorating the tree"). This is a very convenient tactic 

for organizing any information that is collected about the program. The analogous operation 

for a policy procedure would be to decorate the possibility tree with information it gathers 

from the execution of attributes. Unfortunately, the predefined classes for VarDect, ObjDect, 

ProcCall, and ClassDecl do not permit any additional information to be recorded with the 

exception of the special integer variable Imp/Set in VarDecf. Thus a programmer must devise 

some other mechanism for recording program information, such a tree parallel to the 

possibility tree. 

For this problem, an earlier design of Paragon did contain a solution. The policy 

manipulated the same classes, but the currently predefined classes were prefixes of 

programmer-provided classes used for the policy. For example, the following declarations 

were used for the possibility tree: 

I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ° 
t 

I Instance Declarations 
I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  " 

class InstancePrefix(IM. NumV: Inteqer, IM. 
begin 

var VarDecls => YAM . new array(1,NumV); 
var ProcCalls => PAM . new array(l,NumP); 
procedure BindProcs return Booleans.Bit; 

end; 

NumP: Integer) is 

class Instance(IM. NumV: Integer, IM. NumP: Integer) 
of In zncePrefix is 

begin 
i programmer provided declarations and statements; 
end; 
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I ObjDecl Declarations 

class ObjDeclPrefix(IM. NumV: Integer, IM. NumP: Integer) 
of Instance is 

begin 
procedure GetSpec return CDRM.Reference; 
procedure GetImpl return CDRM.Reference; 

end; 

class ObjDecl(IM. NumV: Integer, IM. NumP: Integer) 
of ObjDecIPrefix is 

begin 
I Programmer provided declarations and statements ; 

end; 

I VarDecl Declarations 
I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ; 

class VarOeclPrefix(IM. NumV: Integer, IM. NumP: Integer) 
of ObjDecl is 

begin 
procedure Setlmpl(CDRM.Reference); 
procedure LocallyFeasible(CDRM.Reference) return Booleans.Bit; 

end; 

c lass  VarDec1(IM. NumV: Integer, IM. NumP: Integer) 
of VarDecIPrefix is 

begin 
I Programmer provided declarations and statements ; 
end; 

! IProcCall Declarations 

class ProcCallPrefix(IM. NumV: Integer, IM. NumP: Integer) 
of Instance is 

begin 
procedure AlreadySeen return Booleans.Bit; 
procedure Frequency return IM.Integer; 
procedure IsImplementation return Booleans.Bit; 

end; 

c lass  ProcCa l l ( IM.  NumV: I n t ege r ,  IM. NumP: I n t e g e r )  
of ProcCallPrefix is 

begin 
I Programmer provided declarations and statements ; 
end; 

As before, when the possibility tree is created, appropriate instances of Instance would be 
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created, each of which would contain the information from InstancePrefix (filled in the by the 

translator) and the information from Instance, to be manipulated by the policy procedure. The 

reason for the elimination of this scheme was size. It requires twice as many classes as 

before, half of which need to be provided by the programmer: During testing of the translation 

system, the need to provide extra class declarations seemed very inconvenient , thus they 

were eliminated. Thus the ImplSet variable is a compromise to let the programmer add some 

programmer.defined decorations to the possibility tree. If Paragon were to be used in a 

production system, then it might be reasonable to keep this strategy and automatically to 

provide empty Instance, ObjDecl, VarDect and ProcCall subclasses should the programmer 

leave them out. 

5.4.2.3.  Procedure Invocations 

Just as the special subclasses for object instances provide procedures for manipulating 

variable declarations, so the ProcCall subclass declares procedures for manipul~ing 

procedure invoc~ions. The declaration of ProcCatl is shown below: 

class ProcCall(IH. NumV: Integer, IM. NumP: Integer) 
of Instance is 

begin 
procedure AlreadySeen return Booleans.Bit; 
procedure Frequency return IM.Integer; 
procedure IsImplementation return Booleans.Bit; 

end; 

Again, no more tree structure is defined by the class, only some procedures are defined. 

However, some relations between this procedure invocation and others are provided by the 

AlreadySeen and Frequency procedures, 

The AlreadySeen procedure provides a way for the programmer to determine if a recursive 

call has already been encountered in the call chain. The algorithm used by the translation 

system for pruning a possibility tree is performed to verify if the corresponding procedure 

invocation is a recursive call of a similar procedure invocation. The appropriate True or False 

object is returned. The details concerning similar procedure invocations are postponed until 

a general discussion of feasibility in Section 5.5.5. 

The Frequency procedure is used to provide some measure of how often the invocation is 

elaborated during the execution of the program. Normally this would be tied to some kind of 

performance-evaluation scheme, such as simulation results suggested by Low [Low 74] or a 

performance verifier suggested by Shaw [Shaw 79]. Because this thesis does not intend to 
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address the ways in which such data are collected, the implemented translation system 

causes an invocation of this procedure to ask the user what value should be returned. 

The third procedure in the ProcCall class, Islmplementation, returns True if the local 

instance for the simple object is an instance of a procedure implementation. It returns False if 

the local instance is an instance of a procedure specification or respecification. Thus this 

procedure provides an analog to the LocaltyFeasible procedure in the VarDecl class in that it 

is a heuristic approximation of feasibility. 

5.4.3. Bridging Instance Objects and Doppelgangers 

Each Instance object in the possibility tree corresponds to a specified simple object that 

results from an object instantiation or a procedure invocation. Since the underlying class 

declaration or procedure declaration of the doppelganger might contain attribute 

declarations, it is desirable to gain access to the doppelganger from an Instance object to use 

the attribute procedures. But an attribute procedure must be invoked in an Instance 

environment (see Section 5.5.3) so it is also desirable to gain access to an Instance object 

inside of a doppelganger. One half of the bridge, from Instance objects to doppelgangers, is 

provided by attribute procedure invocations. The other half of the bridge, from doppelgangers 

to Instance objects, is discussed below. 

Since attribute invocations take place inside Instance ob,~ects, the nonlocal identifiers they 

refer to must also be Instance objects. This is illustrated below: 

class Example is 
begin 

var Temp => new MyClass; 
a t t r ibute procedure Get_Time 
begin 

. . .  Temp . . .  
end; 

end; 

is 

When the attribute Get_Time is being executed, the reference to Temp is a reference to an 

object that exists only as a result of elaborating the variable declaration with specifications. 

There should be a way to access the Instance object associated with Temp ~ that is, the 

Instance object which has as its doppelganger the object denoted by Temp ~ and description 

name components are the Paragon facility for doing so. 

The description name component is used to bridge between doppelgangers - -  that is, 
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objects elaborated with specifications o and Instance objects. The syntax of a description 

name component is simply the reserved word desc followed by a parenthesized expression. 

An example is given below: 

desc ( IM . i n t ege r )  

The semantics of the description name component are quite simple. When a description name 

component is elaborated with specifications, the parenthesized expression is elaborated with 

specifications and then an instance of the any object is returned as the resulting environment. 

When a description name component is elaborated with realizations, the parenthesized 

expression is still elaborated with specifications, which results in the doppelganger of some 

Instance object. Then that Instance object is returned as the environment for the next 

component. Elaborating a description name component with implementations causes the 

program to be ill specified, 

With attributes, possibility trees and descriptions, the programmer has all of the tools 

needed to describe different pieces of a program and represent some selection of 

implementations. As yet, there is no way for the programmer to specify how the selections 

should be made. The mechanism for specifying such decisions is called the policy procedure 

and is discussed in the next section. 

5.5. Making the Implementation Choices - -The  Policy 
Procedure 

Global manipulation of the possibility tree is performed by a policy procedure, which is 

described in this section. The policy procedure makes further use of some special features of 

Paragon, such as invocations of attributes, pattern matching of nodes in the possibility tree 

and feasibility checking, also described in this section. With these mechanisms, a 

programmer may specify the criteria that should be applied when making decisions about 

implementation selections. 

5,5.1. Syntactic Properties of the Policy Procedure 

The policy procedure is a user provided procedure that is executed (elaborated with 

realizations) at compile time and selects the implementations for variables in the user's 

program. It is written in Paragon and is interpreted by the translation system, The Paragon 

specification for the policy procedure is: 
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procedure Pol icy( i : Instance);  

and the user procedure must use the same header for the provided policy procedure 

implementation. Although the language permits multiple implementations of a procedure 

specification, only one implementation of Policy is permitted in a program. 

The parameter to the policy procedure is an Instance object for the main program. When the 

policy procedure finishes execution, that is, returns, the entire program is elaborated with 

implementations to check for program feasibility (in case the policy procedure made 

infeasible implementation selections). After elaboration with implementations, a transformed 

version of the program can be given to a code generation system. This transformed version 

has all procedure invocations associated with particular procedure implementations and all 

variables associated with particular implementation classes. The current prototype merely 

writes out a stylized version of the program along with all of the implementation decisions. 

The goal of this design of a policy procedure is to give the programmer a mechanism with 

which the programmer can enforce any selection policy. The mechanism for implementation 

selection is merely a procedure written in Paragon. Thus most data structure selection 

algorithms that are expressed in other algebraic languages can be expressed as policies for 

Paragon. In Sections 6.5 and 6.9, sample policy procedures are given that implement the 

following strategies: 

• Any set of implementations that makes the program feasible. 

• Minimum product of time and space for a feasible program. 

• Low's Heuristic (Hill Climbing time/space product) for a feasible program [Low 
74~. 

• Ramirez's Dynamic Programming Algorithm (Minimizing Cost function along with 
time and space constraints) [Ramirez 80]. 

• Branch-and.Bound search for a feasible implementation selection that minimizes 
a cost function [Winston 77]. 

The primary differences between other data structure selection systems and Paragon's 

policy procedures are the method in which program specific information is provided and the 

control of the algorithm that uses the program specific information. Typically, this information 

is specially coded in a table or set of rules known to the translation system (along with the 

translator system's internal representation of the program). This is sufficient for specific, 
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predefined data types, such as associative stores, and specific selection methods, such as hill 

climbing heuristics. However this method does not integrate well with abstract data type 

methodology. 

5.5.2. Executing a Policy Procedure 

Like all Paragon programs that are executed, variables and procedures in the policy 

procedure and the attribute procedures must have implementations. Normally, such 

implementations are chosen before elaboration with realizations by the policy procedure, but 

that clearly leads to an infinite regression of selection decisions. To avoid making 

implementation selections in policy and attribute procedures, Paragon insists that all classes 

used in policies and attributes be self-implementing. 

A self-implementing class is one where the implementation class is the same as the 

specification class and where all procedure specifications have the necessary procedure 

implementations. More precisely, a class is self-implementing if it is a predefined class, or if 

for every procedure specification in the class and for every procedure specification in the 

claas's ancestors, there is exactly one procedure implementation declared in the class (not in 

the ancestors of the class). 

To ensure that a policy can execute, Paragon insists that every object creation in a policy 

procedure, attribute procedure or attribute variable use the class given as the specification 

for the implementation. At a practical level, therefore, there is no separation of specification 

and implementation of user-defined types for the policy procedure. 

Procedure invocations during policy execution are handled much like elaborations with 

implementations. When a procedure invocation is elaborated, the environment is searched 

for the unique procedure implementation for the specified procedure. If exactly one such 

implementation is found, then that implementation is used for the invocation. Should this 

implementation be infeasible for this invocation (and thereby cause an error during 

elaboration with realizations), then the program being processed is considered infeasible. If 

the underlying class of the environment is predefined, then the translation system will 

provided an appropriate implementation. For example, any use of a predefined integer object 

(IM.new integerl) with the predefined Assign procedure will be implemented by the translation 

system, but any user-provided subclass of Assignable must include an implementation of the 

procedure Assign for the class to be self-implementable and hence usable in a policy or 

attribute. 
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Paragon attempts to provide sufficient mechanisms of program description as primitive 

operations so that policy procedures may implement a wide range of criteria for its selection 

decisions. Most of these mechanisms were discussed in this chapter and include the 

possibility tree, user provided attribute procedures and variables that provide information 

about implementations, and some predefined procedures that provide information about the 

feasibility of the program. Two additional mechanisms are attribute procedure invocations 

and a predefined iteration construct for matching certain patterns in the possibility tree. 

These additional mechanisms are considered next. 

5.5.3. Attribute-Procedure Invocations 

Attribute procedures are invoked by a special kind of name component. Both the syntax 

and the semantics of this name component differ markedly from other procedure invocation 

name components. 

The syntax of an attribute-procedure invocation component contains a specification of the 

return object that the attribute should return. Like other invocations, first the name of the 

attribute procedure is given followed by the parameters for the invocation. For an attribute 

procedure, the reserved word r¢~urn is then written followed by a parenthesized expression. 

This expression describes the object to be returned by the attribute. A typical attribute 

procedure invocation is given below: 

Time return (IM.integer) 

When the Time attribute procedure terminates, it will return an object that matches the 

expression IM.integer. 

The semantics of an attribute-procedure invocation component differ from other procedure 

invocations in threemain ways: the invocation environment is implied and possibly changing; 

the return object is specified by the name component describing the invocation and not by the 

declaration of the invoked procedure; and only elaborations with specifications and 

realizations are defined. These interrelated differences are discussed below. 

When an attribute-procedure invocation is elaborated with specifications, the environment 

in which the invocation is to take place is ignored. Thus the identifier in the name component 

is not searched for in any environment. However, the parameters are elaborated with 

specifications to ensure that they are well specified. But since there is no declaration found in 
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the environment, the resulting objects are not compared with any other objects. Finally, the 

expression following the return reserved word is elaborated and used as the environment for 

the next name component. 

If an attribute-procedure invocation is elaborated with implementations, then the program is 

ill specified. This check ensures that no compile-time facilities of Paragon are present during 

the actual execution of the user'; program. 

An attribute-procedure invocation may be elaborated with realizations only in the 

environment of an Instance object; that is, the environment must be an object that has an 

instantiation of the predefined class Instance in its local instance set. Recall that Instance 

objects are associated with a class instance or a procedure call in a Paragon program called 

the doppelganger of the Instance object. When an attribute invocation occurs in the 

environment of an Instance object, the doppetganger of the Instance object is searched for 

the attribute procedure. If the identifier cannot be found, or if the identifier does not denote 

an attribute procedure, then the program is erroneous. 

The searching of the doppelganger is what makes invocation of attribute procedures very 

different from other procedure invocations. Normally, a procedure invocation causes the 

environment, which resulted from elaboration with specifications, to be search for an 

appropriate procedure specification. Although the implementation of the object used as the 

environment changes, the procedure specification denoted by the name component does not 

change. However, as the implementation of the object changes, some attribute procedures 

may be added and others hidden or eliminated. Thus each attribute-procedure invocation 

must search for an appropriate attribute procedure in its doppelganger. In many ways, this 

process resembles the invocation of Simula virtual procedures or Smatltalk methods. 

Once an attribute procedure is found, the actual parameters and return expression in the 

name component are elaborated with realizations and the formal parameters and return 

expression of the attribute procedure are elaborated with realizations. The resulting actual 

objects are compared with the corresponding formal objects. If a match occurs, then the 

attribute procedure is elaborated with realizations. The object that is returned by the attribute 

procedure is used either as the environment for the name component following the attribute- 

procedure invocation or as the result of the expression. If any of the elaborations of 

parameters or return expressions are ill specified or erroneous, or if the comparison of 

objects fails, then the attribute-procedure invocation is erroneous. 
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Because of the possibility that an attribute-procedure invocation can be erroneous through 

a parameter mismatch (which for nonattribute procedure invocations are checked during 

elaboration with specifications and not during elaboration with realizations), the check name 

component is provided. This component is a modification of the name component used for 

attribute-procedure invocation. The syntactic difference between these two components is 

that the reserved word check appears before the identifier for the attribute in the name 

component. This is illustrated below: 

check Time return ( IM. integer)  

This check name component effectively checks to see if an appropriate Time procedure is 

available in the calling environment. 

There are some small, semantic differences between a check name component and an 

attribute-procedure invocation name component. A different method is used for determining 

the resulting object of the name component. For a check component, the new environment is 

an instance of the predefined boolean object: that is, the object that results from elaborating 

the expression Booteans.Bit with specifications. Normally, the returned object results from 

elaborating the return expression in the name component. 

Another difference occurs when elaborating with realizations. Initially, the same actions are 

performed for check components as for attribute-procedure invocation components, till the 

time when the actual elaboration of the attribute procedure with realizations occur. If the 

elaboration is well specified and defined until that time, then a realized object from the True 

procedure is returned as the environment for the next component and the elaboration of the 

check component is finished. If the actions preceding the actual elaboration of the attribute 

procedure are ill specified or erroneous in any way, then a realized object for the Fa/se object 

is returnecl as the environment for the next component. 

Typically, checks would be used in tandem with an actual attribute-procedure invocation, as 

illustrated below: 

i f  check Time return ( IM. integer)  then 
totaITime := Time return (IM. in teger) ;  

e lse  
totaITime := Defa,ultTime; 

end i f ;  

In the example above, the program ensures the existence of a Time attribute procedure 

before using it. If the attribute for calculating the Time of an object exists, then its value is 

used in the calculation, otherwise some default value is used. 
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5.5.4. The Pattern Matching Statement 
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The pattern matching statement provides a special kind of predefined iterator for use by 

policy and attribute procedures. The syntax resembles ordinary for statements and is defined 

below: 

let <identifier> match <expression> in <expression> do 
{ <statement> ; }* 

end let 

Following the reserved word/et is an identifier that denotes a particular ProcCa//instance and 

is called the index identifier of the pattern matching statement. Like all identifiers, it must be 

declared before it is used, but unlike other variable declarations, it is declared with an 

indefinite instance of the ProcCa//class, as illustrated below: 

var Call => ProcCall; 

The expression following the reserved word match is called the pattern expression and 

represents the pattern that should be searched for. The expression following the reserved 

word in is called the target expression and represents the Instance class in which the search 

should be carried out. 

After elaborating pattern and target expressions, the object that results from elaborating the 

pattern expression is compared with each procedure invocation instance in the Instance 

object (that is, the ProcCafl instances referenced by the ProcCalls array in the Instance 

object) that resulted from elaborating the target expression. All of the matching instances are 

saved. Then, one at a time, each matching instance is bound to the index identifier and the 

statements after the reserved word do in the pattern matching statement are elaborated. 

A typical use of the pattern matching statement is shown below: 

class SetManager(T: any) of AssignableManager is 
begin 

attribute procedure ManagerTime(i:instance) 
return IM.integer is 

begin 
var TotalTime => IM . new in teger ;  
var call => ProcCa11; 
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TotaITime := O; 
le t  call match desc(this B3 SetManager) in i do 

i f  call.check Time 
return (IM.integer) then 

TotaITime := call.Frequency * call.Time 
return (IM. in teger )+  TotaITime 

f i ;  
end let ;  
return TotaITime; 

end; 
end; 

The pattern statement in the example above performs a search of the Instance object that is 

passed to the attribute. Through the use of the description expression, the corresponding 

Instance for the enclosing SetManager can be found in the pattern expression. Thus the 

passed tree node of the possibility tree is searched for any procedure calls that occur in the 

particular SetManager that contains the attribute procedure being called. Because matching 

of objects allows holes in objects, this iterator effectively provides a list of all procedure calls 

in i that use this SetManager as an environment. Similar kinds of use of the pattern matching 

statement can retrieve all the uses of particular data abstraction in some part of the program 

for further analysis. 

The use of attribute invocations and pattern matching statements provide some local 

information about the program to the policy procedure. Information about a global property 

of the program, feasibility, can also be deduced and given to the program. This is discussed 

in the next section. 

5.5.5. Feasibility of a Program 

Feasibility is a property that a program has where all of the selection decisions that have 

been made for variables and procedure invocations result in a program that can be executed. 

The details of feasibility checking for variable declarations were provided in Section 5.2.3. In 

this section, the checking of feasibility for procedure invocations will be discussed. 

63This refers to the object in which this attribute is being elaborated. 
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5.5.5.1. Selecting a Procedure Invocation 

Unlike variable implementations which are selected explicitly by the policy procedure, 

procedure implementations are selected implicitly by the translation system during 

elaboration with implementations. The process is similar to elaboration of procedure 

invocations with specifications (see Section 3.6.4) and consists of four steps. First, the 

environment is searched to gather up all available implementations of the procedure, then 

each of the implementations is examined for feasibility until an appropriate one is found, third, 

the selected implementation is elaborated with implementations and finally the return 

expression of the implementation, if any, is elaborated with implementations and used as the 

environment for the next name component. 

When a procedure invocation is elaborated with implementations, the environment in which 

the invocation occurs has also been elaborated with implementations and thus reflects the 

implementation choices made for previous components of the name expression. This 

environment is searched for all procedure implementations that implement the procedure 

specified in the name component. For this purpose alone, procedure respecffications and 

specifications also implement the specification. There may have been other procedures 

specified in the implementation environment with the same identifier, but only the procedures 

that implement the procedure originally specified are considered. These procedure 

implementations are placed in a list, where implementations' that occur in different classes are 

listed in leftmost parent order while implementations in the same class are listed in reverse 

declaration order, that is, bottom up in the class declaration. This is illustrated by the 

following example: 

class Parent is 
begin 

Procedure P; I Specif icat ion ; 
Procedure P is begin end; I Implementation 1; 

end; 

class Implementationl of Parent is 
begin 

Procedure P is begin end; 
Procedure P is specified with begin end; 

end; 

I Implementation Z; 
I Implementation 3; 

class Implementation2 of Parent is 
begin 

Procedure P is begin end; 
Procedure P is begin end; 

end; 

I Implementation 4; 
I Implementation 5; 
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class Both of Implementationl, Implementation2 is 
begin 

Procedure P is begin end; ~ Implementation 6; 
end; 

Ira procedureinvocation ofPtakes placeinaninstance ofBoth, thentheimptementationsfor 

P would beexaminedinthefollowing o~er: 6,3,2,1,Spec, 5,4. 

Once a list of possible implementations is constructed, the implementations are examined in 

order until one with an appropriate set of parameters is located. Before the examination may 

occur, the parameters in the procedure invocation name component (actual parameters) are 

elaborated with implementations. Then for each implementation in the list, the (formal) 

parameters are elaborated with implementations and compared with the objects that resulted 

from elaborating the actual parameters with implementations. If the comparisons are 

successful then the implementation being considered is selected as the appropriate 

implementation and the search is terminated. Because the specification of the procedure is in 

the list of implementations to be checked, there is a guarantee that some implementation (if 

nothing etse, the original specification) will match. 

Once an implementation has been selected, elaboration of the procedure invocation 

continues by elaborating the declarations and body of the procedure implementation with 

implementations. This is done to ensure that local variables and procedure invocations are 

also feasible. Should any local declarations or procedure invocations not be feasible, then the 

program is also infeasible. 

After the procedure implementation has been elaborated with implementations, the return 

expression in the declaration is used as the environment for the next name component or as 

the result of the expression in which the procedure invocation occurs. 

Like the choosing of an implementation for a variable, the selection of a procedure 

implementation may cause changes both in the local instance set and the unused local 

instance set of the simple object for the procedure invocation. Before any choice is made, the 

local instance for the current selection (usually the specification) is moved from the local 

instance set to the unused local instance set. If the selected procedure implementation has 

been previously selected, its local instance is moved from the unused local instance set to the 

local instance set. If the selected procedure implementation has never beer~ previously 

selected for this invocation, then a new local instance for this procedure declaration is 
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created, elaborated with specifications and added to the local instance set. Note that the 

simple object for a procedure invocation always has exactly one local instance in its local 

instance set: the last selected procedure implementation. 

Although the programmer can explicitly control the selection of implementations for 

variables, the programmer has no way to chose among feasible implementations for 

procedures. Instead the system will select a feasible implementation based on its way of 

searching for a procedure implementation. This division of labor between the programmer 

and the translation system was created to limit the amount of processing done by the 

programmer. If the policy had to chose an implementation for each procedure call then the 

amount of time the policy requires would be a function of the number of procedure calls in a 

program rather than the number of variable declarations and the policy would require too 

much time for execution. Thus a special, relatively fast method of finding a procedure 

implementation is built into the system. 

An interesting feature of elaboration with implementations is that it closely resembles 

elaboration with realizations. Procedure invocations actually have their declarations and 

bodies elaborated rather than merely returning as during elaboration with specifications. This 

presents no problems for variables, since Paragon prohibits recursive instantiations of 

classes. However, recursion in procedures is quite natural and permitted in Paragon. Unlike 

execution, there is no conditional procedure invocation; all invocations must be checked for 

feasibility. Thus the elaboration of a recursive procedure implementation with 

implementations wilt never terminate. Fortunately, an infinite recursion of procedure 

invocations is not necessary for f~asibility checking. Instead, procedure invocations that are 

similar to previous invocations need not be checked since they have already been checked. 

The exact meaning of "similar" is considered in the next section. 

5.5.5.2.  Limiting the Size of the Possibility Tree 

As described in the previous section, the possibility tree that results from the selection of a 

recursive procedure implementation is a possibly infinite data structure. A program that can 

generate such a tree is illustrated below: 
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c lass MainProgram i s  
begin 

procedure Recur; 
procedure Recur is  
begin 

Recur; 
end; 

Recur; 
end; 

If the main program were to be elaborated with implementations without any concern for 

recursion, the tree would continue forever, expanding the specification for the procedure 

Recur into the implementation of Recur. The initial part of this tree is shown below: 

l~-MOvn Program t 

t ...... Recur(S) "Recur( I1 
\ l= ~ V' t  P V l P  

Invocotion ~ " -  \ 

~, Recur (S) *Recur(I) / 
vl p r i p  / 

2nd / I~ecur(S) * Recur(I) 
invocotion 5rd invocation--'~ V I P V i P #1 

Figure 5-9: Part of an Infinite Possibility Tree 

This recursion is ended when elaborating a program with implementations when the 

elaborator finds a procedure invocation that is similar to a previous procedure invocation in 

the call chain, that is, on a path from the root of the possibility tree to the current invocation, tf 

the invocation is similar to a previous invocation, then it is assumed that the decisions made 

for that previous invocation should be made for this invocation and no further elaboration with 

implementations is done. Two procedure invocations are similar if the same procedure 

implementation is invoked, if the objects passed as parameters for both invocations are 
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similar, and if the environment of both invocations are similar. Two objects (environments) 

are similar if each of their simple objects are similar, and simple objects are similar if they 

have the same underlying class, have similar parameters and have similar objects bound to all 

variables defined in those objects. In Figure 5-9, the circled part of the tree is all that is 

elaborated with implementations. The third invocation of Recur is similar to the second 

invocation of Recur and so elaboration with implementations would not be performed for the 

simple object for the third invocation of Recur. 

Note how the checking for similarity of procedure invocations guarantees that appropriate 

implementations exist for the recursive call of a procedure. The only objects that may be 

referenced by a procedure are those in its parameters and in its environment. Based on the 

implementations for these objects, certain procedure implementations must be guaranteed in 

the implementation of the procedure. Assuming the previous invocation is feasible, then the 

same selections of procedure implementations and variables can be made for the recursive 

invocation of the procedure with the knowledge that the resulting procedure implementation 

is feasible. If the previous invocation is not feasible, then the program is will not be considered 

feasible and there is no sense in wasting resources checking another invocation of the same 

procedure. Further, since there is a finite number of procedure implementations, parameters, 

class declarations and scope nesting (which corresponds to the maximum number of levels in 

an object), there are a finite number of possible procedure invocations and so there must 

eventually exist a similar procedure invocation in an infinite call chain. Thus the feasibility 

check is guaranteed to terminate. 

Although the method used for elaborating procedure invocations with implementations can 

guarantee the feasibility of a program, there are subtleties when performing the processing. 

Three subtle facets, determining the return object of a procedure call, hidden 

implementations, and stopping infinite recursion, are discussed below. 

5.5.5.3. Selecting the Implementations of Return Objects 

Typically there is no problem to determine the return object of a procedure call, since the 

procedure implementation explicitly names the return implementation, as illustrated below: 

procedure In te rsec t (S ing leL inkSe t ,S ing ]  eLinkSet) 
re turn SingleLinkSet is 

begin . . .  end; 

The return object for this implementation of /ntersect has the structure Sing/eLinkSet. 
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However, this information is not generally available in general procedure implementations. In 

a general implementation for Intersect that uses only abstract operations on Sets, the return 

expression (typically) specifies only Set, as shown below: 

procedure In te rsec t (L :Se t ,R :Se t )  return Set is 
begin . . .  end; 

Assuming that the result of the Intersect procedure will be used in another procedure call, 

more information about the implementation of return object will be needed to guarantee 

feasibility of the next procedure call. 

Two alternatives were considered for determining the implementation of the return object: 

explicitly and implicitly. 

The explicit method uses the return expression to provide explicitly the implementation of 

the return object. For the general procedure implementation, the return expression usually is 

an expression containing one of the parameters, in analogous way that procedure 

specifications specify their return object when used for subclasses in Section 4.4.3. This is 

illustrated below: 

procedure In te rsec t (L :Se t ,R :Se t )  return L . s t ruc tu re  is 
begin . . .  end; 

The example above specifies that the implementation of the return object will be the same 

structure as the implementation of the first parameter, L. 

The implicit method, which was rejected, determines the return object by examining all of 

the return statements in a procedure implementation. When elaborating a call of a procedure 

implementation with elaborations, the expression in each return statement will be elaborated 

with implementations. All of the resulting objects are collected and each is used in turn as the 

return object for further elaboration of the expression containing the procedure call. The 

further elaboration of the expression would be considered feasible only if all of the resulting 

objects would result in a feasible elaboration of the expression. 

The implicit method was rejected for two reasons. First, the implicit method requires more 

processing during elaboration with implementations. If only two return statements were found 

in a procedure and four levels of procedure nesting were present, as for example: 64 

64Recall that literals create an implicit call of Literal. 
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x := Square(2) + 3; I Real ly:  IM.Ass ign(x , IM.P lus(Square(2) ) ,3 ) ;  

then the expression would have to be elaborated with implementations 2 4 or 16 times. 

Second, the implicit method would add run time costs to the compiled code. With the 

explicit method, exactly one procedure implementation is associated with each procedure 

call. Thus the compiler can generate code to call that one procedure at the call site. With the 

implicit method, the returned object has to be examined to determine which procedure 

implementation will be used next. Because the language design attempts to reduce run-time 

checking, the implicit method for determining a return object's implementation was rejected. 

Nevertheless, run-time selection of procedure implementations has value in a general- 

purpose programming language. Although Paragon was not intended to be a complete, 

production language, it already contains the rudiments of dynamic procedure selection in the 

attribute-procedure mechanism. If one were to permit attribute procedures to exist after 

representation selection, and also allow attribute call expressions to be elaborated with 

implementations, that is, permit attribute calls in the user's program, then attribute 

procedures could be used in circumstances where a dynamic selection of a procedure is 

desired. 

One result of the design that emerged from the above considerations is a rather baroque 

way of ensuring that implementations exist when using type parameters. The underlying 

problem is that no implementation is selected for an indefinite instance, so any return object 

that is expressed in terms of an indefinite instance is nearly always infeasible. This occurs in 

the symbol table example in Section 4.4.3. The creation of the table manager and a use of the 

table is shown again below: 

var TSO => new APLSymbolTableManager(AO_Manager.Addable_Object); 
o o  • 

ST.Re t r i eve (1 ) . . .  

During elaboration with specifications, the return object for Retrieve is 

AO_Manager.Addable_Object, which is adequate for many purposes. But no representation 

selection is ever performed for AO_Manager since it is an indefinite instance. In this 

declaration, AO_Manager contains no implementations for any operations. Thus during 

elaboration with implementations, the returned object for Retrieve has a manager that 

contains no implementations. More than likely, such an object will prove to be infeasible when 

the next operation is applied to it, as for example, when the result of the Retrieve procedure is 
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assigned to a temporary variable. A Paragon programmer can solve this problem by creating a 

variable whose sole purpose is to be used as a type parameter. This is illustrated below: 

var FakeManager => new AO_Manager; 
var FakeIndiv idual  => FakeManager . new Addable_Object; 

var TSO => new APLSymbolTableManager(FakeIndiv idual .s t ructure) ;  

S T . R e t r i e v e ( t ) . . .  

During elaboration with specifications, the use of Fake/ndividua/.structure takes the place of 

the underlying class AddableObject, yet is still an indefinite instance. However, the policy will 

make an implementation selection for Fake/ndividua/ and during elaboration with 

implementations, that choice will be propagated when reelaborating the variable declaration 

for TSO, thus providing the Retrieve procedure with an object that has an implementation. 

This problem clearly indicates that types should not be treated as object expressions as 

Paragon attempts to do. Another approach is suggested in Section C.2. 

5.5.5.4. Hidden Implementations 

Because of the way that procedure implementations are selected, it is possible that some 

operations may be hidden. This occurs when using the multiple manager strategy discussed 

in Section 4.6.2.2. Recall that implementations for a procedure are considered in a leftmost 

parent order, and that specifications are included in the list of implementations to ensure that 

every procedure call is associated with some procedure declaration during elaboration with 

implementations. However if a class has multiple parents that have a common ancestor, a 

leftmost parent search uses declarations in the common ancestor before the declarations in a 

second parent. This was first demonstrated in Section 5.5.5.1. A more compelling example 

can be generated by the declarations in Sections 4.6.1 (page 96), 4.6.2 (page 98) and 

4.6.2.2 (page 101). If the CombinedSetManager were chosen for MySetManager and 

Sing/eLinkSet were chosen for Set1 and Set2, and a call on Intersect were made with Set1 

and Set2, the general implementation of Intersect in Set_Manager would always be selected 

before the ArraySet.specific implementation in ArraySetManager. Worse, a call of the Insert 

procedure made with Set1 would always be matched with the specification of Insert in 

Set_Manager and never with the implementation in ArraySetManager, thus always rendering 

the call infeasible. 

This last problem results from implementations being considered in leftmost parent order. 
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This decision was casually made based on the observation that other languages with multiple 

inheritance, such as Flavors/Lisp [Weinreb 80] and Traits/Mesa [Curry 82] used this order 

for searching for procedure implementations. However, both of these systems were looking 

only for a single implementation and not necessarily trying to locate an appropriate 

implementation out of a set of possible implementations. Thus they do not suffer as does 

Paragon. There are two alternatives to a leftmost parent order search. The first would merely 

take the list of implementation choices as generated by the leftmost parent order list, extract 

the specifications and place them last. This eliminates the problem where no call of Insert 

would be feasible, but does not effectively place the representation-specific implementation 

for Intersect before the general implementation. Further, this alternative does not properly 

place procedure respecifications in the list of implementations. The second alternative is to 

abandon the leftmost parent order and instead use a reverse leftmost elaboration order of 

classes for conducting the search. Then the specific implementation would be used before 

the general implementation, and the general implementation before the specification. This 

change would be adopted if Paragon were to undergo another design iteration. 

5 .5 .5 .5 .  Another Way to Terminate Recursive Procedure Calls 

Although Paragon defines the notion of similar procedure calls which is used to terminate 

mutually recursive calls, there are two ways in which similar procedure calls could be applied. 

The adopted choice requires that a similar procedure call exist in the call chain of the 

procedure call under examination. The rejected alternative was to permit the similar 

procedure call to exist anywhere else in the possibility tree. Initially, this approach seems 

better since I believe fewer procedure calls would have to be elaborated with 

implementations. Only one recursive call of a procedure would have to be kept; all others 

would be similar to it. 

The alternative above was rejected because the translation system should guarantee that 

the call that was similar would not be altered by later elaboration with implementations. If the 

translation system requires only that some other call be similar, then a later elaboration of the 

procedure call with implementations might choose a different implementation for that call, 

thus invalidating the motivation for omitting the feasibility checking of the call under 

consideration. However, a call in the call chain already has its selection made and cannot be 

changed: the call under consideration is reached only by the previous selection in the call 

chain. Therefore the first alternative is used as the termination criterion for elaborating 

procedure calls with implementations. 
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In this chapter, the various mechanisms that Paragon provides for describing and selecting 

appropriate implementations for variables and procedure in a program have been discussed. 

In the next chapter, a full example using all of these mechanisms will be presented as an 

illustration of the useful of the features. 



Chapter 6 
A Complete Example Using Paragon 

This chapter illustrates the processing of an example program which demonstrates all of the 

features presented in the previous chapters. The chapter starts with a description of the 

structure of a program, and then gives the parts for a typical program: the predefined 

environment, a specification for an abstract data type, an implementation for an abstract data 

type, an application program that uses the abstract data type, and a policy for making 

representation selections. After these descriptions, some pieces of the transformed program 

are provided, showing the results of processing the program. 

Following the simple example, the processing for a more complicated example is presented, 

and some alternative policies are described. 

Frequently, the program text in this chapter is abbreviated to conserve space, and make the 

examples manageable. The full text for all examples is reproduced in Appendices E and F. 

6.1. Program Structure and Processing 

Programs in Paragon are a single class, called the Universal_Environment. Inside of the 

universal environment are the predefined classes, variables and procedures for Paragon, 

programmer-provided declarations for specifications and implementations of abstract data 

types, a programmer.provided policy procedure and the programmer's application program. 

The application program is a parameterless, parentless class declared as MainProgram. 

The elaboration with specifications consists of elaborating the declaration for 

UniversalEnvironment with specifications. The policy procedure is executed by elaborating 

the UniversatEnvironment with realizations, creating a call to the Policy procedure, and then 

elaborating the call with realizations. When the policy procedure terminates, the MainProgram 

class declaration is elaborated with implementations. A file containing all of the decisions 
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made for the user's program is then written, though in a production system, the transformed 

program would be retained internally and used for final code generation. 

6.2. Predefined Environment 

The predefined environment contains declarations for the objects one normally expects in a 

general purpose algebraic language, such as integers, booleans, arrays and pointers. The 

specific declarations for these facilities are presented below. 

6.2.1. Input and Output 

Objects that are capable of being read or written may inherit the generalization classes for 

TransputManager. Many of the predefined objects, such as integers, also inherit this class, 

providing Paragon with primitive terminal input and output capabilities. The actual 

declarations are shown below: 

c lass TransputManager is  
begin 

c lass  Transpor tab le  is begin end; 
procedure Read(Transpor tab le ) ;  
procedure Wr i r e ( T r a n s p o r t a b l e )  ; 

end; 

6.2.2. Assignment 

A frequently used capability is assignment, and Paragon provides the generalization classes 

for assignment, as shown below: 

c lass AssignableManager is 
begin 

c lass Assignable is begin end; 

procedure Ass tgn (L :Ass ignab le ,  R:Ass ignab le)  
such that L.structure same as R.structure; 

procedure Equa l (L :Ass ignab le ,  R:Ass ignab le)  
r e tu rn  Boo leans .B i t  
such t h a t  L . s t r u c t u r e  same as R . s t r u c t u r e ;  

end; 

Note that the Assign procedure specifies that the two objects passed to it must have the same 

structure. This prevents variables declared with two different specification classes from being 

used in an assignment operation. The same comment applies to comparing two objects with 

the Equal procedure. Since these constraints are only applied during elaboration with 
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specifications, two objects may be implemented differently and still have 

performed from one to the other. However, there must be an Assign 

implementation available for the relevant procedure call. 

169 

assignment 

procedure 

6.2.3. Logical Objects 

Paragon also provides class, procedure and variable declarations for truth (or logical or 

boolean) object ,  called Bits. Bits inherit Assignable and so may have ass~nment performed 

on them as well as the usual logical operations declared in their manager, BitManager. The 

language provides an implementation for Bit objects, though it is not wri~en in Paragon, and 

so is not shown here. The actual text for the declarations of Bits is given below: 

class BitManager of AssignableManager is 
begin 

class Bit of Assignable is begin end; 

procedure LogicaIAnd(b1: Bit ,  b2: Bi t )  
return b1.structure 
such that b1.structure same as bZ.structure; 

procedure LogicalOr(bl: Bit ,  b2: Bit)  
return bl .s t ructure 
such that b l .s t ructure same as b2,structure; 

procedure LogicaINot(b: Bit) 
return b.structure; 

end; 

vat Booleans => new BitManager; 
I var PredefinedBooleans => Booleans.Bit; 

procedure True return Booleans . Bit ;  
procedure False return Booleans . Bi t ;  

Bits provide the first opportunity to illustrate some predefined declarations of variables. The 

Boo/eans variable defines the manager for all predefined logical values that Paragon uses 

when logical values are needed, for example, in if statements, while statements, Check 

expressions and variable constraints. The variable PredefinedBoo/eans defines the precise 

object that is used in these circumstances, but as the declaration for PredefinedBoo/eans is 

not.legal Paragon, it is shown here as a comment, ss 

65Recall that the last comoonent of the expression in a variable declaration must be an object instantiation. Here it 
is an indefinite instance. 
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6.2.4. Ordered Objects 

A third kind of generalization class that is predefined by Paragon is Ordered objects. These 

are objects that can be compared and are totally ordered. The usual relational operations are 

provided, as declared below: 

class OrderedManager of AssignableManager is 
begin 

class Ordered of Assignable is  begin end; 

procedure LessThan(L: Ordered, R: Ordered) 
re turn Booleans.Bi t  
such that  L . s t ruc tu re  same as R .s t ruc tu re ;  

procedure GreaterThan(L: Ordered, R: Ordered) 
return Booleans.Bi t  
such that L.structure same as R.structure; 

procedure LessThanEqual(L: Ordered, R: Ordered) 
return Booleans.Bit 
such that L.structure same as R.structure; 

procedure GreaterThanEqual(L: Ordered, R: Ordered) 
return Booleans.Bit 
such that L.structure same as R.structure; 

end; 

Because OrderedManager inherits AssignableManager, the Equal procedure is also available 

for Ordered objects. 

6.2.5. Hashable Objects 

A fourth generalization class provided by Paragon declares objects on which a hashing 

operation may be performed. This class illustrates the general way that a particular kind of 

procedure, here hashing, can be provided in a generalization class. Particular specification 

or implementation classes for an abstract data type may inherit this generalization class as a 

way to indicate that the specification or implementation class can perform the generalized 

procedure (and naturally, the implementations a!so provide an implementation for the 

generalized procedure). One such use, for hashing, occurs for predefined integers, shown in 

Section 6.2.6. 

The declarations for Hashable objects are shown below: 

class HashableManager of AssignableManager is 
begin 

class Hashable of Assignable is begin end; 
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procedure Hash(H: Hashable) 
re turn IM. In teger ;  

end; 

6.2.6. Integer Objects 

Paragon provides predefined integers through the declarations of the DiscreteManager 

class, the Discrete class and the IM variable. The usual operations, except for exponentiation, 

are declared as well. Two iterators are also provided: Sequence for counting upwards from 

one integer value to another, and ReverseSequence for counting down. Together with the for 

statement, these two iterators provide the usual indexed for loops found in many languages. 

The manager class also contains two procedure declarations that are used for 

transformations between abstract integer objects and machine words: Value and Literal. The 

use of Literal was described in Section 3.3.6. The Value procedure is intended to provide an 

inverse function as necessary, though it is not used in any example in this thesis. 

The actual text of these declarations is provided below: 

c]ass DiscreteManager of 
OrderedManager, TransputManager, Hashab]eManager is 

begin 
c]ass In teger  of Ordered, Transpor tab]e,  Hashab]e is  
begin 
end; 
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procedure Plus(L: Integer, R: Integer) 
return L.structure 
such that  L . s t ruc tu re  same as R .s t ruc tu rs ;  

procedure Minus(L: In teger ,  R: In teger )  
return L .s t r uc tu re  
such that  L . s t ruc tu re  same as R .s t ruc tu re ;  

procedure UnaryMinus(L: In teger )  
return L.structure; 

procedure Times(L: Integer, R: Integer) 
return L.structure 
such that L.structure same as R.structure; 

procedure Oivide(L: Integer, R: Integer) 
return L.structure 
such that L.structure same as R.structure; 

procedure Remainder(L: Integer, R: Integer) 
return L.structure 
such that L.structure same as R.structure; 

procedure Sequence(Lower: Integer, Upper: Integer) 
yield Lower.structure 
such that~Lower.structure same as Upper.structure; 

procedure ReverseSequence(Lower: Integer, Upper: Integer) 
yield Lower.structure 
such that Lower.structure same as Upper.structure; 

procedure Literal(OH 1: word ) 
return Integer; 

procedure Va lue( i :  In teger )  
return CM.word; 

end; 

var IM => new OiscreteManager; I IntegerManager ; 

The translation system guarantees an implementation for the DiscreteManager and Integer 

classes, as well as for all procedures visible in DiscreteManager. 

6.2.7. Word Objects 

The basic storage element that is predefined in Paragon is a Word. In fact, implementations 

for Bits and Integers have been written in terms of Words, but for efficiency, the 

implementations for these two categories of objects were built directly into the translation 

system. In principle, however, one could insist that only Word objects be provided and write 

implementations for Bits and Integers in terms of Words. The Paragon declarations for 

defining Words are shown below: 
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class WordManager of AssignableManager, TransputManager is 
begin 

class Word of Assignable,  Transportable is begin end; 

procedure Plus(L: Word, R: Word) 
return L.s t ructure 

such that L.s t ructure same as R.structure;  
procedure Minus(L: Word, R: Word) 

return L.s t ructure 
such that L.s t ructure same as R.structure;  

procedure Times(L: Word, R: Word) 
return L.s t ructure 
such that L.st ructure same as R.structure;  

procedure Divide(L: Word, R: Word) 
return L.s t ructure 
such that L.s t ructure same as R.structure;  

procedure Remainder(L: Word, R: Word) 
return L.s t ructure 
such that L.st ructure same as R.structure;  

end; 

vat CM => new WordManager; I CM = Computer Memory, ; 

In the oFiginal design of Paragon, the operations for Word objects were supposed to be 

implementable by a single instruction on a machine. Because the final code generation phase 

in the prototype was never constructed, this supposition remains untested. 

6.2.8. Arrays 

Arrays form one of two sets of class declarations that are intended to be used as type 

constructors, the other being pointers (see Section 6.2.9). The classes that provide the array 

facility are shown below: 

class ArrayManager(Elt: any) is 
begin 

class Array(IM . LowerBound: Integer, 
IM . UpperBound: Integer) is 

begin 
procedure Element(IM. Index: Integer) 

return E l t . s t ruc tu re ;  
end; 

end; 

Arrays are declared in a two step process. First, the element type of the array is established by 

creating a manager with the appropriate parameter, then individual arrays are created. For 

example, to declare integer arrays, one would create the following manager: 

var IntArrayManager => new ArrayManager(IM.Integer); 
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Once the manager of the array has been declared, individual arrays may be declared like any 

other individual object, for example; 

var MyArray => IntArrayManager. new Array(l,10); 
var BigArray => IntArrayManager. new Array(l,1000); 

Elements of arrays are selected by the predefined procedure Element. Without any syntactic 

transformations, one can refer to an element of an array by calling Element, for example 

MyArray.Element(l). Note thatthis predefined Element procedure does not belong to 

manager, but instead belongs to individual array objects. This is because elements belong to 

arrays, and are not shared among all arrays. 

Because programmers are not used to using a procedure call notation to select an element 

of an array, Paragon provides the transformation of [] to ElementO, thus a programmer may 

write MyArray.[1] instead of MyArray.Element(1). 

Some example programs use unexpected type parameters when creating array managers. 

Frequently, an actual object will be used to represent the element type to the manager instead 

of an indefinite instance. For example, the following code might be present to declare the 

manager for integer arrays: 

var Fakelnteger => IM . new Integer; 
var IntArrayManager => new ArrayManager(Fakelnteger.structure); 

This is done to aid selection analysis. The reasoning behind this seemingly baroque code is 

provided in Section 5.5.5.3. tn short, the implementation of Paragon guarantees an 

implementation for array objects if there is an implementation for the passed type parameter. 

6.2.9. Pointers 

The second type constructor provided by Paragon is used to create typed pointers which 

are called References. The declarations are shown below: 

c lass RefManager(Elt: any) of AssignableManager is  
begin 

class Reference of Assignable ts 
begin 

procedure Value return E l t . s t r u c t u r e ;  
end; 
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procedure A l l o c a t e  re tu rn  Reference; 
procedure Free( r :  Reference) ;  
procedure Ni l  re tu rn  Reference; 

end; 

The use of pointers is very similar to arrays. One first creates a manager that defines the type 

of object: that the references will point at, then one can create pointer variables. 

Through the use of the Allocate and Free procedures, one can dynamically create and 

release objects. Paragon guarantees an implementation for pointers, but the implementation 

of the referred object matches the implementation used for the parameter to the manager. For 

this reason, an expression containing a definite instance is usually used, just like for arrays. 

The manager for References also provides a special Reference that can be used to point at 

no object, namely a Reference returned by the procedure Nil. 

Unlike arrays, References inherit Assignable, and so may be assigned and tested for 

equality. 

6.2,1 O, Selection Facilities 

The ctasses and procedures used for the selection facility are also declared in the 

Universal_Environment class, and are elaborated along with the rest of the predefined 

environment. Since these declarations were discussed Chapter 5, they will not be repeated 

here. 

The first declarations in Universal_Environment are for predefined identifiers; user defined 

abstract data types are declared next. A typical abstract data type is discussed in the next 

section, 

6.3. An Abstract Data Type: List 

The application program in Section 6.4 uses two programmer provided abstract data types: 

Lists and Sets. In this section, part of the specification for lists is presented and discussed. 

Later in this section, an implementation for lists that uses arrays is presented and discussed. 

The complete text for the list abstract data type can be found in Appendix E.2. 
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6.3.1. A Specification for Lists 

This section provides a brief specification for lists. The complete specification is not given 

here; only those operations ~,ctuatty required by the application program, Clear, Length, 

Getlndex, AddBeforelndex and Members are given, The text for the declaration follows below 

(the discussion continues on page 179). In the text, there are some numbers against the right 

hand margin that are used in the following discussion. 

class ListManager(TManager : AssignableManager . T 
of AssignableManager is 

begin 
a t t r ibu te  procedure ManagerTime(i:instance) 

return im.integer is 
begin 

var TotaITime => im . new integer; 
vat cal l  => ProcCall; 

: Assignable) 

9 1  

TotaITime := O; 
le t  cal l  match th is  ListManager in i do 

i f  cal l .check Time return (im. integer)  then 
TotaITime := call,Frequency * 

call.Time return (im. i n t e g e r ) +  
TotaITime ; 

f i ;  
end le t ;  
return TotalTime; 

end; I of a t t r i bu te  procedure ManagerTime ; 

! 

~6A 

a t t r i bu te  
return 

begin 
return 

end; 

procedure Time(i : instance) 
im,integer is 

1; 

~ i 2 A  

t 

c lass  Lis t  of Ass ignable  is 
begin 
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a t t r i bu te  vat ListSize => I00; 

a t t r ibu te  procedure Space return IM.Integer is 
begin 

return ListSize ' 100; 
end; 
II . . . . . . . . . . . . . . . . . . . . . . . . .  ; 

a t t r ibu te  procedure GetSize return IM.Integer is 
begin 

return ListSize;  
end; 

a t t r ibu te  procedure Time(i: instance) 
return im.integer is 

begin 
var TotaITime => im . new integer; 
var Call => ProcCall; 

9 4  

~-'15 

~-12B 
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TotaITime := O; 
I List operations have one, two and three parameters; 
le t  call match any(this List,  any) in i do ~ 6 B  

i f  call.check Time return (im.integer) then 
TotaITime := call.Frequency • 

call.Time return (im. i n teger )+  
TotaITime ; 

f i ;  
end let ;  
le t  call match any(any, this List) in i do 

i f  call.check Time return (im. integer) then 
TotaITime := call.Frequency • 

call.Time return (im.integer) + 
TotaITime ; 

f i ;  
end let ;  
! "Charge" each List object hal f / to  avoid double; 
! counting of binary operations; 
TotaITime := TotaITime / 2; 
le t  call match any(this List) in i do 

i f  call.check Time return (im.integer) then 
TotaITime := call.Frequency • 

call.Time return (im. i n teger )+  
TotalTime ; 

f i ;  
end l e t ;  
I When 3 parameters, l i s ts  are only in f i r s t  posit ion; 
le t  call match any(this List,any,any) in i do 

i f  call.check Time return (im.integer) then 
TotaITime := call.Frequency • 

call.Time return (im.integer) + 
TotaITime ; 

f i ;  
end let ;  
return TotaITime; 

end; I of at t r ibute procedure Time ; 
end; I of class List ; 

I . . . . . . . . . . . . . . . . . . . . . . . .  ; 

procedure AddBeforelndex(L: List,  IM. Position: Integer, 
T. NewElt: Structure) is 

specified with begin ~ 7  
at t r ibute procedure Time return IM.Integer is 
begin 

re tu rn  desc (L) . GetSize re tu rn  ( I M . I n t e g e r )  • 100; ~ 8  
end; 

end; 
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procedure Clear(L: L is t )  is 
specified with begin 

a t t r ibute  procedure Time return 
begin 

return 1001 
end; 

end; 

IM.Integer is 

i . . . . . . . . . . . . . . . . . . . . . . . .  i 

procedure GetIndex(L: L is t ,  IM . Position: Integer) 
return T.Structurs is 

specified with begin 
a t t r ibu te  procedure Time return IM.Integsr is 
begin 

return desc (L) . GetSize return (IM.Integer) * 100; 
end; 

end; 

procedure Length(L: L is t )  return IM.Integer is 
specified with begin 

at t r ibute procedure Time return IM.Integsr is 
begin 

return 100; 
end; 

end; 

procedure Members(L: L is t )  y ie ld T.Structure is 
specified with begin 

at t r ibute procedure Time return IM.Integer is 
begin 

return desc (L) GetSize return (IM.Integer) 
end; 

end; 
I . . . . . . . . . . . . . . . . . . . . . . . .  ; 

end; I of class ListManagsr ; 

• 100; 

This specification illustrates how attributes interact with the class facility and policy 

procedures through the use of redundant attributes, abstract description of space 

requirements, analysis of object usage and default attributes for procedures. 

6 . 3 . 1 . 1 .  Redundant  A t t r i b u t e s  

Notations 1, 2A and 2B refer to redundant attributes that describe time requirements of the 

abstract data type. The three attribute procedures, ManagerTime, Time and Time, are 

intended to be used with two different policy strategies. The first strategy does not take 

advantage of the manager model in programming abstract data types, and so uses the 
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attribute Time for determining the amount of time required by each variable in the program, 

regardless of whether the variable is being used as a manager or individual. Thus both 

manager and individual classes must contain attributes for Time. In this circumstance, the 

time required by the manager is merely the time object creation takes. For simplicity, the value 

1 is returned. The time required for an individual list is calculated by the Time attribute 

procedure in the List class, which contains a number of pattern matching statements which 

will be discussed later. 

The second strategy exploits the manager model. Only those variables that are used as 

managers will have attributes called for describing possible implementations. For a policy 

designed to exploit the manager model, a second attribute procedure called ManagerTime is 

provided. This attribute understands how that particular data type can be used and so can 

report data on all uses of individuals in that manager. 

In general, there may be many attributes describing an abstract data type that are 

redundant. The exact attributes to be provided depends on the strategy that the policy will 

use. To use Paragon effectively, policies and attributes must be coordinated. 

6.3.1.2.  Attributes that Abstract Representation Differences 

Notations 3, 4 and 5 illustrate how attributes can interact to provide some abstract 

information about representation properties. These three attributes, ListS/ze, Space and 

GetSize, attempt to provide information about the abstract number of elements in a list and 

provide a measure of the space that these elements will require. The use of an attribute 

variable permits a variable declaration to change the attribute value as appropriate while the 

use of procedures allows representations to change the procedure declaration associated 

with the identifier to provide a more accurate analysis of the data. Thus a policy may get 

information about the space required by a representation without having to examine the 

internal details of the implementation. Further, the programmer using the abstract data type 

may provide necessary information, via the attribute variables, that act as parameters to the 

attribute procedures. Together, these declarations provide an abstract way to describe the 

hidden details of a representation. Naturally, if no representation is chosen, the attribute 

procedures in the specification class, here List, will be used as default values, in this example, 

the default is an estimate of the size required by a list representation: 100 units per element. 
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6.3.1.3. Gathering Usage Data 

Notations 6A and 6B refer to places where attribute procedures use a pattern matching 

statement to gather data about an object's usage. At 6A, an environment is searched for the 

use of a manager as a container for procedure calls; At 6B, the environment is searched for 

the use of an individual as a parameter. These represent two common uses of pattern 

statemenlts. 

When a manager is looked for, no particular procedure call is mentioned. Instead, any 

procedure call that starts with the manager is found by the match. This is possible because a 

procedure invocation results in the creation of an object where the innermost simple object is 

an instance of the procedure. The outer classes in such an object are the manager (and its 

enclosing environment). All of the procedure calls in an Instance object are such objects. In 

this example, the object that results from elaborating the pattern expression is merely the 

manager with no inner simple object. During elaboration of the pattern statement, the objects 

for the calls are compared with the object that results from elaborating the pattern expression. 

The call objects are larger, because they have the innermost simple object for the call. 

Because the innermost simple object may be discarded when comparing two objects when 

the actual object (call) has more simple objects that the formal object (pattern expression), 

the innermost simple object for the call can be discarded during object comparison. 

Therefore calls within a manager will match a pattern expression that contains only the 

manager. In this example, all procedures declared by the manager's implementation will be 

examined during execution of the pattern loop. As is illustrated at 6A, the resulting pattern 

loop is quite simple. 

In contrast, the use of pattern loops after 6B is more complex. Here, no manager is specified 

in the pattern to be matched. Instead, all uses of the individual as a parameter are found. Thus 

there may appear uses of the individual outside of the manager. For example, if this attribute 

procedure were present in the Integer class instead of the List class (and the pattern 

expression were any(any, this Integer) instead of any(this List, any)) a call of the attribute 

procedure would find all calls where the integer was used in a list operation, as well as in an 

arithmetic operation. 

For this strategy to be effective, all combinations of the individual must be searched for. 

Thus one loop has the individual as the first parameter, another loop has the individual as the 

second parameter, followed by an assignment that attempts to prevent double counting 
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across all individual Lists. 66 In some sense, the value calculated by this attribute is more 

accurate than the value calculated by the manager oriented strategy, but this attribute 

procedure is also more complicated. 

6.3,1.4. Default Attributes 

Notation 7 indicates a default attribute for a procedure. Since the procedure specification 

will be placed in the possibility tree whenever an implementation is not available for a 

procedure call, this default attribute will be available if no procedure implementation is 

available. Thus this attribute procedure may be called by the policy to provide some limited 

kinds of information about the procedure without having a specific implementation available. 

Note that this default attribute can use some information about the specific call, and 

perhaps, about implementations already chosen for the containing procedure's parameters. 

Notation 8 illustrates how the Time attribute can base its calculation of the size of the first 

parameter. The key feature is the use of the Desc facility to gain access to the node in the 

possibility tree for the first parameter. This feature is used throughout attributes in the 

example abstract data types, and so represents a typical way that information about the 

possibility tree is gathered by attribute procedures. 

6.3.2. An Implementation of Lists wi th Arrays 

Each class that is not self implementing should have a representation class declared for it. 

In this section, such an implementation of lists using arrays is discussed. Like its specification, 

the representation is abbreviated, with procedure implementations provided for only the 

procedures that were specified in ancestor classes. Noteworthy parts of the representation 

are indicated by the notation at the right margin, (The discussion continues on page 185.) 

c]ass A r r a y L i  stManager (TManager : Ass ignab l  eManager. T :Ass ignab]  e) 
of ListManager is 

begin 

var MaxArraySize => IN . new In teger ;  9 1  
var AM => new ArrayManager(T . s t r uc tu re ) ;  

66This guarantees that the total time counted by executing this attribute over all List individuals does not count the 
same call of a binary operation twice. Otherwise the pattern would match the call on two Lists twice, once when 
executing the attribute tor the first List (in the first loop), once when executing the attribute for the second List {in the 
second loop). 
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class ArrayList of L is t  is 
begin 

a t t r ibu te  procedure Space return IM.Integer is 
begin 

return I + 2 • desc ( th is  ArrayList)  
• GetSize return ( IM. Integer) ;  

end; 

var Elts => AM . new Array(1,MaxArraySize); 
var NumElts => IM new Integer; 

NumElts := O; 
end; 

procedure LocalCopy(L:ArrayList, R:ArrayList) ;  
procedure LocaICopy(L.:ArrayList, R:ArrayList) is 
begin 

vat i => im . new integer; 

for  i in l..MaxArraySize do 
TManager .Ass ign (L .E l t s . [ i ] ,R .E l t s . [ i ] ) ;  

end for;  
end; 

I . . . . . . . . . . . . . . . . . . . . . . . .  " 

procedure AddBeforeIndex(L: ArrayList ,  im. Pos i t ion : in teger ,  
T. NewElt:structure) is 

begin 
a t t r i bu te  procedure Time return IM.Integer is 
begin 

return 3 + desc (L) . GetSize return ( IM. In teger) ;  
end; 

var i => IM . new Integer; 

i f  L.NumElts < MaxArraySize and Posit ion >= I and 
Position <= (L.NumElts + I) then 
for i in IM.ReverseSequence(Position,L.NumElts) do 

TManager .Ass ign (L .E l t s . [ i + l ] , L .E l t s . [ i ] ) ;  
end for ;  
TManager,Assign(L.Elts.[Posit ion],NewElt);  
L.NumElts := L.NumElts + I;  

f i ;  
end; 

t 

procedure Clear(L: ArrayList)  is 
begin 

a t t r i bu te  procedure Time return IM.Integer is 
begin 

return 1; 
end; 

~12 

9~13 

~14 

95  

~16 
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L.NumElts := 0; 
end; 

procedure GetIndex(L: ArreyList, im. Position:integer) 
return T.Structure is 

begin 
at tr ibute procedure Time return IM.Integer is 
begin 

return I;  
end; 

return L.El ts . [Posi t ion] ;  
end; 

procedure Length(L: ArrayList) 
return IM.Integer is 

begin 
attr ibute procedure Time return IM.Integer is 
begin 

re turn 1; 
end; 

return L.NumElts; 
end; 

procedure Members(L: ArrayList) 
yield T.Structure is 

begin 
a t t r i b u t e  procedure Time return IM. In teger  is 
begin 

return 2 * desc (L) . GetSize return (IM.Integer); 
end; 

var i => IM . new In teger ;  

for i in IM.Sequence(1,L.NumE1ts) do 
yield L . E l t s . [ i ] ;  
i f  i > L.NumE1ts then exitloop; f i ;  

end for; 
return; 

end; 

procedure Assign(L: A r rayL i s t ,  R: A r r a y L i s t )  is 
begin 

a t t r i b u t e  procedure Time return IM. In teger  is 
begin 

re turn  1 + desc (R) . GetSize re turn  ( I M . I n t e g e r ) ;  
end; 

IE~7A 



Section 6.3.2 An Abstract Data Type: List 185 

var i => im . new integer; 

L.NumElts := R.NumElts; 
for i in 1..R.NumElts do 

TManager .Ass ign(L .E l t s , [ i ] ,R .E l ts . [ i ] ) ;  
end for ;  

end; 

procedure Equal(L: ArrayList ,  R: ArrayList)  ~47B 
return Booleans.Bit is 

begin 
at t r ibu te  procedure Time return IM.Integer is 
begin 

return 2 + 3 • desc (L) . GetSize return ( IM. In teger) ;  
end; 

var i => IM . new Integer; 

i f  not (L.NumElts = R.NumElts) then return False; f i ;  
for i in IM.Sequence(1,L.NumElts) do 

i f  not TManager. E q u a l ( L . E l t s . [ i ] , R . E l t s . [ i ] )  then 
return Fa]se; 

f i ;  
end for ;  
return True; 

end; 
I . . . . . . . . . . . . . . . . . . . . . . . .  ; 

MaxArraySize := 100; 

end; 

This implementation for lists illustrates the use of local variable and procedure declarations, 

and the use of initialization statements. It also demonstrates how attributes may be refined, 

how managers are passed as parameters, how procedure declarations specify that only 

certain implementation classes are required as parameters and how generalization classes 

are implemented. 

6.3.2.1. Local Declarations and Statements 

Notations 1, 4 and 8 pinpoint local declarations and initialization statements for the 

implementation class. The variable declarations starting at notation 1 represent shared data 

for the manager that are available to the procedure implementations but unavailable to the 

application program. These variables are created at notation 1 but only one of them is 

initialized by the statement at notation 8. Should this representation be selected, the 

statement at notation 8 would be elaborated when the variable declaration for the list manager 

was elaborated. 
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The procedure declarations at notation 4 give the specification and representation of 

LocalCopy, which is a procedure that may be used only inside of the ArrayListManager. None 

of the other procedures in the shown excerpt actually use it, but other procedures in the 

complete implementation do require the LocalCopy procedure, so the declarations were left 

in as an illustration of local procedures. 

6.3.2.2.  Refining an Attribute 

Notation 2 shows where an attribute is refined. The specification class List contained an 

attribute procedure Space for determining the amount space required by an individual list, but 

that attribute procedure could not use implementation specific information. The Space 

attribute in ArrayList has access to the implementation of individual lists, and so may provide a 

better estimate. Notation 3 shows that the calculation actually depends on the size of the list 

associated with the individual, and so illustrates how one attribute procedure may call 

another. Recall that an ArrayList simple object must also have a List local instance, and since 

the List class contains a declaration for the GetSize attribute, the GetSize attribute that is to 

be called will certainly exist. 

6.3.2.3.  Use of a Manager Parameter 

The reason for having the TManager identifier in the ArrayListManager parameter becomes 

clear when the line at notation 5 is examined. The manager that is passed in a parameter is 

used for manipulating the individual elements in the list. In particular, it is necessary to assign 

one element to another and the passed manager provides the necessary assignment 

procedure. Therefore it is common that a parameter will have more than one component 

labeled, since any object that is passed must also have its manager present for operations to 

be performed on individuals. 

6,3.2.4,  Requiring an Implementation Class as a Parameter 

Notation 6 shows how a procedure implementation requires that the objects it manipulates 

be implemented with a certain class. Here, the Clear procedure will only work on List objects 

that are implemented as ArrayLists (or subclasses of ArrayLists). This restriction usually eases 

the process of making representation selections for procedure implementations, since all of 

the variables and parameters in a procedure implementation may be specified with 

implementation classes. 
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6.3.2.5. Implementing Generalization Classes 

Because the ListManager class inherits the AssignableManager class, the ListManager 

class inherits the specifications for the Assign and Equal procedures as well. The 

ListManager class, acting as a specification class, does not provide implementations for any 

classes. But ArrayListManager, acting as a representation class, should provide 

implementations for all procedures that are specified in all of its ancestors. Therefore 

ArrayListmanager should provide implementations for the Assign and Equal procedures. As 

suggested, these implementation are provided, and can be found at notations 7A and 7B. 

In the complete example, the declarations for the specification and implementation of lists 

are followed by' a specification and implementation for sets, which is the other programmer- 

provided, abstract data type required by the example application. The classes for sets will not 

be discussed here. They can be found in Appendix E.4. 

6.4. A Program: Sort 

A small application program was copied from the literature discussing representation 

selection. The program reads in a collection of numbers, sorts them by successively inserting 

them into an ordered list (linear search of the list) and then writes out the sorted list [Low 74]. 

The text of the program is shown below: 

I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ; 

! INSRT2 example main program 
I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ; 

class MainProgram is 
begin 

var IntSetManager => new SetManager(IM.Integer); 
vat IntListManager => new ListManager(IM.Integer); 

var UnSorted => TntSetManager . new Set 
where Se tS ize  => 50; 

var Sor ted  => I n t L i s t M a n a g e r  . new L i s t  
where L i s t S i z e  => 50; 

var  Count => IM . new I n t e g e r ;  
va t  i => IM . new I n t e g e r ;  
var  0 b j l  => IM. new I n t e g e r ;  
var Obj2 => IM. new Integer; 

~ t l  I 

~12 

[ F i r s t  c o n s t r u c t  an Unsor ted se t ;  
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IntSetManager. Clear(Unsorted); 
IM.Read(Count); 
for I in IM.Sequence(1,Count) do 

IM.Read(Objl); 
IntSetManager. Insert(Unsorted,Objl); 

end for; 

~13A 

IntListManager.Clear(Sorted); ~I3B 

I Sort the values; 

for Objl in IntSetManager.Members(Unsorted) do 
Count := I; 
while Count <= IntListManager.Length(Sorted) do 

Obj2 := IntListManager.Getlndex(Sorted,Count); 
i f  Obj2 >= Objl then 

exitloop; 
else 

Count := Count + I; 
f i ;  

end loop; 
IntListManager.AddBeforeIndex(Sorted,Count,Objt); 

end for; 

! Write the sorted l i s t  ; 

for Obj2 in IntListManager.Members(Sorted) do 
IM.Write(ObjZ); 

end for: 

end; 

This application program illustrates several unconventional aspects of Paragon programs, 

such as the presence of manager creations, explicit manager denotation for operations and 

user-defined representation information. All of these features are missing in the original 

version of this program which was written in Sail. 

6.4.1. Explicit Manager Presence 

Because the manager model is explicit in Paragon, the presence of managers must also be 

explicit. This is illustrated at the points in the program noted 1 and 3. 

Notation 1 shows where a manager is explicitly created by the programmer. In other 

languages, the manager exists without any special actions by the programmer. In the original 

version of this example, the manager was provided by the translation system in terms of 

assembly language code. Therefore there was no programmer control over the initialization of 
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the local data. in the manager. In Paragon, there may be concerns about the order of 

initialization of managers, and so the translation system cannot merely create a manager 

whenever an individual is declared. Instead, a programmer must explicitly provide a manager 

creation. 

Notations 3A and 3B show other examples where the explicitness of the manager is evident. 

Here, the Clear procedure must be called within a particular manager. Because there are two 

Clear procedures, one in the set manager and one in the list manager, the prefixed manager 

denotes the appropriate procedure to be used. Other languages, such as Clu and Ada, 

attempt to solve this problem by deriving the manager implicitly by the type of the parameter. 

Because the use of classes to emulate the manager model is merely a programming 

convention in Paragon, Paragon instead requires explicit managers to be present in an 

expression. 

6,4.2. User-Defined Representation Information 

Because Paragon has a representation-selection mechanism designed into it, an application 

program can have some representation-selection information present. In particular, the 

variable at notation 2 contains an attribute association informing the selection system of the 

expected size of the list. Although other languages permit the programmers to add 

representation information to variable declarations, for example, iJse a packed vs unpacked 

representation, Paragon is different in that the kinds of programmer-provided information are 

determined by the programmer, not by the translation system. Because the programmer 

provided the ListSize attribute in the List class, the programmer may provide the selection 

system with information by making an attribute association with ListSize. 

So far, the programmer has provided specifications of abstract data types, implementations 

of abstract data types and an application program that uses the abstract data types. All that 

remains for a complete program is a policy procedure for making representation selections. 

One possible policy procedure is considered next. 
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6.5. A Policy: Minimum Time and Space 

The policy below illustrates features found in many different policies that were written for 

this thesis. The goal of the policy is to minimize the time-space product of program cost. An 

exhaustive analysis is performed on all possible implementations in order to find the optimal 

collection of representations. As usual, interesting features are marked with notations on the 

right margin. (The discussion continues on pages 193.) 

I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ; 

I MinimumTimeSpace 
I This is the minimum time space pol icy.  
I I t  is minimized over a block at a time. 

procedure CalcTS(i:Instance) return im. 
procedure CalcTS(i:Instance) return im. 
begin 

var TempTime => im . new integer; 
var TempSpace => im . new integer; 
var j => im . new integer; 

in teger ;  ~ 1  
in teger  is  

TempTime := O; 
TempSpace := O; 
I For each ca l l ,  i f  there is a ~me a t t r i bu te ,  then 

accumulate time*frequency product; 
for j in 1..i.NumP do ~]2A 

i f  i . P r o c C a l l s . [ j ] ,  check time return (im. integer) then~Eil3A 
TempTime := TempTime + 

( i . P r o c C a l l s . [ j ]  , time return ( im. in teger ) ) "  ~I3B 
( i .ProcCal ls [ j ] .Frequency);  

f i ;  
end for ;  
for j in l..i.NumV do ~I2B 

i f  i .Va rDec l s . [ j ] ,  check Space return (im. integer) then 
TempSpace := TempSpace + 

i .VarDecls. [ j ] .Space return (im. integer) ;  
f i ;  

end for ;  
return TempTime * TempSpace; 

end; I of  CalcTS ; 

I . . . . . . . . . .  - - - - - -  . . . . . . . . . . . . .  - . . . . . . . . . . .  - - - - - -  . . . .  ; 

procedure p o l i c y ( i : i n s t a n c e ) ;  
procedure p o l i c y ( i : i n s t a n c e )  is 
begin 

var PreviousMin => im , new in teger ;  
var vartemp => im . new integer; 
var ind => im . new integer; 

~ 1 4  
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procedure DoEval return booleans.bit; 
procedure DoEval return booleans.bit is 
beg~n 

var ts => im , new integer; 

I! Try to select procedure implementations and see i f  a 
! feasible selection is possible.; 
i f  i.BindProcs then 

t Yes, have selection, so get s- t  product; 
ts := CalcTS(i); 

else 
I No feas ib le  proc. impl. se lec t ion ,  so re jec t  cho ices. ;  
return false; 

f i ;  
t Got new s-t value, but is i t  smaller than previous?; 
i f  ts < PreviousMin then 

I Yes, smaller, so save this better value and note 
I that this implementation should be saved.; 
PreviousMin := t s ;  
return True; 

else 
I Not smal ler ,  punt t h i s  set of cho ices. ;  
return False; 

f i ;  
end; I of DoEval ; 

TryAllImpls procedure f i r s t  lets the class be 
self-implementing and t r ies al l  implementation 
combinations of al l  other variable 
declarations beyond this one. (Current declaration is the 
jth variable declaration in the class or procedure which is 
the doppelganger of i.) After i t  t r ies 
self-implementing, TryAllImpls t r ies every implementation 
for i ts variable declaration. 
After each implementation selection for i t s e l f ,  a l l  other 
possible implementations for variable declarations beyond 
the jth declaration are considered. 

The test in the f i r s t  statement stops the recursion when 
no more variable declarations are available in the 
block that i denotes. Thus the evaluation function 
is applied (and the current set of implementations are 
noted as being better than what had been seen before). 

As an optimization, the TryAlllmpls procedure rejects 
implementations that are not local ly feasible instead of 
later discovering that they globally infeasible.  ; 
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procedure TryAl I Impls( i : Instance,  IM . j :  Integer) 
return Booleans.Bit; 

procedure TryAl l Impls( i : Ins tance,  IM . j :  Integer) 
return Booleans.Bit is 

begin 
var NextVar => im .new integer; 
ver temp => CDRM . new reference; 
var k => im . new integer; 
var FoundBetter => Booleans . new b i t ;  

~P_46 

I Assume you c a n ' t  f i n d  any th ing  b e t t e r . ;  
B o o l e a n s . A s s i g n ( F o u n d B e t t e r , F a l s e ) ;  
I A11 v a r i a b l e s  in i s e l e c t e d ? ;  
i f  j > i.NumV then 

I Yes, so see i f  a b e t t e r  c h o i c e . ;  
r e t u r n  DoEval;  

e l se  
I No. more v a r i a b l e  to  s e l e c t i o n  in i. 
I We are up to j th  v a r i a b l e  d e c l a r a t i o n . ;  
NextVar := j + 1; 

Leave c u r r e n t  var  dec1 a lone ( s e l f - i m p l e m e n t i n g )  and 
try a l l  other variable d e c l a r a t i o n s . ;  

Booleans.Assign(FoundBetter,TryAlllmpls(i,NextVar)); 
t See if worked. If so, save the implementation; 
if FoundBetter then 

i.VarOecls.[j].ImplSet := O; 
fi; 
I But keep looking for something better.; 
i Get the specification class for the jth declaration,; 
CDRM.Assign(temp,i.VarDecls.[j].GetSpec); 
I Try a l l  children of the spec i f i ca t i on . ;  
for  k in 1..temp.~.NumC do 

I Is this chi ld l oca l l y  feasible?; 
i f  i .VarDec ls . [ j ]  

.Local lyFeasib le( temp. t .Chi ldren. [k ] )  then 
I Yes, so set current var decl to th is  ch i l d . ;  
i .VarDec ls . [ j ] .Se t Imp l ( temp. t .Ch i ld ren . [k ] ) ;  
I And t ry  rest of the var decls in th is  block.; 
i f  TryAlI Impls( i ,NextVar) then 

I I f  found a better set of impl, save i t . ;  
i .VarDec ls . [ j ] . ImpISet  := k; 
Booleans.Assign(FoundBetter,True); 

f i ;  
f i ;  

end for ;  
f i ;  
I Let previous ca l le rs  know i f  a better impl. was found; 
return FoundBetter; 

end; t of TryA111mpls ; 
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PreviousMin := 999999999; ~E~7 
i Try al l  implementations for al l  variables in i, 
I start ing with variable I. Ignore whether anything 
I was feasible or not.; 
i f  TryAll Impls(i ,1) then nul l ;  f i ;  ~E~I8A 
I For each vat, use the best impl that was found. 
I (whole set of impls, not indiv idual ly the best.) ;  
for ind in 1..i.NumV do ~zIBB 

vartemp := i.VarDecls.[ ind],ImpISet; 
! See i f  a child or the spec was found.; 
i f  vartemp > 0 then 

i Yes, use that child number (get the specif icat ion 
! class, then get the vartempth child and assign that 
! child as the implementation for the indth var iable. ;  
i .VarDecls, [ ind],SetImpl( 

i .VarDecls.[ ind].GetSpec.t.Children.[vartemp]) ; 
f i ;  

end for; 
! Have made the variable selections, selection the 
! procedure implementations. (Assume that i t  is feas ib le . ) ;  
i f  i.BindProcs then nul l ;  f i ;  ~c[18C 
! All  done with this block, now do the same for the internal 
I variables in the variable in this block. 
for ind in 1.,i.NumV do ~=~II8D 

Policy(i  ,VarDecls.[ ind]); 
end for;  
I Now do the same for the internal 
! variables in the procedure calls in this block. 
for ind in 1.,i.NumP do ~ 8 E  

i f  not i.ProcCalls.[ind].AlreadySeen then 
Policy(i .ProcCalls.[ ind]) ; 

f i ;  
end for; 

end; 

The example shows several features that are found in many procedures. Some of these 

features are local to a couple of statements, while some represent a basic design of the 

policy. Before examining these local and global features of the policy, a brief overview of the 

policy's algorithm is provided. 

6.5.1. Policy Algorithm 

The actual policy procedure declaration starts at notation 4, though the executable part of 

the policy begins with notation 7. The notations 8A through 6E labels each of the basic pieces 

of the algorithm. 
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Notation 8A refers to the statement that calls a procedure which tries every possible 

implementation for each variable in the block passed to the policy procedure. When the 

TryAIllmpls procedure returns, the lmplSet variable contains the index of the implementation 

that provided the minimum time-space product for that block. Thus the policy assumes that 

only one level of implementations will be provided, since this index is used to pick a child 

class of the specification class. A value of 0 indicates that no feasible child was found, thus 

the selected specification should remain untouched. 

Notation 8B refers to a loop where all of the selected implementations are actually assigned 

to the variables in the block. The call of BindProcs in the statement following the loop, noted 

with 8C, then causes the block to be elaborated with implementations. This forces all the 

appropriate procedure implementations to be selected for the procedure calls in the block. 

Once the current block is processed, each object chosen for a variable and each procedure 

implementation has the policy performed on it for selection of representations for local 

variables. The loops noted by 8D and 8E perform the policy on the variables and procedure 

calls respectively. 

The way that this algorithm is implemented illustrates some general strategies about policy 

design. These are considered next. 

6.5.2. Global Properties 

Like other procedures, policy procedures use various kinds of abstraction to make them 

easier to write and understand. Some special abstractions that relate to policy procedures are 

the separation of the evaluation function, the use of local procedures and the block-at-a.time 

analysis. Each of these is considered in turn. 

6.5.2.1. Separate Evaluation Functions 

This policy bases its selection of representations on calculations of the space and time 

product of the block. However, it may be useful to minimize (or maximize) some other 

evaluation function, for example, just time or just space. Thus one wants the policy 

procedure to be insensitive to the exact evaluation function. 

In the example, the evaluation function is literally removed from the main body of the policy. 

The CalcTS procedure, noted 1, takes a block and calculates a value for that block. This 
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procedure could be changed to return any measure that is desirable and the rest of the 

system will minimize that value. Thus it is easy to separate the measure used for making 

selection decisions. Paragon allows the policy to use procedures not declared in it, such as 

CalcTS, and in fact, CalcTS was raised to the level of a separate procedure because it is used 

in several policies. However, policies may also contain local procedures, and local 

procedures are also a widely used feature. 

6.5.2.2. Use of Local Procedures 

Policies may contain local procedures and this policy declares two such procedures, DoEval 

and TryAIllmpls, as noted at 5 and 6 respectively. Each performs a limited function, such as 

checking for a feasible minimum value and trying all implementations. Many different policies 

contain local procedures, and thus resemble any moderately sized procedure in any 

programming language. 

6.5.2.3. Biock-at-a.Time Analysis 

Another common strategy illustrated by this policy is the block-at-a-time analysis. When 

faced with a possibly changing possibility tree, it is difficult to determine the order in which 

blocks should be examined. The approach used throughout the example policies is to make 

selections for the variable declarations in application program first, and then for the variables 

inside of classes and procedure calls in the application program. This resembles a depth-first 

search of the possibility tree. 

6.5.3. Local Properties 

There are several groups of statements that recur in policies, including the example above. 

These statements are used to make selection within a block, to use attributes and to try all 

implementations. Each of these groups of statements is considered. 

6.5.3.1. Selections within a Block 

Whatever the evaluation function used for choosing a selection, the process of making a 

selection usually requires performing that evaluation over all of the variables and procedure 

calls in a block. The for statements noted at 2A and 2B are frequently found as a way to gather 

information about variable and procedure calls. Each iterates over their respective arrays in 

the/nstance object passed to the containing procedure. 
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6.5.3.2. Using Attributes 

The policy procedure uses attributes to gather information about a program. However, 

Paragon does not require any given attribute to be present in any given instance. Thus a 

policy must check to see if an attribute exists before it is called. The frequent, tandem 

operations of checking and then using an attribute are noted at 3A and 3B. 

6.5.3.3. Trying all Implementations 

Another common, local phenomenon in policy procedures is the trial of all implementations 

for all variables. Although both implementations and variable declarations may be stepped 

through, a coroutine structure is needed for trying each representation for each variable in 

turn and not a simple for loop. One alternative is provided by recursion, and this is the 

structure used in the TryA///mp/s procedure. For each possible implementation of a variable 

declaration, all the following variable declarations have all of their implementations tried. Thus 

every combination of implementations is covered. A similar algorithm is found in several 

example policies, 

Having all of the pieces for Paragon to process a program, the programmer's application 

can be analyzed by the translator. The results of running the prototype system on this 

example are presented in the next section. 

6.6. Transformed Program 

One of the results of the prototype translation system is a listing of all of the decisions made 

by the selection system. In this section, some of these listings produced by the prototype are 

presented. 

There are two kinds of listing that are provided: an annotated, pretty-printed 67 version of the 

source, and a listing of objects and their representations. Each kind of listing will be illustrated 

and described. The complete output of the translation system from its processing of the 

example program is provided in Appendix G. 

67perhaps formatted is a better term, since the annotated programs are not pretty. 
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6.6.1. Annotated Program 

The first output of the translator is an annotated, pretty-printed program that can be used for 

later interpretation of objects. 68 The first excerpt, for part of the ListManager specification, is 

shown below: 

class listmanager(tmanager : assignablemanager.t : assignable) 
of assignablemanager is 

begin 
class l i s t  of assignable is 
begin 

a t t r i bu te  var l i s t s i z e  => 
im. l i te ra l (spec ia l_make_ l i te ra l (100) ) ;  

end; 

procedure  addbe fo re index#1653 :  ( I  : l i s t ,  
i m . p o s i t i o n  : integer, 
t .newel t  : s t ructure)  ; 

procedure clear#1677: ( l  : l i s t )  ; 
procedure getindex#1712: ( l  : l i s t , i m . p o s i t i o n  : integer)  

return t . s t ruc tu re  ; 
procedure length#1722:(1 : l i s t )  return im.integer ; 
procedure members#1751: (I : l i s t )  y ie ld  t . s t ruc tu re  ; 

end; 

9 1  

For clarity, most of the declarations have been removed. 

There are two details worth noting about the excerpt above. First, each procedure identifier 

is transformed into a unique identifier. A unique identifier is needed since each procedure 

specification and implementation is declared with the same identifier. This unique identifier 

allows later reference to a procedure when procedure implementations are selected. To refer 

to the procedure specification of Length, other parts of the listing will refer to length # 1722: 

(see notation 2). 

The second detail worth noting is the presence of a procedure special_make_literal 

(notation 1). This procedure is used to handle literals. Recall that Paragon defines a literal to 

be a predefined function that returns an appropriate word object. In the current 

implementation, this result is accomplished by a built-in function Speciat_MakeLiteral that 

takes an integer string and returns an appropriate word object. This procedure is not available 

to the programmer; it is merely the way that the prototype implements all of the literal 

functions. But since Special_Make_Literal looks like any other function, the system will select 

a (predefined) implementation for it and lists a call to the function whenever a literal is used. 

68The formatting shown in the thesis is not exactly the same as produced by the prototype translator. The 
formatting was changed to fit on smaller and fewer pages. 
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An excerpt of the implementation for ListManager is shown below: 

c lass arraylistmanager(tmanager:assignablemanager. 
t:assignable) 

of listmanager is 
begin 

vat maxarraysize => im.new integer; 
var am => new arraymanager(t.structure); 

class ar ray l is t  of l i s t  is 
begin 

var elts => 
am.new array(im.l i teral#Z(special_make_literal#1(t)), 

maxarraysize); 
vat numelts => im.new integer; 
im.assign#5(numelts, 

im.literal#4(special_make_literal#3(O))); 
end; 
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I Source vers ion of addbeforeindex is on page 183.; 

procedure addbeforeindex#3173: ( l  : a r r a y l i s t ,  
im .pos i t i on  : i n teger ,  
t.newelt : structure) is 

begin 
var i => im.new integer; 
i f  booleans.logicaland#10( 

booleans.logicaland#5( 
im.lessthan#1(l.numelts,maxarraysize), 
im.greaterthanequa]#4(position, 

im.literal#3( 
special_make_literal#2(1)))), 

im.lessthanequal#9(position, 
im.plus#8(l.numelts, 

im.literal#7( 
special_make_literal#6(1))))) then 

for i in im.reversesequence#11(position, 
l.numelts) do 

tmanager.assign#17( 
l.elts.element#15( 

im.plus#14(i, 
im.literal#13( 

special_make_literal#t2(1)))), 
l.elts.element#16(i)); 

end for; 
tmanager.assign#1g(l.elts.element#18(position), 

newelt); 
im.assign#23(l.numelts, 

im.plus#22(l.numelts, 
im.literal#Z%( 

special_make_literal#20( 
I ) ) ) ) ;  

f i ;  
end; 

9 1  

im.assign#3(maxarraysize, 
i m . l i t e r a l # Z ( s p e c i a l _ m a k e _ l i t e r a ] # l ( l O 0 ) ) ) ;  

end; 

9 2  

Two more details become evident from the excerpt above. First, all of syntactic sugar is 

missing (notation 1). For comparison, the reader may want to examine the implementation 

given in Section 6.3.2 on page 182. Second, every procedure call in a class and procedure is 

numbered. For example, the class ArrayListManager has three calls at the very end of the 

fragment above: special_make_literal # 1, l i teral#2 and assign #3  (notation 2). The numbers 

serve to identify the calls when an object's representation is listed, since different calls of the 

same specified procedure will have different numbers appended to them. The numbers also 

reflect the order of elaboration of the procedure calls in the class or procedure. 
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The final excerpt of the pretty-printed source is the application program, shown below. Note 

that the procedure calls in attribute associations are not numbered. This is because no 

selection is necessary for them and they do not appear in the program after selection is 

performed. The pretty printer includes them to aid in recaltingthe original source. 

class mainprogram is 
begin 

var intsetmanager => new setmanager(im.integer); 
vat intlistmanager => new listmanager(im.integer); 
vat unsorted => intsetmanager.new set 

where setsize => im.literal(special_make_literal(100)); 
var sorted => intlistmanager.new l i s t  

where l is ts ize => im.literal(special_make_literal(100)); 
vat count => im.new integer; 
vat i => im.new integer; 
var ob31 => im.new integer; 

var obj2 => im.new integer; 

intsetmanager.clear#1(unsorted); 
im.read#Z(count); 
for i in im.sequence#5(im.literal#4( 

special make_literal#3(1)), 
count) do 

im.read#6(objl); 
intsetmanager.insert#7(unsorted,objl); 

end for; 

intlistmanager.clear#8(sorted); 
for objl in intsetmanager.members#g(unsorted) do 

im .ass ign#12(count ,  
im.literal#11(special_make_literal#10(1))); 

while im.lessthanequal#14(count, 
intlistmanager.length#13( 
so r t ed ) )  do 

im.ass ign#16(ob jZ ,  
intlistmanager.getindex#15(sorted, 

c o u n t ) ) ;  
i f  im.greaterthanequal#17(obj2,objl) then 

exitloop; 
else 

im.ass ign#21(count ,  
im .p lus#20(coun t ,  

im.literal#19( 
special_make_literal#18( 

1)))); 
f i ;  

end loop; 
i n t l i s t m a n a g e r . a d d b e f o r e i n d e x # Z Z ( s o r t e d , c o u n t , o b j l ) ;  

end f o r ;  
fo r  ob~2 in in t l i s tmanager .members#Z3(sor ted)  do 

im.write#Z4(objZ); 
end for; 

end; 
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6.6.2. Object Listings 

In addition to the an annotated source, the translation system gives the results of the policy 

procedure. For each simple object and procedure call, a listing of the representations of all 

variables and procedure calls in the simple object or procedure call is produced. The simple 

object that represents the application program is shown below: 

instance x12384:, object instance of mainprogram. 
local instance x12385: of mainprogram. 
I vat intsetmanager => arraysetmanager (x12393:) 
2 vat intlistmanager => arraylistmanager (x12404:) 
3 vat unsorted => arrayset (x12411:) 
4 vat sorted => array l is t  (x12477:) 
5 var count => integer (x12543:) 
6 vat i => integer (x12550:) 
7 vat objl :> integer (x12567:) 
8 vat obj2 => integer (x12564:) 
I proc clear :> clear#231Z: of arraysetmanager (x12571:) 
2 proc read :> read#13: of transputmanager (x12618:) 
3 proc special_make_literal => special_make_literal#746: 

of universal_environment (x12623:) 
4 proc l i te ra l  => literal#B21: of discretemanager (x12630:) 
5 proc sequence => sequence#562: of discretemanager (xIZ643:) 
6 proc read => read#13: of transputmanager (x12680:) 
7 proc insert => insert#2176: of arraysetmegager (x12684:) 
8 proc clear => clear#3466: of arraylistmabager (x12738:) 
9 proc members :> members#g707: of arraysetmanager (xIg785:) 
10 proc special_make_literal => special_make_literal#746: 

of universal_environment (x12840:) 
11 proc l i te ra l  => literal#621: of discretemanager (xIg847:) 
12 proc assign => assign#50: of assignablemanager (xIZ860:) 
13 proc length => length#3526: of arraylistmanager (x12880:) 
14 proc lessthanequal => lessthanequal#324: 

of orderedmanager (xIZ934:) 
15 proc getindex => getindex#3511: 

of arraylistmanager (x1295g:) 
16 proc assign => assign#50: of assignablemanager (x13020:) 
17 proc greaterthanequal => greaterthanequal#351: 

of orderedmanager (x13040:) 
18 proc special_make_literal => special_make_litera1#746: 

of universal_environment (x13066:) 
19 proc l i t e ra l  => literal#621: of discretemanager (x13073:) 
20 proc plus => plus#424: of discretemanager (x13086:) 
ZI proc assign => assign#50: of assignablemanager (x13123:) 
2Z proc addbeforeindex => addbeforeindex#3173: 

of arraylistmanager (x13143:) 
23 proc members => members#3747: of arraylistmanager (x13Z04:) 
24 proc write => write#17: of transputmanager (x13258:) 

Each o~ect has associated a unique identifier. For the main program, i t i s  x12384:. The 

simple objectfor mainprogmm has only onelocalinstance, sincethe application program has 
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no parents, As indicated, the main program has eight variables and 24 procedure calls. For 

each, the listing provides the name of the specification, the name of the implementation, the 

location of the implementation and the unique identifier of the simple object associated with 

the implementation. For example, the second variable is intlistmanager and is implemented as 

an arraylistmanager. The definite simple object that is associated with the creation 

component in the variable declaration can be found in the simple object labeled x12404:, 

which is shown below: 

instance x12404:, 
local instance 
local instance 
local instance 
I 
2 
I 

object instance of arraylistmanager. 
x12409: of assignablemanager. 
x12410:,of listmanager. 
x17880: of arraylistmanager, 

var maxarraysize => integer (x17881:) 
vat am => arraymanager (x17895:) 
proc special_make l i te ra l  => special_make_literal#746: 

of universal_environment (x17899:) 
proc l i t e ra l  => literal#621: of discretemanager (x17906:) 
proc assign => assign#50: of assignablemanager (x17919:) 

Unlike the application program, the arraylistmanager has two ancestors, and so a simple 

object for an Arraylistmanager object has three local instances: assignablemanager, 

listmanager and arraytistmanager. As the first two local instances contain no variable 

declarations or procedure calls, there is no further information beyond the line listing the local 

instance. However, the local instance for the arraylistmanager class has two variables and 

three procedure calls, all of which are shown above. 

A procedure call has a similar format, except there are no explicit local instances. The listing 

below gives the selection details for the call of addbeforeindex in the application program (the 

22nd call). Note that implementation addbeforeindex#3173: was selected, tf no 

implementation had been available, the call would have been associated with its specification, 

here addbeforeindex # 1653:. 
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instance x13143:, procedure ca l l  of addbeforeindex#3173: 
of a r ray l is tmanager .  

1 v a r  i => in teger  (x20438:) 
1 proc lessthan => lessthan#252: of orderedmanager (x20445:) 
Z proc special_make_literal => special_make_literal#746: 

of universal_environment (x20457:) 
3 proc l i t e ra l  => literal#621: of discretemanager (x20464:) 
4 proc greaterthanequal => greaterthanequal#351: 

of orderedmanager (x20477:) 
5 proc 1ogicaland => logicaland#133: of bitmanager (x20488:) 
6 proc special make_literal => special_make_literal#746: 

of universal_environment (x20500:) 
7 proc l i te ra l  => literal#621: of discretemanager (x20507:) 
8 proc plus => plus#424: of discretemanager (x20520:) 
9 proc lessthanequal => lessthanequal#324: 

of orderedmanager (x20543:) 
10 proc logicaland => logicaland#133: of bitmanager (x20554:) 
11 proc reversesequence => reversesequence#607: 

of discretemanager (x20565:) 
12 proc special_make_literal => special_make_literal#746: 

of universal_environment (x20589:) 
13 proc l i te ra l  => literal#621: of discretemanager (xZ0596:) 
14 proc plus => plus#424: of discretemanager (x20609:) 
15 proc element => element#676: of array (x2063Z:) 
16 proc element => element#676: of array (x20648:) 
17 proc assign => assign#50: of assignablemanager (x20664:) 
18 proc element => element#676: of array (x20670:) 
19 proc assign => assign#50: of assignablemanager (x20686:) 
20 proc special_make_literal => special_make_literal#746: 

of universal_environment (x20693:) 
21 proc l i te ra l  => literal#621: of discretemanager (x20700:) 
22 proc plus => plus#424: of discretemanager (x20713:) 
23 proc assign => assign#50: of assignablemanager (x20736:) 

In these examples, only predefined procedures were used in the procedure implementations 

for lists, so the possibility tree is not very deep, and all of the procedure calls of the same 

procedure implementation look identical. However, Paragon permits one to write a procedure 

implementation that uses only abstract properties of an object and further allows multiple 

calls of that procedure with different implementations of parameters. This results in a more 

interesting possibility tree and is considered next. 
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6.7.  General Procedures 

In this example, a program uses the set intersection operation of the abstract data type Set 

in its calculations. Two implementations of sets are provided and are allowed to interact in the 

intersection procedure. To provide a feasible implementation of the program, a general 

implementation for the intersection procedure is provided. This procedure implementation 

uses only abstract operations of its parameters. However, to limit the size of the example, only 

the barest outline of a program is presented below. 

A pretty-printed version of the specification for sets is shown below. In all of the following 

declarations, the manager declaration is suppressed. 

Members, IsElement, Insert and Intersection. 

class set is begin end; 

procedure 
procedure 
procedure 
procedure 

Only four operations are provided, 

members#1771: (set) yield im.integer ; 
iselement#2004: (set, im.integer) return booleans.bit ; 
insert#2013: (set, im.integer) ; 
intersection#2024: (set,set) return set ; 

Two implementations for sets are provided, called Set1 and Set2. The implementations do 

not perform any processing; they consist of empty procedure implementations merely as a 

way to illustrate the selection system. 

class set1 of set is begin end; 

procedure members#Z115: (set l )  yield im.integer is begin end; 
procedure iselement#2130: (set l , im. integer)  return booleans.bit 

is begin end; 
procedure insert#2137: (set l , im. integer)  is begin end; 

Like the first implementation, the second implementation is missing the Intersection 

procedure. 

class set2 of set is begin end; 

procedure members#2152: (set2)  y i e l d  im. in teger  is begin end: 
procedure iselement#Z165: ( s e t 2 , i m . i n t e g e r )  re turn  boo leans .b i t  

is begin end; 
procedure insert#Z174: (setZ,im.integer) is begin end; 

The interesting aspect of this example is the general Intersection procedure. Its 

implementation is shown below: 
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procedure intersection#2102: 
return l .s t ruc ture  is 

beg in  
va t  temp => new 1; 
var e :> im.new integer; 

( I  : s e t , r  : s e t )  

f o r  e in  members#1(r )  do 
i f  i s e l e m e n t # Z ( l , e )  then 

i n s e r t # 3 ( t e m p , e ) ;  
f i ;  

end f o r ;  
return tempi 

end; 

The application program contains two sets, and those sets interact in two calls to the 

Intersection procedure, as shown below: 69 

c l ass  mainprogram is 
beg in  

var smanager => new setmanager; 
var  svl :> smanager.new s e t ;  
var  sv2 => smanager.new se t ;  
var  i => im.new i n t e g e r ;  

i f  smanage r . i se l emen t#2  
( s m a n a g e r , i n t e r s e c t i o n # 1 ( s v l , s v 2 ) , i )  then 

n u l l ;  
e l s e i f  

smanager.iselement#4 
(smanager.intersection#3(sv2,svl),i) then 

nul l ;  
f i ;  

end; 

A policy is used that forces the first variable, svl, to use representation set1 and the second 

variable, sv2, to use representation set2. After checking for feasibility, the following selections 

were made: 

69The two calls of intersection would normally return the same set. Both calls are included to demonstrate the 
selection process. 
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instance 
local 
I var 
2 var 
3 vat 
4 
1 

x2593:, object instance of mainprogram. 
instance x2594: of mainprogram. 
smanager => setimplmanager (x2595:) 
svl => set% (x2597:) 
sv2 => se t2  (x2599:) 

vat i => integer (x2601:) 
proc intersection => 

intersection#2102: of setimplmanager 
2 proc 
3 proc 

4 proc 

(x2856: )  
ise lement  => iselement#2130: of  set implmanager (x2864: )  
intersection => 

intersection#2102: of setimplmanager (x2878:) 
iselement => iselement#Z165: of setimplmanager (x2886:) 

As expected, the two calls of the intersection procedure use the general implementation 

intersection#2102:. However, two different sets of parameters are used, so the two 

procedure calls be dissimilar. As shown below, this is exactly what happens. 

The first call had implementations Set1 for the left parameter and Set2 for the right 

parameter. The resulting selections for the local variables and procedure calls within 

intersection #2102 for first call of intersection (call 1 in the mainprogram, x2856:) are shown 

below: 

ins tance x2856:,  procedure c a l l  of  i n t e r sec t i on#2102 :  
of  set implmanager.  

1 var temp => set1 (x7354: )  
2 var e => in teger  (x7357: )  
I proc members => members#Z152: of  set implmanager (x7364: )  
2 proc ise lement  => iselement#2130: of  set implmanager (x7375: )  
3 proc i n s e r t  => inser t#2137:  of set implmanager (x7389: )  

The variable temp should have the same implementation as the left parameter, and indeed it is 

implemented as Set1. As the first call, members, uses the right parameter, only the 

implementation members#2152: is feasible, and it is chosen. The calls of iselement and 

insert use the left parameter, and so the selected implementations are iselement # 2130: and 

insert#2137, respectively. Finally, since the returned object from the catl of intersection is 

declared to have the same structure as the left parameter, one would expect that the call of 

the iselement procedure on the return object to use the same implementation as for the 

iselement procedure in the call of intersection. Examining the second call in the application 

program shows that implementation iselement#2130: is selected, which is the same 

implementation used in the intersection call above. 

As the second call of intersection ~which corresponds to call 3 in the mainprogram) has the 

parameters reversed, one would expect the opposite implementation choices being made for 
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the procedure calls within intersection#2102. The second call of intersection in the 

application program is shown, and matches these expectations: 

instance xZ878:, procedure call of intersection#210Z 
of setimplmanager. 

I var temp => set2 (x7432:) 
2 var e => integer (x7435:) 
I proc members => members#2115: of setimplmanager (x7442:) 
2 proc iselement => iselement#2165: of setimplmanager (x7453:) 
3 proc insert => insert#2174: of setimplmanager (x7467:) 

As this example illustrates, the Paragon design permits the flexibility of using multiple 

representations for variables while retaining the efficiency of statically determined procedure 

implementations. 

6.8. Recursive Procedures 

Another more complicated possibiF*y tree occurs when a program contains recursion. As 

mentioned in Section 5,5.5.2, the possibility tree would normally be infinite in the presence of 

recursive procedures. However, Paragon contains a rule that controls the elaboration of 

procedure calls with implementations, which in turn effectively limits the size of the possibility 

tree. tn this section, the results Of processing a program with recursion are illustrated. 

6 . 8 . 1 .  A p p l i c a t i o n  P r o g r a m  

This recursive application program defines the well-known factorial function. The source for 

the program, followed by the annotated version, is shown below: 

class mainprogram is 
begin 

procedure Factorial(IM. N: 
procedure Factorial(IM. N: 
begin 

i f  N <= 0 t h e n  

return O; 
e l s e  

return N * Factor ia l (N- l ) ;  
f i ;  

end: 

Integer) return IM.Integer; 
Integer) return IM.Integer is 

IM.Write(Factorial(3)) ; 
end ; 

! . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . .  . . . . .  ; 
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class mainprogram is 
begin 

procedure factorial#1474: 
return im.integer ; 

(im.n : integer) 

procedure factorial#1537: (im,n : integer) 
return im.integer is 
begin 

i f  im.lessthanequal#3(n, 
im,l i teral#2(special_make_li teral#1(O))) then 

return im,l i teral#5(special_make_l i teral#4(O)); 
else 

return im.times#10(n, 
factorial#9(im,minus#8(n, 

im. l i te ra l#7(  
special_make_l i teral#6(1))))) ;  

f i ;  
end; 

im.write#4(factorial#3( 
im. l i teral#Z(special_make_l i teral#1(3)))) ;  

end; 

6.8.2. Object Listings 

The application program above was found to be feasible when it was elaborated with 

implementations. Three object listings from the resulting translator output are produced 

below, one for the main program, one for the call of factorial in mainprogram, and one for the 

call of factorial in the factorial program. 

The listing for mainprogram, shown below, contains no surprises. The one implementation 

for factorial, that is, factorial # 153 7:, is chosen. 

instance x1462:, object instance of mainprogram. 
local instance x1463: of mainprogram. 
I proc special_make_literal => special_make_literal#1137: 

of universal_environment (x1684:) 
2 proc l i t e r a l  => l i teral#646: of discretemanager (x169t:) 
3 proc fac tor ia l  => factorial#1537: of mainprogram (x1704:) 
4 proc write => write#17: of transputmanager (x1720:) 

The call of factorial in the main program is shown below in the listing for object x1704.. Note 

that this call of factorial takes place inside of the mainprogram. However, the call in the 

factorial procedure, that is, call number 9 below, takes place in the nested environment of the 

a factorial procedure inside of the main program. As noted below, the corresponding object 

for this call is x4949:. 
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instance 
I pr,oc 

2 proc 
3 proc 

4 proc 

5 proc 
,6 proc 

7 proc 
8 proc 
9 proc 
10 

x1704: procedure call of factorial#1537: of mainprogram, 
special_make_literal => special_make_literal#1131: 

of universal_environment (x4853:) 
l i te ra l  => literal#646: of discretemanager (x4860:) 
lessthanequal => lessthanequal#324: 

of orderedmanager (x4873:) 
special_make_literal => special_make_literal#%137: 

of universal_environment (x4885:) 
l i te ra l  => literal#646: of discretemanager (x4892:) 
special_make_literal => special_make_literal#1131: 

of universal_environment (x4906:) 
l i te ra l  => literal#646: of discretemanager (x4913:) 
minus => minus#451: of discretemanager (x4926:) 
factorial => factorial#1537: of mainprogram (x4949:) 

proc times => times#506: of discretemanager (x4965:) 

Object ×4949: is shown below. Like the li~ing above, it contains a call of the ~ctorial 

procedure. However, this call takes places inside of a factorial procedure inside of the main 

program. Hence, this call is similar to the call made in object x1704:. Examination of the object 

associ~ed with the ~h  call in object x4949: reveals th~  the call rears to i~elf. Thus ~ e  same 

implementation decisions made for the call that originally gener~ed object x4949: should be 

repeated for the call inside of x4949:. Because the procedure call is similar, no fu~her 

elaboration of the call with implementations is necessary. Thus there are no more in~ances of 

~ctor~l  in the ~i~ing. 

instance x4949: procedure ca]l of factorial#t537: of mainprogram. 
1 proc special_make_literal :> special_make_literal#113/: 

of universal_environment (x5085:) 
2 proc l i te ra l  => literal#646: of discretemanager (x5092:) 
3 proc lessthanequal :> lessthanequal#324: 

of orderedmanage r (x5105:) 
4 proc special_make_literal => special_make_literal#1137: 

of universal_environment (x5117:) 
5 proc l i t e ra l  =~ literal#646: of discretemanager (x5124:) 
6 proc special_make_literal => special_make_literal#%13/: 

of universal_environment (x5138:) 
7 proc l i te ra l  => literal#646: of discretemanager (x5145:) 
8 proc minus => minus#451: of discretemanager (x5158:) 
9 proc factorial  :> factorial#1537: of mainprogram (x4949:) 
10 proc times => times#506: of discretemanager (x5197:) 

The ability to terminate a possibility tree is necessary for a complete analysis of all possible 

representations in every procedure call. As this example illustrates, termination should come 

quite quickly as a recursive call is usually "similar" to its previous invocation. 
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6.9. Some Alternative Policies 

The policy in Section 6.5 represents a straightforward implementation of one common 

criterion for making representation selections. Other criteria and algorithms for selecting 

representations have been published in the literature. In this section, several of the these 

other algorithms are presented as a demonstration of how policies can be written in 

Paragon.7° 

6.9.1. Dynamic Programming 

An algorithm developed by Raut Ramirez [Ramirez 80] uses a dynamic-programming 

algorithm for making representation choices. This section provides a policy that implements 

his published algorithm. 

The policy below actually has three parts. The first part, noted 1, calculates space and time 

matrices for use by the dynamic.programming algorithm. The published algorithm assumes 

that tables of spaces and times for the various representations are available for use by the 

dynamic-programming algorithm. That is not necessarily true in Paragon, so the first part of 

the policy makes an approximation of the time and space requirements for different 

representations. No specific evaluation function is provided in the published algorithm, so a 

space.time product is used. 

The second part of the policy, noted 2, provides the initial conditions for the dynamic- 

programming algorithm. The third part, noted 3, performs the analysis using the recurrence 

equations in the algorithm. Finally, the fourth part, noted 4, takes the results of the dynamic- 

programming algorithm and makes the selected choices. 

p rocedure  policy(i:Instance) i s  
begin 

procedure Ramirez(im. MaxSpace;integer, im. MaxTime:integer, 
im. Maxlmpls: integer); 

procedure Ramirez(im. MaxSpace:integer, im. MaxTime:integer, 
im. MaxImpls" integer) is 

begin 

70As a very cursory test to see if the policies were well specified, they were elaborated as main programs and later 
used to make selections for a program with one variable that had one possible implementation. 
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var CurSpace => im . new In teger ;  
var CurTime => im . new In teger ;  
var I n f i n i t y  => im . new In teger ;  
vat MinCost => im . new In teger ;  
vat MinImpl => im . new In teger ;  
va.r NewSpace => im . new In teger ;  
vat Impl => im . new In teger ;  
vat V => im . new In teger ;  

var AM => new ArrayManager( im. integer) ;  
var AM2 => new ArrayManager(AM.Array(0,MaxTime) ); 
var AM3 => new ArrayManager(AM2.Array(0,MaxSpace) ); 
vBr f => AM3.new Array(1,MaxImpls);  
vat ImpIMatr ix => AM3.new Array(1,MaxImpls);  

vat AM4 => new ArrayManager(AM.Array(0,MaxImpls) ); 
var S => AM4 . new Array(1, i .NumV); 
var T => AM4 . new Array(1, i .NumV); 
var Cost => AM4 . new Array( lo i .NumV);  

I F i r s t ,  create the matrices fo r  the a lgor i thm to use: 
I Space (S), Time (T), and Cost (noth ing spec i f i ed  in thes is ,  
I use S*T as an example) ; 

fo r  V in %..i.NumV do ~ I  
fo r  Impl in l . . i .VarDecls. [V] .GetSpec.+.NumC do 

i .Va rDec ls . [V ] .Se t Imp l ( i .Va rDec ls . [V ] .Ge tSpec  
. t . C h i l d r e n . [ I m p l ] ) ;  

i f  i .BindProcs then f i ;  
S . [ V ] . [ I m p l ]  := i .Va rDec l s . [V ] .  Space return ( i m . i n t e g e r ) ;  
T . [ V ] . [ I m p l ]  := i .Va rDec l s . [V ] .  Time return ( i m . i n t e g e r ) ;  
C o s t . [ V ] . [ I m p l ]  := S . [ V ] . [ I m p l ]  * T . [ V ] . [ I m p l ] ;  
i .Va rDec l s . [V ] .Se t Imp l ( i .Va rDec l s . [V ] .Ge tSpec ) ;  

end fo r ;  
end f o r ;  

! Ramirez's Dynamic Programming Algor i thm fo r  
I Data Structure Se lec t ion  ; 

i I n i t i a l i z e  the Matr ix  ; 
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for  CurSpace in O..MaxSpace do 
for CurTime in O..MaxTime do 

MinCost := I n f i n i t y ;  
MinImpl := I;  
for Impl in 1..i.VarDecls.[i,NumV].GetSpec,t.NumC do 

i f  S.[i.NumV].EImpl] <= CurSpace and 
T.[ i ,NumV].[ Impl] <= CurTime and 
Cost.[ i ,NumV].[Impl] < MinCost then 

MinCost := Cost.[i.NumV].EImpl]; 
MinImpl := Impl; 

f i ;  
end for ;  
f.[ i ,NumV].[CurSpace].[CurTime] := MinCost; 
Imp,Matrix.[i.NumV].[CurSpace].[CurTime] := MinImpl; 

end for ;  
end for;  

I F i l l  in the Matrix ; 

for V in i.NumV - I ,,1 do 
for CurSpace in O.oMaxSpace do 

for CurTime in O,.MaxTime do 
MinCost ::  I n f i n i t y ;  
MinImpl := 1; 
for Impl in 1.,i.VarDecls.[V].GetSpec.~.NumC do 

i f  S , [V ] . [ Imp l ]  <= CurSpace and 
T , [V ] . [ Imp l ]  <= CurTime and 
Cost . [V ] . [ Impl ]  + 

f.[V+1].[CurSpace - S , [V ] . [ Imp l ] ] .  
[CurTime - T . [V ] . [ Imp l ] ]  
< MinCost then 

MinCost := Cost . [V ] , [ Imp l ]  + 
f . [V+l] . [CurSpace - S . [V ] . [ Imp l ] ] .  
[CurTime - T . [ V ] . [ I m p l ] ] ;  

MinImpl := Impl; 
f i ;  

end for ;  
f . [V]. [CurSpace].[CurTime] := MinCost; 
ImplMatrix.[V].[CurSpace].[CurTime] := MinImpl; 

end for ;  
end for ;  

end for;  

I And read the matrix for the appropriate implementations ; 

~c~2 
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CurSpace := MaxSpace; 
CurTime := MaxTime; 
for V in 1.,i.NumV do 

i .VarDecls. [V] .Set Impl( i .VarDecls. [V] .GetSpec. t .Chi ldren.  
[ ImpIMatr ix. [V] . [CurSpace]. [CurTime]]) ;  

NewSpace := CurSpace - 
S. [V] . [ ImplMatr ix . [V] . [CurSpace] , [CurTime] ] ;  

CurTime := CurTime - 
T. [V] . [ ImpIMatr ix . [V] . [CurSpace] . [CurTime] ] ;  

CurSpace := NewSpace; 
end for ;  
end; I end of Dynamic Programming ; 

Ramirez(lO0,100,10); 

end; 

-~_j4 

6.9.2.  Branch and Bound 

The general technique of branch-and-bound is used throughout artificial intelligence as a 

way to control the search of a large space [Winston 77]. A branch-and-bound algorithm for 

making representation choices is presented below. The path being incrementally searched is 

the list of procedure calls in a given Instance object. Note how the evaluation procedure Evat 

is separated from the rest of the policy procedure. Thus it is quite simple to change the 

optimization criterion as necessary. 
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I Branch and Bound 

procedure BNB(inst :  ins tance,  im . varnum : i n t e g e r ) ;  
procedure BNB(inst :  ins tance,  im . varnum : i n t ege r )  is 
begin 

procedure E v a l ( i n s t : i n s t a n c e , i m  . varnum: i n t ege r ,  
im . implNum: i n t e g e r ,  im . procNum: i n t e g e r )  
re tu rn  im . i n t e g e r ;  

procedure E v a l ( i n s t : i n s t a n c e , i m  . varnum: i n t ege r ,  
im . implNum: i n tege r ,  im . procNum: i n t e g e r )  
re~urn im . i n t e g e r  is 

begin 

i f  ins t .VarOec ls . [varNum 3. 
L o c a l l y F e a s i b l e ( S p e c O e c l . t . C h i l d r e n . [ i m p l N u m ] )  then 
ins t .Va rDec ls . [ va rNum] .  

Se t Imp l (SpecDec l .~ .Ch i l d ren . [ imp lNum] ) ;  
i f  i ns t .B indProcs  then n u l l ;  f i ;  
i f  inst.  ProcCalls.[procNum]. 

check Cost return (im.integer) then 
return inst.  ProcCalls.[procNum]. 

Cost return (im.integer); 
else 

return I n f i n i t y ;  
f i ;  

else 
re tu rn  I n f i n i t y ;  

f i ;  
end; 
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procedure DoSingle; procedure DoSingle is 
begin 

var impINum :> im . new integer;  
var Minlndex => im . new integer;  
var aim => new arraymanager(im, in teger ) ;  
vat Cost => aim . new Array(1,NumDecls); 
var LastConsidered => aim . new Array(1,NumDecls); 

! Final i n i t i a l  value for a l l  branches ; 
for  impINum in 1..NumDecls do 

Cost.[impINum] := Eval(inst,varnum,implNum,%); 
LastConsidered.[implNum] := I ;  

end for ;  
whi le True do 

! Find current minimum path ; 
MinIndex := 1; 
for  impINum in 2..NumDecls do 

i f  Cost.[impINum] < Cost. [MinIndex] then 
Minlndex := impINum; 

f i ;  
end for ;  
! See i f  done (no more proc to examine) ; 
i f  LastConsidered.[MinIndex] = i n s t .  NumP then 

ex i t l oop ;  
f i ;  
! Not done, so extend path by one ; 
LastConsidered.[MinIndex] := 

LastConsidered.[MinIndex] + I ;  
Cost. [Minlndex] := Cost.[MinIndex] + 

Eval(inst,varnum,implNum, 
LastConsidered.[MinIndex]);  

end loop; 
CDRM.Assign(MinClass,SpecDecl.~.Children.[MinIndex]); 

end; 

var NumOecls => im . new integer;  
var SpecDecl => CDRM new Reference; 
var MinClass => CDRM new Reference; 
var I n f i n i t y  => im . new integer;  

I n f i n i t y  := 999999999; 
CDRM.Assign(SpecDecl,inst.VarDecls.[varnum].GetSpec); 
NumDecls := SpecDecl.~.NumC; 
i f  NumDecls > 0 then 

DoSingle; 
inst.Va.rDecls.[varnum].SetImpl(MinClass); 

f i ;  
end; 
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I Policy procedure starts here;  

procedure p o l i c y ( i : i n s t a n c e ) ;  
procedure p o l i c y ( i : i n s t a n c e )  is  
begin 

var c => im . new integer; 

for c in 1..NumV do 
BNB(i,c); 

end f o r ;  
f o r  c in 1 . . i .NumV do 

P o l i c y ( i . V a r D e c l s . [ c ] ) ;  
end f o r ;  
f o r  c in l..NumP do 

i f  not i .  P r o c C a l l s . [ c ] . A l r e a d y S e e n  then 
Pol icy( i .ProcCal ls. [c]) ;  

f i ;  
end for; 

end; 

6.9.3. Hill-Climbing Heuristic 

Another popular ~chnique for controlling the search of ai~rn~ives in a large space ~ hill 

climbing. A simple hill-climbing (or since the evaluation function is being minimized, hole- 

falling) algorithm is presented below. 

I The s teepes t  descent h i l l  c l imb tng  

procedure P o l i c y ( i : I n s t a n c e ) ;  
procedure P o l i c y ( i : I n s t a n c e )  i s  
begin 

var c => IN . new I n t e g e r ;  
var j => IM . new I n t e g e r ;  
var  BestClass => CDRM . new Reference;  
var CurClass => CDRM . new Reference;  
var  Change => Booleans. new B i t ;  
var  Dummy => Booleans . new B i t ;  
var  TempSpace => IM . new I n t e g e r ;  
var TempTime => IM. new Integer: 
var MinSpaceTime => IM. new I n t e g e r ;  
var  HaveSpaceTime => Booleans. new B i t ;  
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for c in 1..i.NumV do 
CDRM.Assign(BestClass,i.VarOects.[c].GetSpec); 
i f  i .VarDec ls . [c ] .check Space return ( IM. In teger )  and 

i .VarDec ls . [c ] .check Time(i) return (IM.Tnteger) then 
MinSpaceTime := 99999999; 
Booleans.Assign(Change,True); 
while Change do 

Booleans.Assign(Change,False); 
CDRM.Assign(CurClass,BestClass); 
for j in 1..CurClass.t.NumC do 

i .Va~Dec ls . [ c ] .Se t Imp l (CurC lass .~ .Cht ld ren . [ j ] ) ;  
Booleans.Assign(Dummy,i.BindProcs); 
TempSpace := i.VarDecls.[c].Space 

return ( IM. In teger ) ;  
TempTime := i .VarDec ls . [ c ] .T ime( i )  

return ( IM. In teger ) ;  
i f  tempSpace*tempTime < MinSpaceTime then 

Booleans.Assign(Change,True); 
CDRM.Assign(BestClass,CurClass.t .Chi ldren.[J]) ;  
MinSpaceTime := tempSpace'tempTlme; 

f i ;  
end for ;  

end loop; 
i ,VarDecls,[c].SetImpl(BestClass); 

else 
CDRM.Assign(CurClass,i.VarDecls.[c].GetSpec); 
while CurClass.t.NumC > 0 do 

CDRH.Assign(CurClass,CurClass.t.Children.[t]); 
end loop; 
i.VarDecls.[c].SetImpl(CurClass); 

f i ;  
end for; 
Booleans.Assign(Dummy,i.BindProcs); 
for c in 1.,i.NumV do 

Pol icy( i .VarDecls . [c ] ) ;  
end for; 
for c in 1..NumP do 

i f  not i.ProcCalls.[c].AlreadySeen then 
Po l icy ( i .ProcCal ls . [c ] ) ;  

f i ;  
end for;  

end; 

A particular variant of the hill-climbing algorithm was published by Low [Low 74] for 

representation selection. An initial hill-climbing procedure assigns representations to all 

variables. Then each representation is perturbed. After each perturbation, the resulting 

program is reevaluated to see if a better selection resulted. Low's algorithm in Paragon is 

expressed below. Note how this particular policy exploits the use of managers mentioned in 

Section 6.3.1.1 (notation 1), 
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Z . . . . . . . . . . . .  " . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ; 

I Low's pol icy, again on one block at a time. 

procedure CalcTS(i:Instance) return im. integer; 
procedure CalcTS(i:Instance) return im. integer is 
begin 

var TempTime => im . new integer; 
var TempSpace => im . new integer; 
var j => im , new integer;  

TempTime := O; 
TempSpace := O; 
f o r  j in 1..i.NumP do 

i f  i . P r o c C a l l s . [ j ]  check t ime re tu rn  ( i m . i n t e g e r )  then 
TempTime := TempTime + 

( i . P r o c C a l l s . [ j ]  time return (im. in teger ) ) *  
( i .ProcCal ls . [ j ] .F requency) ;  

f i ;  
end for;  
for  j in l . . i .numV do 

i f  i .Va rDec ls . [ j ] ,  check Space return ( im. integer)  then 
TempSpace := TempSpace + 

i .VarDecls. [ j ] .Space return (im. in teger) ;  
f i ;  

end for;  
return TempTime * TempSpace; 

end; 

procedure Ca]cVTS(im . v: integer, i:Instance) 
return im. integer; 

procedure CalcVTS(im . v: integer, i:Instance) 
return im. integer is 

begin 
var call => ProcCa11; 
var TempTime => im . new integer; 
var TempSpace => im . new integer; 
var j => im . new integer; 
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TempTime := O; 
TempSpace := O; 
l e t  ca l l  match i ,VarDec ls . [v ]  in i do 

i f  ca l l  . check ManagerTime(i) return (im. integer)  then ~ i1  
TempTime := TempTime + 

ca l l  . ManagerTime(i) return ( im . in teger ) ;  
f i ;  

end l e t ;  
for  j in v..i.NumV do 

i f  v = i .VarDec ls . [ j ] . ImpISet  and 
i .Va rDec l s . [ j ]  , check space return ( im. in teger)  then 
TempSpace := TempSpace + 

i .VarDecls . [ j ] .Space return ( im. in teger ) ;  
f i ;  

end for ;  
i f  i .VarDec ls . [v ]  check space return ( im. in teger )  then 

TempSpace := TempSpace + 
i .VarDecls. [v] .Space return ( im . in teger ) ;  

f i ;  
return TempTime * TempSpace; 

end; 

procedure MarkManagers(i:Instance); 
procedure MarkManagers(i:Instance) is 
begin 

var k => im . new integer;  
var j => im . new integer;  

for  j in 1..i.NumV do 
for k in j+1..i,NumV do 
i f  Enc los ingOb jec t ( i .VarOec ls . [ j ] , i .Va rDec ls . [ k ] )  then 

i .VarDecls . [k ] , ImpISet  : :  j ;  
f i ;  
end for ;  

end for ;  
eno;  

procedure PerformOnePolicy(i:instance,im . index: integer, 
Booleans. DoingGlobal: B i t ) ;  

procedure PerformOnePolicy(i : instance,im . index: integer,  
Booleans. DoingGlobal: B i t )  is 

begin 
var ManSpec => CDRM . new reference; 
vat KidSpec => CDRM, new reference; 
var KidImpl => CDRM. new reference; 
vat Best => im . new integer;  
var MinTS => im . new integer;  
var TS => im . new integer;  
var j => im . new integer;  
var k => im . new integer;  
var KidNum => im , new integer;  
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procedure SetKids; 
procedure SetKids is 
begin 

I First f ind a kid ; 
for k in index+1..i.NumV do 

i f  index = i.VarDecls.[k].ImpISet then 
CDRM.Assign(KidSpec,i.VarDecls,[k].GetSpec); 
KidNum := k; 
exit!oop; 

f i ;  
end for; 
I Now find an impl ; 
for k in 1..KidSpec;t.NumC do 

i f  i.VarDecls.[KidNum]. 
LocallyFeasible(KidSpec.t.Children,[k]) 

CDRM.Assign(KidImpl,KidSpec.~.Children.[k]); 
exit loop; 

f i ;  
end for; 
! And assign the impl to al l  of the kids ; 
for k in KidNum..i.NumV do 

i f  index = i.VarDecls.[k].ImpISet then 
i.VarDecls.[k].SetImpl(KidImpl); 

f i ;  
end for;  

end; 

CORM.Assign(ManSpec,i.VarOecls.[index].GetSpec); 
Best := O; 
MinTS := 99999999; 
for j in 1..ManSpec.f. NumC do 

i.VarDecls.[ index].SetImpl(ManSpec.e.Children.[j]); 
SetKids; 
i f  DoingGlobal then 

TS := CalcTS(i); 
else 

TS := CalcVTS(index,i); 
f i ;  
i f  TS < MinTS then 

MinTS := TS; 
Best := J; 

f i ;  
end for; 
i f  Best > 0 then 

i,VarDecls.[ index].Setlmpl(ManSpec.t.Children.[Best]); 
SetKids; 

f i ;  
end; 

then 
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procedure po l icy( i : ins tance) ;  
procedure po l icy( i : ins tance)  is 
begin 

var ind => im . new integer; 

MarkManagers( i ) ;  
f o r  ind in 1. . i .NumV do 

i f  i . V a r D e c l s . [ i n d ] . I m p l S e t  = 0 then 
P e r f o r m O n e P o l i c y ( i , i n d , F a l s e ) ;  

f i ;  
end f o r ;  
f o r  ind in 1. . i .NumV do 

i f  i . V a r D e c l s . [ i n d ] . I m p l S e t  = 0 then 
P e r f o r m O n e P o l i c y ( i , i n d , T r u e ) ;  

f i ;  
end f o r ;  
i f  i .B indProcs  then n u l l ;  f i ;  
f o r  ind in 1. . i .NumV do 

P o l i c y ( i . V a r D e c l s . [ i n d ] ) ;  
end f o r ;  
for ind in 1..i.NumP do 

i f  not i .ProcCalls.[ ind],AlreadySeen 
Po l i c y ( i .P rocCa l l s . [ i ' d ] ) ;  

f i ;  
end for;  

end; 

then 

6.9.4. Simple Constraint 

Probably the simplest kind of policy is one that explicitly selects a particular representation. 

In Paragon, this can only be done by convention between the abstract data type, the variable 

and the policy. The abstract data type must have an attribute that indicates the 

implementation, a variable wishing to use explicitly an implementation must use the attribute 

in its constraint, and the policy procedure must only search for feasible implementations. 

This approach is error prone and requires a lot of coordination between the abstract data 

type, policy and variable declaration. However, this approach is developed in this section. 

First, a class declaration might be written as shown below: 

class Complex is 
begin 

attribute procedure IsPolar 
begin re tu rn  False;  end; 

return Boo leans .B i t  is  
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attribute procedure 
begin return False; 

end; 

IsCartesian return 
end; 

Booleans,Bit is 

class Polar of Complex is 
begin 

at t r ibute procedure IsPolar 
begin return True; end; 

end; 

return Booleans.Bit is 

class Cartesian of Complex is 
begin 

at t r ibute procedure IsCartesian 
begin return True; end; 

end; 

return Booleans.Bit is 

The variable using these declarations would choose its implementation by calling the 

appropriate attribute in its constraint, for example: 

var MyComplex => new Complex 
such that desc (MyComplex) . IsPolar return (Booleans.Bit); 

The constraint allows only the the Polar implementation of Complex to be feasible. Thus a 

policy would need to only pick a feasible implementation. Such a policy is shown below: 
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I ExhaustiveFindAnything 

procedure po l i c y ( i : i ns tance ) ;  
procedure po l i cy ( i : i ns tance )  is 
begin 

var Completed => Booleans. new Bi t ;  

procedure TryAlIImpls(IM . ~: In teger) ;  
procedure TryAlIImpls(IM . j :  Integer)  is 
begin 

vat NextVar => im .new integer;  
vat temp => CDRH . new reference; 
vat k => im . new integer;  
vat ind => im . new integer;  

i f  j > i.NumV then 
i f  i,BindProcs then 

for ind in l. . i .NumV do 
Po l i cy ( i .Va rDec l s . [ i nd ] ) ;  

end for ;  
for  ind in 1..i.NumP do 

i f  not i .ProcCal ls . [ ind] ,Al readySeen then 
P o l i c y ( i . P r o c C a l l s . [ i n d ] ) ;  

f i ;  
end for ;  
Booleans.Assign(Completed,CheckFeasibil i ty); 

f i ;  
else 

NextVar := j + 1; 
TryAlIImpls(NextVar); 
i f  Completed then return;  f i ;  
CDRM.Assign(temp,i,VarDecls.[j],GetSpec); 
for  k in l . . t emp . t .  NumC do 

i f  i , V a r D e c l s . [ j ] .  
Local lyFeas ib le( temp,~.Chi ldren. [k ] )  then 
i .VarDec ls . [3 ] .Se t Imp l ( temp.~ .Ch i ld ren . [k ] ) ;  
TryAlI Impls(NextVar);  
i f  Completed then return;  f i ;  

f i ;  
end f o r ;  

f i ;  
end; 

Booleans.Assign(Completed,False); 
TryAl l Impls(1) ;  

end; 

The programmer should not be required to write convoluted code to be able to select 

directly an implementation. The current design resulted from my belief that the programmer 
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should not have direct access to the implementations; only attributes should be used. In 

retrospect, the lack of direct control over the selection of representation may have been a bit 

too extreme. There are times when a programmer wishes to explicitly select an 

implementation. One way to provide this ability would be to make the same  as constraint 

expressions used in procedure specifications available in any expression (and defining it to 

return a value that matches Booleans.B i t ) .  This would allow one to use any kind of expression 

in constraints for procedure declarations and permit the use of same  as expressions to simply 

state the programmer's intentions, as illustrated below: 

var MyVar => new Ob.1 
such that MyVar.structure same as Obj_Impl_1; 

Another iteration of the Paragon design would probably include this modification. 

The programs in this chapter have been processed by a prototype translator for the Paragon 

language. The next chapter contains a description of the design of the prototype and some 

measurements performed on it. 



Chapter 7 
Implementation 

The prototype translation system consists of two programs, an LALR(1) parser produced by 

a parser generation system [Nestor 82] for lexical and syntax analysis and a Lisp program for 

semantic analysis, feasibility analysis and interpretation. 

The parser runs only on Decsystem-20s and produces an intermediate text file (in TCOL 

format [Newcomer 79]) that is used by the Lisp program. The Lisp program is written in a 

subset of the Maclisp [MIT 78] and Franzlisp [Foderaro 80] dialects, and runs on both 

Decsystem-20s and VAX/Unix systems. 

This chapter provides a detailed discussion of this prototype translator. I first provide a list 

of the translator's phases and components. Some static measurements of these phases and 

components are provided and discussed. Finally, I present some example programs that were 

processed with the translator. The programs are described and the performance of the 

translator on these programs evaluated. 

7.1. Phase Descriptions 

The compiler consists of twelve phases, where phase roughly means "a single pass over the 

program text". These phases are shown below: 
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Figu re 7-1: Phase Diagram for the Paragon Translator 

The phases are executed in order, but may contain pieces or components that are used in 

other parts of the system. For example, phase ELABI contains procedures for checking the 

feasibility of a class instantiation or procedure call. These procedures are always executed 

when the ELABI phase is run, but they are also executed if a policy procedure calls the 

CheckFeasibi/ity procedure during the RPOLIC phase. Some of the interesting components 

that may appear in more than one phase are discussed in Section 7.2. 

An important fact is illustrated by the phase diagram: the design of a Paragon translation 

system is conventional. After parsing (ML, PURIFY), several bookkeeping phases create links 

between scopes, classes, and procedure specifications and implementations (NAME, 

SETUPC, SETUPP, SETUPI). Semantic analysis is then performed (ELABS), the predefined 

environment is created (PREDEF) and object representations are chosen (RPOLIC). Finally 

the processed program is made available to later stages of a compiler (WALK). 

The only two phases omitted in most systems are MARKC and ELABt. Neither phase is 

difficult to construct. The former phase exists only to provide information to the policy 

procedure and hence is an unconventional addition to the translation process. However, the 

MARKC phase redecorates the class declarations with more links between parent classes and 
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subclasses. Thus the MARKC phase is another bookkeeping phase which is similar to 

SETUPC. The difference is that the additions to the class declarations are accessible to the 

policy procedure whereas the decorations added by previous bookkeeping phases are only 

for internal use. 

The ELABI phase is needed because Paragon separates the ideas of specification and 

implementation all the way to the procedure call level. This phase is not difficult to construct. 

In most languages, if a procedure call is checked to ensure that it meets specification, and if 

an implementation meets its specification, then the translation system may conclude that the 

program is feasible. This is not true for Paragon. Instead an additional pass over the program 

is required to verify that implementations are present for all procedure calls. But as explained 

in Sections 5.2.3 and 5.5.5, the algorithm for feasibility checking (elaboration with 

implementations) is very similar to the algorithm for type checking (elaboration with 

specifications), so the addition of the ELABI phase requires no breakthrough in compiler 

technology. 

One can therefore conclude that constructing of a Paragon compiler is no more difficult 

than constructing a compiler for most algebraic languages. One of the significant differences 

between Paragon and other languages is the presence of the type hierarchy. Thus the use of 

a type hierarchy should not be eliminated from a language design for fear of implementation 

difficulties. 

Like the overall design of the translator, the designs of individual phases are also quite 

conventional. The remainder of this section describes each phase of the implemented 

system. 

7.1.1 .  ML: Parser  

The first phase is the parser, called ML 71. It is a Bliss-36 program automatically created by a 

parser generator system. The parser accepts text files written in Paragon and produces a 

TCOL tree in an LG (linear graph) notation, essentially another text file. The TCOL tree also 

contains a name table for later phases of the translator, The BNF description of Paragon that 

is used by the parser generator is provided in Appendix B. 

71ML stands for My Language. At the time the parser was created, I had no name for Paragon and had to call the 
parser Something. 
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7.1.2. PURIFY: Input Reader 

The second phase of the translator is called PURIFY. This phase reads the TCOL file 

produced by the parser and creates an internal tree representation. The tree representation 

used is quite simple: The tree nodes are represented as unique atoms, and the various 

attributes and pointers attached to a tree node are placed on the property list of the atom. For 

example, an ff statement with the following tree fragment: 

node3: < i f  statement> 
( tes t )  (statement) 
/ \ 

/ \ 
node4: node5: 

would have the internal representation: 

node3: ( tes t  node4: statement nodeS:) 
node4: . . . .  
nodeS: . . . .  

In addition to reading the file, the PURIFY phase also does some simple tree rearranging, 

usually renaming property identifiers produced by the parser generator and ridding the tree of 

syntactic sugar. An example of the former transformation is the renaming of the LIST and 

LISTA properties that are produced by the parser generator into DECLARATION_LIST and 

STATEMENT_LIST properties, which are used by later phases. Some examples of the latter 

transformations are changing the symbol ~ into the identifier value and rewriting the 

expression a + b into the more verbose IM.plus(a,b). Sections 3.3.4 and 3.3.5 list all of the 

syntactic transformations performed by PURIFY. 

7.1.3. NAME: Scope Linking 

The third phase of the translator, NAME, is responsible for creating pointers between a 

scope and its enclosing scope, and between each declaration and the scope containing the 

declaration. These pointers are used during identifier lookup, because if an identifier is not 

found in one scope, the enclosing scope may eventually be searched as well. 

In addition to linking the scopes together, the NAME phase also makes some simple checks 

for illegal duplicate declarations of identifiers. This is done as an aid to the programmer and is 

unnecessary for the proper operation of the translator on correct programs. 
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7.1.4. SETUPC: Setup Class Declarations 

The fourth phase of the translator, SETUPC, performs some preprocessing of class 

declarations for later use in type checking. 

First, the ancestors of each class are found and two lists, the leftmost parent order and the 

leftmost elaboration order, are added to each class declaration. These lists are used primarily 

for creating simple objects and locating declarations. 

With the aid of these lists, the SETUPC phase also tags each class parameter as inherited or 

defined. All inherited parameters are also tagged with references to their defining parameters 

for later semantic checking. (See Appendix A.7 for a discussion of how parameters are 

inherited.) 

This phase also numbers the variables in each class and procedure declaration, although 

the processing is not directly related to class declarations. When a local instance is created, 

the objects associated with it are placed in a list; the indices created during this phase are 

used to retrieve the objects during elaboration with specifications, with implementations and 

with realizations. 

7.1.5. SETUPP: Setup Procedure Declarations 

The fifth phase in the translator is called SETUPP. Using the links created by SETUPC, 

SETUPP associates each procedure implementation with its corresponding specification. 

Since there is no overloading in Paragon, this can be done by merely examining the names of 

the procedure specifications in the ancestor classes. 

7.1.6. SETUPI: Setup Procedu re Implementations 

The SETUPI phase creates a list of possible procedure implementations for each procedure 

specification on a scope.by.scope basis. Initially, a list of all visible procedure specifications 

is attached to each class and procedure declaration. Then all visible procedure 

implementations for each visible procedure specification are also gathered and attached to 

each class and procedure. During feasibility checking, a list of possible implementations for a 

procedure call can then be located by merely examining the declaration for the innermost 

simple object of the environment in which the call is appearing. The inclusion of this phase in 

the translation system is efficient if one assumes that the use of space to hold the lists of 
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implementations is better than the use of time to search the entire environment each time a 

procedure call is made to collect possible procedure implementations. Because the 

translator is running on a Vax with a slow processor but with a large address space, the 

decision was made to trade space for time. 

7.1.7. ELABS: Type Checking and Semantic Analysis 

The seventh phase of the translator performs the butk of the semantic analysis, or more 

technically, elaboration with specifications. Thus this phase elaborates the universal class 

declaration and the user's program with specifications. At a practical level, the following tests 

are included: 

• Procedure implementations match their corresponding specifications. 

• Classes are properly derived from their parents. 

• Object creations are well specified. 

• Procedure calls match the appropriate specifications, 

• All identifiers denote an appropriate variable, class, procedure or label. 

Naturally, the ELABS phase contains procedures for elaborating procedures and classes 

with specifications. These procedures are used in several components mentioned in other 

sections. Similarly, elaborating classes and procedures, with specifications may require 

elaboration of attribute variables, so the ELABS phase may use components from the RPOLIC 

phase. 

7.1.8. PREDEF: Locate and Bind Predefined Identifiers 

The eighth phase of the translator, PREDEF, is used to locate and bind the predefined 

classes, variables and procedures in the universal class declaration. Thus the phase finds all 

predefined declarations such as: the predefined boolean object for use in if and while 

statements; the IM integer manager; and the ClassDecl, Instance, VarDecl, ObjDecl and 

ProcCatl classes for use in the MARKC and RPOLIC phases. Similarly, this phase finds all 

user required declarations: the policy procedure for the selection of object implementations; 

and the user's main program. 
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7.1,9. MARKC: Create ClassDecl Objects 

The ninth phase of the translator, MARKC, creates ClassDecl realizations that represent 

class declarations in the program being processed. References to these ClassDecl objects 

are manipulated by policy procedures to inquire about variable specifications and 

implementations, and to select implementation classes for object creations. 

7.1.10. RPOLIC: Implementation Selection 

RPOLIC, the tenth phase of the translator, first elaborates with realizations an Instance 

object for the main program and then executes the policy procedure implementation, passing 

the new~y created Instance object as the actual parameter. This phase of the translator 

contains all of the procedures and run-time support for elaborating Paragon with realizations. 

Since the elaboration with realizations of indefinite instances is identical to elaboration with 

specifications, this phase uses some components from the ELABS phase. 

7.1.1 1. ELABh Feasibility Checking 

The eleventh phase, ELABt, checks the program for feasibility. This phase ensures that any 

implementation choices made by the programmer for variables (via the policy) are compatible 

with the specifications of those variables and that there is a feasible procedure 

implementation for every procedure call in the program. Since various components in the 

ELABI phase are used to check the feasibility of class instantiations and procedure calls, 

these components may also be executed during the RPOLIC phase during calls of the 

predefined CheckFeasibility and BindProcs procedures. 

7.1.1 2. WALK: Write Implementation Decisions 

The last phase of the translator, WALK, records all of the choices made for object creations 

and procedure calls. For every kind of object creation and procedure call, the WALK phase 

prints a list of variables along with the selected representations, and a list of procedure calls 

along with the selected implementations. Excerpts of this printout are provided in Section 6.6. 

In a production system, the transformed program would be passed to a code generation 

phase, 
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7.2. Component Descriptions 

There are parts of the translator that either do not belong to a particular phase, or are the 

primary piece of one phase and a minor piece of other phases, or represent a facility that is 

needed in several phases. These parts of the translator are termed components to distinguish 

them from phases. The prominent components in the translator are described below, 

7.2.1. Name Components 

Three related components, ES Name, El_Name, and ER_Name, are responsible for 

elaborating name expressions with specifications, implementations and representations 

respectively. As name expressions are used to express parameters, variables and procedure 

calls, name expressions are truly the center of the translator for processing Paragon. 

These three components are interrelated. For example, when a name expression contains 

an object creation, and when that object creation is elaborated with specifications, the class 

mentioned in the name expression will be elaborated with specifications, and any attribute 

variables in it will be elaborated with realizations. Thus ES_Name could cause ER Name to be 

evaluated. Further, these components can be evaluated recursively. 

The Name translator components contain three subcomponents. One subcomponent 

controls the processing of class instances, one controls the processing of procedure calls 

and one controls the processing of local instances. Each set of subcomponents is described 

below. 

7.2.1.1. Create_Class 

One set of translator subcomponents, ES_Create_Class, El_Create Class and 

ER_Create_Class, is responsible for the processing of class declarations and name 

components that denote class instantiations or indefinite instances. Like the three translator 

components for processing names, each of these three components may call another or 

recursivelycall itself. As a simple example, an object creation may contain some parameters 

that in turn contain an indefinite instance. Thus during the processing of the object creation, 

a recursive call on a Create_Class subcomponent will be made for the indefinite instance. 
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7.2.1.2. Create_Call 

Another set of related 

ER_Create_Call. These are 
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procedure declarations and invocations are processed instead of object creations. 

subcomponents is ES_Create_Call, Et_Create_CaU and 

analogous to the CreateClass components except that 

Like 

object creations, one procedure call may require the processing of another procedure call. 

7.2.1.3. Create_Local_Instance 

The last set of related subcomponents that is discussed here is ES_Create_Locat_lnstance, 

El_Create Local_Instance and ER_Create_Local_lnstance. These subcomponents are 

responsible for the processing of a block with its declarations and its statements, and are 

used by both the Create_Object and the Create_Call subcomponents. 

7.2.2. MYLET: Function Call Util ity 

The MYLET 72 component of the translator is used to allow a Lisp function to return multiple 

values and is completely unrelated to Paragon. In essence, the MYLET function takes a list of 

identifiers and a function call, evaluates the function, takes the result of the function, which is 

expected to be a list, and assigns each element of the returned list to the corresponding 

identifier in the identifier list. MYLET is used widely throughout the translator. 

7.2.3. LOOKUP: Symbol Table Processing 

The LOOKUP component corresponds to the usual symbol table routines found in most 

compilers. This component is bit more complicated than symbol table routines in most 

compilers. In most compilers, a scope is searched to find a declaration that corresponds to a 

given identifier. Because objects in Paragon have a rather rich structure, the search can be 

very time consuming. To ameliorate the amount of time spent in searching for an identifier, 

the LOOKUP component saves various pieces of state information about identifiers in the 

program tree as it looks them up in an object. This information is used to speed up future 

searches of identifiers when a class declaration is reelaborated during an object creation or 

when a procedure declaration is reelaborated during a procedure call. 

72The name MYLET comes from the standard LET macro in Maclisp from which this component waS inspired. 
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7.2.4. COMP: Comparing Objects 

The COMP component is responsible for comparing two objects and reporting whether or 

not they match, and for returning any identifier bindings that result from the matching 

process. Because object comparison in Paragon is more complicated than the usual name 

equivalence rule found in most abstract data type languages, the procedures used for 

determining whether two objects match are correspondingly more complicated. Hence, the 

translator has a separate component for comparing objects. 

7.2.5. GC" Garbage Collector, TIMER: Metering, SW: Switches 

Three additional parts of the system do not depend on the details of Paragon but are 

required in nearly any prototype written in Lisp: GC, the garbage collector; TIMER, the 

translator metering tool; and SW: the translator debugging switches. Each of the components 

is briefly described. 

Because most of the system is written in Lisp, the style of programming used in the 

prototype creates a lot of temporary data structures that must be garbage collected when no 

longer needed, Because the garbage collector belongs to no specific phase, it is considered a 

distributed component of the translator. The TIMER component records the entrance and 

exit of various functions in the translator. This component provides the statistics reported in 

Section 7.3.3. The SW component controls the setting of various debugging switches that the 

translation system uses. 

7.3. Translator Performance 

Some measurements of the implemented prototype were performed in an attempt to locate 

hidden design flaws in the language. These measurements also give some indication of the 

relative amounts of effort needed to build different pieces a Paragon translator and the 

relative amounts of processing that is needed for different aspects of Paragon. 

Three varieties of measurements are reported: static measurements of the translator, static 

measurements of the sample programs and dynamic measurements of the translator 

processing the sample programs. The static measurements reflect the sizes of the phases, 

components or programs being described. The dynamic measurements reflect the amount of 

time required to process certain programs by certain pieces of the translator. As the 
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measurement process consumes resources, these numbers should be taken as 

approximations. A more useful exercise consists of comparing the numbers in the tables to 

obtain relative sizes and speeds between pieces of the prototype rather than to obtain some 

absolute performance measurements with which to compare other translators, 

7.3.1.  Static Measu rements of the Translator 

Tables 7-1 and 7-2 below give some static measurements of the translator. For each phase 

and component, a measure of the size of the source code in lines of Lisp source is given, 

followed by the size of the loaded code in kilobytes of memory. 

Phase # Lines Lisp # Kilobytes 

ML 73 452 70 
PURIFY 613 174 
NAME 94 3 
SETUPC 235 5 
SETUPP 216 7 
SETUPI 70 2 
ELABS 2050 53 
PREDEF 308 9 
MARKC 118 3 
RPOLIC 2777 70 
ELABI 1604 37 
WALK 560 19 

Table 7-1: Static Sizes of Translator Phases 

No effort was made to place the source code into some specific format, such as, elimination 

of comments or blank lines. Rather, the values for the sizes of source code were simple 

counts of lines of all of the appropriate files that make up the entry. 

The sizes of the loaded programs were calculated by loading them individually into a 

Franzlisp system. Unless otherwise indicated, the values for the Lisp part of the translator 

were made using interpretive Lisp programs on a Franzlisp interpreter, running on a Vax 

73Since the parser was generated by a parser generator and is written in Bliss, there is no value for the number of 
lines of Lisp the ML phase requires. Instead of the number of lines of Lisp, the number of lines of SOurce for the 
parser generator are given, The memory size is the resulting parser in OecSystem-20 kilowords. 

74This phase uses compiled Lisp code. It requires 31 kilobytes when not compiled. 
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11/780 with the Berkeley Unix 4.1 operating system. 75 

Component # Lines Lisp # Kilobytes 

Lisp System n /a  599 
Utilities 76 213877 55 
COMP 451 11 
LOOKUP 344 10 
MYLET 28 1 
SW 76 0.278 
TIMER 51 0.179 

Total 8° 

Tab le  7.2:  

118O3 885 

Static Sizes of Translator Components 

As one might expect, the bulk of the system consists of the sources concerned with 

elaboration (ELABI, ELABS and RPOLIC) which" together comprise about 6355 lines of Lisp, 

or about 54% of the system source. Similarly, these pieces require about 158 kilobytes or 

approximately 55% of the total system memory (excluding the underlying Lisp system). 

Although the memory size seems rather large, one should recall that most of the Lisp code 

is interpreted. Compiled Franzlisp is much smaller (and faster) than interpreted Franzlisp. 

Three pieces of the system were compiled: PURIFY, SW and TIMER. The memory size 

reductions ran between 80% and 97% for the resulting pieces. Thus a product ion Paragon 

translator that was fully compiled would be substantially smaller: between 57 kilobytes (80%) 

75Only three pieces were compiled: PURIFY, SW and TIMER. All measurements for these pieces refer to the 
compiled versions. 

76The utilities include a set package, a Lisp debugger, a trace package, a stepper package, a control procedure 
for running the translator, file handling functions, some special functions and macros for ensuring the program's 
compatibility with both Mactisp and Franztisp, access functions for internal data structures, control flow macros, 
string manipulation functions and error handling functions. 

77Some of the utilities were provided to me by various people. I have no source size measurements for these 
utilities. The given number represents the total lines of sources I had access to. 

78This component uses compiled Lisp code. It requires 1 kilobyte when not compiled. 

79This component uses compiled Lisp code. It requires 3 kilobytes when not compiled. 

80All phases and components of the Lisp Dart of system. 
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and 9 kilobytes (97%), excluding the underlying Lisp system. 8t Further, there is a great deal of 

similarity between the three pieces that perform elaboration, so a production design might 

combine them into a single piece of code, further reducing the final size of the translator. By 

comparison, the Pascal compiler on the same Unix system requires about 13 kilobytes of 

memory space and the C compiler requires about 10 kilobytes, 82 

7.3.2. Stat ic Measurements  of Some Programs 

Several example program fragments were processed by the prototype to measure the 

dynamic performance of the prototype. This section discusses the program fragments that I 

used for measuring the performance of elaboration with specifications and implementations. 

The program fragments used for measuring the performance of elaboration with realizations I 

defer until Section 7.3.3.3. 

Four kinds of program fragments were processed: the predefined environment for Paragon, 

some specifications of abstract data types, some implementations of abstract data types and 

some application programs that use abstract data types. Each set of test fragments is 

described, and then a table listing their static characteristics is provided. The sources for 

these programs are provided in Appendices E and F. 

Although some program fragments may not be translated without others, all of the figures in 

the tables represent incremental values. For example, an application program may require the 

predefined environment and some abstract data types to be defined, but the measured values 

for the predefined environment and the abstract data types are subtracted from the measured 

values for the entire program. The revised measurements are presented in the tables for the 

application program fragment. 

81Several attempts were made to compile the entire translation system. Several errors in the compiled code 
prevented the use of a compiled version of the entire translation system. Some of these resulted from the slightly 
different semantics of interpreted and compiled Lisp and some were untraceable compiler errors. With enough 
perseverance, the entire system could have been compiled, but such effort did not seem warranted for the limited 
number of tests. 

82One should remember that the Pascal and C compilers contain a parser and a final code generator which the 
Lisp part of the Paragon system omits. However, the Paragon system contains an additional tree builder in the 
PURIFY phase and an interpreter that the Pascal and C compilers omit. 
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7.3.2.1. Predefined Environment 

The first program fragment is the predefined environment that is declared in the universal 

environment, and is denoted Base in the tables. The Base program fragment includes the 

declarations of classes for integer objects and boolean objects, the declaration of classes that 

can be used as type constructors for pointers and arrays, and the class declarations required 

by the policy procedure. The corresponding procedures for arithmetic, relational operations, 

logical operations and transput are also declared. The program text for the predefined 

environment is provided in Section 6.2. 

7.3.2.2. Abstract Data Type Specifications 

I constructed two general purpose abstract data types for use in application programs: sets 

and lists. The design of both matched the design in Low's systems as much as possible [Low 

74]. Thus the specifications contain a large number of procedures, most of which are not 

used in the application programs, tn addition, the specifications also contain attribute 

declarations. The interpretation of the attributes is explained with the entire program texts in 

Appendices E.4 and E.11. Measurements referring to set specifications are denoted SetSpec 

in the tables. ListSpec entries in the tables refer to measurements performed on list 

specifications. 

7.3.2.3. Abstract Data Type Implementations 

For each abstract data type specification, I programmed several implementations in 

Paragon. Again, the design of the implementations was taken largely from Low's system [Low 

741. For sets, the following implementations were written: 

• An unsorted, singly linked list, SetULink 

• An sorted, singly linked list, SetSLink 

+ An unsorted array, SetUArray 

+ An sorted array, SetSArray 

• Shared elements with attribute bits, SetAttBit 

+ BTree, SetBTree 

The prototype measured the processing of the first five implementations. The program text for 

all of the implementations can be found in Appendix E.1. 
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The following implementations were written for lists: 

• Singly linked list, ListILink 

• Doubly linked list, List2Link 

• Array, ListArray 

The prototype measured the processing of all of the implementations. The program text for 

the list implementations can be found in Appendix E.2. 

Like their specifications, the implementations of abstract data types also contain attribute 

declarations which may be used by a policy procedure during the selection process. 

7.3.2.4. Application Programs 

For application programs, I chose programs that previously appeared in the representation 

selection literature and rewrote them in Paragon. Three sorting programs (Insrt2, Insrt3, 

Merge) were copied from Low's thesis [Low 74], a Huffman encoding program (Huffman) was 

copied from a SETL paper [Freudenberger 83]and a transitive closure algorithm (TransClo) 

was taken from Rovner's thesis [Rovner 76]. A simple program to find the maximum of a set 

(SetMax) was also written. The full text of the application programs can be found in Appendix 

F. 

7.3.2.5. Measured Sizes of Programs 

Table 7-3 presents some measures of the program fragments in terms of the number of 

source lines of the text, the number of TCOL nodes produced by the parser, the number of 

classes declared and the number of procedures declared. 

A glance at Table 7-3 above reveals that application programs are significantly shorter than 

abstract data type specifications and representations. This is due primarily to the absence of 

local class and procedure declarations in the application programs. The Huffman program 

does declare some local classes and procedures, and its size is significantly larger than that 

of the other programs. 
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Program Source Lines TCOL Nodes # Classes # Procedures 

Base 241 944 26 51 

SetSpe¢ 220 762 2 35 
ListSpec 232 788 2 39 

SetULink 294 1290 3 27 
SetSLink 313 1372 3 27 
SetUArray 227 800 2 27 
SetSArray 356 1906 2 27 
SetAttBit 334 1560 3 31 

List1 Link 465 2502 3 34 
List2Link 427 2510 3 34 
ListArray 290 1602 2 35 

Insrt2 47 168 0 0 
I nsrt3 45 153 0 0 
SetMax 35 127 0 0 
TransCIo 78 295 2 2 
Merge 91 406 0 0 
Huff man 220 980 6 8 

Total 3915 18165 59 377 

Table 7.3: Static Sizes of Program Fragments 

7.3.3. Dynamic Measurements of Translator 

The translation system was exercised in various ways to measure its performance while 

elaborating program text with specifications, implementations and realizations. Because each 

of these kinds of elaborations are used in different amounts in different circumstances, three 

different kinds of measurements were gathered, one for each kind of elaboration. 

7.3.3.1. Measuring Elaboration with Specifications 

For measuring elaboration with specifications, each program fragment was parsed and 

semantically checked which corresponds to processing the fragment from the ML phase 

through the ELABS phase. No representation selection or feasibly checking is appropriate, 

so the prototype operated on fragments that contained an empty policy and nothing in the 

main program to instantiate. The performance of the prototype as it operated on these 

program fragments is reported in two tables: Table 7-4 shows the phase measurements 

through the ELABS phase; and Table 7-5 shows the measurements for the GC, COMP, 
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LOOKUP and MYLET components. All the numbers represent seconds of CPU time on a 

VAX 11/780 interpreting Franzlisp. 

These tables give measures of the prototype's performance when doing semantic checking 

of a program. It should be noted that the measurements in the two tables are not mutually 

exclusive. For example, some of the time in the ELABS phase was spent doing garbage 

collection (GC), comparing objects (COMP), looking up identifiers (LOOKUP) and returning 

multiple values from Lisp functions (MYLET). Thus, the figures should should be viewed as 

different ways to break down the total time spent in processing the program. 

Program ML PURIFY NAME SETUPC SETUPP SETUPI ELABS Total 

Base 15 145 3 20 2 10 421 616 

SetSpec 13 158 083 7 4 8 790 980 
ListSpec 13 162 1 9 5 9 697 896 

SetULink 19 269 1 12 4 4 1207 1516 
SetSLink 20 297 0 12 1 5 1748 2083 
SetUArray 14 237 1 15 4 4 1585 1860 
SetSArray 24 479 1 19 4 5 2133 2665 
SetAttBit 22 353 1 18 6 5 1990 2395 

ListlLink 31 512 5 27 6 9 1951 2541 
List2Link 32 5t3 1 19 6 8 2226 2805 
ListArray 22 331 1 15 7 7 1323 1706 

I nsrt2 5 28 1 2 1 1 62 100 
Insrt3 4 34 0 0 0 1 40 79 
SetMax 3 45 1 3 1 1 78 132 
TransCIo 6 57 1 4 1 1 243 313 
Merge 8 100 0 3 0 0 604 715 
Huffman 16 223 0 13 6 0 1692 1950 

Total 267 3943 18 198 58 78 18790 23352 
Total % 1% 17% 0.1% 0.8% 0.2% 0.3% 80% 

Tab le  7- 4: Phase Measurements for Semantic Analysis 

From the table above and Table 7-3, we can calculate the overall performance of the 

semantic analysis at 10 lines of source per minute, or 47 TCol nodes per minute. A more 

detailed analysis is presented below. 

83 
alue of 0 means that the amount of time required was less than 1 second. 
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The parsing and bookkeeping phases consume a small fraction of the processing time: less 

than 3%. Although the elaboration with specifications (ELABS) seems to require over four 

times the time required by the input reader (PURIFY), one should remember that the PURIFY 

phase is compiled. Several interpreted versions of PURIFY were run on a subset of the 

program sources; the interpreted versions ran between 5.4 and 25 times slower than the 

compiled version. 84 If the ELABS phase were similarly compiled, one should expect a factor of 

5 to 25 speedup. Under a 5 fold speedup, the elaboration of Huffman (a 220 line program) with 

specifications would require about five and a half minutes. Although still a rather large value 

for processing, the speed becomes comparable to the processing required for file reading 

and minor tree manipulations. Assuming that PURIFY and ELABS still perform equivalent 

amounts of processing in a production-quality compiler, and given the speed of production. 

quality tree manipulators [Lamb 80], a produc-tion-quality Paragon compiler should be able to 

type check and semantically process a program quickly. 

Another way to analyze the performance of the translator is to consider how much time is 

spent by various components. Table 7-5 below gives some component measurements (along 

with a repetition of the total time required for semantic analysis). 

84The different interpreted versions use different combinations of macros and fexprs. The compiled version uses 
only macros. 
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Program GC COMP LOOKUP MYLET Total 

Base 308 157 110 114 616 

SetSpec 279 234 111 96 980 
ListSpe¢ 256 266 t00 101 896 

SetULink 456 988 154 148 1516 
SetSLink 632 996 240 293 2083 
SetUArray 577 344 252 193 1860 
SetSArray 777 727 321 241 2665 
SetAttBit 676 1305 290 293 2395 

List1 Link 767 1803 238 263 2541 
List2Link 831 1938 292 300 2805 
ListArray 496 541 221 149 1706 

I nsrt2 214 49 93 39 100 
Insrt3 52 0 69 71 79 
SetMax 62 0 87 24 132 
TransCIo 237 113 61 126 313 
Merge 452 265 171 192 715 
Huffman 991 791 320 326 1950 

Total 8063 10517 3130 2969 23352 
Total % 35% 45% 13% 13% 

Time for Semantics 

Table 7-5: Component Measurements for Semantic Analysis 

The times add to more than 100% because the components are not independent. For 

example, garbage collection (GC) and Lisp function evaluation (MYLET) occur throughout the 

COMP and LOOKUP components. 

Two interesting facts emerge from the data in Table 7-5: garbage collection consumes much 

of the processing time and comparing two objects is an important operation in the system. 

Each of these results is discussed below. 

Because the system is written in Lisp, it uses many lists to hold intermediate and temporary 

structures. For example, every time a procedure call or object instantiation is made, the 

environment in which the corresponding procedure or class is to be elaborated, is created by 

making a new list whose CAR is the newly created call or class instance and whose CDR is the 

call or creation environment. When the call finishes, or the object can no longer be 

referenced, the storage for this list that describes the new environment may be reclaimed. 

Normally, this reclamation may be done when the Lisp routine processing the call or 
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instantiation exits wl[h a conventionai stack discipline. Lisp has no such stack discipline for 

the created tists, so they must be garbage collected. The huge number of object creations 

and procedure calls in a typical program thus creates an enormous number of lists. 85 Another 

place where the translator creates a lot of lists and then discards them is during MYLET, 

where the results of a function are packaged in a list, the function returns, the list is taken 

apart and assigned to individual variables, and then the list is discarded. This occurred about 

a third of a mittion times during the experiments. A third occasion when there is a large usage 

of temporary lists occurs during object comparison, and is discussed in more detail next. 

Object comparison takes about half of all of the processing time according to Table 7-5. 

This seems to be partly the result of garbage collection problems, which are caused by 

normalizing operations, partly the cost of individual comparison operations, and partly the 

result of a large number of object comparisons. 

Since the comparison functions create many intermediate tists, a lot of garbage collection 

occurs during execution of the comparison functions. These lists are created because 

objects, which are represented as ~ists of simple objects, are subjected to several kinds of 

normalizing operations. For example, one normalizing operation is the removal of certain 

simple objects from each fist before performing an element-by.element analysis of the lists. 86 

Because each normalizing operation may require the creation of a new temporary list, there is 

an enormous potential for creating a large number of lists, each of which will need to be 

garbage collected, and the creation of each may cause a garbage collection. 

Object matching is also intrinsically expensive. As mentioned in Section 3.4.2.2, two objects 

may match if they have different number of simpre objects. The matching process will ignore 

some of the simple objects in the actual object during the matching process. The algorithm 

by which these holes are found could require an exponential number of test comparisons, aT 

This searching for holes is one of the reasons that the prototype translator spends 

approximately 2 tenths of a second per object comparison. Although the example in Section 

85The translation system processed approximately 25 thousand expressions, each of which contained at least one 
procedure call or object instantiation. 

88See Appendix A.3 for a complete discussion of how two objects are compared. 

87The number of tests is exponential in the number of simple objects in the actual object. ~n particular, if there are 
a simple objects in the actuat object and f simple objects in the formal object, then there are a choose  f ways that the 
objects may be compared. 
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3.4.2.2 is a bit contrived, the circumstances when a hole appears are quite common, as 

illustrated below: 

class universal is 
begin 

I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ; 

! Predefined Assignment classes 
J . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  o 

t 

class AssignableManager is 
begin 

class Assignable is begin end; 
procedure Assign(Assignable,Assignable); 

end; 

I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . 

i User's Main program 

class MainProgram is 
begin 

I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ! 

I Local "Type" Declaration 
I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  " 

class LocalObjectManager of AssignableManager is 
class LocalObject of Assignable is begin end; 

end; 

var L0M => new Local0bjectManager; 
var 0bj l  => LOM . new Local0bject; 
vat 0bj2 => LOM . new LocalObject; 

LOM.Assign(Objl,0bj2); 
end; 

end; 

The program above is an abbreviated version of the predefined environment which contains 

the predefined assignment classes and procedure, and the user's program. The user's 

program declares some kind of local objects that are also assignable. However, the parameter 

matching for the call of the Assign procedure has the same hole problem illustrated with 

Kitchens. Here it is the MainProgram simple object that is skipped. Both the TransCIo and 

Huffman programs have such local declarations. Because nearly every nontrivial program will 

contain local declarations that are assignable, this problem is recurrent. 

Even if object comparison did not require garbage collection and was intrinsically fast, the 

comparison operation is still a frequently used component and thus accounts for a large 

fraction of the processing time. Object comparison is performed on every object instantiation 

and procedure call. In these experiments, for example, about 50 thousand object 
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comparisons were performed. A combination of the garbage co{lection requirements and the 

frequency and complexity of the comparison operation accounts for the 45% of the 

translator's time spent doing object comparison. 

These probtems are not insotubJe. With some slight changes in the language, the number of 

normalizing operations during object comparison may also be reduced, thus eliminating some 

of the processing needed for object comparison. Such changes are discussed in Section 8.t. 

Further, inefficient garbage collection is not needed to reclaim intermediate lists. The 

comparison algorithm knows exactly when the intermediate list is no longer needed and thus 

when its storage can be reclaimed. The translation system could also merge the compare and 

skip-simple-object operations and not create the intermediate list. Therefore a production 

system wilt not spend as much time doing object comparison as it would in the prototype. 

7.3.3.2.  Measuring Elaboration with Implementations 

So far, the discussion of translator performance has onty considered semantic processing. 

A rather new kind of processing required by Paragon is feasibility checking. This ~hecking is 

performed by the ELABI phase, so several experiments were performed to calibrate the 

amount of work required for this phase against the amount of processing required for 

semantic checking, These experiments and their results are discussed in turn. 

The six application programs were translated under two sets of circumstances. Initially, 

each was checked for feasibility when no selections were performed for the variables in the 

programs. This represents the minimum amount of time necessary for feasibility checking 

since the fewest r, umber of procedure implementations will be considered. Under these 

circumstances, none of the programs were feasible. The application programs were then 

translated with a single available representation for each of the set and list abstract data types 

(SetUArray and ListArray), and with a policy that selected the one available implementation for 

each variable. Each program was then checked for feasibility, and in fact, all of the programs 

are feasible with these selections. Thus these experiments provide some measures of the 

minimum and typical 88 resources required for checking a program's feasibility. 

Table 7.6 below gives the raw data (in VAX 11/780 CPU seconds) for the experiments, along 

with some comparisons between the efforts for feasibility checking and semantic checking. 

88A feasible program is assumed to be typical 
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Program ELABS ELABI % of ELABS ELABI % of ELABS % of Infeasible 
(Infeasible) (Feasible) 

Insrt2 62 134 216% 451 727% 337% 
Insrt3 40 123 307% 453 1132% 368% 
SetMax 78 85 109% 228 292% 268% 
TransCIo 243 448 184% 958 394% 214% 
Merge 604 560 93% 31 O0 513% 554% 
Huffman 1692 893 53% 3798 224% 425% 

Total 2719 2243 82% 8988 331% 401% 

Table 7-6: Dynamic Performance of Feasibility Checking 

The data above reinforce some expectations about execution times for feasibility checking, 

especially as the proportion of executable statements in a program increases, as the 

possibility tree grows and as the implementation selections change an infeasible program into 

a feasible program. A more detailed discussion of these data follows. 

Because elaboration with implementations resembles the symbolic execution of a 

program, 89 one would expect that the higher the proportion of executable statements and 

object declarations to unexecutable class and procedure declarations, the more time would 

be spent during elaboration with implementations as compared to elaboration with 

specifications. Further, one would expect that feasible programs would require more 

processing than infeasible programs, since a feasible program would have procedure 

implementations for all procedure calls that would also have to be elaborated with 

implementations. This is borne out by the data. For example, Huffman contains a sizable 

amount of local class and procedure declarations and thus the processing required for 

checking tl~e feasibility of an infeasible version of Huffman by the ELABI phase is less than for 

its semantic checking by the ELABS phase. On the other hand, the two insertion sort 

procedures, Insrt2 and Insrt3, have neither local class nor procedure declarations, so the 

amount of time for their semantic checking is far less than for feasibility checking. 

One would also expect the amount of execution time spent during feasibility checking to 

increase as the size of the possibility tree increases. When a feasible program is elaborated 

with implementations, the entire call graph is traced, and thus individual procedures may be 

elaborated many times during the ELABI phase (once for each call where the selected 

procedure is used as the implementation), whereas each implementation is elaborated exactly 

89Although the statements in loops are elaborated exactly once and recursion is guaranteed to terminate. 
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once during the ELABS phase (when checking the declaration of the procedure 

implementation). Further, the deeper the call graph, the greater the time that is required as 

compared with ELABS processing. This is again borne out by the data where programs that 

perform sorting (Insrt2, Insrt3, Merge) require several times as much processing for feasibility 

checking as for elaboration with specifications. This is so striking here (62 vs 451, 40 vs 453, 

604 vs 3100) because the list and set operations that are used have internal calls to other 

procedures, thus these applications have a fairly deep possibility tree to be examined. 

The data also indicate that a feasible program generally requires more processing than an 

infeasible program. Typically, a feasible program has more procedure implementations to 

consider while an infeasible program may be missing some implementations. These data 

show an extreme situation; in practice, some infeasible programs may be closer in their 

processing needs to feasible programs if only a few implementations are missing. Under 

other circumstances, different implementations may have different call graphs, and thus an 

infeasible program could require more processing than a feasible program with different 

selection decisions. 

The disquieting fact from these data is that feasibility checking is quite expensive: it varies 

from approximately the same cost as semantic processing to three times the cost of semantic 

processing. If performed once, this would not be such a great burden, but the process of 

checking the feasibility of a program is used to associate attributes with nodes in the 

possibility tree. Recall that the paradigm for making selections has three steps: pick an 

implementation; elaborate the program with implementations; and then execute the attributes 

to gather information about the decisions. Considering many different implementations would 

require reelaborating the program with implementations many times, at possibly prohibitive 

cost. The compromise provided by the Paragon system is a facility for checking the feasibility 

of a block (see BindProcs in Section 5.4.2.1), thus limiting the examination to a single node in 

the possibility tree. In practice, this may not be sufficiently fast for considering many different 

implementations. 

7.3.3.3. Measuring Elaboration with Realizations 

Elaboration with realizations takes place when executing the policy procedure and when 

executing attributes. Because policies and programs can vary widely, there is no general 

measurement of the time required by any particular policy operating on a particular program. 

Instead, some measurements were made of the relative speeds of some basic constructs. 
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The six measu~men~ in Table 7-7 on page 251 w e ~  made during the execution of small 

policy procedures ope~t ing on a null application program. To provide a baseline, the 

execution of a policy with two declarations (for I~er use) was measured. Specifically, the 

following policy was executed: 

procedure po l i cy ( i : i ns tance )  is 
begin 

var j => im new integer; 
vat k => im . new integer; 

end; 

To minimize the effects of calling the policy procedure, the other tests were constructed by 

placing the construction of interest in a for loop. The basic shell with a for loop is: 

procedure po l i cy ( i : i ns tance )  is 
begin 

var j => im new integer; 
var k => im new integer; 

for j in I . , I000 do 

end for ;  
end; 

In the first nonempty test, the policy procedure declares a local procedure and executes it. 

The source for this third test is 

procedure po l i c y ( i : i ns tance )  is 
begin 

procedure TestProc; procedure TestProc is begin return; 
vat j => im new integer; 
vat k => im . new integer; 

for j in I . . I000  do 
TestProc; 

end for ;  
end; 

end; 

The fourth test adds some more complexity: a single assignment statement. Recall that a 

literal is actually a function call, as is the assignment statement, so two procedure calls are 

being made for each execution of the assignment statement. Unlike the previous example, 

the procedure Assign also has parameters, which makes its call more costly to execute than 

that in the previous example. 9° The complete text is shown below: 

90The fully expanded name expression for the call would be IM.Assign(k,IM.Litera/(Special_Make_Literal(1))). 
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procedure p o l i c y ( i : i n s t a n c e )  is  
begin 

var j => im . new in teger ;  
var k => im . new in teger ;  

fo r  j in 1. .1000 do 
k := 1; 

end f o r ;  
end; 

So far, the policies have dealt with nonattribute procedure calls. Since policies may also use 

attributes, I performed an experiment to measure the time required for an attribute call. 

Initially, a baseline policy was executed. Because attributes always return an object, the 

baseline must also accommodate a returned value so that the way in which the return value is 

used will not affect the timings. This is accomplished by placing the attribute call in an / f  

statement, so that the returned value is used as the test. The baseline can contain the 

equivalent of the returned value in the same i f  test, thus isolating the differences between the 

baseline and the sample program to only an attribute call. The actual text of the baseline and 

the sample programs are shown below: 

I This is the basel ine ; 

procedure p o l i c y ( i : i n s t a n c e )  is  
begin 

var j :> im . new in teger ;  
var k => im . new in teger ;  

fo r  j in 1 . . I000 do 
i f  True then f i ;  

end f o r ;  
end; 

class mainprogram is 
begin 

attribute procedure MyAttribute return Booleans.Bit is 
begin return True; end; 

end; 
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I The sample containing an a t t r i bu te  ca l l .  
| . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . .  ; 

procedure po l i cy ( i : i ns tance )  
begin 

var j => im . new integer; 
vat k => im . new integer; 

is 

for j in I..1000 do 
i f  i .MyAt t r ibute return (Booleans. B i t )  then f i ;  

end for ;  
end; 

c lass  mainprogram is 
beg in  

a t t r i b u t e  p rocedure  M y A t t r i b u t e  r e t u r n  B o o l e a n s . B i t  is  
beg in  r e t u r n  True;  end; 

end; 

The results of the all of the experiments are tabulated below: 

Policy Policy Execution Time 

2 Declarations 33 
1000 Iteration For Loop, empty 689 
1000 Iteration For Loop, single proc, call 1422 
1000 Iteration For Loop, assignment stat. 5117 
1000 Iteration For Loop, if statement 1570 
1000 Iteration For Loop, attribute call 3376 

Table 7-7: Dynamic Performance of Policy Procedure Execution 

From these experiments, we can deduce the time required for the continuation of an 

iterator, the invocation of a procedure, the passing of a parameter and the invocation of an 

attribute. A discussion of these calculations is presented below, followed by a summary in 

Table 7-8. 

Relatively little time is spent elaborating the empty policy with two declarations: 33 seconds. 

The elaboration of an iterator adds another 656 seconds of execution time, about half a 

second per iteration of the for loop, which is only continuing an iterator. 91 A single procedure 

call adds another 733 seconds, or about three-quarters of a second per loop. Thus a 

parameterless procedure call is about 50% more time consuming than restarting an iterator. 

91Recatl that the notation 1_1000 is syntactic sugar for the invocation of a predefined iterator, 
IM.Sequence(1,1000). 
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The assignment statement adds another 3695 seconds, or about 3.7 seconds per loop. 

However, this measurement really corresponds to three procedure calls. In the prototype, 

literals are implemented in a two procedure call process. The first procedure call emulates the 

construction of the special literal functions mentioned in Seclion 3.3.6 by taking the integer 

literal as a string and returning a Word object. The second procedure calf is the Literal 

procedure which, as defined by Paragon, takes the Word object and returns an Integer object. 

The Integer object in turn is the second parameter to the third procedure, namely the Assign 

procedure. Thus there are three procedure calls and a total of four procedure parameter 

bindings: one for the literal string, one for the Value procedure, and two for the Assign 

procedure. If each procedure call without parameters accumulates733 seconds, then 2199 of 

the 3695 additional seconds are used for the three procedures' execution overhead and 1496 

seconds are used to bind four parameters during the thousand iterations of the loop, or about 

0.4 seconds per parameter bindingl 

The last two policies are used to measure the execution time of an attribute call in the for 

loop. Because the attribute body contains an expression which is identical to the expression 

in the ff statement of the baseline, namely True, we can subtract the time of the fifth test from 

the sixth test, giving 1806 seconds for a thousand executions of the attribute call. Thus each 

attribute call required about 1.8 seconds. 

These results are summarized below: 

Function 

Iteration Continuation 
Parameterless Procedure Call 
Parameter Binding 
Parameterless Attribute Call 

Unit Execution Time 

0.66 
0.73 
0.37 
1.81 

Table 7-8: Unit Execution Times of Policy Procedure 

Although the prototype's speed is too slow for interactive use, its speed is sufficiently fast 

for testing the policy procedures used in these experiments in a batch-mode operation. The 

primary reason for the slow speed is the implementation of the interpreter. The program tree 

is merely walked as necessa:ry to perform the required actions. In addition, the added level of 

Franzlisp interpretation slows execution of Parago n sources. However, Paragon procedures 

are no more complicated than Pascal or Simula procedures and so a production-quality 

translator that generates native machine code should do as well as compilers for those 

languages. 
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7.4. Conclusions about the Prototype 

The implemented prototype served its purpose, namely as an illustration that the type 

hierarchies can be added to current languages without radical changes to the compiler 

design. Although the current implementation is slow, the design is conventional, and by 

comparing the processing requirements consumed by new features of the system, for 

example, ELABI, with well understood features, for example, ELABS and PURIFY, one can 

conclude that a production quality version of the new phases should not consume more 

resources than the more conventional parts of the compiler. 



Chapter 8 
Retrospective on the Language Design 

and Implementation 

This research was predicated on my belief that type hierarchies provide a natural way to 

express the refinement process for abstract data types, from specification, to implementation, 

to selecting a particular implementation. One expression of this belief is the current Paragon 

design which uses type hierarchies as the basis for its abstract data type features. 

On page 20, Chapter 2 provided four sets of specific goals that a language design using 

type hierarchies should meet. The first two sets of goals dealt with the ways that data 

abstractions could be specified and used. The third set of goals direct the way that 

representations for a data abstraction should be selected. The fourth set of goals outlined 

some requirements that an implementation of a system based on type hierarchies should 

meet; tn this chapter, the Paragon design will be evaluated with respect to these goals. Where 

imperfections remain, some suggestions for future work are given. 

8.1. Abstract Data Type Features 

Several goals were presented for the abstract data type features: specifications could be 

refined; related specifications could be combined in a single module; multiple 

implementations for an abstract data type could be written, multiple implementations for an 

abstract data type could be used simultaneously in a program; multiple implementations for 

an abstract data type could interact in a program; and a single representation could be written 

for multiple specifications. 

These goals were met by the use of classes to define a type hierarchy. Classes allows a 

programmer to express generalizations. These generalization classes are inherited by 

specification classes to provide class declarations that serve as specifications for variables. 

Further refinements of classes, that is, subclasses, can add implementations of the procedure 
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specifications provided in the generalization and specification classes. These subclasses 

serve as implementations for variables. 

Nested classes support the object-manager model of programming. This model uses one 

class declaration to define a manager of objects and a nested class declaration to define the 

individuals handled bY the manager. The use of nested classes to implement the object- 

manager model also allows the managers to be inherited by one class while keeping the 

individuals in separate classes. This shared manager may then have access to both 

representations of the individuals, Thus the use of nested classes allows a programmer to 

express multiple representations of a data type that can not only be used simultaneously in a 

program, but may interact as well. 

The packaging of abstract data types in classes also permits details of refinements to be 

introduced at the proper time. A Set could be specified as holding any kind of element while 

each implementation could specify exactly what additional properties were required of the 

element for that implementation of Set to work. 

Many of these effects come naturally because the same mechanism, namely the class 

declaration, is used for both managers and individuals. For example, class nesting and 

inheritance permits procedures to be declared in shared managers where they can affect 

different individuals. Further managers are treated no differently than other instances of 

classes and so may be created as necessary, passed as parameters and returned from 

functions. 

My major criticism of the class feature in Paragon is that it does not correspond exactly to 

the object-manager model of programming. Instead, the classes may be used to simulate this 

model, much in the same way that goto and if statements may be used to simulate more 

abstract control statements such as while, case and repeat. Like the goto features in 

assembly languages, the class features in Paragon are probably too general to act as the only 

data structuring mechanism in the language. The problems with this generality becomes 

evident upon reflection of some of the implications of the design: 

o Constraints are required in procedure specifications for refining procedure 
specifications along with their managers and individuals (Sections 3.5.4 and 
4.4.1). 

• The expressions in return expressions of procedure declarations must use 
identifiers declared in parameters to properly express the return object of the 
procedure (Section 4.4.2). 
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Comparison of objects is complicated by holes in objects. Holes appear in 
objects, because of intervening declarations of classes and procedures between 
specification and implementation classes (Sections 3.4.2.2 and 7.3.3.1). 

• The language is extremely verbose (every example, also Sections C.4 and C.5). 

• Specifications may only be added to the hierarchy, never removed. Therefore the 
hierarchy becomes very rigid and difficult to change (Sections 4.4.4 and 4.4.5). 

• Implementations are difficult to organize in useful fashion for sharing (Section 
4.6.2). 

One possible approach towards solving these problems would be to provide more explicit 

support for the object-manager model. Some salient features of this support include: 

• Explicit distinction between managers and individuals; 

• Explicit distinction between specifications and implementations; 

• Close the scopes that define managers; 

• Explicit separation of types and objects; 

• Explicit import and expor: lists for the encapsulation mechanism. 

• Implicit combining of managers for implementations; 

• Implicit use of managers in expressions; 

These features would eliminate the need for nested classes and the all of the notations and 

semantics that is required for them. Further, these features eliminate differently sized objects 

so object matching should be much faster. The use of explicit export and import lists can help 

reduce the cost of feasibility analysis by limiting the possible interactions between 

representations. The implicit combining of managers and the implicit use of managers in 

expressions should make the language more concise than Paragon. The separation of types 

would eliminate the bizarre run-time error where an indefinite instance is  used as an 

environment when invoking a procedure. Instead, compile-time analysis could guarantee that 

a definite instance was present when necessary. 

A language design that includes those suggestions might be able to avoid many of the 

problems that befell Paragon. Without such a complete language, however, I would hesitate 

to state that those specific criteria are enough to ensure a consistent and concise language. 
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8.2. Describing and Selecting Abstract Data Types 

Another set of goals for the design of Paragon is that a programmer should be able to 

describe and select abstract data types without giving direct access to the implementation. 

Attributes, policies and possibility trees provide the features that allow the programmers to 

describe and select abstract data types. 

8.2.1. Attributes 

Attributes provide a way to describe abstract data types, especially if the specification 

contains an attribute that may be redeclared by the implementations. The programmer may 

then use attributes to describe the ways in which implementations differ while protecting the 

internal details against unauthorized access. 

The inclusion of a programmer controlled facility for describing data types is a significant- 

departure from data abstraction languages. Usually, only predefined types have descriptive 

information available for the different implementations. Thus the attribute facility in Paragon is 

quite innovative. 

Unfortunately, the attribute facility is very verbose. The kinds of information that attributes 

provide are usually very simple: a formula that defines the amount of space required by a 

representation; whether performance measurements are being carried out; whether the 

implementation is a debugging version. Most representation selection systems use a specific 

format for encoding this data in a readily usable format. In Paragon, general procedures must 

be written for any piece of information, even simple boolean values. Thus a large amount of 

program text is consumed providing very little information. An approach for dealing with this 

problem is presented in Section 8.2.7. 

Another problem with attributes is their distributed nature. A programmer cannot readily 

determine what sorts of representation information are available for an abstract data type 

without reading all of the implementations of that data type. Unlike most representation 

selection systems, the representation description is stored with the representation and not 

collected in some place external to the representations. Further, there is no guarantee that all 

representations have the same attributes. If one wants to perform a space optimization 

algorithm in the policy, it would be helpful to guarantee that each representation provides a 

measure of the space it required. Unfortunately, there is no such method in Paragon for 
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insisting that some set of classes all provide the same set of attributes. The compromise 

provided by the language is the dynamic selection of attribute procedures. If one wants all 

representations of an abstract data type to contain a certain attribute, one declares that 

attribute in the specification. This attribute declaration then serves as a default value. Should 

any implementation not declare the needed attribute, the attribute declared in the 

specification can be used by the policy. 

An alternative design for attributes would require attribute specifications and 

implementations just like nonattribute procedures. This has two problems. First, some groups 

of implementations may have attributes that are not meaningful to all implementations. 

Therefore it is not appropriate for all implementations to declare that attribute. For example, 

one may want to include the notion that an implementation performs timing measurements. 

Only those implementations that have measuring capability should contain attributes that 

describe the kinds of measurements that are performed, not all implementations. 

A second problem is the size of change required when a new attribute is added because of 

new implementation. Suppose that a new implementation were added that contains a new 

facility: the new implementation measures performance. No other implementations measure 

performance. One would want to add an attribute to that new implementation describing the 

fact that it measured performance. If specifications and implementations for attributes were 

required, then the original specification of the abstract data type and every other 

implementation of the abstract data type would have to be changed to add a specification or 

implementation, respectively, for this new attribute. Because the addition of a new 

implementation should rot cause such a drastic modification of existing implementations, the 

approach of using attribute specifications and implementations was rejected. 

8.2.2.  Policies and Possibility Trees 

The design of Paragon included a goal of allowing automatic selection of representations. 

This is achieved by the policy procedure, which provides the programmer with the ability to 

specify the criteria for making representation choices. The translation system uses the policy 

to make the actual representation selections for variables. The primary motivation for the 

design of the current system was to separate policy and mechanism in the same sense as 

Hydra [Wulf 74]. t feel that selecting out particular syntactic features of the language for the 

selection mechanism, such as loop depth, would bias the selection strategy. However, the 

more features that are made available by the selection mechanism, the greater the 



Section 8.2.2 Describing and Selecting Abstract Data Types 260 

convenience for the programmer. One extreme of this situation exists in current compilers: a 

programmer merely specifies that a program should be optimized for space, leaving to the 

compiler all of the decisions as to how to make a procedure space efficient. Yet all of the 

goals for integrating representation selection with data abstraction suggest that the 

programmer should be deciding how selections should be made, not the compiler. Therefore 

the translation system should provide the programmer with data about the program and let 

the programmer institute whatever policy is appropriate. The extreme design is to provide the 

policy writer, that is, the programmer, with complete access to the parse tree. Such an 

approach turns the policy writer into a compiler writer, which is considered too inconvenient 

for the typical programmer. Thus current design of Paragon reflects a compromise to relieve 

the tension between flexibility and convenience. 

The construction of a possibility tree to represent the program and the execution of a policy 

procedure to make selections are features that attempt to provide the programmer with 

enough facilities to describe popular selection strategies without requiring the programmer to 

be a compiler writer. As shown in Sections 6.5 and 6.9, many different selection strategies 

can be written. Thus the Paragon design subsumes and generalizes many previous 

representation selection systems. 

However, the integration of the selection facilities with the abstract data type features has 

several problems. At best, the selection facilities represent further compromises between 

completeness and convenience. These problems can be grouped into three categories: 

descriptions of the program's variables, descriptions of the program's structure, and storage 

of intermediate selection decisions. 

8.2.3. Anonymous Possibility Tree Nodes 

Variables in a program are described by nodes in the possibility tree. But the policy 

procedure and possibility tree provide only anonymous descriptions of the program's 

variables and implementations. Because of this anonymity, the policy procedure can either 

deal ~in only generalities, or the programmer has to provide many obscure attribute 

procedures to describe surreptitiously the variable declarations in the program. Because a 

policy procedure may wish to only deal with certain variables or certain uses of a class, a 

clearer mechanism is needed. For example, a programmer may know that only the variable 

Symbo/Tab/e is important and may wish the policy procedure to consider carefully only that 

declaration, choosing any feasible implementation for all other variables. A programmer may 
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also wish to write different kinds of policies that work on certain kinds of specifications. One 

example is a policy that can deal well with selecting set implementations or list 

implementations. To use such a policy, it is necessary to isolate those variables in the 

program that are set or list variables, yet all variable declarations look alike to the current 

policy procedure. A new mechanism should provide direct information about the program's 

variables' identifiers and specifications, and about the identities of all class declarations, 

The reason why the design of this new mechanism is difficult is scope rules. The policy 

procedure is executed inside of the universal environment, in which all of the policy's 

identifiers are defined. The class and variable declarations that are manipulated by the policy 

procedure usually exist in nested scopes that are generally inaccessible to the policy 

procedure. Thus there is no convenient way to associate the identify of classes or variables in 

the policy procedure with specific declarations. In the current design, this mapping is 

provided through the possibility tree and the use of doppelgangers. 

tn other representation selection systems, this scope problem can be minimized since only 

one scope, the main program, is analyzed. Thus a special rule can permit the selection system 

to examine the one scope. In Paragon, the selection process is applied also to local 

procedures and local data of objects, which gives rise to the possibility tree and nested 

scopes. Therefore the design of Paragon considers a larger problem than other 

representation selection systems. I believe that using some abstract representation of the 

program, such as the possibility tree, is the appropriate data structure for making selection 

decisions. However, the information represented in the possibility tree is incomplete and 

anonymous. Therefore more work is needed to provide a more complete data structure and 

to include specific knowledge about the program's declarations by name rather than by 

reference. 

8.2.4. Parse Tree Availability 

The second problem prohibiting convenient use of the selection system is the lack of access 

to the parse tree of the program. Instead, the writer of a policy sees a possibility tree, which 

bears resemblance to a call graph. There are many natural questions that can be answered by 

examining a parse tree and that a policy writer might want to ask: 

• tn what order are procedures called? 

• Are some procedures never called? 
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• Are there constants in some parameters? 

• Is one variable always used in a certain position of a procedure? 

• Is a procedure conditionally executed? 

• Is a procedure inside of a loop (Possibly an "inner" loop)? 

At a more general level of analysis, a policy procedure may wish to perform some kind of 

control flow reasoning about the program to use some special implementations when 

appropriate [Hisgen 82], to determine if some constants may be folded which in turn may 

affect an implementation decision, and to perform assertion propagation in an attempt to 

supplement attribute-procedure information. Clearly, a piece of the program that is in an 

inner loop should deserve more attention than a piece of the program that is not. Yet, the 

policy cannot know which pieces of a program are in such a location. Typical compilers 

perform these kinds of analyses to determine low level selection details. Higher level 

decisions, such as whether to use a binary tree or a hash table for an implementation, can 

also benefit from this information. 

Some of these questions can be answered by careful, painstaking analysis of program using 

the pattern-matching statement. This seems to be a poor substitute for a rather direct 

question. Similarly, the translation system provides a predefined procedure that returns the 

number of a times a procedure is called instead of the ability to detect inner loops. In 

principle, this procedure might invoke a performance verifier as suggested by 

Shaw [Shaw 79] but in practice no such facility exists. The current system merely asks the 

programmer for the answer. More realistic approaches in actual systems use a heuristic such 

as loop depth, a symbolic analysis of the program [Kant 83] or a limited kind of simulation of 

the system [Low 74]. None of these approaches were added this system. 

Other kinds of information cannot be derived from the possibility tree, even with careful and 

contrived use of pattern matching and attributes. Current compilers gather this information 

during a flow analysis of the program, during which certain assertions are proposed and 

propagated through the parse tree and call graph. The current system does not readily admit 

the collection of. such information. Some propagations require intimate knowledge of the 

operations whereas all operations in Paragon are identically content-free (to the selection 

algorithm). Many assertions interact strongly with the flow graph of the program through 

loops and conditions, none of which are available to the policy writer. All of these problems 

represent future research possibilities for representation selection systems. 
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8.2.5. Decorating the Possibility Tree 

The third major inconvenience in the current selection mechanisms isthe presentation of 

the program structure in the possibility tree. There are two problems with this presentation: no 

new information may be added to the tree, and the tree may not be altered. The first problem 

is fairly easy to solve; An alternative design that permits the programmer to add arbitrary 

decorations to the tree is provided in Section 5.4.2.2. 

However, the fact that the structure of the possibility tree is under control of the translation 

system alone and not the policy is a more difficult problem. Through the use of attributes, a 

policy may determine that some tree rearranging is appropriate, eliminating some procedure 

calls, substituting one for another, combining variables, and so on. However, the translation 

system does not permit the policy to change the tree. Doing so violates the informal 

specifications for the Instance class. 92 One alternative is to provide the programmer with 

direct access to the parse tree which the policy could then manipulate. When a programmer 

changes the possibility tree, the corresponding program would be transformed as well. This 

alternative would eliminate the idea of doppetgangers as well but forces the policy to 

resemble a compiler phase, a situation that was a priori rejected as being too complex for 

convenience. Thus the compromise represented by the Paragon design allows the possibility 

tree to be changed only by the translation system during elaboration with implementations. 

Several approaches for solving the shortcomings in the sections above center on different 

models for making representation selections. Several of these approaches, and their 

motivations, are described. 

8.2.6.  Simpler Models 

At an empirical level, it is still not clear that multiple representations of abstract data types, 

let alone multiple and simultaneous representations, have any practical value when dealing 

with moderately-sized programs. Further, there is little empirical evidence that any selection 

that is made should be determined at compile time. If true, these observations would .suggest 

a very simple model for making selections of representations. 

92The syntax of Paragon allows the policy to assign any references it desires to the pointers in the tree. However, 
if such general references were permitted, the underlying translation system would no longer guarantees that the 
tree will properly match the doppelgangers in the program being analyzed. 
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It is difficult to show empirically that moderately sized programs do not use large numbers of 

representations. Some simple observations are possible: None of the example programs in 

this thesis, which were drawn from the representation-selection literature, really contain a 

large number of the same data structure that requires radically different implementations. The 

literature on abstract data types does not seem to require multiple implementations as welt. 

For example, in a widely referenced Clu paper [Liskov 77], there is only one use of each 

abstract data types: wordbag, wordtree and sortedbag. If no more than one instance of each 

abstract data type is present in a program, then there is no need for more than one 

representation to be present in the program at the same time. Further, there is no clear need 

for more than one representation to even be defined. 

There are two places where one does find multiple instances of objects and multiple 

representations of those instances: in systems with dynamic selection of representations and 

in systems where the number of abstractions is limited to a small collection of predefined 

objects. 

The applications that use multiple representation of objects make their selection based on 

some kind of input data, and perform the selection during object creation. For example, as a 

compiler builds a syntax tree of a program, it may pick different representations of symbols for 

a symbol table, or different expression nodes for the abstract syntax tree [Sherman 80]. 

Another example is contained in the Smalltalk system. Here, the entire graphics facility is 

geared towards the dynamic selection of an appropriate representation of a "displayable" 

object [Rentsch 83]. In both of these systems, there is no need for a separate selection 

system, since the program explicitly chooses an appropriate representation based on factors 

beyond a selection system's realm of knowledge. 

The other place where representation selection seems important is when a language or a 

system provides very few abstractions that have to be used in many ways. This happens in 

Fortran, where numbers and arrays are the only data abstraction mechanism provided, in data 

base systems, where tables are the only data abstraction mechanism provided, and in SETL, 

where sets are the primary data abstraction mechanism. Because these abstractions are 

used so heavily, there is a significant advantage to having multiple representations for them. 

For Fortran, a wide body of literature has been developed attacking this specific problem of 

selecting an appropriate representation for integers, both for the size of the integer and the 

memory placement of the integer (which are orthogonal aspects of an integer's 
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representation) [Leverett 81]. Similarly, the selection problem for data base systems has been 

discussed for years [Gotlieb 74, Smith 77] and the implementations of SETL have included a 

large amount of processing for choosing an appropriate set implementation under many 

differem circumstances [Freudenberger 83]. In these circumstances, the selection system 

may be simplified by making it more specialized. By needing only to concern itself with 

integers, or tables, or sets, it may provide explicit facilities for manipulations of those kinds of 

objects and their operations. With the need to express all possible data abstractions and their 

uses, the selection mechanism becomes general and difficult to use. Thus a restricted domain 

could simplify the system. 

8.2.7. External Selection Language 

Although there may not be a great need for automated selection at compile time, there still 

exists a need for manual selection of some data types. For example, one can think of a 

terminal as being an abstract data type and different representations as being different 

manufacturers' models. A user would like to manipulate an abstract terminal and later 

manually associate a specific terminal driver with the abstract definition so that the program 

works on the terminal that the programmer is currently using. 

Such an association should be provided by an external selection language. A large amount 

of work has already been performed on the syntax and semantics that an external selection 

(or configuration) language should contain, so a discussion wilt not be presented here. The 

interested reader may examine some of the previous surveys [Schwanke 82, Tichy 80]. 

However, the use of an external selection language is not appropriate in all circumstances. 

When simple module or configuration selection is needed, this approach works well. For 

more general selection algorithms, the external selection language must contain some 

notions from the programming language so that it can manipulate the program objects. For 

Paragon, this includes variable declarations, procedure implementations, and classes. 

Similarly, the programming language part might have to contain some elements of the 

external selection language since it must be able to describe the different properties of the 

implementations and representations. In the past, this approach has been limited to mere 

naming conventions, where some relation is defined between the names of program entities, 

such as class names, and the names in the external selection language. Therefore most of 

these other issues have not been addressed, but are areas for future research. 
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8.2.8. Program Creation Systems 

Another approach to representation selection is through the use of a program generator, 

either table driven like the PQCC system [Leverett 80, Wulf 80] or expert system driven, such 

as PSI [Barr 82]. These systems create a program, along with any necessary abstractions, 

from some description of the task to be completed. Since the program creators have all of the 

information available about the program that exists, these systems could also make 

representation choices based on the same information. In many respects, such an approach 

mimics the manual selection of representations, since in both situations, the program creator 

is also performing the representation selection. The motivation for separating the tasks of 

program development and representation selection is no longer present. A program creation 

system does not become bored or make clerical mistakes during the refinement process, 

whereas people do. Thus a separation of tasks that is useful for people may not be 

appropriate when those tasks are performed by machine. Under these circumstances, a 

representation system would be integrated in the program creation system, and not a 

separate system as in Paragon. 

8.3. Automatic Processing of Paragon Programs 

The fourth set of design goals requires that Paragon programs should be compilable. The 

existence of the prototype translator provides tangible evidence of attaining this goal. The 

entire language can be semantically checked, representations chosen and the resulting 

program run. Further, very stringent requirements are place on the translator: each procedure 

call and object instance may have different implementations; for every procedure call and 

object instance, the translator must guarantee that a consistent implementation exists; no 

run-time selection of implementations is permitted. These specific requirements for the 

translator affected the design of the language and the speed of the resulting translator. 

The concept of the three kinds of elaborations is one of the innovations that resulted from 

the compiler requirements for Paragon. To my knowledge, Paragon is the first language to 

define elaboration with implementations as a way of ensuring (and expressing) a program's 

feasibility, that is, as a way to guarantee that a program has all of the necessary 

implementations for execution. 

But with the separation of a program's semantics into three elaborations, and with the 

requirement that elaboration with specifications and implementations must occur before 
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elaboration with realizations, some programmer convenience is sacrificed. First, 

heterogeneous data structures are difficult to construct. Second, the global analysis required 

by feasibility checking makes translation slow and difficult to partition. 

8.3.1. Heterogeneous Data Structures 

First, the way that a procedure call is elaborated with specifications makes heterogeneous 

data structures difficult to construct. The difficulty is the direct result of the requirements for 

automatic processing of programs, in particular, the requirement that the single return type of 

a function be statically determined. As shown in Section 4.4.3, the elaboration algorithm 

cannot always determine the exact type of the returned object when more than one kind of 

object may be returned. 

One alternative for solving this problem is to permit the programmer to qualify the results of 

name components. This is done in Simula through the use of the QUA notation (read 

qualified). In Paragon, one might write f(x) quafif ied as Matrix to specify that the return object 

of f(x) should be considered to be a Matrix. In general, this assertion must be checked at run 

time, hence the adoption of this feature violates another goal of guaranteeing no run-time 

checking or selection. 

Once a "qualifying" feature is added, Paragon should also include a way to test the type of 

an object. As suggested in Section 6.9.4, this could be done by allowing constraint 

expressions to appear anywhere that other expressions may appear. 

8.3.2. Global Feasibility Checking 

A second problem with the translation requirements of Paragon is that feasibility checking, 

that is, elaborating a program with implementations, requires a global analysis of a program. 

One would like to perform small amounts of separable processing during the analysis of a 

program, such as the processing of a single procedure or a single class. Instead, all of the 

calls and object instances must be examined as a whole to determine program feasibility, 

which causes two problems. First, elaboration with implementations is inefficient. As 

documented in Table 7-6, feasibility analysis can require three times as much processor time 

as semantic analysis. Second, the required global analysis renders separate compilation 

nearly impossible. Usually one can accomplish separate compilation by extracting some small 

part of each separately compiled piece of a program which can be easily checked with other 
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separately compiled pieces. Because Paragon permits different calls of the same procedure 

implementation (and different instantiations of the same class) to use different implementation 

selections for internal variables and procedure calls, the entire implementation of procedures 

(and classes) must be completed elaborated each time they are used to ensure program 

feasibility. In short, a separate compilation facility for Paragon would apply only to elaboration 

with specifications, and a rather sophisticated loader would have ~.o perform elaboration with 

implementations to ensure feasibility. By contrast, current loaders can usually perform this 

analysis by merely resolving external references. 

One possible solution to this problem would be to force representation selection for each 

use of a procedure implementation and class to be identical. This would allow the translation 

system to process a single declaration independently of its use, and hence permit separate 

compilation. This would also simplify the possibility tree, since only a single block would be 

considered at a time. There would be no need to perform selection of local procedure calls or 

class instances and so they could be removed from the tree. 

This solution was rejected for two reasons: it eliminated general procedure implementations 

and it removed the ability to exploit type parameters. 

If every procedure implementation had exactly one statically-determined representation 

choice made for it, then general procedures would be useless. Recall that a general 

procedure is one that only uses abstract properties of its parameters, such as the Intersect 

procedure below: 

procedure Intersect(L:Set,R:Set) return Set is 
begin 

var i => IM . new Integer ;  

i f "  IsMember(L, i )  then 

end; 

A single implementation choice for the call of lsMember would force a single implementation 

choice for L or else probably be infeasible. Both circumstances are unacceptable. Instead, 

the implementation of IsMember should be based on the implementation of L, which can 

change from call to call. 

The second reason for rejecting the single implementation of locals in procedures is that I 

wanted to permit different implementations of local variables when type parameters are used. 
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In the example for APLSymbolTable in Section 4,4.3 (on page 81), the local variables inside of 

(hypothetical) implementations for the Insert procedure may use different implementations 

that depend on the object passed as a parameter. If exactly one representation were 

permitted for local variables and procedure calls in each class and procedure implementation, 

then the Insert procedure could not contain a different local variable when the symbol table is 

created to hold integers than for when the symbol table is created to hold matrices. Thus 

efficiency of feasibility checking can be obtained at the expense of program inflexibility. 

Paragon makes a different tradeoff, and allows a flexible set of selection choices at the 

expense of a large amount of feasibility checking, 

8.4. Summary 

The significant contributions of this thesis can be grouped into two categories: 

contributions dealing with language support for abstract data types and contributions dealing 

with representation selection. 

8.4.1. Contributions: Abstract Data Types 

Paragon illustrates several innovations using the type hierarchy facility for the specification 

and implementation of data abstractions. Some of these innovations come directly from the 

use of the type hierarchy, other comes from the integration of other standard programming 

language features, such as parameters, with the type hierarchy. Four of these innovations are 

discussed below. 

8.4.1.1. Refining Specifications 

The use of multiply inherited classes and the separation of procedure specifications and 

implementations allows the programmers to write very general specifications and later refine 

the specifications without adding any implementation details. For example, one may start with 

the specification that an object may be assigned, then later add specifications that the object 

is ordered, and finally add specifications that the object is an integer. Thus Paragon provides 

a general mechanism for writing and refining specifications. The different refinements of 

specifications are especially useful in parameters, as illustrated by the discrimination-net 

implementation for sets discussed on page 89. 
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8.4.1.2. Implementing Abstract Data Types 

The class hierarchy and the parameter matching rules provide a new way to refine 

specifications into implementations of abstract data types. These features allow a 

programmer to write multiple implementations of abstract data types that may be present 

simultaneously in a program. Because each refinement for an implementation is named, there 

is a natural way of distinguishing between different concrete implementations and of defining 

which details of the concrete implementation are available to a procedure implementation. 

Because the parameter matching rules are not symmetric, an implementation for an abstract 

data type may list additional specifications that its parameters must meet. Thus the 

refinements necessary for the implementation appear with the implementation and are not 

leaked to the specification of the abstract data type. 

8.4.1.3. Combining Representations 

The parameter matching rules, the multiple inheritance of classes and the ability to provide 

multiple procedure implementations for a specification allow a program to use combined 

representations in a program. Like the implementations of abstract data types, the 

implementations of procedures may list additional specifications that their parameters must 

meet, and thus an appropriate procedure implementation can be used when different 

representations of variables are present. Procedure implementations that specify different 

concrete representations for their parameters may be written in combined representations. 

Thus variables that interact may use a procedure that can properly deal with whatever 

representations those variables use, even if the representations are different. 

Further, Paragon allows representations to be combined for unrelated specifications. This is 

useful when the implementations are related but the specifications are not. One such example 

is a transaction log, where many different abstract objects must be written into the same log. 

Thus the log must use a combined representation for all of the abstract objects. 

8.4.1.4. Uniform Object Notation 

Paragon uses a uniform object notation in variable declarations, parameters and 

statements. This notation combines the type of an object with the procedures that may 

operate on that object. Thus this notation eliminates the need for procedure parameters that 

are usually found in data abstraction languages. Further, the notation distinguishes indefinite 

from definite objects. This has the effect of eliminating the need for type parameters and of 

providing the ability to restrict formal parameters to particular object. One way that this last 
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feature can be used is to require that all arrays passed to a procedure have a lower bound of 

one. 

8,4,2. Contributions: Representation Selection 

Paragon advances the state of the art of representation selection in many ways. Some of 

these innovations come directly from the use of a type hierarchy; others were driven by the 

goals in Chapter 2. Four of these innovations are discussed below. 

8.4.2.1. Describing Abstract Data Types 

The attributes are used to describe the classes and procedures in an abstract data type. 

Because attributes are defined by the programmer, they represent an advance over current 

compilers that usually provide only predefined attributes. Further, attributes in Paragon may 

use the entire language, and not merely some scalar values. Thus attributes may describe 

complex information about a data type. Finally, attributes may be used with any abstract data 

types and not only predefined types. Thus attributes provide a way to describe the differences 

between multiple representations of user-defined abstract data types. 

8.4.2.2. Organizing Global Program Optimization 

A major innovation in Paragon is the ability of the translation system to perform 

representation selection for all variables and procedure calls in a program. Most 

representation selection systems perform selection analysis only on the variables in the main 

program. In Paragon, variables and procedure calls in local procedures and classes also have 

their representations selected by the same mechanism as the variables and procedure calls in 

the main program. The Paragon translation system provides a data structure, called the 

possibility tree, to organize these representation decisions. In addition to providing an 

organization for the current selection choices, the possibility tree also retains information 

about previous, rejected selection decisions. This is valuable since old choices are frequently 

reexamined. 

8.4.2.3. Programmer Control of Selection Criteria 

Another innovation of the Paragon design is the use of a programmer.provided policy to 

control the selection of representations, Most compilers or representation selection systems 

contain predefined algorithms for making representation selection decisions. The criteria 

embodied by these algorithms may not reflect the criteria that the programmer desires. To 
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change the algorithm requires the programmer to alter the translation system. The design of 

the translation system for Paragon extracts the algorithm used for making selection decisions 

from the translator and lets the programmer specify the algorithm using the criteria that the 

programmer feels are important. The thesis gives several examples of policies that make 

selection based on a number of criteria using widely differing techniques, such as dynamic 

programming, hill climbing, step-wise refinement, branch-and-bound searching, exhaustive 

analysis and direct selection of representations. 

8.4.2.4. Feasibility Analysis 

Another significant innovation in the Paragon language design is the definition and 

implementation of feasibility analysis. Feasibility refers to the property that a program has 

when all selection decisions result in a program that can execute. For example, all variables 

and procedure calls must have implementations, interacting variables that use different 

representations must use procedure implementations that can operate on the different 

concrete representations, and representations for abstract data types that require some 

special properties of their parameters must ensure that they received the proper kinds of 

actual parameters. Most languages and systems add restrictions to simplify or eliminate 

feasibility analysis. For example, one restriction is that any implementation may be used 

wherever its specification is used. As explained on page 10, such a restriction limits the 

possible implementations that may be written. Another restriction is that interacting variables 

must use the same representation. But this ignores other considerations for making selection 

decisions. This restriction also eliminates the advantages of writing general procedures that 

use only abstract properties of their parameters. Paragon makes no such restrictions, but 

instead defines the concept of elaboration with implementations to describe how a program 

can be checked for feasibility. Further, this thesis describes a translator that implements 

feasibility checking. Measurements of a prototype show that feasibility checking can require 

up to three times as much computation as required for semantic analysis. 

8 .4 .3 .  Futu re A reas for Related Work  

As I was working on this thesis, I thought of several other major directions that could be 

pursued which would have resulted in a very different thesis, In this section, I briefly discuss 

some of these related areas where further work might be pursued. 
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8.4.3.1 Uniform Procedure, Iterator, Object Semantics 

Paragon makes a distinction between classes and procedures in several ways: the way that 

they are declared, the way that they are refined (subclasses vs implementations), the way that 

they are used (instantiation vs invocation) and the way that their representations are selected 

(by the policy vs by feasibility analysis). Yet many of the manipulations of classes and 

procedures are similar: an object is created, the parameters are bound, the local declarations 

are elaborated and the statements are elaborated. The differences usually concern the 

lifetime of the created object and the ability to reference the object after its statements have 

been elaborated. Other languages, such as Beta [Kristensen 83] and SL5 [Hanson 78] try to 

provide a uniform syntax and semantics for procedures, objects and iterators. Another 

language design might try to use this uniform approach for defining the storage and 

operations of an abstract data type and apply a uniform selection technique for picking a 

representation. 

8.4.3.2. Value of Multiple Representations 

As I read the literature describing representation selection system, and as I tried to use 

multiple representations in application programs, I came to have seriously doubts about the 

need for multiple representations in a program. Clearly, if multiple representations are not 

needed, then languages do not need to support them and translators do not need to select a 

representation for variables. Perhaps early researchers who suggested that a dozen or so 

commonly used data structures such be primitively supported, and that all of the analysis and 

selection should be moved into the computer and compiler, are correct [Feustal 73]. To 

understand the need for multiple representations of abstract data types, some empirical 

research is needed on how abstract data type features are actually used. Unfortunately, there 

is a tot of question begging here. If one surveys users who do not have languages that support 

data abstraction or who do not know data abstraction, then the survey will only document the 

programmers' ignorance or lack of facilities and not the effectiveness of data abstraction. 

8.4.3.3. Program Representations for Programmer Manipulation 

There are many different ways that programmers make selection decisions. A large variety 

of these methods can be adapted to Paragon's set of general representation selection 

features. However, the policy procedure, the attributes and the possibility tree cannot 

express all the different ways that programmers make decisions. An interesting research area 

is the analysis of the kinds of information that are necessary for different selection strategies. 
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8.4.4. Conclusions 

The thesis has demonstrated how a type hierarchy can be integrated into a general purpose 

language design. The thesis demonstrates how a type hierarchy can be used for writing 

programs using the object-manger model to specify abstractions, refine the specifications, 

write representations for the abstractions and combine representations as desired. A number 

of programs were written and translated with a prototype system that processes Paragon. 

The prototype provides evidence that the language design is well defined and that only 

conventional compiler technology is necessary for translating languages that include type 

hierarchies. 

There is a lot of intuitive appeal to the model of type hierarchies. Many of the ways that 

specifications and representations are specified fall naturally into a tree of abstractions, and 

many refinement paradigms for selecting a representation also search a tree-like structure. All 

of these are modeled very well by the class hierarchy. 

The problems with such an approach are its generality. Although nested and inherited 

classes nicely express a tree structure, they also express some less useful combinations. 

Thus a future effort would probably concentrate on the use of an explicit manager model for 

specifying, representing and selecting abstract data types. 
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Appendix A 
Additional Paragon Features 

This appendix provides some more details about the Paragon language that were omitted in 

the main body of the thesis. These miscellaneous topics include the lexical elements of 

Paragon, matching objects with differing levels of nesting, the initial environments for name 

expressions, restricting environments in name expressions, environments for parameter 

elaboration, inheriting class parameters, sharing implementations, procedure constraints, self 

references and statements. Each of these is discussed in turn. 

A.1. Lexical Elements 

A.1.1. Character Set 

The ascii character set is used. All control characters, that is, characters without graphic 

representation, are semantically equivalent to blanks. 

Characters are grouped together to form tokens. A token is an identifier, a numeric literal, a 

reserved symbol, or a reserved word. White space must separate two consecutive identifiers, 

reserved words or numeric literals. 

A.1.2. identifiers 

An identifier is the symbol associated with a procedure declaration, variable declaration, 

implicit parameter declaration or class declaration when that entity is declared. Reserved 

words (given later in Section A.1.5) may not be used as identifiers. Two identifiers are 

identical if they consist of the same sequence of case-independent letters, digits, and 

underscores. 

<identifier> :: = <letter> { { _ }? { <letter> 1 <digit> } }*  
<letter> ::= A I B l . . . I Y l Z l a l b l . . . l Y l z  
<digit> :: = 1 12 I... 181910 
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A.1.3. Li terals 

The only literals permitted in Paragon represent integers, Their semantics are defined in 

Section 3.3.6. 

Two literals are identica ~ : they consist of the same sequence of digits after all underscores 

and leading zeros have been removed. 

<integer> :: = { { <digit> } + # _ } + 

A.1.4. Special Symbols 

Some characters and combinations of characters represent tokens in Paragon. These are 

listed below. The longest possible sequence of cha, .:cters is interpreted as a token. Thus the 

characters < = represents one token and not the two tokens < and =. 

; => : . . . .  ( ) I & ~ 
= < > <= >= - -  + • / 

: [ ] , 1 

A.1.5. Reserved words 

The following sequences of letters are reserved by the language for special purposes and 

may not be used by the programmer as identifiers. 

and any as attribute begin check class comment 
desc do else elseif end exitloop fi for 
goto if in is let loop match matches 
new not null of or procedure rem return 
same such specified structure that then this var 
when where while with yield 

A. 1.6.  Comments  

Comments may appear before or after any token in the program. They do not alter the 

meaning of the program. 

<comment> :: = { comment J f } <space> { <any character except ;> }*  ; 
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A.2. Object Creation Expressions 

In the thesis, various kinds of expressions are used to create objects in variable declarations 

without describing which expressions are permitted by the language. Paragon defines 

several rules that restrict the expressions that may be used as the "type" in variable 

declarations. This section presents those rules. 

Like all expressions, the name expression used as a type is composed of several name 

components. All but the last name component must be either a parameter or a variable. The 

last component must have the reserved word new and have an identifier that denotes either a 

class, variable or parameter. No other name component in the expression or in any of its 

parameters may use the reserved word new. 

If a variable or parameter identifier is used in the last component, then the environment for 

the object creation will be the denoted object with the innermost simple object removed, and 

the underlying class for the object creation will be the class of the innermost simple object 

denoted by the parameter or variable. 

If the class requires parameters for creation, and there are no parameters in the last 

component of the name expression, then the parameters from the class declaration, variable 

or parameter denoted in the last name component wilt be reused. Otherwise the parameters in 

the name component will be used. 

These rules ensure that exactly one new object will be created for each variable declaration 

and that type parameters may be used to create local variables in a class or procedure. 

A.3. Most Preferred Match 

The matching rules in Section 3.4.2 apply only to objects that consist of the same number of 

nested simple objects. Paragon permits objects with different numbers of nested simple 

objects to match, as mentioned in Section 8.1. This section discusses the additional rules for 

matching when objects have different numbers of nested objects. 

First, a slight change in terminology is needed. Define the relation where two objects match 

and have the same number of nested simple objects as pairwise matching. The rules in 

Section 3.4.2 define this relation. Then actual object A matches a formal object F if A has 



Appendix A.3 Most Preferred Match 286 

exactly n more nested simple objects than F, and if after removing some n simple objects from 

A, then the smaller A pairwise matches F. 

However, there may be more than one way that n simple objects may be removed from an 

actual object for it to match a formal object. Thus Paragon includes two more distinctions in 

the matching process: preferred match and most preferred match. 

A preferred match occurs when comparing the two different, successful removals of simple 

objects during the matching process of differently sized objects. The outermost pair of 

removed simple objects is examined. The removed simple object that was less nested (further 

out) belongs to the preferred match. If the positions of the outermost removed simple objects 

are identical, then the same criterion is applied to the next pair of removed simple objects. 

This process continues until all of the removed simple objects have been considered. 

Because of the assumption that two different sets of simple objects were removed, there must 

be some pair of removed simple objects that differ. In the illustration below, the outermost 

simple object is listed first and the removed simple objects are underlined. The letters refer to 

the underlying class of the simple object: 

Formal: ( A, B, 
ActUatMatch 1: ( A, A_, B, 
ActUalMatch 2: ( A, A, B, 
ActUalMatch 3: ( A, A, B_, 

In example above, Match 1 is preferred to Match 

out (less nested) than the B in Match 1. Match 

matched in Match 3 is further out than the A in 

c ) 
8, C ) 
B_, C ) 
B, C ) 

2 since the B matched in Match 2 is further 

3 is also preferred to Match 2 since the A 

Match 1. Similarly, Match 3 is preferred to 

Match 2 because the A in Match 3 is less nested than the A in Match 2. 

The most preferred match is a match which is preferred to all others. In the example above, 

Match 3 is actually the preferred match of the actual object and formal object. (There is one 

possible combination of removed simple objects that is not shown, but Match 3 is preferred to 

it as well as being preferred to Match 1 and Match 2). When binding parameters during the 

comparison of two objects, the preferred match is used when more than one match is 

possible. 
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A.4. Initial Environments 

Section 3,3 postponed a description of the way in which the environment is established for 

the first component in a name expression. The description is given in this section. 

A search for the identifier in the first name component is performed in various scopes until 

an appropriate declaration is found. That declaration then controls the environment to be 

used for further elaboration, This search is very similar to that used for looking up identifiers 

in statically scope languages, such as Algol-60, with additional rules for classes. Specifically, 

the procedure for determining the declaration of the identifier in the first name component is: 

1. The procedure or the fully extended class declaration 93 enclosing the expression 
is examined for a declaration of the identifier. An identifier implicitly declared in a 
parameter is consider as being declared in its corresponding procedure or class, 

2. If more than one declaration was found, then one of the found declarations must 
be a procedure specification and the others must be procedure respecifications 
or implementations. Otherwise at most one declaration must be found and it may 
not be a procedure implementation. (Recall that a procedure respecification is 
considered a procedure specification in the absence of a procedure 
specification. See Section 5.3.5.) 

3. If no declaration was found, repeat the first two steps for enclosing blocks, be 
they procedures or classes. If the universal environment was reached without 
finding an appropriate declaration, the program is not well specified. 

The innermost simple object (and its containing environment) in the environment in which 

the declaration is found becomes the environment (or more precisely, the declaration 

environment, see Section A.6) for elaboration of the first name component. Any inner simple 

objects that were skipped in the search process are ignored. 

A.5. Restricting Environments 

The returned environment may be restricted for use by the next component in an 

expression. The syntax of a resti'iction is the reserved word as followed by a class identifier. 

Some example classes and the use of as are shown below: 

93The fully extended class declaration is constructed by concatenating all of the class declarations of all 
ancestors of class along with the class, in leftmost elaboration order. 
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c lass  Pa ren t t  i s  
begin 

procedure p; 
end; 

c lass  Parent2 i s  
begin 

procedure p; 
end; 

c lass  Son of  Parent1,  ParentZ i s  begin end; 

var  x => new Son; 

x as Parent1 . p; ! Ca l l  o f  p in Parent  1; 
x as Parent2 . p; ! C a l l  o f  p in Parent  Z; 

In a restriction, the class identifier denotes an ancestor of the underlying class of the last 

component of the object. When a restriction is present, the search for a declaration of the 

identifier in the next component is confined to the class declaration of that ancestor. Without 

a restriction, the procedure of searching the fully extended class declaration for a declaration 

of the identifier is followed. 

To simplify the BNF description in Appendix B, the as restriction was deleted. It is never 

used in any example in the thesis. 

A.6. Environments for Parameter  Elaboration 

In Sections 3.6.4, 5.2.1, 5.2.3 and 5.2.4, a description of procedure invocation or class 

instantiation was described that includedelaboration of parameters. 94 Like all elaborations, 

elaboration of parameters must occur in some environment. This section defines two kinds of 

environments, the statement environment and the declaration environment, and defines how 

parameters are to be elaborated in these environments. 

Every statement is contained in a class or a procedure. Before a statement can be 

elaborated, the containing class must be instantiated or the containing procedure must be 

invoked. When either of these events occurs, a new environment is formed and the 

statements are elaborated in this environment, hence the name statement environment. 

94For purposes of discussion, the return expression in 8, procedure and the yield expression in an iterator are also 
parameters. 
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As a name expression is elaborated, each name component returns an object that is used as 

the environment for the next name component. This environment is call the declaration 

environment, since this environment is where the declaration for the identifier in the next 

name component will be found. For the first name component, a special set of searching rules 

is used to find the declaration environment, as described in Section A.4. 

When elaborating a procedure call or class instantiation, the actual parameters in the name 

component and the formal parameters in the procedure or class declaration are elaborated. 

The formals are elaborated in the declaration environment and the actuals are elaborated in 

the statement environment. This is illustrated by the following declarations and procedure 

calls: 

c lass c l ( t : a n y )  is 
begin 

procedure f l  r e tu rn  t ;  
end; 

class cZ is  
begin 

procedure f 2 ( c 2 ) ;  
v l  => IM . new In teger ;  

end; 

vat v l  => new c1(c2); 
vat v2 => new c2; 

v Z . f Z ( v l . f l ) ;  

Initially v2 is found, which denotes a c2 object. Thus f2 is to be found in the declaration 

environment c2, which it is. Then a procedure call of f2 is to be elaborated. Thus {he 

parameters in the declaration of f2 are elaborated in the declaration environment c2 and the 

actuals in the statement environment, which is assumed to be the universal class containing 

the declarations in the program fragment above. The result of elaborating the formal 

parameter in f2 in the declaration environment is an indefinite c2 object. Now the actual 

parameter must be elaborated in the statement environment. Thus vl  is found and serves as 

the declaration environment for the call of f l .  Repeating the invocation algorithm for the call 

of f l ,  the return expression for f l  is elaborated in the declaration environment, and since t is 

bound to an indefinite c2 object in this environment (because the declaration of vl used c2 as 

a parameter), the returned object from f l  is an indefinite c2 object. Therefore this object is 

the result from elaborating the actual parameter for the call of f2 and can be compared with 

the formal parameter for the call of f2, also an indefinite instance of c2. The two objects 

match, and the call of f2 is well specified. 



Appendix A.6 Environments for Parameter Elaboration 290 

Note that if the return expression of f l  had been elaborated in the statement environment, 

the identifier t would have not been found and the name expression would have been ill 

specified. Had the actual parameter for the call of f2 been elaborated in the declaration 

environment, the wrong object would have been selected for vl, namely the integer inside of 

c2 and not the variable vl  inside of the universal class. To avoid these, and other kinds of 

difficulties, Paragon defines the statement and declaration environments and uses them for 

the two different kinds of parameter elaborations. 

A.7. Inheriting Parameters 

Section 3.4.4 provides the basics of declaring and inheriting parameters in classes. That 

section omitted the details of inheriting parameters from multiple parents and the details of 

defining new parameters when inheriting already defined parameters. In this section, these 

details are provided. 

All parameters listed in a class declaration are either inherited or defined. Unlike 

declarations and statements inherited from ancestor classes, parameters inherited from all 

ancestors are explicitly represented in a class declaration. Also unlike declarations and 

statements, inherited parameters come from the ancestors in which the parameters are 

defined, not from the immediate parents. This is because some parameters of an immediate 

parent may also be inherited instead of defined, whereas all declarations and statements in an 

immediate parent are defined in the immediate parent. The distinction between inherited and 

defined parameters, and the way in which parameters are inherited, are discussed below. 

The distinction between inherited and defined parameters is made by position in the 

parameter list. First, the inherited parameters are given in the parameter list, then the defined 

parameters. The inherited parameters are listed in leftmost elaboration order. If an ancestor 

defines more than one parameter, then the class declaration lists the corresponding inherited 

parameters in the same order. Parameters that are not inherited from an ancestor are said to 

be defined in the class declaration. This is illustrated below: 

comment Classes to be used as parameter descriptions. 
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c lass  A1 is beg in  end; 
c lass  B1 is  beg in  end; 
c lass  Cl is  beg in  end; 
c lass  D1 is  begin end; 

comment Classes that 

class A(x : At) 
begin 
end; 

class B(x : At, 
begin 
end; 

class C(x : At, 
begin 
end; 

class D(x : A1, 
begin 
end; 

is 

have parameters.; 

y : BI) of A is 

z : CI) of A is 

y : B1, z : C1, w: Dr) of  B, C is  

Here, class A has no parents, and hence no inherited parameters. Thus the the only 

parameter for A is the defined parameter in A 1. Classes B and C each have two parameters. 

By examining their ancestors in leftmost elaboration order (here, just A), exactly one defined 

parameter is found, namely the first parameter in class A. Thus the first parameter in classes B 

and C is inherited (from A). Since B and C have two parameters, the second parameter in 

each class is a defined parameter. 

In a more complicated example, class D has three inherited parameters, one each from A, B, 

and C, and one defined parameter. Because the leftmost elaboration order for parameters is 

used, here A, B, C, the first parameter for D is inherited from A, the second from B and the 

third from C. Note that the parameter from A appears in two different immediate parents, but is 

only mentioned once in the declaration of class D. 

The expression for an inherited parameter need not be identical with the expression used in 

its defining ancestor class, nor with the expression used in any immediate parent. The objects 

the expressions denote may be more restrictive than the original parameter. Thus checking 

between each inherited parameter and the form of the inherited parameter in immediate 

parents is required. More precisely, if an inherited parameter Pc.i is the ith defined Parameter  

for some ancestor class c 95, then the object denoted by the parameter expression must match 

951n general, one can say nothing about where in the parameter list of the class declaration that Pc, i will appear. 
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the object denoted by any parameter expression in an immediate parent that is inherited from 

or is defined as Pc, i" The rule ensures that the objects for parameters in the child are the same 

as or more restrictive than the objects used in for an immediate parent. The rule can be 

illustrated by altering the previous example as follows: 

comment Classes to be used as parameter descr ip t ions. ;  

class A1 is begin end; 
class AIB of A1 is begin end; 
class AIC of AI is begin end; 
class AID of AIB, AlC is begin end; 

class B1 is begin end; 
class BID of B1 is begin end; 

class C1 is begin end; 
class C1D of C1 is begin end; 

class D1 is begin end; 

comment Classes that have parameters.; 

class A(x : A1) is 
begin 
end; 

class B(x 
begin 
end; 

: AIB, y : B1) of A is 

class C(x 
begin 
end; 

: AIC, z : C1) of A is 

class D(x :A ID ,  y : BlO, z : ClD, w: D1) of B, C is 
begin 
end; 

The labeling of parameters as defined or inherited is unchanged from the previous example. 

But different expressions are used for each parameter, so checking must occur to insure that 

the parameters are properly inherited. Specifically, the checking for the first parameter in B 

and C checks that A 1B and A lC respectively match A 1. For class D, there are three inherited 

parameters and one defined parameter. The first parameter, A 1D, is inherited from class A, 

Because both immediate parents B and C also have inherited the first (defined) parameter of 

A, checking of A 1D must be made against both A 1B and A 1C. Checks must also be made that 

B 1D and ClD match B1 and C1 respectively. In this example, all of the objects in the inherited 

parameters are compatible with the corresponding parameters in their immediate parents. 
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There is one last rule for parameters that has not been mentioned. There may be at most 

one declaration for each identifier implicitly declared in parameters for a class. Among the 

implications of this rule, no class may inherit parameters from two different ancestors that 

define the same identifier in the parameter list.. This is done to eliminate rules for 

discriminating between identical identifiers in the parameter list. Because the following 

declaration has two Is declared in its parameters, the class declaration is ill specified: 

class lllegal(IM . I: Integer, IM . I: Integer) is 
begin 
end ; 

A.8. Sharing Implementations 

As described in Section 4.5.3.3, a single class declaration may be declared that may serve 

as an implementation class for more than one specification class. However, as Section 

4.6.3 noted, there is no way for the selection mechanism to select a single object to be shared 

for more than one variable, although sets of rules were devised to permit such sharing. In this 

section, a more detailed discussion of object sharing among variable is provided, including 

the rules under which such sharing may take place. 

Recall that a shared implementation occurs if a single object is able to meet the 

specifications of more than one variable. As a simple example, assume that there are two 

kinds of objects: a keyboard, which is an input device, and a display, which is an output 

device. Corresponding declarations might be: 

class Keyboard is 
begin 

procedure Read; 
end; 

c lass Display Is 
begin 

procedure Wrtte; 
end; 

Although Keyboard and Display represent two conceptual classes of objects, they frequently 

may be combined in a single object, say a particular kind of terminal. A corresponding 

declaration might be: 
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class T e l e t y p e  of  Keyboard,  D i s p l a y  is  
beg in  

p rocedure  Read is  beg in  . . . .  end; 
procedure  Wr i t s  is  beg in  . . ,  end; 

end; 

The class Teletype can be used for variables specified as Keyboards, Displays and Teletypes. 

If a program required a Keyboard variable and a Display variable, it is reasonable to allow 

them to share a Teletype object. Consider the following program fragment: 

var  k => new Keyboard;  
v a r d  => new D i s p l a y ;  
. ,  , 

k. Read; 
d . W r i t e ;  

The objects denoted by k and d might share a single object that was created by instantiating 

the Teletype class. Teletype would then be the Implementation for both k and d. 

Paragon permits variables to share a single object for more than one variable. However, 

indiscriminant sharing of objects is not wise. Consider the following program fragment: 

var k => new Keyboard;  
var  t => new T e l e t y p e ;  

k. Read; 
t .  Read; 

Sharing a single object that is an instance of Teletype is not appropriate here, since the calls 

to Read are conceptually shared by both the keyboard k and the teletype t. To prevent this 

kind of interference, Paragon allows only limited kinds of sharing. Specifically, Paragon 

provides four criteria that must be met for an object to be shared among several variables. 

Each of these criteria is discussed below. Following the criteria, the method by which a 

shared object is elaborated is discussed. 

A.8.1. Subsuming Implementation Paths 

One criterion for deciding if variables interfere with one another when sharing an object 

depends of the notion of an implementation path. This notion is developed in the following 

series of definitions: 

Path A path is a list of class identifiers such that each class in the list is an 
immediate parent of next class in the list. 

Subsume A path is said to subsume another path if the second path is a sublist of 
the first. 
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Implementation path 
An implementation path is a path with the ends of the list being the 
identifiers of the specification (class used in the variable declaration) and 
the implementation (class chosen as the implementation). 

These definitions are illustrated below: 

class Company is begin end; 
class ServiceCompany of Company is begin end; 
class Manufacturer of Company is begin end; 
class Conglomerate of ServiceCompany, Manufacturer is 
begin 
enE{J; 

var x => new Company; 
v a r y  => new ServiceCompany; 
var z => new Manufacturer; 

One defined path is (Company, ServiceCompany, Conglomerate). If the variable x is 

implemented as a Conglomerate, then this path is an implementation path for x. Another path 

derived from these class definitions is (ServiceCompany, Conglomerate). This path is 

subsumed by the first path. 

Note that there may be more than one implementation path given a specification and an 

implementation. For example, the path (Company, Manufacturer, Conglomerate) is also an 

implementation path for x. Under this interpretation, the path 

(ServiceCompany, Conglomerate) would not be subsumed by the implementation path for x. 

To prevent interference between the variables that are sharing the object, there must be an 

implementation path associated with each variable and the implementation for the shared 

object such that no path subsumes another. 

A.8.2. The Environment of the Object 

A second criterion requires that the environments for each simple object creation be 

identical. This is because when an object is shared, the environment containing that object 

must also be shared. 
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A.8.3. Parameters in a Shared Implementation 

The third criterion tries to ensure that the parameters in the shared object are not 

improperly shared between any two variables. This is done by partitioning the parameters of 

the underlying implementation, with a partition being associated with each underlying 

specification. Thus: 

• The inherited parameters in the implementation must not be shared among the 
specifications, and 

• Every parameter in the implementation must appear in the specification of exactly 
one of the variables. 

These rules imply that the parameters only be disjoint outside of the implementation path. To 

allow a shared parameter outside of the implementation path leaves no way to determine 

which parameter expression in a variable declaration should be used when a shared object is 

created. 

A.8.4, Variable Interaction 

The fourth criterion attempts to prevent use of variables before their declarations have been 

elaborated. 

The order of elaboration of variable declarations can have effects on the results of a 

program. To minimize undesired interactions, Paragon further limits the use of a shared 

object to situations where the order of conceptual object creation may be effectively changed. 

Specifically, the variables declared between the declaration for the first variable and for the 

last variable sharing an object may not be used in the "type" expression of those variables 

sharing the object. This effectively allows the moving of all variables that share an object to 

be placed in the point in the program where the first such variable is declared. 

A.8.5. Elaboration of a Shared Implementation 

When variables share an object, that object is created and its implementation class 

elaborated (with implementations or realizations) at the time when the declaration for first 

variable sharing the object is elaborated. (Sharing is not permitted during elaboration with 

specifications.) All of the parameters for this implementation, gathered from the 

corresponding parameters in the variable declarations, are elaborated at this time. When the 

declarations of the other variables sharing this implementation are reached, their identifiers 
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will be associated with the already created object. No further elaboration of the object takes 

place. 

With these rules and definitions, Paragon has provided a way to share objects. Before these 

rules can be effectively applied, however, some way must be developed to integrate the rules 

into the :selection mechanism. This was never accomplished. 

A.9. Procedure Constraints 

Section 3.5.4 provided the most useful procedure constraint that is defined in Paragon. 

Although not used in any examples, the language does define other kinds of procedure 

constraints, and they are defined in this section. Further, ways in which constraints may be 

combined also discussed. 

A.9.1. Constraints that Check Matching 

In Section 3.5.4, the comparison operation same as was defined to test if two objects each 

matched the other. For example, 

r . s t r u c t u r e  same as ] . s t r u c t u r e  

checks to ensure that r and / have the same underlying class. In addition, one may perform a 

one-sided comparison, that is, see if one object matches the other without insisting on each 

matching the other. This is done by using the matches  operation instead of the same as 

operation. For example: 

r . s t r u c t u r e  matches ] . s t r u c t u r e  

checks to ensure that the underlying class of r matches the the underlying class of I, but 

makes no guarantees that the underlying class of I matches the underlying class of r. 

A.9.2. Combining Constraints 

Constraints may also be connected using the logical operations &, / and ~, meaning and, or  

and not  respectively. - has the highest precedence (performed first), followed by &, followed 

by/. The logical operations are associated from left to right. Parentheses may also be used to 

control the order of comparison and logical operations. 

As an example, if the expressions contain no side effects, then 
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r.structure 

isthesameas 

r.structure 
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matches l.structure & l .structure matches r.structure 

same as 1 , s t r u c t u r e  

A.IO. Self-References 

In Section 3.2.1, three kinds of simple objects were discussed: definite instances, indefinite 

instances and any instances. Paragon provides a fourth kind of simple object, called a self- 

reference. When used as a name component, a self-reference has the syntax of the reserved 

word this followed by a class or procedure identifier, as illustrated below: 

c]ass c is 
begin 

° ,  • 

this c 

end; 

A self-reference may appear only in the class or procedure declaration referred to by the 

identifier, though the declaration need not be the immediately enclosing scope. Further, a 

self-reference must be the first name component in a name expression. 

When elaborated, a self-reference causes the declaration environment to be searched for 

an instance of the named class or procedure, which in turn becomes the environment 

returned by the elaboration of the self-reference name component. 

Self-references are also used during the checking of class and procedure declarations. 

Although not mentioned in the main text of the thesis, all declarations are checked to ensure 

that they are well specified. When a procedure or class declaration is checked, a new simple 

object for that declaration is made and is called a self-referent for the declaration. This self- 

referent is appended to the environment in which the declaration is being checked (usually 

another self-referent) and the declarations and statements are elaborated with specifications 

in this environment. For purposes of comparing objects, self-referents are considered to be 

the same as definite instances, except that a self-referent of a child class is defined as 

matching the self-referent of an ancestor class, even though they appear to be two distinct, 

definite simple objects. 
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A. 1 1. Statements 

Statements provide control flow among the expressions to be elaborated in a Paragon 

program. After a brief description of statement structure, each kind of statement is described 

along with its elaborations. 

A.1 1.1. Statement  Structure  

Each statement may be preceded by any number of labels. A BNF description is shown 

below: 

<statement> :: = { <identifier> = "> }* <simple statement> 

A simple statement is one that has no labels, There are eleven different kinds of simple 

statements in Paragon, shown below: 

<simple statement> :: = 
<assignment statement> [ 
<subprogram form statement> [ 
<return statement> [ 
<null statement> [ 
<if statement> ] 
<while statement> J 
<for statement> J 
<exit statement> ] 
<goto statement> J 
<yield statement> [ 
<pattern statement> 

The discussion of these statements is grouped into five categories: name expressions, 

subprogram control statements, conditional statements, loop statements, and goto 

statements. 

A.1 1.2. Expressions as Statements  

<assignment statement> :: = <expression> : = <expression> 

<subprogram form statement> :: = <expression> 

<null statement> :: = null 

There are three simple statements that are merely expressions: assignment statements, 

name expressions and null statements. The assignment statement is syntactic sugar for a 

name expression as defined in Section 3.3.5. 
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The null statement is always well specified, feasible and defined. For a statements that is an 

expression, the three kinds of elaboration are performed on the expression whenever the 

statement is appropriately elaborated. If elaboration of the expression was ill specified, 

infeasible or erroneous, then the statement is ill specified, infeasible or erroneous 

respectively, No object may be returned. If an object is returned, the statement is not well 

specified. No implicit declarations are permitted in the expressions used in the assignment or 

subprogram form statements. The presence of an implicit declaration renders the statement ill 

specified. 

A.1 1.3. Subprogram Control Statements 

Paragon provides two statements that control the elaboration of procedures, return 

statements and yie/d statements. Return statements terminate the invocation of a procedure 

while yie/d statements suspend a procedure's execution. Each statement is described in more 

detail below. 

A.1 1.3.1. Return Statement 

<return statement> :: = return {<expression>}? 

The return statement is used to terminate execution of the procedure, and if the procedure 

is specified to return an object, to provide an object to be returned. The return statement may 

only appear in procedures, not in classes. 

If the procedure in which the return statement appears specifies no return expression, then 

no expression may be specified in the return statement. Since iterators have a yie/d 

expression and not a return expression, return statements in iterators may not have an 

expression. If the procedure in which the return statement appears specifies a return object, 

then every return statement in the procedure must have an expression. No implicit 

declarations are permitted in the expression of a return statement. The presence of implicit 

declarations in the expression renders the return statement ill specified. 

When a return statement is elaborated with specifications, the expression in it is elaborated 

with specifications and compared with the object that results from elaborating, with 

specifications, the return expression in the procedure declaration. If the elaboration is ill 

specified or the comparison fails, then the return statement is ill specified. 
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When a return statement is elaborated with implementations, the expression in it is 

elaborated with implementations and compared with the object that results from elaborating, 

with implementations, the return expression in the procedure declaration. If the elaboration is 

infeasible or the comparison fails, then the return statement is infeasible. 

When a return statement is elaborated with realizations, the expression in it is elaborated 

with realizations. If elaboration of the expression is erroneous, then the return statement is 

erroneous. The object that results from elaborating the expression is returned as the 

declarat~ion environment for the next name component and the invocation of the procedure is 

terminated, that is, no other statements or expressions in the procedure are elaborated. If no 

expression is present, no object is returned. If the return statement appears in an iterator, 

then the iterator is terminated and elaboration continues with the statement immediately 

following the for loop that invoked the iterator. 

A procedure without a return expression need not terminate with a return statement. Such a 

procedure may also terminate by reaching the end of the procedure's declaration. However, a 

return statement must be executed for terminating a procedure that specifies a return 

expression. If execution reaches the end of such a procedure without executing a return 

statement, then the invocation of the procedure is erroneous. 

A.1 1.3.2. Yield Statement 

<yield statement> :: = yield <expression> { when exitloop <statement> }? 

The yield statement is used to suspend an iterator that is invoked in a for statement. 

Yield statements may appear only in procedures that yield an object, that is an iterator, 

though a yield statement is not required in an iterator. (An iterator that never executes a yield 

statement will never have the statements in the corresponding for loop executed.) Iterators 

and for loops are discussed in Sections 3.7 and A.11.5.1. 

When a yield statement is elaborated with specifications, the expression is elaborated with 

specifications and the resulting object compared with the object that results from elaborating, 

with specifications, the yield expression in the iterator declaration. If the elaboration of the 

expression is ill specified or if the comparison fails, then the yield statement is ill specified. 

The optional statement is then elaborated with specifications. If the optional statement is ill 

specified, then the yield statement is ill specified. No implicit declarations are permitted in the 
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expression of a yield statement. The presence of implicit declarations in the expression 

renders the the yield statement ill specified, 

When a yield statement is elaborated with implementations, the expression is elaborated 

with implementations and the resulting object compared with the object that results from 

elaborating, with implementations, the yield expression in the iterator declaration, if the 

elaboration of the expression is infeasible or if the comparison fails, then the yield statement 

is infeasible. The optional statement is then elaborated with implementations. If the optional 

statement is infeasible, then the yield statement is infeasible. 

When a yield statement is elaborated with realizations, the expression is elaborated with 

realizations and the resulting object bound to the identifier in the for loop that caused the 

iterator to be invoked. If the elaboration of the expression is erroneous, then the yield 

statement is erroneous. When the for loop that invoked the iterator continues the iterator, 

elaboration of the yield statement is completed and control flow resumes in the iterator. 

If control passes out of the for loop because of the elaboration of a goto, return or exitloop 

statement, and if the last yield statement elaborated for that for loop has a statement, then 

before the loop is exited (but after any expression in the return statement is elaborated), then 

elaboration continues with the statement in the last elaborated yield statement. If this 

statement is erroneous, then the iterator invocation is erroneous. After the optional statement 

in a yield statement has been executed, no other yield statement in that iterator may be 

executed. 

A.1 1.4. Conditional Statement 

<if statement> ..-" - 
if <expression> then 

{ <statement> ; } "  
{ etseif <expression> then 

{ <statement> ; }*  }*  
{ else 

{ <statement> ; }*  }? 
fi 

The if statement causes conditional execution of statements. 

During elaboration with specifications, each expression and statement in the if statement is 

elaborated with specifications in the order in which it appears. The expressions following the 
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reserved words ff and e/serf must result in objects that match the predefined boolean object 

Booleans.Bit. If any expression did not match the predefined boolean object, the if statement 

is ill specified. If any of the expressions contained implicit declarations, the if statement is ill 

specified. 

The statements in an ff statement must not return an object, otherwise the ff statement is not 

well specified. If any elaboration is not well specified, then the if statement is not well 

specified. 

During elaboration with implementations, each expression and statement in the if statement 

is elaborated with implementations in the order in which it appears, tf any elaboration is 

infeasible, then the if statement is infeasible. 

Elaboration with realizations is discussed in Section 3.8.4. 

A.1 1.5. Loop and Loop Control Statements 

Paragon provides three kinds of looping statements: for loops, while loops and pattern 

loops. For and while loops are discussed in this section. Since pattern loops are inextricably 

related to the representation selection process, they are discussed completely in Sectiod 

5.5.4 and will not be repeated here. A statement that can control the execution of the loop 

statements, the exitloop statement, is also discussed in this section. 

A.11.5.1, For Loops 

~for statement> :: = 
for <identifier> in <expression> { .. <expression> }? do 

{ <statement>; } "  
end for 

When a for loop is elaborated with specifications, the expression following the reserved 

word in is elaborated with specifications (after any transformation because of the syntactic 

sugaring provided by the .. notation), and the resulting object is compared with the object 

denoted by the identifier after the for reserved word, and then bound to that identifier. If the 

expression yielding the object was ill specified, then the for loop is ill specified. If the 

expression yielding the object had implicit declarations, then the for loop is ill specified. If the 

object did not result from an iterator invocation, then the for loop is ill specified. If the 

comparison failed, the for loop is ill specified. Then the statements in the for loop are 
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elaborated with specifications. If any of them were ill specified, then the for loop is ill 

specified. 

When a for loop is elaborated with implementations, the expression following the reserved 

word in is elaborated with implementations and the resulting object is bound to the identifier 

following the reserved word for. If the elaboration of the expression was infeasible, then the 

for loop is infeasible. Then the statements in the for loop are elaborated with 

implementations. If any of them were infeasible, then the for loop is infeasible. 

Elaborating a for loop with realizations is discussed in Section 3.7.6. 

A.1 1.5.2. While Loops 

<while statement> :: = 
while <expression> do 

{ <statement> ; }* 
end loop 

A while loop provides repeated execution of a group of statements while a certain condition 

is met. 

\When a while statement is elaborated with specifications, the expression following the 

reserved word while is elaborated with specifications. If the elaboration was ill specified, then 

the while statement is ill specified. If the expression had implicit declarations, then the while 

statement is ill specified. The object that results from the expression elaboration is compared 

with the predefined boolean object, Booleans.Bit. If the comparison failed, then the while 

statement is ill specified. Each statement in the while is then elaborated with specifications. If 

any of these statements were ill specified then the while statement is ill specified. 

When a while statement is elaborated with implementations, the expression following the 

reserved word while is elaborated with implementations. If the elaboration was infeasible, then 

the while statement is infeasible. Each statement in the while is then elaborated with 

implementations. If any of these statements was infeasible then the while statement is 

infeasible. 

When a while statement is elaborated with realizations, the expression following the 

reserved word while is elaborated with realizations. If the elaboration was erroneous, then the 

while statement is erroneous. If the object returned by elaborating the expression is equal to 
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an object returned by the predefined procedure True, then each statement in the while loop is 

elaborated with realizations. If any of these statements were erroneous then the while 

statement is erroneous. This two step process (elaborate the expression, elaborate the 

statements) repeats as long as the elaboration of the expression results in an object that is 

equal to an object returned by the predefined procedure True, or until a goto, return or 

exitloop statement inside of the while loop is elaborated with realizations that causes control 

to leave the while loop. 

A.1 1.5.3.  Exiting Loops 

<exit statement> :: = exitloop { <identifier> }? 

The exitloop statement forces the elaboration of a loop to be terminated. This statement 

may appear only inside of a for loop, while loop or pattern loop, with no intervening procedure 

or class declarations (though intervening statements, such as an if statement, are permitted). 

When elaborated with specifications, and if no identifier is present, the statement is well 

specified if it occurs inside of a loop as specified above. If an identifier is present, that 

identifier must label a loop that is enclosing : ,9 exitloop statement (without any intervening 

procedure or class declarations) for the exittoop statement to be well specified. 

Elaboration of an exitloop statement with implementations requires no action. If an exitloop 

statement was well specified, then it is also feasible. 

Elaboration of an exitloop with realizations finishes the elaboration of the statements in the 

enclosing loop. If the exitloop statement contains an identifier, then all enclosing loops up to 

the loop labeled with the identifier are finished. If iterators in for loops are being terminated 

(see Sections 3.7.6 and A.11.5.1), the loops are terminated from the innermost to the 

outermost. 

A.1 1.6.  Goto Statement 

<goto statement) :: = goto <identifier) 

The goto statement causes a transfer of control to the statement that has the identifier as a 

label. 

When a goto statement is elaborated with specifications, the identifier is searched for as a 



Appendix A.11.6 Statements 306 

statement label in an enclosing loop, ff statement, class declaration or procedure declaration. 

Although intervening ff statements and loops may be skipped, only the immediately enclosing 

procedure or class declaration will be examined for the label. If the label cannot be found, 

then the goto statement is ill specified. Note that the search procedure prohibits goto 

statements from specifying a label in a different part of an /f statement than the part 

containing the goto statement, a label inside of loop that does not contain the goto statement, 

a label outside of the class or procedure declaration that contains the goto statement, and a 

label inside of a class or procedure declaration that does not contain the goto statement. 

Elaboration of a goto statement with implementations requires no action. If a goto 

statement was well specified, then it is also feasible. 

Elaboration of a goto statement with realizations causes the execution to continue with the 

statement labeled with the identifier. If a for loop is exited by a goto statement, any optional 

statement in the yield statement in the corresponding iterator is first executed (see Sections 

3.7.6 and A.11.5.1). 
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Pa ragon BNF 

This appendix gives a slightly edited version of the BNF description used by the parser 

generator to create the Paragon parser (Phase ML, see Section 7.1.1). After giving the details 

of the BNF notation, the productions used by the parser generator are listed. The rules have 

been divided into fives sections: program structure, declarations, statements, expressions 

and name components. 

B.1. Notation 

The syntax for Paragon is described in a notation that is an extended BNF with the following 

conventions [Nestor 81]: 

• Nonterminals are enclosed in angle brackets, for example, <identifier> is the 
nonterminal representing identifiers. 

Terminal symbols are represented as themselves. When a terminal symbol or 
character conflicts with a nonterminal symbol or character, the terminal symbol 
will be preceded by a double quotation mark ("). For example, "< denotes the 
terminal character ~ and not the beginning of a nonterminal symbol. 

• Production rules are written with a single nonterminal on the left of a :: = symbol 
followed by sequence of terminal or nonterminal symbols, for example, 

<expression> :: = <primary> "* <expression> 

• Alternative right hand sides of a production rule with the same nonterminal on the 
left hand side may be separated by a vertical bar, that is, the I symbol, in a single 
production. For example: 

<expression> :: = <primary> I <primary> ** <expression> 

• A sequence of symbols may be bracketed by surrounding it with braces. For 
example, { <identifier> : <name> } brackets the three symbols <identifier>, :, and 
<name>. 
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• A sequence of symbols is optional in a production if it is surrounded by braces 
that are immediately followed by a question mark. For example { <identifier> }? 
denotes an optional identifier. 

• A list of zero or more of a sequence of symt~r}ls is represented by enclosing the 
sequence in braces that are immediately f~lowed by an asterisk. For example 
{ <letter> } "  indicates zero or more <letter>s. 

• A list of one or more of a sequence of symbols is represented by enclosing the 
sequence in braces that are immediately followed by a plus mark (+) .  For 
example { <digit> } + indicates zero or more <digit>s. 

• A list of zero or more of a sequence of symbols, separated by another sequence 
of symbols is represented as two sequences, separated by a hash mark ( # )  and 
enclosed by a pair of braces that immediately precede an asterisk (*). For 
example, the notation 

{ <identifier> # ,  } *  

denotes a list of zero or more <identifier>s separated by commas (,). 

• A list of one or more of a sequence of symbols, separated by another sequence of 
symbols is represented as the above list except that a plus mark (+ )  is used 
instead of an asterisk. For example, the notation 

{ <parameter> # , } + 

denotes a list of one or more <parameter>s separated by commas (,)o 

B.2. Program Structure 

<compilation> :: = { <declaration> ; } + 

B.3. Declarations 

<declaration> :: = 
<object declaration> 

I <class declaration> 
I <procedure declaration> 

<object declaration> :: = 
{ attribute }? var <identifier> = "> <expression> 

{ such that <expression> }? 
{ where { <attribute association> # , } + }? 

<attribute association> :: = <identifier> = "> <expression> 

308 
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<class declaration> :: = 
class <identifier> { ( { <type name> # , } + ) }? 

{ of { <identifier> # ,  } + }? is 
<block> 

<procedure choice> :: = { return <type name> } I { yield <type name> } 

<instance formal> :: = <type name> 

<type name> :: = <expression> 

<instance constraints> :: = 
such that 
{ <or set expression> # , } + 

<or set expression> :: = {<and set expression> # "1 } + 

<and set expression> :: = { <not set expression> # & } + 

<not set expression> :: = { - } *  <parened set expression> 

<parened set expression> :: = 
{ <expression> 

{ matches I same as } <expression> } I 
( ( <or set expression> ) } 

<procedure declaration> :: = 
{ attribute }? procedure <identifier> { ( { <instance formal> # , } + )}? 

{<procedure choice>}? 
{of <identifier>}? 
{<instance constraints>}? 
{ is <block> }') 

<block> :: = 
{specified with}? 
begin 

{ <declaration> ; } *  
{ <statement> ; } *  

end 
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B.4. Statements 

<statement> :: = { <identifier> = "> }*  <simple statement> 

<simple statement> "'..-- 
<assignment statement> J 
<subprogram form statement> J 
<return statement> I 
<null statement> J 
<if statement> I 
<while statement> I 
<for statement> I 
<exit statement> J 
<goto statement> I 
<yield statement> I 
<pattern statement> 

<assignment statement> :: = <expression> : = <expression> 

<subprogram form statement> :: = <expression> 

<return statement> :: = return { <expression> }? 

<yield statement> :: = yield <expression> { when exit loop <statement> }? 

<null statement> :: = null 

<exit statement> :: = exitloop { <identifier> }? 

<goto statement> :: = goto <identifier> 

<if statement> :: = 
if <expression> then 

{ <statement> ; }*  
{ elseif <expression> then 

{ <statement> ; } "  } *  
{ else 

{ <statement> ; } "  }? 
fi 

<for statement> :: = 
for <identifier> in <expression> { ,. <expression> }? do 

{ <statement> ; } *  
end for 

<pattern statement> :: = 
let <identifier> match <expression> in <expression> do 

{ <statement> ; } "  
end let 
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<while statement> :: = 
whi le <expression> do 

{ <statement> ; } *  
end loop 

B.5. Expressions 

<expression> :: = <factor> 

<expression> :: = <expression> <logical operator> <factor> 

<logical operator> :: = and I or 

<factor> :: = <term> 

<factor> :: = <term> <relat ional  operator> <term> 

<relat ional operator> :: = = I "< l "> I "< = ] "> = 

<term> :: = <primary> 

<term> :: = <unary operator> <primary> 

<term> :: = <term> <addit ive operator> <primary> 

<unary operator> :: = not  [ m 

<addit ive operator> :: = + J - -  

<primary> :: = <component> 

<primary> :: = <primary> <mult ip l icat ive operator> <component> 

<mult ip l icat ive operator> :: = * I / I rein 

<component> :: = <name> I ( <expression> ) 

B.6. Name Components 

<name> :: = { <name component>  # . } + 

% Descr ipt ion Name Componen t  
<name component> :: = desc ( <expression> ) 

% Numer ic  Literal Name Componen t  
<name component> :: = <numeric l iteral> 
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% Definite object name component (this/new) 
<name component> :: = 

{ { <identifier> : }? 
{this I new} <identifier> 
{ ( { <expression> # , } + ) }? 

} 

% Structure (Get class) component 
<name component> :: = 

{ { <identifier> : }? 
structure 
{ ( { <expression> # , } + ) }? } 

% Any component 
<name component> :: = 

{ { <identifier> : }? any 
{ ( { <expression> # , } + ) }? 

} 

% "Check"  name components 
<name component> "'.. -- 

{ { <identifier> : }? 
check <identifier> 

{ ( { <expression> # , } + ) }? 
{return ( <expression> ) }? } 

% Array element selection 
<name component> :: = [ <expression> ] 

% Pointer Dereference 
<name component> :: = t 

% Variable, function call, indefinite instance 
<name component> :: = <identifier> 
<name component> :: = <identifier> : <identifier> 
<name component> :: = <identifier> ( { <expression> # , } + ) 
<name component> :: = <identifier> : <identifier> ( { <expression> # ,  } + ) 

% attribute call 
<name component> :: = <identifier> return ( <expression> ) 
<name component> :: = <identifier> : <identifier> return ( <expression> ) 
<name component> :: = <identifier> ( { <expression> # ,  } + ) 

return ( <expression> ) 
<name component> :: = <identifier> : <identifier> ( { <expression> # , } + ) 

return ( <expression> ) 



Appendix C 
Conventional Design Issues 

Besides the main areas of research, the design of Paragon contained many little details that 

always appear in a language design. Some of these details were easy to create, since many 

previous language designs had already worked them out and I could pick the ones I liked. 

Other features of Paragon were not as common in other languages and so the details were 

not as easy to define. In some cases, the wrong details were added the language. This section 

presents some of these uncommon, yet conventional language components, namely iterators, 

type parameters and literals. This discussion is intended largely as an aid to future language 

designers, and does not represent research topics, just some friendly advice I learned from 

this experience. 

C.1. Iterators 

Iterators were provided as a generalization of the for loop construction that is usually 

present in a language. Unfortunately in Paragon, the index variable used in a for loop was 

designed improperly. First, the for loop mechanism violates the one object per identifier rule 

in Section 2.2.2. Second, an unused object is elaborated and attached to the index identifier. 

Third, selection analysis is performed on index identifier. 

Each of these problems was caused by not realizing that the index variable in the for loop is 

really part of the iterator, and not part of the program that contains the for loop. A better way 

to view the entire iteration process is to consider the for loop to be a procedure that takes one 

parameter, the index variable, and that the iterator calls this procedure every time a yield 

statement appears in the iterator [Moss 78]. The object associated with the index variable is 

determined solely by iterator and not by the program containing the for loop. in fact, different 

calls may associate different objects with the index identifier, but this is permitted where the 

for loop becomes a procedure, since it is perfectly reasonable to allow different objects to be 

passed as parameters to any other procedure. However, this view implies that index variables 
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should not be declared in the program containing the for loop, and this is the key mistake in 

the iterator design. 

Because the index variable is declared in an accessible scope of the for loop, it will have an 

object created when that declaration is elaborated. Yet that object will be discarded when the 

for loop is executed the first time. Because the for loop makes the previous Object 

unreachable, the declaration creates a wasted object (unless the object was created and used 

before the for loop with the intention of never using the object after the for loop, a dubious 

practice at best). Therefore, no object instantiation should be permitted in the variable 

declaration for an index variable. 

if the variable declaration were present, even without an instantiation name component, it 

would be represented in the possibility tree and the selection mechanism would attempt to 

perform object selection on it. But the implementation for the index variable is determined 

solely by the returned implementation of the iterator, and like all procedure return objects, this 

implementation is determined by elaborating the call with implementations and not by the 

policy procedure. Thus no selection should be performed for index variables, and they should 

not even be declared in the program. Instead, index variables should be implicitly declared in 

the for loop, deriving their specifications and implementations implicitly from the iterator call. 

C.2. Type Parameters 

The use of type parameters represents a novel aspect of Paragon, since types are passed 

through t!~e use of indefinite instances. The motivation for this technique was the additional 

number of names that were present when an extra level of generic instantiation was required 

to pass type parameters, as in Ada or Clu. In the initial design, a prototype was instantiated 

with types, to create more types, and then types were instantiated with objects to create more 

objects. Thus another level of declaration and instantiation was required for each type. This 

worsened the declaration verbosity problem mentioned in Section C.4 even beyond my 

patience. 

As a result of the decision to use indefinite instances as types, an unusual parameter 

passing situation could occur and an unusual run-time error was possible. The basis of both 

of these circumstances is in the inability to determine at compile time if a parameter is a type 

or an object. A rather contrived example illustrates this: 
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c lass  c i s  
begin 

procedure pc; 
end; 

procedure f ( p : c )  i s  
begin 

var  x => new p; 

p .pc;  
end ; 

var  Global  => new c; 

f ( G l o b a ] ) ;  
f (c);  

The procedure f has one parameter, which is an indefinite instance of c. The two calls of f are 

well specified, since the definite object G/oba/matches the indefinite instance of c and the 

indefinite instance c matches itself. Inside of f, the parameter p is used in two different ways. 

First, the variable declaration creates a new object with the same structure as the parameter. 

Thus p is used as a type parameter. Second, the procedure call invokes a procedure inside of 

the parameter, hence using p as a definite object: procedures may not be invoked inside of 

indefinite instances, in general, there is no way at compile time to determine if the passed 

object w, iH be a definite instance or an indefinite instance. Thus the first call of f(Globa/) is 

defined but the second call, f(c) causes a run-time error when the call of pc is attempted 

inside of an indefinite instance. 

Type Parameters 

The facility shown above permits a programmer to use the same parameter as a type and as 

an object. However, I have yet to see any value for that specific ability. But, it does cause the 

described run-time error, so it should probably be corrected in a future language design. The 

way to deal with this problem is to separate type parameters from nontype (definite object) 

parameters in expressions. If this could be done without adding another level of explicit 

instantiation, it would be a better alternative to the current Paragon design. As of this writing, I 

have not completed a design that I feel would be an adequate substitute for the current 

design, but I believe that some thought would provide one. 
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C.3. Literals 

Because Paragon contains only objects, and no values, titerals represent something of a 

problem. Usually, one can consider a literal as representing the object with that value. This 

view leads to problems when parameters are passed by reference, which is the only way that 

Paragon parameters are passed. The famous early Fortran problem of changing a literal value 

would result if Paragon adopted the view that literals were names for predefined objects, as is 

illustrated below: 

c lass  c(IM. p: Integer) is 
begin 

p := 5; 
end; 
, ,  , 

v a r v  => new c ( 4 ) ;  

The creation of the object for the variable v would cause the assignment statement in class c 

to be executed, changing the value of the object 4 to the value of the object 5. 

To eliminate this problem, Paragon adopted the strategy of letting literals denote functions 

that return new objects with the appropriate value. Thus every time 4 was called, a new object 

with a value that acted as a four was created and returned. Thus assignment, or any other 

operation using integers, could be performed on the new object without affecting the value of 

the literal 4. 96 

This approach has an unusual drawback: it prevents the use of literals in formal parameters. 

Because Paragon permits definite instances to appear in formal parameters, one may want to 

use this facility to restrict actuals to include only objects that are composed with a definite 

instance. A typical example would be specifying a sorting procedure that only worked with 

arrays having a lower bound of one. One would like to write: 

procedure Sor t (Ar rayManager  . A: A r r a y ( l ,  IM . N: I n t e g e r ) ) ;  

which would specify that an array may be passed with a lower bound of one (and the upper 

bound being bound to the identifier N). In Paragon, however, each occurrence of the literal 1 

is a function call that always returns a new object,, so when creating an array with a lower 

bound of t, a new Integer object would result as the lower bound for the Array object. This 

new object is different from the object created for the function call of 1 that is specified in the 

96This also permits the bizarre but well specified statement 1 : = 2. 



Appendix C.3 Literals 317 

procedure declaration above. A call on Sort using that array would not be well specified since 

the two definite instances are not identical. To achieve the desired result, the following code 

fragment would have to be present: 

var One => TM . new In tege r ;  
var MyArray => AM . new Ar ray(One, lO0) ;  

procedure Sort(ArrayManager . A: Array(One, IM . N: I n t e g e r ) ;  

One := 1; 

Sort(MyArray) ; 

This is extremely clumsy and unreliable. After all, there is nothing that prohibits some other 

assignment statement changing the value of One to some other value. Unfortunately, I was 

unable to devise a better scheme for dealing with this problem. As this use of definite objects 

in actuals was never used in the example programs, I did not need to place much effort into a 

better design of literals. 

A second problem with literals stems from their status as objects with types and managers. 

Unlike other variables and procedures, literals have no clearly identified manager to whom 

they belong. As illustrated throughout the thesis, integers may be used to represent pure 

numbers or counts of apples or sizes of oranges. Thus a literal must be associated with one of 

these managers. Paragon defines a literal with no explicit manager to belong to the 

predefined integers; all other uses of integer literals must have an explicit manager, for 

example, AppleManager.4. Although not convenient, the notation serves well enough for the 

example programs. In general, the determination of the type of literals can create problems. 

There was a great deal of discussion during the Ada design about the proper way to handle 

aggregates, which are another form of literals. Although a seemingly trivial point, future 

designers of abstract data type languages should give careful consideration to the definition 

of literals. For the Paragon design, I have two suggestions. 

First, add the concept of immutability from Clu. Objects can be specified as immutable or 

mutable, and parameters can be specified as immutable or mutable. The object matching 

rules can include another set of tests to ensure that two objects are compatible with respect 

to mutab~llty. Then integer literals can represent predefined variables that denote immutable 

objects. I would probably adopt this concept if Paragon were to undergo another design 

iteration, 
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A second approach would require a slightly different interpretation for elaborating 

procedure calls in parameters. The object that is normally returned when a procedure call is 

elaborated is the object that results from elaborating the return expression. However, the 

procedure invocation actually creates a simple object as well for the elaboration of the body 

of the procedure (this simple object is present in the possibility tree). In parameters, this 

simple object might be used instead of the returned object. Then matching is done by 

comparing the simple objects used for the procedure and not by comparing the returned 

objects, or perhaps, by comparing both pairs of simple objects. I believe this approach is too 

complex to be used in general. 

C.4. Declaration Verbosity 

Another general problem with the Paragon approach is the need to explicitly name 

everything before it is used. The declaration of a variable with a new type requires five 

auxiliary declarations: a class to act as a specification for the manager, a class to act as a 

specification for the individual, a class to act as a representation for the manager, a class to 

act as a representation for the individual, and a variable declaration that instantiates the 

manager class. As noted in Section 4.2, other languages contain anonymous manager or 

individual declarations, and anonymous or implicit manager creations. Much of the verbosity 

and clumsiness of Paragon could be alleviated by adoption of these techniques. 

A similar, but trivial problem, is the lack of multiple object declarations. Each variable 

declaration created exactly one object. Thus, to declare three integers, one had to write: 

var i => IM . new Integer; 

var j => IM . new Integer; 

var k => IM . new Integer; 

It would have been convenient, and not difficult, to allow multiple object declarations, such 

as: 

var i,j,k => IM . new Integer; 

which could have the same semantics as the first piece of program text. Another iteration of 

the Paragon design would have included this feature. 
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C.5. E×p ression Ve rbosity 

Another' drawback in Paragon'$ use of the manager model is the use of managers 

throughout expressions to denote the manager in which an operation is declared. The 

ubiquitous presence of the manager names clutters the program text immensely. Some better 

syntactic sugar is needed to eliminate the need to explicitly mention the manager. 

Clu contains such a rule by which the manager (referred to as the type in Clu) is determined 

by the first parameter to the procedure. This was not adopted in Paragon because the 

manager was not a type, but a separate object. Taking the outermost simple object of the first 

parameter of a procedure call as the manager may not be correct if the first parameter is 

composed of more than two simple objects. Further, it is desirable that all such syntactic 

sugaring be transformable into an identical program. This is not possible since Paragon 

permits managers to be returned from a procedure call. For example, suppose a programmer 

wrote f(a) - = b. A simple rewriting would take the form manager(f(a)).Assign(f(a),b). However, 

there is no guarantee that the manager returned by the first call of f is the same as returned by 

the second call of f. Yet a simple analysis following the Clu example would process each 

parameter and then use the manager of the first, thereby guaranteeing that the manager for 

the Assign procedure had to be identical to the manager of the first parameter, a situation that 

the programmer could not normally express. In retrospect, this criticism does not seem worth 

the elimination of this kind of syntactic sugar. 

In summary, another approach should concentrate on explicitly providing the manager 

model of data abstraction, and then include necessary syntactic sugaring and anonymous 

Instantiations to provide conciseness as necessary. 
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Glossary 

Almost Identical Same as similar. 

Ancestors All classes that are inherited transitively (through parents). 

An}/Instance An object that results from the instantiation of the predefined, but 
undenotable class, any. All objects match the parameterless any instance. 
If the any instance has parameters, then any object that has parameters 
that match the parameters of the any object also matches the any object. 

Capsule Red [Nestor 79] term for module. 

Class SmaUtalk, Simula and Paragon term for module. 

Class Instantiation The process of creating a simple object from a class. 

Cluster Clu term for (data abstraction) module. 

Compatible An object is compatible with another if it matches the other. A component 
of an object is compatible with another if it matched the other component. 

Component A component is a single layer or piece in an environment, object, 
composition, structure or expression. 

Compose To use a parameter, usually a type parameter. Sets are composed with a 
type to create sets of that type. 

Composition The composition of an object is a list of the unique identifiers, any 
notations and this notations that correspond to each of its simple objects. 
(any notation is used when an indefinite instance is <present, this notation 
is used when a self reference is present.) 

Creation Environment 
The environment in which a class instantiation takes place. This is the 
same as the declaration environment for the name component specifying 
the simple object creation. 
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Declaration Environment 
The environment in which the formal parameters are elaborated during an 
object creation or a procedure invocation, tt is so called because the 
declaration environment provides a simple object for each self reference 
that is present when the original declaration was elaborated or checking if 
the declaration (of the class or procedure) was well specified. 

Defined Parameters 
All parameters in a class declaration that are not inherited. 

Definite Instance A simple object that results from the elaboration of definite simple object 
creation name component, that is, a name component with the reserved 
word new. 

Description Name Component 
A description name component provides a way to access the Instance 
object associated with a doppelganger. 

Doppelganger The simple object that results when elaborating object creations or 
procedure invocations with specifications. A doppelganger is associated 
with a realization of an Instance which is in the possibility tree. 

Elaboration with Implementations 
One of three kinds of elaboration performed on a program. Elaboration 
with implementations performs feasibility checking of program. This 
includes, but is not limited to, finding feasible procedure implementations 
for every procedure call and checkings that the implementations selected 
for variables nest properly. 

Elaboration with Realizations 
One of three kinds of elaboration performed on a program. Elaboration 
with realizations corresponds roughly to conventional run-time execution 
of a program. 

Elaboration with Specifications 
One of three kinds of elaboration performed on a program. Elaboration 
with specifications corresponds roughly to the semantic analysis of a 
program. 

Envelop Pascal.Plus [Welsh 79] term for module. 

Environment An environment is an object, i.e., same as Object. 

Execution Same as Elaboration with realizations. 

Expression Name expressions and syntactic forms that can be transformed into name 
expressions. 
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Extended Class Declaration 
The list of declarations that results if one concatenates all of the 
declarations of a class and its ancestors, in leftmost elaboration order. 

Form Alphard term for module. 

Function A procedure that has a return expression in its specification. 

General Procedure 1. A procedure implementation that only uses abstract properties of an 
object. An example is a procedure that implements set intersection using 
only iteration, membership and insertion operations on sets. More 
precisely, only procedure specifications and other general procedures are 
visible for all procedure calls in the general procedure declaration 

2. A procedure specified in a generalization class, such as Assign is in the 
AssignableManager. 

Generalized Specification 
A specification that is to be further refined into 
specification before being used to declare objects. 

a more restrictive 

Generalization Class 
A class that is inherited by specification classes. Note: this is really a use 
of a class. A class may be used as a generalization, specification or 
implementation class. 

Identical Simple Object 
Two simple objects are identical if they resulted from the same 
instantiation of a class or the same invocation of a procedure. (Because 
the same elaboration of the object instantiation or procedure invocation 
name expression created the identical simple objects, their parameters 
must be identical as welt.) 

Identical Objects Two objects are identical if the corresponding simple objects in each 
component of the object are identical. 

Implementation Class 
The class selected as the representation for a variable. 

Implementation Path 
An .implementation path for a variable declaration is a path where one end 
is the class used as the specification of the variable and the other end is 
the class used as the implementation of the variable. 

Implicit DeclarationAn implicit declaration of an identifier occurs when a name component is 
labeled with an identifier followed by a colon. This notation implicitly 
declares the identifier to denote the object that results from elaboration of 
the name expression up to and including that name component, or to 



Appendix D 324 

denote the object that matches the same resulting object during 
parameter comparison. Implicit declarations are only permitted in 
parameters. 

Indefinite Instance An instance that did not come from a definite (or concrete) object 
creation. It results from elaborating an indefinite instance name 
component and corresponds to "any" definite instance of the class in the 
name component. Operationally, the differences between a concrete or 
definite instance and an indefinite instance is that only the attribute 
variables are elaborated in an indefinite instance while all variables are 
elaborated in a definite instance. 

Indefinite Instantiation 
The process of creating an indefinite instance. 

Inherited Parameters 
Parameters that are not defined in a class declaration. Inherited 
parameters are defined in one of the class's ancestors, though any 
inherited parameter need not be identical with the parameter so defined in 
the ancestor. (Inherited parameters need only match the corresponding 
parameters in immediate parents.) 

Instance 1. A simple object that results from elaborating an indefinite instance, 
object creation, any or self-reference name component, 

2. A predefined class used for realizations in the Possibility Tree. 

ln;ocation Environment 
The object in which a procedure invocation takes place. 

Interface Module Mesa phrase for module specification. 

Iterator A procedure that has a yield expression in its specification. 

Leftmost Elaboration Order 
An ordered list of inherited classes in which all transitively inherited 
parents (that is, ancestors) are listed. It is created by concatenating the 
leftmost elaboration order of each parent of the class (in order that the 
parents are given), eliminating duplicate class names when they appear a 
second time in the list, and appending the class for which the leftmost 
elaboration order is beingdefined. The leftmost elaboration order for the 
example below is Top, Middle t, Middle2, Bottom. 

class Top ts begin end; 
class Middle1 of Top is begin end; 
class MfddteZ of Top is begin end; 
class Bottom of Middte l ,  Middle2 is begin end; 
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Leftmost Parent Order 
An ordered list of inherited classes in which all transitively inherited 
parents (that is, ancestors) are listed. It is created by starting with the 
class for which the order is being defined and then concatenating the 
leffmost parent order for each parent in the parent list, eliminating 
duplications when they appear a second time in the list. The leftmost 
parent order for the example below is Bottom, Middle 1, Top, Middle2. 

class Top is begin end; 
class Riddle1 of Top ts begfn end; 
class Middle2 of Top is begin end; 
class Bottom of Hiddlel, Middle2 is begin end; 

Local Instance A piece of storage that results when making a simple object. There is a 
bijection between the local instances in a simple object and the class 
declarations that make up the extended class declaration for the 
underlying class of the simple object, 

Local Instance Set The set of local instances that make up a simple object. 

Match An object matches another if by removing some number of components 
(including none) of the first, it then pairwise matches the second. 

Module Encapsulation mechanism in a language in which some collection of 
information is written. Frequently, but not always, modules have identifier 
visibility rules that permit some subset of the information defined inside of 
the module to be available to parts of the program outside of the module. 
Also the Modula and Mesa term for module. 

Most Preferred Match 
The match that is used for parameter binding when more than one set of 
deletions of simple objects between differently sized objects (in nesting 
levels) results in a successful match. 

Name Component A syntactic unit between two periods (.) in a name expression. This is the 
basic unit of action in a Paragon program. There are name components 
for object creation, indefinite instances, any instances, self references, 
procedure invocation, attribute invocation, attribute checking, description 
and structure extraction. Several kinds of name components are syntactic 
sugar for other name components, such as integer literals (for example, 
3), array element selection (for example, [i]) and pointer dereferencing (~). 

Name Expression A list of name components separated by periods. 

Object An object is an environment. An object is also a set of nested simple 
objects. Each of the nested objects was instantiated from a class 
declaration that was nested in the underlying class of the enclosing 
object. 
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Object Creation Same as class instantiation when a new name component is elaborated. 

Package Ada term for module. 

Package Body Ada term for module implementation. 

Package Specification 
Ada term for module specification. 

Pairwise Compatible 
An object is pairwise compatible with another if the two objects have the 
same number of simple objects and corresponding simple objects are 
compatible. Compatibility may take place at either the structural 
(underlying class only) or compositional (creation or invocation 
expression) level of an object. 

Pairwise Match 

Parameter 

Same as pairwise compatible. 

One expression in a list of expressions that follow a procedure or class 
identifier in a declaration, procedure invocation or class instantiation. 
Identifiers may be implicitly declared in a parameter by placing them in 
front of a name component and placing a colon (:) between the identifier 
and the name component. For example, the expression/M, i :/nteger may 
be used as a parameter which implicitly declares i, 

Path A list of class identifiers such that each identifier denotes a class that is an 
immediate parent of the class denoted by the following identifier. 

Policy Procedure A user.provided Paragon procedure that is interpreted by the translation 
system for performing representation selections for variables in the user's 
program. 

Possibility Tree A data structure that is manipulated by the policy procedure. The 
possibility tree represents the user's program. 

Preferred Match Given two ways that two objects match, the preferred match is the one 
which compares the innermost simple objects available and deletes the 
outermost simple objects available. 

Procedure Implementation 
1. A procedure that may be used during elaborations with realizations. 
This is a procedure that is declared with a block (begin/end) and is not a 
respecification (lacking specified with.) 

2. A procedure declaration that is selected for a procedure call during 
elaborations with implementations. 
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Realized Instance 1. A instance that results from elaborating an object creation name 
component with realizations. 

2. A definite instance of the predefined Instance class that results when 
the translation system creates the possibility tree. 

Realized Simple Object 
An instance that results from elaborating an object creation name 
component with realizations. (Only the first definition for realized 
instance.) 

Restricted Class Declaration 
The declarations in a single class, excluding the ancestors of the class. 

Self Reference 1, A name component that contains the reserved word this. 

2. A simple object that denotes the containing simple object that results 
when elaborating a name component that contains the reserved word this. 
These simple objects only result when processing class and procedure 
declarations, 

Shared Specification 
A specification that describes more than one kind of object. 

Similar Environments 
Same as Similar objects. 

Similar Invocations Same as Similar procedure calls. 

Similar Objects Two objects are similar if they have the same number of simple objects 
and their simple objects are similar. 

Similar Procedure Calls 
Two procedure calls are similar if they use the same procedure 
implementations, their parameters are similar and their environments are 
similar. 

Similar Simple Objects 
Two simple objects are similar if they have the same underlying class, if 
the objects denoted by their variables are similar and if the parameters are 
similar. 

Simple Object A simple object is created by instantiating a class or invoking a procedure. 
Simple objects are contained in other simple objects which together make 
up an environment (or object). 

Specific Object Creation 
Same as object creation. 
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Specification ClassThe class denoted by the identifier following the reserved word new in an 
object-creation name component in a variable declaration. 

Specified tnstance 1. A instance that results from elaborating an instantiation name 
component with specifications, 

2. The instance of an object that results when elaborating the class 
mentioned in the type of the variable rather then the simple object that 
results when using the implementation class for the variable, 

Specified Simple Object 
Same as specified instance. 

Statement Environment 
The environment in which the actual parameters in a name component are 
elaborated. So called because it is the environment in which the statement 
containing the parameter is elaborated. 

Structure A list of the underlying classes that were used in the instantiations of an 
object. 

Subsume One path subsumes another if one path is a sublist of the other. 

This Notation A way to denote that the simple object being referenced is the enclosing 
definite instance of the named class. For example, the notation this Set 
inside of the Set class denotes the current definite instance in which the 
name component this Set is being elaborated. The same notation is used 
when a self reference is represented in the list of simple objects for an 
object. 

Type The object that results from elaborating, with specifications, the 
expression fo'.lowing the special symbol = > in a variable declaration. 

Type Parameter A parameter that contains implicitly-declared identifiers that are used in 
formal parameters or object.creation name components. 

Underlying Class The class from which a simple object was instantiated. 

Underlying Implementation 
The class used as the underlying class for the simple object created or 
shared in an object-creation name component during elaborations with 
implementations and realizations. 

Underlying Specification 
The class specified in the object specification in a specific object creation 
component, for example, the identifier Classname in new Classname. 
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Uninstantiated Environment 
The composition consisting of only self references that denotes the 
environment of a declaration that is independent of any object 
instantiations, 

Universal Class The class in which the predefined identifiers, the policy procedure 
implementation and the user program are declared. 

Unrestricted Identifier 
An identifier not in an expression or not preceded by a dot (.) in an 
expression. 

Unspecified Instance 
An instance that did not come from a definite (or concrete) object 
creation. It results from elaborating an unspecified instance name 
component and corresponds to "any" definite instance of the class in the 
name component. Operationally, the differences between a concrete or 
definite instance and an unspecified instance is that only the attribute 
variables are elaborated in an unspecified instance while all variables are 

elaborated in a specific instance. 

Unspecified Instantiation 
The process of creating an unspecified instance. 

Unused Local Instance Set 
The unused local instance set consists of those local instances that were 
once used for the simple object associated with a variable but have been 
removed because classes associated with the local instances are no 
longer ancestors of, or the same as the implementation class of the 
variable. 
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Abstract Data Types Used in the Examples 

This appendix gives a brief description of two abstract data types, sets and lists, used in the 

example programs in Appendix F. First, a brief description of each abstract data type is 

provided, followed by a short discussion of how attribute procedures perform their 

measurements. The rest of the appendix contains program text for the specifications and 

implementations of sets and lists. 

E.1. Overview of Sets 

The specifications for the sets used as an abstract data type are modeled after the sets 

specified by Low in his system [Low 74]. The same operations are present, though the names 

may differ. For example, the membership procedure is called lsMember while in Low's system 

there is explicit syntactic sugaring that corresponds to conventional set notation. 

As much as possible, the implementations for sets are also taken from Low's system. One 

deviation is the use of B-Trees instead of AVL Trees, but this does not invalidate the general 

goal of providing a reasonable collection of set implementations. 

One difference in the semantics between Low's sets and Paragon's sets is that Low allowed 

the sets to grow to arbitrary sizes while Paragon does not specify if the sets are finite or 

infinite. Different implementations provide different kinds of sets. 

After the specifications for sets, six different implementations are provided. The 

implementations consist of unsorted and sorted singly-linked lists, unsorted and sorted 

arrays, a B-Tree implementation and an attribute-bit implementation. 
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E.2. Overview of Lists 

The specifications for the lists used as an abstract data type are modeled after the lists 

specified by Low in his system [Low 74]. The same operations are present, though the names 

may differ. For example, the insertion procedure is called AddBeforetndex in Paragon while in 

Low's system there is explicit syntactic sugaring that corresponds to list insertion. 

One difference in the semantics between Low's lists and Paragon's lists is that Low allowed 

the lists to grow to arbitrary sizes while Paragon does not specify if the lists are finite or 

infinite. Different implementations provide different kinds of lists. 

As much as possible, the implementations for lists are also taken from Low's system. 

Because the program text for sets illustrates most of the features of Paragon, the list 

representations need not be extensive for illustrating the language. Therefore, only three 

implementations of lists are given: singly-linked lists, doubly-linked lists and arrays. These 

implementations are given after the program text for the list's specification. 

E.3. Assumptions about Attribute Procedures 

The attribute procedures had to include some measures of time and space requirements so 

the policy procedures could make selection decisions. Since the thesis is not trying to break 

new ground in representation-selection algorithms, the values returned by the attribute 

procedures need not be accurate. Therefore the attributes provide only rough approximations 

of the space and time requirements. The values returned by the attributes try to capture the 

asymptotic nature of the implementations. To achieve these approximations, the following 

guidelines were used for measuring the cost of attributes in implementations: 

• Every integer requires I unit of space. 

• Every bit requires I unit of space. 

• Every pointer requires I unit of space. 

• Every array requires the number of elements times the size of the element units of 
space. 

• Every statement requires 1 unit of time. 

• Only the first bracket of a bracketed statement is counted for time units, not both. 
Thus in a while loop, the while counts as I unit of time and the end loop counts as 
0 units of time. 
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• The unit counts for statements in a loop are multiplied by a factor which 
represents the number of times a loop is executed. In most examples, this is a 
linear, square or log 2 factor. 

These rules are only guidelines. In some procedures, some extra units are arbitrarily added 

because an assignment statement has many procedure calls in it. 

Attributes in specifications were intended to reflect a large but appropriately scaled value. 

For example, iteration over all elements of a list is proportional to the length of the list, but a 

large constant factor is included so that the specification appears to perform worse than an 

implementation. 

(Sections E.4 tllrough E.14 have been omitted in this edition. An unabridged version of this 

thesis is available from Carnegie-Mellon University and contains the complete Paragon text 

for each implementation.) 
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Applications Programs 

This appendix gives the sources of the application programs described in Section 7.3.2.4. 

Six programs are provided: a program that finds a set maximum, two insertion sort programs 

adapted from programs that Low wrote [Low 74], a merge sort program, also written by Low, a 

transitive closure algorithm adapted from one of Rovner's examples [Rovner 76] and a 

Huffman encoding program adapted from by a paper by Freudenberger [Freudenberger 83]. 

F.1. Set Maximum 

$e~Hax example main program 

c l a s s  HatnProgrem ts 
begin 

v a r  IntSetHanager => new SetManager(XM. Tnteger) ;  
v a t  WorktngSet => TntSetNanager , new Set; 
van t => XM , new Tnteger; 
v a r  j =) IM . new In teger ;  
v a t  $etStze => IM . new In tege r ;  
v a t  HaxSeen => IM . new In teger ;  
v z r  Total => IN . new In tege r ;  

IH,Read(SetStze);  
f o r  ~ ~n IM,Sequence(1.Se~Stze) do 

tM,Read(1);  
IntSetMeeager, Inse~, (Work lngSe~, t ) ;  

end f o r ;  

Total : "  O; 
f o r  j ~n ZntSetManeger.Members(WorktngSe~) do 

Total :~ Total  + J; 
end for; 

I N . w r i t e ( T o t a l ) ;  

M~xSeen := -1 ;  
f o r  ~ tn lotSetManeger,Members(WorkingSet) d o  

tf J > MaxSeen then 
MaxSeen := J ;  

f+;  
end f o r ;  

IH.Wrtte(MaxSeen); 
end; 
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F.2. Insertion Sort # 1 

| . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ; 

I INSRT2 exemple main program 
] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ; 

c lass MatnProgram ts 

begin 

vat  IntSetHanager => new $etManager( IM.Tnteger) ;  
va t  In tL is tHenager  => new L i s tManager ( IH . In tege r ) ;  

va t  UnSorted => IntSetHanager • new Set 
where SetSize => 100; 

vat  Sorted => TntListHaoeger . new L iSt  
where L is tS tze  => 100; 

vat  Count => IM . new In teger ;  
va t  i => IN . new In teger ;  
va t  Obj l  => TM. new Integer; 
va t  Obj2 => ZM. new In teger ;  

comment F i r s t  construct  an Unsorted set :  

In tSetManager.Clear(Unsor ted) ;  
IH,Read(Count); 
f o r  I in IH.Sequence(1,Count) do 

IH.Reed(Obj l ) ;  
In tSetMenager . Inser t (Unsor ted,Ob~l ) ;  

end f o r ;  

I n tL i s tManager .C lea r (Sor ted ) ;  

f o r  Obj l  in IntSetHanager.Members(Unsorted) do 
Count := 1; 
wh] le  Count <= ZntListManager, Length(Sorted ) do 

Obj2 := In tL is tHanager ,GetZndex(Sor ted,Count) ;  
i f  Obj2 >= Ob~l then 

ex t t ] oop ;  
e lse 

Count := Count + 1; 
t i ;  

end loop; 
ZntLtstMeneger,AddBeforelndex(Sorted.Coun¢,Ob~l); 

end f o r ;  

f o r  ObJ2 tn IntLtstManager.Members(Sorted) do 
IM.Wrt te(Obj2) ;  

end f o r ;  

end; 

F.3. Insertion Sort # 2 

| . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ; 

! INSRT3 example main program 
| . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ; 

class HatnProgram Is 

begin 

var IntSetHanager => new SetManager( IM. In teger) ;  
va t  IntLtstMnnager =) new LtstMan&ger( IM.Znteger) ;  

yap UnSorted => IetSetNanager . new Set 
where SetSize => 100; 

yap Sorted => In tL ts tMaeager  , new L i s t  
where L ts tS tze  => 100; 

vat  t => IM . new In teger ;  
va t  Obj l  => IN. new In teger ;  
yap ObJ2 => IM. new In teger ;  
va t  Count => IN, new In teger ;  

cement  F i r s t  construct  an Unsorted set ;  
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In tSetM~nager .C lear (L~sor ted) ;  
IH.Reed(Count);  ~ 
For I tn IM.Sequence(1,Count) do 

IM.Reod{Obj l ) ;  
IntSetHenager. Inse~(Unsorted,ObJl); 

end foP; 

In tL ts tManager .C lear (Sor ted ) ;  

f o r  Obj l  Jn IntSetManager.Members(Unsorted ) do 
Count := 1; 
fop ObJ2 in IntL istNanager.Members(Sorted) do 

if ObOE >= Obj l  then 
e x t t l o o p ;  

e lse 
Count := Count + 1; 

end f o r ;  
In tLts tHanager .Addeefore lndex{Sor ted,Coun~,Ob~l) ;  

and f o r ;  

f o r  Ob~2 tn IntL~stManaoer.Members(Sorted ) do 
IM.Wr~te{Ob~2); 

end fo r ;  

end; 

F.4. Merge Sort 

! NERGE example main program 
t . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ; 

c lass MetnProgram t$ 

be91n 

yap [ntSetManager -> new SetMenager( IM.Znteger) ;  
yap IntL~stManager ,> new L ts tManager ( IN . In teger ) ;  
yap LtstLtstMnnn9er =) new L ts tMana9er ( In tL t s tMansger ,L t s t ) ;  

yap UnSorted => IntSetManager . new Sat 
where SetStze ,> 100; 

va t  Sorted => In tL ts tManager  . new L i s t  
where LtstSJze => 100; 

yap L~tM1 => In tL ts tManager  . flaw L i s t ;  
yap L~tM2 => In tL ts tManager  . new L t e t ;  
yap Merger => IntL~stMnnaoer . new L i s t ;  

v a t  01dLts ts  => L fs tL ls tMannger  . new L~et; 
v e t  NewLtsts => L ts tL ts tManager  . new L i s t ;  

yap Count -> IM . new In tege r ;  
va t  t n r t n t t y  => IH . new In tege r ;  
van Objl => IN. new In teger ;  
yap Obj2 => IN, new In tege r ;  
yap I => IN. new Tnteger; 

(:olsment F t r s t  cons t ruc t  on Unsorted sot ;  
~ntSetMnneger.Cleer(Unsorted);  
IN.Read(Count);  
f o r  I ~n IM.Sequence(1,Coont) do 

ZM.Read(ObJZ); 
lntSetMannger. Znser t (Unsor ted,ObJ l ) ;  

end f o r ;  

comment Create l ~ s t  o f  1 le t s  to  be merged; 
L t s tL t s tNanage r .C lea r (O ldL t s t s ) ;  
for ObJl in IntSetMannger.Nembers(Unserted } do 

L is tL ts tHeneger .kddAf te r Index(O ldL ts ts ,O ,Zn tL ts tNenager .Cons t ru t tL i s t (ObJ1)  ) ;  
comment put new({ {  ObjE } } )  to te  01dLts ts  a f t e r  O; 

end for ;  

Lts tL ts tMsnager .C lear (NewLts ts ) ;  
En f l n l t y  := 999999; 



Appendix F.4 Merge Sort 338 

while LtstListXanager.Lenflth(OldL~sts) > 1 dO 
whi le LtstListHanager.Length(OtdLfsta) > I dO 

comment The fol lowlng two are Lops ; 
In tL is tManager ,Ass~gn(L i tHt ,L is tL ts tManager .Greb(OldLt l ts ) ) ;  
IntListManager.Asstgn(L|tMZ,ListListHanaRer.Grab(OidLtsts)); 
IntLtstHanager,Clear(Merger) ;  
whi le ( IntL is tManager.Length(Lt tMl)  > 0) or  (IntLtstHanaRer.Length(LttH2) > O) do 

i f  IntLtstManager.Length(LttH1 ) - 0 then 
ObJ1 := I n f i n i t y ;  

else 
Obj1 := TntLtstManager. F t r s t (L t tN1 ) ;  

f t ;  
i f  lntLtstManager. Len9th(LttM2 ) = 0 thee 

Ob~2 := I n f i n i t y ;  
else 

ObJ2 : :  In tL ts tNanager .F i rs t (L i tN2) ;  
f t ;  
i f  Ob~l < Ob~2 then 

In tLts tHanager .AddAf ter Index(~erger , In t l ts tHanager .  Length{Merger ) , Ob~l); 
IntLtstNanager.Removelndex(LttMl,1);  

else 
ZntListXanager.AddAfterIndex(Merger,IntLtstXanager. Length(Merger), ObJ2); 
IntLtstXanager.RemoveIndex(LitM2,t) ;  

f t :  
end ]cop; 
LtstLtstHanager,AddArterIndex(NewLtsts,O,Xerger); 

end loop; 
i f  LtstLtstManager.Length(OldLists)  ) 0 then 

ListListManager,AddArterZndex(HewLists.O,ListLtstManager,Grab(OldLtsts)); 
f t ;  
LtstListManager.Asslgn(OldLtsts,NewLtsta); 
LfstListManager.Cleer(NewLtsts); 

end loop~ 

IntL ls tXanager .Asstgn(Sor ted,Lts tLts tXaneger .Grab(OldLls ts) ) ;  

comment Pr in t  sorted l i s t ;  
f o r  Ohm2 tn IntLtstNanager.Members(Sorted) do 

IM.Wrtte(Ob~2); 
end fo r ;  

end; 

F.5. Transit ive Closu re 

! . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ; 
! TransClo example main program 

class MslnPregram ts 
begtn 

class PatrManager of AsstgnableMamsger ts 
begin 

c]ass Pair or  Assignable ts 
begin 

v a t  Domain => IN. new ~nteger; 
var  Range => IN, new Xnteger: 

end; 

procedure Asslgn(L:Petr ,  R:Pa|r)  is  
begin 

L.Doms4n := R,Dometn; 
L.Range : -  R.Raege; 
re turn;  

end; 

procedure Equal (L:Patr ,R:Patr )  return Booleans.Btt |S 
begin 

return (L.Domatn = R.Oomatn) and (L.Range - R.Range); 
end; 

end; 

ve t  LocelPefrMeneger ~> new Pai r  Manager; 
va t  Psf rSet~neger  => new SetManager(LecelPa~rManeger , Pale);  

ve t  IntSetHanager => new SetXanager(IM . I n tege r ) ;  
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yap Count =) IM . new In teger ;  
va t  t => IM , new In teger ;  
va t  Relat ion => PalrSetManeger . new Set; 
ve t  Re~ated : )  IntSetNanager . new Set; 
va t  NewlyRe]ated : )  IntSetManager. new Set;  
va t  Found => ]ntSetHanageP , new Set;  
va t  Base => Z~ztSetHanager . new Set; 
va t  Tamp :> Loca]PairManager . new Pa i r ;  

con~ent Read in the r e l a t i o n ;  
IN,Read(Count); 
f o r  ~ in ZM.Seq,ence(1,Count) do 

IM.~ead(Temp.Doma~n); 
IH.Read(Temp.Range); 
Pa~rSetNanager. lnsert (Re]at ]on,Temp);  

end f o r ;  

commenL Read In the base fop the t r a n s | t t v e  c losu re . ;  
IN.Read(Count); 
f o r  t in IM.Sequence(1.Count) do 

IM.Read(Temp.Domatn); 
IntSetManager. Insert(Bese,Temp.Domatn); 

end fo~; 

lntSetManagep.C]ear(Related);  
lntSetManager.AssJgn(NewlyRelated,Base); 
whi le ]ntSetManager.Size(NewlyRelated) > 0 do 

IntSetManager.Clear(Found);  
f o r  t in IntSetHanager,Members(NewlyRelated) do 

~or Tamp Jn PaJrSetManag~r,Hembers(Relat~on) do 
t f  Temp.Domain = ~ then 

lntSetManager. Znsert(Found, t ) ;  
f t ;  

end fo r ;  
end foP; 
In tSetNanager.Asstgn(Releted, IntSetManeger.Unton{Related,Newl~Related)) ;  
IntSetHanager.Assign(Newl~Related,IntSetManager,Subtract~on(Found,Related)); 

and loop;  

contmen~ Pr in t  out  the resu l t s  ; 
f o r  ~ in ZntSetManager,Members(Re]ated) do 

IM,Nr~ te (~ ) ;  
end fo~;  

end; 

F.6. Huffman Encoding 

I Huffman example main program 

c lass MafnProgram is  
beg~n 

commen~ This p¢ogram cteates a Huffmen encod~n 9 
Of an in teger  str~n 9 ; 

va t  ln~LtstHanager => new LtstHenager( IM , I n tege r ) ;  

class CharHapManager o f  Ass~gnebteHanager iS 
begin 

c lass ChavMap of Assignable tS 
begin 

va t  Domatn => In tL is tManager .  new L t s t ;  
va t  Range :> ZM. new In tege r ;  

end; 

procedure AssJgn(L:ChaPNap, R:CharMap) IS 
begin 

ZntListManager.Asstgn(L,D0ma~n,R,Domatn); 
L.Range := R. Range; 
re turn;  

end; 
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procedure Equat(L:CherMep,R:CherHep) re~urn 8ooleans.8| t  ~s 
begin 

return IntLtstManeger.Equel(L.Domat,:,R.Domate) and (L.Range = R.Range); 
end; 

end; 

var LocalCharMapManager => new CharMapMana9er; 
var CharMapSetMana9er => new SetNana9er(LocalCharHapManager . CharMap); 

class HTreeNodeManeger of Asst9nableMana9er ts 
begin 

class HTNode of AsstDuable iS 
bogle 

var Domain => IutLfstManeger. new L i s t ;  
var Next ~> ZntLtstHanager . new L i s t :  
vat  Value ~> IH , new Znteger; 

end; 

procedure Ass~gn(L:HTNode, R:HTNode) is 
begin 

IntLtstManager,Assign(L.Domatn,R,Oomatn); 
IntLtstMan~ger.Assign(L.Next,R,Next) ;  
L.Valoe := R.Velue; 
re turn;  

end; 

procedure Equal(L:HTUode.R:HTNode) return Booleens.Ntt iS 
begin 

return ZntLtstManager.Equal(L.Domatn,R,Domstn) end 
IntListManaDer. Equal(L.Next,R.Next ) end 
L,Value • R,Value; 

end; 
end; 

vat  HTManager => new HTreeNodeHanegor; 
vat  HTSetHanager ~> new $etMenager(HTNeneger . HTNode); 

class HCodeManeger of  AsstgnableManeger |S 
begin 

class HCharCode of Assignable is 
begin 

var Source => IntListManager . new L is t ;  
var CodeValue => [ntLtstManaDer . now L ts t ;  

end; 

procedure AssiDn(L:HCharCode, R:HCherCode) is 
begin 

IntListHanager.Asstgn(L.Source,R,Source); 
IntLtstHaneger.Aas~ge(L.CodeValue,R.CodeVe)ue); 
r e a m ;  

end; 

procedure Equa](L:HChaKode,R:HCharCode) 
return Booleans,Btt is 

beDtn 
return IntListMaaager,Equal(L.Source,R.Source) and 

IntLlstManager. Equal(L.CodeValue,R.CodeVelue); 
end; 

end; 

vet  LocalCodeHanager => new HCodeManeger; 
vat  CodeSetMan&ger -> new Set#eneger(LocalCodeMeeeger . HChePCode); 
vet  lntListSetManeger => new SetMenager(ZntListHenager . L t s t ) ;  
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van Temp => LocalCharHapHanager . new ChanHap; 
van Tamp1 => LocalCharHapManageT . new CharMap; 
va t  Temp2 => LocalChanRapManager . new CharMer; 
yap CelJnt =) ]N . new In tege r ;  
yap t => ]M . new In teger ;  
van Va'lue => ZH , new Znteger; 
ear  ¢ => In tL is tHanager  . new L i s t ;  
van S => ZntListHanager . new L i s t ;  
vae Freq => ChacHapSetHanager . new Set; 
ear  Chars => rn tL is tSetHanager  . new Set; 
va t  TempList =) IntLisLHanager , new L i s t ;  
va t  HTree =) HTSe tHansgen  . new Set; 
van TeMpHT => HTHanager . new HTNode; 
van HCode => CodeSetHanager . new Set; 
van lED => lntLtstManagen . new L i s t ;  
van Te~pCodn => LocalCodeHanager. new HCharCode; 
van B => In tL is tHnnager  , new L i s t ;  
van Hiss ing => Booleans. new B i t ;  
ear  Found =) Booleans. new B i t ;  

procedure GetMin(CharMapSetHanager . F: Set) 
return LocslCharHapManager. CharMap; 

procedure GetMin(CharHapSetManager . F: Set) 
return LocslCharMapMannger.CharMap is  

begin 
van g => ZH . new In teger ;  
va t  A => In tL is tHanager  . new L t s t ;  
yap  Tamp =) LocalCharMapMsnager . new CharNnp; 
van FtrstTtme => Booleans . new B t t ;  

ZntL is tMana9er .C lear (C) ;  
N :® 0; 
Booleens.Assign(FfnstTtme,Trua) ;  
f o r  Tamp in ChaH4apsetHsnager.Hembers(F ) do 

Sf FtPstTtme thee 
8oo leans.Ass tgn(F |¢s tT tme.Fa lse) ;  
N := Temp.Range; 
IntLtstManager,Asstgn(C,Temp.Domatn);  

e l se t¢  Temp,Range < N then 
N := Temp,Range; 
ZntLlstHenager.Asstgn(C,Temp,Oomatn); 

f t ;  
end f o r ;  
Tamp.Range : -  N; 
Int l tstManager.Assign(Temp.Oomain ,C);  
CharMapSetHanager.Delete(F,Temp); 
retuPn Temp; 

end; 

comment Read in the s t r t ng ;  
IM.Reed(Count); 
fOr t in IM.Sequence(1,Coun~) do 

IH.Read(Value);  
l n tL ts tHanager .AddBefo re lndex (s , t ,Va lue ) ;  

end f o r ;  

CharMapSetManager. CleaP(Freq); 
~ntListSetManager.CleaP(Chars);  
f o r  Value in ZntLtstManager.Hembers(s) do 

Bnoleans.Asstgn(Misstng,Teue);  
In tL is tManager .C lear (TempLts t ) ;  
ZntLts tManager.AddAfter Index(TnmpLtst ,O,Value) ;  
f o r  Tamp in CharMapSetHnnagar.HembePs{Freq) do 

t f  ln tL ts tMenager .  Equal(Temp.Domain,TempL4st) then 
Boolesns.Asslgn(M1sslng,False) ;  
CharHapSetNanager.Oelete(Freq,Temp); 
Temp.Range :® Temp.Range + t ;  
CharMapSetManager,Insert(Freq,Temp); 
e x t t l o o p ;  

f t ;  
end fOP; 
t f  Missing then 

IntLts tSetManager.  Znser t (Chars,TempLtst ) ;  
IntLtstManager.Asstgn(Temp.Domatn,TempLtst) ;  
Temp. Range := t ;  
CharMnpSetHanager. Znsert(Fneq,Temp); 

f t ;  
end fo r ;  
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HTSetHanager.Clear(HTree); 
while CharHapSetHanager. Stze(Freq) > I do 

LocalCharMapManager.Asstgn(Templ,GetMtn(Freq)); 
LocalCharHapHanager,Asstgn(Temp2,GetHtn(Freq)); 
~ntListMana~r.Assi~n(Temp~D~main~ntLis~ana9er~C~n~t~nate(Temp1~D~main~Temp2~D~ma~n)); 
Temp,Range ~= Templ.Ran9e + TempZ.Range; 
CharMapSetHanager, Znsert(Frnq.Temp); 

IntLtstManager.Assign(TempHT.Domatn,Teept.Oomnin); 
IntLtstManager.Assign(TempHT.Hext.Tnmp.Domain); 
TempiiT.Value := 01 
HTSeLManager.lnsert(HTre~,TempHT); 
IntListManager. Assign(TempHT.Domain,Temp2,Domatn); 
TnmpHT,Value := 1; 
HTSetflanager.Insert(HTree,TempHT)~ 

end loop; 

CodeSetHanager.Clear(HCode); 
for TempList in IntLtstSetManager,Members(Chars ) do 

IntListHanager.Clear(HCD); 
IntListNanager.Assign(B,Temptist); 
BooZeans.Assign(Found,True); 
while Found do 

Booleans,Assign(Found,False); 
for TempHT in HTSetHana9er,Hembers(HTree) do 

t f  IntLis~Hanager. Equal(B,TempHT,Domatn) then 
Booteans.Assign(Found,Troe); 
]ntListHanager. Asstgn(B,TempHT.Next); 
]ntListManager.AddBeforeIndex(HCD,O,TempHT.Value); 
exttloop; 

f ] :  
end for;  

end loop; 
XntLtstHana9er.Asstgn(TempCodo.Soorce,TempList); 
IntLtstManager.Assi9n(TempCodo.CodeVnlun,HCD); 
CodeSetHanager. Insert(HCode,TempCodo); 

end for;  

coemen~ Prtn~ out the results; 
for TempCode tn CodeSetN~nager.Members(HCode) do 

IM,Wrlte(IntLtstMansger.GerLIndex(TempCade.Source,1)); 
for t in XntListHanager, Wembers{TempCode,CodeValue ) do 

IN,Write(t); 
end for; 

end For; 
end; 
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Sample Output of Translator 

This appendix gives a minimally edited output from the prototype translator as it operated on 

the examples in Chapter 6. 

; ;  output from comptler 2,0 Hon 3un 13 13:05:55 1983 

; ;  leg version 0 

;,; input f~ le  was f i n t Z f , t c l  

; ;  compilat ion of f t n ~ 2 f , t r n  

comleet ~ f t n t Z f . t r e ;  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

template output f o r  reedte 0 |nstences. 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

class u n i v e r s a l e n v t r n n N n t  IS 
begtn 

class transputmenager ~s 
begin 

class t ranspor table ts begta end; 

procedure read#13: ( t ranspor tab le)  ; 
procedure wr~te#17: ( t ranspor tab le )  ; 

and; 

class ssstgnablemoneger ts 
begtn 

class assignable ts begin end; 

procedure sssign#50: ( I  : ess lgnable, r  : ess|gneble) 
such tha t  1 ,s t ruc ture  same as r . s t ruc tu re ;  

procedure equal#77: (1 : esstgnable, r  : assignable) 
return booleens.bl t  

SUCh tha t  1 .s t ruc tu re  same AS r .s t ruc tu~e ; 
end; 

closs b~tmanoger of asstgnablemanaQer |s 
begin 

class b~t of assignable is begtn end; 

proce~urn logteeland#133: (b l  : b t t , b2  : b~t) 
return b l . s t r uc tu re  

such that  h i , s t r uc tu re  same as bZ.s t ruc ture ;  
procedure logtcelor#160: ( b l  : b i t , b2  : b t t )  

return h i . s t r u c t u r e  
such tha t  h i , s t r uc tu re  same as bZ.s t ruc ture ;  

procedure log ics ]not# IT1:  (b : b i t )  
return b .s t ruc tu re  ; 

end; 

ve t  booleans => new bttmeneger; 

procedure true#213: return booleans.bt t  ; 
procedure false#221: retlJrn booleans.b l t  ; 
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Class erderedmauager Of asstgnablemansger ts 
begin 

class ordered of ass4gnable ts begin e,,d; 

procedure lessthen~252:(1 : ordered,r : ordered) 
return booleans.bt t  

such that  ] , s t r u c t u r e  same as r,strueture; 
procedure greeterthan#277:(1 : ordered.r : ordered) 

re turn  booleans.b i t  
such tha t  l . s t r uc tu re  same as r .s~ructure;  

procedure lessthanequal#324: (1 : o rdered. r  : ordered) 
return booleans.bt t  

such that  1 ,s t ruc ture same as r , s t r uc tu re ;  
procedure greater thanequa]#351:(1 : ordered, r  : ordered) 

return booleans,btt 
such tha t  t . s t rue tu re  same as r . s t r uc tu ro ;  

end; 

class hashablemanager Of asstgnablemenager Is 
begin 

class hashable of assignable is begtn end: 

procedure hash#372: (h : hashable)r return tm. t n t e g e r ;  
end; 

class d~scretemanager uf  orderedmaasger, transpu~nnager, hashablemanager tS 
begin 

class integer of ordered, t ranspor tab le ,  hashable is begin end; 

procedure plus#424: ( ]  : i n t ege r , r  : In teger)  
return 1 .s t ruc ture  

such that  1 ,s t ruc ture same as r . s t r uo tu re ;  
procedure minus#451: (1 : t n t e g e r .  P : In teger)  

re turn 1 .s t ruc tu re  
such tha t  ] . s t r u c t u r e  same as r,  s t ruc tu re ;  

procedure unarymtaos#461:.(1 t in teger)  
re turn 1 .s t ruc ture  ; 

procedure t imes#506: (1  : t n t ege r , r  : in teger)  
return l . s t r u c t u r e  

such tha t  1 .s t ruc ture same as r , s t ruc te re ;  
procedure d i v ide#533 : (1  : t n t ege r , r  : in teger)  

return ] . s t r u c t u r e  
such tha t  i . s t r u c t u r e  sane as r . s t r uc tu re ;  

procedure sequence#562: ( lower : ~nteger.upper : In teger )  
~leld lower ,s t ruc ture  

such that  lower ,s t ruc ture same as upper .s t ruc ture ;  
procedure reversesequenco#607: ( lower : Integer,upper : in teger)  

y i e l d  lower .s t ructure 
such tha t  lower .s t ruc ture same as upper .s t ruc ture ;  

procedure l t t e r a l g 6 2 t :  (cm.1 : word) return in teger  ; 
procedure value#632: ( f  : te teger)  return cm,word ; 

end; 

va t  im => new dtscretemanager; 
class wordmanager 

of assignablemanager, transputmanager ts 
begin 

class word 
of assignable, t ranspor table tS 

beg~n 
end; 
comment Al l  o f  the word operations were deleted fn th is  run.;  

and; 

va t  cm => sew wordmaeager; 
class arraymanager(elt : any) ts 
begin 

class array(tm.lowerbound : ]nteger,~m,upperbuund : in teger)  ts 
begin 

procedure element#676: (tm.todex : in teger )  
return e l f . s t r u c t u r e  ; 

end; 

end; 
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class refmanager(elt : ae~) 
of assiguable~enager IS 

begin 
cls:ss reference 

of assignab]e ts 
begtn 

procedure value#713: return e l t , s t r u c t u r e  ; 

end; 

procedure allucateNTZZ: return reference ; 
procedure free#726: ( r  : reference) ; 
procedure n11#733: return reference ; 

end; 

~rocedure special make l i t e r a l # ' 4 6 :  ( t  : any) return cm.word ; 

procedure logZN1271: ( im. i  : tnteger)  re turn tm. tnteoer  ; 
procedure log2#%417: ( tm.t : tnteger)  return tm.tnteger is 
begin 

vat  temp => im.new tnteger;  
vat  resul t  => im.new integer ;  
vat  one => tm.new integer :  
vat  two :> im.new tuteger ;  
lm.assignN3(one,tm.literal#Z(speciel_makellteral#l(1))); 
im.ess ig,#6( two. im.1 i tera l#5(specia lmake_11tera1~4(2)) ) ;  
tm.asstf ln#9(result . im, l t t e p s l f 8 ( s p e c i e l m a k e l t t e r a l # 7 ( O ) ) ) ;  
im.assign#10(temp.t); 
w~ile im.greeterthen#11(tem~,one) do 

im.asstgn#13(result,tm.plus#12(result,one)); 
im.asstgn#lS(temp,im.dtvidee14(temp,two)); 

end loop; 
return resu l t ;  

end; 

procedure squere#1430: ( ]m. t  : in teger)  re turn im.tnteger ; 
procedure square#1451: ( tm. t  : in teger)  return Im. tnteger  Is 
begin 

return im . t tmes# t ( i , i ) ;  
end; 

class setmanager(t : any) 
of assignablemanager iS 

begtn 
class set 

of assignable ts 
begin 

a t t r i bu te  ve t  sets ize => im . l t t e ra i ( spec te l_moke_ i t t e ra l ( lO ) ) ;  
end; 

procedure insert#1475: (s : s e t , t . e  : s t ruc tu re)  ; 
procedure delete#1504: (s : s e t , t . e  : s t ruc tu re )  ; 
procedure ctear#1510: (s : sat} ; 
procedure size#IS20: (s : set) return tm,tnteger : 
procedure tsmember#1533: (s : s e t , t . e  : s t ruc ture)  return booleees,bt t  ; 
procedure unton#1544:(1 : s e t , r  : set) return sat ; 
procedure subt rac t ion#1555: (1  : s e t ,  r : set)  return set ; 
procedure members#1565: (e : set)  y ie ]d  t .structure ; 

procedure esstgn#1620:(1 : s e t ,  r : set)  |s 
begin 

va t  e l i  ~> new b; 
c l ea r# I (1 ) ;  
fop e l t t n  members#2(r) do 

t nse r t#3 (1 ,e l t ) ;  
end f o r ;  

end; 

end: 

class ltstmanager(tmenager : essignablemann9er.t : assignable ) 
of asstgnablemanager tS 

begin 
class l i s t  

of assignable ts 
begin 

e t t r t bu te  ver ] t s t s t z e  : )  tm , l t t e re l ( spec ta l .mnke_ t t t e ra l ( lO0 ) ) ;  
end; 
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procedure addberoretndex#1653: (1 : l t s t , im .pos t t t on  : tn teger , t .newel t  : s t ructure)  ; 
procedure addafter index#1665:(1 : I t s t , lm ,pos t t t oe  : tn teger , t ,newul t  : s t ructure)  ; 
procedure removetndex#1674:(1 : l t s t , i m , p o s t t l o n  : i n t e g e r )  ; 
procedure c loar#1677:(1 : l t s t )  ; 
procedure get|ndex#1712:(1 : l t s t , tm ,pos t t t oo  : integer) 

reture t , s t r uc tu ru  ; 
procedure length#1722:(1 : l i s t )  return tin. Integer ; 
procedure f i r s t J 1 7 3 2 : ( 1  : l i s t )  return t . s t r uc te re  ; 
procedure grab#IT42:(1 : l i s t )  return t . s t r uc tu re  ; 
procedure meebers#1751: (1 : l i s t )  y i e l d  t . s t r uc tu ru  ; 
procedure construct l ts t#1761: ( t . e l t  : s t ructure) return l i s t  ; 

end; 

class arreyset~ansger(tmenoger : asst9nablemanager.t : osstgneble) 
Of setmenagor ts 

begin 
ver errayofob~ectmeoeger -> new erreymeneger(t ,structure);  
yer maxarreystze => tm,new integer: 
class erreyset 

of set is 
begin 

vat e l t s  , )  arra~0rob~ectmenager,new ar rey ( tm. l i t e rs l#2 (spec ta lmeke_ l t te ra l# l ( l ) ) .maxar raye tze) ;  
YaP lastused => t~.new integer; 
tm,ass ign#5( los tused, tm, l t te ra l#4(spec ie lmake l t te re l#3(O) ) ) ;  

end; 

procedure locatcopy#2040:(1 : e r rsyse t , r  : erreyset)  ; 
procedure loce lcow#2101: (1  ~ s r reyse t . r  : erreyset)  is 
begtn 

ver t => tm.new integer; 
top t in tm.seqoence#3( tm. l t te re l#Z(spec ia lmake l i te ro l# l (1 ) ) , r . l as tused)  do 

t~onager .ass tgn#6(1 .e l ts .e leMnt#4( t ) , roo l ts .e lemuot#5( t ) ) ;  
and fo r ;  

end; 

procedure insert#21?6: (s : a r re~sot , t .u  : s t ructure)  ts 
begtn 

yaP t => tin.new integer; 
fo r  t in ]m.sequence#3(tm,litorel#2(spectel_muke 11tere l# t (1) ) ,s , lns tused)  de 

i f  tmaneger.eqoel#5(s.e]ts.element#4(t) ,e} then 
future ; 

r t ;  
end fo r ;  
im~ssi~n#9(s.1~st~s~d~im.p1~s#8~s~1~stused~m~1te~1#7(speci~1-make-1itere1#6(~)))); 
tmansger.ssstgn#l l (s.el ts.element#lO(s.1ostusnd),e);  

end; 

procedure delete#2277: (s : e r raysn t , t . e  : s t ructure)  is 
begin 

vat  t -> tm.new tntegor; 
fop t In tm.sequence#3( tm. l t te ra l#2(spec ta lmake l t te ro l# l (1 ) ) ,s , l ss tused)  dO 

t f  tmanager,equsl#5(s.el ts.element#4(t) ,e) then 
tmaneger.esstgn#8(s.elts.element#6(t),s.elts,element#7(s.lestused)); 
im.essign#12(s.lestosed, 

tm.m~nus#ll(s.lestused,tm,ltteret#lO(special_mskelfterel#9(1)))); 
return ; 

i t ;  
end fo r ;  

end; 

procedure clear#2312: {e : erre~set) is  
begin 

lm,usstgn#3(s.lostused,lm.1 t te ra l#2(spec te lmake_ l t te re l#1(O) ) ) ;  
end; 

procedure size#2327: (s  : mrruyset) 
return tm,tnteger ts 

beets 
return s.tostueed; 

end; 
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procedure tsmember#2405: (s : e r r a y s e t , t . e  : s t ruc tu re )  
return boo ]ears .b i t  ts 

begtn 
ver  ~ => tLnew tnteger~ 
f o r  1 tn tm.sequence13( tm. l t te ra lH2(specta lmake_1t te re1#1( l ) ) .s . l&s tused)  do 

i f  tmana9er .equal#5(s .e l ts .e lement#4( t ) ,e)  then 
return t rue#6;  

f t ;  
end fo r ;  
re turn fa lse#7; 

end; 

procedure union#2536: (1 : a r r a y s e t , r  ; ar rays#t )  
re turn ar raysat  ts 

beg~n 
ve t  o => new arrayset ;  
va t  t :> tm,new in teger ;  
l o c , l copy# l ( o ,1 ) ;  
tm.ass ign#2(o . ]as tused. l . tes tused) ;  
f o r  t in tm.sequence#5(Im.literal#4(special make l t t e r a l # 3 ( 1 ) ) , r . l a s t u s e d )  do 

i f  booleans.logica],ot#8(ismember#7(o.r.elts.element#6(t))) then 
im.ass ignH12(o. }astused, im.pIus# l l {o . las tused,  

im. l t tera l# lO(spedia lmakel t tern l#9(1)) ) ) ;  
tmaneger.asstgn#15(o.elts.element#13(o.lastused ) , 

r . e l t s . e l emen t#14 ( l ) ) ;  
f t ;  

end fo r ;  
re turn O; 

end; 

procedure subtractton#2547: (1 : a r r e y e e t , r  : a r rayset )  
re turn arrayset  ts 

~egtn 
va t  O :> now arrays#t ;  
vat  4 :> lm.ne* tn teger ;  
f o r  4 tn t m , s e q u e n c e # 3 ( t m . l t t e r e l # 2 ( s p e o l e l m a k e l i t e r e l # l ( ; ) ) . l . l a s t u s e d )  do 

i f  booleans.logtcaIaot#6(tsmember#5(r,l.e]ts~element#4(t))) thee 
im~ssi~n#1~(~astused~im~p1~s#~(~1estus~d~im~1ite~1#8~specia1make1itera1#~(~)))); 
tmanager.asstgn#13(o.elts.element#lZ(o.lastused).l.elts.eloment#12(t)); 

f t ;  
end fo r ;  
re turn O; 

end; 

procedure members#2707: (s : erreyse~) 
y i e l d  t . s t r u c t u r e  IS 

begin 
ver  t => tm.new In teger ;  
f o r  | in tm.sequence#3(tm, l t tora le2(specta lmakel | teraI# l (1)) ,s . tastused) do 

y~eld s .e l t s .e lemen t#4 ( t ) ;  
end fo r ;  
re turn  ; 

end; 

~m.asstgn#3(maxerra,ystze. t m . l ~ t e r a l # 2 ( s p e c t a l m n k e l t t e r a 1 # 1 ( l O 0 ) ) ) ;  
end; 

class arra¥1istmenager(tmanager : assigneblemnnager.t : assignable) 
of 14stmanager ts 

begin 
vat mexerraystze -> 4m.new In teger ;  
var am :> new ar raymanager ( t .s t ruc tu re) ;  

class arra¥14el; 
of l l s t  ts 

begin 
ve t  # I t s  => lm.new e r r a y ( t m . l l t e r e l # 2 ( s p e c t e l m l k e l t t e r e t # 1 ( t ) ) , m a x a r r l . y e t z e ) ;  
ve t  numelts -> tm.oew in teger ;  
tm ,ass ign#5(nume l t s , tm . l t t e ra l#4 (spec te l_weke l t t e re l#3 (O) ) ) ;  

end; 

procedure Tocelcopy#2771:(1 : 8 r rny14s¢ , r  : a r ra¥1 Is t )  ; 
procedure 1ocalcopy#3031: (1 : e r r a y l l s t ,  r : a r r a y l i s t )  ts 
begin 

ver  t ~> tm,new in teger ;  
f o r  i in tm.sequence#3( tm. l t te ra l#Z(spec ie lmake_ l t te ra l#1( t ) ) ,maxnr ra ,ys tze)  do 

tmanager .ess tgemS( I .e l t s .e lement#4( f ) . r .e l t s .e lement#5( f ) ) ;  
end fo r ;  

end; 
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~rocedure addberoreindex#3173: (1 : arrayltat, tm.posit ton : integer,t.newett : structure) ts 
begin 

var i => im,new |nLeger; 
t r  booleans.logicaland#lO( 

bneteans.logtcaland#5( 
tm.tessthan#l(1,uumelts,maxarrays~ze), 
im.greaterthanequal#4(position,tm.lfteral#3(spectalmakeliteral#2(1)))), 

im,lessthanequal#9(posttion. 
im.plus#8(1.numelts,im.litePal#7(spectel make l i tera l#6(%))) ) )  then 

for t in im,reversesequence#l%(position,l,numelts) do 
tmanager.assign#17( 

1.elts.ele~e~:#lS(im.plos#14(i.tm.liLeratH13(spe¢talmaketi~erai#12(1)))), 
l .elts.elemenL#16(i)); 

elld for; 
Lmanager. assign#tg(1.elts.elementN18(position).newult); 
im~assi~#~3(~.nume~ts~im.p1us~2(~.n~me1ts~im~1itera1#21(speci~1make~itera1#~(1~))); 

f t ;  
end; 

procedure addafterindex#3341:(1 : arra~ltst . im.pesi t ion : tnteger,t.newelt : structure) ts 
begin 

ear i => tm.eew integer; 
i f  booleans.logicalnnd#?( 

booleans.logicatand#5 ( 
im.lessthanHl(1.numelts.maxarPaysize). 
im,greaterthanequal#4(posit ion,tm.l t teral#3(specialmakel i teral#2(O)))),  

im,lessthanequal#B(positionol.nu~elts)) then 
fop i ~fl im.reversesequence~11( 

im.plus#lO(posi t ton, im. l i teral#9{specielmakel t teral#8(1))) , l .numelts)  do 
tmanege~.essign#17(1.elts.eiement#lS(im.plus~14(t.im, llteral#13(special make l i t e r a l # l Z ( t ) ) ) ) ,  

1.elts.element#16(~)); 
end for; 
tmanager.esstgn#22(1.elts.element#21( 

t~.plus#20(positton,lm.lt teral#lg(speclal_make_lfteral#18(1)))), 
newelt); 

im~assi~#26~1~nume~ts~im~s#~5(~n~me1ts~im~1it~ra1#24(s~ecia1m~ke1ite~e~N~3(~)))); 
f t ;  

end; 

procedure removetedex#3453:(1 : arra.yltst, tm.postttoo : integer ) | |  
begin 

vat t => im,new integer; 
i t  booleans,le9tcaland#5 ( 

tm.greaterthanequal#3(positton,tm.lttere1#2(specte1_make_ltteral#l(1))), 
tm.lessthenequel#4(posltton ,1.numelts)) then 

fOr t in tm.sequence#9( 
im.plus#8(pos~tion,im.l~terel#7(apectalmakeltterel~r6(t))},l.eumelts) do 
tmanager, asstgn#15( 

1.olts,element#lO(t), 
1,elts.elementW)4(tm.plusW13(t,tm.1iterel~12(spectalmake.1ttera1#11(%))))); 

end for;  
im~ssign#19~ume1~s~im~mi~us#18~1~n~me~ts~m~1itera~#17(specie~-mak~-1itera1#16(1))~); 

end; 

procedure clear#3466:(1 : orrayl~st) ts 
begtn 

tm,assign#3(t,nLmelts.tm.l t teret#Z(spectalmakettterel#l{O)));  
end; 

procedure 
re~urn 

begin 
re~ur~ 

end; 

procedure 
return 

begtn 
return 

end; 

procedure 
refute 

begin 
return 

end; 

getlndex#3511: (1 : orrayl lst , im.posi t ton : Integer ) 
t .strocture ts 

1,elts.etement#l(pos~tlon); 

1ength#3526:(1 : ar roy l le t )  
tm,~nteger ts 

t.numolto; 

first#3546: ( I  : array11$$) 
t ,structure |s 

1.etts.elementg3(te. l t terel#2(spectal_makelt terol#%(1)));  
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procedure grab#3674:(1 : erreyl tst)  
return t .  s&rectero ~e 

begtn 
vat temp -) now ~; 
vet i => im,new integer: 
t f  ie.greaterthsn#3(1.numelts.tm,ltteral#Z(spectal.make_ltterai#l(O))) then 

tman~ger.assign~(temp~1.e1ts.e1ement#6(im~er~1#5(spe~ial-make11ter~1#4(1)))); 
for t in tm,sequence#13( 

tm.l i teralHg(spectalmakelttera1#8(1)). 
im,minus#12(1.nnmelts,im, l i t e ra t~ l t (spec ts lmake l t te re l# lO(1) ) ) )  do 
tmenager.asstgn#lg( 

1.elts.element#14(t), 
t .elts.element#le(tm.plus#tT(i, im,l~terel#l§(specialmake_ltterelN15{1))))); 

end for;  
~m`~ss~n#23~1~nUme1ts~im~mlnU~#22~1~n~me1ts~im~1lter~1#21(spec~a1-make1~ter~1#2~(1)))); 
return re=p: 

f t ;  
end; 

procedure members#3747:(1 : 4rrs$1tst) 
¥|sld t ,s t ructure tS 

begin 
vat t ~> tm.new tnteger; 
for  ] in tm,seqoence#3(tm, l t tera l#2(specta lmakel t tera l# l (1) ) , l .nueel ts)  do 

yield 1.e|tsoelement#4(t); 
i f  tm.greaterthnnN5(t,l.numelts ) then 

extt loop; 
f t ;  

end for; 
return ; 

end; 

procedure constructltst#4012: { t . e l t  : structure) 
return erre¥1tst ~e 

begin 
vet t l  -> new errey14st: 
lm.asstgn#3(t l .numelts, te. l t teral#2(spectel .makel t terel# l ( l ) ) ) ;  
tm~n~er.~ss~9n#7(t1.e1ts.e1ement#6(im.11t~r~1#5(sp~cie1-make-1~tera1#4(1))).e1t); 
return t ) ;  

end; 

procedure assign#40§3:(1 : erra~yHst, r : er ray l ts t )  t |  
begin 

ear t ~> ~m,new tnteger; 
4m.esstgn#l(1.numelts,r.numolts); 
for  t t n  tm.sequence#4(lm.ltterel#3(spectnl_mekeltteral#Z(1)),r.numelts) do 

tmenager, esstgn#7(1,elts.elemnt#5(t),r .el ts.element#6(t)) ;  
end for;  

end; 

procedure eque1#4166:(1 : a r r e y l t s t , r  : arr~yl tet)  
return benisons.bit ts 

begin 
vet 4 ") to.new integer; 
t f  booleans.logtcalnot#2(tm.equellt(1.numelts.r.numnlte)) then 

return false#3; 
i t ;  
for  I tn tm.sequence~6(in.l~terel#5(spnctelmakeltterel#4(1)),l,numolts) do 

t f  b~o1ee~s~l~i~1n~t~1~(tme~e~er~que1~(1~e1ts`e1ement#7~i)~r~e1ts~1e~ent#8~i))) then 
return false#lie 

i t ;  
end for;  
return tree#IZ: 

end; 

tLass~gn#3(mexarr~ystzo.tLl|terole2(spectel_make_ltterel#l(lO0))); 
on~; 

ctass lainprogree te 
begtn 

e l f  tnlsetmanagor z) now setaeneger(tm.intoger); 
vat tntltstmsnager =) new ltstmaneger(tm.tntegur); 
vet unsorted =) tntse~maneger.new sot 

where setslze -)  im.l t terol(spec~sl_mekeltterel( lO0)); 
vat sorted => tntltst~ennger.new t te t  

where 11stsize => tm. l t tere l (specJelm~kel t tore l ( tO0)) ;  
vet count z> iffi.new tnteger; 
vat t => tm.new integer; 
rer ob~ "> ~m.new tntogor; 
vet ebb2 ,> tm.now ~nteger; 
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]ntsetmana9er.clnarll(unsorted); 
tm,reed#Z(count); 
for t in tm.sequence#5(tm.1Itera1#4(spectelmake_1Itera113(1)),count) do 

Im.reedn(obJl|; 
~ntsetmenager. InsertJ?(unsorted.obJl); 

end for;  

tntlistmanager.clear#8(sorted); 

for obj l  tn tntsetmanager.members#9(unsorted) do 
im.ess*gn#12(cnunt. Im. l i te ra l# l l (spec ta lmake l * te ra l# lO(1) ) ) ;  
while *m,lessthenequa~14(count,intltstmanager.length#13(sorted)) do 

Im.assIgn#lS(obj2.tntltstmenoger.gettndexHIS(sorted.count)); 
tr  to.gresterthanequa1#17(ohJ2,obJl) then 

exttloop; 
else 

Im.~ssI~nj21(c~tmt~m.p1us#2~c~unt~im.1~ter~1#1~(sPec~a1-make-1Iter~1#18(~)))); 
f t ;  

end loop; 
fntltstmeneger.eddberoretndex#22(sorted.count.ob~1); 

end for;  

for obJ2 ~n tnt14stmanager.members#23(sorted) do 
tm,wrIte#24(obj2); 

end for;  
end; 

end; 

the user's program 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Instance x12384:, object Instance of mntnproOrem. 
local instance x12385: of emtnprogrtm. 
1 var tntaetmenoger ,) arreysetmanager (x12393:) 
2 vet tntltstmane9er =) arreyltstmanager (x12404:) 
3 vor unsorted , )  orrsyset (s12411:) 
4 vat sorted s) 8rreyl ]st  (x12477:) 
5 vat count =) Integer (x12543:) 
§ v&r ] -> I n t ~ e r  {x12550:) 
7 ¥8r obJl z) tnteger (x12567:) 
8 ver ebb2 , )  Integer (x12564:) 
1 proc clear =) clear#Z312: or arraysetmanager (x12671:) 
2 proc road *) read#13: of trensputmanager (x12618:) 
3 proc special make l i t e ra l  s> special make]deers1#746: of universal_environment (x12623:) 
4 proc 1Item1 -> ltteroT#bZl: of d~scretemanager (x12630:) 
b proc sequence.-> sequencelb62: of discrotemensger (x12643:) 
§ proc read , )  reed#13: of trensputmanoger (x12680:) 
7 proc insert , )  tnsert#2175: of errnysetmanagor (xlZC84:) 
8 proc clear ,) clear13466: of errnyltstmaneger (x12736:) 
9 proc members -> members#Z707: of srreysetmanager (x1278&:) 
lO-proc spec~nl_make.1ttersl => speciel_mskeltteral#746: of universal_environment (x12840:) 
11 proc t~terel : )  11retellS21: of dtscretemenager (x12847:) 
12 proc assign -> assign#50: of asstgneblemenager (x12880:) 
13 proc length -> length#3526: of arrayltstnanager (x12880:) 
14 proc lesstheneqoal -> lessthanequal#324: of orderedmenager (x12934:) 
15 proc 9etIndex =) gettndex#3511: of arrs~ltstnaneger (x12959:) 
16 proc assign =) asstgnNbO: ot 8sstgnablemaneger (x13020:) 
17 proc greaterthonequ81 , )  greeterthenequal#351: of orderedmenager (x13040:) 
16 proc special_make l i t e ra l  ,> spectn] make l i teral#746: or universe1 environment (x13066:) 
19 proc l t te re t  -> l i teral#621: oY dtscretemanager (x13073:) 
20 proc plus =) plos1424: of dtseretemdneger (x13086:) 
21 proc assign -) assign#50: of esstgneblomeneger (x13123:) 
22 proc eddbeforetndex => eddbeforetndex#3173~ or errayltstmnneger (x13143:) 
23 proc members -)  members#3747: of erre¥11stmuneger (x13204:) 
24 prnc write -) mrIte#17: of trensputmaneger (x13258:) 

Instance x12393:, abject Instance or erraseetmeneger. 
loci1 Instance x12395: of asstgnablmneoer. 
lace| instance x12396: of setmeneger. 
local instance x17568: of arreysetmentoer. 
1 vsr errayofobJectmsneger "> arrnymunoger (x17576:) 
2 ver mexarraysIze .) Integer (x17579:) 
I proc special_make l i ters1 , )  spectal makelitere1#746: of universal environment (x17587:) 
2 proc l i t e ra l  -> Tttorol1621: of dtscrntemenuger (x17694:) 
3 proc assign -)  essfgnlCO: aT nss~gneblestaneger (x17607:) 

i#stence x17676:, object instance of errLymensoer. 
local Instance x17578: of 8rreymanuger. 
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instance x17579:, object instance of in teger .  
local 'instance x17583: of assignable. 
local instance x17581: of ordered. 
local l~nstance x17582: of t ranspor tab le ,  
local ~nstance x17583: of assignable, 
inca1 ~nstance x17584: of hsshable, 
inca1 ~nstance xt7585: of in teger .  

tnstance x17587:, procedure ca l l  of special make_li teral#746: of  universal_environment. 

instance x17594;, procedure ca l l  of l t t e r a l # 6 Z l :  o f  diacretomaneger. 

instance x17607:, procedure ce l l  Of assign#50: Of essigneblemansger. 

instance x12404:, object  instance of arrayt istmaneger. 
local instance x1240g: of asstgnablemanager. 
~ocal instance x124tO: of Ztstm~nager. 
~ocal instance x17880: of arrayl istmanager.  

vat  maxarraysize => integer (x17881:) 
2 vat  am =) arrayn~anager (x17895:) 
1 proc special make l i t e r a l  => special_make_li teral#746: of universal  environment (x17899:) 
2 proc l i t e r a l  => l i t e ra l#621 :  of  dtscretemanager (x17906:) 
3 proc assign => assign#50: of Osslgnablemanager (x17919:) 

instance x17881:, object instance of in teger .  
local instance x17885: of assignable, 
local instance x17883: Of ordered, 
local instance x17884: of t ranspor tab le .  
]ora l  instance x17885: Of assignable, 
local instance x17886: of haah4ble. 
local instance x17887: of in teger .  

instance xt7895:, object instance of  arraymenager. 
local instance x17897: of err~Lymanager, 

instance xt78gg:, procedure ca l l  of special make_li teral#748: of univeraal_envtnonment. 

instance x17906:, procedure ce l l  of l t t e r a l # 6 2 t :  Of dtscretemanager. 

instance x~7919:, procedure ca l l  of assign#SO: of asstgnablemanager. 

instance x~2411:, object instance of  arrayset ,  
local instance x12412: of assignable. 
]ocal instance x12413: of set. 
local instance x18188: of ar rayset .  
I vat  e l ts  => array (x18210:) 
2 var lastused => integer (x18225:) 
1 proc special..make_liceral => special_make_li teral#746: of un iversa lenv i ronment  (x181gO:) 
2 proc l i t e r a l  =) l i t e ra l#621 :  of dtscretemanager (xt8197:)  
3 proc special_make_l i teral => special_meke_ltteral#746: of universal_environment (x laZ34:)  
4 proc l i t e r a l  => l i t e ra l#621 :  of discretemanager (x18241:) 
5 proc assign => assign#50: of assignablemanager (x18Z54:) 

instance x1821O:, object instance of  array.  
local instance x18225: of array.  

tnstance x18226:, object  instance of  in teger .  
local instance x18230: of assignable, 
local instance x18228: of ordered. 
local instance x1822g: of t ranspor tab le.  
local instance xlaZ30: of assignable. 
local instance x18231: of bashabte. 
'local tnstance x18232: of in teger .  

instance x18190:, procedure ca l l  of spec le lmake l l te ra1#746 :  of universal_envlronment, 

instance x18197:, procedure ca l l  of l t tere1#621: of dtscretemanager. 

instance x18234:, procedure ca l l  of special make l i teral#746: of universal_environment. 

instance x18241:, procedure ca l l  Of l t t e ra l#621 :  of  dtscretemenager, 

instance x18254:, procedure ca l l  of assign#50: of asstgnablemaneger, 
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instance x12477:, object instance of arra¥1tst. 
local instance x12478: of assignable, 
local instance x12479: of l t s t .  
1oral instance xZ8523: of a r ray l ts t .  
1 v a t  elts => a r r a y  (X18545:) 
2 vat IIUme]ts =} ieteger (x18561:) 
1 proc special make_literal :> special.make l i teral#746: of universal environment (x18525:) 
Z proc l t te ra l  => l i te ra l#62[ :  of discretemanager (x18532:) 
3 pros special make l i t e ra l  :> special make_literal#745: of universalenviroement (x18569:) 
4 proc l i t e ra l  => l i teral#621: of dtscretemanager (x18576:) 
5 proc assign => assign#50: of assignoblemanager (x18589:) 

instance x18545:, object instance of array. 
local instance x18560: of array. 

instance x18561:, object*instance of integer. 
local instance x18565: Of assignable. 
local instance xt8563: of ordered. 
local instance x18564: of transpo~Lable. 
local instance x18565: of assignable, 
local instance x18566: of hashable. 
local instance x18567: Of integer. 

instance x18525:, procedure c&11 of spectolmakelt teral#746: of universal_environment. 

instance X18532:. procedure cal l  Of l t teral#621: or dtscretemanager. 

instance x18569:, procedure cal l  of special_make l i teral#746: of universal environment, 

instance x18576:, procedure call  of l i teral#621: of dtscretemanager. 

instance x18589:, procedure cetl  of assign#50: or esst9oeblemanager, 

instance x12543:, object instance of integer, 
local instance x12547: of assignable. 
local tnstonce xt2545: of ordered. 
local instance x12546: of transportable. 
local instance x12547: of assignable. 
local instance x12548: of heshable. 
local instance x12549: of tnteger. 

instance x12550:, object instance of integer. 
local instance x12554: of assignable, 
local instance x12552: of ordered. 
local instance x12553: of transportable. 
local instance x12554: of assignable. 
local instance x12555: of hashable. 
local instance x12556: of integer. 

instance x12557:, object instance of ~nteger. 
local instance x12561: of assignable. 
local instance x12559: of ordered. 
local instance x12560: Of transportable. 
local instance x12561: of assigneble, 
local instance x12562: of hoshable. 
local instance x12563: of integer, 

instance x12564:, object instance of integer. 
local instance x12568: Of assignable, 
local instance x12566: of ordered, 
local instance x12567: of transportable. 
local instance x12568: of assignable, 
local instance x12569: of hashablo. 
local instance x12570: of tnteger. 

tnstance x12571:, procedure cal l  of clear#2312: of arraysetmanager. 
t proc spectal makellter81 : )  special make l i teral#746: of universal environment (x19469:) 
2 proc l i t e ra l  :> l i teral#621: of dtscretemooeger (x19476:) 
3 pros assign => assign#50: oT assignablemanager (x19489:) 

instance x19469:, procedure cal l  of special make l i teral#746: Of universal_environment. 

instance x19476:, procedure c811 of l t toral#621: of dtscretemanager. 

instance x19489:, proceduro cel l  of assign#50: of essioneblemaneger, 

instance x12618:, procedure cal l  of read#13: of transputmanager, 

instance x12623:, procedure cal l  of special make l i teral#746: of universal.environment. 
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instance x12630:, procedure cull Or l i teraln621: of discretemanager. 

instance x12643:, procedure cal l  of sequenceH562: of discretemanager. 

instance x12580:, procedure cal l  of reud#13: of transpu%manager. 

instance x12584:, procedure call of insert#2176: of arraysetmanager. 
1 vat I => integer (xt9612:) 
1 pros special_make l i t e ra l  => specia1_makeliteral#746: of universal_environment (x19620:) 
2 proc l i t e r a l  => l i terul#621: of discretemunager (x19627:) 
3 proc sequence => sequence#562: of d~scretemanager (x)9640:) 
4 proc element => element#576: of array (x19663:) 
5 proc equal => equal#?7: of assignablemanager (x19679:) 
6 prac special_make l i t e ra l  => special_make l i teral#746: of universal_environment (x19689:) 
7 proc l i t e ra l  => l i teral#621: of dlscretemanager (x19696:) 
8 proc plus => plus#424: Of discretemunager (x19709:) 
9 pros assign => assign#50: of ~ssignablemanagor (x19732:) 
10 proc element =) element#676: of array (x19738:} 
t t  proc assign => assign#SO: of assignablemanager (x19754:) 

instance x196)2:, object instance of integer. 
local instance x19616: of assignable. 
local instance x19514: of ordered. 
local instance x19615: of transportable. 
local iostance x19~16: of assignable. 
local instance x19617: of hashable. 
local instance x19618: of integer. 

instance x19620:, procedure call of special make_literal#745: of universulenvironment. 

instance xt9627:, procedure call of ttteral#G21: of discretemenager. 

instance x19640:, procedure call Of sequence#562: of dtscretemanagor. 

instance x19663:, procedure cal l  Of element#676: of stray. 

instance x19679:, procedure call Of equal#77: of assignablemanager. 

instance x19689:, procedure call of special make 1tterul#746: of universal environment. 

instance x19596:. ,rocedure call Of l t teral#621: of dtscretemanager. 

instance x19709:. ~rocedure cul l  of plus#424: of discretemena9or. 

instance x19732:, brocedure call of assign#50: of assignablemanager. 

instance x]9738:. )rocedure call of element#676: of array. 

instance x19754:. ~rocedure cal l  of assign#50: of asstgnablemanager, 

instance x12738:. ~rocedure call of clear#3466: of arra¥1tstmanager. 
1 proc special make l i t e ra l  => special_make_literal#746: of universal environment (x19927:) 
2 proc l i t e r a l  => l i teral#621: of discretemanager (x19934:) 
3 proc assign => assign#50: of asstgneblemanager (x19947:) 

tnstuoce x19927:, procedure cal l  of speciulmakel i teral#74B: of uoiversalenvirenment. 

instance x19934:, procedure call of l i teral#621: of discretemenager. 

instance x19947:, procedure call of assign#SO: of asstgnablemenager. 

instance x12785:, procedure cal l  o¢ members#Z707: of errayseCmanager. 
I vat i => integer (x20021:) 
1 proc special_make_literal => special_make.literal#746: of universal_envi ronment (x20029:) 
2 proc l i t e r a l  :> l i teral#621: of d}scretemanager (x20036:) 
3 proc sequence => sequence#562: of dtseretemanager (x20049:) 
4 proc element => element#676: Of array (x20072:) 

instance x20021:. 
local instance 
1oral instance 
locul instance 
local instance 
local instance 
local instunce 

instance x20029:. 

instance x20036:o 

instence x20049:, 

object instance of integer. 
x20025: or assignable, 
x20023: of ordered. 
x20024: of transportable. 
x20025: of assignable. 
x20026: of hasheble. 
x20027: of integer. 

procedure call of speciulmakel i teral#746: of universal_environment. 

procedure call of l i teral#621: Of discretemenager. 

procedure cal l  of sequence#562; Of dtscretemunager. 
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instance x20072:. 

instance x12840:. 

Instance xlZ847:. 

instance x12860:. 

instance x12880:. 

instance x12934:. 

instance x12959:. 

)rocedure ca l l  of element#676: of array, 

)rocedure ca l l  of special make l i t e ra l#746 :  of un iverse lenvt roument .  

~rocedure ca l l  of l t t e r e l # 6 Z l :  of dJscretemanager. 

)rocedure ca l l  of assign#50: of asstgnablemanager. 

)rocedure ca l l  of length#3526: of arrayl istmunuger. 

)rocedure ca l l  of lesethenequal#324: of orderedmanager, 

)rocedure ca l l  of getindex#3511: of errayl istmanager. 
1 proc element :> element#676: of array (x20285:) 

instance x20285:, procedure ca l l  

instance x13020:, procedure ca l l  

instance x13040:, procedure ce l l  

instance x13066:. "procedure ce l l  

instance x13073:, procedure ce l l  

instance x13086:, procedure calZ 

instance x13123:, procedure ca l l  

instance x13143:, procedure ca l l  
I v a t  t => integer (x20438:) 

of element#676: of array, 

of assign#50: of aesignablemanager. 

of greaterthnnequal#351: of orderedmanager. 

of special make l i t e ra l#746 :  of universal_environment. 

of l i t e ra l#621 :  of discretemanager, 

of plus#424: of discretemanager. 

of assign#50: of assignablemanager, 

of eddbefo.'eindex#3173: of nrreyltstmeneger. 

I proc 
2 proc 
3 proc 
4 proc 
5 proc 
6 proc 
7 proc 
8 proc 
9 proc 
10 proc 
11 proc 
12 proc 
13 proc 
14 proc 
15 proc 
16 proc 
17 proc 
18 proc 
19 proe 
20 proc 
21 proc 
22 proc 
23 proc 

instance 
local 
local 
local 
local 
local 
local 

instance 

instance 

instance 

instance 

instance 

instance 

instance 

instance 

instance 

lessthan => 1essthen#252: of orderedmanager (x20445:) 
special_make_li teral => specia]_make_1itera1#746: of universal_environment (x20457:) 
l i t e r a l  => l i t e ra l#621 :  of discretemanager (x20464:) 
greaterthanequal => greaterthanequa1#351: of orderedmanager (x20477:) 
logicnland => logicalend#133: of bitmanager (x20488:) 
special_make_li teral => special make_l i teral#746: of universal_environment (xZ0500:) 
l i t e r a l  => l i t e r a l # 6 Z l :  of discretemanager (x20507:) 
plus => plus#424: of discretemaneger (x20520:) 
lesschanequal => 1essthanequal#324: of orderedmanager (x20543:) 

logicaland => ]ogicaland#133: of bitmanager (x20554:) 
reversesequence => reversesequence#607: of discretemaneger (x20565:) 
special make l i t e r a l  => special_makei i tera1#746: of un iverso lenv i ronment  (x20589:) 
l i t e r a l  => l i te ra l#621 :  of discretemanager (x20596:) 
p]us => plus#424: of discretemanager (x20609:) 
element => element#676: of array (x20632:) 
element => element#670: of array (x20648:) 
assign => assign#50: of assignablemanager (x20664:) 
element => element#676: of array (x20670:) 
assign => assign#50: of aasignablemsnager (xZ0686:) 
special make l i t e r a l  => special make l i t e ra l#746 :  of u n i v e r s e l e n v t  ronment (x20693:) 
l i t e r a l  => l i te ra l#621 :  of discretemanager (xZ0700:) 
plus => plus#424: of discret~manager (x20713:) 
assign => assign#50: of assignablemanager (x20736:) 

x20438:. 
instance 
instance 
instance 
instance 
instance 
instance 

x20445:. 

x20457: 

x20464: 

x20477: 

X20488: 

X20500: 

x20507: 

X20520: 

X20543: 

object  instance of tnteger.  
x20442: of assignable. 
x20440: of ordered. 
x20441: of t ransportable.  
x20442: of assignable, 
x20443: of heshable, 
x20444: of in teger .  

procedure ca l l  of lessthen#252: of orderedmanager. 

procedure ca l l  of spectal mnke.1tteral#746: of u n t v e r s e l e n v t  torment. 

procedure ca l l  of l i teral#621: of dtscretemanager. 

procedure ca l l  of 9reaterthanequal#351: of orderedmanoger. 

procedure ca l l  of logtcalaud#133: of bttmanager. 

procedure ca l l  of special_make_li teral#746: of universal_environment. 

procedure ca l l  of l i t e ra l#621 :  of dtscretemanager. 

procedure ce l l  of plus#424: of dtscretemanager. 

procedure ca l l  of 1essthanequa1#324: of orderedmenager. 
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instance x20554:, procedure call of le9tcaland~133: of bttmanager. 

Instance x;!0565:, procedure call o, reversasequence#607: of dtscreteeoneger. 

tnstanoe x~0589:, procedure call of spec|almake_11tersl#746: of universal.environment. 

instance x;!0596:, procedure call of l i terel#621: of dtscretemanager. 

tustance x20609:, procedure call of plus#424: of dtscretemansger. 

fnstence x20632:, procedure call Uf elemont#GTG: of array, 

instance x20648:, procedure call of eloment#676: of orrey, 

tnstance x~0664:, procedure call of assign#50: of ass~gnableoanager. 

instence x20670:, procedure call of element#67G: of array. 

instance x20686:, procedure call of assign#50: or esslgnablamanager. 

insteoce x20693:, procedure call Of spects l~skel | tera l#746:  of universal environment. 

tnstance x~0700:, procedure call Of ltterelN621: or dtscreteeonager. 

instance xZ0713:, procedure call of plus#424: of dtscretemanager. 

tnstance x20736:, procedure call of assign#50: Of asstgnablemanager. 

instance x13204:, procedure call Of members#3747: of arrayltstmeneger. 
1 vat t => integer (x21040:) 
1 proc spectal maket]terel - )  specie1 make l i teral#746: of universal_environment (x21048:) 
2 proc l i te ra l  =) ltterol#521: Of dtscretemaeager {x21056:) 
3 proc sequence =) sequence#S62: of dtscretemanager (x21068:) 
4 proc element =) olement1675: of array (x21091:) 
5 proc 9reaterthan => 9restorthau#277: of orderedmanager (x21107:) 

instance x21040:. 
local tostance 
locat instance 
local |uatance 
loCO1 instance 
local instance 
local |nstance 

instance x21048:. 

instance x21055:. 

instance x21068:. 

instance X21091:. 

instance x21107:, 

tnstance X13258:. 

object instance of tnteoer. 
x21044: or assignable. 
x21042: of ordered. 
x2~043: of transportable. 
x2~044: Of assignable, 
x21045: of hashsble. 
x21046: of integer, 

procedure 

procedure 

procedure 

procedure 

procedure 

procedure 

coll of spectal makel l teral t746: of untverealenvtrooeent. 

call or 11tore1#621: Or dtscretNonager, 

call of sequence~562: of dascretemaeager. 

call  Of element~lS76: of array. 

call  of greaterthan#277: of orderedmanager. 

call 0f write#t7: of transputmanager. 
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