Lecture Notes in

Computer Science

Edited by G. Goos and J. Hartmanis

189

Mark Steven Sherman

Paragon:
A Language Using Type Hierarchies for the Specification,
Implementation and Selection of Abstract Data Types

‘ay
&)

¥
SpringerVerlag
Berlin Heidelberg New York Tokyo

ecture Notes In
Computer Science

Edited by G. Goos and J. Hartmanis

189

Mark Steven Sherman

Paragon:

A Language Using Type Hierarchies for the Specification,
Implementation and Selection of Abstract Data Types

SpringerVerlag
Berlin Heidelberg New York Tokyo

Editorial Board
D. Barstow W.Brauer P Brinch Hansen D. Gries D. Luckham
C. Moler A.Pnueli G. Seegmiiller J. Stoer N. Wirth

Author

M. Sherman

Depariment of Mathematics and Computer Science
Darimouth College, Bradley Hall

Hanover, NH 03755, USA

CR Subject Classification (1982): D.3.2, D.3.3, D.34, E2,1.2.2,D.2.2

ISBN 3-540-15212-1 SpringerVerlag Berlin Heidelberg New York Tokyo
ISBN 0-387-15212-1 SpringerVerlag New York Heidelberg Berlin Tokyo

This work is subject to copyright. All rights are reserved, whether the whole or part of the material
is concerned, specifically those of translation, reprinting, re-use of illustrations, broadcasting,
reproduction by photocopying machine or similar means, and storage in data banks. Under

§ 54 of the German Copytright Law where copies are made for other than private use, a fee is
payable to “Verwertungsgesellschaft Wort”, Munich.

© by SpringerVerlag Berlin Heidelberg 1985
Printed in Germany

Printing and binding: Beltz Offsetdruck, Hemsbach/Bergstr.
2145/3140-543210

Table of Contents

Acknowledgements
Abstract
1. Introduction

1.1. Motivation
1.1.1. The Use of Abstraction and Refinement
1.1.2. Data Abstraction
1.1.2.1. The Simple Model of Data Abstraction
1.1.2.2. The Limitations Imposed on Abstract Data Type Specifications
1.1.2.3. The Limitations Imposed on Abstract Data Type implementations
1.2. Summary of Thesis
1.2.1. Data Abstraction Features
1.2.2. Representation Selection Features
1.2.3. Prototype Translator
1.3. Organization of the Thesis
2. Goals of Paragon and Their Relation to Previous Efforts

2.1. Goals of Paragon
2.1.1. Refinements of Specifications
2.1.2. Combined Specifications
2.1.3. Multiple Implementations
2.1.4, Simultaneous Implementations
2.1.5. Interacting Implementations
2.1.6. Shared Implementations
2.1.7. Distinguishing Implementations
2.1.8. Variable Description
2.1.9. Programmer Accessibility
2.1.10. Static Type Checking
2.1.11, Automatic Selection of Representation
2.1.12. Compile-Time Checking of Program Feasibility
2.2, Preliminary Design Restrictions for Paragon
2.2.1. Use of a Type Hierarchy
2.2.2. Single Identifier/Object Binding
2.2.3. Automatic Creation of Representations
2.2.4. Automatic Conversion between Representations
2.2.5. Run-Time Selection of Representations
2.2.6. Prototype Translator
3. The Basics of Paragon

3.1. Overview of Elaborations
3.2. Objects

LEL8BEBBBBNNED

3.2.1. Classes and Simple Objects
3.2.2. Inheritance
3.2.3. Nested Classes and Objects
3.3. Name Expressions
3.3.1. Generation of Instances
3.3.2. Description of Objects
3.3.3. Selection of Objects
3.3.4. Other Name Components
3.3.5. Other Expressions
3.3.6. Integer Literals
3.4. Parameters
3.4.1. Syntax of Parameters
3.4.2. Comparing Objects
3.4.2.1. Simple Object Matching
3.4.2.2. Object Matching
3.4.3. Type Parameters
3.4.4. Parameters to Classes
3.5. Procedure Specifications
3.5.1. Overali Syntax of Procedure Specifications
3.5.2. Parameters
3.5.3. Return Expression
3.5.4. Constraints
3.8. Procedure Implementations
3.6.1. Overall Syntax of Procedure Implementations
3.6.2. Parameters
3.6.3. Return Statement
3.6.4. Procedure Invocation
3.7. lterators
3.7.1. Overview of lerators
3.7.2. lterator Specifications
3.7.3. lterator implementations
3.7.4. Yield Statement
3.7.5. Return Statement
3.7.6. For Statement and lterator Invocations
3.7.7. Exitloop Statement
3.8. Conventional Statements
3.8.1. Labels
3.8.2. Procedure Invocation
3.8.3. Conditional Looping
3.8.4. lf Statement
3.8.5. Goto Statement

4. The Object-Manager Mode! and iis implementation

4.1. Object Managers and Nested Classes

4.1.1. Classes as Manager and Individuals

4.1.2. Cross-Implementation Procedures
4.2, The Manager Model in Other Languages
4.3. Hierarchies for Specifications

4.3.1. Generalizations

4.3.2. Specifications of Abstract Data Types

GEREBR/ER

5338

EEEIBEE8RLBR8E868

v

4.4. Problems with Hierarchies for Specifications
4.4.1. Constraints in Procedure Specifications
4.4.2. Return Objects of Procedure Specifications
4.4.3. Heterogeneous Data Structures
4.4.4, Adding Classes to an Existing Hierarchy
4.4.5, Refinement by Derivation
4.5, Hierarchies for Implementations
4.5.1. Multiple implementations
4.5.2. Partial Implementations
4.5.3. Shared Implementations
4.5.3.1, Shared implementations via Shared Specifications
4.5.3.2. Shared Implementations via Previous Implementations
4.5.3.3. Shared Implementations for Unrelated Specifications
4.6. Problems with Hierarchies for Implementations
4.6.1, Incomplete Implementations
4,6.2. Organizing Multiple Implementations
4.6.2.1. Using a Single Manager
4.6.2.2. Using Multiple Managers
4.6.3. Sharing a Representation
5. Selection of Implementations

5.1. Elaborations
5.1.1. Elaboration with Specifications
5.1.2. Implementation Selection
5.1.3. Elaboration with implementations
5.1.4. Elaboration with Realizations
5.2, Variable Declarations and Object Creations
5.2.1. Selecting a Variable Implementation
5.2.2. Constraints on Variables
5.2.3. Checking the Feasibility of Variable Declarations
5.2.4. Elaboration of Object Creations with Realizations
5.3, Describing Classes and Procedures — Attributes
5.3.1. Purpose of Attributes
5.3.2. Attribute Variables
5.3.3. Attribute Procedures
5.3.4. Attributes in Classes
5.3.5. Procedure Respecifications
5.3.6. Attributes in Procedures
5.3.7. Attribute Variables in Expressions
5.3.8. Variables with Attributes
5.4. Representing the Implementation Choices — The Possibility Tree
5.4.1. Abstract Possibility Trees
5.4.2. Instances and Instance Classes
5.4.2.1. Realized instance Objects
5.4.2.2. Object Instantiations
5.4.2.3. Procedure Invocations
5.4.3. Bridging /nstance Objects and Doppelgangers
5,5. Making the Implementation Choices — The Policy Procedure
£.5.1. Syntactic Properties of the Policy Procedure
5.5.2. Executing a Policy Procedure

~
o @

RESYRECRBIFREB I

139
140
142
146
147
148
148
150

vi

5.5.3. Attribute-Procedure Invocations
5.5.4. The Pattern Matching Statement
5.5.5. Feasibility of a Program
5.5.5.1. Selecting a Procedure Invocation
5.5.5.2. Limiting the Size of the Possibility Tree
5.5.5.3. Selecting the Implementations of Return Objects
5.5.5.4. Hidden implementations
5.5.5.5. Another Way to Terminate Recursive Procedure Calls

6. A Complete Example Using Paragon

6.1. Program Structure and Processing
6.2. Predefined Environment
8.2.1. Input and Qutput
6.2.2. Assignment
6.2.3. Logical Objects
6.2.4. Ordered Objects
6.2.5. Hashable Objects
6.2.6. Integer Objects
6.2.7. Word Objects
6.2.8. Arrays
6.2.9. Pointers
6.2.10. Selection Facilities
6.3. An Abstract Data Type: List
6.3.1. A Specification for Lists
6.3.1.1. Redundant Attributes
6.3.1.2. Attributes that Abstract Representation Differences
6.3.1.3. Gathering Usage Data
6.3.1.4. Default Attributes
6.3.2. An Implementation of Lists with Arrays
6.3.2.1. Local Declarations and Statements
6.3.2.2. Refining an Attribute
6.3.2.3. Use of a Manager Parameter
6.3.2.4. Requiring an implementation Class as a Parameter
6.3.2.5. Implementing Generalization Classes
6.4. A Program: Sort
6.4.1. Explicit Manager Presence
6.4.2. User-Defined Representation Information
6.5. A Policy: Minimum Time and Space
6.5.1, Policy Algorithm
6.5.2. Global Properties
6.5.2.1. Separate Evaluation Functions
6.5.2.2. Use of Local Procedures
6.5.2.3. Block-at-a-Time Analysis
6.5.3. Local Properties
6.5.3.1. Selections within a Block
6.5.3.2. Using Attributes
6.5.3.3. Trying all Implementations
6.6. Transformed Program
6.6.1. Annotated Program
6.6.2. Object Listings

151
154
155
156
158
160
163
164
167

167
168
168
168
169
170
170
171
172
173
174
175
176
176
179
180
181
182
182
185
186
186
186
187
187
188
189
190
193
194
184
195
195
195
185
196
196
196
197
201

Vil

6.7. General Procedures

6.8. Recursive Procedures
6.8.1. Application Program
6.8.2. Object Listings

6.9. Some Alternative Policies
6.9.1, Dynamic Programming
6.9.2. Branch and Bound
8.9.3. Hill-Climbing Heuristic
6.9.4. Simple Constraint

7. Implementation

7.1. Phase Descriptions
7.1.1. ML: Parser
7.1.2. PURIFY: Input Reader
7.1.3. NAME: Scope Linking
7.1.4. SETUPC: Setup Class Declarations
7.1.5. SETUPP: Setup Procedure Declarations
7.1.6. SETUPI: Setup Procedure implementations
7.1.7. ELABS: Type Checking and Semantic Analysis
7.1.8. PREDEF: Locate and Bind Predefined Identifiers
7.1.9. MARKC: Create ClassDec! Qbjects
7.1.10. RPOLIC: Implementation Selection
7.1.11. ELABL. Feasibility Checking
7.1.12, WALK: Write Implementation Decisions
7.2. Component Descriptions
7.2.1. Name Components
7.2.1.1. Create_Class
7.2.1.2. Create_Call
7.2.1.3. Create_Local_Instance
7.2.2. MYLET: Function Call Utility
7.2.3. LOOKUP: Symbol Table Processing
7.2.4. COMP: Comparing Objects
7.2.5. GC: Garbage Collector, TIMER: Metering, SW: Switches
7.3. Translator Performance
7.3.1. Static Measurements of the Translator
7.3.2. Static Measurements of Some Programs
7.3.2.1, Predefined Environment
7.3.2.2. Abstract Data Type Specifications
7.3.2.3. Abstract Data Type Implementations
7.3.2.4. Application Programs
7.3.2.5. Measured Sizes of Programs
7.3.3. Dynamic Measurements of Translator
7.3.3.1. Measuring Elaboration with Specifications
7.3.3.2. Measuring Elaboration with Implementations
7.3.3.3. Measuring Elaboration with Realizations
7.4. Conclusions about the Prototype
8. Retrospective on the Language Design and Implementation

8.1. Abstract Data Type Features
8.2. Describing and Selecting Abstract Data Types
8.2.1. Attributes

204
207
207
208
210
210
213
216
221

225

225
227
228
228
229
229
229
230
230
231
231
231
231
232
232

255
255
258
258

Vil

8.2.2, Policies and Possibility Trees

8.2.3. Anonymous Possibility Tree Nodes

8.2.4. Parse Tree Availability

8.2.5. Decorating the Possibility Tree

8.2.6. Simpler Models

8.2.7. External Selection Language

8.2.8. Program Creation Systems

8.3. Automatic Processing of Paragon Programs
8.3.1. Heterogeneous Data Structures
8.3.2, Giobal Feasibility Checking
8.4. Summary

8.4.1. Contributions: Abstract Data Types
8.4.1.1. Refining Specifications
8.4.1.2. implementing Abstract Data Types
8.4.1.3. Combining Representations
8.4.1.4. Uniform Object Notation

8.4.2. Contributions: Representation Selection
8.4.2.1. Describing Abstract Data Types
8.4.2.2. Organizing Global Program Optimization
8.4.2.3. Programmer Control of Selection Criteria
8.4.2.4. Feasibility Analysis

8.4.3. Future Areas for Related Work

8.4.3.1. Uniform Procedure, lterator, Object Semantics

8.4.3.2. Value of Multiple Representations

8.4.3.3. Program Representations for Programmer Manipulation

8.4.4, Conclusions

Bibliography
Appendix A. Additional Paragon Features

A.1. Lexical Elements
A.1.1, Character Set
A.1.2, Identifiers
A.1.3. Literals
A.1.4. Special Symbols
A.1.5. Reserved words
A.1.6. Comments
A.2. Object Creation Expressions
A.3. Most Preferred Match
A.4. Initial Environments
A.5. Restricting Environments
A.6. Environments for Parameter Elaboration
A.7. Inheriting Parameters
A.8. Sharing Implementations
A.8.1. Subsuming implementation Paths
A.8.2. The Environment of the Object
A.8.3. Parameters in a Shared Implementation
A.8.4, Variable Interaction
A.8.5, Elaboration of a Shared Implementation
A.9. Procedure Constraints
A.2.1. Constraints that Check Matching

259
260
261
263
263
265
266
266
267
267
269
269
269
270
270
270
271
271
271
27
272
272
273
273
273
274
278
283

283
283
283
284
284
284
284
285
285
287
287
288

293

295
296
296
206
297
297

A.9.2. Combining Constraints
A.10. Self-References
A.11. Statements
A.11.1. Statement Structure
A.11.2, Expressions as Statements
A.11.3. Subprogram Control Statements
A.11.3.1. Return Statement
A.11.3.2. Yield Statement
A.11.4. Conditional Statement

A.11.5, Leop and Loop Control Statements

A.11.5.1. For Loops
A.11.5.2. While Loops
A.11.5.3. Exiting Loops
A.11.6. Goto Statement
Appendix B. Paragon BNF

B.1. Notation

B.2. Program Structure

B.3. Declarations

B.4. Statements

B.5. Expressions

B.6. Name Components
Appendix C. Conventional Design Issues

C.1. lterators

C.2. Type Parameters

C.3. Literals

C.4. Declaration Verbosity

C.5. Expression Verbosity
Appendix D. Glossary

Appendix E. Abstract Data Types Used in the Examples

E.1. Overview of Sets

E.2. Overview of Lists

E.3. Assumptions about Attribute Procedures
Appendix F, Applications Programs

F.1. Set Maximum

F.2. Insertion Sort #1

F.3. Insertion Sort #2

F.4. Merge Sort

F.5. Transitive Closure

F.8. Huffman Encoding
Appendix G. Sample Output of Translator
Index

297
298
269
299
299
300
300
301
302

304
305

307
307

308
310
311
311
313
313
314
316
318
319
321
331
331
332
332
336

336
337

343
357

Figure 3-1:
Figure 3-2:
Figure 3-3:
Figure 3-4:
Figure 5-1:
Figure 5-2:
Figure 5-3:
Figure 5-4:
Figure 5-5:
Figure 5-6:
Figure 5-7:
Figure 5-8:
Figure 5-9:
Figure 7-1:

List of Figures

.An Object Consisting of 3 Simple Objects

Nested Simple Objects that are not an Object

Another Object with 3 Simple Cbjects

A Simple Object with Parameters

Simple Possibility Tree

Selecting Implementation1 for x

Changing x to Implementation2

Adding Procedure Implementations to the Possibility Tree
Reusing old Procedure Local Instances in a Possibility Tree
A Possibility Tree with only Implementation4

A Possibility Tree with Implementation4 and LV1

Picking Implementation3 after Implementation4

Part of an Infinite Possibility Tree

Phase Diagram for the Paragon Translator

Table 7-1:
Table 7-2:
Table 7-3:
Table 7-4:
Table 7-5:
Table 7-6:
Table 7-7:
Table 7-8:

List of Tables

Static Sizes of Translator Phases

Static Sizes of Translator Components

Static Sizes of Program Fragments

Phase Measurements for Semantic Analysis
Component Measurements for Semantic Analysis
Dynamic Performance of Feasibility Checking
Dynamic Performance of Policy Procedure Execution
Unit Execution Times of Policy Procedure

236
240
241
243
247
251
252

Acknowledgements

=SReNS TP e uha e
=TS TSPS RINDR Y
n

- -
- e)

DN TRY2 W Ym
=N DN P

Let your house be a meeting place
for scholars,

and sit in the dust of their feet,

and drink in their words with thirst.

Pirkei Avos 14

One usually acknowledges ones committee, friends and relatives in the acknowledgement
section of a thesis. Such a narrow view unfairly reflects the way that research is conducted at
CMU. During my tenure here in Pittsburgh, | have spent a great deal of time listening to and
learning from other people: fellow students, faculty, official visitors and random hanger-ons.
Each contributed to my education and is in some way responsible for my completing my Ph.D.
degree. The weaith of opportunities at the Computer Science Department made my studies
an exciting and memorable adventure.

Nevertheless, my day-to-day contact with several people helped organize and advance my
work on this thesis. Andy Hisgen and Jonathan Rosenberg were always willing to listen to
each bizarre new idea and provide helpful suggests and criticisms. Elaine Kant patiently
watched my research go through its ups and downs and provided me with technical feedback
and encouragement whenever each was needed. Peter Hibbard and John Nestor reminded
me that the art of language design is still largely an art. Like all apprentices, | was glad to
have these masters around me for advice and help. Cynthia Hibbard read through hundreds
of pages of drafts, checking my writing and offering suggestions to improve the writing style.
Michael Conner carefully read initial drafts of this thesis and offered helpful technical
suggestions.

Nearly everyone who works on a thesis can attest to the frustrating and overwhelming effort
it requires. My wife Vera took care to ensure that i never let this thesis oppress me. Without
her, this thesis might have never been finished. Last, but not least, | wish to thank her.

Mark Sherman
July 6, 1983

Abstract

This thesis describes a set of language features that supports the specification,
implementation and selection of data abstractions. The effectiveness of these features is
illustrated through a language, called Paragon, developed for the thesis. Novel features of
Paragon include:

¢ Multipie inheritance of classes (the basic encapsulation mechanism);

o Multiple procedure implementations for a procedure specification;

o lterators;

o User-provided descriptions of abstract data types;

o User-provided strategies for making representation-selection decisions;

o Compile-time selection of a procedure implementation for each procedure call;

« Compile-time selection of variable representations.

Representative Paragon programs illustrate how this language can be used for defining
multiple, simultaneous and interacting implementations of abstract data types. In addition,
some refinements of the data abstraction paradigm, such as generalized specifications and
shared specifications, are defined in the thesis and illustrated with Paragon programs. | then
show how the type-hierarchy facilities in Paragon can be combined with a semi-automated,
representation-selection mechanism and some representation-selection strategies using
Paragon’s notation are provided. To show how Paragon can be implemented, | describe the
design of a translator and provide some measurements of a prototype. This prototype
demonsirates that the conventional compiler technology can be used for implementing type
hierarchies, though it does illustrate possibie problems with separate compilation when using
multiple, simultaneous implementations of abstract data types. Finally, a critique of the
language is provided.

Chapter 1
Introduction

This thesis discusses a new programming language called Paragon that supports the
specification, implementation and selection of data abstractions. The language uses type
hierarchies to specify and implement abstract data types. Further, the Paragon fanguage
design integrates the abstract data type facilities with a semi-automatic procedure for making
implementation choices for the variables in a program. A prototype for the Paragon design
was wriften and run on several example programs. All of these aspects are considered in
detail in this thesis.

In this introductory chapter, the motivation for pursuing this work is presented, followed by a
summary of the main results of the thesis. This chapter ends with a discussion of how the rest
of the thesis is organized.

1.1. Motivation

Modern software has grown to such size and complexity that programmers can no longer
manage all of the details of the programs they write. This lack of management causes the
programs being created to be improperly specified (they do not accomplish what the user
intended}, incorrectly implemented (they do not accomplish what the programmer intended),
and inefficient (they produce the wrong answer slowly and at great cost). Programming
methods that promote the management of the details of a program can help control the size
and complexity of modern software, and in turn, promote the production of correct and
efficient systems. ’

Section 1.1.1 Motivation 8
1.1.1. The Use of Abstraction and Refinement

A successful method of controlling complexity in other disciplines is abstraction, that is, the
suppression of irrelevant details. Various abstraction methods have been introduced into the
programming task, notably control abstraction and procedural abstraction. Control
abstraction usually takes the form of while loops, repeat loops, and if statements, each of
which suppress the details of specifying nonsequential program flow. Procedural abstraction
provides a way for a programmer to specify a black box that can transform some set of values
into another set of values while suppressing the details of how the transformation is

accomplished.

Although the abstractions initially suppress some details, these details are needed in the
final program. The process of introducing details is called refinement. Sometimes the
refinement is automated, as when a compiler automatically translates a while loop into an
appropriate sequence of test and jump instructions. Sometimes the refinement is performed
by the programmer, as when the programmer writes the code that describes how the
specified black box actually works.

Refinement does more than introduce the details suppressed by abstraction. Refinement is
also a selection and binding process. There are usually many different models that meet the
requirements of an abstraction. For example, a common procedural abstraction is Sort. In an
abstract sense, a sort procedure accepts a sequence of data and produces a permutation of
that sequence that meets a specified ordering relation. There are many different algorithms
that meet such a specification, any one of which meets the abstract requirements. The -
binding of a sort black box in a program to the selected algorithm is a refinement of the

program.

Binding details to abstractions reduces the number of choices that a programmer can make
for further refinements in the program. For example, if a choice is made to represent an
ordered sequence of data as a linked list, a search procedure operating on that sequence can
not use a binary search method. The refinement of the abstract sequence to a linked list
reduces the number of choices for a searching procedure. As a program is refined further, the
program becomes less abstract, more filled with details and more constrained. Therefore
refining a program introduces inflexibility.

This inflexibility adversely affects program development and maintenance. As a program is

Section 1.1.1 Motivation 7

being developed, a programmer may not know which refinement ta choose but a programmer
has to choose one so that development may continue. Later the programmer might discover
that the wrong decision was made, but the inflexibility introduced by previous refinements
hinders a better approach from being implemented. This problem is exacerbated for program
maintenance since only the fully refined program is available. Because the costs of
maintaining a program are far greater than the cost for initial development, inflexibility in a
program can exact a high price over the lifetime of a program.

Clearly, an approach is needed that introduces the refinements for constructing a program
without eliminating the abstractions. Techniques for introducing details without obscuring
control and procedural abstraction are being widely adopted. In control abstraction, the
abstraction is provided by the programmer using structured programming techniques and the
details are mechanically generated by a compiler. Because of the mechanical nature of the
refinement process, a programmer can confidently change an abstraction and rely on the
compiler to insert faithfully new details as necessary. In procedural abstraction, the
programmer adopts a convention that the interface of a subroutine will remain an invariant
abstraction that may be used by the rest of a program. Further, only the abstract interface of
the procedure may be used by the rest of the program. Because the program using the
subprogram relies only on the abstract interface, the refinements inside of the subprogram
may be changed without affecting the rest of the program. So for both control and procedural
abstraction, there are refinement techniques that retain much of the abstraction, and hence,
much of the flexibility. '

Howaver, control and procedural abstractions have been used for many years. A newer
form of abstraction, data abstraction, is becoming widespread and its refinement techniques
are not well developed.

1.1.2. Data Abstraction

Data abstraction is based on the observation that programs conceptually operate on
abstract objects that have specific properties unrelated to a computer. For example, a
program simulating a traffic intersection operates on objects that represent cars, trucks,
streets, and traffic lights. Since the program is ultimately run on a computer and does not
manipulate concrete cars, some transformation must be made from the abstract objects to
concrete objects that a computer manipulates. The refinements that effect this
transformation usually require the addition of a great number of details, and unless carefully

Section 1.1.2 Motivation 8

done, will cause confusion in the programmer, inflexibility in the program and uitimately,

errors in the finished product.

1.1.2.1. The Simple Model of Data Abstraction

There are emerging methods for refining data abstractions that provide a limited way to
control the inflexibility and confusion that results from transforming program objects into
computer objects. These methods require that each kind of object manipulated by the
program have two parts: a specification that describes the actions that may be performed on
the object, for example, start a car or stop a car; and a representation of the object in terms of
computer objects, for example, a car is represented by three integers that hold data about the
number of people in the car, the serial number of the car and the make of the car. A special
piece of a program, called a module, provides a set of subprograms that implement1 the
operations that may be performed on a car. Inside of this module, a programmer may refer to
the representation of the object in terms of the computer objects. Outside of this module, only
the specified operations may be used to manipulate the representation of the object.

Unfortunately, the view that each kind of object be split into two parts is too simple.
Although the methodology for building systems recognizes the need for layering for many
purposes [Cheatham 79, Parnas 74}, the view of providing layers of specifications for abstract
objects has not been widely embraced. Yet the single layer of specification is inadequate for
many kinds of specifications. Further, multiple representations of an object are not well
supported and interactions between representations are not permitted. Each of these
probiems will be considered in turn.

1.1.2.2. The Limitations Imposed on Abstract Data Type Specifications

The single, isolated specification in a madule is too restrictive. Other kinds of specifications
that a programmer may wish to write include a specification that is a refinement of another,
related specifications that are not refinements of one another and implementation-
independent specifigations. Each of these three kinds of specifications is illustrated below.

First, one kind of program object may be a refinement of another. For example, a Plymouth

1The data abstraction literature sometimes uses the word representation for the definition of local storage of an
object and the word implementation for the cade that makes up the procedures in a module. !t is now becoming
accepted that the information in an abstract object may be encoded in either the state of the local storage or in
procedures that operate on local storage and so the words implementation and representation have become
interchangeable. They are used inferchangeably in this thesis.

Section 1.1.2.2 Motivation 9

object is refinement of an Automobile object. Thus the specification for a Plymouth shouid be
some refinement of the specification for an Automobile. Yet the described method of data
abstraction allows only disjoint pairs of specifications and representations, not collections of
related specifications and representations. The simple data abstraction methad requires
different kinds of program objects to be refined independently even when one specification

may be a refinement of another’s specification.

Second, objects may be related even if one is not a refinement of another. This relationship
might be made explicitly by the specification of several objects in a singls module or might be
made implicitly by the specification of type parameters a module. Neither is permitted in the
simple model of data abstraction.

In the simple model of data abstraction, each module may specify exactly one kind of object.
However, some specifications are related, such as keyboards and displays. They are clearly
separate objects: one might desire many displays to be attached to one keyboard or many
keyboards to share a display. Yet they are related: when operating in half-duplex mode,
typing a character on a keyboard causes a character to appear on the display. Since the
abstract objects, keyboard and display, are related, their specifications should be retated and
a data abstraction facility should aliow both specifications to appearin a single module.

The simple model of data abstraction also provides no facilities for families of specifications.
Yet many objects have similar structures. For example, nearly all symbol tables have the same
structure: a collection of pairs, where each pair consists of a key and some data. Typically,
the keys belong to one type and the data to another type. In the simple approach df data
abstraction, every symbol table that uses a different key type must have its own specification
and representation. There is no way of defining a class of symbol tables that can be related
with another class of objects, namely the different types of keys. Yet the specifications and
representations for all symbol tables are nearly identical. it should be possible to factor out
the common parts of the specifications and representations into a single specification and
representation. Later, a programmer should introduce those details necessary for any
particular symbol table as parameters rather than by creating new specifications and

representations.

A third way in which specifications in the simple model are too restrictive is their lack of
implementation independence. The simple model piaces strict rules on the relationship
between specifications and implementations. In particular, the information available to an

Section 1.1.2.2 Motivation 10

implementation is exactly that information provided by the specification, no more and no less.
A simple example can illustrate this, The specification of a typical sort procedure requires that
the elements to be sorted have a comparison procedure. Any implementation of the sort
procedure may use such a comparison procedure, but nothing else. Because the
specification is not restrictive, it prohibits bucket sorting, since the bucket sort algorithm
requires that the elements to be sorted come from a cross product of ordered sets and that
the set of resulting tuples be well founded. Sometimes the opposite problem occurs and the
specification is to too restrictive. The specification for sorting might require that the elements
to be sorted be tuples in a well found set. This limits the types of elements that may be sorted
since many objects may be compared without having a tuple structure. Such a specification
effectively prohibits sorting to be done on objects where bucket sort is not feasible. These
problems also occur with data abstractions. The specifications for the elements to be stored
in a symbol table may require the elements to have a hash procedure defined on them (for
example, see the symbol table example on page 164 of the Alphard Book {Shaw 81]). Such
specifications fimit the possible implementations of symbol tables to those that use hashing
functions and those that do not use any element specific functions. In all of these cases, the
problem is that information about the refinement process has leaked from the implementation
to the specification. A more general facility would include details of refinement where they are
appropriate.2

1.1.2.3. The Limitations Imposed on Abstract Data Type Implementations

Besides the inadequate support for writing specifications, the simple model of data
abstraction does not adequately support muitiple implementations of a specification.
However, these multiple implementations can be quite useful. For example, an abstract array
object allows the assignment and retrieval of data via a list of indices. Two common
representations of arrays in linear memory are row-major order and column-major order.
Normaily it makes little difference which order is used. Sometimes one representation gives a
better program performance, for example, because of paging requirements. Sometimes a
representation is necessary for praperties unrelated to the operations given in the
specification. For example, another program may be providing the array in a predetermined

format, such as a Fortran subroutine providing an array in column-major order. Therefore it is

2The restriction imposed by the simple model is not unmotivated. By insisting that all specifications available for
the implementation be present in the specification, a compiler may separately check at compile time that the use of a
data abstraction is legal, that an implementation that meets the specification, and that both checks are sufficient for
guaranteging that the resulting program can executa.

Section 1.1.2.3 Motivation 11

desirable to associate many different representations with each specification and to select a

representation for an object as appropriate,

Despite their potential usefulness, the simple model of data abstraction does not allow
multiple representations to be inciuded in a program, since the specification and
representation are in one, textually-combined module. But even where one may separate the
representations from the specifications and thereby have a way to write different
representations, most systems use the same name for the different representations. Therefore
these systems have difficulty in distinguishing one representation from another. To deal with
this problem, languages impose a series of restrictions. |Initially, a language may prohibit
muitiple implementations from appearing in a program. For example, Ada [ichbiah 80] permits
only a single package body to be bound to a package specification. But even if multiple
implementations are permitted in a ianguage, they may not interact in procedures that use
only abstract properties of the object. For example, Low's implementation of sets in Sail [Low
74] prohibits two sets with differing implementations from having intersection performed on
them, even though set intersection may be written using only abstract operations of sets.
Finally, even when full facilities for multiple representations are provided, there is no way of
obtaining information about the different representations to aid in selecting an appropriate
representation. The literature contains dozens of different implementations for sets. Each of
these implementations is appropriate in a different circumstance. The writer of the
implementation should be able to describe the behavior.of the implementation so that an
intelligent selection is possible.

In addition to the inadequacies of specifications and multiple representations in the simple
model, the simple model cannot adequately handle interacting representations. This
deficiency occurs in two ways: interactions between different implementations of a
specification cannot be defined or used, and a shared implementation for separate
specifications cannot be provided.

Even when languages permit different implementations for a single specification, they do
not permit a single procedure to use the concrete details of more than one representation. As
a simple example, assume that a module implementing complex numbers were specified and
that two implementations were written: cartesian and polar representations. Following the
simple model, the module for each representation may manipulate either the cartesian
representation or the polar representation but not both. it might be useful in a program to

Section 1.1.2.3 Motivation 12

write an addition procedure that can work on polar and cartesian representations, yet the
simple model does not allow any one representation access to the details of another

representation.

Besides the ability to have muitiple implementations for each specification, it is desirable to
allow a single representation for multiple specifications. Representations are sometimes
related even if the specifications are not. For example, a program may manipulate objects that
represent disks and drums but it may be necessary that the representations used for data
encoding for both devices be identical. The specifications should be separate, since different
kinds of operations are performed on disks and drums. But the representations for disks and
drums are interrelated because data are transferred between them. While it should be
possible to selectively combine representations as necessary, the simple data abstraction
method requires a separate representation to be associated with each specification. This
adds inflexibility to the program since there is an implicit connection between the modules for
disks and drums; a decision made for one module must be reflected in the other,

Although the simple model for data abstraction has limitations, the underlying ideas are
sound and are slowly being put into practice. But because of the relative youth of data
abstraction techniques in the programming community at iarge, littie work has been done to
extend the basic refinement method beyond the simpie approach and to explore the
implications of those extensions. The initial attempts at creating languages with data
abstraction facilities, such as Clu and Alphard, followed the simple model very closely. Some
limited extensions, such as generics, are included to try to solve some of these problems, but
no general language mechanism has been developed that permits multiple levels of
refinement and the retention of abstraction in the final program. This thesis proposes a set of
language features base on a type hierarchy that effectively support the data abstraction
techniques and allow a more flexible refinement paradigm to be used with data abstraction.

1.2. Summary of Thesis

The theme of this thesis is that type hierarchies are a useful linguistic construct for
specifying abstract data types, refining specifications of abstract data types into
implementations, and selecting an implementation of an abstract data type for a given
specification. The vehicle for exploring this theme is a new programming language, Paragon,
which | designed and implemented as part of the research.

Section 1.2 Summary of Thesis 13

There are three main pieces of research. The first part discusses the design of features in
Paragon that support specifications of data abstractions and refinements of specifications.
The second part presents the features of Paragon that support selection of an appropriate
refinement from a collection of possible refinements. The third part descﬁbes the
implementation of a prototype translator for Paragon that processes the data abstractions and
makes selections of refinements for program objects. Together these parts demonstrate how
type hierarchies can be used in programming languages to provide a more flexible and useful

refinement process for data abstraction.

1.2.1. Data Abstraction Features

There are four basic data abstraction features in Paragon: classes, class inheritance, class
nesting and class parameters. Supporting these basic features are the separation of
procedure specifications and procedure implementations, multiple implementations of

procedures, and a uniform object notation and semantics.

Classes are the basic encapsulation mechanism for modules and contain declarations of
procedures that may operate on instances of the class and local state. A class may inherit the
declarations of other classes® and may add new declarations, such as a procedure
implementation for a procedure specification. Such a derived class is considered to be a
refinement of the parent classes. When a variable declaration uses a class, the named class
defines the abstract properties of the object denoted by the variable. Any refinement of the
class used in the declaration may be used as the implementation for the object.

Classes may also contain local class declarations, which give rise to nested classes. When
these nested classes are instantiated, they create nested objects. By selective use of class
inheritance and class nesting, it is possible to arrange scopes in several useful ways. Two
ways are discussed in this thesis. One way permits procedure implementations to be written
so they can access different concrete refinements of the same specification. Another way
permits a shared refinement to be written for separate specifications.

A class may also have parameters. Parameters permit families of specifications and
refinements to be defined. Because the uniform object notation provides different syntax for

3Since a class may inherit the declarations from more than one class at a time, the classes form a directed acyclic
graph of types and not a strict hierarchy. However, the phrase type hierarchy is more commonly used in the literature
and is used throughout the thesis rather than the technically correct phrase directed acyclic graph of types.

Section 1.2.1 Summary of Thesis 14

denoting a "type"4 and an object, and because these different syntactic constructions may be
used in parameters, Paragon permits the parameters to classes to be used as conventional

parameters and as type parameters, eliminating the need for a special generic facility.

To illustrate these data abstraction features, examples in the thesis show how layers of
specifications, combined specifications, multiple representations for a specification and a
combined representation for multiple specifications, can be expressed in Paragon.

The class features are described in more detail in Chapters 3and 4.

1.2.2. Representation Selection Features

There are four basic features for selecting representations"’ in Paragon: attributes, a

possibility tree, a policy procedure and a feasibility checker.

Attributes are compile-time procedures and variables that a programmer may add to ciass
declarations and procedure declarations. Such attributes are intended to provide information
that a selection mechanism could use. For example, each class might contain an attribute
Space that is a procedure that returns the amount of storage that the class uses, or it may
contain a procedure named Performance_Measured that returns a boolean value indicating if

that particular class keeps track of its performance.

The possibility tree is a data structure for organizing the selection decisions made for a
program. It resembies an unrolled call graph of the program. Each node represents an
instance of a class or an invocation of a procedure. Edges lead from a class instance (or
procedure invocation) to instances and invocations within that class instance {or procedure
invocation). The tree changes as different representation selections are made for objects and
procedure invocations. The presence of such a data structure is an advance over previous
representation-selection systems in that it provides a way to make representation selections
for local variables in local procedure invocations rather than to make only selections of
variables in the program that calls the procedure.

Actually, an indefinite instance. See Section 3.2.1.

sln the context of Paragon, a refinement of a class is a representation of that class, hence the words refinement

and representation are used interchangeably.

Section 1.2.2 Summary of Thesis 15

The policy procedure is a Paragon program that actually performs the representation
selection for the user's program. This procedure is interpreted at compile time and operates
on the possibility tree, making selections for variables and gathering data about the selection
possibilities through the execution of attributes.

Not all choices of representations resutt in a refined program that can actually execute. For
example, it is possible that an incorrect procedure implementation was selected. an
incompatible choice of data representations was chosen or that a needed prbcedure
implementation was missing. The translation system contains a procedure that performs a
feasibility check of the user's program to guarantee that all necessary representations are .
present and that the selected representations are compatible. This procedure may be calted
from the policy procedure as well so that the policy procedure may ensure that its selections
result in an executable program.

Selection is completed at compile time. Once the translation process has finished, all
choices of procedure implementations and object representations have been determined. No
run-time selection is necessary. Further, the translation system can guarantee that no run-
time errors will occur because of a missing procedure implementation or an incompatible
representation.e'

To illustrate the utility of these representation-selection features, several example programs
have been programmed in Paragon. These exampies were drawn from the literature
describing multiple representations for a data abstraction. Algorithms that were implemented
by previous data structure selection systems have also been programmed as policy
procedures.

The representation selection facilities are described in more detail in Chapter 5. Chapter
6 contains a worked-out example program and policy.

SUn(ike‘ tor example, the virtual procedure feature in Simuia-67.

Section 1.2.3 . Summary of Thesis 16
1.2.3. Prototype Translator

The motivations for constructing a translator were pragmatic. Since the construction of a
translator requires the language to be fully defined, it therefore serves as a way to insure the
completeness of the language definition. In addition, the design of the transiator illustrates
problems that may occur when building compilation systems that use type-hierarchy features,
so0 the prototype serves as a feasibility test. Finally, the operation of the translator can also

pinpoint any refations between language features and performance degradations.

The prototype translator written for Paragon processes the entire language. It performs
parsing, semantic analysis, policy interpretation and feasibility checking. The transiator does
not produce object code that runs; as output, it produces a transformed program where ali
selections of procedures and variable representations are indicated. Because the language
definition requires the translator to contain an interpreter for the entire language {to interpret
the policies and attributes), an entire run time package does exist and Paragon code can be
{and has been) executed. However, there was no effort to produce a final code generator for

the translator.

The design of the translator resembles that of conventional compilers, however, it contains
three new phases that are not present in current compilers: the possibility tree creator, the
policy executor and the feasibility checker. Since these new phases perform analogs of
conventional compiler phases, namely call-graph creation, source-language interpretation
and type checking respectively, there is no new compiler technology needed to translate type
hierarchies in programming languages. Because the translator is an interpreted Lisp
program, it runs slowly {about 10 lines of Paragon per minute of Vax 11/780 CPU time).
However, its speed is comparable to values for other such prototype systems [Gillman 83].

Details about the design of the translator and its performance can be found in Chapter 7.

1.3. Organization of the Thesis

Chapter 2 outlines the goals of Paragon's design and places them in relation to past work
with abstract data type languages and representation selection systems. The next two
chapters present the basics of the Paragon language and show how those basics are applied
for creating abstract data types. Attributes — which describe implementations — and policies

— which guide the selection of representations — are both discussed in the next chapter.

Section 1.3 QOrganization of the Thesis 17

Chapter 6 presents a complete example, showing how an abstract data type, complete with
attributes, an application program and a policy, are used together. Then Chapter 7 describes
the implementation of a translator for the Paragon languages and its performance on a
selection of abstract data types, application programs, and policies. Finally, the last chapter
provides a retrospective and a prospective view of the work, analyzing how well the language

met its goals and what future areas of research might be explored.

The thesis also contains a number of appendices giving the syntax of Paragon, some
additional semantics for Paragon, a glossary of the technical terms used in the thesis, and
listings of the programs used for the performance measurements of the translator.

Chapter 2

Goals of Paragon
and
Their Relation to Previous Efforts

There is a great deal of previous work on the design of programming languages, on data
abstraction and on selection of data representations. Most of this work has concentrated on
one of these aspects, for example, abstract data types in a language or selection of table
representations in a database. This current work attempts to synthesize these different efforts
into a coherent language design, incorporating the experience gained from the previous
efforts. As Paragon represents a synthesis, it has a set of goals that transcend, and sometimes
contradict, some specific goals of previous research. To place the past efforts in a proper
perspective, it is necessary to understand the specific goals that the design of Paragon is
intended to meet, to isolate the goals that past efforts have tried to attain, to consider how the
past work has advanced Paragon’'s goals and to point out the previous limitations that
Paragon’s design should overcome.

This chapter, therefore, presents an explicit statement of the goals of Paragon’s design,
including some related but tangential goals-that Paragon does not address. Along with
Paragon’s goals, the goals and methods of two previous approaches to Paragon’s overali
objectives are considered and compared with Paragon: the design and implementation of

abstract data type facilities in languages, and the automatic selection of representations.

2.1. Goals of Paragon

The goals of Paragon can be grouped into four broad classes: abstract data type
specification goals, abstract data type representation goals, representation-selection goals
and automatic-processing goals. These goals are listed below, followed by a discussion of
each:

Section 2.1 Goals of Paragon 20

Abstract Data Type Specification Goals

¢ Refinements of specifications of abstract data types may be written,

¢ Related specifications may be combined in a singlg module.
Abstract Data Type Representation Goals

¢ Multiple implementations of an abstract data type may be written.

e Several implementations of an abstract data type may be used simultaneously in a
program {one implementation per variable).

o if several implementations of an abstract data type are used for different
variables, those variables may interact.

¢ A single implementation may be written for several separate specifications.
Representation-Selection Goals

¢ An implementation of an abstract data type should contain information describing
the implementation without permitting direct, unrestricted access to the
implementation.

¢ Declarations of variables should contain information describing the constraints
that an implementation of the variable’s type must meet without having to
explicitly name an implementation. '

¢ The selection mechanisms should be available to the programmer in a convenient
manner.
Automatic-Processing Goals
e Static type checking of all variable declarations (object creations) and procedure

calls should be supported.

¢ The representation information present in abstract data type implementations and
variable declarations should be processed automatically, so that a compiler can
choose an appropriate impiementation of an abstract data type.

o Compile-time checking should ensure that all representation-selection decisions
result in a program that can execute without run-time errors.

2.1.1. Refinements of Specifications

Paragon should permit a very abstract specification to be refined into more concrete
specifications. Initially, properties of objects may be defined in a very abstract way. Some
initial properties might include assignability, hashability, transmissibility over a network,

commitment of operations, the ability to be stored in a file system and orderings. Each of

Section 2.1.1 Goals of Paragon 21

these specifications shouid be able to be refined as a way to add details to the specifications
without adding implementation-specific details. For example, a record may be specified as
containing a number of fields. The operations on the record might inciude field selection and
record assignment, Then the specification for the record is a refinement of the specification

for assignability: fields and field selection have been added.

This goal is partially met by the object-oriented language designs in Simula [Dahl 68] and
Smalltalk {Goldberg 81, Ingalls 78, Ingails 81, Morgan 81, Xerox 81], the use of clusters in
Enhanced C {Katzenelson 83a, Katzenelson 83b], the Traits additions to Mesa [Curry 82] and
the Flavars facility for Lisp [Weinreb 81]. A similar kind of hierarchy was proposed by Smith
and Smith [Smith 77] and in Taxis [Mylopoulos 80] for organizing relations, views and objects
in a database. Further, the Program Development System [Cheatham 79] uses a refinement
hierarchy for writing system modules. But ali of these systems use the refinements only as a
way to refine objects or system components however, and not as refinements of
specifications with the intention of later refining the specifications into implementations. With
the exception of the PDS system, each level of these hierarchies defines both abstract and
concrete properties of program objects. There is no intention to provide the absolute
separation of abstract and concrete aspects that is required by data abstraction methodoiogy.
in some cases, such as the Smalitalk design, there is not even a way to provide this
separation. For example, there are no procedure specifications, only implementations. Thus
the details for the concrete representation are present where only the abstract details should
be allowed. Although the PDS system does separate abstract properties from concrete
properties, refinements in PDS may only be performed on modules that contain concrete
details. PDS dogs not intend that the user refine only specifications. Further, PDS is intended
to work on system modules and not necessarily on abstract data types, that is, on objects that

are declared many times by a programmer and manipuiated by an application program.

Program transformation systems represent another approach for adding the refinement
paradigm into a language. Some program transformation systems, such as PECOS/LIBRA
[Barr 82, Kant 83] and the interactive system developed by Balzer's group [Balzer 81],
generate refinements of specifications. However, these systems encode their refining rules in
a separate language from the data-type description ianguage and perform the refinement as
part of the translation process. in practice, these rules represent ways that a program may be
refined rather than ways in which data abstractions may be refined. Therefore these systems

are considering a much larger domain than merely specifying data types. In fact, their domain

Section 2.1.1 Goals of Paragon 22

is sufficiently rich that various forms of heuristic search are required to perform the
refinement process. In more conventional program development, the user provides some
static refinements which can then be used for specifying a program. It is this conventional
model of program development that Paragon is supporting. Hence the more static refinement

paradigm should be provided by Paragon.

The proposed layers of specifications are a departure from most languages that provide
data abstraction facilities. For example, Clu [Liskov 81], Alphard [Shaw 81] and Ada [Ichbiah
80] all use a single level of refinement, the upper level being the abstract specification and the
lower level being the concrete implementation. An extension of Simula proposed by
Ingargiola [Ingargiola 75] allows, in a very restricted way, layers of specifications. This first
goal of Paragon is an attempt to generalize the approaches used in these other languages.

2.1.2. Combined Specifications

When appropriate, related objects should be specified in the same module. One example
frequently encountered is a keyboard data type and a screen data type, that is, an input and
output device. Logically, the functions of reading and writing may be separate, but for many
systems, such as those using half-duplex, local-echo terminal protocols, the specifications of
reading and writing are closely coupled. Thus these two objects, screens and keyboard,
should be able to be specified in the same module. Hence another of Paragon’s goals is to
allow a combined specification in a module.

This too is a departure from several data abstraction languages, such as Clu and Alphard,
and from object oriented languages such as Simula and Smalltalk, where each module
{cluster, form, class and class respectively) specifies a single kind of object. The goal is to
emulate the private type facility of Ada or the type facility of Euclid [Chang 78]where a single
module (package and module respectively) may contain several specifications for related
objects.

2.1.3. Multiple Implementations

Current data abstraction languages focus on the separation of a data type from its
implementation. A natural outgrowth of this separation is the ability to substitute one
representation for another. Many languages, such as Alphard, force a single implementation
to be associated with a specification. One can change the representation only by removing

Section 2.1.3 Goals of Paragon 23

the entire module (form), which contains both the specification and implementation, and by
replacing it with a module that contains the same specification and a new impiementation.
Other languages, such as Ada, permit different impiementations (package bodies) of an
abstract data type to be written, but only one may be associated with a specification (package
specification) for any particuiar brogram. One of the goals of Paragon is to eliminate these
restrictions and allow multipie representations to be associated simultaneously with a single

specification for an abstract data type in a single program.

As explained in Section 1.1.2.2, different representations should be allowed access to
additional details about their composition and use. This goal represents a substantial
departure from current data abstraction methodology. However, the goal is very similar in
concept to the representation selection systems such as the systems built by Low [Low 74],
and by Gotlieb and Tompa [Gotlieb 74]. In Low's system, the selection mechanism takes into
account the composition of a set's elements. Gotlieb’s and Tompa’'s system performs an
initial pass over different table representations to select those that have the necessary
operations implemented for the particular use of a table. Therefore these systems can use
details about a data type's composition when selecting a representation. But unlike the
design of these systems, the design of Paragon strives to integrate the selection of
representations with the rest of the language. The selection process is not to be the activity of

an extrinsic, representation-selection system. -

2.1.4. Simultaneous Implementations

Beyond the ability to define multipie representations in a program, another goal of Paragon
is the ability to use multiple representations in a program. Although some language designs
permit muitiple representations to be present in a source program, they require that each
variable in a program be assigned the same implementation. For example, Ada requires that
the same representation (package body) be associated with a specification (generic package
specification) for each object specified (instantiation of the package). This decision is
motivated by implementation complications caused by different representations of an abstract
data being passed in the same procedure call, discussed in the next section (Section 2.1.5),
since the prohibition of simultaneous, different impiementations for a single abstract data type
guarantees thaf the resulting program will have no interacting implementations. The design
goals for Paragon differ from these previous design goals. Instead, a Paragon design goal
insists that different instances (variables) of the same abstract data type may use different

implementations in a single program.

Section2.1.4 Goals of Paragon 24
2.1.5. Interacting Implementations

Allowing variables with different implementations to interact is another design goal of
Paragon. But this goal normally presents a problem if two variables with different
implementations interact. In general, there is either no guarantee that an appropriate
implementation for the interacting operation will exist or there must be an enarmous number
of operation implementations: for n variable implementations, there needs to be n? operation
implementations. The use of set implementations illustrates this probiem. First, assume that
two popular implementations for sets, bit vectors and hash tables, are available to implement
set variables. Then suppose that two variables are impiemented, one with each of the
implementations, and that there exist proper impl.ementations for the intersection operation
for each of the two implementations. Although a selection of either representation for all set
variables results in a program that has procedure implementations for all calls, there is still no
guarantee that there exists an implementation for an intersection operation applied to a hash
table and a bit vector. The alternative is to provide procedures for all combinations of set
implementations. Thus the interaction of the differently implemented variables causes
problems, which is a reason why many languages exclude this goal. The design of Paragon is
intended to solve this problem so that interacting implementations may be used.

Several approaches to the probiem have been suggested: automatic conversion from one
representation to another; a canonical representation; an implementation of intersection that
uses only abstract operations; and the addition of extra implementations of intersection for
the different combinations of sets. However, none has ever been incorporated into a compliete
language design. in fact, previous work tends to ignore this goal explicitly. Low’s system, the
SETL optimizer [Freudenberger 83] and the Algol-68 extensions proposed by Banatre, et al.
[Banatre 81] use variable interactions as a way to decide that different variables should have
the same representations. One design that permitted interacting representations was an
Algol-68 extension designed by Ghezzi and Paolini [Ghezzi 77] but this system requires the
programmer to direct explicitly the language system to use different representations. A
design goal of Paragon is to remove these restrictions and to provide the facilities that allow
different variables to have different implementations of abstract data types, even if they

interact in some operation.

Section 2.1.6 Goals of Paragon 25
2.1.6. Shared implementations

Distinct abstract data types sometimes have a shared representation. For exampie, the set
facility in SETL uses a combined representation for integers and sets. In this combined
representation, there is a single hash table that contains ali integers used in a program. Some
of these integers are contained in sets; some of these integers are currently assigned to
integer variables; some are assigned to both; some are assigned to neither. Each integer in
the hash table contains information about its value and all the sets it is contained in. All set
variables and integer variables contain specific information for retrieving information from this
single hash table (details can be found in the description of SETL's implementation [Dewar
79]). Thus the hash table is part of a combined representation for integers and sets. Besides
SETL, this kind of sharing is frequently desirable in memory allocation systems, message
transmission systems, file systems and transaction logging systems, where a particular facility
needs to have representation control over many kinds of abstract data types. Yet this ability is
not provided in data abstraction languages.

Thus another of Paragon’s design goals is to support shared implementations for distinct
specifications. Related ideas have been proposed by Katz and Rosenchein [Katz 81] and by
Rowe and Tonge [Rowe 78] where two distinct data structures are joined into a single data
structure and this single data structure is viewed as having two different uses. However, there
has been no exploitation of the idea that a single representation may simultaneously
implement several specifications. This goal is, therefore, another departure from the usual
data abstraction facilities found in most languages.

2.1.7. Distinguishing Implementations

One of the immediate consequences of permitting alternative implementations of abstract
data types is that a way to evaluate them must be present. Most representation-selection
systems have a way to distinguish representations, such as formuiae that indicate a
representation’s performance. However, these differences are usually not available to the
programmer and the programmer may not alter them. In fact, these descriptions are usually
external to the language being implemented and instead belong to the transiation system or
representation selection system.

When a programmer creates a new type, the programmer should be able also to specify the

ways in which the representation should be used. Unfortunately, most languages permit the

Section 2.1.7 Goais of Paragon 26

control of different implementations for only predefined types. One such example is
Pascal [Jensen 78], which allows the programmer to select a packed representation for some
of the data types. Other languages fail to distinguish between different representations within
the program and create an entirely separate configuration language in which the different

implementations can be described [Mitchell 79].

To ameliorate these restrictions, the design of Paragon strives to introduce ways to let the
programmer describe and distinguish between the different representations without giving

direct access to the details of representation.

2.1.8. Variable Description

To assist in making a representation selection, the programmer should be able to provide
the selection system with some kind of information about the variables used in a program.
Most languages only permit the programmer to provide some crude, predefined attributes of a
variable, such as in Ada, where certain kinds of monitoring of variables can be control by the
programmer. Representétion-selection systems usually permit the programmer to provide
some better information: for example, the PS! system asks the programmer about the
program [McCune 77], but the selection of information is still not under programmer control.

Unlike these systems, Paragon should allow the programmer to specify what kinds of
information should be provided when declaring a variable and then to describe how that
information is to be used by the selection system.

2.1.9. Programmer Accessibility

Representation-selection systems are usually associated with very high-level languages that
provide very abstract objects (compared with the level of abstractions provided in typical
high-level languages). The representation-selection system provides many representations for
these very high-ievel features but limits the access that a programmer may have to these
representations {Schonberg 77], to the descriptions of the representations [Rowe 78] or to the
optimization criterion that the representation-selection system is using [Low 74]. These
systems further limit the programmer’s interference with the selection decisions because only
predefined types in the very high-level language associated with representation-selection
systems may be used. There are no facilities for user-provided types, user-provided

representations or user-provided optimization criteria.

Section2.1.9 Goals of Paragon 27

The motivations for these restrictions are the complexity of the data structure that
represents the program during representation selection and the complexity of the selection
algorithm operating on this data structure. Usually, this data structure is an abstract syntax
tree of the program, and the actual representation selection process has the compiexity of a
compiler phase. Writing a piece of a compiler is thought to be beyond the concern of a typical

programmer, hence the lack of programmer-provided, representation-selection mechanisms.

Because a data abstraction language, such as Paragon, is des'igned to allow programmers
to create new high-level abstractions, it should allow programmers to control the
representation selection. This programmer control requires programmer-accessibie
mechanisms for describing the differences between representations and for describing the
optimization criteria to be applied. However, the complexity of the resulting mechanism must

be limited so that the mechanism is within easy grasp of a typical programmer.

2.1.10. Static Type Checking

Static type checking (checking the compatibility of actual parameters with formal
parameters before a program is executed) helps ensure that a program meets its specification
and limits the possible kinds of run-time errors. The Paragon design therefore attempts to
have all type checking performed during the compilation process and to have no type errors

possible during execution.

The goal of static type checking is also a departure from the procedure-call checking
performed in typical object-oriented, hierarchy-based systems, such as for
Smalitalk’s methods and Simula’s virtual procedures. There is a tradeoff in these designs
between safety and efficiency, and flexibility. Because the parameter matching for procedure
calls can be verified during compilation, static checking is considered safer, and because
more is known about the program being checked, a more efficient program should resuit.
Therefore Paragon opts for a safe and efficient language rather than for flexibility.

2.1.11. Automatic Selection of Representation

if a language provides a way to distinguish between representations, then a natural
extension of the language should provide some automated way to select an appropriate
representation using the distinctions. Since a goal of Paragon is to provide descriptions that

distinguish between data type representations, the Paragon language and its translator

Section 2.1.11 Goals of Paragon 28

shouid also include some mechanisms for automatically selecting a representation for each

variable.

There is a problem in defining the term automatically. At one extreme, it might mean that the
compiler checks the decisions stated by the programmer in the same way that type checking
is automatically processed once the program defines all identifiers in declarations. One such
example is Mesa [Mitchell 79], which relies on an additional file, called a configuration file, to

-specify which implementation should be used with each specification (interface module) by
naming it. At the other extreme are program transformation systems, such as PSi and
Rovner's Sail compiler [Rovner 76], which make a decision by using processes that are

internal to the transiation system.

Paragon's goal lies somewhere in between. The programmer shouid be able to describe a
method for making seiection decisions, for example, to attempt to minimize the time and
space product of the variables that the programs use. However, the programmer should not
have to state explicitly which implementation should be associated with each variable.

2.1.12. Compile-Time Checking of Program Feasibility

The philosophy of abstract data types dictates that compile-time checking should guarantee
that the implementations of an abstract data type can be used when the specification is used.
In applying this philosophy to a language with multiple representations of abstract data types,
the design of Paragon shouid allow compiie-time checking of implementations, guaranteeing
that all variables have a representation. Further the design of Paragon should allow compile-
time verification that appropriate procedure implementations exist for the procedure calls
using those representations. The idea that this kind of checking be performed independently

of the semantic analysis is another departure from conventional language designs.

2.2. Preliminary Design Restrictions for Paragon

Even with the goals that are set forth explicitly, there is still a wide range of choices for the
scope of the research. in order to limit this scope, several design restrictions were arbitrarily
imposed.

The restrictions were based on a priori guesses about what features might enlarge the
scope of the language design. Each restriction could be lifted in order to generate another

Section 2.2 Preliminary Design Restrictions for Paragon 29

direction of research that synthesizes abstract data types and representation selection. A

brief description and motivation for each resiriction follows the list below.

o A type hierarchy will be the basis of the language design.
e An identifier within a scope will have exactly one object bound to it.

« No attempts at automatic creation of representations for abstract data types will
be made.

e No attempts at automatic conversion between representations of abstract data
types will be made.

o There will be no run-time selection of representations of abstract data types.

o The prototype translator is intended to represent an existence proof of feasibility,
not the last word in efficient algorithms.

2.2.1.Use of a Type Hierarchy

This work might have been built on other data abstraction tanguages, such as Ada, Clu or

Alphard, each with its own method of writing the specifications and implementation of
abstract data types. Because my thesis is that many levels of refinement are appropriate for
specifying and representing abstract data types and because the class mechanism in
Simula provides a layering mechanism, | was drawn to Simula-67 as a model. Thus | arbitrarily
chose to exploit and explore this particular approach to this problem.

| did not, however, use Simula as my base language design, though the current design of
Paragon has many resemblances to Simula. Initially, | wanted to make a clear distinction
between types and objects. As a model for this distinction, | used the Red programming
language [Nestor 79]. Some initial designs of Paragon resembled a cross between Red and
Simula, but these designs were significantly different from Red and Simula that no effort was
made to use either language as a base from which to design Paragon.

2.2.2. Single identifier/Object Binding

Because the eventual transiator system needed to select particutar implementations for
variables and follow their use throughout the program (or biock in which the identifiers were
bound), | insisted that each binding of identifier to an object, within a biock, be immutable.
This meant that the choice of representation made for a variable when the variable was
created would remain invariant throughout the block. This was an attempt to isolate the object

Section 2.2.2 Preliminary Design Restrictions for Paragon 30

creations to the variable declarations in a block, and hence simplify the anaiysis of the block
for later selection decisions. If one permitted the representation of the object to change at
arbitrary places in the program, then one might be unable to determine at compile time which
representation a variablie might have during a procedure call. Therefore one could possibly
increase either the work at compile time to check that an implementation exists or the work at

run time to select an appropriate procedure.

2.2.3. Automatic Creation of Representations

A widely pursued research topic is the creation of representations of abstract data types
given a formal specification. Although this topic is interesting, a proper treatment of it requires
a formal specification language, a processor for that language and some assumptions about
the way that data types are implemented. Paragon strives to take advantage of programmer-
provided knowledge of representation and not to create new representations. Thus the goal

of automatic creation was considered beyond the scope of this work.

2.2.4, Automatic Conversion between Representations

Along with automatic creation of representations, the automated conversion from one
representation to another is considered an important research topic. Attempting to pursue
this goal raises a large number of problems that have not yet been satisfactorily solved. First,
there is the problem of specifying the impiementations and their equivalencies. Second a
technique must be chosen for the conversion operations: for example, using a canonical
representation; using a different conversion routine for each possible conversion between
representations; or automaticaily creating the conversion routines. Third, there is an unsbtved
guestion of when to perform the conversion. Because of these issues, the design of Paragon
did not explicitly consider automatic conversions between representations, but left the topic
open for further research.

2.2.5. Run-Time Selection of Representations

Aliowing the run-time selection of representations forces the design of Paragon to answer
many additional questions and solve additiona! problems that were beyond the scope of the
research. For example, allowing the run-time selection of representations can hamper the
feasibility checking of a program at compile time. Under typical circumstances, every possible
implementation must be available at every use of the variable since no compile-time

Section 2.2.5 Preliminary Design Restrictions for Paragon 31

information may be avaitable. Because a goal of Paragon is to guarantee the existence and
type correctness of all necessary procedures at compile time, and because allowing run-time
selection of representations makes this guarantee difficult to enforce, run-time selection of
representation is prohibited. Further, there are open questions about the methods that
should be used in making a run-time selection. For example, the cost of making a decisions
may be more expensive than the savings from the choice. Finally, there is usually some
additional run-time expense in making a selection of a procedure given particular
representations for its parameters — an expense | felt that Paragon programs shouid avoid.

Therefore, | fimited the scope of this work to compiie-time selection.

2.2.6. Prototype Translator

As evidence that the Paragon design was complete and translatable, { constructed a
prototype translator. The art of creating efficient transiation schemes is another area of
research that is logically related to language design, but the creation of an efficient translator
was not essential for my demonstration of feasibility. Thus minimal effort was expended to
make the translation system efficient, aithough there was an effort made to ensure that the
entire language could be translated and executed. In addition, there was an effort made to
ensure that the prototype would show that there are no inherent inefficiencies for processing
or executing Paragon.

With these sets of goals and restrictions in hand, | proceeded through several designs of
Paragon. The basics of the last version of Paragon are provided in the next chapter, folfowed
by a chapter which illustrates some of the more complex features of the language.

Chapter 3
The Basics of Paragon

This chapter describes the basics of the Faragon programming language. | have assumed
that the reader is familiar with algebraic languages such as Pascal or Simula, and with
extended BNF notations. No emphasis will be placed, therefore, on describing the exact
syntax of various language features or the BNF metalanguage. Instead the discussion will
assume that the reader can read the examples without such comments.

Paragon is defined in terms of a process called elaboration. Therefore, this chapter starts
with a brief description of the three kinds of elaboration that Paragon uses. The basics of
Paragon are concerned with the objects and their manipulation, so the notion of object is then
introduced along with some examples of how a simpie object may be defined and created.
Two ways of defining relationships between objects, inheritance and nesting, are also
discussed. Then the chapter provides a discussion of how expressions and objects interact
through the use of parameters.

Once objects and expressions are introduced, a brief discussion of procedures is
presented. Procedures provide a general mechanism for manipulating objects. One special
kind of procedure, an iteratof, is then described. The discussion of iterators is followed by a
description of other control abstractions in Paragon: the usual statements found in an
algebraic language.

With this level of introduction, a programmer shoutd be able to read the Paragon programs
in this thesis. For the interested, a BNF description of the syntax can be found in Appendix
B and additional ianguage details can be found in Appendix A.

Section 3.1 Qverview of Elaborations 34

3.1. Overview of Elaborations

The semantics of Paragon are defined in terms of elaborations that are performed on a
program. Three kinds of elaborations are defined in Paragon: elaborations with
specifications, elaborations with implementations and eiaborations with
realizations. Although Section 5.1 gives a more complete description of these different kinds
of elaborations in Paragon, a brief introduction is needed for understanding this chapter.

Elaborating a program with specifications and implementations can be thought of as
performing various kinds of semantic analysis. Thus elaboration of a procedure invocation
with specifications is the technical way of describing the type checking for a procedure call.
When a program cannot be elaborated with specifications, perhaps because of some
semantic error, the program is called il specified, otherwise the program is called well
specified. Elaboration of a procedure call with implementations corresponds to feasibility
checking. This elaboration checks that an acceptable procedure implementation exists for
the procedure call. If an acceptable procedure implementation cannot be found, perhaps
because it is never declared, then the program is called infeasible. If there are no errors
during elaboration with implementations, then a program is called feasible. The concept of
feasibility checking is described in Section 5.5.5. Finally, elaboration with realizations
corresponds to the actual running of a program; the term executing is used synonymously
with the phrase elaboration with realizations. A program without run-time errors is called
defined. A program that generates a run-time error is called erroneous. At various times
throughout the discussion in this chapter, these terms will be used when a precise statement
of Paragon's semantics is required.

3.2.Objects

There is a rich structure to objects that are manipulated by Paragon programs. The parts of
the structure are simple objects, objects, local instances and parameters. Their relationships
are discussed below. '

Objects in Paragon consist of nested simple objects. Some colloquial examples of simpie
objects include houses, kitchens and refrigerators. An object is represented by a list of nested
simple objects, such as a house that contains a kitchen that contains a refrigerator. The figure

Section 3.2 Objects 35

below illustrates this relationship:”

Frig.
Kitchen
House

Figure 3-1: An Object Consisting of 3 Simple Objects
An obiject is defined in terms of a single nested simple object inside each nested simple
object. Many other relationships between simple objects may exist in a program. Most of these
relationships have no special value in the definition of Paragon and hence are not named in
this thesis. For example, the following figure shows a possibie relationship among simple
objects in Paragon, but the figure does not represent an object:

7As; discussed in Section 3.2.3 on page 42, a textual representation of the same object would be
(House, Kitchen, Frig).

Section 3.2 Objects 36

Frig. Stove
Kitchen
House

Figure 3-2: Nested Simple Objects that are not an Object
However, the same simple objects may be used in more than one object. For example, the
following figure illustrates the same simple objects for House and Kitchen in a different object
than the one shown in Figure 3-1:

Stove
Kitchen

House

Figure 3-3: Another Object with 3 Simple Objects
This structure permits simple objects to be shared by other simple objects. In particular, an
outer simple object can be thought of as a manager or owner of ail of the simple objects
inside of it. An object can be viewed as the most deeply nested simple object along with its

Section 3.2 Objects 37

manager(s). This view of "managers controlling individuals" is developed in Chapter 4 and is

essential to the definition of abstract data types in Paragon.

As shown above, a simple object may contain other simple objects. Another, unrelated way
to analyze simple objects is by considering the local instances and parameters in simple
obiects.a Each simple object contains a set of /ocal instances and some parameters®.
Parameters provide a way for one simple object to share objects with another simple object.
The details of parameters are deferred until Section 3.4. Each local instance provides some
set of properties for the simple object. For example, the kitchen simple object may contain
local instances that describe properties of "being something with four walls", "being
something with a floor” and "being a place where appliances reside.” In programming-
language terms, a local instance consists of a set of variables and procedures, where these
variables and procedure describe some properties of the simple object. A simple object is

illustrated in the figure below:

Pl P2 P3 P4 Parameters

LI-I LI-2 LI-3
Local
Instances

LI-4 LI-5 LI-6

Figure 3-4: A Simple Object with Parameters

So far, simple objects have been described colloquially. Paragon actually defines four

8There is a relationship between local instances, simple objects and obijects, but it is far too complex is represent
two dimensionaily and has no use in this thesis. Therefore, the reader is advised to merely consider the relationship
between objects and nested simple objects and the relationship between simple objects and local instances to be
unreiated.

9A simple object may aiso have a label if the creating name component is labeled in a parameter. See Section
3.4.1.

Section 3.2 Objects 38

different kinds of simple objects. Each simpie object can be either specified or realized, and
can be either definite or indefinite. The first choice of specified or realized is determined by
the kind of elaboration that created the simple object. If the simple object results from
elaboration with specifications or implementations, then it is specified. If the simple object
results from elaboration with realizations, then it is realized. Thus specified can be viewed as

a compile-time simple object; realized can be viewed as a run-time simple object.

The adjectives definite and indefinite indicate whether the simple object is considered
unique. In a more conventional sense, indefinite simple objects are the "types" of definite
simple objects. In English, = House denotes any House; it is indefinite. The House denotes a
particular House; it is definite. Similarly in Paragon, it is possible to denote a definite simple
object, that is, a particular simple object, and it is possible to denote an indefinite simple
object, that is, a simple object that represents some unspecified member of a set of simple
objects.

Expressions are elaborated inside of simple objects. The simple objects that enclose the
expression contain bindings between identifiers and either procedures, classes or objects.
Thus an object is also an environment. The two words are used interchangeably in this thesis.

The basic Paragon feature for defining an object is a class. The ways that ciasses are used
to create local instances, simple objects and objects are discussed in the next sections.

3.2.1. Classes and Simple Objects

Classes serve as templates or models of simple objects. Much like classes in Simula, they
may contain parameters, declarations and statements. An example is shown below:

class Vehicle is | A class declaration;
begin
var Size => IM . new Integer; ! A variable declaration;
Size := 0; ! A statement;
end;

This example declares a class that represents a Vehicle. The class contains one declaration,
an integer variable Size'?, and one statement, that initializes Size.

10Descriptions of variabies are deferred until Section 52 when distinctions between specifications and

implementations are discussed.

Section 3.2.1 Objects 39

Like Algol-68 [VanWiingaarden 69)], Paragon uses a kind of generator function on classes in
variable declarations to create new, definite simple objects. This generator function is
denoted new and appears in simple-object creations. For example, the following simple-

object creation: !
new Vehiclae

creates a definite Vehicle simple object. When a simple object is created, one local instance
for the class and one for each of its ancestors are created. Because no classes are inherited
by Vehicle, this simple object consists of one local instance which is the resuit of elaborating
the declarations and statements in the class declaration for Vehicle. After creation, the simple
object is said to have Vehicle as an underlying class.

A simple object (or instance) that is formed from a simple-object creation is termed a
definite instance. There are two other kinds of instances that need to be defined: indefinite

instances and any instances.

An indefinite instantiation creates an indefinite instance and merely has the class name

without the reserved word new. For example,
Vehicle

represents an indefinite instantiation of Vehicie. it too results in a simple object, and as will be
illustrated later, is the way in which types are denoted in parameters. The main difference
between indefinite instances and definite instances is that the internal declarations and
statements of definite instances are completely elaborated, whereas only selected
declarations are elaborated in indefinite instances. Like definite instances, indefinite
instances have an underlying class, namely the class denoted by the identifier in the
expression specifying the instantiation.

A third instance is an any instance. The instantiation has the simple representation:
any

and it results in an indefinite instance of the special any class.'? One can think of this simple

object as the most indefinite indefinite object. It is used when a programmer wishes to

11Mcwe properly, object-creation name component, see Section 3.3.1.

12Fcr compieteness, the underlying class of an any instance is defined to be the special any class which is
otherwise inaccessible to the programmer.

Section 3.2.1 Objects 40

express the notion that some kind of object is present, but does not wish even to specify a
class to which the simple object will belong.

3.2.2. Inheritance

Like Simula and Smalitalk, the classes in Paragon may inherit other classes. Inheritance is
used to include the declarations and statements from another class. For example, a tank
object is a special kind of vehicle and should contain the properties associated with any other
vehicle. This is accomplished by inheriting the Vehicle class in the declaration for Tank, as
shown below:

class Tank of Vehicle 1is

begin

var CrewSize => IM . new integer;

end;
A Tank simple object has both the properties specified in the declarations for Vehicle and the
properties specified for Tank. More than one parent may be specified and parents are
accumulated, that is, inheritance is transitive.'® This can be illustrated with the following
classes that represent ships:

class Ship is
begin

var Displacement => IM ., new integer;
end;

class Monitor of Ship, Tank is
begin

Cannon => IM . new integer;
end;

Objects with an underlying class of Monitor inherit the properties from both classes Ship and
Tank,' and since Tank inherits properties from Vehicle, Monitor inherits Vehicle's properities
as well.

When a simple object is created, the various classes that are inherited are elaborated, one

13The set of all inherited parents is called the ancestors of the class.

14The Monitor was among the first class of armor plated ships introduced during the U.S. Civil War.,

Section 3.2.2 Objects 41

at a time, starting with the furthest ancestor of the leftmost parem.15 The order of elaboration
matches the order of inheritance. In the example above, the order is Ship, Vehicle, Tank and
last, Monitor. This order is called leftmost elaboration order.'® The elaboration of each
ancestor creates a local instance and the collection of local instances from the elaboration of

each ancestor and the class itself are grouped together in the simple object.

It is conceivable that a ancestor class may be inherited more than once. The Ship class in

the previous example might have been written:
class Ship of Vehicle is
begin

var Displacement => IM . new integer;
end;

class Monitor of Ship, Tank is
begin
Cannon => IM . new integer;

end;
in which case the Monitor class would inherit the Vehicle class twice, once from Ship and
once from Tank. In this circumstance, only one local instance for the shared class would be
elaborated and that elaboration would occur the first time that the shared class is
encountered. In this example, the elaboration order of classes for a Monitor object creation is
Vehicle, Ship, Tank and last, Monitor.

Although the semantics for Paragon would be simpler if an ancestor could not be inherited
more than once, this feature allows a programmer to refine abstractions one level at a time
without having to rearrange an entire tree of refinements. In the example above, the
programmer's view of the abstract world is that Ships and Tanks are special kinds of Vehicles
and that Monitors really are a special kind of Ships and Tanks. if Vehicle could not be
inherited more than once, then the programmer would have to change the declaration(s) for
either Tank, Ship or Monitor. Although this makes Paragon simpler, this rewriting no longer
reflects the programmer's abstract model of the world. Further, in Chapter 4, this same ability
is exploited to provided multiple impiementation of abstract data types. Therefore, the design
of Paragon permits a-class to inherit an ancestor more than once.

1si.eftrmzsx' has been the convention adopted by other languages, in particular Flavors and Traits, and so is

adopted by Paragon as well. Rightmost would not produce a radical change in the semantics, but since English is
read from left to right, there is a slight tendency to examine the parents of a class in the order in which they are read,
left to right. If programmers thought like LALR parsers, perhaps rightmost order would make more sense.

16Alsc': see leftmost parent order, page 325.

Section 3.2.2 Objects 42
3.2.3. Nested Classes and Objects

In the examples given so far, the only declarations in a class were integer variables. Classes
may also be declared in classes which leads to a structure of nested simple objects. For
example, nested rooms inside houses might be specified as below:

class House is
begin
class Room is
begin
end;
end;
An object creation that uses the House class, that is new House, creates a simple object in
which other simple objects may be created, namely Room simple objects. The House simple

object in which a Room is created is aiso calied the environment for the creation of rooms.

The expressions denoting nested objects are straightforward. For example, a programmer

can write the following expressions {which use the House and Room declarations):

var MellonMansion => new Housse;

var MasterBedRoom => MellonMansion . new Room;
The first expression creates a House simple object (and the variable declaration causes the
identifier MellonMansion to be bound to the simpie obiect). The second expression creates a
Room simple object inside the previous created House simple object. Note that a full
description of the newly created Room requires some reference to the enciosing House
simple object. Paragon therefore defined the concept of object to mean the simple object
along with the environment in which it was created. Thus, an object is a list of simple objects,
one created inside another.

In this thesis, a list notation is used to represent objects. Each element of the list denotes a
simple object. If the simple object resulting from the first simple object creation is denoted MM
and the simple object resulting from the second creation denoted MBR, then the object
denoted by the identifier MasterBedRoom is represented by (MM, MBR). Rather than always
creating a name for every simple object, the class name alone will sometimes be used to
represent a definite instance of that class in a list of simple objects. Thus the object denoted
by MasterBedRoom would be given as (House, Room). Since there is only one definite
instantiation for each class in the example above, there is no ambiguity about which
instantiation of House is meant. In cases where some ambiguity exists between definite

Section 3.2.3 Objects 43

instances of the same class, the list notation will be abused a little by using the variable
identifier associated with the creation name component for the innermost simple object. Thus
the object denoted by MasterBedRoom might also be represented by
{MellonMansion, MasterBedRoom). This last convention will suffice since definite instances
are only permitted in variable declarations, and only one object instantiation is permitted per

variable declaration.

3.3. Name Expressions

Name expressions denote actions that are to be performed during elaboration. Each name
expression consists of a sequence of name components separated by periods (.) where each
component performs a single action in a specified environment, and returns another
environment in which the next name component is to be elaborated. Such actions include

object creation, binding of identifiers to objects and invocation of procedures.

Because no previous component returns an environment for use by the first name
component in an expression, it is elaborated in the environment of the object in which it
appears. if the House class mentioned above were modified a bit as follows:

class House is
begin
ctass Room is

begin
end;

var Kitchen => new Room; =1
end;

then the simple object creation for Room (notation 1) has as its environment the House simple
object in which the variable declaration Kitchen is being elaborated. Generally, the initial
environment for a name expression is the scope in which the first identifier in the name
component is declared. In the example, the identifier Room is declared in the class House, so
the environment is the enclosing House object. Section A.4 gives a complete description of
how this environment is established.

Within its environment, each name component specifies one specific action, such as
creation of 4 simple object, selection of an object, description of an object or invocation of a
procedure. The first three kinds of name components are discussed below. The discussion of
procedure invocation is postponed until Section 3.6.4 where procedure implementations are
discussed.

Section 3.3 Name Expressions 44
3.3.1. Generation of Instances

Generation of instances resuits from the elaboration of an object-creation name component.
The syntax for this kind of name component is the reserved word new followed by an identifier
representing the underlying class for the simple object. Several exampies of this kind of name
component were shown in previous examples, such as new Tank. The environment that
resuits from the creation of a simpie object is the environment for the object creation
appended by the simple object. In a previous example, MellonMansion . new Room, the
resulting environment is the resulting object, (House, Room).

There are several restrictions on the name expressions that may contain an object creation
name component. Briefly, the environment in which the creation takes place may have been
neither newly created by another object-creation name component in the same name
expression nor the result of a procedure call in the same name expression. The details of
these restrictions can be found in Section A.2.

3.3.2. Description of Objects

Paragon provides two kinds of name compaonents to describe an object. Intuitively, these
name components provide a way to denote a type.17 One way uses a class identifier in a name
component; this corresponds to explicitly naming a type. The other way uses the reserved
word structure as a name component; this corresponds to extracting the type of an

expression.

More precisely, if a class identifier is used in a component without the reserved word new,
the class identifier is denoting the creation of an indefinite instance. An example of this kind
of name component is shown by the name expression MellonMansion . Room. The laqk of the
reserved word new before the class identifier Room causes an indefinite instantiation of
Room and the resulting environment is the list of the definite instance denoted by
MellonMansion followed by an indefinite instance of Room. As a notational convention, an
indefinite instance is represented in a list of simple objects as the name of class preceded by
the reserved word any. Thus the object resulting frcm the indefinite instance in the previous
name expression is (House, any Room).

1.’Each of these name components resuits in an object whose innermost simple object is an indefinite simple
object.

Section 3.3.2 Name Expressions 45

The reserved word structure as a name component uses the current environment to
describe an object. The innermost simple object of the current environment is removed and a
new indefinite instance of the underlying class of the innermost simple object is created and
appended to the remaining environment. The resulting object looks similar to the environment
given to the structure component except that the innermost simple object has been changed
(probably from a definite instance but not necessarily} to an indefinite instance. This can be
illustrated by the continuing the example on page 42:

. MellonMansion.Room ..

. MasterBedRoom.structure ...
The two expressions use the variable declarations of MellonMansion and MasterBedRoom.
These expressions result in similar objects. Both have an outer definite simple object denoted
by MellonMansion. Both have an inner indefinite simple object denoted by any Room. Thus
"type" of the innermost simple object is retrieved by the structure name component.

Because descriptions of objects act like types, these descriptions of objects are especially

useful in parameters, as will be shown later.

3.3.3. Selection of Objects

When the identifier in a name component is declared as a variable or in a parameter, and the
reserved word new is absent, the name component is selecting an object. The algorithm for
elaboration is simple: the identifier is found and the object bound 1o it during the declaration
elaboration is used as the environment for the next component. This is identical to ordinary
field selection in records of Ada and Pascal, and in classes of Simula. This is illustrated by the
following continuation of the example on page 38:

var MyCar => new Vehicle;
. MyCar.Size ...;

Here the integer denoted by Size is selected from the simple object denoted by MyCar.

3.3.4. Other Name Components

There are several other kinds of name components, some of which deai with attributes and
are discussed in Section 5.3.7. The rest are syntactic sugaring for various procedure calls.
Their replacements are given here only for completeness. The reader should probably just
glance at the IeftA hand column for now and refer back to this chart as necessary in later
chapters.

Section 3.3.4

Nam mponen
+

[s]

L18

Name Expressions

Replacement
Value
Element(s)
Literal(&L)

In the above chart, s is any expression, L is any integer literal and &L is the name of a special

predefined procedure (see Section 3.3.6),

3.3.5. Other Expressions

There are several other expression besides name expressions. All of them are syntactic

sugaring for an equivalent name expression that contains a procedure call. Like the chart

above, the reader may wish to just glance at the left hand column and refer back to the chart

as necessary while reading later chapters. The following chart gives the translations:

Expression
(e1)
el:=e2
el = e2
el + e2
el-e2
el/e2
et *e2
el reme2
-el
el..e2
e1<e2
et>e2

el {= a2
eld>=e2
el and e2
etore2
notel

18

RBeplacement

et

IM.Assign(e1,e2)"®
IM.Equal(e1,e2)
IM.Plus(e1,e2)
IM.Minus(e1,e2)
IM.Divide(e1,e2)
IM.Times{e1,e2)
IM.Remainder{e1,82)
IM.UnaryMinus{e1)
IM.Sequence(et ,e2)2°
IM.LessThan(e1,e2)
IM.GreaterThan(e1,e2)
IM.LessThanEqual(e1,e2)
IM.GreaterThanEqual(e1,e2)
Booleans.LogicalAnd(et ,e2)21
Booleans.LogicalOr(e1,e2)
Booleans.LogicalNot{e1)

This a qualified literal, such as in AppleManager.3, which is interpreted as a three that belongs to the

AppleManager. This is how different managers use literais. Managers and their use are discussed in Chapter 4.

19

Permitted only when the expression is used as a statement.

IM is the predefined Integer Manager (See Section 6.2.6). The syntactic sugaring is only provided for predefined

integers and booleans.

20Sinc«e iterators are only permitted in for statements, this notation is permitted only when the expression is the

iterator in a for statement.

2

1Booleans is the predefined manager of booleans. See Section 6.2.3.

Section 3.3.5 Name Expressions 47

L2 IM.Literal(&L)

where e and e2 are any expressions, L is any integer literal and &L is the name of a special
predefined procedure (see Section 3.3.6). The parser uses standard arithmetic precedence
and association for these expressions. The order of parsing may be changed by parentheses

in the conventional way.

3.3.6. Integer Literals

Integer literals may be used as name components and as expressicms,23 though they play an
unusual role. Each literal represents an unnameable, predefined procedure that returns a
Word object (a predefined class, see Section 6.2.7) which contains the appropriate integer
value in it. Further, the presence of a literal causes a call to another predefined procedure,
Literal, to be made. The specification for the Literal procedure is

procedure Lw‘teral(CM.Word)“ return Integer;

Literal transforms a word into an integer, using whatever implementation is appropriafe. Thus
Paragon interprets the name expression AppleManager.3 as AppleManager.Literal(&3) where
&3 is the function that returns a new word with three in it. Therefore a literal first causes a new
word of memory to be created and the literal to be placed in it. Then a representation-specific
conversion routine is called, Literal, which may transform this word into any representation for
Integer that is desired.

As | explain in the next chapter, Paragon uses an object manager model for data
abstraction. One predefined variable is a manager for integers, called /M (integer manager).
These details are not important yet, except as an explanation of some syntactic sugaring that
Paragon provides. Because predefined integers are used so frequently, Paragon has a further
transformation of expressions that are only used for integer literals. Specifically, should an
integer literal appear as the first (or only) name component, the component /M will be
prepended to it. Thus the expression 3 is rewritten as /M. Literal(&3).

22This is an unqualified literal, thus as the replacement shows, it becomes qualified as a predefined integer.
23The expressions are transformed into two name components as defined in the previous section,

24CM is the predefined manager for Computer Memory.

Section 3.4 Parameters 48

3.4. Parameters

Parameters are objects that are shared with other objects or procedures to provide some
flexibility in object creation and procedure invocation. Parameters can be used when
declaring procedures, declaring ¢lasses, invoking a procedure and instantiating a class. In
this section, the basic syntax of parameters is discussed, followed by a description of the way
in which parameters are passed. The section concludes with a discussion of how type

parameters are provided in Paragon,

3.4.1. Syntax of Parameters

A parameter is a name expression with one restriction and one addition. The restriction is
that no definite object may be created in a parameter. Thus the reserved word new may not
appear anywhere in a name expression used as a parameter. The addition is that name
components may be labeled. When comparing two parameters, the identifiers used as labels
become bound to objects and these identifiers may be used inside of classes or procedures
that declared the labeled parameters. Labels in parameters are defined by placing an
identifier followed by a colon (i) before a component. Two labels, one for each simple object

in a nested object, are illustrated below:
H: House . R: Room

Note that more than one name component in a name expression may be labeled. However,
only one iabel per name component is permitted. An identifier that labels a name component

is said to be implicitly declared.

The only additional semantics for elaborating a parameter describe the effects of a labeling.
Most of the semantics concern what happens when two parameters are compared which is
discussed in the next section. There are some additional esoteric semantics concerning class
inheritance that are not discussed here.?

25When a name component is labeled, the corresponding innermost simple object that results from the
elaboration of that name component is also labeled (with the same identifier). The labeling used in the object notation
parallels the notation in the name component: the identifier followed by a colon. Thus the object that results from
elaborating the previous example is (H: any House. R: any Room). This labeling of simple object is used only for
ensuring that parameters are properly inherited by subciasses, and that procedure implementations match their
specifications.

Section 3.4.2 Parameters 49
3.4.2. Comparing Objects

Although comparison of objects is used for many purposes, it forms the basis for parameter

passing and so will be discussed here.

A relation called matching or conforming may exist between an actual object and a formal
object. The terms actual and formal are used in the conventional sense. Unlike the type
equivalency relation in many programming languages, this relation is not symmetric. When an

actual matches a formal, there is no implication that the formal matches the actual.

Matching is used for comparing parameters. At different times, the same parameter may be
used as a formal and an actual. The following table summarizes the kinds of comparisons that
occur in Paragon.

Actual Formal

Procedure Call Parameter Procedure Specification Parameter
Procedure Call Parameter Procedure Implementation Parameter
Class Instantiation Class Declaration Parameter
Subclass Declaration Parameter Class Declaration Parameter
Procedure Implementation Parameter Procedure Specification Parameter

3.4.2.1. Simple Object Matching

The basis for matching is the comparison of two simple objects. Intuitively, an actual simple
object matches a formal simple object if the underlying class of the formal is a ancestor of, or
the same as, the underlying class of the actual simple object. As will be shown in Chapter 4,
‘his permits general precedures26 to be written and provides a way to write mulfiple
implementations for abstract data types. To ensure compatibility between definite and
indefinite instances, one of the following constraints must also be met:

¢ The formal is an any instance,

¢ The formal is an indefinite instance and the underlying class of the formal is a
ancestor of, or the same class as, the underlying class of the actual, or

® The formal is a definite instance and the actual is the same definite instance.

26f»‘-‘roce‘edures that use only abstract properties of their parameters.

Section 3.4.2.1 Parameters 50

These rules can be illustrated using the foliowing declarations and procedure calls?

procedure Wash(any);

procedure DriveUninsured(Vehicle);
procedure DriveUnqualified(Tank);
procedure Drivelnsured({MyCar};

var YourCar => new Vehicle:

Wash(MyCar); ! 0K;
Wash(Vehicle); ! 0K;
Wash(any); 1 0K;
DriveUninsured(MyCar); 0K
DriveUninsured(YourCar); I OK;
DriveUninsured(Tank); I 0K;
DriveUnqualified{MyCar); I Not OK;
DriveUnqualified(Tank); ! 0K;
DrivelUnqualified(Vehicle); ! Not OK;
Drivelnsured{MyCar); I 0K;
DriveInsured(YourCar); | Not OK;
Drivelnsured(Tank); | Not OK;

In the example above, the procedure Wash has an any parameter, thus the definite instance
denoted by MyCar (see page 45), the indefinite Vehicle and the any instance all match the
formal. For the calls of DriveUninsured, the formal is an indefinite Vehicle, thus definite
instances MyCar and YourCar match because they have Vehicle as their underlying classes.
Further, the indefinite instance Tank matches since it is a subclass of the formal, Vehicle®.
The formal of DriveUnqualified specifies that a Tank must be passed. Thus the definite
instance of MyCar and the indefinite instance of Vehicle do not matéh. However, the indefinite
instance Tank does match since it is the same class as the formal. The final procedure,
Drivelnsured has a definite object in its parameter, denoted by MyCar. Therefore, only that
definite object may be used as an actual. Thus the actual in the call using MyCar matches the
formal, the other two do not.

Another set of constraints ensures that parameters in the actual match the parameters in

the formal. Thus one of the following must be met for two simple objects to match:

¢ The formal is an any instance without parameters, or

27Although procedures are not discussed until Section 3.5, | assume that the reader can understand these simple
examples.

28This is how type parameters are passed.

Section 3.4.2.1 Parameters 51

o The formal is an any instance with parameters, the number of parameters in the
formal object equals the number of parameters in the actual object, and from left
to right, each parameter object in the actual object matches the corresponding
parameter object in the formal object, or®

¢ The formal is a definite instance and the actual is the same definite instance, or

e The formal is an indefinite instance, and for each parameter in the formal, the
corresponding parameter actual object matches the formal parameter object.30

Some examples of these rules are shown below:

class CarCarrier(v: Vehicle) is begin end;
var RoadWays => new CarCarrier(MyCar);

procedure RunAnything(any);

procedure RunVehicle(any(Vehicle));
procedure RunRoadWays(RoadWays);
procedure RunMyCar(CarCarrier{Vehicle));

RunAnything({RoadWays) ! 0K;
RunVehicle(RoadWays) I 0K;
RunVehicle(MyCar); ! Not OK;
RunRoadWays(RoadWays) ! OK;
RunMyCar{RoadWays) ! 0K

The class CarCarrier has one parameter, so the definite instance RoadWays has one
parameter, Here, the parameter is the definite instance denoted by MyCar. The definite simple
object denoted by RoadWays is used as an actual in five procedure calls. The first call,
RunAnything has a formal that is an any instance with no parameters. Thus the actual
matches the formal by the first rule. The second call, RunVenhicle is also an any instance, but
the actual must match the one parameter of the any instance, here Vehicle. The parameter in
the actual, MyCar, matches the parameter in the formal Vehicle, so actual matches the formal.
The third call, also of RunVehicle, is not permitted. The formal of RunVehicle requires one
parameter and the instance denoted by MyCar has no parameters. Thus MyCar does not
match any(Vehicie). The actual in the call of RunRoadWays is the same instance as the
formal in RunRoadWays, thus it matches as stated in the third rule. The formal in the last call

requires the parameter to CarCarrier to be an indefinite Vehicle. Because the parameter in the

29This is used' primarily in pattern statements. See Section 5.5.4,

30" is possible that the formal has fewer parameters than the actual and the actual still matches the format. This
fascinating situation requires several class and variables to illustrate it. These cannot be declared with only the
knowledge of the current discussion. Thus no example will be illustrated here; | just wanted to point out why the
second rule includes a clause requiring the same number of parameters while the last rule only requires
"corresponding” parameters to match.

Section 3.4.2.1 Parameters 52

actual, MyCar, matches an indefinite Vehicie, the actual matches the formal as stated in the

fourth rule.

Finally, there is a rule to ensure that labels match:

o If the actual simple object is labeled, then the formal simple object must be
labeled with the same identifier.

This rule is used primarily when checking a procedure implementation against its

specifications, as shown below:

procedure DriveVehicle{v:Vehicls); ! Procedure Spsc.;
procedure DriveVehicle(v:Vehicle) is ... ! OK Impl.;
procedure DriveVehicle(x:Vehicle) is ... ; I 0K Impl.;
procedure DriveTank(Tank}; ! Procedure Spec.;
procedure DriveTank(t:Tank) is ... : ! 0K Impl.;

The first procedure specification, DriveVehicle, has two implementations. The first is legal
because its parameter is labeled like its specification; the second is illegal because its
parameter is labeled differently. The second procedure, DriveTank, has one implementation.
The parameter in that implementation matches the parameter in its specification since the
parameter in the specification is uniabeled. As the rule states, the labels must match only if
the formal has a labet. 3!

The process of comparing simple objects also causes a binding of objects to identifiers to
happen. In particular, if the formal simple object is labeled, then a side effect of a successful
comparison is a binding of the identifier in the label, to the object which consists of the actual
simple object and its environment. In more conventional terms, all binding in Paragon is by

reference.

3.4.2.2. Object Matching

For most purposes, an actual object matches a formal object if the two objects have the
same number of simple objects and corresponding simple objects match. There are
circumstances where an actual object may have more simple objects that a formal, such as
illustrated below: ‘

3 Recall that when comparing implementations to specifications, the specification acts as a formal and the
implementation as an actual.

Section 3.4.2.2 Parameters 53

class House is
begin
class Furniture is
bagin
procedure Polish(House . Furniture};
end;

class Kitchen is
begin
class Refrigerator of Furniture is begin end;
end;
end;

var MyHouse => new House;
var MyKitchen => MyHouse . new Kitchen;
var MyFrig => MyKitchen . new Refrigerator;

Polish{MyFrig)

The formal parameter in the declaration of Polish is the object (any House, any Furniture)
while the actual parameter in the invocation of Polish is the object
(House, Kitchen, Refrigerator). Intuitively, the formal object states the requirements for the
procedure’s parameter, namely that an object that is a house containing a piece of furniture
(refrigerator) must be passed. Clearly, the actual meets this criterion but it happens to have
some extra structure that procedure Polish does not require, the Kitchen simple object.
Paragon allows skipping of such simple objects in the actual object. Full details of how simple
objects are skipped during comparison are given in Section A.3 in an appendix.

3.4.3. Type Parameters

Because Paragon represents parameters as merely another object, it is possibie to simulate
type parameters by passing a name expression containing indefinite instantiations as an
actual parameter, This is illustrated with the following piece of Paragon:

class MyType is begin end;

procedurse F(t: any) ... 1is
begin
var Local => new t;

‘e

end;
F(MyType) ...

The formal parameter for the procedure F, that is, t, is later used in an object creation, hence t

is used like a type name in most languages. The invocation of £ has an actual parameter that

Section 3.4.3 Parameters 54

is an uninstantiated instance of MyType and therefore does not have the definite, object-
creation elaborations associated with it. Thus, the object being passed to F appears like, and
isused as, a type.32 Through the use of indefinite instances, Paragon permits the structure of
classes to be exploited without any definite instances being created, thus Paragon

parameters can effectively simulate type parameters.

3.4.4. Parameters to Classes

As alluded to in the beginning of Section 3.4, class declarations may have parameters. Any
object creation, whether an indefinite instance or a definite instance, must provide directly or
indirectly the same number of actual parameters in the name component as there are formal
parameters in the class declaration. The actuals are directly provided if they are explicitly
written in the name component between parentheses: for example, new array(1,100). The
actuals are indirectly provided if no parenthesized list of expressions is provided in the name
component and the identifier in the name component is bound to an object, for example, a
variable. This is illustrated below by extending the examples on pages 53 51:

F{RoadWays)

in this example, the instance denoted by RoadWays is used as a type inside of F when
creating the instance for Local. However, the underlying class for RoadWays, that is
CarCarrier, requires a parameter. None is specified in the name component new T in F, so the
parameter comes from the instance denoted by 7, which is the instance denoted by
RoadWays. Therefore the parameter becomes MyCar. In general, the actuals to be used then
come from the innermost simple object in the creation environment that has the same
underlying class as the simple object being created. In short, the parameters are copied from
the current environment.33

A class declaration with parameters may have subclasses, each of which inherits the

parameters of the parent and may declare additional parameters. This is illustrated below:

32Although a definite object may also be passed, to do so is unnecessary. If a definite ingtance is passed, only its
"type” will be used.

33A previous version of Paragon permitted defauit expressions to be declared in parameters. These defaults would
be used when actual parameters were indirectly specified. However, it was difficult to define the environment in
which the default expressions should be elaborated, so this feature was removed from the design.

Section 3.4.4 Parameters 55

class ArmyCarrier(v:Vehicle,Tank) of CarCarrier is
begin
end;
No example in the main body of this thesis both defines and inherits parameters. However,

such parameters are illustrated in Section A.7.

Assuming that a class inherits parameters from at most one parent and does not declare
more parameters, then the objects denoted by the subclass parameters must match the

corresponding parameters in that one parent class. This is illustrated below:

class TankCarrier(v:Tank) of CarCarrier is
begin
end;
The parameter in TankCarrier matches the parameter in CarCarrier, that is, v:Tank matches

v:Vehicle. For more examples, see the class declarations on page 111.

However, it is possible to inherit parameters from more than one parent, even if the parent
classes share an ancestor that has a parameter. The process for ensuring that the parameters
of the subclass properly match the parameters of the parents is more complicated. To
properly discuss the algorithm requires a precise definition of defined and inherited
parameters, and a description of the correspondence between a defined parameter in a class
and an inherited parameter in a subclass. For all examples in this thesis, one may use the
intuitive cdncepts of 'defined” and ‘“inherited" parameters and assume that
"corresponding” means pairwise, that is, the ith parameter in one list of parameters matches
the ith parameter in another list. Section A.7 gives all of the details of parameter inheritance,

parameter correspondence and parameter matching.

3.5. Procedure Specifications

Procedures in Paragon provide the conventional procedural abstraction associated with
high-level languages. Unlike most languages, procedures are separately specified and
implemented. This section discusses procedure specifications while the next section
(Section 3.6) discusses procedure implementations. Further, Paragon uses procedures to
specify and implement iterators but a discussion of iterators is postponed until Section 3.7.

Each section gives an overall view of the syntax and semantics of the corresponding feature.

Section 3.5.1 Procedure Specifications 56
3.5.1. Overall Syntax of Procedure Specifications

Procedure specifications consist of an identifier, some optional formal parameters, an
optional specification for a returned or yielded object and some optional constraints. An

example of a procedure specification is given below:

procedure Compare(L:any,R:any) return Booleans.Bit
such that L.structure same as R.structure;
The specification for the procedure Compare states that it takes two parameters which may
be any objects at all and returns an object that matches the predefined boolean object. it also
has one constraint. Roughly speaking, the constraint states that the two parameters must
have the same structure, that is, two Vehicles or two Tanks, but not a Ship and a Tank.

More detailed descriptions of each of these pieces of a specification are given in the next

sections.

3.5.2. Parameters

The parameters in a procedure specification are name expressions that have neither name
components with the reserved word new (that is, no definite instantiations) nor any procedure
invocations.®* Intuitively, a formal parameter is supposed to define the structure that actual

parameters must match.

3.5.3. Return Expression

The return expression is an expression that describes the object that the procedure
provides. Like the parameters of the procedure specification, it may not contain definite
instantiations or procedure calls. However, it may use identifiers that are used as labels in the
parameters of the procedure specification. Such a use is convenient for expressing the fact
that a return object has a similar structure to one of the parameters. In the following
procedure specification: -

procedure Copy(A:any) return A.structure;

the return expression for the Copy procedure describes the returned object as having the

same structure as the parameter.

34This means that arraylim.integer) is permitted but array(10] is not permitted, since 10 is an implicit procedure
call.

Section 3.5.4 Procedure Specifications 57
3.5.4, Constraints

Constraints can be used to specify some relationship between parameters. This is
necessary because the ordinary parameter passing mechanism does not aiways provide the
appropriate information that a procedure requires. One example of this problem occurs when

specifying addition for numbers, as illustrated with the following declarations: 3

class Number is begin end;

procedure Plus(L:Number,R:Number) return Number;
The class declaration for Number is intended to be used to describe any kind of object that
meets some minimal abstract property (in the programmer’'s mind): for example, the group
axioms. The group axioms also define the existence of a binary operation that may be used
on elements of the group, here Plus,

The programmer may refine Number into more precise specifications of real numbers and

complex numbers, as shown below:

class Real of Number is begin end;

ctass Complex of Number is begin end;
However, this additional level of abstraction has no notion that elements from two different
groups should be allowed to interact. Even though Plus should operate on two Reafs and two
Compiex numbers, there is no intention for Plus to work on a Real and a Complex together.
To enforce this desire, a constraint is added, as illustrated below:

procedure Plus(L:Number,R:Number) return Number
such that L.structure same as R.structure;

Constraints return a truth vaiue, that is, true or false. In this example, the value is
determined by elaborating the name expressions in the constraint, that is. L.structure and
R.structure, and then checking to see if each matches the other. Thus this constraint ensures
that Reals may only be added to Reals, Complex numbers to Complex numbers.

Paragon provides for other kinds of constraints, but they are rarely used. The interested
reader is referred to Section A9. All procedure constraints are elaborated only when
procedure calls are elaborated with specifications.

35These declarations are not those used in Paragon for predefined integers.

Section 3.6 Procedure Implementations 58

3.6. Procedure implementations

A procedure implementation describes how a particular operation should be performed.
Each procedure implementation implements a single procedure specification. However, there
may be several implementations for each specification in a program. An appropriate
implementation will be chosen for each call of the procedure, though a discussion of the
selection process is deferred until Section 5.5.5. In this section, the syntax and semantics of

procedure implementations and procedure calls will be given.

3.6.1. Overall Syntax of Procedure Implementations

Unlike other declarations, procedure implementations may appear only in the same class as
the procedure specification or in any subclass of the class that contains the procedure
specification. This ensures that each procedure implementation has a readily identifiable

procedure specification that it is implementing.

Syntactically, a procedure implementation resembles a class declaration. The ubiquitous
factorial procedure illustrates this syntax:
procedure Factorial(IM . n :integer) return IM.integer is
begin
if n <= 1 then
return 1;
elss
return n * Factorial(n - 1);
fi;
end;
The syntax is conventional: There is an identifier followed by optional parameters. A return
expression, if present, is next, followed by the body of the implementation. The body may have

any number of declarations followed by any number of statements.

3.6.2. Parameters

The same restrictions and admissions for parameters in a procedure specification apply to
parameters in a procedure implementation. Unlike most languages, the parameters in the
implementation need not be identical to the parameters in the specification. All that is
required is that the parameters of an implementation match the corresponding parameters of
the specification. In the same manner, the return expression of a procedure implementation
must match the return expression of the specification. Either both or neither must have a
return expression.

Section 3.6.2 Procedure Implementations 59

No constraints are permitted in a procedure implementation. Unlike procedure
specifications, procedure implementations may be intended to work on several different
implementations. Since each implementation would have a different structure, a constraint
that checked their structures would return false. Thus the constraint would forbid the desired
action: a procedure working with different implementations. In retrospect however, the
decision to eliminate constraints in procedure implementations may have been unwise.

Section 4.6.1 discusses some possible uses of constraints in procedure impiementations.

3.6.3. Return Statement

A procedure may contain a return statement. The expression in the return statement must
match the return expression. f no return expression is present in the procedure
implementation, then no return statement may contain an expression. Conversely, if the
procedure implementation has a return expression, then each return statement must have a
matching expression.

3.6.4. Procedure Invocation

A procedure invocation causes an instance of a procedure to be created, elaborated,
possibly suspended (if an iterator, see Section 3.7.1) and eventually terminated. These actions
take place for both procedure specifications and procedure implementations, though these

invocations occur during different elaborations, 3

Like the elaboration of all name components, a name component that denotes a procedure

invocation®’

starts by locating the appropriate procedure in its environment. During
elaboration with specifications, an appropriate procedure specification is found; during
elaboration with implementations, an appropriate implementation or specification is found,
and during elaboration with realizations, an appropriate implementation is used. Therefore
the elaboration with specifications checks that the procedure call meets the procedure’s
specification, the elaboration with implementations finds a feasible implementation and the
the elaboration with realizations uses the implementation chosen during elaboration with

implementations as the procedure to actually execute.

36m particular, invocations of procedure specifications occur only during elaborations with specifications and
implementations while invocations of procedure implementations occur only during elaborations with
impiementations and realizations.

A nare component that denotes a procedure invocation is a procedure-invocation name component.

Section 3.6.4 Procedure Implementations 60

After the appropriate declaration is found, the formal and actual parameters for the
procedure invocation are elaborated and compared. Assuming that the parameters match, an
instance for the procedure is created and appended to the environment in which the
invocation name expression is being elaborated. The body of the procedure, if any, is then
elaborated. During elaboration with specifications and implementations, the procedure
invocation is terminated when the end of the declaration is reached. Then the return
expression in the procedure declaration, if any, is elaborated. The object that results from the
elaboration of the return expression is then used as the environment for the next component.
Alternatively, it can be used as the object that results from the elaboration of the name

expression for which this invocation is the last component.

These elaborations are illustrated by the following examples:

class Example is
begin
class Inner is begin end;

procedure Copy(Example) return Example; ! Spec.;

procedure Copy(Example) return Example is ...; | Impl.;

procedure Endit{Example); | Spsc.;
end;

var vl => new Example;
var v2 => new Example;
var v3 => new Example;

v1.Endit(v2.Copy(v3).Copy(vl)); ! Statement;

When the statement is elaborated with specifications, the specification for Endit in v1 is found.
The actuals for this call are elaborated with specifications which causes the specification of
Copy inside of v2 to bé found. During elaboration with specifications, the return expression of
Copy is elaborated (here Example} and returned as the environment for the next component,
which is another call of Copy. This process is repeated, and again the return expression
Example is elaborated with specifications. This results in an indefinite instance of Example
which is the actual parameter for the call for Endit.

During elaboration with implementations, this process is repeated, except that the
implementation for Copy is found wherever the specification was found. A search for an
implementation of Endlt occurs, but none are defined here. Thus the specification is reused
during elaboration with implementations. The exact way that an implementation is selected for
a procedure call is described in Section 5.5.5.1.

Section 3.6.4 Procedure Implementations 61

During elabaration with realizations, the invocation is terminated when a return statement in
the implementation is elaborated. If an expression is present in the return statement, it is
elaborated with realizations and is used as the environment for the next name component. If
the end of the procedure is reached without a return statement being elaborated, the
procedure is terminated and no object is returned. Under these circumstances, the procedure

declaration must not have a return expression.

Like the instantiation of classes, a procedure invocation is said to create a simple object.
There is always exactly one local instance, namely the one that results from the elaboration of
the declarations and statements in the procedure’s declaration. A procedure specification
also has a local instance, though it is empty as there are no declarations or statements in a
specification. This simple object is appended to the environment® in which the procedure
call was made to form the environment in which the procedure body is elaborated. This is
illustrated below using the declarations for Example above:

var I_in_V1 => v1 . new Inner;

vi.Copy(...):
In the variable declaration, a definite simple object is created inside of the definite simple
instance denoted by v71. in the procedure call, a definite simple object for the invocation of the
Copy procedure is created inside of the definite simple instance denoted by v71. Both objects
consist of two nested simple objects. The innermost simple object for the first came from
instantiating a class. The innermost simple object for the second came from invoking a
procedure. The local instances for the first come from the ancestors of the class declaration
and the class itself. The local instances for the second come from the declaration of the
procedure specification. As shown in Section 5.4, the local instances in both simple objects
may change. This view of procedure invocations is useful for making representation

selections and the pattern matching statement. This last use is discussed in Section 5.5.4.

38'Reca\ll that an environment is an object.

Section 3.7 lterators 62

3.7. lterators

Because iterators are not present is most languages, this section first gives a brief
description of iterators and then discusses how they are declared in Paragon. Some special
statements that are associated with iterators, for, yield and return, are then described. Lastly,
termination of iterators, especially through the use of an exitloop statement, is discussed.

3.7.1. Overview of lterators

An iterator can be thought of as a black box that, once started, produces a sequence of
objects on request. The starting of an iterator is termed invocation or call, and the process of
providing the next object in the sequence is termed yielding. After the iterator has returned an
object, the iterator may be continued, either to provide another object or to terminate. When
no more objects are to be yielded and the iterator may not be continued, the iterator has
terminated. After the last object has been yielded, an iterator may be continued to perform
some actions that do not result in the yielding of an object but instead result in termination of

the iterator. A terminated iterator may not be continued.

In Paragon, this process only happens in a for statement, such as illustrated below:
for 1 in Sequence(1,10) do
end for;
Here the iterator is called Sequence and the invocation of the iterator starts when the for
statement is elaborated. The process of calling an iterator is identical to calling a procedure:
a simple object is created, the parameters checked and identifiers bound, a local instance
created and added to the simple object, the simple object is appended to the calling

environment and elaboration of the declarations and statements within the iterator’s body
commences.

Unlike a procedure, an iterator may have a yield statement which causes suspension of the
iterator. The yield statement contains an expression which is executed when the yield
statement is executed. The object that results from the expression is bound to the loop
identifier in the for statement, for example, i in the example above. The statements inside the
for statement are then elaborated. When the last statement in the for loop is elaborated (and
assuming that no exitloop, return or goto statement is executed), the previously started
invocation of the iterator continues its execution as if the yield statement had completed its

Section 3.7.1 lterators 63

execution. This cycle continues untit one of the following occurs: the iterator executes a
return statement; the iterator reaches the end of its implementation; a goto statement is
executed that transfers control out of the loop; or the for loop executes an exitloop statement.

3.7.2. Herator Specifications

The specifications for an iterator are identical to other procedure specifications except that
a yield expression must be present where the optional return expression is written. A
specification for Sequence might be:

procedure Sequence(IM.integer,IM.integer) yield IM.integer;

Like other procedures, an iterator may have constraints applied to its parameters and its yield

expression may use identifiers that are bound in the parameters.

3.7.3. Herator Implementations

The implementations of iterators are identical to other procedure implementations except
that the yieid statement is permitted in an iterator implementation, but not in any other kind of
procedure implementation, and that there must be a yield expression where the optional
return expression is written. Like a procedure implementation with a return expression, the
yield expression in the implementation must match the yieid expression in the specification. A
possible implementaticn for Sequence illustrates the syntax:

procedure Sequence(IM. Tow: integer,IM. high: integer)
yield IM.integer is

begin
var temp => IM . new integer;
temp = low;

while temp < high do
yield temp;
temp := temp + 1;
end;
end;

In combination with the previous for statement, this procedure yields the integers from low to
high and then terminates, ending the for statement. Thus this iterator matches the
conventional for statement found in most languages.

Section 3.7.4 lterators 64
3.7.4. Yield Statement

The yield statement is the way in which an iterator may suspend its operation. The general
form of the yield statement has two parts: a yielded expression and a conditional statement.

This is shown by the following BNF:

yield <expression> { when exitloop <statement> }?°

The expression in a yield statement denotes the object that the iterator returns. it is bound
to the index identifier in the for loop that invoked the iterator. This object must match the

object denoted by the yield expression in the heading of the iterator.

An iterator may be terminated by the execution of an exitloop, return or goto statement in
the for statement's body. When this happens, the optional when exitloop <statement> permits
the iterator to perform some last actions before it is terminated. The statement following the
reserved word exit/oop is usually a goto statement which jumps to a part of the iterator that
performs some final action. If the statement does not cause any transfer of control, execution
after the statement continues just after the yield statement. (However, the iterator may not
execute any more yie/d statements. It must terminate by executing a return statement or by
reaching the end of the procedure.) If no optional statement is present and an exitloop, return
or goto statement causes a ioop to terminate, then the iterator will be terminated without any
further execution.

3.7.5. Return Statement

The return statement provides an explicit way for an iterator to terminate itself. Unlike the
return statement used in other procedures, the return statement may not have the optional
expression. Thus the syntax is trivial and is simpiy the reserved word return. Recall that an
iterator may also terminate itself by reaching the end of its body.

3gThe notation { x }? means that x is optional,

Section 3.7.8 lterators 65
3.7.6. For Statement and Iterator Invocations

The for statement invokes and continues an iterator, binding an index parameter each time,

and executing the statements in its body. An example of a for loop is shown below:

var i => IM ., new integer;
var i2 => IM . new integer;

for i in Sequence{1,100) do
iz := 1% i
and;

This for loop calculates the square for each value between 1 and 100.

The object denoted by the index identifier in the for loop must match the object that results
from elaborating the yield expression in the iterator. Duriﬁg execution, the returned object
from the iterator is bound to the index identifier, superseding any previous binding to that
identifier. During elaboration with specifications and implementations, the processing of an
iterator cali is identical to the processing of a procedure cail except the resuits from the yield
expression rather than the return expression are used as the result of the expression
elaboration. During these two kinds of elaboration, there is no notion of suspension or
termination of an iterator. Naturally, the object returned by elaborating the expression

following the reserved word in must come from an invocation of an iterator.

The for loop continues the iterator after each execution of the statements in the for loop. If
the iterator is continued because an exitloop, return or goto statement was executed in the
body of the for statement, then the iterator must terminate without yielding any more objects.
Failure to terminate under these circumstances renders a program erroneous and continued
execution is undefined. If the iterator is continued because the last statement of the for loop is
finished and the for loop is performing the next iteration, then the iterator may yield another
object. When an object is yielded, it is rebound of the index identifier and the statements of
the loop are reexecuted. However, when the iterator is continued, it may terminate, causing
the execution to continue after the end of the for loop. When an iterator terminates, all
bindings that were set up during its execution are released, thus the index identifier becomes
undefined when the iterator terminates.

Section 3.7.7 lterators 66
3.7.7. Exitloop Statement

The exitloop statement, whose syntax is shown below, is used to leave an enclosing loop.
exitloop { <identifier> }?

Although exitloop statements may appear inside both while loops and for ioops, only their
actions inside for loops are discussed here. Section 3.8.3 presents a discussion of exitloop

statements in while loops.

The primary action of an exitioop statement is to terminate the loop in which it appears.
However, an exitioop statement also forces the continuation of the iterator of the for loop that
contains the exitioop. As explained in Section 3.7.6, the execution of the exitioop statement
causes any optional statement in the iterator's last executed yie/d statement to be executed.
However, the iterator may no longer yield any more values; it must terminate.

if an optional identifier is present in an exitioop statement, the actions performed by the
exitloop statement may apply to several loops. The processing of each loop enclosing the
exitioop statement is performed from innermost loop to outermost, until the !oop that is
labeled with the identifier is found (see Section 3.8.1 for the syntax of labels.). An example is

shown below:
Quter =>
for i in Sequence(1,100) do
Inner =>
for j in Sequence(i,100) do
exitloop Inner;
exitloop Outer;
end for;
end for;

In this example, the execution of the statement exitioop inner will cause the inner invocation
of the Sequence iterator to be continued with the caveat that it must terminate, and then
execution continues after the end of the inner loop. The execution of the statement
exitloop Quter first causes the inner invocation of the Sequence iterator to be continued {with
the caveat that it must terminate) and then causes the outer invocation of the Sequence
iterator to be continued, again, with the caveat that it must terminate. Execution would then
proceed after the end of the outer loop. In general, after all of the relevant iterators have been
terminated because of an exitioop statement, execution continues immediately after the end
of the labeled (or innermost) loop.

Section 3.7.7 lterators 67
3.8. Conventional Statements

Paragon also contains the usual complement of control structures and facilities which are
described in this section.

3.8.1. Labels
Any statement in Paragon may be labeled. The syntax is an identifier followed by = >, and is
illustrated below:

InnerLoop => while True do ... end loop;
LabelA => LabelB => if True then null; f1i;

As shown, any number of labels may be prepended to a statement. However, identifiers for all

labels within a block of a procedure or class must be unique.

The labels are used in exitloop statements and goto statements.

3.8.2. Procedure Invocation

The simplest kind of statement is an expression. Perhaps the most common expression
used as a statement is assignment, for example:

var i => IM . new integer;
var j => IM . new integer;

LR ! Really the same as IM.Assign(i,j);

Nn object may be returned by an expression used as a statement.

3.8.3. Conditional Looping

in addition to the for loop, Paragon also provides a while loop, with a conventional syntax,
illustrated in the example Sequence implementation in Section 3.7.3. The conditional
expression must return an object that matches the predefined boolean object, that is, the
object resulting from the expression Booleans . Bit where Booleans is a predefined variable
identifier and Bit is a predefined class identifier. Like conventional while statements, the
statements in the loop will be executed once each time the conditional expression returns an
object with a True value,* '

40Sut:h objects come from the predefined procedure True. Similarly, objects with a False value come from the
predefined procedure False.

Section 3.8.3 Conventional Statements 68

Transfer of control may also leave a while loop if a goto statement with target outside of the
while loop is executed, or an exitioop or return statement is executed. When such a goto
statement is executed, execution continues with appropriately labeled statement. When an
exitloop statement is executed, the execution of the program continues after the end of the
loop labeled with the same identifier as present in the exitioop statement. If no target label is
present in the exitfoop statement, execution continues after the end of the loop containing the

exitloop statement.

3.8.4. if Statement

The if statement provides a single, conditional execution of a sequence of statements.
Through the use of additional clauses, a list of conditions may be expressed. Like the while

statement, a conventional syntax for if statements is used, as defined by the following BNF:

if Cexpression> then
{ <statement> ; }**'
{ elseif <expression> then
{ <statement>; }* }*
{ else
{ <statement>; }* }?
fi
The conditional expressions following the reserved words if and elseif must meet the same
criteria as the while loops’ conditional expressions. Any number of statements may be present
following the reserved words then or else, any number of clauses beginning with e/seif may be
present and an optional else clause may be present. Unlike many languages, the if statement

ends with the reserved word #i.

The execution of an if statement is also conventional. Each conditional expression is
executed until one that has the truth value True is found. The statements following that
conditional expression are then executed. If no such conditional expression is found, and
there is an else clause present, then the statements in the else clause are executed. After the
appropriate sequence of statements are executed, and no goto, exitloop or return statement
has altered the flow of controt out of the clause, execution continues immediately following
the reserved word fi.

41 .
The notation { x }* means zero or more xs.
]

Section 3.8.5 Conventional Statements 69
3.8.5. Goto Statement

The goto statement causes unconditional transfer of control from the current statement to

the statement labeled by the identifier in the goto statement. The syntax is illustrated below:

goto End_of_Program;

The target of a goto statement, that is, the statement that is labeled with the identifier, must
be in the same class or procedure declaration as the goto statement. Further, the target
statement may not be in a loop that does not contain the goto statement (though the goto
statement may be nested inside of a deeper loop), nor may it be in an if clause (if, elseif, else)
that does not contain the goto statement. However, the converse to these statements is not

true. One may write a goto statement that transfers controf out of a loop or if statement.

These conventional statements, along with procedures and classes, describe the basic
parts of Paragon, much of whose power lies in the ways that these basic parts can be
combined into sophisticated data structures. The next chapter discusses a particular data
structure that serves as the basis for writing abstract data types in Paragon, and illustrates
how some of goals of Chapter 2 can be realized.

Chapter 4

The Object-Manager Model
and
Its Implementation

The language described in Chapter 3 provides a great deal of flexibility. In this thesis, a
particutar model of programming, usually termed the object-manager model, is used. Nested
classes are used in several ways to impiement this model: as generalization classes; as
specification classes; as implementation classes; and as cross-implementation classes. This
chapter describes this model of programming and shows how the simple features of Paragon
are applied to implement this model.

4.1. Object Managers and Nested Classes

The object-manager model divides program objects into two categories: managers and
individuals. The manager is created first and contains data and procedures that are shared
among ail individuals. For each manager, there may be any number of individuals created,
and each individual has a single manager. Naturally, each individual may have private data
and procedures not shared with other individuals.

As an example of this model, consider integers. Each individual integer can be represented
as a word in memory. Further, there exists a procedure, Addition, that is shared among all the
individual integers, and so this procedure belongs to the manager of all integers.

4.1.1. Classes as Manager and Individuals

Within the Paragon language, classes are used for all objects, and so are used for both
managers and individuals. The shared declarations belong to the manager, and to allow
access to the shared declarations, the class for individuals is declared inside the class

declared for the manager. The integer example is illustrated with Paragon below:

Section 4.1.1 Object Managers and Nested Classes 72

class IntegerManager is
begin
| Shared data and, procedures go here ;
procedure Addition(Integer,Integer) return Integer;

! And the class definition for individuals ;
class Integer is
begin
var Rep => CM*2 . new Word;
end;

end;

With this model, it is necessary to create a manager before any individuals are created. Thus

to use any integers, a program must first create the manager:
var MyIntegerManager => new IntegerManager;
and only then can it create the individuals:

var n => MyIntegerManager . new Integer;
var Size => MylIntegerManager . new Integer;
var Low => MyIntegerManager . new Integer;

One uses shared data and operations by selecting them from the object manager. Addition of
two integers would look like:

. MyIntegerManager.Addition(Size,n) ...

This approach offers a great deal of flexibility. For example, it is possible to express that
certain kinds of integers may not interact. A frequently cited example of this requirement
concerns integers that represent counts of apples and oranges. One wishes the compiler to
enforce the rule that apples and oranges do not mix. Using the previous declarations this can

be accomplished as foliows:

var AppleManager =» new IntegerManager;
var OrangeManagaer => new IntegerManager;

var Lisa => AppleManager . new Integer;
var MacIntosh => AppleManager . new Integer:

var Navel => OrangeManager . new Integer;
var Seedless => OrangeManager . new Integer;

With these variable declarations, the compiler for Paragon can check the legality of these

expressions:

420M is a predefined variable for Computer memory Manager.

Section 4.1.1 Object Managers and Nested Classes 73

.. AppleManager.Addition{Lisa,MacIntosh) ... ! Legal ;
.. OrangeManager .Addition(Navel,Seedless) ... ! Legal ;
.. AppleManager.Addition(MacIntosh,Navel) ... ! I1legal ;
.. OrangeManager.Addition(Lisa,Seedless) ... ! I1legal ;
. AppleManager.Addition(Navel,Seedless) ... ! I1legal ;

Note how the language catches the illegal procedure call of AppleManager.Addition with the
Macintosh and Navel/ parameters. The expressions for the parameters in the Addition
procedure are Integer which is declared in the IntegerManager class. Thus the Integer
indefinite simple object resides inside of the same simple object as the procedure Addition. In
the call of AppleManager.Addition, the containing simple object is (AppleManager), so the
object that results from the elaboration of each formal parameter during the procedure call is
(AppleManager,any integer). The declaration for Navel/ shows that the definite Integer was
created inside the object denoted by OrangeManager, hence the object denoted by Navel —
and an actual parameter to this procedure call — is {OrangeManager, Navel). According to
the object comparison rules in Section 3.4.2.1, two simple definite objects match only if they
are the same definite object. OrangeManager and AppleManager are two different definite
instances of integerManager, so OrangeManager does not match AppleManager. Since the
two simple objects do not match, the two objects do not match and the procedure call is not
well specified.

4.1.2. Cross-implementation Procedures

Under some circumstances, one might want to permit the intermingling of the different
integers. One may also specify such procedures in the class for the manager. The
CrossAddition procedure meets this requirement:

class IntegerManager is
begin
! Parameters from any manager ;
procedure CrossAddition(IntegerManager . Integer,
IntegerManager . Integer)
return Integsr;

! The rest of the declarations are unchanged ;

end;

With such a declaration of CrossAdudition, one may add apples and oranges. This is because
the expressions in the formal parameters now contain an indefinite instantiation for the outer

simple object IntegerManager instead of the enclosing definite instance of IntegerManager.

Section 4.1.2 Object Managers and Nested Classes 74

With the particular declaration given above, the integer returned will belong to the manager
from which the procedure was selected. This is illustrated in the following code fragment:
. AppleManager.CrossAddition(MacIntosh,Navel) ...
! Returns an AppleManager Integer ;
.. OrangeManager.CrossAddition(Lisa,Seedless) ...
| Returns an OrangeManager Integer ;
. AppleManager.CrossAddition(Navel,Seedless) ...
! Returns an AppleManager Integer ;
The call AppleManager.CrossAddition(Macintosh,Navel) is now legal because elaboration of
each formal parameter results in the object {any IntegerManager, any Integer), against which

the object (OrangeManager, Navel) now matches.

Paragon also allows for other combinations of managers and individuals. For example,
instead of using the manager from which the procedure was selected as the manager of the
returned individual, it is possible to select the manager of one of the parameters to explicitly
specify the return manager. Such an alternative declaration for CrossAddition and its use are

shown below:

procedure CrossAddition(InManager: IntegerManager . Integer,
IntegerManager . Integer)
return InManager . Integer;

. AppleManager.CrossAddition(MacIntosh,Navel) ...
! Returns an AppleManager Integer ;
.. OrangeManager.CrossAddition(Lisa,Seedless) ...
! Returns an AppleManager Integer ;
.. AppleManager.CrossAddition(Navel,Seedless) ...
| Returns an OrangeManager Integer ;

4.2. The Manager Model in Other Languages

The object-manager model approach to programming abstract data types is supported in
many languages. For example, Ada provides a nearly identical facility, where the outer class
(that is, the manager) is declared as a generic package and the inner class is declared as a
type. Rewriting the examples of IntegerManager above in Ada would look like:

generic package IntegerManager is
begin
type Integer isnew Standard.Integer ;

function Addition(L:Integer,R:Integer) returns Integer;
end;

package AppleManager isnew IntegerManager;
package OrangeManager is new IntegerManager;

Section 4.2 The Manager Model in Other Languages 75

Lisa: AppleManager . Integer;
MacIntosh: AppleManager . Integer;
Navel: OrangeManager . Integer;
Seedless: OrangeManager . Integer;

. AppleManager.Addition(Lisa,MacIntosh) ...
.. OrangeManager.Addition(Navel,Seedless) ...

Clu, Alphard and Model [Johnson 78] give similar approaches, though the identifiers are
located in different places. in Clu, for example, the name of the inner class {the individual)
becomes the name of the cluster (the manager declaration), the reserved word rep is used for
the individual declaration, and variables are declared with the name of the manager. Shared
data among all individuals are declared to be owned by the cluster and are semantically
identical to variables declared in the outer class. Alphard uses the term static for such data in
the manager {form). Model terms the manager a space and the individual a type. In nearly ali
languages that provide data abstraction, there are two separate language features: one for
the manager {outer class}, and one for the individual (inner class).

Each of these pairs of constructions is similar to but not identical to classes. In particular,
there usually are restrictions on the different constructions that eliminate some capabilities.
For example, one cannot express the CrossAddition procedure in Clu. In Alphard, one can
only provide a single inner class declaration where, as we will see later, allowing multiple
inner classes permits a programmer to combine abstractions selectively. Modei and Ada limit
the kinds of parameters and declarations that may be used in the inner classes. In short, each
language embodies a certain sets of constraints that programmers are to follow when
applying the object-manager model.

These constraints were not unmotivated. One motivation was conservatism. Model had a
goal to extend Pascal to include a data abstraction facility while leaving the rest of the
language largely intact; Ada had a specific requirement that its design should not extend the
state of the art. This thesis is intended to explore the object-manager model and type
hierarchies as much as possible, so a very general approach is taken.

Other language designs were also motivated by conciseness. In Paragon programs, a
rather large number of declarations must be written to declare an integer variable. The
restrictions of other languages can eliminate the need to create the manager explicitly
(Alphard, Ada), to specify implicitly the manager everywhere an operation is used (Clu) and to

eliminate: (an explicit) inner declaration (Clu, Alphard, Model). In a production environment,

Section 4.2 The Manager Model in Other Languages 76

extreme verbosily might cause programmers to shy away from a language, thus it is
appropriate that these other languages made such restrictions. As an investigation of the
properties of type hierarchies, the Paragon design opted for the verbosity and flexibility.

The subject of the tradeoff between verboseness and flexibility will recur as this model is

explored further.

4.3. Hierarchies for Specifications

The integer example on page 72 so far lacks a number of operations that one normaily
expects for integers, for example, more arithmetic operations, comparison operations,
transput operations and simple assignment. In most data abstraction languages, if an abstract
data type were to include such operations, they would all be specified in the outer class (form,
cluster, model, and so on). Some languages, such as Ada and Clu, do not require certain
operations to be named explicitly in the manager's declaration. In Ada, a nonlimited private
type automatically has the assignment and equality operations defined for it. In Clu, the
presence of certain external representations (xrep) imply that encode and decode operations
have been defined for use by the Transmit procedure in a Port cluster. These special features
are not required in Paragon. For example, the special features in Clu can be represented in
Paragon as follows:

class Transmissible_Type is
begin
class Internal_Rep is begin end;
class External_Rep is bsgin end;
procedure Encode(Internal Rep) return External_Rep;

procedure Decode(External_Rep) return Internal_Rep;
end;

class Port_Manager 1is
begin
class Port is
begin
procedure Transmit(Transmissible_Type . Internal_Rep);
end;
end;

The Transmit procedure in the Port class can guarantee that its parameter can use the
Encode procedure without recourse to additional features in Paragon for the Encode
procedure or the Transmissible_Type class.

In practice, there are many such groups of related operations. In addition to assignment

Section 4.3 Hierarchies for Specifications 77

and message passing, one might cansider the ability to be ordered, hashed and stored in a file
to be properities that may or may not apply to newly declared abstract data types. Rather than
select some predefined sets of operations and give them special treatment, Paragon uses the

inheritance mechanism for specifying such properties.

4.3.1. Generalizations

By properly defining a set of classes for each set of operations that one might want to inherit
later, one can provide the same predefined features that other languages do without limiting
the choices of operations. For example, a set of declarations that simulate the concept of

nonlimited in Ada is shown below:

class AssignableManager is
class Assignable is begin end;
procedure Assign(Assignable,Assignable);
procedure Equal(Assignable,Assignable) return Booleans.Bit;
and;
An object manager that inherits the AssignableManager class would then define an unlimited
type. Extending the previous /ntegerManager example shows this property:
class IntegerManager of AssignableManager is
begin
| Shared data and procedures go here ;
procedure Addition(Integer,Integer) return Integer;

! And the class definition for individuals :
class Integer of Assignable is

begin

var Regp => CM . new Word;

end;

end;
One could then write
AppleManager.Assign(Lisa,MacIntosh);

just as if one had included an Assign procedure specification in the declaration of

IntegerManager.

By examing the predefined environment for Paragon in Section 6.2, one can examine a
number of these prefix classes declared for later use in the program. Classes used in this way
— that is, where the programmer intends these classes to be inherited by other specifications

— are termed generalization classes.

Section 4.3.2 Hierarchies for Specifications 78
4.3.2. Specifications of Abstract Data Types

In the previous section, a general overview of the object-manager model was providedand a
simple example for integers given. In fact, the example iltustrates poor practice of data
abstraction because the representation of the individuals is visible. For example, there is

nothing that prevents a programmer from writing
.. CM.Plus{Lisa.Rep,Navel.Rep) ...

thus directly manipulating the representation and violating the intended separation between
implementation and representation. A better declaration would have been:

class IntegerManager of AssignableManager is

begin

! Shared data and procedures go here ;
procedure Addition(Integer,Integer) return Integer;

| And the class definition for individuals ;
class Integer of Assignable is begin end;

end;

These declarations still allow the programmer to create managers and individuals, and 1o use
the procedures declared in their respective classes. However, the new declarations prevent
the programmer, who specifies an integer variable, from manipulating the representation
directly. Later, in Section 4.5, | will discuss how to declare the representation for the

specification of an abstract data type.

4.4. Problems with Hierarchies for Specifications

Although the type hierarchy can express specifications for data abstractions, it does not
capture all the details of refining abstractions that { would like. Several inadequacies are

discussed in the following sections.

4.4.1. Constraints in Procedure Specifications

As first shown in Section 3.5.4, constraints must be added to procedure deciarations to
capture the idea that the use of a subclass in a procedure parameter should be substituted for
each use of a class in the original specification. An naive attempt to provide a general

specification for the addition operation illustrates this problem:

Section 4.4.1 Problems with Hierarchies for Specifications 79

l .. ;
! A general specification :

[mommmm e e m e s e e

class AO_Manager is
begin
¢lass Addable_Object is begin end;
procedure Plus(L:Addable_Object,R:Addable_Object)
return Addable_Object;
end;

class Number_Manager of AQ_Manager is
begin

class Number of Addable_Object is begin end;
end;

class Matrix_Manager of AO_Manager is
begin
class Matrix of Addable_0Object is begin end:
end;
By the rules of parameter matching, one may add Numbers and Matrices, which was probably
not intended by the programmer. The way to solve this problem is by adding constraints to the

specification of Plus, as follows:

procedure Plus(L:Addable_Object,R:Addable_Object)
return Addable_Object
such that L.structure same as R.structure;
This has the effect of refining the specification of Plus along with the classes in its
parameters, An unwary programmer would leave out these constraints. The language should

provide some other way to refine the procedure’s parameters.

4.4.2. Return Objects of Procedure Specifications

But the constraints were not enough for refining the parameters. As the specification is
written, the return expression specifies that the result of adding any two objects is an object
which is an Addable_Object. However, if two Numbers are added, one expects a Number
result; if two Matrices, then a Matrix. Not only must the parameters be refined when the
classes mentioned in the parameters are refined, but the return expression must also be
refined. This is accomplished by using the structure name component in the return

expression, as illustrated below:

Section 4.4.2 Problems with Hierarchies for Specifications 80

procedure Plus(L:Addable_Object,R:Addable_Object)
return L.structure
such that L.structure same as R.structure;

With the specification above, the return object for the Plus procedure will reflect the class of
one of the parameters. Thus the last specification captures the probable interpretation of the

programmer.

A glance at the predefined environment in Section 6.2 shows that this is a rather common
situation. An alternative was to provide some kind of renaming rule, such as Ada provides for
derived types. In Ada, these renaming rules caused confusion during the test and evaluation
period of the language, and took a long time to settle into their final form. Thus it seemed risky
to try to conceive of a careful set of rules that easily capture the programmer’s desires.

Instead, the more explicit method was selected.

4.4.3. Heterogeneous Data Structures

One goal relating to automatic program processing requires that static type checking of all
variables declarations (object creations) and procedure calis should be supported. However,
the requirement that all checking being performed statically, that is, without any reference to
execution of the program, results in a type system that is less flexible than other object-
oriented systems, such as Smalitalk, in Paragon, when an object is retrieved from a collection
of objects, the most information that can be discerned about the retrieved object is shared
information about any object in the collection. In the case of a single procedure calil, more
information can be gleaned from the parameters of the procedure. This was illustrated in
Section 4.4.2 and is repeated below:

procedure Plus{L:Addable_0Object,R:Addable_Object)

return L.structure

such that L.structure same as R.structure;
Normally, the Plus procedure maps two Addable_Objects into another Addable_Object.
However, by using one of the parameters in the return expression, the Plus procedure can
supply more information, namely that the object to be returned has the same structure as the
first parameter. Thus the addition of two Numbers will result in a Number; two Matrices, a
Matrix. The precise description of the return object can be examined by static type checking
since a procedure declaration closely couples the objects used as parameters with the object
coming from the procedure.

Section 4.4.3 Problems with Hierarchies for Specifications 81

Frequently, the insertion and retrieval of objects from a collection are not closely coupled in
a single procedure call. Then the static type checking cannot determine the precise structure
of the retrieved object and a more general description must be used. This situation is shown
below, where a symbol table is being defined for use in APL.

class APLSymbolTableManager(AO_Manager. t: Addable_Object) is
class APLSymbolTable is begin end;

procedure Insert{IM.Integer,t);
procedure Retrieve(IM.Integer) return t;
end;

identifiers in APL (represented here as predefined Paragon integers) may represent either a
number or a matrix, so one should be to create symbol tables that can insert and retrieve
Numbers and Matrices. If the symbol table is used for only Numbers or Matrices, then the
APLSymbolTableManager can be instantiated with the appropriate parameter as shown
below:

var MyMatrixManager => new Matrix_Manager;
var MyMatrix => MyMatrixManager . new Matrix;

var MatrixTableManager =»

new APLSymbolTableManager({MyMatrixManager . Matrix)
var 8T => MatrixTableManager . new APLSymbolTable;
ST.Insert(2,MyMatrix);

...S8T.Retrieve(2)...

The underlying class of the returned object for a call of the Retrieve procedure can be
determined statically by examining the parameter for ST's manager, which here is
MyMatrixManager . Matrix. Thus the call of Retrieve will return a Matrix object. By the same
reasoning, static type checking will permit only Matrix objects to be inserted into the symbol
table.

But one may wish to include both Numbers and Matrices in the same symbol table. An
instantiation of APLSymboiTableManager which provides this capability is illustrated below:

var TSO => new APLSymbolTableManager(AO_Manager.Addable_Object);
var ST => T80. new APLSymbol1Tablse;

var MyNumberManagsr => new Number_Manager;
var MyNumber => MyNumberManager . new Number;

Section 4.4.3 Problems with Hierarchies for Specifications 82

var MyMatrixManager =» new Matrix_Manager;
var MyMatrix => MyMatrixManager . new Matrix;

ST.Insert(1,MyNumber);
ST.Insert(2,MyMatrix);

.. ST.Retrieve(1)...

...ST.Retrieve(2)...
in this example, both calls of Insert are well specified, since the both second parameters meet
the specification AO_Manager.Addable_Object. Unfortunately, when the two calls of Retrieve
are performed, the structure of the returned object also is specified as
AQ_Manager.Addable_Object, which is the common ancestor of Numbers and Matrices.
However, the program context of the retrieval operation may depend on the specific class of
the object that is being retrieved and use some specific information about it, such as inverting
a returned Matrix object. Another possibility is that the statement which includes the Retrieve
may wish to test at run time the kind of Addable_Object that is returned in order to perform
some representation-specific operation. But in Paragon, there is no way to distinguish the
kinds of objects that may be returned during elaboration with specifications, so any other
précedure calls that require more information about the return object from Retrieve will be ill
specified. Thus, the general description may be insufficient. Hence the requirement of static
type checking in Paragon makes general coilection facilities, such as heterogeneous symbol
tabies, difficult to write.

4.4.4. Adding Classes to an Existing Hierarchy

Besides the inconvenience of carefully specifying procedure specifications, the current
design makes a previously defined hierarchy difficult to change. There are two kinds of
changes that one might want to make which are difficult; one may want to add another

generalization class, and one may want to inherit only part of a class.

In the first suggested change, a new class is added that is intended to provide a property
that is inherited by other classes, such as hashing. Then all classes which might inherit this
new property, for.exampie, integers, logical values and pointers, must be changed to include
the new class. Similarly, all of the implementations of these classes might have to include
procedure implementations for the newly inherited specifications, here, probably a hashing
function. This is a lot of distributed work that must be performed to add another class to the

Section 4.4.4 Problems with Hierarchies for Specifications 83

hierarchy. Because changes to systems should be as local as possible, this effect of changing

many classes to add a new feature is undesirable.

The second change suggests that a class may not wish to inherit all of the specificationsin a
parent class. As a simple example, suppose that an assignment procedure is needed by a
new class, but not an equality procedure. Then one might like to add the new class without
altering any other class. In fact, one must either inherit the equality procedure specification
with the assignment specification or split the class that has the assignment and equality
procedures into (in the worse case) three new classes: one class holds the specifications to
be inherited, one class the specifications that used to be inherited, and the third class inherits
the other two classes so that other classes that used to inherit the original specification can
now inherit thi§ new combined class. The two program fragments below (with severely

abbreviated procedure declarations) illustrate this transformation:

class Assignable_Manager is
begin

class Assignable is begin end;

procedure Assign(Assignable,Assignable);

procedure Equal(Assignable,Assignable) return Booleans.Bit;
end;

After the transformation:

! New form H
e e H
class Only_Assign_Manager 1is
begin

class Only_Assign is begin end;
procedure Assign{Only_Assign,Only_Assign);
end;

class Al1_Other_Specs_Manager is
begin
class Al11_Other_Specs is begin end;
procedure Equal(A11_Other_Specs,A11_Other_Specs)
return Booleans.Bit;
end;

Section 4.4.4 Problems with Hierarchies for Specifications 84

class Assignable_Manager
of Only_Assign_Manager, Al11_Other_Specs_Manager is

begin
class Assignable of Only_Assign, A11_Other_Specs is begin end;

end;
With this transformation, one can now specify the new class as inheriting only assignment
without inheriting equality as follows:

class Strange_Manager of Only_Assign_Manager 1is

begin

end;

No other classes need to be changed with this transformation, but the breaking of a class into
several classes to accomplish the selective inheritance is aesthetically displeasing.

4.4.5. Refinement by Derivation

Actually, the last example is a particular example of commoniy used paradigm for creating
specifications, which | call Derivation. One derives a specification by relating it to other
specifications and giving differences. Paragon only permits one to add new specifications,
thus restricting the kinds of objects that meet the specification, and does not allow one to
remove or alter a previous specification, thus changing the kinds of objects that mest the
specification. In the previous exampie, one wants to specify an object that it just like
Assignable except that no Equal procedure is available. As pointed out by other authors
[Lamb 83}, this kind of derivation is useful in practice. Unfortunately, Paragon does not
provide a complete derivation facility.

Although the previous discussion illustrates that there are some ways of manipulating
specifications of abstract data types that are not supported by Paragon, the language does
support refinements of specifications and does allow multiple kinds of objects to be specified
in a single module.

Starting with generalization classes, a programmer can construct refinements that act as
specifications of abstract data types. Such classes are termed specification classes since they
provide a convenient way to specify abstract data types. The normal scope rules for Paragon
give the desired effect of allowing the programmer, who declares variables of a specification
class, access only to certain parts of a data object: namely those in the abstract data types
specifications. But a working program must have a representation for the abstract data type

Section 4.4.5 Problems with Hierarchies for Specifications 85

somewhere. In the next section, one way of writing implementations for a specification is

presented.

4.5. Hierarchies for Implementations

As specifications are refined from generalizations, implementations are refined from
specifications. This is accomplished through the use of subclasses. Typically, a subclass that
is intended to implement an abstract data type contains the implementations for those
procedures specified in its ancestors and contains subclasses for the nested classes.
Assuming that a full specification and implementation for computer words exists called CM,

an implementation for the IntegerManager/Integer classes is:

class WordIntegerManager.of IntegerManager is
begin
ittt ded ittt ieibebe b dH
procedure Assign{lL:WordInteger, R:WordInteger)
return WordInteger is
begin
CM.Assign(L.Rep,R.Rep);
and;

procedure Equal(L:WordInteger, R:WordInteger)
return Booleans.Bit is

begin
return CM.Equal{L.Rep,R.Rep);

end;

i ittt et b Lttt bkt

procedure Addition(L:WordInteger, R:WordInteger)
return WordInteger is

begin
return CM.Plus(lL.Rep,R.Rep);

end;

I And the class definition for individuals ;

class WordInteger of Integer is
begin

var Rep => CM . new Word;
and;

end;

The conventional methodology for implementing an abstract data type requires that all
operations in the specification must be implemented, that a representation for the object must
be described and that there is some way to separate the abstract object from the concrete

object. Procedure implementations for Assign, Equal and Addition are declared, the class

Section 4.5 Hierarchies for implementations 86

Wordinteger defines the representation of integer and use of the names Integer and
Wordinteger separates the abstract object from the concrete object. Thus all of the
requirements for an abstract data type implementation are met in the example above. Classes
intended to be used in this way (though not necessarily as complete as this example) are

called implementation classes.

The example above also illustrates a feasible implementation for /ntegerManager. In
WordintegerManager, procedure implementations are provided for the procedure
specifications in all inherited ancestors: here the Assign, Equal and Addition procedures from
the integerManager and AssignableManager classes. This is not required by Paragon but
does guarantee that this subclass may be used as an implementation anywhere the
specification is used. If some operation had been missing, and if a program used that
operation on abstract integers, then the implementation subclass for the specification could
not be used. An attempt to use such an incomplete subclass in this circumstance would
render the program infeasible. A more complete discussion of the feasibility of programs can
be found later in Section 5.5.5.

The distinction between the abstract use of a object and the concrete use of an object is
also illustrated by this example. The example above specifies the class Wordinteger in all of
the procedures’ parameters in the WordintegerManager class. This implies that only the
Wordinteger representation of Integer can be used with these procedures and provides a
boundary between the abstract and concrete representations. Some languages, such as Clu,
provide an operation (in Clu called cvt) that is supposed to translate between an abstract
object and a concrete one. Within the implementation of the abstract data type, one may
restrict the implementation to use only the abstract properties of the object by omitting the
special operation. Other languages reverse the convention and allow the programmer access
to the representation unless the programmer specifies that only the abstract operations
should be allowed. Ada uses still another approach by unconditionally permitting access to
the representation of an object within the implementation of the abstract data type. Paragon
attempts to stri§<e a balance by using the names in the class declarations. Should only the
abstract operations be permitted, then the programmer may specify this by writing the name
of the specification cldss in the parameter. If access to the representation is required, then the
name of the class used as a representation should be written in the parameter. Because each
procedure specifies that Wordinteger objects may be used as parameters, it may use the

details of Wordinteger objects, such as selecting the Rep field. Had the procedures merely

Section 4.5 Hierarchies for Implementations 87

required /nteger objects, then access to the Rep field would have been denied, even if an
instance of Wordinteger had been given to the procedure.

The use of names rather than conventions for the abstract/concrete decision permits a
greater flexibility in the definition of implementations. This is more fully explored in the next
section where some methods for providing muiltiple implementations of abstract data types
are considered.

4.5.1. Multiple Implementations

There are times when a programmer may wish to have more than one implementation for an
abstract data type. This can be illustrated with the previously specified integerManager. Many
computers have more than one size of data representation provided by the hardware so it
seems reasonable that different integer variables might be able to take advantage of these
differences in order to improve a program's performance. Each different sized representation
has its own representation class and its own procedure impiementations. Most data
abstraction languages allow only one representation for each specification. If the one word
representation for integers were present in a program, such languages would prohibit the

inclusion of a half word integer and a double word integer.

Paragon does not have such a rule. A new representation may be provided by declaring a
new set of nested classes. For example, a program might contain the following declarations

for integers requiring less than a word of storage:

Section 4.5.1 Hierarchies for implementations 88

class ShortWordIntegerManager of IntegerManager is

T R et b bbbl]
procedure Assign(L:ShortWordInteger, R:ShortWordInteger)
return WordInteger is
begin
CMSW.Assign{L.Rep,R.Rep);

procedure Equal(L:ShortWordInteger, R:ShortWordinteger)
return Booleans.Bit is

begin
return CMSW.Equal(L.Rep,R.Rep);

procedure Addition{L:ShortWordInteger, R:ShortWordInteger)
return ShortWordInteger is

begin
return CMSW.Plus(L.Rep,R.Rap);

! And the class definition for individuals ;

class ShortWordInteger of Integer is
begin

var Rep => CMSW . new ShortWord;
end;

end;

The ShortWordintegerManager/ShortWordinteger classes represent another implementation
of the integer abstract data type. Two factors are present which allow the second
implementation to be declared and included in a program. First, the explicit separation of the
specification and implementation of the abstract data type provide a way to bind an
implementation to a specification. Many previous data abstraction languages require the
specification and implementation to be bound together in single language construction. Thus
there is no place to include an additional implementation. Second, the ability to name the
representation explicitly circumvents a problem of controlling the access to the concrete
object. Languages such as Ada, which give unconditional access to the representation, or
Clu, which gives access through representation independent functions cvt, up and down,
have no way to distinguish between concrete representations. Without such a mechanism,
one concrete representation could manipulate the internal representation of another. This
violates the paradigm of data abstraction that permits only the piece of a program defining the
representation access to the underlying representation of the objects.

Section 4.5.1 Hierarchies for Implementations 89

The ability to name explicitly the representations or specifications in parameters permits
multiple representations to be used in a more common setting: differing type compositions.
Frequently cited examples are set implementations where alternative representations of the
set is caused by differing compositions with the element type[Johnson 76, Low
74, Schonberg 77, Wulf 81]. A typical (partial) specification for sets in Paragon appears
below:

class SetManager(any) is

bsgin
class Set is begin end;

The element type of the set may be any class. However, certain classes have special
properties that an implementation may wish to exploit. For example, if the element type is
totally ordered, a B-Tree or discrimination net may be an appropriate implementation. if it can
be hashed, a hash table may prove efficient. Sets of a small number of enumerated values are
usually represented as a bit vector. Thus one wants the implementation to be able to take
advantage of knowledge of the element type.

Other languages, such as Clu and Alphard, do not permit this exploitation in an
implementation, or more precisely, they insist that such requirements appear in the
specification of the abstract data type. One of the motivations for this insistence is that the
additional operations required by the implementation must be provided when using the
specification so that those operations may be later used in the implementation. For example, if
one wanted to implement sets with a hash table, then the specification of the abstract data
type set would include a parameter for the element type and a (procedure) parameter for the
hash function. When one uses this abstract data type, one must specify the procedure to be
used for hashing so the implementation has a hashing procedure available to it. This seems
inappropriate, as such requirements are clearly leaking implementation details to the user of
the data type while simultaneously limiting the writer of implementations of the data type to
the operations in the specification.

Paragon permits the specification to be as broad as required and the implementation to be
as narrow as required by allowing the parameters in subclasses merely to match the
parameters in the parent class, and not to be identical. A discrimination-net implementation of
the previous SetManager could look fike the following:

Section 4.5.1 Hierarchies for Implementations a0

class DiscriminationSetManager(OrderedManager.Orderad)
of SetManager is

class DiscSet of Set is
begin
end;

procedure Union(DiscSet,DiscSet) return DiscSet is
begin

! Impl of Union operation;
end;

The DiscriminationSetManager class may only be used as an implementation for Setmanager
when the element type of the set is ordered. However, ail available information about ordered
objects (as expressed in the specification for OrderedManager) may be used inside
DiscriminationSetManager in its manipulation of the set’s element type. This use of a subclass
in the parameter of the implementation class also eliminates the need for procedure
parameters since the composed data type and its operations are combined in a class
declaration. Therefare the user can use the abstract data type without needing to consider
the constraints required by any particular implementation. Such considerations are

automatically processed by the translation system.

Having provided the ability to have multipie implementations, and ways to name the different
representations, Paragon further aliows some more advanced approaches to implementing
abstract data types than those permitted in conventional languages. Two of these

approaches, partial implementations and shared implementations, are discussed next.

4.5.2. Partial Implementations

A partial or incomplete implementation of an abstract data type is an implementation that
does not have a procedure implementation for every procedure specification in its ancestors
and seif. In most languages, an impiementation must be able to be used wherever the
specification is used. To guarantee such use, every implementation must be complete.
However, the existence of an incomplete implementation does not immediately imply that the
program cannot execute or more precisely, that ihe program is infeasible.*® As long as there

43As will be explained in Section 5.5.5, the presence of only partial implementations does not guarantee that a
program is infeasibie, nor does the presence of a complete implementation guarantee that a program is feasible.

Section 4.5.2 Hierarchies for Implementations 91

is a procedure implementation for each procedure that is used, the implementation may be
used. This flexibility becomes important as some representations of abstract data types may
take advantage of partial implementations.

A partial implementation of Set illustrates the usefulness of partial implementations. One of
the more useful operations on a set is enumeration, that is, the generation of all elements in a
set. Some languages, such as Sail (with Leap [Reiser 76]) and SETL [Schwartz 73]
provide this operation. In both of these languages, several different implementations of sets
are possible, Some of these implementations are complete, some are not. The incomplete
implementations usually distribute the information concerning sets throughout variables of
the element type of the set rather than concentrate the information about the elements in
some set storage. For example, if one had a set of integers in the program, every integer value
in the program would have two pieces of information: the concrete representation of the
actual number and a bit indicating if that value is currently in the set. Integer variables wouid
then refer to this block of information as the representation for the integer variable. When
such an approach is taken, a procedure implementation for the "for all elements" iterator is
difficult to write:** every possible value that can be in the domain of the set must be examined
to locate its information regarding set inclusion. In Sail/Leap and SETL, the compiler makes
the decision about representations for set variables, knows that certain representations do
not have “for all elements” procedures available, and knows if the program uses such an
operation. Thus the compiler may reject the incomplete implementation in favor of a
complete representation whenever the "for all elements” iterator is used. Data abstraction
languages that permit only a single implementation insist that it be complete since no
substitutions can be made if a procedure without an impiementation is used. Because
Paragon aflows multiple representations and wishes to allow programmers the flexibility
provided by partial implementations, the language does not require all procedure
implementations to be present in implementation classes.

“But not impossible. See the description of SETL's set implementations for a full discussion of this particular
problem {Dewar 78].

Section 4.5.3 Hierarchies for Implementations 92
4.5.3. Shared Implementations

The examples given in the previous sections for integers and sets bring up another topic:
the sharing of representations. Because the class mechanism does not restrict the way in
which specifications and representations may be combined, several arrangements of classes
prove useful in selective sharing between the specifications of abstract data types, between
the representations of abstract data types, and between the specifications and the
representations of abstract data types. Each of these kinds of sharing is considered in turn.

4.5.3.1. Shared Implementations via Shared Specifications

Selective sharing of specifications is quite common in practice and supported in some
languages, such as Ada. This usually takes the form of a single manager being used for
several different kinds of individuals. For example, one can consider the keyboard and display
of a terminal to be separate individuals but belonging to the same terminal manager (see
Section 2.1.2). Another example is a computer memory, as illustrated below:

class MemoryManager is
begin
class Byte 1is begin end;
¢lass Word is begin end;
procedure Read{Byte);
procedure Write(Byte,IM.Integer);
procedure LeftByte(Word) return Byte;
procedure RightByte(Word) return Byte;
end;
The single manager MemoryManager provides the shared declarations for two related
individuals, Byte and Word. Words and bytes are closely coupled in a memory and should be
considered connected in some way. Some languages, such as Clu, have no provisions for this
selective sharing. Paragon permits multiple inner classes that are declared in an outer class to

denote different kinds of individuals for the same manager.

The implementation of MemoryManager could contain further subclasses for Byte and Word
and implementations for Read, Write, LeftByte and RightByte, each of which could access the
concrete representation for both bytes and words.

Section 4.5.3.2 Hierarchies for implementations 93

4.5.3.2. Shared impiementations via Previous Implementations

Another way of combining classes gives the programmer the ability to write procedure
implementations that can access multiple representations. Like the MemoryManager example
above where one can write a single subclass of the specification class that has access to
representations of multiple kinds of objects, one can provide a subclass of implementation
subclasses that permits access to multiple, concrete representations of the same abstract
object. This can be illustrated by extending the IntegerManager implementations given in
Section 4.5.1 {page 87). To include a procedure that can add integers regardless of the
implementations of the abstract integer, one can write:

class CombinedWordIntegerManager of
WordIntegarManager, ShortWordIntegerManager is

R bbbttt b H

procedure Addition(L:ShortWordInteger, R:WordInteger)
return WordInteger is

begin

.

f === m e mm e eme e oeomeo ooy

procedure Addition(L:WordInteger, R:ShortWordInteger)
return WordInteger is

begin

If CombinedWordIntegerManager were to be selected as the implementation for an abstract
IntegerManager object, then abstract integers could be implemented with either the
ShortWordinteger or the Wordinteger subclasses of Integer. Regardless of the
implementation selected for two abstract integers, there will exist an implementation of the
Addition procedure that can operate on them. However, as the example is currently written,
there is no way to assign between the two different kinds of concrete integers. If one wanted
the ability to apply any operation to every combination of operations, then one must either
provide an operation that uses only abstract operations on abstract objects, or one must
provide a procedure for each combination of concrete representations that are passed as
parameters. In practice, it is anticipated that some small number of such interrelated
operations will need to be provided, but not ali of them.

Section 4.5.3.3 Hierarchies for Implementations 84

4,5.3.3, Shared implementations for Unrelated Specifications

A third way of sharing in Paragon allows an implementation class to be used as an
implementation for multiple specification classes. A previous example illustrated this sharing
in the SETL system where sets are impiemented by altering the representation of the elements
of the set (Section 2.1.6 on page 25). This is a unique approach to implementing sets and
integers as it requires a shared implementation for two specifications that are not otherwise
related: one specification for sets, one specification for the elements of the set. The use of
classes and inheritance provides a way to specily this capability as well. Given two separate
sets of specification classes, say for integers and sets, one creates a single class that acts as
the manager for both and that class contains the representations for the union of the inherited
individuals and procedures. An abbreviated illustration is given below:

! Specification Classes for Integers ;

class IntegerManager of AssignableManager 1is

begin
procedure Addition(Integer,Integer) return Integer;
class Integer of Assignable is begin end;

and;

| Specification Classes for Sets ;

class SetManager(any) is

begin
procedure Union(Set,Set) raturn Set;
class Set is begin end;

end;

With these specifications, one may write the following shared implementation for sets and
integers (adapted from [Dewar 79]):

Section 4.5.3.3 Hierarchies for Implementations 95

class IntegerSetManager(TM: IntegerManager . T : Integer)
of IntegerManager, SetManager is

begin
fommm .. e e bt -1
class IntBlock is
begin
! Reps for the integer and set indication ;
end;

var RIBM => new RefManager(IntBlock});
var IntValuelist =» RIBM . new Reference;

class SharedInteger of Integer is
begin
var IntvValueBlock => RIBM . new Reference;

procedure Addition(SharedInteger, SharedInteger)
return SharedInteger is

begin
| Implementation for Addition operation;

class™SharedSet of Set is
begin
var SetNum => CM. new Word;

procedure Union{SharedSet, SharedSet) return SharedSet is
begin

! Implementation for Union operation;
end;

Although the details are missing,*® the example above shows that representation

45-This combined representation keeps a linked list of all integer values that have ever appeared during the

execution of a program. When an arithmetic operation is performed, the values in the appropriate IntBlocks are
retrieved, the arithmetic performed, an /ntBlock for the result is found {or created and linked in) and an appropriate
Sharedinteger {containing a pointer 1o the IntBlock) is returned. For set operations, the list of values given by the
intYaluelist variable is examined and the appropriate operations performed. For an operation that spans both types
— for example Membership — the special representation for the integer gives access directly to the corresponding
IntBlock, which in turn can be directly examined to determine if the integer value is present in the specified set. in
practice, this sort of combined representation has many more details which will not be presented here. For example,
the IntBlocks are not kept on a list but are hashed. Details of such a representation can be found in an article about
SETL {Dewar 79).

Section 4.5.3.3 Hierarchies for Implementations 96

combinations of this form can be expressed via the class mechanism whereas most

approaches to data abstraction have no way of describing a combined representation.

4.6. Problems with Hierarchies for Implementations

However, the generality of the class mechanism can lead to problems when writing

implementation classes. Some of these problems are discussed below.

4.6.1. Incomplete Implementations

The design of parameter matching and inheritance features of Paragon permit a careless
programmer to write an incomplete, yet feasible implementation for an abstract data type
when a complete implementation was desired. This occurs when a programmer creates a new
representation by inheriting a previous representation and does not reimplement all of the
necessary procedures. This can be illustrated with the abstract data type sets. A specification
of sets, followed a single-link list implementation is provided below:

! Specification for Sets :
R b bbb bbb bbb bbb bbb bbb
class Set_Manager of Assignable_Manager is
begin
class Set of Assignable is begin end;
procedurs Insert(Set,IM.Integer);
procedure IsMember(Set,IM.Integer)
return Booleans.Bit;
procedure Intersect(Set,Set) return Set;

-procedure Intersect(L:Set,R:Set) return L.structure is

begin ... end;
and;
e H
! Single Link Implementation for Sets ;
bttt b datei ey ;
class SinglelLinkSetManager of Set_Manager is
begin

class SinglelinkSet of Set is begin ... end;

procedure Insert{SinglelLinkSet,IM.Integer) is
begin ... end;

procedure IsMember{SinglslinkSet,IM.Integer)
return Booleans.Bit is
begin ... end;

Section 4.6.1 Problems with Hierarchies for Implementations g7

procedure Assign{SinglelinkSet,SinglelLinkSet) is
begin ... ! copy link ; ..., end;
end;
The impiementation above provides implementations for the Assign, IsMember and Insert
procedures, and inherits an implementation for Intersect, so if a program only requires those
four operations, the use of SingleLinkSet as an implementation will be feasible.

However, a programmer may decide later to provide a doubly-linked list implementation of
sets. One approach to writing the second impiementation wouild be to inherit the
SingleLinkSet implementation, as shown below:

! Double Link Implementation for Sets H
[e e e e e e e ey
class DoubleLinkSetManager of SingleLinkSetManager is
begin
class DoublelLinkSet of SinglelLinkSet is begin ... end;

procedure Insert(DoubleLinkSet,IM.Integsr) is
begin ... end;

end;

The motivation for deriving the implementation is that some of the previous implementations
would still be valid. For example, the IsMember procedure may only need one link to walk
down the list to search for an element. Thus the doubly-linked list implementation may use the
single-linked list implementation of /sMember and not write a new one. Because every
DoubleLinkSet is also a SingleLinkSet, the use of the previous IsMember implementation is
feasible. However, by the same reasoning, every procedure implementation for SingleLinkSet
is a feasible implementation for DoubleLinkSet. In the implementation above, there is no
implementation for the Assign procedure. Presumably the Assign procedure for SingleLinkSet
will copy only one link, not both. Yet the absence of an Assign procedure for DoubleLinkSet
will cause the Paragon to use the SingleLinkSet version, which is feasible but probably not
what the programmer wanted. Instead, the programmer probably wanted to inciude another
Assign procedure that manipulated both links, for example:

procedure Assign(DoublelLinkSet,DoubleLinkSet) is

begin ... | copy both 1inks ; ... end;
Thus a feasible program will probably not execute properly, and the programmer will have a
very difficult time finding the problem.

Section 4.6.1 Problems with Hierarchies for Implementations 98

One approach to correcting this problem would be to add constraints to procedure
implementations. Thus the Assign procedure implementation wouid ook like:
procedure Assign{L:SingleLinkSet,R:SingleLinkSet)
such that L.structure same as SinglelinkSet &
R.structure same as SingleLinkSet is
begin ... | copy link ; ... end;
This constraint requires that both parameters be implemented as SingleLinkSets, and not as
any subclass of SingleLinkSet. Now a program that used DoubleLinkSet and the Assign
procedure without providing a new implementation for Assign would be infeasible and the

programmer alerted to the mistake.

4.6.2. Organizing Multipie Implementations

Even where new representations are not derived from old ones, the facilities that Paragon
provides for specifying multiple representations can cause some worries for programmers.
The problems occur when trying to organize several implementations for use by the selection
system and revolves around the need to have a single manager for the shared
representations. This is illustrated by the program fragment below:

var MySetManager => new SetManager

var Setl => MySetManager . new Set;

var Set2 => MySetManager . new Set;

var Set3 => MySetManager . new Set;
One must pick representations for the three set variables, Set1, Set2, and Set3, but only one
object is needed for the manager of all three sets. Thus only one representation is required
for MySetManager. The problem is how to distribute the possible representations for the sets
in possible representations for the set manager. Two general approaches are discussed
below in more detail: combine the set representations in a single manager; and provide a
single set representation per manager.

4.6.2.1. Using a Single Manager

A typical example of providing multiple set implementations inside of a single
implementation of a set manager is shown below:

Section 4.6.2.1 Problems with Hierarchies for Implementations

! Multiple Implementations for Sets :
b e R L L L LR
class MultilmplSetManager of Set_Manager is
begin

! First Implementation :
R e bbb bbb
class SingleLinkSet of Set is begin ... end;

| Shared state for SingielLinkSet Manager ;

procedure Insert(SingleLinkSet,IM.Integer) is

begin ... end;

procedure IsMember(SinglelLinkSet,IM.Integer)
return Booleans.Bit is

begin ... end;

procedure Intersect(SingleLinkSet,SinglelLinkSet)
return SingleLinkSet is

begin ... end;

procedure Assign{SingleLinkSet,SinglelLinkSet) is
begin ... ! copy Tink ; ... end;

e e DD D H

| Second Implementation ;
e e e e il

class ArraySet of Set is begin ... end;

! Shared state for ArraySet Manager ;

procedurs Insert{ArraySet,IM.Integer) is
begin ... end;

procedure IsMember(ArraySet,IM.Integsr)
return Booleans.Bit is
begin ... end;

procedure Intersect{ArraySet,ArraySet)
return ArraySet is
begin ... end;

procedurs Assign({ArraySet,ArraySet) is
begin ... ! copy array ; ... and;

Section 4.6.2.1 Problems with Hierarchies for Implementations 100

(L SR Rl Dttt S et H
! Third Implementation ;

class BTreeSet of Set is begin ... end;

! Shared state for BTreeSet Manager ;

procedure Insert{BTreeSet,IM.Integer) is
begin ... end;

procedure IsMember(BTreeSet,IM.Integer)
return Booleans.Bit is
begin ... and;

procedure Intsrsect(BTreeSet,BTreeSet)
return BTreeSet is

begin ... end;
procedure Assign{BTreeSet,BTreaSet) is
begin ... ! copy links ; ... end;

and;

Using the strategy where all of the representations are in a single manager, the selection
mechanism can easily select a representation for the manager, since there is only one
available, here MultiimpiSetManager. Because this outer class contains three subclasses for
the individuals, here SingleLinkSet, ArraySet and BTreeSet, a seiecfion of any of these
classes is locally feasible for variables specified with the Set class.*® Thus different variables
may have different representations. Further, cross-representation procedures may be
declared in the one manager, since such procedures can have access to the internal

definitions of all of the implementations.

Unfortunately, this strategy results in a manager that contains too much state. For example,
a policy may choose the same representation for all of the individuals managed by a manager.
Thus each Set variable might be implemented as an ArraySet. However the manager contains
shared declarations needed for all possible representations. The empty tree needed for a
BtreeSet will still be part of the single manager, even if no sets are implemented as BTrees.

The strategy of using one manager aiso reduces module separation. The addition of a new
implementation should not require the changing of previous implementations, yet this strategy

requires the programmer to change an aiready existing ciass to add a new implementation for

46Locai feasibility is discussed in Section 5.2.3.

Section 4.6.2.1 Problems with Hierarchies for Implementations 101

an abstract data type. Thus this strategy violates a notion principle of system building, namely
separating program components as much as possible.

4.6.2.2. Using Multiple Managers

The alternative strategy is to provide a different manager implementation for each individual
impiementation. If mulitiple implementations are desired, then the implementations shouid be
inherited by another class. As an example, two implementations are declared and then

combined in the program text below:

! Single Link Implementation for Sets ;
it e e R b bt H
class SinglelinkSetManager of Set_Manager is
begin

ciass SingleLinkSet of Set is begin ... end;

procedure Insert(SinglelLinkSet,IM.Integer) is
begin ... end;

procedure IsMember(SinglelLinkSet,IM.Integer)
return Booleans.Bit is
begin ... end;

procedure Intersect(SinglelinkSet,SingleLinkSet)
return SinglelinkSet is ;
begin ... end;

procedure Assign(SinglelLinkSet,SingleLinkSet} is
begin ... ! copy link ; ... end;
end;

Section 4.6.2.2 Problems with Hierarchies for Implementations 102

R e R et b b et b St g
! Array Implementation for Sets :

class ArraySetManager of Set_Manager is
begin
class ArraySet of Set is begin ... end;

procedure Insert(ArraySet,IM.Integer) is
begin ... end:

procedure IsMember(ArraySet,IM.Integer)
return Booleans.Bit is
begin ... end;

procedure Intersect(ArraySet,ArraySet)
return ArraySet is

begin ... s&nd;
procedure Assign(ArraySet,ArraySet) is
begin ... | copy link ; ... end;
end;
R et it bl
! Combined Implementation for Sets H

c¢lass CombinedSetManager
of ArraySetManager, SinglteLinkSetManager is

begin

end;
Again using the variables declarations for MySetManager, Set1, Set2 and Sei3, an
implementation must be selected for the manager and then implementations must be selected
for the individuals. However, only one implementation may be selected for the manager. For
both representations to be available for set variables, the manager must be implemented with

CombinedSetManager.

However, this strategy of providing a separate manager for each implementation and then
combining them into other classes for multiple representations has two drawbacks. First,
there are many different combinations of representations that need to be defined and
selected. Second, some space in the manager may still be wasted.

if one has many different implementations for an abstract data type and wants to consider
all implementation possibilities, there would be an enormous number of possible
combinations that would have to be defined. in this small example, only two representations

Section 4.6.2.2 Problems with Hierarchies for Implementations 103

were defined, and they could be combined with a single, extra class declaration. In general, if
one had n implementations, then 27-{n+ 1} additional sets of classes would have to be
declared to capture all of the possible ways that multiple representations could be
combined.*’ This is far too many to be practical, so representations might be selectively
combined.

But selectively combining implementations has the same problems as having one all-
encompassing manager, some state for a manager that is not used may be wasted. Suppose
that the CombinedSetManager were selected as the implementation for MySetManager but
ArraySet were selected as the representation for all three variables: Set7, Set2 and Set3.
Then the local storage required for the SingleLinkSetManager would be unnecessary. In
order to obtain a manager that contains all of the desired implementations, a manager that
contains additional, unused implementations may have to be selected. Thus a selective
combination of implementations may result in a manager that contains unnecessary state.

4.6.3. Sharing a Representation

The last goal for representations of abstract data types is that a single representation should
be able to be written for several specifications, and in Section 4.5.3.3, an example was
provided showing how a single representation could be written for two specifications:
integers and sets. Though the combined implementation may be written, unfortunately it
cannot be selected by the selection system described in Chapter 5.

The problem with selecting the combined representation comes from a combination of the
manager model and the restriction that every identifier denotes a distinct object. When two
separate specifications are used, two different managers are required. This is illustrated
below:

var MySetManager => new SetManager;
var MyIntManager => new IntManager;

var Setl =»> MySetManager . new Set;
var Set2 => MySetManager . new Set;

var Intil
var Int2

> MyIntManager . new Int;
> MyIntManager . new Int;

m "

A‘7Becaus«e each combination contains a subset of n implementations, there could be 2" possible subsets of
implementations. But the classes that represent a single implementation are already deciared, and the specification
serves as the subset where no implementations are declared. Therefore n + 1 is subtracted from 27,

Section 4.6.3 Problems with Hierarchies for Implementations 104

Although the programmer may provide a single implementation that can serve both
MySetManager and MyintManager, the selection system will try to make separate object
selection choices for each variable. The combined implementation surely can be used for
both variables, but such an assignment of implementations would resuit in two instances of

the combined implementation, one for each manager, and not a single shared instance.

One of the difficulties in providing this sharing of objects is providing a rule that states when
an object may be shared and where it may not. This raises issues of the proper way to treat
intermediate elaborations between the two object instances, as shown below:

var MySetManager => new SetManager;

var Problem => new Something(SideEffectFunctionCall);

var MyIntManager => new IntManager:
Here, the elaboration of the shared implementation may cause side effects that could interact
with the intermediate calculations of SideEffectFunctionCall. The criteria that Paragon uses
for sharing objects ameliorate elaboration-order effects. (These criteria are listed in Appendix
A.8.) However, these criteria were never integrated into the selection system. To do so, the
selection system would have to be able to inquire if these criteria were met by some selection

of impiementations and if so, to then force a sharing of an object.

A related situation comes up when trying to share implementation for the same manager.
For example, a programmer may want to use the same implementation for multiple instances
of a manager. An example is shown below:

var OrangeManager => new Integer_Manager;
var AppleManager => new Integer_Manager;

var Lisa => AppleManager . new Integer;

var Navel => QOrangeManagsr . new Integer;
In this circumstance, one may want to share the Integer_Manger object for both the
OrangeManager and AppileManager. Paragon only deals with this problem tangentially by
considering the two manager objects to be different specifications and then permitting two
different representations of /Integer_Manager to be combined into a single manager, like
CombinedSetManager in Section 4.6.2.2. Under these circumstances, a shared instance
could be used for both managers. The same criteria given in Appendix A.8 would be used. A
future direction of research may consider the entire problem of sharing implementations in
more detail than Paragon.

Section 4.6.3 Problems with Hierarchies for Implementations 105

Despite some problems with combining representations, a type hierarchy has been shown
to be useful in describing generalization classes, specification classes, implementation
classes, shared specifications and shared implementations. A programmer using the type
hierarchy would provide several representations for the abstract data types in his program,
each tailored for a particular circumstance. The next step in refining a program is the
selection of an appropriate representation for each variable and each procedure cail in the
program. To fulfil this need, Paragon provides a representation selection mechanism that the
programmer may use to guide the translator in picking appropriate implementations. This
mechanism is discussed in the next chapter.

Chapter 5
Selection of Implementations

The discussion so far has been limited to the use of basic features of Paragon for creating
abstract data types. In this chapter, | start to consider the processing of a program. As a
large part of the processing is concerned with selection of implementations, this aspect will
be described in detail. But first | present some more details about elaborations in Paragon*®.
These details are then used to describe the elaboration of variable declarations. After
variable declarations have been described, the three aspects of implementation selection are
discussed: class and procedure descriptions via attributes; program representation via a
possibility tree; and control of the selection process through a policy procedure. The
discussion of implementation features of Paragon completes the description of the Paragon
language started in Chapter 3.

5.1.Elaborations
A program is processed in four stages:
e The entire program is elaborated with specifications;
e A policy procedure makes implementation selections for variables;

¢ After the policy procedure finishes, the entire program is elaborated with
impiementations;

s Finally, the entire program is elaborated with realizations.

Each of the these stages is outlined below.

48Section 3.1 provides an overview of elaborations.

Section 5.1.1 Elaborations 108
5.1.1. Etaboration with Specifications

Initially, a program is efaborated with specifications. In other languages, this corresponds to
having the semantic analysis and type checking performed. During this phase, the objects
that are created and manipuiated by the program are specified by the class identifier used in
the program text. Thus, a variable declared with the class Set will have a simpie object
created that has the underlying class Set. In addition to performing parameter checking,
elaborating a procedure invocation with specifications causes a simpie object to be created
that contains one locai instance: namely, the local instance created by elaborating the
declaration of the procedure specification. These simple objects created by elaborating
name components that denote definite instantiations and procedure invocations are collected
in the containing simple object (or environment) for later use. If elaboration with
specifications is successful, that is, no object mismatch or other semantic error is
encountered,*® then the program is said to be well specified otherwise the program is il

specified.

5.1.2. Implementation Selection

After a program is elaborated with specifications, a policy procedure (see Section 5.5.1)
makes implementation selections for the variables in the program. An implementation choice
for a variable, or more precisely, for the innermost simple object being instantiated in the
object-creation name component in the variable declaration, is made from the subciasses of
the specified class.® For example, if the class Set has a subclass ArraySet, then a variable
declared with the class Set may use ArraySet as an implementation. After this selection, the
innermost simple object that the variable denotes has the underlying class ArraySet.

5.1.3. Elaboration with Implementations

After all selections of variable implementations have been made, elaboration of the program
with impiementations occurs. When elaborating name components that denote object
instantiations, the translation system processing the program verifies that the selected

implementation is feasible (see Section 5.2.3). When elaborating a name component that

4'QSome semantic errors that are not refated to object matching are finding an undefined identifier or a misplaced
goto label.

50The subclass relation is meant to be reflexive here, so the class itself may be used as its own implementation.
Such a selection is said to be se/f-imptementing.

Section 5.1.3 Elaborations 109

denotes a procedure invocation, an appropriate implementation for a given procedure is
chosen (see Section 5.5.5.1). If elaboration with impiementations is successful, the program
is said to be feasible. Should a procedure implementation be missing where required or
should a selected implementation class not conform properly to its environment or

parameters, then the program is infeasible.

5.1.4.Elaboration with Realizations

After a program is elaborated with implementations, it is eiaborated with realizations. This
corresponds to conventional program execution. The implementations for objects and
procedures used during this phase come from the decisions made during elaboration with
implementations. If the program attempts to perform some action not permitted in the
language, the program is termed erroneous, otherwise the program is considered to be
defined.

These definitions may appear unmotivated without the context of the selection process, but
as they are applied to different pieces of the program during representation selection, the

interactions and the motivations should become clear.

5.2. Variable Declarations and Object Creations

This thesis has been using variable declarations in examples without expiaining their syntax
or interpretation. In this section, a description of variable declarations is given as well as an

explanation of how the different elaborations process these declarations.

A variable declaration is used to bind an identifier to an object. The simplest form of a
variable declaration is an identifier, followed by =), followed by an expression that has a
definite object creation as its last name component. This can be illustrated by using the

previous class declarations for Vehicle, Tank, Ship and Monitor in Section 3.2.2, for example:
var i => new Vehicle;

When the declaration above is elaborated with specifications, the identifier j will be bound to a
new definite Vehicle object. Informally, this object is referred to as the type of i. Since an
implementation is a subclass of the class specified in the variable declaration, a subclass of
Vehicle may be used to implement i, To select an impiementation for i, the policy procedure

will associate a subclass of Vehicle with the Vehicle simple object created during elaboration

Section 5.2 Variable Declarations and Object Creations 110

with specifications. For example, if Tank is selected as the implementation, all of the classes
that form Tanks but that are missing from Vehicles will be elaborated with specifications and
added to the local instance set for the simpie object associated with . Finally, if this variable
declaration is eiaborated with realizations, a new simpie object will be created by elaborating,
with realizations, the expression foliowing the = >. However, this elaboration will assume that
the implementation class was written where the specification class was written, that is,

substituting Tank for Vehicle.

The description above of how an implementation for a simple object is processed is
simplified. Some of the complicating problems deal with changes of parameters when
' selecting an implementation and with changing an already selected implementation. These
become important since a program may be elaborated with implementations many times, at
the discretion of the policy. All that Paragon guarantees is that after the policy procedure is
finished, the entire program will be elaborated with implementations to check the program for

feasibility.

In each of the next three sections, some details will be given about the selection of a
variable implementation, the checking of a variable declaration for feasibility, and the

elaboration of a variable declaration with elaborations.

5.2.1. Selecting a Variable Implementation

For purposes of selecting an implementation and of describing the different elaborations,
simple objects have two varieties. The first kind of simple object resuits from elaboration with
specifications, the second resuits from elaboration with realizations. In this section, only the
first kind is discussed. The other is considered in Section 5.2.4.

Like ail simple objects, simple objects created during elaboration with specifications contain
a set of local instances, and in addition, have a (possibly empty) set of currently unused local

instances.3! The local instances in a simple object come from two sources:

1. The elaboration of the name component containing a definite-object instantiation.

51 These unused local instances are created as different impiementations are selected for a variable. See page
114.

Section 5.2.1 Variable Declarations and Object Creations m

2. The selection of an implementation for a variable.>?

When either of these actions is performed, the set of local instances and the set of unused

local instances in a simple object may change. Each of these actions is discussed below.

When a simple object is created during elaboration with specifications, the set of local
instances that results from elaborating both the class declarations of the ancestor classes and
the specified class are added to the simple object. Initially, the set of unused local instances is
empty.

When the implementation of a simple object is changed, the sets of local instances may also

have to be changed. This can be illustrated by considering the following class de_clarations:53

class AssignableManager is
begin

class Assignable is begin end;
end;

class ListManager(any) of AssignableManager is
begin

class List of Assignabls is begin end;
end;

52Paragon permits name components that denote object creations only as the fast name component in the
expression of a variable declaration. Further, this last component must be a definite-object creation. Therefore there
is a bijection between definite-object creations and variabie deciarations. Thus the discussion will interchangeably
associate an impiementation with the variable and with the definite object creation.

sa”I'hese declarations are somewhat strange for purposes of iliustration.

Section 5.2.1 Variable Declarations and Object Creations 112

class ArraylistManager(type:Tank) of ListManager is
begin

class Arraylist of List is begin end;
end;
e bbbt bbbttt bbbt it
class LinkedListManager(type:Vehicle) of ListManager is
begin

class LinkedList of List is begin end;
end;

var MyListManager => new ListManager(Tank);

var Listl => MyListManager . new List;

var List2 => MyListManager . new List;

e it b b b e e H
In this example, there are four classes that act as managers: AssignableManager,
ListManager, ArrayListManager and LinkedListManager along with four classes that act as
individuals: Assignable, List, ArrayList and LinkedList. The three variable declarations first

create a manager for lists of Tanks and then create two such lists.

As in the previous description of elaborating variable declarations with specifications, the
elaboration with specifications of the variable declaration for MyListManager causes a new
simple object to be created and two local instances to be elaborated with specifications and
then to be added to the simple object: one for AssignableManager and one for ListManager.
The simple object creation for List1 is simifar. After elaboration with specifications, the simple
object contains two local instances: one for Assignable and one for List. Both simple objects
have empty unused local insténce sets. Once elaboration with specifications is completed,

selection may proceed.

When an implementation is selected for a variable, it must first be checked for local
feasibility, then the local instance sets may be modified. Each step is discussed below and
then iffustrated with the example above.

Checking for focal feasibility is a combination of elaborating the definite instantiation with

specifications and with implementations. The following five steps are taken:

1. The environment in which the creation is to take place is searched for the

Section 5.2.1 Variable Declarations and Object Creations 13

selected impiementation class™. If the class is not found, then the selection is not
locally feasible.

2. The parameters in the declaration for the implementation class are elaborated
with implementations.

3. The objects that are associated with the simple object are compared with the
objects that result from the elaboration above. if the comparison is successful,
then all resuiting bindings of identifiers to objects replace the old bindings in the
simple object. If the comparison is not successful, then the selection is not locally
feasible.

4. If the selection is still locally feasible, then a new set of local instances is created
to replace the current set of local instances. This is done by placing all of the
local instances from the oid local instance set into the unused local instance set
and then moving, in leftmost elaboration order, local instances for the
implementation class from the unused local instance set to the new local instance
set. If a lpcal instance for a class is not available in the unused local instance set,
it is created, its body elaborated with specifications, and then added to the local
instance set. (The local instances in the unused iocal instance set may be later
retrieved if an implementation that uses them is later (re)selected.)

5. All constraints in the variable declaration are executed (elaborated with
realizations). If any False object is returned by a constraint, then the selection is
not locally feasible, and the old set of local instances is restored (as well as the
old parameter bindings). Variable constraints are discussed fully in Section 5.2.2,

This process of selecting an implementation can be illustrated with the variable declarations
for MylListManager and List1. The discussion starts v. 1 the details of elaborating those
declarations with specifications. Then a series of locally-feasible implementation selections
for MylListManager and List1 are examined. Finally, the actions that resuit from some locally

infeasible implementation selections for these variables are considered.

Like all object instantiations during elaboration with specifications, each new simple object
contains a set of local instances. The new simple object for MyListManager is created and has
two local instances corresponding to the classes in the leftrmost elaboration order: one for
AssignableManager and one for ListManager. In a corresponding manner, the new simple
object for List1 is created in the environment of MyListManager and has two local instances:

one for Assignable and one for List. Neither simple object has an unused local instance.

Now consider the effects of implementing MyListManager with the LinkedListManager class.

54The search takes piace in leftmost parent order.

Section 5.2.1 Variaple Declarations and Object Creations 114

The check for local feasibility (step 1) first ensures that the LinkedlListManager class is
available in the environment. Since the class LinkedListManager is visible where the variable
declaration is written, the class is available in the environment. The parameter for
LinkedListManager is elaborated with implementations (step 2) which yields an indefinite
Vehicle object. The actual parameter that has already been elaborated, an indefinite Tank
object, is then compared with the formal object, a Vehicle object. The comparison succeeds,
and as a result of the comparison, a binding between type and the indefinite Tank object in
the actual object is added to the simple object (step 3). As the last step (step 4), the local
instances in the simple object for MylListManager (which are AssignableManager and
ListManager, as mentioned above) are moved to its unused local instance set, and for each
class in the leftmost elaboration order for LinkedListManager, the corresponding local
instance is moved from the unused local instance set to the local instance set. For a simple
object with the underlying class of LinkedListManager, the leftmost elaboration order is
AssignableManager, ListManager, LinkedListManager. Note that one necessary local
instance is missing: the local instance for LinkedListManager. Therefore, the selection of
LinkedListManager as the impiementation for MyListManager will cause a new local instance
of LinkedListManager to be created and elaborated with specifications, and then added to the
local instance set for MyListManager. There are no constraints to be elaborated, so the

selection process is complete and MyListManager has the representation LinkedListManager.

It is possible to change the implementation of MyListManager from LinkedListManager to
ArrayListManager. As before, the environment is checked, the parameters elaborated and
compared, and all of the local instances moved to the unused local instance set. Similarly, a
new iocal instance for ArrayListManager will be added eventually to the local instance set of
the simple object for MyListManager. Unlike all the previous examples, the resulting unused
local instance set is not empty. it contains a local instance for LinkedListManager. Should the
implementation change from ArrayListManager back to LinkedListManager, the local instance
for ArraylListManager would be present in the unused local instance set and the previousty
unused local instance for LinkedListManager would be in the local instance set of
MyListManager. Thus no new local instances would be created under these circumstances.

So far, ail of the implementation selections have been locally feasible. Next, two locally
infeasible selections are illustrated. They result from an improper environment and
mismatched parameters.

Section 5.2.1 Variable Declarations and Object Creations 115

One kind of infeasibility results from the violation of the first rule which requires that the
implementation be found in its creation environment. Suppose that the selection of
LinkedListManager has been made for MyListManager and a selection of ArrayList is about to
be made for List1. As required in the first step for local feasibility, the creation environment
for List1 is examined for the impiementation class. Here the creation environment for List1 is
the object denoted by MylListManager, a LinkedListManager. ArraylList is available in
ArraylistManager, not in LinkedListManager, thus an attempt to assign ArrayList as the

implementation for List1 is not locally feasible.

Another possible impediment to local feasibility is a parameter mismatch. Assume for a

moment that the declaration for MyListManager is
var MyListManager => new ListManager(Vehicle);

If a selection of ArrayListManager were made for MyListManager, the comparison of the
indefinite Vehicle object would not match the indefinite Tank object specified in
ArrayListManager. Thus the choice is not locally feasible. However, LinkedListManager may
accept a Vehicle parameter and so may be selected as a feasible implementation for

MyListManager.

One should note that an implementation being locally feasible does not guarantee that the
implementation is feasible. It is trivial to change one implementation that would render
another selection infeasible. For example, if MyListManager were first assigned the
LinkedListManager class, then List1 were assigned the LinkedList class, and then the
implementation for MyListManager were to be changed to the ArrayListManager class, the
choice of LinkedList for List1 would not be feasible though it was locally feasible. The reason
is the ciass LinkedList is not in the environment for List7 which is now an ArrayListManager,
not a LinkedListManager as it was during the selection of LinkedList for List1. Although the
notion of local feasibility of an implementation selection is similar to elaboration with
implementations, it is not identical. A more compiete description of elaborating an object
creation with implementation is considered in Section 5.2.3. However, the program does have
some ability to control local feasibility through the use of variable constraints, which are
considered next.

Section 5.2.2 Variable Declarations and Object Creations 116
5.2.2. Constraints on Variables

One form of control that a programmer has over the feasibifity of a variable implementation

is a variable constraint. This section provides an overview of this feature.

The syntax of a constraint expression in a variable declaration consists of the reserved

words such that followed by any expression. An example is given below:

var MylList => MylistManager . new List
such that desc (MylList) . IsDebugging return (Booleans.Bit);
This example shows how a variable declaration can use an attribute procedure in its
implementation to check for a particular feature. (The use of attribute procedures is
discussed later in Section 55.3.) Here, the constraint attempts to ensure that the

implementation for MyList has debugging capabilities.

The semantics of a variable constraint are designed to permit the programmer to control the
feasibility of an implementation selection beyond the methods provided by the type hierarchy.
_ The constraints of a variable deciaration are elaborated with specifications after the
expression containing the object instantiation is élaborated with specifications. However, the
constraints are elaborated with realizations during two circumstances: when the expression
containing the object instantiation is elaborated with impiementations and when an
impiementation choice for the variable declaration is checked for iocail feasibility. The
constraint expression must return an object that matches the predefined boolean object, that
is Booleans.Bit, and if a Fal/se object is returned during elaboration with realizations, the

variable declaration is considered infeasibie.

5.2.3. Checking the Feasibility of Variable Declarations

Elaboration with impiementations is used to check that all necessary implementation
decisions have been made and are compatible with one another. There are two facets to this
checking: making sure that object instantiations are compatible with one another and making
sure that an appropriate procedure implementation exists for each procedure invocation. In
this section, only the means for elaborating an object instantiation with implementations will
be described. Section 5.5.5 will discuss how an appropriate procedure implementation is
found.

Elaboration of object instantiation with implementations differs from elaboration with

Section 5.2.3 Variable Declarations and Object Creations 117

specifications in two significant ways. First, the selected implementation class is used instead
of the class specified by the name component that contains the reserved word new. Second,
alt related elaborations are carried out with implementations and not specifications. In detail,

this means:

1. If the last assignment of an implementation for the object instantiation was locally
infeasible, then the object instantiation is infeasible.

2. The environment in which the instantiation is taking place is searched for the
selected implementation class of the simple object. If the implementation class is
not found, the object instantiation is infeasible.

3. The parameters in the name component for the object instantiation are
elaborated with implementations. if any of these elaborations are infeasible, then
the instantiation is infeasible.

4. The parameters in the declaration of the selected implementation class are
elaborated with implementations. if any of those elaborations are infeasible, then
the instantiation is infeasible.

5.The objects that result from the elaboration of the actual parameters are
compared with the objects that resuit from the elaboration of the formai
parameters. if the comparison fails, then the instantiation is infeasible. If the
comparison succeeds, the actual parameters and any bindings that result from
the comparison replace the parameters and the bindings that exist in the simple
object.)

6. In leftmost elaboration order of the selected implementation class, each local
instance in the local instance set is elaborated with impiementations. A local
instance is elaborated with implementations by elaborating each of its
(nonattribute) variable declarations with implementations, and then each of its
statements with impiementations. if any of these efaborations are infeasible, the
object instantiation is infeasible.

There are four aspects of this elaboration that deserve more discussion: the reuse of
definite simple objects, the applicability only to definite simpie objects, the finality of locally
infeasible implementation selections and the elaboration of the local instances making up the

object.

None of the steps above directs the creation of a new definite simple object during the
elaboration of an object instantiation name component with implementations. All of the
necessary local instances have been created when an implementation for a variable is
selected, so no new local instances are necessary during elaboration with implementations.
Each time an object instantiation is elaborated with implementations, and it may be so

elaborated many times during a compilation, the same simple definite object is used.

Section 5.2.3 Variable Declarations and Object Creations 118

Only definite instances have an elaboration different with implementations than with
specifications. The elaboration of indefinite instances with implementations is defined to be
identical to their elaboration with specifications. Since these indefinite objects act as
representatives of definite objects, they may take any implementation. Thus for feasibility, an
implementation that assumes the least information about them is used. Such an
impiementation is the specification itseif. In addition, since there is no way of assigning a
particular implementation to an indefinite instance, there is no need to maintain the local
instance set between assignments of implementations in an unused focal instance set.
Therefore, the expedient of equating the elaboration of specifications and of implementations

for indefinite simple objects is adopted.

The fact that an implementation selection is locally infeasible, if it is not changed by another
implementation selection for the same simple object, forces the object creation to be
infeasible whenever the creation is elaborated with implementations. This unchangable status
of infeasibility coulid be counterintuitive when a later selection makes the originally infeasible

selection into a feasible selection, as illustrated by the following circumstance.

in the previous example, assume that MyListManager has the LinkedListManager
implementation selected and then List? had the ArrayList implementation selected. Clearly,
this second choice is locally infeasible. However, one may change the implementation of the
MyListManager to ArrayListManager. The selection of ArrayList for List1 now seems
reasonable. The language defines this circumstance to result in an infeasible program,
primarily for ease of language definition. If this rule were not included in Paragon and a once
locally infeasible selection could become feasible through a change in its environment, any
implementation selection for an object in an environment could cause a reanalysis of all the
selection decisions made for objects created in that environment. This is potentially a large
amount of complicated checking. Further, because some of these elaborations might cause
side effects (see Section 5.3.2), some order of the rechecking would have to be provided and
reslaboration prevented when necessary (or reasonable). As a practical matter, this situation
is unexpected. Because Paragon requires variables to be declared before they are used, it
seems reasonable to 'expect that the implementations of variables will be selected before
those variables are used in further object creations. Thus a changing environment for an
already implemented individual is not expected to occur, and in fact, never occurs in any
exampie in this thesis. However, if Paragon were to permit such a situation, the language
would require extra rules and complications. Hence Paragon adopts the rule that a locally
infeasible implementation setection causes the object creation to be infeasible.

Section 5.2.3 Variable Declarations and Object Creations 119

The last important aspect of elaborating object instantiations with implementations is the
recursive nature of the check. When checking an instantiation for feasibility, all of the iocal
instances that make up the simple object must also be checked, which includes ail of their
variable declarations. This differs from the check for local feasibility which is concerned
primarily with the parameters for the impiementation and the relation between the
implementation and its environment. Thus local feasibility is seen as a heuristic measure of

the feasibility of an implementation selection and not as a guarantee of feasibitity.

Once all choices in a program are made and the program has been checked for feasibility, it
may be elaborated with realizations. The details of this kind of elaboration of object creations

is discussed in the next section.

5.2.4.Elaboration of Object Creations with Realizations

Eiaboration with realizations is intended to capture the effects of execution. Definite objects
are newly created in the same way as objects are created during elaboration with
specifications. The difference between the two is that the classes used when elaborating the
creation with realizations are determined by the last elaboration with impiementations.
Elaboration with realizations is defined only if a program is well specified and feasible. A brief

outline of the actions that occur during this elaboration far object instantiation are as follows:

1. If any simple object in the creation environment is an indefinite instance, then the
creation is erroneous.

2. A new simple object is created.

3. The parameters in the name component for the object creation are efaborated
with realizations.

4. The parameters of the implementation class for this variable are elaborated with
realizations.>

5. The corresponding objects from the parameter elaborations are compared and
the resulting binding of objects to identifiers is saved in the new simple object.

6. In leftmost elaboration order of the implementation class, each ancestor class of
the implementation is elaborated with realizations and added to the new simple
object.

5":"As a practical matter, because Paragon does not allow definite object creations or procedure invocations in
formal parameters, no action is needed to perform this step in compiled Paragon code, All of the information
necessary for determining the results of later steps is available from information gathered during elaboration with
impiementations. However, this list defines what the effects should be, not how they are accomplished.

Section 5.2.4 Variable Declarations and Object Creations 120

Elaboration of indefinite instances is similar except that no elaboration of local instances is
performed and the creation environment may contain indefinite instances. Once the

parameters have been saved, the process of creating an object is finished.

Conventional translation systems perform elaborations with specifications, implementation
selection and feasibility analysis before creating the translated program. Then elaboration
with realizations is confined to the program created by the translation system. In Paragon
however, certain pieces of a program are elaborated with realizations during elaboration with
specifications and implementations, and also during policy execution. One feature that is
elaborated with realizations before the program as a whole is called an attribute, and is

discussed in the next section.

5.3. Describing Classes and Procedures — Attributes

Attributes are the primary feature that Paragon provides for describing classes and
procedures. An introductory discussion is followed by descriptions of how attribute variables
and attribute procedures are defined in classes and procedures. Then some uses of
attributes in expressions and variables are illustrated. The use of these attributes in policy
procedures is deferred until Section 5.5.3.

5.3.1. Purpose of Attributes

Attributes are unlike much of Paragon in that there is no clear analog between attributes in
Paragon and features in other languages. In some sense, attributes are a generalization of
compile-time switches, pragmata, hints and compiler options that other transiator systems
employ. Unlike other systems, the definitions of attributes are completely under the control of

the programmer. The distinction can be illustrated with some examples from other languages.

The Pascal language defines certain reserved words, like packed, that a programmer may
use to inform the compiler that a particular data structure should use a space efficient
representation. Ada provides a host of information for the compiler via the pragma construct.
In both of these cases, the programmer is providing some limited information to the compiler
about the way certain parts of the program should be behave. Unfortunately, there is no way
of generalizing this property. Far example, Pascal does not allow a programmer to inform the
compiler to pick a time efficient representation for a data structure. Thus current systems
strongly relate the ways that the programmer can provide information to the compiler with the

Section 5.3.1 Describing Classes and Procedures — Attributes 121

kinds of information that the compiler will process. The attribute facility in Paragon is
intended to provide a flexible way to give information to the compiler and to provide as few

restrictions as possible to the ways in which the information may be used.

Simply, one may view attributes as describing differences between one class and another,
and between one procedure and another. The examples in the previous paragraph iliustrate
such differences as time efficiency of a representation and space efficiency of a
representation. Some other distinctions one typically encounters are the amount of
debugging assistance provided, the amount of error detection provided, the amount of
performance monitoring provided, a tradeoff between time and space, and the choice of

interface to other languages. Some of these distinctions will be iliustrated in the next chapter.

Paragon provides two kinds of attributes: attribute variables and attribute procedures.
These can be viewed as compile-time variables and procedures that are provided by the
programmer. Before illustrating their uses, a description of the syntax and interpretation of

attribute variables and procedures is needed; this is provided in the following sections.

5.3.2. Attribute Variables

The syntax for attribute variable declarations is nearly identical to that for variabie
declarations: the presence or absence of the reserved word atiribute. But there are two
important semantic differences: the order of elaborations and the ability to use procedure

invocations. The syntax and semantics are considered beiow.

The syntax for declarations of attribute variables resembles variable declarations, except

that it contains the reserved word attribute before the reserved word var, as illustrated below:
attribute var Total_Space_Used => IM . new Integer;

Like a variable declaration, an attribute variable declaration causes an identifier, here
Total_Space_Used, to be bound to an object, here a definite Inteéer object. The primary
difference lies in when the different elaborations of this declaration occur. The expressions in
variable -declarations are elaborated with specifications, implementations and realizations
when the enclosing class or procedure declaration is elaborated with specifications,
implementations and realizations respectively. The expressions in attribute variable
declarations are efaborated only with specifications and realizations. These two elaborations

of the expressions happen in tandem when the attribute variable deciaration is elaborated

Section 5.3.2 Describing Classes and Procedures — Attributes 122

with specifications. No action is taken when an attribute variable declaration is elaborated
with implementations or realizations. In a colloquial sense. therefore, attribute variables exist

only during the compile-time processing of the program.

A secondary, but important difference between attribute variablie declarations and
nonattribute variable declarations is the ability of the former to inciude a name component

that denotes a procedure invocation in the expression. For example, one may write:
attribute var Expected_Size => 10;

while one may not write:
var Expect_Size => 10;

since the literal 70 is an implicit procedure invocation (see Section 3.3.6).

Paragon attaches no predefined meaning to any identifier declared as an attribute variable.
Although the examples shown here use predefined integer and boolean objects, neariy any
kind of object may be present. More precisely, any class that is se/f-implementing may be
used. The notion of self-implementing is discussed further with policy procedures (see
Section 5.5.2),

5.3.3. Attribute Procedures

Attribute procedures provide a way to attach more sophisticated information to classes and
procedures. Attribute variables denote a single value but attribute procedures may be as
complex as any other procedure in Paragon. As will be discussed later (Section 5.4.3), an
attribute procedure has access to a representation of the entire program. Thus an attribute
procedure may provide information based not only on local information in the attribute
procedure, but also on the structure of the program as well. In this section, only the syntax
and semantics of attribute procedures will be discussed. A description of attribute procedure

invocations is postponed until Section 5.5.3.

The syntax of attribute procedures resembles procedure implementations, though like
attribute variabies, the semantics of using attribute procedures differ from procedures. These
differences are described below.

The syntax of an attribute procedure is like a procedure implementation except that the
reserved word attribute must precede the reserved word procedure, and there must be a

return expression present. A simple example is shown below:

Section 5.3.3 Describing Classes and Procedures — Attributes 123

attribute procedure Total_Time return IM . integer is
begin

return 100;
end;

As one might expect, this parameterless attribute procedure will always return 700.

Unlike nonattribute procedures, attribute procedures do not have any specifications. Their
invocations provide any necessary specifications which must be met by the attribute

procedure.

The semantic differences between nonattribute procedure and attribute procedures invoive
the ways in which they are called. A more detailed discussion of how attribute procedures are

invoked is provided in Section 5.5.3.

5.3.4. Attributes in Classes

Adding an attribute declaration to a class is identical to adding any other kind of declaration
to the class: one merely adds the declaration in the declaration fist. An example is shown
below:

class ListManager(t:any) is

begin
attribute var Maximum_List_Size => 100;

class List 1is
bagin
attribute var Average_List_Size => 50:

P

end;

end;

The ListManager class has an attribute variable describing the maximum list size for individual
lists from this manager, and the inner class, List, has one describing the average size of those

lists. Naturally, all such interpretations of attribute variables are provided by the programmer.

Section 5.3.5 Describing Classes and Procedures — Attributes 124
5.3.5. Procedure Respecifications

The notion of refinement has been used extensively in this thesis, but most of the emphasis
has been on refinements using subclasses. Many levels of subclasses may be used to refine
an abstract data type. But the only refinement for procedure specifications discussed so far
has been procedure implementations. Paragon provides another refinement for procedure

specifications, namely procedure respecifications.

A procedure respecification lies between a procedure specification and a procedure
implementation. The syntax of a procedure specification looks like a procedure
implementation except that the reserved words specified with appear before the reserved
word begin and no statements, classes or nonattribute variables or procedures may be
declared. Thus like a procedure specification, a procedure respecification contains a
description of the interface for calling the procedure and like a procedure implementation, a
procedure respecification may have different expressions for its parameters, so long as the
parameters match the specification. A somewhat contrived example of a procedure
specification, respecification and implementation is shown below:

! Three classes that form a 1ist of specifications ;
class General is begin end;

class Middle of General is begin end;

class Lowest of Middle is begin end;

! A procedure specification that uses the ;
| most abstract level of the tree ;

procedure f(Ganeral);

! A procedure respecification that uses the ;
! first refinement of General;

procedure f(Middle) is specified with begin end;

! A procedure implemantation that uses the ;
! final refinement of General;

procedure f{Lowest) is begin ... end;

The motivations for including the procedure respecification are based on the ability to add
attributes to procedure declarations. The way this may occur is discussed in the next section,

which also contains a more reatlistic exampie of the procedure respecifications.

Section 5.3.6 Describing Classes and Procedures — Attributes 125
5.3.6. Attributes in Procedures

In all three kinds of procedure declarations, it is possible {o annotate the declaration with
attributes. One may add attributes for several reasons: to a procedure specification to
provide some initial description of the procedure; to a procedure respecification to change
and refine the initial description based on some more information about possible procedure
calls; and to a procedure impiementation to refine further the description based on the final,
chosen implementation. in this section, the ways that attributes ‘are added to procedure

specifications, respecifications and implementations are discussed.

As it Is possible to add attributes to any class, attributes in procedures are declared in the
biock between the begin and end reserved words. in the case of a procedure specification,
where no block is normaily present, a dummy block is used which is prefixed with the
reserved words specified with, just like a procedure respecification. Such a procedure
specification is shown beiow:

procedure Insert(L:List, E: t) is
specified with begin
attribute var Checks_Parameters => Truse;
end;
Only attributes may be declared in such dummy biocks. No other declarations and no

statements are permitted.

The use of the reserved words specified with to denote both procedure respecifications and
procedure specifications (with attributes) can be confusing.56 Usually, a biock in a procedure
declaration that starts with the reserved words specified with denotes a procedure
respecification. As iflustrated above, it may be used as a procedure specification. The choice
is determined by context. If there exists a procedure specification with the same identifier as
the procedure respecification in the current class or procedure, in an enclosing class or
procedure or in one of the ancestors of the current {(or an enciosing) class, then the presence

of a specified with prefix indicates a procedure respecification, otherwise a procedure

56Perhaps another revision of the language design wouid eliminate this ambiguity by introducing different syntax
for respecification and initial specification. Another change would permit a procedure implementation to act implicitly
as a procedure specification if no specification was present.

Section 5.3.6 Describing Classes and Procedures — Attributes 126

specification.57 An illustration of this circumstance is shown below:

! Specification for Table objects ;
class Table is

begin

attribute var Average_Size => 100;

procedure Insert; | Specification for Insert :
end;

! Two general implementation approaches: Arrays and Trees ;

class Table_with_Arrays of Table is
begin
procedure Insert is
specified with begin
attribute procedure Time return im.integer is
begin
return Average_Size;
end;
end;
end;

class Table_with_Trees of Table is
begin
procedure Insert is
specified with begin
attribute procedure Time return im.integer is
begin
return log2(Average_Size);
end;
end;
end;

! Some specific array implementations

..

57This rule makes the hiding of procedures difficult if one wants to provide initiai attributes. In particular, to
guarantee that the procedure declaration will be interpreted as a specification and not as a respecification while still
providing initial attributes, the following ruse must be coded:

! New specification;
procedure foo;
! New respecification with same signature to hold attributes ;
procedure foo is specified with
begin
! Add attributes here ;
end;

The first declaration ensures the specification hides previous specifications; the second guarantees the presence of
the initial attributes,

Section 5.3.6 Describing Classes and Procedures — Attributes 127

class Table_with_Arrays_Impll of Table_with_Arrays is
begin
procedure Insert 1is
begin
attribute procedure Time return im.integer is ... ;

.

end;
end;

class Table_with_Arrays_Impl2 of Table_with_Arrays 1is
?agin
procedure Insert is
begin
attribute procedure Time return im.integer ... ;

3

end;
! More specific array and tree implementations ;

end;

The class Table serves as a specification for objects that are tables. There is one procedure in
table objects, /nsert, which is specified in the Table class. The Insert procedure has a single
attribute, Time, which reports the amount of time the procedure requires to execute. Given a
particular implementation of Table, it is possible to select the appropriate implementation or
respecification of /nsert for each of its invocations, and to invoke its corresponding Time

attribute procedure.

It one merely picked a complete implementation for Table, say Table_with_Arrays_Impi2,
then the Time attribute procedure associated with the /Insert procedure implementation wouid
be used. But one may use a stepwise-refinement technique, similar to the one in
PECOS [Barstow 79], for selecting an implementation. Thus one would first consider whether
to use arrays or trees to implement tables and select either Table_with_Arrays or
Table_with_Trees as the interim implementation of Tree. Such a selection would also cause
the respecification of Insert in the selected class to be used as a refinement of the
specification of the /nsert procedure. With this technique, one can ask about the time that an
Insert procedure might take with each approach and receive a linear time with arrays and a
fog time with trees.>® Such information, when combined with data on other implementations
and the frequency of operations, could be used to decide whether to pursue further

refinements of tree implementations or array implementations.

58Only for the sake of argument. The examples are necessarily simple so that they can be easily understood.

Section 5.3.6 Describing Classes and Procedures — Attributes 128
5.3.7. Attribute Variables in Expressions

Since attribute variables denote objects that exist only at compile time (although they are
run time in nature), attribute variables may be used in expressions that exist only at compile
time. Thus they may be used only in expressions in the statement parts of attribute
procedures and in expressions of other attribute variable declarations. Their use in a name
expression is syntactically identical to the use of a nonattribute variabie: merely the identifier.

This is demonstrated below:

class List 1is
begin
attribute var Average_List_Size => 50;
attribute procedure Get_Size return IM.integer is
begin
return Average_List_Size;
end;

end;

When the attribute procedure Get_Size is called, it will obtain the current (realized) value of
Average_List_Size and return that object. However, Average_List_Size may not appear in the
statement list of the List class since those statements would be executed at run time when

Average_List_Size no onger denotes an object.

5.3.8. Variables with Attributes

Another way to manipulate attribute variables is available through the use of attribute
associations. As attribute variables represent some information about the object being
created, it is reasonable to allow a programmer to alter the attribute variables on an instance
by instance basis. For example, a programmer may wish to indicate that the average size for a
particular list is not the 700 specified by the Average_List_Size attribute variable in the class
declaration for List, but is rather 50. This altering can be done by the attribute association

feature of variable declarations.

Each association has the syntax attribute identifier = > attribute value where the attribute
identifier is any identifier and the attribute value is any expression (also called the value
expression). A list of associations is preceded by the reserved word where. An example that
changes the 100 for Average_List_Size to 50 is shown below:

! First create a manager for integer lists ;
var MylListManager => new ListManager(IM . integer);

Section 5.3.8 Describing Classes and Procedures — Attributes 129

var MyList => MyListManager . new List
where Average_List_Size => 50;
The process by which the new object replaces the old object is a bit complicated. in short,
there is a check made to ensure that the new object is somehow the same "type" as the oid,
and then the object replacement is made. The details for the example above are provided

below.

When the declaration for MyList is elaborated with specifications, the classes associated
with List will be elaborated with specifications and any attribute variables in those classes wiil
aiso be elaborated with realizations. After the classes are elaborated with specifications, each

attribute association is elaborated as follows:

1. The attribute identifier is located in the object returned for the object instantiation
expression of the variabie declaration.

2. The attribute value expression in the attribute association is elaborated first with
specifications and then with realizations.

3. The object bound to the attribute identifier has its innermost component aitered
to an indefinite instance if it is a definite instance.

4. The object returned by the elaboration of the attribute value expression with
realizations is compared with the aitered object originaily bound to the attribute
identifier.

If all of the previous elaborations are well specified, feasible and defined, and if the
comparison is successful, then the object returned by elaborating the value expression with
realizations is bound to the attribute identifier in the newly created definite instance, The
previous binding is discarded. If the elaborations are ill specified, infeasible or erroneous, or
if the comparison between objects fails, then the variable declaration containing the attribute
association is ill specified.

The use of attribute variabies to attach information to classes and procedures, and the use
of attribute procedures to provide values based on calculations using attribute variables,
provide a powerful way to distinguish different implementations of an abstract data type as
they are used in a program. In fact, the attributes serve as decorations on a tree structure,
called the Possibility Tree, that resembles the program. Because of the pervasiveness of this
data structure, it is described next.

Section 5.4 Representing the Implementation Choices — The Possibility Tree 130

5.4. Representing the Implementation Choices — The
Possibility Tree

After a program has been elaborated with specifications, each variable declaration and
each procedure invocation has been associated with some set of iocal instances. The
structure of these variable declarations and procedure invocations form a tree, with each
node of the tree being a simpie object associated with a variable declaration or a procedure
invocation and each edge leading to local variable declarations and procedure invocations of
the parent node. This tree, called a Possibility Tree, is the data structure that the policy
procedure operates on. In this section, a detailed description of the possibility tree for a

program is given.

5.4.1. Abstract Possibility Trees

Throughout this section, a rather contrived, but illustrative program will be used to show
how possibility trees are constructed and changed. The beginning of this program is shown

below, followed by its initial possibility tree.

Section 5.4.1 Representing the Implementation Chaices — The Possibility Tree 131

class MainProgram is
begin
class Generality is begin end;

class Specification of Generality is
begin

procedure MyProc; { This is the specification ;
end;

class Implementationl of Specification is

begin
procedura MyProc is I This is implementation # 1;
begin
end;

and;

class Implementation2 of Specification is

begin
procedure MyProc is ' This is implementation # 2;
begin
end;

and;

ctass Implementation3 of Specification is
begin

! No MyProc implementation;
end;

var x => new Specification;
var y => new Specification;
x.MyProc; ! Procedure call #1 ;
y.MyProc; ! Procedure call #2 ;
end;

Section 5.4.1 Representing the Implementation Choices — The Possibility Tree 132

'Moin Program
v P
#*
NN

*Gen. [*spec. | [*Gen. [®Spec. | [® My Proc.(S) | |*My Proc.(S)

vip|vipP]|vip]vV]P v P v P

Local Instance for Gen. ((s) indicotes procedure specification)
/ i« * Indicates in current local instance list.

*
*Gen. Spec.

Key {v]p|v]|P Edges leading out for all procedure calls in Spec.

/

Edges leading out for all variable declarations in Gen.

Figure 5-1: Simple Possibility Tree
This diagram illustrates several of the previous terms. There are five nodes in this tree: one
for the instance of the main program, one for the simple object that x denotes, one for the
simple object that y denotes, and one for each procedure call in the main program. Each
node consists of a set of local instances. Each local instance consists of three parts: a name
(for identification); some indication about whether that iocal instance is in the simple object’'s
local instance set (* present) or unused local instance set (*missing); and edges to other

instances — one for each variable declaration and procedure invocation in that instance.

Parts of the structures of the program and its objects are also illustrated by Figure 5-1. The
simple object for the main program has only one local instance, hence the single local
instance for MainProgram. There are two edges for variables, one for x and one for y, which
lead to simpie objects with Specification as an underlying class. Note that such simpie objects
have two local instances, one for the Generality class and one for the Specification class.
There are no variable deciarations in Specification or Generality, so no edges for variabies

Section 5.4.1 Representing the Implementation Choices — The Possibility Tree 133

lead from those local instances. The local instance for the main program also has two edges
jeading to nodes for the two procedure calls. The edges are labeled with the number of the
procedure call in the parent instance since there is no separate identification of each calil.
Initially, the node for each call contains a local instance for the procedure specification
(denoted by the parenthesized S).

A possibility tree is not a static structure. It represents in part, a flow graph of the program,
in part, an abstract syntax tree, and in part, a dependency graph. Thus as implementation
decisions are made, the flow graph of a program is changed and the possibility tree changes.
The exact way that the possibility tree changes depends on the kind of node of that is being
processed. The changes for the two kinds of nodes, object instances and procedure-

invocation instances, are in considered in turn.

When a node in the possibility tree represents an object instance, it is changed by selecting
a new implementation for the object. As explained in Section 5.2, new local instances may
have to be created or some local instances may have to be moved between the local instance
set and the unused local instance set. These changes are refiected in the possibiiity tree.
When a new local instance is created for addition to the local instanee set, the new local
instance is added to the simple object node and marked with an asterisk. Local instances that
were praviously in the unused local instance set but which moved to the local instance set are
also marked with an asterisk. Conversely, local instances that are moved from the local

instance set to the unused local instance set are so marked by removing any asterisk.

Continuing the example that is shown in Figure 5.1, the implementation for x is set to
Implementation, so a new local instance for the class implementation? would be created,
appended to the simple object for x and marked as in the local instance set. This is shown in
Figure 5-2.

Section 5.4.1 Representing the implementation Choices — The Possibility Tree 14

®Main Program
\")

3Gel'i. Spec. [Imp'l

vip[v]r|v]r

Figure 5-2: Selecting Implementation1 for x

Should the implementation of x be changed back to Specification (that is, no choice of
implementation), then the local instance for /Implementation1 would no longer be marked as
being on the local instance set, but it would not be removed from the possibility tree. Only the
asterisk in the local instance for Implementation1 would be removed. If the Implementation1
were reselected, then the possibility tree would return to the one shown in Figure 5-2,

Changing the implementation of x from /mplementation1 to Implementation2 causes similar
changes. First, the local instance associated with /mplementation? is marked as no longer
being in the local instance set. Then a new local instance for Implementation2 is created and
added to the local instance set. The resulting tree is shown in Figure 5-3. Note that the local
instance for Implementation1 is still present, though marked as being in the unused local

instance set.

Section 5.4.1 Representing the Implementation Choices — The Possibility Tree 135

¥ Main Program
v | e
r\—/x y l\z
* Gen. * Spec. imp'l | *imp'2 * Gen. “Spec.\
V' P vV |P V' P V' P V' P v P |

Figure 5-3: Changing x to Implementation2

Should /mplementation1 be selected again, then the iocal instance for Implementation2
would no longer be marked as being in the local instance set and the local instance for
Implementation1 would be remarked. Should the Specification be selected as the
implementation — that is, the class implements itself — then the local instances for both

implementation and Implementation2 would be moved to the unused local instance set.

A similar process occurs when a procedure implementation (or specification or
respecification) is selected for a procedure-invocation instance during elaboration with
implementations. To illustrate this, assume that the implementation /mplementation? has
been initially selected for x and /mplementation2 has been selected for y. After elaborating the
main program with implementations, a selection of impiementation 158 will have been made
for the call x.MyProc and a selection of implementation 2 will have been made for the

invocation y.MyProc. The resulting possibility tree is shown in Figure 5-4.

59Pru:u:em;re specifications, respecifications and impiementations have the same name, so to distinguish them,

they are given numbers in comments next to the declarations.

Section 5.4.1 Representing the Implementation Choices — The Possibility Tree 136

* Main Program
V | P
y I\ #2

My Proc(S) ["My Proc.{1}} | My Proc(s) "My Proc. (2)
vie |[v |P v | P v | P

Figure 5-4: Adding Procedure Implementations to the Possibility Tree

in this possibility tree, a local instance for impiementation 1 is part of the simple object node
for x.MyProc and a local instance for implementation 2 is part of the simple object node for
y.MyProc. Note that the local instances for the specifications of the procedure are no longer
considered to be part of the simple objects’ local instance sets but are considered part of the
unused local instance sets. Should the implementation for the procedure invocation
x.MyProc change, say because Implementation3 was selected for x and the main program
was reelaborated with implementations, then the specification could again be associated with
the procedure invocation and be moved to the local instance set from the unused local

instance set. This situation is illustrated below in Figure 5-5.

Section 5.4.1 Representing the Implementation Choices — The Possibility Tree 137

* Main Program

2

* Gen. |* Spec. imp'l [*imp'3 'My Proc(S}{ My Proc(i)
v P VIP VIP v P v P VI]P

Figure 5-5: Reusing old Procedure Local instances in a Possibility Tree
The saving of previous loca! instances preserves implementation decisions that were made
for local instances in case those local instances are needed again. This feature is not readily
visible in the previous possibility trees because the example ciasses had no local variables or
procedure calls. To expand the example, consider the following additional class declarations:

| Some classes for use as local variables ;
! in further implementations ;

class Localvariable is begin end;
class LV1 of LocalVariable is begin end;
class Lv2 of LocalVariable is begin end;

! Some more implementations for the class Specification ;

class Implementiond of Specification is
begin

var MyLocal => new LocalVariable
end;

If the only implementation selection made in the main program were /mplementation4 for the

variable x, then the resulting possibility tree would appear as follows:

Section 5.4.1 Representing the Implementation Choices — The Possibility Tree 138

fMain Program

v | P
X 1y W\ \#2

*Gen. |*Spec. | *Imp.' 4 * Gen. [*Spec.
vierlv]elv]er vie[vle
My Local
* | ocal Var.

v | P

Figure 5-6: A Possibility Tree with only Implementation4
Note that the local variable for the instance of Implementation4 is also present. it is possible
that the next implementation decision be a selection of L V1 for the variable MyLocal. Thus the

possibility tree would look like the following:

[*Main Program

v | P
y #I \P2
% Gen. ["Spec. |"Imp.' 4 ¥Gen. |[*Spec.
viplVv]|P|l V]P vV|iP|V P
My Local
% ocal Var. |*LVI
Y] P | V]P

Figure 5-7: A Possibility Tree with Impiementation4 and LV1
Some effort has been expended to make the choice of LV?1. Some time later, however, a
different decision for x may be made — say to use I/mplementation3 instead of
Implementation4. The resulting tree would then appear as follows;

Section 5.4.1 Representing the Implementation Choices — The Possibility Tree 139

% Main Program

v | P
VARV YN
*Gen. |*spec.| Imp'4 |"imp'3 *Gen. |“Spec. o
viplvierlvir|Vv]P ViP|V]P
My Local

FLocal var.[*LVI
vieplv]p

Figure 5-8: Picking /Implementation3 after Implementation4

Although the local instance for Implementation4 is in the unused local instance set, the
choices made for its local variables are unchanged. Should /Implementation4 be reselected as
the implementation for x, the decisions made for the variable MylLocal are also preserved,
saving the effort that was used to make that seiection.

The instances in the possibility tree have been described as abstract nodes that are
manipulated by the programmer. Actually, the tree is composed of instances of Paragon
classes. The details of the predefined classes that make up the possibility tree are described

in the next section.

5.4.2.Instances and Instance Classes

In this section, the predefined classes used to describe possibility trees are described. In
one sense, possibility-treée nodes are like any other object realization® in the language. There
is a class that defines them and they are manipulated like other Paragon class instances. But
they are different in that they are created by the underlying translation system and not by the
program that uses them. Possibility-tree nodes also correspond to specified objects in
addition to being realized objects. For each realization of the /nstance class (calied an
Instance object), there is a simple object that resulted from the elaboration of a class or

procedure with specifications. This simpie object is cailed the doppelganger of the realization

ec’An object realization, or a realized object. is an object that was created when elaborating expressions with
realizations. A specified object is one that was created when elaborating expressions with specifications.

Section 5.4.2 Representing the Implementation Choices — The Possibility Tree 140

of the Instance object. Thus a tree node in the possibility tree simultaneously represents two
objects instantiations: a realized instance of the class /nstance and a specified instance of a
variable declaration or procedure invocation. The realized /nstance object and its
doppeiganger are always manipulated together, though the policy procedure usually
manipulates the realized version while attribute procedures manipulate the doppelganger.
The discussion in this section starts with a presentation of how the realized versions may be
manipulated. In Section 5.4.3, a brief discussion of the manipulations of the doppelganger

will be provided.

5.4.2.1. Realized /nstance Objects

Each node in the possibility tree is a realized instance of the predefined class /nstance. The
declaration of this class is given below:
class Instance(IM. NumV: Integer, IM. NumP: Integer) 1is
begin
var VarDecls => VAM®! | new array(1,Numv);
var ProcCalls => PAM . new array(1,NumP);
procedure BindProcs return Booleans,.Bit;
end;
The meaning of most of the identifiers in the class corresponds to the pictorial representation
of a tree node. NumV is the number of variable edges from all of the local instances in the
local instance set (but not from any unused local instances). NumP is the number of
procedure invocation edges from ail of the local instances in the local instance set (but not
from any unused local instances). VarDecls and ProcCalis are arrays of pointers to the
instance realizations that represent the corresponding variable and procedure-invocation
simple objects. The elements in the VarDec/s array are ordered by appearance of the
variables in the leftmost elaboration order of the current implementation of the simple object.
Similarly, the elements in the ProcCalls array are ordered by appearance of the procedure

calls in the leftmost elaboration order of the current implementation of the simptle object.

61The identifiers before arrays and reference instantiations in class declarations for possibility-tree nodes
represent managers for these arrays and references. The declarations of these managers are:

var VAM => new ArrayManager(VarDacl);
var OAM => new ArrayManager(ObjDecl);
var PAM => new ArrayManager(ProcCall);
var CDRM => new RefManager(ClassDecl);:
var CDRAM => new ArrayManager(CDRM.Reference);

Arrays and references are discussed in Sections 6.2.8 and 6.2.9.

Section 5.4.2.Representing the Implementation Choices — The Possibility Tree 141

In addition to the structure of the possibility tree, the class Instance also defines BindProcs
which is one of two procedures that control the elaboration of the program with
implementations. The second predefined procedure, CheckFeasibility, is not defined in any

class; that is, it is a global procedure, and it has the foliowing declaration:
procedure CheckFeasibility return Booleans.Bit:

Both procedures cause pieces of a program to be elaborated with impiementations. The
former, BindProcs, causes the doppelganger of the instance object to be elaborated with
impiementations without elaborating the procedure implementations used for the procedure
invocation in the instance. The CheckFeasibility procedure causes the entire program to be
efaborated with implementations. Both procedures return a logical object. If True is returned,
then the program part that was elaborated with implementations is feasible. False is returned

if some part of the program being elaborated with implementations is infeasible.

One consequence of elaborating an instance with implementations is that the
impiementation of some procedures may change, thus changing its local instance set. In the
simplest case, an implementation is selected where a specification was previously used. As
procedure specifications have no variable declarations or procedure invocations, the
parameters NumV and NumP are initially bound to zero and the corresponding arrays are
empty. However, most procedure impiementations have local variables and local procedure
invocations, so these bindings must change. After elaborating an instance with
implementations, the translation system will alter the Instance objects bound to these
identifiers (and their corresponding arrays) so that they correctly represent the local instance
set in the possibility tree.

The possibility tree that is accessible via the Instance objects represents only the last choice
made for each variable or procedure. There is no way for a programmer to manipulate the
local instances in the unused local instance list. These local instances were omitted from the
tree since identifiers in these local instances may refer to parameters in the specified object
which ceased to exist when the implementation was changed.

Although the class /nstance defines the basic structure of the possibility tree, it does not
fully represent the nodes. There are therefore three additional subclasses that are used to
provide a more detailed description of the tree: ObjDec!, VarDec! and ProcCall. Each of these

classes is discussed in turn.

Section 5.4.2.Representing the implementation Choices — The Possibility Tree 142

5.4.2.2, Object Instantiations

The ObjDec! and VarDec! classes are used to define nodes that represent class instances.
As a practical matter, there are no ObjDec! instances that are not also instances of VarDec/

t.62

and so the discussion wiil assume that every ObjDec/ object is also a VarDec/ object.” These

two classes are declared below:
class ObjDecl1(IM. NumV: Integer, IM. NumP: Integer)
of Instance is
begin
procedure GetSpec return CDRM,Reference;

procedure GetImpl return CDRM.Reference;
end;

class VarDecl(IM. NumV: Integer, IM. NumP: Integer)
of 0ObjDecl is

begin
var Impl1Set => IM . new Integer;

procedure SetImp](CDRM.Refarénce);
procedure LocallyFeasible(CDRM.Reference)
return Booleans.Bit;

Impl1Set := 0;
end;
No more tree structure is introduced by these classes, only some moré procedures and a
variable /mp/Set. The procedures are used to examine and set the implementations of the
variables as appropriate. Since these classes inherit the class /nstance, variable objects
naturally have arrays of pointers to the /nstance objects for local variables and procedure

invocations.

The procedures declared in the ObjDec! and VarDec/ class manipuiate the impiementations
for the variables associated with the instance objects. These implementations are denoted by
pointers to objects that represent the class declarations in the program. To expiain the
procedures, it is useful to consider the representation of class declarations as well.

Each class in the program, including predefined classes, is represented as an instance of a
predefined class ClassDec/ which has the following declaration:

Szln an earlier design. /nstance objects alsa contained an array of pointers to parameters of the simple object.

Each pointer referred to instances of the ObjDec/ class. Because actual parameters couid be indefinite instances,
these ObjDec/ objects were not necessarily also instances of VarDec/. This would have permitted policies and
attribute procedures to get information from attributes in parameters being used as type parameters. Since this was
never fully completed, oniy the remnants of the design in the form of the class declaration ObjDec/ remains.

Section 5.4.2.Representing the Implementation Choices — The Possibility Tree 143

class ClassDec1(IM. NumC: Integer, IM. NumP: Integer) is
begin
var Children => CDRAM. new Array(1,NumC);
var Parents => CDRAM. new Array(1l,NumP);
end;
The form is similar to the Instance class declaration, only the two arrays contain pointers to
instances of ClassDec! for the immediate parents and immediate children of the denoted class
declaration. When the GetSpec and Gei/mp! procedures are invoked, they return pointers to
ClassDec! objects for the classes used as the specification and the current implementation of
the variable. Initially, the class used as the implementation of a variable is the same as its
specification. By using the Children and Parents arrays in ClassDec! objects, it is possibie to
denote different implementations for a variable and to set the implementation of the variable

by passing the appropriate pointer to the Set/mp/ procedure,

The Set/mpl procedure can cause other effects in the possibility tree besides changing the
implementation of variable. For example, if the designated class is not a locally feasible
implementation for the variable, the variable is marked as infeasible and no change is made in
its implementation. Even if the class is locally feasible, the change in the local instances may
cause the NumV and NumC values to change with corresponding changes to the arrays
VarDecls and ProcCalis. Note however, the objects will not change, only the internals of those
objects. Thus if those objects were passed as parameters to another class or procedure, the
class or procedure will also see the change in the possibility tree énd the objects in the

Instance class in which Set/mpi has been invoked.

Unfortunately, some selections of children of a specification ciass may not resuit in a
feasible program. Many times, this can be determined by checking only the local feasibility of
a variable declaration, as defined in Section 5.2.1. The LocallyFeasible procedure provides
the tacility to check if an implementation choice is locally feasible for a variable declaration
before selecting that particular implementation for a variable. If the passed parameter denotes
a class that is not a locally feasibie impiementation for the variable, the procedure will return
False, otherwise it will return True. In neither case will the current implementation of the

variable be changed.

The last declaration in VarDec! is for the variable /mpiSet. This integer variable has no
special meaning to the transiator system. it is provided as a kind of limited tree decoration for
use by the programmer writing a policy. However, the single impi/Set variable is sometimes not
enough.

Section 5.4.2.Representing the Implementation Choices — The Possibility Tree 144

Typically a compiler records a large information about the program directly on the internal
form of the program (usually termed "decorating the tree"). This is a very convenient tactic
for organizing any information that is collected about the program. The analogous operation
for a policy procedure would be to decorate the possibility tree with information it gathers
from the execution of attributes. Unfortunately, the predefined classes for VarDec!, ObjDecl,
ProcCall, and ClassDec! do not permit any additional information to be recorded with the
exception of the special integer variable /mpiSet in VarDec/. Thus a programmer must devise
some other mechanism for recording program information, such a tree parallel to the

possibility tree.

For this problem, an earlier design of Paragon did contain a solution. The policy
manipulated the same classes, but the currently predefined classes were prefixes of
programmer-provided classes used for the policy. For example, the following deciarations

were used for the possibility tree:

class InstancePrefix(IM. NumV: Integer, IM, NumP: Integer) is
begin

var VarDecls => VAM . new array(1,NumV);

var ProcCalls => PAM . new array(1,NumP);

procedure BindProcs return Booleans.Bit:
end;

class Instance(IM. NumV: Integer, IM. NumP: Integer)
of In :ncePrefix is

begin

! programmer provided declarations and statements;

end;

Section 5.4.2.Representing the Implementation Choices — The Possibility Tree 145

class ObjDec1Prefix(IM., NumV: Integer, IM, NumP: Integer)
of Instance is

begin
procedure GetSpec return CDRM.Reference;
procedure GetImpl return CDRM.Reference;

end;

class ObjDecl1(IM. NumV: Integer, IM. NumP: Integer)

of ObjDeclPrefix is
begin

| Programmer provided declarations and statements ;
end;

class VarDeclPrefix(IM. NumV: Integer, IM, NumP: Integer)

of ObjDecl is
begin

procedure SetImpl1(CDRM.Reference);

procedure LocallyFeasible(CDRM.Reference) return Booleans.Bit;
end;

class VarDecl1(IM. NumV: Integer, IM. NumP: Integer)
of VarDeclPrefix is

begin

| Programmer provided declarations and statements ;

end; ‘

class ProcCallPrefix(IM. NumV: Integer, IM. NumP: Integer)
of Instance 1is
begin
procedure AlreadySeen return Booleans.Bit:
procedure Frequency return IM.Integer;
procedure IsImplementation return Booleans.Bit;
end;

class ProcCall(IM. NumV: Integer, IM. NumP: Integer)
of ProcCallPrefix is

begin

! Programmer provided declarations and statements ;

end;

As before, when the possibility tree is created, appropriate instances of /nstance would be

Section 5.4.2.Representing the implementation Choices — The Possibility Tree 146

created, each of which would contain the information from /nstancePrefix (filled in the by the
translator) and the information from /nstance, to be manipulated by the policy procedure. The
reason for the elimination of this scheme was size. It requires twice as many classes as
before, half of which need to be provided by the programmer: During testing of the translation
system, the need to provide extra class declarations seemed very inconvenient, thus they
were eliminated. Thus the ImpiSet variable is a compromise to let the programmer add some
programmer-defined decorations to the possibility tree. If Paragon were to be used in a
production system, then it might be reasonable to keep this strategy and automatically to
provide empty /nstance, ObjDecl, VarDec/ and ProcCall subclasses should the programmer

leave them out.

5.4.2.3. Procedure invocations

Just as the special subclasses for object instances provide procedures for manipulating
variable declarations, so the ProcCall subclass declares procedures for manipulating
procedure invocations. The declaration of ProcCalf is shown below:

class ProcCalT(IM. NumV: Integer, IM. NumP: Integer)
of Instance is
begin
procedure AlreadySeen return Booleans.Bit;
procedure Frequency return IM.Integer;
procedure IsImplementation return Booleans.Bit;
end;
Again, no more tree structure is defined by the ciass, only some procedures are defined.
However, some relations between this procedure invocation and others are provided by the

AlreadySeen and Frequency procedures,

The AlreadySeen procedure provides a way for the programmer to determine if a recursive
call has already been encountered in the call chain. The algorithm used by the transiation
system for pruning a possibility tree is performed to verify if the corresponding procedurs
invocation is a recursive call of a simiiar procedure invocation. The appropriate True or False
object is returned. The details concerning similar procedure invocations are postponed until

a general discussion of feasibifity in Section 5.5.5.

The Frequency procedure is used to provide some measure of how often the invocation is
elaborated during the execution of the program. Normatly this would be tied to some kind of
performance-evaluation scheme, such as simulation results suggested by Low [Low 74] or a
performance verifier suggested by Shaw [Shaw 79]. Because this thesis does not intend to

Section 5.4.2.Fepresenting the Implementation Choices — The Possibility Tree 147

address the ways in which such data are collected, the implemented transiation system

causes an invocation of this procedure to ask the user what value should be returned.

The third procedure in the ProcCall class, Isimplementation, returns True if the local
instance for the simple object is an instance of a procedure implementation. It returns Faise if
the local instance is an instance of a procedure specification or respecification. Thus this
procedure provides an analog to the LocallyFeasible procedure in the VarDec/ class in that it

is a heuristic approximation of feasibility.

5.4.3. Bridging Instance Objects and Doppelgangers

Each Instance object in the possibility tree corresponds to a specified simple object that
results from an object instantiation or a procedure invocation. Since the underlying ciass
declaration or procedure declaration of the doppelganger might contain attribute
declarations, it is desirable to gain access to the doppelganger from an Instance object to use
the attribute procedures. But an attribute procedure must be invoked in an /nstance
environment (see Section 5.5.3) so it is also desirable to gain access to an /nstance object
inside of a doppelganger. One half of the bridge, from Instance objects to doppelgangers, is
provided by attribute procedure invocations. The other half of the bridge, from doppelgangers

to Instance objects, is discussed below.

Since attribute invocations take piace inside /nstance objects, the noniocal identifiers they
refer to must also be /nstance objects. This is iltustrated below:
class Example is
begin
var Temp => new MyClass;
attribute procedure Get_Time is
begin
Temp
end;
and;
When the attribute Get_Time is being executed, the reference to Temp is a reference to an
object that exists only as a resuit of elaborating the variable declaration with specifications.
There should be a way to access the /nstance object associated with Temp — that is, the
Instance object which has as its doppelganger the object denoted by Temp — and description

name components are the Paragon facility for doing so.

The description name component is used to bridge between doppelgangers — that is,

Section 5.4.3 Representing the Implementation Choices — The Possibility Tree 148

objects elaborated with specifications — and /nstance objects. The syntax of a description
name component is simply the reserved word desc followed by a parenthesized expression.

An example is given below:
desc (IM.integer)

The semantics of the description name component are quite simple. When a description name
component is elaborated with specifications, the parenthesized expression is elaborated with
specifications and then an instance of the any object is returned as the resuiting environment.
When a description name component is elaborated with realizations, the parenthesized
expression is still elaborated with specifications, which resuits in the doppelganger of some
instance object. Then that /nstance object is returned as the environment for the next
component. Elaborating a description name component with implementations causes the

program to be il specified.

With attributes, possibility trees and descriptions, the programmer has all of the tools
needed to describe different pieces of a program and represent some selection of
implementations. As yet, there is no way for the programmer to specify how the selections
should be made. The mechanism for specifying such decisions is calied the policy procedure

and is discussed in the next section.

5.5. Making the Implementation Choices — The Policy
Procedure

Global manipulation of the possibility tree is performed by a policy procedure, which is
described in this section. The policy procedure makes further use of some special features of
Paragon, such as invocations of attributes, pattern matching of nodes in the possibility tree
and feasibility checking, also described in this section. With these mechanisms, a
programmer may specify the criteria that should be applied when making decisions about

implementation selections.

5.5.1. Syntactic Properties of the Policy Procedure

The policy procedure is a user provided procedure that is executed (elaborated with
realizations) at compile time and selects the implementations for variables in the user's
program. It is written in Paragon and is interpreted by the transiation system. The Paragon
specification for the policy procedure is:

Section 5.5.1 Making the implementation Choices — The Policy Procedure 149

procedure Policy(i:Instance);

and the user procedure must use the same header for the provided policy procedure
implementation. Although the language permits multiple implementations of a procedure

specification, only one implementation of Policy is permitted in a program.

The parameter to the policy procedure is an instance object for the main program. When the
policy procedure finishes execution, that is, returns, the entire program is elaborated with
implementations to check for program feasibility (in case the policy procedure made
infeasible implementation selections). After elaboration with implementations, a transformed
version of the program can be given to a code generation system. This transformed version
has all procedure invocations associated with particuiar procedure implementations and ail
variables associated with particular implementation classes. The current prototype merely

writes out a stylized version of the program along with all of the implementation decisions.

The goal of this design of a policy procedure is to give the programmer a mechanism with
which the programmer can enforce any selection policy. The mechanism for imptementation
selection is merely a procedure written in Paragon. Thus most data structure selection
algorithms that are expressed in other algebraic languages can be expressed as policies for
Paragon. In Sections 6.5 and 6.9, sample policy procedures'are given that implement the

following strategies:

o Any set of implementations that makes the program feasible.
¢ Minimum product of time and space for a feasible program.

¢ Low’s Heuristic (Hill Climbing time/space product} for a feasible program [Low
74].

¢ Ramirez's Dynamic Programming Algorithm (Minimizing Cost function along with
time and space constraints) [Ramirez 80].

e Branch-and-Bound search for a feasible implementation selection that minimizes
a cost function [Winston 77].

The primary differences between other data structure selection systems and Paragon’s
policy procedures are the method in which program specific information is provided and the
control of the algorithm that uses the program specific information. Typically, this information
is specially coded in a table or set of rules known to the translation system (along with the

translator system's internal representation of the program). This is sufficient for specific,

Section 5.5.1 Making the impiementation Choices — The Policy Procedure 150

predefined data types, such as associative stores, and specific selection methods, such as hill
climbing heuristics. However this method does not integrate well with abstract data type

methodology.

5.5.2. Execuling a Policy Procedure

Like all Paragon programs that are executed, variables and procedures in the policy
procedure and the attribute procedures must have implementations. Normally, such
implementations are chosen before elaboration with realizations by the policy procedure, but
that clearly leads to an infinite regression of selection decisions. To avoid making
implementation selections in policy and attribute procedures, Paragon insists that ail classes

used in policies and attributes be sel/f-impiementing.

A self-implementing class is one where the implementation class is the same as the
specification class and where all procedure specifications have the necessary procedure
impiementations. More precisely, a class is seif-impiementing if it is a predefined class, or if
for every procedure specification in the class and for every procedure specification in the
class’s ancestors, there is exactly one procedure implementation declared in the class (not in

the ancestors of the class).

To ensure that a policy can execute, Paragon insists that every object creation in a policy
procedure, attribute procedure or attribute variable use the class given as the specification
for the implementation. At a practical level, therefore, there is no separation of specification

and impiementation of user-defined types for the policy procedure.

Procedure invocations during policy execution are handled much like elaborations with
implementations. When a procedure invocation is elaborated, the environment is searched
for the unique procedure implementation for the specified procedure. If exactly one such
implementation is fouhd, then that implementation is used for the invocation. Shouid this
implementation be infeasible for this invocation (and thereby cause an error during
elaboration. with reélizations), then the program being processed is considered infeasible. if
the underlying class of the environment is predefined, then the translation system will
provided an appropriate implementation. For example, any use of a predefined integer object
{IM.new integer]) with the predefined Assign procedure will be implemented by the transtation
system, but any user-provided subciass of Assignable must include an impiementation of the
procedure Assign for the class to be self-implementable and hence usable in a policy or
attribute.

Section 5.5.2 Making the Implementation Choices — The Policy Procedure 151

Paragon attempts to provide sufficient mechanisms of program description as primitive
operations so that policy procedures may implement a wide range of criteria for its selection
decisions. Most of these mechanisms were discussed in this chapter and include the
possibility tree, user provided attribute procedures ‘and variables that provide information
about implementations, and some predefined procedures that provide infermation about the
feasibility of the program. Two additional mechanisms are attribute procedure invocations
and a predefined iteration construct for matching certain patterns in the possibility tree.

These additional mechanisms are considered next.

5.5.3. Attribute-Procedure Invocations

Attribute procedures are invoked by a special kind of name component. Both the syntax
and the semantics of this name component differ markedly from other procedure invocation

name components.

The syntax of an attribute-procedure invocation component contains a specification of the
return object that the attribute shouid return. Like other invocations, first the name of the
attribute procedure is given followed by the parameters for the invocation. For an attribute
procedure, the reserved word refurn is then written followed by a parenthesized expression.
This expression describes the object to be returned by the attribute. A typical attribute

procedure invocation is given below:
Time return (IM.integer)

When the Time attribute procedure terminates, it will return an object that matches the

expression /M.integer.

The semantics of an attribute-procedure invocation component differ from other procedure
invocations in three main ways: the invocation environment is implied and possibly changing;
the return object is specified by the name component describing the invocation and not by the
declaration of the invoked procedure; and oniy elaborations with specifications and

realizations are defined. These interrelated differences are discussed below.

When an attribute-procedure invocation is elaborated with specifications, the environment
in which the invocation is to take place is ignored. Thus the identifier in the name component
is not searched for in any environment. However, the parameters are elaborated with

specifications to ensure that they are well specified. But since there is no declaration found in

Section 5.5.3 Making the implementation Choices — The Policy Procedure 152

the environment, the resuiting objects are not compared with any other objects. Finally, the
expression following the return reserved word is elaborated and used as the environment for

the next name component.

If an attribute-procedure invocation is elaborated with implementations, then the program is
ill specified. This check ensures that no compite-time facilities of Paragon are present during

the actual execution of the user's program.

An attribute-procedure invocation may be elaborated with realizations only in the
environment of an Instance object; that is, the environment must be an object that has an
instantiation of the predefined class Instance in its local instance set. Recall that Instance
objects are associated with a class instance or a procedure call in a Paragon program calied
the doppelganger of the instance object. When an attribute invocation occurs in the
environment of an Instance object, the doppeiganger of the Instance object is searched for
the attribute procedure. if the identifier cannot be found, or if the identifier does not denote

an attribute procedure, then the program is erroneous.

The searching of the doppelganger is what makes invocation of attribute procedures very
different from other procedure invocations. Normally, a procedure invocation causes the
environment, which resuited from elaboration with specifications, to be search for an
appropriate procedure specification. Although the implementation of the object used as the
environment changes, the procedure specification denoted by the name component does not
change. However, as the implementation of the object changes, some attribute procedures
may be added and others hidden or eliminated. Thus each attribute-procedure invocation
must search for an appropriate attribute procedure in its doppeiganger. In many ways, this

process resembles the invocation of Simula virtual procedures or Smalitalk methods.

Once an attribute procedure is found, the actual parameters and return expression in the
name component are elaborated with realizations and the formal parameters and return
expression of the attribute procedure are elaborated with realizations. The resulting actual
objects are compared with the corresponding formal objects. If a match occurs, then the
attribute procedure is elaborated with realizations. The object that is returned by the attribute
procedure is used either as the environment for the name component following the attribute-
procedure invocation or as the result of the expression. If any of the elaborations of
parameters or return expressions are ill specified or erroneous, or if the comparison of

objects fails, then the attribute-procedure invocation is erroneous.

Section 5.5.3 Making the implementation Choices — The Policy Procedure 153

Because of the possibility that an attribute-procedure invocation can be erroneous through
a parameter mismatch (which for nonattribute procedure invocations are checked during
elaboration with specifications and not during elaboration with realizations), the check name
camponent is provided. This component is a modification of the name component used for
attribute-procedure invocation. The syntactic difference between these two components is
that the reserved word check appears before the identifier for the attribute in the name

component. This is illustrated below:
check Time return (IM.integer)

This check name component effectively checks to see if an appropriate Time procedure is

available in the calling environment.

There are some small, semantic differences between a check name component and an
attribute-procedure invocation name component. A different method is used for determining
the resulting object of the name component. For a check component, the new environment is
an instance of the predefined boolean object: that is, the object that results from elaborating
the expression Booleans.Bit with specifications. | Normally, the returned object resuits from

elaborating the return expression in the name component.

Another difference occurs when elaborating with realizations. Initially, the same actions are
performed for check components as for attribute-procedure invocation components, till the
time when the actual elaboration of the attribute procedure with realizations occur. if the
elaboration is well specified and defined until that time, then a realized object from the True
procedure is returned as the environment for the next component and the elaboration of the
check component is finished. if the actions preceding the actual elaboration of the attribute
procedure are ill specified or erroneous in any way, then a realized object for the False object

is returned as the environment for the next component.

Typically, checks would be used in tandem with an actual attribute-procedure invocation, as
illustrated below:
if check Time return (IM.integer) then
totaliTime := Time return (IM.integer);
else
totalTime := DefaultTime;
end if;
In the example above, the program ensures the existence of a Time attribute procedure
before using it. If the attribute for calculating the Time of an object exists, then its value is

used in the calculation, otherwise some defauit value is used.

Section 5.5.3 Making the implementation Choices — The Policy Procedure 154
5.5.4. The Pattern Matching Statement

The pattern matching statement provides a special kind of predefined iterator for use by
policy and attribute procedures. The syntax resembles ordinary for statements and is defined
below:

let <identifier> match <expression> in {expression> do
{ {statement>; }*
end let
Following the reserved word /et is an identifier that denotes a particular ProcCall instance and
is called the index identifier of the pattern matching statement. Like ail identifiers, it must be
declared before it is used, but unilike other variabie declarations, it is declared with an

indefinite instance of the ProcCall class, as illustrated below:
var Call => ProcCall;

The expression following the reserved word match is cailed the pattern expression and
represents the pattern that should be searched for. The expression following the reserved
word in is called the target expression and represents the /nstance class in which the search

should be carried out.

After elaborating pattern and target expressions, the object that resuits from elaborating the
pattern expression is compared with each procedure invocation instance in the /nstance
object (that is, the ProcCall instances referenced by the ProcCalis array in the Instance
object) that resuited from elaborating the target expression. All of the matching instances are
saved. Then, one at a time, each matching instance is bound to the index identifier and the

statements after the reserved word do in the pattern matching statement are elaborated.

A typical use of the pattern matching statement is shown below:

class SetManager(T: any) of AssignableManager is
begin

attribute procedure ManagerTime(i:instance)
return IM.integer is

begin
var TotalTime => IM . new integer;
var call => ProcCall;

Section 5.5.4 Making the implementation Choices — The Policy Procedure 155

TotalTime := 0;
let call match desc{this®? SetManager) in i do
if call.check Time
return (IM.integer) then
TotalTime := call.Frequency * call.Time
return (IM.integer) + TotalTime ;

fi;
end let;
return TotalTime;
end;
end;

The pattern statement in the exampie above performs a search of the instance object that is
passed to the attribute. Through the use of the description expression, the corresponding
Instance for the enclosing SetManager can be found in the pattern expression. Thus the
passed tree node of the possibility tree is searched for any procedure calis that occur in the
particular SetManager that contains the attribute procedure being called. Because matching
of objects allows holes in objects, this iterator effectively provides a list ot ali procedure calis
in i that use this SetManager as an environment. Similar kinds of use of the pattern matching
statement can retrieve all the uses of particuiar data abstraction in some part of the program

for further analysis.

The use of attribute invocations and pattern matching statements provide some local
information about the program to the policy procedure. Information about a global property
of the program, feasibility, can also be deduced and given to the program. This is discussed

in the next section.

5.5.5. Feasibility of aProgram

Feasibility is a property that a program has where ail of the selection decisions that have
been made for variables and procedure invocations result in a program that can be executed.
The details of feasibility checking for variable declarations were provided in Section 5.2.3. In

this section, the checking of feasibility for procedure invocations will be discussed.

63This refers to the object in which this attribute is being elaborated.

Section 5.5.5.1 Making the implementation Choices — The Palicy Procedure 156

5.5.5.1. Selecting a Procedure invocation

Unlike variable implementations which are selected explicitly by the policy procedure,
procedure implementations are selected implicitty by the translation system during
elaboration with implementations. The process is similar to elaboration of procedure
invocations with specifications (see Section 3.6.4) and consists of four steps. First, the
environment is searched to gather up all available implementations of the procedure, then
each of the implementations is examined for feasibility untii an appropriate one is found, third,
the selected implementation is elaborated with implementations and finaily the return
expression of the implementation, if any, is elaborated with implementations and‘used as the

environment for the next name component.

When a procedure invocation is elaborated with implementations, the environment in which
the invocation occurs has also been elaborated with implementations and thus refiects the
implementation choices made for previous components of the name expression. This
environment is searched for all procedure implementations that implement the procedure
specified in the name component. For this purpose alone, procedure respecifications and
specifications also implement the specification. There may have been other procedures
specified in the implementation environment with the same identifier, but only the procedures
that implement the procedure originally specified are considered. These procedure
implementations are piaced in a list, where implementations that occur in different classes are
listed in leftmost parent order while implementations in the same class are listed in reverse
declaration order, that is, bottom up in the class declaration. This is iliustrated by the

following example:

class Parent is

begin
Procedure P; { Specification ;
Procedure P is begin end; | Implementation 1;
end;

class Implementationl of Parent is

begin
Procedure P 1is begin end; | Implementation 2;
Procedure P is specified with begin end; ! Implementation 3;
end;

class Implementation2 of Parent is

begin
Procedure P is begin end; ! Implementation 4;
Procedure P is begin end; { Implementation 5;

end;

Section 5.5.5.1 Making the Implementation Choices — The Policy Procedure 157

class Both of Implementationl, Implementation2 is
begin
Procedure P is begin end; { Implementation 6;
end;
If a procedure invocation of P takes place in an instance of Both, then the implementations for

P would be examined in the following order: 6, 3, 2, 1, Spec, 5, 4.

Once a list of possible implementations is constructed, the implementations are examined in
order until one with an appropriate set of parameters is located. Before the examination may
occur, the parameters in the procedure invocation name component (actual parameters) are
elaborated with implementations. Then for each implementation in the list, the (formal)
parameters are elaborated with implementations and compared with the objects that resulted
from elaborating the actual parameters with implementations. If the comparisons are
successful, then the implementation being considered is selected as the appropriate
implementation and the search is terminated. Because the specification of the procedure is in
the list of implementations to be checked, there is a guarantee that some impiementation (it

nothing else, the original specification) will match.

Once an impiementation has been selected, elaboration of the procedure invocation
continues by elaborating the declarations and body of the procedure implementation with
implementations. This is done to ensure that local variabies and procedure invocations are
also feasible. Should any local declarations or procedure invocations not be feasible, then the

program is also infeasible.

After the procedure implementation has been elaborated with implementations, the return
expression in the declaration is used as the environment for the next name component or as

the result of the expression in which the procedure invocation occurs.

Like the choosing of an implementation for a variable, the selection of a procedure
implementation may cause changes both in the local instance set and the unused local
instance set of the simple object for the procedure invocation. Before any choice is made, the
locai instance for the current seiection (usually the specification) is moved from the local
instance set to the unused local instance set. If the selected procedure implementation has
been previously selected, its local instance is moved from the unused local instance set to the
local instance set. If the selected procedure implementation has never been previously

selected for this invocation, then a new local instance for this procedure declaration is

Section 5.5.5.1 Making the Implementation Choices — The Policy Procedure 158

created, elaborated with specifications and added to the local instance set. Note that the
simple object for a procedure invocation always has exactly one local instance in its locat

instance set: the last selected procedure implementation.

Aithough the programmer can expiicitly control the selection of implementations for
variables, the programmer has no way to chose among feasible impiementations for
procedures. Instead the system will select a feasible implementation based on its way of
searching for a procedure implementation. This division of labor between the programmer
and the transiation system was created to limit the amount of processing done by the
programmer. if the policy had to chose an impiementation for each procedure cail then the
amount of time the policy requires would be a function of the number of procedure caiis in a
program rather than the number of variabie declarations and the policy woutld require too
much time for execution. Thus a speciai, relatively fast method of finding a procedure
impiementation is buiit into the system.

An interesting feature of elaboration with implementations is that it ciosely resembles
elaboration with realizations. Procedure invocations actuaily have their declarations and
bodies elaborated rather than merely returning as during elaboration with specifications. This
presents no probiems for variabies, since Paragon prohibits recursive instantiations of
classes. However, recursion in procedures is quite natural and permitted in Paragon. Unlike
execution, there is no conditional procedure invocation; all invocations must be checked for
feasibility. Thus the elaboration of a recursive procedure implementation with
impleméntations will never terminate. Fortunately, an infinite recursion of procedure
invocations is not necessary for f2asibility checking. Instead, procedure invocations that are
similar to previous invocations need not be checked since they have aiready been checked.
The exact meaning of "similar" is considered in the next section.

5.5.5.2. Limiting the Size of the Possibility Tree

As described in the previous section, the possibility tree that results from the selection of a
recursive procedure impiementation is a possibly infinite data structure. A program that can
generate such a tree is illustrated below:

Section 5.5.5.2 Making the impiementation Choices — The Policy Procedure 159

class MainProgram is
begin
procedure Rescur;
procedure Recur is
begin
Recur;
end;

Recur;
end;
if the main program were to be elaborated with implementations without any concern for
recursion, the tree would continue forever, expanding the specification for the procedure

Recur into the implementation of Recur. The initial part of this tree is shown below:

/ o Program ~ -

/ v1ie®F

f \“ | AN

\ Recur(S) "Recur(_l)_ \\

\ st / viP vie \
\| Invocation ("'

AN Recur (S) [*Recur(l) \
™~ VIP |VI]P /
—__ S
2nd) Recur (S) | * Recur (1)
Invocation 3rd Invocotion—> V1P | V] P

#1

Figure 5-9: Part of an Infinite Possibility Tree

This recursion is ended when elaborating a program with implementations when the
elaborator finds a procedure invocation that is similar to a previous procedure invocation in
the cali chain, that is, on a path from the root of the possibility tree to the current invocation. if
the invocation is similar to a previous invocation, then it is assumed that the decisions made
for that previous invocation should be made for this invocation and no further elaboration with
implementations is done. Two procedure invocations are similar if the same procedure

implementation is invoked, if the objects passed as parameters for both invocations are

Section 5.5.5.2 Making the implementation Choices - The Policy Procedure 160

simitar, and if the environment of both invocations are similar. Two objects (environments)
are similar if each of their simple objects are similar, and simple objects are simifar if they
have the same underlying class, have similar parameters and have similar objects bound to all
variables defined in those objects. In Figure 5-9, the circled part of the tree is all that is
elaborated with implementations. The third invocation of Recur is similar to the second
invocation of Recur and so elaboration with implementations would not be performed for the

simpie object for the third invocation of Recur.

Note how the checking for similarity of procedure invocations guarantees that apprbpriate
implementations exist for the recursive call of a procedure. The only objects that may be
referenced by a procedure are those in its parameters and in its environment. Based on the
implementations for these objects, certain procedure implementations must be guaranteed in
the implementation of the procedure. Assuming the previous invocation is feasible, then the
same selections of procedure implementations and variables can be made for the recursive
invocation of the procedure with the knowledge that the resuiting procedure implementation
is feasible. If the previous invocation is not feasible, then the program is will not be considered
feasible and there is no sense in wasting resources checking another invocation of the same
procedure. Further, since there is a finite number of procedure implementations, parameters,
class declarations and scope nesting (which corresponds to the maximum number of levels in
an object), there are a finite number of possible procedure invocations and so there must
eventually exist a similar procedure invocation in an infinite call chain. Thus the feasibility

check is guaranteed to terminate.

Aithough the method used for elaborating procedure invocations with impiementations can
guarantee the feasibility of a program, there are subtieties when performing the processing.
Three subtle facets, determining the return object of a procedure call, hidden

implementations, and stopping infinite recursion, are discussed below.

5.5.5.3. Selecting the Implementations of Return Objects

Typically there is no problem to determine the return object of a procedure call, since the

procedure implementation explicitly names the return implementation, as iliustrated below:
procedure Intersect(SingleLinkSet,SingleLinkSet)
return SingleLinkSet is
begin ... end;

The return object for this implementation of intersect has the structure SingleLinkSet.

Section 5.5.5.3 Making the Implementation Choices — The Policy Procedure 161

However, this information is not generally available in general procedure implementations. In
a general implementation for Intersect that uses only abstract operations on Sets, the return

expression (typically) specifies only Set, as shown below:

procedure Intersect(L:Set,R:Set) return Set is

begin ... end;
Assuming that the result of the Intersect procedure will be used in another procedure cali,
more information about the implementation of return object will be needed to guarantee

feasibility of the next procedure call.

Two alternatives were considered for determining the implementation of the return object:

explicitly and implicitly.

The explicit method uses the return expression to provide explicitly the implementation of
the return object. For the general procedure implementation, the return expression usually is
an expression containing one of the parameters, in analogous way that procedure
specifications specify their return object when used for subclasses in Section 4.4.3. This is
iflustrated below:

procedure Intersect(L:Set,R:Set) return L.structure is
begin ... end;
The example above specifies that the impiementation of the return object will be the same

structure as the implementation of the first parameter, L.

The imglicit method, which was rejected, determines the return object by examining all of
the return statements in a procedure implementation. When elaborating a call of a procedure
implementation with elaborations, the expression in each return statement will be elaborated
with implementations. All of the resulting objects are collected and each is used in turn as the
return object for further elaboration of the expression containing the procedure call. The
further elaboration of the expression would be considered feasibie only if all of the resuiting

objects would result in a feasible elaboration of the expression.

The implicit method was rejected for two reasons. First, the implicit method requires more
processing during elaboration with imptementations. If only two return statements were found

in a procedure and four levels of procedure nesting were present, as for exampte:64

64Recan that literals create an implicit cail of Literal.

Section 5.5.5.3 Making the Implementation Choices — The Policy Procedure 162
x := Square(2) + 3; | Really: IM.Assign(x,IM.Plus(Square(2)),3);

then the expression would have to be elaborated with implementations 2* or 16 times.

Second, the implicit method would add run time costs to the compiled code. With the
explicit method, exactly one procedure impiementation is associated with each procedure
call, Thus the compiler can generate code to call that one procedure at the cali site. With the
implicit method, the returned object has to be examined to determine which procedure
implementation will be used next. Because the language design attempts to reduce run-time -

checking, the implicit method for determining a return object’s implementation was rejected.

Nevertheless, run-time selection of procedure implementations has value in a general-
purpose programming language. Although Paragon was not intended to be a complete,
production language, it already contains the rudiments of dynamic procedure selection in the
attribute-procédure mechanism. If one were to permit attribute procedures to exist after
representation selection, and also allow attribute call expressions to be elaborated with
implementations, that is, permit attribute calls in the user’s program, then attribute
procedures could be used in circumstances where a dynamic selection of a procedure is
desired.

One result of the design that emerged from the above considerations is a rather baroque
way of ensuring that implementations exist when using type parameters. The underlying
problem is that no implementation is selected for an indefinite instance, so any return object
that is expressed in terms of an indefinite instance is nearly always infeasible. This occurs in
the symbol tabie exampie in Section 4.4.3. The creation of the table manager and a use of the

table is shown again below:
var TSO => new APLSymbolTableManager(AQ_Manager.Addable_0bject);
...S5T.Retriave(1}...

During elaboration with specifications, the return object for Retrieve s
AO_Manager.Addable_Object, which is adequate for many purposes. But no representation
selection is ever performed for AO_Manager since it is an indefinite instance. In this
declaration, AO_Manager contains no implementations for any operations. Thus during
elaboration with implementations, the returned object for Retrieve has a manager that
contains no implementations. More than likely, such an object will prove to be infeasible when

the next operation is applied to it, as for example, when the resuit of the Retrieve procedure is

Section 5.5.5.3 Making the Impiementation Choices — The Policy Procedure 163

assigned to a temporary variabie. A Paragon programmer can solve this problem by creating a
variable whose sole purpose is to be used as a type parameter. This is illustrated below:

var FakeManager => new AQ_Manager;
var Fakelndividual => FakeManager . new Addable_Object;

var TS0 => new APLSymbolTableManager(Fakelndividual.structure);

.

...ST.Retrieve(1)...

During elaboration with specifications, the use of Fakelndividual.structure takes the place of
the underlying class Addable_Object, yet is still an indefinite instance. However, the policy will
make an implementation selection for Fakelndividual and during elaboration with
implementations, that choice will be propagated when reelaborating the variable declaration

for TSQO, thus providing the Retrieve procedure with an object that has an implementation.

This problem ciearly indicates that types should not be treated as object expressions as
Paragon attempts to do. Another approach is suggested in Section C.2.

5.5.5.4. Hidden impiementations

Because of the way that procedure implementations are selected, it is possible that some
operations may be hidden. This occurs when using the muitiple manager strategy discussed
in Section 4.6.2.2. Recall that implementations for a procedure are considered in a leftmost
parent order, and that specifications are included in the list of implementations to ensure that
every procedure call is associated with some procedure declaration during elaboration with
implementations. However if a class has multiple parents that have a common ancestor, a
leftmost parent search uses declarations in the common ancestor before the declarations in a
second parent. This was first demonstrated in Section 5.5.5.1. A more compelling example
can be generated by the declarations in Sections 4.6.1 (page 96), 4.6.2 (page 98) and
4.6.2.2 (page 101). If the CombinedSetManager were chosen for MySetManager and
SingleLinkSet were chosen for Set7 and Set2, and a call on Intersect were made with Set1
and Set2, the general implementation of /ntersect in Set_Manager would always be selected
before the ArraySet-specific implementation in ArraySetManager. Worse, a call of the Insert
procedure made with Set? would always be matched with the specification of Insert in
Set_Manager and never with the implementation in ArraySetManager, thus always rendering
the call infeasible.

This last problem resuits from implementations being considered in leftmost parent order.

Section 5.5.5.4 Making the Implementation Choices — The Policy Procedure 164

This decision was casually made based on the observation that other languages with multiple
inheritance, such as Flavors/Lisp [Weinreb 80] and Traits/Mesa [Curry 82] used this order
for searching for procedure implementations. However, both of these systems were looking
only for a single impiementation and not necessarily trying to locate an appropriate
imptementation out of a set of possible implementations. Thus they do not suffer as does
Paragon. There are two alternatives to a leftmost parent order search. The first would merely
take the list of implementation choices as generated by the leftmost parent order list, extract
the specifications and place them last. This eliminates the probiem where no call of /nsert
would be feasible, but does not effectively place the representation-specific implementation
for Intersect before the general implementation. Further, this alternative does not properly
place procedure respecifications in the list of implementations. The second alternative is to
abandon the leftmost parent order and instead use a reverse leftmost elaboration order of
classes for conducting the search. Then the specific implementation would be used befdre
the general implementation, énd the general implementation before the specification. This

change would be adopted if Paragon were to undergo another design iteration.

5.5.5.5. Another Way to Terminate Recursive Procedure Cails

Although Paragon defines the notion of simifar procedure calls which is used to terminate
mutually recursive calls, there are two ways in which similar procedure calis could be applied.
The adopted choice requires that a similar procedure cail exist in the call chain of the
procedure call under examination. The rejected alternative was to permit the similar
procedure call to exist anywhere else in the possibility tree. Initially, this approach seems
better since | believe fewer procedure cails would have to be elaborated with
implementations. Only one recursive call of a procedure would have to be kept; all others

would be similar to it.

The alternative above was rejected because the translation system should guarantee that
the call that was similar would not be altered by later elaboration with impiementations. If the
translation system requires only that some other cali be similar, then a later elaboration of the
procedure call with implementations might choose a different implementation for that call,
thus invalidating the motivation for omitting the feasibility checking of the call under
consideration. However, a call in the call chain already has its selection made and cannot be
changed: the call under consideration 'is reached only by the previous selection in the call
chain. Therefore the first alternative is used as the termination criterion for elaborating

procedure calls with implementations.

Section 5.5.5.5 Making the Implementation Choices — The Palicy Procedure 165

In this chapter, the various mechanisms that Paragon provides for describing and selecting
appropriate implementations for variables and procedure in a program have been discussed.
In the next chapter, a full example using all of these mechanisms will be presented as an

illustration of the useful of the features.

Chapter 6
A Complete Example Using Paragon

This chapter illustrates the processing of an example program which demonstrates all of the
features presented in the previous chapters. The chapter starts with a description of the
structure of a program, and then gives the parts for a typical program: the predefined
environment, a specification for an abstract data type, an impiementation for an abstract data
type, an application program that uses the abstract data type, and a policy for making
representation selections. After these descriptions, some pieces of the transformed program

are provided, showing the results of processing the program.

Following the simple example, the processing for a more complicated example is presented,

and some alternative policies are described.

Frequently, the program text in this chapter is abbreviated to conserve space, and make the

exampies manageable. The fuli text for all examples is reproduced in Appendices E and F.

6.1. Program Structure and Processing

Programs in Paragon are a single class, called the Universa/_Environment. Inside of the
universal environment are the predefined classes, variables and procedures for Paragon,
programmer-provided declarations for specifications and implementations of abstract data
types, a programmer-provided policy procedure and the programmer’s application program.

The application program is a parameterless, parentless class declared as MainProgram.

The elaboration with specifications consists of elaborating the declaration for
Universal_Environment with specifications. The policy procedure is executed by elaborating
the Universal_Environment with realizations, creating a call to the Policy procedure, and then
elaborating the call with realizations. When the policy procedure terminates, the MainProgram

class declaration is elaborated with implementations. A file containing all of the decisions

Section 6.1 Program Structure and Processing 168

made for the user's program is then written, though in a production system, the transformed

program would be retained internally and used for final code generation.

6.2. Predefined Environment

The predefined environment contains declarations for the objects one normaily expects in a
general purpose algebraic language, such as integers, booleans, arrays and pointers. The

specific declarations for these facilities are presented below.

6.2.1. input and Qutput

Obijects that are capable of being read or written may inherit the generalization classes for
TransputManager. Many of the predefined objects, such as integers, also inherit this class,
providing Paragon with primitive terminal input and output capabilities. The actual
declarations are shown below:

class TransputManager is

bagin
class Transportable is begin end;
procedure Read(Transportable);

procedure Write(Transportable);
end;

6.2.2. Assignment

A frequently used capability is assignment, and Paragon provides the generalization classes
for assignment, as shown below:
class AssignableManager is

begin
class Assignable is begin end;

procedure Assign(L:Assignable, R:Assignable)
such that L.structure same as R.structure;
procedure Equal(L:Assignable, R:Assignable)
return Booleans.Bit
such that L.structure same as R.structure;
end;

Note that the Assign procedure specifies that the two objects passed to it must have the same
structure. This prevents variables declared with two different specification classes from being

used in an assignment operation. The same comment applies to comparing two objects with

the Equal procedure, Since these constraints are only applied during elaboration with

Section 6.2.2 Predefined Environment 169

specifications, two objects may be impiemented differently and still have assignment
performed from one to the other. However, there must be an Assign procedure

implementation available for the relevant procedure call.

6.2.3. Logical Objects

Paragon also provides class, procedure and variable declarations for truth (or logicai or
boolean) objects, called Bits. Bits inherit Assignable and so may have assignment performed
on them as well as the usual logical operations declared in their manager, BitManager. The
language provides an implementation for Bit objects, though it is not written in Paragon, and
so is not shown here. The actual text for the declarations of Bits is given below:

class BitManager of AssignableManager is

hegin
class Bit of Assignable is begin end;

procedure LogicalAnd(bl: Bit, b2: Bit)

return bl.structure

such that b1l.structure same as b2.structure;
procedure LogicalOr(bl: Bit, b2: Bit)

return b1l.structure

such that bl.structure same as b2.structure;
procedure LogicalNot(b: Bit)

return b.structure;

end;

var Booleans => new BitManager;
| var PredefinedBooleans => Booleans.Bit;

procedure True return Boolsans . Bit;

procedure False return Booleans . Bit;
Bits provide the first opportunity to illustrate some predefined declarations of variables. The
Booleans variable defines the manager for all predefined logical values that Paragon uses
when iogical values are needed, for example, in if statements, while statements, Check
expressions and variable constraints. The variable PredefinedBooleans defines the precise
object that is used in these circumstances, but as the declaration for PredefinedBooleans is
not legal Paragon, it is shown here as a comment.5

65Recall that the last companent ot the expression in a variable declaration must be an object instantiation. Here it
is an indefinite instance.

Section 6.2.4 Predefined Environment 170

6.2.4. Ordered Objects

A third kind of generalization class that is predefined by Paragon is Ordered objects. These
are objects that can be compared and are totally ordered. The usual relational operations are
provided, as declared below:

class OrderedManager of AssignableManager is

begin
class Ordered of Assignable is begin end:

procedure LessThan(L: Ordered, R: Ordered)
return Booleans.Bit
such that L.structure same as R.structure;
procedure GreaterThan(L: Ordered, R: Ordered)
return Booleans.Bit
such that L.structure same as R.structure;
procedure LessThanEqual(L: Ordered, R: Ordered)
return Booleans.Bit
such that L.structure same as R.structure;
procedure GreaterThantqual(L: Ordered, R: Ordered)
return Booleans.Bit
such that L.structure same as R.structure;

end;

Because QrderedManager inherits AssignableManager, the Equal procedure is also available
for Ordered objects.

6.2.5. Hashable Objects

A fourth generalization class provided by Paragon declares objects on which a hashing
operation may be performed. This class illustrates the general way that a particular kind of
procedure, here hashing, can be provided in a generalization class. Particular specification
or implementation classes for an abstract data type may inherit this generalization class as a
way to indicate that the specification or implementation class can perform the generalized
procedure (and naturally, the implementations aiso provide an impiementation for the
generalized procedure). One such use, for hashing, occurs for predefined integers, shown in
Section 6.2.6.

The declarations for Hashabie objects are shown below:

class HashableManager of AssignableManager 1is
begin
class Hashable of Assignable 1is begin end;

Section 5.2.5 Predefined Environment 171

procedure Hash(H: Hashable)
return IM.Integer;
end;

6.2.6. Integer Objects

Paragon provides predefined integers through the declarations of the DiscreteManager
class, the Discrete class and the /M variable. The usual operations, except for exponentiation,
are declared as well. Two iterators are also provided: Sequence for counting upwards from
one integer value to another, and ReverseSequence for counting down. Together with the for

statement, these two iterators provide the usual indexed for loops found in many languages.

The manager class also contains two procedure declarations that are used for
transformations between abstract integer objects and machine words: Value and Literal. The
use of Literal was described in Section 3.3.6. The Value procedure is intended to provide an

inverse function as necessary, though it is not used in any example in this thesis.

The actual text of these declarations is provided below:

class DiscreteManager of
OrderedManager, TransputManager, HashableManager 1is
begin
class Integer of Ordered, Transportable, Hashabls 1is
begin
end;

Section 6.2.6 Predefined Environment 172

procedure Plus(L: Integer, R: Integer)

return L.structure

such that L.structure same as R.structure;
procedure Minus(L: Integer, R: Integer)

return L,structure

such that L.structure same as R.structure;
procedure UnaryMinus(L: Integer)

return L.structure;
procedure Times(L: Integer, R: Integer)

return L.structure

such that L.structure same as R.structure;
procedure Divide(L: Integer, R: Integer)

return L.structure

such that L.structure same as R.structure;
procedure Remainder(L: Integer, R: Integer)

return L.structure

such that L.structure same as R.structure;
procedure Sequence(Lower: Integer, Upper: Integer)

yield Lower.structure

such that Lower.structure same as Upper.structure;
procedure ReverseSequence(lLower: Integer, Upper: Intager)

yield Lower.structure

such that Lower.structure same as Upper.structure;

procedure Literal{(CM . 1: word)
return Integer;

procedure Value(i: Integer)
return CM.word;

end;
var IM => new DiscreteManager; ! IntegerManager ;

The translation system guarantees an impiementation for the DiscreteManager and integer

classes, as well as for all procedures visible in DiscreteManager.

6.2.7. Word Objects

The basic storage element that is predefined in Paragon is a Word. In fact, implementations
for Bits and Integers have been written in terms of Words, but for efficiency, the
implementations for these two categories of objects were built directly into the translation
system. In principle, however, one could insist that only Word objects be provided and write
implementations for Bits and integers in terms of Words. The Paragon declarations for

defining Words are shown below:

Section 6.2.7 Predefined Environment 173

class WordManager of AssignableManager, TransputManager is
begin

class Word of Assignable, Transportable is begin end;

procedure Plus(L: Word, R: Word)

return L.structure

such that L.structure same as R.structure;

procedure Minus{L: Word, R: Word)

return L.structure

such that L.structure same as R.structure;
procedure Times(L: Word, R: Word)

return L.structure R

such that L.structure same as R.structure;
procedure Divide(L: Word, R: Word)

return L.structure

such that L.structure same as R.structure;
procedure Remainder(L: Word, R: Word)

return L,.structurse

such that L.structure same as R.structure;

end;

var CM => new WordManager; I CM = Computer Memory. ;

In the original design of Paragon, the operations for Word objects were supposed to be
implementable by a single instruction on a machine. Because the final code generation phase

in the prototype was never constructed, this supposition remains untested.

6.2.8. Arrays

Arrays form one of two sets of class declarations that are intended to be used as type
constructors, the other being pointers (see Section 6.2.9). The classes that provide the array
facility are shown below:

class ArrayManager(E1t: any) fis
begin

class Array(IM . LowerBound: Integer,

IM . UpperBound: Integer) s
begin
procedure Element(IM. Index: Integer)
return Elt.structure;

and;

end;

Arrays are declared in a two step process. First, the element type of the array is established by
creating a manager with the appropriate parameter, then individual arrays are created. For

example, to declare integer arrays, one woulid create the foliowing manager:

var IntArrayManager => new ArrayManager{IM.Integer);

Section 6.2.8 Predefined Environment 174

Once the manager of the array has been declared, individual arrays may be declared like any

other individual object, for example:

var MyArray =»> IntArrayManager. new Array(1,10);

var BigArray =» IntArrayManager. new Array(1,1000});
Elements of arrays are selected by the predefined procedure Element. Without any syntactic
transformations, one can refer to an element of an array by calling Element, for example
MyArray.Element(1). Note that this predefined Element procedure does not belong to
manager, but instead belongs to individual array objects. This is because elements belong to

arrays, and are not shared among all arrays.

Because programmers are not used to using a procedure cail notation to select an element
of an array, Paragon provides the transformation of [J to Element() , thus a programmer may

write MyArray.[1] instead of MyArray.Element(1),

.Some example programs use unexpected type parameters when creating array managers. '
Frequently, an actual object will be used to represent the element type to the manager instead
of an indefinite instance. For example, the following code might be present to declare the

manager for integer arrays:

var Fakelnteger => IM . new Integer;

var IntArrayManager => new ArrayManager(Fakelnteger.structure);
This is done to aid selection analysis. The reasoning behind this seemingly baroque code is
provided in Section 5.5.5.3. In short, the implementation of Paragon guarantees an

implementation for array objects if there is an implementation for the passed type parameter.

6.2.9. Pointers

The second type constructor provided by Paragon is used to create typed pointers which

are called References. The declarations are shown below:

class RefManager(E1t: any) of AssignableManager is
begin
class Reference of Assignable is
begin
procedure Value return Elt.structure;
end;

Section 6.2.9 Predefined Environment 175

procedure Allocate return Reference;
procedura Free{r: Reference);
procedure Nil raturn Reference;
end;
The use of pointers is very similar to arrays. One first creates a manager that defines the type

of object that the references will point at, then one can create pointer variables.

Through the use of the Alfocate and Free procedures, one can dynamically create and
release objects. Paragon guarantees an implementation for pointers, but the imple’mentation
of the referred object matches the implementation used for the parameter to the manager. For

this reason, an expression containing a definite instance is usually used, just like for arrays,

The manager for References also provides a special Reference that can be used to point at

no object, namely a Reference returned by the procedure Nil.

Unlike arrays, References inherit Assignable, and so may be assigned and tested for

equality.

6.2.10. Selection Facilities

The classes and procedures used for the selection facility are also declared in the
Universal_Environment class, and are elaborated along with the rest of the predefined
environment. Since these declarations were discussed Chapter 5, they will not be repeated
here.

The first declarations in Universal_Environment are for predefined identifiers; user defined
abstract data types are declared next. A typical abstract data type is discussed in the next
section,

6.3. An Abstract Data Type: List

The application program in Section 6.4 uses two programmer provided abstract data types:
Lists and Sets. In this section, part of the specification for lists is presented and discussed.
Later in this section, an implementation for lists that uses arrays is presented and discussed.
The complete text for the list abstract data type can be found in Appendix E.2.

Section 6.3.1 An Abstract Data Type: List

6.3.1. A Specification for Lists

hand margin that are used in the following discussion.

class ListManager(TManager : AssignableManager . T :

of AssignableManager is

- begin

attribute procedure ManagerTime(i:instance)
return im.integer is

begin
var TotalTime => im . new integer;
var call => ProcCall;

TotalTime := 0;
let call match this ListManager in i do
if call.check Time return (im.integer) then
TotalTime := call.Frequency *
call.Time return (im.integer) +
TotalTime ;
fi;
end lat;
return TotalTime;
end; ! of attribute procedure ManagerTime ;

attribute procedure Time(1i:instance)
return im.integer is

begin
return 1;

end;

class List of Assignable 1is
begin

176

This section provides a brief specification for lists. The complete specification is not given
here; only those operations actually required by the application program, Clear, Length,
Getindex, AddBeforelndex and Members are given, The text for the declaration follows below
(the discussion continues on page 179). In the text, there are some numbers against the right

Assignable)

=1

«16A

«2A

Section 6.3.1

An Abstract Data Type: List

attribute var ListSize => 100;

attribute procedure Space return IM.Integer is

begin
return ListSize * 100;

attribute procedure GetSize return IM.Integer is

baegin
raturn ListSize;
end;

51

-

-

attribute procedure Tima(i:instance)

return im.integer is
begin

var TotalTime => im

var Call => ProcCall;

. new integer;

177

=34

=15

=12B

Section 6.3.1 An Abstract Data Type: List 178

TotalTime := 0;
! List operations have one, two and three parameters;
let call match any(this List, any) in i do =68
if call.check Time return (im.integer) then
TotalTime := call.Frequency *
call.Time return (im.integer) +
TotalTime ;
fi;
end let:
let call match any(any, this List) in i do
if call.check Time return (im.integer) then
TotalTime := call.Frequency *
call.Time return (im.integer) +
TotalTime ;
fi;
end let;
! "Charge" each List object half/to avoid double;
! counting of binary operations;
TotalTime := TotalTime / 2;
let call match any(this List) in i do
if call.check Time return (im.integer) then
TotalTime := call.Frequency *
call.Time return (im.integer) +
TotalTime ;
fi:
end let;
! When 3 parameters, lists are only in first position;
let call match any(this List,any,any) in i do
if call.check Time return (im.integer) then
TotalTime := call.Frequency *
call,Time return (im.integer}) +
TotalTime :
fi
end let;
return TotalTime;
end; | of attribute procedure Time ;
end; | of class List ;

e it H
procedure AddBeforelIndex(L: List, IM. Position: Integer,
T. NewElt: Structure) is

specified with begin =17
attribute procedure Time return IM.Integer is
begin
return desc (L) . GetSize return (IM.Integer) * 100; <8
end;

end;

Section 6.3.1 An Abstract Data Type: List 179

procedure Clear(L: List) is
specified with begin
attribute procedure Time return IM.Integer is
begin
return 100;
end;
end;

R e bbb bbbl
procedure GetIndex(L: List, IM . Position: Integer)
return T.Structure is
specified with begin
attribute procedure Time return IM.Integer is
begin
return desc (L) . GetSize return {IM.Integer) * 100;:
end;
end;

procedure Length{L: List) return IM.Integer is
specified with begin
attribute procedure Time return IM.Integer is
begin
return 100;
end;
end;

R bbb bbbttt hdH
procedure Members(L: List) yield T.Structure is
specified with begin

attribute procedure Time return IM.Integer is

begin
return desc {L) . GetSize return (IM.Integer) * 100;
end;
end;
R e
end; ! of class ListManager ;

This specification illustrates how attributes interact with the class facility and policy
procedures through the use of redundant anﬁbutes, abstract description of space

requirements, analysis of object usage and defauit attributes for procedures.
6.3.1.1. Redundant Attributes

Notations 1, 2A and 2B refer to redundant attributes that describe time requirements of the
abstract data type. The three attribute procedures, ManagerTime, Time and Time, are
intended to be used with two different policy strategies. The first strategy does not take

advantage of the manager model in programming abstract data types, and so uses the

Section 6.3.1.1 An Abstract Data Type: List 180

attribute Time for determining the amount of time required by each variable in the program,
regardless of whether the variable is being used as a manager or individual. Thus both
manager and individual classes must contain attributes for 7ime. In this circumstance, the
time required by the manager is merely the time object creation takes. For simplicity, the value
1 is returned. The time required for an individual list is calculated by the Time attribute
procedure in the List class, which contains a number of pattern matching statements which
will be discussed {ater.

The second strategy exploits the manager model. Only those variables that are used as
managers will have attributes called for describing possible implementations. For a policy
designed to exploit the manager model, a second attribute procedure cailed ManagerTime is
provided. This attribute understands how that particular data type can be used and so can

report data on all uses of individuals in that manager.

In general, there may be many attributes describing an abstract data type that are
redundant. The exact attributes to be provided depends on the strategy that the policy will

use. To use Paragon effectively, policies and attributes must be coordinated.

6.3.1.2. Attributes that Abstract Representation Differences

Notations 3, 4 and 5 illustrate how attributes can interact to provide some abstract
information about representation properties. These three attributes, ListSize, Space and
GetSize, attempt to provide information about the abstract number of elements in a list and
provide a measure of the space that these elements will require. The use of an attribute
variable permits a variable declaration to change the attribute value as appropriate while the
use of procedures allows representations to change the procedure declaration associated
with the identifier to provide a more accurate analysis of the data. Thus a policy may get
information about the space required by a representation without having to examine the
internal details of the implementation. Further, the programmer using the abstract data type
may provide necessary information, via the attribute variabies, that act as parameters to the
attribute procedures. Together, these declarations provide an abstract way to describe the
hidden details of a representation. Naturally, if no representation is chosen, the attribute
procedures in the specification class, here List, will be used as default values. In this example,
the defauit is an estimate of the size required by a list representation: 100 units per element.

Section 6.3.1.3 An Abstract Data Type: List 181

6.3.1.3. Gathering Usage Data

Notations 6A and 6B refer to places where attribute procedures use a pattern matching
statement to gather data about an object’'s usage. At 6A, an environment is searched for the
use of a manager as a container for procedure calls; At 6B, the environment is searched for
the use of an individual as a parameter. These represent two common uses of pattern

statements.

When a manager is looked for, no particular procedure call is mentioned. Instead, any
procedure call that starts with the manager is found by the match. This is possible because a
procedure invocation results in the creation of an object where the innermost simple object is
an instance of the procedure. The outer classes in such an object are the manager (and its
enclosing environment). All of the procedure calls in an /nstance object are such objects. In
this exampie, the object that resuits from elaborating the pattern expression is merely the
manager with no inner simple object. During elaboration of the pattern statement, the objects
for the calis are compared with the object that resuits from elaborating the pattern expression.
The call objects are larger, because they have the innermost simple object for the call.
Because the innermost simple object may be discarded when comparing two objects when
the actual object (cail) has more simple objects that the formal object (pattern expression),
the innermost simple object for the call can be discarded during object comparison.
Therefore calls within a manager will match a pattern expression that contains only the
manager. In this example, all procedures declared by the manager's implementation will be
examined during execution of the pattern loop. As is illustrated at 6A, the resuiting pattern
loop is quite simple.

In contrast, the use of pattern loops after 6B is more complex. Here, no manager is specified
in the pattern to be matched. instead, ail uses of the individual as a parameter are found. Thus
there may appear uses of the individual outside of the manager. For example, if this attribute
procedure were present in the Integer class instead of the List class (and the pattern
expression were any(any,this integer) instead of anyf(this List.any)) a call of the attribute
procedure would find all calls where the integer was used in a list operation, as well as in an
arithmetic operation.

For this strategy to be effective, all combinations of the individual must be searched for.
Thus one loop has the individual as the first parameter, another loop has the individual as the

second parameter, followed by an assignment that attempts to prevent double counting

Section 6.3.1.3 An Abstract Data Type: List 182

across all individual Lists.® In some sense, the value calculated by this attribute is more
accurate than the value calculated by the manager oriented strategy, but this attribute

procedure is also more complicated.

6.3.1.4. Default Attributes

Notation 7 indicates a default attribute for a procedure. Since the procedure specification
will be placed in the possibility tree whenever an implementation is not available for a
procedure call, this default attribute will be available if no procedure implementation is
available. Thus this attribute procedure may be called by the policy to provide some limited

kinds of information about the procedure without having a specific implementation available.

Note that this default attribute can use some information about the specific call, and
perhaps, about implementations already chosen for the containing procedure's parameters.
Notation 8 illustrates how the Time attribute can base its calculation of the size of the first
parameter. The key feature is the use of the Desc facility to gain access to the node in the
possibility tree for the first parameter. This feature is used throughout attributes in the
example abstract data types, and so represents a typical way that information about the
possibility tree is gathered by attribute procedures.

6.3.2. An Implementation of Lists with Arrays

Each class that is not self implementing should have a representation class declared for it.
In this section, such an implementation of lists using arrays is discussed. Like its specification,
the representation is abbreviated, with procedure implementations provided for only the
procedures that were specified in ancestor classes. Noteworthy parts of the representation
are indicated by the notation at the right margin. (The discussion continues on page 185.)

class ArrayListManager(TManager:AssignableManager.T:Assignable)

of ListManager is
begin

var MaxArraySize => IM . new Integer; -1
var AM => new ArrayManager(T . structure);

66This guarantees that the total time counted by executing this attribute over ali List individuals does not count the
same calt of a binary operation twice. Otherwise the pattern would match the call on two Lists twice, once when
executing the attribute for the first List (in the first ioop), once when executing the attribute for the second List (in the
second loop).

Section 6.3.2 An Abstract Data Type: List 183

class ArraylList of List is

begin
attribute procedure Space return IM.Integer is =42
begin
return 1 + 2 * desc (this ArraylList) =3
. GetSize return (IM.Integer);
end;

var E1ts => AM . new Array{1,MaxArraySize);
var NumElts => IM . new Integer;

NumElts := 0;

end;

procedure LocalCopy(L:ArraylList, R:ArrayList); =14
procedure LocalCopy(L:ArraylList, R:ArraylList) is

begin

var i => im . new intager;

for i in 1..MaxArraySize do
TManager .Assign(L.ETts.[1],R.E1ts.[1]);
and for;
end;

e
procedure AddBeforeIndex(L: ArraylList, im. Position:integer,
T. NewElt:structure) is

begin
attribute procedure Time return IM.Integer is
begin
return 3 + desc (L) . GetSize return (IM.Integer);
and;

var i => IM . new Integer;

if L.NumElts < MaxArraySize and Position >= 1 and
Position <= (L.NumElts + 1) then
for i in IM.ReverseSequence(Position,L.NumElts) do
TManager.Assign(L.E1ts.[i+1],L.ETts.[i]);

and for;
TManager.Assign(L.ETts.[Position],NewE1t); <15
L.NumElts := L.NumElts + 1;
fi;
end;
[e H
procedure Clear(L: ArrayList) is <6
begin
attribute procedure Time return IM.Integer is
begin
return 1;

end;

Section 6.3.2 An Abstract Data Type: List 184

L.NumElts := 0;
end;

R it bebebdabde el ;
procedure GetIndex(L: ArrayList, im. Position:integer)
return T.Structure is
begin
attribute procedure Time return IM.Integer is
begin
return 1;
end;

return L.Elts.{Position];
end;

procedure Length(L: ArrayList)
return IM.Integer is
begin
attribute procedure Time return IM.Integer is
begin
return 1;
end;

return L.NumElts;
end;

i e e
procedure Members(L: ArrayList)
yield T.Structure is

begin
attribute procedure Time return IM.Integer 1is
begin
return 2 * desc (L) . GetSize return (IM.Integer);
and;

var i => IM . new Integer;

for i in IM.Sequence(1l,L.NumElts) do
yield L.E1ts.[i];
if i > L.NumElts then exitloop; fi;
end for;
return;
end;

e it Dbt b H
procedure Assign(L: ArraylList, R: ArraylList) is 37A
begin
attribute procedure Time return IM.Integer fis
begin
return 1 + desc (R) . GetSize return (IM.Integer);
end;

Section 6.3.2 An Abstract Data Type: List 185

var 1 => im . new integer;

L.NumElts := R.NumElts;
for i in 1..R.NumElts do
TManager.Assign(L.E1ts.[i],R.E1ts.[1]);

end for;
and;
R btk et H
procedure Equal(L: ArrayList, R: Arraylist) =78
return Booleans.Bit 1is
begin
attribute procedure Time return IM.Integer is
hegin
return 2 + 3 * desc (L) . GetSize return (IM.Integer);
end;

var i => IM . new Integer;

if not (L.NumElts = R.NumElts) then return False; fi;
for i in-IM.Sequence(1,L.NumElts) do
if not TManager.Equal(L.Elts.[i],R.ETts.[i]) then
return False;
fi;
and for;
return True;
end;

MaxArraySize := 100; =8
end;

This implementation for lists illustrates the use of local variable and procedure declarations,
and the use of initialization statements. it also demonstrates how attributes may be refined,
how managers are passed as parameters, how procedure declarations specify that only
certain implementation classes are required as parameters and how generalization classes

are impiemented.

6.3.2.1. Local Declarations and Statements

Notations 1, 4 and 8 pinpoint local declarations and initialization statements for the
implementation class. The variable declarations starting at notation 1 represent shared data
for the manager that are available to the procedure implementations but unavailable to the
application program. These variables are created at notation 1 but only one of them is
initialized by the statement at notation 8. Should this representation be selected, the
statement at notation 8 would be elaborated when the variable declaration for the list manager

was elaborated.

Section 6.3.2.1 An Abstract Data Type: List 186

The procedure declarations at notation 4 give the specification and representation of
LocalCopy, which is a procedure that may be used only inside of the ArrayListManager. None
of the other procedures in the shown excerpt actually use it, but other procedures in the
complete implementation do require the LocalCopy procedure, so the declarations were left

in as an illustration of local procedures.

6.3.2.2. Refining an Attribute

Notation 2 shows where an attribute is refined. The specification class List contained an
attribute procedure Space for determining the amount space required by an individual list, but
that attribute procedure could not use implementation specific information. The Space
attribute in ArrayList has access to the implementation of individual lists, and so may provide a
better estimate. Notation 3 shows that the calculation actuaily depends on the size of the list
associated with the individual, and so illustrates how one attribute procedure may call
another. Recall that an ArrayList simple object must also have a List local instance, and since
the List class contains a declaration for the GetSize attribute, the GetSize attribute that is to

be called will certainly exist.

6.3.2.3. Use of a Manager Parameter

The reason for having the TManager identifier in the ArrayListManager parameter becomes
clear when the line at notation 5 is examined. The manager that is passed in a parameter is
used for manipulating the individual elements in the list. In particular, it is necessary to assign
one element to another and the passed manager provides the necessary assignment
procedure. Therefore it is common that a parameter will have more than one component
labeled, since any object that is passed must also have its manager present for operations to

be performed on individuals.

6.3.2.4. Requiring an implementation Class as a Parameter

Notation 6 shows how a procedure implementation requires that the objects it manipulates
be implemented with a certain class. Here, the Clear procedure will only work on List abjects
that are implemented as ArrayLists (or subclasses of ArrayLists). This restriction usually eases
the process of making representation selections for procedure implementations, since all of
the variables and parameters in a procedure implementation may be specified with
impiementation classes.

Section 6.3.2.5 An Abstract Data Type: List 187

6.3.2.5. Implementing Generalization Classes

Because the ListManager class inherits the AssignableManager class, the ListManager
class inherits the specifications for the Assign and Equal procedures as well. The
ListManager class, acting as a specification class, does not provide implementations for any
classes. But ArrayListManager, acting as a representation class, should provide
implementations for all procedures that are specified in all of its ancestors. Therefore
ArrayListmanager shouid provide implementations for the Assign and Equal procedures. As
suggested, these implementation are provided, and can be found at notations 7A and 7B.

in the complete example, the declarations for the specification and implementation of lists
are foliowed by a specification and implementation for sets, which is the other programmer-
provided, abstract data type required by the example application. The classes for sets will not
be discussed here. They can be found in Appendix E.4.

6.4. A Program: Sort

A small application program was copied from the literature discussing representation
selection. The program reads in a collection of numbers, sorts them by successively ingerting
them into an ordered list (linear search of the list) and then writes out the sorted list [Low 74].
The text of the program is shown below:

class MainProgram is
begin

var IntSetManager => new SetManager(IM.Integer);
var IntListManager => new ListManager(IM.Integer); =31

var UnSorted => IntSetManager . new Set
where SetSize => 50;
var Sorted => IntListManager . new List
where ListSize => 50; 12
var Count => IM . new Integer;
var i => IM . new Integer;
var Obj1i => IM. new Integer;
var Obj2 => IM. new Integer;

! First construct an Unsorted set;

Section 6.4 A Program: Sort 188

IntSetManager.Clear(Unsorted); =3A
IM.Read(Count);
for I in IM.Sequence(1,Count) do
IM.Read(0bj1);
IntSetManager.Insert(Unsorted,0Objl);
end for; '

IntListManager.Clear(Sorted); =138
! Sort the valuas;

for Obj1 in IntSetManager.Members(Unsorted) do
Count := 1;
while Count <= IntListManager.Length(Sorted) do
Obj2 := IntListManager.GetIndex(Sorted,Count);
if Obj2 >= 0bj1 then
exitloop;
alse
Count := Count + 1;
fi;
end loop;
IntListManager.AddBeforeIndex(Sorted,Count,Cbjl);
end for;

! Write the sorted 1ist ;

for 0bj2 in IntlListManager.Members(Sorted) do
IM.Write(0Obj2);
end for;

end;

This application program illustrates several unconventional aspects of Paragon programs,
such as the presence of manager creations, explicit manager denotation for operations and
user-defined representation information. All of these features are missing in the original

version of this program which was written in Sail.

6.4.1. Explicit Manager Presence

Because the manager model is explicit in Paragon, the presence of managers must also be
explicit. This is illustrated at the points in the program noted 1 and 3.

Notation 1 shows where a manager is explicitly created by the programmer. In other
languages, the manager exists without any special actions by the programmer. In the originai
version of this example, the manager was provided by the transiation system in terms of

assembly language code. Therefore there was no programmer control over the initialization of

Section 5.4.1 A Program: Sort 189

the local data in the manager. in Paragon, there may be concerns about the order of
initialization of managers, and so the transiation system cannot merely create a manager
whenever an individual is declared. Instead, a programmer must explicitly provide a manager

creation.

Notations 3A and 3B show other examples where the explicitness of the manager is evident.
Here, the Clear pracedure must be called within a particular manager. Because there are two
Clear procedures, one in the set manager and one in the list manager, the prefixed manager
denotes the appropriate procedure to be used. Other languages, such as Clu and Ada,
attempt to solve this problem by deriving the manager implicitly by the type of the parameter.
Because the use of classes to emulate the manager model is merely a programming
convention in Paragon, Paragon instead requires explicit managers to be present in an

expression.

6.4.2. User-Defined Representation Information

Because Paragon has a repfesentation-setection mechanism designed into it, an application
program can have some representation-selection information present. in particular, the
variable at notation 2 contains an attribute association informing the selection system of the
expected size of the list. Although other languages permit the programmers to add
representation information to variable declarations, for example, use a packed vs unpacked
representation, Paragon is different in that the kinds of programmer-provided information are
determined by the programmer, not by the transiation system. Because the programmer
provided the ListSize attribute in the List class, the programmer may provide the selection

system with information by making an attribute association with ListSize.

So far, the programmer has provided specifications of abstract data types, impiementations
of abstract data types and an application program that uses the abstract data types. All that
remains for a complete program is a policy procedure for making representation selections.

One possibie policy procedure is considered next.

Section 6.5 A Palicy: Minimum Time and Space 190

6.5. A Policy: Minimum Time and Space

The policy below illustrates features found in many different policies that were written for
this thesis. The goal of the policy is to minimize the time-space product of program cost. An
exhaustive analysis is performed on all possible implementations in order to find the optimal
collection of representations. As usual, interesting features are marked with notations on the

right margin. (The discussion continues on pages 193.)

! MinimumTimeSpace
! This 1is the minimum time space policy.
! It is minimized over a block at a time.

procedure CalcTS(i:Instance) return im. integer; <1
procedure CalcTS(i:Instance) return im. integer is
begin

var TempTime => im . new integer;
var TempSpace => im . new integer;
var j => im . new integer;

TempTime := 0;

TempSpace := 0;

! For each call, if there is a Time attribute, then
accumulate time*frequency product;

for j in 1..i.NumP do =32A
if i.ProcCalls.[j]. check time return (im.integer) thenw=g3A
TempTime := TempTime +

(i.ProcCalls.[j] . time return (im.integer))* <38
(i.ProcCalls.[j].Freguency);
fi;
end for;
for j in 1..i.NumV do =328
if i.varDecls.[j]. check Space return (im.integer) then
TempSpace := TempSpace +
i.vVarDecls.[j].Space return (im.integer);
fi;
end for;
return TempTime * TempSpace;
end; ! of CaleTS ;

procedure policy(i:instance);
procedure policy(i:instance) fis =14
begin

var PreviousMin => im . new integer;

var vartemp => im . new integer;

var ind s> im . new integer;

Section 6.5 A Policy: Minimum Time and Space 191

procedure DoEval return booleans.bit;
procedure DoEval return booleans.bit is =15
begin

var ts => im , new integer;

! Try to select procedure implementations and see if a
! feasible selection is possible.;
if i.BindProcs then
! Yes, have selection, so get s-t product;
ts := CaleTS(1);
else
! No feasible proc. impl. selection, so reject choices.;
return false:
fi;
! Got new s-t value, but is it smaller than previous?;
if ts < PreviousMin then
! Yes, smaller, so save this better value and nots
! that this implementation should be saved.:
PreviousMin := ts;
return True;
else
! Not smaller, punt this set of choicss.:
return False;
fi;
end; | of DoEval ;

TryA11Impls procedure first lets the class be
self-implementing and tries all implementation
combinations of all other variable

declarations beyond this one. (Current declaration is the
jth variable declaration in the class or procedure which is
the doppetganger of i.) After it tries

self-implementing, TryA11Impls tries every implementation
for its variable declaration.

After each implementation selection for itself, all other
possible implementations for variable declarations beyond
the jth declaration are considered.

The test in the first statement stops the recursion when
no more variable declarations are available in the

block that / denotes. Thus the evaluation function

is applied (and the current set of implementations are
noted as being better than what had been seen beforae).

As an optimization, the TryAllImpls procedure rejaects
implementations that are not locally feasible instead of
later discovering that they globally infeasible. ;

B v we S b e deen e e b e dw ew e mms e bam e b e

Section 6.5

A Policy: Minimum Time and Space

procedure TryAllImpls(i:Instance, IM . j: Integer)
return Booleans.Bit;

procedure TryAllImpls(i:Instance, IM . j: Integer)
return Booleans.Bit is

begin

var NextVar => im .new integer;

var temp => CDRM . new referencse;
var k =»
var FoundBetter => Boolsans . new bit;

im . new integser;:

! Assume you can’'t find anything better.;
Booleans.Assign(FoundBetter,False);

! A11 variables in / selected?;

if j > i.NumV then

fi:

I Yes,

so see if a better choice.;

return DoEval;
else

! No,

more variable to selection in i.

! We are up to jth variable declaration,;
Nextvar := j + 1;
! Leave current var decl alone {self-implementing) and

I try

all other variable declarations.;

Booleans.Assign(FoundBetter,TryAl1Impls{i,NextVar));

! See

if worked. If so, save the implementation;

if FoundBetter then
i.VarDecls.[j].Imp1Set := 0;

fi;
! But

keep looking for something better.;

192

=46

| Get the specification class for the jth declaration.;
CDRM.Assign(temp,i.VarDecls.[j].GetSpec);

! Try
for k

all children of the specification.;
in 1..temp.*.NumC do

! Is this child locally feasible?;

if i.VarDecls.[j]
.LocallyFeasible(temp.t.Children.[k]) then
| Yes, so set current var decl to this child.;
i.varDecls.[j].SetImpi1(temp.+.Children.[k]);
! And try rest of the var decls in this block.;
if TryA11Implis(i,NextVar) then
! If found a better set of impl, save it.;
i.VarDecls.[j].Imp1Set := k;
Booleans.Assign(FoundBettaer,True);
fi;
fi;
end for;

I Let previous callers know if a better impl. was found;
return FoundBetter;
end; ! of TryAllImpls ;

Section 6.5 A Policy: Minimum Time and Space 193

PreviousMin := 999999999; =17
! Try all implementations for all variables in i,
! starting with variable 7. Ignore whether anything
! was feasible or not.;
if TryA11Impls(i,1) then null; fi; <18A
! For each var, use the best impl that was found.
! (whole set of impls, not individually the best.);
for ind in 1..i.NumV do =388
vartemp := i.VarDecls.[ind].Imp1Set;
! Sge if a child or the spec was found.;
if vartemp > 0 then
! Yes, use that child number (get the specification
! class, then get the vartempth child and assign that
i ¢child as the implementation for the indth variable.;
i.VarDecls.[ind].SetImp1(
i.vVarDecls.[ind].GetSpec.+.Children.[vartemp]);
fi; :
end for;
! Have made the variable selections, selection the
! procedure implementations. (Assume that it is feasible.);
if i.BindProcs then null; fi; =38C
! A11 done with this block, now do the same for the internal
{ variables in the variable in this block.

for ind in 1..i.NumV do 38D
Policy(i.varDecls.[1nd]);:
end for;

! Now do the same for the internal
! variables in the procedure calls in this block.
for ind in 1..i.NumP do <=18E
if not i.ProcCalls.[ind].AlreadySeen then
Policy(i.ProcCalls.[ind]);
fi;
end for;

end;

The example shows several features that are found in many procedures. Some of these
features are local to a couple of statements, while some represent a basic design of the
policy. Before examining these local and gliobal features of the policy, a brief overview of the
policy's algorithm is provided.

6.5.1. Policy Algorithm

The actual policy procedure declaration starts at notation 4, though the executable part of
the policy begins with notation 7. The notations 8A through 8E labels each of the basic pieces
of the algorithm,

Section 6.5.1 A Policy: Minimum Time and Space 194

Notation 8A refers to the statement that calls a procedure which tries every possible
implementation for each variable in the block passed to the policy procedure. When the
TryAlllmpls procedure returns, the /mpiSet variable contains the index of the implementation
that provided the minimum time-space product for that block. Thus the policy assumes that
only one level of implementations will be provided, since this index is used to pick a child
class of the specification class. A value of 0 indicates that no feasible child was found, thus

the selected specification should remain untouched.

Notation 8B refers to a loop where all of the selected impiementations are actually assigned
to the variables in the block. The call of BindProcs in the statement foltowing the loop, noted
with 8C, then causes the biock to be eiaborated with impiementations. This forces all the
appropriate procedure implementations to be selected for the procedure calls in the block.

Once the current block is processed, each object chosen for a variable and each procedure
implementation has the policy performed on it for selection of representations for local
variables. The loops noted by 8D and 8E perform the policy on the variables and procedure

calls respectively.

The way that this algorithm is implemented illustrates some general strategies about policy
design. These are considered next.

6.5.2. Global Properties

Like other procedures, policy procedures use various kinds of abstraction to make them
easier to write and understand. Some special abstractions that relate to policy procedures are
the separation of the evaluation function, the use of local procedures and the biock-at-a-time
analysis. Each of these is considered in turn.

6.5.2.1. Separate Evaluation Functions

This policy bases its selection of representations on calculations of the space and time
product of the block. However, it may be useful to minimize (or maximize) some other
evaluation function, for example, just time or just space. Thus one wants the policy

procedure to be insensitive to the exact evaluation function.

In the example, the evaluation function is literally removed from the main body of the policy.
The CalcTS procedure, noted 1, takes a biock and calculates a value for that block. This

Section 6.5.2.1 A Policy: Minimum Time and Space 195

procedure could be changed to return any measure that is desirable and the rest of the
system will minimize that value. Thus it is easy to separate the measure used for making
selection decisions. Paragon aliows the policy to use procedures not declared in it, such as
CalcTS, and in fact, CalcTS was raised to the level of a separate procedure because it is used
in several policies. However, policies may also contain local procedures, and local

procedures are also a widely used feature.

6.5.2.2. Use of Local Procedures

Policies may contain local procedures and this policy deciares two such procedures, DoEval
and TryAllimpls, as noted at 5 and 6 respectively. Each performs a limited function, such as
checking for a feasible minimum value and trying all implementations. Many different policies
contain loca! procedures, and thus resemble any moderately sized procedure in any

programming language.
6.5.2.3. Block-at-a-Time Analysis

Another common strategy illustrated by this policy is the btock-at-a-timer analysis. When
faced with a possibly changing possibility tree, it is difficuit to determine the order in which
blocks should be examined. The approach used throughout the example policies is to make
selections for the variable declarations in application program first, and then for the variables
inside of classes and procedure calls in the application program. This resembies a depth-first
search of the possibility tree.

6.5.3. Local Properties

There are several groups of statements that recur in policies, including the example above.
These statements are used to make selection within a block, to use attributes and to try all
implementations. Each of these groups of statements is considered.

6.5.3.1. Selections within a Block

Whatever the evaluation function used for choosing a selection, the process of making a
selection usually requires performing that evaluation over all of the variables and procedure
calls in a block. The for statements noted at 2A and 28 are frequently found as a way to gather
information about variable and procedure calls. Each iterates over their respective arrays in

the instance object passed to the containing procedure.

Section 6.5.3.2 A Policy: Minimum Time and Space 196

6.5.3.2. Using Attributes

The policy procedure uses attributes to gather information about a program. However,
Paragon does not require any given attribute to be present in any given instance. Thus a
policy must check to see if an attribute exists before it is called. The frequent, tandem

operations of checking and then using an attribute are noted at 3A and 3B.

6.5.3.3. Trying all Implementations

Another common, local phenomenon in policy procedures is the trial of all implementations
for all variabies. Although both impiementations and variable declarations may be stepped
through, a coroutine structure is needed for trying each representation for each variable in
turn and not a simple for loop. One alternative is provided by recursion, and this is the
structure used in the TryAllimpls procedure. For each possible implementation of a variable
declaration, all the following variable declarations have all of their implementations tried. Thus
every combination of impiementations is covered. A similar aigorithm is found in several

example policies.

Having all of the pieces for Paragon to process a program, the programmer’s application
can be analyzed by the transiator. The resuits of running the prototype system on this

example are presented in the next section.

6.6. Transformed Program

One of the results of the prototype translation system is a listing of all of the decisions made
by the selection system. In this section, some of these listings produced by the prototype are
presented.

There are two kinds of listing that are provided: an annotated, pretty-printede‘7 version of the
source, and a listing of objects and their representations. Each kind of listing will be illustrated
and described. The complete output of the transiation system from its processing of the
example program is provided in Appendix G.

67Perhaps formatted is a better term, since the annotated programs are not pretty.

Section 6.6.1 Transformed Program 197

6.6.1. Annotated Program

The first output of the translator is an annotated, pretty-printed program that can be used for
later interpretation of obiects.‘58 The first excerpt, for part of the ListManager specification, is

shown below:

class listmanager(tmanager : assignablemanager.t : assignable)
of assignablemanager is
begin
class list of assignable is
begin
attribute var listsize =>
im.literal(special_make_literal(100)); <1
end;

procedure addbeforeindex#1653: (1 : 1ist,
im.position : integer,
t.newelt ; structure) ;
procedure clear#1677: (1 : 1list) ;
procedure getindex#1712: (1 : 1ist,im.position : integer)
return t.structure ;

procedure length#1722: (1 : 1ist) return im.integer ; i
procedure members#1751: (1 : list) yield t.structure ;
end;

For clarity, most of the declarations have been removed.

There are two details worth noting about the excerpt above. First, each procedure identifier
is transformed into a unique identifier. A unique identifier is needed since each procedure
specification and implementation is declared with the same identifier. This unique identifier
aliows later reference to a procedure when procedure implementations are selected. To refer
to the procedure specification of Length, other parts of the listing will refer to length # 1722:

(see notation 2).

The second detail worth noting is the presence of a procedure special_make_literal
(notation 1). This procedure is used to handle literals. Recali that Paragon defines a literal to
be a predefined function that returns an appropriate word object. In the current
implementation, this result is accomplished by a built-in function Special_Make_Literal that
takes an integer string and returns an appropriate word object. This procedure is not available
to the programmer; it is merely the way that the prototype implements all of the literal
functions. But since Special_Make_Literal looks like any other function, the system will select

a (predefined) implementation for it and lists a call to the function whenever a literal is used.

t'saThe tormatting shown in the thesis is not exactly the same as produced by the prototype translator. The

tormatting was changed to fit on smailer and fewer pages.

Section 6.6.1 Transformed Program 198

An excerpt of the implementation for ListManager is shown betow:

class arraylistmanager(tmanager:assignablemanager.
t:assignable)
of listmanager is
begin
var maxarraysize => im.new integer;
var am => new arraymanager(t.structure);

class arraylist of list is
begin

var elts =>

am.new array(im.literal#2(special_make_litaral#1(1)),
maxarraysize);
var numelts => im.new integer;
im.assign#5(numelts,
im.literal#4(special_make_literal#3(0))):

end;

Section 6.6.1 Transformed Program 199

R R E e ininteededebieiieidatnbeiie ;

| Source version of addbeforeindex is on page 183.;

[L iaiunde el it ;

procedure addbeforeindex#3173: (1 : arraylist,
im.position : integer,
t.newelt : structure) is

begin
var i => im.new integer;
if booleans.logicaland#10(<1

booleans.logicaland#5(
im.lessthan#1(1.numelts,maxarraysize),
im.greaterthanequal#4(position,
im.1iteral#3(
special_make_literal#2(1)))),
im.lessthanequal#9(position,
im.plus#8(1.numelts,
im.1iteral#7(
special_make_literal#6(1))))) then
for i in im.reversesequence#11(position,
1.numelts) do
tmanager.assign#17(
1.elts.element#156(
im.plus#14(1,
im.1iteral#13(
special_make_literal#12(1)}))),
1.elts.element#16(i));
end for;
tmanager.assign#19(1.elts.element#18(position),
newelt);
im.assign#23(1.numelts,
im.plus#22(1.numelts,
im.1iteral#21(
special_make_literal#20(
1))
fi;
end;

im,assign#3(maxarraysize, =72
im.literal#2(special_make_literal#1(100)));
end;

Two more details become evident from the excerpt above. First, all of syntactic sugar is
missing (notation 1). For comparison, the reader may want to examine the implementation
given in Section 6.3.2 on page 182. Second, every procedure call in a class and procedure is
numbered. For example, the class ArrayListManager has three calis at the very end of the
fragment above: special_make_literal # 1, literal # 2 and assign # 3 (notation 2). The numbers
serve to identify the calls when an object’s representation is listed, since different calls of the
same specified procedure will have different numbers appended to them. The numbers also
reflect the order of elaboration of the procedure calls in the class or procedure.

Section 6.6.1 Transformed Program 200

The final excerpt of the pretty-printed source is the application program, shown below. Note
that the procedure calls in attribute associations are not numbered. This is because no
selection is necessary for them and they do not appear in the program after selection is
performed. The pretty printer includes them to aid in recalling the original source.

class mainprogram is
begin
var intsetmanager => new setmanager(im.integer);
var intlistmanager => new listmanager(im.integer);
var unsorted => intsetmanager.new set
where setsize => im.literal(special_make_literal(100));
var sorted => intlistmanager.new list
where listsize => im.literal(special_make_literal(100));
var count => im.new integer;
var i => im.new integer;
var objl => im.new integer;
var obj2 => im.new integer;

intsetmanager.clear#l(unsorted);
im.read#2(count);
for 1 in im.sequence#5(im.literal#4(
special_make_literal#3(1)),
count) do
im.read#6(objl);
intsetmanager. insert#7(unsorted,obj1);
end for;

intlistmanager.clear#8(sorted);
for objl in intsetmanager.members#3(unsorted) do
im.assign#12(count,
im.1iteral#11(special_make_literal#10(1)));
while im.lessthanequal#14(count,
intlistmanager.length#13(
sorted)) do
im.assign#16(obj2,
intlistmanager.getindex#15(sorted,
count));
if im.greaterthanequal#17(obj2,0bj1) then
exitloop;
else
im.assign#21(count,
im.plus#20(count,
im.literal#19(
special_make_literal#18(
1)))):
fi;
end loop;
intlistmanager.addbeforeindex#22(sorted,count,obj1);
end for;
for obj2 in intlistmanager.members#23(sorted) do
im.write#24(obj2);
end for;
and;

Section 6.6.2

Transformed Program 201

6.6.2. Object Listings

In addition to the an annotated source, the translation system gives the results of the policy

procedure. For each simple object and procedure call, a listing of the representations of all

variables and procedure calls in the simple object or procedure call is produced. The simple

object that represents the application program is shown below:

insta
1o

W, ONOOODEWN R

16
17

18
19
20
21
22

23
24

Each object

nce x
cal i
var i
var i
var u
var s
var ¢
var
var o
var o
proc

proc

proc

proc
proc
proc
proc
proc
proc
proc

proc
proc
proc
proc

proc

proc
proc

proc

proc
proc
proc
proc

proc
proc

12384:. object instance of mainprogram.
nstance x12385: of mainprogram.

ntsetmanager => arraysetmanager (x12393:)
ntlistmanager => arraylistmanager (x12404:)
nsorted => arrayset (x12411:)

orted => arraylist (x12477:)

ount => integer (x12543:)

i => integer (x12550:)

bjl => integer (x12557:)

bj2 => integer (x12564:)

clear => clear#2312: of arraysetmanager (x12571:)
read => read#13: of transputmanager (x12618:)
special_make_Tliteral => special_make_literal#746:
of universal_environment (x12623:)
literal => literal#621: of discretemanager (x12630:)
sequence => sequence#562: of discretemanager (x12643:)
read => read#13: of transputmanager (x12680:)
insert => insert#2176: of arraysetmagager (x12684:)
clear => clear#3466: of arraylistmanzger (x12738:)
members => members#2707: of arraysetmanager (x12785:)
special_make_literal => special_make_literal#746:
of universal_environment (x12840:)
Titeral => 1iteral#621: of discretemanager (x12847:)
assign => assign#50: of assignablemanager (x12860:)
length => length#3526: of arraylistmanager (x12880:)
lessthanequal => lessthanequal#324:
of orderedmanager (x12934:)
getindex =»> getindex#3511:
of arraylistmanager (x12959:)
assign => assign#50: of assignablemanager (x13020:)
greaterthanequal => greaterthanequal#351:
of orderedmanager (x13040:)
special_make_literal => special_make_literal#746:
of universal_environment (x13066:)
Titeral => literal#621: of discretemanager (x13073:)
plus => plus#424: of discretemanager (x13086:)
assign => assign#50: of assignablemanager {x13123:)
addbeforeindex =» addbeforeindex#3173:
of arraylistmanager (x13143:)
members => members#3747: of arraylistmanager (x13204:)
write => write#17: of transputmanager (x13258:)

has associated a unique identifier. For the main program, it is x72384:. The

simple object for mainprogram has only one local instance, since the application program has

Section 6.6.2 Transformed Program 202

no parents. As indicated, the main program has eight variables and 24 procedure calls. For
each, the listing provides the name of the specification, the name of the implementation, the
location of the implementation and the unique identifier of the simple object associated with
the implementation. For example, the second variable is intlistmanager and is implemented as
an arraylistmanager. The definite simple object that is associated with the creation
component in the variabie deciaration can be found in the simple object labeled x72404:,

which is shown below:

instance x12404:, object instance of arraylistmanager.
local instance x12409: of assignablemanager.
local instance x12410: of listmanager.
local instance x17880: of arraylistmanager.
1 var maxarraysize => integer {x17881:)
2 var am => arraymanager (x17895:)
1 proc special_make_literal => special_make_literal#746:
of universal_environment (x17899:)
2 proc Titeral => literal#621: of discretemanager (x179086:)
3 proc assign => assign#b0: of assignablemanager (x17919:)

Unlike the application program, the arraylistmanager has two ancestors, and so a simple
object for an Arraylistmanager object has three local instances: assignablemanager,
listmanager and arraylistmanager. As the first two local instances contain no variable
declarations or procedure calls, there is no further information beyond the line listing the local
instance. However, the local instance for the arraylistmanager class has two variables and

three procedure calls, all of which are shown above.

A procedure call has a similar format, except there are no explicit local instances. The listing
below gives the selection cetails for the call of addbeforeindex in the application program (the
22nd call). Note that implementation addbeforeindex#3173: was selected. ¥ no
implementation had been availabie, the call would have been associated with its specification,
here addbeforeindex # 1653:.

Section 6.6.2

Transformed Program 203

instance x13143:. procedure call of addbeforeindex#3173:

1
1
2

(4]

o~

10
11

12

13
14
15
16
17
18
19
20

21
22
23

var i
proc
proc

proc
proc

proc
proc

proc
proc
proc

proc
proc

proc

proc
proc
proc
proc
proc
proc
proc
proc

proc
proc
proc

of arraylistmanager.
=> integer (x20438:)
lessthan => lessthan#252: of orderedmanager (x20445:)
special_make_literal => special_make_literal#746:
of universal_environment (x20457:)
literal => literal#621: of discretemanager (x20464:)
greaterthanequal => greaterthanequal#351:
of orderedmanager (x20477:)
logicaland => logicaland#133: of bitmanager (x20488:)
special_make_literal => special_make_literal#746:
of universal_environment (x20500:)
literal => 1iteral#621: of discretemanager (x20507:)
plus => plus#424: of discretemanager (x20520:)
lessthanequal => lessthanequal#324:
of orderedmanager (x20543:)
logicaland => logicaland#133: of bitmanager (x20554:)
reversasequence => reversesequence#607:
of discretemanager (x20565:)
special_make_litaral => special_make_literal#746:
of universal_environment (x20589:)
literal => literal#621: of discretemanager (x20586:)
plus => plus#424: of discretemanager (x20609:)
element => element#676: of array (x20832:)
element => element#676: of array (x20648:)
assign => assign#50: of assignablemanager (x20664:)
element => element#676: of array (x20670:)
assign => assign#50: of assignablemanager (x20686:)
special_make_literal => special_make_literal#746:
of universal_environment (x20693:)
literal => 1iteral#621: of discretemanager (x20700:)
plus => plus#424: of discretemanager (x20713:)
assign => assign#50: of assignablemanager (x20738:)

In these examples, only predefined procedures were used in the procedure implementations

for lists, so the possibility tree is not very deep, and all of the procedure calls of the same

procedure implementation look identical. However, Paragon permits one to write a procedure

implementation that uses only abstract properties of an object and further allows multiple

calis of that procedure with different implementations of parameters. This results in a more

interesting possibility tree and is considered next.

Section 6.7 General Procedures 204

6.7. General Procedures

In this example, a program uses the set intersection operation of the abstract data type Set
in its calculations. Two implementations of sets are provided and are aliowed to interact in the
intersection procedure. To provide a feasible implementation of the program, a general
impiementation for the intersection procedure is provided. This procedure implementation
uses only abstract operations of its parameters. However, to limit the size of the example, only

the barest outline of a program is presented below.

A pretty-printed version of the specification for sets is shown below. In ali of the following
declarations, the manager declaration is suppressed. Only four operations are provided,

Members, IsElement, Insert and Intersection.
class set is begin ¢nd:

procedure membérs#1771: (set) yield im.integer ;

procedure iselement#2004: (set,im.integer) return booleans.bit ;
procedure insert#2013: (set,im.integer) ;

procedure intersection#2024: (set,set) return set ;

Two implementations for sets are provided, called Set? and Set2. The implementations do
not perform any processing; they consist of empty procedure implementations merely as a

way to iliustrate the selection system.
class setl of set is begin end;

procedure members#2115: (setl) yield im.integer is begin end;
procedure iselement#2130: (setl,im.integer) return booleans.bit
is begin end;
procedure insert#2137: (setl,im.integer) 1is begin end;
Like the first implementation, the sec/ond implementation is missing the Intersection

procedure.
class set2 of set is begin end;

procedure members#2152: (set2) yield im.integer is begin end;

procedure iselement#2165: (set2,im.integer) return booleans.hit
is begin end;

procedure insaert#2174: (set2,im.integer) is begin end;

The interesting aspect of this example is the general Intersection procedure. Its

implementation is shown below:

Section 6.7 General Procedures 205

procedure intersection#2102: (1 : set,r : set)
return 1.structure is

begin
var temp => new 1;
var @ => im.new integer;

for e in members#1(r) do
if iselement#2(1,e) then
insert#3(temp,e);
fi;
end for;
return temp;
and;

The application program contains two sets, and those sets interact in two cails to the

Intersection procedure, as shown below:%®

class mainprogram is

begin
var smanager => new setmanager;
var svl => smanager.new sat;
var sv2 => smanager.new sat;
var i => im.new integer;

if smanager.iselement#2
(smanager.intersection#1(svl,sv2),i) then
null;
elseif
smanager.iselement#4
(smanager.intersection#3(sv2,svl),i) then
null;
fi;
end;

A policy is used that forces the first variable, sv71, to use representation set7 and the second
variable, sv2, to use representation set2. After checking for feasibility, the following selections

were made:

69The two cails of intersection would normaily return the same set. Both calls are inciuded to demonstrate the
selection process.

Section 6.7 General Procedures 206

instance x2593:. object instance of mainprogram.
local instance x2594: of mainprogram.

var smanager => setimplmanager (x2595:)
var svl => setl {x2597:)
var sv2 => set2 (x2599:)
var i => integer (x2601:)
proc intersection =>

intersection#2102: of setimplmanager (x2856:)
proc iselement => iselement#2130: of setimplimanager (x2864:)
3 proc intersection =>

intersection#2102: of setimpimanager {x2878:)

4 proc iselement => iselement#2165: of setimplimanager (x2886:)

- W N e

n

As expected, the two calls of the intersection procedure use the general implementation
intersection #2102:. However, two different sets of parameters are used, so the two

procedure calls be dissimilar. As shown below, this is exactly what happens.

The first call had implementations Set? for the left parameter and Set2 for the right
parameter. The resuiting selections for the local variables and procedure calls within
intersection # 2102 for first call of intersection (call 17 in the mainprogram, x2856:) are shown

below:

instance x2856:. procedure call of intersection#2102:

of setimplmanager.
var temp => setl (x7354:)
var e => integer (x7357:)
proc members => members#2152: of setimplmanager (x7364:)
proc iselement => iselement#2130: of setimplmanager (x7375:)
proc insert => insert#2137: of setimplmanager (x7389:)

WN =N -

The variable temp should have the same implementation as the left parameter, and indeed it is
implemented as Set7. As the first call, members, uses the right parameter, only the
implementation members #2152: is feasible, and it is chosen. The calls of iselement and
insert use the left parameter, and so the sefected implementations are iselement # 2130: and
insert # 2137: respectively. Finally, since the returned object from the cail of intersection is
declared to have the same structure as the left parameter, one would expect that the call of
the iselement procedure on the return object to use the same implementation as for the
iselement procedure in the call of intersection. Examining the second call in the application
program shows that implementation iselement#2130: is selected, which is the same

implementation used in the intersection call above.

As the second call of intersection \which corresponds to call 3 in the mainprogram) has the

parameters reversed, one wouid expect the opposite implementation choices being made for

Section 8.7 General Procedures 207

the procedure calls within intersection #2102. The second call of intersection in the

application program is shown, and matches these expectations:

instance x2878:. procedure call of intersection#2102

of setimplmanager.
var temp => set2 (x7432:)
var e => integer (x7435:)
proc members => members#2115: of setimplimanager (x7442:)
proc iselement => iselement#2165: of setimplmanager (x7453:)
proc insert => insert#2174: of setimplimanager (x7467:)

WM N -

As this example illustrates, the Paragon design permits the flexibility of using multiple
representations for variables while retaining the efficiency of statically determined procedure

implementations.

6.8. Recursive Procedures

Another more complicated possibitty tree occurs when a program contains recursion. As
mentioned in Section 5.5.5.2, the possibility tree would normally be infinite in the presence of
recursive procedures. However, Paragon contains a rule that controls the elaboration of
procedure calis with implementations, which in turn effectively limits the size of the possibility

tree. In this section, the results of processing a program with recursion are illustrated.

6.8.1. Application Program

This recursive application program defines the well-known factorial function. The source for

the program, followed by the annotated version, is shown beiow:

class mainprogram is
begin
procedure Factorjal(IM. N: Integer) return IM.Integer;
procedure Factorial(IM. N: Integer) return IM.Integer is
begin
if N <= 0 then
return 0;
alse
return N * Factorial(N-1);
fi1;
end;

IM.Write(Factorial(3));
end;

Section 6.8.1 Recursive Procedures 208

class mainprogram is

begin
procedura factorial#1474: (im.n : integer)
rgturn im.integer ;

procedure factorial#1537: (im.n : integer)
return im.integer is
begin
if im.lessthanequal#3(n,
im.1iteral#2(special_make_literal#1(0))) then
return im.literal#5(special_make_literal#4(0}};
else
return im.times#10(n,
factorial#9(im.minus#8(n,
im.1iteral#7(
special_make_literal#6(1)))}):
fi;
end;

im.write#4(factorial#3(
im.literal#2{special_make_literal#1(3)))):
end;

6.8.2. Object Listings

The application program above was found to be feasible when it was elaborated with
implementations. Three object listings from the resuiting translator output are produced
below, one far the main program, one for the call of factorial in mainpregram, and one for the

call of factorial in the factorial program.

The listing for mainprogram, shown below, contains no surprises. The one implementation
for factorial, that is, factorial # 1537:, is chosen.
instance x1462:. object instance of mainprogram.
local instance x1463: of mainprogram.
1 proc special_maka_literal =»> special_make_literal#1137:
of universal_environment (x1684:)
2 proc literal => literal#646: of discretemanager (x1691:)

3 proc factorial =» factorial#1537: of mainprogram (x1704:)
4 proc write => write#17: of transputmanager (x1720:)

The calt of factorial in the main program is shown below in the listing for object x1704:. Note
that this call of factorial takes place inside of the mainprogram. However, the call in the
factorial pracedure, that is, call number 9 below, takes place in the nested environment of the
a factorial procedure inside of the main program. As noted below, the corresponding object
for this cail is x4949:.

Section 6.8.2 Recursive Procedures 209

instance x1704: procedure call of factorial#1537: of mainprogram.
1 proc special_make_literal => special_make_literal#1137:
of universal_environment (x4853:)
? proc literal => literal#646: of discretemanager (x4860:)
3 proc lessthanequal => lessthanequal#324:
of orderedmanager (x4873:)
4 praoc special_make_literal => special_make_literal#1137:
of universal_environment (x4885:)
proc literal => 1iteral#646: of discretemanager (x4892:)
6 proc special_make_literal => special_make_literal#1137:
of universal_environment (x4906:)
proc literal => literal#646: of discretemanager (x4913:)
proc minus => minus#451: of discretemanager (x4926:)
proc factorial => factorial#1537: of mainprogram (x4949:)
0 proc times => times#506: of discretemanager (x4965:)

(=]

- 0 0o~

Object x4949: is shown below. Like the listing above, it contains a call of the factorial
procedure. However, this call takes piaces inside of a factorial procedure inside of the main
program. Hence, this call is similar to the call made in object x 1704:. Examination of the object
associated with the 9th call in object x4949: reveals that the call refers to itseif. Thus the same
implementation decisions made for the call that originally generated object x4949: shouid be
repeated for the call inside of x4949:. Because the procedure call is similar, no further
elaboration of the call with implementations is necessary. Thus there are no more instances of

factorial in the listing.

instance x4949: procedure call of factorial#15637: of mainprogram.
1 proc special_make_literal => special_make_literal#1137:
of universal_environment (x5085:)
2 proc literal => literal#646: of discretemanager (x5092:)
3 proc lessthanequal => lessthanequal#324:
of orderedmanager (x5105:)
4 proc special_make_literal => special_make_literal#1137;
of universal_environment (x5117:)
proc literal =» 1iteral#846: of discretemanager {x5124:)
proc special_make_literal => special_make_literal#1137:
of universal_environment (x5138:)
proc literal => 1iteral#646: of discretemanager (x5145:)
proc minus => minus#451: of discretemanager {x5158:)
proc factorial => factorial#15637: of mainprogram (x4949:)
0 proc times => times#506: of discretemanager (x5197:)

D o

- O o -

The ability to terminate a possibility tree is necessary for a complete analysis of all possible
representations in every procedure call. As this example iliustrates, termination should come

quite quickly as a recursive call is usually "similar” to its previous invocation.

Section 6.9 Some Alternative Policies 210

6.9. Some Alternative Policies

The policy in Section B.5 represents a straightforward implementation of one common
criterion for making representation selections. Other criteria and aigorithms for selecting
representations have been published in the literature. In this section, severai of the these
other algorithms are presented as a demonstration of how policies can be written in

Paragon.70

6.9.1. Dynamic Programming

An algorithm developed by Raul Ramirez {[Ramirez 80] uses a dynamic-programming
algorithm for making representation choices. This section provides a policy that implements

his published algorithm.

The policy below actually has three parts. The first part, noted 1, calculates space and time
matrices for use by the dynamic-programming aigorithm. The published aigorithm assumes
that tables of spaces and times for the various representations are available for use by the
dynamic-programming algorithm. That is not necessarily true in Paragon, so the first part of
the policy makes an approximation of the time and space requirements for different
representations. No specific evaluation function is provided in the published algorithm, s0 a
space-time product is used.

The second part of the policy, noted 2, provides the initial conditions for the dynamic-
programming algorithm. The third part, noted 3, performs the analysis using the recurrence
equations in the algorithm. Finally, the fourth part, noted 4, takes the resuits of the dynamic-
programming algorithm and makes the selected choices.

procedure policy(i:Instance) is
begin

procedura Ramiraez(im. MaxSpace:integer, im. MaxTims:integer,
im. MaxImpls: integer):

procedure Ramirez(im. MaxSpace:integer, im. MaxTime:integer,
im. MaxImpls: integer) is

begin

TOAs a very cursory test to see if the policies were well specified, they were elabarated as main programs and later
used to make selectians for a program with one variable that had one possible impiementation.

Section 6.9.1 Some Alternative Policies 21

var CurSpace => im . new Integer;
var CurTime => im . new Integer;
var Infinity => im . new Integer;
var MinCost => im . new Integer;
var MinImpl => im . new Integer;
var NewSpace => im . new Integer;
var Impl => im . new Integer;

var V => im . new Integer;

var AM => new ArrayManager(im.integer);

var AM2 => new ArrayManager(AM.Array(0,MaxTime));
var AM3 => new ArrayManager(AM2.Array(0,MaxSpace));
var f => AM3.new Array(1,MaxImpls);

var ImpIMatrix => AM3.new Array(1,MaxImpls);

var AM4 => new ArrayManager(AM.Array(0,MaxImpis));
var S => AM4 . new Array(1l,i.NumV);

var T => AM4 . new Array(1,i.NumV);

var Cost => AM4 . new Array(1l,i.NumV);

! First, create the matrices for the algorithm to use:
! Space (S), Time (T), and Cost (nothing specified in thesis,
! use S*T as an example) ;

for V in 1..i.NumV do =1
for Impl din 1..i.VarDecls.[V].GetSpec.t.NumC do
i.vVarDecls.[V].SetImpl1(i.varDecls.[V].GetSpec
.t.Children.[Imp1]);
if i.BindProcs then fi;
S.[V].[Imp1] := i.VarDecls.[V]. Space return (im.integer);
T.[V].[Imp1] := i.VarDecls.[V]. Time return (im.integer);
Cost.[V].[Imp1] := S.[V].[Imp1] * T.[V].[Imp1];
i.VarDecls.[V].SetImpl(i.VarDecls.[V].GetSpec);
end for;
end for;

! Ramirez's Dynamic Programming Algorithm for
! Data Structure Selection ;

{ Initialize the Matrix ;

Section 8.9.1 Some Alternative Poticies 212

for CurSpace in 0..MaxSpace do 72
for CurTime in 0..MaxTime do
MinCost := Infinity;
MinImpl := 1;
for Impl in 1..i.varDecls.[i.NumV].GetSpec.*.NumC do
if S.[i.NumV].[Imp1] <= CurSpace and
T.[i.NumV].[Imp1] <= CurTime and
Cost.[1.NumV].[Imp1] < MinCost then
MinCost := Cost.[i.NumV].[Imp1];
MinImpl Impl;
fi;
end for;
f.fi.NMumV].[CurSpace].[CurTime] := MinCost;
Imp Matrix.[i.NumV].[CurSpace].[CurTime] := MinImpl;
end for;
end for;

L

! Fi11 in the Matrix ;

for V in i.NumV - 1 ..1 do =13
for CurSpace in 0..MaxSpace do
for CurTime in 0..MaxTime do
MinCast := Infinity;
MinImpl := 1;
for Impl in 1..i.varDecls.[V].GetSpec.t.NumC do
if S.[V].[Imp1] <= CurSpace and
T.{V].[Imp1] <= CurTime and
Cost.[V].[Imp1] +
f.[v+1].[CurSpace - S.[V].[Imp1]].
[CurTime - T,.[V].[Imp1]]
< MinCost then
MinCost := Cost.[V].[Imp1] +
f.[v+1].[CurSpace - S.[V].[Imp1]].
[(CurTime - T.[V].[Imp1]];
MinImpl := Impl;
fi;
end for;
f.[V].[CurSpace].[CurTime] := MinCost;
ImpiMatrix.[V].[CurSpace].[CurTime] := MinImpl;
end for;
end for;
and for;

{ And read the matrix for the appropriate implementations ;

Section 6.9.1 Some Alternative Policies 213

CurSpace := MaxSpace; <4
CurTime := MaxTime;
for V in 1..1.NumV do
i.VarDecls.[V].SetImp1(i.VarDecls.[V].GetSpec.*.Children,
[ImpIMatrix.[V].[CurSpace].[CurTime]]);

NewSpace := CurSpace -
S.[V].[ImptMatrix.[V].[CurSpace].[CurTime]]:
CurTime := CurTime -
T.[V].[ImpIMatrix.[V].[CurSpace].[CurTime]];
CurSpace := NewSpace;
end for;
end; | end of Dynamic Programming ;

Ramirez{100,100,10);

and;

6.9.2. Branch and Bound

The general technique of branch-and-bound is used throughout artificial intelligence as a
way to control the search of a large space [Winston 77]. A branch-and-bound algorithm for
making representation choices is presented below. The path being incrementaily searched is
the list of procedure calls in a given /nstance object. Note how the evaluation procedure Eval
is separated from the rest of the policy procedure. Thus it is quite simple to change the

optimization criterion as necessary.

Section 6.9.2 Some Alternative Policies 214

R ettt bl
| Branch and Bound
[b b DR R bRl Dl it ddedei e dddH

procedure BNB(inst: instance, im . varnum : integer);
procedure BNB(inst: instance, im . varnum : integer) is
begin
procedure Eval(inst:instance,im . varnum: integer,
im . impINum: integer, im . procNum: integer)
return im ,integer;
procedure Eval(inst:instance,im . varnum:; integer,
im . impiNum: integer, im ., procNum: integer)
return im .integer is
begin

if inst.VarDecls.[varNum].
LocallyFeasible(SpecDecl.t.Children.[imp1Num]) then
inst.VarDecls.[varNum].
SetImpl1(SpecDecl.t.Children.[impINum]);
if inst.BindProcs then null; fi;
if inst.ProcCalls.[prochNum].
check Cost return (im.integer) then
return inst.ProcCalls.[procNum].
Cost return (im.integer);
else
return Infinity;
fi;
else
return Infinity;
fi;
end;

Section 6.9.2

pro
beg

Some Alternative Policies

cedure DoSingle; procedure DoSingle is

in

var impINum => im . new integer;

var MinIndex => im . new integer;

var aim => new arraymanager(im.integer};

var Cost => aim . new Array(1,NumDecls);

var LastConsidered => aim . new Array(1,NumDecls);

! Final initial value for all branches :
for impINum in 1..NumDecls do

Cost.[impINum] := Eval(inst,varnum, impINum,1);
LastConsidered.[impINum] := 1;
end for;

while True do
! Find current minimum path ;
MinIndex := 1;
for impTNum in 2. .NumDecls do
if Cost.[impINum] < Cost.[MinIndex] then
MinIndex := impTNum;
fi;
end for;
! See if done (no more proc to examine) ;
if LastConsidéred.[MinIndex] = fnst.NumP then
exitloop;
fi;
! Not done, so extend path by one ;
LastConsidered.[MinIndex] :=
LastConsidered.[MinIndex] + 1;
Cost.[MinIndex] := Cost.[MinIndex] +
Eval(inst,varnum, impiNum,
LastConsidered.[MinIndex]);
end loop;

var NumDecls => im . new integer;
var SpecDecl => CDRM . naw Reference;
var MinClass => CDRM ., new Reference;
var Infinity => im . new integer;

Infinity := 999999999;

CDRM.Assign(SpecDecl, inst.VarDecls.[varnum].GetSpec);

NumDecls := SpecDecl.*.NumC:

if

f1:
end;

NumDecls > 0 then
DoSingle;
inst.VarDecls.[varnum].SetImp1(MinClass);

CDRM.Assign(MinClass,SpecDecl.t.Children.[MinIndex]);
end;

215

Section 6.9.2 Some Alternative Policies 216

R R hiniuie bl ;
| Policy procedure starts here;
e ttedaiiededaihdnde e :
procedure policy(i:instance);
procedure policy(i:instance) is
begin

var ¢ => im . new integer;

for ¢ in 1..NumV do
BNB(i,c);

end for;

for ¢ in 1..7.NumV do
Policy{i.VarDecls.[c]):

end for;

for ¢ in 1..NumP do
if not i.ProcCalls.[c].AlreadySeen then

Policy(i.ProcCalls.[c]);

fi;

end for;

and;

6.9.3. Hill-Climbing Heuristic

Another popuiar technique for controlling the search of alternatives in a large space is hill
climbing. A simple hill-climbing (or since the evaluation function is being minimized, hole-

falling) algorithm is presented below.

procedure Policy(i:Instance);
procedure Policy(i:Instance) is
begin
var ¢ => IM . new Integer;
var j => IM ., new Integer;
var BestClass => CDRM . new Reference;
var CurClass => CDRM . new Refarence;
var Change => Booleans. new Bit;
var Dummy => Booleans . new Bit;
var TempSpace => IM . new Integer;
var TempTima => IM. new Integer;
var MinSpaceTime => IM. new Integer;
var HaveSpaceTime => Booleans. new Bit;

Section 6.9.3

Some Alternative Policies 217

for ¢ in 1..i.NumV do

end for;

CORM.Assign(BestClass,i.VarDecls.[c].GetSpec);
if i.varDecls.[c].check Space return (IM.Integer) and
i.varDecls.[c].check Time(i) return (IM.Integer) then
MinSpaceTime := 99999999;
Booleans.Assign{Change,True);
while Change do
Booleans.Assign{Change,False);
CDRM.Assign(CurClass,BestClass);
for j in 1..CurClass.t.NumC do

i.varDecls.[c].SetImp1(CurClass.*.Children.[j]);
Booleans.Assign{Dummy,i.BindProcs);
TempSpace := i.VarDecls.[c].Space
return (IM.Integer);
TempTime := i.VarDecls.[c].Time(1)
return (IM.Integer);
if tempSpace*tempTime < MinSpaceTime then
Booleans.Assign{Change,True);
CDRM.Assign(BestClass,CurClass.+.Children.[3]);
MinSpaceTime := tempSpace*tempTime;
fi;

end for;
end loop;
i.VarDecls.[c].SetImp1(BestClass);

CDRM.Assign(CurClass,i.varDecls.[c].GetSpec);

while CurClass.+.NumC > 0 do
CDRM.Assign(CurClass,CurClass.t.Children.[1]);

end loop;

i.VarDecls.[c].SetImpl1(CurClass);

Booleans.Assign{Dummy,i.B8indProcs);
for ¢ in 1..1.NumV do

Policy(i.varDecls.[c]);
end for;

for ¢ in 1. .NumP do

end for;

end;

if not 1.ProcCalls.[c].AlreadySeen then
Policy(i.ProcCalls.[c]);

A particular variant of the hili-climbing algorithm was published by Low [Low 74] for

representation selection.

An initial hill-climbing procedure assigns representations to all

variables. Then each representation is perturbed. After each perturbation, the resulting

program is reevaluated to see if a better selection resulted. Low's algorithm in Paragon is
expressed below. Note how this particular policy exploits the use of managers mentioned in

Section 6.3.1.1 (notation 1).

Section 6.9.3 Some Alternative Policies 218

procedure CalcTS(i:Instance) return im. integer;
procedure CalcTS(i:Instance) return im. integer is
begin

var TempTime => im . new integer;

var TempSpace => im . new integer;

var j => im . new integer;

TempTime := 0;
TempSpace := 0;
for j in 1..1.NumP do
if i.ProcCalls.[j] . check time return (im.integer) then
TempTime := TempTime +
(i.ProcCalls.[j] . time return (im.integer))"
(i.ProcCalls.[j].Frequency);
fi;
end for;
for j in 1..1.numV do
if i.varDecls.[j]. check Space return (im.integer) then
TempSpace := TempSpace +
i.VarDecls.[j].Space return (im.integer);
fi;
end for;
return TempTime * TempSpace;
end;

procedure CalcVIS(im . v: integer, i:Instance)
return im. integer;
procedure CalcVTS(im . v: integer, i:Instance)
return im, integer is
begin
var call => ProcCall;
var TempTime => im . new integer;
var TempSpace => im . new integer;
var j => im . new integer;

Section 6.9.3 Some Alternative Policies 219

TempTime := 0;
TempSpace := 0;
let call match i.VarDecls.[v] in i do
if call . check ManagerTime(i) return (im.integer) then <1
TempTime := TempTime +
call . ManagerTime(i) return (im.integer);
fi;
end let;
for j in v..i.NumV do
if v = i.VarDecls.[j].Imp1Set and
i.VarDecls.[j] . check space return (im.integer) then
TempSpace := TempSpace +
i.VarDecls.[j].Space return (im.integer);

fi;
end for;
if i.varDecls.[v] . check space return (im.integer) then
TempSpace := TempSpace +
i.VarDecls.[v].Space return (im.integer);
fi;
return TempTime * TempSpacse;
end;

procedure MarkManagers(i:Instance);
procedure MarkManagers(i:Instance) is
bagin

var k => im . new integer;

var j => im . new integer;

for j in 1..i.NumV do
for k in j+1..i.NumV do
if EnclosingObject(i.varDecls.[j],i.VarDecls.[k]) then

i.varDecls.[k].Impl1Set := j:

fi;
end for;

end for;

enu;

procedure PerformOnePolicy(i:instance,im . index: integer,
Booleans. DoingGlobal: Bit);
procedure PerformOnePolicy(i:instance,im . index: integer,
Booleans. DoingGlobal: Bit) is
begin
var ManSpec => CDRM . new reference;
var KidSpec => CDRM. new reference;
var KidImpl => CDRM. new reference:
var Best => im . new integer;
var MinTS => im . new integer;
var TS => im . new integer;
var j = im , new integer;
var k => im . new integer;
var KidNum => im . new integer;

Section 6.9.3 Some Alternative Policies 220

procedure SetKids;
procedure SetKids 1is
begin
! First find a kid ;
for k in index+1..i.NumV do
if index = i.VarDecls.[k].Imp1Set then
CDRM.Assign(KidSpec,i.VarDecls.[k].GetSpec);
KidNum := k;
exitloop;
fi;
end for;
| Now find an impl ;
for k in 1,.KidSpec.r.NumC do
if i.varDecls.[KidNum].
LocallyFeasible(KidSpec.t.Children.[k]) then
CDRM.Assign(KidImpl,KidSpec.*.Children.[k]):
gxitloop;
fi;
end for;
! And assign the impl to all of the kids ;
for k in KidNum..i.NumV do
if index = i.VarDecls.[k].Imp1Set then
i.,varDecls.[k].SetImpl(KidImp1);
fi;
end for;
and;

CDRM.Assign(ManSpec,i.VarDecls.[index].GetSpec);
Best := 0;
MinTS := 99999999;
for j in 1..ManSpec.*.NumC do
i.VarDecls.[index].SetImp1(ManSpec.r.Children.[j]):
SetKids;
if DoingGlobal then
TS := CalcTS(1);
else
TS := CaleVTS(index,i);
fi;
if TS < MinTS then
MinTS := TS;
Best := J;
fi;
end for;
if Best > 0 then
i.varDecls.[index].SetImp1(ManSpec.*.Children.[Best});
SetKids;
fi;
end;

Section 6.9.3 Some Alternative Policies 221

procedure policy(i:instance);
procedure policy(i:instance) is
begin

var ind => im . new integer;

MarkManagers(i);
for ind in 1..1.NumV do
if i.VarDecls.[ind].Imp1Set = 0 then
PerformOnePolicy(i,ind,Falsa);
fi;
end for;
for ind in 1..1.NumV do
if i.VarDecls.[ind].Imp1Set = 0 then
PerformOnePolicy(i,ind,True);
fi;
and for;
if i.BindProcs then null; fi;
for ind in 1..1.NumV do
Policy(i.VarDecls.[ind]});
end for;
for ind in 1..7.NumP do
if not i.ProcCalls.[ind].AlreadySeen then
Policy(i.ProcCalls.[i:d]);:
fi;
end for;

end;

6.9.4. Simple Constraint

Probably the simplest kind of policy is one that explicitly selects a particular representation.
In Paragon, this can only be done by convention between the abstract data type, the variable
and the policy. The abstract data type must have an attribute that indicates the
implementation, a variable wishing to use explicitly an implementation must use the attribute
in its constraint, and the policy procedure must only search for feasible implementations.
This approach is error prone and requires a lot of coordination between the abstract data

type, policy and variable declaration. However, this approach is developed in this section.

First, a class declaration might be written as shown below:

class Complex is

begin
attribute procedure IsPolar return Booleans.Bit is
begin return Falise; and;

Section 6.9.4 Some Alternative Policies 222

attribute procedure IsCartesian return Booleans,Bit 1is
begin return False; end;
end;

class Polar of Complex is

begin
attribute procedure IsPolar return Booleans.Bit is
begin return True; end;

end;
class Cartesian of Complex is
begin
attribute procedure IsCartesian return Booleans.Bit is
begin return True; end;
end;
The variable using these declarations would choose its implementation by calling the

appropriate attribute in its constraint, for example:

var MyComplex => new Complex
such that desc (MyComplex) . IsPolar return (Booleans.Bit);

The constraint allows only the the Polar implementation of Complex to be feasible. Thus a

policy would need to only pick a feasible implementation. Such a policy is shown below:

Section 6.9.4 Some Alternative Pglicies 223

R el b kbbb H
! ExhaustiveFindAnything H
R e itk :

procedure policy(i:instance);
procedure policy(i:instance) is
begin

var Completed => Booleans. new Bit;

procedure TryAllImpls(IM . j: Integer);
procedure TryAl1Impls{IM . j: Integer) is
begin

var NextVar => im .new integer;

var temp => CDRM . new reference;

var k => im . new integer;

var ind => im . new integser;

if j > i.NumV then
if i.BindProcs then

for ind in 1..i.NumV do
Policy(i.vVarDecls.[{ind]);

end for;

for ind in 1..1i.NumP do
if not i.ProcCalls.{ind].AlreadySeen then

Policy(i.ProcCalls.[ind]);

fi;
end for;
Booleans.Assign(Completed,CheckFeasibility);
fi;
else

NextvVar := j + 1;
TryA11Impls(NextVar);
if Completed then return; fi;
CDRM.Assign{temp,i.VarDecls.[j].GetSpec);
for k in 1..temp.*.NumC do
if i.varDecls.{j].
LocallyFeasible(temp.t.Children.[k]) then
i.varDecl1s.[j].SetImp1{temp.*.Children.[k1);
TryA11Impls(NextvVar);
if Completed then return; fi;
fi;
end for;
fi;
end;

Booleans.Assign(Completed,false);
TryA11Impls(1);

end;

The programmer should not be required to write convoluted code to be able to select

directly an implementation. The current design resulted from my belief that the programmer

Section 6.9.4 Some Alternative Policies 224

should not have direct access to the implementations; only attributes shouid be used. In
retrospect, the lack of direct control over the selection of representation may have been a bit
too extreme. There are times when a programmer wishes to explicitly select an
implementation. One way to provide this ability would be to make the same as constraint
expressions used in procedure specifications available in any expression (and defining it to
return a value that matches Boofeans.Bit). This would allow one to use any kind of expression
in constraints for procedure declarations and permit the use of same as expressions to simply

state the programmer’s intentions, as illustrated below:

var MyVar => new 0bj
such that Myvar.structure same as Obj_Impli_1;

Another iteration of the Paragon design would probably include this modification.

The programs in this chapter have been processed by a prototype transiator for the Paragon
language. The next chapter contains a description of the design of the prototype and some

measurements performed on it.

Chapter 7
Implementation

The prototype translation system consists of two programs, an LALR(1) parser produced by
a parser generation system [Nestor 82] for lexical and syntax analysis and a Lisp program for

semantic analysis, feasibility analysis and interpretation.

The parser runs only on Decsystem-20s and produces an intermediate text file (in TCOL
format [Newcomer 79]) that is used by the Lisp program. The Lisp program is written in a
subset of the Maclisp [MIT 78] and Franzlisp [Foderaro 80] dialects, and runs on both
Decsystem-20s and VAX/Unix systems.

This chapter provides a detailed discussion of this prototype translator. | first provide a list
of the translator’s phases and components. Some static measurements of these phases and
components are provided and discussed. Finally, | present some example programs that were
processed with the transiator. The programs are described and the performance of the
translator on these programs evaluated.

7.1. Phase Descriptions

The compiler consists of twelve phases, where phase roughly means "a single pass over the
program text”. These phases are shown below:

Section 7.1 Phase Descriptions
ML PURIFY NAME SETUPC
(Parser) {input Reader) (Scope Linking) (Setugeggsa
PREDEF ELABS || SETUPI L SETL&PP
(Bmd'g;?daf. (Type Checking) {Se:@u;l P}roc (Setu&gggc.
MARKC || RPOLIC | | ELABI WALK
(Cregte Class-) | (Impl. Selection) |(Feas. Checkingl (w"ge::’_’)'l"-

Figure 7-1: Phase Diagram for the Paragon Translator

The phases are executed in order, but may contain pieces or components that are used in
other parts of the system. For example, phase ELABI contains procedures for checking the
feasibility of a class instantiation or procedure call. These procedures are always executed
when the ELABI! phase is run, but they are also executed if a policy procedure calls the
CheckFeasibility procedure during the RPOLIC phase. Some of the interesting components
that may appear in more than one phase are discussed in Section 7.2.

An important fact is illustrated by the phase diagram: the design of a Paragon transliation
system is conventional. After parsing (ML, PURIFY), several bookkeeping phases create links
between scopes, classes, and procedure specifications and implementations (NAME,
SETUPC, SETUPP, SETUPI!). Semantic analysis is then performed (ELABS), the predefined
environment is created (PREDEF) and object representations are chosen (RPOLIC). Finally
the processed program is made available to later stages of a compiler (WALK).

The only two phases omitted in most systems are MARKC and ELABI. Neither phase is
difficult to construct. The former phase exists only to provide information to the policy
procedure and hence is an unconventional addition to the translation process. However, the

MARKC phase redecorates the class declarations with more links between parent classes and

Section 7.1 Phase Descriptions 207

subclasses. Thus the MARKC phase is another bookkeeping phase which is similar to
SETUPC. The difference is that the additions to the class declarations are accessible to the
policy procedure whereas the decorations added by previous bookkeeping phases are only

for internal use.

The ELABI phase is needed because Paragon separates the ideas of specification and
implementation all the way to the procedure call level. This phase is not difficult to construct.
In most languages, if a procedure call is checked to ensure that it meets specification, and if
an implementation meets its specification, then the transiation system may conclude that the
program is feasible. This is not true for Paragon. Instead an additional pass over the program
is required to verify that implementations are present for all procedure calls. But as explained
in Sections 5.2.3 and 55.5, the algorithm for feasibility checking (elaboration with
implementations) is very similar to the algorithm for type checking (elaboration with
specifications), so the addition of the ELABI phase requires no breakthrough in compiler
technology.

One can therefore conclude that constructing of a Paragon compiler is no more difficult
than constructing a compiler for most algebraic languages. One of the significant differences
between Paragon and other languages is the presence of the type hierarchy. Thus the use of
a type hierarchy should not be eliminated from a language design for fear of implementation
difficulties.

Like the overall design of the translator, the designs of individual phases are also quite
conventional. The remainder of this section describes each phase of the implemented
system.

7.1.1. ML: Parser

The first phase is the parser, called ML”". Itis a Bliss-36 program automatically created by a
parser generator system. The parser accepts text files written in Paragon and produces a
TCOL tree in an LG (linear graph) notation, essentially another text file. The TCOL tree also
contains a name table for later phases of the translator. The BNF description of Paragon that

is used by the parser generator is provided in Appendix B.

n ML stands for My Language. At the time the parser was created, | had no name for Paragon and had to call the
parser something.

Section 7.1.2 Phase Descriptions 228
7.1.2. PURIFY: input Reader

The second phase of the translator is called PURIFY. This phase reads the TCOL file
produced by the parser and creates an internal tree representation. The tree representation
used is quite simple: The tree nodes are represented as unique atoms, and the various
attributes and pointers attached to a tree node are placed on the property list of the atom. For

example, an if statement with the following tree fragment:

noded: <«<if statement>
(test) (statement)
/ \

/ \
noded; nodeb:

would have the internal representation:

noded: (test noded: statement nodeb:)
node4:
node5:

In addition to reading the file, the PURIFY phase also does some simple tree rearranging,
usually renaming property identifiers produced by the parser generator and ridding the tree of
syntactic sugar. An example of the former transformation is the renaming of the LIST and
LISTA properties that are produced by the parser generator into DECLARATION_LIST and
STATEMENT_LIST properties, which are used by later phases. Some examples of the latter
transformations are changing the symbol r into the identifier value and rewriting the
expression a + b into the more verbose IM.plus(a,b). Sections 3.3.4 and 3.3.5 list ali of the
syntactic transformations performed by PURIFY.

7.1.3. NAME: Scope Linking

The third phase of the transiator, NAME, is responsible for creating pointers between a
scope and its enclosing scope, and between each declaration and the scope containing the
declaration. These pointers are used during identifier lookup, because if an identifier is not
found in one scope, the enclosing scope may eventually be searched as well,

In addition to linking the scopes together, the NAME phase also makes some simple checks
for illegal duplicate declarations of identifiers. This is done as an aid to the programmer and is

unnecessary for the proper operation of the translator on correct programs.

Section 7.1.4 Phase Descriptions 229
7.1.4. SETUPC: Setup Class Declarations

The fourth phase of the translator, SETUPC, performs some preprocessing of class

declarations for later use in type checking.

First, the ancestors of each class are found and two lists, the leftmost parent order and the
leftmost elaboration order, are added to each class declaration. These lists are used primarily

for creating simple objects and locating declarations.

With the aid of these lists, the SETUPC phase also tags each class parameter as inherited or
defined. All inherited parameters are also tagged with references to their defining parameters
for later semantic checking. (See Appendix A.7 for a discussion of how parameters are
inherited.)

This phase also numbers the variables in each class and procedure declaration, although
the processing is not directly related to class declarations. When a local instance is created,
the objects associated with it are placed in a list; the indices created during this phase are
used to retrieve the objects during elaboration with specifications, with implementations and
with realizations.

7.1.5. SETUPP: Setup Procedure Declarations

The fifth phase in the translator is called SETUPP. Using the links created by SETUPC,
SETUPP associates each procedure implementation with its corresponding specification.
Since there is no overloading in Paragon, this can be done by merely examining the names of
the procedure specifications in the ancestor classes.

7.1.6. SETUPI: Setup Procedure Implementations

The SETUPI phase creates a list of possible procedure implementations for each procedure
specification on a scope-by-scope basis. Initially, a list of ali visible procedure specifications
is attached to each class and procedure declaration. Then all visible procedure
implementations for each visible procedure specification are aiso gathered and attached to
each class and procedure. During feasibility checking, a list of possible implementations for a
procedure call can then be located by merely examining the declaration for the innermost
simple object of the environment in which the call is appearing. The inclusion of this phase in

the translation system is efficient if one assumes that the use of space to hold the lists of

Section7.1.6 Phase Descriptions 230

implementations is better than the use of time to search the entire environment each time a
procedure call is made to collect possible procedure implementations. Because the
translator is running on a Vax with a slow processor but with a large address space, the

decision was made to trade space for time.

7.1.7.ELABS: Type Checking and Semantic Analysis

The seventh phase of the transiator performs the buik of the semantic analysis, or more
technically, elaboration with specifications. Thus this phase elaborates the universal class
declaration and the user’'s program with specifications. At a practical level, the following tests

are included:

» Procedure implementations match their corresponding specifications.
o Classes are properly derived from their parents.

» Object creations are well specified.

Procedure calls match the appropriate specifications.

o All identifiers denote an appropriate variable, class, procedure or label.

Naturally, the ELABS phase contains procedures for elaborating procedures and classes
with specifications. These procedures are used in several components mentioned in other
sections. Similarly, elaborating classes and procedures 'Awith specifications may require
elaboration of attribute variables, so the ELABS phase may use components from the RPOLIC
phase.

7.1.8. PREDEF: Locate and Bind Predefined Identifiers

The eighth phase of the translator, PREDEF, is used to locate and bind the predefined
classes, variables and procedures in the universal class declaration. Thus the phase finds all
predefined declarations such as: the predefined boolean object for use in if and while
statements; the /M integer manager; and the ClassDecl, Instance, VarDeci, ObjDecl and
ProcCall classes for use in the MARKC and RPOLIC phases. Similarly, this phase finds all
user required declarations: the policy procedure for the selection of object implementations:;
and the user’s main program.

Section7.1.9 Phase Descriptions 231
7.1.9. MARKC: Create ClassDecl Objects

The ninth phase of the transtator, MARKC, creates ClassDec/ realizations that represent
class declarations in the program being processed. References to these ClassDec/ objects
are manipulated by policy procedures to inquire about variable specifications and

implementations, and to select implementation classes for object creations.

7.1.10. RPOLIC: Implementation Selection

RPOLIC, the tenth phase of the translator, first elaborates with realizations an Instance
object for the main program and then executes the policy procedure implementation, passing
the newly created /nstance object as the actual parameter. This phase of the translator
contains all of the procedures and run-time support for elaborating Paragon with realizations.
Since the elaboration with realizations of indefinite instances is identical to elaboration with
specifications, this phase uses some components from the ELABS phase.

7.1.11. ELABI: Feasibility Checking

The eleventh phase, ELABI, checks the program for feasibility. This phase ensures that any
implementation choices made by the programmer for variables (via the policy) are compatible
with the specifications of those variables and that there is a feasible procedure
implementation for every procedure call in the program. Since various components in the
ELABI phase are used to check the feasibility of class instantiations and procedure calls,
these components may also be executed during the RPOLIC phase during calls of the
predefined CheckFeasibility and BindProcs procedures.

7.1.12. WALK: Write Implementation Decisions

The last phase of the translator, WALK, records all of the choices made for object creations
and procedure calls. For every kind of object creation and procedure call, the WALK phase
prints a list of variables along with the selected representations, and a list of procedure calls
along with the selected implementations. Excerpts of this printout are provided in Section 6.6.
in a production system, the transformed program would be passed to a code generation
phase.

Section 7.2 Component Descriptions 232

7.2. Component Descriptions

There are parts of the translator that either do not belong to a particular phase, or are the
primary piece of one phase and a minor piece of other phases, or represent a facility that is
needed in several phases. These parts of the transiator are termed components to distinguish
them from phases. The prominent components in the translator are described below.

7.2.1.Name Components

Three related components, ES_Name, EI_Name, and ER_Name, are responsible for
elaborating name expressions with specifications, implementations and representations
respectively. As name expressions are used to express parameters, variables and procedure
calls, name expressions are truly the center of the translator for processing Paragon.

These three components are interrelated. For example, when a name expression contains
an object creation, and when that object creation is elaborated with specifications, the class
mentioned in the name expression will be elaborated with specifications, and any attribute
variables in it will be elaborated with realizations. Thus ES_Name could cause ER_Name to be
evaluated. Further, these components can be evaluated recursively.

The Name translator components contain three subcomponents. One subcomponent
controls the processing of class instances, one controls the processing of procedure calls
and one controls the processing of local instances. Each set of subcomponents is described
below.

7.2.1.1.Create_Class

One set of translator subcomponents, ES_Create_Class, El_Create_Class and
ER_Create_Class, is responsible for the processing of class declarations and name
components that denote class instantiations or indefinite instances. Like the three translator
components for processing names, each of these three components may call another or
recursively call itself. As a simple example, an object creation may contain some paramesters
that in turn contain an indefinite instance. Thus during the processing of the object creation,
arecursive call on a Create_Class subcomponent will be made for the indefinite instance.

Section 7.2.1.2 Component Descriptions 233

7.2.1.2. Create_Call

Another set of related subcomponents is ES_Create_Call, El_Create_Call and
ER_Create_Call. These are analogous to the Create_Class components except that
procedure declarations and invocations are processed instead of object creations. Like
object creations, one procedure call may require the processing of another procedure call.

7.2.1.3. Create_Local_Instance

The last set of related subcomponents that is discussed here is ES_Create_Local_Instance,
El_Create_Local_Instance and ER_Create_Local_Instance. These subcomponents are
responsible for the processing of a block with its declarations and its statements, and are
used by both the Create_Object and the Create_Call subcomponents.

7.2.2. MYLET: Function Call Utility

The MYLET2 component of the translator is used to ailow a Lisp function to return multiple
values and is completely unrelated to Paragon. In essence, the MYLET function takes a list of
identifiers and a function call, evaluates the function, takes the result of the function, which is
expected to be a list, and assigns each element of the returned list to the corresponding
identifier in the identifier list. MYLET is used widely throughout the transtator.

7.2.3. LOOKUP: Symbol Table Processing

The LOOKUP component corresponds to the usual symbol table routines found in most
compilers. This component is bit more complicated than symbol table routines in most
compilers. In most compilers, a scope is searched to find a declaration that corresponds to a
given identifier. Because objects in Paragon have a rather rich structure, the search can be
very time consuming. To ameliorate the amount of time spent in searching for an identifier,
the LOOKUP component saves various pieces of state information about identifiers in the
program tree as it looks them up in an object. This information is used to speed up future
searches of identifiers when a class declaration is reelaborated during an object creation or

when a procedure declaration is reelaborated during a procedure cail.

72The name MYLET comes from the standard LET macro in Maclisp from which this component was inspired.

Section7.2.4 Component Descriptions 234

7.2.4. COMP: Comparing Objects

The COMP component is responsible for comparing two objects and reporting whether or
not they match, and for returning any identifier bindings that result from the matching
process. Because object comparison in Paragon is more complicated than the usual name
equivalence rule found in most abstract data type languages, the procedures used for
determining whether two objects match are correspondingly more complicated. Hence, the

transiator has a separate component for comparing objects.

7.2.5. GC: Garbage Collector, TIMER: Metering, SW: Switches

Three additional parts of the system do not depend on the details of Paragon but are
required in nearly any prototype written in Lisp: GC, the garbage collector; TIMER, the
translator metering tool; and SW: the transiator debugging switches. Each of the components
is briefly described.

Because most of the system is written in Lisp, the style of programming used in the
prototype creates a lot of temporary data structures that must be garbage collected when no
longer needed. Because the garbage collector belongs to no specific phase, it is considered a
distributed component of the translator. The TIMER component records the entrance and
exit of various functions in the transiator. This component provides the statistics reported in
Section 7.3.3. The SW component controls the setting of various debugging switches that the

translation system uses.

7.3. Translator Performance

Some measurements of the implemented prototype were performed in an attempt to locate
hidden design flaws in the language. These measurements also give some indication of the
relative amounts of effort needed to build different pieces a Paragon translator and the
relative amounts of processing that is needed for different aspects of Paragon.

Three varieties of measurements are reported: static measurements of the transiator, static
measurements of the sample programs and dynamic measurements of the transiator
processing the sample programs. The static measurements reflect the sizes of the phases,
components or programs being described. The dynamic measurements reflect the amount of
time required to process certain programs by certain pieces of the translator. As the

Section 7.3 Translator Performance 235

measurement process consumes resources, these numbers should be 1laken as
approximations. A more useful exercise consists of comparing the numbers in the tables to
obtain relative sizes and speeds between pieces of the prototype rather than to obtain some

absolute performance measurements with which to compare other translators.

7.3.1. Static Measurements of the Translator

Tables 7-1 and 7-2 below give some static measurements of the transiator. For each phase
and component, a measure of the size of the source code in lines of Lisp source is given,

followed by the size of the loaded code in kilobytes of memory.

Phase # Lines Lisp # Kilobytes
ML 452 70
PURIFY 613 174
NAME 94 3
SETUPC 235 5
SETUPP 216 7
SETUP! 70 2
ELABS 2050 53
PREDEF 308 9
MARKC 118 3
RPOLIC 2777 70
ELABI 1604 a7
WALK 560 19

Table 7-1: Static Sizes of Translator Phases

No effort was made to place the source code into some specific format, such as, elimination
of comments or blank lines. Rather, the values for the sizes of source code were simple

counts of lines of all of the appropriate files that make up the entry.

The sizes of the loaded programs were calculated by loading them individuaily into a
Franzlisp system. Unless otherwise indicated, the values for the Lisp part of the translator

were made using interpretive Lisp programs on a Franzlisp interpreter, running on a Vax

?GSince the parser was generated by a parser generator and is written in Bliss, there is no value for the number of
lines of Lisp the ML phase requires. Instead of the number of fines of Lisp, the number of lines of source for the
parser generator are given. The memory size is the resuiting parser in DecSystem-20 kilowords.

7"'This. phase uses compiled Lisp code. It requires 31 kilobytes when not compiled.

Section 7.3.1 Translator Performance 236

11/780 with the Berkeley Unix 4.1 operating system.75

Component # Lines Lisp # Kilobytes
Lisp System n/a 599
Utilities™® 213877 55
COMP 451 11
LOOKUP 344 10
MYLET 28 1
SwW 76 0278
TIMER 51 0.17°
Total® 11803 885

Table 7-2: Static Sizes of Translator Components

As one might expect, the bulk of the system consists of the sources concerned with
etaboration (ELABI, ELABS and RPOLIC) which together comprise about 6355 lines of Lisp,
or about 54% of the system source. Similarly, these pieces require about 158 kilobytes or
approximately 55% of the total system memory (excluding the underlying Lisp system).

Although the memory size seems rather large, one should recall that most of the Lisp code
is interpreted. Compiled Franzlisp is much smaller (and faster) than interpreted Franzlisp.
Three pieces of the system were compiled: PURIFY, SW and TIMER. The memory size
reductions ran between 80% and 97% for the resulting pieces. Thus a production Paragon

translator that was fully compiled would be substantially smaller: between 57 kilobytes (80%)

7E’Only three pieces were compiled: PURIFY, SW and TIMEF(. All measurements for these pieces refer to the
compiled versions.

7s‘t'hca utilities include a set package, a Lisp debugger, a trace package, a stepper package, a control procedure
for running the transiator, file handling functions, some special functions and macros for ensuring the program’'s
compatibility with both Maclisp and Franzlisp, access functions for internal data structures, control flow macros,
string manipulation functions and error handling functions.

77Some of the utilities were provided to me by various people. | have no source size measurements for these
utilities. The given number represents the total lines of sources | had access to.

78This component uses compiled Lisp code. it requires 1 kilobyte when not cbmpiled.
?BThis component uses compiled Lisp code. It requires 3 kilobytes when not compiled.

GOA" phases and components of the Lisp part of system.

Section 7.3.1 Translator Performance 237

and 9 kilobytes (97%), excluding the underlying Lisp system.81 Further, there is a great deal of
similarity between the three pieces that perform elaboration, so a production design might
combine them into a single piece of code, further reducing the final size of the transiator. By
comparison, the Pascal compiler on the same Unix system requires about 13 kilobytes of
memory space and the C compiler requires about 10 ki!obytes,232

7.3.2. Static Measurements of Some Programs

Several example program fragments were processed by the prototype to measure the
dynamic performance of the prototype. This section discusses the program fragments that |
used for measuring the performance of elaboration with specifications and implementations.
The program fragments used for measuring the performance of elaboration with realizations |
defer until Section 7.3.3.3.

Four kinds of program fragments were processed: the predefined environment for Paragon,
some specifications of abstract data types, some implementations of abstract data types and
some application programs that use abstract data types. Each set of test fragments is
described, and then a table listing their static characteristics is provided. The sources for
these programs are provided in Appendices E and F.

Although some program fragments may not be translated without others, all of the figures in
the tables represent incremental values. For example, an application program may require the
predefined environment and some abstract data types to be defined, but the measured values
for the predefined environment and the abstract data types are subtracted from the measured
values for the entire program. The revised measurements are presented in the tables for the
application program fragment.

81Severai attempts were made to compile the entire transiation system. Several errors in the compiled code
prevented the use of a compiled version of the entire transiation system. Some of these resuited from the slightly
different semantics of interpreted and compiled Lisp and some were untraceable compiler errors. With enough
perseverance, the entire system could have been compiled, but such effort did not seem warranted for the limited
number of tests.

820ne should remember that the Pascal and C compilers contain a parser and a final code generator which the
Lisp part of the Paragon system omits. However, the Paragon system confains an additional tree builder in the
PURIFY phase and an interpreter that the Pascal and C compilers omit.

Section 7.3.2.1 Translator Performance 238

7.3.2.1. Predefined Environment

The first program fragment is the predefined envirocnment that is declared in the universal
environment, and is denoted Base in the tables. The Base program fragment includes the
declarations of classes for integer objects and boolean objects, the declaration of classes that
can be used as type constructors for pointers and arrays, and the class declarations required
by the policy procedure. The corresponding procedures for arithmetic, relational operations,
logical operations and transput are also declared. The program text for the predefined

environment is provided in Section 6.2.

7.3.2.2. Abstract Data Type Specifications

| constructed two general purpose abstract data types for use in application programs: sets
and lists. The design of both matched the design in Low’s systems as much as possible [Low
74]. Thus the specifications contain a large number of procedures, most of which are not
used in the application programs. in addition, the specifications also contain attribute
declarations. The interpretation of the attributes is explained with the entire program texts in
Appendices E.4 and E.11. Measurements referring to set specifications are denoted SetSpec
in the tables. ListSpec entries in the tables refer to measurements performed on list

specifications.

7.3.2.3. Abstract Data Type Implementations

For each abstract data type specification, | programmed several implementations in
Paragon. Again, the design of the implementations was taken largely from Low's system [Low
74). For sets, the following implementations were written:

® An unsorted, singly linked list, SetULink

s An sorted, singly linked list, SetSLink

o An unsorted array, SetUArray

e An sorted array, SetSArray

« Shared elements with attribute bits, SetAttBit

¢ BTree, SetBTree

The prototype measured the processing of the first five implementations. The program text for
ali of the implementations can be found in Appendix E.1.

Section 7.3.2.3 Translator Performance 239

The following implementations were written for lists:

o Singly linked list, ListLink
o Doubly linked list, List2Link

e Array, ListArray

The prototype measured the processing of all of the implementations. The program text for

the list implementations can be found in Appendix E.2.

Like their specifications, the implementations of abstract data types also contain attribute

declarations which may be used by a policy procedure during the selection process.

7.3.2.4. Application Programs

For application programs, | chose programs that previously appeared in the representation
selection literature and rewrote them in Paragon. Three sorting programs (/nsrt2, Insrt3,
Merge) were copied from Low’s thesis [Low 74], a Huffman encoding program (Huffman) was
copied from a SETL paper [Freudenberger 83]and a transitive closure algorithm (TransCio)
was taken from Rovner's thesis [Rovner 76]. A simple program to find the maximum of a set
(SetMax) was also written. The full text of the application programs can be found in Appendix
F.

7.3.2.5. Measured Sizes of Programs

Table 7-3 presents some measures of the program fragments in terms of the number of
source lines of the text, the number of TCOL nodes produced by the parser, the number of
classes declared and the number of procedures declared.

A glance at Table 7-3 above reveals that application programs are significantly shorter than
abstract data type specifications and representations. This is due primarily to the absence of
local class and procedure declarations in the application programs. The Huffman program
does declare some local classes and procedures, and its size is significantly larger than that
of the other programs.

Section 7.3.3 Translator Performance 240

Program Source Lines TCOL Nodes # Classes # Procedures
Base 241 944 26 51
SetSpec 220 762 2 35
ListSpec 232 788 2 39
SetULink 204 1290 3 27
SetSLink 313 1372 3 27
SetUArray 227 800 2 27
SetSArray 356 1906 2 27
SetAttBit 334 1560 3 31
ListiLink 465 2502 3 K72
List2Link 427 2510 3 R
ListArray 290 1602 2 35
Insrt2 47 168 0 0
Insrt3 45 153 0 0
SetMax 35 127 0 0
TransClo 78 295 2 2
Merge H 406 0 0
Huffman 220 980 6 8
Total 3815 18165 59 377

Table 7-3: Static Sizes of Program Fragments

7.3.3. Dynamic Measurements of Transiator

The translation system was exercised in various ways to measure its performance while
elaborating program text with specifications, implementations and realizations. Because each
of these kinds of elaborations are used in different amounts in different circumstances, three

different kinds of measurements were gathered, one for each kind of elaboration.

7.3.3.1. Measuring Elaboration with Specifications

For measuring elaboration with specifications, each program fragment was parsed and
semantically checked which corresponds to processing the fragment from the ML phase
through the ELABS phase. No representation selection or feasibly checking is appropriate,
so the prototype operated on fragments that contained an empty policy and nothing in the
main program to instantiate. The performance of the prototype as it operated on these
program fragments is reported in two tables: Table 7-4 shows the phase measurements
through the ELABS phase; and Table 7-5 shows the measurements for the GC, COMP,

Section 7.3.3.1 Translator Performance 241

LOOKUP and MYLET components. All the numbers represent seconds of CPU time on a
VAX 11/780 interpreting Franzlisp.

These tables give measures of the prototype's performance when doing semantic checking
of a program. It should be noted that the measurements in the two tables are not mutually
exclusive. For example, some of the time in the ELABS phase was spent doing garbage
collection {GC), comparing objects (COMP), looking up identifiers (LOOKUP) and returning
multiple values from Lisp functions (MYLET). Thus, the figures should should be viewed as
different ways to break down the total time spent in processing the program.

Program ML PURIFY NAME SETUPC SETUPP SETUP! ELABS Total
Base 15 145 3 20 2 10 421 616
SetSpec 13 158 0% 7 4 8 790 980
ListSpec 13 162 1 g 5 g 6897 896
SetULink 19 269 1 12 4 4 1207 1516
SetSLink 20 297 0 12 1 5 1748 2083
SetUArray 14 237 1 15 4 4 1885 1860
SetSArray 24 479 1 19 4 5 2133 2665
SetAttBit 22 353 1 18 6 5 1990 2395
List1link 31 512 5 27 6 g 1951 2541
List2Link 32 513 1 19 6 8 2226 2805
ListArray 22 331 1 15 7 7 1323 1706
insrt2 5 28 1 2 1 1 62 100
Insrt3 4 34 0 0 c 1 40 79
SetMax 3 45 1 3 1 1 78 132
TransClo 6 57 1 4 1 1 243 313
Merge 8 100 0 3 o 0 604 715
Huffman 16 223 0 13 6 0 1692 1950
Total 267 3943 18 198 58 78 18790 23352
Total % 1% 17% 0.1% 0.8% 0.2% 0.3% 80%

Table 7-4: Phase Measurements for Semantic Analysis

From the table above and Table 7-3, we can calculate the overall performance of the
semantic analysis at 10 lines of source per minute, or 47 TCol nodes per minute. A more
detailed analysis is presented below.

83 alue of 0 means that the amount of time required was less than 1 second.

Section 7.3.3.1 Translator Performance 242

The parsing and bookkeeping phases consume a smail fraction of the processing time: less
than 3%. Although the elaboration with specifications (ELABS) seems to require over four
times the time required by the input reader (PURIFY), one should remember that the PURIFY
phase is compiled. Several interpreted versions of PURIFY were run on a subset of the
program sources; the interpreted versions ran between 5.4 and 25 times slower than the
compiled version.®* If the ELABS phase were similarly compiled, one should expect a factor of
5 to 25 speedup. Under a 5 fold speedup, the elaboration of Huffman {a 220 fine program) with
specifications would require about five and a half minutes. Although still a rather large value
for processing, the speed becomes comparable to the processing required for file reading
and minor tree manipulations. Assuming that PURIFY and ELABS still perform equivalent
amounts of processing in a production-quality compiler, and given the speed of production-
quality tree manipulators [Lamb 80], a production-quality Paragon compiler should be able to

type check and semantically process a program quickly.

Another way to analyze the performance of the translator is to consider how much time is
spent by various components. Table 7-5 below gives some component measurements (along
with a repetition of the total time required for semantic analysis).

84The different interpreted versions use different combinations of macros and fexprs. The compiled version uses
only macros.

Section 7.3.3.1 Translator Performance 243

Program GC COMP LOOKUP MYLET Total Time for Semantics
Base 308 157 110 114 616
SetSpec 279 234 111 96 980
ListSpec 256 266 100 101 896
SetULink 456 088 154 148 1516
SetSLink 632 996 240 293 2083
SetUArray 577 344 252 193 1860
SetSArray 777 727 321 241 2665
SetAtiBit 676 1305 290 293 2395
List1Link 767 1803 238 263 2541
List2Link 831 1938 292 300 2805
ListArray 496 541 221 149 1706
Insrt2 214 49 93 39 100
Insnt3 52 0 69 71 79
SetMax 62 0 87 24 132
TransClo 237 113 61 126 313
Merge 452 265 171 192 715
Huffman 991 791 320 326 1950
Total 8063 10517 3130 2969 23352
Total % 35% 45% 13% 13%

Table 7-5: Component Measurements for Semantic Analysis
The times add to more than 100% because the components are not independent. For

example, garbage collection (GC) and Lisp function evaluation (MYLET) occur throughout the
COMP and LOOKUP components.

Two interesting facts emerge from the data in Table 7-5: garbage collection consumes much
of the processing time and comparing two objects is an important operation in the system.
Each of these results is discussed below.

Because the system is written in Lisp, it uses many lists to hold intermediate and temporary
structures. For example, every time a procedure call or object instantiation is made, the
environment in which the corresponding procedure or class is to be elaborated, is created by
making a hew list whose CAR is the newly created call or class instance and whose CDR is the
call or creation environment. When the call finishes, or the object can no longer be
referenced, the storage for this list that describes the new environment may be reclaimed.

Normally, this reclamation may be done when the Lisp routine processing the call or

Section 7.3.3. Transiator Performance 244

instantiation exits with 2 conventional stack discipline. Lisp has no such stack discipline for
the created lists, so they must be garbage collected. The huge number of object creations
and procedure calls in a typical program thus creates an enormous number of lists.%® Another
place where the tranglator creates a lot of lists and then discards them is during MYLET,
where the results of a function are packaged in a list, the function returns, the list is taken
apart and assigned to individual variables, and then the list is discarded. This occurred about
a third of a million times during the experiments. A third occasion when there is a large usage

of temporary lists occurs during object comparison, and is discussed in more detail next.

Object comparison takes about half of all of the processing time according to Table 7-5.
This seems to be partly the result of garbage collection probiems, which are caused by
normalizing operations, partly the cost of individual comparison operations, and partly the

result of a large number of object comparisons.

Since the comparison functions create many intermediate fists, a lot of garbage collection
occurs during execution of the comparison functions. These lists are created because
objects, which are represented as lists of simple objects, are subjected to several kinds of
normalizing operations. For example, one normalizing operation is the removal of certain
simple objects from each list before performing an element-by-element analysis of the lists.58
Because each normalizing operation may require the creation of a new temporary list, there is
an enormous potential for creating a large number of lists, each of which will need to be

garbage collected, and the creation of each may cause a garbage collection.

Object malching is also intrinsically expensive. As mentioned in Segtion 3.4.2.2, two objects
may match if they have different number of simple objects. The matching process will ignore
some of the simple objects in the actual object during the maiching process. The algorithm
by which these holes are found could require an exponential number of test comparisons.87
This searching for holes is one of the reasons that the prototype translator spends

approximately 2 tenths of a second per object comparison. Although the example in Section

85The transiation system processed approximately 25 thousand expressions, each of which contained at least one
procedure call or object instantiation.

86S«ee Appendix A.3 for a compiete discussion of how two objects are compared.
8-"l’he number of tests is exponential in the number of simpie objects in the actual object. In particuiar, if there are

a simple objects in the actual object and f simple objects in the formal object, then there are a choose f ways that the
obyects may be compared.

Section 7.3.3.1 Translator Performance 245

3.4.2.2 is a bit contrived, the circumstances when a hole appears are quite common, as

illustrated below:

class universal is
begin

class AssignableManager is
begin

class Assignable is begin end;

procedure Assign({Assignable,Assignable);
end;

class MainProgram is
begin

! Local "Type" Declaration :

R R e LR L LE L LR L EEE T

class LocalObjectManager of AssignableManager is
class LocalObject of Assignable is begin end;

end;

var LOM => new LocalObjectManager;
var 0bj1 => LOM . new LocalObject;
var Obj2 => LOM . new LocalObject;

LOM.Assign{0bj1,0bj2);
end;
end;
The program above is an abbreviated version of the predefined environment which contains
the predefined assignment classes and procedure, and the user's program. The user's
program declares some kind of local objects that are also assignabie. However, the parameter
matching for the call of the Assign procedure has the same hole problem illustrated with
Kitchens. Here it is the MainProgram simple object that is skipped. Both the TransClo and
Huffman programs have such local declarations. Because nearly every nontrivial program will

contain local declarations that are assignable, this problem is recurrent.

Even if object comparison did not require garbage collection and was intrinsically fast, the
comparison operation is still a frequently used component and thus accounts for a large
fraction of the processing time. Object comparison is performed on every object instantiation

and procedure call. In these experiments, for example, about 50 thousand object

Section 7.3.3.1 Transiator Performance 246

comparisons were performed. A combination of the garbage collection requirements and the
frequency and complexity of the comparison operation accounts for the 45% of the

translator's time spent doing object comparison.

These probiems are not insoluble. With some slight changes in the language, the number of
normalizing operations during object comparison may also be reduced, thus eliminating some
of the processing needed for object comparison. Such changes are discussed in Section 8.1.
Further, inefficient garbage collecticn is not needed to reclaim intermediate lists. The
comparison algorithm knows exactly when the intermediate list is no longer needed and thus
when its storage can be reclaimed. The transtation system could also merge the compare and
skip-simple-object operations and not create the intermediate list. Therefore a production
system will not spend as much time doing object comparison as it would in the prototype.

7.3.3.2. Measuring Elaboration with implementations

So far, the discussion of translator performance has only considered semantic processing.
A rather new kind of processing required by Paragon is feasibility checking. This ~hecking is
performed by the ELABI phase, so several experiments were performed to calibrate the
amount of work required for this phase against the amount of processing required for

semantic checking. These experiments and their results are discussed in turn.

The six appiication programs were translated under two sets of circumstances. Initially,
sach was checked for feasibility when no selections were performed for the variables in the
programs. This represents the minimum amount of time necessary for feasibility checking
since the fewest rumber of procedure implementations will be considered. Under these
circumstances, none of the programs were feasible. The application programs were then
translated with a single available representation for each of the set and list abstract data types
{SetUArray and ListArray), and with a policy that selected the one available implementation for
each variable. Each program was then checked for feasibility, and in fact, all of the programs
are feasible with these selections. Thus these experiments provide some measures of the
minimum and typicai88 resources required for checking a program’s feasibility.

Table 7-6 below gives the raw data (in VAX 11/780 CPU seconds) for the experiments, along
with some comparisons between the efforts for feasibility checking and semantic checking.

SeA feasible program is assumed to be typical,

Section 7.3.3.2 Transiator Performance 247

Program ELABS ELABI %of ELABS ELABI % of ELABS % of Infeasible
(infeasible) {Feasibie)
Insrt2 62 134 216% 451 727% 337%
Insrt3 40 123 307% 453 1132% 368%
SetMax 78 85 108% 228 292% 268%
TransClo 243 448 184% 958 394% 214%
Merge 604 560 93% 3100 513% 554%
Huffman 1692 893 53% 3798 224% 425%
Total 2719 2243 82% 8988 331% 401%

Table 7-6: Dynamic Performance of Feasibility Checking

The data above reinforce some expectations about execution times for feasibility checking,
especially as the proportion of executable statements in a program increases, as the
possibility tree grows and as the implementation selections change an infeasible program into

a feasible program. A more detailed discussion of these data follows.

Because elaboration with implementations resembies the symbolic execution of a
prc}gra\m,89 one would expect that the higher the proportion of executable statements and
object declarations to unexecutable class and procedure declarations, the more time would
be spent during elaboration with implementations as compared to elaboration with
specifications. Further, one would expect that feasible programs would require more
processing than infeasible programs, since a feasible program would have procedure
implementations for all procedure calis that would also have to be elaborated with
implementations. This is borne out by the data. For example, Huffman contains a sizable
amount of local class and procedure declarations and thus the processing required for
checking the feasibility of an infeasible version of Huffman by the ELABI phase is less than for
its semantic checking by the ELABS phase. On the other hand, the two insertion sort
procedures, Insrt2 and Insrt3, have neither local class nor procedure declarations, so the
amount of time for their semantic checking is far less than for feasibility checking.

One would also expect the amount of execution time spent during feasibility checking to
increase as the size of the possibility tree increases. When a feasible program is elaborated
with implementations, the entire call graph is traced, and thus individual procedures may be
elaborated many times during the ELABI phase (once for each call where the selected

procedure is used as the implementation), whereas each implementation is elaborated exactly

89A(though the statements in loops are elaborated exactly once and recursion is guaranteed to terminate.

Section 7.3.3.2 Transiator Performance 248

once during the ELABS phase (when checking the declaration of the procedure
implementation). Further, the deeper the call graph, the greater the time that is required as
compared with ELABS processing. This is again borne out by the data where programs that
perform sorting (Insr12, insrt3, Merge) require several times as much processing for feasibility
checking as for elaboration with specifications. This is so striking here (62 vs 451, 40 vs 453,
604 vs 3100) because the list and set operations that are used have internal calis to other

procedures, thus these applications have a fairly deep possibility tree to be examined.

The data also indicate that a feasible program generally requires more processing than an
infeasible program. Typically, a feasible program has more procedure implementations to
consider while an infeasible program méy be missing some implementations. These data
show an extreme situation; in practice, some infeasible programs may be closer in their
processing needs to feasible programs if only a few implementations are missing. Under
other circumstances, different implementations may have different call graphs, and thus an
infeasible program could require more processing than a feasible program with different

selection decisions.

The disquieting fact from these data is that feasibility checking is quite expensive: it varies
from approximately the same cost as semantic processing to three times the cost of semantic
processing. If performed once, this would not be such a great burden, but the process of
checking the feasibility of a program is used to associate attributes with nodes in the
possibility tree. Recall that the paradigm for making seiections has three steps: pick an
implementation; elaborate the program with implementations; and then execute the attributes
to gather information about the decisions. Considering many different implementations would
require reelaborating the program with implementations many times, at possibly prohibitive
cost. The compromise provided by the Paragon system is a facility for checking the feasibility
of a block (see BindProcs in Section 5.4.2.1), thus limiting the examination to a single node in
the possibility tree. In practice, this may not be sufficiently fast for considering many different

implementations.

7.3.3.3. Measuring Elaboration with Realizations

Elaboration with realizations takes place when executing the policy procedure and when
executing attributes. Because policies and programs can vary widely, there is no general
measurement of the time required by any particular policy operating on a particular program.

Instead, some measurements were made of the relative speeds of some basic constructs.

Section 7.3.3.3 Translator Performance 249

The six measurements in Table 7-7 on page 251 were made during the execution of small
policy procedures operating on a null application program. To provide a baseline, the
execution of a policy with two declarations (for later use) was measured. Specifically, the
following policy was executed:

procedure policy(i:instance) is
begin
var j => im . new integer;
var kK => im ., new integer;
end;
To minimize the effects of calling the policy procedure, the other tests were constructed by
placing the construction of interest in a for loop. The basic shell with a for loop is:
procedure policy(i:instance) is
begin

var j => im . new integer;
var k => im . new integer;

for j in 1..1000 do

end for;
end;
In the first nonempty test, the policy procedure declares a local procedure and executes it.
The source for this third test is
pracedure policy(i:instance) is
begin
procedure TestProc; procedure TestProc is begin return; end;

var j => im . new integer;
var k => im . new integer;

for j in 1..1000 do
TestProc;
end for;
end;

The fourth test adds some more complexity: a single assignment statement. Recall that a
literal is actually a function call, as is the assignment statement, so two procedure calls are
being made for each execution of the assignment statement. Unlike the previous example,
the procedure Assign also has parameters, which makes its call more costly to execute than

that in the previous exampie.90 The complete text is shown below:

Orpe fully expanded name expression for the call would be IM.Assign(k,IM.Literal(Special_Make_Literai(1))).

Section 7.3.3.3 Translator Performance 250

procedure policy{i:instance) is
begin
var j => im . new integer;
var k => im . new integer;

for j in 1..1000 do
k = 1;
end for:
end;

So far, the policies have dealt with nonattribute procedure calis. Since policies may also use
attributes, | performed an experiment to measure the time required for an attribute call.
Initially, a baseline policy was executed. Because atiributes always return an object, the
baseline must also accommodate a returned value so that the way in which the return value is
used will not affect the timings. This is accomplished by placing the attribute call in an if
statement, so that the returned value is used as the test. The baseline can contain the
equivalent of the returned value in the same if test, thus isolating the differences between the
baseline and the sample program to only an attribute call. The actual text of the baseline and

the sample programs are shown below:

procedure policy(i:instance) is
begin
var j => im ., new integer;
var k => im . new integer;

for j in 1..1000 do
if True then fi;
end for;
end;

class mainprogram is

begin
attribute procedure MyAttribute return Booleans.Bit is
begin return True; end;

end;

Section 7.3.3.3 Translator Performance 251

procedure policy(i:instance) is
begin
var j => im . new integer;
var k => im . new intager;

for j in 1..1000 do
if i.MyAttribute returns {Booleans.Bit) then fi;
end for;
end;

class mainprogram is

begin
attribute procedure MyAttribute return Booleans.Bit is
begin return True; end;

end;

The resuits of the all of the experiments are tabulated below:

Policy Policy Execution Time
2 Declarations 33
1000 lteration For Loop, empty 689
1000 iteration For Loop, single proc. call 1422
1000 iteration For Loop, assignment stat. 5117
1000 Hteration For Loop, if statement 1570
1000 Iteration For Loop, attribute call 3376

Table 7-7: Dynamic Performance of Policy Procedure Execution

From these experiments, we can deduce the time required for the continuation of an
iterator, the invocation of a procedure, the passing of a parameter and the invocation of an
attribute. A discussion of these calculations is presented below, followed by a summary in
Table 7-8.

Relatively little time is spent elaborating the empty policy with two declarations: 33 seconds.
The elaboration of an iterator adds another 656 seconds of execution time, about half a
second per iteration of the for loop, which is only continuing an iterator.%' A single procedure
call adds another 733 seconds, or about three-quarters of a second per loop. Thus a

parameterless procedure call is about 50% more time consuming than restarting an iterator.

g’RecaH that the notation 1.7000 is syntactic sugar for the invocation of a predefined iterator,
iM.Sequence(1,1000).

Section 7.3.3.3 Translator Performance 252

The assignment statement adds another 3695 seconds, or about 3.7 seconds per loop.
However, this measurement really corresponds to three procedure calis. in the prototype,
literals are implemented in a two procedure call process. The first procedure call emulates the
construction of the special literal functions mentioned in Section 3.3.6 by taking the integer
literal as a string and returning a Word object. The second procedure call is the Literal
procedure which, as defined by Paragon, takes the Word object and returns an Integer object.
The Integer object in turn is the second parameter to the third procedure, namely the Assign
procedure. Thus there are three procedure calls and a total of four procedure parameter
bindings: one for the literal string, one for the Value procedure, and two for the Assign
procedure. If each procedure call without parameters accumulates 733 seconds, then 2199 of
the 3695 additional seconds are used for the three procedures’ execution overhead and 1496
seconds are used to bind four parameters during the thousand iterations of the loop, or about

0.4 seconds per parameter binding.

The last two policies are used to measure the execution time of an attribute call in the for
loop. Because the attribute body contains an expression which is identical to the expression
in the if statement of the baseline, namely True, we can subtract the time of the fifth test from
the sixth test, giving 1806 seconds for a thousand executions of the attribute call. Thus each
attribute call required about 1.8 seconds.

These results are summarized below:

Function Unit Execution Time
lteration Continuation 0.66
Parameteriess Procedure Call 0.73
Parameter Binding 0.37
Parameterless Attribute Call 1.81

Table 7-8: Unit Execution Times of Policy Procedure

Although the prototype's speed is too slow for interactive use, its speed is sufficiently fast
for testing the policy procedures used in these experiments in a batch-mode operation. The
primary reason for the slow speed is the implementation of the interpreter. The program tree
is merely walked as necessary to perform the required actions. In addition, the added level of
Franzlisp interprétation slows execution of Paragon sources. However, Paragon procedures
are no more complicated than Pascal or Simula procedures and so a production-quality
translator that generates native machine code shouid do as well as compilers for those
languages.

Section 7.4 Conclusions about the Prototype 253

7.4. Conclusions about the Prototype

The implemented prototype served its purpose, namely as an illustration that the type
hierarchies can be added to current languages without radical changes to the compiler
design. Although the current implementation is slow, the design is conventional, and by
comparing the processing requirements consumed by new features of the system, for
example, ELABI, with well understood features, for example, ELABS and PURIFY, one can
conclude that a production quality version of the new phases should not consume more

resources than the more conventional parts of the compiler.

Chapter 8

Retrospective on the Language Design
and Implementation

This research was predicated on my belief that type hierarchies provide a natural way to
express the refinement process for abstract data types, from specification, to implementation,
to selecting a particular implementation. One expression of this belief is the current Paragon

design which uses type hierarchies as the basis for its abstract data type features.

On page 20, Chapter 2 provided four sets of specific goals that a language design using
type hierarchies should meet. The first two sets of goals dealt with the ways that data
abstractions could be specified and used. The third set of goals direct the way that
representations for a data abstraction should be selected. The fourth set of goals outlined
some requirements that an implementation of a system based on type hierarchies should
meet. In this chapter, the Paragon design will be evaluated with respect to these goals. Where

imperfections remain, some suggestions for future work are given.

8.1. Abstract Data Type Features

Several goals were presented for the abstract data type features: specifications could be
refined; related specifications could be combined in a single module; muitiple
implementations for an abstract data type could be written, multiple implementations for an
abstract data type could be used simultaneously in a program; multiple implementations for
an abstract data type could interact in a program; and a single representation could be written
for muitiple specifications.

These goals were met by the use of classes to define a type hierarchy. Classes allows a
programmer to express generalizations. These generalization classes are inherited by
specification classes to provide class declarations that serve as specifications for variables.
Further refinements of classes, that is, subclasses, can add implementations of the procedure

Section 8.1 Abstract Data Type Features 256

specifications provided in the generalization and specification classes. These subclasses

serve as implementations for variables.

Nested classes support the object-manager model of programming. This model uses one
class declaration to define a manager of objects and a nested class declaration to define the
individuals handled by the manager. The use of nested classes to implement the object-
manager model also allows the managers to be inherited by one class while keeping the
individuals in separate classes. This shared manager may then have access t¢ both
representations of the individuals. Thus the use of nested classes allows a programmer to
express multiple representations of a data type that can not only be used simultaneously in a

program, but may interact as well.

The packaging of abstract data types in classes also permits details of refinements to be
introduced at the proper time. A Set could be specified as holding any kind of element while
each implementation could specify exactly what additional properties were required of the

element for that implementation of Set to work.

Many of these effects come naturally because the same mechanism, namely the class
declaration, is used for both managers and individuals. For example, class nesting and
inheritance permits procedures to be declared in shared managers where they can affect
different individuals. Further managers are treated no differently than other instances of
classes and so may be created as necessary, passed as parameters and returned from

functions.

My major criticism of the class feature in Paragon is that it does not correspond exactly to
the object-manager model of programming. Instead, the classes may be used to simulate this
model, much in the same way that goto and if statements may be used to simulate more
abstract control statements such Aas while, case and repeat. Like the goto features in
assembly languages, the c/ass features in Paragon are probably too general to act as the only
data structuring mechanism in the language. The problems with this generality becomes
evident upon reflection of some of the implications of the design:

¢ Constraints are required in procedure specifications for refining procedure
specifications along with their managers and individuals (Sections 3.5.4 and
44.1).

e The expressions in return expressions of procedure declarations must use
identifiers declared in parameters to properly express the return object of the
procedure (Section 4.4.2).

Section 8.1 Abstract Data Type Features 257

¢ Comparison of objects is complicated by holes in objects. Holes appear in
objects because of intervening declarations of classes and procedures between
specification and implementation classes (Sections 3.4.2.2and 7.3.3.1).

 The language is extremely verbose (every example, also Sections C.4 and C.5).

o Specifications ma{f only be added to the hierarchy, never removed. Therefore the
hierarchy becomes very rigid and difficult to change (Sections 4.4.4 and 4.4.5).

« Implementations are difficult to organize in useful fashion for sharing (Section
4.6.2).

One possible approach towards solving these problems would be to provide more explicit

support for the object-manager model. Some salient features of this support include:

o Explicit distinction between managers and individuals;

e Explicit distinction between specifications and implementations;
o Close the scopes that define managers;

o Explicit separation of types and objects;

« Explicit import and expor: lists for the encapsulation mechanism.
« Implicit combining of managers for implementations;

o Implicit use of managers in expressions;

These features would eliminate the need for nested classes and the all of the notations and
semantics that is required for them. Further, these features eliminate differently sized objects
s0 object matching shouild be much faster. The use of explicit export and import lists can help
reduce the cost of feasibility analysis by limiting the possible interactions between
representations. The implicit combining of managers and the implicit use of managers in
expressions should make the language more concise than Paragon. The separation of types
would eliminate the bizarre run-time error where an indefinite instance is used as an
environment when invoking a procedure. instead, compile-time analysis could guarantee that
a definite instance was present when necessary.

A language design that includes those suggestions might be able to avoid many of the
problems that befell Paragon. Without such a complete language, however, | would hesitate

to state that those specific criteria are enough to ensure a consistent and concise language.

Section 8.2 Describing and Selecting Abstract Data Types 258

8.2. Describing and Selecting Abstract Data Types

Another set of goals for the design of Paragon is that a programmer should be able to
describe and select abstract data types without giving direct access to the implementation.
Attributes, policies and possibility trees provide the features that allow the programmers to
describe and select abstract data types.

8.2.1. Attributes

Attributes provide a way to describe abstract data types, especially if the specification
contains an attribute that may be redeclared by the implementations. The programmer may
then use attributes to describe the ways in which impiementations differ while protecting the

internal details against unauthorized access.

The inclusion of a programmer controlled facility for describing data types is a significant-
departure from data abstraction languages. Usually, only predefined types have descriptive
information availabie for the different implementations. Thus the attribute facility in Paragon is

quite innovative.

Unfortunately, the attribute facility is very verbose. The kinds of information that attributes
provide are usually very simple: a formula that defines the amount of space required by a
representation; whether performance measurements are being carried out; whether the
implementation is a debugging version. Most representation selection systems use a specific
format for encoding this data in a readily usable format. In Paragon, general procedures must
be written for any piece of information, even simple boolean values. Thus a large amount of
program text is consumed providing very little information. An approach for dealing with this
problem is presented in Section 8.2.7.

Another problem with attributes is their distributed nature. A programmer cannot readily
determine what sorts of representation information are available for an abstract data type
without reading all of the implementations of that data type. Unlike most representation
selection systems, the representation description is stored with the representation and not
collected in some place external to the representations. Further, there is no guarantee that all
representations have the same attributes. If one wants to perform a space optimization
algorithm in the policy, it would be helpful to guarantee that each representation provides a
measure of the space it required. Unfortunately, there is no such method in Paragon for

Section 8.2.1 Describing and Selecting Abstract Data Types 259

insisting that some set of classes all provide the same set of attributes. The compromise
provided by the language is the dynamic selection of attribute procedures. If one wants all
representations of an abstract data type 1o contain a certain attribute, one declares that
attribute in the specification. This attribute declaration then serves as a default value. Should
any implementation not declare the needed attribute, the attribute declared in the

specification can be used by the policy.

An alternative design for attributes would require attribute specifications and
implementations just like nonattribute procedures. This has two problems. First, some groups
of implementations may have atiributes that are not meaningful to all implementations.
Therefore it is not appropriate for all implementations to declare that attribute. For example,
one may want to include the notion that an implementation performs timing measurements.
Only those implementations that have measuring capability should contain attributes that

describe the kinds of measurements that are performed, not all implementations.

A second problem is the size of change required when a new attribute is added because of 2
new implementation. Suppose that a new implementation were added that contains a new
facility: the new implementation measures performance. No other implementations measure
performance. One would want to add an attribute to that new implementation describing the
fact that it measured performance. If specifications and implementations for attributes were
requirec, then the original specification of the abstract data type and every other
implementation of the abstract data type would have to be changed to add a specification or
implementation, respectively, for this new attribute. Because the addition of a new
implementation should not cause such a drastic modification of existing implementations, the
approach of using attribute specifications and implementations was rejected.

8.2.2. Policies and Possibility Trees

The design of Paragon included a goal of allowing automatic selection of representations.
This is achieved by the policy procedure, which provides the programmer with the ability to
specify the criteria for making representation choices. The translation system uses the policy
to make the actual representation selections for variables. The primary motivation for the
design of the current system was to separate policy and mechanism in the same sense as
Hydra [Wulf 74]. | feel that selecting out particular syntactic features of the language for the
selection mechanism, such as loop depth, would bias the selection strategy. However, the

more features that are made available by the selection mechanism, the greater the

Section8.2.2 Describing and Selecting Abstract Data Types 260

convenience for the programmer. One extreme of this situation exists in current compilers: a
programmer merely specifies that a program should be optimized for space, leaving to the
compiler all of the decisions as to how to make a procedure space efficient. Yet all of the
goals for integrating representation selection with data abstraction suggest that the
programmer should be deciding how selections should be made, not the compiler. Therefore
the translation system should provide the programmer with data about the program and let
the programmer institute whatever policy is appropriate. The extreme design is to provide the
policy writer, that is, the programmer, with complete access to the parse tree. Such an
approach turns the policy writer into a compiler writer, which is considered too inconvenient
for the typical programmer. Thus current design of Paragon reflects a compromise to relieve

the tension between flexibility and convenience.

The construction of a possibility tree to represent the program and the execution of a policy
procedure to make selections are features that attempt to provide the programmer with
enough facilities to describe popular selection strategies without requiring the programmer to
be a compiler writer. As shown in Sections 6.5 and 6.9, many different selection strategies
can be written. Thus the Paragon design subsumes and generalizes many previous

representation selection systems.

However, the integration of the selection facilities with the abstract data type features has
several problems, At best, the selection facilities represent further compromises between
completeness and convenience. These problems can be grouped into three categories:
descriptions of the program’s variables, descriptions of the program’s structure, and storage
of intermediate selection decisions.

8.2.3. Anonymous Possibility Tree Nodes

Variables in a program are described by nodes in the possibility tree. But the policy
procedure and possibility tree provide only anonymous descriptions of the program's
variables and implementations. Because of this anonymity, the policy procedure can either
deal-in only generalities, or the programmer has to provide many obscure attribute
procedures to describe surreptitiously the variable declarations in the program. Because a
policy procedure may wish to only deal with certain variables or certain uses of a class, a
clearer mechanism is needed. For example, a programmer may know that only the variable
SymbolTable is important and may wish the policy procedure to consider carefully only that
declaration, choosing any feasible implementation for all other variables. A programmer may

Section 8.2.3 Describing and Selecting Abstract Data Types 261

also wish to write different kinds of policies that work on certain kinds of specifications. One
example is a policy that can deal well with selecting set implementations or list
implementations. To use such a policy, it is necessary to isolate those variables in the
program that are set or list variables, yet ail variable declarations look alike to the current
policy procedure. A new mechanism should provide direct information about the program’s
variables’ identifiers and specifications, and about the identities of all class declarations.

The reason why the design of this new mechanism is difficult is scope rules. The paolicy
procedure is executed inside of the universal environment, in which all of the policy's
identifiers are defined. The class and variable declarations that are manipulated by the policy
procedure usually exist in nested scopes that are generally inaccessible to the policy
procedure. Thus there is no convenient way to associate the identity of classes or variables in
the policy procedure with specific declarations. In the current design, this mapping is
provided through the possibility tree and the use of doppelgangers.

in other representation selection systems, this scope problem can be minimized since only
one scope, the main program, is analyzed. Thus a special rule can permit the selection system
to examine the one scope. In Paragon, the selection process is applied also to local
procedures and local data of objects, which gives rise to the possibility tree and nested
scopes. Therefore the design of Paragon considers a larger problem than other
representation selection systems. | believe that using some absfract representation of the
program, such as the possibility tree, is the appropriate data structure for making selection
decisions. However, the information represented in the possibiiity tree is incomplete and
anonymous. Therefore more work is needed to provide a more complete data structure and
to include specific knowledge about the program’s declarations by name rather than by
reference.

8.2.4. Parse Tree Availability

The second problem prohibiting convenient use of the selection system is the lack of access
to the parse tree of the program. instead, the writer of a policy sees a possibility tree, which
bears resemblance to a call graph. There are many natural questions that can be answered by
examining a parse tree and that a policy writer might want to ask:

In what order are procedures called?

¢ Are some procedures never called?

Section 8.2.4 Describing and Selecting Abstract Data Types 262

e Are there constants in some parameters?
e Is one variable always used in a certain position of a procedure?
 Is a procedure conditionally executed?

 Is a procedure inside of a loop (Possibly an “inner” loop)?
At a more general level of analysis, a policy procedure may wish to perform some kind of
control flow reasoning about the program to use some special implementations when
appropriate [Hisgen 82], to determine if some constants may be folded which in turn may
affect an implementation decision, and to perform assertion propagation in an attempt to
supplement attribute-procedure information. Clearly, a piece of the program that is in an
inner loop shouid deserve more attention than a piece of the program that is not. Yet, the
policy cannot know which pieces of a program are in such a location. Typical compilers
perform these kinds of analyses to determine low level selection details. Higher level
decisions, such as whether to use a binary tree or a hash table for an implementation, can

also benefit from this information.

Some of these questions can be answered by careful, painstaking analysis of program using
the pattern-matching statement. This seems to be a poor substitute for a rather direct
question. Similarly, the translation system provides a predefined procedure that returns the
number of a times a procedure is called instead of the ability to detect inner loops. in
principle, this procedure might invoke a performance verifier as suggested by
Shaw [Shaw 79] but in practice no such facility exists. The current system merely asks the
programmer for the answer. More realistic approaches in actual systems use a heuristic such
as loop depth, a symbolic analysis of the program . [Kant 83] or a limited kind of simulation of
the system [Low 74]. None of these approaches were added this system.

Other kinds of information cannot be derived from the possibility tree, even with careful and
contrived use of pattern matching and attributes. Current compilers gather this information
during a flow analysis of the program, during which certain assertions are proposed and
propagated through the parse tree and call graph. The current system does not readily admit
the collection of such information. Some propagations require intimate knowledge of the
operations whereas all operations in Paragon are identically content-free (to the selection
algorithm). Many assertions interact strongly with the flow graph of the program through
loops and conditions, none of which are available to the policy writer. All of these problems

represent future research possibilities for representation selection systems.

Section 8.2.5 Describing and Selecting Abstract Data Types 263
8.2.5. Decorating the Possibility Tree

The third major inconvenience in the current selection mechanisms is the presentation of
the program structure in the possibility tree. There are two problems with this presentation: no
new information may t;e added to the tree, and the tree may not be altered. The first problem
is fairly easy to solve; An alternative design that permits the programmer to add arbitrary
decorations to the tree is provided in Section 5.4.2.2.

However, the fact that the structure of the possibility tree is under control of the translation
system alone and not the policy is a more difficult problem. Through the use of attributes, a
policy may determine that some tree rearranging is appropriate, eliminating some procedure
calls, substituting one for another, combining variables, and so on. However, the translation
system does not permit the policy to change the tree. Doing so violates the informal
specifications for the Instance class.%? One alternative is to provide the programmer with
direct access to the parse tree which the policy could then manipulate. When a programmer
changes the possibility tree, the corresponding program would be transformed as well. This
alternative would eliminate the idea of doppeigangers as well but forces the policy to
resemble a compiler phase, a situation that was a priori rejected as being too complex for
convenience. Thus the compromise represented by the Paragon design allows the possibility

tree to be changed only by the transiation system during elaboration with implementations.

Several approaches for solving the shortcomings in the sections above center on different
models for making representation selections. Several of these approaches, and their

motivations, are described.

8.2.6. Simpler Models

At an empirical level, it is still not clear that muitiple representations of abstract data types,
let alone muitiple and simultaneous representations, have any practical value when dealing
with moderately-sized programs. Further, there is little empirical evidence that any selection
that is made should be determined at compile time. If true, these observations would suggest
a very simple model for making selections of representations.

92The syntax of Pdragon allows the policy to assign any references it desires {0 the pointers in the tree. However,

if such general references were permitted, the underlying transiation system wouid no longer guarantees that the
tree will properly match the doppetgangers in the program being analyzed.

Section 8.2.6 Describing and Selecting Abstract Data Types 264

It is difficult to show empirically that moderately sized programs do not use large numbers of
representations. Some simple observations are possible: None of the example programs in
this thesis, which were drawn from the representation-selection literature, really contain a
large number of the same data structure that requires radically different implementations. The
literature on abstract data types does not seem to require multiple implementations as well.
For example, in a widely referenced Clu paper [Liskov 77], there is only one use of each
abstract data types: wordbag, wordtree and sortedbag. if no more than one instance of each
abstract data type is present in a program, then there is no need for more than one
representation to be present in the program at the same time. Further, there is no clear need
for more than one representation to even be defined.

There are two places where one does find multiple instances of objects and multiple
representations of those instances: in systems with dynamic selection of representations and
in systems where the number of abstractions is limited to a small collection of predefined
objects.

The applications that use multiple representation of objects make theirv selection based on
some kind of input data, and perform the selection during object creation. For example, as a
compiler builds a syntax tree of a program, it may pick different representations of symbols for
a symbol tabie, or different expression nodes for the abstract syntax tree [Sherman 80].
Another example is contained in the Smalltalk system. Here, the entire graphics facility is
geared towards the dynamic selection of an appropriate representation of a "displayable"
object [Rentsch 83]. In both of these systems, there is no need for a separate selection
system, since the program explicitly chooses an appropriate representation based on factors
beyond a selection system’s reaim of knowledge.

The other place where representation selection seems important is when a language or a
system provides very few abstractions that have to be used in many ways. This happens in
Fortran, where numbers and arrays are the only data abstraction mechanism provided, in data
base systems, where tables are the only data abstraction mechanism provided, and in SETL,
where sets are the primary data abstraction mechanism. Because these abstractions are
used so heavily, there is a significant advantage to having multiple representations for them.
For Fortran, a wide body of literature has been developed attacking this specific problem of
selecting an appropriate representation for integers, both for the size of the integer and the
memory placement of the integer (which are orthogonal aspects of an integer's

Section 8.2.6 Describing and Selecting Abstract Data Types 265

representation) [Leverett 81]. Similarly, the selection problem for data base systems has been
discussed for years [Gotlieb 74, Smith 77] and the implementations of SETL have included a
large arount of processing for choosing an appropriate set implementation under many
different circumstances [Freudenberger 83]. In these circumstances, the selection system
may be simplified by making it more specialized. By needing only to concern itself with
integers, or tables, or sets, it may provide explicit facilities for manipulations of those kinds of
objects and their operations. With the need to express éll possible data abstractions and their
uses, the selection mechanism becomes general and difficult to use. Thus a restricted domain
could simplify the system.

8.2.7.External Seiection Language

Although there may not be a great need for automated selection at compile time, there still
exists a need for manual selection of some data types. For example, one can think of a
terminal as being an abstract data type and different representations as being different
manufacturers’ models. A user would like to manipulate an abstract terminal and later
manualiy associate a specific terminal driver with the abstract definition so that the program
works on the terminal that the programmer is currently using. '

Such an association should be provided by an external selection language. A large amount
of work has already been performed on the syntax and semantics that an external selection
{or configuration) language should contain, so a discussion will not be presented here. The
interested reader may examine some of the previous surveys [Schwanke 82, Tichy 80].

However, the use of an external selection language is not appropriate in all circumstances.
When simple module or configuration selection is needed, this approach works well. For
more general selection algorithms, the external selection language must contain some
notions from the programming language so that it can manipulate the program objects. For
Paragon, this includes variable deciarations, procedure implementations, and classes.
Similarly, the programming language part might have to contain some elements of the
external selection language since it must be able to describe the different properties of the
implementations and representations. in the past, this approach has been limited to mere
naming conventions, where some relation is defined between the names of program entities,
such as class names, and the names in the external selection language. Therefore most of
these other issues have not been addressed, but are areas for future research.

Section 8.2.8 Describing and Selecting Abstract Data Types 266
8.2.8. Program Creation Systems

Another approach to representation selection is through the use of a program generator,
either table driven like the PQCC system [Leverett 80, Wuif 80] or expert system driven, such
as PSI[Barr 82]. These systems create a program, along with any necessary abstractions,
from some description of the task to be completed. Since the program creators have all of the
information available about the program that exists, these systems could also make
representation choices based on the same information. In many respects, such an approach
mimics the manual selection of representations, since in both situations, the program creator
is also pérforming the representation selection. The motivation for separating the tasks of
program development and representation selection is no longer present. A program creation
system does not become bored or make clerical mistakes during the refinement procesé,
whereas people do. Thus a separation of tasks that is useful for people may not be
appropriate when those tasks are performed by machine. Under these circumstances, a
representation system would be integrated in the program creation system, and not a

separate system as in Paragon.

8.3. Automatic Processing of Paragon Programs

The fourth set of design goals requires that Paragon programs shouid be compilable. The
existence of the prototype translator provides tangible evidence of attaining this goal. The
entire language can be semantically checked, representations chosen and the resulting
program run. Further, very stringent requirements are place on the translator: each procedure
call and object instance may have different implementations; for every procedure call and
object instance, the translator must guarantee that a consistent implementation exists; no
run-time selection of implementations is permitted. These specific requirements for the

translator affected the design of the language and the speed of the resulting translator.

The concept of the three kinds of elaborations is one of the innovations that resulted from
the compiler requirements for Paragon. To my knowledge, Paragon is the first language to
define elaboration with implementations as a way of ensuring (and expressing) a program’s
feasibility, that is, as a way to guarantee that a program has all of the necessary
implementations for execution.

But with the separation of a program’s semantics into three elaborations, and with the

requirement that elaboration with specifications and implementations must occur before

Section 8.3 Automatic Processing of Paragon Programs 267

elaboration with realizations, some programmer convenience Iis sacrificed. First,
heterogeneous data structures are difficuit to construct. Second, the glabal analysis required
by feasibility checking makes transiation slow and difficult to partition.

8.3.1. Heterogeneous Data Structures

First, the way that a procedure call is elaborated with specifications makes heterogeneous
data structures difficult to construct. The difficuity is the direct result of the requirements for
automatic processing of programs, in particular, the requirement that the single return type of
a function be statically determined. As shown in Section 4.4.3, the elaboration algorithm
cannot always determine the exact type of the returned object when more than one kind of
object may be returned.

One alternative for solving this problem is to permit the programmer to qualify the results of
name components. This is done in Simula through the use of the QUA notation (read
qualitied). In Paragon, one might write f(x) qualitied as Matrix to specify that the return object
of f{x} shouid be considered to be a Matrix. In general, this assertion must be checked at run
time, hence the adoption of this feature violates another goal of guaranteeing no run-time
checking or selection.

Once a "qualifying” feature is added, Paragon should also include a way to test the type of
an object. As suggested in Section 6.9.4, this could be done by allowing constraint

expressions to appear anywhere that other expressions may appear.

8.3.2. Global Feasibility Checking

A second problem with the transiation requirements of Paragon is that feasibility checking,
that is, elaborating a program with implementations, requires a global analysis of a program.
One would like to perform small amounts of separable processing during the analysis of a
program, such as the processing of a single procedure or a single class. Instead, all of the
calls and object instances must be examined as a whole to determine program feasibility,
which causes two problems. First, elaboration with implementations is inefficient. As
documented in Table 7-8, feasibility analysis can require three times as much processor time
as semantic analysis. Second, the required global analysis renders separate compilation
nearly impossible. Usually one can accomplish separate compilation by extracting some smati
part of each separately compiled piece of a program which can be easily checked with cther

Section 8.3.2 Automatic Processing of Paragon Programs 268

separately compiled pieces. Because Paragon permits different calls of the same procedure
implementation {and different instantiations of the same class) to use different implementation
selections for internal variables and procedure calls, the entire implementation of procedures
{and classes) must be completed elaborated each time they are used to ensure program
feasibility. In short, a separate compilation facility for Paragon would apply only to elaboration
with specifications, and a rather sophisticated loader would have to perform elaboration with
implementations to ensure feasibility. By contrast, current loaders can usually perform this

analysis by merely resolving external references.

Cne possible solution to this problem would be to force representation selection for each
use of a procedure implementation and class to be identical. This would allow the translation
system to process a single declaration independently of its use, and hence permit separate
compilation. This would also simplify the possibility tree, since only a single block would be
considered at a time. There would be no need to perform selection of local procedure calls or

class instances and so they could be removed from the tree.

This solution was rejected for two reasons: it eliminated general procedure implementations
and it removed the ability to exploit type parameters.

If every procedure implementation had exactly one statically-determined representation
choice made for it, then general procedures would be useless. Recall that a general
procedure is one that only uses abstract properties of its parameters, such as the Intersect
procedure below:

procedure Intersect{L:Set,R:Set) return Set is

begin
var 1 => IM . new Integer;

if IsMember(L,i) then
end;

A single implementation choice for the call of isMember would force a single implementation

choice for L or else probably be infeasible. Both circumstances are unacceptable. Instead,

the implementation of /sMember should be based on the implementation of L, which can

change from call to call.

The second reason for rejecting the single implementation of locals in procedures is that |
wanted to permit different implementations of local variables when type parameters are used.

Section 8.3.2 Automatic Processing of Paragon Programs 269

In the example for APLSymbolTable in Section 4.4.3 {on page 81), the local variables inside of
(hypothetical) implementations for the /nsert procedure may use different implementations
that depend on the object passed as a parameter. If exactly one representation were
permitted for local variables and procedure calls in each class and procedure implementation,
then the Insert procedure could not contain a different focal variable when the symbol table is
created to hold integers than for when the symbol table is created to hold matrices. Thus
efficiency of feasibility checking can be obtained at the expense of program inflexibility.
Paragon makes a different tradeoff, and allows a fiexible set of selection choices at the
expense of a large amount of feasibility checking.

8.4. Summary

The significant contributions of this thesis can be grouped into two categories:
contributions dealing with language support for abstract data types and contributions dealing

with representation selection.

8.4.1. Contributions: Abstract Data Types

Paragon illustrates several innovations using the type hierarchy facility for the specification
and implementation of data abstractions. Some of these innovations come directly from the
use of the type hierarchy, other comes from the integration of other standard programming
language features, such as parameters, with the type hierarchy. Four of these innovations are

discussed below,

8.4.1.1. Refining Specifications

The use of multiply inherited classes and the separation of procedure specifications and
implementations allows the programmers to write very general specifications and later refine
the specifications without adding any implementation details. For example, one may start with
the specification that an object may be assigned, then later add specifications that the object
is ordered, and finally add specifications that the object is an integer. Thus Paragon provides
a general mechanism for writing and refining specifications. The different refinements of
specifications are especially useful in parameters, as illustrated by the discrimination-net
implementation for sets discussed on page 89.

Section 8.4.1.2 Summary 270

8.4.1.2. Implementing Abstract Data Types

The class hierarchy and the parameter matching rules provide a new way to refine
specifications into implementations of abstract data types. These features allow a
programmer to write multiple implementations of abstract data types that may be present
simultaneously in a program. Because each refinement for an implementation is named, there
is a natural way of distinguishing between different concrete implementations and of defining
which details of the concrete implementation are available to a procedure implementation.
Because the parameter matching rules are not symmetric, an implementation for an abstract
data type may list additional specifications that its parameters must meet. Thus the
refinements necessary for the implementation appear with the implementation and are not

leaked to the specification of the abstract data type.

8.4.1.3. Combining Representations

‘ The parameter matching rules, the multiple inheritance of classes and the ability to provide
multipte procedure implemerjtations for a specification allow a program to use combined
representations in a program. Like the implementations of abstract data types, the
implementations of procedures may list additional specifications that their parameters must
meet, and thus an appropriate procedure implementation can be used when different
representations of variables are present. Procedure implementations that specify different
concrete representations for their parameters may be written in combined representations.
Thus variables that interact may use a procedure that can properly deal with whatever
representations those variables use, even if the representations are different.

Further, Paragon allows representations to be combined for unrelated specifications. This is
useful when the implementations are related but the specifications are not. One such example
is a transaction log, where many different abstract objects must be written into the same log.
Thus the log must use a combined representation for all of the abstract objects.

8.4.1.4. Uniform Object Notation

'Paragon uses a uniform object notation in variable declarations, parameters and
statements. This notation combines the type of an object with the procedures that may
operate on that object. Thus this notation eliminates the need for procedure parameters that
are usually found in data abstraction languages. Further, the notation distinguishes indefinite
from definite objects. This has the effect of eliminating the need for type parameters and of
providing the ability to restrict formal parameters to particular object. One way that this last

Section 8.4.1.4 Summary 271

feature can be used is to require that all arrays passed to a procedure have a lower bound of

one.

8.4.2. Contributions: Representation Selection

Paragon advances the state of the art of representation selection in many ways. Some of
these innovations come directly from the use of a type hierarchy; others were driven by the

goals in Chapter 2. Four of these innovations are discussed below.

8.4.2.1. Describing Abstract Data Types

The attributes are used to describe the classes and procedures in an abstract data type.
Because attributes are defined by the programmer, they represent an advance over current
compilers that usually provide only predefined attributes. Further, attributes in Paragon may
use the entire language, and not merely some scalar values. Thus attributes may describe
complex information about a data type. Finally, attributes may be used with any abstract data
types and not only predefined types. Thus attributes provide a way to describe the differences
between multiple representations of user-defined abstract data types.

8.4.2.2. Organizing Global Program Optimization

A major innovation in Paragon is the ability of the translation system to perform
representation selection for all variables and procedure calls in a program. Most
representation selection systems perform selection analysis only on the variables in the main
program. In Paragon, variables and procedure calls in local procedures and classes also have
their representations selected by the same mechanism as the variables and procedure calls in
the main program. The Paragon translation system provides a data structure, calied the
possibility tree, to organize these representation decisions. In addition to providing an
organization for the current selection choices, the possibility tree also retains information
about previous, rejected selection decisions. This is valuable since old choices are frequently
reexamined.

8.4.2.3. Programmer Control of Selection Criteria

Another innovation of the Paragon design is the use of a programmer-provided policy to
control the selection of representations. Most compilers or representation selection systems
contain predefined algorithms for making representation selection decisions. The criteria
embodied by these algorithms may not reflect the criteria that the programmer desires. To

Section 8.4.2.3 Summary 272

change the algorithm reguires the programmer to alter the translation system. The design of
the translation system for Paragon extracts the algorithm used for making selection decisions
from the translator and lets the programmer specify the algorithm using the criteria that the
programmer feels are important, The thesis gives several examples of policies that make
selection based on a number of criteria using widely differing techniques, such as dynamic
programming, hill climbing, step-wise refinement, branch-and-bound searching, exhaustive

analysis and direct selection of representations.

8.4.2.4. Feasibility Analysis

Another significant innovation in the Paragon language design is the definition and
implementation of feasibility analysis. Feasibility refers to the property that a program has
when all selection decisions result in a program that can execute. For example, all variables
and procedure calls must have implementations, interacting variables that use different
representations must use procedure implementations that can operate on the different
concrete representations, and representations for abstract data types that require some
special properties of their parameters must ensure that they received the proper kinds of
actual parameters. Most languages and systems add restrictions to simplify or eliminate
feasibility analysis. For example, one restriction is that any implementation may be used
wherever its specification is used. As explained on page 10, such a restriction limits the
possible implementations that may be written. Another restriction is that interacting variables
must use the same representation. But this ignores other considerations for making selection
decisions. This restriction also eliminates the advantages of writing general procedures that
use only abstract properties of their parameters. Paragon makes no such restrictions, but
instead defines the concept of elaboration with implementations to describe how a program
can be checked for feasibility. Further, this thesis describes a translator that implements
feasibility checking. Measurements of a prototype show that feasibility checking can require
up to three times as much computation as requi}ed for semantic analysis.

8.4.3. Future Areas for Related Work

As | was working on this thesis, | thought of several other major directions that could be
pursued which would have resulted in a very different thesis. In this section, | briefly discuss
some of these related areas where further work might be pursued.

Section 8.4.3.1 Summary 273

8.4.3.1. Uniform Procedure, lterator, Object Semantics

Paragon makes a distinction between classes and procedures in several ways: the way that
they are declared, the way that they are refined (subclasses vs implementations), the way that
they are used (instantiation vs invocation} and the way that their representations are selected
(by the policy vs by feasibility analysis). Yet many of the manipulations of classes and
procedures are similar: an object is created, the parameters are bound, the local declarations
are elaborated and the statements are elaborated. The differences usually concern the
lifetime of the created object and the ability to reference the object after its statements have
been elaborated. Other languages, such as Beta [Kristensen 83} and SL5 [Hanson 78] try to
provide a uniform syntax and semantics for procedures, objects and iterators. Another
language design might try to use this uniform approach for defining the storage and
operations of an abstract data type and apply a uniform selection technique for picking a

representation.

8.4.3.2. Value of Multiple Representations

As | read the literature describing representation selection system, and as | tried to use
multiple representations in application programs, | came to have seriously doubts about the
need for multiple representations in a program. Clearly, if multiple representations are not
needed, then languages do not need to support them and translators do not need to select a
representation for variables. Perhaps early researchers who suggested that a dozen or so
commonly used data structures such be primitively supported, and that all of the analysis and
selection should be moved into the computer and compiler, are correct [Feustél 73]. To
understand the need for multiple representations of abstract data types, some empirical
research is needed on how abstract data type features are actually used. Unfortunately, there
is a lot of question begging here. If one surveys users who do not have languages that support
data abstraction or who do not know data abstraction, then the survey will only document the
programmers’ ignorance or lack of facilities and not the effectiveness of data abstraction.

8.4.3.3. Program Representations for Programmer Manipulation

There are many different ways that programmers make selection decisions. A large variety
of these methods can be adapted to Paragon’'s set of general representation seiection
features. However, the policy procedure, the attributes and the possibility tree cannot
express all the different ways that programmers make decisions. An interesting research area
is the analysis of the kinds of information that are necessary for different selection strategies.

Section 8.4.4 Summary 274

8.4.4. Conclusions

The thesis has demonstrated how a type hierarchy can be integrated into a general purpose
language design. The thesis demonstrates how a type hierarchy can be used for writing
programs using the object-manger model to specify abstractions, refine the specifications,
write representations for the abstractions and combine representations as desired. A number
of programs were written and translated with a prototype system that processes Paragon.
The prototype provides evidence that the language design is well defined and that only
conventional compiler technology is necessary for translating languages that include type

hierarchies.

There is a lot of intuitive appeal to the model of type hierarchies. Many of the ways that
specifications and representations are specified fall naturally into a tree of abstractions, and
many refinement paradigms for selecting a representation also search a tree-like structure. All

of these are modeled very well by the class hierarchy.

The problems with such an approach are its generality. Although nested and inherited
classes nicely express a tree structure, they also express some less useful combinations.
Thus a future effort would probably concentrate on the use of an explicit manager model for

specifying, representing and selecting abstract data types.

Bibliography

[Balzer 81] Balzar, Robert.
Transformational implementation: An Example.
IEEE Transactions of Software Engineering SE-7(1):3-14, January, 1981,

[Banatre 81] Bantare, M., Couvert, A., Herman, D., and Raynal, M.
An Experience in Implementing Abstract Data Types.
Software — Practice and Experience 11(3):315-320, March, 1981.

[Barr 82] Barr, Avron and Feigenbaum, Edward A. {editor).
The Handbook of Artificial Intelligence.
William Kaufmann, Inc., Los Altos, California, 1982.

[Barstow 79] Barstow, David {(editor).
Knowledge-Based Program Construction.
Elsevier, Amsterdam, 1979.

[Chang 78] Chang, Ernest, Kaden, Neil E. and Elliott, W. David.
Abstract Data Types in Euclid.
Sigplan Notices 13(3):34-42, March, 1978.

[Cheatham 79] Cheatham Jr., Thomas E., Townley, Judy A. and Holloway, Glenn H.
A System for Program Refinement.
In Proceedings of the 4th International Conterence on Software
Engineering, pages 53-62. |EEE Computer Society, September, 1979.

[Curry 82] Curry, Gael, Baer, Larry, Lipkie, Daniel and Lee, Bruce.
Traits: An Approach to Multiple-Inheritance Subclassing.
in Limb, J.0. (editor), Proceedings, SIGOA Conference on Office
Information Systems, pages 1-9. ACM, SIGOA, June, 1982.
Also SIGOA Newsletter, Vol. 2, Nos. 1 and 2.

[Dahi 68] Dahl, O.-J.
Simula 67 Common Base Language.
Technical Report, Norwegian Computing Center, Oslo, 1968.

[Dewar 78] Dewar, Robert B. K., Grand, Arthur, Liu, Ssu-Cheng and Schwartz, jJacob T.
Programming by Refinement, as Exemplified by the SETL Representation
Sublanguage.
ACM Transactions on Programming Languages and Systems 1(1):27-49,
July, 1979,

Bibliography

[Feustal 73]

[Foderaro 80]

278

Feustal, E. A,
On the Advantages of Tagged Architecture.
IEEE Transactions on Computers C-22(7):644-656, July, 1973.

Foderaro, John K.

The FRANZ LISP Manual

Department of Electrical Engineering and Computer Science, University of
California at Berkeley, 1980.

Distributed with Berkeley/Unix Documentation.

[Freudenberger 83}

[Ghezzi 77]

[Gillman 83]

{Goldberg 81}

[Gotiieb 74]

{Hanson 78]

[Hisgen 82]

{ichbiah 80]

Freudenberger, Stefan M., Schwartz, Jacob T. and Sharir, Micha.

Experience with the SETL Optimiser.

ACM Transaction on Programming Languages and Systems 5(1):26-45,
January, 1983. :

Ghezzi, Carlo and Paolini, Paolo.

A Language Supporting Abstraction Implementations.

In Andre, Jacques and Banatre, Jean-Pierre (editor), Implementation and
Design of Algorithmic Languages: Proceedings of the 5th Annual Il
Conference, pages 54-70. IRISA, May, 1977.

Gillman, Robert.

INFO-ADA Group Message, Arpanet.
May, 1983

private communication.

Goldberg, Adele.
Introducing the Smalltalk-80 System,
Byte 6(8):14-22, August, 1981.

Gotlieb, G. C. and Tompa, Frank. W.
Choosing a Storage Schema.
Acta Informatica 3:297-319, 1974.

Hanson, David R. and Griswold, Ralph E.
The SL5 Procedure Mechanism.
Communications of the ACM 21(5):392-400, May, 1978,

Hisgen, Andy.

Towards Optimizations for User-Defined Types: A Program Transformation
Approach.

Department of Computer Science, Carnegie-Melion University.

May, 1982

Ph.D. Thesis Proposal.

Ichbiah, Jean, et. al.
Reference Manual for the Ada Programming Language.
US Government, Washington, D.C., 1980.

Bibliography

[Ingalls 78]

[Ingalls 81]

[Ingargioia 75]

[Jensen 78]

[Johnson 76]

{Kant 83]

[Katz 81]

[Katzenelson 79]

277

Ingalls, Daniel H. H.

The Smalitalk-76 Programming System: Design and implementation.

In Conference Record of the Fifth Annual ACM Symposium on Principles of
Programming Languages, pages 9-16. ACM, January, 1978,

Ingalls, Daniel H. H.
Design Principles Behind Smalltalk.
Byte 6(8):286-298, August, 1981.

Ingargicla, Giorgio P.

Implementations of Abstract Data Types.

In Proceedings of the Conference on Computer Graphics, Pattern
Recognition, & Data Structure, pages 108-113. IEEE Computer Society,
May, 1975.

Jensen, K. and Wirth, N.
Pascal User Manual and Report.
Springer-Veriag, Mew York, N.Y., 1978.

Johnson, Robert T. and Morris, James B.

Abstract Data Types in the MODEL Programming Language.

In Proceedings of Conference on Data: Abstraction, Definition and
Structure, pages 36-46. ACM, March, 1978.

Also Sigplan Notices, Vol. 8, No. 2, 1976.

Kant, Elaine.
On the Efficient Synthesis of Efficient Programs.
Artiticial Intelligence 20:253-308, 1983.

Katz, Shmuek and Zimmerman, Ruth.

An Advisory System for Developing Data Representations.

In Proceedings of the Seventh International Joint Conference on Artificial
intelligence, pages 1030-1036. August, 1981.

Katzenelson. Jacob.
Clusters and Dialogues for Set implementations.
IEEE Transactions on Software Engineering SE-5(3):256-275, May, 1979.

[Katzenelson 83a]Katzensison, J.

Introduction to Enhanced C (EC).
Software — Practice and Experience 13(7), July, 1983.

[Katzenelson 83b]Katzenelson, J.

[Kristensen 83]

Higher Level Programming and Data Abstractions — A Case Study Using
Enhanced C.
Software — Practice and Experience 13(7}, July, 1983.

Kristensen, Bent Bruun, Madsen, Ole Lehrmann, Moller-Pedersen, Birger

and Nygaard, Kristen.

Abstraction Mechanisms in the Beta Programming Language.

In Conference Record of the 10th Annual ACM Symposium on Principles of
Programming Languages, pages 285-298. ACM, January, 1983,

Bibliography

[Lamb 80]

[Lamb 83]

[Leverett 80}

[Leverett 81]

[Liskov 77]

[Liskov 81]

{Low 74]

[Low 76]

[Low 78]

[McCune 77]

278

Lamb, David Alex, Hisgen, Andy, Rosenberg, Jonathan, Sherman, Mark and

Borkan, Martha.

The Charrette Ada Compiler.

Technical Report CMU-CS-80-148, Carniegie-Mellon University, Computer
Science Department, October, 1980.

Lamb, David Alex,

Sharing Intermediate Representations: The Interface Description
Language.

Technical Report CMU-CS-83-129, Department of Computer Science,
Carnegie-Melion University, May, 1983.

Leverett, Bruce W., Cattell, Roderic G. G., Hobbs, Steven O., Newcomer,
Joseph M., Reiner, Andrew H., Schatz, Bruce R. and Wulf, Wiliiam A.

An Overview of the Production-Quality Compiler-Compiler Project.
Computer 13(8):38-48, August, 1980.

Leverett, Bruce W.

Register Allocation in Optimizing Compilers.

Technical Report CMU-CS-81-103, Department of Computer Science,
Carnegie-Mellon University, February, 1981,

B. Liskov, A. Snyder, R. Atkinson and C. Schaffert.
Abstraction Mechanisms in CLU.
Communications of the ACM 20(8), August, 1977.

Liskov, B., Moss, E., Schaffert, C., Scheifier, R. and Snyder, A,
The CLU Reference Manual.

Springer-Verlag, New York, N.Y., 1981,

Lecture Notes in Computer Science No. 114.

Low, James R.

Automatic Coding: Choice of Data Structures.

Technical Report CS-452, Stanford University Computer Science
Department, August, 1974.

Low, James and Rovner, Paul.

Techniques for the Automatic Selection of Data Structures.

In Conference Record of the 3rd ACM Symposium on Principles of
Programming Languages, pages 58-67. ACM, January, 1976.

Low, James R.
Automatic Data Structure Selection: An Example and Overview.
Communications of the ACM 21(5):376-385, May, 1978.

McCune, Brian P.

The PSI Program Model Builder: Synthesis of Very High-Level Programs.

in Proceedings of the Symposium on Artificial Intelligence and
Programming Languages, pages 130-139. ACM, August, 1977,

Also Sigpian Notices, Vol. 12, No. 8, August 1977.

Bibliography

[MIT 78]

[Mitchell 79)

[Morgan 81]

[Moss 78]

[Mylopoulos 80]

[Nestor 79]

[Nestor 81]

[Nestor 82}

[Newcomer 79]

[Parnas 74]

279

Unknown MIT Author.

Maclisp Manual

Department of Electrical Engineering and Computer Science,
Massachusetts Institute of Technology, 1978.

Transcribed INFO file.

Mitchell, James G., Maybury, William and Sweet, Richard.

Mesa Language Manual.

Technical Report CSL-79-3, Xerox Palo Alto Research Center, Systems
Development Department, April, 1979.

Version 5.0,

Morgan, Chris.
Smalitalk: A Language for the 1980s.
Byte 6(8):6-10, August, 1881.

Moss, John Eliot Blakeslee.

Abstract Data Types in Stack Based Languages.

Technical Report MIT/LCS/TR-190, Laboratory for Computer Science,
Massachusetts Institute of Technology, February, 1978.

Mylopoulos, John, Bernstein, Philip A. and Wong, Harry K. T. _
A Language Facility for Designing Database-Intensive Applications.
ACM Transactions on Database Systems 5(2):185-207, June, 1980.

Nestor, John and Van Deusen, Mary.

Red Language Reference Manual

Intermetrics, Inc., 701 Concord Ave., Cambridge, MA. 02138, 1979.
iR-310-2.

Nestor, J.R. and Beard M.

Front End Generator User's Guide

Department of Computer Science, Carnegie-Mellon University, 1881.
PQCC Internal Documentation. s

Nestor, John R. and Beard, Margaret A.

Front End Generator System.

in Burks, Sharon (editor), Computer Science Research Review, pages
75-92. Department of Computer Science, Carnegie-Mellon University,
Pittsburgh, PA. 15213, 1982.

Newcomer, Joseph M., Cattell, Roderic G. G., Hilfinger, Paul N., Hobbs,
Steven O., Leverett, Bruce W., Reiner, Andrew H., Schatz, Bruce R. and
Wulf, William A.

PQCC Impiementor’s Handbook

Carnegie-Mellon University, Computer Science Department, 1979.
PQCC Internal Documentation.

Parnas, David L.

On a "Buzzword": Hierarchical Structure.

In Proceedings of the IFIP Congress 74, pages 336-3398. North-Holland
Publishing Co., August, 1974,

Bibliography 280

[Ramirez 80] Ramirez, Raul Javier.
Efficient Aigorithms for Selecting Efficient Data Storage Structures.
Technical Report CS-80-18, Facuity of Mathematics, University of Waterlioo,
March, 1980,

[Reiser 76] Reiser, John F.
Sail.
Technical Report AlM-289, Stanford Artificial Intelligence Laboratory,
Stanford University, August, 1976.

[Rentsch 83] Rentsch, Tim. -
Object Oriented Programming Languages.
In Horowitz, Ellis (editor), Programming Languages: A Grand Tour, .
Computer Science Press, 11 Taft Center, Rockville, MD 20850, 1983.
Second Edition, to be published.

[Rovner 76] Rovner, Paul D.
Automatic Representation Selection for Associative Data Structures.
PhD thesis, Harvard, 1976.

[Rowe 78] Rowe, Lawrence A. and Tonge, Fred M.
Automating the Selection of Implementation Structures.
IEEE Transactions on Software Engineering SE-4(6):494-506, November,
1978.

[Schonberg 77] Schonberg, E. and Liu, S. C.
Manual and Automatic Data-Structuring in SETL.
In Andre, Jacques and Banatre, Jean-Pierre (editor), Implementation and
Design of Algorithmic Languages: Proceedings of the 5th Annual lil
Conference, pages 284-304. |RISA, May, 1977.

[Schwanke 82] Schwanke, Robert W.
Execution Environments in Programming Languages and Operating
Systems.
Technical Report CMU-CS-81-147, Department of Computer Science,
Carnegie-Mellon University, May, 1982,

[Schwartz 73} Schwartz, J. T.
On Programming: An Interim Report on the SETL Project: Instailment 1.
Generalities; Instaliment 2. The SETL Language and Examples of its
Use. . ’
Research Report, Courant Institute of Mathematical Sciences, Department
of Computer Science, New York University, 1973.

[Shaw 79] Shaw, M.
A Formal System for Specifying and Verifying Program Performance.
Technical Report CMU-CS-79-129, Carnegie-Melion University, June, 1979,

[Shaw 81] Shaw, Mary (editor).
ALPHARD: Form and Cantent.
Springer Verlag, New York, New York, 1981.

Bibliography 281

[Sherman 80] Sherman, Mark and Borkan, Martha.
A Flexible Semantic Analyzer for Ada.
In Symposium on the Ada Programming Language, pages 62-71, ACM,
Boston, December, 1880.

[Smith 77} Smith, John Mites and Smith, Diane C. P.
Database Abstractions: Aggregation and Generalization.
ACM Transactions on Database Systems 2(2):105-133, June, 1977.

[Tichy 80} Tichy, Walter F,
Software Development Control Based on System Structure Descripton.
Technical Report CMU-CS-80-120, Department of Computer Science,
Carnegie-Mellon University, January, 1980.

{VanWijngaarden 69}
Van Wiingaarden, A., Mailloux, B., Peck, J. and Koster, C.
Report on the Algorithmic Language Algol 68.
Numerische Mathematik 14(2):79-218, 1969,

[Weinreb 80} Weinreb, Daniel and Moon, David.
Flavors: Message Passing in the Lisp Machine.
A.l. Memo 602, Artificial Intelligence Laboratory, Massachusetts Institute of
Technology.
November, 1980
Also a chapter in the Lisp Machine Manual, {Weinreb 81].

[Weinreb 81] Weinreb, Daniel and Moon, David.
Lisp Machine Manual.
Symbolics Inc., California, 1981.
Fourth Edition.

[Welsh 79] Weish, J. and Bustard, D. W.
Pascal-Plus — Another Language for Modular Multiprogramming.
Software — Practice and Experience 9:947-957, 1979,

[Winston 77] Winston, Patrick Henry.
Artificial intelligence.
Addison-Wesley, Reading, Massachusetts, 1977.

[wulf 74] Wulf, W, Cohen, E., Corwin, W., Jones, A., Levin, R., Pierson, C. and
Pollack, F. .
Hydra: The Kernel of a Multiprocessor Operating System.
Communications of the ACM 17, June, 1974,

[Wulf 80] Wulf, Wm. A,
PQCC: A Machine-Relative Compiler Technology.
Technical Report CMU-CS-80-144, Carnegie-Mellon University, September,
1980.

[wulf 81] Wulf, W.A,, Shaw, M., Hilfinger, P.N. and Flon, L.
Fundamental Structures of Computer Science.
Addison-Wesley, 1981.

Bibliography 282

[Xerox 81} Xerox Learning Research Group.
The Smalitalk-80 System.
Byte 6(8):36-48, August, 1981.

Appendix A
Additional Paragon Features

This appendix provides some more details about the Paragon language that were omitted in
the main body of the thesis. These miscellaneocus topics include the lexical elements of
Paragon, matching objects with differing levels of nesting, the initial environments for name
expressions, restricting environments in name expressions, environments for parameter
elaboration, inheriting class parameters, sharing implementations, procedure constraints, self

references and statements. Each of these is discussed in turn.

A.1. Lexical Elements

A.1.1. Character Set

The ascii character set is used. All control characters, that is, characters without graphic

representation, are semantically equivalent to blanks.

Characters are grouped together to form tokens. A token is an identifier, a numeric literal, a
reserved symbol, or a reserved word. White space must separate two consecutive identifiers,

reserved words or numeric literals.

A.1.2, identifiers

An identifier is the symbol associated with a procedure declaration, variable declaration,
implicit parameter declaration or class declaration when that entity is declared. Reserved
words (given later in Section A.1.5) may not be used as identifiers. Two identifiers are
identical if they consist of the same sequence of case-independent letters, digits, and
underscores.

<identifier> 1 = <letter> { { _ }? { <letter> | <digi> } }*
detter> == A|B|..lY|Zlalbl..ly]|z
digit> u=1}2]../8]9]|0

Appendix A.1.3 Lexical Elements 284
A.1.3. Literals

The only literals permitted in Paragon represent integers. Their semantics are defined in
Section 3.3.6.

Two literals are identica’ * they consist of the same sequence of digits after all underscores

and leading zeros have been removed.

<integer> == { {<digitb }+ # _}+

A.1.4. Special Symbols

Some characters and combinations of characters represent tokens in Paragon. These are
listed below. The longest possible sequence of cha. acters is interpreted as a token. Thus the
characters < = represents one token and not the two tokens < and =.

; => 1= . : () I & ~
= < > {= >= — + * /
[] + !

A.1.5. Reserved words

The following sequences of letters are reserved by the language for special purposes and

may not be used by the programmer as identifiers.

" and any as attribute begin check class comment
desc do else elseif end exitloop fi for
goto if in is let loop match matches
new not nuli of or procedure rem return
same such specified structure that then this " var
when where while with yield

A.1.6. Comments

Comments may appear before or after any token in the program. They do not alter the

meaning of the program.

<{comment> :: = { comment|! } <space> { <any character except ;> }*;

Appendix A.2 Object Creation Expressions 285

A.2.Object Creation Expressions

in the thesis, various kinds of expressions are used {o create objects in variable declarations
without describing which expressions are permitted by the language. Paragon defines
several rules that restrict the expressions that may be used as the "type" in variable
declarations. This section presents those rules.

Like all expressions, the name expression used as a type is composed of several name
components. All but the last name component must be either a parameter or a variable. The
last component must have the reserved word new and have an identifier that denotes either a
class, variable or parameter. No other name component in the expression or in any of its

parameters may use the reserved word new.

Ifa variable or parameter identifier is used in the last component, then the environment for
the object creation will be the denoted abject with the innermost simple object removed, and
the underlying class for the object creation will be the class of the innermost simple object
denoted by the parameter or variable.

If the class requires parameters for creation, and there are no parameters in the last
component of the name expression, then the parameters from the class declaration, variable
or parameter denoted in the last name component will be reused. Otherwise the parameters in
the name component will be used.

These rules ensure that exactly one new object will be created for each variable declaration
and that type parameters may be used to create local variables in a class or procedurs.

A.3. Most Preferred Match

The matching rules in Section 3.4.2 apply only to objects that consist of the same number of
nested simple objects. Paragon permits objects with different numbers of nested simple
objects to match, as mentioned in Section 8.1. This section discusses the additional rules for
matching when objects have different numbers of nested objects.

First, a slight change in terminology is needed. Define the relation where two objects match
and have the same number of nested simple objects as pairwise matching. The rules in
Section 3.4.2 define this relation. Then actual object A matches a formal object F if A has

Appendix A.3 Most Preferred Match 286

exactly n more nested simple objects than £, and if after removing some n simpie objects from

A, then the smaller A pairwise matches F.

However, there may be more than one way that n simple objects may be removed from an
actual object for it to match a formal object. Thus Paragon includes two more distinctions in

the matching process: preferred match and most preferred match.

A preferred match occurs when comparing the two different, successful removals of simple
objects during the matching process of differently sized objects. The outermost pair of
removed simple objects is examined. The removed simple object that was less nested (further
out) belongs to the preferred match. If the positions of the outermost removed simple objects
are identical, then the same criterion is applied to the next pair of removed simple objects.
This process continues until all of the removed simple objects have been considered.
Because of the assumption that two different sets of simple objects were removed, there must
be some pair of removed simple objects that differ. in the illustration below, the ocutermost
simple object is listed first and the removed simple objects are underlined. The letters refer to

the underlying class of the simple object:

Formal: ({ A, B, c)
Actual,,. 1 { A,» A, B, B, o} }
A«':tualMatch 2 (A, 4, 8, B, o])
ActualMatch 3 (A, A, B, B, C)

In example above, Match 1 is preferred to Match 2 since the B matched in Match 2 is further
out (less nested) than the B in Match 1. Match 3 is also preferred to Match 2 since the A
matched in Match 3 is further out than the A in Match 1. Similarly, Match 3 is preferred to
Match 2 because the A in Match 3 is less nested than the A in Match 2.

The most preferred match is a match which is preferred to all others. In the example above,
Match 3 is actually the preferred match of the actual object and formal object. {There is one
possible combination of removed simple objects that is not shown, but Match 3 is preferred to
it as well as being preferred to Match 1 and Match 2). When binding parameters during the
comparison of two objects, the preferred match is used when more than one match is
possible.

Appendix A.4 Initial Environments 287

A.4. Initial Environments

Section 3.3 postponed a description of the way in which the environment is established for

the first component in a name expression. The description is given in this section.

A search for the identifier in the first name component is performed in various scopes until
an appropriate declaration is found. That declaration then controls the environment o be
used for further elaboration. This search is very similar to that used for looking up identifiers
in statically scope languages, such as Algol-60, with additional rules for classes. Specifically,
the procedure for determining the declaration of the identifier in the first name component is:

1. The procedure or the fully extended class declaration™ enclosing the expression

is examined for a declaration of the identifier. An identifier implicitly declared in a
parameter is consider as being declared in its corresponding procedure or class.

2. If more than one declaration was found, then one of the found declarations must
be a procedure specification and the others must be procedure respecifications
or implementations. Otherwise at most one declaration must be found and it may
not be a procedure implementation. (Recall that a procedure respecification is
considered a procedure specification in the absence of a procedure
specification. See Section 5.3.5.)

3. If no declaration was found, repeat the first two steps for enclosing blocks, be
they pracedures or classes. If the universal environment was reached without
finding an appropriate declaration, the program is not well specified.

The innermost simple object (and its containing environment) in the environment in which
the declaration is found becomes the environment (or more precisely, the declaration
environment, see Section A.6) for elaboration of the first name component. Any inner simple

objects that were skipped in the search process are ignored.

A.5. Restricting Environments

The returned environment may be restricted for use by the next component in an
expression. The syntax of a restriction is the reserved word as followed by a class identifier.
Some example classes and the use of as are shown below:

g3Thc=.a fully extended ciass deciaration is constructed by concatenating all of the class declarations of all
ancestors of class along with the class, in leftmost elaboration order.

Appendix A.S5 Restricting Environments 288

class Parentl is
begin

procedure p;
end;

class Parent2 is
begin

procedure p;
and;

class Son of Parentl, Parent2 is begin end;
var x => new Son;

x as Parentl . p; } Call of p in Parent 1;

x as Parent2 . p; { Call of p in Parent 2;
In a restriction, the class identifier denotes an ancestor of the underlying class of the last
component of the object. When a restriction is present, the search for a declaration of the
identifier in the next component is confined to the class declaration of that ancestor. Without
a restriction, the procedure of searching the fully extended class declaration for a declaration

of the identifier is followed.

To simplify the BNF description in Appendix B, the as restriction was deleted. it is never
used in any example in the thesis.

A.6. Environments for Parameter Elaboration

In Sections 3.6.4, 5.2.1, 5.2.3 and 5.2.4, a description of procedure invocation or class
instantiation was described that included elaboration of parameters.g‘ Like all elaborations,
elaboration of parameters must occur in some environment. This section defines two kinds of
environments, the statement environment and the declaration environment, and defines how

parameters are to be elaborated in these environments.

Every statement is contained in a class or a procedure. Before a statement can be
elaborated, the containing class must be instantiated or the containing procedure must be
invoked. When either of these events occurs, a new environment is formed and the

statements are elaborated in this environment, hence the name statement environment.

94For purposes of discussion, the refurn expression in a procedure and the yield expression in an iterator are aiso
parameters.

Appendix A.6 Environments for Parameter Elaboration 289

As a name expression is elaborated, each name component returns an object that is used as
the environment for the next name component. This environment is call the declaration
environment, since this environment is where the declaration for the identifier in the next
name component will be found. For the first name component, a special set of searching rules

is used to find the declaration environment, as described in Section A.4.

When elaborating a procedure call or class instantiation, the actual parameters in the name
component and the formal parameters in the procedure or class declaration are elaborated.
The formals are elaborated in the declaration environment and the actuals are elaborated in
the statement environment. This is illustrated by the following declarations and procedure
calls:

class cl(t:any) is
bagin

procedure f1 return t;
snd;

class c2 is
begin

procedure f2(c2);

vl => IM . new Integer;
end;

var vl => new c1(c2);
var v2 => new c2;

v2.f2(v1.f1);

Initially v2 is found, which denotes a c2 obiect. Thus f2 is to be found in the deciaration
environment ¢2, which it is. Then a procedure call of 2 is to be elaborated. Thus the
parameters in the declaration of f2 are elaborated in the declaration environment ¢2 and the
actuals in the statement environment, which is assumed to be the universal class containing
the declarations in the program fragment above. The result of elaborating the formal
parameter in f2 in the declaration environment is an indefinite ¢c2 object. Now the actual
parameter must be elaborated in the statement environment. Thus v7 is found and serves as
the declaration environment for the call of 1. Repeating the invocation algorithm for the call
of {1, the return expression for f7 is elaborated in the deciaration environment, and since t is
bound to an indefinite c2 object in this environment (because the declaration of v1 used ¢2 as
a parameter), the returned object from {7 is an indefinite ¢2 object. Therefore this object is
the resuit from elaborating the actual parameter for the call of 72 and can be compared with
the formal parameter for the call of 12, also an indefinite instance of c2. The two objects
match, and the call of 12 is well specified.

Appendix A.6 Environments for Parameter Elaboration 290

Note that if the return expression of /7 had been elaborated in the statement environment,
the identifier t would have not been found and the name expression would have been ill
specified. Had the actual parameter for the call of f2 been elaborated in the declaration
environment, the wrong object would have been selected for v1, namely the integer inside of
c2 and not the variable v7 inside of the universal class. To avoid these, and other kinds of
difficulties, Paragon defines the statement and declaration environments and uses them for

the two different kinds of parameter elaborations.

A.7. Inheriting Parameters

Section 3.4.4 provides the basics of declaring and inheriting parameters in classes. That
section omitted the details of inheriting parameters from multiple parents and the details of
defining new parameters when inheriting already defined parameters. In this section, these

details are provided.

All parameters listed in a class declaration are either inherited or defined. Unlike
declarations and statements inherited from ancestor classes, parameters inherited from all
ancestors are explicitly represented in a class declaration. Aiso unlike declarations and
statements, inherited parameters come from the ancestors in which the parameters are
defined, not from the immediate parents. This is because some parameters of an immediate
parent may also be inherited instead of defined, whereas all declarations and statements in an
immediate parent are defined in the immediate parent. The distinction between inherited and
defined parameters, and the way in which parameters are inherited, are discussed below.

The distinction between inherited and defined parameters is made by position in the
parameter list. First, the inherited parameters are given in the parameter list, then the defined
parameters. The inherited parameters are listed in leftmost elaboration order. If an ancestor
defines more than one parameter, then the class declaration lists the corresponding inherited
parameters in the same order. Parameters that are not inherited from an ancestor are said to
be defined in the class declaration. This is illustrated below:

comment Classes to be used as parameter descriptions.

Appendix A.7 Inheriting Parameters 291

class Al is begin end;
class B1 is begin end;
class C1 is begin end:
class D1 is begin end;

comment Classes that have parameters.;

class A{(x : A1} is
begin
and;

ctass B{x : Al, y : B1) of A is
begin
end;

class C(x : Al, z : C1) of A is
begin
end;

class D(x : Al, y : Bl, z : C1, w: D1) of B, C is
begin
end;

Here, class A has no parents, and hence no inherited parameters. Thus the the only
parameter for A is the defined parameter in A7. Classes 8 and C each have two parameters.
By examining their ancestors in leftmost elaboration order (here, just A), exactly one defined
parameter is found, namely the first parameter in class A. Thus the first parameter in classes 8
and C is inherited (from A). Since 8 and C have two parameters, the second parameter in
each class is a defined parameter.

In a more complicated example, class D has three inherited parameters, one each from A, 8,
and C, and one defined parameter. Because the leftmost elaboration order for parameters is
used, here A, B, C, the first parameter for D is inherited from A, the second from 8 and the
third from C. Note that the parameter from A appears in two different immediate parents, but is
only mentioned once in the declaration of class D.

The expression for an inherited parameter need not be identical with the expression used in
its defining ancestor class, nor with the expression used in any immediate parent. The objects
the expressions denote may be more restrictive than the original parameter. Thus checking
between each inherited parameter and the form of the inherited parameter in immediate
parents is required. More precisely, if an inherited parameter Pc' ; is the ith defined Parameter
for some ancestor class c95, then the object denoted by the parameter expression must match

In general, one can say nothing about where in the parameter list of the class declaration that Pc ; will appear.

Appendix A.7 Inheriting Parameters 292

tine object denoted by any parameter expression in an immediate parent that is inherited from
orisdefined as P i The rule ensures that the objects for parameters in the chiid are the same
as or more restrictive than the objects used in for an immediate parent. The rule can be

illustrated by altering the previous example as follows:
comment Classes to be used as parameter descriptions.;

class Al is begin end;

class A1B of Al is begin end;

class A1C of Al s begin end;

class A1D of A1B, A1C is begin end;

class B1 is begin end;
class B1D of B1 is begin end;

class C1 is begin end;
class C1D of C1 is begin end;

class D1 is begin and;
comment Classes that have parameters.;

class A(x : A1) is
begin
end;

class B(x : Al1B, y : B1) of A is
begin
end;

class C(x : A1C, z : C1) of A is
begin
end;

class D(x : A1D, y : B1D, z : C1D, w: D1) of B, C is

begin

end;
The labeling of parameters as defined or inherited is unchanged from the previous example.
But different expressions are used for each paraméter, so checking must occur to insure that
the parameters are properly inherited. Specifically, the checking for the first parameter in 8
and C checks that A78 and A7C respectively match A71. For class D, there are three inherited
parameters and one defined parameter. The first parameter, A1D, is inherited from class A.
Because both immediate parents B and C also have inherited the first (defined) parameter of
A, checking of A1D must be made against both A18 and A1C. Checks must also be made that
B1D and C1D match B7 and C1 respectively. In this example, all of the objects in the inherited
parameters are compatible with the corresponding parameters in their immediate parents.

Appendix A7 inheriting Parameters 293

There is one last rule for parameters that has not been mentioned. There may be at most
one declaration for each identifier implicitly declared in parameters for a class. Among the
implications of this rule, no class may inherit parameters from two different ancestors that
define the same identifier in the parameter list.. This is done to eliminate rules for
discriminating between identical identifiers in the parameter list. Because the following
declaration has two /s declared in its parameters, the class declaration is ill specified:

class Illegal(IM . I: Integer, IM . I: Integer) is

begin
end;

A.8. Sharing Implementations

As described in Section 4.6.3.3, a single class declaration may be declared that may serve
as an implementation class for more than one specification class. However, as Section
4.6.3 noted, there is no way for the selection mechanism to select