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Preface

Modern digital communications correspond to amgjor changein the
design paradigm shift from fixed, hardware-intensive to multiband,
multimode, and software-intensive for digital communication radios
that a large portion of the signal processing functionality is imple-
mented through programmable digital signal processing (DSP) de-
vices. This provides the ability of the digital communication radios
to change their operating bandwidths and modes to accommodate
new features and capabilities. The digital communication radios not
only reduce anal og components of radio frequency (RF) but also em-
phasize DSP to improve overall receiver flexibility and performance
for the RF transceiver, while traditional radios still focus on analog
component design. This book attempts to present some important
and new developments of signal processing technologies and ap-
proachesto the digital communicationsfield that are likely to evolve
in the coming decade. Signal processing advances will be the key to
the future of the digital communication radios.

This book is a complete resource on signal processing for
digital communications, including in-depth coverage of theories,
algorithms, system design, analysis, and applications. Based on
the author's extensive research and industry experience, this
authoritative book presents an up-to-date and comprehensive
treatment of all aspects, including digital, multirate, adaptive,
and dtatistical signal processing technologies for the digital
communication radios. This book provides excellent guidance in
overcoming critical challenges in the field involving wireless and

XV
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wireline channel characterization and distortion, smart antennas,
link budget, channel capacities, digital RF transceivers, channel
estimation and blind identification, multichannel and multicarrier
modulation, discrete multitone (DMT) and orthogonal frequency
division multiplexing (OFDM), discrete-time timing and carrier
recovery synchronization, and adaptive equalizers at communication
receivers.

The book offers a coherent treatment of the fundamentals of
cutting-edge technol ogies and presents efficient algorithms and their
implementation methods with detailed examples. Packed with over
1,370 equations and more than 100 illustrations, this book offers a
one-stop reference to cover awide range of key topics, from channel
capacity, link budget, digital RF systems, smart antenna systems,
probability, random variables and stochastic signal processing,
sampling theory, pulse shaping and matched filtering, to channel
models, estimation and blind identification, multicarrier, fast Fourier
transform (FFT)— and filter bank—based OFDM, discrete-time phase
locked loop, fractionally spaced, decision feedback, space-time, and
diversity equalizers.

Chapter 1 begins with an introduction of a history of
communications using electricity; this chapter also provides an
overview of digital communication systems that are intended to
present a broad topic of signal processing relative to digital
communications. In addition, Chapter 1 addresses basic concepts of
digital RF system and link budget.

Chapter 2 reviews fundamental theories of probability, random
variable, and stochastic signal processing. This chapter presents
probability distribution and density and upper bounds on the
probability, and it focuses on stochastic signal processing for linear
systems, detection theories, and optimum receivers.

Chapter 3 introduces sampling theory, including instantaneous
sampling, Nyquist sampling theorem based on time-domain and
frequency-domain interpolation formulas, and aliasing. Undersam-
pling, which is often used for intermediate frequency sampling, is
described to sample a bandpass signal at areceiver. In addition, this
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chapter presents stochastic sampling theorem with applications to
bandlimited stochastic processes.

Chapter 4 presents Gaussian and bandlimited channel capacities.
This chapter also explains a concept of the channel capacities to
single-input multiple-output (SIMO), multiple-input single-output
(M1S0), and multiple-input multiple-output (MIMO) systems.

Chapter 5 discusses smart antenna systems and focuses
on different beamforming structures. In addition, this chapter
introduces beamforming algorithms for the smart antenna systems
using optimization constraint methods.

The focus of Chapter 6 is channel characterizations and
distortions that concentrate on wireless and wireline channels.
Pulse shaping with methods of raised-cosine pulse and Gaussian
shaping pulseisalso addressed. Furthermore, this chapter introduces
matched filtering in terms of maximum signal-to-noise ratio.

Chapter 7 considers discrete-time channel models and estima-
tionsfor SISO, SIMO, and MIMO channels. This chapter discusses
four methods of maximum likelihood, least square, generalized least
square, and minimum mean-square error (MM SE) estimatorsfor the
channels. Moreover, this chapter presents adaptive channel estima-
tions and algorithms and their convergence analysis. Finaly, this
chapter also introduces the use of blind identifications to estimate
the channels in the absence of atraining sequence.

Chapter 8 describes a set of equalizers at radio receivers and
presentstheir operation theories, including linear and adaptive linear
equalizers, fractional spaced and decision feedback equalizers, and
space-time MMSE equalizers. In addition, this chapter introduces
diversity equalizers based on adaptive Rake receivers.

Chapter 9 turns our attention to multicarrier modulation,
DMT, and OFDM for radio receivers. This chapter begins by
introducing fundamentals of DMT modulation and then presents
FFT—based and filter bank—based OFDM. In addition, this chapter
addresses efficient implementation methods of using polyphase-
based and maximally decimated FFT filter banksfor designing radio
transceivers.
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Chapter 10 covers discrete-time synchronizations, which de-
scribe discrete-time phase locked loop, timing recovery, and carrier
recovery. Various methods of timing and carrier recoveries areintro-
duced. These methods include early-late gate, bandedge, decision-
directed, multirate, polyphase filter band, and multicarrier modula-
tion for the discrete-time synchronizations.

| would like to thank many anonymous reviewers for their
comments on enhancing the technical presentation of this book.
I would especialy like to thank the technical reviewers and the
copyeditor at Artech House for thoroughly reading all the draft
chapters and the final manuscript and providing many detailed and
valuable suggestions and comments for the book. | truly appreciate
their contributions.

| would like to thank the Artech House staff, including Kevin
Danahy, Barbara Lovenvirth, Mark Walsh, and Audrey Anderson,
for providing guidance on the writing of the entire manuscript, the
publication, and the promotion of this book.

Of course, | would like to thank my family. It's hard to believe
that my daughters, Kathleen and Julia, are now in middle school
and elementary school, respectively. They are both studying hard at
school to enhancetheir knowledge. They may not beinterested inthe
area of digital signal processing and communications, which | love,
but they could learn the fundamentals of this field and use them to
explore their own fields of interest when they grow up.

My wife, Lisa, continuesto be our cornerstone. Without her love,
everything would fall apart. Perhapsthere would be no way this book
could have been finished without her encouragement.

All things are difficult before they are easy. Without seeking,
nothing will be found. Drops of water wear out the stone. Everything
ispossible to awilling heart.



| ntroduction

1.1 A History of Communications Using Electricity

A history of communications with the first major technical
undertaking using electricity is considered starting with the
commercial telegraph service by William Cooke and Charles
Wheststone in England in 1839 and by Samuel Morse in the United
States in 1844 [1]. The most important element of the telegraph
was its instantaneous operation across longer distances. Telegraph
was the first technology to the transmission of information data
over communication channels. Thus, it led to many fundamental
advances in the field of signal processing and communications.

The next mgor development in communications is the
telephone, which was a direct outgrowth of increasing the message-
handling capacity of telegraph lines. Joseph Stearns and Thomas
Edison in 1870 demonstrated reliable communication systems for
the simultaneous transmission of two and four telegraphic signals
on asingle wire. Meanwhile, in 1875, Alexander Graham Bell and
Elisha Gray in the United States both invented practical telephones
that could be used to transmit human speech over a single line,
thereby leading to telephone for local wireline services. Another
advance in communications is radio. Electromagnetic propagation

1
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had been discovered in a mathematical formula by James Clerk
Maxwell in 1860. In 1888, Heinrich Hertz demonstrated the
generation and detection of electromagnetic radiation in numerous
experiments. Several years later, Marconi introduced wireless signal
instruments to transmit signals over distances of several hundred
miles in 1896. This led to widespread advances in wireless
communications.

Harry Nyquist was an important contributor in the history of
communications and did important work on thermal noise known
as the Johnson-Nyquist noise, the stability of feedback amplifiers,
and information theory. In 1927, Nyquist discovered that the number
of independent pulses, which could be put through a telegraph
channel per unit time, is limited to twice the bandwidth of the
communication channel [2]. His early theoretical work laid the
foundations for later advances by Claude Shannon. In 1948, the
publications of Claude Shannon [3-5] established the mathematical
foundations to reliably transmit the information content of a source
over a communication channel with basic limits on the maximum
rate. This gave birth to anew field called information theory. These
results are essentially a combination of what is now known as the
Nyqui st-Shannon sampling theorem.

Information theory provides answers to two fundamental
questions in communication theory: (1) What is the ultimate data
compression? and (2) What is the ultimate transmission rate of
communication in terms of the channel capacity? Information
theory aids a basic theory to modem sequence developments in
the communications area, including undersea cables for telephony,
satellite communications, digital communications, spread spectrum
communications, broadcasting, cellular mobile and wireless local
area network (WLAN) communications, ultra wideband (UWB)
communications (or impulse radio), Internet radio, and software-
defined radio (SDR).

There are many textbooks and references that treat various
topics on information and communi cation theories and rel ated areas.
For a broad treatment of these subjects, the interested reader may
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refer to the books by Cover and Thomas [6], Reza [7], Pierce [8],
Proakis [9], Haykin [10], Viterbi [11], Rappaport [12], Stlber [13],
and Reed [14].

1.2 Digital Communication Systems

In the emergence of new standards and protocols in wireless and
wireline communications, one is often faced with the challenge
of making applications wireless-friendly. The spread of wireless
networks, such as WLAN 802.11 (a, b, and g) and UWB
communications, and wireless cellular standards, such as the second
generation 1S-95 code divison multiple access (CDMA), global
system mobile (GSM), the third generation wideband CDMA
(WCDMA), other future radios, and the new requirements for
communication, seamless connectivity is bringing afaster, real-time
nature to applications.

The initial deployment of multimode WLAN solutions, includ-
ing 802.11 (a, b, and g), quickly takes further the discussion of wire-
less networking standards requiring seamless connectivity. However,
these standards can easily coexist in multimode solutions if they oc-
cupy different areas of the spectrum. The multimode WLAN so-
lutions deliver the best user experience and performance by pro-
viding access across disparate networks through dynamic selec-
tion of WLAN standards, depending on system capabilities, channel
loads, and type of information. This enables high-speed and high-
bandwidth multimedia applications.

Multimode cellular phones, which are able to switch among
different wireless cellular standards, are growing much faster than
single-mode phones. Technology innovation is accelerating to bring
the ability of the multimode cellular phones to interface with
other wireless network services. This creates seamless wireless
connectivity between the wireless cellular and wireless networks
standards, thereby rapidly meeting demand for wireless Internet
connectivity.
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The expectation of pervasive communication and information
access without regard for the means is the fundamental benefit of
multimode and multichannel wireless networking and wireless cel-
lular devices. The challenge of creating sophisticated multimode and
multichannel communication radios to enable the seamless wire-
less connectivity is compounded by the desire for next generation
communication radios. The next generation communication radios
should keep their hardware and software design from becoming ob-
solete when new standards and new technol ogies become available.
Therefore, we need next generation communication radios to have
flexible architecture with reprogrammable or reconfigurable capa-
bility to incorporate advanced signal processing techniques and so-
phisticated algorithms to enhance performance. Hence, we refer to
the next generation communication radios as flexible multimode and
multichannel-based digital communications systems or software-
defined multimode and multichannel-based digital communication
systems.

The basic elements of a software-defined multimode and
multichannel-based digital communication system are illustrated by
the genera block diagram, as shown in Figure 1.1. This digital
communication system consists of five major blocks, including an
antenna, a programmable radio frequency (RF) section, wideband,
high-speed analog-to-digital (A/D) and digital-to-analog (D/A)
converters, digital down- and up-converters along with a multimode
and multichannel, advanced signal processing and algorithms, and
a programmable controller. The antenna, which may be an antenna
array or asmart antenna, connects to the programmable RF section
followed by a subsystem of the wideband, high-speed A/D and D/A
converters. The subsystem of the wideband, high-speed A/D and
D/A converters aso has an interface with the digital down- and
up-converters having multimode and multichannel capability, which
is connected with the advanced signal processing and algorithms.
The programmable controller is used to control all five of the major
blocks.
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— ) Antenna

| »| Wideband | [Digital down-[ , Advanced
Programmable and and up- signal
RF section high-speed converters processing
A/D and D/A multimode and
¢ converters [€— and l¢— algorithms
multichannel

A A A A

A 4 A 4 A 4 A\ 4

Programmable controller

Figure 1.1 A genera block diagram of the software-defined mul-
timode and multichannel-based digital communication
systems.

The challenge of creating the software-defined multimode and
multichannel-based digital communication system is the broad
scope of knowledge, including multirate, adaptive, and statistic
signal processing and algorithms, multirate A/D and D/A converters,
communication concepts and algorithms, RF systems and circuits,
digital circuits, and software methodologies. In order to compensate
for RF component limitations, understanding the ramifications of
selecting RF parameters and the resulting limitations is important
so that the appropriate subsequent signal processing can be used.
Multirate signal processing offers an efficient way to dea with
different sampling rates and can be used to channelize the frequency
band into distinct communication channels. Furthermore, itisalso a
foundation for synchronization at the communication receivers.

There are many excellent books describing techniques in these
areas. For multirate and adaptive signal processing, digital filter
design, and multirate A/D and D/A converters, the interested reader
may refer to Miao and Clements [15]. For multirate systems and
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filter banks, we recommend Vaidyanathan [16]. For the discrete-
time signal processing and adaptive filter theory, we list Oppenheim
and Schafer [17] and Haykin [18], respectively. For the RF
microelectronics, we suggest Razavi [19]. Finally, we refer the
interested reader to Pirsch [20] on the architectures of digital signal
processing.

1.3 Digital RF Systems

Any frequency within the electromagnetic (EM) spectrum associ-
ated with radio wave propagation is called RF, which stands for
radio frequency. When an RF current is supplied to an antenna, it
gives rise to an EM field that propagates through space. This field
Is sometimes referred to as an RF field. In other words, the RF can
be referred to the EM spectrum of EM waves that can be gener-
ated by alternating current fed to an antenna. Hence, the RF is a
terminology that refers to alternating current having characteristics
such that the EM field is generated suitable for wireless broadcast-
ing and/or communications if the current is input to an antenna.
These radio frequencies cover a significant portion of the EM radia-
tion spectrum, extending from extremely/super low frequency 3-300
Hz (such as communication with submarines) to 1-30 GHz (such as
mobile phone, WLAN, UWB, and most modern radars) or even over
300 GHz (such asnight vision). Many technol ogies of wireless com-
muni cations systems are devel oped based on RF field propagation.
An RF system design is unique, and it draws upon many disci-
plines related to RF knowledge, including wireless standards, signal
propagation with multiple access, microwave and communication
theory, random signal processing, transceiver systems and architec-
tures, and integrated circuits (1C) and their design software tools.
An RF system is traditionally built based on RF electronic com-
ponents, which have many undesired effects for a communication
system. These effectsinclude nonlinearity, harmonic distortion, gain
compression, cross modulation, intermodul ation, and random noise.
Detailed treatments of these for the RF electronics can be found in
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Transmitted
channel

Antenna—p \
. Power »| Bandpass
amplifier filter \ f
Adjacent

channels

Figure 1.2 A transmitter to avoid |eakage to adjacent channels.

Razavi [19]. In this section, we focus on RF theory and system as
well as approaches for digital front-end RF radios.

1.3.1 Digital Transceivers

An RF transceiver contains a receiver and a transmitter. The
receiver is usually more complex than the transmitter. The goal
of the receiver is used to select the desired signal from unwanted
interference and noise so that further processing, including
demodulation, downconversion, and digital signal processing, can
be implemented. In order to reject undesired signals received from
an antenna and to provide conditions for further digital signa
processing at the receiver, we must first filter it to remove the
undesired signals, convert the signal to a center frequency with an
amplitude compatible with an A/D converter, and then implement
the A/D conversion process to generate adigital signal.

A frequency bandlimited channel for each user impacts the
design of the RF transceiver. The transmitter has to consider using
bandlimited modulation, amplification, and a bandpass filter (BPF)
to avoid leakage to adjacent channels as shown in Figure 1.2. On the
other hand, the receiver must have the ability to deal with the desired
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Figure 1.3 A receiver to accept the desired channel and to reject
interferers.

channel and sufficiently reject strong neighboring interferences.
Figure 1.3 shows a receiver, including an antenna coupled to a BPF
followed by alow-noiseamplifier (LNA), and arelationship between
adesired channel and interferers.

One of the fundamental ideas of digital transceiversisto expand
digital signa processing toward the antenna. Of special interest is
that analog signal components at the RF front end, which they have
dominated so far, are replaced by using digital signal processing,
thereby leading to the name of digital transceiver, or digital front
end. Thus, the digital transceiver that is derived from the RF front
end and digital signal processing isapart of asystemto realize front-
end functionalities digitally, including downconversion, sample rate
conversion, and channelization.

An architecture of the ultimate digital receiver with a minimum
of analog components at the RF front end is shown in Figure 1.4. In
this system, downconversion and channelization tasks are pushed
into the digital signal processing (DSP) for further processing
while LNA, bandpass antialiasing filter, and an A/D converter
have to process the complete signal bandwidth for which the
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Figure1.4 Anideal digital receiver with aminimum of analog RF
components.

digital receiver is designed. However, the typical characteristics of
wireless communications signals, including fading, shadowing, and
multipath caused by RF signal propagation and potentially strong
blocking and interfering signals due to the coexistence of several
transmit signals, require a very high dynamic range. In addition,
the digital receiver has to process a large number of channels
simultaneously because the downconversion and channelization
selection are shifted from the analog domain to the digital domain.
Pushing narrowband signal s at wideband reception yields adynamic
range far above what conventiona recelvers have to dea with.
Furthermore, extending demodul ation to signals of different wireless
communications standards, which may appear at the digital receiver
simultaneously, increases the dynamic range even more. Thus, the
A/D converter is a key component, which has to cover signals of
large bandwidth and high dynamic range.

1.3.2 A/D Converter Challenge

Dynamic range of the A/D converter can be increased either by
increasing the number of bits or increasing the oversampling ratio.
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The dynamic range of the A/D converter isincreased 6 dB for every
bit added. It isincreased 3 dB for every doubling of the oversampling
ratio. This is equivalent to improving the resolution of the A/D
converter by one-half bit [15]. Benefits of oversampling in the A/D
converter are to reduce quantization noise in the frequency band of
interest and to decrease the requirement of sharp cutoffsfor the anti-
aliasing analog filter.

Another type of the A/D converters based on noise shaping
is referred to as a sigma-delta A/D converter. The first-order
sigma-delta A/D converter increases dynamic range 9 dB for every
doubling of the oversampling ratio. The 3 dB in this dynamic range
increase is due to the reduction in quantization noise power and a
further 6 dB is due to the noise-shaping filter. This is equivalent
to improving the A/D converter resolution by 1.5 bits. The second-
order sigma-delta A/D converter dynamic range increases 15 dB
for every doubling of the oversampling ratio. In other words,
the resolution of the second-order sigma-delta A/D converter
equivalently increases by 2.5 bits. In general, for every doubling of
the oversampling ratio, the Nth-order sigma-delta A/D converter can
improve (6.02b + 3.01) dB in dynamic range, where b is the number
of bits[15]. Equivalently, the dynamic range of the sigma-delta A/D
converter can be increased by (b + 0.5) bits approximately.

Recently, a specific architecture of A/D converter achieved a
very high speed based on a paralel A/D converter bank by using
N low-speed and low-cost A/D subconverters operating at an V-
fold lower sampling rate. This type of A/D converter is referred to
as the filter bank—based A/D converter. The basic idea of such an
A/D converter is to first decompose the analog signal into subband
signals by using a set of analog filter banks. The subband signals
are then sampled by using a set of A/D subconverters at a sampling
rate of =, where F isthe sampling rate, and converted into digital
subband signal's, with nonoverlapping frequency bands of bandwidth
27 /N. Such A/D converter architecture has many applications in
very high-speed areas, including UWB [21], wireless and wireline
communications, SDR, radars, and modern defense applications.
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In a multicarrier communication system, the synergy of the
large number of carriers and the possible large difference in their
RF power accounts for steep dynamic range reguirements on the
A/D converter. To illustrate the dynamic range requirements of A/D
converters in a multicarrier communication system, we consider an
example with two signals s; and s;, in the received wideband range,
where s, is the desired signal with the power of P;, and s, is the
blocking signal with the power P,, and P; < PB,. The blocking
signa s, is aso assumed to be a Gaussian distribution with a zero
mean.

To keep the clipping probability less than a maximum of 5%
on the A/D converter with the full-scale range X,,.., it has been
shown [22] that X,,., is approximately equal t0 X,... ~ 4P,
by using the properties of the Gaussian distribution. Since P; <«
P,, the effect of the desired signal s, is neglected. For a uniform
quantization, a step size A or aresolution of the quantization of the
A/D converter is given by [15]

Xmaz

20 7
where b is the number of bits, and the variance of the quantization
error e[n] istherefore

A= (1.1)

2

2= 2

¢ 12
1 Xglax

If the desired signal s, has the frequency bandwidth B, the power
of the quantization noise P, is then given by

By
P, = o2
q O‘e <F5/2>
(X (Bd)
- 22b 6F,

8 / P,By
3 <Fs22"> ’ (.3)
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where F, is the sampling rate. Let SNR,,,;,, be the minimum of
signal-to-noise ratio (SNR) required for the desired signal s,

Py
h

q

SNR, i = (1.4)

We then obtain the quantization noise power in terms of the desired
signa power P; and SNR,,,;,, asfollows:

Py
P, = S (1.5)
Substituting (1.5) into (1.3) yields
. 8B4 P,
2bmzn — .
2 SNR,;, (3 - Pd) . (16)

Taking log, of both sides of (1.6), we obtain the minimum number
of bits b,,;,, required for the A/D converter resolution as follows:

W’ﬂ . (17)

1
2 OgQ{ <3F5Pd

If we now assume that two signals s, and s, are between
1.0 MHz and 1.8 MHz, and that the receiver needs to withstand
the blocking signal s, at 80 dB above the desired signal s, with
SNR,.;, = 20 dB, the desired signal bandwidth B, = 150 kHz,
overall bandwidth 1.8 MHz, and sampling rate F, = 7.2 MHz.
In this case, using (1.7), the minimum number of bits for the A/D
converter is 14.52 bits.

1.3.3 Digital Downconversion and Channelization

In the previous sections, weintroduced the ideal digital receiver with
arequirement of the minimum analog RF componentsin Figure 1.4.
This architecture of the digital receiver is sometimes referred to
as full-band digitization or direct conversion. It needs to have a
very high-speed A/D converter with high resolution to cover a very
wide frequency bandwidth. Presently, realizing the architecture of
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Figure 1.5 A partial-band architecture of a digital receiver using
the IF sampling process.

the ideal digital receiver is still a difficult problem and will remain
as a challenge in the near future. A more feasible approach is to
perform partial-band digitization, which is to select a limited-band
digitization out of the full-band frequency range by using an analog
conversion and intermediate frequency (IF) filtering [23]. Such an
approach leads to having an architecture of the digital receiver
employing |F sampling.

Figure 1.5 shows the partial-band architecture of a digital
receiver using the IF sampling technique. The BPF is an RF image-
reject bandpassfilter. The problem of imagesisaseriousissuein the
type of architecture designs. This is because each wireless standard
imposes constraints upon the signal emissions by its own users based
on the RF regulations. It does not have control over the signal
in adjacent bands. In some cases, the image power can be much
higher than the desired signal power. The most common approach
to suppress the images is through the use of an RF image-reject
bandpass filter, which is placed before the mixer. Usually, we design
the RF image-reject bandpassfilter with arelatively small lossin the
desired signal band and a large attenuation in the image band. This
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Figure 1.6 A conventional block diagram of adigital downconver-
sion and channelization for the digital receiver.

redundant approach leads to a relatively narrow signal bandwidth
for the A/D converter to process. The A/D converter is commonly
operated at an oversampling frequency rate of M F, where F isthe
sampling rate and M isaninteger, dueto the higher center frequency
of the IF signal. This means that the A/D converter must operate at
a higher sampling rate than in the baseband.

A conventional block diagram of a digita downconversion
and channelization is shown in Figure 1.6. Here, the digital input
signal z[n] with the sampling rate of M F; is at the IF rather
than at baseband. The digital downconversion is performed by
using digital multipliers cos(2r%2n + ¢) and sin(2rfon + ¢),
where fj is the IF center frequency, ¢ is the phase, and f; is the
oversampling rate equal to M Fy, to convert the IF signal into the
baseband signal. The digital channelization uses digital lowpass
filters followed by downsampling by A (or resampling operation)
to generate I and (Q signals at the sampling rate of F, because
of the higher sampling rate at the input. It is also necessary for
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channel filtering to extract frequency divided channels. In this
case, the digital lowpass filters have to attenuate adjacent channel
interferers, meet the blocking characteristics, and reject aliasing
after downsampling. Thus, the entire processis a digital translation
process in which the digital lowpass filters are designed to have
linear phase characteristics. Furthermore, the operation of the digital
lowpass filters and downsampling can be implemented in a very
efficient way by using polyphase filter structures [15, 24] or a
k-stage cascaded integrator comb (CIC) filter capable of larger
integer resampling followed by an n-stage half-band filter to finish
the compensation of spectral and gain control [25].

A special case of the digital downconversion and channelization
isif the center frequency of the digitized channel of interest is equal
to a quarter of the sampling rate [23], that is, f, = 4f,. We aso
assume that the phase ¢ is equal to zero or can be controlled to zero.
In this case, the digital multipliers can be rewritten as follows:

cos (27r‘;0n + (b) = cos (ﬂ-zn) ={1,0,-1,0,---} (1.8)

s

and

sin <2w]f%n n gb) — sin (g”) ={0,-1,0,1,---}.  (L9)
Equations (1.8) and (1.9) indicate that the half of the digital
samples in the digital cosine multiplier product are set to zero and
the complementary set of the digital samples in the digital sine
multiplier product are aso set to zero, respectively. Further note
that these zero values cannot contribute to the outputs of the digital
lowpass filters operation. Thus, we disregard these zero values since
we know the location of these zeros and account for their effect
in shifting the nonzero digital samples through the digital lowpass
filters.

Let the digital lowpass filters have a finite impulse response
(FIR) lowpeass filter having the characteristics given by its system
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function Nl
H(z) = Z hin]z™", (1.10)
n=0

where h[n] is the filter impulse response. Because of the
downsampling by M = 4, it is possible to decompose the filter
H(z) into the four-channel filter bank with polyphase form as
follows [15]:

H(z) = Z_:Z_ka(ZA)

= D()(Z4> + 271D1 (24) + 272D2(Z4) + 273D3(24)

(1.11)
where the polyphase filters are
qg—1
Do(z) = > h[dn]z"", (1.12)
n=0
q—1
Di(z) = > hldn+1]z7", (1.13)
n=0
q—1
Dy(z) = > hldn +2]z7", (1.14)
n=0
and
q—1
Dy(z) = > hldn +3]z7", (1.15)
n=0

where ¢ isthe largest integer of L%J. Thus, using digital multipliers
in (1.8) and (1.9), and the polyphase filtersin (1.12), (1.13), (1.14),
and (1.15) for combination of the digital lowpass filters and
downsampling, we can further integrate and simplify the entire
digital downconversion and channelization shown in Figure 1.6 into
asimple and very efficient polyphase filter bank architecture shown
in Figure 1.7. This polyphase filter bank architecture of the digital
downconversion and channelization can tranglate the IF frequency
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Figurel.7 Anefficient polyphasefilter bank structure of the digital
downconversion and channelization for the digita
receiver.

band signal with quarter-sample rate to the baseband signal with
downsampling of 4 and convert a red-input signal z[n| into a
complex output signal, rea signal z;[n], and image signal zq[n],
simultaneously.

1.4 Link Budget

A link budget commonly refersto acomplete gain and loss equation
from a transmitter, through channel mediums (including air, cable,
waveguide, fiber, and so on), to areceiver. The calculation of power
and noise levels between the transmitter and the receiver by taking
account of all gain and loss yields operating values of link margin
above threshold in terms of SNR and achieving a minimum bit error
rate (BER) requirement.
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The effective received carrier signal power is defined by

p_ RGG.
L.L,

(1.16)

where P, is the transmitted carrier power, G; is the transmitted
antenna gain, G, is the received antenna gain, L, is the receiver
implementation loss, L, is the path loss, and P, is the received
carrier signal power.

Thetotal input noise power at the receiver isgiven by [7, 13]

N = kT BF, (1.17)

wherethe value of k7T at atemperature of 17° C (or 290K) isequal to
—174 dBm/Hz, B isthe noise bandwidth at the receiver, and F' isthe
noise figure (typically 5to 6 dB). Thus, the received carrier-to-noise
ratio (CNR) I' is obtained by

P,

r = —
N

-PthGr
= —. 11
kKTBFLL, (1.18)
The modulated symbol energy-to-noise ratio (ENR) is defined
by f;—o where E, is the recelved energy per modulated symbol and
Ny is the white noise power spectral density. Thereis arelationship
between the recelved CNR and the modulated symbol ENR given

by [13]
E B
—Z=(=)T 11
v - (&)" (119
where R, is the modulated symbol rate. Substituting (1.18)
into (1.19), we can rewrite the link budget of (1.18) into a new form

as follows:
E, P.G.G,

No  kTR,FL.L,
Note that there is only one difference between CNR in (1.18) and

ENR in (1.20). While CNR uses the noise bandwidth B, ENR uses
the modulated symbol rate R, in the denominator.

(1.20)



Introduction 19

1.4.1 NoiseFigure

SNR is one of the most important parameters used in many analog
circuits, signal processing, and communications. Even though the
ultimate goal is to maximize the SNR for the received signa at
the receiver, most of the front ends of receivers are characterized
in terms of their “noise figure” rather than the input noise. Noise
figure is normally measured as

_ SNR,
~ SNRyu’

(1.21)

where SNR;,, and SNR,,,; are the signal-to-noise ratios measured at
the input and output of areceiver system.
Equation (1.21) can be expressed in terms of decibelsasfollows:

SNR;,
SN Rout

F = 10log,, < > (dB). (122)
Understanding the physical meaning of (1.21) or (1.22) isimportant
sincethe noisefigureisameasure of how much the SNR degrades as
the signal passes through the receiver system. If the receiver system
does not have noise, we then have SNR,,; = SNR;,,, regardless of
the gain. This is because using the same factor, without additional
noise, attenuates both the input signal and input noise. In this case,
the noise factor for a noiseless receiver system is equal to unity or
0 dB. In practice, the receiver system with the finite noise degrades
the SNR to yield the noise figure F' > 1, that is, the noise figure is
always greater than 0 dB.

142 Receiver Sensitivity

Receiver sensitivity of the communication systems is referred to as
the ability of the receiver to detect aradio signal in the presence of
noise, which can arise from a variety of sources including external
and internal to a receiver system. In other words, the receiver
sengitivity is aso referred to as the minimum signal level in which
an RF system can detect with acceptable SNR.
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Given (1.20), the receiver sensitivity can be expressed as
Es
Sps — KTR.FL,, () , (1.23)
Ny

where Sgrs is the receiver sensitivity. Equation (1.23) can be
expressed in decibel units as follows:

SRS:]«T+RS+F+LL+]€S, (1.24)
0
where Sps, kT, R, F, Ly, and f,—o arein the units of dBm, dBm/Hz,
dBHz, dB, dB, and dB, respectively.

Assume that the receiver implementation loss L, in (1.24) is
equa to 0 dB in an ideal case and kT = —174 dBm/Hz at room
temperature. Then (1.24) can be further simplied as

Srs =—174+ R, + F + E (1.25)
No’

Note that the sum of the first three terms is the total integrated
noise of the receiver system and is sometimes referred to as the
noise floor. In addition, all the parametersin (1.25) are usually fixed
except for Es . Therefore, in order to determine the minimum of the
receiver sensrtrvrty we first calculate the minimum of E dB, and
then substitute it into (1.25). In this case, (1.25) is referred to asthe
minimum receiver sensitivity.

1.4.3 Maximum Path L oss

A path loss can be determined by using the receiver sensitivity
in (1.23), the link budget in (1.20), and the minimum receiver
sensitivity in (1.25). We can first rewrite (1.20) to obtain the path
loss Lp
- PthGT‘
KTRFL, (%)

Substituting (1.23) into (1.26), with an ideal case of no implemen-
tation loss L;, = 0 dB, we obtain the path loss Lp in terms of the

(1.26)



Introduction 21

receiver sensitivity asfollows:

o PthGT‘

Lp= (1.27)

Sks

If Sgs is the minimum receiver sensitivity given by (1.25),
then (1.27) can be rewritten in terms of decibel units as follows:

Lmax = Pt + Gt + Gr - SRS> (128)

where Sis is the minimum receiver sensitivity in dBm, P, is the
transmitted carrier power in dBm, G, isthe transmitted antenna gain
indB, G, isthereceived antennagainindB, and L,,,, isthe unit of
dB, which is referred to as the maximum path loss or the maximum
allowable path loss.

1.5 Summary

In this chapter, we have first introduced the history of communi-
cations from the first magjor technical milestone of telegraph ser-
vice in 1893 to Nyquist-Shannon’s communication theory in 1948,
which ignited subsequent developments in the field of communica-
tions. We have then presented a short review of digital communi-
cation systems with emphasis on software-defined multimode and
multichannel-based digital communication systems. Subsequently,
we have addressed designing digital RF systems with emphases on
concepts of developing digital transceivers, A/D converter, digital
downconversion, and channelization. These discussionshaveledto a
necessary step of understanding the ultimate software-defined radios
or digital RF systems that can accept fully programmable operation
and control information and support a broad range of frequencies,
air interfaces, and applications software in a single communication
device with the operation capabilities of multiband and multimode.
Furthermore, we have focused on link budgets with respect to noise
figure, receiver sensitivity, and maximum path loss, thereby provid-
ing akey guideline for designing digital communication systems.
Of particular importance in the evaluation of communication
system performance is the Nyquist-Shannon sampling theorem that
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laid the mathematical foundations for information theory, which has
developed rapidly over the last five decades along with the practical
applications to digital communications. Digital communication
systems and networks that exist today and those currently under
development certainly reflect these recent advances in information
theory. In fact, this theory is an important mathematical apparatus
not only in the statistical modeling of information sources and
communication channels but also in the design of modern digital
communication systems, including software-defined radios (SDRS),
digital RF systems, multiple-input multiple-output (MI1MO)-based
smart antenna systems, orthogonal frequency division multiplexing
(OFDM), UWB, and future wireless and wireline communications.

This chapter has attempted to describe some important
fundamental theories and new technologies and approaches to
the field of wireless communications that are likely to evolve in
the coming decades. The advanced development in the field of
signal processing will be a key to future digital communication
systems with evolving higher data rates and spectral efficiencies.
Currently, there are three candidates for providing increased data
rates and improved spectral efficiency at the physical layer,
including OFDM, UWB transmission, and space-time modulation
and coding [26]. Each of these technologies has the potentia
to greatly increase the data rates and spectral efficiency of the
physical layer by using advanced signal processing and will likely
find its way into future digital communication systems. Therefore,
by overviewing signal processing technologies in this chapter, we
have laid technical foundations to introduce later chapters on more
advanced developments of signal processing technologiesfor digital
communication systems.
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Probability, Random Variables, and
Stochastic Signal Processing

2.1 Introduction

In many cases, signals that are generated from complex processes
cannot be described precisely by a mathematical representation.
In such case, the signals are referred to as random or stochastic
signas. A random signal, or random process, is a signa that is
not generally repeatable in a predictable manner. For instance,
quantization noise, which is generated by using an A/D converter, a
fixed-point digital filter, or other fixed-point devices, can be modeled
as a random process. In another example, a discrete-time Kalman
filter is developed by using an assumption of a discrete-time random
process [1]. Thus, in this chapter, we introduce probability, random
variables, and stochastic signal processing, which are basic and
important concepts to understanding signal processing for digital
communications.

A random, discrete-time random, or stochastic signal can be
considered a member of an ensemble of signalsthat is characterized
by a set of probabilities. A fundamental mathematical representation
or astatistical representation of random or stochastic signals often

25
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uses its description in terms of averages, means, and variances.
Therefore, in this chapter, we provide the stochastic background
that is necessary to understand how a random process can be
represented and how its statistical properties are affected by linear
shift-invariant systems. We also introduce specific distribution and
density functions as well as their means, variances, and moments.
Our treatment serves primarily as review, notation definition, and
fundamental development. There are many references on this
subject, such as Davenport and Root [2], Davenport [3], and
Papoulis[4].

This chapter isorganized asfollows. This section presentsashort
introduction. In Section 2.2, we begin with a review of probability
and random processes, focusing on concepts and definitions,
including intuitive, axiomatic, and conditional probabilities and
independence. In Section 2.3, we briefly introduce random variabl es.
Probability distribution and density functions are presented in
Section 2.4, along with adiscussion of joint distribution and density
functions, statistical averages, and joint moments. Then, in Section
2.5, we further introduce functions of random variables, including
sums of random variables and transformations of random variables,
which are useful to derive the joint probability distributions and
densities. Specific discrete and continuous distribution and densities
are presented in Section 2.6 and Section 2.7, respectively. The
upper bound theory on the tail probability is introduced in Section
2.8, where we address the Chebyshev inequality, the law of large
numbers, and the central limit theorem. In Section 2.9, stochastic
signal processes are discussed, with an emphasis on discrete-
time stochastic processes. Then we develop detection theory and
optimum receiversin Section 2.10. Finally, abrief summary isgiven
in Section 2.11.

2.2 Probability

In this section, we begin by introducing basic results of probability
theory. This brief treatment takes into account the general needs of



Probability, Random Variables, and Stochastic Signal Processing 27

random variables, subsequent sections, and chapters. Thus, we will
present several important concepts, including intuitive, axiomatic,
and conditional probabilities and independence.

2.2.1 Intuitive Probability

The probability theory processes the averages of many phenomena
occurring sequentially or simultaneously. One purpose of using the
probability theory is to describe and predict averages in terms of
the probabilities of the events. For instance, in an experiment of
coin-tossing, assuming that a fair coin is equaly likely to result in
heads or tails if the coin is flipped, the outcome would be heads
approximately half of the time and tails the other half. Thus, in
intuitive probability, if we alow that all possible outcomes of a
chance experiment are equally likely, the probability of a particular
event, A, is defined as

(2.1)

where N4 and Ny are possible outcomes favoring event A and
total possible outcomes, respectively, and N+ is sufficiently large.
However, the terminology of “sufficiently large” in (2.1) has no
clear meaning. This is an imprecise statement in which cannot be
avoided. Thus, intuitive probability has limitations, but still plays
an important role in probability theory. In many cases, the ssimple
concept of ratio of possible event outcomes is a useful method for
problem solving.

Example 2.1

Assume that if a coin is flipped 5,000 times and heads show 2,565
times, then the probability of heads equals 0.513 and the probability
of tails equals 0.487. However, if we assume that the coin is fair,
then the probabilities of heads and tails equal 0.5, respectively.

2.2.2 Axiomatic Probability

An axiomatic probability begins with the concept of a sample space
that is the set of all possible outcomes of the experiment. If the
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sample space is S and its individual outcomes or elements in the
sample space are {sy, s2, s3, ...}, then the elements in the sample
space are mutually exclusive or digoint. In other words, there is
no overlap of elements in a sample space. The elements are also
collectively exhaustive. Every possible outcome is included.

An event can be considered as a special subset of the sample
space S. Let the events be A, B, C, ..., and so on. Axiomatic
probability theory is now stated as follows:

1. The probability of an event A is a nonnegative number

p(A) >0 (2.2)
2. The probability of a certain event equals 1,

p(s) =1 23)
3. Assuming that A, B, C, ..., are mutually exclusive events,

then
p(A+B+C+---) =p(A) +pB) +pC)+---. (24)

These three definitions, aong with the traditional axioms of
set theory, are fundamental to axiomatic probability theory. These
definitions provide the theoretical basis for the formal solution of
a wide variety of probability problems. For the probability of an
impossible event, a simple consequenceis aways 0, p(?) = 0.

Furthermore, the operation of intersection is also useful. The
intersection of two events A and B is the event including elements
that are common to both A and B. Let the intersection of two events
A and B be AB. For any A and B events, their combined probability
isgiven by

p(A+ B) = p(A) + p(B) — p(AB). (25)

Note that the subtractive term p(AB) in (2.5) is required. This
is because the probabilities in the intersection region have been
counted twice in the summation of p(.A) and p(B). We refer to the
probability p(AB) as the joint probability of the events .A and B.
The probability p(.AB) can be expressed as the probability in which
both A and 5 occurred.
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2.2.3 Conditional Probability

Consider an experiment that ajoint event occurs with the probability
p(AB). If the event B has occurred, we want to determine the
probability of the occurrence of the event A. This conditiona
probability is defined as

p(AB)
p(B)’

p(AlB) = (2.6)
where p(B) > 0.

Let the notation C denote the meaning of the subset. If B C A,
then p(A|B) = 1. This can be shown as

p(AB)
AlB) =
p(A[B) o(B)
_ p(B)
p(B)
= 1 2.7
Similarly, if A C B, then we obtain
p(A)
AB) = —/—=
p(A[B) o(B)
> p(A). (2.8)
Assume that events A;, i = 1,2,---,n, are mutually exclusive
events .
U A =5, (2.9)
=1
and B is an arbitrary event with p(B) > 0. We then have
p(BA;) = p(B|A;)p(A:), (2.10)
and
p(B) = p(B.A1) +p(BA2) + -+ p(B.An) (211)

Equation (2.11) isreferred to as the total probability theorem.



30 Signal Processing in Digital Communications

Further note that p(BA;) = p(A;|B)p(B); thus, we can
rewrite (2.10) as follows:
p(A)
A;|B) = p(B|A; : 2.12
pAIB) = (B4 o (212
Substituting (2.11) into (2.12), we obtain
B|A;)p(A;
p(AB) = P BHAIPA) 2.13)

- X p(BlA)p(A))

where the probabilities p(A;) and p(.A;|B) arereferred to asa priori
and a posteriori, respectively. Equation (2.13) is known as Bayes
theorem.

Example 2.2

Assume that there are 12 balls in a dish and you want to pick up 2
of them, choosing the balls randomly. You see that 6 of the balls are
red and 6 are yellow. You prefer the red ones. What is the probability
that you will get 2 red ones?

LetR;and);, i = 1,2,3,4,5,6, denote the numbers of red and
yellow balls, respectively. The probability of getting 2 red onesis

P(R1Rz2) = p(R1)p(R2|Ry). (2.14)
Since there are 6 red balls and 12 balls together, then
1
p(Ry1) = b% (2.15)

If you get ared one on the first selection, there will be 5 red ones |l eft
out of 11 ballsin the dish. Thus, you obtain

5
p(R2|R1) = ﬁ> (2-16)

and the probability of getting 2 red onesis obtained by
P(RiR2) = p(R1)p(R2|R1)

- ()G -2
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Furthermore, if you get 2 red balls, the question is: What is the
probability that you will get 2 more red ones? Note that there are
4 red left out of 10 balls because 2 red balls have been removed.
Therefore, the probability of getting 2 more red onesis

P(R3R4|R1R2) = p(R3|R1R2)p(R4|R1R2R3)
4 2
_ () (3) _ 2 (2.17)
10 9 15

Two events A and B are called independent if the probability is

2.2.4 Independence

p(AB) = p(A)p(B). (2.18)

The independence of n events can be defined inductively. The events
Ai, Ao, - -+, A, are said to be independent if the probability is

p(Ar---Ay) = p(Ar) - p(A). (2.19)

Equation (2.19) provides the generalization definition of indepen-
dence for n events. These above discussions will be useful when we
introduce random variables in the next section.

2.3 Random Variables

A random variableis a process function, which maps every point in
the sample space S onto areal number. Let aboldfaceletter x denote
arandom variable. The process function must satisfy two conditions
asfollows:

1. Theset {x < z} isan event for every real value x.
2. The probabilities of theevents {x = co} and {x = —oc} are
p{X =00} = 0and p{x = —oo} = 0, respectively.

For example, if 1y and z, are real numbers, the notational
meaning of {z; < x < z,} denotes a subset of space including
al outcomes ¢ such that z; < x < x. The notation {x = z} isa
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subset of space consisting of all outcomes ¢ such that x = x, where
x isagiven number.
A complex random variable z is defined as

Z=X+jy, (2.20)

where x and y are real random variables.
A random vector is a vector and defined by

X = [X1, Xa, ..y Xy, (2.21)

where components x;, i = 1,2, ..., n, are random variables.

2.4 Probability Distributions and Densities

In this section, we will introduce definitions of distribution and
density functions, statistical averages and joint moments, and
moment generation functions.

2.4.1 Probability Distributions
The distribution function of the random variable x is defined by
Fy(z) = p{x <z}, (2.22)

where —oco < = < oo. Equation (2.22) is called the probability
distribution function of the random variable x. It is also known as
the cumulative distribution function of the random variable x.

The cumulative distribution function of the random variable x
has the properties as follows:

1. Because F,(z) is a probability, itsinterval is limited to the
range from O to 1,

0< F(z) < 1. (2.23)

Infact, F.(c0) = 1 and F,(—o0) = 0.
2. Itisanondecreasing function of z. If 1 < x», then

Fi (1) < Fo(x). (2.24)
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3. The probability p{x > z} of the event {x > z} is obtained

by
p{x>z}=1- F.(x). (2.25)
4. Theprobability p{z; < X < z,} of theevent {x; < x < x5}
IS given by
p{rr <X < xa} = Fyp(ag) — Fy(x). (2.26)

2.4.2 Probability Densities

The derivative of the cumulative distribution function of the random
variable x is called the density function:

folz) = d%f), 00 < T < 0. (2.27)

Equation (2.27) isalso referred to as the probability density function.
Thisis equivalent to

Fu(z) = /_‘; Ffolw)du, —c0 <z < oo. (2.28)
The probability density function has the properties as follows:
1. Because F,.(z) ismonotonic, it follows that
fa(z) > 0. (2.29)

2. Since F,(0c0) = 1, (2.28) yields

/ Y p@)dr = 1. (2.30)

3. From (2.28), we obtain

Foa) = Foa) = [ fo@)de. (23D

1
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2.4.3 Joint Probability Distributions and Densities
The joint cumulative distribution function of two random variables
X; and X, is defined as
Fozy(21,12) = p{X1 < 21,%X0 < 29}
T2 1
= [ falwr w)dwdu, (232)

where f,,.,(z1,x2) is the joint density function. The joint density
function of random variables x; and x, is given by

aZFxlxg (3317 .1'2)
0x101s

Given two random variables x; and x, , the marginal distribution
is defined by

(2.33)

f$1a32 (xh x?) —

le <x1> = lexg (x17 OO) (234)
F:z:g <x2) = FLE1$2 (007 .’13‘2) (235)

and the marginal density is defined by
fm(xl) = /_ f$1$2<x175€2)d$2 (236)
fa(@2) = [ foumslor, wa)don. (2:37)

If joint density function f,,.,(x1,22) is integrated over both
variables z; and x5, we then obtain

/_ /_ Jarzo (21, T2)dx1dTe = Fyp 0y (00, 00) = 1. (2.38)
Moreover, we also have the results as follows:
lexz(_oov _OO> = FI1932(_OO> xQ) = FZ1$2 (1‘1, _OO) = 0.
(2.39)

The generalization of the joint cumulative distribution function
for multidimensional random variables is straightforward. Given
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n random variables, Xi, Xs, ..., X,,, the joint cumulative distribution
function is obtained by

Fopan (1,0 mn) = p(Xa S 21,0, Xn < )
z1 Tn
- /_ /_ fml..wn(ul,...,un)
duy - - - duy, (2.40)

where f,, ., (x1,...,x,) isthejoint density function. On the other
hand, the joint density function is obtained by using (2.40)

O"Fyy 2o (T, .y )
= i ’ . 241
fx1...mn (xla 7In) 81'1 . amn ( )

The n random variables, X1, Xs, ..., X,,, ae said to be statistically
independent if and only if the following condition is satisfied,

F"El‘..xn (xh ceey xn) - FZL’1 (xl) T Fxn (':UTL)7 (242)

or
fl’l...mn(l‘17 ) xn) = fm(ml) o fxn(‘rn)' (2-43)

244 Statistical Averages and Joint Moments

In this section, we introduce statistical averages and joint moments
that have an important rolein the characterization of the outcomes of
experiments. Of great importance are the first and second moments
of a random variable x. In addition, we define joint moments,
including the correlation and covariance, which are between pairs
of random variables within a set of n random variables.

Given a density function f,(x), the mean or expected value of
random variable x is defined by

me = E{x}t = [ afile)dr, (2.44)

where E{} denotes expectation or statistical average.
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The variance of random variable x is defined by
o2 = /OO (x —my)? fo(z)dz, (2.45)

wherem, = E{x} and o, iscalled the standard deviation of random
variable x. The variance o2 (2.45) can be considered to be the mean
of the random variable (x — m,)?. Thus, the relationship between
the variance and mean is obtained by

oy = E{(x—my)*}

= E{xX*—2xm, +m2}

= E{X*} —2m,E{x} +m?

= E{x*} — B*{x}. (2.46)
If anew random variableisgivenby y = (x — m, )", where m,

is the mean value of the random variable x, the mean of the random
variable y isthen obtained by

E{yt = E{(x—m.)"}
- / (X — m2)" fo (2)dx. (2.47)
Equation (2.47) is known as the nth central moment of the random
variable x.
Assume that f,.. (7, ;) is the joint density function of the
random variables x; and x;. The correlation, denoted by Rxx;,

between random variables x; and x; is defined by the joint moment
asfollows:

inxj = E{Xl‘Xj}
_ /°° /°° i fore, (25, 2;) sz, (2.48)

The covariance, denoted by Cx.x;, of the random variables x; and
X; is obtained by

CXin = E{(Xl - mi)(xj - m])}
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- /—oo /—oo(xl B ml)(x] o mj)fzizj (xl'7 x3>dﬂfld;€]

= /OO /OO l’il'jf%.%. (l’z‘, I])dl'zdl'j — mym;

Itisalso clear that the covariance function is equal to the correlation
function, Cx,x, = Rx,x,, whenm; = 0 and/or m; = 0.

Thereisarelation between the covariance and correl ation known
as the correlation coefficient. The correlation coefficient is defined
to be the covariance divided by the standard deviations of random
variables x; and x; as follows:

Prie, = —28 (2.50)

If two random variables, x; and x;, are uncorrelated, their covariance
and their correlation coefficient are equal to zero.

Furthermore, if E{x;x;} = E{x;}E{X;} = m;m;, then the
random variables x; and x; are said to be uncorrelated. Thisimplies
that the covariance Cx,x, = 0. If the random variables x; and Xx;
are statistically independent, then they are uncorrelated, but if the
random variables x; and x; are uncorrelated, they are not necessarily
statistically independent. If the random variables x; and x; have
E{x;x;} = 0, then they are called orthogonal. Sometimes, when
the random variables x; and x; are uncorrelated, they are referred to
as linearly independent.

245 Moment Generation Function

Another useful theorem is moments of a density function, which
play an important role in theoretical and applied statistics. In some
cases, if al the moments are known, the density function can be
determined. Thus, it would be useful if we could find afunction that
would represent all the moments. We call such afunction a moment
generation function.
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Let x be a random variable with density function fx(-). A
moment generation function is defined to be

ma(t) = B{eX) = /_ T X p(x)de, (2.51)

where the random variable X is continuous and every value of ¢ isin
someinterval —c <t < ¢,and ¢ > 0.

If the random variable x is a discrete-time random variable, a
discrete-time moment generation function is defined as

ma(t) = E{e™} = ; e fx(z). (252)

In order to obtain the rth derivative of m,(¢) in (2.51), we
differentiate the moment generation function r times with respect
to r asfollows:

d"my(t o0
Zlﬂ( ) :/ X" e fy(x)da. (2.53)
Lett — 0, (2.53) can be rewritten as follows:
a0 _ gy, (254)

where the left side of (2.54) is the rth derivative of m,(t) when
t — 0. Therefore, the moments of a distribution function may be
obtained by differentiation of the moment generation function.

Example 2.3

Assume that x is a random variable with a probability density
function given by

ar

x(x) =ae™ ™, 0<x< 0. (2.55)
Using (2.51), the moment generation function can be written as
my(t) = E{X}
= /OO eRae " dy
0

- 2 t<a (2.56)

oa—t
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Differentiating (2.56) yields

Q

my(t) = e (2.57)

and 5
" e}

Hence, when ¢ — 0, we obtain the first moment

m' (0) = B{x} = i (259)
and the second moment

12; 2

m (0) = BE{x*} = 5 (2.60)

2.5 Functions of Random Variables

In this section, we further discuss functions of random variables, in-
cluding sums and transformations of random variables, X, Xa, ..., X,,.

25.1 Sumsof Random Variables

Assume that we have n random variables, X1, Xs, ..., X,,. We can then
discuss theory of the summations of »n random variables and proof
results as follows:

Theorem 1. Given n random variables, X, Xa, ..., X,,, the mean of
the sum is the sum of the means:

E {zn: xl} = zn: E{x;}, (2.61)
and also

Var{znjxl} = f:Var{xi}+22 > Cov{x;, X}, (2.62)

i §(i<y)
where the notations Var and Cov denote variance and covariance of
the random variables, x;, X, ..., X,,.



40 Signal Processing in Digital Communications

Proof: Using (2.61), we can rewrite the right side of the
equation as

E{ixz} = E{Xi+Xo+ -+ X,}
. = E{X}+ E{X}+ -+ E{X,}

~ Y E{x). (2.63)

Thus, we prove that the mean of the sum is the sum of the means
given by (2.61). For proving (2.62), we can rewrite the left side of

the equation as follows:
2
Sr-n{gel] |
=1 =

alSn) = v
_ {[z E{x}r’}

= E{ zn:x—E{x} X; —E{x})}

1j=
1j

E{(xi — E{x:})(x; — E{x;})}

Var{x;} +2> > Cov{x;,x;}. (2.64)
©g(i<y)

The result of the last line in (2.64) is due to the fact that the sum of
the variances is the diagonal term while the sums of the covariances
are the off-diagonal terms.

From theorem 1, for two random variables x; and x,, it follows
that the sum of meansis obtained by

M:

.
I

I
NE
NE

1

-
Il

Il
M=

@
Il
—

E{x1 £ X2} = E{x1} &+ E{Xz}, (2.65)
and the sum of the variance is obtained by

Var{x; £ Xo} = Var{x; } + Var{xa} + 2Cov{x;,X2}.  (2.66)
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These provide the mean and variance of the sum or the difference of
two random variables, x; and Xs.

Theorem 2. Consider n random variables, Xi,Xs,...,X,. If
X1, X2, ..., X,, @e uncorrelated random variables, then the variance of
the sum is the sum of the variance:

Var {i xz} = zn:Var{xi}. (2.67)

Proof: This theory can be proved by using theorem 1. Note
that the random variables x;, X», ..., X,, are uncorrelated. Thus, then
cov{x;,x;} = 0, for al i, j, i # j. As aresult, the second term
in (2.62) equals zero. Therefore, we prove the result of theorem 2,

Theorem 3. Consider n random variables, X;,Xs, ..., X,, and n
constants, denoted by ¢4, ¢s, ..., ¢, then

Var {Z Cin} = Z Z c;ic;Cov{x;, X;}
i=1 i=1 j=1
— Z C?VW{XI}
=1
+ Z Z CiCjCOV{XZ', Xj}. (269)
i j(57)

This theorem states aresult that is somewhat related to theorem
1. Hence, by using the proof method in theorem 1, this theorem can
be proved as well.

Theorem 4. Given n random variables, Xy, X, ..., X,,, if the random
variables Xy, X, ..., X,, are independent and identically distributed
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with mean m,, and variance o2, and if

X, = 1 > X, (2.70)
N3
then the mean of X,, is given by
E{X,} = my, (2.71)

and the variance of X,, is given by

[\

Var{x,} = ’=. 2.72)

n

Proof: To prove (2.71), by using (2.70), we rewrite that
- 1 &
E{x,} = FE { sz}

ni4

1 n
I Z E{x;}

=1

= Iy,
=1

n .-

= my. (2.73)

To prove (2.72), by using (2.70), we obtain that
° 1 &
Var{x,} = Var { > xi}
nus
1 2 n
. () Var {Z xi} . (2.74)
=1

n

Since the random variables xi,Xs,...,X, are independent and
identically distributed, then the random variables Xy, Xs, ..., X,, ae
uncorrelated random variables. Therefore, by using theorem 2, we
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rewrite (2.74) asfollows:

()

Var{x,} = > Var{x;}

~

2
Oy
1

N———
\V)

BN I = 3
~_

Il
3‘q e N

= (2.75)
Hence, we complete the proof of this theorem.
2.5.2 Transformations of Random Variables
Assume that x;, ¢ = 1,2,---,n, be jointly continuous random

variables with density function fx(z1, 2o, -+, ,), and y;, i =
1,2,---,n, beaset of random variables such that

yi:gi(X17X27”'7Xn)7 ?;:1727'”7”' (276)

Equation (2.76) is a one-to-one transformation. Also assume that x;,
i=1,2,---,n,can beinverted and expressed in terms of functions
ofy,,i=1,2,--- n,asfollows:

Xi:gi_l(ylﬂy27“'7yn)a Z.:]-727"'7n' (277)

The objective of the transformations of random variables is to
determine the joint probability density function fy(y1, %2, -, ¥n),
given the joint probability density function fx(z1, xz, - -, x,).

L et us define atransformation function as

T S Ve
8y_11 6y_11 oY1
99, 99, ... Ogn !
J=| O O O (2.78)
ogr' g3 ogn!
Oyn Oyn Oyn

where J is referred to as the Jacobian transformation. Assume that
all the partial derivatives in J are continuous and the determinant
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of J is nonzero. Then, we obtain the desired relation of the joint
probability density function fy(y1, 2, -+, yn) 8

fy(yh T >yn) = ’J‘fx<g;1(y17 T 7yn)7 T 79;1()/17 T 7yn))
(2.79)

Example 2.4

Let x; and X, be two independent random variables, and the linear
transformation of random variablesisy, = x; + x; and 'y, = %
Then we obtain

-1 Y1Yy2
— - 2.80
1 gl <y17y2) 1+y27 ( )
2= g5 (1, 0) = —2—, (2.81)
1+
and the Jacobian transformation
Y2 1
J = | 1—512”2 ljyz’?
(14y2)?2  (14y2)?
U1
= —— (2.82)
(14 y2)?

Therefore, the joint probability density function fy(yi,y2) is
obtained by

— Y1Y2 —1 Y1
5 pr— J 1 y p— y 5 pr— .
fy(y1, ) || fx (g7 (v, 92) Tt (Y1, 12) 1+y2)
(2.83)

In order to find the marginal distribution of y, and y,, we need
to integrate out 1,

fy, () = /_ O:O Sy, y2)du, (2.84)

and to integrate out

w2 = [ 5y o)y (2:85)
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2.6 Discrete Distributions and Densities

In this section, we introduce severa discrete densities and derive
their means and variances.

2.6.1 Discrete Uniform Distribution

A random variable x is defined as a discrete uniform distribution if
the discrete density function is given by

N

0 otherwise (2.86)

L forz=1,2,---,N
fx(z) = {
where the range of parameter /V is over the positive integers. The
random variable x is also called a discrete uniform random variable.
A theorem states that if a random variable x has a discrete
uniform distribution, then the mean is given by

N +1

E{x} = ——, (2.87)
the variance is given by
2 _
Var{x} = N 1, (2.88)
12
and the moment generation function is given by
N 1
ma(t) = E{e®} = 3 ¢t (N) . (2.89)
j=1
We can prove these theorem results as follows:
N .
B J N+1
E{x} = ]; N= g (2.90)

and

Var{x} = E{} - (E{x})? (2.91)
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X (NF1Y

_ N(N+1)@2N+1) (N+1\?

B 6N a ( 2 ) (2.93)

 (N+D(N-1)

= 5 (2.94)
N? -1

- 5 (2.95)

By using (2.52), we can obtain the moment generation function of
the discrete uniform distribution as follows:

my(t) = E{eX} = Zetxfx Zeﬂt( ) (2.96)

2.6.2 Binomial Distribution

A random variable x is defined as a discrete binomial distribution if
the discrete density function of x is given by

n X N—T —
fx(x){ <x>pq fore =1,2,---.n (2.97)

0 otherwise

where the parameters p satisfy 0 < p < 1, ¢ = 1 — p, and n ranges
over the positive integers. Figure 2.1 shows the binomial discrete
density function fx(z) of x, with the parameters of n = 30, p = 0.3,
andg = 0.7.

A theorem states that if a random variable x has a discrete
binomial distribution, then the mean is

E{x} = np, (2.98)

thevarianceis
Var{x} = npq, (2.99)

and the moment generation function is

mg(t) = (¢ + pe")". (2.100)
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0.2

1,0

0.1

Ll

o
0 5 10 15 20 25 30
X

Figure2.1 Thebinomial discrete density function fx(x) of x, with
n =30,p=0.3,and ¢ = 0.7.

We now prove these theorem results starting first with the proof
of the moment generation function as follows:

ma(t) = E{e™}

= (pe' + )" (2.101)
Taking the first and second derivatives of (2.101) obtains
m! (t) = npe' (pe' + q)" !, (2.102)
and

miy(t) = n(n — 1)(pe)*(pe’ + q)" % + npe' (pe' +¢)" . (2.103)

T
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Thus, we obtain the mean

E{x} = m(0) = np, (2.104)
and the variance

Var{x} = E{x*} —(E{x})
= m}(0) — (np)®
= n(n—1)p* +np — (np)?
np(1l — p). (2.105)
Notethat if n = 1, then (2.97) becomes

pqt=® forz=0orl

Tx(z) = { 0 otherwise (2.106)

where the parameters p satisfy 0 < p < 1l,andg = 1 — p.
Equation (2.106) isreferred to asadiscrete Bernoulli distribution. In
this case, the mean, variance, and moment are asfollows: E{x} = p,
Var{x} = pq, and m,(t) = pe + q.

2.6.3 Poisson Distribution

A random variable x is defined as a discrete Poisson distribution if
the discrete density function of x is given by

e~ A\
forz=1,2,---
— z! ) <
Mx(@) = { 0 otherwise (2.107)

where the parameter A > 0. Figure 2.2 shows the Poisson discrete
density function fx(x) of x with the parameters of n = 30 and
A =4.

A theorem states that if a random variable x has a discrete
Poisson distribution, then the meanis

E{x} = ), (2.108)

thevarianceis
Var{x} = A, (2.109)
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Figure 2.2 The Poisson discrete density function fx(x) of x with
n=30and \ = 4.

and the moment generation function is
my(t) = D), (2.110)

We prove these theorem results with the moment generation
function asfollows:

ma(t) = E{e”}
00 eta:e—)\)\a:

- 3

z=0
o)
- ;;; x!
= e e, (2.111)

z!

Taking the first and second derivatives of (2.111) yields

m’(t) = Ae Aele, (2.112)

xT
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and
m"(t) = de el Ne! + 1]. (2.113)

xT

Therefore, we obtain the mean
E{x} =m!(0) =\, (2.114)
and the variance

Var{x} = BE{x*} - (E{x})’
= ml(0) — \?
— AAE1) N
— A (2.115)

The discrete Poisson distribution has many applications because
it provides areadlistic model for many random phenomena. Special
application areas include modeling for fatal traffic accidents per day
in a given state, the number of radioactive particle emissions per
unit of time, the number of telephone calls per minute, the number
of defects per unit of some material, the number of meteorites
that collide with a test satellite during a single orbit, and so on.
Mood et al. [5] pointed out that if certain assumptions regarding
the phenomenon under observation are satisfied, the discrete Poisson
model isthe correct model.

Example 2.5

Assume that the average number of telephone cals arriving at
the switchboard is 1,200 calls per hour. We want to determine as
follows: (1) What is the probability that no calls will arrive in a
period of 1 minute? (2) What is the probability that more than 100
calswill arrivein aperiod of 1 minute?

Note that 1,200 calls per hour equals to 20 calls per minute.
Thus, the mean rate of occurrence is 20 per minute as well. The
probability that no callswill arrivein aperiod of 1 minuteisobtained
by

P=e" =@M x 92061 x 1077, (2.116)
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and the probability that more than 100 callswill arrivein a period of
1 minuteis given by
= ( t)*
P =
)

(

Q

ve

(n—1

)
_ opa—eom [(20) ()]
— 920e20)(1) ( o )

= 5.6x 1073, (2.117)

2.7 Continuous Distributions and Densities

In this section, we discuss a set of special continuous distributions
and densities that belong to the parameter families of universal
probability density functions.

2.7.1 Gaussian Density Function

A random variable x is known as Gaussian or normal if its density
function is given by

1 (x —my,)?
fX(x) - O'x\/% exp {_ 20_:% } ) (2118)
where m,, isits mean defined by (2.44) and o2 isits variance defined
by (2.45). The symbol o, is aso known as the standard deviation.
The density function in (2.118) is symmetric around the mean m,,.
Since fx(z) isadensity function, then we obtain

[ Y p(@)dr = 1. (2.119)

The corresponding Gaussian distribution function can be
obtained by taking the integral of the Gaussian density function
in (2.118),

Fo(z) = /_ ; fulw)du
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Figure 2.3 The Gaussian density functions fx(z): (a) the different
means and the same standard deviation and (b) the
same standard deviation and the different means.

o 1 (u — my)?
-/ v {—20_% } du. (2.120)

The Gaussian density functions fx(x), with the different means and
the same standard deviation and the same standard deviation and the
different means, are shown in Figure 2.3(a, b), respectively. Note
that the mode of a Gaussian density occurs at © = m,, and inflection
points happen at m, — o, and m, + o,. Also, with the same mean
value, increasing the variance leads to a decrease in the peak value
of the Gaussian distribution functions.
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We often use a shorthand notation
X ~ N(mg,o?) (2.121)

x

to represent that a random variable x has a Gaussian density
function. We can also use the notations ¢, ,2(z) and ®,,, ,2(x)
for the Gaussian density function and the Gaussian distribution
function, respectively.

If the Gaussian random variable x has zero mean and unit
variance, it is called a standard or normalized Gaussian random
variable. The normalized Gaussian density function is given by

do.1(x) = \/127 exp {—g;} , (2.122)

and the corresponding normalized Gaussian distribution function is
obtained by

o, (1) = L Oo Go.(u)du. (2.123)

There are many important properties for the Gaussian random
variables. We introduce the two most important properties as
follows.

Property 1. If therandom variableisthe Gaussian random variable,
denoted by x ~ N(m,,0c2), then the probability of the random
variable x falsin therange interval (a, b], given by [6]

b_ x - x
pla < X < bt = dy,; ( m ) — By, <a m ) . (2124)
ag g

x T

This property can be proved as follows:

b1 (u —myg)?
< = _
p{a < x < b} /a P exp { 207 } du

[ gl )
= ——exps —— pdz
(a—mz)/ox 27 2

b—m, a—myg
= CI)O,I( >—<I>o,1( )
O Ox
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Property 2. If adistribution function is the normalized Gaussian
distribution function, then we have &, ;(z) = 1 — ®¢,(—=x). This
property can be approved by using the Gaussian symmetry.

The normalized Gaussian distribution appears to be areasonable
model of the behavior of certain random phenomena. A number
of the processes in applications are Gaussian or approximately
Gaussian as followed in central limit theorems, which will be
discussed in Section 2.8.3.

2.7.2 Error Function
The error function, which is denoted by erf(x), is defined by

erf(z) = ;7? /0 e du, (2.126)

Figure 2.4 shows a plot of the error function in (2.126), with the
semilog and the parameter = from 0 to 5.

The corresponding complementary error function, which is
denoted by erfc(x), is defined by

effc(z) = \/2%/:0 e du.
= 1—ef(x). (2.127)

ef(—z) = —ef(x) (2.128)
efc(—zx) = 2— erfc(x) (2.129)
ef(0) = erfc(oo) (2.130)
erf(co) = erfc(0) (2.131)
erfc(oo) = 0 (2.132)
erfc(0) = 1. (2.133)
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Figure2.4 A plot of the error function erf(x), with the semilog and
the parameter = from 0 to 5.

Note that the Gaussian distribution function given by (2.120) can
be rewritten in terms of erf(z) asfollows:

Fo(z) — / 1exp{—(u_mx)2}du

—0o0 O'm\/% 209%
1 /w 1 (u — my)? "
= — expy —————
VT ) 0,027 P 202
1 0 42 2 (z—m)/\/icr 5
- ~Tdt + —/ e tdt
1/ 2m /—oo € ﬁ 0
1 1 r—m
= —+ —erf ) 2.134

Equation (2.134) can also be expressed in terms of erfc(x),

1 r—m
Fy(z)=1- 5erfc (\@O_> : (2.135)
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If = > 0, the asymptotic expansion for calculating erfc(z) is
given by [7]

2

e l 1 1.3 1-3---(2n—1)

erfe(r) ~ o2 T 92pt ong2n

N i
(2.136)

If z isalarge positive value, the successive terms of the right-hand
side in (2.136) decrease very rapidly. Thus, the bounds on erfc(x)
are obtained by

—$2 —Z‘2

(&

1 e
— (1 - — f . 2.137
ﬁx( 2x2)<erc(x)<ﬁx (2.137)
Since erfc(x) = 1 — erf(z), we then obtain the bounds on erf(x)
e v e v 1
N L UC R (1 _ 2:1;2) . (2.138)

2.7.3 Q-Function

Consider a standardized Gaussian random variable x with zero mean
and unit variance given by (2.121). The Q-function is defined by

1 0 g2
Q) = / e % dr. (2.139)
Thus, the Q-function can be written in terms of erfc(x) as
1 T
= —efc| — 2.140
andintermsof ®,,(x) as

Conversely, we can obtain erfc(z) in terms of the Q-function by
usingu = x/v/2
erfc(u) = 2Q(V2u). (2.142)
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Figure2.5 A plot of the Q-function (), with the semilog and the
parameter « from 0 to 5.

Figure 2.5 shows a plot of the Q-function, with the semilog and the
parameter = from 0 to 5.

Using (2.136), the asymptotic expansion of the Q-function (),
with x > 0, is obtained by

~(%) 1 1.3
Q) ~ 6{ - -
VI | 2(g) 2 ()
...i1'3"'(2”2n1)]. (2.143)
(%)

If = isalarge positive value, the successive terms of the right-hand
side in (2.143) decrease very rapidly. Thus, the bounds on Q(x) are
given by

2 2

e 2 1 e T
— <1 _ x2) <QU) < . (2.144)
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2.7.4 Multivariate Gaussian Distribution

Consider the Gaussian random variables x;, i = 1,2,---,n, with
meansm;,i = 1,2, -+, n,varianceso?,i = 1,2, - - -, n, covariances
ijy 4,7 = 1,2,---,nand pu; = 02,7 =1,2,---,n. Let C, denote
the n x n covariance matrix, m, denote the n x 1 column vector
of mean valuesm;, i = 1,2,---,n, and X denote the vector of the

Gaussianrandom variablesx;,i = 1,2, - - -, n. Then, themultivariate
Gaussian density function is given by [1]
B 1 1 T ~e1
p(X) = WGXP —§(X -—m,;) C (X —m,)|,

(2.145)
where C ' istheinverse of C, and m? isthe transpose of m,.
In practice, dueto finite sample sizes, only estimates of the mean
., and covariance C, can be obtained for (2.145) by using unbiased
estimate methods as follows:

1 N
k=1

and

o
Q)
I

E[(X - mw)(x - mx>T]
1

N
= ot —m)e —my)", (2147)
k=1

where N isthe total number of samples.

2.7.5 Uniform Density Function

A random variable x is known as a uniform random variable if its
density function is a constant in the range (a, b] and 0 elsewhere:

1
S a<xz<bandb>a
fo(x) = { 0  otherwise.

The corresponding distribution function of the random variable
X isobtained by taking theintegral of the density function in (2.148),

F.(z) = /;fm(u)du

(2.148)
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Figure 2.6 The uniform random variable x: (a) uniform density
function f,(x) and (b) uniform distribution function

Fy(z), where [|a|| = |[b]].
0, —o<zr<a
= o, a<w<b (2.149)
1, otherwise.

The uniform density and corresponding distribution functions are
shown in Figure 2.6(a, b), respectively.
The mean of the uniform random variable x is obtained by

m, = E{x}

bog
= d
/a b—a v
a+b

= 2.150
= (2.150)

and the variance is obtained by

o2 = E{X*} - E*{x}
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- /b—ad ; b)

_ —a®  (a+ b)

B 3(b —a) 4

(b a)?

= TR (2.151)

The uniform distribution function gets its name because its
density function is constant over the interval range (a,b]. The
uniform distribution function can also be referred to as the
rectangular function due to the shape of its density function.

2.7.6 Chi-Square Distribution

A random variable x has chi-square density if its density function is
obtained by

k/2 )
fo(z) = F(kl/Q) (;) gt/ ez, (2.152)

where k is called the degrees of freedom and is a positive integer,
and I'(+) is the gamma function, defined by

I'(t) = /OOO o te "dx, t > 0. (2.153)
The gamma function has properties as follows:
D(t+ 1) = tT(t), (2.154)
and if t = n and n isan integer, then the gamma function is

I(n+1)=nl, (2.155)

r(n+;) L35 2n(2n_1)\/%, (2.156)

and, in particular,

1 3

r (2> —or (2) — /7 (2.157)
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It can be shown that the mean of chi-square random variable x is
m, = E{X} =k, (2.158)

and the variance is
o2 = 2k. (2.159)

The corresponding chi-square distribution function of the
random variable x is obtained by taking the integral of the density
function,

. k)2
Fo(o) = [ ! <1> P b, (2.160)
o T(k/2) \2 ’

where £ = 1,2,---,30. For larger values of £ (k > 30), an
approximation of normal distribution with zero mean and unit
variance can be used and is quite accurate. Thus, z,, (« isafraction),
the ath quantity point of the distribution, may be computed by

1
To = 5z +V2E = 1), (2.161)

where z, is the ath quantity point of the standard normal
distribution. Mood, Graybill, and Boes [5] have shown (2.161) in
error by less than 1%.

2.7.7 JF Distribution

Let u be a chi-square random variable with m degrees of freedom
and v be a chi-square random variable with n degrees of freedom.
Also assumethat u and v are statistically independent. Then, the new
random variable x in terms of u, v, m, and n is as follows:
_u/m
o v/n’
Equation (2.162) is distributed as an F distribution with m and n
degrees of freedom. Equation (2.162) is called the variance ratio.
The density function of the random variable x is given by

_ C[(m+n)/2] /m\™/? 2 (m=2)/2
x(z) = I'(m/2)'(n/2) (n) { 1+ (m/n)x](mﬂ)/z} .
(2.163)

(2.162)
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The mean of the F density function of the random variable x is

obtained by

- (:1) EAu}E {\1,} - (2.164)
By using (2.158), we obtain E{u} = m, and
A = [ () e
N r(;/z) (;)m /OOO VD23
RO MO

1
= — (2.165)
Therefore, the mean is obtained by
n 1
e - (2 e ()
_ n_m
 omn-—2
- (2.166)
n—2

In asimilar way, the variance is derived to be

2n?(m +n — 2)
2 _ 4, 2.167
% T =22 =4 " (2.167)

The corresponding F distribution function of the random
variable x is obtained by taking the integral of the density function,

m +n /2 m\ ™m/2 u(m—Q)/Q
r (m/2)T(n)2) (%) {[1 n (m/n)u}<m+n>/2}d“‘

(2.168)
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Note that it is not easy to calculate (2.168) directly. However, to
obtain the values of F distribution, we can use the table given in [5].

Further note that the mean of the F distribution depends only
on the degrees of freedom of the denominator. This is because the
F density function is not symmetrical in the degrees of freedom m
and n. It is interesting to note that the F distribution is the ratio
of two independent chi-square random variables u and v divided by
their respective degrees of freedom m and n. We have found this
F distribution form to be of practical interest in a beamformer and
space-time signal processing.

2.7.8 Rayleigh Distribution

Assume that random variables x; and X, are independent
standardized Gaussian with zero mean and unit variance. Also let
anew random variable given by y = /x? + x2.

In order to find the probability density function and probability
distribution function, we first define

V= tan~! (Xz> , (2.169)
X1
and then obtain
Xy = YycosV, (2.270)
Xo = YysinVv. (2.171)
Using the Jacobian transformation in (2.78) yields
Oz Oz
J = |8 &
)

cosv ysinv
sinv ycosv

= ylcos® v + sin® v]
= . (2.172)

Therefore, the joint probability density function f,,(y,v) is
obtained by

fyw(ysv) = |J|fay 2, (ycosv,ysinw)
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1 _eiteld
= e 202
y 2mo?

2
= Y i (2.173)

2w o2

It follows that the marginal probability density function of y is
obtained by
2
Bw) = | fusly,v)de

2

Yy oy
— ;e 202 Y Z 0. (2174)
The corresponding probability distribution function is obtained by

F(y)=1—¢22, y>0. (2.175)

Hence, a random variable having the probability density function
given by (2.174) and (2.175) is said to be Rayleigh distributed.
Figure 2.7(a, b) shows the Rayleigh density function f,(y)
and the corresponding distribution function F,(y) with ¢ = 0.5
and 0 = 1, respectively. As can be seen, increasing the o value
in (2.174) and (2.175) decreases the peak value of the Rayleigh
density function f,(y) and reduces the convergence speed of the
Rayleigh distribution function F,(y) to the constant value of 1.

2.7.9 RiceDistribution

Assume that random variables x; and x, are independent Gaussian
with nonzero means m,, ms, and nonunit variance ¢%. Also, let a
new random variable given by y = /x% + x3.

In order to obtain the probability density function and probability
distribution function for the new random variabley, wefirst define

V= tan ! (X2> ) (2.176)
X1
and then obtain
X7 = YcosV, (2.177)

Xo = YysinVv. (2.178)
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Figure 2.7 The Rayleigh random variable of y: (a) the density
function and (b) the distribution function.

Using the Jacobian transformation result J = y given by (2.172),
we obtain the joint probability density function of the new random
variabley asfollows:

fy,v(y,v) - |J|f$1,x2(x17x2)
= Yfui o (ycosv,ysinv). (2.179)

The joint probability density function f,, .,(y,v) in (2.179) is
obtained by
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1 (ycosv —mq)? + (ysinv — my)?
fm,xz (Z/, U) = o2 exp [_ 952 .

(2.180)

_ 2 2 _ -1 (m
Now let i = /m7 + m3 and ¢ = tan (m—f),whereo < ¢ < 2m,

and then m; = pcos¢ and my = psin¢. Thus, (2.180) can be
rewritten as

1 Y2 4 1 — 2y cos(v — @)
f:v1,ac2 (yﬂ)) = 27T0'2 exXp [_ 20_2 . (2181)

The corresponding marginal probability density function of the
random variabley is obtained by

2w

fuly) = ; fyw(y,v)dv

2 _

y 2271 _ypucos(v=¢)

= {26 202 i e -2 dv
o 21 Jo

02) Cy>0, (2.182)

where
Io(z) = / T reost g (2.183)
0 o Jo ' '

Equation (2.183) is called the zero-order modified Bessel function.
Hence, arandom variable y having the probability density function
given by (2.182) is said to be Rice or Ricean distributed.

Note that if . = 0, we have [,(0) = 1. Thus, (2.182) is exactly
equal to (2.174). Therefore, the Rayleigh distribution is a specia
case of the Rice distribution.

2.8 Upper Boundson the Probability

In order to evaluate the performance of a digital communications
system, it is necessary to measure the area under the tail of the
probability density function. In this section, we introduce methods
of upper bounds on thetail probability.
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2.8.1 Chebyshev Inequality

Assume that x is a continuous random variable with probability
density function f,(-) and let ¢g(-) be a nonnegative function with
itsdomain as the real line. Then we have an upper bound on the tall
of the probability as follows:

P{g(x) > k} < E{gk(x)}7 for every k > 0. (2.184)

This upper bound on the tail of the probability is called the
Chebyshev inequality.
Equation (2.184) can be proved asfollows:

[e.9]

By} = [ g(@)flx)da

—0o0

N /gmzk glo)felw)dr+ /g<x><k ool atwpde
> | o I )

> k[ o))
= kplg(0) > k). (2185)

Now, dividing by & on both sides of (2.185) obtains the result of the
Chebyshev inequality in (2.184).

If x is arandom variable with finite variance, g(z) = (z — m,)?
and k = 62, where § is any positive number, then (2.184) can be
rewritten as

pix—mg| >0} = P{(x—my)* > 6%}

O‘:E
< 52 for every 6 > 0, (2.186)
where m,, is the mean and o, is the variance. Equation (2.186) can
be rewritten in another form as follows:

2

p{X —my| <0} >1— %2 (2.187)
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Note that (2.187) indicates:

0.2

62
In other words, the probability that x falls within § units of m, is
greater than or equal to (1 -2

Further note that the Chebyshev inequality provides an upper
bound, which does not require knowing the distribution of the

random variable x. For the probability of particular events, we only
need to know the mean and variance of the random variable x.

p{m, —d <X<my+d6>1— =2 (2.188)

Example 2.6

Assumethat § = 20, in (2.188). We then obtain the bound on the
tail of the probability

0.2

p{mx—20<x<mx+2a}21—4z =

3

-. 2.1
o271 (2.189)
This says that for any random variable x having finite variance, the
probability that x falls within two standard deviations of its mean is

at least 3.
2.8.2 Law of LargeNumbers

Suppose that random variables x;, i = 1,2,---,n, are statistically
independent and identically distributed, each having a finite mean
m, and afinite variance o,. Let y be defined as the sample mean as
follows:

y=— Z X;, (2.190)

where the mean m,, = m, and o] = %=.

The tail probability of the random variable y can be upper-
bounded by using the Chebyshev inequality. Using (2.186), we
obtain the bound for the random variable y

p{ly —my| > 6} < (2.191)

I,
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It follows that we obtain the Chebyshev inequality on the random
variablex;,i =1,2,---,n,

1 n
p { ‘ " ; Xi — My
Note that when n — oo, (2.192) becomes

: 1 &
lim p{’ZXi — my

e U=

Equation (2.193) is called the law of large numbers or the weak law
of large numbers. This says that the probability that the estimate of

the mean differs from the mean m,, by more than any positive value
9 approaches zero when n approaches infinity.

o : 2.192
> < = .
} no? ( )

0_2
>0y < lim —=< =~ 0. (2.193)
n—oo 1,2

2.8.3 Central Limit Theorem

The most widely applied central limit theorem states that if random
variables xy, - - - , X,, areindependent and identically distributed with
mean m,, and variance o2, then, for each random variable z,,,

X, — E{X,}

\/ Var{X, }
Xn — My
N (2.194)
where X,, is defined and given by (2.70), the distribution function
F.,, (z) in (2.194) converges to the normalized Gaussian distribution
function @ ,(z), when n approaches co. Thus, the distribution
function F, (z) isreferred to as the central limit theorem.

This central limit theorem states that the distribution function
F., (=) approximates a normalized Gaussian distribution function.
In other words, this theorem tells us that X,, is approximately, or
asymptoticaly, distributed as a normalized distribution with mean
m, and variance o2 /n.

Further note that this central limit theorem assumes nothing
about the form of the original density function except that it

z, =
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has finite variance. If given large enough samples, whatever the
distribution function with finite variance, the sample mean x,, will
have, approximately, the Gaussian distribution. In practice, most
density functions encountered have finite variance.

The nature of this central limit theorem provides a specific
error bound if the random variables x4, - - - , X,, are independent and
identicaly distributed with n > 30 for many applications [4].
However, in practice, we suggest using the value n. > 60 for many
applications. In some cases, we may need a large value of n for
samples. Generally, this central limit theorem represents densities
extremely well, with a few random variables of the mean.

In corollary, if random variables x4, - - - , x,, are independent and
identically distributed with common mean m, and variance o2, we
then have useful results as follows:

X — My
pla< PN <b] ~ ®g1(b) — ®g4(a), (2.195)
d—m c—m
X Qo | | = Qo | 2.1
ples X s At (%/ﬁ) <ax/ﬁ>’ (21%)
or
i ~ & L ‘
PQ<;X<]? 0,1(\/5(71) 0,1<\/ﬁ%>

(2.197)

Note that (2.195), (2.196), and (2.197) provide approximate values
for the probabilities of certain events in terms of averages or sums,
In fact, in practice, the central limit theorem is inherent in these
approximations.

2.9 Stochastic Signal Processes

This section discusses stochastic processes for the characterization
and analysis of discrete-time random processes. A discrete-time
random process can be simply considered to be an indexed sequence
of random variables. The extension of these random variable
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concepts as discussed in earlier sections to the discrete-time random
processes is straightforward.

2.9.1 Definition of Discrete-Time Random Process

A discrete-time random process is a sequence of random variables.
We denote the discrete-time random variable by x[n|, where the
brackets indicate that n is an integer. Since the discrete-time random
process is an indexed sequence of random variables, the calculation
of the mean of each of these random variables can be obtained by

mz[n| = E{X[n]}. (2.198)
Similarly, the variance of each random variable x[n| is obtained by
oxln] = E{(X[n] — ma[n])(X[n] — mq[n])"}
E{x*[n]} — m2[n]. (2.199)

Two important functions in the study of discrete-time random
processes are the autocorrelation

R, [k, 1] = E{X[k]x*[1]} (2.200)

and the autocovariance
Culk, 1] = Rk, 1] — mg[k]mZ[l]. (2.201)
If m.[k] = 0 andlor m,[l]] = 0, the autocovariance and

autocorrelation are then equal, C.[k,l] = R.[k,l]. Alsoif k = [,
then the autocovariance function in (2.201) equals the variance
in (2.199) given by

C.lk, k] = o2[K]. (2.202)

Therefore, the mean in (2.198) defines the average value of
the discrete-time random process at index n, while the variance
in (2.199) represents the average squared deviation of the discrete-
time random process away from the mean at index n. Furthermore,
the autocorrelation function in (2.200) and autocovariance function
in (2.201) provide the degree of linear dependence between two
discrete-time random variables, x[k] and X[I].
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Example 2.7

L et us consider the complex harmonic discrete-time random process
given by
X[n] = Cedmt9) (2.203)

where C' and w are fixed constants and ¢ is a phase random variable
that is uniform over theinterval (—m, 7.
The density function of ¢ is obtained by

1
_ ) 5 —m=esT
(@) = { 0, otherwise. (2204)
The mean of the discrete-time random process is obtained by
mg[n] = E{x[n]}
= E{Ce/mwto
= /OO C’ej(”‘“+¢)f(¢)d¢

— /7r gej(nw+¢)d¢
-7 2
0. (2.205)

Equation (2.205) indicates that the discrete-time random variable
X[n] is a zero mean process for all n. The autocorrelation of the
discrete-time random processis given by

Rylk, 1] = E{x[k]x*[1]}
— E{Cej(kw+¢)c*e—j(lw+¢)}
|CPPE{e/ kD), (2.206)

As we can see, the mean of the discrete-time random variable is
zero and the autocorrel ation depends only on the difference between
k and [. This says that the mean and autocorrelation do not change
even if the discrete-time random process is shifted in time index. In
fact, the complex harmonic discrete-time random processis a wide-
sense stationary process, which will be discussed next.
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2.9.2 Stationary Processes

A stochastic process of the discrete-time random process x[n] is
called stationary if its statistical properties are invariant to a shift
of the origin. This means that the discrete-time random processes
X[n] and x[n + k] have the same statistics for any k.

Two discrete-time random processes x[n| and y[n| are called
jointly stationary process if the joint statistics of x[n] and y[n| are
the same as the statistics of x[n + k] and y[n + k] for any k.

In generdl, if the nth joint density of discrete-time random
variablesis given by

Il Xl (s o ) = Xkl Xafnk) (s 0 1) (2.207)

for al £ and al n, then the stochastic process is said to be stationary
in the strict sense (SSS). If (2.207) holds for values of » up to and
including /V, the stochastic processis Nth-order stationary.

A stochastic process x[n| is known as wide-sense stationary
(WSS) if it is satisfied by the following conditions:

1. Itsmeanisaconstant E{X[n|} = m,.
2. Its autocorrelation function depends only on the difference,
7=k —1,s0that

R.[1] = R.[k,l] = E{xX[k]x"[I]}, (2.208)
where 7 isknown as the lag.

In general, if a stochastic process is stationary in the strict sense
(SSS), then it isalso WSS. The converseis not true. Note that WSS
does not even imply first-order stationary. However, in the case of
a Gaussian random process, WSS is equal to SSS. This is one of
important properties of Gaussian random processes [3].

2.9.3 Estimated Functions

In practice, ensemble averages, including means, variances,
autocorrelations, autocovariances and individual density functions,
are not generally known. Thus, estimating these averages from a
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realization of a discrete-time random process becomes an important
and necessary step. Therefore, this section presents estimation
methods for the mean, variance, and autocorrelation of the discrete-
time random process.

Consider the estimate problem for the ensemble averages of a
discrete-time random process x[n]. If alarge number of samples N
are available, then an estimated mean is obtained by

1 N-1
7 > X[n], (2.209)

My = —
NnO

and estimated variance is given by

1 N—-1
62 ==Y |X[n] —m.|*. (2.210)
N n=0
The autocorrelation can be estimated given by
R 1 N-1
R.[k] = N > X[n]x*[n — k. (2.211)
n=0

Note that (2.209) and (2.210) are aso called the sample mean
and sample variance. To obtain these estimates to be accurate and
unbiased, the processes must be stationary or, ideally, ergodic, which
is a stronger condition than stationary. For a precise mathematical
definition, adiscussion of ergodicity is referred to by Papoulis[4].

2.9.4 Power Spectrum

This section presents a power spectrum or a power spectral density
(PSD) for a discrete-time random process by using a discrete-time
Fourier transform (DTFT). The DTFT plays an important role in the
description and analysis for the discrete-time random processes.
Consider a WSS process x[n]. We first determine the autocorre-
lation sequence R, [k] in the discrete-time domain. Since R, [k] isa
deterministic sequence, we then compute its DTFT as follows:
P.(e) = > R,[kle ™. (2.212)

k=—o00
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Equation (2.212) is called the power spectrum or PSD for the
discrete-time random process. In the reverse direction, given the
power spectrum in (2.212), which is periodic with period 27, the
autocorrelation sequence R,.[k] can be computed by taking the
inverse discrete-time Fourier transform (IDTFT) of P,(e?*),

1 ™ . .
R.[K] = / P (7)) d. (2.213)

2 J-
As can be seen, the power spectrum contributes a frequency domain
description and analysis of the second-order moment of the discrete-
time random process.

To represent the power spectrum, we can also use the
z-transform instead of the DTFT as follows (see the z-transform in
Appendix A):

Pu(2) = > R.[k]z"". (2.214)
k=—o00
Equation (2.214) is aso known as the power spectrum of the
discrete-time random variable x[n|.
If the discrete-time random variable x[n] is a real process, then
we obtain the following:

R.[—Fk] = R.[K]. (2.215)

Equation (2.215) indicates that R.[k] is real and even. There-
fore, (2.212) yields the following:

P.(e’*) = R,[0] + 2 Z R, [k] cos(kw). (2.216)

Equation (2.216) shows that the power spectrum of areal processis
real and even. This is because the term cos(kw) is area and even
function.

Example 2.8

Assume that an autocorrelation function of the discrete-time random
process X[n] is given by R,[k] = Aal*!, wherea < 1 isred, and A
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isaconstant. The power spectrum in (2.214) is obtained by

Ps) = 3 RifH

k=—o00

—1 o)
= A ( > oaFF 4 Zakzk)
k=0

k=—00

_ A( az n z)
l—az z-—a

-1
- Ale” —a) (2.217)
(et 4a)— (271 + 2)
Substituting z = ¢’ into (2.217), the power spectrum in (2.212) is
then obtained as follows:

A1l — a?)
1 —2acosw + a?’
Thus, the power spectrum in (2.218) isreal, even, and positive.

Py(e?) =

(2.218)

295 Stochastic Processesfor Linear Systems

This section derives the relationship between the second-order
statistics of a discrete-time random process, including mean,
autocorrelation, and power spectrum, for a linear time-invariant
(LTI) system.

Assume that a discrete-time random variable x[n| is a WSS
random process and an input and h[n] is the impulse response of a
stable LTI system. The output y[n] is adiscrete-time random process
whose values are the discrete-time convolution of input x[n] with
impulse response h[n] given by

y[n] = X[n]*h[n]
= % hlk]x[n — k). (2.219)

k=—o00

The mean of the output discrete-time random process can be
expressed by taking the expected value of (2.219),

my[n] = E{y[n]}
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- k_i hlk E{X[n — k]}

— mun] 3 hlK]. (2.220)

k=—o00

Equation (2.220) indicates that the mean m,[n| of the output
discrete-time random process y[n] is a constant and is directly
related to the mean m,[n] by a scale factor equal to the sum of the
discrete-time impul se response values.

Alternatively, an equivalent expression in (2.220) in terms of
frequency response is obtained by

my[n] = my[n]H (), (2.221)

where H (e’Y) isafrequency-domain transfer functionat w = 0. This
is to say that the mean m,[n| equals the mean m,[n| scaled by the
value of the frequency response of the LTI system at w = 0.

The autocorrelation function of the output discrete-time random
processis given by

Ryln,n+1] = E{ylnly*[n+ 1]}

— S WH Y W

k=—00 r=—0o0

E{xX[n —k|X*In+1—r]}. (2.222)

Since the input discrete-time random process x[n| is WSS, the term
of E{x[n — k|x*[n + [ — r]} depends only on theindex | + k — r.
Thus, we can rewrite (2.222) asfollows:

Ryn,n+1] = i hlk] i R*[r|R. [l + k — 7]
- B?y[zof : (2.223)

Note that the autocorrelation function R, (] in (2.223) depends only
on the index difference of /. To obtain the variance of the output
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discrete-time random process, y[n|, we can set | = 0 in (2.223) and
get

o,ln] = Ry[0]

= f: i WER P Rolk — 1], (2.224)

k=—o00 r=—00

Hence, from (2.221), (2.223), and (2.224), if input discrete-time
random variable x[n] is WSS, then the output discrete-time random
process y[n] will also be WSS with the condition o72[n] < oo for the
stable LTI system.

To obtain the power spectrum, we take the DTFT on both sides
of (2.223),

P(e*) = H()H" () Pu(e”)
= [H(e™)[Po(e™). (2.225)

Note that if the discrete-time impulse response h[n] isreal, then we
obtain
H*(e’*) = H(e™*). (2.226)

In this case, the power spectrum of the output discrete-time random
processis given in terms of the z-transform as follows:

Py(z) = H(2)H(1/2)P,(2). (2.227)

Thus, (2.227) provides a convenient way for analysis of the power
spectrum P, (z), specially in spectral factorization.

Oneinteresting point isthat the total average power in the output
for the LTI system can be calculated by

E{y*ln]} = R,[0]
_ 4 /7r P,(e")dw

o7 Jon
1 s . .
- / \H () 2Py (e7)dw.  (2.228)

21 J
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This means that the area under the curve |H (e/*)|? P,(e?*) with a
rangeinterva —m < w < 7 represents the mean-square value of the
input discrete-time random process.

Another important subject is that the cross-correlation function
between the input discrete-time random process and output discrete-
time random process of an LTI system is used for applications of
estimating the impulse response or frequency response of a linear
system. The cross-correlation function is obtained by

Ry lll = E{x[n]y[n+1]}
= Y REE{XRX 0+ K]}

k=—o00

=S AR K. (2.220)

k=—o00

Equation (2.229) means that the cross-correlation function R, [n]
is the convolution of the discrete-time impulse response h[n| with
the autocorrelation function R,[n] of the input. If the input is white
noise such that R[] = ¢24]l], then (2.229) becomes

Ry, [l] = o2h[l]. (2.230)

This indicates that the cross-correlation function R,,[{] is propor-
tional to the discrete-time impulse response of the LTI system when
the input discrete-time random process is zero-mean white noise.

The power spectrum of the cross-correlation function R, [/] can
be obtained by taking the DTFT on both sides of (2.229),

P, (') = H(e’*)P,(e?). (2.231)

In asimilar way, if the input discrete-time random processis a zero-
mean white noise, then (2.231) can be rewritten as follows:

P, (') = o2H (™). (2.232)

Hence, (2.232) is proportional to the frequency response of the LTI
system. Therefore, (2.230) and (2.231) can be used to estimate the
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discrete-time impulse response 1[n] and frequency response H (¢7*)
of the LTI system when the input discrete-time random processis a
zero-mean white noise.

Example 2.9
Consider afirst-order discrete-time difference equation given by

y[n] = ax[n] — bx[n — 1], (2.233)

where X[n] is an input discrete-time random process, y[n| is the
output discrete-time random process of a linear system, and a, b
are the constants. Also assume that the input discrete-time random
process x[n] iswhite noise with P, (e/*) = o2.

The z-transform transfer function of the first-order discrete-time
difference equation is obtained by

Y(z)
X(z)
= a—bz L (2.234)
Using (2.227), we obtain the output power spectrum for the LTI
system as follows:
P,(z) = (a—bz"")(a—bz)Py(2)
= (a* +b* —abz — abz" )2 (2.235)

xT

H(z)

The output power spectrum can aso be expressed in the frequency
domain by using z = ¢’“ asfollows:
P,(e™) = o2[a®+b* — ab(e’ — e77¥)]

= o2(a* +b* — 2abcosw). (2.236)
since the term of cosw isreal and even, the output power spectrum
in (2.236) is areal, even, and positive function. This can be shown
asfollows:

P,(e™) = o%(a*+b* — 2abcosw)

o2(a —b)?

0. (2.237)

(AVARVS
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29.6 Mean Square Estimation

Consider x;[n], ..., X,[n] as discrete-time random variables. Assume
that T = t(X1[n],...,X,[n]) is an estimator of 7(n). Then, the
expression

£ = E,{(T —7(n)*} (2.238)

is said to be the mean square error (MSE) of the estimator 7' =
t(X1[n], ..., Xu[n]).

An MSE estimator in (2.238) is a measure of goodness, with
small values being better than large values. In other words, the ¢
in (2.238) is a measure of the spread of function 7' value about
7(n) in such a way that the variance of a discrete-time random
variable is a measure of its spread about its mean. Thus, we would
prefer the estimator with the smallest M SE, known as the minimum
mean square error (MMSE). In general, though, the M SE estimator
depends on 7.

Anestimator T' = t(X{[n], ..., X, [n]) isreferred to as an unbiased
estimator if and only if

EATY = Ef{i(xln],....xa[n])}
= 7(n). (2.239)

This indicates that an estimator is unbiased if its mean is equa to
the parameter being estimated. Therefore, the MSE in (2.238) can
be rewritten as follows:

EAT—7m)*} = EA(T —EAT}) — (1(n) — E,{T})]*}
= E{(T - E{T})*}
=2(r(n) — E{THEAT — E,{T}}
+E,{(T(n) — E”]{T}>2}
= Va{T}+ [r(n) — E,]{T}]Q. (2.240)

Note that the second-term in (2.240) is known as the bias of
the MSE estimator 7" and can be either positive, negative, or
zero. Furthermore, the MSE in (2.240) is the sum of two positive
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quantities. Thus, (2.240) provides the relationship among the M SE,
variance, and bias of an estimator.
If the estimator 7" is unbiased, then (2.240) yields

E,{(T —7(n))*} = Var{T}. (2.241)
In thiscase, T is called the unbiased estimator.

Example 2.10

Inthisexample, we consider the linear estimator y[n| of y[n] interms
of the discrete-time random variables, x;[n/, ...,X,[n]. The linear
estimator y[n] is given as follows:

Jinl = Y- A (2.242)

where A; is constant. Thus, an MSE between the linear estimator
y[n] and y[n] is obtained by

Suse = E{(yIn] —y[n])*}

Using the result in (2.240), (2.243) can be rewritten as follows:

Errs = Var {Z A [n}} T ly[n] _ By, {Zl Al H B
2.2

i=1

Thus, the MM SE can be achieved when the linear estimator y[n] is
an unbiased estimator of y[n|. In this case, (2.244) yields

Evmse = Var {Xn: AiX; [n]} ) (2.245)

Further note that if we use the result in (2.69), (2.245) yields

n

- . (2.246)
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2.10 Detection Theory and Optimum Receivers

In this section, we introduce detection in digital communications in
the presence of additive noise. Thistopic is of particular interest in
determining an optimum design of areceiver.

Detection theory provides a set of rules for a decision-making
method, which is used to observe the received signals and predict
the transmitted signals. The results of detection are subject to
transmission errors. However, the goal of the detection theory is
to deal with transmission error such that an acceptable quality of
performance can be obtained at the receiver, thereby leading to an
optimum receiver.

2.10.1 Optimality Criterion

In order to describe an optimality criterion, we first elaborate a
simple case of binary communications. In this case, a transmitter
sends a specified signal s,(t) based on a bit value of “0” and the
specified signal s;(¢) based on abit value of “1” over the bit interval
t € [0,T]. The received signal r(t) corresponding to the first bit is
then presented by using the hypotheses testing as follows:

Ho:r(t) = so(t) +n(t) (2.247)
Hy:r(t) = s1(t) +n(t) (2.248)

where 0 < ¢ < T and n(t) corresponds to additive white Gaussian
noise (AWGN) channel noise with variance 2. Thus, our objective
is to determine the bit value at the most accurate hypothesis given
by (2.247) and (2.248) from the received signal r(¢).

The optimality criterion of selecting bit value in digita
communications is the total probability error, denoted by p., and
given by

pe = p{bitvaue“l”
p{bit value “0"

“0” transmitted} p{“ 0" transmitted} +
“1” transmitted} p{“1” transmitted}.
(2.249)
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The optimal representation of the specific waveforms in this
application uses the Karhunen-L oeve transform [8, 9].

The Karhunen-Loéve transform can be used to represent a
second-order random process in terms of a set of orthonormal
basis functions scaled by a sequence of random variables. Assume
that »(¢) is a zero-mean second-order random process over the bit
interval [0, 7]. We can then represent r(t) as follows:

r(t) =Y _rigi(t), 0<t<T (2.250)

00
=1

where r; isthe mutually uncorrected random variable and given by

ry = /0 o), (2.251)

where ¢; is the basis function over the bit interval [0, 7']. Thus, an
equality, which isalimit MSE, is established such that

lim F { [r(t) — g:rngz(t)] } =0, 0<t<T. (2.252)

N—oo

In order to ensure that the basis function is orthonormal ¢;, we
can use the Gramm-Schmidt approach [10], which is adeterministic
algorithm that can convert an arbitrary set of basis functions into an
equivalent set of orthonormal basis functions. Thus, we are able to
obtain the full set of functions beginning with the specified signals
so(t) and sy (t), that is,

T
/ éi(t)s;(t)dt =0, i > 2and j = 0, 1. (2.253)
0

Now, (2.247) and (2.248) can be rewritten as an equivalent
hypothesis as follows:

Hoy:r = qg+n (2.254)
Hy:r = qg,+n (2.255)
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where )
Jo @1(t)so(t)dt
o l Jo d2(t)so(t)dt ] ’ (2.256)
Iy, ¢1(t)81(t)dt]
o l Jo d2(t)si(t)dt |’ (2.257)
and )
n=lm mw]. (2.258)

Therefore, in this case, the design of the optimum receiver becomes
asimple two-dimensional detection approach.

2.10.2 Maximum Likelihood Detector

An optimum detector can be developed based on Bayes minimum
risk classifers[1] or the maximum a posteriori rule to select

largest {pﬂi\r{H,-|r = v}} , 1=0,1. (2.259)

The expression of (2.259) is used to determine the hypothesis that
is most likely given the observation vector v. Thus, the optimum
detector can be established by using the likelihood ratio test

. prlHl{r}
L) = P (2.260)

If L(r) > 2, L(r) belongs to H,, where p; and p, are the a priori
probabilities of the hypotheses. In the same way, if L(r) < 2%, L(r)
belongs to H,. Now, assume that the noise is white and Gaussian
with variance 2. Thus, (2.260) can be rewritten as follows:

2 1 _ (ri—s1,4)?
=1 /2o eXp { 202

M2 s exp [— 5]

2o

L(r) = (2.261)

where
T
s = | ailt)s; (b (2.262)
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Let L(r) = L. We take the logarithm on both sides of the equation,
cancel the common terms, and then obtain the optimum receiver as
follows:

D; > o®ln (“) if H, istrue, (2.263)
P2
D, < o*In (“) if Hy istrue, (2.264)
P2
where
1 2
Di = Zri(su — SO,i) — 5 Z(Sii — 8(2)71-). (2265)
=1 =1

Equation (2.265) is the two-dimensiona version of the optimum
receiver, which can be converted back into a continuous time
receiver by using

2 T
> TSk :/ r(t)sk(t)dt, (2.266)
i=1 0

and
2 T
S, = / S2(1)dt = Ey. (2.267)
i1 0

Substituting (2.266) and (2.267) into (2.265) obtains
0 2

where E, and E; are the energies of signals s;(¢) and s»(t),
respectively.

Thus, the optimum receiver in (2.268) first correlates the
received signal r(t) with the difference signal [s;(¢) —s,(t)] and then
compares to a threshold of o2 In (%) In other words, the optimum
receiver identifiesthe signal s;(t) that best matches with the received
signal r(t). Therefore, the optimum receiver is referred to as the
correlation receiver or the matched filter receiver.
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By extending the results of the case, the optimum receiver for
M-ary signaling schemesis given by [8] to select the largest

E
D; — / s(tr(t)dt — 5+ 0*In(py), i = 1,20+, M, (2269)

s;(t) is the signal set and p; is the corresponding a priori
probabilities. The optimum receiver for M-ary signals is then to
implement a bank of correlation or matched filters followed by
selecting the largest decision.

2.10.3 Praobability of Error

In Section 2.10.2, we derived the optimum receiver based on the
assumption of AWGN. The statistics of the logarithm of likelihood
ratio are Gaussian random variables. Hence, the probability of error
can be calculated directly by using the Q-function given by (2.139)

_ [[s0 — s1]|
e = Q( VR )

1 |[s0 — s1]|
= —dafc| —|. 2.270
2 ( 2N, (2:270)

where N, isthe PSD of noise and ||sy — s1|| denotes the Euclidean
distance between the signal representation. Note that the Q-function
or erfc function is monotonically decreasing with increasing [o=t1l.
Therefore, the probability of error decreases when the Euclidean
distance between the representation signals increases.

211 Summary

In this chapter, we presented an introduction to the fundamental
theory of probability and random variables, distribution and density
functions, stochastic signal processes, and detection theory and
optimum receivers. Beginning with a short review of probability
consisting of intuitive, axiomatic, and conditional methods, we then
introduced total probability and Bayes theorems, the independence
concept, and the definition of a random variable. These discussions



88 Signal Processing in Digital Communications

of basic concepts and theories provide a necessary step for
understanding random processes in signal processing for digital
communications.

Another important topic introduced in this chapter is distribution
and density functions and the role they play in the field of
probability, random variables, and stochastic processes. First, we
discussed the definitions of probability distribution and density
functions, as well as their relationships. Second, we presented
joint distributions and densities based on two random variables.
This led us to develop the generalization of joint distributions
and densities for n random variables based on transformations of
random variables. Next, we defined the mean, variance, correlation,
covariance, and the correlation coefficient of random processes.
Discrete and continuous distributions and densities were also
introduced, with emphasis on density functions and properties.
Furthermore, we developed results for a sum of n random variables
that are useful in the analysis of random processesin terms of mean,
variance, and covariance. Additionally, we introduced upper bounds
on the tail probability, including Chebyshev inequality and the law
of large number, which led to the central limit theorem.

Next we presented stochastic signal processes. We defined
the concept of a discrete-time random process and introduced
autocorrelation and autocovariance as well as ensemble averages.
We outlined properties of stationary random processes including
SSS and WSS. Of particular importance in this chapter is the
analysis of the mean, autocorrelation, and power spectrum in the
context of stable LTI systems, along with the mathematic resultsin
both the discrete-time and frequency domains. We then established
MSE, MMSE, and estimation concepts as well as the relationships
among the M SE, variance, and bias of an estimator.

Finally, we derived detection theory that led to optimum
receivers based on the concept of a maximum likelihood detector.
The performance of the optimum receiversis evaluated by using the
probability of error.
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Sampling Theory

3.1 Introduction

In digital communications, to transmit and receive continuous-time
signas, the continuous-time analog signals have to be converted
into digital signals. Digital transmission of the continuous-time
analog signals involves a sampling process, which is the process of
converting the continuous-time signal into a discrete-time sequence.
The process is aso known as analog-to-digital (A/D) converting or
simply digitizing.

The sampling process has to obey a sampling theorem,
sometimesreferred to as the Nyqui st-Shannon sampling theorem[1].
The sampling theorem states conditions so that the samples represent
no loss of information and can therefore be used to reconstruct the
original signal with arbitrarily good fidelity.

When the sampling process does not meet the sampling
theorem, the signal frequencies will alias. This leads to the loss
of information. However, aliasing can be used as an advantage
with a technique called undersampling. In this case, a continuous-
time signal is sampled at less than the Nyquist sampling rate.
Undersampling has become a key technique often utilized in A/D
converters for radio frequency (RF) communication transceivers.

91
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The sampling process can be presented by either the frequency
domain or time domain or both. The frequency-domain analysis is
often used in digital communications. Thus, in this chapter, using
Fourier transform techniques, we first introduce this remarkable
sampling theorem and then discuss undersampling and the operation
of sampling.

This chapter is organized as follows. A short introduction of
sampling is presented in this section. In Section 3.2, we introduce
the discrete-time sampled signal in which we discuss instantaneous
sampling and an ideal sampled signal. In Section 3.3, we first
focus on the Nyquist sampling theorem and then discuss time-
and freguency-domain interpolation formulas as well as aliasing.
Undersampling is presented in Section 3.4, along with discussions
of obtaining minimum sampling rate and antialiasing bandpass
filters. Then, in Section 3.5, we expand the sampling theorem into
a stochastic sampling theorem. Finally, a brief summary is givenin
Section 3.6.

3.2 Discrete-Time Sampled Signals

Signals can usually be classified into three categories: (1) analog
signals that are continuous both in time space and amplitude;
(2) discrete-time sampled signals (or discrete-time signals), which
consist of signalsdiscretein time space and continuous in amplitude;
and (3) digital signals that are discrete in both time space and
amplitude [2]. One common way to create digital or discrete-
time sampled signals is by sampling continuous-time signals.
Signal processing has to do with the representation, manipulation,
implementation, and transformation of signals, and the information
that they carry in the transformation media (or channel).

3.21 Instantaneous Sampling

Assume that the continuous-time signal z,(t) is sampled at arate of
F, = 1/T, samples per second or hertz (Hz), where F} is known as
the sampling frequency, T is referred to as the sampling interval or
sampling period, and its reciprocal 1/7 isthe sampling rate. Then,
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the discrete-time sampled signal z[n] is equa to the value of the
continuous-time signal z,(t) at time nT} asfollows:

z[n] = x,(nTs), —oo0<n < oo. (3.1)

Note that the discrete-time sampled signa z[n] in (3.1) is a
mathematically indexed sequence of numbers, where n is an
integer from —oo to co. This form of sampling process is called
instantaneous sampling. Thus, the discrete-time sampled signals
x[n] can often be considered as a result of sampling a continuous-
time signal z,(t) by using an A/D converter.

The A/D converter actually consists of the combination of two
processes: (1) sampling, which converts the signal from continuous-
time domain to discrete-time domain; and (2) quantization, which
converts the signal amplitude from a continuous infinite value to a
finite set of discrete values.

For example, a continuous-time sinusoid signal s(t) is given by
the mathematical formula

s(t) = Alcos(2m fot + )], (3.2

where A is the amplitude, f; is the frequency in hertz, and ¢ is
the phase offset. If the discrete-time sampled signal s[n] is obtained
by using the A/D converter, sampling the continuous-time sinusoid
signal s(t) at a sampling rate of F, = 1/T,, we then have the
discrete-time sampled signal

sn] = s(t) li=nz,

= Alcos(2m foTsn + ¢)]

= A [COS <27r£2n + qb)]

= Alcos (won + ¢)], (3.3

where wy = 27 f T isthe normalized frequency in radians.
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3.2.2 Ideal Sampled Signal
The sampling processin (3.1) can be represented as

o0

2] = zo(nT,) = / 2a(T)8(r — nT,)dr, (3.4)

— 00

where §(7) isthe Dirac delta function or impulse. On the other hand,
the discrete-time sampled signal x[n] has a continuous-time pulse
amplitude modulation (PAM) representation in terms of impulses.
This means that a continuous-time signal can be reconstructed from
adiscrete-time sampled signal.

Toillustrate this operation, we assume that (¢) can be obtained
by using multiplication of x,(¢) with the unit impulse train dr(t)
with period T, asfollows:

zs(t) = ma(t)or(t)

[e.9]

= z,(t) Y. 0(t—nTy)

- i xa(1)0(t — nTy)
= i xq(nT)0(t — nTy), (3.5)

where z4() isreferred to as the ideal sampled signal [3].

3.3 Nyquist Sampling Theorem

Sampling is the process of converting a continuous-time signal (or
a continuous-time function) into a numeric sequence (or a discrete-
time function). The condition of sampling, which needs to represent
no loss of signal information and can therefore be used to reconstruct
the original signal with arbitrarily good fidelity, states that the signal
must be bandlimited and that the sampling frequency must be at |east
twice the signal bandwidth. This condition of sampling is known as
the Nyquist-Shannon sampling theorem [1]. Sometimes, it issimply
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X(®

Figure3.1 Frequency spectrum of a bandlimited signal.

referred to as the sampling theorem, which is a fundamental result
in the field of information theory, in particular, telecommunications.

A bandlimited signal is constrained in terms of how fast it
can change and therefore how much detail it can convey between
discrete samples in time. The sampling theorem indicates that the
discrete samples can completely represent the signal if the signal
bandwidth islessthan half the sampling rate £, which isreferred to
as the Nyquist sampling frequency.

In order to represent the concept of the sampling theorem, let
x(t) denote a real-value continuous-time signal and X (f) be its
unitary Fourier transform as follows:

X(f) = /_ o:ox(t)e_ﬂ’rftdt, (3.6)

where X (f) asshown in Figure 3.1 is a bandlimited signal with the
highest frequency at f;,

X(f) =0, |f[> fo (3.7)

The Nyquist sampling frequency F, for alias-free components is
given by
Fs Z 2fb7 (38)
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or equivalently
Jo < Z; (3.9)
The discrete-time sampled signal is obtained by
z[n] = x(nTs), —oo<n< oo, (3.10)

where T, = Fi is the sampling interval, which is the constant time
interval between successive samples.

3.31 Time-Domain Interpolation Formula

Equation (3.5) indicates multiplication in the time domain. However,
the multiplication in the time domain corresponds to convolution in
the frequency domain. By taking the Fourier transform of both sides
of (3.5), we obtain the Fourier transform X (w) of theideal sampled
signal z4(t) asfollows:

x = [ | F S oo )]
_ sn_zoox( 2;”) (3.12)

where “x” denotes convolution. Equation (3.11) indicates that
sampling produces images of X,(w) in the frequency axis.
Therefore, X (w) will repeat periodically without overlapping if
Fy > 2f.

For example, consider acase of asignal of frequency f, sampled
at a sampling frequency F, using an ideal impulse sampler (or an
ideal A/D converter) and assume F, > 2f, as shown in Figure 3.2.
The output of the ideal impulse sampler in the frequency domain
produces images of the original signal at frequencies equal to
+kF, + f,fork=1,2,3,---

The Nyquist frequency bandwidth is defined to be the frequency
spectrum from DC to the half sampling frequency % The frequency
spectrum can be divided into a set of an infinite number of zones,
known as Nyquist zones. Each of the Nyquist zones has a frequency
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Figure 3.2 Frequency spectrum of an analog signal f, sampled at
F, (Fy > 2f,) using an ideal impulse sampler.

bandwidth equal to £:. In this case, al of the signal of interest (or
the bandwidth of sampled signals) is limited within the first Nyquist
zone, and images of the original bandwidth of frequencies appear in
each of the other Nyquist zones. Thus, in this case, the sampling
process is referred to as baseband sampling in communication
applications.

In the absence of aliasing distortion, the signa z,(¢) can be
reconstructed from its samples by using an ideal lowpass filter
having a frequency response,

T, |wl <%

H{w) = { 0, otherwise. (312)

Using the inverse Fourier transform of (3.12), we obtain the impulse

response h(t) of theideal lowpass filter asfollows:
_ sin(wt/Ty)
h(t) = /T,

Using the property that convolution in time domain equals
multiplication in frequency domain, the Fourier transform X, (w) of

(3.13)
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the signal z,(t) can be obtained by
X, (w) = Xs(w)H (w). (3.14)

For the signal z,(t) in the time domain, taking the inverse Fourier
transform on both sides of (3.14) and using (3.5) and (3.13) yield

zo(t) = w4(t) % h(t)

= sin(wt/Ty)
= 3 Ty )« [

ZO;OO sin[ﬂ'(t — nTs)/TS}
= Z Tq(nT) { m(t —nTy)/Ts

n=—0oo

} . (3.15)

Therefore, using (3.15), we are able to find the value of a
bandlimited continuous-time function at any point in time given a set
of samples of the function. Equation (3.15) is known as the Nyquist-
Shannon interpolation formula or sometimes called the time domain
interpolation formula.

The time-domain interpolation formula states as follows. Each
sample is multiplied by a sinc-function. The width of each half-
period of the sinc-function is scaled to match the sampling
frequency, and the central point location of the sinc-function is
shifted to the time of that sample. Then, all of these shifted and
scaled functions are added together to reconstruct the original signal.
Note that the result of this operation is indeed a continuous-time
signal since the sinc-function is a continuous-time function.

In order to obtain the original continuous-time signal after the
reconstructing process, we must also meet acritical condition on the
sampling frequency, that is, the sampling frequency must be at |east
twice as large as the highest frequency component of the original
continuous-time signal.

3.3.2 Frequency-Domain Interpolation Formula

A continuous-time signal x(t) is called a time-limited signal if the
condition is satisfied as follows:

2(t) =0, |t| > |Tl. (3.16)
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The Fourier transform X (w) of thetime-limited signal z(¢) in (3.16)
can be uniquely determined by using its values X (nw,) sampled at
auniform sampling frequency rate, where w, < T If w, = T then
the Fourier transform X (w) isgiven by [3]

(3.17)

X = 3% X(wa)|

n=—oo

il e

We refer to (3.17) as the frequency-domain inter polation formula.

Note that if a signal is frequency bandlimited, it cannot be
time-limited and vice versa. In many communication applications,
the signa to be sampled is usualy time-limited and is not
strictly frequency bandlimited. However, beyond certain defined
frequency bandwidths, we see that the frequency components
of physically occurring signals attenuate rapidly. Therefore, for
practical applications, we treat these signals as being frequency
bandlimited as well.

3.3.3 Aliasing

If frequency components are above the Nyquist sampling frequency,
upon sampling the frequencies will overlap. The overlap is referred
to asaliasing. Therefore, the discrete samples are subject to aliasing
as well. The aliasing is undesirable in most signal processing and
communication applications.

From the Nyquist sampling theorem, we must sample a signal
at a sampling rate of at least twice the bandwidth of the signal. For
baseband signals with frequency components starting from DC to a
maximum frequency, this indicates that the sampling rate must be
at least twice this maximum frequency. In such cases, the frequency
bandwidth is the same as the maximum frequency.

In order to avoid aliasing, we can implement two methods as
follows: (1) increase the sampling rate and/or (2) introduce an
antialiasing filter or make the antialiasing filter more stringent. The
antialiasing filter isused to restrict the signal bandwidth to satisfy the
condition of sampling frequency. This holds in theory, but does not
always work satisfactorily in practice. Thisis because a continuous-
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time signal will have some energy outside of the signal bandwidth.
However, the energy may be small enough so that the aliasing effects
are negligible.

3.4 Undersampling

Consider the case where the sampled signal bandwidth lies entirely
within the other Nyquist zones rather than the first Nyquist zone.
A real-value signal x(t) is called a bandpass signal if the Fourier
transform X (f) satisfies the following condition:

X(f){ £0, fi<|fl<fo 318

=0, otherwise.

Sampling for the bandpass signa is referred to as bandpass
sampling. For example, a bandpass signal is the intermediate
frequency (IF) output from a communication receiver with a center
frequency at 71 MHz and a 4-MHz frequency bandwidth. In this
case, if we use baseband sampling, we would need to use an A/D
converter with a sampling rate about 146 MHz. But with bandpass
sampling, we would only need to use an 8-MHz sampling rate.
This method is a huge benefit compared to baseband sampling.
The process of sampling a signal outside the first Nyquist zone is
called undersampling. It is aso known as super-Nyquist sampling,
harmonic sampling, and IF sampling as well as direct IF to digital
conversion.

Figure 3.3 shows the sampled signal restricted to different
Nyquist zones by undersampling. Figure 3.3(a) is a case of baseband
sampling, where the frequency bandwidth of sampled signals lies
within thefirst Nyquist zone and images of the original bandwidth of
frequencies display in each of the other Nyquist zones. Figure 3.3(b)
shows a case where the sampled signal bandwidth is limited to
be entirely within the second Nyquist zone. Note that when the
signals are located in even Nyquist zones, the first Nyquist zone
image contains al the information in the original signal, with
the exception of its origina location and frequency reversal. In
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Figure 3.3 Undersampled signal restricted to the different Nyquist
Zones.

Figure 3.3(c), the sampled signal is restricted to the third Nyquist
zone. In this case, the first Nyquist zone image has no frequency
reversal and accurate representation of the original signal. Thus, all
the signal information can be preserved aslong asasignal issampled
at a sampling rate equal to or greater than twice its frequency
bandwidth.

Undersampling, which samples signals with frequency compo-
nents over the first Nyquist zone, has become popular in many com-
munication receivers. It is becoming common practice to sample the
bandpass signal directly, and then use digital signal processing tech-
niques to deal with the signal, thereby eliminating the need for ana-
log demodulation.
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34.1 Minimum Sampling Rate

The minimum sampling rate for undersampling depends on f; and
f2 given by (3.18) and the frequency bandwidth fz = fo — fi. In
order to avoid overlap, the sampling rate must satisfy the following
constraints:

> 2(fy— f1), (3.19)
(n — 1)Fs < 2f1, (3.20)

and
nFy, > 2f,, (3.21)

where n isan integer. Using f; = f2 — f5, these constraints can be
rewritten as

Fy > 2fp, (3.22)
r, o< A2=fo) (329
n—1
and 5
F, > ﬁ (3.29)
n
Thus, the minimum sampling rate is obtained by

where k isthe integer, but it does not exceed ]Jf—; Further note that if
theratio of f—; is an integer, then the minimum sampling rateis

Example 3.1

Consider a bandpass signal with the center frequency at 71 MHz,
fi = 69 MHz, and f, = 73 MHz. Thus, the frequency bandwidth
of the bandpass signal is equal to fz = 4 MHz, Jf—; = 18.25, and
k = 18 for the next lowest integer. Using (3.25), we obtain the
minimum sampling rate { F},,,;, = 8.1111 MHz.
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Figure 3.4 Antialiasing bandpass filter for undersampling a signal
in the second Nyquist zone.

3.4.2 Antialiasing Bandpass Filter

In the undersampling process, the sampling rate is selected to be less
than the bandpass signal’s center frequency. Thisintentionally leads
to aliasing the center frequency to a frequency less than the sample
rate. Thus, to avoid interference we must assure that the continuous-
time analog signal does not have frequency intervals aliasing onto
any desired signal frequencies.

Figure 3.4 shows a continuous-time analog signal in the second
Nyquist zone centered around a center (or carrier) frequency f.,
where lower and upper frequencies are f; and f, respectively. The
frequency bandwidth of the continuous-time analog signal is equal
to fg = fo — f1. An analog antialiasing filter is a bandpass filter,
whose desired dynamic range is the filter stopband attenuation. The
analog antialiasing filter is placed before an A/D converter. The
upper transition band is the frequencies from f, to 2F; — f5, and
the lower transition band is the frequencies from f; to F, — f1. In
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the case of undersampling, increasing the sampling rate relaxes the
antialiasing bandpass filter requirements.

In order to minimize the cost of the analog antialiasing bandpass
filter, we can arrange the signal band of interest to aliasto one-fourth
of the selected sampling rate. The £ + 1 option aliases the signal to
the positive one-quarter sampling rate while the % — i option aliases
the signal to the negative one-quarter sampling rate. To ensure that
the carrier frequency f. is placed in the center of a Nyquist zone,
we use the two options to make a set of possible sampling rates as
follows:

_(* + ! F. (3.27)
fe={g*1]Fs :
where k is the integer and corresponds to the Nyquist zone.
Equation (3.27) can be rewritten as

_Afe
ok +1

(3.28)

In addition to (3.28), the Nyquist criteria must also be satisfied as
follows:
F,>2fp. (3.29)

Thus, we select £ such that the Nyquist zone is chosen to be aslarge
as possiblewhile (3.29) is still satisfied. This method will help result
in the minimum required sampling rate. Also notethat if the Nyquist
zone is selected to be an odd zone, then the carrier frequency f.
and the bandpass signal z(¢) will fall in the odd Nyquist zone. Asa
result, the image frequencies in the first Nyquist zone will not need
to be reversed.

Example 3.2

Reconsider Example 3.1, given the signal bandwidth fz = 4 MHz;
the Nyquist sampling rate F isthen equal to 8 MHz. Using F, = 8
MHz and f, = 71 MHz, we can solve (3.28) to obtain £ = 18.25.
Since k£ must be an integer, we round 18.25 to the lowest integer,
18. Then, we again substitute £ = 18 and f. = 71 MHz into (3.28)
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toyield F, = 8.1143 MHz. Therefore, the final sampling frequency
rateis Iy, = 8.1143 MHz and k£ = 18 for the Nyquist zone.

Compared to the results obtained in Example 3.1, we see that the
final sampling rate by using (3.28) in Example 3.2 is approximately
the same value, about F; = 8.11 MHz, by using (3.25) in Example
3.1. Therefore, both (3.25) and (3.28) will yield an approximate
result of the sampling rate for undersampling processes.

3.5 Stochastic Sampling Theorem

In the earlier discussion of the sampling theorem, we showed that
the bandlimited signal sampled at the Nyquist sampling rate can
be reconstructed from its samples by using the Nyquist-Shannon
interpolation formula given by (3.15). Equivaently, an analog
continuous-time signal z,(t) can be reconstructed by passing the
sampled signal z[n| through an ideal lowpass filter with an impulse
response given by (3.13).

In this section, we expand the sampling theorem to bandlimited
stochastic processes. A stationary stochastic process x(t) is said to
be a bandlimited stochastic process [4, 5] if its power spectrum

Pe(f) =0, for|f] > fo (3:30)

where f, is the highest frequency contained in the stationary sto-
chastic process x(t¢). Note that P,(f) in (3.30) is the Fourier trans-
form of the autocorrelation function R(7). Thus, the corresponding
autocorrelation function R(7) can be obtained by

R(r)= > R(nT) {Slr;[?t(t_;f)%ﬂ } , (3.31)

n=—0oo

where T isthe sampling interval equal to 7, > ﬁ and R(nTy) are
the samples of R(7) taken at 7 = nT,, wheren = 0, £1,+2, - - -.
In asimilar way, if x(¢) is the bandlimited stationary stochastic

process, then x(¢) can be expressed as follows:

0 = 3wy { ST e

n=—oo



106 Signal Processing in Digital Communications

where T} is the sampling interval equal to 7, > ﬁ and x(nTy) is
the sample of x(t) taken at ¢t = nT,, wheren = 0,+1,4+2,---.
Papoulis [4] proved the theoretical result in (3.32) by using the
exponential e/“* as a function of w, viewing ¢ as a parameter, and
expanding it into a Fourier series. Equations (3.31) and (3.32) are
referred to as the stochastic sampling theorem of the interpolation
formula for the stationary stochastic process or the sampling
expansion. In this case, the samples are random variables, which
can be described statistically by using appropriate joint probability
density functions.

Proakis [5] showed that the equality relationship between
the stochastic sampling representation given by (3.32) and the
bandlimited stationary stochastic process x(¢) holds in an optimal
sense as follows:

B { o0 {sin[w(t —nT})/T] }

X(t) — Y x(nTy) (6 —nT)/T.
Equation (3.33) isthe mean square error (MSE), which isequal to 0.

} =0. (3.33)

n=—0oo

3.6 Summary

In this chapter, we first introduced discrete-time sampled signals,
including instantaneous sampling and the ideal sampled signal.
Second, we focused on the fundamenta theory of the sampling
theorem, with an emphasis on the time- and freguency-domain
interpolation formulas as well as the aliasing. Third, we addressed
the undersampling techniques, the methods of determining the
minimum sampling frequency rate, and the requirements of the
analog antialiasing bandpass filter. We then expanded the sampling
theorem into the stochastic signal processes. These discussions of
the sampling theorem and its techniques provided a fundamental
step to understanding sampling on signal processing for digital
communications.

From a signal processing perspective, the sampling theorem
describes two operations asfollows: (1) asampling processin which
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a continuous-time signal is converted to a discrete-time signal, and
(2) areconstruction process in which the continuous-time signal is
recovered from the discrete-time signa by using the interpolation
formula. However, in order to obtain the origina continuous-time
signal after the reconstruction process, a critical condition of the
sampling rate must be met, that is, it must be at |east twice as large
as the highest frequency component of the original continuous-time
signa. If the highest frequency component of the continuous-time
signal that we sampled is known, the sampling theorem providesthe
lowest possible sampling rate so that perfect reconstruction can be
ensured. In this case, the lowest possible sampling rate is referred to
as the Nyquist sampling rate. On the other hand, if the sampling
rate is given, the sampling theorem provides an upper bound for
the frequencies of the continuous-time signal to assure perfect
reconstruction. Both of these cases indicate that the continuous-time
signa to be sampled should be bandlimited. In other words, for
instance, any frequency component of the continuous-time signal
that has a frequency component above a certain bound should be
zero, or at least sufficiently close to zero.

In practice, the sampling theorem described in this chapter can-
not be completely satisfied. Thisis because the ideal reconstruction
process of using the sinc-functions is assumed. However, it cannot
be implemented, since it indicates that each of samples contributes
to the reconstructed continuous-time signal at almost al time points.
Thus, we have to use some types of approximations of the sinc-
functions, which are truncated to limited intervals. In this case, the
approximations of the sinc-functions create an error that is some-
times referred to as the interpolation error. In addition, the sampled
continuous-time signal can never be bandlimited exactly. Thisis to
say that even if an ideal reconstruction process could be obtained,
the reconstructed continuous-time signal would not be the sampled
continuous-time signal exactly. In this case, the failure of band lim-
itation produces an error for sampled signal.

Another important topic introduced in this chapter is under-
sampling and the role that it has played in the field of digita
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communication transceivers. Undersampling is used to sample a
continuous-time signal outside the first Nyquist zone. In this case,
the continuous-time signal must be sampled at a sampling rate equal
to or greater than twice its bandwidth in order to preserve al the sig-
nal information. In addition, the frequency band of sampled signals
should be restricted to a single Nyquist zone. In other words, the
sampled continuous-time signals must not overlap at any multiple of
half-sampling frequency rate % Eventually, this can be achieved by
using an analog antialiasing bandpass filter.
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Channel Capacity

4.1 Introduction

A communication channel is a medium that is used to transmit
signals from atransmitter to areceiver. It may be apair of telephone
wires, acoaxial cable, aband of radio frequencies, and so on. During
atransmission, the signals at the receiver may be perturbed by noise
along with channel distortions. However, the noise and channel
distortions can be differentiated because the channel distortions
are a fixed function applied to the signals while the noise has
statistical and unpredictable perturbations. Therefore, the channel
distortions can be corrected by using an inverse function of the
channel distortions. On the other hand, the perturbations due to
the noise cannot be eliminated because the signals do not usually
undergo the same change during the transmission.

Assume that it is possible to reliably distinguish M different
signal states in a period time of duration 7" over a communication
channel. In other words, the channel can be used to transmit log, M
bits in the period time of duration 7T'. The rate of transmission R is
then expressed as
_ logy M

=7

(4.1)
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However, more precisely, channel capacity is defined as
L log, M
C = lim ( T > ) (4.2

Equation (4.2) was derived by Shannon [1-3] in 1949. Therefore,
in this chapter, we first discuss Shannon’s theorem of the chan-
nel capacity and then expand it into different channels, includ-
ing Gaussian, bandlimited, single-input multiple-output (SIMO),
multiple-input single-output (M1SO), and multiple-input multiple-
output (MIMO) channels.

This chapter is organized as follows. A short introduction of
channel capacity is presented in this section. In Section 4.2, we
introduce a Gaussian channel capacity in which we discuss a
fundamental Shannon’s theorem for a continuous channel in the
presence of additive Gaussian noise. In Section 3.3, we focus
on approaching a problem of communication transmission over a
bandlimited channel given the Nyquist-Shannon sampling theorem
and lead to the bandlimited channel capacity. MIMO channel
capacity is presented in Section 4.4, along with discussions of
obtaining capacity in terms of the sum of each of the nonzero
eigenvalues. Then, we expand the MIMO channel capacity into
SIMO and MISO channel capacities in Sections 4.5 and 4.6,
respectively. Finally, abrief summary is given in Section 4.6.

4.2 Gaussian Channel Capacity

The most important communication channel is the Gaussian
channel, which has been used to model many practical channels,
including wireline, radio, and satellite links. Figure 4.1 shows a
discrete-time Gaussian channel model with the output y[n| at time
index of n, where y[n| isthe sum of theinput x[n] and the noise v[n].
Thus, we obtain the output of the discrete-time Gaussian channel as
follows:

yln] = z[n] + vn], (4.3)
where the noise in (4.3) is assumed to be independent of the input
signal z[n|, and satisfies an independent and identically distributed
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Noise
Nin]

Input Output
signal signal
—»{ Channel >0 >
x[n] y[n]

Figure4.1 A genera discrete-time Gaussian channel model.

normal (Gaussian) distribution with zero mean and variance of V.
Shannon [1-3] showed that if T — oo in (4.2) and if the rate of

transmission approaches the channel capacity, the information (or

channel) capacity of a Gaussian channel is then obtained by

log, M )

R<SC = lim(

T—o00

1 P
= 3 log, (1 + N) , (4.4

where R is the rate of transmission, C' is the channel capacity in
terms of the number of bits per transmission, P isthe signal power,
and N is the noise variance. In this case, the probability of error,
denoted by P., approaches a standard normal distribution with zero
mean and unit variance [4]:

B 2P(P+ N)
P, =&y, (VT m(}z - C)] , (4.5)
where the standard normal distribution is given by
x 1 w2
Doy (2) = /_OO me’Tdu. (4.6)

Equation (4.5) expresses the fundamental Shannon’s theorem for a
continuous channel in the presence of additive Gaussian noise.
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4.3 Bandlimited Channel Capacity

A common channel model for transmission of information messages
over aband of radio frequencies or atelephone line is a bandlimited
channel with white and Gaussian noise. In the time domain, an
output of the bandlimited channel can be expressed as

y(t) = [2(t) +v(@)] * h(t), (4.7)

where “x” denotes the convolution operation, z(¢) is the input, v(t)
is the noise, and A(t) is the time-domain impulse response of an
ideal bandpass filter, which cuts out al frequencies greater than V.
By using the sample with t = nT', where T' is the sample interval,
the output of the bandlimited channel in (4.7) can be rewritten as

yln] = (2[n] + v[n]) * hln], (4.8)

where z[n] is the discrete-time input signal, v[n] is the discrete-time
noise, h[n] is the discrete-time ideal bandpass filter, and y[n| is the
discrete-time output signal.

If a function f(¢) has a bandlimit with no frequencies higher
than W, then the function is completely reconstructed by a set of
samples of the function spaced at ﬁ seconds apart. In other words,
if thefunction f(¢) contains no frequencies greater than 1/, it cannot
change by a substantial amount in atime less than one-half cycle of
the highest frequency ﬁ Mathematically, this statement about the
bandlimited function f(¢) can be proved asfollows. Let F'(w) bethe
frequency spectrum of the function f(¢). Then we obtain

1 oo ot
ft) = 5 /_OO F(w)e’** dw
L /%W F(w)e’tdw 4.9
[ ’ '
where F'(w) isassumed to be zero outside the frequency band of W/,
—27W < w < 27W. If we assume that

n
p= 4.10
2W (4.10
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where n isthe integer, substituting (4.10) into (4.9) obtains

"y~ L pesta 411
@) = 37 Lo Pl e a0

Note that on the left side of (4.11) isthe samplevalue f (ﬁ) of the
function f(t). Theintegral ontheright side of (4.11) isthe definition
of the nth coefficient in a Fourier series expansion of the periodic
extension of the function F'(w), taking the interval from —27W to
27W as the fundamental period. Therefore, this indicates that the
sample values f (ﬁ) determine the Fourier coefficients in terms
of the expansion function F'(w). Since F'(w) is zero for frequencies
greater than W, the function F'(w) can be uniquely determined by
using the samples. On the other hand, the function F'(w) determines
the function f(t) completely if its spectrum is given. Thereby, using
the samples determines the function f(¢) completely.
Consider a pulse of the type function

sin(27Wt)
h(t) = ————. 4.12
(®) 2nWt (4.12)
Thisfunction h(t), which is called the sinc function, isequal to 1 at
t=0andisOfort = ZW, n # 0. The frequency spectrum of the

sinc function is constant in the frequency band from —1¥ to W, and
is zero outside. Then the function f(¢) can be expressed by

sin[r(2Wt — n)]
Z f(QW) 7(2Wt —n) (4.13)

n=—oo

Equation (4.13) is referred to as the Nyquist-Shannon sampling
theorem or sampling theorem [3]. It shows that a bandlimited
function has only 21/ degrees of freedom per second. The values
of the function at the sampling points can be selected independently
to specify the entire function.

Given the Nyquist-Shannon sampling theorem in (4.13), we can
now approach the problem of communication transmission over a
bandlimited channel. Assume that the bandlimited channel has a
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bandwidth of 17/. Both of the input and output signals are measured
with samples taken ﬁ second apart. Note that each of the input
samples is corrupted by noise to produce the corresponding output
samples. Each of the noise samplesis an independent and identically
distributed Gaussian random variable because the noise iswhite and
has a Gaussian distribution [5]. Further assume that the bandlimited
channel is used over the time period of interval [0, 7). Thus, in this
case, the power per sampleisequal to

PT P

ST 2w (414)

If the noise has the power spectral density % and bandwidth of 1V,
the noise then has the power

(?) 2W = NyW. (4.15)

Thus, with each of the 2IWT" noise samples in the time period T’
and (4.15), the noise variance per sample is equal to

T _ N
2WT 2
Therefore, using (4.14) and (4.16) and substituting them into (4.4),

we obtain the channel capacity for the bandlimited channel as
follows:

NoW (4.16)

1 P/2W
O = 5 10g2 (1 NO/2 )
1 P
= S log, (1 n NOW> , (4.17)

where C' is the number of bits per sample. Since there are 2IW
samples per second, then the channel capacity of the bandlimited
channel can be rewritten as

C = Wlog, <1+ P ) (4.18)

NoW
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where C' is the number of bits per second (bps). Equation (4.18) is
the channel capacity of the bandlimited channel with the power P in
watts and the noise spectral density % in watts per hertz (Hz).

Equation (4.18) further indicates that the channel capacity of the
bandlimited channel increases monotonically by increasing in the
SNR,

P
=101 :
SNR = 101og ( NOW)
In other words, with a fixed bandwidth, the channel capacity of
the bandlimited channel increases as the transmitted signal power
increases. On the other hand, if the transmitted signal power isfixed,
the channel capacity is also increased by increasing the bandwidth
of W.
Further note that if 1/ approaches infinity in (4.18), the channel
capacity of the bandlimited channel approachesthe asymptotic value

(4.19)

P
c = ﬁolog2€

P
NIn2

Q

0693 (bps). (4.20)
Therefore, for an infinite bandwidth channel, the channel capacity
grows linearly as the transmitted signal power increases. Further-
more, the channel capacity increases rapidly as we increase the fre-
quency band until the total noise power is approximately equal to
the signal power. Then, the channel capacity increases slowly, and it
approaches an asymptotic value at 1.443.

In any electrical conductor above the absolute zero of a
temperature, the electronsarein astate of random motion. Thisleads
to thermal noise, which produces an open circuit noise voltage as

follows [6]:
= f2 hf 1
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where R is the resistance of the resistor measured in ohms, & is the
Boltzmann's constant equal to k = 1.38 x 10~2* (joules/degree), T
isthe temperature of the resistor in degrees of Kelvin, when absolute
zerois—273° Cor —459° F, f isthefrequency in hertz, and V2 isthe
mean sguare noise voltage, which is the average value of the square
of the noise voltage across the resistor.

The expression of thermal noise or Johnson noise in (4.21) can
be ssimplified to the system bandwidth of 11/ given by [7]

V2 = 4kTRW, (4.22)

where W is the bandwidth of the noise in cycles per second. Thus,
the most noise power is given by

N = kTW. (4.23)

If we substitute (4.23) into (4.4), the channel capacity of the band-
limited channel becomes

P
C = W log, (1 + kTW) . (4.24)
If the W in (4.24) approaches infinity, the channel capacity of the
bandlimited channel approaches the asymptotic value

C ~ (bps). (4.25)

P
0.693kT

Thus, we can rewrite (4.25) asfollows:
P =0.693kTC. (4.26)

Equation (4.26) saysthat we need at |east apower of 0.693k7 joules
per second to transmit one bit per second, no matter how wide the
bandwidth used. In other words, on the average, we must at least use
an energy of 0.693%7T joules to transmit each bit of an information
message. In practice, most communication systems require much
more energy per bit for transmission over a bandlimited channel.
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Figure 42 A general block diagram of a wireless MIMO
communication system with multiple antenna elements
at both the transmitter and the receiver.

4.4 MIMO Channel Capacity

Digital communication systems based on a MIMO channel
have recently emerged as one of the most important technical
breakthroughs for wireless communications. For an arbitrary
wireless communication system, a communication link for which
a transmitter and a recelver are equipped with multiple antenna
elementsis considered a MIMO system. Figure 4.2 shows a general
block diagram of a wireless MIMO communication system, with
multiple antenna elements at both the transmitter and the receiver.
The idea behind MIMO systems is to use space-time signa
processing in which the natural dimension of digital communication
data is complemented with the spatial dimension by using the
multiple spatially distributed antennas. The MIMO systems are
capable of turning multipath propagation into a benefit for the user.
This is because the MIMO systems are able to provide spatial
diversity, time diversity, and frequency diversity by coherently
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combining the use of the transmitter antennas at one end and the
receiver antennas at the other end. Thereby, enhancing wireless
transmission over the MIMO channel improves the channel capacity
and the quality of bit error rate (BER).

Consider a continuous-time MIMO channel with ny transmitter
antennas and np receiver antennas. We let

X(t) = [21(t), 22(t), -, 2r (1) (4.27)

be the ny x 1 vector of transmitted signals, where [-]” denotes the
vector transpose, and H(7, t) be the channel impulse response. The
the received signa y(t) is then obtained by the convolution of the
channel impulse response H(7, t) and the transmitted signals x(t) as
follows:

[e.e]

y(t) = /_ ~H(rOx(r = t)dr +n(t) (4.28)

where n(t) is assumed to be the np x 1 Gaussian noise vector, and
the received signal y(t) is given by

y(t) = [?/1 (t)v yQ(t)7  Yng (t)]T' (429)

Equation (4.28) can be rewritten in the discrete-time representation
by sampling the received signal y(¢) at ¢ = nT, where T is the
sampling interval. Now let y[n] = y[nT]. Then the discrete-time
MIMO channel can be expressed as

y[n] = i H[k, n]x[n — k] + n[n]. (4.30)

k=—o00

Equation (4.30) can be simplified in terms of matrix form
y = HX +n, (4.31)

where the channel matrix isthe nz x ny matrix given by
hll th R hlnT
hor  hos -+ hon,

H = : (4.32)

han hnRQ e hanT
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whereelementsh;;, ¢ = 1,2,---,ngandj = 1,2, - ny, represent
the constant gain of the channel between the jth transmitter antenna
and the ith receiver antenna over a symbol period.

Assumethat €2 isacovariance matrix of the transmitter vector x,
with ny transmitter antennas and n  receiver antennas, the channel
capacity of the MIMO system is then given by [8, 9]

C' = log, [det(l,,,, + HQH)] | (4.33)

where the “det” means determinant, 1,, is the ngp x ngp
identity matrix, (-)* means the Hermitian transpose (or transpose
conjugate), the channel capacity C' is bps per Hz, and ¢r(2) < p
holds to provide a power constraint, where p is the signal-to-noise
ratio (SNR) at any receiver antennas.

If equal power transmission is used, the covariance matrix € is
equal to

0= %InR, (4.34)

where N = np is used to normalize a fixed total transmitter
power. Substituting (4.34) into (4.33) now obtains the famous
channel capacity equation for the MIMO system with n ; transmitter
antennas and n receiver antennas as follows:

C = log, [det (InR + ]'(\)[HHHH . (4.35)
Equation (4.35) was contributed by Foschini [10] in 1996, Foschini
and Gans [11] in 1998, and Telatar [8] in 1999. Foschini [10]
also demonstrated that the channel capacity for the MIMO system
in (4.35) grows linearly for a case of M = nyp = nt rather than
logarithmically. This is because the determinant operator in (4.35)
produces a product of n nonzero eigenvalues of the channel matrix
H. Each of the eigenvalues corresponds to the SNR over a channel
eigenfunction, which is based on the transmission using a pair of
right and left singular vectors of the channel matrix as transmitter
antennaand receiver antennaweights, respectively. Also, because of
the properties of the log, function, the overall channel capacity is
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then the sum of capacities of each of these eigenfunctions, thereby
resulting in the effect of channel capacity multiplication.

To illustrate this concept mathematically, we can decompose the
MIMO channel into M equivalent parallel single-input single-output
(SISO) channels by using a singular value decomposition (SVD)
method for the channel matrix H (see the proof of SVD theory in
Appendix B). Thus, the channel matrix H can be decomposed as
follows:

H = UDV~, (4.36)

where U and V are unitary, and D is a diagonal matrix given
by D = diag[v A1, Vs, -+, VA, 0, -+, 0]. The eigenvalues \;,
1=1,2,---, M, arethe nonzero eigenvalues of the matrix W, where
W = HH*. Thus, the channel model in (4.31) can be rewritten as

r =Ds+q, (4.37)

wherer = U"y, s = V*x, and g = U"n. It is interesting to see
that (4.37) is the MIMO system, but with M equivalent to parallel
SISO channels in terms of signal powers given by the nonzero
eigenvalues, \;, i = 1,2,---, M. Therefore, the channel capacity of
the MIMO system in (4.35) can be rewritten in terms of the nonzero
eigenvalues as follows:

M
€= los, (1 + ]@/\i) (bps/H2), (4.38)

where M \; = M. With this constraint, the channel capacity is

maximum if al the singular values \; have the same value and it
isminimum if there is only a single value. Thus, practical channels
have capacities with values in between these two extremes.

Equation (4.38) is one of the most important formulas for
channel capacities sinceit indicates that the MIM O channel capacity
grows linearly and the overall capacity is the sum of capacities of
each of the eigenvalues.

There are several tutorial papers in this area. We refer the
interested readers to Foschini [10], Gesbert et a. [9], and Foschini
etd.[12].
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45 SIMO Channel Capacity

The discrete-time MIMO channel model that we discussed in
Section 4.4 can be changed to a discrete-time SIMO channel model
if we use a single transmitter antenna at one end and n; receiver
antennas at the other end. In this case, the MIMO channel model
in (4.31) can be rewritten as

y =hz+n, (4.39)
where the channel matrix h isthe ny x 1 matrix given by
h= [hh h27 ) h'nR}T7 (440)

and elements h;, i = 1,2, - - -, ng, represent the constant gain of the
channel between the single transmitter antenna and the ith receiver
antenna over a symbol period. Equation (4.39) is known as the
discrete-time SIMO channel.

A channel capacity of the discrete-time SIMO channel model is
given by [9]

nR
C = log, (1 +p> |hi|> (bps/Hz) (4.41)
=1
where h; is the constant gain for :th recever antenna, i =
1,2,---,ng. Note that the SIMO channel does not have transmitter
diversity since the SIMO system only uses the single antenna at the
transmitter end. Furthermore, increasing the number of ny antennas
at the receiver end only results in alogarithmic increase in average

capacity.
4.6 MISO Channel Capacity

The discrete-time MIMO channel model can also be changed to
a discrete-time MISO channel moddl if we use n, transmitter
antennas at one end and a single receiver antenna at the other end.
In this case, we can rewrite the MIMO channel model in (4.31) asa
MISO channel asfollows:

y=hx+w, (4.42)
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where v is Gaussian noise, and the channel matrix h isthe 1 x nr
matrix given by

h= [hlv h27 ) hnT]7 (443)
and

X = [xla Lo, 7'IHT]T? (444)
where elements h;, i = 1,2,---,np, represent the constant gain

of the channel between the ith transmitter antenna and the single
receiver antennaover asymbol period. Equation (4.42) isreferred to
as the discrete-time M1SO channel.

The channel capacity of the discrete-time MISO channel model
isobtained by [9, 13]

nr

C = log, (1 + ni 3 ymy) (bps/H2), (4.45)

T =1

where h; is the constant gain for ith transmitter antenna, i =
1,2, -+, np, and the total transmitter power is normalized by using
the number of n, transmitter antennas. Note that the M1SO channel
does not have receiver diversity because the MISO system only
uses the single antenna at the recelver end. In addition, we see
that increasing the number of n, antennas at the transmitter end
also results in a logarithmic increase relationship of ny in average

capacity.
4.7 Summary

In this chapter, we have first introduced a channel capacity definition
that was contributed by Shannon in 1949. Shannon’s theoretical
work of the channel capacity has ignited subsequent developments
in the field of communications.

Beginning with a short review of channel capacity, we have
then focused on the fundamental theory of channel capacity for the
Gaussian channels, which are the most important communication
channels, with respect to signal power and noise variance as well as
corresponding probability of error. We have also addressed common
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channel models and capacities for transmission of information
message over a bandlimited wireless channel of radio frequencies
or a bandlimited wireline channel with white and Gaussian noise.
We have then obtained a famous channel capacity for bandlimited
channelsin terms of signal power, noise, and frequency bandwidth.
In an extreme case, the channel capacity of the bandlimited channels
approaches an asymptotic value if the frequency bandwidth moves
toward infinity. Sequentially, we have presented a MIMO channel
capacity based on a MIMO antenna system. This leads to a
famous formula of the MIMO channel capacity with respect to a
channel matrix and SNR at any receiver antennas. We have then
demonstrated that the MIMO channel capacity grows linearly and
overall capacity isthe sum of capacities of each of the eigenvalues.
In addition, with some modifications, we have expanded the theory
of the MIMO channel capacity into SIMO and MISO channel
capacities for SIMO and M1SO antenna systems, respectively.

Unlike the MIMO channel capacity, the SIMO and MISO
channel capacities can only result in a logarithmic increase in
average capacity even if we increase the number of antennas at the
receiver or the number of antennas at the transmitter, respectively.
Thisisbecause the SIMO channel does not have transmitter diversity
and the MISO channel does not have receiver diversity. Therefore,
aMIMO channel system is superior to a SIMO or a MISO channel
system in terms of channel capacity.
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Smart Antenna Systems

5.1 Introduction

In Chapter 4, we discussed multiple-input multiple-output (MIMO)
systems with a core concept of using space-time signal processing,
where the natural dimension of digital communication data is
matched with the spatial dimension inherent in the use of multiple
gpatialy distributed antennas. Thus, the MIMO systems can
be viewed as an extension of the smart antennas that are a
popular technology using an antenna array for improving wireless
communications.

The antenna array contains many distributed antenna elements
whose outputs are usually combined or selected to enhance system
performance. In fact, the smart antennais an antenna array system,
but it has advanced signal processing agorithms to adapt to
different signal environments. In other words, the smart antenna
combines multiple antenna elements with an adaptive signal-
processing capability to optimize its radiation and/or reception
pattern automatically in response to the signal environment [1].
Thus, the smart antenna is able to mitigate fading through diversity
reception and adaptive beamforming in addition to minimizing
interference through spatial filtering, thereby enhancing both analog
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and digital systems.

This chapter is organized as follows. This section presents a
short introduction about smart antenna systems. In Section 5.2,
we begin with a review of smart antennas and beamforming
structures, with an emphasis on switched, delay-and-sum, space-
time, and interpolation beamforming. In Section 5.3, we introduce
beamforming algorithms of MM SE, maximum signal-to-noise ratio
(SNR), and minimum variance beamformer that are derived by using
optimization constraint methods. The beamforming algorithms are
designed to focus on specific signals while suppressing unwanted
others at the sametime. A brief summary isfinally given in Section
5.4.

5.2 Smart Antennas and Beamforming Structures

A smart antenna system can be customarily classified as one of
five beamformers, including switched beamformer, delay-and-sum
beamformer, space-time beamformer, interpolation beamformer, or
adaptive array beamformer. The first four beamformers employ a
finite number of fixed, predefined patterns, multirate sampling, or
combining strategies, while the adaptive array beamforming uses an
infinite number of patterns that are adjusted in areal-time operation.

5.21 Switched Beamforming

A block diagram of a switched beamforming for the smart antenna
system is shown in Figure 5.1, which includes multiple antennas, a
fixed beamforming pattern with a set of the predetermined weight
vectors, N receivers, and a switch controller.

The switched beamforming system tries to form a multiple
fixed beamforming pattern with heightened sensitivity in particular
directions. Control logic of the switch beamforming system detects
signal strength, chooses from one of severa predetermined fixed
beamformings, and switches from one beamforming to another
beamforming by using a switch controller to connect with one
of the paralel outputs from the fixed beamforming pattern. The
switched beamforming system combines the outputs of multiple
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Figure5.1 A block diagram of aswitch beamforming for the smart
antenna system.
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antennas such that finely directional beams can be formed with more
gpatial selectivity than in aconventional and single-element antenna
approach. In other words, the switched beamforming system selects
one of several predetermined fixed-beamforming patterns, which
are based on weighted combinations of antenna outputs, with the
greatest output power in the remote user’s channel. Furthermore,
the switched beamforming system can switch its beamforming
in different directions throughout space by changing the phase
differences of the signals. Thus, the IV receivers mitigate multipath
components, which arrive at the recelvers at different times, by
exploiting the low correlation between temporal signal fading at
different antennas. This structure of the switched beamforming
system is able to enhance coverage and range extension. However,
at close angle of arrival [2], the switched beamforming system
cannot discriminate between multipath components. This leads to
the inability to combine multipath components coherently.
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Xo(t)
Delay A,

> W,
x,(t)
Delay A, > W e
y(t
Xna1(D)
Delay Ay » W,

Figure 5.2 A block diagram of a delay-and-sum beamforming for
the smart antenna system.

5.2.2 Delay-and-Sum Beamforming

One of the oldest and simplest beamforming is called the delay-
and-sum beamforming, which still remains a powerful approach
today. Figure 5.2 shows a block diagram of the delay-and-sum
beamforming for the smart antenna system, which includes multiple
antennas, a delay A;, and a weighting value w;, where i =
0,1,2,---, N — 1, and asum of the resulting signals. The delay A,
is used to reduce mismatched delay because the mismatched delay
decreases the SNR at the beamforming output and thereby reduces
the array gain. The idea behind it is that if a propagating signal is
present in multiple antennas, the outputs of the multiple antennas,
delayed by appropriate amounts and added together, reinforce the
signal with respect to noise in different directions. Thus, the output
signal of the delay-and-sum beamforming is obtained by

N-1
w;xi (t — (5.1

1=0
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Xo[n] qo[n]
h[n] » Delay d,
X,[n] q;[n]
h,[n] » Delay d,
y[n]
Xy.1[n] q.1[n]
hy4[n] »{Delay d,

Figure 5.3 A block diagram of a space-time beamforming for the
smart antenna system.

where A; is the ith delay, and the weight value w; is sometimes
referred to as the beamforming shading, which isused to enhance the
beamforming shape and reduce sidelobe levels. The weight value w;
can also be calculated by using one of many adaptive algorithms|[3].
In this case, the delay-and-sum beamforming can be referred to as
adaptive delay-and-sum beamforming.

5.2.3 Space-Time Beamforming

In the previous discussion of delay-and-sum beamforming, we
assumed that the multiple antennas receive signalswithout distortion
or spatial filtering. In practice, we should realize that more than
one signal may be present in the propagation field received by the
antennas and that noise can disturb the received signal. In order
to remove unwanted disturbances, we need to insert additional
linear filtering for the signal of interest in only a narrow wanted
frequency band, as shown in Figure 5.3. Filtering the output signal
of the multiple antennas considers both temporally and spatialy in
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space-time signal processing. Thus, combining thesefilter and delay
outputs by using a sum operation to form a beamforming is known
as space-time beamforming or filter-and-sum beamforming.

The output signal y[n| of the discrete-time space-time beam-
forming is obtained by

M-1

gi[n) = > hiklzn — k], fori=0,1,2,---,N -1, (5.2)
k=0

where ¢;[n] istheith output signal of the ith spatid filter, h;[n] isthe

ith linear-phase finite impulse response (FIR) filter, and x;[n] is the
ith output signal of the ith antenna, and then

yln] = 3 aln—dy

1=0

T
=

- S hi[klzi[n — k — dj], (5.3)
; k=0

[ay

o

1=

where d; is the ith delay for ith antenna. Note that the linear FIR
filters are placed on the antenna outputs to concentrate the later
delay-and-sum beamforming operations into a range of temporal
frequencies and to include spatial filtering of antenna signal. Each
passband of the linear FIR filters corresponds to the desired signal
spectrum. Furthermore, these linear FIR filters can be optimally
related to signal spectrum and to noise characteristics. In addition,
all the taps of the linear FIR filters can be updated in real time by
using the adaptive signal processing algorithm. If this is the case,
the space-time beamforming is referred to as adaptive space-time
beamforming.

5.2.4 Interpolation Beamforming

In order to reduce the aberrations due to delay quantization, an
interpolation method in a beamforming can be introduced between
the samples of the antennasignals. Figure 5.4 showsablock diagram
of an interpolation beamforming. Each antenna's output is passed
through an upsampler, which adds M — 1 zeros between the samples,
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Xo[n] poln] q[n]
T M »  hy[n] » Delay d,
y[n]
X,[n] poln] q;[n]
™ » hn] »{ Delay d, Dy M —>
z[n]
Xx.1[N] Pnaln] Qn.i[n]
M > bhyln] »Delay dy,

Figure 5.4 A block diagram of an interpolation beamforming for
the smart antenna system.

and a lowpass FIR interpolation filter with a cutoff frequency at
47+ The output signa of the lowpass FIR interpolation filter with
a higher sampling rate is then subjected to the delay and shading
to form a beamforming. The output signal of the beamforming can
be downsampled by afactor of M to obtain the signal with original
sampling rate.

Upsampling by an integer factor of M involves an operation
relationship between input and output given by

T, n=0,xM,£2M,---
p@-[n]Z{ (7]

0 otherwise, (5.4)

wherei = 0,1,2,---, N — 1 for the ith antenna. This is equivaent
to

o0

piln] = Z x;[k]d[n — kM. (5.5)

k=—o00

Equations (5.4) and (5.5) indicate that the discrete-time output
sequence p;[n| is obtained by inserting A/ — 1 zero-valued samples
between adjacent samples of the input sequence z;[n).
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Using (5.3) and (5.5), we obtain the output signal of the
interpolation beamforming as follows:

yln] = Zth lpi[n — k — d;]
=0 k=0
o N-1M-1
= > hilk)z;[l]o[n — k — d; — IM],
l=—00 =0 k=0

(5.6)

where M is the integer factor determined by the downsampling
processing.

Note that the signal before engaging the space-time beamform-
ing has an effective sampling rate that is M times higher than the
original sampling rate. However, it does not affect the beamforming
calculation operations including filtering, time delays, shading, and
summing. Inserting M — 1 zeros between samples in the time do-
main causes periodic images of the signal spectrum in the frequency
domain. However, lowpass FIR filtering can ideally eliminate all the
images except the origina one at baseband from —7 /M to /M.
Thus, the output signal of the interpolation beamforming can be
downsampled by afactor of M because the original sampled signal
did not induce temporal aliasing. Downsampling takes a discrete-
time input signal sequence y[n| and generates a new discrete-time
output signal sequence z[n| given by

z[n] = y[Mn)], (5.7)

where M isan integer factor. Substituting (5.6) into (5.7) obtainsthe
discrete-time output signal sequence z[n| asfollows:

—-1M-1

Z Z > hlklzi[l)6[(n — )M — k — d;]. (5.8)
[=—o0 =0 k=0
After downsampling, the interpolation beamforming output has the
same sampling rate as the original signals. This complete process
of interspersing zeros, lowpass FIR filtering, delaying, summing,
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and downsampling is aso referred to as time domain interpolation
beamforming [4]. In addition, the taps of all the lowpass FIR
filters can be updated in rea-time operation if we use an adaptive
algorithm. In this case, we refer to it as adaptive interpolation
beamforming. Furthermore, each of the combining upsamplers
and lowpass FIR filters can be efficiently implemented by using
polyphase interpolation decomposition or multistage interpolation
filters[3, 5].

Another type of beamformer that we would like to mention here
was developed for array sensors based on the frequency domain by
using short-time Fourier analysis or the discrete Fourier transform
(DFT), known as the frequency-domain beamformer. With some
modifications, it is aso possible to use the frequency-domain
beamformer for the smart antenna system. Theinterested reader may
refer to [4].

5.3 Beamforming Algorithms

There are many beamformer algorithms derived by using optimiza-
tion constraint methods [2, 4, 6, 7]. The optimization constraint
methods for the beamformer are used to focus on specific signals
while suppressing unwanted others at the same time. In an optimal
sense, we want to determine a set of optimal weight coefficients to
reinforce any signal propagating across the beamformer with a set
of delays. On the other hand, adaptive beamformer algorithms can
vary the shading and increase SNR through the temporal, frequency,
and spatial filtering based on the signal and noise characteristics at
the time of observation.

531 MMSE Beamformer

This section describes a class of optimum linear FIR filters known
as Wener filters [3, 8] for a beamformer when a training signal is
available. We focus on devel oping the derivation of the Wiener-Hopf
equation, which provides the optimum linear FIR filter coefficients
in the optimal sense of mimimum mean square error (MMSE) for
the beamformer.
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Assume that the training signal (an ideal signal) is denoted by
d[n], the input signal of the beamformer is denoted by x[n] , and the
output signal of the beamformer is denoted by y[n]. The optimum
linear FIR filter is used to estimate the MM SE for the beamformer,
y[n] for d[n], given two wide-sense stationary processes jointly,
x[n] and d[n], which are statistically related to each other. We also
define the autocorrelation functions, (k) and r,(k), and the cross-
correlation function, 74, (k).

In the discrete-time domain, the error signal e[n] iswritten as

eln] = dln] - y[ﬂ]
wlk ], (5.9

=0

o

where w|k] isthe filter coefficients, or in vector form,
e[n] = d[n] — w” [n]x[n]. (5.10)

The mean square error (MSE) is a function of the chosen filter
coefficient vector wn|, and can be written as

¢ = E{e[n]e’[n]}

= E{(d[n] — w"[n]x[n])*}
= E{d[n)d*[n] — d[n]x" [n)w[n]
—w! [n]x[n]d*[n] + w' [n]x[n]x" [n]w[n]}
= Var{d[n]} — ra.[n]w[n] — w'[n]r 4[n]
+w!n|R,[n]w[n], (5.11)

wherer ;,.[n] = E{x[n]d*|n|} isthe product of the cross-correlation
function and R, [n] = E{x[n]xT[n]} isthe autocorrelation function.

Tominimize¢ in (5.11), we make the derivative of £ with respect
to w[n| equal to zero and obtain the result as follows:

R, [nwin] = 1 u.[n] (512)

where R,[n] is an M x M Hermitian Toeplitz matrix of
autocorrelation, w(n] is the filter coefficient vector, and r4,[n] is
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the vector of cross-correlation between the ideal signed d[n| and the
input signal x[n]. Equation (5.12) is referred to as the Wiener-Hopf
equation.
If wefurther assumethat the matrix R, [n] isinvertible, then w|n|
in (5.12) can be solved by
w[n] = R, [n]rg.[n]. (5.13)

T

Equation (5.13) is known as the normal equation. This is because
the error signal e[n] isorthogonal to each element of theinput signal
x[n] given by

E{x[nle*[n]} = 0. (5.14)

The corresponding MM SE for the beamformer is given by [3]
Evmse = Ra(0) — Ry, [nlw[n], (5.19)
or in another form
Evmse = Ra(0) — ri,[n]R,[n]r ga[n]. (5.16)

Note that (5.15) or (5.16) is a single-step algorithm but involves
heavy computation because of computing theinverse autocorrelation
matrix R_'[n] and multiplying the cross-correlation matrices r 4, [n]
andr? [n].

5.3.2 Maximum SNR of the Beamformer

In this section, we discuss another optimization criterion based on
eigenval ue analysisfor the maximum beamformer gain. Assumethat
aninput signal x|n| for abeamformer consists of adesired signal sjn|
and interference and noise n[n| given by

X[n] = s[n| 4+ n[n]. (5.17)
Then the beamformer output can be written as follows:

yln] = w[n)xn]
w[n]s[n] +w[n]n[n]. (5.18)
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The first and second terms on the right side of (5.18) represent
a signal component and an interference and/or noise component,
respectively. Then the SNR of the beamformer output can be formed
by using an Fsyr ratio (see Miao [6]),

W' [n]R;[n]wn]
W [n]Ry [njw(n]

SNR = , (5.19)
where R,[n] isthe autocorrelation function of the desired signal s[n]
and R,,[n] is the autocorrelation function of the interference and
noise. This Fsxr criterionisintuitively attractive becauseit iseasier
to maximize SNR for the beamformer output.

In order to determine the beamformer output y[n|, we need
to determine the values of the elements of the filter coefficient
vector w[n| that maximizes the ratio of the Fsy criterionin (5.19).
Thisis also called the canonical correlation function, the canonical
discriminant function (see Miao [6]), the optimization array gain
(see Johnson and Dudgeon [4]), the Rayleigh-Ritz ratio, or the
signal-to-interference-and-noise ratio (see Reed [2]).

The determination of the filter coefficient vector of the
beamformer that maximizesthe Fsy criterion involves solving the
eigenvalue and eigenvector Equation (5.19). To maximize the Fsyr
criterion, we need to take the partial derivative of the Fsyr with
respect to the filter coefficient vector win| and set it equal to zero

GFSNR o QRS[TL]W[H]
ow[n] — wH[n|R,[n]w[n]
2R, [n]w[n] wH n]R,[n]w[n]
(WH[n]Rn [n]W[n]) (WH[n] R,.[n|w[n )
= 0. (5.20)

Simplying (5.20), we obtain

wn]R,[n]w[n] _ Rs[n]w[n]
wH[n]R,[nw[n]  Ry[n]w(n]

=\ (5.21)

Therefore, it can be seen that the maximum vaue of A is the
largest eigenvalue of the matrix of R, '[n]R,[n] and w[n] is the
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corresponding eigenvector as follows:

(Ry'[nIRu[n] = Al ) w[n] = 0. (5.22)

n

The corresponding SNR for the beamformer is then obtained by

{FSNR}max = Amaz; (523)

where \,... is the largest eigenvaue of the matrix R *[n]R,[n].
Thus, (5.23) indicates that the maximum of SNR for the beamformer
isequal to the maximum eigenvalue of the matrix R, ' [n]R,[n].

5.3.3 Minimum Variance Beamfor mer

Another famous optimization criterion for the beamformer is known
as the minimum variance beamformer [4, 6]. In this method, we
choose the normalization of the filter coefficient vector w[n| such
that

wn]R, [n]w[n] = 1. (5.24)

Equation (5.24) ensures that the ideal signal passes to the
beamformer output having unity gain. This further implies that the
pool covariance matrix of the output signal y[n] hasaunity variance.

To maximize the Fsy g ratio in (5.19), we form the expression
(see Miao [6]) asfollows:

FSNR = MaXw[p] {WT [n]Rs[n]W[n]}7 (525)
subject to
w![n]R,[n]w[n] = 1. (5.26)

Now, we let w[n] = R;;'/2[n]a[n], where a[n] is a new vector, and
then write anew expression of Fgyr ratio in terms of the vector a[n]
asfollows:

Fsyr = W/ n]R,[n]w[n] — A(W'[n]R,[n]w[n] — 1)
= a'[n]R;"*[n]Ry[n]R,,*[n]aln]
—A(@"[n]an] — 1), (5.27)
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where \ is a nonzero Lagrange multiplier. We take the partial
derivative with respect to the vector ajn| and set it equal to zero

= 2R ?[n]R,[n]R;?[n]aln] — 2)\a[n] = 0.  (5.28)

Therefore, the eigenvalue and eigenvector problem of maximizing
SNR for the beamformer output is obtained by

(R, 2[n]R.[n]R,2[n] — Al') aln] = 0. (5.29)
Solving (5.29) for the eigenvalue \ gives

1

A RPLIR IRV

(5.30)

Equation (5.30) isreferred to as the maximum variance beamformer,
which is used to minimize the output power of the beamformer
subject to the constraint with the constant gain at the angle of arrival
of the desired signal.

Solving (5.29), we can also obtain the vector a[n]. Thus, the
corresponding filter coefficient vector w(n] for the beamformer is
obtained by

wln] = R Y?[n]a[n]. (5.31)

n

It can be shown [6] that the term of R’ *[n]R,[n] in (5.22) and the
term of R '/2[n|R,[n]R;1/?[n] in (5.29) have the same eigenvalue
by using the maximization and minimization theorem (see Appendix
B).

Itisalso possibleto further optimize the filter coefficientsfor the
beamformer by using other approaches, which are developed based
on these optimization concepts but with the additional condition of
orthogonality and scalar spread effects, which alow selecting the
greatest output power in the remote user’s channel. The interested
reader may refer to Miao [6] to explore further the optimization
methods based on the generalized optimal declustering analysis for
the beamformer.
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We have discussed selecting the filter coefficients for the
beamformer without regard to the nature of the field into which
the beamformer is placed. The filter coefficients of the beamformer
yielding the optima gain depend on the characteristics of the
interference and noise. This means that a good set of filter
coefficients for the beamformer should adapt to the beamformer
environment and should not be fixed before placing the beamformer.
This leads to the idea of adapting signal processing algorithms for
the beamformer to the signal environment. For adaptive beamformer
algorithms with an application of a sidelobe canceller based on a
linear predictive approach to array signal processing, we refer the
interested reader to Johnson and Dudgeon [4].

54 Summary

In this chapter, we first introduced a smart antenna system in which
an antenna array system with signal processing algorithms adapts
to different signal conditions. This led to mitigating fading through
diversity reception and adaptive beamforming. We then focused on
fundamental beamforming structures and discussed their benefits
with respect to different signal environments. These discussions
have led to the necessary step of understanding how a beamforming
structure affects performances of the smart antenna system, thereby
providing a key guideline of designing the smart antenna system for
digital communication systems.

Of particular importance in the evaluation of smart antenna sys-
tem performance are beamforming algorithms that laid mathemat-
ical foundations based on optimization constraint methods, which
have rapidly developed over the last two decades along with practi-
cal applicationsto the digital communications systems. The systems
that exist today and those currently under development certainly re-
flect these recent advances in the smart antenna system.

With applications of using beamformer structures and algo-
rithms, the smart antenna system can further enhance performance
of digital radio frequency (RF) systems and mitigate fading through
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diversity reception and space-time processing while minimizing in-
terference through beamformer spatial filtering. Advanced devel op-
ment in the smart antenna system will be akey to future digital com-
munication systems with evolving higher data rates and spectral ef-
ficiencies. Therefore, by discussing smart antenna system technolo-
gies, we have placed technical foundations to integrate those tech-
nologies into more advanced development of signal processing tech-
nologies for digital communication systems.
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Channd Characterization and
Distortion

6.1 Introduction

Communication channels can be wireless or wired physica
channels, or a combination of both. In any case, those physica
channels usually introduce linear and nonlinear distortions, random
noise, and deterministic interference. Therefore, efficient and
successful communication of messages via imperfect channels is
still one of the major triumphs of information technol ogy.

In wireless communication, a physical channel affects propaga-
tion of radio signals on both forward and reverse links. A signal
propagating through the physical channel usually arrives at the des-
tination along with a number of different paths that are referred to
as multipath. These paths come from scattering, reflection, refrac-
tion, or diffraction of radiated energy off of objects that are |ocated
in the environment. The received signal is much weaker than the
transmitted signal because of phenomena such as mean propagation
loss, slow fading, and fast fading. In addition, digital communication
through a bandlimited wireless channel with multipath phenomena
is subject to intersymbol interference (I1Sl). This problem can be so
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severe that the correct reception of transmitted sequence is not
feasible anymore without including a specific devicein areceiver.

In wired communication, for example, a twisted-pair copper
telephone line that was originally intended to carry voice signals
at about a 4-kHz frequency bandwidth is now used to transmit
from several megabits (Mb) to 52 Mb of data per second by using
a digital subscriber loop (DSL), such as HDSL, ADSL, VDSL,
and so forth. This has been possible because of the efficient use
of the high-frequency propagation of copper wires, which suffer
from a great deal of line attenuation and noise. The twisted-pair
copper wire channel usually has different segments with different
gauges ranging from 19 American wire gauges (AWG) to 26 AWG,
multiple bridge taps, awire drop, and lumped elements. In addition,
far- and near-end crosstalk between pairs in a multipair cable is
the dominant impairment in any DSL system. Therefore, with the
limitation of frequency bandwidth, twisted-pair copper channel has
severe distortion and is subject to 1SI.

Communication systems usually operate with limitations of
frequency bandwidth. This causes ISl and out-of-band radiation
in adjacent channels. Pulse-shaping techniques can be designed to
reduce the ISl effects and the spectral width of a modulated signal
simultaneously. This leads to matched filtering at the receiver that
compensates for the ISl caused by multipath within time-dispersive
wireless channels or bandlimited wired channels.

This chapter is organized as follows. In this section, a short
overview and the background of communication channels are
briefly presented. Section 6.2 introduces characteristics of wireless
channels including propagation, multipath, and fading. Section 6.3
describes wired channels that focus on the transmission loop, its
crosstalk, and the simulation loop-model. Section 6.4 presents
channel distortion with emphases on | SI, eye diagrams, and Nyquist
criterion. Subsequently, pulse-shaping techniques that are designed
to reduce and suppress out-of-band radiation while eliminating 1S
effects are given in Section 6.5. Section 6.6 addresses matched
filtering and its method on how to increase signal-to-noise ratio
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(SNR) and reduce 1Sl and noise interference. A brief summary of
this chapter is given in Section 6.7.

6.2 Wireless Channels

Wireless channel s place fundamental limitations on the performance
of radio signals on both forward and reverse links for communica-
tion systemsin several ways. The transmission path between atrans-
mitter and receiver can vary from a simple line-of-sight (LOS) path
to a nonline-of-sight (NLOS) path, which is severely obstructed by
buildings, mountains, and foliage. Additionally, when a mobile ter-
minal moves in space, the speed of motion impacts how rapidly the
signal level fades.

6.2.1 Free Space Propagation

In ideal free-space propagation received signal strength can be
predicted when the transmitter and receiver have a clear and
unobstructed L OS path. The free-space power received by areceiver
antennais given by the Friis free-space equation,

PG.G, [ )\

where P, and P.(d) are the transmitted and received power,
respectively, GG, and G,. arethe transmitter and receiver antennagain,
d is the distance separation between the transmitter and receiver,
A is the wavelength in meters, and L is the system loss factor.
When L = 1, thisindicates no loss in the communication system
implementation. When L > 1, there are extra losses due to effects
such as transmission line attenuation, filter, and antennalosses. The
wavelength ) isrelated to the carrier frequency by

Ao &t (6.2)

[ we

where ¢ is the speed of light in meters per second, f is the carrier
frequency in hertz, and w, is the carrier frequency in radians per
second.
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The path loss for the free-space propagation is defined as the
difference (in decibels) between the effective transmitted power and
the received power given by

P
GG [ A\
= —10log,, tL(le)] (dB). (6.3)

Note that (6.1) and (6.3) do not hold for the distance d = 0.
For this reason, the received power P,(d) uses a close-in distance
do as a known received power reference point to relate to P,(d) at
the close-in distance d,. Thus, the received power in the free-space
propagation at a distance greater than d, is obtained by

P(d) = P.(dy) (2) Cdzdezd, (64

where d s is known as the Fraunhofer distance (or far-field distance)
given by

2D?
= 6.5
where D isthe largest physical linear dimension of the antenna and

dy > A
Equation (6.4) can be rewritten in units of dBm if we take the
logarithm of both sides and multiply by 10,

P.(d) = 101log,, [?éﬁ?]%—%logw @) (dBm),  (6.6)

whered > dy > dy, P,(d) and P,(dy) arein unitsof dBm and Watts,
respectively.
Example 6.1

Assume that an antennawith aunity gain has a maximum dimension
of 2 meters, and a transmitter generates 40 Watts of power at a
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500-MHz carrier frequency. If a receiver antenna has a unity gain,
determine (a) a far-field distance d;, (b) the transmitter power in
dBm and dBW, and (c) the receiver power in dBm at the far-field
distance d; and the receiver power in dBm at the distance of 5 km.

Given the maximum dimension of the transmitter antenna
D = 2 meters, the carrier frequency f = 500 MHz, and the
transmitter power P, = 40 Watts, we now answer the questions as
follows:

(a) Using (6.2) yields the wavelength A,

N
f

3 x 108 (m/s)

500 x 106 (Hz)
= 0.6 (m). (6.7)

Then using (6.5), we obtain the far-field distance as

4 _ 2D 20
=X 7 06
(b) The transmitter power indBm is

—13.33 (). (6.8)

P, (mwW

1 (mW)
= 10logy, (40 x 10%)
— 46.02 (dBm) (6.9)

and the transmitter power in dBW is

P (W
P = 1010g10[ & )]

1 (W)
= 10log,, (40)
— 16.02 (dBW). (6.10)

(c) Using (6.1), assume that L = 1 with no loss in the
communication system for implementation. \We obtain the receiver
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power at the far-field distance d;,

PG.G, [ X\
Pr(df) - tLt (47Tdf>

_ 40x1x1 ( 0.6 )2
N 1 47 x 13.33
= 5.132 x 107* (W). (6.11)

Thus, the receiver power in dBm is obtained by

P(dy) = 10logy, Pr(dy) (MW)
= 10log [5.132 x 107" (MW))
— —2.897 (dBm). (6.12)

Using (6.6) with dy = d; = 13.33 (m), the received power at d = 5
(km) is obtained by

P,.(dp) d
P.(d) = 10log, l0.0ool ] + 201log,, (;)

5.132 x 10~ .
= 10logyy | 22X ] 4 90 logyy (00
il l 0.001 ] 2010810 (5 X 10°
— —2897 (dBm) — 51.483 (dB)

— —54.380 (dBm). (6.13)

6.2.2 Flat Surface Propagation

The path loss model in (6.3) is developed under a condition of the
free-space propagation. However, transmitted signalsin the wireless
communications, such as land mobile radio applications, usualy do
not experience the free-space propagation. In environments of the
land mobile radio applications, a main path is often accompanied
by a flat surface-reflected path, which may destructively interfere
with the primary path. In this case, the received power of a
more appropriate theoretical model over the flat surface-reflected
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path [1, 2] is given by

_4APRG,G, (A N[ (27hinh,\]
P.(d) = 7 <47Td> [sm( o )] : (6.14)

where h; and h, are the heights of the transmitter and receiver
antennas, respectively. If d > h;h,, using the approximation
sin(x) ~ « for small z, (6.14) can be rewritten as

P, (d)

2
— PthGT’ (hthT’) . (6_15)

L d?

Note that the propagation model of (6.15) over a flat surface-
reflected path differs from the free-space propagation of (6.1) in
three ways: (1) there is a direct influence of heights at both ends
of the link, (2) the path loss is not frequency dependent, and (3) the
received power decays with the fourth power rather than the square
of the distance. Thus, at large distance d >> h;h,., the received power
of (6.15) falls off with distance at arate of 40 dB/decade.

Using (6.14), the path loss for the propagation over a flat
reflecting surface is defined as the difference (in decibels) between
the effective transmitted power and the received power given by

P,

B 4G,G, (N N[ (2rheh,\]?
= _1010g10{L<47rd) lsm( d )] (dB).

(6.16)

Figure 6.1 shows a propagation path loss over the flat reflecting
surface against the distance of d, with a carrier frequency at 1,800
MHz, hy = 1 m, h, = 7 m, unity gain of the transmitted antenna,
G, = 2, and no loss for the communication system implementation,
L = 1. In that case, we note that the propagation path loss (or
the received power) has aternate minima and maxima when the
path distance d is relatively small. The last local maximum in the
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Figure 6.1 Propagation path loss over a flat reflecting surface
against distance: f.=1,800 MHz, h; =1m, h, =7m,
Gtzl,GT:2,andL:1.

propagation path loss can be obtained near the far field boundary via
the following equation:

2rhih, 7
= _. 6.17
d 2 ( )
Since 3 % 107
C X
=—=-—————=10.167 (m), 6.18
fe 1,800 x 106 (m) ( )

substituting A, h;, and h,. into (6.17) and solving yields d = 168 m.
6.2.3 Multipath Propagation

In awireless mobile communication system, atransmitted signal can
travel to areceiver over multiple paths. This phenomenon is called
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Figure 6.2 Multipaths based on the three propagation phenomena
of reflection, diffraction, and scattering.

multipath propagation. There are three basic multipath propagation
phenomena that impact propagation in a mobile communication
system, including reflection, diffraction, and scattering. The
multipaths formed by the reflectors, diffractors, and scatterers add
up at a receiver antenna to produce the received signal. Figure 6.2
shows multipaths based on the three basic propagation phenomena
of reflection, diffraction, and scattering.

Reflection takes place when a propagating el ectromagnetic wave
(or radio wave) impinges upon an object including a building, a
wall, and even the surface of the Earth, and so forth, which has
very large dimensions when compared to the wavelength of the
propagating wave. In other words, when an electromagnetic wave
propagating in one medium impinges up another medium having
different electrical properties, the electromagnetic wave is partialy
reflected and partially transmitted.
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Diffraction takes place when an object having sharp irregulari-
ties (or edges) blocks the radio wave. Thisisto say that the diffrac-
tion allows radio waves to propagate around the curved surface of
the Earth, beyond the horizon, and to propagate behind obstructions.
When a receiver moves deeper into the obstructed (or shadowed)
region, the received field strength decreases rapidly. However, the
diffraction field still exists and usually has sufficient strength to pro-
duce a useful signal for the receiver.

Scattering takes place when the radio wave strokes objects with
dimensionsthat are small compared to the wavelength. The reflected
energy isspread out in all directions due to scattering when the radio
wave impinges on a rough surface. Objects such as foliage, street
signs, lampposts, and trees tend to scatter energy in al directions,
thereby providing additional radio energy at the receiver.

The received power (or its reciprocal, path loss) is the most
important parameter predicted by large-scale and small-scale fading
and propagation models based on the physics of the reflection,
diffraction, and scattering. The mathematical treatments on the three
basic propagation schemesrefer to [1, 3, 4].

6.2.4 Parametersof Multipath Channels

In a multipath propagation environment, severa time-shifted,
Doppler spread, and scaled versions of the transmitted signal arrive
at the recelver. This phenomenon creates a so-called multipath-
intensity profile, which describes relationships among parameters of
multipath channels.

A relationship between a delayed power S(7) in time domain
and a Doppler power spectrum S(v) in frequency domain for the
multipath channels is shown in Figure 6.3(a, b), where 7 is the
delay and v is the Doppler shift. Figure 6.4(a, b) aso shows a
relationship between a space-frequency correlation function R(A f)
in frequency domain and a space-time correlation function R(At)
in time domain for the multipath channels, where A f and At are
the frequency and the time, respectively. In addition, the delayed
power S(7) and the Doppler power spectrum S(v) can be converted
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Figure 6.3 A relationship between the delayed power S(7) and
the Doppler power spectrum S(v) for the multipath
channels.

to the space-frequency correlation function R(A f) and the space-
time correlation function R(At), respectively, by using the Fourier
transform.

Time Delay

The term of time delay is used to refer to the excess delay, which
represents the delay of the signal propagation that exceeds the delay
of the first signal arrival at the receiver. Figure 6.3(a) shows a
relationship of the delayed power S(7) versus the time delay .
For a transmitted signal impulse, the time 7,,, between the first and
last received component represents the maximum excess delay. The
maximum excess delay is defined to be the time delay during which
multipath energy falls some threshold level below the strongest
component. Generally, the threshold level can be selected at 10 dB
or 20 dB below the level of the strongest component.

In addition to the maximum excess delay, there are other terms,
mean excess delay and rms delay spread, that are also used for the
parameters of the multipath channels. The mean excess delay is
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Figure6.4 A relationship between the space-frequency correlation
function R(A f) and the space-time correlation func-
tion R(At) for the multipath channels.

defined by

Yt S ()7
Zszl S(7) .

The rms delay spread is defined to be the square root of the second

central moment of the power delay S(7), given by

7=

(6.19)

o, = /72— (F)2, (6.20)

where (7)? is the mean squared and 72 is the second moment given
by
N 2
7 = Zin ST (6.21)
D=1 S (Tk)
Generally, values of (6.20) are on the order of microseconds in
outdoor mobile radio channels and on the order of nanoseconds in

indoor wireless channels.

Coherence Bandwidth

A relation between the power delay S(7) in Figure 6.3(a) and the
magnitude frequency response (or the space-frequency correlation
function) R(Af) in Figure 6.4(a) can be established by using the
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Fourier transform. Both parameters of S(7) and R(Af) are related
asfollows:

R(Af) = / S(r) exp(—j2n Afr)dr. (6.22)
Therefore, it is possible to obtain an equivalent description of the
multipath channel in the frequency domain using its frequency
response characteristics.

Coherence bandwidth F; is inversely proportional to the
maximum excess delay 7, given by [4-6],

Fy~ ! 6.23

0T (6.23)
The coherence bandwidth in (6.23), which isused to characterize the
multipath channel in the frequency domain, is a statistical measure
of the range of frequencies over which the multipath channel
passes all spectra components with approximately equal gain and
linear phase. In other words, the coherence bandwidth represents a
frequency range over which frequency components have a strong
potential for amplitude correlation and is a measure of the channel’s
frequency selectivity.

The coherence bandwidth F{, can also be defined as a relation
derived from the rms delay spread. If the coherence bandwidth
uses the bandwidth over which the frequency correlation function
is above 0.9, the coherence bandwidth is then approximately [1],

1
500,

b~ (6.24)
where o is the rms delay spread given by (6.20). If the frequency
correlation function is above 0.5, the coherence bandwidth can be

approximately
1
50,
It should be noted that an exact relationship between the coherence
bandwidth and the maximum excess delay or rms delay spread does
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not exist. The definition of the coherence bandwidth often differs
from one reference to another [7], and tends to depend on the
extent of the correlation, determined subjectively, over which the
two signals are correl ated.

Doppler Spread

Doppler spread D, is a measure of spectral broadening f;, as
shown in Figure 6.3(b), caused by the time rate of change of the
mobile radio channel. The Doppler spread is defined as the range of
frequencies over the received Doppler power spectrum S(v), with
components in the range from f. — f; to f. + f4, where f, is the
transmitted pure sinusoidal tone of frequency and f; is the Doppler
shift.

The Doppler power spectrum S(v) was developed by Gans [8]
based on Clarke’s model [9]. Assume that scatterers have a uniform
distribution of signals arriving at al arrival angles throughout the
range [0,27). The Doppler power spectrum S(v) at the antenna
terminalsisthen given by

97 —1/2
S(v) = { T {1 - (475) } ATl < Sm(6.26)

0, otherwise,

where v is the Doppler frequency shift and f,, is the maximum
Doppler shift given by

fo = max(1fo]) = max (L feost]) = 5 (627)
where f,; can be either positive or negative depending on the arrival
angle 6, V is the relative mobile velocity, and )\ is the signa
wavelength. Thus, in this case, the Doppler spread is obtained by

Ds = f. (6.28)

Note that the Doppler power spectrum S(v) in (6.26) isinfinite
when f = f. £+ f,,. This indicates that the Doppler components
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arriving at exactly 0 and 180 degrees have an infinite Doppler power
spectrum. However, thisisn’'t aproblem sincethe angle of arrival 6 is
continuously distributed and the probability of Doppler components
arriving at exactly these anglesis zero[1, 8, 9]. Thus, the knowledge
of the Doppler power spectrum S(v) in (6.26) allows usto determine
how much spectral broadening isimposed on the signal asafunction
of the rate of change in the multipath channel state.

Coherence Time

A space-time correlation function R(At) versus the time separation
At is plotted in Figure 6.4(b). It is the correlation function between
the multipath channel’s response to a sinusoid signal sent at time
t; and the response to a similar sinusoid sent at time ¢,, where
At = ty — t;. Coherence time T is a statistical measure of the
time duration over which the multipath channel impulse response
is invariant and quantifies the similarity of the multipath channel
response at different times. This is to say that the coherence time
is the time duration over which two received signals have a strong
potential for amplitude correlation and the time domain dual of
Doppler spread. Coherence time 7, and Doppler spread f,, are
inversely proportional to one another,
Ty =~ ! (6.29)
0 7 .
where f,, isthe maximum Doppler shift defined in (6.27).
The coherencetime T; can a so be defined as the geometric mean
if the coherence time is over which the time correlation function is

above 0.5[1],
9 0.423
Ty = ,/167#731 =7 (6.30)

The definition in (6.30) implies that two signals arriving with a
time separation At greater than the coherence time 7; are affected
differently by the multipath channel.

The relationship of the Doppler power spectrum S(v) in
Figure 6.3(b) and the space-time correlation function R(At) in
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Figure 6.4(b) isrelated by using the Fourier transform,

S(v) = /OO R(At) exp(—j2rvAt)dAt. (6.31)
Thus, (6.31) indicates that we can obtain an equivalent description
of the multipath channel in the frequency domain using its Doppler
power spectrum characteristics.

Duality Concept

In both Figure 6.3 and Figure 6.4, a duality function is introduced.
Two operations are called aduality function [5, 6] if the behavior of
one with reference to a time-related domain (such as time or time
delay) is identical to the behavior of the other with reference to
the corresponding frequency-related domain (such as frequency or
Doppler frequency shift).

Delay spread and coherence bandwidth, as developed earlier, are
parameters of multipath channels that describe the time-dispersive
nature of the multipath channels in a local area. But both of these
parameters do not provide information about the time-varying nature
of the multipath channels caused either by relative motion between
the transmitter and receiver, or by the movement of objects in
the multipath channels. On the other hand, Doppler spread and
coherence time are aso parameters of the multipath channels that
describe the time varying nature of the multipath channel in a
small-scal e region. Depending on the parameters of wireless mobile
multipath channels, different transmitted signals will experience
different types of fading over atravel distance from the transmitter
to the receiver.

6.2.5 Fading Characteristics

In a wireless mobile communication channel, in addition to the
path loss as discussed previously, the received signal exhibits
rapid fluctuations of the amplitude over a travel distance from
the transmitter. Thus, a mobile user will usually experience signal
variation in time. This phenomenon is referred to as fading. Fading
is caused by interference between two or more versions of the
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transmitted signal (or multipath waves) that arrive at the receiver at
dightly different times. Thereceiver antenna combinesthe multipath
wavesto provide aresulting signal that can vary widely in amplitude
and phase, depending on the distribution of the transmitted energy,
the propagation times of the radio waves, and the bandwidth of the

transmitted signal.
At any time ¢, an instantaneously received fading signal can be

expressed s(t) [7]
s(t) = r(t)e??V, (6.32)

where ¢(t) and r(t) are the phase and the envelope of the received
fading signal s(¢). In addition, r(¢) can be rewritten as

r(t) = rs(t)rs(t), (6.33)

where r,4(t) is the long-term (or large-scale) fading and r(¢)
is the short-term (or small-scale) fading. The large-scale fading
represents the average signal power attenuation or the propagation
path loss because of motion over large areas. The small-scale fading
represents the dramatic changes of the amplitude and phase that can
be experienced as a result of small changesin the spatial separation
between areceiver and transmitter due to the multipath propagation.
If no multipath fading is present, then the propagation path loss is
the only major factor that must be considered in the wireless mobile
communication environment. However, amobile radio roaming over
alarge areamust process signal sthat experience both types of fading
with the small-scal e fading superimposed on the large-scale fading.

6.2.6 Large-ScaleFading

For the large-scale fading in the wireless mobile communication
environment, the mean path loss PL(d), which is a function of
distance d between the transmitter and receiver, is proportionally
expressed to an nth power of the distance d relative to a reference
distance d,, given by Rappaport [1],

PL(d) <d>n . (6.34)
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The mean path loss PL(d) is often expressed in decibels, as shown
here,

PL(d) = PL(do) + 10nlogy, (j) (dB),  (6.35)
0

where n is called the path loss exponent, which means the rate at
which the path loss increases with distance. The value of the path
loss exponent » depends on the carrier frequency, antenna heights,
and propagation environment. In free space, n isequal to 2, as seen
in (6.3). When obstructions are present, the value of the path loss
exponent n will be increased accordingly.

Choosing an appropriate free-space reference distance d,, is also
important for the propagation environment. Generally, the value of
the reference distance d, is taken to be 1,000 meters for large cells,
100 meters for microcells, and 1 meter for indoor channels. The
reference path loss PL(d,) is caculated either using (6.3) or using
field measurements at a distance of dp.

The mean path loss PL(d) in (6.35) is not adequate to describe
any particular setting or signal path because it does not consider
the fact that the surrounding environment clutter may be greatly
different at two different locations with the same distance between
the transmitter and receiver. Cox et al. [10] and Bernhardt [11]
showed that for any value of the distance d, the path loss PL(d) is
a random variable having a log-normal distribution about the mean
distance-dependent value. Thus, the path loss P L(d) in decibels can
be expressed in terms of the mean path loss PL(d) plus a random
variable X, asfollows,

PL(d) = PL(d)+ X,

= PL(dy) + 10nlog,, (j) + X, (dB), (6.36)
0
where X, isazero-mean Gaussian distributed random variable with
astandard deviation ¢ in decibels.
The log-normal distribution is that the path loss PL(d) over
the large-scale fading approaches a normal distribution when
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plotted on a logarithmic scale (in decibels). Thus, the log-normal
distribution can be described by using the following probability-
density function,

1 (logyg z—p)?
_ )} moexp [— P ] , >0 6.37

pe) { 0, otherwise, (6:37)
where x in decibelsis arandom variable representing the large-scale
signal fading and 1« and o are the mean and standard deviation of x.

6.2.7 Small-Scale Fading

Small-scale fading can be referred to as the rapid fluctuation of the
amplitude of a radio wave over a short period of time or travel
distance. Multipath propagation in the wireless communication
channel creates the small-scale fading effects. The three most
important effects given by Rappaport [1] include: (1) signal strength
rapidly changes over a small travel distance or time interval;
(2) random frequency modulations happen because of varying
Doppler shifts on different multipath signals, and (3) time
dispersions are caused due to multipath propagation delays.

Rayleigh Fading

The small-scale fading is also known as Rayleigh fading. If the
multipath reflective paths are large in number and are al NLOS,
the envelope of the received signal can be statistically expressed
by using a Rayleigh fading distribution. The Rayleigh fading
distribution has a probability density function given by

[ e (—ga), r20 6.38
p(r) {0, otherwise, (6:38)

where r is the envelope amplitude of the received signal, and o2 is
the time-average power of the multipath signal. The corresponding
cumulative distribution function, which is the probability of the
envelope of the received signal not exceeding a specified value of
R, isgiven by the expression

P(R) = Pr(r<R)
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= /ORp(T)dr

2
= 1—exp (—;) : (6.39)

The Rayleigh faded component is also called the random, scatter, or
diffuse component.

Ricean Fading

The small-scale fading is called the Ricean fading when there
is a dominant nonfading signal component present, such as the
LOS propagation path. The Ricean fading is often observed in
microcellular and mobile satellite applications

The Ricean fading distribution has a probability density function
given by

202

p(r):{ ﬁexp(_w)fo(;‘;), :igandAzo (6.40)

where r and o2 are the envelope and average of the Ricean fading
signal, respectively, A isthe peak amplitude of the dominant signal,
and Iy(-) is the modified Bessel function of zero order, which is
given by Lee[7],

0 2n

Io(z) = nzo m (6.41)

Note that the Ricean fading distribution in (6.40) presents two

extreme cases:. (1) if the absence of a dominant signal A = 0, p(r)

becomes the Rayleigh fading distribution in (6.38); and (2) if the
dominant signal A islarge, p(r) becomes a Gaussian distribution.

The Ricean fading distribution is usually expressed in terms of

a parameter k that is defined as the ratio between the deterministic

signa power and the variance of the multipath. The parameter % is

given by
2
k= A (6.42)

202’
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or in decibels
K = 20log, (\gg) , (6.43)

where k£ (or K) is known as the Ricean factor that completely
specifies the Ricean fading distribution. Note that the Ricean fading
distribution becomes the Rayleigh fading distribution as A — 0,
K — —oo dB.

Freqguency-Selective Fading

A multipath delay spread leads to time dispersion of the multipath
channel, which causes a transmitted signal to undergo either
frequency-selective or flat fading.
The transmitted signal experiences the frequency-selective
fading if
B, >F, o T,<o,, (6.44)

where B, is the transmitted signal bandwidth, Fj is the coherence
bandwidth defined in (6.23), T, is the symbol duration, and o is
the rms delay spread given by (6.20). In other words, for frequency-
selective fading, the transmitted signal has the bandwidth B, that is
greater than the coherence bandwidth F;, of the multipath channel. In
this case, the multipath channel becomes frequency selective where
the channel gain is different for different frequency components.
This is because the frequency-selective fading is caused by the
multipath delay spread that exceeds the duration of the symbol time
T,. As time varies, the multipath channel varies in gain and phase
across the spectrum of the transmitted signal, thereby resulting in
time variation and 1Sl distortion in the received signal.
The transmitted signal experiences flat fading if

B, < Fy, o T,>o0,. (6.45)

This implies that if the multipath channel has a constant gain and
linear phase response over a coherence bandwidth Fy, which is
greater than the bandwidth of the transmitted signal B,, the spectral
characteristics of the transmitted signa through the multipath
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channel are then preserved at the receiver. Flat fading does not
induce ISI distortion, but performance degradation can still be
expected because of alossin SNR whenever the transmitted signal
isfading.

Time-Selective Fading

A Doppler spread leads to frequency dispersion of the multipath
channel, which causes a transmitted signal to undergo either fast
or slow fading. The fast fading is aso referred to as time-selective
fading because amplitude of the transmitted signal varies with
time. Depending on how rapidly the transmitted signal changes
as compared to the rate of change of the multipath channels, the
multipath channels can be classified either as a fast fading or slow
fading channel.

In afast fading channel, the transmitted signal undergoes the fast
fading (or time-selective fading) if

T,>1T, or B,<D,, (6.46)

where T, is the duration of symbol time, 7; is the coherence time
defined in (6.29), B, isthe transmitted signal bandwidth, and D, is
the Doppler spread that is given by (6.28). Equation (6.46) indicates
that the coherence time of the multipath channel is smaller than the
symbol duration of the transmitted signal. This causes frequency
dispersion because of the Doppler spread, thereby leading to signal
distortion at the receiver. The signal distortion of the fast fading
increases if the Doppler spread relative to the bandwidth of the
transmitted signal increases.

In a slow fading channel, the impulse response of the multipath
channel changes much more slowly than the transmitted signal. This
indicates that the Doppler spread of the multipath channel is much
less than the bandwidth of the transmitted signal in the frequency
domain. Thus, the transmitted signal experiences the slow fading if

T, < Ty or By> D,. (6.47)
As can be seen, (6.46) and (6.47) indicate that the velocity of
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mobile and the transmitted signal in the multipath channel determine
whether the transmitted signal undergoes fast or slow fading.

6.3 Wired Channels

One of the most commonly used wired channels for data
transmission has been the transmission line composed of a pair
of wires (twisted wires) or a coaxia cable. The coaxial cable is
traditionally used for digital communication inside a building, and
for high capacity long-distance facilities in the telephone network.
The pair of wires is used for connection of customer premises
equipment (CPE) at hometo acentral office (CO). Broadband access
approaches have been developed to provide a very high data rate
over the pair of wires. These broadband access approaches are
commonly known as DSL.

During the last decade, DSL technol ogies have been an attractive
broadband access service for residential and small business aress.
Severa DSL standards, including HDSL, SHDSL, ADSL, and
even VDSL, have been successfully established with tens of
millions of customers throughout the world. Currently, the most
popular asymmetric (ADSL) service reliably delivers up to 8 Mbps
downstream and 800 Kbps upstream, depending on the distance
of the CPE from the CO. However, the ADSL technology does
not support long ranges extended to 18,000 feet and even longer,
which cover up to 90% of telephone customers. The need for along-
range extended DSL (LDSL) with capabilities of transmitting the
minimum data rate over 200 Kbps is aready evident due to the
increasing demands of the customers imposed by the proliferation
of long-reach services[12]. However, in any case, to transmit higher
datarates over alonger distance from CPE to CO, DSL technologies
face challenges due to the wired channel of wire pairs with serious
distortions.

6.3.1 Transmission Loop

A transmission line comprising in-line sections, bridge taps, a drop
wire, and lumped elements can be analyzed by using a two-port



164 Signal Processing in Digital Communications

L L
Z, > >
+ +
N A B
@ v, v, V,=V, | 4
—> Cc D “q
: :
1 1
1 1
Zin ' ' Zout

Figure 6.5 Block diagram of atwo-port network with a definition
of voltages and currents for the chain matrix.

network via its chain matrix [13-17]. The two-port network has an
input port and output port for which the input and output currents
are complementary, as shown in Figure 6.5. The matrix that relates
the input voltage and current to the output voltage and current can

be expressed by
il [A B][W
MR

where all quantities are complex functions of frequency, A denotes
the open-circuit transfer funcion, B denotes the open-circuit transfer
admittance, C' denotes the short-circuit transfer impedance, and D
denotes the short-circuit current ratio. Equation (6.48) illustrates the
two-port transfer function completely and can be used to analyze
cascade connections of the two-port network. Using the voltage
source V; and load voltage V7, as shown in Figure 6.5, the voltage
transfer function H (f) is obtained by

Vi W,
H(f)=—=—. 6.49
(f) AT (6.49)
Using (6.48) and the parametersin Figure 6.5, we obtain
Vs Z (6.50)

Vi B+ AZ,)
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and "
W=5LZ+Vi=Z+ Vi, (6.51)
where Z;,, isthe input impedance given by
Vi AZ, + B
Tin=—=—7——. 6.52
L CZ,+D (6.52)

From (6.51), we then obtain,

Zi

V= (Z_Z> V.. (6.53)

Substituting V; of (6.53) into (6.50) obtains the voltage transfer

function,
ZinZL

H(f) = .
() (B+ AZL)(Zin — Zs)
Substituting (6.52) into (6.54) yields the voltage transfer function as
follows,

(6.54)

Zr
H(f)= . 6.55
(7) AZp+ B - (CZ,+ D)Z (6.55)
The output impedance is obtained by
Vo, DZ,+ B
Zout - TQ — m (656)

Generally, a pair of twisted wire loops of the transmission line
contains severa loop segments, each having a particular loop type
or gauge. Each of the loop segments is a transmission line that
can be viewed as a cascade combination of two-port networks.
Figure 6.6 shows a typica end-to-end connection, which includes
in-line sections, bridge taps, adrop wire, and lumped elements, with
the information of the loop segment lengths and gauges. In case of
the cascade combination of N two-port networks, the ABC' D matrix
in (6.48) can be expressed as

N
lgg]:'_[é’: g] (6.57)

(2
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Figure 6.6 A typical end-to-end connection with in-line sections,
bridge taps, and lumped elements.

In-Line Two-Port Networks

An in-line ABC'D matrix of the two-port network with the loop
length L; (feet) is given by Lee and Messerschmitt [15],

A B
w-len
= COSh(’yiLi) Z()i Sth(’yZLZ)
N l Yoisinh(y;L;)  cosh(v;L;) ’ (6.58)

where Z,; is the impedance given by

R; + jwL;
o = | ————, 6.59
"N G+ jwC; (6.59)

Yy, isthe admittance, which isthe reciprocal of the impedance given
by Yo; = Z%i’ and

% =/ (R; + JwL) (Gy + jwCy), (6.60)

where R;, L;, G;, and (C;, are the resistance, inductance,
conductance, and capacitance for :th in-line loop segment,
respectively.
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Given the RLGC parameters, the ABC'D matrix can be
determined. Thus, the RLGC' is important to designers. Usualy,
the RLGC' parameters are found from field or laboratory tests,
depending on various loop types and gauges.

Bridge Taps

Bridge taps present their open-circuit admittance in the shunt
between two in-line two-port networks as shown in Figure 6.6.
For this case, the ABC'D matrix of a bridge tap is given by
Bingham [13],

~

A; B;
Mbt - [ D ]

7

N

1 0
= ) 6.61
l Yot taﬂh(%t[/bt) 1 ] ( )

Note that the bridge tap represents an open circuit of the wires
that has a minima of its input impedance to generate a notch in the
end-to-end transfer function at a frequency for which the length
segment is an odd number of quarter wavelengths. Werner [16]
introduces the condition for the first notch as follows,

v (fnotch)
ALy

fnotch = (662)

where L, is the length of the bridge tap expressed in feet and
U( froten) 1S the propagation velocity of wires over a DSL frequency
range. Other notches occur at frequencies that are equal to (2k +
1) froten, Where k = 1,2, 3, - - -. For loops with several bridge taps,
the location of the notches can be determined by using superposition
heuristically.

In a case of unknown propagation velocity v( froen), the first
notch in the loop’s transfer function is approximately located at

150

T 7100 (kH2). (6.63)

fnotch ~
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Thesignal propagates down the bridge tap and reflects back. The
attenuation of the signal is approximately given by [13],

Aatt ~ O-/2th \/ fnotch7 (664)

where o ~ 6.2 (dB/kft/v/MHz) for a 24 AWG gauge and o ~ 7.8
(dB/kft/v/MHZz) for a26 AWG gauge.

Cascade Combination of the L oop

For the end-to-end loop as shown in Figure 6.6, the chain ABC'D
matrix of cascade combination of the loop is given by (6.57)

A B

M:lc D

] — My My M (6.65)
Thus, based on (6.65), avoltage transfer function for the end-to-end
loop can be obtained by using (6.55).

6.3.2 Crosstalk

Crosstalk between pairs in a multipair cable as illustrated in
Figure 6.7 is the dominant impairment in any type of DSL system.
The cause of the crosstalk is capacitive and inductive coupling
between the wires due to imbalance in the couplings. A precise
knowledge of individual pair-to-pair crosstalk transfer functionswill
be needed in order to implement crosstalk cancellation.

NEXT

Assume that one pair j as shown in Figure 6.7 is considered as
the interferer and the voltages and currents induced in the other
pair i travel in both directions. Thus, the signals, which come back
toward the source of the interferer, add up to form crosstalk. This
crosstalk is referred to as near-end crosstalk (NEXT). The NEXT
represents a crosstalk of alocal transmitter into alocal receiver and
experiences attenuation. The NEXT power transfer function can be
written as [13, 15, 16, 18, 20]

|Hypxr(f, N)|> = Kxpxr|fI*?N®S, (6.66)
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[\

\Z /

Figure 6.7 Crosstalk of the NEXT and FEXT generations in a
multipair cable.

where Kygxr is the aggregate coupling coefficient that will be
different for various standards and /N is the total number of NEXT
disturbers.

FEXT

If onepair j istheinterferer and the voltages and currentsinduced in
the other pair i travel in both directions, the signals that continue in
the same direction as the interfering signal add up to form crosstalk.
The crosstalk is known as far-end crosstalk (FEXT). The FEXT
represents a crosstalk of alocal transmitter into a remote receiver,
and also experiences attenuation. The FEXT power transfer function
isgiven by

|Hpexr(f, L, N)|2 = KrpxtL ‘L(f)|2 ’f|2N0'6» (6.67)

where Krpxr IS the aggregate coupling coefficient that will be
different for every pair of wire pairs, L is the length of the loop
in feet, N isthe total number of FEXT disturbers, and L(f) isthe
insertion loss of the loop through which the interferer passes while
the interferer and the signal are adjacent in the same binder.

6.3.3 Simulation Loop Mode

A simulation loop model defines a function diagram of the end-to-
end loop with composite impairment noise as shown in Figure 6.8.
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Figure 6.8 A simulation loop model with crosstalk, white, and
broadcast RF noise.

The simulation loop model provides a functional description of
the combined end-to-end loop with impairment noise that must be
probed at the CPE receiver input of DSL transceiver.

The functional diagram of the simulation loop model in
Figure 6.8 has the following elements. (1) The four impairment
noise generators, including the NEXT, FEXT, white, and broadcast
radio frequency (RF) noise, produce noise for the simulation loop
model. (2) The transfer functions H(f, L) and Hs(f, L) describe
the length and frequency depending on the NEXT and FEXT
impairment, respectively. These transfer functions are independent
of the smulation loop models, but can change with the electrical
length of the ssmulation loop models. (3) Switches S, to S, are used
to determine whether a specific impairment generator contributes
to the total impairment during a simulation. (4) An amplifier A is
adjustable and can model the property of increasing the level of
the NEXT, FEXT, and white noise to perform the noise margin



Channel Characterization and Distortion 171

simulation. Thus, the simulation loop models alow designersto test
performance of various DSL technologies based on |oop topology.

Note that depending on different DSL standards, such as
SHDSL, ADSL, and VDSL [18-20], the simulation loop models are
not the same for different loop topology. In addition, the composite
impairment noise, including NEXT, FEXT, broadcast RF, and
background, which is injected into the simulation loop models,
is also different from each other in the various DSL standards.
Therefore, smulating the specific loop models requires referring to
the DSL standards.

6.4 Channel Distortion

Many physical communications channels, including telephone
and mobile radio multipath channels, accept a continuous-time
waveform as the input signal. Consequently, a sequence of source
bitsthat represent data or adigitized analog signal must be converted
to a continuous-time waveform at the transmitter. Such channels
may be generally characterized as bandlimited linear filters and are
expressed by their frequency response C'(f) as

C(f) = A(f)e™V), (6.68)

where A(f) is called amplitude response and ¢( f) is called phase
response. Thus, envelope delay or group delay is defined by

1 1dé(f)
T(f) = o [ it ] : (6.69)

Notice that a physical channel is ideal or nondistortion if the
amplitude response A(f) is a constant in (6.68) and the envelope
delay 7(f) is a constant in (6.69) or the phase response ¢(f) is a
linear function of frequency given channel bandwidth 1/ occupied
by the transmitted signal. On the other hand, the physical channel
distorts the signal within the channel bandwidth W occupied by the
transmitted signal if the amplitude response A( f) and the envelope
delay 7(f) are not constant. Thus, a distortion is often referred to
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as amplitude distortion if A(f) is not a constant and the distortion
is called delay distortion if 7(f) is not a constant. Therefore, a
succession of pulses transmitted through the physical channel at
rates comparable to the channel bandwidth is smeared to positions
that are no longer distinguishable as well-defined transmitted pulses
in the communication receiver if there are amplitude A(f) and
delay distortion ¢(f) caused by a nonideal channel frequency
response characteristic C'(f). Instead, those transmitted pulses
overlap, resulting in IS].

6.4.1 Intersymbol Interference

In this section, we consider the transmission of a pulse amplitude
modulation (PAM) signal through a communication system includ-
ing transmitter filter Hr(f), channel C(f), receiver filter Hgr(f),
and sampling, as shown in Figure 6.9. The message bits {b;} are
mapped to a sequence of amplitude level A; asthe input to transmit-
ter pulse-shaping filter hr(t), where hp(t) represents the impulse
response of the transmitter pulse-shaping filter Hz(f). The input
signal to the transmitter pulse-shaping filter Hy(f) isthe modulated
sequence of delta functionsthat is expressed as

N-1

(A} =% Ais(t —iT), (6.70)

1=0

where 1/T" is the symbol rate per second. Thus, the transmitted
signal ¢(t) can be obtained by

N-1

=0
Assume that H(f) is the overall transfer function of the

combined transmitter, channel, and receiver. Then, the overal
transfer function H(f) is expressed as

H(f) = Hr(f)C(f)Hr(f). (6.72)
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Figure6.9 Block diagram of baseband model of a PAM system.

Corresponding of the impulse response in (6.72) is obtained by

h(t) = hr(t) « C(t) * hg(t). (6.73)
Then, the output of the receiver filter in Figure 6.9 is
N—-1
y(t) = > Ah(t —iT) + hg(t) * v(t), (6.74)
=0

where the second term of hr(t) * v(t) is a convolution output of
the receiver filter hr(t) with an input noise v(t). The discrete-time
samples are produced at the output of the sampling function at the
symbol rate of 1/7T. Thus, (6.74) can be rewritten at the kth sample
of y(t) as

yln] = y(kT)
= " AT —iT) + hp(kT) » o(KT)
—  Auh[0] + Nf Ah(KT — iT)
i=1,i#k
+hr(kT) xv(kT). (6.75)

Notice that the first term on the right side of (6.75) is the kth
transmitted symbol scaled by the overall system impulse response
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h0] a ¢t = 0. This term is the source bits without error by
multiplying the received samples of 1/A[0] if no other terms are
presented at the right side of (6.75). However, this is impossible
in practical applications because other terms cannot be eliminated
without a specia device in the receiver. The second term in (6.75)
is referred to as the ISl that represents the neighboring symbols
interfering with the detection of each desired symbol. The third
term in (6.75) denotes noise intensity because of the input noise
interference with the channel.

6.4.2 EyeDiagrams

In a digital communications system, the amount of the ISl and
noise intensity in (6.75) can be displayed on an oscilloscope. The
received PAM signal y(¢) in (6.74) can be displayed on the vertical
input with the horizontal sweep rate at 1/7". The resulting display
is called an eye diagram. For an illustration, Figure 6.10 shows
the eye diagrams based on binary and quaternary PAM modulation.
The effect of the ISl in the system is to cause the eye diagram
to close, thereby reducing the margin for additive noise to cause
errors. The effect of the ISI on reducing the opening of a binary
eye diagram is graphically illustrated in Figure 6.11. There are four
types of distortionsincluding zero crossing, noise margin, peak, and
sensitivity to timing error.

The vertical opening in Figure 6.11 is the separation between
signal levelswith worst-case | SI. In some cases, the vertical opening
disappears atogether if the I1SI and noise are large enough. In
this case, the eye diagram is called eye-closed. Otherwise, the eye
diagram isreferred to as eye-open. An eye-closed means that the bit
decisions are no longer sure and some fraction of these is wrong.
In the limit, this leads to a probability of error close to 0.5. On
the other hand, the wide eye-open in the vertical spacing between
signal levelsimplies alarge degree of immunity to additive noise. In
general, the location of optimum sampling should be placed at the
timeinstants kT + ty, k = 0,1,2,---, N, where t, is selected such
that the maximum of the vertical eye-open can be obtained.



175

Channel Characterization and Distortion

Eye Diagram

apnyjdwy

a)

Eye Diagram

apnydwy

6 0.8

0.

0.4

Time

b)

abinary PAM and (b) a quaternary

Figure 6.10 Eye diagrams: (a)

PAM.
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Figure 6.11 Diagram of the intersymbol interference effect on an
eye pattern.

The width of the horizontal eye opening indicates how much a
communication system is sensitive to the timing offset, asillustrated
inFigure 6.11. A very narrow eye opening meansthat asmall timing
offset will result in sampling, while a wide horizontal eye opening
means that a large timing offset can be tolerated.

The slope of the inner eye opening in Figure 6.11 also indicates
the sensitivity to timing jitter or variance in the timing offset. A
very steep slope meansthat the eye diagram closes rapidly when the
timing offset increases. As a result, alarge amount of timing jitter
in the sampling times would significantly increase the probability of
error in the receiver.

The 1SI distorts the position of the zero crossing and causes a
reduction in the eye opening. Therefore, the I1SI causes the PAM
communication system to be more sensitive to a synchronization
error.

For phase-shift keying (PSK), quadrature amplitude modulation
(QAM), or quadrature phase-shift keying (QPSK) signals, a useful



Channel Characterization and Distortion 177

0 Error vector
magnitude
- > /
Ideal constellation <«
point Measured
symbol

1

Figure6.12 Eyediagram of afour-phase QPSK constellation error
vector magnitude.

display is a two-dimensional scatter plot of the sampled values
y(kT), which represent the decision variables at the sampling
instants. Figure 6.12 shows a constellation diagram for a four-phase
QPSK constellation. Without the 1Sl and noise, the superimposed
signals at the sampling instants would result in four distinct points
corresponding to the four transmitted signal phases. In the case of
the ISl and noise, the result is a deviation of the received samples
y(kT) from the desired four-phase QPSK signal. As a result, the
larger the ISl and noise in a communication system, the larger the
scattering of the received signal relative to the transmitted signal
points.

Error vector magnitude (EVM) [21, 22] is used to measure
the transmitted modulation accuracy between the difference of the
actual transmitted waveform and the ideal signal waveform for PSK,
QAM, or QPSK modulation. For example, the ideal complex I
and () constellation points associated with QPSK modulation shall
be used as the reference as shown in Figure 6.12. The average
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magnitude of 7 and () samplesis given by

= |[[n] - ]mean’

Ly = S 12U Zmean], 6.76

and .
Qg = 3. 1L B, (6.77)

=0

where the DC' offset for 1 samplesis defined by

N-1
_ N U
Tnean = ;0 N (6.78)
and the DC offset for () samplesis defined as
N—-1
_ N\~ Q]
Qmean = ; N (6.79)

The normalized EVM (NEVM) for I and () pairs is then obtained
by

Vievarn] = J; [(w>2+ (W)Z |

(6.80)
In practice, the ISl and noise based on a reference receiver system
can be accepted for a QAM, PSK, or QPSK communication system
if the following condition of the normalized EVM is satisfied
VNE‘VM[n] < 0.35.

6.4.3 Nyquist Criterion

In order to eliminate the ISl in (6.75), one of the possible solutions
is to choose the transmitter filter h(k7") and receiver filter hr(kT)
such that

h(kT) = { (1) Z;g (6.81)
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Then, the kth received samplein (6.75) is obtained as
y(kT) = A + hg(kT) x v(kT). (6.82)

Therefore, in this case, (6.82) indicates that the I1SI has been
completely eliminated. As a result, the selection of the transmitter
filter hp(KT) and receiver filter hr(kT) in (6.81) is called a zero-
forcing solution because it forces the ISl to zero. However, a zero-
forcing solution may not be an optimal solution depending on the
type of detection scheme used [6]. Thisis because the probability of
error may also depend on the second term of noise intensity in (6.82)
that generally increases when the ISl is completely eliminated.

Nyquist [23] stated that the ISI could be completely cancelled if
the overall response of the communication system is designed such
that the response due to all symbols except the current symbol is
equal to zero at every sampling instant at the receiver. That is, if
H.p¢(f) and hesy(t) are the transfer function and impulse response
of the overall communication system given by (6.72) and (6.73),
respectively, this condition is mathematically stated as

hegs(KT) = { 0 o (6.83)

where T is the symbol period, K isanonzero constant, and & isthe
integer. The corresponding discrete Fourier transform of theimpulse
response ;¢ (k1) isexpressed as H..; ¢ (e7*/1"). Thus, the condition
in (6.83) is equivalent to the frequency-domain condition asfollows,

H.p (7)) = K. (6.84)

The relation of either (6.83) or (6.84) is known as the Nyquist
criterion.

In order to satisfy the Nyquist criterion, the channel bandwidth
W must be at least equal to % For the minimum channel bandwidth

W = -, (6.84) can be rewritten as

o T’ < 1
Hopy(eP717) = { T (685
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Equation (6.85) can be solved to obtain the corresponding impulse
response h.sf(t) by using the inverse discrete Fourier transform
given by Miao and Clements [24]
in T

bors(®) = 1, (6.0
which is called the minimum bandwidth Nyquist pulse. The
frequency band of |f| < % in (6.85) is called the Nyquist
bandwidth.

Note that the transfer function in (6.85) satisfies the zero ISl
with aminimum of bandwidth % but it correspondsto arectangular
filter. The rectangular filter cannot be implemented in practice since
it corresponds to anoncausal system, that is, h.;(t) existsfor t < 0.

Nyquist also stated that the transfer function in (6.85) convolved
with any arbitrary even function Q( f) with zero magnitude outside
the passband of the rectangular filter resultsin satisfying the zero I S|
condition. This can be mathematically expressed as

Hcom(e2jﬂfT) = jlv [Heff(ezjﬁfT)Q(e%ﬂfT)] 5 (6.87)
where Q(e* ™) = Q(e~*™T) and Q(e*™7T) = 0 for |f| > 5.
Thisimpliesthat the corresponding impul se response of the transfer
function in (6.87) is given by

sin(mt/T)
mt

heom(t) = l 1 q(t). (6.88)
The Nyquist criterion states that any filter having the form in (6.88)
can aso eliminate I1SI. A filter that satisfies the Nyquist criterion is
referred to as the Nyquist filter.

6.5 Pulse Shaping

Communication systems, which operate with the minimum band-
width, have not only ISl effects but also out-of-band radiation. Thus,
it is highly desirable to reduce modulation bandwidth and suppress
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the out-of-band radiation while eliminating the ISl simultaneously.
Pulse shaping is one of the techniques that is used to reduce the | S|
effects and spectral width of amodulated signal.

6.5.1 Raised-Cosine Pulse

In practice, given the transmitter filter Hr(f), receiver filter Hg(f),
and channel response C'(f), the cascade Hr(f)C(f)Hg(f) is
designed toyield zero | SI. Assume that the channel isanideal. Thus,
the cascade filter of Hr(f)C(f)Hr(f) may be selected such that

Hr(f)C(f)Hr(f) = Hre(f), (6.89)

where Hro(f) isaraised-cosine frequency response given by

T 0< \fl <&
Hre(f) = %{1—3111[%(”‘\_%)”, (o) <|f‘<(1+a)
0, otherW|se
(6.90)

where « is called the rolloff factor and 0 < o < 1, and 1/T is
the symbol rate. The frequency of 1/27" is known as the Nyquist
frequency. The raised-cosine frequency response Hyc(f) in (6.90)
becomes an ideal brick wall filter with bandwidth frequency
occupancy at 1/27 when o« = 0. When o > 0, the frequency
bandwidth of the raised-cosine frequency response Hrq( f) beyond
the Nyquist frequency 1/27 isreferred to as the excess bandwidth.
For example, the excess bandwidth of the raised-cosine frequency
response Hrc(f) is50% when o« = 1/2. The excess bandwidth of
the rai sed-cosine frequency response H g (f) is100% when o = 1.

The corresponding time-domain raised-cosine pulse of the
rai sed-cosine frequency response in (6.90) is given by

anr) [ oo/ )

hro(t) = [ (6.91)

Note that there is no ISl from adjacent symbols at the sampling
instantst = kT for k # 0 when the channel does not have distortion.
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In this case, the receiver implements the samefilter as
Hgr(f) = Hr(f)

— Hre(f). (6.92)

Equation (6.92) isreferred to as a square root raised cosine (SRRC)
pulse. The time-domain SRRC corresponding to / Hgc(f) can be
obtained by taking the inverse Fourier transform, thereby resulting
in

_ dacos[(1 + a)7t/T] + sin[(1 — a)mt)T)(t/T)™?
m/T[1 — (4at/T)?] .
(6.93)

The SRRC in (6.93) is not a causal system. Therefore, in order to
design the causal system of the SRRC transmit and receiver filter,
a truncated time domain and time-shifted pulse is used [2]. On the
other hand, the SRRC filter can also be designed in the frequency
domain \/ Hrc(f) based on sampling technology given by [25, 26].
This method results in the lengths of SRRC filter coefficients being
significantly less than the SRRC filter coefficients obtained by the
truncated time-domain method.

hr(t)

6.5.2 Gaussian Shaping Pulse

A Gaussian shaped pulse like the raised-cosine pulse has a transfer
function, but with no zero crossings. It has the transfer function
given by

Ha(f) = exp = (af)?], (6.94)
where
a=" QBIHQ, (6.95)

and B is the 3-dB bandwidth of the baseband shaping filter. The
transfer function H(f) in (6.94) is a bell shape and symmetric at

f=0.
The corresponding impulse response is given by [1]

het) = Y™ exp [— (”tﬂ . (6.96)

« «
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The spectral occupancy of the Gaussian shaping pul se decreases and
its time dispersion of the applied signal increases when « increases.

The Gaussian shape pulse has a narrow absolute bandwidth,
sharp cut off, low overshoot, and a preservation property of
pulse area, but it does not satisfy the Nyquist criterion for
ISl cancellation. Reducing its spectral occupancy may create
degradation in performance because of increased ISl. This leads
to a trade-off design in the choice of « for mobile communication
systems given by [27].

6.6 Matched Filtering

Consider the transmission of an isolated pulse Ayd(¢) through the
communication system shown in Figure 6.9. Also assume that the
noise v(t) is white with a spectral density of N, /2. Thus, the input
signal to the receiver filter Hgz(f) can be expressed as

z(t) = Aohre(t) + (1), (6.97)

where hy(t) isthe inverse Fourier transform of the overall transfer
function of the combined transmitter filter and channel,

Hre(f) = Hr(f)He(f)- (6.98)

Then, the output of the receiver filter is

y(t) = hr(t) *x(t)
It should be noted that the first term and the second term on the right

side of (6.99) are the desired signal and the noise, respectively. The
SNR at the sampling instant is therefore obtained by

E{| AP} |75, ha(—t) * hre(t)dt]

SNR =
B % |hr(t)Pdt

(6.100)

The receiver filter hg(t) is caled an optimal matched filter if
the maximum of SNR in (6.100) can be achieved. In this case,



184 Signal Processing in Digital Communications

to maximize this SNR expression, the receiver impulse response
is hr(t) = hho(—t) and its corresponding transfer function is
Hr(f) = Hyo(f)-

The matched filter that is derived for the isolated pul se case does
not take into account 1Sl. In the presence of channel distortion due
to the 1S and noise, the ISI given in the second term of (6.75)
is no longer zero even by using the ideal SRRC transmitter and
receiver filter. Thus, an appropriate front end of the communication
receiver needs to consist of the matched filter along with further
signal processing technology, such as a channel equalizer, for
improved performance. Hence, the matched filter preceded by a
channel equalizer in the communication receiver is usually needed
to minimize its effect on communication system performance.
However, designing the channel equalizer usually requires one
to know the characterization of channel distortion. Therefore, the
channel distortion needs to be estimated either by sending atraining
sequence or by using a blind identification method without the
training sequence.

6.7 Summary

In this chapter, channel characterization and distortion were
introduced. We first presented the characteristics of wireless
channels with focusing on multipath propagation and fading, and
the characteristics of wired channels with emphases on the topol ogy
of transmission loop and crosstalk. Second, we described the
fundamental theory of channel distortion, which generates IS
effects because of bandlimited channel bandwidth, and introduced
the Nyquist criterion for 1Sl cancellation. We then brought in pulse
shaping techniques for eliminating the ISl and suppressing out-
of-band spectral width at the transmitter, and derived the optimal
matched filter for the receiver.

Wireless channels experience multipath propagation due to
reflection, diffraction, and/or scattering of radiated energy off of
objects located in the environment. Signals at the receiver are much
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feebler than transmitted signals because of propagation path loss. In
addition, received signals may display fading over traveling distance
from the transmitter. The fading includes large-scale fading and
small-scale fading. The large-scale fading represents the average
signal power attenuation or the propagation path loss because of
motion over large areas, while the small-scale fading represents
the dramatic changes of the amplitude and phase because of
the multipath propagation over a spatia separation between the
receiver and transmitter. The small-scale fading is Rayleigh fading
if multipath reflective paths are large in number and there is an
NLOS signa component. When there is a dominant nonfading
signal component present, such as an LOS propagation path, the
small-scale fading is referred to as Ricean fading. In any case, a
mobile radio roaming over a large area has to process the received
signals, which experience both types of fading with the small-scale
fading superimposed on the large-scale fading.

Delay spread leads to time dispersion of the multipath channel,
which makes atransmitted signal undergo either frequency-selective
or flat fading. The frequency-selective fading is caused by the delay
spread, which exceeds the duration of symbol time. In the frequency
domain, the bandwidth of the transmitted signal is greater than
the coherence bandwidth of the multipath channel. This results
in the transmitted signal becoming time varying and hence 1Sl
distortion at the receiver. Flat fading happens if the multipath
channel has a constant gain and linear phase response over the
coherence bandwidth, which is greater than the bandwidth of the
transmitted signal. In this case, the spectral characteristics of the
transmitted signal through the multipath channel are preserved at the
receiver. Flat fading does not create 1S distortion, but performance
degradation is expected because of loss in SNR whenever the
transmitted signal is fading.

Doppler spread leads to frequency dispersion of the multipath
channel that causes the transmitted signal to experience either fast
fading (time-selective fading) or slow fading. The transmitted signal
undergoes fast fading if coherence time of the multipath channel is
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smaller than the symbol duration of the transmitted signal. On the
other hand, the transmitted signal experiences the slow fading if the
coherence time of the multipath channel changes much slower than
the symbol duration of the transmitted signal. Hence, the velocity
of mobile radio and the transmitted signal in the multipath channel
determine whether the transmitted signal undergoes the fast or slow
fading.

For data communications, a commonly used wired channel is a
transmission line based on a pair of wires. They have been used for
broadband access to carry a very high data rate. The transmission
line usually comprises loop segments, bridge taps, a drop wire, and
lumped elements, each of them having a particular loop gauge. The
bridge taps have an open circuit of the pair of wires, which generate
notches in an end-to-end transfer function.

The two-port network can be used to analyze the transmission
line via a chain matrix. The chain matrix establishes a relationship
between input voltage and current to output voltage and current
through an ABC'D matrix. This leads to a simulation loop model
for the transmission line.

A dominant impairment for the transmission line is crosstalk
including NEXT and FEXT. The NEXT representsthe crosstalk of a
local transmitter into alocal receiver, while the FEXT represents the
crosstalk of thelocal transmitter into aremote receiver. The crosstalk
is caused by capacitive and inductive coupling between the wires
due to imbalance in the couplings. However, to cancel crosstalk, a
precise knowledge of crosstalk transfer functionsis necessary.

Digital communications through both bandlimited wireless and
wired channels are subject to ISI, which can cause performance
degradation at the receiver. An eye diagram, which is a simple
method to study the ISl effects and other channel impairments, is
widely used for analyzing the performance degradation. In addition,
the eye diagram can be used to determine the decision point at
the widest opening of an “eye” On the other hand, in order to
eliminate the ISl and out-of-band radiation, we have to design
a combined transfer function of a transmitter filter, channel, and
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receiver filter to be a raised-cosine pulse, which meets the Nyquist
criteria for ISl cancellation. In practice, given the transmitter filter
and channel characteristics, we can design the optimal matched filter
to maximize SNR at the receiver. However, this SNR is derived
for an isolated pulse case, which does not take into account ISl.
Therefore, in the presence of the ISl and noise, the receiver should
consist of the optimal matched filter preceded by achannel equalizer
for further signal processing.
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Channel Estimation and Blind
| dentification

7.1 Introduction

Channel estimation is an important step in signal detection for a
digital communication system, especially when there is little or no
knowledge about a wireless or wired transmission channel. The
channel estimation can be classified as two categories: nonblind and
blind. The essential ingredient in nonblind techniquesisthe use of a
known training sequence embedded in the transmission data, which
then determines the channel impulse response. We call this method
nonblind channel estimation or channel estimation. On the other
hand, if the training sequence is not available, then it is referred to
as blind identification.

The channel estimation or blind identification is a necessary step
for wireless and wired digital communication system designs. For
the wireless digital communications, in the reverse link, the channel
estimation or blind identification is used to provide the channel
information for equalization, Rake receiver, and/or orthogona
frequency division multiplexing (OFDM), which provide diversity
and reduce cochannel interference (CCl). The CCl arises from
cellular frequency reuse, and thus limits the quality and capacity of

189



190 Signal Processing in Digital Communications

wireless networks. In the forward link, the channel estimation or
blind identification is needed to design weight vectors to deliver
energy to a selected user without causing significant CCl to other
users. For wired digital communications, the channel estimation or
blind identification is required for using the equalization either in
a time domain or in a frequency domain and discrete multitone
(DMT). Generally, the channel estimation method is to measure a
channel impulse response and noise power spectral density (PSD) or
their equivalents, such as direct measurement of signal-to-noiseratio
(SNR) without measuring impul se response and noise separately. In
amultitone communication channel, the channel estimation directly
estimates signal and noise parameters for each of the subchannels.
However, these estimates can always be converted to an aggregate
channel and noise estimate for a single-channel transmission.

Traditionally, channel estimation is achieved either by sending
the training sequence or by designing a channel estimator based
on a priori knowledge of the channel. This approach is often not
suitable for a wireless channel since little knowledge about such a
wireless channel can be assumed apriori. Even adaptive approaches,
which are attractive in handling time-varying channels, have to
waste a fraction of transmission time for the training sequence.
Recently, in contrast to the adaptive approaches, blind channel
identification attracts much attention in research and practice since
this method does not require the training sequence. The channel
identification is obtained by using only channel output sequences
along with certain assumptions of statistical information on input
sources. Blind identification methods demonstrate the potential
to increase transmission capability because of elimination of the
training sequence in both wireless and wired high-speed digital
communications.

This chapter isorganized asfollows. In this section, background,
overview, and types of communication channels along with the
methods of channel estimations and blind identifications are briefly
presented. In Section 7.2, we introduce characteristics of discrete-
time channel models. In Section 7.3, we describe the channel
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estimators based on the technique methods of maximum likelihood,
least squares, generalized least squares, and minimum mean-sgquare
error (MMSE). Subsequently, fundamentals of adaptive channel
estimation and algorithms are given in Section 7.4, with emphases
on least mean square (LMS) and recursive least squares (RLS)
and their corresponding convergence and excess mean-squared error
(EMSE) analysis. Section 7.5 discusses channel models of single-
input single-output (SISO), single-input multiple-output (SIMO),
multiple-input multiple-output (MIMO), and their estimations based
on the higher-order statistics (HOS). Blind identifications for the
discrete-time SISO, SIMO, and MIMO channelsare given in Section
7.6. A brief summary of this chapter is given in Section 7.7.

7.2 Discrete-Time Channel Models

In digital communications, the transmitter sends discrete-time
symbols at asymbol rate of 1/7" per second, and the sampled output
of the matched filter at the receiver isalso adiscrete-time signal with
sampling rate of 1/7 per second. In this case, the cascade of the
analog transmitter Hr(f), the channel C(f), the receiver matched
filter Hg(f), and the sampler (or A/D converter) can be described by
using the equival ent discrete-timetransversal finite impul se response
(FIR) filter with the tap coefficient h[n|, where n is some arbitrary
positive integer.
Assume that the discrete-time transversal FIR tap coefficient is

b,, n=-N,....,—1,0,1,... N

hln] = { 0, otherwise, (7.1)

and the channel is a bandlimited frequency. Figure 7.1 shows an
equivalent discrete-time channel model, where z~! is the delay of
T. Its input is the sequence of information symbols s[n|. Thus, its
output is the discrete-time sequence y[n| given by

yln] = > hlk]s[n — K] + v[n], (7.2)

k=—N
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h[-N+1]  h[N-1]

q[n]

1
C*(zh) ‘

Figure7.1 Equivalent discrete-time FIR channel model.

where v[n| is the additive noise sequence. The corresponding
z-domain transfer function of (7.2) is then obtained by

Y(z) = H(2)S(z) + V(2), (7.3)

where the z-domain transfer function of the channel H(z) is
expressed as

N
H(z)= > hln]z"™ (7.4)
n=—N
Let the discrete-time channel h[n] be symmetric, that is, h[n] =

h*[—n]. Then it follows that the z-domain transfer function of the
discrete-time channel is

H(z) = H*(z™). (7.5

Consequently, the H(z) has the 2N symmetric roots, where (1/p)*
iIsaroot if p isaroot. Therefore, the z-domain transfer function of
the discrete-time channel H (z) can be factored as

H(z) = C(2)C*(z 1), (7.6)

where C(z) is a polynomia of degree N with the roots p; and
C*(z71) isapolynomial of degree N having the roots 1/p;, where
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i = 1,2,---, N. Proakis [1] suggested that one choose a unique
C*(z~1) with minimum phase, that is, the polynomial function has
al its roots inside the unit circle. This is to say that 1/C*(z71)
is aphysically realizable, stable, and discrete-time infinite impulse
response (IIR) filter. Thus, by using the discrete-time IIR filter
1/C*(271), the output sequence y[n| in Figure 7.1 results in an
output sequence ¢[n] in the z-domain that can be expressed as

Q) = V) |

= HESE) +VE) | g
= C(2)9(2) + G(2), (7.7)

where G(z) = V(z)/C*(z7!) is a z-domain white Gaussian noise.
Hence, corresponding the impulse response ¢[n| in (7.7) is obtained
by
N
q[n] = clk]s[n — k] + g[nl, (7.8)

k=0

where the sequence g[n| is a white Gaussian noise sequence and the
sequence c[n| is a set of tap coefficients of an equivalent discrete-
time FIR filter with atransfer function C'(z).

Note that the matched filter at the communication receiver
becomes a time-varying filter if the channel impulse response is
changing slowly with time. As a result, the time variations of
the channel and matched filter pair require a discrete-time filter
with time varying filter coefficients. Consequently, intersymbol
interference (1S1) effects are time-varying, where the tap coefficient
is slowly varying with time. In general, the compensation methods
for the time-varying ISl, which will be discussed in Chapter 8, are
called adaptive equalization techniques. However, in designing a
good equalizer, one usually needs to know the characteristics of a
channel distortion.
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7.3 Channel Estimators

One of the design objectives for receivers is to minimize the
detection error. Generally, the design of an optimal detector requires
the knowledge of the communication channel. In practice, channel
parameters need to be estimated, preferably using only a limited
amount of training data samples. The efficiency of the channel
estimator is particularly important, because the efficiency is a
statistical measure of how effectively an algorithm utilizes the
available training data samples.

The channel estimator is defined as any statistic (known function
of observable random variables that is itself a random variable)
whose values are used to estimate 7(6), where 7(-) is some function
of the parameter 6. In other words, the channel estimator isawaysa
statistic, which is both arandom variable and a function.

Channel estimation admits two steps: (1) to devise some means
of obtaining a statistic to use as a channel estimator, and (2) to
select criteria and technigques to define and find a “best” estimator
among possible estimators. In this section, we consider three types
of channel estimators based on the framework of maximizing the
likelihood function.

7.3.1 Maximum Likelihood Estimator

There are several methods of finding the channel estimator. One of
these, and probably the most important, is the method of maximum
likelihood. The maximum likelihood estimator can be derived
in a systematic way and has been proved to be asymptotically
optimal [2].

L et usreconsider the discrete-time channel model given by (7.2),
where we now assume that the discrete-time channel vector has a
finite impul se response of order L,

h = {h[lhhp]v"'?h[[/]}zp’ (7.9)

where {-}* is the transpose of a vector. Suppose that we have
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received N samples of the observations,
y = {y[0], y[1], -y [N —1]}" (7.10)
We then have the following linear model given by
y=sh+v, (7.12)

where sisan N x L Toeplitz matrix consisting of samples of the
input sequence {s[n],n =0,1,---, N — 1} given by

s[0] sIN—=1] -+ s[N—L+1]
s[1] s[0] <o SN —L+2]
S— : : : , (7.12)
sIN—1] s[N-2] --- s[0]
and v is a noise vector given by
v = {o[0],0[1],---, 0[N —1]}". (7.13)

Let 0 be the vector of unknown parameters that may contain the
channel vector h and possibly the entire or part of the input vector s.
Assume that the probability space, which describes jointly the noise
vector v and the input vector s, is known. In principle, we can then
obtain the probability density function of the observation vector y
(assuming it exists). The joint pdf of the observation fy(y; ) is
referred to as the likelihood function, which is considered to be a
function of 6.

The most important caseis that arandom sampleis used to form
the joint pdf fy(y; ), where 0 is asingle parameter. The likelihood
function is then given by

fy(y;0) = f(l0], 0) f(y[1],0)--- f(y[N —1],0). (7.14)

Thus, the maximum likelihood estimator is the solution of the

equation
dfy(y; 0)

= 0. 7.15
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Note that fy(y;#) and log [ fy(y; 9)] have their maximums at the
same value of 4. It is sometimes easier to find the maximum of the
logarithm of the likelihood.

If the likelihood function contains the vector of 6, 6§ =
01,02, -, 0],

N-1

fy(y; 01,02, 0k) =TT fym(ylnl; 01,02, 6k),  (7.16)

n=0

then the maximum likelihood estimators of the parameters
01,05, -, 0, arethe solution of the & equations,

7 {Hg:_ol fym (y[n]; 61,62, - - - ,91@)}
00;

—0, i=1,2,---,k (7.17)

Equation (7.17) may also be easier to work with the logarithm of the
likelihood.

Maximum likelihood estimators usually have good performance
when the sample size of the observation is sufficiently large,
but their implementation is sometimes computationally intensive.
Furthermore, the optimization of the likelihood function is
sometimes hampered because the equation 0 fy(y;#)/00 locates
minimums, local maximums, and maximums. Hence, one must
avoid using a root that actually locates a minimum. In addition, the
likelihood function fy (y; 6) may be represented by acurve wherethe

actual maximumisat 6, but the derivative set equal to 0 would locate
6" as the maximum. Therefore, it is highly desirable that effective
initialization technigues be used in conjunction with the method of
maximum likelihood.

Example 7.1
Assume that a random sample of size N of observations from a
channel output has the normal distribution given by

1 1
exp | ———
2ro P 202

fx[n] (ZE[H], ;s U) = (x[n] - :LL)Q ) (718)
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where —oco < p < oo and ¢ > 0. Determine the maximum
likelihood estimators of /i and &.
Using (7.16), the likelihood function L(z[n]; i, o) is given by

Ustolio) = 11 e [~ ghstelal - 7]
- 27302>N/2€Xp[ 21% ]

(7.19)

The logarithm of the likelihood function in (7.19) is then obtained
by

L* = InL(z[n]; p,0)
N N 1 X )
(7.20)

In order to determine the location of the maximum likelihood
in (7.20), we calculate

8L*

01 ivj (7.21)

and

o2

= (3) () am - 02

Setting these derivatives of (7.21) and (7.22) equal to O and
solving the resulting equations for 1 and o2, we find the maximum
likelihood estimators

1N
= N > zlnl, (7.23)

n=1
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and N
. 1 .
6% = N > (z[n] — ). (7.24)

n=1
Note that (7.23) and (7.24) turn out to be the sample moments
corresponding to . and o2.

7.3.2 Least Squares Estimator
Consider the discrete-time channel model given by (7.11)

y=sh+tv, (7.25)

wheresisnow aknown N x L matrix of rank L (assumethat training
sequences are available) and v is the noise vector of disturbances.
Also assume merely that the noise vector of disturbances v is not
normally distributed and has the mean £{v} = 0 and the covariance
V{v} = Q. In the discrete-time channel model when the joint
probability density function of the observable random variables is
not given, then the estimation of h can be approached by using the
method of least squares.

Choosing the values of h minimizes the residual sum of squares

L(y;h) = (y — sh)"(y — sh), (7.26)
where h is defined as the least squares estimator. We then compute
OL(y;h
U gy -y )

= 25" (y—sh). (7.27)

Setting the derivative in (7.27) equal to 0 and solving the resulting
equation for h, we find the least squares estimator

h=(s's) sy, (7.28)

Note that the mean of the least squares estimator h is obtained
by

B{hy = (s's) 's'E{y}
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= (s"s) S (sh + B{v})

= (sTs)f1 (STS) h. (7.29)
Since
(s"s) " (s"s) =1, (7.30)
the mean of the least squares estimator h is then
E{h} =h. (7.31)

Thus, h is the unbiased estimate of h. Also, the covariance of the
least squares estimator h is given by (see Example 7.2 for proof),

v{h} = (sTs)_1 (sTQs) (sTs)_1 : (7.32)

where 2 is the covariance matrix. In particular, assuming 2 =
0?1, (7.32) simplifiesto

Vihy=o®(s's) . (7.33)

In this case, (7.33) leadsto the optimal property for the least squares
estimator h.

The optimal property isreferred to asthe Gauss-Markov theorem
in multivariate statistics [3]. We restate the optimal property for the
channel estimator as follows. Consider the discrete-time channel
model in (7.25) and assume the disturbance terms are uncorrelated
with each other Q = o21. Theleast squares estimator for the channel
estimation given by (7.28) has a covariance matrix that is smaller
than any other linear estimator. In other words, the least squares
estimator is the best linear unbiased estimator.

Example 7.2

The discrete-time channel model is given by (7.25), where the noise
vector of disturbancesv isnot normally distributed and has the mean
E{v} = 0 and the covariance V{v} = Q. Applying the method of
least squares obtains the least squares estimator

h=(s's) 'sTy. (7.34)
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Show that the covariance matrix of the least squares estimator h is
vihy = (ss) " (s"as) (') . (7.35)
We know that the covarianceis given by

vih} = B{(h—h)(h-h)T}
p{[(e9 "y -n] [(#9 sy -]}

E{(STS)_1 sTnys(sTs)_1 —2h (STS)_lsTerhhT}.

(7.36)
Since
E {Qh (sTs)f1 sTy} = 2h (sTs)f1 s'E{y}
= 2h(s"s) " (sh+ B{v})
= 2h (STS)_l (s"s)h
= 2hh7, (7.37)
then (7.36) can be rewritten as
v{h} = (sTs)f1 s'E{yy"}s (sTs)f1 — hh?. (7.38)

Note that
E{yy"} = E{(sh+v)(sh+V)"}
= shh’s! +2shE{v} + E{v*}. (7.39)
Since E{v} = 0, the covariance V{v} = E{v?} = Q. Now, (7.39)
simplifiesto
E{yy"} = shh's" + Q. (7.40)

Substituting (7.40) into (7.38) yields the desired result of the
covariance matrix of the least squares estimator h,

vihy = (s"s) " (s"as) (S's) . (7.41)
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7.3.3 Generalized Least Squares Estimator

The least squares estimator for the channel estimation discussed
above is the best linear unbiased estimator when the covariance
matrix of v equals o*I. But, thisisaspecial casefor theleast squares
estimator. In general, the covariance matrix V(v) = © # ¢2L. In
this case, the least squares estimator is not the best linear unbiased
estimator. In this section, we introduce a generalized least squares
estimator.

Reconsider the discrete-time channel model in (7.25) if the noise
vector of disturbances v is not normally distributed. Let the mean
E{v} = 0 and the covariance matrix V{v} = Q. Also assume that
the covariance matrix €2 is known or can be estimated. Multiplying
the matrix % on both sides of (7.25) yields a new transformed
channel mod/eT ,

1
VQ (742)
where
1
Z=—— 7.43
\/ﬁy, (7.43)
and
1
Uu= ——V. 7.44
VQ (7.:44)

Since E{v} = 0, then the mean E{u} = %E{v} = 0, and the
covariance matrix,

V(u = E{u’} - E*{u}
1 2
= ﬁE{v}

1
- L (7.45)

Thus, (7.45) indicates that the transformed channel model in (7.42)
satisfies the assumptions of the optimal property (Gauss-Markov
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theorem). Hence, using the method of least squares, the best linear
unbiased estimate of h is given by

A= (S8s) e

Q VQ
= (sT és) - s’ éy. (7.46)

Also, the covariance matrix of h is given by
-1
V(h) = <sT és) : (7.47)

The estimator given by (7.46) is called the generalized least squares
estimator for channel estimation. In this case, the covariance matrix
in (7.47) is the same as the best minimum mean-square error
(MMSE) since the generalized least squares estimator is the best
linear unbiased estimator.

7.3.4 MMSE Estimator

In this section, we present a linear optimum discrete-time solution
that is known as an MMSE estimator based on an FIR Wiener filter
[4—6]. The main result is to derive the discrete-time Wiener-Hopf
equationsthat providethe FIR filter coefficients of the optimum filter
in the sense of MM SE for the channel estimation.

The MMSE estimator based on the FIR Wiener filter is shown
in Figure 7.2. It is used to produce the MMSE estimate, d[n] for
y[n], given two wide-sense stationary processes jointly, s[n| and
y[n], which are statistically related to each other. It is aso assumed
that the autocorrelation functions, rs(k) and r,(k), and the cross-
correlation function, r,,(k), are known or can be estimated.

In order to develop the MMSE estimator for the channel
estimation, we need to determine a set of coefficients for the FIR
Wiener filter, w{n], which minimizes the mean square error (MSE)
of thefilter output as compared to achannel model output, y[n]. The
error signal e[n] is given by
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v[n]
| Channel model | |
| q[n] '
: » Channel > I
s[n] | o
) FIR Wi d[n] ¥ Y[n]
iener > >e n
Filter _\U [0}

Figure 7.2 lllustration of the MMSE estimator based on the
Wiener-Hopf optimum solution for the channel estima-
tion.

M-1

= y[n] — Z wlk]s[n — k], (7.48)

k=0

where M is the number of coefficients of the FIR Wiener filter. In
vector form, the error signa in (7.48) is written as

e[n] = y[n] — w’ [n]sn]. (7.49)

The MSE is afunction of the coefficient weight vector w[n| chosen
and is obtained by

EMse = E{!e[n]\Q}

= E{e[nle"[n]}
= E{(y[n] — w'[n]s[n])(y[n] —w'[n]sn])"}
= E{ylnly"[n] — y[n]s" [n)wn]

— w[n]s[n]y" [n] +w"[n]sn]s" [n]w[n]}
= Var{y[n]} — rys[n]w[n] — w"[n]r[n]

+ w![n]R,[n]w[n], (7.50)
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wherer,[n] = E{s[n]y”[n]} isthe product of the cross-correlation
function, and R,[n] = E{s[n]s! [n]} isthe autocorrelation function.

To minimize &5, it is necessary and sufficient that the
derivative of £,,5r With respect to wn] be equal to zero,

Rs[nJwin] = ryn], (7.51)

where Rg[n] is an M x M Hermitian-Toeplitz matrix of
autocorrel ation,

75]0] rs[1] rs[M — 1]
RS[TL] _ 7’s[l] rS:[O] Ts[ - ] : (752)
rs[M —1] riM — 2] 75[0]

win = (w0, wlll, -, wM-1])",  (753)
and r[n| is the vector of cross-correlation between the channel
model output y[n] and the input signal s[n],
T
Fys[n] = ( rys(O], rys[l], cee, mys[ M —1] ) . (7.54)

The matrix formin (7.51) is called the Wiener-Hopf equation.
If the matrix R,[n] isinvertible, then w[n| can be solved by

win] = Ry [n]r . [n]. (7.55)

Equation (7.55) is called the MMSE estimator for the channel
estimation or normal equation, since the error signal is orthogonal
to each element of the input vector given by

E{gn]e’[n]} = 0. (7.56)

The MM SE of the estimate of the channel model output y[n] can
be then computed by using (7.50) as follows,

Evmse = B{le[n]*}
= E{e[n)(yln] — w"[n]sin])}
= E{e[nly[n]} —w"[n]E{sple’ [n]}.  (7.57)
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Since E{s[n|e’[n]} = 0 given by (7.56), the second term in (7.57)
isequal to zero. Hence,

Evumse = Elenly[n]}

= E{(y[n] — w"[n]sln])y[n]}
= E{y’[n]} — w'[n]E{sn]y[n]}
= R,(0)— rgs [n]w[n]. (7.58)

The MMSE can also be expressed in terms of the autocorrelation
matrix R;[n] and the cross-correl ation vector r ,[n] in the following:

Sumse = Ry(0) — 1 [nIRT n]ry[n). (7.59)

Now, it is useful to consider what must be known to obtain the
MM SE estimator and to estimate £,,5,5¢ in the following steps:

1. Calculate the autocorrelation matrix R,[n] of the input
vector, sn).

2. Determine the cross-correlation vector r,,[n] between the
input vector, s|n|, and the channel model output, y[n|.

3. Estimate the variance R,(0) of the channel model output,
y[n].

4. Compute the optimal coefficients w|n| and the £,,y/52 for
the channel estimation.

Further note that, in Figure 7.2, a desired channel output ¢[n] is
to be estimated from the noise corrupted observation of the channel
model output y[n]

y[n] = q[n] + v[n]. (7.60)

If we assume that the noise v[n] has zero mean and o2 variance, and

that it is uncorrelated with the desired channel output ¢[n], then we
obtain

E{qnJv[n —k]} =0, (7.61)

and the cross-correlation function between the desired channel
output ¢[n| and the channel model output y[n]

roy(k) = E{qlnlyln - kl}
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= E{q[n](qgln — k] +v[n —k])}
= E{q[nlqn — K]} + E{q[n]vln — K]}
= ry(k). (7.62)

In the matrix form, (7.62) can be written as
Fgy[n] = rgn]. (7.63)

Since the noise v[n| and the desired channel output ¢[n] are
uncorrelated, it follows that

ry(k) = E{y[n+klyn]}
= E{(g[n + k] +v[n + k) (q[n] + v[n])}
= E{q[n+ Klg[n]} + E{v[n + klv[n]}
= 1,(k)+r,(k). (7.64)

Therefore, making the autocorrelation matrix R,[»] for the desired
channel output ¢[n], and the autocorrelation matrix R,[n| for the
noise v[n], the MM SE estimator based on the Wiener-Hopf equation
is given by

(Ryln] + R, [n]) wln] =1, (7.65)
Equation (7.65) can be further smplified if specific information of
the statistic of the signal and noise are available.

The MMSE estimator based on the Wiener-Hopf solution is a
single-step optimal agorithm and can be used to solve the channel
estimation. However, from the point of view of implementation, it
is not an efficient algorithm in terms of computation complexities,
especially in a rea-time digital signal processing operation.
Furthermore, the optimal coefficient vector w[n| needs to be
computed again if the input signals z[n| and the output response
y[n] are nonstationary. In other words, the optimal coefficient vector
w|[n| must be recomputed if the channel is time-varying. This leads
to a very high computation load for each iteration. Therefore, the
direct implementation of the MM SE estimator based on the Wiener-
Hopf solution is not recommended for the real-time digital channel
estimation in the environment of wireless mobile communications.
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Example 7.3

In this example, we introduce the channel estimation by using the
MM SE estimator based on the FIR Wiener filter solution as shown
in Figure 7.2. Suppose that the channel output ¢[n] isobserved in the
presence of uncorrelated white noise v[n|

y[n] = q[n] + v[n], (7.66)

where v[n] is the zero mean and a variance of 2. Assume that the
discrete-time channel can be expressed in the difference equation

L—1
q[n] = Z blk|s[n — k], (7.67)
k=0
and in the z-transfer function
H(z) = Lf blk]z " (7.68)
k=0

The goa of this example is to estimate the channel output ¢[n],
reduce the noise in y[n], and to obtain the optimal coefficients of
the FIR Wiener filter for the MM SE estimator.

Consider a first-order discrete-time channel (L = 2) in this
example. By using (7.65), the MMSE estimator based on the
Wiener-Hopf equation is obtained by

rq0] + 7 (0] ro[1] +r[1] ' [ w[0] \ _ [ 1[0]
( 1]+ ruf1] [0] 4 7,[0] ) ( wll] ) - ( ral1 ) (759
The correlation function of the channel output ¢[n| is given by [7]

ro(k) = Y bl + kb[l], (7.70)

and the correlation function of the noiseisr, (k) = 026(k). Thusthe
MM SE estimator based on the Wiener-Hopf equation becomes

( b2[0] 4 b?[1] + o b[0]b[1] ) ( w]0] )
b[0]b[1] V[0] + b?[1] + o w(l]

b2[0] + b?[1
:< [b[]o]b[l]”>' (7.71)
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Letb[0] = 1, b[1] = —0.5and 02 = 1in (7.71). We have
225 —0.5 ) [ w[0]\ [ 1.25
( 05 225 ) ( wll] ) = ( 0.5 > (7.72)
Solving for w[0] and w(1] yields

w0] \ [ 0.5325
( wll] ) = ( —0.1039 ) ' (7.73)
In this case, the MM SE estimator in the z-transfer domainis
W(z) = 0.5325 — 0.10392 " (7.74)

For the MM SE, we obtain the result as follows;

Evumse = E{le[n]|*}
= rq[O] — (w[O]Tq[O] +w — [1]7“(1[1])
= 0.5324. (7.75)

7.4 Adaptive Channel Estimation and Algorithms

The objective of adaptive channel estimation is to estimate the
channel impulse response 4[n] in (7.2) given the input signal source
x[n] and the noise v[n]. The structure of adaptive channel estimation
is shown in Figure 7.3, which is also referred to as the system
identification given by Miao and Clements [6].

In the channel estimation, the adaptive filter model is used to
provide a linear model that represents the best fit to an unknown
channel impulse response h[n|. The unknown channel impulse
response h[n| and the adaptive filter model use the same input
signal source s[n|. Then output of the unknown channel impulse
response h|n| provides the desired signal response for the adaptive
filter model. When the unknown channel impulse response h[n]
is dynamic, the linear model will be time-varying in the channel
estimation.
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Source Noise-free Noise
signal signal q[n] | V[n]
s[n] .| Unknown N
Ll VW
channel h[n] + y[n]
vy + Output
/ () signal
A - d[n]
o Adaptive d[n] o
"l filter model "

/ Adaptive e[n]

algorithm for [«
updating taps

Figure 7.3 Block diagram of adaptive channel estimation.

The adaptive filter model can be assumed to be an FIR filter
model,

d[n] = z__j balk]s[n — ), (7.76)

where b, [k] is the time-varying set of the tap coefficients for the
FIR filter model at the index of n. In a vector form, (7.76) can be
expressed as
d[n] = bl [n]sn], (7.77)
where bl [n] = [b,[0],b,[1],...,b,[M — 1]]. The adaptive process
updates the filter tap coefficients so that they move from an initial
position toward the MMSE solution. The MSE of &ysp(n] is
obtained by
Eusen] = E{le[n]*}, (7.78)

where the error sequence e[n] as shown in Figure 7.3 iswritten as

eln] = yln] —dln]

= 3 hlklsln — K] + ol = X bo[K)sln — &

k=0
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= (h[n] —b,)"'sn] + v[n], (7.79)

where the channel matrix h” [n] = [R[0], h[1], ..., A[M — 1]].

In order to minimize the M SE function given by (7.78), we need
to update the tap coefficients of the adaptive FIR filter model to
estimate the channel impulse response h[n] at each iteration so that
the MSE in (7.78) can be achieved in the sense of MMSE. The
adaptive algorithm is controlled by the error signal e[n] in (7.79).
The adaptive algorithm uses the error signal e[n] to minimize the
MSE function in (7.78) and updates the tap coefficients of the
adaptive filter in a manner that iteratively reduces the MSE. The
commonly used adaptive algorithms for the channel estimation
include least mean sguares (LMS) and recursive least squares
(RLS).

741 TheLMSAlgorithms

In this section, we introduce a set of widely used adaptive techniques
caled LMS dgorithms for the channel estimation. The LMS
algorithms are the ssimplest and the most used algorithm that serves
as a benchmark standard against other adaptive a gorithms.

Consider an adaptive FIR filter used for estimating a desired
signal d[n| from an input signal z[n| as shown in Figure 7.4. The
structure of the adaptive FIR filter is called a transversal filter,
which has N — 1 delay elements, N taps, and N tunable complex
multipliers (or tap weights). The tap weights of the adaptive FIR
filter are described by their physical location in the delay line
structure and have a subscript, n, to explicitly show that they vary
with time. The LMS agorithm, either on a sample-by-sample basis
or on ablock-by-block basis, continuously updates these tap weights
of the adaptive FIR filter.

The transfer function of the adaptive FIR filter is described by

i) = 3 bulaleln—d

— BTx[n), (7.80)
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The LMS algorithm for updating each tap weight [« ():

d[n]

Figure7.4 TheLMSalgorithm for updating the adaptive FIR filter.

where b, [¢] isatime-varying set of coefficientsfor the FIR filter and
B = {b,[0],b,[1],---,b,[M — 1]}. The objective of the adaptive
processisto adjust thefilter tap weights so that they move from their
current position toward the MM SE solution. The MSE of &y/5x[n]
is defined by

€useln] = E{le[n][*}, (7.81)

where the error signal e[n] in Figure 7.4 is given by

eln] = d[n]—y[n]
= d[n] — BIx[n], (7.82)

where d[n] is either an exact scaled replica of the transmitted signal
or aknown property of the transmitted signal.

The LM S algorithm updates the tap weights based on the method
of steepest descent. The steepest descent algorithm is an iterative
procedure, which minimizes the MM SE at time n using an estimate
of the tap-weight vector B,,. At time n + 1, a hew estimate of the
tap-weight vector B,,,; isformed by adding a small correction with
a step size p to the tap-weight vector B,,, which is used to move
the tap-weight vector B,, closer to the desired optimal solution. This
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process can be expressed as follows:

1
Bny1 =B, — oH v €lnl, (7.83)

whereB,, ; isthetap-weight vector at timen + 1, and the step size
isused to control the rate of convergence. The gradient, which isthe
derivative of E{|e(n)|?} with respect to the tap-weight vector B,,, is
given by

_ OE{le(n)"}
= —2E{e[n]x[n]}, (7.84)
where x[n] is the input signal vector and e[n] is the error signal as

shownin Figure 7.4. Thus, the update equation for tap-weight vector
B,. in the steepest descent algorithm in (7.83) becomes

B.+1 = B, + uE{e[n|x[n]}. (7.85)

Note that if the input signa x[n] and the desired signal d[n] are
jointly wide-sense stationary, then we obtain

Efe[n)x[n]} = E{(d[n] - B,x[n])X[n]}
= EB{d[n]x[n]} — E{x[n]x[n]B}}
= Ig[n] — R:[n]|B,. (7.86)
Thus, in this case, the steepest descent algorithm in (7.85) becomes
Bn+1 = Bn + :U’(rdx[n] - Rx[n] Bn) (787)

When B, = R,'[n]rg[n], the second term in (7.87) is zero.
Therefore, (7.87) means that the steepest descent of the adaptive
filter tap-weight vector B,, converges to the solution of the Wiener-
Hopf equation when

lim B, = R, [n]rq[n]. (7.88)

n—oo
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The step size 1 satisfies the condition [5]

O<pu<

7.89
>\ma:c ( )
where )\, ISthe maximum eigenval ue of the autocorrelation matrix
R.[n].

In general, the steepest descent algorithm has a practical
limitation because the expectation E{e[n]x[n]} is unknown.
However, we can estimate it by using the sample mean,

N-—
E{e[n] ]1[ Z_: X[n — k], (7.90)

where N is the number of samples. Substituting (7.90) into (7.85),
the update equation for the tap-weight vector B,, becomes

p N
Bni1 =B, + N > eln — k]x[n — k. (7.91)

Inaspecial case, if we use only one samplefor estimating the sample
mean, the update equation for the tap-weight vector B,, in (7.91) has
aparticularly simple form

Boi1 = By + pefn)x[n]. (7.92)

Equation (7.92) is caled the LMS algorithm. Equivalently, we
summarize the adaptive channel estimation using the LM Salgorithm
asfollows:

1. Determine the parameters, including the filter length A/ and
the step size .

2. Set theinitialization of thefilter tap-weight vector, By = 0.

3. Computethe LMSalgorithm: For n = 0,1,2, ..., N,

(a) Calculate the filter output:

y[n] = BLx[n)]. (7.93)
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(b) Estimate the error signal:
eln] = d[n] — y[n]. (7.94)
(c) Update the adaptation of the tap-weight vector:
B.+1 = By, + peln|x[n]. (7.95)

In practice, the adaptive filter system with M tap weights using
the LMS agorithm requires M multiplications and M additions to
update the filter tap weights. Moreover, one addition is needed to
compute the error signal e[n], and one multiplication is needed to
form the product pe[n]x[n]. Thus, M multiplications and M — 1
additions are needed to calculate the output signal of the adaptive
filter. A total of 2( M +1) MACs (multiplier-accumul ator) per sample
output are therefore required.

7.4.2 TheLMSAlgorithm Convergence

The selection of the step size ;1 in (7.92) must be done carefully.
If the step size u is too small, the tap-weight vector B,, will adapt
very slowly and may not react to changes in the input signal vector.
However, if the step size p is too large, the adaptive filter system
using the LM S algorithm will unduly respond to noise in the signa
and may not converge to the MM SE solution.

The LM S agorithm convergence is derived by using a statistical
framework where the tap weight vector B,, is treated as a vector of
random variables. Substituting (7.82) into (7.92) gives the update
equation of the tap weight as follows:

Bui1 = B + 4 (d[n] — BIx[n]) X[n]. (7.96)

Taking the expectation of both sides of (7.96) obtains
E{Bni1} = E{By} + pE{d[n]x[n]} — pB{X[n]x"[n]B,}. (7.97)

To perform the convergence anaysis for (7.97), we assume that the
input signal z[n| and the desired signal d[n| are jointly wide-sense
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stationary. Furthermore, the input signal xz[n] and the tap-weight
vector B,, of the LM S adaptation are statistically independent. Note
that thisindependence assumption for statistical analysisof theLMS
algorithm is often approximately true, and its use is attributed to
Haykin [8]. With this assumption, (7.97) can be rewritten as

E{Bni1} = E{Byn}+ pra[n] — pE{x[n]x"[n]} E{B,}
= (I — uR.[n]))E{B,} + pra.[n]. (7.98)

Further note that the LMS adaptive filter converges to the
solution of the Wiener-Hopf equation when rg[n] = R.[n|B
in (7.87), where B is the Wiener-Hopf solution. Thus, (7.98)
becomes

Subtracting B from both sidesin (7.99) gives
E{Bui1} — B = (I — uR.[n])(E{B,} - B). (7.100)

Since R, [n] is an autocorrelation matrix that is symmetric and a
positive definite, by using the spectral decomposition theorem in
Appendix B, R, [n] can be decomposed into

R.[n] = V[n]AVT[n], (7.101)

where A is a diagonal matrix consisting of the eigenvalues of the
autocorrelation matrix R, [n], and

Vn)VTn] =1. (7.102)

Then, substituting (7.101) into (7.100) and using the fact in (7.102),
we obtain

VI [n](E{B, 11} — B) = (I — pA)V [n](E{B,} — B). (7.103)
L et anew vector be

u, = V'[n)(E{B,} — B). (7.104)
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Substituting (7.104) into (7.103) yields
Upe1 = (I — pA)u,. (7.105)
Given aninitia vector uy, (7.105) becomes
Uny1 = (I — uA)" ug. (7.106)

Note that (I — pA) in (7.106) is a diagonal matrix. Thus, the ith
components of the vector u,,,; may be expressed as follows:

Unp1 (i) = (1= pe)" o i) (7.107)

If we want the filter tap-weight vector B, ; to converge to the mean
vector B, then the vector u,,,; must converge to zero. Thisrequires

11— | <1, i=0,1,2,..., M, (7.108)

where M is the number of filter tap weights. Therefore, in order to
prevent the LMS adaptation from becoming unstable, the value of
the step size i must be chosen such that

0<p< , (7.109)

)\max
where )\, ISthe maximum eigenval ue of the autocorrelation matrix
R.[n].

In practice, knowledge of \,... is not avalable for the
application of the adaptive filter system using the LMS algorithm.
Thetrace of R, [n| may be taken as aconservative estimate for A,
In this case, (7.109) can be rewritten as

O<pu< (7.110)

2
tr{R.[n]}’

wheretr{R,[n]} denotesthetrace of autocorrelation matrix R, [n]. If
theinput signal z[n| iswide-sense stationary, then R,.[n] isaToeplitz
matrix. Thus, the trace tr{R,[n]} can be rewritten as follows:

tr{R.[n]} = (M + 1)E{|z[n]|*}, (7.111)
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where E{|z[n]|*} can be estimated by
1 M-1
E{|x[n] — Z lz(n — k)[2. (7.112)
Therefore, in this case, (7.109) can be reexpressed as follows:
2

ML S w(n — k)2

O<pu<

(7.113)

743 TheLMSEMSE Analysis and Misadjustment

In the application of the channel estimation, the LMS tap-weight
vector B,, tends to fluctuate about its optimum value when the tap-
weight vector B,, beginsto converge to the mean B. Thisis because
of the noisy gradient vectors that are used to produce the small
corrections to the tap-weight vector B,,. Thus, the tap-weight vector
B,, does not converge to the mean vector B exactly. If the MSE is
larger than the MM SE by an amount, then the amount is referred to
as the excess mean-squared error (EMSE).

Using (7.82) and letting ¥ = B,, — B, werewrite the error signal
asfollows:

e[n] = d[n] —BIx[n]
= d[n] — (B+¥)"x[n]
= emin[n] + ¥TX[n], (7.114)

where e,,i,[n] = d[n] — BYX[n] is the error if the solution of the
Wiener-Hopf equation were used. If the LM Sfilter isin steady-state
such that E{¥} = 0, then the MSE can be expressed as

¢l = Efle[n"}

= &{umse +Eemseln), (7.115)

where f]V[MSE = E{|6MMSE[TL]|2} is the MMSE and SE]\/[SE[TL] is
the EMSE.
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Haykin [8] showed that if the step size . satisfies (7.109) and the
condition
% 2 (7.116)
2 — ,LL)\z 7 .

i=1

where ); is the ith eigenvalue of the autocorrelation matrix R, [n],
then the EMSE for the LMS algorithm is less than the MM SE as
follows:

= & : ) 7.117
fEMSE[OO] EMMSE [,u 1:21 5 _ ,u/\z‘] ( )

Further note that if ;1 < 2, then pu)\; < 2, and

M
2 i=1

- gtr{Rx [n]}. (7.118)

Substituting (7.118) into (7.117) yields the EM SE as follows:

{emse[o0] = sk [gtr{Rx}} . (7.119)

Equation (7.119) indicates that the {5 [oc] is proportional to the
step size . when n — oc.

The ratio of the steady-state EMSE gy s5[oc] to the MMSE
Evmse 1S caled as the LMS misadjustment M. Using (7.117), the
LM S misadjustment M is defined by

§EMSE [OO]
EMMSE

M
AA
- i 7.120
MEQ_MAi (7.120)

The LM S misadjustment M islessthan unity if the step-size 1« holds
the conditionin (7.116). If the step sizeis small such that ;1 <« Arfw ;
then the LM S misadjustment is approximately obtained by

M ~ gtr{Rx[n] 1. (7.121)

M




Channel Estimation and Blind Identification 219

The trade-off analysis among the rate of convergence, the
amount of EMSE, and the ability of the adaptive filter to track
the signal are important. Since the filter tap-weight vectors B,, are
far from the optimal solution when the LM S adaptation algorithm
begins, the step size 1, can be large in order to move the tap-weight
vectors B,, rapidly toward the desired solution. However, the step
size p should be decreased to reduce the EMSE £y 5 [00] when
the LM Sfilter beginsto converge in the MM SE solution. Therefore,
using the LMS agorithm with a time-varying step size u[n| is
desirable in the application of channel estimation.

744 TheRLSAlgorithms

The RLS algorithm is derived from the least squares solution of
the adaptive filter system for the channel estimation. The RLS
algorithm utilizes information contained in the particular processed
input sample data. Thisis to say that we can get different adaptive
filtersfor different input sample data. As a result, the adaptive filter
tap weights that minimize the least squares error will be optimal
for the given sample data rather than statistically optimal over a
particular class of processes.

To derive the RLS algorithm for the adaptive filter system in the
channel estimation, we need to minimize the total sum of squared
errors for al input sample data at discrete-time n. The least squares
error function is defined by

n

&[n] = Z N eld] |2, (7.122)

=0
where 0 < A < 1 isan exponential weighting factor and e[i] is the
error signal given by
efi] = dli] =yl
= d[i] — w"[n]x[i], (7.123)

where w(n] is the tap-weight vector of the adaptive filter system at
discrete-time n, and X[i] is the input vector at discrete-time .
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Setting the derivative of &[n] in (7.122) with respect to wy[n]
equa to zero for k = 0,1,2,---, M, we generate the optimum
value of the tap-weight vector w([n| defined by the normal equations
written in matrix form:

where R,[n] isan (M + 1) x (M + 1) exponentialy weighted
deterministic autocorrelation matrix for x[n] as follows,

Ra[n] = > A" [i]x" i, (7.125)
=0
and where r 4, [n], the deterministic cross-correlation between d|[n|
and x[n] is expressed by
Faz[n] = > N d[i]x*[i]. (7.126)
1=0
To caculate the least sguares estimate of the tap-weight
vector win| in (7.124), we need to compute the inverse of the
autocorrelation matrix R, [n],
wln] = R, [n]r g.[n]. (7.127)

T

Equation (7.127) is referred to as the least squares estimate win| for
the tap-weight vector. However, performing such an implementation
directly is too time consuming if the number of tap weights, M,
is relatively high. Therefore, in practice, we compute the least
squares estimate of the tap-weight vector win| recursively for n =
1,2,3,---, M.

SinceR,[n] andr 4, [n] both depend on n, we obtain therecursive
equation for updating the value of the autocorrelation matrix as
follows:

R.[n] = AR,[n — 1] + x*[n]x"[n], (7.128)

where R, [n— 1] isthe value of the autocorrelation matrix at discrete-
timen — 1, and the matrix product x*[n]x” [n] can be considered as
the “correction” term in the updating operation.
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In a similar way, the cross-correlation matrix may be updated
recursively,
Faz[n] = Argz[n — 1] + d[n]X*[n]. (7.129)

In order to invert the autocorrelation matrix R,[n], we use the
matrix inversion lemmaas follows:

A™l = (B +cCDIC)
= B-BC(D+C'BC)'C'B. (7.130)
Let A = R,[n], B™' = AR, [n — 1], C = X[n], and D = 1. Then,
substituting the above definitions into (7.130) obtains the recursive
expression of the inverse autocorrelation matrix as follows:
R[] = AR [n—1]
A72R M n — 1x[n]xTR;  [n — 1]

— (7131
1+ A X[n]R, [n — 1]x[n] ( )

To simplify thisformula, we further let
P[n] = R, '[n], (7.132)

where P[n| is known as the inverse autocorrelation matrix, and

P[n — 1)x[n]

< = TR — Xl

(7.133)

where k[n] is referred to as the gain vector. Using the definitions
in (7.132) and (7.133), we rewrite (7.131) asfollows:

Pln] — i{| — K[n)XT[n]}P[n — 1]. (7.134)

Equation (7.134) is referred to as the Riccati formula for the RLS
algorithm. As a result, the desired recursive equation for updating
the coefficient-weight vector is given by

win| = wn—1]+ Aw[n — 1]
= wn — 1] +k[nj¢n], (7.135)
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where {[n] isan a priori estimation error defined by
¢[n] = d[n] —w'[n — 1]x[n). (7.136)

Aswe can see, theimplementation of the RLS algorithm requires
the initialization of the recursion formula of (7.134) with a starting
value P[0], which is the nonsingularity of the autocorrelation matrix
R.[n]. To simplify this procedure of obtaining the initialization
value, we change the expression of (7.128) dlightly for the
autocorrelation matrix R, [n] and write as follows:

R.[n] = AR, [n — 1] + 6A", (7.137)

where R,[n — 1] isgiven by (7.125), I isthe (M + 1) x (M + 1)
identity matrix, and ¢ is a small positive constant. Note that if
n = 0, (7.137) becomes

R.[0] = 4l. (7.138)
Therefore, the initial value of P[n] is obtained by

P[0] = R;'[0]
4
5!

Finally, we summarize all of the steps of the RLS algorithm for
the channel estimation as follows:

(7.139)

1. Select thefilter order of the tap weights M, the exponential
weighting factor, A, and a small positive constant, o, to
initialize the matrix P[0] givenin (7.139).

2. Initialize the RLS algorithm by choosing P[0] = I, where
d isasmall positive constant and w[0] = O.

3. For each instant of time, n = 1,2,---, N, we calculate as
follows:

(@) Using (7.136) finds the a priori estimation error.
(b) Using (7.133) calculates the gain vector.
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(c) Using (7.135) updates the tap-weight vector.
(d) Using (7.134) computes the Riccati formula.

In application for the channel estimation, the RLS agorithm
requires [3(N + 1)(V + 2)] MACs (multiplier-accumulator) [6].
Thus, the computational complexity of the RLS algorithm is much
higher than for the LMS algorithm. However, the RLS algorithm
generally converges faster than the LM S algorithm.

For theoretic treatment of the RLS agorithm, we suggest
Haykin [5]. For other RLS methods based on the slide window and
state-space approaches, we refer the reader to Zhao et a. [9] and
Sayed and Kailath [10], respectively.

745 TheRLSAlgorithm Convergence

In order to perform the analysis of the RL S algorithm convergence,
we let A = 1 for mathematical simplification. The autocorrelation
matrix R,[n] in (7.125) can be then reexpressed as follows:

R.[n] = i x*[i)xT[i], (7.140)
and the cross-correlation matrixzz;.l%) becomes

Mie[n] = i d[i]x*[i]. (7.141)
Furthermore, we rewrite (7.123) ze;so follows:

d[i] = WEX[i] + ey]i], (7.142)

where ¢, [i] is white noise with zero mean and variance o2, and the
weight vector w,. is constant. Then, substituting (7.142) into (7.141)
yields the cross-correlation matrix as follows:

fln] = i@mfxm T eali)X i

_ Zx i ilwe + 3 eulifxli

= R.[n]w, + Z ew[1]X*[1]. (7.143)
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Substituting (7.143) into (7.127), we can rewrite (7.127) asfollows:

Wi = Rzl[n](Rx[n]Wc+i)ew[i]x*[i])

= W+ R;'[n] zi: ew|7]X"[4]. (7.144)

In order to analyze the RLS algorithm convergence further, we
now need to make two assumptions as follows:

1. The input vectors, x[1], X[2], ..., X[n|, are statistically
independent.

2. The measurement error e,[:] is independent of the input
vector x[i] forn =1,2,...,n.

Given these two assumptions, we take the expectation value for both
sides of (7.144) with n > M and obtain

Bal) = Bw)+ £ {R Y el
=0

= W, (7.145)
where M is the number of tap weights in the adaptive filter system
and the measurement error e, [i] has zero mean. As aresult, (7.145)
indicates that the RLS algorithm is convergent in the mean value,
w,, for n > M. In other words, this means that the RLS agorithm
does not wait for convergence for n — oc.

74.6 TheRLSEMSE Analysisand Misadjustment

The MSE of the RLS algorithm with setting A = 1 isgiven by [6, 8]

2

£[n) :a2+n_]\f\2’_1, n>M+1 (7.146)
where o is the variance of the measurement error e,,[n] and M is
the number of filter tap weights in the adaptive filter system. When
n — oo, the second term in (7.146) is approximately zero. Under
a stationary environment, (7.146) indicates that the RLS algorithm
generates zero EMSE when n — oo. Therefore, using (7.120), we
obtain that the RLS misadjustment M = 0.
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7.4.7 Comparison of the Adaptive Algorithms

The RLS agorithm convergence rate is usualy an order of
magnitude faster than the LM S algorithm convergence. The reason
isthat there are fundamental differences between the RLS algorithm
and the LMS algorithm. The LMS algorithm uses the step size y,
while the RLS algorithm uses the inverse of the autocorrelation
matrix R *[n] of the input signal vector. This results in a profound
impact on the convergence behavior of the RLS agorithm. Thus, the
RL S agorithm convergence does not wait for n — oc.

The RLS algorithm has approximately zero EMSE. On the
other hand, the EM SE of the LMS algorithm approximately equals
EMMSE [gtr{Rz}} . Thisis because the EM SE of the LM S algorithm
is proportional to the step size 4 when n — oo. Thus, the
misadjustment of the LMS algorithm is much greater than the RLS
algorithm.

The LMS algorithm has much fewer computation complexities
compared with the RLS algorithm. In addition, the LMS algorithm
does not have a stability issue, while the stablity of RLS algorithms
needs to be considered during operation. This leads to the LMS
algorithm as the most often used adaptive algorithm for adaptive
channel estimation.

Example7.4

In this example, we show an adaptive channel estimation using the
exponentially weighted RL S algorithm based on the block diagram
of adaptive channel estimation as shown in Figure 7.3. Assume that
the transfer function of unknown channel H(z) has an expression
form asfollows:

H(z) = 0.5 +0.9527" — 05272 — 0.25:7, (7.147)

and v[n| is white noise with zero mean and unit variance. The input
signal s[n] isthe random sequence with 1 or —1.

The goal of the example is to estimate the unknown tap weights
of the fourth-order adaptive FIR filter given by
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= 23: wy[klx[n — k], (7.148)
k=0

wherew, [k] (k = 0, 1, 2, 3) arethe tap weights to be estimated using
the exponentially weighted RLS algorithm. Then the error signal is
obtained by

e[n] = d[n] — y[n], (7.149)
and the estimated average mean sguare error is given by:
1 N-1
Emmseln] = — Z e[k (7.150)

where N isthe number of input samples.

For initialization of the RLS algorithm, we let the exponential
weight A = 0.999 and 6 = 0.0001. The simulation results are shown
in Figure 7.5. After 1,000 iterations, we see that the tap weights
wy[0], w,[1], w,[2], and w,[3] are converged to 0.5, 0.95, —0.55,
and —0.25, respectively.

7.5 Channd Modelsand HOS Estimations

In this section, we introduce three commonly used types of the
discrete-time channel structures and their estimation methods based
on statistic assumptions of the higher-order statistics (HOS) (the
order > 3). Depending on the number of channel inputs and outputs,
these discrete-time channel structures are classified as either SISO,
SIMO, or MIMO.

75.1 SISO Channe Model and Estimation

Consider a discrete-time channel model consisting of alinear time-
invariant (LTI) impulse response h[n] followed by additive noise
v[n] as shown in Figure 7.6. This discrete-time channel is called the
SISO channel. The output sequence y[n] is obtained by

y[n] = q[n] + v[n], (7.151)

where the noise-free signal sequence ¢[n| can be expressed as
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Figure 7.5 Adaptive channel estimation using the exponentially
weighted RLS algorithm with 1,000 iterations. (@)
estimated coefficients w,,[1], w,[2], w,[3], and w,[4];
and (b) estimated average mean square errors.

= g: hlk]s[n — k. (7.152)

Thus, (7.152) is the noise-free signal distorted by an unknown
discrete-time LTI SISO channel h[n] and anoise sequence v[n]. The
receiver signal-to-noise (SNR) associated with the received signal
y[n] for the discrete-time SISO channel is defined as

E{lq[n]]*}
SNRsis0 = = oIy (7.153)
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Figure 7.6 The discrete-time single-input single-output (SISO)
channel.

The discrete-time SISO channel can be estimated either by
sending a training sequence or by using a blind estimator. For a
method of the HOS (the order > 3), the blind channel estimation
method is generally based on the following assumptions for the
received signal y[n] modeled by (7.151) and (7.152):

1. Thediscrete-time LTI SISO channel h[n| is stable.

2. The source signa s[n] is a zero-mean, independent, and
identically distributed non-Gaussian random process with a
variance o2 = E{|s[n]|*}.

3. The noise sequence v[n| is a zero-mean Gaussian random
process that can be colored with the correlation function
R, (k) = E{v[n]v*[n—k]} and the (p+ ¢q)th-order cumulant
Cplsln]} # 0.

4. The source signal s[n] is statistically independent of the
noise v[n.

Figure 7.7 shows a block diagram of a discrete-time SISO
channel followed by a linear equalizer h,.[n]. The equalization
approach is equivalent to finding the linear equalizer h;.[n] such that
Hi.(2) = 1/H(z) or an inverse system estimate, that is, z[n] =
Bs[n — 7). Thisleads to the name “inverse filtering approach.”
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Figure 7.7 Block diagram of a discrete-time channel SISO and
linear equalizer.

Assume that the output sequence y[n] is generated by
using (7.151) and (7.152) under the above assumptions. By using
blind channel estimation with the estimate of the input signal source
s[n] = z[n], the discrete-time SISO channel can then be estimated
via

; E{yln + 1]3[n]}
hln| = - )
A A EA

If SNRg;50 = oo in (7.153), the output of the linear equalizer
is indeed equal to z[n] = (Bs[n — 7|. In this case, (7.154) leads to
the discrete-time SISO channel estimation /[n] = h[n]. However, in
practice, SNRg;s0 in (7.153) has finite value. Hence, the resultant
estimator h[n] has bias because of the noise in the output sequence
y[n]. This results in the input signal estimate $[n| consisting of the
estimation error from the output of the linear equalizer.

(7.154)

75.2 SIMO Channd Model and Estimation

Consider a channel model consisting of 1. subchannels fed from a
common input source s[n| as depicted in Figure 7.8. Assume that the
discrete-time channel is modeled as an FIR filter, and the received
signal y[n] isoversampled at ¢t = ¢T'/ L, with their individual outputs
yi[n],i=10,1,2,---, L—1, sampled at the symbol rate of 1/7". This
channel model is referred to as the discrete-time SIMO channel.
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Figure 7.8 The single-input multiple-output (SIMO) discrete-time
channel.

s[n]

Each of the subchannels h;[n] has the same time index and its
noise contribution is v;[n], wherei = 0,1,2,---, L — 1. Thus, we
may describe the oversampled discrete-time SIMO channel in the
simplified vector form

where the transmitted input signal source vector s[n| consisting of
(M+N) symbolsis defined as

sin] = [z[n], z[n — 1], ,z[n — M — N + 1]]%, (7.156)
the N x 1 noise vector is

vi[n] = [vi[n], viln — 1], -, vi[n — N +1]]7, (7.157)
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Figure 7.9 The relationship of a transmitter antenna and two
receiver antennas for the SIMO channels.
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the N x (M + N) filtering matrix h;[n| (also referred to as a
multichannel filtering matrix) is a Toeplitz structure given by

BO] Bfl] o WM] 0 - 0
0 m[0] - MM —1) h[M] -~ 0
M= AN
0 0 o Rl0] R[] e hyM]
(7.158)

and the received signal vector is
y;[n] = [iln], yiln — 1], -+ ysln — N + 1]]". (7.159)

At the recelver, each received signal y;[n| consists of N L samples.

It has been noted by Paulrgy et a. [11] that the discrete-
time sequence y[n| in the discrete-time SISO channel, obtained
by sampling at the symbol rate at /T, is wide-sense stationary,
while the discrete-time sequence y[n] in the discrete-time SIMO
channel obtained by temporal oversampling (at a rate higher
than 1/7) or spatia oversampling (multiple antenna elements)
IS cyclostationary. Figure 7.9 shows the relationship between
a transmitter antenna and two receiver antennas for the SIMO
channels. The cyclostationary signal consists of a number of
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Figure7.10 Therelationship of tempora and spatial oversampling
results in a polyphase-based discrete-time SIMO
channel.

phases, each of which is stationary. A phase corresponds to a
different sampling point in temporal oversampling and a different
antenna element in spatial oversampling. For example, the duality
relationship between temporal and spatial oversamplingisillustrated
in Figure 7.10 for polyphase discrete-time SIMO channels.

The cyclostationary property of oversampled signals in the
discrete-time SIMO channel can carry important information about
the channel phase that can be exploited in several ways for blind
identification of the channel. This is because the oversampling of
the discrete-time SIMO channel increases the number of samplesin
the signal sequence y[n] and phases in the channel h;[n], but does
not change the value of the data for the duration of the symbol
period. This allows the channel h;[n| to become more rows than
columns (tall) and to have a full-column rank. In addition, the
stationarity of the discrete-time channel makes h; [n] block Toeplitz.
Tallness and Toeplitz properties are keys to the blind identification
of the channel h;[n]. Therefore, exploiting the cyclostationarity of
the signal output y[n| in the discrete-time SIMO channel can lead
to second-order statistics-based blind algorithms to identify the
channels h;[n], which are more attractive than HOS techniques.
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Figure 7.11 Block diagram of MIMO system with multiple
antenna elements.

The discrete-time SIMO channel model has been extensively
used in the fractionally spaced equalizer, the polyphase filter bank—
based equalizer, and subspace-based multichannel identification
given by Moulines et a. [12].

753 MIMO Channe Mode and Estimation

MIMO channels have recently emerged as one of the most signifi-
cant technical breakthroughs in modern digital communication. The
MIMO channel is sometimes referred to as a “volume-to-volume”
wireless link [13]. In an arbitrary wireless communication system,
we consider awireless link in which the transmitter end and the re-
ceiver end are connected with multiple antennaelementsas shownin
Figure 7.11. The rationale behind MIMO channel is to improve the
bit error rate (BER) or the data rate (bits per second) of the commu-
nication for each MIM O user when the signal sequencesin thetrans-
mit antennas at one end and the receive antennas at the other end are
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Figure 7.12 The discrete-time multiple-input multiple-output
(MIMO) channel.

combined together. This is because MIMO channels and systems
are able to turn multipath propagation into a benefit for the user and
effectively take advantage of random fading as well as multipath de-
lay spread to multiply transfer rates. Inherently, akey ideaof MIMO
channels and systemsis space-time signal processing, in which time
(or the natural dimensional of digital communication data) is com-
plemented with the spatial dimension by the use of multiple spatially
distributed antennas. Hence, a MIMO channel can be viewed as an
extension of smart antennas, which is a popular technology using
antenna arrays for improving wireless transmission.

Consider K different source signals s;[n], where i =
1,2,---, K, smultaneously transmitted through a multipath chan-
nel. At the receiver, all the source signals are received by an
M-element antenna array in the presence of additive noise. The
structure of discrete-time MIMO channel model is depicted in
Figure 7.12.

Let the K x 1 source signal vector be

sin] = [s1[n], s2[n), -+, sp[n]] (7.160)
the M x 1 noise-free signal vector be

aln] = [ai[nl, g2(n], -+ qar[n]]" (7.161)
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the M x 1 noise vector be
vn] = [vi[n], va[n], - var[n]]" (7.162)
and the M x 1 received signal vector be
ylnl = [yi[nl, yelnl, - ym[n]]" (7.163)
Then, the M x 1 received signal vector can be expressed as
y[n] = aln] + vin], (7.164)

where the noise-free signal vector is

N
= Y H[k]sln — k], (7.165)
k=—N
where H[n] = {hj;[n]} denotes the channel response from the

transmitted antenna i (: = 1,2,---, K) to the received antenna j
(j=1,2,---, M). Thus, (7.165) isdistorted by the M x K discrete-
time LTI MIMO channel H[n|, the K" x 1 source signal vector sn],
and the M x 1 noise vector v[n].

Notethat the discrete-time MIMO channel in (7.164) and (7.165)
not only has the intersymbol interference (I1SI) but also involves
multiple accessinterference (MAI). Thisis because each component
of q[n| is amixture of al the signd s;[n], i = 1,2,---, K. When
there is only one source signal for the transmitter, the discrete-time
MIMO channel becomes the discrete-time SIMO channel.

Given the received signa y[n] in (7.164), the receiver SNR
associated with the received signal y[n] is obtained by

_ E{la[n]]?}
2 (O
E{ly[n] — v[n]*}
= : (7.166)
E{|v[n]|*}
The discrete-time MIMO channel can be estimated either by
using an adaptive approach with sending a training sequence or
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by using blind identification. The performance of the adaptive
estimation and/or blind identification for the discrete-time MIMO
channel is mainly dependent on the SN R0 in (7.166). In the
past decade, the blind identification of the discrete-time MIMO
channel using HOS has been extensively studied by Tugnait [14],
Papadias and Paulrgj [15], Li and Liu [16], Chi and Chen [17],
and Chi et a. [18]. This is generally based on the following
assumptions:

1. Thediscrete-time MIMO channel H[n] is stable.

2. The source signal sn| is a zero-mean, independent, and
identically distributed non-Gaussian random process with
the variance o&[k] = E{|s[n]|*} and the (p + ¢)th-order
cumulant C,, ,{s;[n]} # 0.

3. The source signd s;[n|, i = 1,2,---, K, is statistically
independent of s;[n] for al j # i.

4. The noise sequence Vv[n| is a zero-mean Gaussian random
process that can be spatially correlated and temporally
colored with covariance matrix Ry (k) = E{v[n|v*[n — k]}.

5. The source signal sn| is statistically independent of the
noisev|n|.

Figure 7.13 shows a block diagram of a discrete-time MIMO
channel followed by a set of linear equalizers h.;[n|, i =
1,2,---, M,inparalléel. Let

hle,i [n] = [hle,l[nL hle,Z[n], e [n]} (7.167)
be a multiple-input single-output (MISO) equalizer that consists of
a linear FIR filter bank with an infinite length. This equalization
approach isto find the linear equalizer h;.[n] such that the equalizer
output for a perfect equalization is

z[n] = Bsi[n — 7], (7.168)

where 5 isareal or complex constant and 7 is an integer.
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Figure 7.13 Block diagram of a discrete-time MIMO channel
cascaded with a set of linear equalizersin paralldl.

Also define the M x 1 hg[n| as the kth column of the M x K
channel impulse response matrix of H|n|. Thus, the received signal
in (7.164) can be rewritten as

yln] = [hl[ ] ha[n], - -, Ni[n]] * S[n] + v[n]
= Z Z h;[k]si[n — k] 4+ v[n]. (7.169)

i=1k=—N

Assume that the estimate of the input source signal is s;[n] =
z[n] by using (7.168). Then, the discrete-time MIMO channel of
hx[n] can be estimated by

o Bl Usinl)

h = 7.170
= B Py (7479

Updating the received signal y[n + 1] is obtained by
y[n + 1] Z he[i] % spn — ). (7.171)

Equation (7.171) cancels the component of s,[n] from the received
signal matrix y[n]. As aresult, one column of the MIMO channel
matrix H|[n| can be estimated by using (7.170) and (7.171) for each
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stage. Therefore, the entire estimate of discrete-time MIMO channel
H[n] can be obtained after running K stages.

The output of the filter bank of linear equalizersisindeed equal
to (7.168) when SNR,/;y0 = oo in (7.166). In this case, (7.170)
and (7.171) lead to the discrete-time MIMO channel estimation
H[n] = H[n]. However, in reality, SNRy; 10 in (7.166) is finite
valued. As a result, the resultant estimator H[n] has bias because
of the noise in the received matrix y[n|. In addition, the estimate
of a column of the MIMO channel matrix H[n| obtained at the kth
stage may suffer from the estimate error for a larger k& because of
error propagation of the estimate procedure. This results from the
input signal estimate s[n| consisting of the estimation errors from
the output of the filter bank of the linear equalizers h;.[n].

7.6 Blind Channd Identification

Wireless and wired digital communications often require the
identification of the channel impulse response that can facilitate
channel equalization and maximum likelihood sequence detection.
A blind channel identification is used to estimate channel without
using a training sequence. Instead, the channel identification is
achieved by using only the channel output along with certain a
priori statistical information on the input source. The blind channel
identification methods attributed to Tong et a. [19, 20] have attracted
research attention using the second-order cyclostationary statistics.
In fact, the blind channel identification based on the method of
the second-order cyclostationary statistics has been considered a
major technical contribution. In this section, we introduce the
time-domain approach of blind identification for a SISO channel
based on the second-order cyclostationary statistics, subspace-based
blind identification for a SIMO channel, and the frequency-domain
approach of blind identification for aMIMO channel.
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7.6.1 Blind Identification for SISO Channel

Consider the SISO channel as shown in Figure 7.6 with the received
signal vector y[n| in (7.151) satisfying

y[n] = hsin| + v[n], (7.172)

where h is the channel matrix, s[n] is the source input vector, and
v[n] is the noise vector. If the received signal in (7.172) is sampled
at the baud rate 1/7', then y[n] is a wide-sense stationary process.
In this case, only minimum-phase channels can be identified from
the second-order statistics. This is because the phase information
of the channel is lost in the second-order statistics when its output
is sampled at the baud rate of 1/7. If the sampling rate is
higher than the baud rate of 1/7", the received signal vector y[n]
Is then widesense cyclostationary. As a result, the second-order
statistics of the observation with oversampling rates include the
phase information of the SISO channel.

The objective of the blind channel identification in (7.172) is
to identify the channel matrix h from the received signa y|[n|. In
order to identify the channel matrix, h must be a matrix with an
M x d full column rank condition. Oversampling can satisfy this.
The input signal source g[n] is a zero mean stationary process with
the autocorrelation function

Rs(k) = E{sln]s"[n— k]}
{ J*, k>0

7.173
(JH)IkI’ k<0, ( )
where () isthe Hermitian transpose and J isad x d shifting matrix
as

O = O
—_ o O
o O O
o o O

(7.174)
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Then the correlation matrix of the received signal Ry (%) is obtained

by
Ry(k) = hRs(k)h" + Ry(k). (7.175)

With the assumption of white noise, the noise correlation matrix
Ry (k) can be expressed as

Rv(k) = E{v[n]v?[n - k]}
= o2JHs, (7.176)

where ¢ is the unknown noise variance, J is the shift matrix given
in(7.174), and T, isan integer such that 1" = T, A.

There is no a priori information either on the noise covariance
or on the signal space dimension d. However, they can be estimated
from the data covariance matrix Ry (k) in (7.175) when & = 0. It can
be shown by Miao and Clements [6] that the spectral decomposition
or the singular value decomposition (SVD) of Ry(0) must have the
expression form as

U”Ry(0)U = A, (7.177)

where U is an orthogona matrix whose columns are normalized
eigenvectors, and

A =diag(\; +0% -, N\g+ 0% 0% 07), (7.178)

where \; > Ay > --- > \; > 0. Therefore, both the noise variance
o? and the signal space d can be determined by observing the most
significant singular values of Ry (0).

Tong et a. [19] have shown that if the channel matrix h and the
input signal source sn| satisfy the linear equation in (7.172) and its
constraints, then the channel matrix h isuniquely identified by using
the second-order cyclostationary statistics of Ry(0) and Ry(1).

Thecorrelation matrices Ry (0) and Ry (1) can be estimated from
the observation data y[n| viatime-index averaging,

Ry(0) = zlv [Z_: y[n]yH[n]] : (7.179)



Channel Estimation and Blind Identification 241

Ry(1) = ]1[ LZ_ ylnlyHn — 1]] . (7.180)

Thus, the noise covariance o2 and the signal space d can be estimated
by using (7.177) along with the estimate of (7.179). Subtracting the
corresponding noise covariance o2 from the observation correlation
matrix Ry (0) yields

Ro = Ry(0) — 2. (7.181)
The SVD of R, in (7.181) has the form
Ul [Ry(0) - 6*1| U, = A, (7.182)

where U, is the singular vector associated with the largest singular
value, and A, is the positive square-root of the d largest singular
value.

Let the matrix F = A_'U¥ and z; denote the smallest singular
value. Then the SVD of the second-order R; can be formed by
subtracting the corresponding noise correlation Ry (1) from the
estimated observation correlation matrix Ry (1),

R, = F[Ry(1) - Ry(1)| F¥, (7.183)
where the second-order noise correlation matrix Ry (1) isgiven by
Rv(1) = 623%. (7.184)

The blind channel identification based on the second-order
cyclostationary statistics is obtained as

H = U,A,,Q, (7.185)

where L, s
Q=[1,R,R},"--,R, Jza (7.186)
The blind channel identification method of (7.186) can provide
the exact identification for nonminimum-phase channels if the
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correlation matrix Ry(k) of the received signal is known exactly.
In addition, this method is usually insensitive to the timing recovery.
Thisisbecause sampling of thereceived signal y[n] isat arate higher
than the baud rate. Moreover, the full rank condition of channel
matrix h can be achieved if the sampling frequency F; satisfies the

following condition:
F, > IJer (7.187)

That is to say that the sampling frequency F, must be at least
(d + k)/k times faster than the baud rate if L = kT and
there are d symbols having contributions to the received signal
y[n]. Thus, the blind channel identification method can identify
possible nonminimum-phase channels based on the second-order
statistics by exploiting the cyclostationary of the received signal via
oversampling.

In order to obtain a performance measure of the blind channel
identification, the normalized MSE (NMSE) is used. For an M
Monte Carlo trial, the NMSE is defined as

1 M—1N-1
NMSE = [

> 2

i=0 n=0

~ 2
T haln] — hln)| ] . (7.188)

where h;[n] is the estimate of the channel from the ith trial.
7.6.2 SubspaceBlind I dentification for SIMO Channel

Consider the oversampled discrete-time SIMO channel given
in (7.155). The set of L equations can be combined into a single
matrix form as

Y [n] = H[n]s[n] + V[n], (7.189)

where Y [n] isthe LN x 1 multichannel received signal vector
Y{nl = ol yalnl, -,y 4 [n]]", (7.190)

and H[n| isthe LN x (M + N) multichannel filtering matrix

Hin] = [ho[n], hi[n], -+, hr_1[n]]", (7.191)
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Noise
Source Noise-free V[n] Received
signal signal signal
S[n] smort | QI Y[n]
ﬁ channel
H[n]

Figure7.14 The matrix representation of an oversampled discrete-
time single-input and multiple-output (SIMO) chan-
nel.

where the individual filtering matrix that provides a matrix
description of an oversampled channel is given in (7.158) and V[n|
isthe LN x 1 multichannel noise vector

Vn] = Voln],vi[n], -, vi_1[n]]T. (7.192)

Figure 7.14 shows a block diagram representation of this
equation that may be viewed as a condensed version of the
discrete-time SIMO channel. In order to proceed with blind channel
identification via statistical channel characterization, the following
assumptions are made:

1. The transmitted signal vector s[n] and multichannel noise
vector vin| are wide-sense stationary processes that are
statistically independent.

2. The transmitted signal vector s[n| has a zero mean and a
correlation matrix given by

Rs[n] = E{s[n]s"[n]} (7.193)

wherethe Rshasan (M + N) x (M + N) full column rank.
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3. The N x 1 noisevector v[n| hasazero mean and acorrelation
matrix

Rv[n] = E{v[nv7[n]}
= o, (7.194)
where the noise variance ¢ is assumed to be known.

Accordingly, the received signal vector Y[n] hasan LN x 1 zero
mean and a correlation matrix defined by
Ry[n] = B{Y[n]Y[n]"}
= E{(H[n]sln] + V[n])(H[n]s[n] + V[n])}
= B{H[njslnjs" [n]H" [n]} + E{V[n]V"[n]}
= HnJRs[n]H"[n] + Ry [n]. (7.195)
Invoking the theorem of spectral decomposition given by Miao and

Clements[6], the LN x LN correlation matrix Ry [r] in (7.195) can
be expressed in terms of its eigenval ues and associated eigenvectors

LN
Ry[n] = > Ma.ay, (7.196)

k=1

where the eigenvalues decrease in order as
Ao <A << Apvoas (7.197)

Then, the eigenvalues in (7.197) can be classified into two groups
based on the filtering matrix rank theorem

e >0% k=0,1,--- .M+ N —1, (7.198)
and
Ne=0% k=M+NN+M+1,--- LN —1. (7.199)

As a result, the corresponding space spanned by the eigenvectors
of the received signal vector Ry [n] can be decomposed into two
subspaces:
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1. Signal subspace spanned by the eigenvectors associated with

theeigenvalues \g, A1, - - -, Ay v_1. These eigenvectors are
denoted as
S =0 k=0,1,--- M+ N —1. (7.200)

2. Noise space spanned by the eigenvectors associated with the
remaining eigenvalues Ay N, Avrinit, - ALy_1. These
eigenvectors are written as

nk:qJV[JrNJrk’ k:07177LN_(M+N+1)
(7.201)

Note that the signal subspace is the orthogona complement of the
noise subspace. Therefore, using the matrix definition, the noise
equation is obtained by

Ry[nng =o°ng, k=0,1,---,LN — (M + N +1). (7.202)

Substituting (7.195) along with Ry/[n] = o¢?l into (7.202) and
simplifying yields

H[n]Rs[n]H”[n]n, =0, k=0,1,--- LN — (M + N +1).
(7.203)
Equation (7.203) can be rewritten as

H?[njn, =0, k=0,1,--- LN — (M + N +1), (7.204)

because both matrices H[n| and Rg[n]| are all full column rank. We
need to emphasize that the result of subspace blind identification
in (7.204) is based on the following three assumptions:

1. The received signa is oversampled to ensure that the
multichannel filter matrix H[n| has afull column rank.

2. There is the knowledge of the eigenvectors associated with
LN — (M + N) smallest eigenvalues of the received signal
correlation matrix Ry [n].
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3. The noise subspace is orthogonal to the columns of the
unknown multichannel filter matrix H|n).

In addition, asuccessful use of the subspace decomposition for blind
identification depends on the premise that the transfer functions
of the discrete-time SIMO channel have no common zeros. This
requires the exact knowledge of the channel model order. Therefore,
given these requirements, (7.204) indicates that the cyclostationary
second-order statistics of the received signa Y|[n| associated
with the correlation matrix Ry [n] are indeed sufficient for blind
identification of the discrete-time SIMO channel.

Equations (7.202) through (7.204) provide the fundamental
theory of using subspace decomposition for blind identification of
the discrete-time SIMO channel. This noise subspace procedure for
blind identification was contributed by Moulines et al. [12] and later
introduced by Haykin [5].

7.6.3 Blind Identification for MIMO Channel

Blind identifications of a discrete-time MIMO channel have
been extensively reported either based on the second-order
cyclostationary statistics of the output data long with corresponding
identifiable conditions given by Gorokhov and Loubaton [21],
Abed-Meraim and Hua [22], and Hua and Tugnait [23] or based
on the higher-order statistics of the system outputs by Mendel [24],
Shamsunder and Giannakis [25], Tugnait [14], and Chi et al. [18].
Diamantaras et a. [26] and Bradaric et a. [27] have researched
the blind identification of FIR MIMO channels with cyclostationary
input using second-order statistics, for which we mainly introduce
resultsin this section.

The objective of blind identification of an N x N discrete-time
MIMO channel is to identify an unknown convolution FIR system
driven by N unknown input sources by using the second-order
cycostationary input statistics. By exploiting the second-order input
statistics with cyclostationarity, a crossswise N x N convolution
filtering mixture can be uniquely identified based on the second-
order statistics of the discrete-time MIMO channel output.
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Consider a general N x N discrete-time MIMO channel
with N input signal sources solkl,silk],---,sny_1lk] and N
stochastic output sequences yo[k], y2[k], - - -, yn_1[k]. Assume that
each discrete-time channel isa FIR filter with length of L. Thus, the
input and output relationship of this discrete-time MIMO channel
can be written as

—-1L-1

yi[/c}:N S hylllsi[k =1, i=0,1,---,N—1. (7.205)

J=0 I=

Let S[n] = [so[n],s1[n], -+, sn_1[n]]” be avector of N input
sources, H[n| bethe N x N impulse response filtering matrix with
elements {h;;[n]}, and y[n] = [yo[n],s1[n), - -, yn-1[n]]" be the

vector of system output observations. Thus, (7.205) can be expressed
into matrix form as

ylk] = 3 H[k]sln — k. (7.206)

Taking the discrete-time Fourier transform (DTFT) of both sides
of (7.206) yields
Y (7)) = H(e?)S(e™), (7.207)

wherew € [0, 27).

Note that the frequency-domain filter matrix H(e’) in (7.207)
is not identifiable unless some constraints are provided based on its
structure. In other words, the problem as defined in (7.207) is ill
posed and admits an infinite number of solutions. In order to identify
the discrete-time MIMO channel H(e’*) in (7.207) blindly, we need
to provide the following assumptions:

1. Theinput source {s;[n|},i =0,---, N — 1 areuncorrelated,
zero-mean, cyclostationary, and their statistics are unknown.
In addition, the input sources are colors and unidentical, that
is, R, (k) # Rs, (k) for al k.

2. The frequency-domain MIMO filtering matrix H () is a
full column rank for al w € [0, 27).
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indicates that the diagonal channels ;;[n| are unit impulse
responses while the cross-channels h;;[n], i # j, have at
least length 2.

4. The cross-channel h;;[n] are real or complex FIR filters
without common zeros and zeros on the unit circle.
Moreover, the cross-channel h;j[n] and h[n|, i # j,i # k,
do not have zeros in conjugate reciprocal pairs.

3. Hy(e’*) = 1foral wwheni = 0,1,---,N — 1. This
[n

Under the assumptions of 1 and 2, the relationship of the
identified MIMO channel filtering matrix H(e’~) and the channel
filter matrix H(e’*) can be obtained by

H(e’) = H(e’)P(e™) A (™), (7.208)

where P(e?*) is a column permutation matrix, and A(e’*)
is a complex diagonal matrix (see Bradaric et a. [27] for
proof). In other words, the identified MIMO channel filtering
matrix H(e*) is related to the channel filter matrix H(e/*) up
to a frequency-dependent permutation ambiguity P(e’) and a
frequency-dependent diagonal scaling ambiguity A(e/*).

Given assumption 4, itis clear that the ambiguity effect of A(e/)
can be eliminated. In this case, without the effect of the permutation
ambiguity, we can obtain the channel filter matrix H(e/*) by the
expression A

H(elw) = _ Rl (7.209)
dlag{ (eﬂw)}

wherediag {H(¢7*)} = A(e/). However, infact, H (/) # H(e#).
This is because the permutation matrix P(e’*) is unknown.

To obtain the permutation matrix P(e’~), we define the so-
caled invariance functions for each pair of rows (k,m), k,m =
0,1,---,N — 1, asfollows:

N-— ]:I jw
Ikangﬁ () (7.210)

i(e7)
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1 (7.212)

) (7.213)
ico Humi(e*)

Note that these quantities are the same based on either H(e/*) or
H(e?*).
Consider the quantity as

]ﬁl Hyj(e7) Hy i (e7). (7.214)

§=0

The phasein (7.214) equalsthe phase of 1§ (w; k, m) in (7.213) with
alinear phase. Thus, under assumption 4, (7.214) can be computed
from a scalar constant defined as [c(k, m)]?, since an FIR sequence,
which does not have zero-phase convolution components, can be
reconstructed within a scalar from its phase only. Then, we define
PY(w, k, m) to be the function that can be computed from the phase
of I (w; k,m):

PN (w,k,m) 2 e(b,m)? T] Hig(e") oy (), (7.215)

j=0
and we also define the quantity

‘1/2

My(w, k,r) = \PN IN(wi k)

K,
N—
= H‘Hk]e]“’ r=0,---,N—1.

(7.216)
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Consider a polynomial

Nf
ALYaY) =¥ 4 Y (DTN ik, (7217

=1

wherep = 1,2,---, N. Also let X?(e7*) denote the ith root of the
polynomia Q(INx™)in (7.217). Then X7 (e?*) will have one of the
following results:

Hkl(ej”) Hkg(ej“’) HkN(ij)
Hy(e7%)" Hyp(e*) " Hyn(e?)

(7.218)

For the previously selected r, we define the element of the
following set:

K(wmik,m) = {kjrjo. jn (Wmi k, 1)}, m=0,1,---, N —1,

(7.219)
where
M1 (Wi K, 1)
kiijo.in (Wmik,7) = 4 : —,
J1J2:-IN \lel(eﬂw)| .. ]Xfp(eﬂwﬂ o \Xﬁv(eﬂw)]
(7.220)

forjlvaa"'vjN = 1a27"'7N'
According to (7.218) with the assumptions 3 and 4, one and only
one element of the set K (w,,; k, ) isindependent of the following

frequency:

G, ()] = W = |Hia (™), (7:222)
X o) = D ey 7229

 |Hyn(e)]
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Thus, given alarge enough N, we obtain

K(wo; k,r) N K(wy kyr) NN K(wn-q; kyr) = {e(k,r)}.
(7.224)
Solving (7.224) yields the scalar constant ¢(k, r). Assume that there
is not ambiguity at the certain frequency. Hence, the cross-channel
Hy,(e7*) can be obtained by

Kivjorjn (@mi b, 1) = c(k, 1), (7.225)

Hig(e?m) = X1 (e7m). (7.226)

Therefore, an arbitrary cross-channel hy, [k, k,q = 1,2,---, N, of
the MIMO discrete-time channel can be recovered.

In summary, assume that an estimated MIMO channel filtering
matrix H(ej“) in (7.208) is available by using some kinds of blind
MIMO agorithms. Then the MIMO channel filtering matrix H(e’*)
can be obtained by the following procedure:

1. Determine H(e/) by using (7.209).

Compute the invariance functions ¥ (w; k, p) for p,k =

1,2,---,N.

Obtain PV (w; k,r) in (7.215).

Compute M, (w; k,r) using (7.216)

Determine the roots of the polynomia Q(7¥z") in (7.217).

Establish the set K (w; k,r) in (7.224) and (7.225) for w,,, =

(2r/N)m,m =0,1,2,---, N — 1.

7. Determine the scalar constant ¢(k,r) by finding the only
common element of K(wy,;k,7), m = 0,1,--- N — 1,
in (7.224).

8. Find Hy,(e’*m) by selecting the root in (7.225) and (7.226).

9. Finally compute hy,[k] based on the results of Hy,(e7“™).

N

o0k w

This blind identification procedure of the discrete-time MIMO
channel can achieve a perfect system reconstruction in the absence
of noise. However, in the presence of noise, this blind identification
method for the discrete-time MIMO channel is relatively sensitive.
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This is because this blind identification recovers the discrete-time
MIMO channel from phase, which can be very sensitive to error
with the presence of noisein the discrete-time MIMO channel.

7.7 Summary

In this chapter, channel estimation and blind identification were
introduced. We first presented the characteristics of discrete-time
channel models and estimators, with emphases on the maximum
likelihood, least squares, generalized least squares, and MMSE
estimators. In the special case with the noise covariance equa
to o?l, the least squares estimator has been shown as the best
linear unbiased estimator for the channel estimation. However,
in a general case, the best linear unbiased estimator is the
generalized least squares estimator. This can be found by using
the new transformed channel model given by (7.42). Second, we
introduced the fundamental theory of adaptive channel estimations
and algorithms. The LMS and RLS adaptive agorithms were
presented along with the analysis of their convergence, EMSE, and
misadjustment. The convergence rate of the RLS algorithm is much
faster than the convergence rate of the LMS algorithm. However,
the LMS algorithm has much fewer computation complexities
compared to the RLS algorithm. Furthermore, the LMS algorithm
does not have a stablity issue, while the RLS algorithm does. Thus,
the LMS algorithm is still the most often used adaptive agorithm
for the channel estimation. We aso described the mathematical
treatments of the discrete-time SISO, SIMO, and MIMO channel
models and estimations based on the HOS methods. The blind
identifications for discrete-time SISO, SIMO, and MIMO channels
were then introduced based on the second-order cyclostationary
statistics using observations of the received output signals.
Traditional adaptive channel estimation as widely used for
the wireless and wired digital communications uses a training
sequence or a known input signal source. This approach can
provide a reliable estimation method of an unknown channel for
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a communication receiver system. However, in a time-varying
channel, such as in fast mobile communication, the adaptive
approach may not be appropriate since this approach has to waste a
fraction of the transmission time and frequency bandwidth to use the
training sequence. An alternative way of estimating unknown SISO,
SIMO, and MIMO channels is to use blind identification. Blind
identification of the discrete-time SISO, SIMO, and MIMO channels
has been successfully reported based on either HOS or the second-
order cyclostationary statistics under the statistics assumptions.
However, for the MIMO channel, blind identification is still needed
to be further refined if one wishesto turn thisidentifiablity approach
into a method of robust channel estimation.

Designing a good channel equalizer usually requires a knowl-
edge of the channel characteristics, which involves channel esti-
mation and identification. In Chapter 8, we will introduce channel
equalizers for communication receiversin detail.
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Adaptive Equalizersin
Communication Receivers

8.1 Introduction

Adaptive equalization techniques have been developed over the
last three decades for high-speed, single-carrier and multicarrier
transmission over wireline and wireless channels, such as a twisted
pair of copper wires, coaxia cable, optical fiber, microwave line of
sight (LOS), and nonline of sight (NLOS). Coherence bandwidth
IS a statistical measure of the range of frequencies over which the
channel passes all spectral components with approximately equal
gain and linear phase [1]. If the modulation bandwidth exceeds the
coherence bandwidth of the wireline or radio channel, intersymbol
interference (1SI) occurs in such a way that modulation pulses are
spread in time. For such channels, adaptive equalization can provide
the means for combating 1Sl arising from the bandwidth or time-
dispersive characteristic of the channel and alow us to use the
available channel bandwidth more efficiently.

In a broad sense, the term adaptive equalization can be used to
describe asignal processing operation for minimizing 1SI. However,
not every signal processing operation that minimizes 1Sl is adaptive

257
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equalization. For instance, having prematched filters is not adaptive
equalization. In the wireless channel with random and time-varying
fading, a variety of adaptive equalization techniques can be used
to cancel interference while providing diversity. The diversity is
used to compensate for fading channel impairments, and is usually
implemented by using multiple antennasthat are strategically spaced
and connected to a common receiving system. In wireline channel,
adaptive equalization techniques can be used for combating ISl
arising from the bandwidth channel. In any case, equalizations must
track the characteristics of the channel and thus are referred to as
adaptive channel equalizations.

M odern communication systems require many signal processing
techniques that improve the link performance in a variety of
environments. One key part of signal processing techniques for
the digital communication receiver commonly uses an adaptive
equalization because it reduces ISl due to the limited channel
bandwidth. Therefore, the design of such adaptive equalization is
important since it controls the maximum quality attainable from the
view of acommunication receiver.

Equalization techniques for reducing ISl on limited bandwidth
channels can be subdivided into two general categories. linear
and nonlinear equalization. The basic linear equalization includes
transversal and lattice equalizer structure. The nonlinear equaliza-
tion methods may be subdivided into four types. decision feedback
equalization (DFE), maximum likelihood symbol detection (ML SD),
maximum likelihood sequence estimation equalizer (MLSEE), and
neural networks-based equalizer (NNE). The DFE usually has
transversal and lattice equalizer structures, while the MLSD and
ML SEE have atransversal equalizer structure along with a channel
estimator. The NNE has multiplayer feedforward networks, recur-
rent networks, and a lattice equalizer structure.

Linear equalizations have their numerical stability and faster
convergence. However, linear equalizations usually do not perform
well on bandlimited channels when the frequency passband has
a deep spectral null. In order to compensate for such distortion,
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linear equalizations attempt to place too much gain in the vicinity
of the spectral null, thereby enhancing the noise present in those
frequency bands. On the other hand, nonlinear equalizations are used
in applications where the channel distortion istoo severe for alinear
equalization to handle. However, nonlinear equalizations, such as
DFE, may have their numerical instability due to error propagation.
This leads to closed eye diagram in the digital communication
receiver.

A more robust equalizer is the least mean sguare (LMS)
algorithm-based equalizer where the criterion used is the minimiza-
tion of the mean square error (MSE) between the desired equalizer
output and the actual equalizer output. Another type of equalizer is
the recursive least squares (RLS) algorithm-based equalizer where
the least square error used is the time average. There are a num-
ber of variations of the LMS and RLS algorithms that are used for
adapting an equalizer.

A Dblind equalizer performs channel equalization without
a training sequence. In other words, the equalizer performs
equalization on the data without a reference signal. Instead, the
blind equalizer depends on the knowledge of the signal’s structure
and its statistics to perform the channel equalization. Hence,
bandwidth is not wasted by its transmission. The drawback of the
blind equalizer is that the equalizer will typically take longer to
converge compared to a trained equalizer. Although various blind
equalization agorithms exist, the one that has gained the most
popularity is the constant modulus algorithm (CMA). The CMA
minimizes the constant modulus cost function and then adjusts
the taps of the equalizer in an attempt to minimize the difference
between the sguared magnitude of the samples and the so-called
Godard dispersion constant. The CMA-based blind equalizer is
rapidly gaining popularity in the wired and wireless communication
receivers.

The organization of this chapter is as follows. In this section
we briefly introduced the background, overview, and types of
equalizations along with the corresponding adaptive algorithms.
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In Section 8.2, we describe basic theory of linear equalizers,
including channel equalizers and the mean square error criterion.
In Section 8.3 we present adaptive linear equalizers and adaptive
algorithms to adjust the tap coefficient for equalizers. In addition,
we discuss the training methodology and tap length selection
for adaptive equalizers. Subsequently, the fundamental fractionally
spaced equalizer (FSE) is given in Section 8.4. In this section,
we introduce the multirate communication system model and
multichannel model-based equalizers. The emphases are given to
the FSE minimum mean square error (MMSE), FSE-CMA, and
FSE constant modulus noise functions as well as FSE constant
modulus performances. Section 8.5 provides the theory of the
decision feedback equalizer (DFE). We also describe the MMSE
for DFE, predictive DFE, FSE-based DFE, and error propagation in
the DFE. The space-time equalizers, including the time-only, space-
only, and space-time MMSE equalizers, are given in Section 8.6.
The diversity equalizer is described in Section 8.7. We introduce the
basic theory of Rake receivers and equalized Rakereceivers. Finaly,
abrief summary is given in Section 8.8.

8.2 Linear Equalizer

The most common type of channel equalizer used in practice
to combat ISl arising from the bandlimited channel is a linear
equalizer. The linear equalizer can be implemented as a finite
impulse response (FIR) filter (also known as a transversa filter),
with adjustable filter tap coefficients. This type of linear equalizer
isthe simplest type available.

A basic structure of a linear transversal equalizer that is most
often used for equalization is shown in Figure 8.1. The input is the
sequence z[n] and the output is the estimated sequence d[n]. The
estimated sequence d[n] of the nth symbol is given by

d[n] = i by [K]z[n — K], (8.1)

where b, [k]| are the p filter coefficients of the nth symbol. Then
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bn[p' 1 ]
Threshold
detector
yln]
+
o
e[n]
Adaptive
algorithm d[n]

Figure8.1 A linear equalizer with atransversal filter structure.

the estimated sequence d|[n] is quantized to the nearest information
symbol to form a decision sequence y[n| by using a threshold
detector.

The threshold detector that may be a two-level or a multilevel
guantizer in the linear transversal equalizer is determined according
to the value of the input sequence x[n]. For example, if the input
signal z[n| isa+1 or —1 information sequence, then the two-level
quantizer can be used and is defined by

(1 dn) >0
ylnl = { ~1 djn] < 0. (82)

The threshold detector in (8.2) is also referred to as a dlice in some
literatures.

A switch as shown in Figure 8.1 is used to connect with the
decision sequence y[n| or a training sequence d[n|. When the
switch connects to the decision sequence y[n|, the linear transversal
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Figure 8.2 A block diagram of a communication system with a
linear equalizer.

equalizer isreferred to asthe blind equalizer. In this case, no training
sequence presents during the training mission. The error sequence
e[n] isformed by using the estimated sequence d[n] and the decision
sequence y[n|. When the switch connects to the training sequence
d[n], the linear transversal equalizer is called a no-blind equalizer.
In this case, the error sequence e[n] isformed by using the estimated
sequence d[n] and the training sequence d[n].

If the decision sequence y[n| is not equa to the estimated
sequence d[n], the error sequence e[n] is produced as follows:

eln] = y[n] — d[n]. (83)

The error sequence e[n] is used as an input for a block diagram
of adaptive algorithm, which controls the update of p tap-weight
coefficients of the FIR filter during the implementation.

8.21 Channe Equalizer

A linear equalizer can be used as a channel equalizer. Figure 8.2
shows a basic block diagram of acommunication system employing
a linear equalizer as the channel equalizer. The characteristics of
this linear equalizer can be illustrated from a point of view in the
frequency domain.
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The transmission section contains a transmitting filter with a
frequency response Hr(f) in cascade with a channel frequency
response C'(f) plus a noise n(t). The receiver section consists of
a receiver filter with frequency response Hg(f) in cascade with a
channel equalizing filter, which has a frequency response Hg(f).
Assume that the frequency response of the receiver filter Hz(f) is
matched to the transmitter filter response such that Hz(f) = Hi(f).
In addition, the product of frequency responses Hr(f)H:(f) is
designed in such a way that there is no ISl at the sampling instant,
t = kT, k = 0,1,..., and T the signal interval (+ is called the
symbol rate) when Hg(f)H;(f) = Hre(f), where Hre(f) isa
raised cosine pulse spectral characteristic.

Notethat the frequency response of channel isnot ideal asshown
in Figure 8.2. In order to eliminate the 1SI, the desired condition for
zero ISl is expressed as

Hy(f)C(f)Hr(f)HE(f) = Hre(f). (84)

Given Hi(f)H7(f) = Hgre(f), the frequency response of a linear
equalizer that compensates for the channel distortion is given by

Hp(f) = =&

= e (85

Then the magnitude of the linear equalizer frequency response
Hg(f) isasfollows:

1

H = 8.6
and its phase response is obtained by
Op(f) = —0.(f)- (87)

Thus, in this case, the linear equalizer is referred to as the inverse
channel filter for the channel frequency response. The inverse
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Figure8.3 A block diagram of adiscrete-time channel with azero-
forcing linear equalizer.

channel filter can completely eliminate 1SI caused by the channel
distortion because it forces the 1S to be zero at the sampling instant.
As a result, such a linear equalizer is aso called a zero-forcing
equalizer.

Figure 8.3 showsablock diagram of adiscrete-time channel with
a zero-forcing equalizer. Assume that the discrete-time channel is a
form of the FIR filter. Consequently, the transmission sequence g[n]
through the discrete-time channel results in an output sequence x[n]
that can be expressed as

N

ofin) = 3 elkgln — 4] + ], ©9)

where c[n| denotes a set of FIR filter coefficients of a discrete-time
channel having atransfer function C'(z) and n[n] isan additive white
Gaussian noise (AWGN). Therefore, the estimate sequence d[n] to
the threshold detector has asimple form

A

d[n] =q[n] +n[n], n=0,1,.., (8.9)

where ¢[n] is the desired transmission segquence.
Note that the FIR type of a zero-forcing equalizer usually does
not completely eliminate 1SI because it has afinite tap weight of the
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filter coefficients. However, the residual 1Sl can be further reduced
when the length of filter coefficients of the zero-forcing equalizer is
increased. In theory, the ISl trends to zero in the limit as the filter
length p — oo.

Example 8.1

Consider a channel distorted pulse response denoted by x(t) as the
input to the equalizer as shown in Figure 8.2. The pulse response
prior to the equalizer is given by the expression

(1) !

T 1+ (5t/T) (8.10)

where 1/T is the symbol rate. The channel distorted pulse is
sampled at the rate of 2/7" and equalized by using a zero-forcing
equalizer. We need to determine the three coefficients of a zero-
forcing equalizer.

Since X(f) = Hp(f)C(f)Hgr(f) and z(t) is the signa pulse
corresponding to X (f), then the equalized output signa pulse
responseis given by

N
y(t) = > cnlz(t — n1), (8.11)
n=—N
where 7 is the time delay between adjacent taps and is selected as
T = T/2. The zero-forcing condition can now be applied to the
samples of y(t) taken at times¢ = mT. These samples are

y(mT) = g: cn)x [mT—n(Zﬂ, m=0,%£1,+2,---,&£N.

n=—N
(8.12)
Notice that only 2N + 1 sampled values of y(t) can be controlled
since there are 2N + 1 equalizer coefficients. Therefore, the zero-
forcing equalizer must satisfy the conditions

y(mT) = i\[: cn)x {mT—n(i)]

n=—N
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0, m==41,42,.-- +N.
Equation (8.13) may be expressed in a matrix form as
y = Xc, (8.14)
where X isthe 2N + 1) x (2N + 1) matrix, cisthe (2N + 1) tap-
coefficient vector, and y isthe (2N + 1) column vector. Thus, a set
of 2N + 1 linear equations for the tap coefficient of the zero-forcing
equalizer can be obtained.
Specifically, the matrix X with elements of z(mT — nT/2),
where m and n denote the columns and rows, respectively, is given
by

- { l, m=0 (8.13)

4 4
29 229

%

X=| 2 1 & | (8.15)

4 1 4

229 26 29

The output signal vector of the zero-forcing equalizer is given as
y=1[0 1 0]". (8.16)

Thus, by inverting the matrix of X, the linear equationsy = Xc

can be solved to obtain the optimal solution for the zero-forcing

equalizer as

Copt = X7y
= [-0.266 1.073 —0.266]". (8.17)
8.2.2 Mean-Square-Error Criterion
The mean-square-error (M SE) criterion has seen widespread use for
optimizing the filter tap coefficients of the linear equalizer. In the
MSE criterion, the filter tap coefficients of the linear equalizer are
adjusted to minimize the mean of the square error. The cost function

¢ of the MSE criterion, which is formed based on Figure 8.4, is
defined as

§ = Efeln]e’[n]}

= B{jelnlP}
B{lqln] — dn]P} (8.18)
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Figure8.4 Anerror function of adiscrete-time channel and alinear
equalizer.

where the “ E” notation represents the expected value and the cost
function ¢ is a quadratic function of the filter tap coefficients of the
linear equalizer.

Assume that the linear equalizer has an infinite number of filter
tap coefficients. In this case, the estimate sequence d [n] in (8.1) can
be rewritten as

d[n] = ioj by [k]z[n — k). (8.19)

k=—o0

Thefilter tap coefficients b, [k] of the linear equalizer can be selected
so that the error sequence e[n] is orthogonal to the input sequence
x[n—k], —oo < k < oo, by invoking the theory of the orthogonality
principlein amean square estimation. Hence, we obtain the equation

E{e[n]z*[n—k]} =0, —oo<k < 0. (8.20)

Substituting the error sequence e[n] into (8.20) yields

E

(q[n] — i by [klx[n — k]) z*[n — k]] = 0. (8.22)

k=—o0
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This (8.21) isequivaent to

Z by [k|E{x[n—Fk]z*[n—k]} = E{q[n|z*[n—k]}, —oc0 < k < 0.

k=—o00
(8.22)
Using the expression of z[n| given in (8.8), we can rewrite (8.8)
in terms of the expression of z[n — k| as
N
zln— k] =Y _clllgln — k — 1]+ n[n — k. (8.23)
=0

Now, we use (8.23) to develop the momentsin (8.22) and obtain

E(z[n —klz*[n —k]) = Z ZO JE{lqln —k =1}
+Nods. (8.24)
and
E (q[n)z*[n — k]) = ]; ¢'[—k]E{q[n]g*ln —k—1]}.  (8.25)

For mathematical convenience, assume that the recelved signa
power isunity. Thisimpliesthat the expected values of |g[n —k —1]|?
and ¢[n]q*[n — k — ] are also unity.

Substituting (8.24) and (8.25) into (8.21) yields

fj boli] (Z c[k] S ¢ [—4] + Noakj) =3 [k, (8.26)

i=—o0 k=0 4=0 k=0
Taking the z-transform of both sides in (8.26), with a time reversal
of the z-transform properties (see Appendix A), we obtain
B(2)[C()C™(1/2) + No| = C*(1/2), (8.27)

where C'(z) isthetransfer function of the channel and N, isthe noise
spectral density. Therefore, the transfer function B(z) of the linear
equalizer based on the M SE solution is obtained by

C*(1/z2)
C(2)C*(1/2) + Ny

B(z) = (8.29)
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Given thetransfer function B(z) of thelinear equalizer in (8.28),
the minimum value of the cost function & can be used for a measure
of theresidual 1Sl and additive noise. In this case, the minimum cost
function ¢ of the M SE criterion in (8.18) can be rewritten as

Emin = E{|e[n]]*}
= Een]g*[n]} — E{e[n]d*[n]}
= E{e[nlq*[n]}, (8:29)

since E{e[n]d* [n]} = 0 by leveraging the theory of orgothonality
conditionsgiven in (8.20). It follows that the minimum cost function
£ isexpressed as

= E{|qn])*} - Z bn[K]E{x[n — K]q"[n]}

k=—00
= 1- i b [K] i cl4]. (8.30)
k=—o00 j=—00

Note that the summation in (8.30) is the convolution of filter tap
coefficients b, [k] of the equalizer with the channel coefficients c[n|.
If we denote F'(z) as the convolution of these two sequencesin the
z-domain, then

F(z) = B(2)C(2)
C(z)C"(1/z)
C(2)C*(1/2) + Ny
Now let the term fo = >332 bu[k] 2552 clj]. Thus, by the
changein variable z = ¢/“7 in (8.31), the term f, is obtained by
T |Ceh))?
fO - 7/ jwT |2
2 —7/T ’0(6] )‘ +N0
Thus, the desired MM SE £,/1/5 Of the linear equalizer is obtained
by substituting (8.32) into the summation in (8.30)
_ L /”/T Cle™ )]
21 J—myr |C(e34T) |2 + Ny

(8.31)

dw. (8.32)

EMMSE dw
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T /T Ny
=5l Ol N 839)
where C(e/“T) is the frequency response of the discrete-time
channel and N, is the noise spectral density.

Weobservethat if C'(e’“7) = 1 thenthe|Sl iseliminated. In this
case, the MM SE g]V[MSE is

No
14+ Ny

(8.34)

gMMSE =

Equation (8.34) indicates that 0 < &ymse < 1. As aresult, the
relationship between signal-to-noise (SNR) and MM SE &5k 1S
obtained by

1 —
SNR — L= Swnise. (8.35)
fMMSE

Substituting (8.34) into (8.35) obtains

1
SNR = Ny (8.36)
The relationship in (8.35) also holds even if there is residua 1Sl in
addition to the noise.

We have derived the relationship of MMSE &5//5 and SNR
to the case in which the linear equalizer is with infinite filter tap
coefficients. As aresult, these expressesin (8.33), (8.34), and (8.35)
can be serviced as upper bound limitations of the MM SE and SNR
in theory for the linear equalizer. In the next section, we turn our
attention to the case in which the transversal type of an equalizer
has a finite tap coefficient, along with adaptive algorithms.

Example 8.2

Consider an equivalent discrete-time FIR channel model including
two components ¢ and b, where ¢ and b satisfy the condition
a® 4+ b*> = 1. Determine the MMSE and the corresponding output
SNR of the linear equalizer.
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The transfer function of the discrete-time channel in the
z-transfer domain is given by

C(z) =a+ bz, (8.37)
and then
IC(x)]F = C(z)C(1/2)
= 1+4abz+a*bz "t (8.38)
The corresponding frequency response is obtained as
|C(eT)? = 1+ab*e™” + a*be T
= 1+ 2|a||b] cos(wT + ¢), (8.39)

where ¢ isthe angle of ab*.

The MM SE isgiven by (8.33) if alinear equalizer has an infinite
number of coefficients. Evaluating the integral in (8.33) for the
|C(e7*T))? in (8.39) yields

3 L /W/T o d
- - w
MAMSE 21 J—my7 |C(e7¥T)|2 + Ny
= No (8.40)
[N +2No + (ol = )22
Inthe special case, if a = b = 5, thenthe MMSE is
N,
0 (8.41)

gN[MSE = T
/NG + 2N,

and the corresponding output SNR is obtained by (8.35)

SNR - 1 —&vmse

gMMSE

2 1/2
- (1+2) -1
<+N0>

2
\ o N 1. 8.42
N07 0 K ( )

Q
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Notice that this result in (8.42) is compared with the output SNR
of Nio given in the ideal case of a channel without I1SI. A significant
loss in SNR occurs from the discrete-time channel model. This is
because the characteristic of the discrete-time channel model has a
spectral null at w = 7/7 whenusinga = b = 1/v/2.

8.3 AdaptiveLinear Equalizer

An adaptive linear equalizer can be considered a time-varying filter
with the tap weights of the filter coefficients that must constantly
be adjusted at a time instant. For a time-varying channel (wireless
channel) or a channel with unknown characteristics (wireline
channel), an adaptive linear equalizer is designed to track the
channel variationsin such away that (8.5) isapproximately satisfied.

The general structure of an adaptive linear equalizer is again
shown in Figure 8.1, where the n is used to denote a discrete-time
index. Note that there is only one input z[n| at any time instant.
The value of the input x[n] depends on the instantaneous state of
the wireless channel or the wireline channel and the particular value
of the noise. Hence, the input signa x[n] is a random process.
Practically, the adaptive linear equalizer as shown in Figure 8.1 has
p — 1 delay elements, p — 1 complex additions, p taps, and p tunable
complex multipliers, which are sometimesreferred to astap weights.

The tap weights of the transversal filter in the adaptive linear
equalizer, which are described by their physical location in the
delay line structure, have a subscript n to explicitly show that they
vary with the discrete-time index. These tap weights are updated
continuously by using an adaptive algorithm, either on a sample-by-
sample basis or on aframe-by-frame basis. The latter caseisreferred
to as the block adaptive filter [2].

The operation of adaptive algorithm is controlled by the error
sequence e[n]. The error sequence e[n| is produced by comparing
the estimate output sequence of the linear equalizer d[n] with
desired signal sequence d[n| that is an exact scaled replica of the
transmitted signal sequence ¢[n|. Then adaptive algorithm uses the
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error sequence e[n| to minimize a cost function, which usualy isan
MSE.

To evaluate the adaptive linear equalizer in Figure 8.1, we define
the input sequence x[n| to the adaptive linear equalizer as a vector
X[n] where

X[TL] = {.CE[TL],$[71 - 1],33[71 - 2]7 U ,x[n —Dp+ 1]}7 (843)
and the tap weights of thefilter coefficients in avector form as
b, = {b,[0], b,[1],0,[2], - -, bu[p — 1]} (8.44)

The estimate output of the adaptive linear equalizer is obtained in a
vector notation by X
d[n] = bl x[n]. (8.45)

Thus, the error signal e[n] iswritten

~

eln] = d[n]— d[n]
= d[n] — blxn]. (8.46)

Taking the expected value of the squared error signal |e[n]|? yields

¢ = E{le[]]"}
= E{ld[n] — b,x[n]*}

= B{|d[n]]*} - 2E{x[n]d"[n]}b,
+b? E{x[n]x"[n]}b,, (8.47)
where it is assumed that the tap weights b,, of the filter coefficients
are not time-varying and have converged to the optimum in a

sense. If the input signal x[n| and desired signa d[n] are stationary,
then (8.47) can be rewritten as

¢ = E{|d[n]|*} — 2rg.[n]b, + bIR,[n]b,, (8.48)

wherer 4, [n] = E{X[n]d*[n]} isthe product of the cross-correlation
function of the input signal x[n] and the desired transmitted signal
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d[n], and R,[n] = E{x[n|x"[n]} is the autocorrelation function of
the input signal x[n|.

Note that the MSE ¢ in (8.48) is a multidimensional function. If
the equalizer uses two tap weights, then the function of the MSE ¢
is a bowl-shaped paraboloid with plotting the MSE ¢ on the vertical
axis and tap weights b,,[0] and b,,[1] on the horizontal axes. If the
equalizer uses more than two tap weights, then the MSE function is
a hyperparaboloid. In al cases, Widrow and Stearn [3] showed that
the M SE function is concave upward so that a minimum value may
be determined.

To minimize the M SE function £ in (8.48), the derivate of £ with
respect to the weight vector b,, that is equal to zero yields

In this case, (8.49) is the same as the Wiener-Hopf solution that was
shown in Chapter 7. Aslong as the matrix R, [n] is invertible, then
the optimum weight vector b,, for the MM SE of alinear equalizer is
obtained by

b, = R [n]r 4 [n]. (8.50)

Thus, by minimizing the MSE function £ in (8.48) in terms of the
weight vector b,, of the filter coefficients, it becomes possible to
adaptively tune the tap weights of the linear equalizer to provide
a flat spectral response with minimum ISI for a communication
receiver. This is due to the fact that minimizing the MSE function
¢ leads to an optimal solution for the tap-weight vector b,,.

8.3.1 Adaptive Algorithmsfor an Equalizer

An adaptive algorithm for alinear channel equalizer is required for
channels whose characteristics are unknown and change with time.
In this case, the I1SI varies with time. It requires a specific adaptive
algorithm to update the tap weights of the channel equalizer to
reducethel Sl and track such time variationsin the channel response.
If the filtering characteristics of the channel are known and time-
invariant, then the tap weights of the equalizer need be updated only
once. To this extent, the adaptive agorithm of the equalizer is still
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needed to update the tap weights of the equalizer to compensate
the channel distortion at the beginning of the transmission session.
Therefore, the equalizers use adaptive algorithmsto acquire thefilter
coefficients of the equalizer for a new signal, and then track it as
needed.

In Chapter 7, we introduced methods with adaptive algorithms
with great detail for adapting the tap weights of thefilter coefficients
for adaptive filters. These methods and agorithms include the
Wiener-Hopf solution and the LMS and RLS algorithms, which
have been extensively used for estimating optimal filter coefficients
and/or adjusting the filter coefficients of the equalizer. Other
algorithms also exist to adapt the filter coefficients such as Kalman
filtering. For further algorithm developments, see [2—6].

This section outlines some practical issues of the adaptive
algorithms with respect to equalizer algorithm performance. There
are four factors that usualy determine the performance of an
adaptive algorithm:

e Convergencerate

Thisfactor isreferred to as the number of iterations required
for the adaptive algorithm of the equalizer in response to sta-
tionary inputs to converge close enough to the optimal solu-
tion or the Wiener-Hopf solution. A fast rate of convergence
allows the algorithm to rapidly adapt the tap weights of the
equalizer in a stationary environment of unknown statistics.
In addition, it enables the algorithm to track channel varia-
tions while operating in a time-varying environment.

e Misadjustment
This parameter is used to measure the amount that the fi-
nal value of the M SE, averaged over an ensembl e of adaptive
equalizers, deviatesfrom the MM SE in an optimal sense. The
MSE islarger than the MM SE by an amount known asthe ex-
cess mean square error (EM SE). Hence, the misadjustment is
theratio of the steady-state value of the EM SE to the MM SE.
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e Stability
In fixed-point implementation, some of the adaptive algo-
rithms of the equalizers are considerably sensitive to round-
off noise and quantization errors. These kinds of errorsinflu-
ence the stability of the algorithm for the equalizers during
the real-time operations.

e Computational complexity
This means the number of operations needed to make one
iteration of the adaptive algorithm for the equalizer. A small
number of operations result in less cost for the product.

In practice, the trade-off analysis is usually measured in terms
of hardware complexity, chip area, processing consumption, and
cost, in addition to convergence rate, misadjustment, stability, and
computational complexity along with the equalizer structure and its
adaptive algorithm. These factors are directly related to the filter
length of the equalizer and which implementation structureis used.

In wireless communications, the characteristics of the radio
channel and intended use of the subscriber equipment is also a key
element. The speed of the mobile unit determines the channel fading
rate and the Doppler spread that is directly related to the coherence
time of the channel [7]. Hence, the choice of an adaptive algorithm
along with its corresponding rate of convergence for a channel
equalizer depends on the channel data rate and the coherence
time[6, 7].

In wireline communications, the characteristics of the wireline
channel, such as copper-wired telephone channel, are a predominant
factor since the channel distortion is severe. The topology of a
copperwire has complexities that usually contain multibridge taps
and different types of copperwires. In addition, crosstalk between
pairs in a multipair copperwire is the dominant impairment in any
digital subscriber loop (DSL) system. The cause of this crosstalk is
capacitive and inductive coupling between the wires [8]. Therefore,
the choice of an adaptive equalizer structure and its algorithm, along
with its corresponding convergence rate and numerical stability, is
important for a channel equalizer inaDSL system.
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8.3.2 Training Methodology

An adaptive algorithm requires knowledge of the " desired” response
to form the error signal needed for the adaptive equalizer. In theory,
the transmitted sequence is the desired response for an adaptive
equalizer. In practice, however, the adaptive equalizer is physically
separated from the transmitter of itsideal desired response since the
adaptive equalizer islocated in the communication receiver. For the
adaptive channel equalizer, there are two methodsin which areplica
of the “desired” response may be generated locally to be used with
the error signal in the communication receiver.

1. Training method

This method is used during an initial training phase that
takes place when the communication transmitter and re-
ceiver first establish a connection. A replica of the desired
response is used from the signal sequence d[n], as shown
in Figure 8.1, when the transmitter sends a sequence that is
known to the receiver. In fact, the generator of such a refer-
ence signal must be synchronized with the known transmit-
ted sequence. In addition, Haykin [2] suggested using a test
signal containing a pseudonoise sequence with a broad and
even power spectrum because the pseudonoi se sequence has
noiselike properties and a periodically deterministic wave-
form.

2. Decision-directed method

This method isto use the output sequence y[n| of the thresh-
old device in the receiver in Figure 8.1, as the transmitter
sequence during the normal operation. Accordingly, if the
output y[n] is the correct transmitted sequence, then it may
be used as the desired response to form the error sequence
for the purpose of the adaptive equalizer. This method is
said to be decision-directed because it is based on the de-
cisions made by the communication receiver. This approach
isalso referred to as blind training since the communication
receiver does not need a known transmitted sequence.
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Note that, in the training method, the adaptive equalizer
algorithm used to adjust the tap-weight settings of the equalizer
corresponds mathematically to searching the unique minimum of
a quadratic error-performance surface. The unimodal nature of this
surface assures convergence of the adaptive algorithm. On the other
hand, the decision-directed method modifies the error performance
by using the estimated and unreliable output sequence into a
multimodal one that may result in complex behavior. Haykin [9] and
Miao [10] indicated that there are two types of error performance
within local minima: (1) desired local minima, whose positions
correspond to tap-weight settings, yielding the same performance
as we obtained by using a known transmitted sequence; and (2)
undesired local minima, whose positions correspond to tap-weight
settings, yielding inferior equalizer performance.

A poor choice of the initial tap-weight settings may cause the
adaptive equalizer to converge to an undesirable local minimum
and stay there during an operation of the decision-directed method.
Generally, for high performance, it is recommended that a linear
adaptive equalizer be trained before it is switched to the decision-
directed method. However, in a nonstationary and time-varying
environment, it is impossible to consider the use of a transmitted
training sequence. In such a case, the linear adaptive equalizer has
to compensate the communication channel in an unsupervised mode.
Asaresult, inthis case, the operation of alinear adaptive equalizer is
referred to as blind equalization. It is clear that the design of ablind
equalizer ismore challenging than a conventiona adaptive equalizer
because the transmitted sequence does not exist by some practical
means.

8.3.3 Tap Length of Equalizer Coefficients

The computational complexities of a linear adaptive equalizer
mainly depend on the tap length of the equalizer coefficients,
which impacts the equalizer on the entire demodulator in the
communication receiver. This brings into high profile the question
of how long the equalizer’'s filter length must be to satisfactorily
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compensate for the dispersion of the channel. In theory, the
symbol-based (sometimes called T-spaced) linear equalizer needs
an infinite-length tap-weight setting to achieve the optimal solution
for the equalizer. However, in fact, there are no clear answers
available because the equalizer length depends on the type of
channel to be equalized and the sample rate with respect to the
transmitted signal bandwidth.

In practice, there are two approaches to selecting an equalizer
length for compensating the dispersion of the channel [11]. The
first method is to build a prototype and test the characteristics of
the actual channel. For example, in a DSL system, the equalizer
length can be determined in thisway. The second method isto select
the equalizer length with a presumption that the pulse response of
the equalizer’s convergence will approximately be the inverse of the
channel bandwidth. In this case, if the channel can be well modeled
with afinite length of a pulse response, then the equalizer length will
often need to be three to five times longer than the delay spread of
the channdl.

Theoretically, however, this is not always true for an equalizer
with fractional spacing based on a multichannel view of an
oversampled signal. The fractional spacing changes the view
of the equalization problem. Specifically, the length of the
fractionally spaced equalizer can be made shorter and the associated
computation may be substantially reduced. In the next section, we
will introduce the theory of the fractionally spaced equalizer.

8.4 Fractionally Spaced Equalizer

In the previous sections, we have discussed the symbol-based (or
T-spaced) linear equalizer structures, in which the spaces between
adjacent equalizer taps are selected at the symbol rate. However, it
has been shown that the symbol-based equalizer is very sensitive
to the choice of receiver sampling time and phase [12-14]. Thisis
because the received signal spectrum of the symbol-based equalizer
is dependent on the choice of the sampling delay. In generdl,
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the symbol-based equalizer cannot compensate for the channel
distortion inherent in the received signal spectrum associated with
the sampling delay. This may result in a significant degradation to
an equalizer performance.

In contrast to the symbol-based equalizer, it has been well
recognized that a fractionally spaced equalizer (FSE) usually
outperforms a symbol-based equalizer [15, 16] because of its
insensitivity to receiver sampling time and phase. In fact, an FSE is
based on sampling the incoming signal at least asfast asthe Nyquist
sampling rate.

Assume that the transmitted signal contains a pulse having a
raised cosine spectrum with a rolloff factor (5. Thus, its spectrum
isgiven by
1+

2T
In this case, the incoming signal can be sampled at the
communication receiver with a Nyquist sampling rate

FS = 2Fmax
1+6

= — (8.52)

and then passed through a channel equalizer with an adjacent tap
spacing at the reciprocal of the Nyquist sampling rate 7'/ (1 + (3). If
the rolloff factor (3 is equal to 1, then we would refer the equalizer
to aT'/2-spaced equalizer. If therolloff factor 5 isequal to 0.5, then
we would have a 27'/3-spaced equalizer, and so on. Generally, if
an equalizer tap spacing has MT /N, where M and N are integers
and N > M, then the equalizer is referred to as M1 /N-spaced
fractionally spaced equalizer. However, in practice, a 1'/2-spaced
FSE iswidely used in many applications.

Fraz = (851)

8.4.1 Multirate Communication System M odel

Consider the single-channel communication model with additive
noise as shown in Figure 8.5 for a pulse amplitude modulation
(PAM), phase-shift keying (PSK), or quadrature amplitude modula-
tion (QAM) signal along with a7’/ L fractionally spaced equalizer,
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Pulse shaping | AD R Fractlonall.y R l L
and channel space equalizer
Xln] yln]
Symbol weighted F,=T/L

impulse train

Figure 85 A block diagram of a communication system model
with additive noise in cascade with a fractionaly
spaced equalizer and a downsampling by L.

where L isan integer. This model assumes that a single continuous-
time filter is used for modeling the dispersive effects of the trans-
mitter's pulse shaping and output filtering, channel propagation,
and the receiver input filtering. A symbol sequence x[n], which is
spaced 7' seconds apart and weighted by the amplitude and phase
of the symbols, is transmitted through a pulse shaping filter, modu-
lated onto a propagation channel, and demodulated at the receiver.
We also assume that all processing between the transmitter and re-
ceiver islinear time-invariant (LTI) and can thus be described by the
continuous-time impulse response ¢(t). The received signal =(t) is
aso corrupted by additive channel noise denoted by (). The output
of this impulse-driven communication channel is then sampled at a
rateof L /T Hz by using an A/D converter and applied to afractional
spaced equalizer with complex-valued pulse response. The output of
thefractionally spaced equalizer isthen decimated by afactor of L to
produce the T'-spaced output sequence y[n]. Decimation processing
is accomplished by disregarding alternate samples, thus producing
the baud-spaced “ soft decisions’ y[n] every T' seconds.

The partially continuous model of the pulse shaping and channel
block as shown in Figure 8.5 can be accurately replaced by using the
discrete-time multirate system model c[n] as shown in Figure 8.6.
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v[n]
_»T Ll Discrete-time /L .| Fractionally _’l L Ly
model c[n] T\ space equalizer
X[l’l] d[Il] 1"[1’1]

input
sequence F=TIL

y[n]

Figure 8.6 A discrete-time multirate communication system
model, with additive noise in cascade with a fraction-
aly spaced equalizer and a downsampling by L.

The PSK, PAM, or QAM symbol value, x[n], is impressed on
unit pulses in which each pair is upsampled by L. Then this zero-
filled sequence is applied to a discrete-time system model ¢[n] that
models the channel propagation and filtering effects represented
by the continuous filter. The received signal r[n] is corrupted by
additive channel noise denoted by the discrete-time random process
v[n] = wv[n(T/L)]. Assume that the discrete-time system model
c[n] in Figure 8.6 is an FIR filter with filter order of L(L. — 1),
where L. is the channel length. The output of the discrete-time
communication system model isamultirate signal that is used as an
input for the fractionally spaced equalizer. In addition, we assume
that the fractionally spaced equalizer has the tap-weight order of
L(L.—1),where L. isthe equalizer length. Then the full rate output
of the fractionally spaced equalizer is downsampled by afactor of L
to create the 7-spaced output y[n| every T" seconds.

The symbols y[n] are the estimated value from the r[n] by
subsampling the output of y[n]. Mathematically, the relations of the
input z[n] and the output r[n] are given by

rln] = kz_: c[n — kL|x[k] + v[n]

= d[n] + v[n], (8.53)
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and the estimated symbols of the fractionally spaced equalizer are
then obtained by

N

y[n] = Z: blk|r[nL — k. (8.54)

Note that the observations r[n] are cyclostationary [17]. In other
words, the correlation C,.(n, m) = E{r[n]r*[n+m|} isperiodicaly
time-varying with a period of L. If we assume that the random
process of the input sequence x[n| is zero mean and variance
C.(0), with independent identical distribution (i.i.d.), and is also
independent of the noise v(n), then it follows from (8.53),

N
Cr(n,m) = C,(0) > c[n—kL]c*[n+m—kL]+C,(n,m). (8.55)
k

Thus, the impulse response c[n| of the discrete-time channel can
be identified from the C,.(n,m) by using (8.55). However, Tong
et al. [18] and Ding et a. [19], amost at the same time, showed
that the transfer function of the channel C'(z) should satisfy the
identifiability condition that there are no zeros of the channel transfer
function C'(z) equispaced on a circle with angle separating one
zero from the next.

Thisapproach in (8.55) is sometimes referred to as blind channel
identification. Note that fractionally spaced equalization can be
performed by adopting an appropriate performance criterion aslong
as the impulse response ¢[n| of the channel is estimated. In the
next section, we introduce the requirement of a fractionally spaced
equalizer to meet the zero-forcing criterion so that the entire transfer
function can be identified based on the multichannel model, given
the estimated impulse response c[n| of the discrete-time channel.

8.4.2 Multichannel Model-Based Equalizer

The discrete-time multirate communication system model in
Figure 8.6 uses the discrete-time channel model with the channel
coefficients c[n] = c[n(T'/L)], the discrete-time fractionally spaced



284 Signal Processing in Digital Communications

channel equalizer with the tap coefficients bjn] = b[n(T/L)],
and the discrete-time random process of additive noise nn| =
n[n(T/L)]. Since there is zero padding of the input sequence x[n]
and decimation at the output sequence y[n], this allows us to redraw
the multirate communication system model in Figure 8.6 as the
multichannel model with single-rate of 1/7" structure as shown in
Figure 8.7. The discrete-time multirate channel can be broken into
L subchannels, each of which consists of a finite impulse response
(FIR) filter with the filter order of L.. The coefficients of each
FIR filter are a decimated version of the pulse response of the
discrete-time multirate channel. The coefficients cq[n] of the first
subchannel are equal to the discrete-time channel c[nL], where
n=0,1,2,---,N/Land N/L is an integer. The coefficients ¢, [n]
of the second subchannel are equal to c[nL + 1|. The coefficients
c—1|n| of the last subchannel are equal to ¢[nL + L — 1]. That is,
ci[n] = ¢[nL+i],wherei = 0,1,2,---, L—1. Similarly, the discrete-
time fractionally spaced equalizer is also decomposed into the L
subspaced equalizers, b;[n] = bjnL+i], wherei =0,1,2,---, L—1,
and each one is built based on the decimation versions of the pulse
response of the fractional spaced equalizer.

Now the question is. Under what conditions can all the
subspaced equalizers, b;[nL + i], be chosen so that the propagation
channel and other linear filtering embodied in ¢;[nL + i] can be
perfectly equalized? The performance criterion is to require the
subspaced equalizers to achieve the zero-forcing condition. In other
words, this requires the transfer function from the input signal x[n]
to the output signal y[n] to be the identity system as shown in
Figure 8.6. If the zero-forcing condition is met, then the ISI can be
completely removed. In this case, for the multichannel system in
Figure 8.7, the solution of the zero-forcing condition in the discrete-
time domain is given by

i { X_j cilk]bi[n — k}} = 8[n — d], (8.56)

=0 \ k=0

where d is a positive integer that denotes the achieved delay. In
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cri[n] ~ bei[n]

Figure 8.7 A discrete-time multichannel model-based fractionally
spaced equalizer.

the frequency domain, the zero-forcing condition in (8.56) can be
expressed as

L-1

> [Bu(e)Cil(e?)] = e, (8.57)

k=0

If the channel c[n| satisfies the identifiability condition, then the
matrix of linear equations in (8.56) is a full rank [20]. Hence, the
solutions for the subspaced equalizers b[m] exist.

In practice, a common choice of L is equal to two for adaptive
equalizers. In this case, the A/D converter in a communication
receiver runs at twice the symbol rate, such as 2F, resulting
in equalizer taps spaced 7'/2 seconds apart. From the previous
discussion, this T'/2-spaced equalizer can be drawn as two
subchannels, as shown in Figure 8.8. Given the subchannel with even
coefficients cy[n] = ¢[2n] and odd coefficients ¢;[n] = c[2n + 1],
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Figure 8.8 A two-channel system of a 7'/2 fractionally spaced
equalizer.

wheren = 0,1,---, N, the equalization objective is to choose the
decomposed equalizer subchannel impulse responses by[n| = b[2n|
and b, [n] = b[2n + 1] such that the output signal y[n| approximates
the unit delay u[k — d] as closely as possible, where d is a positive
integer for the achieved delay.

The desired result of the zero-forcing condition in the discrete-
time domain is obtained by

HMZ

[k]bo[n — k —|—ch |bi[n — k] = d[n —d], (8.58)

or equivalently in the frequency domain as
Co(e?)By(e?*) + C1(e) By (e/%) = eI, (8.59)

Either (8.58) or (8.59) is referred to as the zero-forcing 7/2
fractionally spaced equalizer since the sum of the two convolutions
is forced to zero for al delays except d. Thus, a channel can
be perfectly equalized if two conditions can be met as follows:
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(1) the two subchannels do not have common roots; and (2) the
decimated equalizer order L. must at least be equal to or greater
than the decimated channel order L. — 1. This indicates that if
the delay spread of a channel can be measured or modeled to be
less than some bound, then the fractionally spaced equalizer order
can be shorted. Thisis contrast to the capabilities of a baud-spaced
equalizer in which the zero-forcing cannot be achieved with afinite-
length equalizer.

8.4.3 FSE-MM SE Function

Referring to Figure 8.6, in the presence of noise, the error signal can
be formed as follows:

eln] = y[n] — z[n —d|, (8.60)

where d denotes a particular delay. We want to minimize the
expected squared magnitude of the recovery error in (8.60) so that
this criterion can be interpreted as the best compromise between 1S
and noise amplification in an optimal sense of MM SE.

To formulate this error function more precisely, we define the P
T-spaced samples of the source sequence into the vector

x[n] = [z[n), z[n — 1], 2[n — 2], -+, z[n — N|]*, (8.61)

and the corresponding 2N fractionally sampled values of noise into
vector

vin] = [v[n—1],v[n—3],v[n—=5],---,v[n —2N + 1],
vn],v[n —2],v[n —4],---,v[n — 2N + 2]]7, (8.62)

where the odd noise samples are followed by the even noise samples.

We dso define the P x N baud-spaced block Toeplitz
convolution matrices C.,.,[n] and C,4q[n] for the even and odd
channel coefficients, respectively, as shown in Figure 8.8, where
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P =M+ N + 1, asfollows:

c[0] 0 0
c[2] c[0]
: c[2] 0
2l— | 2N —2] : 0
Ceven[n] 0 c[2N — 2] c[0] - (869
0 c[2]
0 : :
0 0 o 2N —2] |
and
o[1] 0 0
c[3] c[1]
: c[3] 0
| 2N —1] : 0
Coaa[n] 0 O 1] 1] (8.64)
0 c[3]
0 : :
0 0 o 2N —1] |

Given afractionally spaced equalizer with afinite length of 2V, we
form the even and odd taps of equalizer into the vectors, b.,.,,[1] and
boaa[n], respectively,

beven[n] = [b[O], b[2]7 b[4]7 ) b[ZN - 2”T7 (8-65)

and

bodd[n] = [b[l]a b[g]a b[5]a T >b[2N - 1]]T (866)
Defining the compound matrix in (8.63) and (8.64) and vector
quantitiesin (8.65) and (8.66) is

C[n] = [Ceven[n] Coaaln]], (8.67)
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and
b[n] = [Deven[n] boaa[n]]”. (8.68)

With these quantities from (8.61) to (8.68), the output sequence
of the fractionally spaced equalizer can be written as

y[n] = xT[n]C[n]b[n] + v'[n]bln]. (8.69)
Hence, substituting (8.69) into (8.60) yields

e[n] = x'[n]C[n]b[n] + v’ [n]b[n] — z[n — d
X" [n](C[n]b[n] — ha[n]) + V" [n]b[n],  (8.70)

wherehy[n| = [0,---,0,1,0,---,0]” isthe so called “ zero-forcing”
system impul se response under the perfect source recovery [21].

Assume that the signal processes and noise arei.i.d. and jointly
uncorrelated with respect to variances o2 and o2, respectively. Then
the expected value of the magnitude-squared of the recovery error is
obtained by

E{le[n)*} = o3(Clnlb[n] — ha[n])" (C[n]b[n] — ha[n])
+a2b"[n]bln], (8.71)

where (-)# in the matrix denotes the Hermitian transpose. Therefore,
the normalized mean square error (NMSE) cost function of the
fractionally spaced equalizer based on (8.71) is

¢ _ E{le[n]]’}
NMSE = o2
= (Cnb[n] — hy[n])"(C[n]b[n] — hy[n])
Z; b [n]b]n). (8.72)

The &yvuse in (8.72) is the sum of a zero-forcing measure,
including the distance between the global channel equalizer impulse
response C|n|b[n] and the optimal zero-forcing h,[»], and of anoise
enhancement measure Z:b’[n]b[n], which is the amount of the
received noise by the equallzer
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Minimizing &vase in (8.72) with respect to the equalizer
coefficient vector b[n| yields

::2chqcpqmny—2chﬂhdn]+2Z§bm] (8.73)

xT

afN MSE

ob[n]

Equating (8.73) to zero, we obtain

_ CYnlhy[n]
mm_cﬂmqm+§r (8.74)

Substituting (8.74) into (8.72) yields the MM SE of the fractionally
spaced equalizer as

C[n]C[n]
C"[n]Cln] + %I

Evmse = hYf (l — ) h,. (8.75)

Note that (8.75) still contains afunction of system delay d. In other
words, the degree of the system delay d can affect the MMSE
performance of afractionally spaced equalizer. Johnson [22] showed
that the optimum system delay d corresponds to the index of the
minimum diagonal element in (8.75). Thus, the optimal system
delay d isformally given by

B . B C[n|C"[n]
d = arg min, {I CnICln] 1 %I } . (8.76)

Therefore, we recommend that the preselection of the system delay
d is important for a fractionally spaced equalizer in terms of
the MMSE performance because it describes the typical adaptive
equalization scenario when atraining sequence is available.

Example 8.3

Assume that an FSE has an infinite-length tap coefficient and
L is an integer of the oversampling factor (refer to Figures 8.6
and 8.7). The sampled output of the antidias filter can be
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decomposed into L interleaved sequences with the z-transforms
Qo(2),Q1(2),Q2(2),---,Qr_1(z) at asampling rate of 1/7", where
Q:(z) corresponds to the sample sequence ¢[kT — iT/L]. Also,
assume that V;(z) is the transform of a symbol rate sampled
white noise sequence with autocorrelation function R,,,(z) = %
per dimension, and these noise sequences are independent of one
another. Determine the MM SE of the infinite-length FSE.

The interleaved sequences H;(z) can be expressed as

Qi(2) = Ci(2) X (2) + Vi(2), (8.77)

where C;(z) is the transform of the symbol-rate-spaced ith phase of
the ¢(t) channel sequence (kT + (¢ — 1)T'/L]. A column vector of
the transform is given by

Q(z) = C(2)X(z) + V(2), (8.78)
where
C(2) = [Co(2), Cu(2), -+, Cra(2)], (8.79)
V(z) = [Vo(2),Vi(2), -, Vi ()], (8.80)
and
Q(z) = [Qo(2),Q1(2), -+, Qr1(2)]". (8.81)

If the FSE output is at a sampling rate of 1/7, then the interleaved
tap weights of the FSE can be written in arow vector as

B(Z) = [B()<Z), Bl(Z), MR BL_l(Z)]. (882)
Thus, the FSE output is obtained by

Y(z) = B(2)Q(2), (8.83)

E(z) = X(2) = Y(z). (8.84)
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Noticethat E(z) in (8.84) should be orthogonal to Q(z) by using the
orthogonality condition. As a result, the expectation of the vectors
E(z) and Q(z) are

E{E(2)Q"(1/2)} = Ruq(2) = B(2)Req(2)

= 0, (8.85)
where
Rug(z) = E{X(2)Q'(1/2)}
= &C*(1/2), (8.86)
and

Roo(z) = E{Q()Q"(1/2)}
= &C(2)C*(1/z) + L;/OI. (8.87)
Therefore, by solving (8.85), the infinite-length FSE-MMSE tap-
coefficient setting is obtained by

B(z) = Ruq(2)Rgq(%)
_ Cc'(1/z)
- C(2)C*(1/2) + L/SNR (888)

The corresponding error sequence has autocorrel ation function as

Ree(z) = &x —Ruq(2)Rgq(2)Rau(2)

- LVp/2
~ C(2)C*(1/2) + L/SNR’ (8:89)

Therefore, the infinite-length FSE-MM SE is then obtained by

T /T LVy/2
_ = — . dw. (8.90
Spsp-mmse = oo /_ﬂ/T LC(@—JWT)P Y L/SNR| ™ (8.90)
Notice that (8.90) is exactly the same as the MM SE given in (8.33)
for the MM SE linear equalizer aslong as the sampling rate exceeds
twice the highest frequency of X (e/“7).
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8.4.4 FSE Constant Modulus Algorithm

Most equalization techniques, such as those using the LMS
algorithm, use a training sequence to allow the communication
receiver to adjust the fractionally spaced equalizer coefficients. One
obvious drawback of such an approach is that the training causes
a reduction of the useful information rate with respect to the total
information rate. I n addition, there are many digital communications
system applications, such as broadcast and wireless configurations,
for which training datais not available. Therefore, blind fractionally
spaced equalization without a training sequence, particularly the
CMA, has received increasing interest since the last decade.

The CMA with application in QAM signals was originally
proposed by Godard [23]. Sometimes the CMA is aso referred to
as the Godard agorithm. The CMA was later further developed
with applications for FM signals by Treichler and Agee [24]. It
has been shown that the fractionally spaced equalizer adapted using
the CMA can converge globally to minimize ISl under conditions
[25, 26]. Even for channelswith deep spectral nulls, the CMA-based
fractionally spaced equalizer does not require alarge number of the
equalizer tap coefficients and can then converge faster [27].

The multichannel vector representation of the blind adaptive
fractionally spaced equalizer using the CMA isshownin Figure 8.9.
The channel output of a communication system can be described
using the baseband representation as

x(t) = zn|c(t — nT — to) + v(t), (8.91)

n=0

where T"isthe symbol period and ¢, isaconstant of the system delay.
Assume that the input signal z[n] is an independent and identically
distributed sequence and the channel output may be corrupted by
channel noise v(t), which is independent of the input signal x[n].
The input sequence z([n| is passed through an LTI channel with
an impulse response ¢(t) by the transmitter. The communication
receiver attempts to recover the input sequence z[n| from the
measurable channel output.
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Figure 89 A multichannel vector representation of the blind
adaptive fractionally spaced equalizer using the CMA.

Define L as an integer and the oversampling symbol interval as
A = T/ L. 1t has been shown by Gardner [28] that the oversampling
can provide channel diversity if the channel bandwidth is greater
than the minimum symbol rate of 1/(27"). Thus, the output sequence
of the sampled channel is given by

z[kA] = zn]e[kA — nLA — to] + v[kA]. (8.92
n=0
L et the subchannel frequency response in the z-domain be
L—-1
Ci(z) =D cin]z™, (8.93)

where the subchannel impulse response in the discrete-time domain
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ci[n] & c[kA +iA —tg], i=0,1,2,--- L. (8.94)

The oversampled channel output z[kA] in (8.92) may be divided into
L linearly independent subsequences as

zi[n| = x[n] * ¢;[n] + v[nT +iA], i=0,1,2,---,L. (8.95)

Hence, these L subsequences z;[n| can be viewed as stationary
outputs of L discrete-time FIR channels ¢;[n] with a common input
sequence x[n]. This approach is known as the single-input multiple-
output (SIMO) channedl.

The adjustable fractionally spaced equalizer H;(z) is provided
for each subsequence x;[n| of the multichannel. In this case, each
subequalizer H;(z) isan FIR filter as

N-1
Hi(z) = > hin]z™", i=0,1,2,--- L. (8.96)

n=0

Thus, the L FIR filter outputs y;[n] are summed to create the
stationary equalizer output

L—1
= yiln). (8.97)
=0

The constant modulus (CM) criterion for the fractionally spaced
equalizer is expressed as

Eonr = E{(ly[n]I* = )"}, (8.98)

where y[n| are the fractionally spaced equalizer output sequences
that are coincident with symbol instancesand v isthe CM dispersion
constant defined as B{laln]} 14
Trn
v = (8.99)
E{[z[n]]?}
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Defining the fractionally spaced equalizer coefficients into the
vector as

ho[n] = [ho[1], ho[2],- -+, ho[N — 1]],
hi[n] = [Pi[1],24[2],- -, I[N —1]],
thl[n]l = .[thl[l],thl[%"',hL71[N— 1]}. (8.100)

Then the compound matrix of the fractionally spaced equalizer is
given by
b[n] = [ho[n] hy[n] --- hr_4[n]]. (8.101)

In order to adaptively adjust the fractionally spaced coefficientsb|n]
without a training sequence, the CMA, which can be implemented
to jointly update the L FIR filters to minimize the CM cost function
in (8.98), is the stochastic, gradient search rule that descends
this cost surface by updating the fractionally spaced equalizer
coefficients b[n| according to

hi[n +1] = hi[n] + pi(y — y[nlP)ylnlri[n], i =0,1,2,---, L,

7

(8.102)
where 1 is a small, positive, tunable step size and r;[n] =
[ri[n],ri[n — 1], -+, r;[n — N + 1] isavector of received samples.

Johnson et al. [29] showed that the mean of the CM cost function
in (8.98) represents the average performance of CMA in (8.102).

The step size p; in (8.102) determines the distance covered and
speed towards the negative gradient of the constant modulus cost
surface on each iteration. Making a large step size u; will adjust
the equalizer taps rapidly, but it will also increase the amount of
EMSE as discussed in Chapter 7, which is the amount of error that
isin excess of the optimal case. This is because the tap values take
such large steps that they constantly overshoot the minimum of the
constant modulus cost surface. As a result, instead of converging,
the values of tap-weight equalizer will rattle around the bottom
of one of the constant modulus cost surface bowls. The rattling
phenomenon is referred to as stochastic jitter [30]. On the other



Adaptive Equalizersin Communication Receivers 297

hand, the small step size p; will make the tap values update very
slowly, thereby increasing the time for convergence. The step size
1; must be selected carefully. A balance is recommended so that the
equalizer isableto track channel variations while keeping the EM SE
relatively small.

8.4.5 FSE-CM Noisy Cost Function

In this section, we are interested in the FSE-CM criterion in terms
of equalizability. In other words, we want to know a measure of
the FSE-CM performance in equalizing a given channel in the
presence of additive noise and then compare the FSE-CM M SE with
an analytical expression of a lower equalizability bound, MMSE
in (8.75) for a given SNR. This comparison should provide a
meaningful measure of the FSE-CM criterion performance.

Note that, from averaging theory, the extreme of the FSE-CM
cost function &), in (8.98) isthe possible convergence setting of the
CMA in (8.102). Understanding the FSE-CM cost function alows
us to analyze the mean convergence points of the FSE CMA with
additive noise conditions.

In order to have a better understanding of the equalizer
setting with minimizing the FSE-CM criterion, we can establish
an expression for the FSE-CM cost function £¢,, in (8.98) with
conditions of an additive noise channel. Assume that the channels
are a set of causal FIRs and the noise v;[n] is independent from the
input signal z[n|. Fijalkow et a. [31] showed that the FSE-CM cost
function in (8.98) can be expressed as

Eom = To(f[n]) + @(b[n]), (8.103)

where
®(b[n]) = Zng[n]b[n] [2 (k:ng[n]f[n] - k‘s> + kgngH[n]b[n]] ,
' (8.104)

where k, isaGaussian signal kurtosisthat is equal to 3 in the case of
real-valued signals and is equal to 2 in the complex-valued signals,
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and
fln] = Cln|b[n], (8.105)

and
Lo(f[n]) = E{(k, — [f"[n]z[n]|*)?}, (8.106)

which is the noise-free cost function, and k, = E{(‘ﬂ"]z'4} is the
input signal kurtosis that is used to measure the source signal
“compactness.” Equation (8.103) isreferred to as the FSE-CM noisy
cost function.

The minimization of the FSE-CM cost function of (8.103) in
the noisy context is equivalent to the minimization of noise-free
cost function T’y (f[n]) over the vector f[n| regularized by the second
term of the additional deterministic factor, ®(b[n|). Note that for
most input sequences x[n|, for example, a PAM or QAM signal,
ks < ky — 1. Thisindicates f" [n]f[n] > k,/k, if f[n] is not too close
to the origin f[n] = 0, which is the maximum of ¢-,,. Therefore,
the deterministic factor ®(b[n]) has the desirable property to be a
positive convex quadratic function in terms of b{n|. Then, the main
conseguence of theregularization isto forbid the FSE norm to be too
high and to reduce the noise enhancement contribution in the FSE
output signa y[n]. Comparing (8.103) with the FSE M SE criterion
in (8.72), we note that the constraint on the term b*’ [n]b[n] is much
stronger, thereby limiting all noise enhancement.

8.4.6 FSE-CM Performances

For aPAM or QAM signal, the relation between M SE cost function
of the FSE-CM and the FSE NM SE in (8.72) is approximately given
by Endres[32]

Eorv—mse =~ 202 (k, — k) énmse- (8.107)
Minimizing {car— mse in (8.107) with respect to b[n| obtains

C"[nJhq[n]

o0 = A icil + 2

(8.108)
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It is interesting to note that (8.108) is exactly equal to the optimal
vector b[n] given in (8.74) because the term of 202(k, — k)
in (8.107) does not include a direct relationship with the FSE
taps b[n|. Therefore, substituting (8.108) into (8.107) yields the
approximate MM SE of the FSE-CM as

Som—mmsE A 2032@(kg_ks)€MMSE
PSP PO (R (e )
- e {hd (' CH[nJC[n]+§§')hd]
(8.109)

Therefore, in this case, the MM SE of the FSE-CM receiver may be
approximately upper bounded by %%ff

It is well established that the system delay d in the combined
channel equalizer can influence FSE-CM MSE performance with
variations of several orders of magnitude being typical. It has
been understood that the FSE-CM MSE performance in (8.109)
also depends on the system delay d on the FSE-CM cost function
in terms of describing the relative depth between FSE-CM local
minima associated with different system delays. In general, there
does not exist a closed-form expression for the FSE-CM loca
minima settings since the FSE-CM cost function depends on the
fourth-order moment of the FSE vector. Endres et al. [32] found
a closed-form estimate of the FSE-CM local minima for noiseless
binary phase-shift keying (BPSK) signal by approximating the
FSE-CM cost function with a second-order Taylor series expanded
about the length-constrained Wiener settings. However, our results
in (8.109) also suggest that there exist FSE-CM local minima in
close proximity to those MSE local minima that correspond to
better-performing system delays.

8.5 Decision Feedback Equalizer

A decision feedback equalizer employs previous decisions to
eliminate the ISl caused by previously detected symbols on the
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Figure 8.10 A generalized block diagram of a decision feedback
equalizer.

current symbol to be detected. In other words, the basic idea behind
the DFE isthat the I SI, induced on future symbols, can be estimated
and subtracted out before detection of subsequent symbols once
an information symbol has been detected and decided upon. The
DFE isinherently anonlinear communication receiver. However, the
DFE can be analyzed using linear techniques if we assume that all
previous decisions are correct. Thus, in this section, we derive an
MM SE solution and provide the performance analysis for the DFE.
A simpleblock diagram of a DFE-based communication receiver
is shown in Figure 8.10, where the DFE section consists of two
filtersand one decision element. Thefirst filter /'(z) iscalled alinear
feedforward filter (FFF) and it is generally afractionally spaced FIR
filter with adjustable tap coefficients. Itsinput isthe received filtered
signal r(t) sampled at some rate that is a multiple of the symbol
rate, for example, at rate of 2/7". The output of the FFF is denoted
by y[n], and the input to the decision element is denoted by ¢[n].
The second filter is a causal, feedback filter (FBF), with 1 — B(z),
whereb, = 1. The FBF isimplemented as an FIR filter with symbol-
spaced taps having adjustable tap coefficients. Its input is the set of
previously detected symbols. The output of the FBF is subtracted
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from the output y[n| of the FFF to form the input to the detector.
The FFF will try to shape the channel output signal in such a way
that it isacausal signal. The FBF will then subtract any trailing 1S.
Notethat any biasremoval in Figure 8.10 is absorbed by the decision
element.

The DFE has atotal of N (from —N; to N,) tapsin the FFF and
N5 taps in the FBF, and its output in the discrete-time domain can
be expressed as

) = >0 Flalylk—nl = il -, (8110)

where f*[n| and b[n] are the adjustable coefficients of the FFF
and FBF, respectively. Hence, the (k] is decided from ¢[k] once
it is obtained by using (8.110). Therefore, i [k] along with previous
decision &k — 1], z[k — 2], - - -, are fed back into the equalizer, and
z[k + 1] isthen obtained based on (8.110).

Miao and Clements [6] provided a numeric example of a
conventional DFE with a T'-spaced in the FFF and FBF using the
LMS algorithm to adjust the tap coefficient of the equalizer.

851 MMSE for DFE

In this section, we derive the MMSE for DFE in the z-transfer
domain under the assumption that previous decisions are correct.
However, in practice, this assumption may not be true, and can
be a significant weakness of DFE. However, the analysis becomes
intractableif the errors areincluded in the decision feedback section.
Theerror signa e[n] in the DFE section can be expressed as

eln] = z[n] — q[n]. (8.111)

Then, the MSE of the error signal ¢[n| is a function of the tap
coefficients f[n] and b[n| chosen and is written

§prE = E{|e[n]|2}
= B{leln] - qln)P}. (8112)
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The MMSE for DFE jointly optimizes the tap settings of both the
FFF, f[n], and FBF, bn], to minimize the MSE in (8.112). Thus, the
MM SE for the DFE is obtained by

Erp-anse = Mg o) { E{leln] —qln]"}} . (8.113)

Note that the error sequence e[n] in (8.111) can be written in the
z-transfer domain as

E(z) = X(2) - Q(z)
= X(z2) —{YV(2) = [1 - B(»)]X(2)}
= X(2) —{R(2)F(z) — [1 = B(2)]X(2)}
— B(2)X(2) — F(2)R(2). (8.114)

Given any fixed function of FBF B(z), minimizing the MSE of the
error signal in (8.114) leads to

E{E)R*(z"H} =0, (8.115)

because the error signal e[n] at any time k is uncorrelated with any
equalizer input signal y[n| by using the orthogonality principle. This
allows us to have the relation as

B(2) Par(2) — F(2) Prr(2) = 0, (8.116)

where
Por(2) = E{X(2)R*(=71)}, (8.117)

is the power spectrum of the cross-correlation function R, [k] and

Py(z) = E{R(2)R* (=)}, (8.118)

is the power spectrum of the autocorrelation function R, [k]. Thus,
for any function of FBF, B(z) with b, = 1, the function of F'(z)
in (8.116) is obtained by

F(z) = 22 (8.119)
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Using (8.114), we obtain the power spectrum of the autocorrela-
tion function for the error sequence
P.(z) = E{E(2)E"(:"")}
E{|B(2)X(2) = F(2)R()]
BT X - PR )
= B(2)Pu(2)B*(z7") — 2B(2) Py (2)F*(271)
+F(2) P (2)F*(z71). (8.120)
substituting (8.119) into (8.120) obtains the power spectrum of the
autocorrelation function for the error sequence
PwT(Z)P;r(Zil)
Pz

Pulz) = B(2) [PM@ - ] B, (8121)

Thus, it can be shown that the DFE power spectrum of the
autocorrelation function for the error sequence with arbitrary monic
function B(z) isgiven by

Pee(2) = B(2)Pymsp-ne(z)B* (271, (8.122)
where
Puse-iel(z) = |Pule) - Tr 0
No
~ ICEP+ Ny (8.123)

Equation (8.123) is the power spectrum for the error sequence of
an MMSE linear equalizer. Note that the inverse power spectrum
of the autocorrelation in (8.123) can be expressed into a spectral
factorization as

]\1[|C'(z)|2 +1=G(2)G" (=), (8.124)
0

where 7, is a positive real number and G(z) is a filter response.
Thefunction G(z) is called acanonical filter responseif it is causal
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(g9[k] = 0 for & < 0), monic (¢[0] = 1), and minimum-phase. In
this case, the function G*(z) is referred to as anticanonical filter
response. Using the spectral factorization in (8.124), (8.122) can be
expressed as

P..(z) =

<1> i (8.125)
Yo

The factional polynomia inside the squared norm in (8.125) is
necessarily monic and causal, and the squared norm has a minimum
valueof 1if andonly if B(z) = G(z). Thisleadsto

(8.126)

Thisresult in (8.126) states that the error sequence for the MM SE-
DFE is“white” sequence when minimized since Pee (z) isaconstant

and has MM SE-DFE of 2 s In addition, taking £ 5 f”gT In on both
sides of (8.124), we can obtain

T w/T 1 )
7/ In [|C(erT)F - 1} dw =
No

27 —7/T
T T | |
- JwTN vk —jwT
In(30) + 5 - /_ W/Tln[G(e )G (e )] dw.  (8.127)
Since
T T | |
£ / In [G(e™T) G (e77T)] dw > 0, (8.129)
27 —n/T

then (8.127) can be expressed as

(o) < T/”/Tl e ij)FH}d (8.129)
Yo =50 W/Tn N, e w. .
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The equation in (8.129) leads to a famous expression for the
MMSE of DFE that was first derived by Salz [33] in 1973,

T Ny ;
SMMSE-DFE = €XP 27?/ ot O+ No |
(8.130)

The corresponding output SNR of DFE is obtained by

- gMMSE—DFE

SNRpre =

SMMSE—DFE

1+ T /W/T 1 No d
— —_ n - .
PN 2n L O 2+ Ny |

(8.131)

Notethat if |C'(e/“T)|? = 1, thisindicates the absence of ISI. Hence,
in this case, we obtain

No
gMMSE—DFE - 1 + NO. (8132)
Thus, the corresponding output SNR of DFE is
1
SNRppp = N (8.133)
The receiver SNR for the MM SE-DFE can be defined by
Ex
SNRp_ = (8.134)
RDEE = lleln] Py

where & is called the average energy of the complex signal
constellation and the denominator in (8.134) is the MMSE for a
DFE. Therefore, the receiver SNR for the MM SE can now be easily
obtained by

Ex

gMMSE—DFE

_ T/?T/T1 Ny d
= Ex-expy oo 7r/Tm " MET N, we.

(8.135)

SNRHfDFE =
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Inasimilar way, if |C'(e~7)|* = 1 inthe absence of 1SI, the receiver
SNR for aMMSE-DFE is

SNRgr_pre = & (1 + 1) . (8.136)
No

It has been shown that the MMSE for a DFE in (8.130) is
smaller than the MMSE for a linear equalizer in (8.33) unless
the squared-norm term of |C'(e/“7)|? is a constant where adaptive
equalization is not needed in this case [12]. Moreover, a DFE
has significantly smaller MMSE than a linear equalizer if there
are nulls in the squared-norm term of |C(e?“T)|?. To that end,
a linear equalizer is well behaved when the channel spectrum is
comparatively flat. However, if the channel is severely distorted or
exhibits nulls in the spectrum, the performance of alinear equalizer
deteriorates and the MM SE of a DFE is much better than a linear
equalizer. In addition, a linear equalizer has difficulty equalizing
a nonminimum phase channel, where the strongest energy arrives
after the first arriving signal component. Therefore, a DFE yields
a significant improvement in performance relative to the linear
equalizer having the same number of tap coefficients. Thus, a
DFE is more appropriate for severely distorted wired and wireless

communication channels.

Example 8.4

In this example, we reconsider Example 8.2 for considering the

discrete-time FIR channel. It is interesting to compare the MM SE

DFE with the value of MM SE given by the MM SE linear equalizer.
Using (8.130), the MM SE DFE for this channel is obtained by

T (/T N,
EMMSE-DFE = exp{/ ln[ 0 ]dw}

21 Jomyr | V(W)
= Npexp {—277; /:r//TT In [¥(w)] dw}
(8.137)

where U(w) = 1 + 2|al|b| cos(wT + ¢) + Ny. After the integral
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in (8.137), the MMSE DFE is

2Ny
1+ NO + [(1 + N0)2 — 4|ab|2]1/2'

(8.138)

gMMSEfDFE =

Notice that &3/1752—pre iS minimized when |a| = [b] = 1/v/2.
Thus,

¢ 2N,
MMSE—-DFE 1+ No+ [(1+ No)2 — 1]1/?
~ 2Ny, Ny < 1. (8.139)
The corresponding output SNR is
1 — 2N,
SNR =
DFE 2N0

~ —, N 1. 8.140
2N0 ) 0 < ( )

This indicates that there is a 3-dB degradation in DFE output
SNR because of the presence of 1SI. However, in comparison, the
performance loss of the MM SE linear equalizer is more severe than
the MM SE DFE. Notice that the output SNR of the MMSE linear

equalizer as given by (8.42) isabout Yy g ~ +/2/N, for Ny < 1.
8.5.2 Predictive DFE

Another form of DFE contributed by Belfiore and Park [34] isknown
as a predictive DFE in Figure 8.11. This system also consists of
an FFF as in the conventional DFE while the FBF is driven by an
input sequence generated by using the difference of the output of
the decision detector and the output of the FFF directly. Thus, the
FBF is referred to as a noise predictor because it predicts the noise
and the residual ISl contained in the signal at the FFF output and
subtracts it from the decision detector output after some feedback
delay.

Given the infinite length of the FFF in the predictive DFE,
Proakis [12] showed that the power density spectrum of the noise
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Figure 8.11 A block diagram of a predictive decision feedback
equalizer.

output of the FFF is given by
No|C(e?T)[?
[No + |C (T

The residual 1Sl of the FFF output has the power density spectrum
as

Pnoise<eij) - |u)| S (8141)

s
T

2

C(eT)
Ny + |C(edT) 2
N
= Mot o YIS

Note that the sum of these two spectra(8.141) and (8.142) represents
the power density spectrum of the total noise and 1Sl at the output of
the FFF section. Hence, adding (8.141) and (8.142) together yields

N+ [C (e )

P[SI<€jWT) = 1

(8.142)

us
T

lw] < (8.143)

EFFF(ej“’T) %
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Based on observation, if |C(e?“T)|? = 1, then the channel is ideal.
Thus, the MSE can not be reduced further. However, if the channel
has distortion, then the power of the error sequence at the output
of the FFF can be reduced by using linear prediction based on past
values of the error sequence.

Assume that B(e?“T) is the frequency response of the infinite
length FBF (linear predictor). Then, the error at output of the
predictor is obtained by

EFBF(ejWT) = EFFF(ejWT) - EFFF(ejWT)B(ejWT)
= Eppp(e™") [1 = B(e*T)]. (8.144)
The MSE of thiserror functionin (8.144) is
/T . .
= 7/ = BEPIBE) e (8.145)
/T

Proakis [12] showed that minimizing the MSE of this error function

in (8.145) over the predictor coefficients b[n] yields an optimum

predictor in the form as

G(elvT)
glo] -

where G(e?“T") is known as the solution of the spectral factorization

using

B(ej“T) =1-

(8.146)

1 | |
Bl ~ G )G (2T, (8.147)
and

G(e?T) = Zg JedwnT (8.148)

Thus, the output of infinite Iength FBF linear predictor is a
white noise sequence with a power spectral density of ; [ . The
corresponding MM SE of the predictive DFE is obtained by

w/T

T No
EMMSE—PDFE = €XP {27r /_W/T In [\C(ejWT)P n No] dw} .
(8.149)
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Note that (8.149) is equal to (8.130). Therefore, this indicates that
the MSE performance of the predictive DFE is identical to the
conventional DFE if their lengths are infinite.

The performance of the predictive DFE is suboptimum if the
lengths of the two FFF and FBF filters are finite. This is because
the optimizations of the FFF and FBF predictors in the predictive
DFE are done separately, while the optimizations of the conventional
DFE tap coefficientsin the FFF and FBF are done jointly. Therefore,
the conventional DFE yields the minimum MSE while the MSE of
predictive DFE is at least as large as that of the conventional DFE.
Although the predictive DFE has this suboptimality, it has been
suggested by Proakis[12] that it is suitable asan equalizer for trellis-
coded signals where the conventional DFE is not as suitable.

The FBF in the predictive DFE can be implemented by using
a lattice structure given by Zhou et al. [35]. In this case, the RLS
algorithm as discussed in the previous chapter can be used to
produce fast convergence for the predictive DFE.

85.3 FSE-DFE

The structures of the conventional and predictive DFEs, which were
analyzed earlier, employ a T-spaced FFF filter for the feedforward
section. Such a structure optimality is based on the assumption
that the receiver analog filter preceding the DFE is matched to
the channel-corrupted pulse response and its output is sampled
at the optimum time instant. However, in practice, the channel
response is not known a priori so that it is not possible to design
an ideal matched filter. Therefore, practical application often uses
the fractionally spaced FFF filter while the FBF filter tap spacing
still remains T'-spaced for the feedback section.

Figure 8.12 shows afractionally spaced FFF filter based on DFE.
The signal is sampled at the communication receiver at a rate of
2/T and then is passed through a 7'/2-spaced FFF equalizer. It
consists of a serial-to-paralel (S/P) converter and two FFF filters,
Fy(z) and F(z), in the feedforward filter section. The S/P converter
is to convert one sequence r[n| (for n = 0,1,2,---,2N) into
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Figure 8.12 A block diagram of a fractionally spaced filter-based
decision feedback equalizer.

two sequences, ro[n] and r[n|, where ro[n] = r[2n] and ri[n] =
r2n+ 1] forn =0,1,2,---, N. Two FFF filters, F(z) and F}(z),
are operated in parallel, where Fy(z) and Fi(z) contain al the even
and odd tap coefficients, respectively. The filter outputs y,[n] and
y1|n] are at T-spaced. Then the FBF operates 7-spaced when the
switch connects to y,[n], and produces an error sequence by using
the difference between ¢[n| and z[n] after adecision detector. Hence,
the tap coefficients of thefilter Fy(z) in the feedforward section and
B(z) in the feedback section are updated by using an adaptive DFE
algorithm. The next step isto connect the switch to ¢, [n]. Inasimilar
way, the FBF is operated T-spaced and creates the error sequence.
Then, the tap coefficients of the filter Fi(z) in the feedforward
section and B(z) in the feedback section are updated based on the
adaptive DFE agorithm by using the error sequence. Therefore,
this FSE-DFE system can achieve the 7'/2-spaced FFF equalizer
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in the feedforward section while the FBF filter still operates
T-spaced in the feedback section. This system is sometimes referred
to as a fractionally 1'/2-spaced DFE. This approach is also called
the polyphase-based filter bank DFE.

In general, if an FFF equalizer tap spacing has MT'/N, where
M and N areintegersand N > M, then the equalizer isreferred to
as fractionally MT/N-spaced DFE. Miao and Qi [36] developed
the fractionally 27'/3-spaced DFE using the LMS algorithm for
updating thefilter tap coefficients with applicationsin DSL modems.

The fractionally spaced based DFE has often been implemented
as an adaptive blind equalizer by using CMA technique. Utilizing
the CMA with the FSE-DFE is rapidly gaining popularity. This
is because the FSE-DFE has been proven to suppress timing
phase sensitivity and noise enhancement. In addition, the CMA
based FSE-DFE may be able to overcome some undesirable local
convergence and can be applied to channels with zeros on the unit
circle without noise amplification. Even when some subchannels
have deep spectra nulls, the CMA-based FSE-DFE is capable of
compensating spectral nulls as long as these zeros are not common
to all subchannels while it does not require a large number of tap
coefficients, thereby converging fast. Moreover, the CMA-based
FSE-DFE can equalize nonconstant modulus signals and those with
a constant modulus. This makes it a prime candidate for use with
the varity of signa formats found in the high-speed broadband
communication modems.

8.5.4 Error Propagation

So far, we have not discussed the effect of decision errors in the
feedback section of the DFE. The result of an incorrect decision in
the feedback section of the DFE, which produces additional errors
that would not have occurred if the first decision had been correct,
is referred to as error propagation. Error propagation in the DFE
can be amajor concern in practical application for acommunication
receiver structure, especialy if constellation-expanding codes, or
convolutional codes, are used in concatenation with the DFE.
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Figure8.13 A block diagram of the Tomlinson precode.

Therefore, in this section, we introduce the so-called precoding
solution to the error-propagation problem of the DFE.

The precoding essentially moves the feedback section of the
DFE to the transmitter with a minimal transmit-power-increase
penalty without decreasing the DFE SNR. In other words, the basic
idea of the precoding is to move the DFE feedback section to the
transmitter so that the decision errors are impossible to happen.
However, the precoding usually requires a feedback channel.
The precoding is aso known as the Tomlinson precoder or the
Tomlinson-Harashima precoder.

Figure 8.13 illustrates the block diagram of the Tomlinson
precoder for area-signal case. The Tomlinson precoder is used in
the transmitter as a preprocessor to the modulator, and maps the data
symbol z[n] into another data symbol Z[n] that is in turn applied
to the modulator. The Tomlinson precoder is eventually a device
that isused to eliminate error propagation. However, straightforward
moving of the feedback filter 1/B(z) to the transmitter could result
in increasing transmit power significantly. In order to prevent most
of this power increase, a modulo operator I'y,{z} is employed to
bound the value of z[n| before the modulator.

The modulo operator Ty, {x} isanonlinear function that defines
an M-ary input constellation (PAM and QAM square) with uniform
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spacing d, and is given by

(8.150)

o) a2

Md

where |y| denotes the largest integer that is less than or equal to
the value of y, and I'y,{x} can be an arbitrary value. The operation
of the Tomlinson precoder produces an internal signal as shown in
Figure 8.13,

d[n] = z[n] — i blk]z[n — K|, (8.151)
where -
Z[n] = Tu{dn]}
= Tyf{z[n] — kf:l blk]z[n — K]} (8.152)

The Tomlinson precoder output z[n] is an approximately i.i.d. if
the M-ary input is an i.i.d. In addition, the output sequence of the
Tomlinson precoder is an approximately uniform distribution over
theinterval [—Md/2, Md/2).

Example 8.5

Assume that a precoder of modulo operator isfor M -ary input PAM
signalswith M = 5 and uniform spacingd = 2, and B(z) = 0.5z~
as illustrated in Figure 8.13. We want to determine the precoder
output of the modulo operator when an input z[n| is a sequence
{5,4.5,2.1,1,—1.5,-6,2,9.1}.

Using (8.150), (8.151), and (8.152) with aniinitial value z[—1] =
0, the result of precoder of the modulo operator can be expressed as

T+ BJ
10 1°
Since B(z) = 0.5271, then b[1] = 0.5. Thus,

Par{z} =2 — 10 { (8.153)

dn] = =z[n]— i blk]Z[n — K]



Adaptive Equalizersin Communication Receivers 315

= z[n] —b[1]Z[n — 1]
= z[n| —0.5z[n — 1]. (8.154)

The Tomlinson precoder output is then given by

Z[n] = Tu{dn]}
= z[n] — 0.52[n — 1]
[n] —0.5Z[n — 1] +5

x
—10
10

(8.155)

Therefore, substituting the input sequence z[n] into (8.155), the
output of the Tomlinson precoder is obtained as
i[n] = {=5,—-3,3.6,0,—1.5, —5.25,4.625, —3.2125}.

8.6 Space-TimeEqualizer

Space-time processing (or smart antennas) provides an effective way
against cochannel interference (CCl), which usually arises from
cellular frequency reuse. The space-time processing that combats
CCI can have a mgjor impact on overall wireless communications
performance. This is because space-time processing with multiple
antennas in the receiver and transmitter is a promising way
of mitigating CCI by exploiting the spatial-temporal dimension,
thereby significantly improving average signal power, mitigating
fading, and reducing CClI and ISl. As a result, this can
greatly improve the capacity, coverage, and quality of wireless
communications.

A space-time equalizer operates simultaneously on all the
antennas, processing signal samples both in space and time domains.
This technique alows the receiver to exploit the difference between
the desired signal and CCI to reduce CCI that arises from the
cellular frequency reuse, thereby increasing the quality and capacity
of wireless networks. Time-only signal processing corresponds to
equalizers that use a weighted sum of signal samples, while space-
only processing corresponds to simple beamforming that uses a
weighted sum of antenna outputs. In this section, we first examine
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Figure8.14 A block diagram of atime-only equalizer.

the time-only and space-only equalizers, respectively, and then
present the space-time equalizers at the receiver.

8.6.1 Time-Only Equalizer

A time-only equalizer based on the baseband temporal structure is
depicted in Figure 8.14. A continuous-time received signa =(t) is
sampled at baud rate or a higher rate to produce a discrete-time
signal output z[n]. Then the discrete-time signal z[n] is filtered
through a linear egqualizer to produce the discrete-time output y|[n).
Note that in single-user environments, the equalizer is used to
minimize the channel 1SI. However, in the wireless channel, the
equalizer also has to consider minimizing CCI.

Assuming that there are () users and no additive noise in the
single-input single-output (SISO) environments, the discrete-time
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channel with a single-sensor case, and no oversampling is given by

Q
zln] =Y cisilnl, (8.156)
k=1

where a row vector (1 x N) ¢, is the FIR channel and a column
vector (N x 1) s;[n] is

se[n] = [se[n], se[n — 1], -, sp[n — N +1]]7. (8.157)

Asshownin Figure 8.14, thelinear equalizer hisan (M x 1) column
vector, and its output can then be expressed as

y[n] = hx[n], (8.158)
where the (M x 1) received signal vector is given by
X[n] = [z[n],z[n — 1], -, x[n — M 4+ 1]]"" (8.159)

Furthermore, we can write x[n] asfollows:
Q
k=1

where C;, isthe M x (M + N — 1) Toeplitz matrix,

c. O 0
co=| " & U (8.161)
0 .0
0 0 c
and
S[n] = [sk[n], ..., sk ln — N — M + 2]]7. (8.162)

Combining (8.158) and (8.160) yields the equalizer output as

y[n] = h#CS|n, (8.163)
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where
C =1[Cy,Cy,...,Cq] (8.164)

and
S = [8'[n],&[n), ...,%[n]]T. (8.165)

In order to eliminate the 1Sl and CCl, (8.163) is heeded to satisfy
the zero-forcing condition:

hC = §[n — d), (8.166)

where d isapositive integer of the achieved delay. However, (8.166)
cannot be satisfied because C isthe M x Q(N + M — 1) matrix
that is not a full-column rank. This indicates that joint linear 1S|
and CCI can not be cancelled with a time-only equalizer when the
received signa is sampled at the symbol rate. However, with the
oversampling of P, the channel matrix C will be the full-column
rank of block-Toeplitz matrix with size of M P x Q(N + M — 1)
if the equalizer length holds the condition given by Paulrg) and
Papadias [37]:

M(P—-1) <Q(N —1), (8.167)

and if the polynomials corresponding to the rows of C' have no
common roots (see Moulines et a. [39]).

In practice, the tempora channel for signa and CCI cannot
be well separated if the symbol waveforms have a small excess
bandwidth. As a result, the channel matrix C is ill conditioned,
and CCI cancellation will lead to excessive noise enhancement.
Therefore, time-only equalizers provide only a small degree of
CCI reduction that is a function of baud synchronization offset
between the signal and the CCl, the excess bandwidth of the symbol
waveform, and the multipath channel response for the signal and the
CCl.

8.6.2 Space-Only Equalizer

A space-only equalizer corresponds to simple beamforming that
uses a weighted sum of antenna outputs. Figure 8.15 shows a
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Figure8.15 A block diagram of a space-only equalizer.
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typical array beamforming structure in which the antenna outputs
are weighted and combined to generate the beamformer output.

Assume that there are () users and no multipath. The received
signal is given by

Q

wherethe M x N vector ¢, denotes the space-only channel that is vV
tap-coefficient length for each user, in the absence of delay spread.
Thus, si[n] isascalar.

The space-only equalizer of the beamformer output is obtained
by

y[n] = h"x[n], (8.169)

where hiisa M x 1 weight vector. Integrating (8.168) and (8.169)
yields the space-only equalizer of the beamformer output as

Q
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or equivalently in the vector form as
y[n] = h#Csln], (8.171)
where the channel matrix is given by
C=[c,Cy -+, Col, (8.172)
and the input signal matrix is
sln] = [s1[n], s2[n], - -+, sq[n]]". (8.173)

If we assume that s;[n] is the desired signal, then the zero-forcing
condition cancelling all CCI and ISl is obtained by

h#C = §[n — 1], (8.174)

where ith represents the ith user. However, this requires that M >
N(@Q and the channel matrix C must be of full-column rank. As a
result, purely spatial combining is able to perfectly cancel both IS
and CCl.

In practice, this is impossible because rea channels having
multipath require too many antenna elements. In addition, if either
the multipath angle spread is small or the desired signal and CCl are
not well separated, then the column of C becomes ill-conditioned,
resulting in excessive noise enhancement. The space-only equalizer
can effectively be used to eliminate CCl, but its effectiveness against
ISl depends on the angle spread of multipath. Therefore, in general,
space-time equalizers should be used to improve the performance
over both time-only and space-only equalizers.

8.6.3 Space-Time MM SE Equalizer

In this section, we introduce the space-time equalizer that combines
time-only and space-only equalizers as discussed earlier. We present
the single-user case in which we are interested in demodulating the
signa of interest. Thus, we treat interference from other users as
unknown additive noise. This approach can also be referred to as
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Figure8.16 A block diagram of a space-time MM SE equalizer.

interference suppression. Figure 8.16 shows a block diagram of a
space-time MM SE equalizer.

In the presence of CCI, the signa components are likely to be
both spatially and temporally correlated because of delay spread.
The temporal correlation complicates the implementation structure
at the receiver. In this case, a space-time equalizer based on an
MM SE solution is attractive; this is a solution in which the space-
time equalizer combines the input in space and time to generate
an output that minimizes the squared error between itself and the
desired signal.

In the space-time equdlizer, the tap coefficient H[k| of the
equalizer beamformer (or matrix equalizer) has the following
expression,

hulk] hiwlk] ... hiplk]

hoilk]  haolk] ... hoplk]

H[k] = (8.175)

)

han halk] ... haplk]
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where M represents the number of taps in each of the channels and
P isthe length of the equalizer. The received signal matrix X[k] is
given by

Jfll[k'] Ilg[/{?] e l’lp[k}
X[k = 9621%] $22[k’] . =7U21j[k} ‘ (8.176)
Tm Z'Mg[l{} pr[l{]

Then the scalar of the equalizer beamformer, y[n|, is obtained by
ylk] = tr{H" [k]X[k]}, (8.177)

where “tr” means the trace of a matrix.

The space-time MMSE equalizer chooses the space-time
equalizer tap coefficient so that the MMSE Esr can be achieved
as

arg{ming E||y[k] — s"[k — d]||*}
= arg{miny E|[tr{H"[k]X[k]} — s*[k — d]|[*},
(8.178)

Esrr

where the superscript “*” denotes a complex conjugate and d is a
delay factor to be selected to the center of the space-time equalizer
that will strongly affect performance. Equation (8.178) can be solved
by using the |east-squares method based on projection theory,

E{X[K)(tr{X"[k]H[k]} — s*[k — d])} = 0. (8.179)
Solving (8.179) yields
H[k] = (E{X[/g]xﬂ[k]}f1 E{X[k]s*[k — d]}. (8.180)

Note that if the interference and noise are independent of the signal,
then the transmitted signal is a white sequence. Thus, we have

E{X[k]s*[k —d]} = [0,...,0,H[k],0,...,0]"
= H[#, (8.181)
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where H[k] = [ [k], halk]..., har[K]] and the number of zeros

preceding and succeeding H[k| depends upon the selection of d.
Therefore, (8.180) can be rewritten as

H[k] = Ry [K]H[K], (8.182)
where Ry [K] = (E{X[KIX[K"}) .

In practice, we compute the finite sample estimate of Ry x[]
and H[k] using the received training samples. In case of the channels
with a slow time-varying over a slot period, an optimal matrix
equalizer during the training period is obtained by using the entire
time dot. If the channels have a fast time-varying, then the optimal
matrix equalizer during the training period should be calculated
by using, for example, a decision-directed adaptive algorithm [39,
40]. Equation (8.182) can be adaptively solved by using popular
algorithmsincluding LMS, RLS, and numerous variants. In Chapter
7, we discussed the trade-off analysis of adaptive algorithms and
their computational complexities.

The space-time MMSE equalizer combines the strengths of
time-only and space-only equalizers to exchange CCl and ISS
reduction against noise enhancement. This technique can primarily
cancel CCl in the spatial domain and 1Sl either in the space domain
or in the time domain depending on where it can be done more
efficiently. However, the performance of the space-time MMSE
equalizer scheme is influenced by the dominance of the CCl and
ISl aswell as the nature of the channel structure.

8.7 Diversity Equalizer

Diversity in the transmission is to use the multiple channels from
a single information source to several communication receivers.
Usually, diversity methods lead to a lower probability of error for
the same transmitted message. This is mainly because a greater
channel-output minimum distance between possible (noiseless)
output data symbols can be achieved with alarger number of channel
output dimensions. However, 1SI between successive transmissions
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Figure 8.17 A block diagram of a discrete-time basic diversity
channel model.
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along with interference between the diversity multidimensions may
cause a potentially complex optimum receiver and detector. Thus,
equalization can again alow productive use of suboptimal detectors
along with other signal processing methods, such as a Rake receiver.
The equalization in the case of diversity is referred to as a diversity
equalizer.

8.7.1 Fundamentalsof a Rake Receiver

The basic discrete-time diversity channel is shown in Figure 8.17.
The channel input islabeled by x[n] while the channel output caused
by the same channel input has labels y;[n], i = 0,1,2,--- L — 1.
The additive noises in the channels are denoted by v;[n], i =
0,1,2,---, L—1. These channel outputs can be created intentionally
by retransmission of the same input sequence x[n| at different times
and/or center frequencies. On the other hand, propagation delay
spread or multipath in the radio channel merely provides multiple
versions of the transmitted signal at the communication receiver.
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Figure 8.18 A block diagram of a discrete-time L-branch Rake
receiver.

Thus, spatia diversity often occurs in wireless transmission where
L spatialy separated antennas may all receive the same transmitted
signa with different filtering and noises that are at least partialy
independent. The spatially separated antennas are also referred to as
the technology of smart antennas.

A Rakereceiver isaset of paralel matched filters or correlators
in which each operating on one of the diversity channels in
a diversity transmission system is followed by a summing and
decision device as shown in Figure 8.18. The basic idea of such
a Rake recelver was first proposed by Price and Green [41] based
on the analogy of the various matched filters being the “fingers’
of a garden rake and the sum corresponding to the collection of
the fingers at the rake's pole handle. The original Rake concept
was conceived in connection with a spread-spectrum CDMA system
for wireless communications that achieved diversity essentially in
a code-division dimension discussed by Viterbi [42] and Glisic
and Vucetic [43]. Recently, a variety type of the Rake receivers
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has been used in ultra wideband (UWB) communications, dual-
mode UWB and wireless local area network communications, and
MIMO wireless sensor networks communications [44-46]. The
Rake receiver is sometimes referred to as a diversity combiner to
address other lower-performance suboptima combining methods,
which do not maximize the overall SNR strength through the
matched filter. In addition, the Rake receiver is also called maximal
combining if it applies a matched filter only to the strongest of
the L diversity paths to save recelver complexity. In this case,
the equivalent channel is thus the channel corresponding to this
maximum-strength path individually.

A Rake receiver utilizes multiple correlators to separately detect
the L strongest multipath components in the spread-spectrum
CDMA communication systems. In other words, each correlator
detects a time-shifted version of the original CDMA transmission,
and each finger of the Rake correlators to a portion of the signa
that is delayed by at least one chip in time from the other fingers.
The outputs of each correlator are then weighted by «;, i =
0,1,2,---,L — 1, and summed to provide a better estimate of
the transmitted signal that is provided by a signal message. The
weighting coefficients are based on the power or the SNR from each
correlator output. If the output of a special correlator has a large
power or a large SNR, it will then be assigned a larger weighting
factor. In the case of a maximal ration combining diversity scheme,
the overall signal Z[n] after a summing device is obtained by

Z2n] = apzi[n]. (8.183)

The weighting coefficients, o, are usually normalized for the output
signal power of the correlator in such a way that the sum of the
weighting coefficientsis unity as

zi(n]
ZzL 01 Zn]
However, in the case of using adaptive equalizers and diversity
combining, there are other ways to generate the weighting

(8.184)

ap =
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coefficients for the Rake receiver. Therefore, choosing weighting
coefficients by using the actual outputs of the correlators yields a
better Rake performance.

Assume that we transmit only one direct-sequence spread
spectrum signal with binary symbols 1 and O mapping into bipolar
symbols b[m| of +1 and —1, respectively, and that the demodulator
provides perfect estimates of the channel. We also assume that
the data symbol duration 7" is a multiple of the chip duration T...
The processing (or spreading) gain, defined here as the number of
pseudorandom chips per data symbol, is defined as

T B

G
T. B’

(8.185)
where B, is the spread spectrum signal bandwidth and B is the
baseband signal bandwidth. The overall signa Z[n] (also called a
decision variable) at the input of the decision device is given by

Zn] =" L \/Ecb[k‘]alz + kz_: U[k]al] , (8.186)

=1

where v[k] is Gaussian noise and E, is the transmitted energy per
chip.

For a fixed set of the weighting coefficients oy, [ = 1,2, ..., L,
the decision variable Z[n] has the mean value

L
E{Z[n)} = GYE. Y. o?, (8.187)
=1
and the variance
L
Var{z[n]} = G;V °Sa. (8.188)
=1

The average probability of bit error P, can be expressed as

P, = ;pr{z[n} S 0b=—1}+ ;Pr{é[n] <0p= +1}. (8.189)
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If we assume that the probabilities of transmitting symbols —1 and
+1 are equal, we obtain

Pr{z[n] > 0|b = —1} = Pr{Z[n] < 0|b = +1}. (8.190)
The average probability of bit error can then be written as
P, = Pr{Z[n] < 0|b = +1}. (8.191)

Assume that the number of chips per data symbol is sufficiently
large. The decision variable Z[n] can be approximated according to
the central limit theorem. Thus, the probability of error for the fixed
weighting coefficients «; is the probability of the decision variable
Z[n] in (8.195) given by

_ (E{z[n]})?
Py(m) =@ ( Var ([} ) (8.192)
where Q)(z) is the complementary error function expressed as
_ Lz e
Q) = /0 1241, (8.193)
Substituting (8.187) and (8.188) into (8.192), we obtain
L
Blw) = Q( 2L )

= Q (\/Tvb) . (8.194)

where FE, isthe energy per bit and v, isthe total bit energy-to-noise
ratio given by

M= 2= D (8.195)
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where

OéZQEb
Ny
If o; is Rayleigh distributed, o? has a chi-square distribution with

two degrees of freedom [6, 43, 47]. Thus, v, is aso chi-square

distributed. Accordingly, the density functionis

N = (8.196)

1
p() = = exp {—7_’} , (8.197)
M Vi
where ; is the average received bit energy-to-noise ratio defined as
E,
= Elai}, (8.198)
0

where E{a?} isthe average value of 7. To compute the density of
~p, We note that the characteristic function of ~; is

1
o, (Jv) = —.
’Yl( ) 1_]1]’}/[

Since the fading of the L channels is statistically independent, ~;,
[ =1,2,..., L, are statistically independent. Thus, the characteristic
function of ~, is

(8.199)

|

V) = —.

Glisic and Vucetic [43] obtained the probability density function of
v, by taking the inverse Fourier transform of (8.200)

(8.200)

1
- - D _h 8.201
PO = (g ‘“% %} (&2

Thus, with Rayleigh fading and the distinct mean square values of
~, the average probability of bit error is

B, = /Ooo Py(7)p () dvs

oL —1\ & [ 1
z( I >H<2%> (8.202)

=1
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Let us assume that the mean square vaue E{a?} is exactly the
same for al tap values. Using (8.195) and (8.198), we obtain the
relationship between -+, and -,

Yo = . (8.203)

Thus, the average probability of bit error in (8.202) can be rewritten
in terms of the average bit energy-to-noise ratio -y, as

sz<2LL_1>ﬁ<1>. (8.204)

=1 2%

Figure 8.19 shows an average probability of a bit error for a
direct-sequence spread spectrum system with a BPSK modulation
over a Rayleigh fading channel for a Rake receiver: (a) L = 5 in
fading, (b) L = 4infading, (c) L = 3infading, (d) L = 2 infading,
and (e) L = 1 in fading. Note that the average probability of bit
error of (8.204) decreaseswhen the L isincreased. When the channel
becomes more dispersive, a greater diversity gain is achieved. The
number of taps actually used in the Rake receiver can be less than
the channel length L. However, such a Rake receiver will not capture
al the received signal energy and may suffer from some loss in
performance. Therefore, increasing the number of taps for the Rake
receiver will enhance its performance.

8.7.2 Adaptive Rake Receiver

The performance of the conventional Rake receiver of Figure 8.18
uses a maximal ratio combining, which is a traditional approach
to determine the weighting coefficients for the conventional Rake
receiver. In this section, we introduce an adaptive Rake receiver
followed by an adaptive linear equalizer as shown in Figure 8.20.
The adaptive Rake receiver employs an MM SE combining method
to improve the performance of the Rake receiver in the presence
of interference, such as ISl and interpath interference (IPI). In this
approach, the weighting coefficients oy, I = 0,2,---, L — 1, of the
adaptive Rake receiver are updated in an optimal sense such that the
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Figure 8.19 A probability of bit error for a DS spread spectrum
system with a BPSK modulation over a Rayleigh
fading channel for a Rake receiver.

cost function ¢ of the M SE criterion is minimized,

¢ = B{|z[n] - b[n]|*}, (8.205)
where
L—1
Z[n) =Y apzn], (8.206)
=0
and bn|,n =1,2,---, M, isatraining sequence to be transmitted.

To find optimal estimators of the weighting coefficients «,
[ =0,2,---,L — 1, we shall employ a method of least squares.
For each sample observation (Z[n|, b[n|), the method of |east squares
requires that we consider the sum of the M squared deviations.
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Figure 8.20 An adaptive Rake receiver followed by an adaptive
linear equalizer.

This criterion is also referred to as the cost function ¢ of the MSE
in (8.205) given by

1 = 2
§ = i Z%\
1 ML ?
= - nz:% > ayz[n] — bln] (8.207)
In matrix notation, (8.207) can be rewritten as
¢ =(Za—-B)*¥(Za - B). (8.208)

Expanding this, we obtain

¢ =B"B - az"B -B"Za + a2 Za. (8.209)
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Note that BYZa is1 x 1 matrix. Hence, it is equal to its Hermitian
transpose that is o/ Z# B according to the theorem of matrices in
Appendix B. Thus, wefind

¢ =BfB - 2af"Z"B + a’Z2"Za. (8.210)

In order to determine the value of o that minimizes £, we
differentiate with respectto o, [ = 0,1,2, ..., L — 1. Let

Bgo
0 dar
—= . 8.211
o : ( )
)
Oar,_1
Then it follows that
0 H H
— = -2Z"B+2Z"Zc. (8.212)
o

Equating to zero gives the matrix form of the least squares normal
equations,

2f7a =7"B. (8.213)

Thus, by using the inverse of the matrix Z7Z, we obtain the
optimized weighting coefficients for the Rake receiver

o= (Z272)"'z"B. (8.214)

We refer to the solution of (8.214) as the MMSE Rake receiver.

Neter et al. [48] noted that whenever the columns of ZZ are
linearly dependent, the normal equations of (8.213) will be linearly
dependent. In that case, no unique solutions can be obtained for «,
[ =0,1,2,---, L — 1. Fortunately, in most cases, the columns of
Z17 are linearly independent, thereby leading to unique solutions
fora;,1=0,1,2,---, L — 1.
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8.7.3 Equalized Rake Receiver

Equalization has been used previously to reduce any loss due to
IS and interference between symbols when the channel bandwidth
is limited. Clearly, the spread-spectrum CDMA signa will often
experience 1Sl interference between chips and between symbols
in actual transmission because the channel is bandlimited to cause
band limitations of multipath fading or other frequency-dispersive
transmission effects. Usually, the Rake receiver ignores this ISl by
choosing instead to treat the I1SI as another user, thereby increasing
the number of overall users. In addition, the effect of IPI that exists
for Rake receiver in the direct-sequence spread spectrum system is
another important factor in system performance. Thisis because the
spreading ratio in WCDMA systems may be as low as four in order
to increase the high-speed data transmission, such as 2 Mbps, within
a fixed bandwidth. However, using an equalized Rake structure can
reduce those interferences. Simulation results [49-52] in previous
years showed that the performance of the WCDMA system by using
the equalized Rake receiver can be significantly improved over the
conventional Rake receiver.

As shown in Figure 8.20, thisis ajoint multipath MM SE Rake
receiver combined with an MM SE linear equalizer, which is used
to mitigate residual interference for WCDMA systems. Let the
coefficients of the linear equdlizer be ¢,[k], k = —N,—(N —
1),...,—1,0,1,..., N — 1, N. Then the output of the linear equalizer
isgiven by

zln] = > colklZ[n — k. (8.215)
In order to minimize the MSE function, we choose the equalizer
coefficients as an unbiased estimator so that the cost function £ of
the M SE criterion is minimized,

¢ = E{|z[n] — bln]|*}, (8.216)

where b[n],n = 1,2, ..., M, isatraining sequence to be transmitted.
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Then, (8.216) can be rewritten as

1 M—-1 )
€ = 37 2 bl =0l

2

1 M-1| N
= S0 culklzln— k] —b[n]| . (8.217)
n=0 |k=—N

We now express (8.217) in the matrix form
¢=(ZC-B)*(zC -B). (8.218)

By using the method of least squares in (8.214), we obtain the
optimal coefficients for the MM SE linear equalizer

~ H ~

c=2"z2z"8. (8.219)

Combining solutions of the MM SE Rake receiver in (8.214) and
the MMSE linear equalizer in (8.219) produces the joint multipath
diversity receiver for the WCDMA systems. The performance of
the joint multipath diversity receiver should be much better than the
performance of the conventional Rake receiver in theory. However,
the updated weighting coefficients of the MM SE Rake receiver and
coefficients of the MMSE linear equalizer are implemented in a
separate way. Thus, it is possible to further improve the performance
by jointly updating the weighting coefficients of the MMSE Rake
receiver and coefficients of the MM SE linear equalizer at the same
time.

A generalized block diagram of equalized Rake receiver is
shown in Figure 8.21. In that case, the weighting coefficients «;,
[ =1,2,.,L — 1, simple summing device, and linear equalizer of
Figure 8.20 arereplaced by using amatrix equalizer with L input and
one output. Let the matrix equalizer W have its 1 x L coefficients
corresponding to wy, wy, ..., W;_;. Each of the L coefficients
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Figure8.21 A block diagram of ageneral equalized Rake receiver:
(a) a training-based operation if a switch connects
to b[n] and (b) a blind-based operation if the switch
connectsto z[n].

contains N values for each of the L equalizers, that is,

Wo[n}
W = WI:M . (8.220)
WL,l[n]

Thus, we obtain the output value of Z[n| as

L—-1[N-1
Zn) =Y [Z zi[n|w;[n — k]] : (8.221)
=0 Lk=0

In order to find an optimal solution of the equalizer coefficients

w;, i =1,2,..., L — 1 for the equalized Rake receiver, we choose the

equalizer coefficients so that the cost function & of the M SE criterion
IS minimized,

¢ = B{|z[n] - bln] P}, (8.222)
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where b[n],n = 1,2, ..., M, isatraining sequence to be transmitted.
Then, (8.222) can be rewritten as

1M1

&= qp 2 P

1M1

- u X

n=0

Equation (8.223) can be expressed in the matrix form
H

&= (Lzl ZiW; — B) (sz Z;W; — B) : (8.224)
1=0 i=0

Expanding (8.224), we obtain

L—1 H L—1
¢ = BYB-— (Z ziwi> BB (Z ziw,->
=0

1=0

2

. (8.223)

Lzl [NZ Do ~ 1] - op

=0 Lk=0

H

+ (szl ZiWi> <L2:1 Z¢Wi> ) (8.225)
= i=0

Smce(ZzLozw) B= BH<ZLOZW) itisequal to

L1 H L1 H 5
§=B"B-2 (Z aw,) B+ (Z awi> (Z awi>. (8.226)
1=0 1=0 =0

To find the values of w; that minimize £ in (8.226), we differentiate
with respect to w;;,¢ =0,1,2,...,L —landj =1,2,..., N. Let,

)

Blgoj

(9 ow1 ; .

= J =1,2,....N. 8.227
aWZ - b .7 b 9 ) ( )

B

Ow(p_1);
Then it follows that

0 L-1 L-1 L1
ow, [Z Z@H] B+2 lz Zf] lZ zz-wi]. (8.228)

=0
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Equating (8.228) to zero, we obtain the matrix form of the least
squares normal equations,

L—1 L—1 L—1
[Z zﬁ] [Z ziwi] = [Z zﬁ] B. (8.229)
=0 =0 =0
Let Z = [z, 2y, ...,2,—1]. Then (8.229) can be rewritten as

lLZ_l z! ] ZW = [LZ_I z! ] B. (8.230)
=0 1=0

Thus, by using the inverse of the matrix | X% !z ] Z, we obtain the

optimal coefficients of the matrix equalizer for the equalized Rake
receiver

W = [Lzl szz] _ rzl zf] B, (8.231)
1=0 =0

which also can be called the MMSE equalized Rake receiver.

Such a general equalized Rake receiver must work at least
as well as the performance of the Rake receiver, which can
be considered a specia case for spread-spectrum communication
systems.

8.8 Summary

In this chapter, we introduced adaptive equalization in commu-
nication receivers. First, we presented a class of linear equaliz-
ers for channel equalization known as zero-forcing equalizers, and
then adaptive linear equalizers. Second, we described the fractional
spaced equalizer from apoint of multichannel model view. Third, the
decision feedback equalizer, which is a nonlinear equalizer, was in-
troduced along with 7'-space and fractional space for the FFF filters.
Then we introduced diversity equalizers, including the basic theory
of Rake receivers, adaptive Rake receivers, and equalized Rake re-
ceiversthat have been used in spread spectrum and UWB communi-
cation receivers.
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A linear equalizer is the simplest type and the most common
type of channel equalizer used in practice to combat ISl arising
from the bandlimited channel. In the linear equalizer, the emphasis
in this chapter is given on the zero-forcing equalizer for channel
equalizer. The performance of the infinite-length tap-coefficient
zero-forcing equalizer that can completely eliminate Sl is expressed
in terms of the MMSE and SNR at its output, which serves as
a rule for comparison with other types of equalizers. In addition,
the linear equalizer has been shown to have stability and a faster
convergence. However, a zero-forcing equalizer usually does not
completely eliminate 1Sl because it has a finite-length tap-weight
setting. Furthermore, the linear equalizer does not perform well on
bandlimited channels if the frequency passband has deep spectral
null because it attempts to place too much gain in the vicinity of the
spectral null, thereby increasing the noise present in the frequency
bands.

In adaptive equalizers, there are anumber of variation algorithms
that exist for adapting an equalizer. The zero-forcing agorithm
developed by Lucky [39] is one used for eliminating the ISI in
wired communications. However, the zero-forcing algorithm may
excessively amplify noise at frequencies where the folded channel
spectrum has high attenuation. Thus, the zero-forcing algorithm-
based equalizer neglects the effect of noise altogether, and is not
often used for wireless communications. A more robust equalizer
uses the LM S agorithm where the criterion used is to minimize the
MM SE between the desired equalizer output and the actual equalizer
output. The LMS algorithm has low computational complexity, but
it tends to have a slow convergence and poor tracking in some cases.
An RLSwith its variation algorithms has amuch better convergence
and tracking ability than the LM S algorithm. But the RL S algorithm
usually has high computational complexity and may be unstable in
Some cases.

In blind equalizers, a CMA algorithm has complexity about
like the LMS level. The CMA-based blind equalizer minimizes the
constant modulus cost function and adjusts the taps of the equalizer
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in an attempt to minimize the difference between the samples
squared magnitude and the Godard dispersion constant. The CMA
has been well proven to be able to open an eye-diagram and achieve
convergence for the blind equalizer in the communication receivers.
However, the CMA-based equalizer may converge to less than an
optimum setting if the selection of the initial tap values is not
appropriate. Thiswill greatly affect the CMA’s performance because
the constant modulus cost surface is multimodal .

An FSE samples the incoming signal at least as fast as the
Nyquist rate. In some cases, the FSE has a tap spacing of MT'/N,
N > M, but the output of the equalizer is still computed at the
symbol rate. The FSE can compensate for the channel distortion
before aliasing effects occur because of the symbol rate sampling.
In addition, the FSE is insensitive to timing delay during any
arbitrary timing phase. Moreover, the FSE can be considered as a
polyphase filter bank-based equalizer that can be used in SIMO and
MIMO environments. Thus, shorter FSE tap lengths can be selected
to perfectly equalize the channel. Hence, the FSE can achieve a
performance superior to that of asymbol rate-based equalizer. Using
a CMA adaptive algorithm, the FSE has been widely used in blind
equalizers.

A DFE isanonlinear equalizer that isused in wired and wireless
applications where the channel distortion is too severe for a linear
equalizer to handle. In addition, the DFE has a significantly smaller
MMSE than a linear equalizer. However, the DFE may seriously
suffer error propagation because the result of an incorrect decision
in the feedback section produces additional errors. Therefore, in
practice, so-called precoding is used to remove the error-propagation
problem.

A space-time equalizer is a combination equalizer based on
both time-only and space-only equalizers. The time-only equalizer,
which is used to minimize the channel 1S, is developed based on
a baseband temporal structure. In practice, the temporal channel
structure for signals and CCI cannot be well separated if the symbol
waveforms have a small excess bandwidth. Thus, CCl cancellation
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by using the time-only equalizer will lead to excessive noise
enhancement, that is, the time-only equalizer can only provide a
small degree of CCI reduction. On the other hand, the space-only
equalizer corresponds to simple beamforming by using a weighted
sum of antenna outputs. In theory, we have shown that a purely
gpatial combining of the space-only equalizer is able to perfectly
cancel both ISl and CCI. However, in practice, this is impossible
because real channels having a multipath will require too many
antenna elements. Furthermore, this also requires that the multipath
angle spread is not small or that the desired signal and CCl are
well separated. In fact, the space-only equalizer can effectively be
used to eliminate CCl while its effectiveness against 1SI depends on
the angle spread of a multipath. Therefore, a space-time equalizer,
which operates simultaneously on all antennas and processes signal
samples both in space and time domains, should be used to improve
the performance. Especially, a space-time MMSE equalizer is able
to exchange CCI and I SS reduction against noise enhancement. The
space-time MM SE equalizer can primarily cancel CCl in the spatial
domain and ISl either in the space or time domains depending on
where it can be done more efficiently. In other words, performance
of the space-time MM SE equalizer is influenced by the dominance
of the CCl, the 1SI, and the nature of the channel structure.

A diversity equalizer can be used to reduce ISl between
successive transmissions and interference between diversity multi-
dimensions in a communication receiver. A type of the diversity
equalizer is an equalized Rake receiver, which has been shown to
have been significantly improved to reduce interpath interference
over a conventional Rake receiver in WCDMA systems in addition
to enhancing SNR by combining received signals with multipath.
However, a drawback of the equalized Rake equalizer is greater
computational complexity than that of the conventional Rake
receiver. Therefore, selecting the equalized Rake receiver over the
conventional Rake receiver in a particular communication system
depends on atrade-off of design and analysis.
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Multicarrier Modulation, DM T, and
OFDM

9.1 Introduction

Reliably and efficiently transmitting signals with high-speed data
over imperfectly wired and wireless channels is still one of the
central problems of signal processing in digital communications.
Recently, one successful approach to achieving high-speed data
transmission either over a wired or a wireless channel uses a
channel partitioning method to divide the transmission channel into
a number of orthogonal subchannels or subcarriers. The channel
partitioning method constructs a set of parallel subchannels, which
are largely independent. The channel partitioning method is often
referred to as multicarrier modulation (MCM) and is also called
multichannel modulation.

In digital communications, MCM can be classified as discrete
multitone (DMT) or orthogonal frequency division multiplexing
(OFDM), depending on the applications in wired or wireless
channels, respectively. Both DMT and OFDM have the same
channel partitioning where their carrier spacing is selected in such a
way that each of the subcarriers is orthogonal to the other

345
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subcarriers. The difference between DMT and OFDM is that DMT
usually uses adynamic loading algorithm to assign a proportionately
large fraction of the digital information to subchannel signals with
the largest signal-to-noise ratio (SNR) of the subchannel output,
while OFDM carries afixed number of bits on al subchannels.

Over the last decade, DMT has been used in wired digital
communications, including ADSL and VDSL [1-3], over slowly
time-varying wired channels, such as telephone subscriber lines.
DMT isparticularly useful for DSL to combat the impairments of the
loop topol ogies of the tel ephone subscriber lines. Theseimpairments
are mainly due to signal attenuation, crosstalk, including near-end
crosstalk (NEXT) and far-end crosstalk (FEXT), signal reflections,
radio frequency interference (amateur and AM radio), and impulse
noise. Recently, DMT has been suggested for use in wired power
lines for broadband communications [4].

OFDM has been used in wireless time-varying channels,
especially coded OFDM (COFDM), which allows recovery of lost
subchannels caused by time-varying notches due to multipath fading
and I1SI. COFDM is a multicarrier modulation technology and
particularly well suited to provide reliable reception of signals
affected by strong distortions. COFDM has been used in digital
audio broadcasting (DAB) [5], digital video broadcasting (DVB) [6,
7], and portable digital television (DTV) [8]. OFDM played a key
role in multicarrier modulation technology with applications in
wireless local area networks (LANS), such as |[EEE 802.11ain 1999
and 802.11g in 2003 [9, 10], and in wireless local and metropolitan
area networks (MANS), such as |EEE 802.16 in 2005 [11].

This chapter is organized as follows. In this section, we briefly
provide an overview and the background of multicarrier modulation,
DMT, and OFDM. Section 9.2 introduces the fundamentals of
DMT modulation, including multitone transmission, geometric
SNR, and the optimization of energy minimums and bit loading
maximums. Section 9.3 presentsfast Fourier transform (FFT)—based
OFDM in which we describe OFDM systems, OFDM modulation
and demodulation, and A/D converter resolution requirements. In
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addition, we introduce equalized OFDM, including time-domain
and frequency-domain equalizers. In Section 9.4, filter bank—
based OFDMs are introduced, with an emphasis on filter bank
transmultiplexers, the DFT filter bank, the polyphase-based discrete
Fourier transform (DFT) filter bank, the maximally decimated DFT
transmitter filter bank, and a perfect reconstruction of the DFT filter
bank. A brief summary of this chapter is given in Section 9.5.

9.2 Fundamentals of Discrete Multitone M odulation

The basic concept of transmitting data by dividing it into servera
interleaved bit streams and using these to modulate several carriers
was published more than 50 years ago by Doelz et a. [12]. Since
then, interest has continuously increased because digital modems
based on the basic concept are used for high-speed data transmission
over wired and wireless channels. The principle of the technique
has been called by different names such as orthogonally multiplexed
QAM [13], OFDM [14], MCM [15], vector coding [16], structured
channel signaling (SCS) [17], DMT modulation [18], and discrete
wavelet multitone (DWMT) modulation [19]. However, we will
refer to it by generic names. MCM, DMT, or OFDM. Unless
otherwise stated, the discussion in this section will concentrate on
the special forms of DMT and OFDM modulations.

The fundamental goa of DMT modulation is to partition
a transmission channel with ISl into a set of orthogona and
memoryless subchannels, each with its own subcarrier. A sequence
of transmission data is then transmitted through each subchannel,
which isindependent of the other subchannels. It is expected that the
channel response within each subchannel is idedlly flat, as long as
the channdl is partitioned sufficiently well. Thus, DMT modulation
isaspecial case of channel partitioning where each subchannel has
afreguency index and all of subchannels are independent.

9.2.1 Multitone Transmission

A general basic structure of DMT transmission is shown in
Figure 9.1. A block of serial data bits b, ( = 1,2,---,N)
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Figure9.1 The basic structure of discrete multitone modulation.

is divided and mapped into a set of parallel symbol sequences
{X]0], X[1],---, X[M — 1]} in the frequency domain by using
a seria-to-parallel (S/P) converter and symbol mapping. The
output parallel sequences { X[0], X[1],---, X[M — 1]} are passed
through an inverse orthonormal transform to produce several parallel
sequences {xz[0], z[1],---,x[M — 1]} in the time domain. Each
of the parallel sequences {x[0], z[1],---,z[M — 1]} is modulated
onto a subcarrier. {z;}, which is the modulated data segquence,
passes through a channel with noise and {y.} is the received
sequence in the time domain. {z[0], z[1],---,Z[M — 1]}, which
are the demodulated parallel estimated sequences, are generated
from the received sequence {y.} by using a demodulation, and
are passed through an orthonormal transform to produce several
parallel estimated symbols sequences { X[0], X[1], - - -, X[M — 1]}
in the frequency domain. After the several parallel estimated
sequences {X[0], X[1],---, X[M — 1]} are demapped into the
estimated parallel bit sequences, they are formed into the block of
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Figure9.2 Discrete multitone modulation inthefrequency domain.

seria estimated data bits b,, by using a symbol demapping and a
paralel-to-seria (P/S) converter. In general, the parallel sequences
of {z[0],z[1], -, x[M — 1]} and {z[0],z[1],---,2[M — 1]} are
orthogonal to each other since the DMT modulation usually uses
the inverse orthonormal transform and the orthonormal transform at
the transmitter and the receiver, respectively.

Viewed in the frequency domain, the DMT modulation divides
the channel of the transmission data into a fixed number of
N paralel, complex, and independent subchannels, as shown in
Figure 9.2. Each of the subchannelsisreferred to asa“tone,” with a
widthof Af = % in the frequency domain, where 7" is the period of
the multicarrier symbol. Figure 9.3 shows an arbitrary channel curve
of power spectral density (PSD) with vertical “bins” or “tones.” In
this case, if N is sufficiently large, the channel PSD curve will be
approximately flat within each of the subchannels. It is clear that
this assumption is valid in the infinite case. This is because we let
N — oo andthen Af — 0, equivalently.

The DMT system continuously uses the concept of multi-
tone transmission methods to achieve the highest levels of perfor-
mance. The multitone transmission of DMT system partitions the
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Figure 9.3 An arbitrary channel curve of power spectral density
with vertical bins or tones.

transmission channel into a large number of narrowband additive
white Gaussian noise (AWGN) subchannels. Those channels usu-
ally correspond to contiguous digoint frequency bands. Thus, the
multitone transmission is referred to as multicarrier or multichannel
transmission. If the multitone subchannels have a sufficiently nar-
row bandwidth, then each subchannel has little or even no ISl. In
addition, each subchannel independently approximates an AWGN.
Furthermore, the capacity of such parallel independent subchannels
isthe sum of the individual capacities, thereby achieving theoretical
maximum data rates.

Note that each of the vertical tones in Figure 9.3 corresponds
to a subchannel with its own carrier. Within each of subchannels,
the PSD is approximately flat. The height of each vertical tone
represents the approximate amount of information, which is
transmitted over the partial subchannel. Therefore, for the channel
curve of PSD shown in Figure 9.3, we transmit very little data
information over the subchannels at DC and high frequency
as well as less data information over the subchannels at the
notch frequency, where channel attenuation is most severe. As a
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result, a different number of bits can be conveniently assigned
to different subchannels, depending on the SNR in each of the
subchannels. Better subchannels with a higher SNR can transmit
more information, while poor subchannels transmit little or even
no data information. In this way, the overall performance of DMT
transmission can be achieved in an optimal sense.

9.2.2 Geometric SNR

For an AWGN channel, the capacity of a transmission channel is
a theoretical upper bound on the data rate that can be reliably
transmitted. It has been shown in [2] that each of the AWGN
subchannelsin amultitone transmission carrying the maximum data
rate or capacity is given by

2 G

where G is a gap that quantifies the effective loss in SN R,, given
fixed probability of symbol error, P.. In other words, any reliable
and implementable communication system must transmit at a data
rate below the capacity given by (9.1).

The mathematical function of gap GG isgiven by [2, 19]

2
ol (W) e
cg

o NR
by = = log, (1 43 ”) , ©.1)

where ~,, is the margin (decibels) required to achieve the data and
error rates with all anticipated crosstalk and noise levels (for ADSL
and VDSL, v,, = 6 dB isthe accepted value), C., isthe coding gain
(decibels) and measures the excess SNR for that given datarate, and
erfc(x) isthe complementary error function,

erfc(z) = \/QE /oo eV dy. (9.3)

Assume that al of subchannels have the same P, in a
multichannel transmission system. This assumption of constant P,
isvalid if al of the subchannels use the same class of codes with
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a constant gap G. In this case, a single performance measure can
be used as characteristic of the multichannel transmission system.
Thus, for aset of N paralel subchannels, the mean number of bits,
B, can be expressed as the sum of the number of bits carried on
each subchannel divided by the total number of subchannels, NV, as
follows:

1 NR
= log, <1+S 9) (9.4)

where the SNR,,, is referred to as the geometric signal-to-noise
ratio, and is given by

1N
SNng:G{[ﬁ (1+ SZR")] —1}. 9.5)

n=1

In this case, al the N paralel independent subchannels can be
treated as one AWGN channel with SNR,,. If the SNR,, in (9.5)
improves, then the SNR,, increases. Moreover, the SNR,., can
be improved when the available energy is distributed nonuniformly
over al or a subset of the parallel subchannels, thereby allowing a
higher performance in DMT transmission, such as ADSL, VDSL,
and LDSL systems [2, 19, 20]. This leads to a processing of
optimizing the bit and energy distribution over a set of N parallel
subchannels. This processing is known as the bit loading algorithm
or referred to as the water-filling algorithm, described in Section
9.2.3.
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9.2.3 Optimum of Energy Minimum and Bit L oading Maximum

One of the crucia designs in the DMT transmission system is
an accurate and efficient bit loading algorithm that will maximize
the transmission capacity on any given loop topology. The water
filling algorithm is a well-known optimal-power distribution used
for parallel communication channels [21]. It can provide a basis
scheme for the power minimization and bit loading maximum in a
DMT transmission system, especially in amultiuser communication
environment. The bit loading algorithm often makes use of (9.1) on
a subchannel-by-subchannel basis in an iterative manner to reduce
the convergence (or training) time. In this case, the water filling
algorithm is called theiterative water filling algorithm. Theiterative
water filling algorithm can also be considered a formulating power
allocation in the multiuser interference network in which each user
wants to maximize his or her own data rate over the transmission
subchannels with respect to crosstalk interference from other users
and noise. The iterative water filling algorithm usually converges to
an optimal equilibrium point that is referred to as a stationary point
in an optimal sense.

Maximization of the Data Rate

In order to maximize the transmission data rate R over a set of N
parallel subchannels,

B
R= T (9.6)
where % is the fixed symbol rate. This requires obtaining a

maximization of the achievable mean number of bits B. The
maximum mean number of bits, which can be transmitted over those
N parallel subchannels, must maximize the mean number of bits

N

_ 1 SNR,,
B=sy Y {logQ (1 + )} , ©.7)
where SNR,, on an AWGN subchannel can be expressed by
2
SNR,, = Enl Ha , (9.8)



354 Signal Processing in Digital Communications

where H,, is the subchannel gain, F, is the energy of a signal
constellation over the subchannel, and o2 isthe noise PSD. Note that

‘H" is afixed function of the subchannel, but £,, can be varied to

maX| mize the mean number of bits 13, subject to an energy constraint
such that an average energy of asignal constellation is

_ 1 i\f:
=S E,. (9.9)
Nn:l

Using the Lagrange multiplier method, we set the cost function
that maximizes the mean number of bits B in (9.7) subject to the
constraint in (9.8) asfollows:

1 Y E,|H,|? 1 Y
L—mnzf‘)g?(” Go? )1“( "N
(9.10)

where \ is a constant to be determined. Using the mathematical
formulalog, y = =¥, (9.10) can be rewritten as

Ina

1 N E,|H,|? I
L—2Nln(2)2[ln<1+ Go? >]+A<EI—N;1ETL ,
(9.11)

n=1

Setting the derivativein (9.11) with respect to £,, to zero, we obtain,

oL 1
aEn 2N1n Z (E + Go2/|H, |2> —A=0. (9.12)

Thus, (9.12) yields

1
) A
A= 2N1n Z::<ETL+G02/|H,L|2> (013

Since )\ isthe constant, (9.7) is maximized subject to (9.9) when

G 2
Enct; HUTQ - K, (9.14)
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Figure 9.4 Discrete-time water filling solution for 10 subchannels.

where K isthe constant. Equation (9.13) can then be rewritten as

1
A= YK In(2) (9.15)

The solution of (9.14) is referred to as the “water filling”
optimization. In other words, the transmit energies with the optimum
water filling should satisfy the condition in (9.14) for the DMT
transmission. When G = 1 (0 dB), we achieve the maximum data
rate for a set of parallel channels.

The water fill solution for the set of parallel subchannels can be
illustrated by using a graph with the curve of an inverted channel
SNR filled with energy (or water) to a constant value. For example,
Figure 9.4 shows a discrete-time equivalent of the water filling
solution for 10 subchannels with a noise-to-signal ratio (NSR) of

o2

In = e Note that 8 of the 10 subchannels have positive energies,
while 2 subchannels are eliminated due to zero (subchannel index
at 3) and negative energy (subchannel index at 6), respectively.
Thus, the 8 used subchannels have energy that makes the total
of normalized noise and transmit energy constant for the DMT
transmission.
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The concept of awater filling term arises from the analog of the
curve of Gg,, as shown in Figure 9.4. Water (or energy) is poured
into a bowl, thereby filling the bowl until there is no more water to
use. In this case, the water (or energy) will gradually rise to reach a
constant of aflat level of the bowl. In any subchannel, the amount
of water (or energy) is the depth of the water at the corresponding
point at G, inthebowl. Thisprocessisalso referred to asthe water
filling optimization for the DMT transmission.

Minimization of Energy

It is also clear that the energy minimization is equivalent to
maximize the data rate. In other words, we want to minimize the
total energy

N
min{ .} = ]1v¥E (9.16)

subject to the data rate being fixed according to

_ 1 X E,|H,|?
B—m;lllogQ <1+ Go? . (9.17)

Using the methods of the Lagrange multiplier and differentiation,
the optimum solution of the energy minimization is again the
optimization of the water filling solution given by (9.14). In this
case, the water (or energy) is poured on until the number of bits per
symbol is equal to the given fixed data rate in (9.17). This method
is sometimes referred to as iterative water filling in the multiuser
environment of parallel subchannels.

Adaptive Bit Loading

Adaptive bit loading based on the optimization of the water filling
solutionin (9.14) and the energy constraint in (9.9) can be computed
by using the set of linear equations as follows:

Go?
E L =
VAT
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Go?
E 2 = K
2+ 2
GJQI N
E, = K
A
1 _
v (El + Ey+ -+ En) = F,. (9.18)
As can be seen, there are (V + 1) equations with (N + 1) unknown
parameters. Those unknown parameters are £, (n = 1,2,---, N)

and the constant value K . Equations (9.18) can then be expressed in
amatrix form asfollows:

1 0 0 ... 0 —1][E] ugffg
01 0 ... 0 —1 Es b
Pl P == : |. (919
0 0 0 1 —11|E, Go2.
IO SR B I o B Y

Equation (9.19) can be solved by using matrix inversion. The
energies must be positive valuesfor all of the subchannels. However,
the energy solutions of the matrix equation in (9.19) may produce
negative values for some subchannels. If thisis the case, the largest

| H e should be eliminated, and the corresponding energy F,, should
be zero. The matrix equation in (9.19) can be solved iteratively until
a solution with nonnegative energy occurs.

An intuitive egquation obtaining the constant & can beyielded by
summing thefirst N equationsin (9.18),

1
K= s (EEros )
1 B N 2
- N( B+Go HP)
G a2
- Ex+NZ|H i (9.20)
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The corresponding energy F,, can then be obtained by

Go?
E,=K — z =1,2,---,N. 21
n ’Hn‘27 n Y Y ) (9 )
Note that if one or more of the energy parameters £, < 0, then
the most negative parameter is eliminated first. Then, we can again
solve (9.20) and (9.21), butdosoby using N — ¢ (1 = 1,2,---, M,
and M < N) to substitute for N in (9.220) for each iteration and

eliminating the corresponding term of “;’—:P

Example 9.1
Assume that a discrete-time channel frequency responseis given by

H(e’) =1+ 0.5¢77%, (9.22)

the constant noise power is0.25, and £,, = 1. We want to determine
the water filling solution with G = 1 for four subchannels.
The squared magnitude of discrete-time channel is characterized

by
[H(e™)[? = H(e™)H (™)
= (1+0.5e77%)(1 4 0.5¢7%)
= 1.25+0.5(e 77 + &)
= 1.25 4 cosw. (9.23)

Thus, the characteristics of four subchannels for the water filling
solution are obtained by

2
2
A 0.25 —0.16
HE ~ 1.96 % (n/4—0)
2
lop _ 0.25 095
| Hs|? 1.25 x (7/2 —7/4)
2
2
% _ 0.25 — 0.59
| H|? 0.54 x (37/4 — 1/2)
2
2
i S 025 —1.27. (9.24)

|H,y|? 0.25 x (m — 37/4)
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Using (9.20) with all of the subchannels, we obtain

N

2
K = E,+ o

n

n=1 |]¥n|2

=5

1
= 1+ 1(0.16 +0.25 + 0.59 + 1.27)

= 1.5675. (9.25)

The corresponding subchannel energies E, forn = 1,2,3,4 are
1.4075, 1.3175, 0.9775, and 0.2975, respectively, which are all
positive. Thereby, the water filling solution has been found.

9.3 FFT-Based OFDM

In theory, OFDM is the same as DMT because both of them
use the same channel partitioning, multicarrier, and multichannel
modulations. However, OFDM differs from DMT in terms of the
water filling optimization and the corresponding adaptive bit loading
algorithm. Generally, OFDM puts equal bits on all of subchannels
used in wireless time-varying channels that have time-varying
notches in fading due to multipath propagation, the speed of the
mobile and surrounding objects, and the transmission bandwidth
of the signal, while DMT uses the adaptive bit loading algorithm
based on optimizing a number of bits b, and the energy E, for
each subchannel used in wired slowly time-varying channels. In this
section, we introduce OFDM modulation based on the DFT or FFT
(see DFT in Appendix C and FFT in Appendix D).

9.31 OFDM System

The key idea behind OFDM technologies is the partitioning of a
transmission channel into a set of orthogonal subchannels, each with
approximately flat transfer function and AWGN. The transmission
datais then transmitted in parallel on all of the subchannels, each of
which is completely independent. In other words, the basic idea of
OFDM s to transmit blocks of symbolsin paralel by using alarge
number of orthogonal subcarriers.
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Figure 9.5 The basic structure of the OFDM system.

Figure 9.5 shows structure of an OFDM system, including
the modulation, the digital-to-analog (D/A) converter, channel and
noise, the analog-to-digital (A/D) converter, and demodulation. With
ablock transmission, ablock of serial databitsb; (i = 1,2,---, N),
each having a bit period of T, is divided into a block of N parallel
modulated symbols, {X[0], X[1],---, X[N — 1]} in the frequency
domain, each having a symbol period of 7, = NT. The block
length of N is usualy chosen so that NT' > o, where o. is
the root-mean-square (RMS) delay spread of the channel. The
{X]0], X[1],---, X[N — 1]} are in parallel modulated by using
N separate subcarriers, with X[i] symbols modulated by the ith
subcarrier. The modulation process is accomplished by using either
a 2N-point inverse discrete Fourier transform (IDFT) operation or
the more computationaly efficient 2N-point inverse fast Fourier
transform (IFFT). The paralel output of the 2/N-point IDFT is
converted back into adigital seria form, {x;}, with the appropriate
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cyclic prefix attached before passing through the D/A converter,
which operates at a sampling frequency rate of F, = 2NT+”.
The resulting analog waveform is sent through the channel with
noise. At the receiver, the received analog signal is converted into
digital form by using A/D converter operating at the same sampling
frequency rate of F. The resulting digital serial sequence, {yx},
is converted back to the parale digital received sequence. The
cyclic prefix isthen removed to generate the parallel digital received
sequence, {z[0], z[1],- - -, z[2N — 2], 2[2N — 1]}, which is passed
to the 2N-point DFT (or 2N-point FFT) demodulator. The 2N-
point DFT demodulator converts the discrete-time digital sequence,
{z[0], z[1],---,Z[2N — 2], 2[2N — 1]}, back to the parallel symbol
sequence, {X[0], X[1],---,Z[N — 1]}, in the frequency domain.
Note that the symbol rate on each subcarrier of the OFDM
system is much less than the serial bit rate. Thus, the effects of delay
spread are greatly reduced, thereby reducing or even eliminating the
need of equalization at the receiver. However, the channel dispersion
will still cause consecutive blocks to overlay, which is referred to
asintercarrier interference (ICl). This happens due to the effective
length of the channel impulse response or the channel constraint
length v. As a result, the tail of the previous block multicarrier
symbol will corrupt the beginning of the current block multicarrier
symbol. This leads to the conclusion that the subchannels are
not strictly independent of each other in the frequency domain.
This results in some kind of residual 1Sl that will degrade the
performance. In order to mitigate the effect of 1Cl, we can eliminate
theresidual ISl by aguard interval filled with acyclic prefix between
the blocks that is at least the same as the effective channel impulse
response v. In practice, the length of cyclic prefix is selected to be
about 25% of the block length of V. However, it is also clear that
using the cyclic prefix is at the expense of the channel capacity.

9.3.2 OFDM Modulation by IFFT

Referring to Figure 9.5, a block of N parallel complex symbols is
{X]0], X[1],---, X|N — 1]} in the frequency domain. In order to
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obtain 2/N-point time-domain values that are real valued after the
2N-point IFFT operation, the block of N paralel complex input
symbols {X]0], X[1], -+, X[N — 1]} is expanded to create 2N
parallel complex symbols by using Hermitian symmetry,

X[k] =conj{X[2N —k]}, k=N+1,N+2,--- 2N — 1.
(9.26)
Note that the subchannel at DC (or the subcarrier index at 0) should
not contain energy, X [0] = 0, and the subchannel centered at the
Nyquist frequency is not used for user data. That subchannel should
have areal valueor X |N| = 0.

For OFDM modulation, the 2N-point IFFT operation at the
transmitter can be implemented by using the NV-point IFFT. Theidea
of reducing computation complexities is to make a new complex
sequence Y'[k] with a N-point operation rather than a 2/N-point
operation. For k =0,1,---, N — 1, welet

Glk] = X[k] + conj{ X [2N — kl|}, (9.27)

and
H[k] = [X[k] + conj{ X [2N — k]}] Wx", (9.28)

The new complex sequence Y'[k] is then formed by
Y[k| = Glk|+ jH[k], k=0,1,--- /N — 1. (9.29)

Thus, the N-point IFFT operation for the new complex sequence
Y[k] isasfollows:

y[n] = ]IV]:Z_;Y[/@]W];’“", n=01,---,N—1, (9.30)

The output y[n] in (9.30) is acomplex sequence given by
y[n| = g[n] + jh[n|, n=0,1,--- N — 1. (9.31)
Therefore, the 2N-point real sequence z[n| can be formed by

examining
z[2n] = g[n], n=0,1,---,N — 1, (9.32)
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and
z[2n+ 1] =h[n], n=0,1,---,N — 1. (9.33)
The process achieves for the 2N-point IFFT operation by using

the N-point IFFT operation for the OFDM modulation at the
transmitter.

9.3.3 OFDM Demodulation by FFT

In an OFDM demodulation, we have 2/N-point real values as an
input sequence z[n] (n = 0,1, --,2N — 1) to produce an N-point
complex value after the FFT operation. If we use the 2N -point FFT
implementation directly, it will cost huge computation complexities
for the OFDM demodul ation.

Reducing the computation complexities is possible since the
input signal sequence z[n] isreal valued in the discrete-time domain.
We split the input sequence [n| into the even-indexed points i, [,

Zeln| = z[2n], n=0,1,2,--- N — 1, (9.34)
and the odd-indexed points z,[n],
Ton| =22n+1], n=0,1,2,---,N — L. (9.35)

Then we can convert the 2N-point FFT into the N-point FFT
(k=0,1,---,N —1) asfollows:

2N—-1

X[k = > Wiy

n=0

N-1
= > Wik + Z [2n + 1WA D"
n=0

N—-1 N—-1
= > & [mIWEF + Wi D &, [m]Wi*
m=0 m=0

= FFT{wm]} + Wyy [FFT{zo[m]}],  (9.36)

Note that the FFTs in (9.36) are N-point FFT operations. Hence,
we can calculate the 2 N-point FFT for the OFDM demodulation by
using two N-point FFTs of real signals.
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Example 9.2

WLAN 802.11a [9] is the IEEE standard for wireless local
area network, which mainly uses an OFDM system. The ra
dio frequency of WLAN 802.11a is initially operated for the
5.15-5.25, 5.25-5.35, and 5.725-5.825 GHz with unlicensed na-
tional information structure (U-NI1) bands. The OFDM system pro-
vides communication data rate capabilities of 6, 9, 12, 18, 24, 36,
48, and 54 Mbps for the WLAN. The OFDM, which isimplemented
by using the 64-point IFFT/FFT, uses 52 subcarriers with modu-
lations, including binary or BPSK, QPSK, 16-QAM, or 64-QAM.
A convolutional encoding of the forward error correction (FEC) is
used with a coding rate of 3, 2, or 3. Among the 52 subcarriers,
48 subcarriers Ngp are used for data transmission, and 4 subcarri-
ers Ngp are used for pilot information. Each channel has 20-MHz
frequency bands. Thus, the subcarrier frequency spacing Ar is ob-
tained by Ay = 20 = 0.3125 MHz. The corresponding IFFT/FFT
period Trxr is equal to A% = 3.2 us. The cyclic prefix duration
T., is 25% of Trpr, Te, = 0.8 us. Hence, the duration of the sig-
nal OFDM symbol with the BPSK modulation T4, is equal to
Tep+Trer = 4.0 ps. The corresponding repetition frequency of the
signa Fiignat 1S Fignar = Tsilml = 250 kHz.

We now can determine the transmission data rate. For example,
with 64-QAM and a 2 coding rate, we solve 2° = 64, where b isthe
number of bits, and obtain b = 6 for coded bits per subcarrier. The
coded bitsper OFDM symbol N¢pps isequal to Ngp xb = 288, and
the data bits per OFDM symbol Nppps isequal to 288 x 2 = 216.
Therefore, thedatarateisequal to Nppps - Figna = 216 x 250 kHz

= 54 Mbps.

9.3.4 ADC Resolution for the OFDM Modulation

One of the major concerns for OFDM implementation is the
analog front-end design, especially the A/D converter (or D/A
converter) whose resolution plays an important role in OFDM
system performance. Thus, developing an analytical form that
includes all relevant system parameters of the OFDM system is
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important. In this section, we derive a closed-form expression of the
A/D converter resolution for the OFDM system performance.

In uniform quantization, the quantization step size of the A/D
converter or the resolution of the quantization is given by [22],

2Xclip

A= 5B

(9.37)

where B isthe number of bitsand X, is known as clipping or hard
limiting, in which the peak signal amplitude will exceed the full-
scale amplitude of the A/D converter. The corresponding variance
of the quantization error isthen

2
52 = 2
© 12
92— QBXCQZZp
= — (9.38)

The signal-to-quantization noise ratio (SQNR), which is a
common measure of the fidelity of A/D converters, is defined as the
ratio of signal power (variance) o2 to the quantization noise power
(variance) o2 asfollows:

SONR = ¢

Oc

3. 223 2
Xglzp

22B
- 3u2 , (9.39)

where p = “’“P is called the clipping factor or referred to as the
peak- to—average ratio (PAR). Equation (9.39) can also be expressed
in decibels (dBs)

SONR = 6.0206B + 4.7712 + 20logy, (;) . (9.40)

clip
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Note that the third term in (9.40) suggests that the root mean square
(RMS) vaue o, of the signa amplitude should be less than the
peak amplitude of the signal. If the RMS value o, is too large, the
peak signal amplitude will exceed the full-scale amplitude of the
A/D converter. In this case, (9.40) has a severe distortion known as
clipping or hard limiting.

In order to develop the overall SNR, we use the assumption given
by Mestdagh [23], which is that the overall quantization noise o2 is
a factor o smaller than AWGN o2,y With 6%y, on = ac?, we

then derive the overall SNR,
2

SNR = ——&
0c + 0awen
o2
- 0?2 + ao?
1 o2
- e 9.41
I1+a <a§> (941)
Substituting (9.39) into (9.41) yields
1 3.2%8
SNR = . 9.42
1+« ( w? > (942)
By using log, on both sides of (9.43), we obtain
1
log, SNR = log, () + log, ki +2B. (9.43)
1+« 112
We then obtain
B — logy SNR + log, (1 + a) — logy(3) + log, 1
B 2
_ 10log;y SNR + 101log, (1 + a) — 101log, 3 + 20log;,
a 201og;(2) .

(9.44)
The corresponding clipping factor 1 can be obtained by solving the
probability of clipping given by [24]

P o [ 2 1, 90.45
Xclip o '/)(clip g 27T eXp _T‘Q v ( ) )
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Lety = £ and do = V20dy; we then rewrite (9.45) as

+oo 1 2
Py :2/_7e’y\/§ad
Xclzp )f;%;p 0_\/% ( ) y

eV’ dy

A
-l

— 1_ef <\’/‘§> : (9.46)

where erfc(z) isthe complementary error function given by (9.3)

f 2 [T
efc(x) = 7 /x e “dx

= 1—ef(x), (9.47)
where erf(x) isthe error function defined by

erf(x) = \/2% /Om e du. (9.48)

A relationship between the normal Gaussian function @, (=) and
the error function erf(x) is given by

x 1 22
Qpq(x) = /_OO _27Te’7dz

1 1 x

Substituting (9.49) into (9.46), we obtain

PXclip

Poa(p) =1~ 5

(9.50)

If we assume Py, < 1077, using atable of the normal function
1 (1) given by [25], we obtain i ~ 5.0.
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With the factor o = 2 and i = 5.0, (9.44) can be approximately

rewritten as
B 10log;o SNR

+2.322. (9.51)
Equation (9.51) can be further ssimplified in terms of the maximum
number of bits b,,,, carried by each of subchannels. In order to
obtain abit error rate (BER) lower than a specified value P., theterm
of 10log,, SNRin (9.51) must satisfy the relation given by [23, 26]

M—1 P 1 ?
101 SNR > 101 S I S Y i
0810 = 0g10{ 3 [ 0,1<4 1_1/m>‘| }
+7m — Ve (952)

where ®;{(z) is the inverse normal Gaussian function of @ ;(z)
given by (9.49), M isthe QAM constellation size, ~,, is the noise
margin in decibels, and -, isthe coding gain in decibels. Assumethat
all of subchannels in the OFDM modulation have the same power.
Thus, the resolution of the A/D converter, B, is determined by the
largest possible QAM constellation size, M = 2°ma=, from (9.51)
and (9.52).
If P. <1078, then

po1
oyt [ f————— ) ~6, 9.53
o < 41— 1/\/M> (939

and (9.52) can be rewritten as

10log;o SNR = 101og (2" - 12) + m — Ve
~ 3bmaz + 10.79 + Y — Ve (9.54)

Substituting (9.54) into (9.51), we obtain the required resolution for
the A/D converter

b _
Br =2 44124 Jm - Je, (9.55)

For agenera case, with the noise margin +,, = 6 dB and the coding
gain . = 2 dB (e.g., for the forward error correction alone), (9.55)
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can be smplified to

B~ b”;“"’*‘ +5. (9.56)

As aresult, (9.55) and (9.56) provide a closed-form expression for
the required A/D converter resolution for OFDM demodulation.

9.3.5 Equalized OFDM

In order to combat ISl due to a dispersive transmission channel,
applying equalization in an OFDM or DMT demodulation systemis
usually required. An elegant equalization method relies on inserting
a guard time (or cyclic prefix) between transmitted symbols after
modulation with an IFFT at the transmitter. If the cyclic prefix is
longer than the channel impulse response, demodulation can be
implemented by the means of an FFT at the receiver, followed
by using an equalizer with a single complex coefficient. This
equalization technology works well under the condition that the
duration of the guard time is longer than the channel impulse
response [27, 28]. However, a long cyclic prefix results in a large
overhead with respect to the transmission data rate. In order to
reduce the guard time, a common solution is to shorten the channel
impulse response by using a time-domain equalizer (TEQ) before
the FFT demodulation. However, imperfectly shortened channel
impulse responses lead to ISl between two successive symbols and
intercarrier interference (ICl) between different carriers. Thus, in
this section, we present an overview of the different time-domain
and frequency-domain equalization techniques that can be used for
the OFDM or DMT demodulation system when the channel impulse
response is longer than the cyclic prefix.

Time-Domain Equalization

A transmission channel with severe ISl has along channel impulse
response. A TEQ is usually needed to handle the situation of the
severe IS, especialy if the cyclic prefix is significantly shorter than
the channel impulse response. Figure 9.6 shows the TEQ in the
signal path before the OFDM or DMT demodulation (or a2V -point
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Figure 9.6 A time-domain linear equalized OFDM system.

FFT function), where v denotes the length of the cyclic prefix and
P = 2N + v denotes the length of a symbol including cyclic prefix.
Assumethat C'(z) isthe channel and D(z) isthe time-domain linear
equalizer as given in Figure 9.6. The goal here isto design asimple
FIR or infinite impulse response (IIR) equalizer D(z) so that the
product D(z)C(z) is a good approximation of an FIR filter with
a small filter length L. This process is referred to as the channel
shortening for the OFDM or DM T demodulation system.

The receiver based on the time-domain linear equalized OFDM
in Figure 9.6 can be expressed in a matrix form:

Y = WXh, (9.57)
where h isthe M-tap of the time-domain linear equalizer given by
h={ hlo] A1} -~ KM —1] hM]} (9.58)

X isthe2 N x M Toeplitz matrix of the input signalsx as kth symbol
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given by
zlsi+v+1]  z[si+v] - z[si+v—M+2
 _ zlsi+v+2] zsi+v+1 - z[sy+v— M+ 3]
x[s9) x[so—1] -+ z[se — M +1]
(9.59)

where s; = k(2N +v) and s, = (k + 1)(2N + v), and W is the
2N x 2N FFT-matrix given by

1 1 1 e 1
1w w2 N

W |1 W2 W4 cee W20RN-D) ’ (960)
i WQINA W2(2.N71) . : VV(QJIVA)2

where W = e 3" and Y isthe output of N-point FFT operation,
T
Y={VilK Yak] -+ Y[kl Yalkl} . (9.60)

Note that (9.57) does not consider a synchronization delay 4. In
order to synchronize, the delay ¢ needs to be added into the matrix
of X in (9.59).

Also note that the z—! units and decimator by P units form the
polyphase decomposition for the decimator after the TEQ and before
the 2N-point FFT. The polyphase decomposition will provide an
efficient way for decimation implementation. However, the TEQ il
operates at a normal sampling rate since the TEQ is located before
the polyphase decomposition. In other words, the computational
complexities of the TEQ cannot be saved while the 2N-point FFT
operates on downsampling rate by P.

Freguency-Domain Equalization

A frequency-domain equalization (FEQ), which is an alternative
receiver structure as shown in Figure 9.7, is developed based on
a separate MSE optimization for each tone or for each carrier.
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Figure 9.7 A frequency-domain equalized OFDM system.

A detection and decoding system in the OFDM demodulation
cannot be ssimplified if all of the subcarriers do not have the same
attenuation and phase. Thus, a single-tap FEQ per tone can be used
after the 2N -point FFT demodulation to correct for the attenuation
and phase rotation. In other words, it multiplies the 2/N-point FFT
demodulation output by using a diagonal matrix whose elements
are one complex multiplication per tone and are the inverse of the
transform of the shortened channel impulse response.

Note that the z=! units and decimator by P units form the
polyphase decomposition for the decimator before the 2/N-point
FFT. The polyphase decomposition will provide an efficient way for
decimation implementation for the 2/N-point FFT, which operates
at arate downsampled by P. Furthermore, the FEQ operates on the
output of the N-point FFT. Thus, the computational complexities
of the FEQ can be reduced since it performs at the downsampled
rate. The single-tap based FEQ per tone can be updated by using
an adaptive algorithm according to the error signal e[n] = b[n] —
b[n], where b[n] is the output sequence of the symbol demapping
and parallel-to-serial (P/S) converter and b[n| is a desired symbol
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sequence or atraining symbol sequence.

A smal MSE of a specia tone in the OFDM demodulation
system generally corresponds to a large SNR and a large
transmission capacity for the tone, thereby leading to improved
and more predictable performance. Furthermore, the computational
complexities and memory requirements can be reduced for the
OFDM demodul ation system.

9.4 Filter Bank—Based OFDM

In this section, we discuss filter bank approaches for the OFDM
system with an emphasison FFT transmitter filter banks and receiver
filter banks, perfect reconstruction, and efficient implementation of
polyphase decomposition.

9.4.1 Filter Bank Transmultiplexer

A schematic structure of a filter bank transmultiplexer is shown in
Figure 9.8. Itisaso called adigital transmultiplexer [29-31]. It was
initially intended to convert transmission data between time division
multiplexed (TDM) and frequency division multiplexed (FDM). Note
that the Hy(z) in Figure 9.8 are referred to as transmitter filters or
transmitter interpolation filters. The output of kth transmitter filter is
expressed as

[e.e]

yrln] = Z xy[ilhg[n — iN], (9.62)

i=—00

where y,[n] is an interpolated version of xx[n] and has N times
a higher data rate. The Oth transmitter filter Hy(z) is assumed
to be a lowpass filter, while other transmitter filters Hy(z), k =
1,2,---, N — 1, are bandpass filters. However, al of the transmitter
filters Hi(2), k = 0,1,2,---, N —1, usually cover different uniform
frequency bands. The interpolated signals y;[n| are analogous to
modulated versions of baseband signals x[n|. This is because
the bandwidth is shifted to the passband of the transmitter filters
Hy(z). These are packed into N adjacent frequency bands and
added together to obtain the composite signal y[n|. If the transmitter
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Figure9.8 A schematic structure of afilter bank transmultiplexer.

filters H,(z) are chosen as good bandpass filters, we refer to the
compositesignal y[n] asaFDM version of the separate signals z[n],
k=20,1,2,---, N — 1. On the other hand, if the transmitter filters
H,.(z) are just chosen as delay elements %, then the composite
signal y[n| isthe TDM version of the N signals xx[n].

At thereceiver, thereceiver filters Q. (2), k = 0,1,2,-- -, N —1,
separate the received signa r[n] into the N parallel signals r4[n]
that are distorted and noisy versions of the symbols z;[n]. Thus, the
goal is to detect the symbols xy[n] from r,[n] within an acceptable
probability of error, thereby making r[n| resemble xx[n|, & =
0,1,2,---,N —1.

Assumethat atransfer function G,,, (=) isthe decimated version
of the product filter function Hy(2)C'(2)D(2)Qm(z). If Grm(2) is
not a zero for k # m, then the received symbol r,,[n] is affected
by the transmitted symbol x[i], i@ # n. This results in interband
interference. If G (2) is not a constant, then the received symbol
ri[n] is affected by the transmitted symbol x[i], i # n, because of
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the filtering effect of Gy.(2). This leads to intraband interference.
However, if interband and intraband interferences are cancelled, then
thefilter bank systemiscalled ISl free.

Further assume that the transmitter filters H, (=) and the receiver
filters Qy(z) are ideal nonoverlapping bandpass filters. Thus, there
is no interband interference. In addition, if the channel C(z) is
completely equalized with the inverse filter or equalizer D(z) =
=17, then the filter bank system is ISI free and ry[n] = 2[n] for
ali k in the condition of absence of noise. In this case, we have the
perfect symbol recovery. In other words, the filter bank system has
perfect symbol recovery if and only if the transmitter filters Hy(z)
and the receiver filters Q) (z) satisfy the condition given by

Hi(2)Qn(2) [ |n= 6[k — n]. (9.63)

In the time domain, this means that the product filter Py, (z) =
H(2)Qn(z) hasthe zero-crossing property

0, k#n

Pin| M| = { 8[n], otherwise. (9.64)

Equation (9.63) or (9.64) is called the biorthogonality property.
9.4.2 TheDFT Filter Bank

The DFT can be presented by using the matrix form of the DFT as
discussed in Appendix C. The (M x M) matrix W of the DFT has
(M x M) elements W]gm = W™ given by (C.9) in Appendix C,
where TV = e~#" . Note that WX = W since the column vectors w;
of matrix W of the DFT are orthonormal. Then, the quantity W* is
equal to W, where the matrix W* is a conjugate of the matrix W.

By using the definition of the matrix W and the relationship
between input and output given by (C.8) in Appendix C, we can
obtain

M-1
rln — W™ k=0,1,2,..,M—1.  (9.65)

1=0
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Figure9.9 Thereceiver DFT filter bank for the OFDM demodula-
tion.

Equation (9.65) indicates that we need to compute aset of M signals
Ry[n] from a set of M signas r[n — i] for every discrete-time
index n as shown in Figure 9.9. In the z-transform domain, we can
rewrite (9.65) in the following form:

M-1

Ri(2) = Y. 27'WHR(2)
=0
M-1

= Y (zW") ' R(). (9.66)

=0
Thus, we can represent (9.66) as follows:
Ri(2) = Fu()R(=), (9.67)
where F,(z) is expressed as
Fi(2) = Fy(zW"), (9.68)
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and
Foz)= > =" (9.69)
=0
Equation (9.69) isreferred to as a prototypefilter, and (9.67) iscalled
the receiver filter bank for the OFDM demodulation system. Using
the result given by [22], we obtain the frequency response Fy(e’*)
in (9.69) asfollows:

F0<6jw) — piw(M-1)/2 [sin(Mw/Q)}

sin(w/2) (9.70)

and the corresponding magnitude response | Hy(e’*)| is obtained by

[Fo(e?)] = (9.71)

sin(Mw/2) |
sin(w/2)

Thus, the kth receiver filter bank Fi.(z) has the frequency response

F(e?) = Fy(e? @5, (9.72)
Note that (9.72) isauniformly shifted version of the prototype filter
Fy(e?*). Thus, the receiver filter bank contains M receiver filtersfor
the OFDM demodulation system. Equation (9.68) or (9.72) is aso
referred to as a uniform DFT receiver filter bank.

Miao and Clements [22] indicate that the receiver filter bank
consisting of M filters is obtained from a single prototype filter
Fy(z) by uniformly shifting the frequency response based on the
relation in (9.72). Those filters have wide transition bands and small
stopband attenuation. Furthermore, the magnitude response of those
filters has a large amount of overlap because the prototype filter
Fy(z) in (9.69) is a very simple filter. However, those problems
can be improved when we introduce the polyphase-based DFT filter
banks discussed in the next section.

9.4.3 Polyphase-Based DFT Filter Bank

A method of polyphase decomposition can be used to implement the
DFT receiver filter bank efficiently. Given the prototype filter F(z)
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in (9.69), the kth receiver filter in (9.68) can be rewritten into the
M -channel receiver filter bank as follows:

Fi(2) = Fy(zW")

M-1
= Y TWRDEM), (9739
=0
since (:WHF)M = 2M_ Substituting (9.73) into (9.67), we obtain
M-1 ] )
Ri(z) = > WM [z7D,(:")R(=)| . (9.74)
=0

By using the method of polyphase decomposition in (9.74), an
implementation structure of the DFT receiver filter bank for the
OFDM demodulation system can be shown in Figure 9.10. Note
that if D;(z") = 1 for al i in (9.74), then (9.74) is equivalent
to (9.66). This means that Figure 9.9 is a special case of Figure 9.10
when D;(z™) = 1 for dl i. However, the presence of D;(z*) in
Figure 9.10 alows for increasing the length of the prototype filter
Fy(z). Asaresult, the DFT receiver filter bank, including M filters,
can have a sharper cutoff and a higher stopband attenuation for the
OFDM demodul ation system.

9.4.4 Maximally Decimated DFT Transmitter Filter Bank

Decimating outputs of the receiver filter bank in the DFT receiver
filter bank by the decimation factor of M isinteresting in the OFDM
demodulation system. This can be accomplished because each of
these receiver filter outputs has a bandwidth, which is approximately
M times narrower than the bandwidth of the input signa r[n].
Thus, by using the method of noble identity [22], the polyphase
decomposition of the DFT receiver filter bank with a decimation
function of M factor is shown in Figure 9.11. As can be seen,
this polyphase decomposition structure of the DFT receiver filter
bank is an efficient implementation of OFDM demodulation due
to the decimation operation before the receiver filters D;(z*) for
i=1,2,---,M—1.
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Figure 9.10 Polyphase decomposition of the DFT receiver filter
bank for the OFDM demodul ation.

9.4.5 Perfect Reconstruction of the DFT Filter Bank

In this section, we discussthe perfect reconstruction of the DFT filter
bank for the OFDM modulation and demodulation system based
on the fundmental quadrature mirror filter (QMF). Figure 9.12
shows a detailed structure for the perfect reconstruction of the
DFT transmitter and receiver filter banks for the OFDM modulation
and demodulation system. By using the prototype filter in (9.68)
and (9.69), werecall that the kth receiver filter Qy(z) in the receiver
filter bank for the OFDM demodulation system is given by

Qr(2) = Qo(zW"). (9.75)



380 Signal Processing in Digital Communications

1[n] I M¢ L Ry(k)

—> M| D) Y
Y R,(k)

l—» M Dy, —

N M{ Dy )

———»
Ry1(k)

Figure 9.11 Polyphase decomposition of the DFT receiver filter
bank for the OFDM modulation with decimation by a
factor of M.

The kth transmitter filter Hy(z) in the transmitter filter bank for
the OFDM modulation is obtained by

Hy(2) = W RH (W5, (9.76)

where
Hy(z) = Qo(z). (9.77)

This indicates that each filter in the transmitter filter bank of
the OFDM modulation system has precisely the same magnitude
response as the corresponding filter in the receiver filter bank of the
OFDM demodulator.
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Figure 9.12 A perfect reconstruction of the DFT transmitter and
receiver filter banks for the OFDM modulation and
demodulation system.

Assume that the channel C'(z) is completely equalized with the
inverse filter or equaizer D(z) = % and is noise free. Under
these conditions, the transmitter filters H,.(z) and the receiver filters
Qr(z) satisfy the biorthogonality property given by (9.63) or (9.64).
Thus, we obtain the polyphase matrix of the transmitter filter bank
given by WH(z), and the polyphase matrix of the receiver filter bank
given by Q(z)W*. For the perfect symbol recovery, we multiply the
polyphase matrix of the transmitter filters, the channel, the equalizer,
and the polyphase matrix of the receiver filters to yield a combined
polyphase matrix as follows:

WH (2)C'(2)D(2)Q(2)W* = M]. (9.78)
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As a result, the receiver signals R;(k), i = 0,1,2,---, M — 1,
after the OFDM demodulation satisfies the perfect reconstruction
condition by

Ri(k) = MXi(k—M+1), i=0,1,2,--- .M —1.  (9.79)

Equation (9.79) indicates that the received symbols R;(k) have an
attenuation of M and a time delay of M — 1 that differs from
the transmitted symbols X;(k). However, the ISl, interband, and
intraband interferences can be completely canceled because the
transmitter filters in the OFDM modulation and the receiver filters
in the OFDM demodulation satisfy the condition of biorthogonality.

In this section, we have discussed the DFT filter banks based on a
channel frequency response at uniformly spaced points. However, in
practice, filter banks at nonuniformly spaced samples of the channel
frequency response also exist, especialy when spaced in octaves.
This is because there are relatively fewer equalizer coefficients
with large values for channels with rapidly decaying frequency
responses, thereby reducing the noise amplification of the channel at
the receiver. On the other hand, the filter banks with nonuniformly
spaced samples can be used for a digital channelizer, which
is a digital transponder of satellite communications. The digital
channelizer is used to decompose an input signal bandwidth into
a set of subchannels that are nonuniformly spaced and recombine
them to form output signals for satellite communications. The
filter banks with nonuniformly spaced samples are referred to as
nonuniform filter banks. The interested reader may refer to [32, 33].

9.5 Summary

In this chapter, multicarrier modulation, DMT, and OFDM are
introduced. We first presented the fundamentals of multicarrier
modulation and DMT with an emphasis on multitone transmission,
geometric SNR, and optimum energy minima and bit loading
maxima. Second, we described the theory of an FFT-based
OFDM system in which we addressed the OFDM modulation and
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demodulation by IFFT and FFT operations, the determination of
the A/D converter resolution, and an equalized OFDM system.
We then introduced the filter bank—based OFDM modulation and
demodulation system, focusing on the DFT (FFT) filter bank
and its corresponding efficient implementation forms including
the polyphase, maximally decimated, and perfect reconstruction
structures at the transmitter and receiver.

DMT has been used in wired, sowly time-varying channels,
especidly intelephonelineswith NEXT and FEXT impairments and
different loop topol ogies, while OFDM has been applied in wireless,
time-varying channels with multipath and fading. However, the
fundamentals of DMT and OFDM both belong to the same
multicarrier modulation, and their multicarrier spacing is selected
to ensure that each of the subcarriers is orthogonal to the other
subcarriers. In addition, because of using an FFT for the multicarrier
modulation, the symbol rate on each subcarrier of the DMT and
OFDM system is much less than the serial bit data rate. Thus, the
effects of delay spread in the the DMT and OFDM modulation are
greatly reduced. DMT usually uses a dynamic loading algorithm to
assign bit information to subchannel signals based on a geometric
SNR of subchannel output, thereby leading to a different number
of bits assigned in each of subchannels for the DMT transmitter.
On the other hand, OFDM assigns a fixed number of bits to all
subchannels at the transmitter. Furthermore, both DMT and OFDM
systems are mainly developed based on the DFT (FFT). This is
because the DFT (FFT) can provide efficient implementation for the
DMT and OFDM systems at the transmitter and receiver. However,
the channel dispersion will cause consecutive blocks to overlay in
DMT and OFDM systems, which leads to ICI and 1SI. This results
in the degradation of performance. In practice, the DMT and OFDM
systems both use cyclic prefixes (or guard intervals) between the
consecutive blocks to mitigate the effects of 1Cl and 1SI. However,
using the cyclic prefix wastes a fraction of the channel capacity for
the communication system.
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The filter bank—based DMT and/or OFDM system is devel oped
based on the theory of QMF in which it decomposes the spectral
frequency into subbands in such away that al the aliasing incurred
in the transmitter iseliminated at the receiver. The approach requires
designing transmitter filter bank and receiver filter bank to meet the
properties of perfect reconstruction, thereby allowing elimination of
amplitude and phase distortion completely at the receiver. Efficient
implementation of the filter banks based on the DMT and/or
OFDM modulation and demodulation system exists by using the
polyphase decomposition along with the FFT structures. However,
thisapproach usually requiresa TEQ beforethe DMT and/or OFDM
demodul ation to compensate the channel dispersion.
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Discrete-Time Synchronization

10.1 Introduction

In the previous chapters, the analysis of theory and algorithm
development presumed that atransmitter (or modulator) and receiver
(or demodulator) in the wireless and wireline communication
systems are synchronized already. In other words, both the
transmitter and the receiver know the exact symbol rate, phase, and
timing, and where appropriate, both the transmitter and the receiver
may aso know the exact carrier frequency and phase. However,
in practice, the common knowledge of the exact transmission
frequency and/or phase, the same time, and the carrier clocks are not
known unless some information is provided so that the receiver can
synchronize with the transmitter. Coherent demodulation requires
the use of aproperly phased carrier at the receiver. Thereceiver must
estimate the carrier phase from the incoming signal. Furthermore,
symbol timing must be derived from the received signal for both the
coherent and noncoherent demodulation in order to synchronously
sample the output of the matched filters at the proper time instant.
Therefore, the recovery of the transmitted data must include a
method for synchronizing the received data with the transmitted
data. This typically involves a phase detector, a loop filter, a

387
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voltage-controlled oscillator (VCO), and a feedback controlled
sampler in which the frequency and phase are slowly adjusted in
response to synchronization errors in received samples, thereby
setting estimate values close to their correct values. Such a device
for synchronization is often referred to as a phase locked loop (PLL)
and is the essential function for phase and frequency recovery in
many communication applications.

Accurate synchronization is an important consideration in
both wireless and wireline communication system performance,
including digital data storage systems. This is because the
performance of the receiver is critically dependent on the quality of
the synchronization viathe PLL. Improper synchronization can have
an adverse impact on the quality of the sample values that are then
used for either symbol-by-symbol or sequence detection in digital
communication receivers. Thus, using robust signal processing
techniques is necessary to provide an optimum sampling instant for
every received signal sample.

In general practice, the PLL will have some finite delay so the
regenerated local phase will have to predict the incoming phase and
then assess how well that prediction did in quantitative formin terms
of phase error. The more quickly the PLL tracks phase deviations
in phase, the more susceptible it will be to random noise and
other imperfections. Thus, the communication system designer must
trade these two competing effects appropriately when designing a
synchronization system. Meanwhile, the design of the transmitted
signals can facilitate or complicate such trade-off analysis for the
receiver system.

In digital communications systems, using completely analog
continuous-time synchronization is uncommon. Most synchroniza-
tion approaches used are either hybrid analog and digital or mixed
continuous- and discrete-time. The discrete-time synchronization
has become important for the communications system designer to
implement because of recent advances in VLS| and digital signal
processing (DSP) technologies, especially in software defined ra-
dio (SDR). Therefore, in this chapter, we consider the theory of
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signal processing techniques for symbol and carrier synchroniza-
tion, which derive the symbol timing and carrier phase from the
information-bearing signal, and focus on the implementation based
on the all discrete-time synchronization approaches.

This chapter is organized as follows. In this section, a
short background and the importance of symbol and carrier
recovery for wireless and wireline communications are presented.
In Section 10.2, we introduce discrete-time PLL functions and
characteristics that are an integral part of most discrete-time
synchronizations for symbol timing and carrier recovery. This
section is focused on a discrete-time loop filter, a phase detector,
and a numerically controlled oscillator (NCO). In Section 10.3,
we describe timing recovery methods, including early-late gate
synchronizers, bandedge timing, decision-directed timing, multirate
timing, polyphase filter bank timing recovery, and multicarrier
modulation timing recoveries. Subsequently, the fundamentals of
discrete-time carrier recovery are given in Section 10.4, with
emphases on carrier phase error, open-loop carrier recovery, carrier
recovery for multiple phase signals, and decision-directed carrier
recovery. Finaly, a brief summary of this chapter is provided in
Section 10.5.

10.2 Discrete-Time Phase Locked L oop

The PLL is an integral part of most synchronization schemes for
considering the problems of carrier and symbol synchronization
and timing recovery. The basic theory of PLL schemes has been
extensively studied by Proakis [1], Lee and Messerschmitt [2]
Waggener [3], Razavi [4], and Starr et a. [5], especialy in
analog and mixed continuous- and discrete-time domains. Recently
advanced developments in VLSl and DSP technologies alow
implementation of all discrete-time PLL schemes for digital
communications systems to become possible eventually. Thus, in
this section, we focus on reviewing the fundamental concepts of the
discrete-time PLL as shown in Figure 10.1, thereby forming a basis
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s[k] Phase Gik] Discrete-time efk]
—> [ ;
detector loop filter H(z)

A
Discrete-time A
W
VK] VCO y

Figure 10.1 A block diagram of the discrete-time phase locked
loop.

for discrete-time synchronization.

Assume that the received discrete-time input signal s[k] isgiven
by

slk] = Ay cos(w,kT + 6), (10.1)

where A, is called the constant amplitude response, w, is caled the
constant common phase reference, T is the symbol interval (1/7 is
the symbol rate), and 6,. is the phase of the received discrete-time
input signal.

The discrete-time VCO function expression can be described as

Orsr = O+ Cooelk]
= ék + Cvcoh[n] * (bku (102)
where C,., is the constant, h[n] is the discrete-time loop filter, and
¢y, isthe phase error, ¢ = 0, — 6., which represents the local phase

at sampling timeinstant k. The discrete-time VCO also producesthe
estimated discrete-time output signal v[k], given by

v[k] = Ayeo cos(w kT + ék), (10.3)
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where A,,., isthe constant value.
Taking the z-transform (see Appendix A) of both sides of (10.2)
obtains

27'0(2) = O(2) + CoeoH(2)(2). (10.4)

where the z-transform of the phase error, ®(z2), is
D(z) = O(z) — O(2). (10.5)
Substituting (10.5) into (10.4), we get
2710(2) = [1 = CoeoH (2)10(2) + Cooo H(2)O(2).  (106)

Thus, we obtain a phase transfer function from the input phase to the
estimated output phase based on (10.6) as

O(z) _  CuwoH(2)2
O(2) 1—[1-CuH(2)]z

(10.7)

By evaluating (10.7) a z = 1, we notice that the discrete-time PLL
has unity gain to DC phase input.

According to (10.4) and (10.5), we then obtain the transfer
function between the phase error ¢(z) and the input phase O(z) as

D(z) 11—z
O(2) 11— 2+ ChoH(2)2’

(10.8)

where H(z) isthe discrete-time loop filter that determines the Nth-
order discrete-time PLL.

10.2.1 Discrete-TimeLoop Filter

In this section, we discuss in detail the principles of the first- and
second-order discrete-time PLLs, which have been used extensively
in common digital communications systems.
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First-Order Discrete-Time PLL

For the first-order discrete-time PLL, the discrete-time loop filter is
a constant value, K. In other words, the discrete-time loop filter is
frequency independent, that is,

CoeoH(2) = K. (10.9)
Substituting (10.9) into (10.7) yields

N

O(z) K=z
0(z) 1-[1-KJz

In order to have a stability of (10.10), we need to have |1 — K| < 1.
Thisisthe same as

(10.10)

0< K < 2. (10.11)

As can be seen, when K approaches 2, the bandwidth of the overall
loop filter from ©(z) to O(z) is wide and can distort the estimated
phase if noise ison the input sinusoid.

Given certain inputs, a steady-state operating point of discrete-
time PLL is often useful to know precisely. The steady-state phase
error &, isdefined to be

If the discrete-time PLL does not achieve phase lock, then £, # 0.
On the other hand, if £, = 0 for & < 0, then we can determine &,
by using the final value theorem for z-transform

Epp = lim(1 — 2)D(2). (10.13)

Z—)l

If we assume that the input phaseis

where 6, is a constant and ;. is the unit step, then (10.14) has a
z-transform function,
902

O(z) = . (10.15)
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Substituting (10.15) and (10.9) into (10.8), the transform form of the
phase error can be obtained as follows

(1-2)0(2)
1—2+ C’UCOH (2)

B 1—2 902
N l—z—l—Kz z—1
902’

= TRt (10.16)

d(z) =

Hence, the steady-state phase error ¢, can be obtained by
using (10.13)

G = lim(1-2)0(:)

B Oo(1 —2)z
= Iy l(1 ~K)z - 1]
— 0. (10.17)

Thus, (10.17) indicatesthat the first-order phase lock loop can track
and decay to zero for any phase difference between a constant 6, and
an estimated 6.

The first-order phase lock loop usually suffers a constant phase
offset. To illustrate this effect, we assume that the input phase has
frequency offset introduced at time k£ = 0,

Or = woTkuy, k>0, (10.18)

where wy is the frequency offset and 1/7" is the sampling rate. The
z-transform of (10.18) is given by

wol'z
(z—1)*

Then, substituting (10.19) and (10.9) into (10.8), the transform form
of the phase error ®(z) can be obtained in the following,

(1-2)0(z)
1 — 24 CuoH(2)z

O(z) = (10.19)

O (2)
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N (1 —1Z_+ZKZ) [(,:J O—le)J

wol'z
[1—(1-K)1-2)

(10.20)

Therefore, the steady-state phase error &, for the frequency offset
wy Ccase can aso be computed by the final value theorem

€ = lim(1-2)0(2)

~ m (1 — 2)woTz
- “’;{T (10.21)

As can be seen, (10.21) shows that the first-order phase lock loop
cannot track a nonzero frequency offset w,7" so that the phase error
will not decay to zero. If K satisfiesthe conditionin (10.11), for very
small frequency offsets, the first-order phase lock loop will incur
only avery small distortion of the phase error. After the first-order
phaselock loop has converged, the magnitude of the frequency offset
|wo| must be less than K7/T to focus the phase within the linear
phase of the modulo-27 phase detector, thereby avoiding cycle dlips.
Further note that either increasing K at fixed sampling rate 1/7" or
increasing the sampling rate 1/7" will increase the bandwidth of the
first-order phase lock loop. Asaresult, the phase lock loop filter will
filter less noise on the incoming phase, resulting in a lower quality
estimate of the phase.

Second-Order Discrete-Time PLL

In a second-order discrete-time PLL, the phase lock loop filter has a
z-transform form,

B

1— 2z

CoeoH(2) = a + (10.22)

where o and [ are the proportional and integral step sizes,
respectively. In other words, the offset estimate is found by
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Figure 10.2 A block diagram of the second-order discrete-time
phase locked loop structure.

accumulating the output of the phase lock loop filter with transfer
function in (10.22) and input estimated phase error 6,. A block
diagram of the second-order discrete-time PLL structure is shown
in Figure 10.2.

Substituting (10.22) into (10.7) yields

6() __ (a+p)F-a:
O(z) (a+p8-122+2—-a)z—1

Consider the case if 5 = 0; thus, (10.23) reduces to the first-order
discrete-time PLL in (10.10). Equation (10.23) has poles

(10.23)

a—2+/(2—a)2+4(a+p-1)

TCENESY (10.24)

212 =

For stability, o and 3 must satisfy the following conditions. 0 < a <
2and G > 1.

The second-order phase lock loop can track for any frequency
offset between 6, and the estimated .. To illustrate this effect, we
again assume that the input phase has a frequency offset introduced
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attimek =0,
0. = woTkuy, k>0, (10.25)

where wy is the frequency offset and 1/7" is the sampling rate. The
z-transform of (10.25) is

wol'z
(z—1)*

Thus, substituting (10.26) and (10.22) into (10.8), the transform
form of the phase error (=) for the second-order phase lock loop is
obtained by

O(z) = (10.26)

(1-2)0(z)
1— 24 CuoH(2)z

- (1 it a i;f;(l - 2_1)]'2) l(;UO_TIZ)Q]

wol'z
= . 10.27
1-2—-a)z—(a+ [ —1)z2 ( )
Therefore, the steady-state phase error &, of the second-order
discrete-time PLL for the frequency offset w, can be calculated by
the final value theorem

O(z) =

€, = lim(1—2)P(2)

z—1

_ (1 —2)wTz
T - E-aE- (-2
— 0. (10.29)

As can be seen, as long as the parameters of o and 5 are selected
within the stability ranges, the second-order phase lock loop should
be able to track any constant phase or frequency offset. However,
choosing o and 3 to reject noise, based on making the second-
order phase lock loop too sharp or narrow in bandwidth, may make
its initial convergence to steady-state slow. Therefore, a trade-off
analysisis needed to evaluate the second-order discrete-time PLL in
any particular application.
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10.2.2 Phase Detector

A wide variety of phase detectors, ranging from simple to
complicated, exist. Much design effort is needed in the design of
phase detectors for carrier and time recovery. In this section, we
discuss some variations of phase detectors based on discrete-time
domain operation.

|deal and M odulo-27 Phase Detectors

A device that can calculate exactly the difference between the input
phase 6, and the estimated phase 6, at thetime index k isreferred to
as an ideal discrete-time phase detector, ¢, = 6, — 6y..

Given the discrete-time input signa s[k] in (10.1) and the
estimated discrete-time output signal v[k] in (10.3) from the
discrete-time VCO, a seemingly straightforward method to compute
the phase error 6, would then be to compute 6, and 0., accordi ng to

0, = L arccos{s[k]} — w,kT, (10.29)

and A
0, = +arccos{vlk]} — w,kT. (10.30)

Hence, the phase error is ¢, = 6, — 0,.. However, for a reasonable
implementation of the arccos function, angles can only be produced
between 0 and 7 in such away that ¢, would then alwayslie between
—7 and 7. Any difference of magnitude greater than = would
be therefore effectively computed through a modulo operation of
(—m, 7). As a result, the arccos function can be implemented by
using a look-up table. We refer to the arccos function look-up
table implementation of the phase detector as a modulo-27 phase
detector.

The comparison of characteristics of the ideal phase detector
and the modulo-27 phase detector is shown in Figure 10.3. The
large difference will not be shown in the phase error even if the
phase difference does exceed || in magnitude. This phenomenon
is known as a cycle dip in which the phase detection missed or
added an entire period of the input sinusoid. In most applications,
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Modulo 21tdetector 2 @ /
-6

/ <«——+— Ideal phase detector

Figure 10.3 Comparison characteristics of ideal and modulo-27
phase detectors.

this is an unwelcome phenomenon. Thus, one tries to ensure that
the phase error ¢, does not exceed n after the modulo-2r phase
detector has converged. Therefore, the phase error ¢, should be kept
as closeto zero as possible so that the modul o-27 phase detector can
be operated correctly under the necessary condition of small phase
error.

Demodulation Phase Detector

A block diagram of a demodulation phase detector is shown in
Figure 10.4. The discrete-time input signal is given by

s[n] = Ag cos(w,kT + 0y), (10.31)

and the estimated discrete-time output signal from the discrete-time
VCOisgiven by

S[n] = Ayeo sin(w kT + ék) (10.32)

The digital lowpass filter h[n] is cascaded with the phase error
processing in the phase lock loop. The phase error ¢, is obtained
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filter h[n] | '

) 4

s[k]

Discrete-time
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Figure10.4 A block diagram of a demodulation phase detector.

by
G = hin] = [Aveo sin(w, kT + 0) A, cos(w, kT + 0x) |, (10.33)
where “x” is a convolution operation.
Sincesin(z) cos(y) = 3[sin(z +y) +sin(z — y)], (10.33) can be
rewritten as

A’UCOAS
P = —

h[n] * [sin (2w, kT + 0 + 0x) + sin (6, — 6,)] .

(10.34)
Assuming thefirst term is removed by the digital lowpassfilter i [n],
the phase error ¢,, is obtained

AUCOA
Or =

If ¢ issmall, the generation of the phase error does not require the
arcsin function. Since sin(r) ~ x when z is very small, when 6y is
closeto 0y, (10.35) is approximately equal to

A’UCOAS
O = 5

which is an approximately linear characteristic. Now, ¢, is a much
more reasonabl e estimate of the phase error.

> sin(0 — 0). (10.35)

(6 — 61, (10.36)
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10.2.3 Discrete-TimeVCO

Anideal discrete-time VCO has adiscrete-time output sinusoid with
an estimated phase 6, that is determined by using a discrete-time
input error signal e[k] approximately according to

ék—i—l = ék + Cvcoe[k]v (1037)

where C,., 1S a constant. In other words, the discrete-time VCO
regenerates the local phase information from the processed phase
error ¢, in order to match the incoming phase 6. Thus, the phase
reconstruction attempts to force

O = Oy, — 0, = 0, (10.38)

by producing a local phase 6), so that the estimated discrete-time
output signal v[n| equalsthe discrete-timeinput signal s[n] asshown
in Figure 10.1.

According to (10.37), since the e[n] is the discrete-time signal,
the discrete-time VCO can be implemented by using a look-up
table and adder whose output is used to generate the discrete-time
sinusoidal signa v[n| in (10.3). Such an implementation of the
discrete-time VCO is often referred to as an NCO in the literature.

When the discrete-time VCO output frequency is not equal to
the input frequency, but is related by a fixed rational multiple, it is
possibleto design adiscrete-time PLL to maintain phase lock. Thus,
when the discrete-time PLL is phase locked as

Fi Fout
= 10.39
M N’ ( )
then N
Fout = M-Fz’m (1040)

where F},, istheinput frequency and F,,; isthe output frequency and
M and N areintegers as shown in Figure 10.5. Thus, the frequency
synthesizer produces an output signal with frequency F,,; equal to
& times the input frequency F;,,. The discrete-time PLL is called a
frequency synthesizer.
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Figure 10.5 A discrete-time PLL-based frequency synthesizer.

Example 10.1

Assuming that an input clock is at 49.408 MHz, how can we select
M and N such that an output clock is at 65.536 MHz for a discrete-
time PLL-based frequency synthesizer? Since F;,, = 49,408 kHz,

N
Fout = 49,408 (10.41)

In order to generate F,,;, = 65.536 MHz, we could simply set
M = 49,408 and N = 65,536, and the inputs to the phase detector
would be on the order of 1 kHz. Thus, the discrete-time loop filter
H(z) has to have sufficiently narrow bandwidth to remove this
fundamental and its harmonics. In addition, the narrow bandwidth
means that the discrete-time PLL-based frequency synthesizer
responds slowly to changing conditions. On the other hand, if we
note that 49,408 = 193x 256 and 65,536 = 256 x 256, then we can
use M =193 and N = 256. Thisresultsin inputsto the phase detector
on the order of 256 kHz, so the bandwidth of the discrete-time
loop filter H(z) can be made larger. Thus, the design significantly
improves the discrete-time loop filter H (=) specifications.
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Figure 10.6 (a) Rectangular pulse and (b) its autocorrelation
function.

10.3 Timing Recovery

Symbol timing or synchronization is concerned with the problem of
determining a clock for periodically sampling the output of matched
filters for the purpose of recovering the transmitted information.
One method for the solution of the problem is to transmit a
clock signal along with the information signal in multiplexed
form to the digital communications receiver. Another method is to
derive the clock signal from the information signa at the digital
communications receiver. In the digital communications receiver,
an analog waveform must be sampled, usually by using an analog-
to-digital (A/D) converter. Sampling at the right timesis critical to
achieving good overall performance for the digital communications
receiver. Such a process of synchronizing the sampler (or A/D
converter) with the pulses of the received analog waveform, along
with the PLL, is known as timing recovery.

10.3.1 Early-Late Gate Synchronizer

Suppose that an analog signal pulse s(t), 0 < ¢ < T', isarectangular
pulse as shown in Figure 10.6(a). The autocorrelation function of
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the rectangular pulse by passing the rectangular pulse through its
matched filter is a triangular pulse, as shown in Figure 10.6(b). In
other words, when the analog signal pulse s(t) is passed through a
filter matched to it, the output of the filter has a maximum value of
t = T. Thus, the proper time is to sample the output of the matched
filter for a maximum value output at ¢t = 7', which is the peak of
the autocorrelation function. However, in practice, if we sample the
output of the matched filter early at ¢t =7 — o or lateatt = T + 9,
the sampled values will be smaller than the peak valueat ¢t = T.
Note that the autocorrelation function is even symmetric relative to
t = T'. Hence, the values of the autocorrelation functionat ¢t = 1T'—§
andt =T + ¢ are equal in magnitude, that is,

|Pss(r—8)| = |Pss(T+)- (10.42)

Thisisto say that the difference in the magnitude of these sampled
valuesis zero. Therefore, in this situation, the proper time to sample
is at the midpoint betweent =T — 6 and ¢t = T + 0, for example,
a t = T. This simple condition is the fundamental theory for
a commonly used synchronizer referred to as an early-late gate
synchronizer.

A block diagram of the early-late gate synchronizer, as shownin
Figure 10.7, is redlized by using autocorrelators, A/D converters,
square-law devices (|s;[n]|> and |s2[n]|?), and discrete-time PLL.
Thereceived signa s(t) is multiplied by using acarrier signal,

c(t) = cos(2m fot + ), (10.43)

to trandate in frequency to lowpass and passed through two
autocorrelators. The discrete-time error signal e[n] between the
outputs of two autocorrelators should be zero because the
autocorrelation function of any signal pulseiseven symmetric. Thus,
if the sampling timing is off at an optimal position, the discrete-time
error signal e[n] will not be zero,

eln] = ry[n] — ra[n] # 0. (10.44)
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Figure 10.7 A block diagram of an early-late gate synchronizer,
where “DT” means discrete-time.

In order to smooth the error signa e[n], it is passed through a
discrete-time lowpass loop filter H(z), whose output is the control
voltage for a discrete-time VCO. The output of the discrete-time
VCO is used to control a symbol waveform generator that feeds
to the autocorrelators. In addition, the clock from the discrete-time
VCO is advanced or delayed by § and these clock signals then
are used to control the A/D converters to sample the outputs of
the autocorrelators. Note that there is no need to use the symbol
waveform generator if thereceived signal s(t¢) isarectangular pulse.
In this case, the autocorrelators become integrate-and-dump filters.
The early-late gate synchronizer is especialy useful for phase-shift
keying (PSK) and pulse amplitude modulation (PAM) signals.
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Figure10.8 A block diagram of an early-late gate synchronizer, an
alternative form.

A similar realization of the early-late gate synchronizer that is
somewhat easier to implement in the discrete-time domain is shown
in Figure 10.8. In this case, the received signal s(¢) is sampled two
extra times by using A/D converters, once prior to the sampling
instant by an amount of g and once after the sampling instant by
the same amount of $. The error signal e[n], e[n] = r[n] — r2[n],
is passed through the discrete-time loop filter whose output is used
to control the discrete-time VCO. The clock from the discrete-time
VCO is advanced or delayed by g and these clock signals are then
used to control the A/D converters of sampling the received signal
s(t). The sampling instant for the A/D converters is adjusted until
the two extra samples are equal.
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Figure 10.9 A block diagram of the bandedge timing recovery.

10.3.2 Bandedge Timing Recovery

For quadrature modulated data transmission, one widely used
method that does not depend on knowing a correct carrier frequency
is the so-called bandedge timing recovery, as shown in Figure 10.9.
In this case, the two bandpass filters are narrowband and identical.
If the correct timing phase is selected, an approximate maximum of
the energy should be within the two bandedges. The outputs of the
two narrowband bandpass filters are then multiplied to produce the
maximum value. This means that the output of the multiplier should
beareal value. Thus, at thistiming phase, the discrete-time PLL uses
the error signal e[n] from the samples of the imaginary part of the
multiplier output for the phase-lock loop, which is used to adjust the
timing phase for the A/D converter. Although the carrier frequency
is assumed to be known in the design of the narrowband bandpass
filters, this information has little effect as long as the carrier is
close to the correct value. Thisistypically true in most quadrature
modul ated data transmission methods.
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Figure 10.10 A block diagram of the decision-directed timing
recovery.

10.3.3 Decision-Directed Timing Recovery

The basic idea of decision-directed timing recovery is to minimize
the mean square error (M SE) over the sampling time phase, between
a digital matched filter output and a decision output. Decision-
directed timing recovery is also referred to as the minimum mean
square error (MM SE) timing recovery. Figure 10.10 shows a block
diagram of the decision-directed timing recovery. In this figure, the
received signa r(¢) is assumed to be the baseband signal and is
sampled at times kT + 7, where T" isthe symbol interval and thus 7,
represents the timing error in the kth sample. After the digital filter
and equalizer processing, the output of the kth sampleis Q[kT + 7],
which is dependent on the timing phase. Ideally, 7. is aconstant that
corresponds to the best sampling phase. However, in practice, 7, has
atimevariation, whichisreferred to asthe timing jitter. In this case,
the MM SE timing recovery adjusts 7;, to minimize M SE between the
equalizer output Q[kT + 7] and the decision output S, at the point
“a or the correct symbols S, (such as a training sequence during
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atraining mode) at the point “b.” That is, to minimize the expected
squared error between the input to the decision Q[T + 7] and the
output of the decision S,

&) = B{|B(n)’} )
= E{|QET + 7] — Si[*}, (10.45)

where Q[kT + 7] is the equalizer output at sampling time &
corresponding to sampling phase 7. In order to minimize the
expected sgquare error, the update uses a stochastic-gradient estimate
of 7 in the opposite direction of the unaveraged derivative of £(7%)
with respect to 7. The derivative is as follows:

dg () dE{|Ex (7)1}

d’i’k di

- d| By (i) ?
=k [d]

- QE{RelE;(Tk)d%T’“)H. (10.46)

Note that S, does not depend on 7, in (10.45). Thus, we obtain

dBp(m.)  dQKT + 7]
= ) 10.47
di di ( )

Hence, we use the stochastic gradient algorithm by adjusting the
timing phase in the direction opposite the gradient,

dQ[kT + Tk]‘| }

Tht1 = Tk — 0 {Re [E;(Tk) 7,

_ Tk—ﬁ{Re [(Q[kTJer]—Sk)*W”’

(10.48)

where 3 is a step size that is used to empirically ensure stability,
minimize timing jitter, and ensure adequate tracking ability. As a
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Figure10.11 The detailed structure of the timing error block in the
decision-directed timing recovery design.

result, the block diagram of the timing error in Figure 10.10 can be
redrawn in detail as shown in Figure 10.11.

Further note that the stochastic gradient agorithm in (10.48)
does not guarantee to converge to the optimal timing phase. This
is because E) (1) is not alinear function of 7. This indicates that
| E(1%)]? is not a quadratic function of 7.

Using an approximate MMSE technique, we can express the
discrete-time derivative as follows:

dQ[kT + 4]

- — Q[KT + 7] * hlk], (10.49)
Tk

where “«” is a convolutional operation, and h[n| is a discrete-time
FIR filter, with impulse response h[k] =~ (041 — dx—1)/T. Thus, we
obtain an approximation
dQKT +7]  QUk+ 1T + ma] — Q[(k — )T + 73 4]
d’i’k - T
= hg [7E]- (10.50)

Substituting (10.50) into (10.48), adjusting the timing phase in
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the discrete-time domain is approximately given by

Te+1 = Tk — sz[fk], (1051)

where
alm] = Re{(QIKT + 7] — Si)"ho, 7]} (10.52)

The discrete-time derivative can also be found by approximately
taking each sample either one sample ahead or one sample behind
the current estimate 7, of the timing phase. By alternating the two
phases, the difference between the error at even samples and the
error at odd samples is an indication of the derivative of the error
with respect to the timing phase. Thisleadsto apopular timing error
detector (TED) that generates the timing error signal ¢ developed by
Mueller and Mller [6],

¢ = Q[T + 1] Sk—1 — Q[(k — 1)T + 74_1] 5. (10.53)

Note that S, in (10.53) is the output of the decision device as
shown in Figure 10.10. The decision device that generates these
decisions S, will invariably introduce a processing delay. Therefore,
the performance of the decision-directed PLL depends critically
on two factors: (1) reliability of the decisions, and (2) processing
delay of the decision device. The reliability of the decision device
IS so important because incorrect decisions will drive the timing
estimates away from their optimal values. On the other hand, the
importance of delay is also obvious since a processing delay in a
feedback loop of the discrete-time loop filter in (10.22) can lead
to instability. Increasing the delay moves the closed-loop poles
closer to the unit circle so that the parameter « in (10.22) must be
decreased to maintain stability. However, decreasing o makes the
system less agile to time-varying timing offsets. Therefore, there is
afundamental trade-off between these two parameters.

10.3.4 Multirate Timing Recovery

A timing recovery that is operated based on multirate signal
processing is called a multirate timing recovery. Figure 10.12
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Figure 10.12 Multirate timing recovery: (a) hybrid and (b) digital
methods.

shows a basic block diagram of multirate timing recovery. The
implementation of communication systems using digital techniques
introduces an oversampling of the analog signal, which is a
topic of intense present activity. In some circumstances, the
oversampling can be synchronized to the symbol rate of the
incoming signal as shown in Figure 10.12(a). In this case, the
timing phase can be recovered in a synchronous digital system in
much the same way as is familiar from analog practice. In other
circumstances, the oversampling cannot be synchronized to the
incoming signal. Figure 10.12(b) shows an asynchronized structure
of timing recovery with oversampling according to Gardner [7] and
Erup et al. [8]. These examples of the asynchronized structure of
timing recovery include digital signal processing of asynchronized
frequency-multiplexed signals, asynchronized digital capture and
subsequent postprocessing of a signal, or avoiding the problem of
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Figure 10.13 An interpolation-based multirate timing recovery.

detection delay processing. Instead of using the discrete-time VCO
of the discrete-time PLL to control the sampling times, we could
instead sample asynchronously and uniformly with a free-running
clock rate at a rate fast enough to avoid aiasing. This may be
the baud rate, a few percent higher than the baud rate, twice the
baud rate, or oversampling the baud rate, depending on the amount
of excess bandwidth and the severity of the worst-case frequency
offset. In any case, for one reason or another, the oversampling clock
must remain independent of the symbol timing in the asynchronous
configuration.

Figure 10.13 shows an interpolation-based multirate timing
recovery. Assume that s(t) is abandlimited analog signal, such asa
symbol pulse with uniformly spaced at intervals 7. The bandlimited
analog signal s(t) can be sampled at a sampling frequency rate F; =
L without aliasing by using an A/D converter. The output of the
A/D converter isz[n| = s[nTy], WhICh is taken at uniform intervals
T,. Also assume that the ratio of isirrationa because the symbol
timing is derived from a source that is independent of the sampling
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clock. The discrete-time sampled signals x[n] are then applied to the
interpolator, which computes interpolations y[n] = y[nT;] a time
T;, where T; = £ and K isasmall integer.

The TED is characterized by using a decision-directed approach
based on the number samplesy[n] per symbol and estimated samples
y[n] after the sliceasshownin Figure 10.13. There are different TED
approaches as follows:

one-sample Mueller and Muller TED [6]:

e[n] = glnlyln — 1] — y[n]g[n —1]. (10.54)
two-sample and two-point Gardner TED [9]:
eln] = (yln] —yln — 2])g[n — 1]. (10.55)
two-sample crossing-point Gardner TED [9]:
e[n] = (gln] = gln — 2)yln — 1]. (10.56)

In order to adjust the timing for interpolation, a fractiona
interval 11, must be calculated based on the output ;[n] of the NCO
at the nth clock tick. The NCO is controlled by a discrete-time input
signal w[n]. The NCO difference equation between n[n] and w(n] is

given by [7]
nln] = (n[n — 1] — w[n — 1]) mod-1. (10.57)
Equation (10.57) isamodul o-1 operation and denotesthe NCO. The

relationship between the output signal 1, and the input signal 7[n]
at the kth interpolation timeis given by

T _ (1 - :uk)Ts
ningl 1 —plng+1]°
Then, 11, can be obtained by solving (10.58) along with (10.57)

(10.58)

n[ng
1 —nne + 1] + nlng]

- Z[[Z’“]] . (10.59)

Hi =
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Thus, (10.59) indicates that an estimate of 1, can be obtained by
performing a division of n[n,| by w[n,], which are both available
from the input and output of the NCO. Furthermore, to avoid
division, note that a period of the NCO is

T, =2 (10.60)

— g, (10.61)

Therefore, the fractional interval in (10.59) can be approximately
obtained by

M = 04077[7%]7 (10.62)

where oy isuniformly distributed. If o istoo large, then afirst-order
correction equation can be used

i = con[ng)(2 — agwlng —1]). (10.63)

In this method, timing error cannot be accumulated because of
multiplying by using «q in (10.62) instead of dividing by using
wn] in (10.59). Thus, the discrete-time feedback loop filter H(z)
in Figure 10.13 is able to remove any constant error.

10.3.5 PolyphaseFilter Bank Timing Recovery

In Section 10.3.4, we introduced the multirate timing recovery based
on the multirate signal processing techniques. The multirate signal
processing techniques offer flexibility for symbol timing recovery
and synchronization. Using multirate approaches to symbol
timing recovery and synchronization leads to straightforward
implementation, especially in asynchronous modes. In this section,
we extend the multirate signal processing techniques into multirate
filtering based on polyphase filtering, thereby leading to the
efficiently parallel architecture of polyphase filter bank timing
recovery.
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For an interpolation filter with upsampling by L, a direct
implementation of the polyphase filter bank for the interpolation
filter and upsampling of L requiresthe operation of the L polyphase
filters, which operate in efficiently parallel architecture. However,
for timing recovery, we only need to select a single stage filter with
L filter coefficients out of the L polyphase filters under control
of the discrete-time PLL. Harris and Rice [10] have proposed
several approaches based on the polyphase filter bank for timing
recovery. The polyphase filter bank is applied to symbol timing
recovery by using a polyphase decomposition of the matched filter to
realize interpolation instead of a separate polynomial interpolation
filter. Thus, interpolation and matched filtering are integrated into a
singlefiltering operation. The polyphase filter bank incorporates the
timing phase detector in a very efficient manner, thereby making
the polyphase filter bank timing recovery an especialy attractive
approach for DSP and FPGA implementation platforms.

Figure 10.14 shows an early-late gate approach for a timing
phase error detector by using a polyphase filter bank implementa-
tion. The interpolation filters corresponding to the early and late
gate approaches are the polyphase filters Hy,_(z) and Hy.(2) at
the polyphase segments (k — 1) and (k + 1). The received signal
r[n] isfiltered with the polyphase filters Hy_1(z) and Hy1(z) that
are passed through absolute value functions to form corresponding
output signals p[n] and ¢[n|, respectively, where

pln] = |r[n] * hy—a[n]|
= |r[n] x h[Ln + Kk —1]|, (10.64)
and
qln] = |rin]* hega[n]|
= |r[n] * h[Ln + k + 1]|. (10.65)

Thus, the timing phase error detector ¢[n] can be formed as follows:
e[n] = q[n] —pln]
= |r[n] * h[Ln + k + 1]| — |r[n] * h[Ln + k — 1]|.
(10.66)
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Figure 10.14 An early-late gate approach for atiming error phase
detector based on a polyphase filter bank.

Equation (10.66) is passed through a discrete-time PLL where
output will control a filter bank index control for timing phase
selection.

Figure 10.15 shows another maximum likelihood approach for
timing phase error detectors by using two polyphasefilters Hy,_1(z)
and Hy1(z) to compute the discrete-time derivative. The discrete-
time derivative d[n] is formed by using the output p;[n| from the
polyphase filter H;_;(z) and the output p,[n| from the polyphase
filter Hy. 5(2),

dln] = pa[n] —pi[n]
« hyy1[n] — rin] * hy_1[n]

[n]
= r[n] * (hxr1[n] — he_1[n])

= rn
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Figure 10.15 A maximum likelihood timing phase error detector
based on a polyphase filter bank.

— r[n) * (h[Ln+k+ 1] — h[Ln + k — 1]) . (10.67)

Then, the maximum likelihood timing phase error detector e[n] is
obtained by

eln] = dnlq[n]
- [n}*(h[LnJrkJr 1] —hlLn+k—1])-
= (r[n))? (h[Ln+k+1]—h[Ln+k—1]>*h[Ln+k]-
(10.68)

Equation (10.68) is passed through the discrete-time PLL to control
the filter bank index control for time phase selection.



418 Signal Processing in Digital Communications

10.3.6 Multicarrier Modulation Timing Recovery

Multicarrier modulation, including DMT and OFDM, has shown
great interest with applications in wireless and wireline personal
broadband communication systems, which are expected to provide
ubiquitous, high-quality, and high-rate multimedia transmission.
This is because of its various advantages in the severe effects of
frequency selective fading wireless channels and in the severe effects
of near-end crosstalk (NEXT) and far-end crosstalk (FEXT) on
wireline channels. However, the multicarrier modulation (DMT and
OFDM) systems are vulnerable to synchronization error, including
carrier frequency offsets and symbol timing recovery. The carrier
frequency offsets are usually caused by the inherent instabilities of
the transmitter and receiver carrier frequency oscillators. They can
lead to severe multicarrier modulation system degradation because
of intercarrier interference (ICI) [11]. On the other hand, symbol
timing recovery must be achieved in order to avoid 1Sl [12].

Timing recovery for the multicarrier modulation systems can
be divided into symbol synchronization and sampling clock
synchronization. The purpose of symbol synchronization is to find
the correct position for the fast Fourier transform (FFT) framethat is
needed to satisfy the synchronization requirement in coherent DMT
and OFDM systems. In contrast to the symbol synchronization, the
purpose of sampling clock synchronization is to align the receiver
sampling clock frequency to that of the transmitter. The sampling
clock frequency error can not only cause ICl but also can result in
a drift in the symbol timing and even further worsen the symbol
synchronization.

Multicarrier modulation timing recovery has been extensively
reported based on the symbol time offset [13], timing error [14],
and frequency synchronization [15]. Sands and Jacobsen [16] have
researched a pilotless timing recovery for multicarrier modulation,
for which we focus on introducing these results in the following
sections.
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The Effect of Sampling Shift

Assume that the system sampling rate is F; and the length of the
cyclic prefix is v samples. Also let the number of subchannels be
N/2 where N is arelatively large number. Then, each transmitted
symbol X, is composed of N/2 complex variables and in the time
domain has a duration of 2+ second The ith subcarrier has a
frequency f; = st fori =0, 1, ,5 — 1. Considering the system
in the frequency domal n, if asequence of subsymbolsistransmitted
over achannel with atransfer function H (z) with a combined noise
and interference n, ;, the received subsymbols from the channel
output are

Yie = XieH(f)ljoire +nin

If the sampling frequency error is A f Hz, the fractiona frequency
error isdefined ase = ﬂ . The sampling instant shifts by - second

inthetime domain for each sample. Thisleadsto shiftintime (N+”)
for each symbol Therefore, for the kth symbol, the sampling mstant
shift is HVv)e +'“ . Using the time-shift theorem of Fourier theory given
by [17], WhICh states that a time shift 7 has a phase rotation in the
frequency domain of 2x7 f, the ith subcarrier during the kth symbol
is accordingly rotated by an angle

Gir = 277f
2T kF
N
2mick(N + v)
—
Thus, the effect of the phase shift on the recelved subsymbols from
the channel output is expressed as follows:

(10.70)

[27715k(N+v)]

Yip = XipHie™ + nig, (10.71)

where the phase shift on the noise term in (10.71) is neglected.
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The Estimate of Frequency Error

Assume that one symbol X, is transmitted repeatedly during an
acquisition stage. It is not necessary to know the exact signal at the
receiver. However, it ispreferred that its power spectrumisauniform
distribution over the used signal frequency band. Further assume
that the channel insertion loss remains constant and a frequency
rotation on any tone is entirely due to frequency error from symbol
to symbol.

It is aso assumed that the noise terms in (10.71) are
uncorrelated, E{n; ;n;,—1} = 0, and the noise term has zero mean,
E{n;r} = 0. Thus, the estimate of the frequency error can be
obtained from any subchannel by calculating the expected value of
the product of the current subsymbol Y; ;. and the complex conjugate
of the previous subsymbol Y% ;. Under these assumptions, we
obtain the expected value E{Y; Y/, } asfollows:

E{Y; k 1} = F { |:X H@ J2"15k<N+U) —i-n%k] .

. 2mie(k— 1)(N+v)
X H6 + N k-1

27rL5(N+u)

= X7 Hif*e™
2mie(N +v)
= ’Xp’2|Hz’2 {COS lN]
+ jsin [MN“’)} } . (10.72)
N
Since the acquisition symbol X, is repeatly transmitted, a frame

misalignment of m samples can be treated as a time shift of 7
second. In other words, for the :th subcarrier in the frequency
domain, thisis a constant phase rotation as follows:

2rfim  2mim
F, N
In order to eliminate the frequency error in (10.72), theterms of Y
and Y, _, would be multiplied by using ¢=727m/N and e72mim/N,
respectively. Thereby, the effect in (10.72) disappears.

(10.73)
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Example 10.2

In this example, for a DMT system in VDSL applications, the
expected frequency error ¢ islessthan 100 ppm (10~%). Assume that
the DMT system has 512 subcarriers and the cyclic prefix is about
40 samples. Thus, for the ith subcarrier during the kth symbol, the
average rotated phase shift is obtained by

2mie(N +v) 21 x 255 x 107* x (512 + 40)

N 13 < 0.1727.
(10.74)
Given the small phase shift in (10.74), using (10.72) obtains
E{Re(YixY 1)} ~ | X% Hif? (10.75)
and
. 2mie(N +v
E{EwYﬁFl}s|X;PUﬂFlSV>]. (10.76)

Based on (10.72), we a so note that the phase rotation caused by the
frequency error is proportional to the subchannel frequency index i.
Thus, each subchannel can provide an estimate given by Sands and
Jacobsen [16] asfollows:

B N{Im(Y; 1Y% 1))
2mie(N + v)Re(Yi Y5 1)

~

Eik (10.77)

where ¢, ;. is the estimate of the fractional frequency error of the
sampling clock at the ith subcarrier.

Assume that the channel transfer function H,; and noise variance
o? of each subchannel are known or can be estimated. If the
transmission power on each subchannel is P, the signal-to-noise
ratio (SNR) of the subchannelsis given by

12
W&ZM?L

a;

(10.78)
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The radial component of the noise will have no effect on the

phase angle of Y; ;.. The noise in the tangential direction is about %2
and the angular noise variance is obtained by

2

o2 = o
PYAV AR
1 —
= —FQ, (r . 10.7
3SNR,’ (redian”) (10.79)

Trandating (10.79) into the frequency error by using (10.70) isgiven

by
NQ
2
= : 10.
e = §[ri(N + v)]2SNR; (10.80)
To estimate the frequency error, we need to determine aweighted
sum of these estimates. Using the method of M SE, optimal weights

based on (10.80) are obtained by [16],

1
wi,0pt = 70—521 i U% .
z'QSNR-ﬂ
= = 10.81

5 i2SNR;’ ( )
and the corresponding minimum error variance £2,, = of the estimate
isgiven by

1
2
§mzn Zz U%

£,1

1 N T 1
B Slw(]\/—i—v)] <Ziz’QSNRZ»)' (1082)

Therefore, the estimate of the frequency error is obtained by

€ = Zwi,optgi,k
7

B N ISNRIM(Y; 1Y%, _1) 1

Z (10.83)
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Assuming knowledge of the subchannel SNR;, (10.81), (10.82),
and (10.83) provide the best performance.

The frequency estimate of (10.83) can be used as the input to a
discrete-time loop filter, for example, with the transfer function in
the z-domain given by

iz = K7 <1+1ﬁ"‘_1_1>, (10.84)

T

where K is a constant of loop filter gain of the system, which is
related to thefilter bandwidth and settletime, and 5 isused to control
the damping of the step response. Thus, PLL transient behavior can
be controlled during acquisition.

The Analysis of Timing Jitter

The rotation error will be susceptible to the constellation points,
especially at the edges of sguare or cross constellations. This is
because the angular separation between points is the smallest. A
square constellation with loading b; bits with minimum separation of
points has edges of distance 2%/ —1 from the axes[16]. The angular
separation between points at the edges of a square constellation is
about ;74— radians, where [-] denotes the ceiling function.

Note that the sampling phase error 7 leads to a phase rotation
a f; of 2xf;m; accordingly, the minimum angular separation of
each constellation is reduced by this amount. Assume that, in DMT
and OFDM, hits are loaded onto all subcarriers in use, with equal
detection SNR, and that the nominal constellation point separation
is 2. Then the detection SNR is given by

22
202"

If the sampling clock jitter is present, the minimum distance between
the constellation pointsis reduced and the detection SNR becomes

SNRy.; = (10.85)

[2 - 2m0, f,(2/ — 1))

202

SN Rdet—jitter = (1086)
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In order to determine the noise margin reduction, the SNR reduction
can be expressed as follows:

SN Rdetfjitter
SNR e

Equation (10.87) can be expressed in decibels as

— [1 = 7oy fi (2 — 1)}2 ' (10.87)

SNR..., ..
§Ri _ _1010g10< det ]ztter>

SNR et
= —20logy, |1 — 7o, £i(2™/* — 1)] (dB). (10.88)

On the other hand, because of the timing jitter, the degradation can
be used to define the maximum tol erable margin reduction ,,,.. and
to establish alimit of the jitter as follows:

[ 1 — 107 Rmaa/20
o; < min; {Trfl(Q[bZ/Q] — 1) } , (1089)
where o, is the sampling clock jitter and f; = % for 1 =

0,1,---,(N/2) — 1.
10.4 Carrier Recovery

In the previous section, we derived the symbol timing recovery with-
out knowledge of the carrier frequency and phase. However, coher-
ent demodulation at the receiver requires exactly the known carrier
frequency and phase information to perform the demodulation, with
an independent timing reference.

Wireline channels, such as telephone lines, often introduce
frequency offset. The frequency offset is indistinguishable from
using adifferent carrier frequency. However, the symbol rate cannot
be changed from a transmitter to a receiver. This is because the
receiver can only receive exactly as many symbols per time unit as
the symbols are sent from the transmitter. Thus, the relationship of
the symbol rate to carrier frequency at the receiver is dependent on
the unknown frequency offset.
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In wireless channels, when either the transmitter or the receiver
is in motion, the carrier frequency at the receiver is subject to a
Doppler shift while the symbol timing is clearly not. Thus, the
resulting frequency offset is similar to that found in the telephone
channels [2], even though the frequency offset is more likely to be
time-varying as the velocity of the receiver changes.

Furthermore, it is also possible for a channel to introduce phase
jitter that appears as fluctuationsin the phase of the carrier. Tracking
the phase jitter is necessary to ensure that the phase jitter does not
cause the performance degradation of the receiver system. Even in
the absence of frequency offset, it is still highly recommended to
derive carrier frequency and phase information independently from
the symbol timing so that the phase jitter can be tracked.

In this section, we will first assume that symbol timing is known
and then derive the carrier frequency and phase directly from the
modulated signal, with an assumption that the modulated signal is
transmitted via a suppressed carrier.

10.4.1 Carrier PhaseError

Extracting an accurate carrier phase estimate is important for a
receiver to make carrier synchronization correctly. In order to
emphasi ze the importance, we consider the effect of a carrier phase
error on the demodulation of PAM, QAM, and multiphase phase-
shift keying (M-PSK) signals.

Effect of the Carrier Phase Error in a PAM Signal
The demodulation of a PAM signal is given by

s(t) = A(t)[cos(2m fot + @), (10.90)

where A(t) isthe amplitude, f. isthe carrier frequency, and ¢ is the
carrier phase. Correspondingly, the discrete-time PAM signa s[n|
can be obtained by using an A/D converter, sampling the continuous-
time signal s(¢) a a sampling rate of F, = 7. We then have the
discrete-time PAM signal asfollows:

sln] = s(t)|i=nr,
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= Aln][cos(2m fonTs + ¢)],

= Aln| [cos (27??71 + qﬁ)] , (10.91)

where Aln| = A(t)|;=nr,. Demodulating the discrete-time PAM
signal s[n| of (10.91) by multiplying with the discrete-time carrier
reference

cln] = c(®)lnr,
= cos(2rfonTs + @)

= cos (27r{;n + 923> : (10.92)

S

we obtain the demodulation of the discrete-time PAM signal

r[n] = s[njeln]
_ Agn] [cos(o— )] + Agn] [Cos (M}{Zn +¢+ gzﬁ)] .

(10.93)

Note that the second term of (10.93) can be eliminated by using
a discrete-time lowpass filter. Thus, filtering produces the discrete-
time demodulated PAM signal r[n] asfollows:

r[n] = Aén] [cos(qﬁ - gg)} : (10.94)

wheregb—gz@ iscalled thecarrier phaseerror. The effect of the carrier
phase error reduces the signal level in voltage and in power by the
amount of cos(¢ — ¢) and cos?(¢ — ¢), respectively. For example,
if the phase error is 15 degrees, this results in a signal power loss
of 0.30 dB. If the phase error is 30 degrees, this results in a signal
power loss of 1.25 dB.
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Effect of the Carrier Phase Error in QAM and M-PSK Signals

Discrete-time QAM and M-PSK signals can be expressed as
follows:

s[n] = Aln] [Cos <27r£zn + gb)] — Bln lsin (2#271 + ¢>] .
(10.95)

The modulated signal of (10.95) is demodulated by using the two
discrete-time quadrature carriers as follows:

cr[n] = cos (2#?71 + é) , (10.96)
and
co[n] = —sin (27rl{;cn + gz§> : (10.97)

Multiplying s[n] in (10.95) with ¢;[n] in (10.96) followed by using
a discrete-time lowpass filter yields the in-phase component as
follows:

yiln] = slnern]

(10.98)
Similarly, multiplying s[n] in (10.95) with cg[n] in (10.97) followed

by using a discrete-time lowpass filter yields the quadrature
component as follows:

yaln] = slnjcgn]
= 2] [cos(¢ - ¢)} +

(10.99)

Note that (10.98) and (10.99) show a much more severe effect of
phase error in the demodulation of QAM and M-PSK signal than
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Figure10.16 An open-loop carrier recovery based on a square-law
device.

in the demodulation of a PAM signal given by (10.94). This is
because there is not only a reduction in the power of the desired
signal component by the factor of cos?(¢ — ¢) but also a crosstalk
interference from the in-phase and quadrature components. As
can be seen, a small phase error causes a large degradation in
performance since the average power levels of amplitudes A and B
are similar. Therefore, in general, the phase accuracy requirements
for QAM and M-PSK signals are much higher than those for aPAM
signal.

10.4.2 Open-Loop Carrier Recovery

In this section, we introduce an open-loop carrier recovery method
based on a squaring loop technique. Figure 10.16 shows the block
diagram of the open-loop carrier recovery by using a square-
law device. Assume that the input signa s[n] is a PAM signa
given by (10.91). Generating a carrier from the input signal s[n|
is to square the input signal (s[n])? and to produce a frequency
component at 2w.., wherew,. = 27 f.., by using the square-law device.
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The output signal of the square-law device is given by

G = (A2 oot (2 fen 6 )

s

n+ 2¢>1 . (10.100)

Note that the input signal s[n| and the amplitude A[n| have a zero
mean, E{s[n|} = E{A[n]} = 0, because the input signal levels
are symmetric about zero. Also, since the PAM is a cyclostationary
stochastic process[1], the expected value of the output signal (s[n])?
of the square-law device is obtained by

E{(A[n))*}

B{(sln)?) = 2 L

1 + cos <47an + 2¢>] . (10.101)

Thus, from (10.101), we can clearly see that there is power at the
frequency component at 2f. (or 2w,.) that can be used to drive a
discrete-time PLL tuned to the frequency at 2f..

Note that the effect of squaring s[n| has removed the sign
information contained in the amplitude A[n] and then hasresulted in
phase coherent frequency components at twice the carrier. As shown
in Figure 10.16, the output signal (s[n])? of the square-law deviceis
passed through a discrete-time bandpass filter (BPF), which can be
designed tuned to the double-frequency term given by (10.100). If
the discrete-time input output signal p[n] of the discrete-time BPF is
the sinusoid expressed as follows:

p[n] = cos <4W]J;Cn + 2gb> , (10.102)

S

and the discrete-time output signal of the numerically controlled
oscillator (NCO) is

s

q[n] = sin (47?{7,071 + 2ng5> , (10.103)
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where ¢ denotes the estimate of phase ¢, the product of these two
discrete-time signals p[n| and ¢[n] is obtained by

eln] = plnjq[n]
= cos <47TJJ;Zn + 2¢> sin <47T£Zn + 2(25)
= ;sin [2(¢ — ¢E)] + ;Sin (87T]J;Cn +2¢ + 2&) :

(10.104)

The second term with the frequency component at 4f. of (10.104)
can be removed by using the loop filter, which is a discrete-
time lowpass filter responding to the low frequency component of
+sin(2(¢ — ¢)]. Generally, this loop filter can be selected to have
arelatively simple transfer function, but a high-order discrete-time
lowpass filter can also be used if a better loop response is needed.
Thus, the discrete-time PLL can be used to further tune the accuracy
of the sinusoid. The output frequency of the discrete-time PLL is
double the desired carrier frequency and is divided by 2 to generate
the carrier frequency.

10.4.3 Carrier Recovery for Multiple Phase Signals

Consider adigital signal transmitted via an M -phase modulation of
acarrier. The discrete-time signal with an M -phase modulation has
an expression as follows:

. 2m
in—kqﬁ—kf

s[n] = A[n] cos |27 7 i

(m—1)], (10.105)
wherem = 1,2,---, M, and 2% (m — 1) isthe information bearing
component of the signal phase. The goal of carrier recovery is to
remove the information bearing component and then to obtain the
unmodulated carrier of cos(QWl];—Zn + ¢). Figure 10.17 is the power
of M carrier recovery for M -phase modulation signals.

The received signal s[n] is passed through an Mth power law
device that producesthe signal (s[n])™ with anumber of harmonics
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Figure 10.17 A power of M carrier recovery for multiple phase
signals.

of w.. A discrete-time bandpass filter tuned to the frequency
component at Mw, is able to generate the discrete-time signal p[n|,

pln] = cos (27?M£fn + M¢) . (10.106)

Equation (10.106) can drive the discrete-time PLL. Also note that
the term
2w

M(m —1)M =27m(m —1) =0, mod 2, (10.107)

wherem = 1,2, ---, M. Therefore, the information of (10.107) has
been eliminated. The discrete-time output signal ¢[n| of the NCO is
given by

fC

q[n] = sin <27TMFn + Mq5> ) (10.108)

Thus, the product of these two discrete-time signals p[n] and ¢[n]
yields



432 Signal Processing in Digital Communications

= cos (QWMIJ;ZTL + M¢> sin (27TM]J;Cn + Mgb)
= ;sin [M(¢ - é)} ;sm (27TM;fn + Mo+ qu)

(10.109)

The loop filter is a discrete-time lowpass filter that responds only
to the first term of the low frequency component % sin [M (¢ — gb)]
and eliminates the second term of the frequency component at
M f.. Thus, the output of the NCO is divided in frequency by
M to yield sin (274n + ¢). Phase-shifting by 3 radians yields
cos (21 an+¢) Then, these components can be fed to the
demodulator for the carrier recovery of the M-phase modulation
signal.

10.4.4 Decision-Directed Carrier Recovery

Consider that a discrete-time passband PAM signal has an input to
the system in Figure 10.18:

rlk] = /@kTH00 N A KT, — Ty, (10.110)

1=—00

wherew, isthe carrier frequency, 6, isthefrequency offset and phase
jitter, and p[kT| represents atransmit filter, alinear distortion in the
channel, and areceivefilter. If there is a discrete-time demodulation
image of the carrier

qlk] = e_j(wckTs+¢k)’ (10.111)

where ¢,, isthe receiver estimate of the carrier phase, then we obtain
the output of the phase detector

ylk] = eI O=%) f: Aipl(k —i)T3). (10.112)

i=—00

With any amount of noise and 1S, if the carrier recovery follows
using an equalizer, then the equalizer output should approximately
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Figure 10.18 A decision-direction carrier recovery based on
angular measurement.

satisfy the Nyquist criterion plk] = c[k]dx, where c[k] is the red
value and greater than O for amplitude errors. In this case, (10.112)
can be rewritten as

ylk] = C[k]ej(ek_d)k)Ak
= c[k]e’* Ay, (10.113)

where ¢, isthe phase errors, which are due to noise, 1S, phasejitter,
and frequency offset.
Given (10.113), the phase errors can be obtained by [2]
-y | Im{y[k] AL}
£p = sin™! lk . (10.114)
’ [y (K] Al

Since the symbols A, are not available in the receiver, we can use
decisions y[k|] instead of the the symbols A,. Thus, (10.114) can be
rewritten as

Iy {45 1]}
& |9Tk]] ] : (10.115)

£ = sin ! [
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Re{y[k]} s Re{314)

[

Im {3k}
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Figure 10.19 An implementation structure of the decision-
direction carrier recovery.

Note that for small phase errors, we approximately have

e A sin(gy), (10.116)
o Im{y[k]g"[k]}
. [ Imyy K]y
i) = l ly[K]I[91E]] 1 ' -

With small phase errors, the characteristic becomes approximately
linear. Equation (10.117) can be smplified further to omit the
denominator

el = sin(eg,) ~ Im{y[k]§*[k]}. (10.118)

Thus, in practice, the estimate of the phase error is obtained by
¢} = Re{j[k]}Im{y[k]} — Re{y[H}Im{j[k]}.  (10.119)

The implementation structure of (10.119) is shown in Figure 10.19,
which represents the block diagram of the angle measure in
Figure 10.18.
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10.5 Summary

In this chapter, discrete-time synchronization techniques, including
the discretetime PLL, timing, and carrier recoveries, were
introduced. We first described the fundamentals of the discrete-
time PLL with an emphasis on the discrete-time loop filter, phase
detector, and discrete-time VCO. Second, we presented theories and
architectures of the timing recovery, including the early-late gate
synchronizer, bandedge timing recovery, decision-directed timing
recovery, multirate timing recovery, and polyphase filter bank timing
recovery, as well as multicarrier modulation timing recovery. We
then focused on introducing the carrier recovery in which we address
the carrier phase error, open-loop carrier recovery, carrier recovery
for multiple phase signals, and decision-directed carrier recovery.

Timing recovery is used to recover aclock at the symbol rate or
amultiple of the symbol rate from the modulated waveform, while
carrier recovery is used to find exactly the same carrier frequency
and phase to perform coherent demodulation from the data-bearing
signal. Timing recovery can be derived without knowledge of the
carrier phase, but estimating the carrier phase usually needsto know
the symbol timing first. Thus, a receiver should first derive timing,
then estimate the carrier phase, and finally adapt other devices, such
as an equalizer.

Multirate timing recovery was devel oped based on oversampling
and/or downsampling for the symbol rate of the incoming signal.
It is especially useful in the asynchronized mode. Polyphase filter
bank timing recovery, which is a specia case of the multirate
timing recovery, offers flexibility for symbol timing recovery
and synchronization. This technique leads to efficient parallel
architecture for straightforward implementation.
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Appendix A: The z-Transform

A.1 Introduction

In this appendix, we first introduce the z-transform representation,
region of convergence, properties, common pairs of the z-transform,
and the z-transform of the transfer function and then discuss the
corresponding inverse z-transform along with technique methods
for finding the inverse z-transform, including contour integration
and partia fractions expansion. The relationship between the all-
pass and the phase systems is sequentially addressed by using
the z-transform, with an emphasis on the all-pass system and the
minimum-phase system and their relations in the decomposition
phase system, compensation system, and FIR system. Furthermore,
the z-transform can be used to represent a linear time-invariant
(LTI) system, discrete-time transform, digital filtering, and multirate
signal processing, and to allow frequency-domain interpretation.
The z-transform allows the interested reader to bring the power
of the complex variable theory to support the problem analysis of
discrete-time signals and systems.

A.2 Thez-Transform

Let X (=) denote the z-transform of a discrete-time signal sequence
x[n]. The z-transform is then defined as

X(z)= > =zn]z", (A1)
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nit circl .
Unit circle 1 = oi®

v

Figure A.1 The complex z-plane of a unit circle with the contour
corresponding to z = 1 and the w representing the
angle between the vector to a point.

where z is a complex variable. Thus, the z-transform is a function
of a complex variable and can be interpreted by using the complex
z-plane.

Figure A.1 shows the complex z-plane of a unit circle plot or a
contour. The contour corresponding to |z| = 1 isacircle of the unit
radius and w is the angle between the vector to a point =z on the unit
circle and the real axis of the complex z-plane. The unit circle plot
isuseful for determining the region of convergence (ROC) for the z-
transform. Thisis because the z-transform does not converge for all
sequences. Thus, for any given discrete-time sequence x[n/|, al the
values of z for which the z-transform converges are called the ROC.
In other words, the z-transform of the discrete-time signal sequence
x[n] converges absolutely only for values of z in its ROC.
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Note that the convergence of (A.1) depends on the magnitude of
z. This is because the z-transform | X (z)| < oo if and only if we
hold the following equation

> Jzn]|]z " < oo (A.2)
If thisis the case, the ROC will be bounded by circles centered at
the origin of the complex z-plane. In general, the ROC of the z-
transform can be classified into four configuration regions, including
the interior of acircle, the exterior of acircle, the annulus, and the
entire z-plane. Figure A.2 shows the four configuration regions.
It is most useful for the z-transform if the infinite sum can be
expressed in aclosed form of arational function inside the ROC, for
instance,

(A.3)

where P(z) and Q)(z) are polynomials of z. Note that the values of
z are referred to as the zeros of X (z) if the z-transform X (z) = 0.
If X(2)in(A.3)isinfinite, then the values of > arereferred to as the
poles of X (z). Furthermore, it is also possible for the poles to take
placeat = = 0 or z = oo. Therefore, in theory, the ROC should not
contain any poles because the X (z) becomesinfinite at the poles.

Example A.1
Assume that a discrete-time signal sequenceis
zn| = (;)nu[n], (A4)
where
w={ 5 12 s

Then the z-transform of z[n] is obtained by using (A.1),
> 1

X(z) = > (5>nu[n]z”

n=—oo
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Figure A.2 The configuration regions of the z-transform: (a) the
interior of acircle, |z| < |z]; (b) the entire plane; (c)
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|21] < 2] <z].
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o 1 n
S (z—1> | (A.6)
n=0 5
In order to get the convergence of X (=), we should have
Z ;)z_l < 0. (A.7)
n=0

Thus, the ROC is the range of values of = for |z| > i. Within the
ROC, theinfinite seriesin (A.6) convergesto

X(z) = for |z > 1. (A.8)

1— L1717

5

Example A.2

Consider a discrete-time signal sequence with the sum of two rea
exponentials as follows:

zn| = a"ul[n] + b"u[n], (A9
and
uln] = { (1) :fg (A.10)

wherea < 1,b < 1, and a > b. The z-transform X (z) is then
obtained by

X(z) = i {a"u[n] + b"u[n]}z7"
= i a"uln|z™" + _f: b ulnlz™"
= i(azl)” + i(bzl)"
B T
1 —az™! * 1—bzt
B 2—(a+b)z"
 (I—azN)(1—bz1) (A1)
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In order to converge, we should require that both [az~!| < 1 and
|bz"1| < 1 atthesametime. Thisisequivalentto|z| > a and|z| > b.
Asaresult, the ROC of (A.11) is|z| > a, Sincea > b.

A.2.1 Thez-Transform Properties

The z-transform has many properties that are useful tools to design
and analyze the discrete-time signals and systems. These properties
are often used to obtain the inverse z-transform of more complicated
expressions. The z-transform properties are summarized below.
There are many references of the z-transform properties. The
interested reader may refer to Miao and Clements [1], Oppenheim
et a. [2], Oppenheim and Schafer [3], and D’ Azzo and Houpis [4].

To simplify the notation, we denote X (z) as the z-transform of
z[n] and R, asthe ROC of X (z) asfollows:

z[n] <% X (z2), (A.12)

where the ROC is R,,, which represents a set of values of z with the
conditionof rg < |z| < rp.

Linearity

The linearity property states that if

x1[n] <& Xi(z), ROC=R,,, (A.13)

and
zo[n] <& X,(z), ROC=R,,, (A.14)

then
azy[n] + bzan] < aXi(z) + bX,(2), (A.15)

where the ROC includes R,,, N R.,.

Time Shifting
Time shifting states that if

z[n] <% X(z), ROC=R,, (A.16)
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then
zln —d <& 279X (2) (A17)

where d is an integer. The discrete-time signal sequence z[n| is
shifted right if d is positive. The discrete-time signal sequence x[n]
is shifted left if d is negative. Thus, the ROC in (A.17) is R, except
for the possible addition or deletion of z = 0 or z = cc.

Freguency Shifting or Modulation
Frequency shifting states if

z[n] <% X(z), ROC=R,, (A.18)
then
e xln] < X (e77vz). (A.19)

Note that the e/“"z[n] will not be red if the discrete-time signal
sequence z[n] is read unless w is an integer multiple of .
Furthermore, even if the poles and zeros of X (z) are in complex
conjugate pairs, they may not have this symmetry after frequency
shifting.

Time Reversal

A signal showstime reversal if

z[n] <% X(z), ROC=R,, (A.20)

then
z[-n] <& X(7), (A.21)

where the ROC is . In this case, the ROC means that R.(z) is
inverted. Th|S|stosaythat if zo isinthe ROC for z[n|, then 1/z, is
in the ROC for z[—n].

Convolution of Two Sequences
The convolution of sequences states if

n1[n] <& Xi(z), ROC=R,,, (A.22)
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and
2a[n] <& X5(z), ROC = R,,, (A.23)

then
21[n] * 22[n] <& X1(2)Xa(2), (A.29)

where the ROC includes R,, N R,,. In other words, the ROC
contains the intersection of the regions of convergence of X (z) and
X3(z). In addition, the ROC may be larger if a pole that borders on
the ROC of one of the z-transforms is eliminated by a zero of the
other ROC of the z-transform.

Multiplication of an Exponential Sequence

When a signal is multiplied by an exponential sequence, the
multiplication of exponential sequence states that if

z[n] <% X(z), ROC=R,, (A.25)

then
2an] < X(25'2), (A.26)

where the ROC is |2| R,.. If R, has a set of values of z with range
of rr < |z| < rp, then |z| Ry is the set of values of z such that
|z0lrr < |2| < |20|7L-
Conjugation of a Complex Sequence
The conjugation of a complex sequence states that if

z[n] <% X(z), ROC=R,, (A.27)
then
] <L X*(zY) (A.28)
Refa[n]} <Z ;[X(z)—i—X*(z*)] (A.29)
Im{zfn]} <L ;j[X(z)—X*(z*)] (A.30)

The ROCisequal to R,.
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Differentiation of X(z)
The differentiation of X (z) statesthat if

z[n] <% X(z), ROC=R,, (A.31)
then
dX(z)
dz

where the ROC is R, except for the possible addition or deletion of
z=00rz= 0.

z
nx[n] <= —z

(A.32)

Initial Value

Theinitial value states that if adiscrete-time signal sequence z[n] is
zeroforn < 0 andif lim,_,., X (2) exists, then

z[0] = lim X(2). (A.33)

Z— 00

Final Value

The final value states that if X (z) converges for ||z|| > 1 and all
polesof (1 — z) X (z) areinside the unit circle, then

z[oo] = lim(1 — 271 X (2). (A.34)

z—1

A.2.2 Common Pairsof the z-Transform

There are many common pairs of the z-transform in literature. Inthis
section, we list anumber of the basic common z-transform pairsthat
include values of x[n] only for n > 0, asshown in Table A.1. These
common z-transform pairs are useful for finding the z-transform
X (z) if adiscrete-time signal sequence x[n] is given. On the other
hand, these common pairs of the z-transform are also useful for
obtaining the discrete-time signal sequence x[n| corresponding to
agiven z-transform X (z).
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TableA.1 The Common z-Transform Pairs

Sequence z-Transform ROC
5[n] 1 All z
dn—m|,m >0 z ™ All z except 0
uln] 2> 1
~ufn 1] ] <1
nuln| E=e 2| > 1
nun] (Z(Z_J;)lg 2] > 1
n3uln] (2(2;41311) 2| > 1
ol % a<lzl <t
] ool All -
a"u[n] = 2] > |al
na"u[n] % 2] > |al
n?a"uln] a(z(_zj)%) 2] > |al
n3au[n] % 2] > |al
(n 4+ 1)a™un| ﬁ 2] > al
%a“u[n] ﬁ 2| > al
wanu[n] ﬁ 2| > al
—a"u[—n — 1] o 2] < |al
—na"u[—n — 1] % 2] <al
a(u[n] — uln — N)) il 2] >0
reos(won)luln] e i 2l >
[r™ sin(won)]u[n] (rsinwo)z |z| >

1—(2rcoswp)z—14r22—2
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A.2.3 Thez-Transform Transfer Function

An important application of the z-transform is in the analysis and
representation of adiscrete-time LTI system. Thisis because we can
represent the discrete-time LTI system as follows:

Y(z) = H(2)X(2), (A.35)

where H(z), X(z), and Y (z) are the z-transforms of the system
impulse response, input, and output, respectively. The H(z) of
the z-transform is called the discrete-time system function or the
z-transform transfer function.

The z-transform transfer function can be derived from the LTI
difference equation as follows:

N-1 M-1
n)+ Y apyln — k] = Y brzn — k. (A.36)
k=1 k=0

By taking the z-transform of each term on both sides of (A.36) and
using the properties of the linearity and the time-shifting, we then
obtain asfollows:

N-1 M—1
2) Y ar = X(2) Y bR (A.37)
k=1 k=0

We solve (A.37) for (A.35) and yield the result as follows:
Y(2)
X(2)
-1
Y b’“z (A.39)
1+ Zk LagzF
Equation (A.38) can be further expressed in afactored form
5 (1 —az)
H(z)=1 : A.39
= [ et (1= dpz™) A5
Note that each of the factors (1 —c;z~!) in the numerator contributes
azeoat z = ¢, and apole at z = 0. Smilarly, each of the factors

(1 — dpz~1) in the denominator contributes apole at z = d; and a
zeroat z = 0.

H(z) =




448 Signal Processing in Digital Communications

Example A.3

Consider a discrete-time LTI system with the relationship of the
input and output in a difference equation

y[n] — ;y[n — 1] =z[n] + ;x[n —1]. (A.40)

By using the z-transform on both sides of (A.40) and the properties
of the linearity and time-shifting, we are able to obtain

Y(z) — ;z_lY(z) =X(2)+ ;Z_IX(Z). (A.41)

Thus, the z-transform transfer function is given by

Y(z) 14327

HE =5y = 1-1T

(A.42)

Note that the ROC contains two different possibilities: (1) |z| > 1/2
is associated with the assumption that the impulse response h[n] is
right-sided, and (2) |z| < 1/2 isassociated with the assumption that
the impulse response h[n] isleft-sided.

A.3 Thelnversez-Transform

The inverse z-transform is derived using the Cauchy integral
theorem contributed by Churchill and Brown [5] and is given by
the contour integral theorem as follows:

1 n—1
xn] = W%C’X(Z)Z dz, (A.43)

where the integral notation with C' is a counterclockwise closed
contour in the ROC of X (z) and encircling the origin of the complex
z-plane.

Equation (A.43) can be solved by using other approaches,
including the contour integration based on the direction calculation,
examination method, and partial fractions expansion based on the
well-known procedures of containing the common pairs of the
z-transform.
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A.3.1 TheContour Integration

Equation (A.43) can be directly calculated by using the contour
integration. Assume that X (z) isafunction of the complex variable
z and C'is a counterclockwise closed contour in the ROC of X (z).
I the (k + 1)-order derivative “X?) exists on and inside the contour
C, and if X(z) does not have any polesat z = z, then the inverse

z-transform is obtained by

1 X(2)
= d
] 27y 740 (z — 20)* -
k—1 2 . A .
_ (kfll)! ddzszﬁ ) ey if zpisinsideC (A.44)
0, otherwise.

Equation (A.44) istheresult in terms of the expression of the Cauchy
residue theorem.

A.3.2 TheExamination Approach

Another solution for solving the inverse z-transform is to use the
common pairs z-transform by discovering the relationship between
the z-transform X (z) and the discrete-time signal sequence z[n| as
shown in Table A.1. This approach is often called the examination
method.

To illustrate the examination method, we consider an example of
the z-transform X (z) given by

X(2) 1 1

= A.45
1+%z*1+1—lz*1’ ( )
where the ROC is the annular region : < [z| < 1. Using the

2
2
common pairs z-transform, we can directly obtain the discrete-time
signal sequences as follows:

N o, 1 1
and
1\ ;1 1

2
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Then, by using the linearity property, we obtain the discrete-time
signal sequence,

x[n] = <—1> uln] — <1> u[—n —1]. (A.48)
) 2

Note that the discrete-time signal sequence x[n] in this example

grows exponentialy if n goesto —oc.

A.3.3 ThePartial Fraction Expansion

The partial fraction expansion is referred to as an aternative
expression for the z-transform X (z) as a sum of the terms. Each of
the terms is tabulated to identify the discrete-time signal sequence
x[n] that corresponds to the individual terms by using the common
pairs z-transformin Table A. 1.

The partial fraction expansion can be used in a different way
that slightly depends on whether the z-transform transfer function
has all distinct poles or some multiple poles. In the case of the
multiple poles, a procedure of the partial fraction expansion is
more complicated. For a mathematical treatment, the interested
reader may refer to Oppenheim and Schafer [3]. In this section,
we are interested in presenting the procedure of the partial fraction
expansion applying the z-transform transfer function in the case of
single poles. Thisis because the most filter designs in practice have
this property.

The procedure of the partial fractions expansion for the
z-transform transfer function with distinct poles requires factoring
the denominator of H(z) asfollows:

224:0 kaM—k
H]kvzl(z - dk).

Then we express the discrete-time signa sequence h[n] in the
following form

H(z) = (A.49)

N

h[ = C()(S Z ) (A50)

k=1
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where h[n] istheinverse z-transform of the transfer function H(z).

To obtain the discrete-time signal sequence h[n] in (A.50), we
have to determine the coefficients ¢, for £ = 0,1,---, N. Thefirst
coefficient ¢, is obtained by

Co — H(Z) |z:0

EEThES) (A.51)

The other coefficients ¢, for £ = 1,2,---, N can be calculated by
using

@:(Z;%)Hunp% (A52)

To illustrate the operation of the inverse z-transform, we show an
example next.

ExampleA.4
Consider the z-transform transfer function given by

2

H(z) = (A.53)

224+ 2 —12’

where the ROC isthe exterior of acircleregion |z| > 4. If we factor
the denominator of H (=), we obtain

2

z
Thefirst coefficient ¢, isthen determined by
Co — H<Z>|Z:0 =0. (A55)

The other coefficients ¢; and ¢, are obtained by

z2—3 22 3
“a= z(%xm+gmﬁ:r (A-56)
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z+4 22 4
S e o] U
Therefore, the inverse z-transform, h[n|, is given by
3 4
hln] = ?B”U[n} + ?(—4)”u[n] (A.58)

A.4 Thez-Transform All-Pass and Phase Systems

This section presents a theory and a method of al-pass and phase
systems based on the z-transform. The all-pass and phase systems
have many application values in inverse filtering, compensation for
phase distortion, deconvolution, and system identification in the
areas of signal processing and digital communications.

A.4.1 All-Pass Systems

Assume that a stable system, denoted by H,,(z), has a z-transform
transfer function as follows:

2t —a*

Hop(2) (A.59)

1—azV
where a* is the complex conjugate of a. Equation (A.59) has a
frequency-response magnitude, but it is independent of w. To see
this, we rewrite (A.59) into the following form in the frequency
domain by using z = ¢/ and obtain the discrete-time Fourier
transform (DTFT) representation,

eTIw — g*
1 —ae v

] 1 — * Jw
_ () (A.60)

1 — ae v

Hap(ejw) =

where the term e7“ has a unity magnitude. Further note that
the remaining term’s numerator and denominator have the same
magnitude because of the complex conjugates of each other. Thus,
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|H,,(e7)| in (A.60) isequal to unity. In other words, the 2-transform
transfer function system H,,,(z) in (A.59) passesall of the frequency
components of its input without changing magnitude gain. Due to
this reason, (A.59) is referred to as the all-pass or the all-phase
system.

There are two important properties of an al-phase system,
including: (1) the group delay of the al-phase system is aways
positive, and (2) the phase of the all-phase system is negative within
the frequency range of 0 < w < 7.

A.4.2 Phase Systems

Consider the z-transform of afinite impulse response (FIR) transfer
function system H (z) with an arbitrary length as follows:

H(z) =Co(1 — 2127 ) (1 — 2927 1) - (1 — 227 1),  (A.61)

where z = e, z; (i = 1,2,---, M) denotes the zeros and Cj, is
an arbitrary constant. Equation (A.61) is referred to as a minimum-
phase systemif al the zeros are inside the unit circlein the z-plane.
Equation (A.61) is called a maximum-phase system if al the zeros
are outside the unit circle in the z-plane. Furthermore, if the FIR
system in (A.61) has some of its zeros inside the unit circle and its
remaining zeros outside the unit circle in the z-plane, we then refer
to the FIR system H (=) as a mixed-phase system.

For the z-transform of an infinite impulse response (11R) transfer
function system given by

H(z) = igg .

(A.62)

Equation (A.62) is referred to as a minimum-phase system if
al the zeros and poles are inside the unit circle in the z-plane.
Equation (A.62) is called a maximum-phase system if all the zeros
are outside the unit circle and all the poles are inside the unit circle
in the z-plane. Moreover, the IR transfer function systemin (A.62)
is known as a mixed-phase system if some, but not all, of the zeros
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are outside the unit circle, and al the poles are inside the unit circle
in the z-plane.

A minimum-phase system means that it has a minimum delay
function, while a maximum-phase system implies that it has a
maximum delay characteristic. In addition, if we are given a
magnitude-square function of H(z) and H(z) is a minimum-phase
system as follows:

C(z) = [H(2)]
= H(2)H"(1/z2), (A.63)

we can then determine the z-transform transfer function H(z)
uniquely.

A.4.3 Decomposition of Phase Systems

The z-transform of any rational transfer function system H(z) can
be decomposited as follows:

H(Z) = Hmm(z)Hap(Z)7 (A.64)

where H,,;,(z) is a minimum-phase system and H,,(z) is an all-
phase system. Thisisto say that any nonminimum-phase system can
be formed into the minimum-phase system H,,;,(z) by reflecting
one or more zeros within the unit circle into their conjugate
reciprocal locations outside the unit circle by using (A.64). On
the other hand, a minimum-phase system can be created from a
nonminimum-phase system by reflecting all the zeros lying outside
the unit circleinto their conjugate reciprocal |ocationsinside the unit
circle. However, the frequency response transfer function system
in (A.64) will have the same magnitudes in the case of both the
minimum-phase and nonminimum-phase systems.

A.4.4 Compensation Systems

Consider a transmitting signal over a communication channel that
has an undersirable frequency response H,(z). Let x[n| denote
the input signals and y[n| denote the output signals of the
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communication channel. We want to develop a perfect transfer
function system H,.(z) that isableto compensate the communication
channel distortion, that is, H.(z) istheinverse of H,(z) and y[n| =

Assume that the transfer function system H,(z) of the
communication channel is stable and causal and isarational system.
Thus, by using (A.64), we can decomposite H,(z) asfollows:

Hy(2) = Hyin(2) Hap(2), (A.65)

where H,,;,(z) is the minimum-phase system and H,,(z) isthe all-

phase system for the communication channel. Now, if we choose the

compensation system H..(z) to have the following form
1

Hmm(z) ’

then the overall transfer function system H(z) such that Y (z) =

H(z)X(z) isgiven by

H.(z) =

(A.66)

H(z) = Hu(2)Ho(2) = Hopl2). (A67)

It is interesting to see that (A.67) corresponds to an all-pass
system. Therefore, the magnitude of frequency response is exactly
compensated, but the phase response is changed to H,,(e’).

A.45 FIR Systemsto Minimum-Phase Systems

The z-transform of any FIR linear phase system can be factored
in terms of a miminum-phase system H,,;,(z), a maximum-phase
system H,,..(z), and a H,.(z) that only contains zeros in the unit
circle given by Oppenheim and Schafer [3] asfollows:

H(Z) = Hmin(Z)Huc<Z>Hmaz<Z)7 (A68)

where
Hopao(2) = 2 MHypin(1/2), (A.69)

where M is the number of zeros in the minimum-phase system
H,in(2). Note that the minimum-phase system H,,;,(z) in (A.68)
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has all M zeros inside the unit circle, H,.(z) has adl N zeros on
the unit circle, and H,,..(z) hasal M zeros outside the unit circle.
In fact, all the zeros of the H,,,...(z) are the reciprocals of the zeros
of the minimum-phase system H,,;,(z). Thus, the order of the z-
transform of any FIR linear phase system H(z) isegqual to2M + N.

For further reading, we recommend to the interested reader the
books by Miao and Clements [1], Oppenheim and Schafer [3], and
Proakis and Manolakis [6].
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Appendix B: Matrix Theory

B.1 Introduction

In this appendix, we provide a summary of fundamental definitions
and resultsin amatrix theory. The goal hereisto review those results
from the matrix theory that have a direct relevance to this book.
Thus, we present the necessary definitions and results of the matrix
theory along with some of the proofsin detail.

B.2 Vector Definitions

An array of real-valued numbers or complex-valued numbers, which
are denoted by the lowercase bold letter X, is called a vector. The
vector X is assumed to be arow vector given by

X = [1'1,1'2,1'3], (Bl)
or a column vector given by
T
X= 1| x2 |. (BZ)
T3

If the vector x contains real values, the vector x is then said to be a
real vector. If the vector x has complex values, the vector x is then
said to be a complex vector. If the vector x includes N values, the
vector x isthen called an NV-dimensional vector defined by

457
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Iy
X2
x=| . |, (B.3)
IN
or in another form denoted by x7,
xT' = [z1, 29, ..., 2N], (B.4)

where x”' is known as the transpose of the vector x. In general, we
often write a column vector as the transpose of arow vector.

A complex conjugate of the transpose of the vector x*, denoted
by x, is defined by

o ey
= [z},23, ..., 2N], (B.5)

where x* is called the Hermitian transpose.

In many vector operations, we are interested in finding the
magnitude of a vector X. The magnitude of the vector x is defined
as

N 1/2

Xl = Zx?] : (B.6)

j=1

Equation (B.6) is aso referred to as the Euclidean norm.
Normalizing avector x by dividing its Euclidean normisto have

aunit magnitude given by

X

1]
Equation (B.7) is called a unit norm vector.
Consider two real vectors a = [aj, a9, --,ay]T and b =
[b1,b2, -, bx]T. Theinner product of the two vectors is defined by
<ab> = a'b

N
= Z ajbj. (B8)
j=1
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If (B.8) is equal to zero, then the two vectors a and b are said to be
orthogonal. Furthermore, if the a and b are orthogonal and have unit
norm, then the a and b are said to be orthonormal.

B.3 Matrix Definitions

A rectangular array of numbersisreferred to asamatrix. We denote
it by A. If the matrix A hasn rows and p columns, then the matrix
A issaid to be (n x p) matrix defined by

11 Qi -+ A
(21 Q22 -+ QA

A = {aij} = . . . . R (Bg)
Qp1 Ap2 - Qpp

where a;; is the value in ith row and jth column of the matrix A,
1=1,2,...,n,and j = 1,2,...,p. The transpose of the matrix A is
produced by interchanging the rows and columns defined by

@11 A21 -+ QApl
Q12 A22 -+ Gp2

A=1| ~ (B.10)
alp azp DY anp

A matrix (n x n) A is called a square matrix if its number of
rows and number of columns are equal. If a square matrix A has
al of its elements equal to zero except those elements along the
main diagonal, this matrix A isreferred to asadiagonal matrix. The
diagonal matrix A is defined by

a; 0 - 0
A= . R (B.11)
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Furthermore, a diagonal matrix with the diagonal elements equal to
lisreferred to as an identity matrix given by

01 -0
l=1. . . . (B.12)

Note that the identity matrix is the multiplicative identity for a
square matrix A, that is,

IA = Al =A. (B.13)

A square matrix A is said to be a Toeplitz matrix if all the
elements along with each of diagonals have the same value. For
instance, we show a (4 x 4) Toeplitz matrix as follows:

1 29 10
312 9

A=l 5] 5| (B.14)
15 5 3 1

Moreover, if a Toeplitz matrix is symmetric, then all of the elements
in the matrix A can be determined by using either the first column
or thefirst row of the matrix. To seethis, we show a (4 x 4) Toeplitz
matrix with symmetric elements as follows:

14709
4147

A=l 41 4 (B.15)
97 41

A matrix A that has nonzero values on and below its main
diagonal is called alower triangular matrix defined as

a1 0 0 0

az az 0 0
A= B.16
az; agz azz 0 ( )

a41 G4z Q43 Q44
An upper triangular matrix can be defined in asimilar way.
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B.4 Orthogonal Matrices

Consider a square matrix with a dimension (p x p) denoted by
A. If the square matrix AAY = 1, the matrix A is then called
the orthonormal. The orthogonal matrix A has many properties as
follows:

1. A1 =AT,
2. | A |= 1.

3. alay :{ é’ z;; where a; is the columns of matrix A.

4. If A and B are orthogona matrices, respectively, then, C =
AB isaso orthogonal.

B.5 Trace

The trace of the sgquare matrix A with dimension (p x p) is defined
as

p
=1

Equation (B.17) aso sdatisfies for the operation of two sguare
matrices A and B and the scalar 5 with the following properties:

tr(5) = 3, (B.18)
tr(A £ B) =tr(A) £ tr(B), (B.19)
tr(BA) = Str(A), (B.20)
trd X AX =tr(AY xx]), (B.21)
and
tr(AB) = tr(BA) = 3 ay;bi. (B.22)

In a specia case of (B.22) when the square matrix B = AT, we
obtain
tr(AAT) =tr(ATA) = > aj;. (B.23)
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If the square matrix A is orthogonal, then (B.23) is given by

p

tr(AAT) = tr(l Z I; = p. (B.24)

In addition, for matrices C and D with n x p and p x n, respectively,
the trace function can be expressed as

B.6 Matrix Differentiation

Consider ann x p matrix X and a function of the matrix X, denoted
by f(X). We then take the derivative of matrix function f(X) with
respect to the matrix X and obtain

0f(X) _ 0f(X)

wherei = 1,2,....,nand j = 1,2, ..., p. The derivative result is also
ann x p matrix. Some useful results of the matrix differentiation are
listed as follows:

ob"x _
1. DX _p,
2. a)g;x — 92X.

3. &, BX — Bx + x”B.
a 8Xa)?y — By.

B.7 Determinants

The determinant of an (n x n) square matrix A is denoted by
det(A) and can be solved recursively in terms of the determinants
of (n — 1) x (n — 1) matrices given by

det(A) = (=1)"a;; det(A;), (B.27)

=1
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whereA;; isthe (n —1) x (n— 1) matrix that is obtained by deleting
the ith row and the jth column of the matrix A.

If the matrix A issingular, its determinant will be equal to zero.
In this case, there does not exist an inverse of the matrix A. On the
other hand, a square matrix A is said to be singular if det(A) = 0,
and nonsingular if det(A) # 0.

Assume that A and B are n x n matrices. Then we can list the
properties of the determinants as follows:

det(AB) = det(A) det(B).

det(AT) = det(A).

det(aA) = o™ det(A), where « is a constant.

det(A™Y) = m, if Aisinvertible.

The determinant of a diagonal matrix is the product of
its diagonal elements. It is also true for lower or upper

triangular square matrices.

a rwpnNhE

ExampleB.1
L et a square matrix

c d

Then the determinant of the square matrix A using (B.27) is obtained
by

A:[“ b]. (B.28)

det(A) = ad — be. (B.29)
Now, let a square matrix
1 2 3
A=1]2 3 2. (B.30)
3 4 3

Then the determinant of the square matrix A using (B.27) isobtained
by

2 3

3 2

- 2 (B.31)

det(A) = 1x

3 2
4 3|—2><

2 3
A 3‘+3><
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B.8 Matrix Inversion

If a square matrix A is a nonsingular, det(A) # 0, then thereis a
closed form expression for a matrix inversion given by

_ adi(A)

Al =
det(A)’

(B.32)

where adj(A) is the adjugate of the square matrix A defined by
adj(A) = cofactor of A;;, (B.33)

where the (7, j) element of the adjugate is equal to the cofactor of
the (4, 7) element of the square matrix A.

Another useful formulafor inverse matrix isknown asthe matrix
inversion lemma given by

(A+BCD)'=A"T1"-A"'B(C'+DA'B)"'DA"!, (B.34)

whereAisn x n,Bisn xm,Cism x m,and D ism x n, and A
and C are nonsingular matrices.

In addition, if matrices A and B are invertible matrices, we have
aproperty of (AB)~! =B 'A%

B.9 Eigenanalysis

Eigenanalysis is one of the most powerful concepts in the matrix
operation. This is because the eigenanalysis, including eigenvalues
and eigenvectors, provides useful and important information about a
matrix. It also contributesto an important representation for matrices
known as the eigenval ue decomposition.

Consider any square matrix A with dimension n x n. We
establish a matrix function as follows:

E\) =| A=Al (B.35)

which is an nth order polynomial in A\, where the n roots of E(\),
A1, Mg, ...y A, are called eigenvalues of the square matrix A.
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For each of eigenvalues, \;, i = 1,2, ...,n, the matrix function

(A — \I) issingular. There is at least one nonzero vector, v;, such
that

Av; = \V;. (B.36)

These vectors, v;, are called the eigenvectors of the square matrix
A. In addition, an eigenvector v; is called normalized if it has unit
norm, || v; ||=viv = 1.

Another theory of the eigenanalysis is that if a matrix B is
a nonsingular square matrix, then matrices A and BAB™! have
the same eigenvalues, ;. Furthermore, the matrix BAB™' has the
eigenvector u; = Bv;. The theory can be proved as follows:

Note that the matrix function in (B.35) can be rewritten as

E\) = |A=)|
= |A-)XB'B|
= |B|[A-2B"'B||B|
= |BAB™' -\l |. (B.37)
Now, it is clear to see from (B.37) that the matrix A and the matrix
BAB™! have the same eigenvalues. Since v; is an eigenvector of

the matrix A for eigenvalue )\;, then there exists a nonzero vector
u satisfying the condition as follows:

BAB '(Bv;) = \;(Bv;). (B.38)

Therefore, the eigenvector u; = Byv; is an eigenvector of the matrix
BAB™! for the eigenvalue \;.

B.10 Spectral Decomposition Theorem

Consider any symmetric matrix A with dimension (p x p). Then the
symmetric matrix A can be written as

A = RART
p
- ZAirir?, (839)
=1
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where A isadiagonal matrix consisting of the eigenvalues of A, R
isan orthogonal matrix whose columns are normalized eigenvectors,
and r; is the corresponding eigenvectors. Equation (B.39) is known
as the spectral decomposition theorem or sometimes referred to as
the Jordan decomposition theorem. This theorem can be approved
asfollows.

Assume that there are orthonormal eigenvectors rq,ry,---,r,
such that Ar; = \;r; for some numbers )\;. Then we obtain

rrAr;, = \rlr;
[, ifi=7,
- { 0, otherwise. (B.40)

In amatrix form, we can write (B.40) asfollows:
RTAR = A. (B.41)
Multiplying by using R and R” on both sides of (B.41), we obtain
RRTARR? = RART. (B.42)
Note that RR? = I. Thus, we can rewrite (B.42) as
A = RAR”. (B.43)

Compared with (B.37), it isinteresting to see that the matrix A and
the matrix RAR have the same eigenvalues. Therefore, the elements
of A are exactly the eigenvalues of symmetric matrix A with the
same multiplicity.

Furthermore, if A is a nonsingular symmetric matrix, then for
any integer n, we can have as follows:

A" = diag(\?), (B.44)

or in amatrix form,
A" = RA"R”. (B.45)
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In addition, if al the eigenvalues of the symmetric matrix A are
positive, we can even define the rational powers as follows:

AP/4 = diag(\P/9), (B.46)
or in amatrix form
AP/ = RAPIIRT. (B.47)

for integers ¢ and p, where ¢ > 0. If some of the eigenvalues of
matrix A are zero, then (B.45) and (B.47) still hold if the exponents
p/q are restricted to be positive. This expanded theory can be
approved as follows.

In order to prove the theory in (B.45), using the spectra
decomposition theorem in (B.39), we obtain

A = RART. (B.48)
If we use the power of 2 on both sides of (B.48), then we obtain
A? = (RAR”)?
= RAR'RAR”
= RA’RT. (B.49)
Because of R’R = |, then we obtain,
A =RA'RT, (B.50)

where A~! = diag(\;!). Therefore, by using induction, the theory
of (B.45) can be proved completely.

In order to prove the theory in (B.47), we use the notation
operation as follows:

AP (Ap/q)q
RAP/IRT ... RAP/IRT

RAP/IRT. (B.51)

Thereis an important case in (B.47) whenp = 1 and g = 2. In
this case, we have
A2 = RAY2RT, (B.52)



468 Signal Processing in Digital Communications

where A1/2 = diag(\/?) and A; > 0 for all 4, and

A~Y2 = RATV2RT, (B.53)

where A=1/2 = diag(\;"/?) and \; > 0 for all i. Equations (B.52)
and (B.53) are called the symmetric square root decomposition of
the matrix A.

Another theory states that for any symmetric matrix A, there
exists an orthogonal transformation given by

y = R”x, (B.54)
such that
XTAX =" Ny (B.55)

To prove the theory of (B.54) and (B.55), we again consider
using the spectral decomposition theorem of A = RAR”. Thus, we
can expressit asfollows:

x'Ax = x"RARTx
= y'"RTRARTRy
= y'Ay
= Y (B.56)

wherethe R isthe columns of the eigenvectors for the matrix A and
A1, ..., A, are the corresponding eigenvalues.

B.11 Singular Value Decomposition
If Sisan (n x p) matrix with rank r, then S can be written as
S=UDV7’, (B.57)

where U and V are orthonorma matrices of dimensions (n x
r) and (p x r), respectively, and D is a diagonal matrix with
positive elements. Equation (B.57) is known as the singular value
decomposition theorem.
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To provethe singular value decomposition theoremin (B.57), we
note that U and V are orthonormal matrices of dimensions (n x r)
and (p x r), respectively. Thus, we immediately obtain as follows:

ulu =1,, (B.58)

and
VIV =1,. (B.59)

Now, letting Y = S'S, we note that Y is a symmetric matrix
with a rank r. We then rewrite the matrix Y by using the spectral
decomposition theorem

Y = Sf's
= VAVT, (B.60)

where V is a column orthonormal matrix of eigenvectors of Y and
A =diag(\, Ao, -+, \,) with \; > 0 since

)\i = V;-TSTS/i
| Svi ||
> 0. (B.61)

Further let d; = A% fori = 1,2, --,r. Thisimpliesthat
D = diag[dy, d, - - -, d,]. (B.62)
Also, the U matrix with dimension (n x r) is defined by
U =d;'Sv;, i=1,2,---,7. (B.63)
Then, we have the results as follows:

ulu; = d;7'd;'v)S"Sy,
-1 3—1
= /\zdz dj ViV

B 1, ifi=j,
N {0, otherwise. (B.64)
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Therefore, it is interesting to see that the matrix U is aso an
orthonormal matrix.
Assumethat x isany p x 1 vector; it can then be written as

X = ZO&Z‘VZ‘. (B65)

Also assume that e; isan r x 1 vector that has 1 in the ith position
and 0 elsewhere. Using (B.63), we have the results as follows:

UDV'x = Y a;UDe
= Zaidiui
= Z aiS\Ii

= Sx. (B.66)

Therefore, the singular value decomposition theorem of S = UDV”
has been approved since the formula in (B.66) holds for any
matrix X.

B.12 Quadratic Forms

The quadratic form of a symmetric matrix A is defined by

Q(X) = XTAX = zn: zn: Qi T2, (867)

i=1 j=1

wherex = [z1, za, ..., x,,] iS@vector of n variables.

If Q(x) > 0foral x # 0O, then Q(x) iscalled the positive definite
quadratic form. If Q(x) > 0 for al x # 0, then Q(x) is said to
be the positive semidefinite quadratic form. A symmetric matrix A
is said to be positive definite or positive semidefinite if Q(x) is a
positive definite quadratic form or positive semidefinite quadratic
form, respectively.

An important quantity in matrix theory to manipulate in terms
of eigenvalues and eigenvectors is to use the ratio of two quadratic
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forms given by .
X+ AX
= By’ (B.68)
where B must be positive definite. Equation (B.68) is called the F-
ratio quotient or sometimes referred to as the Rayleigh quotient.
The F-ratio quotient is bounded by the minimum and maximum

eigenvalues

Amin < F < Aaa, (B.69)

where \,.;, and A, are the minimum and maximum eigenval ues,
respectively.

B.13 Maximization and Minimization Analysis

Consider two symmetric matrices A and B, and B > 0. A maximum
or minimum analysis of

xTAx  subjecttox”Bx =1 (B.70)

is to solve when x is the eigenvector of B™' A corresponding to the
largest or the smallest eigenvalue of B A, respectively.

Let \,... and \,,;, bethe largest and the smallest eigenval ues of
B~ A, respectively. Subject to the constraint (B.70), optimization
solutions provide the results as follows:

max,, (X" AX) = A\paz; (B.71)

and
min, (XTAX) = A\pnin. (B.72)

To prove this theory of the maximization and the minimization
analysis, we let B!/ denote the symmetric square root of symmetric
matrix B, and let alinear transform be given by

y = BY/2x. (B.73)
Then the theory in (B.70) can be rewritten as

y'B~Y2AB~ Y%y  subjecttoy’y = 1. (B.74)
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Now, by using the spectral decomposition for the symmetric matrix,
the matrix B~/2AB~'/2 can be written in the following form:

B~!/2AB~/2 = GAG, (B.75)

where G is an orthogonal matrix and A is a diagonal matrix of the
eigenvalues of B™/2AB ™2 With Apaz > A2 >, ..., > Apin > 0.
Further let z = G”y. Then we obtain
2’z = y'GG'y
= yly. (B.76)

Thus, by using (B.75) and (B.76), the theory in (B.74) can be
rewritten as follows:

max.(z'Az) = max. (> A\;z}) subjecttoz’z=1. (B.77)

If the eigenvalues are in descending order, then (B.77) satisfies the
following:

max, (D Aiz?) < AmaamaX. (D 27) = A (B.78)

Therefore, the maximization theorem is proved for the maximization
result.

For the minimization theory, the theory in (B.74) can be
rewritten in the following form by using (B.75) and (B.76) as
follows:

min,(z"Az) = min, (3" \;z})  subjecttoz’z=1. (B.79)

If the eigenvalues are in descending order, then (B.79) satisfies the
following:

min. (3" Aiz}) > ApenMin, (O 27) = A (B.80)

Again, this minimization theorem is proved for the minimization
result. This, in turn, provesthe result in (B.69) for F'-ratio quotient.
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In this appendix, we have summarized the important develop-
ments of the matrix theory, which are particularly useful for un-
derstanding the theory development of signal processing for digital
communications. There are many excellent references on the matrix
theory. To research the relevant topic further, we recommend the in-
terested reader to Mardia, Kent, and Bibby [1]. For understanding
the matrix theory in applications, the interested reader is referred
to Kailath [2], Miao [3], Miao and Clements [4], Vaidyanathan [5],
Johnson and Dudgeon [6], Hayes [7], and Neter et a. [8] to name a
few.
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Appendix C: The Discrete Fourier
Transform

C.1 Introduction

For a finite-duration discrete-time signal, it is possible to develop
a Fourier series representation. When the Fourier series is used
to represent the finite-duration discrete-time signal, we refer to
it as the discrete Fourier transform (DFT). The DFT is aso
a discrete sequence that corresponds to samples of the Fourier
transform of the signal, equally spaced in frequency. The DFT
plays a centra role in the implementation of a variety of digital
signal processing (DSP) and communication algorithms, such as
orthogonal frequency division multiplexing (OFDM) and discrete
multitone (DM T) modulations.

C.2 DFT Operation

The DFT can be defined as an operation for an N-point discrete-time
input signal z[n] given by [1-3]

N-1
Xkl =3 anW¥, k=0,1,---,N —1, (C.D)
n=0
where Wy isthe complex quantity expressed as
WN — 6—j27r/N

= o8 (?\7;) — jsin (3\7) . (C.2

475
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Equation (C.1) is a transformation from an N-point discrete-time
input signal z[n] to an N-point set of frequency-domain samples
X [k]. Note that (C.1) can be considered as two nested loops of a
scalar operation containing a complex multiplication and a complex
addition. It can aso be viewed as a single loop that computes each
point of frequency-domain samples X [k] by an inner product of an
N-point discrete-time input signal z[n| and an N-point basis factor
Wik forn =0,1,---, N — 1 when k isfixed.

The DFT can aso be interpreted as a “frequency sampling” of
the discrete-time Fourier transform (DTFT) given by [2]. It provides
the frequency spectrum of the discrete-time input signal x[n],

X(f)= 3 anle ", (C3)
where F; is called the sampling rate and f isafrequency value, both
in hertz (Hz). Since the discrete-time input signal z[n] has N data
points, the signal frequency range, from 0 to Fj, is divided into N
discrete points with equally spaced frequencies, f = . The DFT
can then be expressed as a discrete variable k for frequency,

Nl —j2mkn
X[k] = Z x[nle™ N
n=0
N—-1
= > anWy, k=0,1,---,N —1, (C.4)
n=0

where Wy = e~ 7@7/N)_ The region around each of the N pointsis
referred to as afrequency bin or a“tone.” Each tone has a bandwidth
of o+ or &2 Hz.

C.3 IDFT Operation

The corresponding inverse discrete Fourier transform (IDFT) is
given by

1 N—-1

v > XKW, n=0,1,..,N — 1. (C.5)

k=0

z[n] =
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Note that both the discrete-time input signal x[n] in (C.5) and the
frequency-domain samples X [k] in (C.1) may be complex valued.

C.4 DFT Matrix Operation

In a matrix form, we can consider the N-point DFT as a linear
transformation of the discrete-time complex input signal vector

x={ a0 af1] - «N-1]} (C.6)
to another complex vector in the frequency domain
x={ X0 X[1] - X[N-1}". (C.7)
Thus, the DFT operation in the matrix form becomes
X = Wx, (C.8)

where the matrix W contains the complex exponentials

1 1 1 e 1
1w W2 s WAL
1 W2 W4 . W2(N—l)
W= - . . e . (C.9)
1 WN-1 p2w-1y .. W(N—1)2

where W = ¢ %", Theinverse DFT matrix can be obtained by using
the inverse matrix W~ asfollows:

X = W X. (C.10)

It should be pointed out that the column vectors w; of matrix W are
orthonormal because the inner product w/w; = 0 when i # j and
the inner product w/w; = 1 when i = j. This, in turn, implies that

WW* = NI, (C.11)
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where W* denotes the complex conjugate of the matrix W, and | is
an (N x N) identity matrix. This is to say that the inverse matrix
W~ can be obtained as follows:

1

W= —w* C.12
< C12)

Asaresult, the inverse DFT matrix in (C.10) can be expressed as

1 *
X = NW X. (C.13)
The matrix representations of the DFT in (C.8), (C.10), and (C.13)
are also useful for analyses of uniform DFT filter bank—based
OFDM and DMT modulations.

Note that N complex multiplications and (N — 1) complex
additions are required to compute each value of the DFT in (C.4)
sincethe discrete-timeinput signal z[n] may be complex. Therefore,
in order to compute all N values directly, we require a total of
N? complex multiplications and N(N — 1) complex additions.
In other words, we need N? complex multiplication and addition
operations. For areal discrete-time input signal x[n], the number of
computations in (C.4) can be halved. This is because the DFT will
be conjugate-symmetric with respect to the frequency value %
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Appendix D: The Fast Fourier
Transform

D.1 Introduction

In Appendix C, we discussed the DFT and IDFT operations as well
as their matrix forms. A direct computation for the DFT operation
is expensive. However, by exploiting both the symmetry and
periodicity properties of k", the DFT computational complexity
can be reduced. The method of greatly reduced computation
complexity was popularized when Cooley and Tukey [1] published
a method of an efficient algorithm for the computation of the DFT
in 1965. The efficient algorithm is called the fast Fourier transform
(FFT). Infact, FFT agorithms are developed based on a method of
decomposing a DFT into successively smaller DFTs. This method
leads to a variety of different algorithms, all with comparable
improvements in computational complexity.

D.2 FFT Methods

In this appendix, we present two basic types of the FFT algorithms
with radix-2, which have been extensively used for DM T and OFDM
modulations, including decimation-in-time FFT and decimation-in-
frequency FFT. In the method of decimation in time, the discrete-
time input signal x[n] is decomposed into successively smaller
subsequences such that the computations are made on smaller
transformations. On the other hand, the method of decimation-

in-frequency FFT derives its name from the method in which
479
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the frequency-domain sequence X [k] is decomposed into smaller
subsequences.

D.2.1 Decimation-in-Time FFT Algorithm

The operation of the decimation-in-time FFT agorithm is based on
decomposing the discrete-time input signal z[n| into successively
smaller subsequences. Toillustrate, we consider aDFT with alength
of N given by (C.4) in Appendix C,

N-1
X[k = > zpWy", k=0,1,--- N — 1. (D.1)
n=0

By separating the discrete-time input signa z[n] into its even-
numbered (r = 2n) and odd-numbered (»r = 2n + 1) samples, we
obtain

(N/2)-1 (N/2)—

XK = > afrwEt 4 Z [2r + W
r=0 r=0
(N/2)-1 (N/2)—1
= Z z[2r (W2 4+ WE Z z[2r + 1| (W3)™.
r=0 r=0
(D.2)
Since
W2 = 2N — omi2n/(N/2) — (D.3)
we obtain W3 = Wy/2. Thus, (D.2) can be expressed as
(N/2)-1 (N/2)—1
X[k = > x[2r] WN/2 + Wy Y zf2r+ 1]WN/2
r=0 r=0
= E[k]+ WEO[K], (D.4)

where E[k] and O[k ]arethe( ) point DFTsof £ length sequences

x[2r] and z[2r+ 1], respectively. Even though a 7-p0| nt DFT isonly
of length &, for values of & greater than 5, we use the property that

E[K] = E[((k))x] and O[k] = O[((k)).y]. If (&) isstill even, each
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DOR\Y/)
ZANSRY)

Figure D.1 The flow graph of aradix-2 decimation-in-time for an
8-point FFT agorithm.

of these can be broken into two (%) -point DFTs. Furthermore, if N
isequal to 2, then the decomposition process can be repeated until
the DFT can be computed as acombination of £ 2-point DFTs. This
algorithm is known as the radix-2 decimation-in-time FFT.

A flow graph for operations of the radix-2 decimation-in-time
algorithm with N = 8 is shown in Figure D.1. Each stage has 4
complex multiplications and 8 complex additions. Since there are
three stages, we have a total of 12 complex multiplications and 24
additions. In general, the number of complex multiplications and
additions is equal to % log, N and N log, N, respectively, because
thereare v = log, NV stages aswell as N/2 complex multiplications
and N complex additions for each stage.
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D.2.2 Decimation-in-Frequency FFT Algorithm

The decimation-in-frequency FFT algorithm breaks the frequency-
domain output sequence X [k] into smaller and smaller subsequences
in the same manner that we did using the decimation-in-time FFT
algorithm. We again consider the DFT for an N-point frequency-
domain output sequence given by (C.4) in Appendix C,
N—-1
Xkl =Y anW¥, k=0,1,---,N — 1. (D.5)
n=0
The frequency-domain output sequence X[k] in (D.5) can be
split into the even-numbered frequency samples X[2¢] and the
odd-numbered frequency samples X [2¢ + 1]. The even-numbered
frequency samples X [2¢| can be computed by
N—-1
X[2¢) = Y a[pWy, ¢=0,1,---,(N/2)—1.  (D.6)

n=0

Equation (D.6) can be further expressed as

N
N

X = X ald Wi+ Y el W
=0 n=N/2
% 1 81 N .
- Vo Eafus Mugen
(D.7)
Since the factors Wt V/21 — yp2anpy eV — 2 gnd 12 =
W2, (D.7) isthen equal to
%_1 N
i = S S Xuge
=0
51 N
= > (m[n] +a {n%— D Wi
n=0 2
X
2 N ng
= > (x[n] +a {n + 2D Wla (D.8)
n=0
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whereq =0,1,---,(N/2) — 1. Therefore, (D.8) isthe (IV/2)-point
DFT of the (V/2)-point discrete-time input signa x[n] obtained by
adding the first and the last half of the discrete-time input signal.

Now we consider the specialization for odd-numbered frequency-
domain samples,

N—-1
X[2¢+1) =3 apwi®™ ¢=0,1,---,(N/2) = 1. (D.9)

n=0

Equation (D.9) can be further broken into

N1

P} N—-1

X[2¢+1] = Z en)WRPY ST afpwpery
=0 n=N/2

51 Ei N

= > o[n] WY Y oz [n + 2}

n=0 n=0

W]S]n+%)(2q4r1)

z

= Y zn] Wy

n=0
%_1 N
+ WP S 4 2} Wi (D.10)
n=0
Note that factors W72 = 1, W = —1, and W2 = Wy,
Thus, (D.10) can be rewritten as follows:
(N/2)-1 N
X2g+1= Y <x[n] [n 4 D WEWL,,  (D.1)
n=0

2
point DFT of the discrete-time input sequence z[n] obtained by
subtracting the second half of the input sequence from the first half
and multiplying the resulting sequence by W}.

Using (D.8) and (D.11), we then define two new (%)-point
discrete-time sequences o[n| and e[n| as follows:

where ¢ =0,1,---,(N/2) — 1. Therefore, (D.11) is the (N)

oln] = z[n] +x

N
n+2}, n=0,1,--- (N/2)—1, (D.12)
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and
e[n]:x[n]—m[n—l—g], n=0,1,---,(N/2)—1. (D.13)

Then, we calculate the (%) -point DFT of the discrete-time sequence
o[n]

(N/2)-1
X[QQ] = Z O[n]W]T\lf%? q:()»lav(N/Q) _17 (D14)

n=0
and the (%) -point DFT of the discrete-time sequence e[n| W}

(N/2)-1
X[2¢+1 = > eln]WiWyl, ¢=0,1,---,(N/2) - 1.

" (D.15)
If the length N = 27, this decomposition process can be continued
until the N-point DFT has been completely decomposed into %
2-point DFTs. In this case, we refer to the agorithm as the radix-
2 decimation-in-frequency FFT.

A flow graph for the radix-2 decimation-in-frequency FFT
algorithm with N = 8 is shown in Figure D.2. In this method, each
stage has 4 complex multiplications and 8 complex additions. The
branches have transmittances of the form ;. Because there are
three stages, we have a total number of 12 complex multiplications
and 24 complex additions. In general, the number of complex
multiplications and additions is equal to % log, N and N log, N,
respectively; hence, the computational complexity isthe same asthat
of the decimation-in-time FFT algorithm.

D.2.3 Computational Complexity

In general, for both of the radix-2 decimation-in-time and
decimation-in-frequency FFT algorithms, a total of % log, N
complex multiplications and N log, N additions are required.
However, note that some of the multiplications with the factors

N
of WO, W2, WEV2 and WEN* are equal to 1, —1, (—1)F,
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Figure D.2 The flow graph of a radix-2 decimation-in-frequency
for an 8-point FFT algorithm.

and (—j)*, respectively. It is clear that these operations are
trivial and do not require actual multiplication. In addition,
some multiplications by the factor of W2"/®, which is [(1 —
7)/v/2]*¥, can be done by two real multiplications and two redl
additions. Furthermore, general complex multiplications can be
computed by three real multiplications and three real additions.
Therefore, the total computational complexity of the radix-2 FFT
agorithm isreduced to [%(iﬂogQ N —10) + 8] multiplications and

5 (7log, N — 10) + 8| additions [2].
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D.3 Fixed-Point FFT Algorithm

In DMT and OFDM modulation and demodulation, the FFT and
IFFT algorithms are usualy implemented by using a fixed-point
operation. For the fixed-point operation, the FFT twiddle coefficients
and input and output signals need to be quantized. The quantization
formats of digital signals usually used a sign and magnitude, a
one’'s complement, or a two's complement. However, the two’'s
complement is most commonly used.

D.3.1 Quantization

Assume that we use a finite number of bits B for the quantization
operation. Then, the quantization operation on a real value can be
represented as follows:

tln] = Qp{z[n]}
= Xnig, (D.16)

where X, is an arbitrary scale factor, and 23 = b;---bg. The
smallest difference between finite numbersis given by

2X,,

A= (D.17)

Considering the effect of quantization, we can define a quantization
error given by

e[n] = @p{z[n]} — z[n]. (D.18)
Note that in the case of the two’s-complement rounding, we have
A A
— < = .
5 <eln| < 5 (D.19)

and in the case of the two’s-complement truncation, we obtain
—A < eln] <0. (D.20)

However, when the real number is greater than X,,, an overflow
happens.
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In order to analyze the error e[n] in (D.18), let X,, = 1 be a
full scale. We also assume that the quantization error e[n| has the
following properties: (1) the quantization error e[n] is uniformly
distributed over a range from —j; to 5, and the variance of the

quantization error e[n] is given by o2 = & = 227 and (2)
the quantization error e[n] is uncorrelated with each other and aso
uncorrelated with input signal and output signal. This assumption

will be used for analyzing the fixed-point FFT implementation.

D.3.2 Fixed-Point Overflow, Scaling, and SNR
The quantization form for the DFT (or FFT) for the direct
computation can be defined as

X[k] = Nf Qp{z[n]Wi*}, k=0,1,--- N — 1. (D.21)
n=0

Note that the term of x[n]WWk" in (D.21) is a complex product.
With the fixed-point operation, the complex product is expressed as
follows [3]:

Qp{zln]WE) = Refaln]} cos (27;5”> exn, k]
Him{z{n]} sin (ﬁf”) + ealn, K

+7 [Im{x[n]} coS <27;\l;n> + es[n, k]}

_j [Re{x[n]} sin (27;\];”> +ealn, k]] )
(D.22)

wheree;[n, k|, i = 1,2, 3, 4, isthe quantization errors. Thus, each of

the real multiplications contributes a round-off complex error known

as e[n, k], and the total of complex errors, F'[k], to the output at the
kth value is obtained by

N—

Flk]= > e[n, k] (D.23)

n=0

—_
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The squared magnitude of the complex error e[n, k] is given by
le[n, K]|* = (e1[n, k] + ea[n, k])* + (e3[n, k] + eq[n, k])®. (D.24)

The corresponding variance of e[n, k| is obtained by
—2B —2B+1
Bl P =1 (2] =2

= . D.25
3 3 (D.25)
Therefore, the variance of the total of complex errors F[k] is
obtained by

N-1 9—2B+1 7
B{FIMPY = Y B{leln M} = =——.  (D.26)
n=0
Equation (D.26) indicates that the output noise is proportional to the
FFT length V.

In order to avoid overflow, we require
| X[k]| <1, k=0,1,---,N — 1. (D.27)
This requires that the constraint condition as a bound on the input
sequenceis given by

|z[n]| < n=0,1,---,N—1. (D.28)

N’
Equation (D.28) is sufficient to guarantee no overflow for all stages
of the DFT or FFT algorithm. This method is referred to as input
scaling.

Further assume that the real and imaginary parts of the input
sequence x[n| are uncorrel ated, each with auniform density between
—+ and . Thevariance of the complex input signal isthen obtained
by
sy (1/N+1/N)? 1
B{laln]} = 5 = o (D.29)
Using (D.5), the corresponding output variance of the DFT (or FFT)
is obtained by

E(XH) = X Bl YWET = 5 (030
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Combining (D.30) and (D.26) yields the SNRp, -1 of the fixed-point
DFT or FFT algorithm as follows:

B{XHP)

SNRopr = 10logig [E{IF[ Ak }]
1/(3N)

= 10logy, [223“]\[/3]

22B 1

Therefore, with quantization by a fixed number of bits B, the
SNRper of the fixed-point DFT or FFT agorithm is inversely
proportional to N2 and decreases as the length of N increases.

D.3.3 Quantization Analysis of the FFT Algorithm

In Section D.3.2, we have discussed the quantization anaysis of
the direct implementation for the DFT or FFT agorithm. The
guantization effects depend on the specific FFT algorithms used for
the OFDM modulation. In this section, we focus on the quantization
analysis for the radix-2 FFT algorithm since it has been the most
commonly used for the OFDM modulation.

To prevent overflow, we can requirethe condition of | X [n]| < +.
However, there is an alternative scaling procedure that incorporates
an attenuation of % at the input to each stage. This is because the
maximum magnitude increases by no more than a factor of 2 from
stage to stage in a radix-2 butterfly. Figure D.3 shows the radix-2
butterfly with scaling multipliers and associating fixed-point round-
off noise. With scaling by % introduced at the input of each of the
butterflies, two noise sources are included with each butterfly. We
assume that the real and imaginary parts of these noise sources are
uncorrelated with each other and also uncorrelated with the other
noise sources. In addition, thereal and imaginary parts of these noise
sources are uniformly distributed between — ZB and ;3. Then we
have the variance of e[m, p|, the same as (D.25),
2723+1

E{le[m,p]|*} = E{le[m, q]|*} = ;

(D.32)
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/Le[m,p]

Xolp] o (r X, [p]

X,lq] 05W >;>< X,[q]
Te[m,q]

Figure D.3 Butterfly with scaling and corresponding fixed-point
roundoff-noise.

In the radix-2 butterfly structure, a noise source originating at the

mth array will propagate to the output, multiplying by a complex
r—m—1
constant of (%) , Where r is the number of stages. For the

genera case, Oppenheim and Schafer [3] indicate that each output
node connects to 2"~ butterflies and to 2"~™ noise sources that
orginate at the mth array. Therefore, at each output node, the mean-
square magnitude of the total noise is obtained by

surity - £ ) ()] (72

m=0

r—1 1 r—m-—2 2723+1
- 565
r—1 1\ " 2—QB+1
= 2 = . D.
sG55 023
In order to solve (D.33), we use a closed-form formula given in
Appendix E

1— O(N—H

N
n=0
Using (D.34), (D.33) can be further simplified as follows:
) B 2—QB+1 1— (1/2)r
s = () =
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2—2B+1 1N\
= 4 1—(= . D.
P50 e
If the length of IV is large, the number of stages r becomes larger

as well. Thus, the term (%)T is negligible. Then we approximately
obtain

2—23+1
E{|F[k]|*} ~ 4 ( 3 ) . (D.36)
Combining (D.30) and (D.36), we obtain SNRyrxr by using the
method of stage-by-stage scaling as follows:

B B{XHP}
NRepr = 1010z, [EHF[ e }]

B 1/(3N)

= 10log,, [2_23+14/3]

= 10log,, <24N ) (dB). (D.37)

With the quantization of a fixed number of bits B, the SNRgzr of
the fixed-point FFT algorithm using the method of stage-by-stageis
inversely proportional to the length of V rather than to the length of
N2. The SNRgrr in (D.37) decreases as the length of V increases.
However, aswe can see, the SNR 1 in (D.37) obtained by using the
method of stage-by-stage scaling is much greater than the SNRy 1
in (D.31) obtained by using the method of input scaling.

Figure D.4 shows the SNR of the fixed-point FFT with methods
of input scaling and stage-by-stage scaling at the fixed FFT length
of N = 256 when the number of quantization bits B gradually
increases. The method of stage-by-stage scaling clearly has a more
superior performance than the method of input scaling. For example,
at the quantization bit B = 15, the method of stage-by-stage scaling
has SNR = 135 dB, while the method of input scaling only has
SNR =95 dB.

Figure D.5 shows the SNR of the fixed-point FFT algorithm
with methods of input scaling and stage-by-stage scaling when the
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250

4~ Input scaling
—-©— Each stage scaling
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The number of bits

Figure D.4 The SNR of the fixed-point FFT with varying
guantization bits B and the fixed length of FFT, N =
256.

FFT length of N increases at the fixed quantization bits B = 15.
The SNR of the fixed-point FFT decreases for both methods of
input scaling and stage-by-stage scaling when the FFT length of
N increases. However, it is also clear that the method of stage-
by-stage scaling is much better than the method of input scaling
for the fixed-point FFT implementation. Therefore, we recommend
using the attenuators of % at each butterfly stage rather than using
a large attenuation for the input scaling in the fixed-point FFT
implementation for OFDM modul ation.

Much research has been done on the FFT algorithms over the
past three decades. For reference, we cite the books by Oppenheim
and Schafer [3], Miao and Clements [2], Chen [4], and Higgins[5].
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[0} —A— Input scaling
-©— Each stage scaling
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40 !

Figure D.5 The SNR of the fixed-point FFT with a varying FFT
length IV and the fixed quantization bits B.
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Appendix E: Discrete Mathematical
Formulas

E.1 Complex Exponential Formulas

The discrete complex exponential formulas are listed as follows:

" = cos(wn) + jsin(wn). (E.1)
1, . ,
cos(wn) = 5(6]”” + e e, (E.2)
1 ) )
sin(wn) = 2—],(63“’" —e e, (E.3)

E.2 Discrete Closed-Form Formulas

The discrete closed-form formulas are listed as follows:

N
1
Z k = §N(N+ 1). (E.49)
k=0
N 1
Yk = 6N(N +1)(2N +1). (E.5)
k=0
N 1 — oVt+!
Yoafh = ——. (E.6)
faur l1—«
No Ny No+1
o' — o
k=N,

495
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N

> kat = q f‘&)Q (1-a")—(1—a)Na™]. (ES)
]; Kok = i _O‘a)3 (1 +a)(1 - a™)] - (E.9)
—(1:"05)2 2Na™ + (1 - a)N?%aN] | (E10)

where |a| < 1and |a| # 0, and Ny > Nj.

N—-1 _ N—1 N 1— N-1
k=0 1- q (1 - Q)
(E.11)
St kd)g = 2 4 Mg <. (E.12)
k=0 1— q (1 - Q)Q’
Yook 1
=1—-——F. E.13
,;(Nrk)! (1+E)! (E13
N 1 2N
—_— = (E.14)
k; EW(N — k) N!
E.3 Approximation Formulas
The approximation formulas are listed as follows:
n\" _o
nl = vamn () e, 0<6 <1, (E.15)
€
n! ~ v2mn <n> , for alargevalue of n. (E.16)
(&

2m(”>n<n!<\/ﬁ(2)n(1+ ! ) (E.17)

e 12n —1
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Lol a< (E18)

l+z ’ ' '
efx=l+r 1. (E.19)
(I+x)"=14+nz, z<landn > 1. (E.20)
In(l42)~z, z<1. (E.22)
sin(z) mz, r<l. (E.22)

72

cos(z) =~ 1 — 5 T < L (E.23)
tan(z) =~ r, r < 1. (E.24)

E.4 Logarithmic Formulas

Assumethat a > 0. The logarithmic formulas are listed as follows:

log,a = 1.
log,1 = 0.
log, z* = alog, .
log, y
1 = :
08, Y log, a
o8y — Y.

log,blog,a = 1.
x
log,— = log,z —log,y.
)
log, zy = log,z + log,y.

In = log,z, e=2.7T18281828459--.
logi,py = Mlny, M =0.434294481903- -

1
Iny = i logypy.

(E.25)
(E.26)
(E.27)

(E.28)

(E.29)
(E.30)

(E.31)

(E.32)
(E.33)

. (E.34)

(E.35)
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Higher-order statistics
(see HOYS), 226
HOS, 226, 228
Hypothesis, 85

I
IC, 6
ICl, 361, 369, 383
Ideal discrete-time phase
detector, 397
Ideal sampled signal, 94
Identifiability condition, 283
IDFT, 360, 476, 479
IDFT in matrix, 477
IF, 13, 100
center frequency, 14
sampling, 13
signal, 14
IF sampling, 100
IFFT, 360, 362
IR, 453
Impulseradio, 2
Impulse response, 76
In-line loop segment, 166
In-phase component, 427
Independent, 31
Independent and identically
distributed, 41
Infinite impul se response
(seellR), 453
Information theory, 2
Inline loop segment
ABCD matrix, 167
RLGC parameters, 167
Input scaling, 488, 491
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I nstantaneous sampling, 93

Integrated circuits (see IC), 6

Intercarrier interference
(seelCl), 361

Interference suppression, 321

Intermediate frequency
(seelF), 13

Interpolation filter, 415

Intersymbol interference
(seelSl), 141

Intraband interference, 375

Intuitive probability, 27

Inverse z-transform, 437, 448

Inverse autocorrelation matrix,
221

Inverse channe filter, 263

Inverse discrete Fourier
transform (see IDFT), 360

Inverse fast Fourier transform
(see IFFT), 360

Inverse filtering approach, 228

Inverse orthonormal transform,
349

1S1, 141, 142, 161, 174,
176-180, 183-185, 257,
258, 260, 263, 265, 272,
300, 315, 320, 341, 383,
418, 432

ISl cancellation, 187

ISl distortion, 162

ISl effects, 184

ISl free, 375

Iterative water filling
algorithm, 353, 356

J

Jacobian transformation, 43, 65

Johnson noise, 116

Johnson-Nyquist noise, 2

Joint cumulative distribution
function, 34

Jordan decomposition theorem,
466

K

Kaman filter, 25

Kaman filtering, 275
Karhunen-L oéve transform, 84

L
Lag, 73
Lagrange multiplier, 356
L attice equalizer structure, 258
Law of large numbers, 69
Least mean squares
(seeLMS), 210
L east squares estimator,
198, 199, 201
Likelihood function, 195
Likelihood ratio test, 85
Limited-band digitization, 13
Line of sight (see LOS), 143
Linear, 258
Linear channel equalizer, 274
Linear equalizations, 258
Linear equalizer,
228, 229, 260, 268
Linear predictor, 309
Linear shift-invariant systems, 26
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Linear time-invariant, 281

Linearly independent, 37

Link budget, 17

Link margin, 17

LMS, 210, 252, 259, 275
adaptation, 216

algorithm, 210, 211, 213,

214, 223, 225, 293, 301
algorithms, 210
filter, 219
misadjustment, 218
steepest descent, 211
trade-off, 219
LNA, 8
Log-normal distribution, 158
Logarithmic formulas, 497
Loop filter, 387
LOS, 143, 185, 257
Low-noise amplifier
(seeLNA), 8
LTI difference equation, 447
LTI system, 76-79, 88, 447
discrete-time, 447, 448

M

M-PSK, 425, 427

MAI, 235

Matched filter, 184, 193

Matched filter receiver, 86

Matched filtering, 142

Matched filters, 387

Matrix, 459
determinant, 462
diagonal, 459
differentiation, 462
equalizer, 321
identity, 460

inversion, 464
inversion lemma, 464
lower triangular, 460
nonsingular, 464
orthogonal, 461
singular, 463
square, 461
Toeplitz, 460
trace, 461
upper triangular, 460
Matrix inversion lemma, 221
Matrix theory, 457, 473
Maximal combining, 326
M aximization theorem, 138, 472
Maximum a posteriori rule, 85
Maximum allowable path loss, 21
Maximum analysis, 471
Maximum likelihood detector, 88
Maximum likelihood estimator,
194, 197
Maximum likelihood sequence
estimation equalizer
(see MLSEE), 258
Maximum likelihood symbol
detection (see ML SD), 258
Maximum path loss, 21
Maximum-phase system, 453
MCM, 345, 347
Mean, 35
Mean path loss, 158
Mean square error (see MSE), 81
Method of least squares, 198
Method of maximum likelihood,
194, 196
MIMO, 22, 110, 117, 226, 253
channel, 118, 120, 233,
235, 236, 238, 246
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channel capacity, 120
channel filtering matrix,
248, 251
channel matrix, 237
channel model, 121
channels, 234
system, 120
systems, 117, 125
Minimization theorem, 138
Minimum analysis, 471
Minimum mean sguare error
(see MMSE), 81, 260
Minimum phase, 193
Minimum receiver sensitivity,
20,21
Minimum sampling rate, 102
Minimum variance beamformer,
137
Minimum-phase system, 453
Misadjustment, 275
MISO, 110
channel, 122
channel model, 121
equalizer, 236
system, 122
Mixed-phase system, 453
MLSD, 258
MLSEE, 258
MMSE, 81, 82, 88, 133, 202,
204, 209-211, 214, 217,
218, 260, 269, 270, 291
DFE, 301, 302
equalized Rake receiver,
338
linear equalizer,
274, 292, 303, 335
optimal sense, 287

performance, 290
Rake receiver, 335
MM SE estimator, 202, 204207
MM SE timing recovery, 407
Moment generation function,
37,38
binomial, 46
poisson, 49
uniform, 46
MSE, 81, 82, 84, 88, 210,
211, 259, 273, 373
criterion, 266, 269
Multicarrier modulation
(see MCM), 345
Multichannel, 4
Multichannel filtering matrix, 231
Multichannel modulation, 345
Multilevel quantizer, 261
Multimode, 4
Multipath, 141
Multipath diversity receiver, 335
Multipath propagation, 149
diffraction, 149, 150
reflection, 149
scattering, 149, 150
Multipath-intensity profile, 150
Multiphase phase-shift keying
(see M-PSK), 425
Multiple access interference
(see MALI), 235
Multiple-input multiple-output
(see MIMO), 22
Multiple-input single-output
(see MI1S0), 110
Multirate timing recovery,
410, 435
Multivariate Gaussian density
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function, 58 Normalized EVM
Mutually exclusive, 28 (see NEVM), 178

Normalized MSE
N (see NMSE), 242
NV-dimensional vector, 457 Eiﬁeﬁiﬁlly controlled oscillator
NCO, 389, 400, 413
(see NCO), 389

Near-end crosstalk
(see NEXT), 168
NEE, 258
Neura networks based equalizer
(see NNE), 258
NEVM, 178
NEXT, 168, 171, 186, 346,
383, 418
NLOS, 143, 185, 257
NMSE, 242
cost function, 289
Noisefigure, 18, 19, 21
Noise floor, 20
Noise margin, 174
Noise predictor, 307
Noise PSD, 354
Noise-shaping filter, 10
Noise-to-signa ratio
(see NSR), 355
Nonblind channel estimation, 189
Noncoherent demodulation, 387
Nonline of sight (see NLOS), 143
Nonlinear, 258
Nonlinear equalization, 258
Nonminimum-phase, 242
Nonminimum-phase system, 454
Nonuniform filter banks, 382
Nonuniformly spaced samples,
382
Normal, 51
Normal equation, 135

Nyquist criteria, 104
Nyquist criterion, 179, 180
Nyquist filter, 180
Nyquist frequency, 181
Nyquist sampling frequency,
95,99
Nyquist sampling rate, 280
Nyquist zones, 96, 100
third Nyquist zone, 101
Nyqui st-Shannon interpolation
formula, 98
Nyquist-Shannon sampling
theorem, 2, 91, 94, 113

O
OFDM, 22, 189, 345, 359, 369,
383, 418
OFDM demodulation,
363, 372, 379, 382
OFDM modulation, 380
OFDM system performance, 364
Open-circuit transfer admittance,
164
Open-circuit transfer function, 164
Optimal matched filter,
183, 184, 187
Optimal property, 199, 201
Optimality criterion, 83
Optimization array gain, 136
Optimum detector, 85
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Optimum receiver, 86

Optimum sampling, 174

Orthogonal, 37, 459

Orthogonal frequency division
multiplexing (see OFDM), 22

Orthogonal matrix, 461, 472

Orthonormal, 84, 375, 459

Orthonormal basis functions, 84

Orthonormal transform, 349

Overflow, 486, 488

Overlap, 99

P
PAM, 94, 172, 176, 282, 298,
405, 425, 426, 428
PAR, 365
Partial fraction expansion, 450
Partial-band digitization, 13
Path loss, 18, 20, 144
Peak, 174
Peak-to-average ratio
(see PAR), 365
Perfect equalization, 236
Perfect reconstruction, 379
Perfect source recovery, 289
Phase detector, 387, 397
modulo-2, 397
Phase error, 390
Phase jitter, 425, 432, 433
Phase locked loop
(seePLL), 388
Phase offset, 393
Phase reference, 390
Phase rotation, 420
Phase shift, 419
Phase-shift keying
(see PSK), 176

PLL, 388
discrete-time, 389, 412, 430
first-order, 392
second-order, 394
transient behavior, 423
Polyphase decomposition,
377,378
Polyphase filter bank, 16
Polyphase filter bank timing
recovery, 414
Polyphasefilters, 16
Polyphase-based
filter bank DFE, 312
Posteriori, 30
Power spectral density
(see PSD), 74
Power spectrum, 74, 75,
78-80, 88, 105, 303
Precoding, 313
Predictive DFE, 307, 310
Priori, 30
Probability density function, 33
Probability distribution function,
32
Probability of error, 87
Probability theory, 26, 27
Prototype filter, 377
PSD, 74, 87, 349, 350
Pseudorandom, 327
PSK, 176, 177, 282, 405
Pulse amplitude modulation
(see PAM), 94
Pulse-shaping filter, 172

Q
Q-function, 56, 87
QAM, 176, 177, 282, 298, 368,
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425, 427 Receiver, 17
QMF, 379, 383 Receiver sengitivity, 19

QPSK, 176, 177
Quadratic form, 470
Quadrature amplitude
modulation (see QAM), 176
Quadrature mirror filter
(see QMF), 379
Quadrature phase-shift keying
(see QPSK), 176
Quantization error, 487
Quantization noise, 10
Quantization noise power, 12
Quantization operation, 486

R

Radio frequency (see RF), 6

Rai sed-cosine frequency
response, 181

Rake correlators, 326

Rake receiver, 260, 325
MMSE, 333

Random process, 25

Random signal, 25

Random variable, 26, 31

Random vector, 32

Rational powers, 467

Rayleigh distributed, 64, 329

Rayleigh faded component, 160

Rayleigh fading, 159, 185, 330

Rayleigh fading distribution,
159

Rayleigh quotient, 471

Rayleigh-Ritz ratio, 136

Received power, 150
large-scale, 150
small-scale, 150

Rectangular filter, 180
Recursive least squares
(seeRLS), 210
Region of convergence
(see ROC), 438, 439, 442
Resampling operation, 14
RF, 6,91, 171
components, 12
front end, 8
image-reject bandpass filter,
13
regulations, 13
signal propagation, 9
system, 19
system design, 6
transceiver, 7
Ricean factor, 161
Ricean fading, 160, 185
Ricean fading distribution, 161
Ricean distributed, 66
RLS, 210, 252, 259, 275
agorithm, 219, 223
convergence analysis, 223
convergent in the mean value,
224
exponential weighting
factor, 219
gain vector, 221
misadjustment, 224
normal equations, 220
priori estimation error, 222
Riccati, 221
RMS, 366
ROC, 438, 439, 441, 448
Rolloff factor, 181
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Root mean square
(see RMYS), 360, 366
Rotation error, 423

S

Sample mean, 74

Sample rate conversion, 8

Sample space, 27

Sample variance, 74

Sampler, 191

Sampling, 94

Sampling expansion, 106

Sampling frequency, 92

Sampling instant shifts, 419

Sampling interval, 92

Sampling period, 92

Sampling process, 91

Sampling rate, 15, 92, 99,
102, 103, 476

Sampling theorem, 91, 95,
105, 106

SDR, 2, 22

Short-circuit current ratio, 164

Short-circuit transfer
impendance, 164

Signal-to-interference-and-noise
ratio, 136

Signal-to-noise ratio
(see SNR), 12, 142

Signal-to-quantization noise
ratio (see SONR), 365

Signals, 92
analog signals, 92
digital signals, 92
discrete-time sampled
signals, 92
discrete-time signals, 92

SIMO, 110, 226, 253
channel, 229, 232, 235,
238, 242, 246
channel model, 121
Simulation loop model, 169, 170
Sinc-function, 98
Single-input multiple-output
(see SIMO), 110
Single-input single-output
(see SISO), 120
Singular value decomposition
(see SVD), 120, 240
Singular value decomposition
theorem, 468
SISO, 120, 226, 239, 253, 316
channel, 226, 229, 238
Slice, 261
Slow fading, 162
Slow fading channel, 162
Smart antenna, 4, 125
Smart antenna system, 126, 139
Smart antennas, 234, 325
SNR, 12, 17, 19, 143, 162,
183-185, 227, 235, 270,
272, 351, 366, 423
DFE, 305
Software defined radio
(see SDR), 2, 22
Space-only equalizer, 318, 341
Space-time equalizer, 320, 340
Space-time MM SE equalizer,
320, 323, 341
Space-time modulation, 22
Space-time processing, 315
Space-time signal processing,
117,125, 234
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Spatial diversity, 117

Spectral decomposition theorem,

466
Spectral efficiency, 22
SONR, 365
Square root raised cosine
(see SRRC), 182
Square-law device, 428
SRRC, 182
SRRC filter, 182
SSS, 73, 88
Stability, 276
Stage-by-stage scaling, 491
Standard deviation, 36, 51
Standard Gaussian, 53
Standard normal distribution,
111
Stationary, 73
Stationary in the strict sense
(see SS9), 73
Statistically independent, 37
Steady-state phase error,
392, 394
Step size, 214, 219
Stochastic jitter, 296
Stochastic process, 73
Stochastic sampling theorem,
106
Stochastic signal, 25
Subband signals, 10
Subspace decomposition, 246
Sufficiently large, 27
Super-Nyquist sampling, 100
SVD, 120, 240
Symbol rate, 263
Symbol-based equalizer, 279
System identification, 208

T

TDM, 373

TED, 410, 413

TEQ, 369, 371, 384

The z-plane, 439

The z-transform, 437
common pairs, 445
conjugation, 444
convolution, 443
differentiation, 445
final value, 445
frequency shifting, 443
initial value, 445
inverse, 449
linearity, 442
multiplication, 444
properties, 442
timereversal, 443
time shifting, 442

Thermal noise, 115, 116

Threshold detector, 261

Time delay, 151, 156

Time dispersion, 161

Timediversity, 117

Time division multiplexed
(see TDM), 373

Time domain interpolation
formula, 98

Time-domain equalizer
(see TEQ), 369

Time-limited signal, 98

Time-only equalizer, 316, 340

Time-selective fading, 162

Time-varying filter, 272

Timing error, 174

Timing error detector
(see TED), 410
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Timing jitter, 176, 407, 424

Timing offset, 176

Timing recovery, 402, 418, 435

Tomlinson precoder, 313

Tomlinson-Harashima precoder,
313

Total probability theorem, 29

Training method, 277

Transformation function, 43

Transmitter, 17

Transpose of the vector, 458

Transversa filter, 210, 260

Two-port network, 164, 186

U
Ultrawideband (see UWB), 2
Unbiased estimate, 199
Undersampling, 100, 101, 107
Uniform DFT receiver

filter bank, 377
Uniform random variable, 58
Unit norm vector, 458
UWSB, 2, 3, 6, 10, 22, 326

Vv
Variance, 36
VCO, 388, 390
discrete-time, 400, 404, 412
VDSL, 351
Voltage-controlled oscillator
(seeVCO), 388

w

Water-filling algorithm, 352
Water-filling optimization, 356
WCDMA, 3, 334, 341

Weak law of large numbers, 69

White Gaussian noise, 193
Wide-sense stationary
(see WSS), 73, 202
Wideband code division multiple
access (see WCDMA), 3
Wiener filters, 133
Wiener-Hopf equation, 204
normal equation, 204
Wired communication, 142
Wireless channels, 143
Wireless communication, 141
Wireless communications, 276
Wireless local area network
(see WLAN), 2
Wireline communications, 276
WLAN, 2, 3,6
WSS, 73, 74, 76, 88

z

Zero crossing, 174

Zero 181, 180, 181

Zero-forcing condition, 265, 286
Zero-forcing equalizer, 264—266
Zero-forcing solution, 179
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