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Preface

Modern digital communications correspond to a major change in the
design paradigm shift from fixed, hardware-intensive to multiband,
multimode, and software-intensive for digital communication radios
that a large portion of the signal processing functionality is imple-
mented through programmable digital signal processing (DSP) de-
vices. This provides the ability of the digital communication radios
to change their operating bandwidths and modes to accommodate
new features and capabilities. The digital communication radios not
only reduce analog components of radio frequency (RF) but also em-
phasize DSP to improve overall receiver flexibility and performance
for the RF transceiver, while traditional radios still focus on analog
component design. This book attempts to present some important
and new developments of signal processing technologies and ap-
proaches to the digital communications field that are likely to evolve
in the coming decade. Signal processing advances will be the key to
the future of the digital communication radios.

This book is a complete resource on signal processing for
digital communications, including in-depth coverage of theories,
algorithms, system design, analysis, and applications. Based on
the author’s extensive research and industry experience, this
authoritative book presents an up-to-date and comprehensive
treatment of all aspects, including digital, multirate, adaptive,
and statistical signal processing technologies for the digital
communication radios. This book provides excellent guidance in
overcoming critical challenges in the field involving wireless and

xv
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wireline channel characterization and distortion, smart antennas,
link budget, channel capacities, digital RF transceivers, channel
estimation and blind identification, multichannel and multicarrier
modulation, discrete multitone (DMT) and orthogonal frequency
division multiplexing (OFDM), discrete-time timing and carrier
recovery synchronization, and adaptive equalizers at communication
receivers.

The book offers a coherent treatment of the fundamentals of
cutting-edge technologies and presents efficient algorithms and their
implementation methods with detailed examples. Packed with over
1,370 equations and more than 100 illustrations, this book offers a
one-stop reference to cover a wide range of key topics, from channel
capacity, link budget, digital RF systems, smart antenna systems,
probability, random variables and stochastic signal processing,
sampling theory, pulse shaping and matched filtering, to channel
models, estimation and blind identification, multicarrier, fast Fourier
transform (FFT)– and filter bank–based OFDM, discrete-time phase
locked loop, fractionally spaced, decision feedback, space-time, and
diversity equalizers.

Chapter 1 begins with an introduction of a history of
communications using electricity; this chapter also provides an
overview of digital communication systems that are intended to
present a broad topic of signal processing relative to digital
communications. In addition, Chapter 1 addresses basic concepts of
digital RF system and link budget.

Chapter 2 reviews fundamental theories of probability, random
variable, and stochastic signal processing. This chapter presents
probability distribution and density and upper bounds on the
probability, and it focuses on stochastic signal processing for linear
systems, detection theories, and optimum receivers.

Chapter 3 introduces sampling theory, including instantaneous
sampling, Nyquist sampling theorem based on time-domain and
frequency-domain interpolation formulas, and aliasing. Undersam-
pling, which is often used for intermediate frequency sampling, is
described to sample a bandpass signal at a receiver. In addition, this
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chapter presents stochastic sampling theorem with applications to
bandlimited stochastic processes.

Chapter 4 presents Gaussian and bandlimited channel capacities.
This chapter also explains a concept of the channel capacities to
single-input multiple-output (SIMO), multiple-input single-output
(MISO), and multiple-input multiple-output (MIMO) systems.

Chapter 5 discusses smart antenna systems and focuses
on different beamforming structures. In addition, this chapter
introduces beamforming algorithms for the smart antenna systems
using optimization constraint methods.

The focus of Chapter 6 is channel characterizations and
distortions that concentrate on wireless and wireline channels.
Pulse shaping with methods of raised-cosine pulse and Gaussian
shaping pulse is also addressed. Furthermore, this chapter introduces
matched filtering in terms of maximum signal-to-noise ratio.

Chapter 7 considers discrete-time channel models and estima-
tions for SISO, SIMO, and MIMO channels. This chapter discusses
four methods of maximum likelihood, least square, generalized least
square, and minimum mean-square error (MMSE) estimators for the
channels. Moreover, this chapter presents adaptive channel estima-
tions and algorithms and their convergence analysis. Finally, this
chapter also introduces the use of blind identifications to estimate
the channels in the absence of a training sequence.

Chapter 8 describes a set of equalizers at radio receivers and
presents their operation theories, including linear and adaptive linear
equalizers, fractional spaced and decision feedback equalizers, and
space-time MMSE equalizers. In addition, this chapter introduces
diversity equalizers based on adaptive Rake receivers.

Chapter 9 turns our attention to multicarrier modulation,
DMT, and OFDM for radio receivers. This chapter begins by
introducing fundamentals of DMT modulation and then presents
FFT–based and filter bank–based OFDM. In addition, this chapter
addresses efficient implementation methods of using polyphase-
based and maximally decimated FFT filter banks for designing radio
transceivers.
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Chapter 10 covers discrete-time synchronizations, which de-
scribe discrete-time phase locked loop, timing recovery, and carrier
recovery. Various methods of timing and carrier recoveries are intro-
duced. These methods include early-late gate, bandedge, decision-
directed, multirate, polyphase filter band, and multicarrier modula-
tion for the discrete-time synchronizations.

I would like to thank many anonymous reviewers for their
comments on enhancing the technical presentation of this book.
I would especially like to thank the technical reviewers and the
copyeditor at Artech House for thoroughly reading all the draft
chapters and the final manuscript and providing many detailed and
valuable suggestions and comments for the book. I truly appreciate
their contributions.

I would like to thank the Artech House staff, including Kevin
Danahy, Barbara Lovenvirth, Mark Walsh, and Audrey Anderson,
for providing guidance on the writing of the entire manuscript, the
publication, and the promotion of this book.

Of course, I would like to thank my family. It’s hard to believe
that my daughters, Kathleen and Julia, are now in middle school
and elementary school, respectively. They are both studying hard at
school to enhance their knowledge. They may not be interested in the
area of digital signal processing and communications, which I love,
but they could learn the fundamentals of this field and use them to
explore their own fields of interest when they grow up.

My wife, Lisa, continues to be our cornerstone. Without her love,
everything would fall apart. Perhaps there would be no way this book
could have been finished without her encouragement.

All things are difficult before they are easy. Without seeking,
nothing will be found. Drops of water wear out the stone. Everything
is possible to a willing heart.



1
Introduction

1.1 A History of Communications Using Electricity

A history of communications with the first major technical
undertaking using electricity is considered starting with the
commercial telegraph service by William Cooke and Charles
Wheatstone in England in 1839 and by Samuel Morse in the United
States in 1844 [1]. The most important element of the telegraph
was its instantaneous operation across longer distances. Telegraph
was the first technology to the transmission of information data
over communication channels. Thus, it led to many fundamental
advances in the field of signal processing and communications.

The next major development in communications is the
telephone, which was a direct outgrowth of increasing the message-
handling capacity of telegraph lines. Joseph Stearns and Thomas
Edison in 1870 demonstrated reliable communication systems for
the simultaneous transmission of two and four telegraphic signals
on a single wire. Meanwhile, in 1875, Alexander Graham Bell and
Elisha Gray in the United States both invented practical telephones
that could be used to transmit human speech over a single line,
thereby leading to telephone for local wireline services. Another
advance in communications is radio. Electromagnetic propagation

1
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had been discovered in a mathematical formula by James Clerk
Maxwell in 1860. In 1888, Heinrich Hertz demonstrated the
generation and detection of electromagnetic radiation in numerous
experiments. Several years later, Marconi introduced wireless signal
instruments to transmit signals over distances of several hundred
miles in 1896. This led to widespread advances in wireless
communications.

Harry Nyquist was an important contributor in the history of
communications and did important work on thermal noise known
as the Johnson-Nyquist noise, the stability of feedback amplifiers,
and information theory. In 1927, Nyquist discovered that the number
of independent pulses, which could be put through a telegraph
channel per unit time, is limited to twice the bandwidth of the
communication channel [2]. His early theoretical work laid the
foundations for later advances by Claude Shannon. In 1948, the
publications of Claude Shannon [3–5] established the mathematical
foundations to reliably transmit the information content of a source
over a communication channel with basic limits on the maximum
rate. This gave birth to a new field called information theory. These
results are essentially a combination of what is now known as the
Nyquist-Shannon sampling theorem.

Information theory provides answers to two fundamental
questions in communication theory: (1) What is the ultimate data
compression? and (2) What is the ultimate transmission rate of
communication in terms of the channel capacity? Information
theory aids a basic theory to modem sequence developments in
the communications area, including undersea cables for telephony,
satellite communications, digital communications, spread spectrum
communications, broadcasting, cellular mobile and wireless local
area network (WLAN) communications, ultra wideband (UWB)
communications (or impulse radio), Internet radio, and software-
defined radio (SDR).

There are many textbooks and references that treat various
topics on information and communication theories and related areas.
For a broad treatment of these subjects, the interested reader may
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refer to the books by Cover and Thomas [6], Reza [7], Pierce [8],
Proakis [9], Haykin [10], Viterbi [11], Rappaport [12], Stüber [13],
and Reed [14].

1.2 Digital Communication Systems

In the emergence of new standards and protocols in wireless and
wireline communications, one is often faced with the challenge
of making applications wireless-friendly. The spread of wireless
networks, such as WLAN 802.11 (a, b, and g) and UWB
communications, and wireless cellular standards, such as the second
generation IS-95 code division multiple access (CDMA), global
system mobile (GSM), the third generation wideband CDMA
(WCDMA), other future radios, and the new requirements for
communication, seamless connectivity is bringing a faster, real-time
nature to applications.

The initial deployment of multimode WLAN solutions, includ-
ing 802.11 (a, b, and g), quickly takes further the discussion of wire-
less networking standards requiring seamless connectivity. However,
these standards can easily coexist in multimode solutions if they oc-
cupy different areas of the spectrum. The multimode WLAN so-
lutions deliver the best user experience and performance by pro-
viding access across disparate networks through dynamic selec-
tion of WLAN standards, depending on system capabilities, channel
loads, and type of information. This enables high-speed and high-
bandwidth multimedia applications.

Multimode cellular phones, which are able to switch among
different wireless cellular standards, are growing much faster than
single-mode phones. Technology innovation is accelerating to bring
the ability of the multimode cellular phones to interface with
other wireless network services. This creates seamless wireless
connectivity between the wireless cellular and wireless networks
standards, thereby rapidly meeting demand for wireless Internet
connectivity.
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The expectation of pervasive communication and information
access without regard for the means is the fundamental benefit of
multimode and multichannel wireless networking and wireless cel-
lular devices. The challenge of creating sophisticated multimode and
multichannel communication radios to enable the seamless wire-
less connectivity is compounded by the desire for next generation
communication radios. The next generation communication radios
should keep their hardware and software design from becoming ob-
solete when new standards and new technologies become available.
Therefore, we need next generation communication radios to have
flexible architecture with reprogrammable or reconfigurable capa-
bility to incorporate advanced signal processing techniques and so-
phisticated algorithms to enhance performance. Hence, we refer to
the next generation communication radios as flexible multimode and
multichannel-based digital communications systems or software-
defined multimode and multichannel-based digital communication
systems.

The basic elements of a software-defined multimode and
multichannel-based digital communication system are illustrated by
the general block diagram, as shown in Figure 1.1. This digital
communication system consists of five major blocks, including an
antenna, a programmable radio frequency (RF) section, wideband,
high-speed analog-to-digital (A/D) and digital-to-analog (D/A)
converters, digital down- and up-converters along with a multimode
and multichannel, advanced signal processing and algorithms, and
a programmable controller. The antenna, which may be an antenna
array or a smart antenna, connects to the programmable RF section
followed by a subsystem of the wideband, high-speed A/D and D/A
converters. The subsystem of the wideband, high-speed A/D and
D/A converters also has an interface with the digital down- and
up-converters having multimode and multichannel capability, which
is connected with the advanced signal processing and algorithms.
The programmable controller is used to control all five of the major
blocks.
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Programmable
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Wideband 
and

high-speed
A/D and D/A 
converters

Digital down-
and up-

converters
multimode 

and
multichannel

Advanced 
signal 

processing 
and 

algorithms

Programmable controller

Antenna

Figure 1.1 A general block diagram of the software-defined mul-
timode and multichannel-based digital communication
systems.

The challenge of creating the software-defined multimode and
multichannel-based digital communication system is the broad
scope of knowledge, including multirate, adaptive, and statistic
signal processing and algorithms, multirate A/D and D/A converters,
communication concepts and algorithms, RF systems and circuits,
digital circuits, and software methodologies. In order to compensate
for RF component limitations, understanding the ramifications of
selecting RF parameters and the resulting limitations is important
so that the appropriate subsequent signal processing can be used.
Multirate signal processing offers an efficient way to deal with
different sampling rates and can be used to channelize the frequency
band into distinct communication channels. Furthermore, it is also a
foundation for synchronization at the communication receivers.

There are many excellent books describing techniques in these
areas. For multirate and adaptive signal processing, digital filter
design, and multirate A/D and D/A converters, the interested reader
may refer to Miao and Clements [15]. For multirate systems and
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filter banks, we recommend Vaidyanathan [16]. For the discrete-
time signal processing and adaptive filter theory, we list Oppenheim
and Schafer [17] and Haykin [18], respectively. For the RF
microelectronics, we suggest Razavi [19]. Finally, we refer the
interested reader to Pirsch [20] on the architectures of digital signal
processing.

1.3 Digital RF Systems

Any frequency within the electromagnetic (EM) spectrum associ-
ated with radio wave propagation is called RF, which stands for
radio frequency. When an RF current is supplied to an antenna, it
gives rise to an EM field that propagates through space. This field
is sometimes referred to as an RF field. In other words, the RF can
be referred to the EM spectrum of EM waves that can be gener-
ated by alternating current fed to an antenna. Hence, the RF is a
terminology that refers to alternating current having characteristics
such that the EM field is generated suitable for wireless broadcast-
ing and/or communications if the current is input to an antenna.
These radio frequencies cover a significant portion of the EM radia-
tion spectrum, extending from extremely/super low frequency 3–300
Hz (such as communication with submarines) to 1–30 GHz (such as
mobile phone, WLAN, UWB, and most modern radars) or even over
300 GHz (such as night vision). Many technologies of wireless com-
munications systems are developed based on RF field propagation.

An RF system design is unique, and it draws upon many disci-
plines related to RF knowledge, including wireless standards, signal
propagation with multiple access, microwave and communication
theory, random signal processing, transceiver systems and architec-
tures, and integrated circuits (IC) and their design software tools.

An RF system is traditionally built based on RF electronic com-
ponents, which have many undesired effects for a communication
system. These effects include nonlinearity, harmonic distortion, gain
compression, cross modulation, intermodulation, and random noise.
Detailed treatments of these for the RF electronics can be found in



Introduction 7

Power
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Transmitted
channel
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Antenna

Figure 1.2 A transmitter to avoid leakage to adjacent channels.

Razavi [19]. In this section, we focus on RF theory and system as
well as approaches for digital front-end RF radios.

1.3.1 Digital Transceivers

An RF transceiver contains a receiver and a transmitter. The
receiver is usually more complex than the transmitter. The goal
of the receiver is used to select the desired signal from unwanted
interference and noise so that further processing, including
demodulation, downconversion, and digital signal processing, can
be implemented. In order to reject undesired signals received from
an antenna and to provide conditions for further digital signal
processing at the receiver, we must first filter it to remove the
undesired signals, convert the signal to a center frequency with an
amplitude compatible with an A/D converter, and then implement
the A/D conversion process to generate a digital signal.

A frequency bandlimited channel for each user impacts the
design of the RF transceiver. The transmitter has to consider using
bandlimited modulation, amplification, and a bandpass filter (BPF)
to avoid leakage to adjacent channels as shown in Figure 1.2. On the
other hand, the receiver must have the ability to deal with the desired
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Desired
channel

Interferers

Power
amplifier

Bandpass
filter

Antenna

Figure 1.3 A receiver to accept the desired channel and to reject
interferers.

channel and sufficiently reject strong neighboring interferences.
Figure 1.3 shows a receiver, including an antenna coupled to a BPF
followed by a low-noise amplifier (LNA), and a relationship between
a desired channel and interferers.

One of the fundamental ideas of digital transceivers is to expand
digital signal processing toward the antenna. Of special interest is
that analog signal components at the RF front end, which they have
dominated so far, are replaced by using digital signal processing,
thereby leading to the name of digital transceiver, or digital front
end. Thus, the digital transceiver that is derived from the RF front
end and digital signal processing is a part of a system to realize front-
end functionalities digitally, including downconversion, sample rate
conversion, and channelization.

An architecture of the ultimate digital receiver with a minimum
of analog components at the RF front end is shown in Figure 1.4. In
this system, downconversion and channelization tasks are pushed
into the digital signal processing (DSP) for further processing
while LNA, bandpass antialiasing filter, and an A/D converter
have to process the complete signal bandwidth for which the
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Figure 1.4 An ideal digital receiver with a minimum of analog RF
components.

digital receiver is designed. However, the typical characteristics of
wireless communications signals, including fading, shadowing, and
multipath caused by RF signal propagation and potentially strong
blocking and interfering signals due to the coexistence of several
transmit signals, require a very high dynamic range. In addition,
the digital receiver has to process a large number of channels
simultaneously because the downconversion and channelization
selection are shifted from the analog domain to the digital domain.
Pushing narrowband signals at wideband reception yields a dynamic
range far above what conventional receivers have to deal with.
Furthermore, extending demodulation to signals of different wireless
communications standards, which may appear at the digital receiver
simultaneously, increases the dynamic range even more. Thus, the
A/D converter is a key component, which has to cover signals of
large bandwidth and high dynamic range.

1.3.2 A/D Converter Challenge

Dynamic range of the A/D converter can be increased either by
increasing the number of bits or increasing the oversampling ratio.
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The dynamic range of the A/D converter is increased 6 dB for every
bit added. It is increased 3 dB for every doubling of the oversampling
ratio. This is equivalent to improving the resolution of the A/D
converter by one-half bit [15]. Benefits of oversampling in the A/D
converter are to reduce quantization noise in the frequency band of
interest and to decrease the requirement of sharp cutoffs for the anti-
aliasing analog filter.

Another type of the A/D converters based on noise shaping
is referred to as a sigma-delta A/D converter. The first-order
sigma-delta A/D converter increases dynamic range 9 dB for every
doubling of the oversampling ratio. The 3 dB in this dynamic range
increase is due to the reduction in quantization noise power and a
further 6 dB is due to the noise-shaping filter. This is equivalent
to improving the A/D converter resolution by 1.5 bits. The second-
order sigma-delta A/D converter dynamic range increases 15 dB
for every doubling of the oversampling ratio. In other words,
the resolution of the second-order sigma-delta A/D converter
equivalently increases by 2.5 bits. In general, for every doubling of
the oversampling ratio, theN th-order sigma-delta A/D converter can
improve (6.02b+3.01) dB in dynamic range, where b is the number
of bits [15]. Equivalently, the dynamic range of the sigma-delta A/D
converter can be increased by (b+ 0.5) bits approximately.

Recently, a specific architecture of A/D converter achieved a
very high speed based on a parallel A/D converter bank by using
N low-speed and low-cost A/D subconverters operating at an N -
fold lower sampling rate. This type of A/D converter is referred to
as the filter bank–based A/D converter. The basic idea of such an
A/D converter is to first decompose the analog signal into subband
signals by using a set of analog filter banks. The subband signals
are then sampled by using a set of A/D subconverters at a sampling
rate of Fs

N
, where Fs is the sampling rate, and converted into digital

subband signals, with nonoverlapping frequency bands of bandwidth
2π/N . Such A/D converter architecture has many applications in
very high-speed areas, including UWB [21], wireless and wireline
communications, SDR, radars, and modern defense applications.
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In a multicarrier communication system, the synergy of the
large number of carriers and the possible large difference in their
RF power accounts for steep dynamic range requirements on the
A/D converter. To illustrate the dynamic range requirements of A/D
converters in a multicarrier communication system, we consider an
example with two signals sd and sb in the received wideband range,
where sd is the desired signal with the power of Pd, and sb is the
blocking signal with the power Pb, and Pd � Pb. The blocking
signal sb is also assumed to be a Gaussian distribution with a zero
mean.

To keep the clipping probability less than a maximum of 5%
on the A/D converter with the full-scale range Xmax, it has been
shown [22] that Xmax is approximately equal to Xmax ≈ 4

√
Pb

by using the properties of the Gaussian distribution. Since Pd �
Pb, the effect of the desired signal sd is neglected. For a uniform
quantization, a step size ∆ or a resolution of the quantization of the
A/D converter is given by [15]

∆ =
Xmax

2b
, (1.1)

where b is the number of bits, and the variance of the quantization
error e[n] is therefore

σ2
e =

∆2

12

=
1

12

(
X2

max

22b

)
. (1.2)

If the desired signal sd has the frequency bandwidth Bd, the power
of the quantization noise Pq is then given by

Pq = σ2
e

(
Bd

Fs/2

)

=

(
X2

max

22b

)(
Bd

6Fs

)

≈ 8

3

(
PbBd

Fs22b

)
, (1.3)
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where Fs is the sampling rate. Let SNRmin be the minimum of
signal-to-noise ratio (SNR) required for the desired signal sd,

SNRmin =
Pd
Pq
. (1.4)

We then obtain the quantization noise power in terms of the desired
signal power Pd and SNRmin as follows:

Pq =
Pd

SNRmin

. (1.5)

Substituting (1.5) into (1.3) yields

22bmin = SNRmin

(
8BdPb
3FsPd

)
. (1.6)

Taking log2 of both sides of (1.6), we obtain the minimum number
of bits bmin required for the A/D converter resolution as follows:

bmin =
1

2
log2

[
SNRmin

(
8BdPb
3FsPd

)]
. (1.7)

If we now assume that two signals sd and sb are between
1.0 MHz and 1.8 MHz, and that the receiver needs to withstand
the blocking signal sb at 80 dB above the desired signal sd with
SNRmin = 20 dB, the desired signal bandwidth Bd = 150 kHz,
overall bandwidth 1.8 MHz, and sampling rate Fs = 7.2 MHz.
In this case, using (1.7), the minimum number of bits for the A/D
converter is 14.52 bits.

1.3.3 Digital Downconversion and Channelization

In the previous sections, we introduced the ideal digital receiver with
a requirement of the minimum analog RF components in Figure 1.4.
This architecture of the digital receiver is sometimes referred to
as full-band digitization or direct conversion. It needs to have a
very high-speed A/D converter with high resolution to cover a very
wide frequency bandwidth. Presently, realizing the architecture of
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Figure 1.5 A partial-band architecture of a digital receiver using
the IF sampling process.

the ideal digital receiver is still a difficult problem and will remain
as a challenge in the near future. A more feasible approach is to
perform partial-band digitization, which is to select a limited-band
digitization out of the full-band frequency range by using an analog
conversion and intermediate frequency (IF) filtering [23]. Such an
approach leads to having an architecture of the digital receiver
employing IF sampling.

Figure 1.5 shows the partial-band architecture of a digital
receiver using the IF sampling technique. The BPF is an RF image-
reject bandpass filter. The problem of images is a serious issue in the
type of architecture designs. This is because each wireless standard
imposes constraints upon the signal emissions by its own users based
on the RF regulations. It does not have control over the signal
in adjacent bands. In some cases, the image power can be much
higher than the desired signal power. The most common approach
to suppress the images is through the use of an RF image-reject
bandpass filter, which is placed before the mixer. Usually, we design
the RF image-reject bandpass filter with a relatively small loss in the
desired signal band and a large attenuation in the image band. This
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Figure 1.6 A conventional block diagram of a digital downconver-
sion and channelization for the digital receiver.

redundant approach leads to a relatively narrow signal bandwidth
for the A/D converter to process. The A/D converter is commonly
operated at an oversampling frequency rate ofMFs, where Fs is the
sampling rate andM is an integer, due to the higher center frequency
of the IF signal. This means that the A/D converter must operate at
a higher sampling rate than in the baseband.

A conventional block diagram of a digital downconversion
and channelization is shown in Figure 1.6. Here, the digital input
signal x[n] with the sampling rate of MFs is at the IF rather
than at baseband. The digital downconversion is performed by
using digital multipliers cos(2π f0

fs
n + φ) and sin(2π f0

fs
n + φ),

where f0 is the IF center frequency, φ is the phase, and fs is the
oversampling rate equal to MFs, to convert the IF signal into the
baseband signal. The digital channelization uses digital lowpass
filters followed by downsampling by M (or resampling operation)
to generate I and Q signals at the sampling rate of Fs because
of the higher sampling rate at the input. It is also necessary for
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channel filtering to extract frequency divided channels. In this
case, the digital lowpass filters have to attenuate adjacent channel
interferers, meet the blocking characteristics, and reject aliasing
after downsampling. Thus, the entire process is a digital translation
process in which the digital lowpass filters are designed to have
linear phase characteristics. Furthermore, the operation of the digital
lowpass filters and downsampling can be implemented in a very
efficient way by using polyphase filter structures [15, 24] or a
k-stage cascaded integrator comb (CIC) filter capable of larger
integer resampling followed by an n-stage half-band filter to finish
the compensation of spectral and gain control [25].

A special case of the digital downconversion and channelization
is if the center frequency of the digitized channel of interest is equal
to a quarter of the sampling rate [23], that is, fs = 4f0. We also
assume that the phase φ is equal to zero or can be controlled to zero.
In this case, the digital multipliers can be rewritten as follows:

cos

(
2π
f0
fs
n+ φ

)
= cos

(
πn

2

)
= {1, 0,−1, 0, · · ·} (1.8)

and

sin

(
2π
f0
fs
n+ φ

)
= sin

(
πn

2

)
= {0,−1, 0, 1, · · ·}. (1.9)

Equations (1.8) and (1.9) indicate that the half of the digital
samples in the digital cosine multiplier product are set to zero and
the complementary set of the digital samples in the digital sine
multiplier product are also set to zero, respectively. Further note
that these zero values cannot contribute to the outputs of the digital
lowpass filters operation. Thus, we disregard these zero values since
we know the location of these zeros and account for their effect
in shifting the nonzero digital samples through the digital lowpass
filters.

Let the digital lowpass filters have a finite impulse response
(FIR) lowpass filter having the characteristics given by its system
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function

H(z) =
N−1∑
n=0

h[n]z−n, (1.10)

where h[n] is the filter impulse response. Because of the
downsampling by M = 4, it is possible to decompose the filter
H(z) into the four-channel filter bank with polyphase form as
follows [15]:

H(z) =
3∑

k=0

z−kDk(z
4)

= D0(z
4) + z−1D1(z

4) + z−2D2(z
4) + z−3D3(z

4)

(1.11)

where the polyphase filters are

D0(z) =
q−1∑
n=0

h[4n]z−n, (1.12)

D1(z) =
q−1∑
n=0

h[4n+ 1]z−n, (1.13)

D2(z) =
q−1∑
n=0

h[4n+ 2]z−n, (1.14)

and

D3(z) =
q−1∑
n=0

h[4n+ 3]z−n, (1.15)

where q is the largest integer of 	N
4

. Thus, using digital multipliers

in (1.8) and (1.9), and the polyphase filters in (1.12), (1.13), (1.14),
and (1.15) for combination of the digital lowpass filters and
downsampling, we can further integrate and simplify the entire
digital downconversion and channelization shown in Figure 1.6 into
a simple and very efficient polyphase filter bank architecture shown
in Figure 1.7. This polyphase filter bank architecture of the digital
downconversion and channelization can translate the IF frequency
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Figure 1.7 An efficient polyphase filter bank structure of the digital
downconversion and channelization for the digital
receiver.

band signal with quarter-sample rate to the baseband signal with
downsampling of 4 and convert a real-input signal x[n] into a
complex output signal, real signal xI [n], and image signal xQ[n],
simultaneously.

1.4 Link Budget

A link budget commonly refers to a complete gain and loss equation
from a transmitter, through channel mediums (including air, cable,
waveguide, fiber, and so on), to a receiver. The calculation of power
and noise levels between the transmitter and the receiver by taking
account of all gain and loss yields operating values of link margin
above threshold in terms of SNR and achieving a minimum bit error
rate (BER) requirement.
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The effective received carrier signal power is defined by

Pc =
PtGtGr

LLLp

, (1.16)

where Pt is the transmitted carrier power, Gt is the transmitted
antenna gain, Gr is the received antenna gain, LL is the receiver
implementation loss, Lp is the path loss, and Pc is the received
carrier signal power.

The total input noise power at the receiver is given by [7, 13]

N = kTBF, (1.17)

where the value of kT at a temperature of 17o C (or 290K) is equal to
–174 dBm/Hz, B is the noise bandwidth at the receiver, and F is the
noise figure (typically 5 to 6 dB). Thus, the received carrier-to-noise
ratio (CNR) Γ is obtained by

Γ =
Pc
N

=
PtGtGr

kTBFLLLp

. (1.18)

The modulated symbol energy-to-noise ratio (ENR) is defined
by Es

N0
, where Es is the received energy per modulated symbol and

N0 is the white noise power spectral density. There is a relationship
between the received CNR and the modulated symbol ENR given
by [13]

Es

N0

=
(
B

Rs

)
Γ, (1.19)

where Rs is the modulated symbol rate. Substituting (1.18)
into (1.19), we can rewrite the link budget of (1.18) into a new form
as follows:

Es

N0

=
PtGtGr

kTRsFLLLp

. (1.20)

Note that there is only one difference between CNR in (1.18) and
ENR in (1.20). While CNR uses the noise bandwidth B, ENR uses
the modulated symbol rate Rs in the denominator.
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1.4.1 Noise Figure

SNR is one of the most important parameters used in many analog
circuits, signal processing, and communications. Even though the
ultimate goal is to maximize the SNR for the received signal at
the receiver, most of the front ends of receivers are characterized
in terms of their “noise figure” rather than the input noise. Noise
figure is normally measured as

F =
SNRin

SNRout

, (1.21)

where SNRin and SNRout are the signal-to-noise ratios measured at
the input and output of a receiver system.

Equation (1.21) can be expressed in terms of decibels as follows:

F = 10 log10

( SNRin

SNRout

)
(dB). (1.22)

Understanding the physical meaning of (1.21) or (1.22) is important
since the noise figure is a measure of how much the SNR degrades as
the signal passes through the receiver system. If the receiver system
does not have noise, we then have SNRout = SNRin, regardless of
the gain. This is because using the same factor, without additional
noise, attenuates both the input signal and input noise. In this case,
the noise factor for a noiseless receiver system is equal to unity or
0 dB. In practice, the receiver system with the finite noise degrades
the SNR to yield the noise figure F > 1, that is, the noise figure is
always greater than 0 dB.

1.4.2 Receiver Sensitivity

Receiver sensitivity of the communication systems is referred to as
the ability of the receiver to detect a radio signal in the presence of
noise, which can arise from a variety of sources including external
and internal to a receiver system. In other words, the receiver
sensitivity is also referred to as the minimum signal level in which
an RF system can detect with acceptable SNR.
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Given (1.20), the receiver sensitivity can be expressed as

SRS = kTRsFLL

(
Es

N0

)
, (1.23)

where SRS is the receiver sensitivity. Equation (1.23) can be
expressed in decibel units as follows:

SRS = kT +Rs + F + LL +
Es

N0

, (1.24)

where SRS , kT ,Rs, F , LL, and Es

N0
are in the units of dBm, dBm/Hz,

dBHz, dB, dB, and dB, respectively.
Assume that the receiver implementation loss LL in (1.24) is

equal to 0 dB in an ideal case and kT = −174 dBm/Hz at room
temperature. Then (1.24) can be further simplied as

SRS = −174 +Rs + F +
Es

N0

. (1.25)

Note that the sum of the first three terms is the total integrated
noise of the receiver system and is sometimes referred to as the
noise floor. In addition, all the parameters in (1.25) are usually fixed
except for Es

N0
. Therefore, in order to determine the minimum of the

receiver sensitivity, we first calculate the minimum of Es

N0
dB, and

then substitute it into (1.25). In this case, (1.25) is referred to as the
minimum receiver sensitivity.

1.4.3 Maximum Path Loss

A path loss can be determined by using the receiver sensitivity
in (1.23), the link budget in (1.20), and the minimum receiver
sensitivity in (1.25). We can first rewrite (1.20) to obtain the path
loss LP

LP =
PtGtGr

kTRsFLL

(
Es

N0

) . (1.26)

Substituting (1.23) into (1.26), with an ideal case of no implemen-
tation loss LL = 0 dB, we obtain the path loss LP in terms of the
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receiver sensitivity as follows:

LP =
PtGtGr

SRS
. (1.27)

If SRS is the minimum receiver sensitivity given by (1.25),
then (1.27) can be rewritten in terms of decibel units as follows:

Lmax = Pt +Gt +Gr − SRS, (1.28)

where SRS is the minimum receiver sensitivity in dBm, Pt is the
transmitted carrier power in dBm,Gt is the transmitted antenna gain
in dB, Gr is the received antenna gain in dB, and Lmax is the unit of
dB, which is referred to as the maximum path loss or the maximum
allowable path loss.

1.5 Summary

In this chapter, we have first introduced the history of communi-
cations from the first major technical milestone of telegraph ser-
vice in 1893 to Nyquist-Shannon’s communication theory in 1948,
which ignited subsequent developments in the field of communica-
tions. We have then presented a short review of digital communi-
cation systems with emphasis on software-defined multimode and
multichannel-based digital communication systems. Subsequently,
we have addressed designing digital RF systems with emphases on
concepts of developing digital transceivers, A/D converter, digital
downconversion, and channelization. These discussions have led to a
necessary step of understanding the ultimate software-defined radios
or digital RF systems that can accept fully programmable operation
and control information and support a broad range of frequencies,
air interfaces, and applications software in a single communication
device with the operation capabilities of multiband and multimode.
Furthermore, we have focused on link budgets with respect to noise
figure, receiver sensitivity, and maximum path loss, thereby provid-
ing a key guideline for designing digital communication systems.

Of particular importance in the evaluation of communication
system performance is the Nyquist-Shannon sampling theorem that
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laid the mathematical foundations for information theory, which has
developed rapidly over the last five decades along with the practical
applications to digital communications. Digital communication
systems and networks that exist today and those currently under
development certainly reflect these recent advances in information
theory. In fact, this theory is an important mathematical apparatus
not only in the statistical modeling of information sources and
communication channels but also in the design of modern digital
communication systems, including software-defined radios (SDRs),
digital RF systems, multiple-input multiple-output (MIMO)-based
smart antenna systems, orthogonal frequency division multiplexing
(OFDM), UWB, and future wireless and wireline communications.

This chapter has attempted to describe some important
fundamental theories and new technologies and approaches to
the field of wireless communications that are likely to evolve in
the coming decades. The advanced development in the field of
signal processing will be a key to future digital communication
systems with evolving higher data rates and spectral efficiencies.
Currently, there are three candidates for providing increased data
rates and improved spectral efficiency at the physical layer,
including OFDM, UWB transmission, and space-time modulation
and coding [26]. Each of these technologies has the potential
to greatly increase the data rates and spectral efficiency of the
physical layer by using advanced signal processing and will likely
find its way into future digital communication systems. Therefore,
by overviewing signal processing technologies in this chapter, we
have laid technical foundations to introduce later chapters on more
advanced developments of signal processing technologies for digital
communication systems.
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2
Probability, Random Variables, and
Stochastic Signal Processing

2.1 Introduction

In many cases, signals that are generated from complex processes
cannot be described precisely by a mathematical representation.
In such case, the signals are referred to as random or stochastic
signals. A random signal, or random process, is a signal that is
not generally repeatable in a predictable manner. For instance,
quantization noise, which is generated by using an A/D converter, a
fixed-point digital filter, or other fixed-point devices, can be modeled
as a random process. In another example, a discrete-time Kalman
filter is developed by using an assumption of a discrete-time random
process [1]. Thus, in this chapter, we introduce probability, random
variables, and stochastic signal processing, which are basic and
important concepts to understanding signal processing for digital
communications.

A random, discrete-time random, or stochastic signal can be
considered a member of an ensemble of signals that is characterized
by a set of probabilities. A fundamental mathematical representation
or a statistical representation of random or stochastic signals often

25
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uses its description in terms of averages, means, and variances.
Therefore, in this chapter, we provide the stochastic background
that is necessary to understand how a random process can be
represented and how its statistical properties are affected by linear
shift-invariant systems. We also introduce specific distribution and
density functions as well as their means, variances, and moments.
Our treatment serves primarily as review, notation definition, and
fundamental development. There are many references on this
subject, such as Davenport and Root [2], Davenport [3], and
Papoulis [4].

This chapter is organized as follows. This section presents a short
introduction. In Section 2.2, we begin with a review of probability
and random processes, focusing on concepts and definitions,
including intuitive, axiomatic, and conditional probabilities and
independence. In Section 2.3, we briefly introduce random variables.
Probability distribution and density functions are presented in
Section 2.4, along with a discussion of joint distribution and density
functions, statistical averages, and joint moments. Then, in Section
2.5, we further introduce functions of random variables, including
sums of random variables and transformations of random variables,
which are useful to derive the joint probability distributions and
densities. Specific discrete and continuous distribution and densities
are presented in Section 2.6 and Section 2.7, respectively. The
upper bound theory on the tail probability is introduced in Section
2.8, where we address the Chebyshev inequality, the law of large
numbers, and the central limit theorem. In Section 2.9, stochastic
signal processes are discussed, with an emphasis on discrete-
time stochastic processes. Then we develop detection theory and
optimum receivers in Section 2.10. Finally, a brief summary is given
in Section 2.11.

2.2 Probability

In this section, we begin by introducing basic results of probability
theory. This brief treatment takes into account the general needs of
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random variables, subsequent sections, and chapters. Thus, we will
present several important concepts, including intuitive, axiomatic,
and conditional probabilities and independence.

2.2.1 Intuitive Probability

The probability theory processes the averages of many phenomena
occurring sequentially or simultaneously. One purpose of using the
probability theory is to describe and predict averages in terms of
the probabilities of the events. For instance, in an experiment of
coin-tossing, assuming that a fair coin is equally likely to result in
heads or tails if the coin is flipped, the outcome would be heads
approximately half of the time and tails the other half. Thus, in
intuitive probability, if we allow that all possible outcomes of a
chance experiment are equally likely, the probability of a particular
event, A, is defined as

p(A) = NA
NT

, (2.1)

where NA and NT are possible outcomes favoring event A and
total possible outcomes, respectively, and NT is sufficiently large.
However, the terminology of “sufficiently large” in (2.1) has no
clear meaning. This is an imprecise statement in which cannot be
avoided. Thus, intuitive probability has limitations, but still plays
an important role in probability theory. In many cases, the simple
concept of ratio of possible event outcomes is a useful method for
problem solving.

Example 2.1

Assume that if a coin is flipped 5,000 times and heads show 2,565
times, then the probability of heads equals 0.513 and the probability
of tails equals 0.487. However, if we assume that the coin is fair,
then the probabilities of heads and tails equal 0.5, respectively.

2.2.2 Axiomatic Probability

An axiomatic probability begins with the concept of a sample space
that is the set of all possible outcomes of the experiment. If the
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sample space is S and its individual outcomes or elements in the
sample space are {s1, s2, s3, ...}, then the elements in the sample
space are mutually exclusive or disjoint. In other words, there is
no overlap of elements in a sample space. The elements are also
collectively exhaustive. Every possible outcome is included.

An event can be considered as a special subset of the sample
space S. Let the events be A, B, C, ..., and so on. Axiomatic
probability theory is now stated as follows:

1. The probability of an event A is a nonnegative number

p(A) ≥ 0 (2.2)

2. The probability of a certain event equals 1,

p(S) = 1 (2.3)

3. Assuming that A, B, C, ..., are mutually exclusive events,
then

p(A+ B + C + · · ·) = p(A) + p(B) + p(C) + · · · . (2.4)

These three definitions, along with the traditional axioms of
set theory, are fundamental to axiomatic probability theory. These
definitions provide the theoretical basis for the formal solution of
a wide variety of probability problems. For the probability of an
impossible event, a simple consequence is always 0, p(Ø) = 0.

Furthermore, the operation of intersection is also useful. The
intersection of two events A and B is the event including elements
that are common to bothA and B. Let the intersection of two events
A and B beAB. For anyA and B events, their combined probability
is given by

p(A+ B) = p(A) + p(B)− p(AB). (2.5)

Note that the subtractive term p(AB) in (2.5) is required. This
is because the probabilities in the intersection region have been
counted twice in the summation of p(A) and p(B). We refer to the
probability p(AB) as the joint probability of the events A and B.
The probability p(AB) can be expressed as the probability in which
both A and B occurred.
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2.2.3 Conditional Probability

Consider an experiment that a joint event occurs with the probability
p(AB). If the event B has occurred, we want to determine the
probability of the occurrence of the event A. This conditional
probability is defined as

p(A|B) = p(AB)
p(B) , (2.6)

where p(B) > 0.
Let the notation ⊂ denote the meaning of the subset. If B ⊂ A,

then p(A|B) = 1. This can be shown as

p(A|B) =
p(AB)
p(B)

=
p(B)
p(B)

= 1. (2.7)

Similarly, if A ⊂ B, then we obtain

p(A|B) =
p(A)
p(B)

≥ p(A). (2.8)

Assume that events Ai, i = 1, 2, · · · , n, are mutually exclusive
events

n⋃
i=1

Ai = S, (2.9)

and B is an arbitrary event with p(B) > 0. We then have

p(BAi) = p(B|Ai)p(Ai), (2.10)

and
p(B) = p(BA1) + p(BA2) + · · ·+ p(BAn). (2.11)

Equation (2.11) is referred to as the total probability theorem.
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Further note that p(BAi) = p(Ai|B)p(B); thus, we can
rewrite (2.10) as follows:

p(Ai|B) = p(B|Ai)
p(Ai)

p(B) . (2.12)

Substituting (2.11) into (2.12), we obtain

p(Ai|B) = p(B|Ai)p(Ai)∑n
j=1 p(B|Aj)p(Aj)

, (2.13)

where the probabilities p(Ai) and p(Ai|B) are referred to as a priori
and a posteriori, respectively. Equation (2.13) is known as Bayes’
theorem.

Example 2.2

Assume that there are 12 balls in a dish and you want to pick up 2
of them, choosing the balls randomly. You see that 6 of the balls are
red and 6 are yellow. You prefer the red ones. What is the probability
that you will get 2 red ones?

Let Ri and Yi, i = 1, 2, 3, 4, 5, 6, denote the numbers of red and
yellow balls, respectively. The probability of getting 2 red ones is

p(R1R2) = p(R1)p(R2|R1). (2.14)

Since there are 6 red balls and 12 balls together, then

p(R1) =
1

2
. (2.15)

If you get a red one on the first selection, there will be 5 red ones left
out of 11 balls in the dish. Thus, you obtain

p(R2|R1) =
5

11
, (2.16)

and the probability of getting 2 red ones is obtained by

p(R1R2) = p(R1)p(R2|R1)

=
(
1

2

)(
5

11

)
=

5

22
.
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Furthermore, if you get 2 red balls, the question is: What is the
probability that you will get 2 more red ones? Note that there are
4 red left out of 10 balls because 2 red balls have been removed.
Therefore, the probability of getting 2 more red ones is

p(R3R4|R1R2) = p(R3|R1R2)p(R4|R1R2R3)

=
(
4

10

)(
3

9

)
=

2

15
. (2.17)

2.2.4 Independence

Two events A and B are called independent if the probability is

p(AB) = p(A)p(B). (2.18)

The independence of n events can be defined inductively. The events
A1, A2, · · ·, An are said to be independent if the probability is

p(A1 · · · An) = p(A1) · · · p(An). (2.19)

Equation (2.19) provides the generalization definition of indepen-
dence for n events. These above discussions will be useful when we
introduce random variables in the next section.

2.3 Random Variables

A random variable is a process function, which maps every point in
the sample space S onto a real number. Let a boldface letter x denote
a random variable. The process function must satisfy two conditions
as follows:

1. The set {x ≤ x} is an event for every real value x.
2. The probabilities of the events {x =∞} and {x = −∞} are
p{x =∞} = 0 and p{x = −∞} = 0, respectively.

For example, if x1 and x2 are real numbers, the notational
meaning of {x1 ≤ x ≤ x2} denotes a subset of space including
all outcomes ξ such that x1 ≤ x ≤ x2. The notation {x = x} is a
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subset of space consisting of all outcomes ξ such that x = x, where
x is a given number.

A complex random variable z is defined as

z = x + jy, (2.20)

where x and y are real random variables.
A random vector is a vector and defined by

X = [x1, x2, ..., xn], (2.21)

where components xi, i = 1, 2, ..., n, are random variables.

2.4 Probability Distributions and Densities

In this section, we will introduce definitions of distribution and
density functions, statistical averages and joint moments, and
moment generation functions.

2.4.1 Probability Distributions

The distribution function of the random variable x is defined by

Fx(x) = p{x ≤ x}, (2.22)

where −∞ < x < ∞. Equation (2.22) is called the probability
distribution function of the random variable x. It is also known as
the cumulative distribution function of the random variable x.

The cumulative distribution function of the random variable x
has the properties as follows:

1. Because Fx(x) is a probability, its interval is limited to the
range from 0 to 1,

0 ≤ Fx(x) ≤ 1. (2.23)

In fact, Fx(∞) = 1 and Fx(−∞) = 0.
2. It is a nondecreasing function of x. If x1 < x2, then

Fx(x1) ≤ Fx(x2). (2.24)
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3. The probability p{x > x} of the event {x > x} is obtained
by

p{x > x} = 1− Fx(x). (2.25)

4. The probability p{x1 < x ≤ x2} of the event {x1 < x ≤ x2}
is given by

p{x1 < x ≤ x2} = Fx(x2)− Fx(x1). (2.26)

2.4.2 Probability Densities

The derivative of the cumulative distribution function of the random
variable x is called the density function:

fx(x) =
dFx(x)

dx
, −∞ < x <∞. (2.27)

Equation (2.27) is also referred to as the probability density function.
This is equivalent to

Fx(x) =
∫ x

−∞
fx(u)du, −∞ < x <∞. (2.28)

The probability density function has the properties as follows:

1. Because Fx(x) is monotonic, it follows that

fx(x) ≥ 0. (2.29)

2. Since Fx(∞) = 1, (2.28) yields

∫ ∞

−∞
fx(x)dx = 1. (2.30)

3. From (2.28), we obtain

Fx(x1)− Fx(x2) =
∫ x2

x1

fx(x)dx. (2.31)
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2.4.3 Joint Probability Distributions and Densities

The joint cumulative distribution function of two random variables
x1 and x2 is defined as

Fx1x2(x1, x2) = p{x1 ≤ x1, x2 ≤ x2}
=

∫ x2

−∞

∫ x1

−∞
fx1x2(u1, u2)du1du2, (2.32)

where fx1x2(x1, x2) is the joint density function. The joint density
function of random variables x1 and x2 is given by

fx1x2(x1, x2) =
∂2Fx1x2(x1, x2)

∂x1∂x2

. (2.33)

Given two random variables x1 and x2 , the marginal distribution
is defined by

Fx1(x1) = Fx1x2(x1,∞) (2.34)

Fx2(x2) = Fx1x2(∞, x2) (2.35)

and the marginal density is defined by

fx1(x1) =
∫ ∞

−∞
fx1x2(x1, x2)dx2 (2.36)

fx2(x2) =
∫ ∞

−∞
fx1x2(x1, x2)dx1. (2.37)

If joint density function fx1x2(x1, x2) is integrated over both
variables x1 and x2, we then obtain∫ ∞

−∞

∫ ∞

−∞
fx1x2(x1, x2)dx1dx2 = Fx1x2(∞,∞) = 1. (2.38)

Moreover, we also have the results as follows:

Fx1x2(−∞,−∞) = Fx1x2(−∞, x2) = Fx1x2(x1,−∞) = 0.
(2.39)

The generalization of the joint cumulative distribution function
for multidimensional random variables is straightforward. Given
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n random variables, x1, x2, ..., xn, the joint cumulative distribution
function is obtained by

Fx1...xn(x1, ..., xn) = p(x1 ≤ x1, ..., xn ≤ xn)
=

∫ x1

−∞
· · ·

∫ xn

−∞
fx1...xn(u1, ..., un)

·du1 · · · dun, (2.40)

where fx1...xn(x1, ..., xn) is the joint density function. On the other
hand, the joint density function is obtained by using (2.40)

fx1...xn(x1, ..., xn) =
∂nFx1...xn(x1, ..., xn)

∂x1 · · · ∂xn . (2.41)

The n random variables, x1, x2, ..., xn, are said to be statistically
independent if and only if the following condition is satisfied,

Fx1...xn(x1, ..., xn) = Fx1(x1) · · ·Fxn(xn), (2.42)

or
fx1...xn(x1, ..., xn) = fx1(x1) · · · fxn(xn). (2.43)

2.4.4 Statistical Averages and Joint Moments

In this section, we introduce statistical averages and joint moments
that have an important role in the characterization of the outcomes of
experiments. Of great importance are the first and second moments
of a random variable x. In addition, we define joint moments,
including the correlation and covariance, which are between pairs
of random variables within a set of n random variables.

Given a density function fx(x), the mean or expected value of
random variable x is defined by

mx = E{x} =
∫ ∞

−∞
xfx(x)dx, (2.44)

where E{} denotes expectation or statistical average.
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The variance of random variable x is defined by

σ2
x =

∫ ∞

−∞
(x−mx)

2fx(x)dx, (2.45)

wheremx = E{x} and σx is called the standard deviation of random
variable x. The variance σ2

x (2.45) can be considered to be the mean
of the random variable (x − mx)

2. Thus, the relationship between
the variance and mean is obtained by

σ2
x = E{(x−mx)

2}
= E{x2 − 2xmx +m

2
x}

= E{x2} − 2mxE{x}+m2
x

= E{x2} − E2{x}. (2.46)

If a new random variable is given by y = (x−mx)
n, where mx

is the mean value of the random variable x, the mean of the random
variable y is then obtained by

E{y} = E{(x−mx)
n}

=
∫ ∞

−∞
(x−mx)

nfx(x)dx. (2.47)

Equation (2.47) is known as the nth central moment of the random
variable x.

Assume that fxixj(xi, xj) is the joint density function of the
random variables xi and xj . The correlation, denoted by Rxixj

,
between random variables xi and xj is defined by the joint moment
as follows:

Rxixj
= E{xixj}
=

∫ ∞

−∞

∫ ∞

−∞
xixjfxixj(xi, xj)dxidxj. (2.48)

The covariance, denoted by Cxixj
, of the random variables xi and

xj is obtained by

Cxixj
= E{(xi −mi)(xj −mj)}
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=
∫ ∞

−∞

∫ ∞

−∞
(xi −mi)(xj −mj)fxixj(xi, xj)dxidxj

=
∫ ∞

−∞

∫ ∞

−∞
xixjfxixj(xi, xj)dxidxj −mimj

= E{xixj} −mimj. (2.49)

It is also clear that the covariance function is equal to the correlation
function, Cxixj

= Rxixj
, whenmi = 0 and/ormj = 0.

There is a relation between the covariance and correlation known
as the correlation coefficient. The correlation coefficient is defined
to be the covariance divided by the standard deviations of random
variables xi and xj as follows:

ρxixj =
Cxixj

σxiσxj
. (2.50)

If two random variables, xi and xj , are uncorrelated, their covariance
and their correlation coefficient are equal to zero.

Furthermore, if E{xixj} = E{xi}E{xj} = mimj , then the
random variables xi and xj are said to be uncorrelated. This implies
that the covariance Cxixj

= 0. If the random variables xi and xj
are statistically independent, then they are uncorrelated, but if the
random variables xi and xj are uncorrelated, they are not necessarily
statistically independent. If the random variables xi and xj have
E{xixj} = 0, then they are called orthogonal. Sometimes, when
the random variables xi and xj are uncorrelated, they are referred to
as linearly independent.

2.4.5 Moment Generation Function

Another useful theorem is moments of a density function, which
play an important role in theoretical and applied statistics. In some
cases, if all the moments are known, the density function can be
determined. Thus, it would be useful if we could find a function that
would represent all the moments. We call such a function a moment
generation function.
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Let x be a random variable with density function fx(·). A
moment generation function is defined to be

mx(t) = E{etx} =
∫ ∞

−∞
etxfx(x)dx, (2.51)

where the random variable x is continuous and every value of t is in
some interval −c < t < c, and c > 0.

If the random variable x is a discrete-time random variable, a
discrete-time moment generation function is defined as

mx(t) = E{etx} =
∑
x
etxfx(x). (2.52)

In order to obtain the rth derivative of mx(t) in (2.51), we
differentiate the moment generation function r times with respect
to r as follows:

drmx(t)

dtr
=
∫ ∞

−∞
xretxfx(x)dx. (2.53)

Let t→ 0, (2.53) can be rewritten as follows:

drmx(0)

dtr
= E{xr}, (2.54)

where the left side of (2.54) is the rth derivative of mx(t) when
t → 0. Therefore, the moments of a distribution function may be
obtained by differentiation of the moment generation function.

Example 2.3

Assume that x is a random variable with a probability density
function given by

fx(x) = αe−αx, 0 ≤ x <∞. (2.55)

Using (2.51), the moment generation function can be written as

mx(t) = E{etx}
=

∫ ∞

0
etxαe−αxdx

=
α

α− t , t < α. (2.56)
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Differentiating (2.56) yields

m
′
x(t) =

α

(α− t)2 , (2.57)

and

m
′′
x(t) =

2α

(α− t)3 . (2.58)

Hence, when t→ 0, we obtain the first moment

m
′
(0) = E{x} = 1

α
, (2.59)

and the second moment

m
′′
(0) = E{x2} = 2

α2
. (2.60)

2.5 Functions of Random Variables

In this section, we further discuss functions of random variables, in-
cluding sums and transformations of random variables, x1, x2, ..., xn.

2.5.1 Sums of Random Variables

Assume that we have n random variables, x1, x2, ..., xn. We can then
discuss theory of the summations of n random variables and proof
results as follows:

Theorem 1. Given n random variables, x1, x2, ..., xn, the mean of
the sum is the sum of the means:

E

{
n∑
i=1

xi

}
=

n∑
i=1

E{xi}, (2.61)

and also

Var

{
n∑
i=1

xi

}
=

n∑
i=1

Var{xi}+ 2
∑
i

∑
j(i<j)

Cov{xi, xj}, (2.62)

where the notations Var and Cov denote variance and covariance of
the random variables, x1, x2, ..., xn.
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Proof: Using (2.61), we can rewrite the right side of the
equation as

E

{
n∑
i=1

xi

}
= E {x1 + x2 + · · ·+ xn}
= E{x1}+ E{x2}+ · · ·+ E{xn}
=

n∑
i=1

E{xi}. (2.63)

Thus, we prove that the mean of the sum is the sum of the means
given by (2.61). For proving (2.62), we can rewrite the left side of
the equation as follows:

Var

{
n∑
i=1

xi

}
= E


[

n∑
i=1

xi − E
{

n∑
i=1

xi

}]2


= E


[

n∑
i=1

(xi − E{xi})
]2


= E


n∑
i=1

n∑
j=1

(xi − E{xi})(xj − E{xj})


=
n∑
i=1

n∑
j=1

E {(xi − E{xi})(xj − E{xj})}

=
n∑
i=1

Var{xi}+ 2
∑
i

∑
j(i<j)

Cov{xi, xj}. (2.64)

The result of the last line in (2.64) is due to the fact that the sum of
the variances is the diagonal term while the sums of the covariances
are the off-diagonal terms.

From theorem 1, for two random variables x1 and x2, it follows
that the sum of means is obtained by

E{x1 ± x2} = E{x1} ± E{x2}, (2.65)

and the sum of the variance is obtained by

Var{x1 ± x2} = Var{x1}+ Var{x2} ± 2Cov{x1, x2}. (2.66)
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These provide the mean and variance of the sum or the difference of
two random variables, x1 and x2.

Theorem 2. Consider n random variables, x1, x2, ..., xn. If
x1, x2, ..., xn are uncorrelated random variables, then the variance of
the sum is the sum of the variance:

Var

{
n∑
i=1

xi

}
=

n∑
i=1

Var{xi}. (2.67)

Proof: This theory can be proved by using theorem 1. Note
that the random variables x1, x2, ..., xn are uncorrelated. Thus, then
cov{xi, xj} = 0, for all i, j, i �= j. As a result, the second term
in (2.62) equals zero. Therefore, we prove the result of theorem 2,

Var

{
n∑
i=1

xi

}
=

n∑
i=1

Var{xi}. (2.68)

Theorem 3. Consider n random variables, x1, x2, ..., xn, and n
constants, denoted by c1, c2, ..., cn, then

Var

{
n∑
i=1

cixi

}
=

n∑
i=1

n∑
j=1

cicjCov{xi, xj}

=
n∑
i=1

c2iVar{xi}

+
∑
i

∑
j(j �=i)

cicjCov{xi, xj}. (2.69)

This theorem states a result that is somewhat related to theorem
1. Hence, by using the proof method in theorem 1, this theorem can
be proved as well.

Theorem 4. Given n random variables, x1, x2, ..., xn, if the random
variables x1, x2, ..., xn are independent and identically distributed
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with meanmx and variance σ2
x, and if

x̄n =
1

n

n∑
i=1

xi, (2.70)

then the mean of x̄n is given by

E{x̄n} = mx, (2.71)

and the variance of x̄n is given by

Var{x̄n} = σ2
x

n
. (2.72)

Proof: To prove (2.71), by using (2.70), we rewrite that

E{x̄n} = E

{
1

n

n∑
i=1

xi

}

=
1

n

n∑
i=1

E{xi}

=
1

n

n∑
i=1

mx

= mx. (2.73)

To prove (2.72), by using (2.70), we obtain that

Var{x̄n} = Var

{
1

n

n∑
i=1

xi

}

=
(
1

n

)2

Var

{
n∑
i=1

xi

}
. (2.74)

Since the random variables x1, x2, ..., xn are independent and
identically distributed, then the random variables x1, x2, ..., xn are
uncorrelated random variables. Therefore, by using theorem 2, we
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rewrite (2.74) as follows:

Var{x̄n} =
(
1

n

)2 n∑
i=1

Var{xi}

=
(
1

n

)2 n∑
i=1

σ2
x

=
σ2
x

n
. (2.75)

Hence, we complete the proof of this theorem.

2.5.2 Transformations of Random Variables

Assume that xi, i = 1, 2, · · · , n, be jointly continuous random
variables with density function fx(x1, x2, · · · , xn), and yi, i =
1, 2, · · · , n, be a set of random variables such that

yi = gi(x1, x2, · · · , xn), i = 1, 2, · · · , n. (2.76)

Equation (2.76) is a one-to-one transformation. Also assume that xi,
i = 1, 2, · · · , n, can be inverted and expressed in terms of functions
of yi, i = 1, 2, · · · , n, as follows:

xi = g−1
i (y1, y2, · · · , yn), i = 1, 2, · · · , n. (2.77)

The objective of the transformations of random variables is to
determine the joint probability density function fy(y1, y2, · · · , yn),
given the joint probability density function fx(x1, x2, · · · , xn).

Let us define a transformation function as

J =

∣∣∣∣∣∣∣∣∣∣∣∣∣

∂g−1
1

∂y1

∂g−1
2

∂y1
· · · ∂g−1

n

∂y1
∂g−1

1

∂y2

∂g−1
2

∂y2
· · · ∂g−1

n

∂y2
...

...
...

...
∂g−1

1

∂yn

∂g−1
2

∂yn
· · · ∂g−1

n

∂yn

∣∣∣∣∣∣∣∣∣∣∣∣∣
, (2.78)

where J is referred to as the Jacobian transformation. Assume that
all the partial derivatives in J are continuous and the determinant
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of J is nonzero. Then, we obtain the desired relation of the joint
probability density function fy(y1, y2, · · · , yn) as

fy(y1, · · · , yn) = |J |fx(g−1
1 (y1, · · · , yn), · · · , g−1

n (y1, · · · , yn)).
(2.79)

Example 2.4

Let x1 and x2 be two independent random variables, and the linear
transformation of random variables is y1 = x1 + x2 and y2 = x1

x2
.

Then we obtain

x1 = g−1
1 (y1, y2) =

y1y2
1 + y2

, (2.80)

x2 = g−1
2 (y1, y2) =

y1
1 + y2

, (2.81)

and the Jacobian transformation

J =

∣∣∣∣∣
y2

1+y2
1

1+y2
y1

(1+y2)2
−y1

(1+y2)2

∣∣∣∣∣
= − y1

(1 + y2)2
. (2.82)

Therefore, the joint probability density function fy(y1, y2) is
obtained by

fy(y1, y2) = |J |fx(g−1
1 (y1, y2) =

y1y2
1 + y2

, g−1
2 (y1, y2) =

y1
1 + y2

).

(2.83)

In order to find the marginal distribution of y1 and y2, we need
to integrate out y1

fy1
(y1) =

∫ ∞

−∞
fy(y1, y2)dy1, (2.84)

and to integrate out y2

fy2
(y2) =

∫ ∞

−∞
fy(y1, y2)dy2. (2.85)
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2.6 Discrete Distributions and Densities

In this section, we introduce several discrete densities and derive
their means and variances.

2.6.1 Discrete Uniform Distribution

A random variable x is defined as a discrete uniform distribution if
the discrete density function is given by

fx(x) =

{
1
N

for x = 1, 2, · · · , N
0 otherwise

(2.86)

where the range of parameter N is over the positive integers. The
random variable x is also called a discrete uniform random variable.

A theorem states that if a random variable x has a discrete
uniform distribution, then the mean is given by

E{x} = N + 1

2
, (2.87)

the variance is given by

Var{x} = N2 − 1

12
, (2.88)

and the moment generation function is given by

mx(t) = E{etx} =
N∑
j=1

ejt
(
1

N

)
. (2.89)

We can prove these theorem results as follows:

E{x} =
N∑
j=1

j

N
=
N + 1

2
, (2.90)

and

Var{x} = E{x2} − (E{x})2 (2.91)
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=
N∑
j=1

j2

N
−
(
N + 1

2

)2

(2.92)

=
N(N + 1)(2N + 1)

6N
−
(
N + 1

2

)2

(2.93)

=
(N + 1)(N − 1)

12
(2.94)

=
N2 − 1

12
. (2.95)

By using (2.52), we can obtain the moment generation function of
the discrete uniform distribution as follows:

mx(t) = E{etx} =
N∑
j=1

etxfx(x) =
N∑
j=1

ejt
(
1

N

)
. (2.96)

2.6.2 Binomial Distribution

A random variable x is defined as a discrete binomial distribution if
the discrete density function of x is given by

fx(x) =


(
n
x

)
pxqn−x for x = 1, 2, · · · , n

0 otherwise
(2.97)

where the parameters p satisfy 0 ≤ p ≤ 1, q = 1 − p, and n ranges
over the positive integers. Figure 2.1 shows the binomial discrete
density function fx(x) of x, with the parameters of n = 30, p = 0.3,
and q = 0.7.

A theorem states that if a random variable x has a discrete
binomial distribution, then the mean is

E{x} = np, (2.98)

the variance is
Var{x} = npq, (2.99)

and the moment generation function is

mx(t) = (q + pet)n. (2.100)
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Figure 2.1 The binomial discrete density function fx(x) of x, with
n = 30, p = 0.3, and q = 0.7.

We now prove these theorem results starting first with the proof
of the moment generation function as follows:

mx(t) = E{etx}

=
N∑
x=1

etx
(
n
x

)
pxqn−x

=
N∑
x=1

(
n
x

)
(pet)xqn−x

= (pet + q)n. (2.101)

Taking the first and second derivatives of (2.101) obtains

m′
x(t) = npe

t(pet + q)n−1, (2.102)

and

m′′
x(t) = n(n− 1)(pet)2(pet + q)n−2 + npet(pet + q)n−1. (2.103)
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Thus, we obtain the mean

E{x} = m′
x(0) = np, (2.104)

and the variance

Var{x} = E{x2} − (E{x})2
= m′′

x(0)− (np)2

= n(n− 1)p2 + np− (np)2

= np(1− p). (2.105)

Note that if n = 1, then (2.97) becomes

fx(x) =

{
pxq1−x for x = 0 or 1

0 otherwise
(2.106)

where the parameters p satisfy 0 ≤ p ≤ 1, and q = 1 − p.
Equation (2.106) is referred to as a discrete Bernoulli distribution. In
this case, the mean, variance, and moment are as follows:E{x} = p,
Var{x} = pq, andmx(t) = pe

t + q.

2.6.3 Poisson Distribution

A random variable x is defined as a discrete Poisson distribution if
the discrete density function of x is given by

fx(x) =

{
e−λλx

x!
for x = 1, 2, · · ·

0 otherwise
(2.107)

where the parameter λ > 0. Figure 2.2 shows the Poisson discrete
density function fx(x) of x with the parameters of n = 30 and
λ = 4.

A theorem states that if a random variable x has a discrete
Poisson distribution, then the mean is

E{x} = λ, (2.108)

the variance is
Var{x} = λ, (2.109)
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Figure 2.2 The Poisson discrete density function fx(x) of x with
n = 30 and λ = 4.

and the moment generation function is

mx(t) = e
λ(et−1). (2.110)

We prove these theorem results with the moment generation
function as follows:

mx(t) = E{etx}
=

∞∑
x=0

etxe−λλx

x!

= e−λ
∞∑
x=0

(λet)x

x!

= e−λeλe
t

. (2.111)

Taking the first and second derivatives of (2.111) yields

m′
x(t) = λe

−λeteλe
t

, (2.112)
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and
m′′

x(t) = λe
−λeteλe

t

[λet + 1]. (2.113)

Therefore, we obtain the mean

E{x} = m′
x(0) = λ, (2.114)

and the variance

Var{x} = E{x2} − (E{x})2
= m′′

x(0)− λ2

= λ(λ+ 1)− λ2

= λ. (2.115)

The discrete Poisson distribution has many applications because
it provides a realistic model for many random phenomena. Special
application areas include modeling for fatal traffic accidents per day
in a given state, the number of radioactive particle emissions per
unit of time, the number of telephone calls per minute, the number
of defects per unit of some material, the number of meteorites
that collide with a test satellite during a single orbit, and so on.
Mood et al. [5] pointed out that if certain assumptions regarding
the phenomenon under observation are satisfied, the discrete Poisson
model is the correct model.

Example 2.5

Assume that the average number of telephone calls arriving at
the switchboard is 1,200 calls per hour. We want to determine as
follows: (1) What is the probability that no calls will arrive in a
period of 1 minute? (2) What is the probability that more than 100
calls will arrive in a period of 1 minute?

Note that 1,200 calls per hour equals to 20 calls per minute.
Thus, the mean rate of occurrence is 20 per minute as well. The
probability that no calls will arrive in a period of 1 minute is obtained
by

P = e−vt = e−(20)(1) ≈ 2.061× 10−9, (2.116)
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and the probability that more than 100 calls will arrive in a period of
1 minute is given by

P =
∞∑

k=101

e−vt(vt)k

k!

≈ ve−vt (vt)
n−1

(n− 1)!

= 20e−(20)(1) [(20)(1)]
101−1

(101− 1)!

= 5.6× 10−36. (2.117)

2.7 Continuous Distributions and Densities

In this section, we discuss a set of special continuous distributions
and densities that belong to the parameter families of universal
probability density functions.

2.7.1 Gaussian Density Function

A random variable x is known as Gaussian or normal if its density
function is given by

fx(x) =
1

σx
√
2π

exp

{
−(x−mx)

2

2σ2
x

}
, (2.118)

wheremx is its mean defined by (2.44) and σ2
x is its variance defined

by (2.45). The symbol σx is also known as the standard deviation.
The density function in (2.118) is symmetric around the mean mx.
Since fx(x) is a density function, then we obtain∫ ∞

−∞
fx(x)dx = 1. (2.119)

The corresponding Gaussian distribution function can be
obtained by taking the integral of the Gaussian density function
in (2.118),

Fx(x) =
∫ x

−∞
fx(u)du
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Figure 2.3 The Gaussian density functions fx(x): (a) the different
means and the same standard deviation and (b) the
same standard deviation and the different means.

=
∫ x

−∞

1

σx
√
2π

exp

{
−(u−mx)

2

2σ2
x

}
du. (2.120)

The Gaussian density functions fx(x), with the different means and
the same standard deviation and the same standard deviation and the
different means, are shown in Figure 2.3(a, b), respectively. Note
that the mode of a Gaussian density occurs at x = mx and inflection
points happen at mx − σx and mx + σx. Also, with the same mean
value, increasing the variance leads to a decrease in the peak value
of the Gaussian distribution functions.
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We often use a shorthand notation

x ∼ N(mx, σ
2
x) (2.121)

to represent that a random variable x has a Gaussian density
function. We can also use the notations φmx,σ2

x
(x) and Φmx,σ2

x
(x)

for the Gaussian density function and the Gaussian distribution
function, respectively.

If the Gaussian random variable x has zero mean and unit
variance, it is called a standard or normalized Gaussian random
variable. The normalized Gaussian density function is given by

φ0,1(x) =
1√
2π

exp

{
−x

2

2

}
, (2.122)

and the corresponding normalized Gaussian distribution function is
obtained by

Φ0,1(x) =
∫ x

−∞
φ0,1(u)du. (2.123)

There are many important properties for the Gaussian random
variables. We introduce the two most important properties as
follows.

Property 1. If the random variable is the Gaussian random variable,
denoted by x ∼ N(mx, σ

2
x), then the probability of the random

variable x falls in the range interval (a, b], given by [6]

p{a < x ≤ b} = Φ0,1

(
b−mx

σx

)
− Φ0,1

(
a−mx

σx

)
. (2.124)

This property can be proved as follows:

p{a < x ≤ b} =
∫ b

a

1

σx
√
2π

exp

{
−(u−mx)

2

2σ2
x

}
du

=
∫ (b−mx)/σx

(a−mx)/σx

1√
2π

exp

{
−z

2

2

}
dz

= Φ0,1

(
b−mx

σx

)
− Φ0,1

(
a−mx

σx

)
.

(2.125)
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Property 2. If a distribution function is the normalized Gaussian
distribution function, then we have Φ0,1(x) = 1 − Φ0,1(−x). This
property can be approved by using the Gaussian symmetry.

The normalized Gaussian distribution appears to be a reasonable
model of the behavior of certain random phenomena. A number
of the processes in applications are Gaussian or approximately
Gaussian as followed in central limit theorems, which will be
discussed in Section 2.8.3.

2.7.2 Error Function

The error function, which is denoted by erf(x), is defined by

erf(x) =
2√
π

∫ x

0
e−u2

du. (2.126)

Figure 2.4 shows a plot of the error function in (2.126), with the
semilog and the parameter x from 0 to 5.

The corresponding complementary error function, which is
denoted by erfc(x), is defined by

erfc(x) =
2√
π

∫ ∞

x
e−u2

du.

= 1− erf(x). (2.127)

The error function has many properties as follows:

erf(−x) = −erf(x) (2.128)

erfc(−x) = 2− erfc(x) (2.129)

erf(0) = erfc(∞) (2.130)

erf(∞) = erfc(0) (2.131)

erfc(∞) = 0 (2.132)

erfc(0) = 1. (2.133)
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Figure 2.4 A plot of the error function erf(x), with the semilog and
the parameter x from 0 to 5.

Note that the Gaussian distribution function given by (2.120) can
be rewritten in terms of erf(x) as follows:

Fx(x) =
∫ x

−∞

1

σx
√
2π

exp

{
−(u−mx)

2

2σ2
x

}
du

=
1√
π

∫ x

−∞

1

σx
√
2π

exp

{
−(u−mx)

2

2σ2
x

}
du

=
1√
2π

∫ 0

−∞
e−

t2

2 dt+
2√
π

∫ (x−m)/
√

2σ

0
e−t2dt

=
1

2
+

1

2
erf

(
x−m√

2σ

)
. (2.134)

Equation (2.134) can also be expressed in terms of erfc(x),

Fx(x) = 1− 1

2
erfc

(
x−m√

2σ

)
. (2.135)
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If x > 0, the asymptotic expansion for calculating erfc(x) is
given by [7]

erfc(x) ≈ e−x2

√
πx

[
1− 1

2x2
+

1 · 3
22x4

− · · · ± 1 · 3 · · · (2n− 1)

2nx2n

]
.

(2.136)

If x is a large positive value, the successive terms of the right-hand
side in (2.136) decrease very rapidly. Thus, the bounds on erfc(x)
are obtained by

e−x2

√
πx

(
1− 1

2x2

)
< erfc(x) <

e−x2

√
πx
. (2.137)

Since erfc(x) = 1− erf(x), we then obtain the bounds on erf(x)

1− e−x2

√
πx

< erf(x) < 1− e−x2

√
πx

(
1− 1

2x2

)
. (2.138)

2.7.3 Q-Function

Consider a standardized Gaussian random variable x with zero mean
and unit variance given by (2.121). The Q-function is defined by

Q(x) =
1√
2π

∫ ∞

x
e−

x2

2 dx. (2.139)

Thus, the Q-function can be written in terms of erfc(x) as

Q(x) =
1

2
erfc

(
x√
2

)
, (2.140)

and in terms of Φ0,1(x) as

Q(x) = 1− Φ0,1(x). (2.141)

Conversely, we can obtain erfc(x) in terms of the Q-function by
using u = x/

√
2

erfc(u) = 2Q(
√
2u). (2.142)
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Figure 2.5 A plot of the Q-functionQ(x), with the semilog and the
parameter x from 0 to 5.

Figure 2.5 shows a plot of the Q-function, with the semilog and the
parameter x from 0 to 5.

Using (2.136), the asymptotic expansion of the Q-functionQ(x),
with x > 0, is obtained by

Q(x) ≈ e
−( x√

2
)2

√
2πx

1− 1

2
(

x√
2

)2 +
1 · 3

22
(

x√
2

)4 − · · ·

· · · ± 1 · 3 · · · (2n− 1)

2n
(

x√
2

)2n

 . (2.143)

If x is a large positive value, the successive terms of the right-hand
side in (2.143) decrease very rapidly. Thus, the bounds on Q(x) are
given by

e−
x2

2√
2πx

(
1− 1

x2

)
< Q(x) <

e−
x2

2√
2πx

. (2.144)
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2.7.4 Multivariate Gaussian Distribution

Consider the Gaussian random variables xi, i = 1, 2, · · · , n, with
meansmi, i = 1, 2, · · · , n, variances σ2

i , i = 1, 2, · · · , n, covariances
µij , i, j = 1, 2, · · · , n and µii = σ2

i , i = 1, 2, · · · , n. Let Cx denote
the n × n covariance matrix, mx denote the n × 1 column vector
of mean values mi, i = 1, 2, · · · , n, and X denote the vector of the
Gaussian random variables xi, i = 1, 2, · · · , n. Then, the multivariate
Gaussian density function is given by [1]

p(X) =
1

(2π)n/2|Cx|1/2 exp
[
−1

2
(X−mx)

TC−1
x (X−mx)

]
,

(2.145)
where C−1

x is the inverse of Cx and mT
x is the transpose of mx.

In practice, due to finite sample sizes, only estimates of the mean
m̂x and covariance Ĉx can be obtained for (2.145) by using unbiased
estimate methods as follows:

m̂x = E[x] =
1

N

N∑
k=1

xk, (2.146)

and

Ĉx = E[(x−mx)(x−mx)
T ]

=
1

N − 1

N∑
k=1

(xk − m̂x)(xk − m̂x)
T , (2.147)

where N is the total number of samples.

2.7.5 Uniform Density Function

A random variable x is known as a uniform random variable if its
density function is a constant in the range (a, b] and 0 elsewhere:

fx(x) =

{
1

b−a
a < x ≤ b, and b > a

0 otherwise.
(2.148)

The corresponding distribution function of the random variable
x is obtained by taking the integral of the density function in (2.148),

Fx(x) =
∫ x

−∞
fx(u)du
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Figure 2.6 The uniform random variable x: (a) uniform density
function fx(x) and (b) uniform distribution function
Fx(x), where ‖a‖ = ‖b‖.

=


0, −∞ < x < a
x−a
b−a
, a < x ≤ b

1, otherwise.
(2.149)

The uniform density and corresponding distribution functions are
shown in Figure 2.6(a, b), respectively.

The mean of the uniform random variable x is obtained by

mx = E{x}
=

∫ b

a

x

b− adx

=
a+ b

2
, (2.150)

and the variance is obtained by

σ2
x = E{x2} − E2{x}
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=
∫ b

a

x2

b− adx−
(a+ b)2

4

=
b3 − a3

3(b− a) −
(a+ b)2

4

=
(b− a)2

12
. (2.151)

The uniform distribution function gets its name because its
density function is constant over the interval range (a, b]. The
uniform distribution function can also be referred to as the
rectangular function due to the shape of its density function.

2.7.6 Chi-Square Distribution

A random variable x has chi-square density if its density function is
obtained by

fx(x) =
1

Γ(k/2)

(
1

2

)k/2
xk/2−1e−

1
2
x, (2.152)

where k is called the degrees of freedom and is a positive integer,
and Γ(·) is the gamma function, defined by

Γ(t) =
∫ ∞

0
xt−1e−xdx, t > 0. (2.153)

The gamma function has properties as follows:

Γ(t+ 1) = tΓ(t), (2.154)

and if t = n and n is an integer, then the gamma function is

Γ(n+ 1) = n!, (2.155)

Γ
(
n+

1

2

)
=

1 · 3 · 5 · · · (2n− 1)

2n
√
π, (2.156)

and, in particular,

Γ
(
1

2

)
= 2Γ

(
3

2

)
=
√
π. (2.157)
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It can be shown that the mean of chi-square random variable x is

mx = E{x} = k, (2.158)

and the variance is
σ2
x = 2k. (2.159)

The corresponding chi-square distribution function of the
random variable x is obtained by taking the integral of the density
function,

Fx(x) =
∫ x

0

1

Γ(k/2)

(
1

2

)k/2
uk/2−1e−

1
2
udu, (2.160)

where k = 1, 2, · · · , 30. For larger values of k (k > 30), an
approximation of normal distribution with zero mean and unit
variance can be used and is quite accurate. Thus, xα (α is a fraction),
the αth quantity point of the distribution, may be computed by

xα =
1

2
(zα +

√
2k − 1)2, (2.161)

where zα is the αth quantity point of the standard normal
distribution. Mood, Graybill, and Boes [5] have shown (2.161) in
error by less than 1%.

2.7.7 F Distribution

Let u be a chi-square random variable with m degrees of freedom
and v be a chi-square random variable with n degrees of freedom.
Also assume that u and v are statistically independent. Then, the new
random variable x in terms of u, v,m, and n is as follows:

x =
u/m
v/n

. (2.162)

Equation (2.162) is distributed as an F distribution with m and n
degrees of freedom. Equation (2.162) is called the variance ratio.
The density function of the random variable x is given by

fx(x) =
Γ[(m+ n)/2]

Γ(m/2)Γ(n/2)

(
m

n

)m/2
{

x(m−2)/2

[1 + (m/n)x](m+n)/2

}
.

(2.163)
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The mean of the F density function of the random variable x is
obtained by

E{x} = E

{
u/m
v/n

}

=
(
n

m

)
E{u}E

{
1

v

}
. (2.164)

By using (2.158), we obtain E{u} = m, and

E
{
1

v

}
=

∫ ∞

0

1

v

1

Γ(n/2)

(
1

2

)n/2
vn/2−1e−

1
2
vdv

=
1

Γ(n/2)

(
1

2

)n/2 ∫ ∞

0
v(n−4)/2e−

1
2
vdv

=
Γ[(n− 2)/2]

Γ(n/2)

(
1

2

)n/2 (1
2

)−(n−2)/2

=
1

n− 2
. (2.165)

Therefore, the mean is obtained by

E{x} =
(
n

m

)
E{u}E

{
1

v

}
=

n

m

m

n− 2

=
n

n− 2
. (2.166)

In a similar way, the variance is derived to be

σ2
x =

2n2(m+ n− 2)

m(n− 2)2(n− 4)
, n > 4. (2.167)

The corresponding F distribution function of the random
variable x is obtained by taking the integral of the density function,

Fx(x) =
∫ x

0

Γ[(m+ n)/2]

Γ(m/2)Γ(n/2)

(
m

n

)m/2
{

u(m−2)/2

[1 + (m/n)u](m+n)/2

}
du.

(2.168)
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Note that it is not easy to calculate (2.168) directly. However, to
obtain the values of F distribution, we can use the table given in [5].

Further note that the mean of the F distribution depends only
on the degrees of freedom of the denominator. This is because the
F density function is not symmetrical in the degrees of freedom m
and n. It is interesting to note that the F distribution is the ratio
of two independent chi-square random variables u and v divided by
their respective degrees of freedom m and n. We have found this
F distribution form to be of practical interest in a beamformer and
space-time signal processing.

2.7.8 Rayleigh Distribution

Assume that random variables x1 and x2 are independent
standardized Gaussian with zero mean and unit variance. Also let
a new random variable given by y =

√
x2

1 + x2
2.

In order to find the probability density function and probability
distribution function, we first define

v = tan−1
(x2

x1

)
, (2.169)

and then obtain

x1 = y cos v, (2.170)

x2 = y sin v. (2.171)

Using the Jacobian transformation in (2.78) yields

J =

∣∣∣∣∣
∂x1

∂y
∂x1

∂v
∂x2

∂y
∂x2

∂v

∣∣∣∣∣
=

∣∣∣∣∣ cos v y sin v
sin v y cos v

∣∣∣∣∣
= y[cos2 v + sin2 v]

= y. (2.172)

Therefore, the joint probability density function fy,v(y, v) is
obtained by

fy,v(y, v) = |J |fx1,x2(y cos v, y sin v)
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= y

(
1

2πσ2
e−

x2
1+x2

2
2σ2

)

=
y

2πσ2
e−

y2

2σ2 . (2.173)

It follows that the marginal probability density function of y is
obtained by

fy(y) =
∫ 2π

0
fy,v(y, v)dv

=
y

σ2
e−

y2

2σ2 , y ≥ 0. (2.174)

The corresponding probability distribution function is obtained by

Fy(y) = 1− e− y2

2σ2 , y ≥ 0. (2.175)

Hence, a random variable having the probability density function
given by (2.174) and (2.175) is said to be Rayleigh distributed.

Figure 2.7(a, b) shows the Rayleigh density function fy(y)
and the corresponding distribution function Fy(y) with σ = 0.5
and σ = 1, respectively. As can be seen, increasing the σ value
in (2.174) and (2.175) decreases the peak value of the Rayleigh
density function fy(y) and reduces the convergence speed of the
Rayleigh distribution function Fy(y) to the constant value of 1.

2.7.9 Rice Distribution

Assume that random variables x1 and x2 are independent Gaussian
with nonzero means m1, m2, and nonunit variance σ2. Also, let a
new random variable given by y =

√
x2

1 + x2
2.

In order to obtain the probability density function and probability
distribution function for the new random variable y, we first define

v = tan−1
(x2

x1

)
, (2.176)

and then obtain

x1 = y cos v, (2.177)

x2 = y sin v. (2.178)
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Figure 2.7 The Rayleigh random variable of y: (a) the density
function and (b) the distribution function.

Using the Jacobian transformation result J = y given by (2.172),
we obtain the joint probability density function of the new random
variable y as follows:

fy,v(y, v) = |J |fx1,x2(x1, x2)

= yfx1,x2(y cos v, y sin v). (2.179)

The joint probability density function fx1,x2(y, v) in (2.179) is
obtained by
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fx1,x2(y, v) =
1

2πσ2
exp

[
−(y cos v −m1)

2 + (y sin v −m2)
2

2σ2

]
.

(2.180)

Now let µ =
√
m2

1 +m
2
2 and φ = tan−1

(
m2

m1

)
, where 0 ≤ φ ≤ 2π,

and then m1 = µ cosφ and m2 = µ sinφ. Thus, (2.180) can be
rewritten as

fx1,x2(y, v) =
1

2πσ2
exp

[
−y

2 + µ2 − 2yµ cos(v − φ)
2σ2

]
. (2.181)

The corresponding marginal probability density function of the
random variable y is obtained by

fy(y) =
∫ 2π

0
fy,v(y, v)dv

=
[
y

σ2
e−

y2+µ2

2σ2

] [
1

2π

∫ 2π

0
e−

yµ cos(v−φ)

σ2 dv
]

=
y

σ2
e−

y2+µ2

2σ2 I0

(
yµ

σ2

)
, y ≥ 0, (2.182)

where

I0(z) =
1

2π

∫ 2π

0
e−z cos θdθ. (2.183)

Equation (2.183) is called the zero-order modified Bessel function.
Hence, a random variable y having the probability density function
given by (2.182) is said to be Rice or Ricean distributed.

Note that if µ = 0, we have I0(0) = 1. Thus, (2.182) is exactly
equal to (2.174). Therefore, the Rayleigh distribution is a special
case of the Rice distribution.

2.8 Upper Bounds on the Probability

In order to evaluate the performance of a digital communications
system, it is necessary to measure the area under the tail of the
probability density function. In this section, we introduce methods
of upper bounds on the tail probability.
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2.8.1 Chebyshev Inequality

Assume that x is a continuous random variable with probability
density function fx(·) and let g(·) be a nonnegative function with
its domain as the real line. Then we have an upper bound on the tail
of the probability as follows:

P{g(x) ≥ k} ≤ E{g(x)}
k

, for every k > 0. (2.184)

This upper bound on the tail of the probability is called the
Chebyshev inequality.

Equation (2.184) can be proved as follows:

E{g(x)} =
∫ ∞

−∞
g(x)fx(x)dx

=
∫
g(x)≥k

g(x)fx(x)dx+
∫
g(x)<k

g(x)fx(x)dx

≥
∫
g(x)≥k

g(x)fx(x)dx

≥ k
∫
g(x)≥k

g(x)fx(x)dx

= kp{g(x) ≥ k}. (2.185)

Now, dividing by k on both sides of (2.185) obtains the result of the
Chebyshev inequality in (2.184).

If x is a random variable with finite variance, g(x) = (x−mx)
2

and k = δ2, where δ is any positive number, then (2.184) can be
rewritten as

p{|x−mx| ≥ δ} = P{(x−mx)
2 ≥ δ2}

≤ σ2
x

δ2
, for every δ > 0, (2.186)

where mx is the mean and σx is the variance. Equation (2.186) can
be rewritten in another form as follows:

p{|x−mx| < δ} ≥ 1− σ
2
x

δ2
. (2.187)



68 Signal Processing in Digital Communications

Note that (2.187) indicates:

p{mx − δ < x < mx + δ} ≥ 1− σ
2
x

δ2
. (2.188)

In other words, the probability that x falls within δ units of mx is
greater than or equal to

(
1− σ2

x

δ2

)
.

Further note that the Chebyshev inequality provides an upper
bound, which does not require knowing the distribution of the
random variable x. For the probability of particular events, we only
need to know the mean and variance of the random variable x.

Example 2.6

Assume that δ = 2σx in (2.188). We then obtain the bound on the
tail of the probability

p{mx − 2σ < x < mx + 2σ} ≥ 1− σ2
x

4σ2
x

=
3

4
. (2.189)

This says that for any random variable x having finite variance, the
probability that x falls within two standard deviations of its mean is
at least 3

4
.

2.8.2 Law of Large Numbers

Suppose that random variables xi, i = 1, 2, · · · , n, are statistically
independent and identically distributed, each having a finite mean
mx and a finite variance σx. Let y be defined as the sample mean as
follows:

y =
1

n

n∑
i=1

xi, (2.190)

where the meanmy = mx and σ2
y = σ2

x

n
.

The tail probability of the random variable y can be upper-
bounded by using the Chebyshev inequality. Using (2.186), we
obtain the bound for the random variable y

p{|y−my| ≥ δ} ≤
σ2
y

δ2
. (2.191)
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It follows that we obtain the Chebyshev inequality on the random
variable xi, i = 1, 2, · · · , n,

p

{∣∣∣∣∣1n
n∑
i=1

xi −mx

∣∣∣∣∣ ≥ δ
}
≤ σ2

x

nδ2
. (2.192)

Note that when n→∞, (2.192) becomes

lim
n→∞

p

{∣∣∣∣∣ 1n
n∑
i=1

xi −mx

∣∣∣∣∣ ≥ δ
}
≤ lim

n→∞
σ2
x

nδ2
≈ 0. (2.193)

Equation (2.193) is called the law of large numbers or the weak law
of large numbers. This says that the probability that the estimate of
the mean differs from the meanmx by more than any positive value
δ approaches zero when n approaches infinity.

2.8.3 Central Limit Theorem

The most widely applied central limit theorem states that if random
variables x1, · · · , xn are independent and identically distributed with
meanmx and variance σ2

x, then, for each random variable zn,

zn =
x̄n − E{x̄n}√

Var{x̄n}
=

x̄n −mx

σx/
√
n
, (2.194)

where x̄n is defined and given by (2.70), the distribution function
Fzn(z) in (2.194) converges to the normalized Gaussian distribution
function Φ0,1(z), when n approaches ∞. Thus, the distribution
function Fzn(z) is referred to as the central limit theorem.

This central limit theorem states that the distribution function
Fzn(z) approximates a normalized Gaussian distribution function.
In other words, this theorem tells us that x̄n is approximately, or
asymptotically, distributed as a normalized distribution with mean
mx and variance σ2

x/n.
Further note that this central limit theorem assumes nothing

about the form of the original density function except that it
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has finite variance. If given large enough samples, whatever the
distribution function with finite variance, the sample mean x̄n will
have, approximately, the Gaussian distribution. In practice, most
density functions encountered have finite variance.

The nature of this central limit theorem provides a specific
error bound if the random variables x1, · · · , xn are independent and
identically distributed with n ≥ 30 for many applications [4].
However, in practice, we suggest using the value n ≥ 60 for many
applications. In some cases, we may need a large value of n for
samples. Generally, this central limit theorem represents densities
extremely well, with a few random variables of the mean.

In corollary, if random variables x1, · · · , xn are independent and
identically distributed with common mean mx and variance σ2

x, we
then have useful results as follows:

p

[
a <

x̄n −mx

σx/
√
n
< b

]
≈ Φ0,1(b)− Φ0,1(a), (2.195)

p [c < x̄n < d] ≈ Φ0,1

(
d−mx

σx/
√
n

)
− Φ0,1

(
c−mx

σx/
√
n

)
, (2.196)

or

p

[
q <

n∑
i=1

xi < p

]
≈ Φ0,1

(
p− nmx√
nσx

)
− Φ0,1

(
q − nmx√
nσx

)
.

(2.197)

Note that (2.195), (2.196), and (2.197) provide approximate values
for the probabilities of certain events in terms of averages or sums.
In fact, in practice, the central limit theorem is inherent in these
approximations.

2.9 Stochastic Signal Processes

This section discusses stochastic processes for the characterization
and analysis of discrete-time random processes. A discrete-time
random process can be simply considered to be an indexed sequence
of random variables. The extension of these random variable
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concepts as discussed in earlier sections to the discrete-time random
processes is straightforward.

2.9.1 Definition of Discrete-Time Random Process

A discrete-time random process is a sequence of random variables.
We denote the discrete-time random variable by x[n], where the
brackets indicate that n is an integer. Since the discrete-time random
process is an indexed sequence of random variables, the calculation
of the mean of each of these random variables can be obtained by

mx[n] = E{x[n]}. (2.198)

Similarly, the variance of each random variable x[n] is obtained by

σ2
x[n] = E{(x[n]−mx[n])(x[n]−mx[n])

∗}
= E{x2[n]} −m2

x[n]. (2.199)

Two important functions in the study of discrete-time random
processes are the autocorrelation

Rx[k, l] = E{x[k]x∗[l]} (2.200)

and the autocovariance

Cx[k, l] = R[k, l]−mx[k]m
∗
x[l]. (2.201)

If mx[k] = 0 and/or mx[l] = 0, the autocovariance and
autocorrelation are then equal, Cx[k, l] = Rx[k, l]. Also if k = l,
then the autocovariance function in (2.201) equals the variance
in (2.199) given by

Cx[k, k] = σ
2
x[k]. (2.202)

Therefore, the mean in (2.198) defines the average value of
the discrete-time random process at index n, while the variance
in (2.199) represents the average squared deviation of the discrete-
time random process away from the mean at index n. Furthermore,
the autocorrelation function in (2.200) and autocovariance function
in (2.201) provide the degree of linear dependence between two
discrete-time random variables, x[k] and x[l].
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Example 2.7

Let us consider the complex harmonic discrete-time random process
given by

x[n] = Cej(nω+φ), (2.203)

where C and ω are fixed constants and φ is a phase random variable
that is uniform over the interval (−π, π].

The density function of φ is obtained by

f(φ) =

{
1
2π
, −π ≤ φ ≤ π

0, otherwise.
(2.204)

The mean of the discrete-time random process is obtained by

mx[n] = E{x[n]}
= E{Cej(nω+φ)}
=

∫ ∞

−∞
Cej(nω+φ)f(φ)dφ

=
∫ π

−π

C

2π
ej(nω+φ)dφ

= 0. (2.205)

Equation (2.205) indicates that the discrete-time random variable
x[n] is a zero mean process for all n. The autocorrelation of the
discrete-time random process is given by

Rx[k, l] = E{x[k]x∗[l]}
= E{Cej(kω+φ)C∗e−j(lω+φ)}
= |C|2E{ej(k−l)ω}. (2.206)

As we can see, the mean of the discrete-time random variable is
zero and the autocorrelation depends only on the difference between
k and l. This says that the mean and autocorrelation do not change
even if the discrete-time random process is shifted in time index. In
fact, the complex harmonic discrete-time random process is a wide-
sense stationary process, which will be discussed next.
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2.9.2 Stationary Processes

A stochastic process of the discrete-time random process x[n] is
called stationary if its statistical properties are invariant to a shift
of the origin. This means that the discrete-time random processes
x[n] and x[n+ k] have the same statistics for any k.

Two discrete-time random processes x[n] and y[n] are called
jointly stationary process if the joint statistics of x[n] and y[n] are
the same as the statistics of x[n+ k] and y[n+ k] for any k.

In general, if the nth joint density of discrete-time random
variables is given by

fx1[n],...,xn[n](l1, ..., ln) = fx1[n+k],...,xn[n+k](l1, ..., ln) (2.207)

for all k and all n, then the stochastic process is said to be stationary
in the strict sense (SSS). If (2.207) holds for values of n up to and
including N , the stochastic process is N th-order stationary.

A stochastic process x[n] is known as wide-sense stationary
(WSS) if it is satisfied by the following conditions:

1. Its mean is a constant E{x[n]} = mx.
2. Its autocorrelation function depends only on the difference,
τ = k − l, so that

Rx[τ ] = Rx[k, l] = E{x[k]x∗[l]}, (2.208)

where τ is known as the lag.

In general, if a stochastic process is stationary in the strict sense
(SSS), then it is also WSS. The converse is not true. Note that WSS
does not even imply first-order stationary. However, in the case of
a Gaussian random process, WSS is equal to SSS. This is one of
important properties of Gaussian random processes [3].

2.9.3 Estimated Functions

In practice, ensemble averages, including means, variances,
autocorrelations, autocovariances and individual density functions,
are not generally known. Thus, estimating these averages from a
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realization of a discrete-time random process becomes an important
and necessary step. Therefore, this section presents estimation
methods for the mean, variance, and autocorrelation of the discrete-
time random process.

Consider the estimate problem for the ensemble averages of a
discrete-time random process x[n]. If a large number of samples N
are available, then an estimated mean is obtained by

m̂x =
1

N

N−1∑
n=0

x[n], (2.209)

and estimated variance is given by

σ̂2
x =

1

N

N−1∑
n=0

|x[n]− m̂x|2. (2.210)

The autocorrelation can be estimated given by

R̂x[k] =
1

N

N−1∑
n=0

x[n]x∗[n− k]. (2.211)

Note that (2.209) and (2.210) are also called the sample mean
and sample variance. To obtain these estimates to be accurate and
unbiased, the processes must be stationary or, ideally, ergodic, which
is a stronger condition than stationary. For a precise mathematical
definition, a discussion of ergodicity is referred to by Papoulis [4].

2.9.4 Power Spectrum

This section presents a power spectrum or a power spectral density
(PSD) for a discrete-time random process by using a discrete-time
Fourier transform (DTFT). The DTFT plays an important role in the
description and analysis for the discrete-time random processes.

Consider a WSS process x[n]. We first determine the autocorre-
lation sequence Rx[k] in the discrete-time domain. Since Rx[k] is a
deterministic sequence, we then compute its DTFT as follows:

Px(e
jω) =

∞∑
k=−∞

Rx[k]e
−jkω. (2.212)
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Equation (2.212) is called the power spectrum or PSD for the
discrete-time random process. In the reverse direction, given the
power spectrum in (2.212), which is periodic with period 2π, the
autocorrelation sequence Rx[k] can be computed by taking the
inverse discrete-time Fourier transform (IDTFT) of Px(ejω),

Rx[k] =
1

2π

∫ π

−π
Px(e

jω)ejkωdω. (2.213)

As can be seen, the power spectrum contributes a frequency domain
description and analysis of the second-order moment of the discrete-
time random process.

To represent the power spectrum, we can also use the
z-transform instead of the DTFT as follows (see the z-transform in
Appendix A):

Px(z) =
∞∑

k=−∞
Rx[k]z

−k. (2.214)

Equation (2.214) is also known as the power spectrum of the
discrete-time random variable x[n].

If the discrete-time random variable x[n] is a real process, then
we obtain the following:

Rx[−k] = Rx[k]. (2.215)

Equation (2.215) indicates that Rx[k] is real and even. There-
fore, (2.212) yields the following:

Px(e
jω) = Rx[0] + 2

∞∑
k=0

Rx[k] cos(kω). (2.216)

Equation (2.216) shows that the power spectrum of a real process is
real and even. This is because the term cos(kω) is a real and even
function.

Example 2.8

Assume that an autocorrelation function of the discrete-time random
process x[n] is given by Rx[k] = Aa|k|, where a < 1 is real, and A
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is a constant. The power spectrum in (2.214) is obtained by

Px(z) =
∞∑

k=−∞
Rx[k]z

−k

= A

 −1∑
k=−∞

a−kz−k +
∞∑
k=0

akz−k


= A

(
az

1− az +
z

z − a
)

=
A(a−1 − a)

(a−1 + a)− (z−1 + z)
. (2.217)

Substituting z = ejω into (2.217), the power spectrum in (2.212) is
then obtained as follows:

Px(e
jω) =

A(1− a2)

1− 2a cosω + a2
. (2.218)

Thus, the power spectrum in (2.218) is real, even, and positive.

2.9.5 Stochastic Processes for Linear Systems

This section derives the relationship between the second-order
statistics of a discrete-time random process, including mean,
autocorrelation, and power spectrum, for a linear time-invariant
(LTI) system.

Assume that a discrete-time random variable x[n] is a WSS
random process and an input and h[n] is the impulse response of a
stable LTI system. The output y[n] is a discrete-time random process
whose values are the discrete-time convolution of input x[n] with
impulse response h[n] given by

y[n] = x[n] ∗ h[n]
=

∞∑
k=−∞

h[k]x[n− k]. (2.219)

The mean of the output discrete-time random process can be
expressed by taking the expected value of (2.219),

my[n] = E{y[n]}
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=
∞∑

k=−∞
h[k]E{x[n− k]}

= mx[n]
∞∑

k=−∞
h[k]. (2.220)

Equation (2.220) indicates that the mean my[n] of the output
discrete-time random process y[n] is a constant and is directly
related to the mean mx[n] by a scale factor equal to the sum of the
discrete-time impulse response values.

Alternatively, an equivalent expression in (2.220) in terms of
frequency response is obtained by

my[n] = mx[n]H(ej0), (2.221)

whereH(ej0) is a frequency-domain transfer function at ω = 0. This
is to say that the mean my[n] equals the mean mx[n] scaled by the
value of the frequency response of the LTI system at ω = 0.

The autocorrelation function of the output discrete-time random
process is given by

Ry[n, n+ l] = E{y[n]y∗[n+ l]}
=

∞∑
k=−∞

h[k]
∞∑

r=−∞
h∗[r]

·E{x[n− k]x∗[n+ l − r]}. (2.222)

Since the input discrete-time random process x[n] is WSS, the term
of E{x[n − k]x∗[n + l − r]} depends only on the index l + k − r.
Thus, we can rewrite (2.222) as follows:

Ry[n, n+ l] =
∞∑

k=−∞
h[k]

∞∑
r=−∞

h∗[r]Rx[l + k − r]

= Ry[l]. (2.223)

Note that the autocorrelation function Ry[l] in (2.223) depends only
on the index difference of l. To obtain the variance of the output
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discrete-time random process, y[n], we can set l = 0 in (2.223) and
get

σ2
y [n] = Ry[0]

=
∞∑

k=−∞

∞∑
r=−∞

h[k]h∗[r]Rx[k − r]. (2.224)

Hence, from (2.221), (2.223), and (2.224), if input discrete-time
random variable x[n] is WSS, then the output discrete-time random
process y[n] will also be WSS with the condition σ2

y [n] <∞ for the
stable LTI system.

To obtain the power spectrum, we take the DTFT on both sides
of (2.223),

Py(e
jω) = H(ejω)H∗(ejω)Px(e

jω)

= |H(ejω)|2Px(ejω). (2.225)

Note that if the discrete-time impulse response h[n] is real, then we
obtain

H∗(ejω) = H(e−jω). (2.226)

In this case, the power spectrum of the output discrete-time random
process is given in terms of the z-transform as follows:

Py(z) = H(z)H(1/z)Px(z). (2.227)

Thus, (2.227) provides a convenient way for analysis of the power
spectrum Py(z), specially in spectral factorization.

One interesting point is that the total average power in the output
for the LTI system can be calculated by

E{y2[n]} = Ry[0]

=
1

2π

∫ π

−π
Py(e

jω)dω

=
1

2π

∫ π

−π
|H(ejω)|2Px(ejω)dω. (2.228)
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This means that the area under the curve |H(ejω)|2Px(ejω) with a
range interval −π ≤ ω ≤ π represents the mean-square value of the
input discrete-time random process.

Another important subject is that the cross-correlation function
between the input discrete-time random process and output discrete-
time random process of an LTI system is used for applications of
estimating the impulse response or frequency response of a linear
system. The cross-correlation function is obtained by

Rxy[l] = E{x[n]y∗[n+ l]}
=

∞∑
k=−∞

h[k]E{x[n]x∗[n+ l − k]}

=
∞∑

k=−∞
h[k]Rx[l − k]. (2.229)

Equation (2.229) means that the cross-correlation function Rxy[n]
is the convolution of the discrete-time impulse response h[n] with
the autocorrelation function Rx[n] of the input. If the input is white
noise such that Rx[l] = σ

2
xδ[l], then (2.229) becomes

Rxy[l] = σ
2
xh[l]. (2.230)

This indicates that the cross-correlation function Rxy[l] is propor-
tional to the discrete-time impulse response of the LTI system when
the input discrete-time random process is zero-mean white noise.

The power spectrum of the cross-correlation function Rxy[l] can
be obtained by taking the DTFT on both sides of (2.229),

Pxy(e
jω) = H(ejω)Px(e

jω). (2.231)

In a similar way, if the input discrete-time random process is a zero-
mean white noise, then (2.231) can be rewritten as follows:

Pxy(e
jω) = σ2

xH(ejω). (2.232)

Hence, (2.232) is proportional to the frequency response of the LTI
system. Therefore, (2.230) and (2.231) can be used to estimate the
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discrete-time impulse response h[n] and frequency responseH(ejω)
of the LTI system when the input discrete-time random process is a
zero-mean white noise.

Example 2.9

Consider a first-order discrete-time difference equation given by

y[n] = ax[n]− bx[n− 1], (2.233)

where x[n] is an input discrete-time random process, y[n] is the
output discrete-time random process of a linear system, and a, b
are the constants. Also assume that the input discrete-time random
process x[n] is white noise with Px(ejω) = σ2

x.
The z-transform transfer function of the first-order discrete-time

difference equation is obtained by

H(z) =
Y(z)

X(z)

= a− bz−1. (2.234)

Using (2.227), we obtain the output power spectrum for the LTI
system as follows:

Py(z) = (a− bz−1)(a− bz)Px(z)
= (a2 + b2 − abz − abz−1)σ2

x. (2.235)

The output power spectrum can also be expressed in the frequency
domain by using z = ejω as follows:

Py(e
jω) = σ2

x[a
2 + b2 − ab(ejω − e−jω)]

= σ2
x(a

2 + b2 − 2ab cosω). (2.236)

since the term of cosω is real and even, the output power spectrum
in (2.236) is a real, even, and positive function. This can be shown
as follows:

Py(e
jω) = σ2

x(a
2 + b2 − 2ab cosω)

≥ σ2
x(a− b)2

≥ 0. (2.237)



Probability, Random Variables, and Stochastic Signal Processing 81

2.9.6 Mean Square Estimation

Consider x1[n], ..., xn[n] as discrete-time random variables. Assume
that T = t(x1[n], ..., xn[n]) is an estimator of τ(η). Then, the
expression

ξ = Eη{(T − τ(η))2} (2.238)

is said to be the mean square error (MSE) of the estimator T =
t(x1[n], ..., xn[n]).

An MSE estimator in (2.238) is a measure of goodness, with
small values being better than large values. In other words, the ξ
in (2.238) is a measure of the spread of function T value about
τ(η) in such a way that the variance of a discrete-time random
variable is a measure of its spread about its mean. Thus, we would
prefer the estimator with the smallest MSE, known as the minimum
mean square error (MMSE). In general, though, the MSE estimator
depends on η.

An estimator T = t(x1[n], ..., xn[n]) is referred to as an unbiased
estimator if and only if

Eη{T} = Eη{t(x1[n], ..., xn[n])}
= τ(η). (2.239)

This indicates that an estimator is unbiased if its mean is equal to
the parameter being estimated. Therefore, the MSE in (2.238) can
be rewritten as follows:

Eη{(T − τ(η))2} = Eη{[(T − Eη{T})− (τ(η)− Eη{T})]2}
= Eη{(T − Eη{T})2}

−2(τ(η)− Eη{T})Eη{T − Eη{T}}
+Eη{(τ(η)− Eη{T})2}

= Var{T}+ [τ(η)− Eη{T}]2. (2.240)

Note that the second-term in (2.240) is known as the bias of
the MSE estimator T and can be either positive, negative, or
zero. Furthermore, the MSE in (2.240) is the sum of two positive
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quantities. Thus, (2.240) provides the relationship among the MSE,
variance, and bias of an estimator.

If the estimator T is unbiased, then (2.240) yields

Eη{(T − τ(η))2} = Var{T}. (2.241)

In this case, T is called the unbiased estimator.

Example 2.10

In this example, we consider the linear estimator ŷ[n] of y[n] in terms
of the discrete-time random variables, x1[n], ..., xn[n]. The linear
estimator ŷ[n] is given as follows:

ŷ[n] =
n∑
i=1

Aixi[n], (2.242)

where Ai is constant. Thus, an MSE between the linear estimator
ŷ[n] and y[n] is obtained by

ξMSE = E{(ŷ[n]− y[n])2}

= E


[

n∑
i=1

Aixi[n]− y[n]

]2
 (2.243)

Using the result in (2.240), (2.243) can be rewritten as follows:

ξMSE = Var

{
n∑
i=1

Aixi[n]

}
+

[
y[n]− Ey[n]

{
n∑
i=1

Aixi[n]

}]2

.

(2.244)
Thus, the MMSE can be achieved when the linear estimator ŷ[n] is
an unbiased estimator of y[n]. In this case, (2.244) yields

ξMMSE = Var

{
n∑
i=1

Aixi[n]

}
. (2.245)

Further note that if we use the result in (2.69), (2.245) yields

ξMMSE =
n∑
i=1

A2
iVar{xi[n]}+

∑
i

∑
j(j �=i)

AiAjCov{xi[n], xj[n]}.
(2.246)
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2.10 Detection Theory and Optimum Receivers

In this section, we introduce detection in digital communications in
the presence of additive noise. This topic is of particular interest in
determining an optimum design of a receiver.

Detection theory provides a set of rules for a decision-making
method, which is used to observe the received signals and predict
the transmitted signals. The results of detection are subject to
transmission errors. However, the goal of the detection theory is
to deal with transmission error such that an acceptable quality of
performance can be obtained at the receiver, thereby leading to an
optimum receiver.

2.10.1 Optimality Criterion

In order to describe an optimality criterion, we first elaborate a
simple case of binary communications. In this case, a transmitter
sends a specified signal s0(t) based on a bit value of “0” and the
specified signal s1(t) based on a bit value of “1” over the bit interval
t ∈ [0, T ]. The received signal r(t) corresponding to the first bit is
then presented by using the hypotheses testing as follows:

H0 : r(t) = s0(t) + η(t) (2.247)

H1 : r(t) = s1(t) + η(t) (2.248)

where 0 < t < T and η(t) corresponds to additive white Gaussian
noise (AWGN) channel noise with variance σ2. Thus, our objective
is to determine the bit value at the most accurate hypothesis given
by (2.247) and (2.248) from the received signal r(t).

The optimality criterion of selecting bit value in digital
communications is the total probability error, denoted by pe, and
given by

pe = p{bit value “1”|“0” transmitted}p{“0” transmitted}+
p{bit value “0”|“1” transmitted}p{“1” transmitted}.

(2.249)
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The optimal representation of the specific waveforms in this
application uses the Karhunen-Loève transform [8, 9].

The Karhunen-Loève transform can be used to represent a
second-order random process in terms of a set of orthonormal
basis functions scaled by a sequence of random variables. Assume
that r(t) is a zero-mean second-order random process over the bit
interval [0, T ]. We can then represent r(t) as follows:

r(t) =
∞∑
i=1

riφi(t), 0 ≤ t ≤ T (2.250)

where ri is the mutually uncorrected random variable and given by

ri =
∫ T

0
r(t)φi(t)dt, (2.251)

where φi is the basis function over the bit interval [0, T ]. Thus, an
equality, which is a limit MSE, is established such that

lim
N→∞

E


[
r(t)−

N∑
i=1

riφi(t)

]2
 = 0, 0 ≤ t ≤ T . (2.252)

In order to ensure that the basis function is orthonormal φi, we
can use the Gramm-Schmidt approach [10], which is a deterministic
algorithm that can convert an arbitrary set of basis functions into an
equivalent set of orthonormal basis functions. Thus, we are able to
obtain the full set of functions beginning with the specified signals
s0(t) and s1(t), that is,

∫ T

0
φi(t)sj(t)dt = 0, i > 2 and j = 0, 1. (2.253)

Now, (2.247) and (2.248) can be rewritten as an equivalent
hypothesis as follows:

H0 : r = q0 + η (2.254)

H1 : r = q1 + η (2.255)
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where

q0 =

[ ∫ T
0 φ1(t)s0(t)dt∫ T
0 φ2(t)s0(t)dt

]
, (2.256)

q1 =

[ ∫ T
0 φ1(t)s1(t)dt∫ T
0 φ2(t)s1(t)dt

]
, (2.257)

and
η =

[
η1 η2

]T
. (2.258)

Therefore, in this case, the design of the optimum receiver becomes
a simple two-dimensional detection approach.

2.10.2 Maximum Likelihood Detector

An optimum detector can be developed based on Bayes’ minimum
risk classifers [1] or the maximum a posteriori rule to select

largest
{
pHi|r{Hi|r = v}

}
, i = 0, 1. (2.259)

The expression of (2.259) is used to determine the hypothesis that
is most likely given the observation vector v. Thus, the optimum
detector can be established by using the likelihood ratio test

L(r) =
pr|H1{r}
pr|H0{r}

. (2.260)

If L(r) > p1

p2
, L(r) belongs to H1, where p1 and p2 are the a priori

probabilities of the hypotheses. In the same way, if L(r) < p1

p2
, L(r)

belongs to H0. Now, assume that the noise is white and Gaussian
with variance σ2. Thus, (2.260) can be rewritten as follows:

L(r) =

∏2
i=1

1√
2πσ

exp
[
− (ri−s1,i)

2

2σ2

]
∏2

i=1
1√
2πσ

exp
[
− (ri−s0,i)2

2σ2

] , (2.261)

where

sj,i =
∫ T

0
φi(t)sj(t)dt. (2.262)
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Let L(r) = p1

p2
. We take the logarithm on both sides of the equation,

cancel the common terms, and then obtain the optimum receiver as
follows:

Di > σ2 ln

(
p1

p2

)
, if H1 is true, (2.263)

Di < σ2 ln

(
p1

p2

)
, if H0 is true, (2.264)

where

Di =
2∑

i=1

ri(s1,i − s0,i)− 1

2

2∑
i=1

(s21,i − s20,i). (2.265)

Equation (2.265) is the two-dimensional version of the optimum
receiver, which can be converted back into a continuous time
receiver by using

2∑
i=1

risk,i =
∫ T

0
r(t)sk(t)dt, (2.266)

and
2∑

i=1

s2k,i =
∫ T

0
s2k(t)dt = Ek. (2.267)

Substituting (2.266) and (2.267) into (2.265) obtains

Di =
∫ T

0
r(t)[s1(t)− s0(t)]dt− 1

2
(E1 − E0). (2.268)

where E0 and E1 are the energies of signals s1(t) and s2(t),
respectively.

Thus, the optimum receiver in (2.268) first correlates the
received signal r(t) with the difference signal [s1(t)−s2(t)] and then
compares to a threshold of σ2 ln

(
p1

p2

)
. In other words, the optimum

receiver identifies the signal si(t) that best matches with the received
signal r(t). Therefore, the optimum receiver is referred to as the
correlation receiver or the matched filter receiver.
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By extending the results of the case, the optimum receiver for
M -ary signaling schemes is given by [8] to select the largest

Di =
∫ T

0
si(t)r(t)dt− Ei

2
+ σ2 ln(pi), i = 1, 2, · · · ,M , (2.269)

si(t) is the signal set and pi is the corresponding a priori
probabilities. The optimum receiver for M -ary signals is then to
implement a bank of correlation or matched filters followed by
selecting the largest decision.

2.10.3 Probability of Error

In Section 2.10.2, we derived the optimum receiver based on the
assumption of AWGN. The statistics of the logarithm of likelihood
ratio are Gaussian random variables. Hence, the probability of error
can be calculated directly by using the Q-function given by (2.139)

Pe = Q

( ||s0 − s1||√
N0

)

=
1

2
erfc

( ||s0 − s1||√
2N0

)
. (2.270)

where N0 is the PSD of noise and ||s0 − s1|| denotes the Euclidean
distance between the signal representation. Note that the Q-function
or erfc function is monotonically decreasing with increasing ||s0−s1||√

N0
.

Therefore, the probability of error decreases when the Euclidean
distance between the representation signals increases.

2.11 Summary

In this chapter, we presented an introduction to the fundamental
theory of probability and random variables, distribution and density
functions, stochastic signal processes, and detection theory and
optimum receivers. Beginning with a short review of probability
consisting of intuitive, axiomatic, and conditional methods, we then
introduced total probability and Bayes’ theorems, the independence
concept, and the definition of a random variable. These discussions
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of basic concepts and theories provide a necessary step for
understanding random processes in signal processing for digital
communications.

Another important topic introduced in this chapter is distribution
and density functions and the role they play in the field of
probability, random variables, and stochastic processes. First, we
discussed the definitions of probability distribution and density
functions, as well as their relationships. Second, we presented
joint distributions and densities based on two random variables.
This led us to develop the generalization of joint distributions
and densities for n random variables based on transformations of
random variables. Next, we defined the mean, variance, correlation,
covariance, and the correlation coefficient of random processes.
Discrete and continuous distributions and densities were also
introduced, with emphasis on density functions and properties.
Furthermore, we developed results for a sum of n random variables
that are useful in the analysis of random processes in terms of mean,
variance, and covariance. Additionally, we introduced upper bounds
on the tail probability, including Chebyshev inequality and the law
of large number, which led to the central limit theorem.

Next we presented stochastic signal processes. We defined
the concept of a discrete-time random process and introduced
autocorrelation and autocovariance as well as ensemble averages.
We outlined properties of stationary random processes including
SSS and WSS. Of particular importance in this chapter is the
analysis of the mean, autocorrelation, and power spectrum in the
context of stable LTI systems, along with the mathematic results in
both the discrete-time and frequency domains. We then established
MSE, MMSE, and estimation concepts as well as the relationships
among the MSE, variance, and bias of an estimator.

Finally, we derived detection theory that led to optimum
receivers based on the concept of a maximum likelihood detector.
The performance of the optimum receivers is evaluated by using the
probability of error.



Probability, Random Variables, and Stochastic Signal Processing 89

References

[1] Miao, G. J., and M. A. Clements, Digital Signal Processing and Statistical
Classification, Artech House, Norwood, Massachusetts, 2002.

[2] Davenport, W. B., and W. L. Root, Random Signals and Noise, McGraw-Hill, New
York, 1958.

[3] Davenport, W. B., Probability and Random Processes, McGraw-Hill, New York, 1970.

[4] Papoulis, A., Probability, Random Variable, and Stochastic Processes, McGraw-Hill,
New York, 1991.

[5] Mood, A. M., F. A. Graybill, and D. C. Boes, Introduction to the Theory of Statistics,
3rd ed., McGraw-Hill Book Company, New York, 1974.

[6] Bickel, P. J., and K. A. Doksum, Mathematical Statistics: Basic Ideas and Selected
Topics, Holden-Day, Oakland, California, 1977.

[7] Haykin, S., Digital Communications, John Wiley & Sons, New York, 1988.

[8] Gibson, J. D., (ed.), The Mobile Communications Handbook, 2nd ed., CRC Press, LLC,
Boca Raton, Florida, 1999.

[9] Tou, J. T., and R. C. Gonzalez, Pattern Recognition Principles, Addison-Wesley
Publishing Company, Reading, Massachusetts, 1974.

[10] Proakis, J. G., Digital Communications, 2nd ed., McGraw-Hill, New York, 1989.



90 Signal Processing in Digital Communications



3
Sampling Theory

3.1 Introduction

In digital communications, to transmit and receive continuous-time
signals, the continuous-time analog signals have to be converted
into digital signals. Digital transmission of the continuous-time
analog signals involves a sampling process, which is the process of
converting the continuous-time signal into a discrete-time sequence.
The process is also known as analog-to-digital (A/D) converting or
simply digitizing.

The sampling process has to obey a sampling theorem,
sometimes referred to as the Nyquist-Shannon sampling theorem [1].
The sampling theorem states conditions so that the samples represent
no loss of information and can therefore be used to reconstruct the
original signal with arbitrarily good fidelity.

When the sampling process does not meet the sampling
theorem, the signal frequencies will alias. This leads to the loss
of information. However, aliasing can be used as an advantage
with a technique called undersampling. In this case, a continuous-
time signal is sampled at less than the Nyquist sampling rate.
Undersampling has become a key technique often utilized in A/D
converters for radio frequency (RF) communication transceivers.

91
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The sampling process can be presented by either the frequency
domain or time domain or both. The frequency-domain analysis is
often used in digital communications. Thus, in this chapter, using
Fourier transform techniques, we first introduce this remarkable
sampling theorem and then discuss undersampling and the operation
of sampling.

This chapter is organized as follows. A short introduction of
sampling is presented in this section. In Section 3.2, we introduce
the discrete-time sampled signal in which we discuss instantaneous
sampling and an ideal sampled signal. In Section 3.3, we first
focus on the Nyquist sampling theorem and then discuss time-
and frequency-domain interpolation formulas as well as aliasing.
Undersampling is presented in Section 3.4, along with discussions
of obtaining minimum sampling rate and antialiasing bandpass
filters. Then, in Section 3.5, we expand the sampling theorem into
a stochastic sampling theorem. Finally, a brief summary is given in
Section 3.6.

3.2 Discrete-Time Sampled Signals

Signals can usually be classified into three categories: (1) analog
signals that are continuous both in time space and amplitude;
(2) discrete-time sampled signals (or discrete-time signals), which
consist of signals discrete in time space and continuous in amplitude;
and (3) digital signals that are discrete in both time space and
amplitude [2]. One common way to create digital or discrete-
time sampled signals is by sampling continuous-time signals.
Signal processing has to do with the representation, manipulation,
implementation, and transformation of signals, and the information
that they carry in the transformation media (or channel).

3.2.1 Instantaneous Sampling

Assume that the continuous-time signal xa(t) is sampled at a rate of
Fs = 1/Ts samples per second or hertz (Hz), where Fs is known as
the sampling frequency, Ts is referred to as the sampling interval or
sampling period, and its reciprocal 1/Ts is the sampling rate. Then,
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the discrete-time sampled signal x[n] is equal to the value of the
continuous-time signal xa(t) at time nTs as follows:

x[n] = xa(nTs), −∞ < n <∞. (3.1)

Note that the discrete-time sampled signal x[n] in (3.1) is a
mathematically indexed sequence of numbers, where n is an
integer from −∞ to ∞. This form of sampling process is called
instantaneous sampling. Thus, the discrete-time sampled signals
x[n] can often be considered as a result of sampling a continuous-
time signal xa(t) by using an A/D converter.

The A/D converter actually consists of the combination of two
processes: (1) sampling, which converts the signal from continuous-
time domain to discrete-time domain; and (2) quantization, which
converts the signal amplitude from a continuous infinite value to a
finite set of discrete values.

For example, a continuous-time sinusoid signal s(t) is given by
the mathematical formula

s(t) = A[cos(2πf0t+ φ)], (3.2)

where A is the amplitude, f0 is the frequency in hertz, and φ is
the phase offset. If the discrete-time sampled signal s[n] is obtained
by using the A/D converter, sampling the continuous-time sinusoid
signal s(t) at a sampling rate of Fs = 1/Ts, we then have the
discrete-time sampled signal

s[n] = s(t) |t=nTs

= A[cos(2πf0Tsn+ φ)]

= A

[
cos

(
2π
f0
Fs
n+ φ

)]
= A[cos (ω0n+ φ)], (3.3)

where ω0 = 2πf0Ts is the normalized frequency in radians.
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3.2.2 Ideal Sampled Signal

The sampling process in (3.1) can be represented as

x[n] = xa(nTs) =
∫ ∞

−∞
xa(τ)δ(τ − nTs)dτ, (3.4)

where δ(τ) is the Dirac delta function or impulse. On the other hand,
the discrete-time sampled signal x[n] has a continuous-time pulse
amplitude modulation (PAM) representation in terms of impulses.
This means that a continuous-time signal can be reconstructed from
a discrete-time sampled signal.

To illustrate this operation, we assume that xs(t) can be obtained
by using multiplication of xa(t) with the unit impulse train δT (t)
with period Ts as follows:

xs(t) = xa(t)δT (t)

= xa(t)
∞∑

n=−∞
δ(t− nTs)

=
∞∑

n=−∞
xa(t)δ(t− nTs)

=
∞∑

n=−∞
xa(nTs)δ(t− nTs), (3.5)

where xs(t) is referred to as the ideal sampled signal [3].

3.3 Nyquist Sampling Theorem

Sampling is the process of converting a continuous-time signal (or
a continuous-time function) into a numeric sequence (or a discrete-
time function). The condition of sampling, which needs to represent
no loss of signal information and can therefore be used to reconstruct
the original signal with arbitrarily good fidelity, states that the signal
must be bandlimited and that the sampling frequency must be at least
twice the signal bandwidth. This condition of sampling is known as
the Nyquist-Shannon sampling theorem [1]. Sometimes, it is simply
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-fb fbfB
f

X(f)

Figure 3.1 Frequency spectrum of a bandlimited signal.

referred to as the sampling theorem, which is a fundamental result
in the field of information theory, in particular, telecommunications.

A bandlimited signal is constrained in terms of how fast it
can change and therefore how much detail it can convey between
discrete samples in time. The sampling theorem indicates that the
discrete samples can completely represent the signal if the signal
bandwidth is less than half the sampling rate Fs, which is referred to
as the Nyquist sampling frequency.

In order to represent the concept of the sampling theorem, let
x(t) denote a real-value continuous-time signal and X(f) be its
unitary Fourier transform as follows:

X(f) =
∫ ∞

−∞
x(t)e−j2πftdt, (3.6)

where X(f) as shown in Figure 3.1 is a bandlimited signal with the
highest frequency at fb,

X(f) = 0, |f | > fb. (3.7)

The Nyquist sampling frequency Fs for alias-free components is
given by

Fs ≥ 2fb, (3.8)
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or equivalently

fb ≤ Fs
2
. (3.9)

The discrete-time sampled signal is obtained by

x[n] = x(nTs), −∞ < n <∞, (3.10)

where Ts = 1
Fs

is the sampling interval, which is the constant time
interval between successive samples.

3.3.1 Time-Domain Interpolation Formula

Equation (3.5) indicates multiplication in the time domain. However,
the multiplication in the time domain corresponds to convolution in
the frequency domain. By taking the Fourier transform of both sides
of (3.5), we obtain the Fourier transformXs(ω) of the ideal sampled
signal xs(t) as follows:

Xs(ω) =
[
1

2π
Xa(ω)

]
∗
[
2π

Ts

∞∑
n=−∞

δ
(
ω − 2πn

Ts

)]

=
1

Ts

∞∑
n=−∞

Xa

(
ω − 2πn

Ts

)
, (3.11)

where “∗” denotes convolution. Equation (3.11) indicates that
sampling produces images of Xa(ω) in the frequency axis.
Therefore, Xs(ω) will repeat periodically without overlapping if
Fs ≥ 2fb.

For example, consider a case of a signal of frequency fa sampled
at a sampling frequency Fs using an ideal impulse sampler (or an
ideal A/D converter) and assume Fs > 2fa as shown in Figure 3.2.
The output of the ideal impulse sampler in the frequency domain
produces images of the original signal at frequencies equal to
±kFs ± fa for k = 1, 2, 3, · · ·.

The Nyquist frequency bandwidth is defined to be the frequency
spectrum from DC to the half sampling frequency Fs

2
. The frequency

spectrum can be divided into a set of an infinite number of zones,
known as Nyquist zones. Each of the Nyquist zones has a frequency
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Figure 3.2 Frequency spectrum of an analog signal fa sampled at
Fs (Fs > 2fa) using an ideal impulse sampler.

bandwidth equal to Fs
2

. In this case, all of the signal of interest (or
the bandwidth of sampled signals) is limited within the first Nyquist
zone, and images of the original bandwidth of frequencies appear in
each of the other Nyquist zones. Thus, in this case, the sampling
process is referred to as baseband sampling in communication
applications.

In the absence of aliasing distortion, the signal xa(t) can be
reconstructed from its samples by using an ideal lowpass filter
having a frequency response,

H(ω) =

{
Ts, |ω| ≤ π

Ts

0, otherwise.
(3.12)

Using the inverse Fourier transform of (3.12), we obtain the impulse
response h(t) of the ideal lowpass filter as follows:

h(t) =
sin(πt/Ts)

πt/Ts
. (3.13)

Using the property that convolution in time domain equals
multiplication in frequency domain, the Fourier transform Xa(ω) of
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the signal xa(t) can be obtained by

Xa(ω) = Xs(ω)H(ω). (3.14)

For the signal xa(t) in the time domain, taking the inverse Fourier
transform on both sides of (3.14) and using (3.5) and (3.13) yield

xa(t) = xs(t) ∗ h(t)
=

∞∑
n=−∞

xa(nTs)δ(t− nTs) ∗
[
sin(πt/Ts)

πt/Ts

]

=
∞∑

n=−∞
xa(nTs)

{
sin[π(t− nTs)/Ts]
π(t− nTs)/Ts

}
. (3.15)

Therefore, using (3.15), we are able to find the value of a
bandlimited continuous-time function at any point in time given a set
of samples of the function. Equation (3.15) is known as the Nyquist-
Shannon interpolation formula or sometimes called the time domain
interpolation formula.

The time-domain interpolation formula states as follows: Each
sample is multiplied by a sinc-function. The width of each half-
period of the sinc-function is scaled to match the sampling
frequency, and the central point location of the sinc-function is
shifted to the time of that sample. Then, all of these shifted and
scaled functions are added together to reconstruct the original signal.
Note that the result of this operation is indeed a continuous-time
signal since the sinc-function is a continuous-time function.

In order to obtain the original continuous-time signal after the
reconstructing process, we must also meet a critical condition on the
sampling frequency, that is, the sampling frequency must be at least
twice as large as the highest frequency component of the original
continuous-time signal.

3.3.2 Frequency-Domain Interpolation Formula

A continuous-time signal x(t) is called a time-limited signal if the
condition is satisfied as follows:

x(t) = 0, |t| > |T0|. (3.16)
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The Fourier transformX(ω) of the time-limited signal x(t) in (3.16)
can be uniquely determined by using its values X(nωs) sampled at
a uniform sampling frequency rate, where ωs ≤ π

T0
. If ωs = π

T0
, then

the Fourier transform X(ω) is given by [3]

X(ω) =
∞∑

n=−∞
X(nωs)

[
sin[(ω − nωs)T0]

(ω − nωs)T0

]
. (3.17)

We refer to (3.17) as the frequency-domain interpolation formula.
Note that if a signal is frequency bandlimited, it cannot be

time-limited and vice versa. In many communication applications,
the signal to be sampled is usually time-limited and is not
strictly frequency bandlimited. However, beyond certain defined
frequency bandwidths, we see that the frequency components
of physically occurring signals attenuate rapidly. Therefore, for
practical applications, we treat these signals as being frequency
bandlimited as well.

3.3.3 Aliasing

If frequency components are above the Nyquist sampling frequency,
upon sampling the frequencies will overlap. The overlap is referred
to as aliasing. Therefore, the discrete samples are subject to aliasing
as well. The aliasing is undesirable in most signal processing and
communication applications.

From the Nyquist sampling theorem, we must sample a signal
at a sampling rate of at least twice the bandwidth of the signal. For
baseband signals with frequency components starting from DC to a
maximum frequency, this indicates that the sampling rate must be
at least twice this maximum frequency. In such cases, the frequency
bandwidth is the same as the maximum frequency.

In order to avoid aliasing, we can implement two methods as
follows: (1) increase the sampling rate and/or (2) introduce an
antialiasing filter or make the antialiasing filter more stringent. The
antialiasing filter is used to restrict the signal bandwidth to satisfy the
condition of sampling frequency. This holds in theory, but does not
always work satisfactorily in practice. This is because a continuous-
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time signal will have some energy outside of the signal bandwidth.
However, the energy may be small enough so that the aliasing effects
are negligible.

3.4 Undersampling

Consider the case where the sampled signal bandwidth lies entirely
within the other Nyquist zones rather than the first Nyquist zone.
A real-value signal x(t) is called a bandpass signal if the Fourier
transform X(f) satisfies the following condition:

X(f)

{ �= 0, f1 < |f | < f2
= 0, otherwise.

(3.18)

Sampling for the bandpass signal is referred to as bandpass
sampling. For example, a bandpass signal is the intermediate
frequency (IF) output from a communication receiver with a center
frequency at 71 MHz and a 4-MHz frequency bandwidth. In this
case, if we use baseband sampling, we would need to use an A/D
converter with a sampling rate about 146 MHz. But with bandpass
sampling, we would only need to use an 8-MHz sampling rate.
This method is a huge benefit compared to baseband sampling.
The process of sampling a signal outside the first Nyquist zone is
called undersampling. It is also known as super-Nyquist sampling,
harmonic sampling, and IF sampling as well as direct IF to digital
conversion.

Figure 3.3 shows the sampled signal restricted to different
Nyquist zones by undersampling. Figure 3.3(a) is a case of baseband
sampling, where the frequency bandwidth of sampled signals lies
within the first Nyquist zone and images of the original bandwidth of
frequencies display in each of the other Nyquist zones. Figure 3.3(b)
shows a case where the sampled signal bandwidth is limited to
be entirely within the second Nyquist zone. Note that when the
signals are located in even Nyquist zones, the first Nyquist zone
image contains all the information in the original signal, with
the exception of its original location and frequency reversal. In
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Figure 3.3 Undersampled signal restricted to the different Nyquist
zones.

Figure 3.3(c), the sampled signal is restricted to the third Nyquist
zone. In this case, the first Nyquist zone image has no frequency
reversal and accurate representation of the original signal. Thus, all
the signal information can be preserved as long as a signal is sampled
at a sampling rate equal to or greater than twice its frequency
bandwidth.

Undersampling, which samples signals with frequency compo-
nents over the first Nyquist zone, has become popular in many com-
munication receivers. It is becoming common practice to sample the
bandpass signal directly, and then use digital signal processing tech-
niques to deal with the signal, thereby eliminating the need for ana-
log demodulation.
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3.4.1 Minimum Sampling Rate

The minimum sampling rate for undersampling depends on f1 and
f2 given by (3.18) and the frequency bandwidth fB = f2 − f1. In
order to avoid overlap, the sampling rate must satisfy the following
constraints:

Fs ≥ 2(f2 − f1), (3.19)

(n− 1)Fs ≤ 2f1, (3.20)

and
nFs ≥ 2f2, (3.21)

where n is an integer. Using f1 = f2 − fB, these constraints can be
rewritten as

Fs ≥ 2fB, (3.22)

Fs ≤ 2(f2 − fB)
n− 1

, (3.23)

and

Fs ≥ 2f2
n
. (3.24)

Thus, the minimum sampling rate is obtained by

{Fs}min =
2f2
k
, (3.25)

where k is the integer, but it does not exceed f2
fB

. Further note that if

the ratio of f2
fB

is an integer, then the minimum sampling rate is

{Fs}min = 2fB. (3.26)

Example 3.1

Consider a bandpass signal with the center frequency at 71 MHz,
f1 = 69 MHz, and f2 = 73 MHz. Thus, the frequency bandwidth
of the bandpass signal is equal to fB = 4 MHz, f2

fB
= 18.25, and

k = 18 for the next lowest integer. Using (3.25), we obtain the
minimum sampling rate {Fs}min = 8.1111 MHz.
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Figure 3.4 Antialiasing bandpass filter for undersampling a signal
in the second Nyquist zone.

3.4.2 Antialiasing Bandpass Filter

In the undersampling process, the sampling rate is selected to be less
than the bandpass signal’s center frequency. This intentionally leads
to aliasing the center frequency to a frequency less than the sample
rate. Thus, to avoid interference we must assure that the continuous-
time analog signal does not have frequency intervals aliasing onto
any desired signal frequencies.

Figure 3.4 shows a continuous-time analog signal in the second
Nyquist zone centered around a center (or carrier) frequency fc,
where lower and upper frequencies are f1 and f2, respectively. The
frequency bandwidth of the continuous-time analog signal is equal
to fB = f2 − f1. An analog antialiasing filter is a bandpass filter,
whose desired dynamic range is the filter stopband attenuation. The
analog antialiasing filter is placed before an A/D converter. The
upper transition band is the frequencies from f2 to 2Fs − f2, and
the lower transition band is the frequencies from f1 to Fs − f1. In
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the case of undersampling, increasing the sampling rate relaxes the
antialiasing bandpass filter requirements.

In order to minimize the cost of the analog antialiasing bandpass
filter, we can arrange the signal band of interest to alias to one-fourth
of the selected sampling rate. The k

2
+ 1

4
option aliases the signal to

the positive one-quarter sampling rate while the k
2
− 1

4
option aliases

the signal to the negative one-quarter sampling rate. To ensure that
the carrier frequency fc is placed in the center of a Nyquist zone,
we use the two options to make a set of possible sampling rates as
follows:

fc =

(
k

2
± 1

4

)
Fs, (3.27)

where k is the integer and corresponds to the Nyquist zone.
Equation (3.27) can be rewritten as

Fs =
4fc

2k ± 1
. (3.28)

In addition to (3.28), the Nyquist criteria must also be satisfied as
follows:

Fs ≥ 2fB. (3.29)

Thus, we select k such that the Nyquist zone is chosen to be as large
as possible while (3.29) is still satisfied. This method will help result
in the minimum required sampling rate. Also note that if the Nyquist
zone is selected to be an odd zone, then the carrier frequency fc
and the bandpass signal x(t) will fall in the odd Nyquist zone. As a
result, the image frequencies in the first Nyquist zone will not need
to be reversed.

Example 3.2

Reconsider Example 3.1, given the signal bandwidth fB = 4 MHz;
the Nyquist sampling rate Fs is then equal to 8 MHz. Using Fs = 8
MHz and fc = 71 MHz, we can solve (3.28) to obtain k = 18.25.
Since k must be an integer, we round 18.25 to the lowest integer,
18. Then, we again substitute k = 18 and fc = 71 MHz into (3.28)
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to yield Fs = 8.1143 MHz. Therefore, the final sampling frequency
rate is Fs = 8.1143 MHz and k = 18 for the Nyquist zone.

Compared to the results obtained in Example 3.1, we see that the
final sampling rate by using (3.28) in Example 3.2 is approximately
the same value, about Fs = 8.11 MHz, by using (3.25) in Example
3.1. Therefore, both (3.25) and (3.28) will yield an approximate
result of the sampling rate for undersampling processes.

3.5 Stochastic Sampling Theorem

In the earlier discussion of the sampling theorem, we showed that
the bandlimited signal sampled at the Nyquist sampling rate can
be reconstructed from its samples by using the Nyquist-Shannon
interpolation formula given by (3.15). Equivalently, an analog
continuous-time signal xa(t) can be reconstructed by passing the
sampled signal x[n] through an ideal lowpass filter with an impulse
response given by (3.13).

In this section, we expand the sampling theorem to bandlimited
stochastic processes. A stationary stochastic process x(t) is said to
be a bandlimited stochastic process [4, 5] if its power spectrum

Px(f) = 0, for |f | > f0 (3.30)

where f0 is the highest frequency contained in the stationary sto-
chastic process x(t). Note that Px(f) in (3.30) is the Fourier trans-
form of the autocorrelation function R(τ). Thus, the corresponding
autocorrelation function R(τ) can be obtained by

R(τ) =
∞∑

n=−∞
R(nTs)

{
sin[π(t− nTs)/Ts]
π(t− nTs)/Ts

}
, (3.31)

where Ts is the sampling interval equal to Ts ≥ 1
2f0

, and R(nTs) are
the samples of R(τ) taken at τ = nTs, where n = 0,±1,±2, · · ·.

In a similar way, if x(t) is the bandlimited stationary stochastic
process, then x(t) can be expressed as follows:

x(t) =
∞∑

n=−∞
x(nTs)

{
sin[π(t− nTs)/Ts]
π(t− nTs)/Ts

}
, (3.32)



106 Signal Processing in Digital Communications

where Ts is the sampling interval equal to Ts ≥ 1
2f0

and x(nTs) is
the sample of x(t) taken at t = nTs, where n = 0,±1,±2, · · ·.
Papoulis [4] proved the theoretical result in (3.32) by using the
exponential ejωt as a function of ω, viewing t as a parameter, and
expanding it into a Fourier series. Equations (3.31) and (3.32) are
referred to as the stochastic sampling theorem of the interpolation
formula for the stationary stochastic process or the sampling
expansion. In this case, the samples are random variables, which
can be described statistically by using appropriate joint probability
density functions.

Proakis [5] showed that the equality relationship between
the stochastic sampling representation given by (3.32) and the
bandlimited stationary stochastic process x(t) holds in an optimal
sense as follows:

E


∣∣∣∣∣x(t)−

∞∑
n=−∞

x(nTs)

{
sin[π(t− nTs)/Ts]
π(t− nTs)/Ts

}∣∣∣∣∣
2
 = 0. (3.33)

Equation (3.33) is the mean square error (MSE), which is equal to 0.

3.6 Summary

In this chapter, we first introduced discrete-time sampled signals,
including instantaneous sampling and the ideal sampled signal.
Second, we focused on the fundamental theory of the sampling
theorem, with an emphasis on the time- and frequency-domain
interpolation formulas as well as the aliasing. Third, we addressed
the undersampling techniques, the methods of determining the
minimum sampling frequency rate, and the requirements of the
analog antialiasing bandpass filter. We then expanded the sampling
theorem into the stochastic signal processes. These discussions of
the sampling theorem and its techniques provided a fundamental
step to understanding sampling on signal processing for digital
communications.

From a signal processing perspective, the sampling theorem
describes two operations as follows: (1) a sampling process in which
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a continuous-time signal is converted to a discrete-time signal, and
(2) a reconstruction process in which the continuous-time signal is
recovered from the discrete-time signal by using the interpolation
formula. However, in order to obtain the original continuous-time
signal after the reconstruction process, a critical condition of the
sampling rate must be met, that is, it must be at least twice as large
as the highest frequency component of the original continuous-time
signal. If the highest frequency component of the continuous-time
signal that we sampled is known, the sampling theorem provides the
lowest possible sampling rate so that perfect reconstruction can be
ensured. In this case, the lowest possible sampling rate is referred to
as the Nyquist sampling rate. On the other hand, if the sampling
rate is given, the sampling theorem provides an upper bound for
the frequencies of the continuous-time signal to assure perfect
reconstruction. Both of these cases indicate that the continuous-time
signal to be sampled should be bandlimited. In other words, for
instance, any frequency component of the continuous-time signal
that has a frequency component above a certain bound should be
zero, or at least sufficiently close to zero.

In practice, the sampling theorem described in this chapter can-
not be completely satisfied. This is because the ideal reconstruction
process of using the sinc-functions is assumed. However, it cannot
be implemented, since it indicates that each of samples contributes
to the reconstructed continuous-time signal at almost all time points.
Thus, we have to use some types of approximations of the sinc-
functions, which are truncated to limited intervals. In this case, the
approximations of the sinc-functions create an error that is some-
times referred to as the interpolation error. In addition, the sampled
continuous-time signal can never be bandlimited exactly. This is to
say that even if an ideal reconstruction process could be obtained,
the reconstructed continuous-time signal would not be the sampled
continuous-time signal exactly. In this case, the failure of band lim-
itation produces an error for sampled signal.

Another important topic introduced in this chapter is under-
sampling and the role that it has played in the field of digital



108 Signal Processing in Digital Communications

communication transceivers. Undersampling is used to sample a
continuous-time signal outside the first Nyquist zone. In this case,
the continuous-time signal must be sampled at a sampling rate equal
to or greater than twice its bandwidth in order to preserve all the sig-
nal information. In addition, the frequency band of sampled signals
should be restricted to a single Nyquist zone. In other words, the
sampled continuous-time signals must not overlap at any multiple of
half-sampling frequency rate Fs

2
. Eventually, this can be achieved by

using an analog antialiasing bandpass filter.
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4
Channel Capacity

4.1 Introduction

A communication channel is a medium that is used to transmit
signals from a transmitter to a receiver. It may be a pair of telephone
wires, a coaxial cable, a band of radio frequencies, and so on. During
a transmission, the signals at the receiver may be perturbed by noise
along with channel distortions. However, the noise and channel
distortions can be differentiated because the channel distortions
are a fixed function applied to the signals while the noise has
statistical and unpredictable perturbations. Therefore, the channel
distortions can be corrected by using an inverse function of the
channel distortions. On the other hand, the perturbations due to
the noise cannot be eliminated because the signals do not usually
undergo the same change during the transmission.

Assume that it is possible to reliably distinguish M different
signal states in a period time of duration T over a communication
channel. In other words, the channel can be used to transmit log2M
bits in the period time of duration T . The rate of transmission R is
then expressed as

R =
log2M

T
. (4.1)

109
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However, more precisely, channel capacity is defined as

C = lim
T→∞

(
log2M

T

)
. (4.2)

Equation (4.2) was derived by Shannon [1–3] in 1949. Therefore,
in this chapter, we first discuss Shannon’s theorem of the chan-
nel capacity and then expand it into different channels, includ-
ing Gaussian, bandlimited, single-input multiple-output (SIMO),
multiple-input single-output (MISO), and multiple-input multiple-
output (MIMO) channels.

This chapter is organized as follows. A short introduction of
channel capacity is presented in this section. In Section 4.2, we
introduce a Gaussian channel capacity in which we discuss a
fundamental Shannon’s theorem for a continuous channel in the
presence of additive Gaussian noise. In Section 3.3, we focus
on approaching a problem of communication transmission over a
bandlimited channel given the Nyquist-Shannon sampling theorem
and lead to the bandlimited channel capacity. MIMO channel
capacity is presented in Section 4.4, along with discussions of
obtaining capacity in terms of the sum of each of the nonzero
eigenvalues. Then, we expand the MIMO channel capacity into
SIMO and MISO channel capacities in Sections 4.5 and 4.6,
respectively. Finally, a brief summary is given in Section 4.6.

4.2 Gaussian Channel Capacity

The most important communication channel is the Gaussian
channel, which has been used to model many practical channels,
including wireline, radio, and satellite links. Figure 4.1 shows a
discrete-time Gaussian channel model with the output y[n] at time
index of n, where y[n] is the sum of the input x[n] and the noise v[n].
Thus, we obtain the output of the discrete-time Gaussian channel as
follows:

y[n] = x[n] + v[n], (4.3)

where the noise in (4.3) is assumed to be independent of the input
signal x[n], and satisfies an independent and identically distributed
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Figure 4.1 A general discrete-time Gaussian channel model.

normal (Gaussian) distribution with zero mean and variance of N .
Shannon [1–3] showed that if T → ∞ in (4.2) and if the rate of

transmission approaches the channel capacity, the information (or
channel) capacity of a Gaussian channel is then obtained by

R ≤ C = lim
T→∞

(
log2M

T

)

=
1

2
log2

(
1 +

P

N

)
, (4.4)

where R is the rate of transmission, C is the channel capacity in
terms of the number of bits per transmission, P is the signal power,
and N is the noise variance. In this case, the probability of error,
denoted by Pe, approaches a standard normal distribution with zero
mean and unit variance [4]:

Pe = Φ0,1

√T
√√√√ 2P (P +N)

N(P + 2N)
(R− C)

 , (4.5)

where the standard normal distribution is given by

Φ0,1(x) =
∫ x

−∞

1√
2π
e−

u2

2 du. (4.6)

Equation (4.5) expresses the fundamental Shannon’s theorem for a
continuous channel in the presence of additive Gaussian noise.
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4.3 Bandlimited Channel Capacity

A common channel model for transmission of information messages
over a band of radio frequencies or a telephone line is a bandlimited
channel with white and Gaussian noise. In the time domain, an
output of the bandlimited channel can be expressed as

y(t) = [x(t) + v(t)] ∗ h(t), (4.7)

where “∗” denotes the convolution operation, x(t) is the input, v(t)
is the noise, and h(t) is the time-domain impulse response of an
ideal bandpass filter, which cuts out all frequencies greater than W .
By using the sample with t = nT , where T is the sample interval,
the output of the bandlimited channel in (4.7) can be rewritten as

y[n] = (x[n] + v[n]) ∗ h[n], (4.8)

where x[n] is the discrete-time input signal, v[n] is the discrete-time
noise, h[n] is the discrete-time ideal bandpass filter, and y[n] is the
discrete-time output signal.

If a function f(t) has a bandlimit with no frequencies higher
than W , then the function is completely reconstructed by a set of
samples of the function spaced at 1

2W
seconds apart. In other words,

if the function f(t) contains no frequencies greater thanW , it cannot
change by a substantial amount in a time less than one-half cycle of
the highest frequency 1

2W
. Mathematically, this statement about the

bandlimited function f(t) can be proved as follows. Let F (ω) be the
frequency spectrum of the function f(t). Then we obtain

f(t) =
1

2π

∫ ∞

−∞
F (ω)ejωtdω

=
1

2π

∫ 2πW

−2πW
F (ω)ejωtdω, (4.9)

where F (ω) is assumed to be zero outside the frequency band ofW ,
−2πW ≤ ω ≤ 2πW . If we assume that

t =
n

2W
, (4.10)
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where n is the integer, substituting (4.10) into (4.9) obtains

f
(
n

2W

)
=

1

2π

∫ 2πW

−2πW
F (ω)ej

ωn
2W dω. (4.11)

Note that on the left side of (4.11) is the sample value f
(

n
2W

)
of the

function f(t). The integral on the right side of (4.11) is the definition
of the nth coefficient in a Fourier series expansion of the periodic
extension of the function F (ω), taking the interval from −2πW to
2πW as the fundamental period. Therefore, this indicates that the
sample values f

(
n

2W

)
determine the Fourier coefficients in terms

of the expansion function F (ω). Since F (ω) is zero for frequencies
greater than W , the function F (ω) can be uniquely determined by
using the samples. On the other hand, the function F (ω) determines
the function f(t) completely if its spectrum is given. Thereby, using
the samples determines the function f(t) completely.

Consider a pulse of the type function

h(t) =
sin(2πWt)

2πWt
. (4.12)

This function h(t), which is called the sinc function, is equal to 1 at
t = 0 and is 0 for t = n

2W
, n �= 0. The frequency spectrum of the

sinc function is constant in the frequency band from −W toW , and
is zero outside. Then the function f(t) can be expressed by

f(t) =
∞∑

n=−∞
f
(
n

2W

)
sin[π(2Wt− n)]
π(2Wt− n) . (4.13)

Equation (4.13) is referred to as the Nyquist-Shannon sampling
theorem or sampling theorem [3]. It shows that a bandlimited
function has only 2W degrees of freedom per second. The values
of the function at the sampling points can be selected independently
to specify the entire function.

Given the Nyquist-Shannon sampling theorem in (4.13), we can
now approach the problem of communication transmission over a
bandlimited channel. Assume that the bandlimited channel has a
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bandwidth of W . Both of the input and output signals are measured
with samples taken 1

2W
second apart. Note that each of the input

samples is corrupted by noise to produce the corresponding output
samples. Each of the noise samples is an independent and identically
distributed Gaussian random variable because the noise is white and
has a Gaussian distribution [5]. Further assume that the bandlimited
channel is used over the time period of interval [0, T ]. Thus, in this
case, the power per sample is equal to

PT

2WT
=

P

2W
. (4.14)

If the noise has the power spectral density N0

2
and bandwidth of W ,

the noise then has the power(
N0

2

)
2W = N0W. (4.15)

Thus, with each of the 2WT noise samples in the time period T
and (4.15), the noise variance per sample is equal to

N0W
T

2WT
=
N0

2
. (4.16)

Therefore, using (4.14) and (4.16) and substituting them into (4.4),
we obtain the channel capacity for the bandlimited channel as
follows:

C =
1

2
log2

(
1 +

P/2W

N0/2

)

=
1

2
log2

(
1 +

P

N0W

)
, (4.17)

where C is the number of bits per sample. Since there are 2W
samples per second, then the channel capacity of the bandlimited
channel can be rewritten as

C = W log2

(
1 +

P

N0W

)
, (4.18)
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where C is the number of bits per second (bps). Equation (4.18) is
the channel capacity of the bandlimited channel with the power P in
watts and the noise spectral density N0

2
in watts per hertz (Hz).

Equation (4.18) further indicates that the channel capacity of the
bandlimited channel increases monotonically by increasing in the
SNR,

SNR = 10 log
(
P

N0W

)
. (4.19)

In other words, with a fixed bandwidth, the channel capacity of
the bandlimited channel increases as the transmitted signal power
increases. On the other hand, if the transmitted signal power is fixed,
the channel capacity is also increased by increasing the bandwidth
ofW .

Further note that if W approaches infinity in (4.18), the channel
capacity of the bandlimited channel approaches the asymptotic value

C =
P

N0

log2 e

=
P

N ln 2

≈ P

0.693N
(bps). (4.20)

Therefore, for an infinite bandwidth channel, the channel capacity
grows linearly as the transmitted signal power increases. Further-
more, the channel capacity increases rapidly as we increase the fre-
quency band until the total noise power is approximately equal to
the signal power. Then, the channel capacity increases slowly, and it
approaches an asymptotic value at 1.443.

In any electrical conductor above the absolute zero of a
temperature, the electrons are in a state of random motion. This leads
to thermal noise, which produces an open circuit noise voltage as
follows [6]:

V 2 = 4kTR
∫ f2

f1

(
hf

kT

)(
1

e
hf
kT − 1

)
df, (4.21)
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where R is the resistance of the resistor measured in ohms, k is the
Boltzmann’s constant equal to k = 1.38 × 10−23 (joules/degree), T
is the temperature of the resistor in degrees of Kelvin, when absolute
zero is−273o C or−459o F, f is the frequency in hertz, and V 2 is the
mean square noise voltage, which is the average value of the square
of the noise voltage across the resistor.

The expression of thermal noise or Johnson noise in (4.21) can
be simplified to the system bandwidth ofW given by [7]

V 2 = 4kTRW, (4.22)

where W is the bandwidth of the noise in cycles per second. Thus,
the most noise power is given by

N = kTW. (4.23)

If we substitute (4.23) into (4.4), the channel capacity of the band-
limited channel becomes

C = W log2

(
1 +

P

kTW

)
. (4.24)

If the W in (4.24) approaches infinity, the channel capacity of the
bandlimited channel approaches the asymptotic value

C ≈ P

0.693kT
(bps). (4.25)

Thus, we can rewrite (4.25) as follows:

P ∼= 0.693kTC. (4.26)

Equation (4.26) says that we need at least a power of 0.693kT joules
per second to transmit one bit per second, no matter how wide the
bandwidth used. In other words, on the average, we must at least use
an energy of 0.693kT joules to transmit each bit of an information
message. In practice, most communication systems require much
more energy per bit for transmission over a bandlimited channel.
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Figure 4.2 A general block diagram of a wireless MIMO
communication system with multiple antenna elements
at both the transmitter and the receiver.

4.4 MIMO Channel Capacity

Digital communication systems based on a MIMO channel
have recently emerged as one of the most important technical
breakthroughs for wireless communications. For an arbitrary
wireless communication system, a communication link for which
a transmitter and a receiver are equipped with multiple antenna
elements is considered a MIMO system. Figure 4.2 shows a general
block diagram of a wireless MIMO communication system, with
multiple antenna elements at both the transmitter and the receiver.

The idea behind MIMO systems is to use space-time signal
processing in which the natural dimension of digital communication
data is complemented with the spatial dimension by using the
multiple spatially distributed antennas. The MIMO systems are
capable of turning multipath propagation into a benefit for the user.
This is because the MIMO systems are able to provide spatial
diversity, time diversity, and frequency diversity by coherently
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combining the use of the transmitter antennas at one end and the
receiver antennas at the other end. Thereby, enhancing wireless
transmission over the MIMO channel improves the channel capacity
and the quality of bit error rate (BER).

Consider a continuous-time MIMO channel with nT transmitter
antennas and nR receiver antennas. We let

x(t) = [x1(t), x2(t), · · · , xnT (t)]T (4.27)

be the nT × 1 vector of transmitted signals, where [·]T denotes the
vector transpose, and H(τ, t) be the channel impulse response. The
the received signal y(t) is then obtained by the convolution of the
channel impulse response H(τ, t) and the transmitted signals x(t) as
follows:

y(t) =
∫ ∞

−∞
H(τ, t)x(τ − t)dτ + n(t), (4.28)

where n(t) is assumed to be the nR × 1 Gaussian noise vector, and
the received signal y(t) is given by

y(t) = [y1(t), y2(t), · · · , ynR(t)]T . (4.29)

Equation (4.28) can be rewritten in the discrete-time representation
by sampling the received signal y(t) at t = nT , where T is the
sampling interval. Now let y[n] = y[nT ]. Then the discrete-time
MIMO channel can be expressed as

y[n] =
∞∑

k=−∞
H[k, n]x[n− k] + n[n]. (4.30)

Equation (4.30) can be simplified in terms of matrix form

y = Hx + n, (4.31)

where the channel matrix is the nR × nT matrix given by

H =


h11 h12 · · · h1nT

h21 h22 · · · h2nT
...

...
. . .

...
hnR1 hnR2 · · · hnRnT

 , (4.32)
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where elements hij , i = 1, 2, · · · , nR and j = 1, 2, · · · , nT , represent
the constant gain of the channel between the jth transmitter antenna
and the ith receiver antenna over a symbol period.

Assume that Ω is a covariance matrix of the transmitter vector x,
with nT transmitter antennas and nR receiver antennas, the channel
capacity of the MIMO system is then given by [8, 9]

C = log2

[
det(InR + HΩHH)

]
, (4.33)

where the “det” means determinant, InR is the nR × nT
identity matrix, (·)H means the Hermitian transpose (or transpose
conjugate), the channel capacity C is bps per Hz, and tr(Ω) ≤ ρ
holds to provide a power constraint, where ρ is the signal-to-noise
ratio (SNR) at any receiver antennas.

If equal power transmission is used, the covariance matrix Ω is
equal to

Ω =
ρ

N
InR , (4.34)

where N = nT is used to normalize a fixed total transmitter
power. Substituting (4.34) into (4.33) now obtains the famous
channel capacity equation for the MIMO system with nR transmitter
antennas and nT receiver antennas as follows:

C = log2

[
det

(
InR +

ρ

N
HHH

)]
. (4.35)

Equation (4.35) was contributed by Foschini [10] in 1996, Foschini
and Gans [11] in 1998, and Telatar [8] in 1999. Foschini [10]
also demonstrated that the channel capacity for the MIMO system
in (4.35) grows linearly for a case of M = nR = nT rather than
logarithmically. This is because the determinant operator in (4.35)
produces a product of n nonzero eigenvalues of the channel matrix
H. Each of the eigenvalues corresponds to the SNR over a channel
eigenfunction, which is based on the transmission using a pair of
right and left singular vectors of the channel matrix as transmitter
antenna and receiver antenna weights, respectively. Also, because of
the properties of the log2 function, the overall channel capacity is



120 Signal Processing in Digital Communications

then the sum of capacities of each of these eigenfunctions, thereby
resulting in the effect of channel capacity multiplication.

To illustrate this concept mathematically, we can decompose the
MIMO channel intoM equivalent parallel single-input single-output
(SISO) channels by using a singular value decomposition (SVD)
method for the channel matrix H (see the proof of SVD theory in
Appendix B). Thus, the channel matrix H can be decomposed as
follows:

H = UDV∗, (4.36)

where U and V are unitary, and D is a diagonal matrix given
by D = diag[

√
λ1,
√
λ2, · · · ,

√
λM , 0, · · · , 0]. The eigenvalues λi,

i = 1, 2, · · · ,M , are the nonzero eigenvalues of the matrix W, where
W = HH∗. Thus, the channel model in (4.31) can be rewritten as

r = Ds + q, (4.37)

where r = U∗y, s = V∗x, and q = U∗n. It is interesting to see
that (4.37) is the MIMO system, but with M equivalent to parallel
SISO channels in terms of signal powers given by the nonzero
eigenvalues, λi, i = 1, 2, · · · ,M . Therefore, the channel capacity of
the MIMO system in (4.35) can be rewritten in terms of the nonzero
eigenvalues as follows:

C =
M∑
i=1

log2

(
1 +

ρ

N
λi

)
(bps/Hz), (4.38)

where
∑M

i=1 λi = M . With this constraint, the channel capacity is
maximum if all the singular values λi have the same value and it
is minimum if there is only a single value. Thus, practical channels
have capacities with values in between these two extremes.

Equation (4.38) is one of the most important formulas for
channel capacities since it indicates that the MIMO channel capacity
grows linearly and the overall capacity is the sum of capacities of
each of the eigenvalues.

There are several tutorial papers in this area. We refer the
interested readers to Foschini [10], Gesbert et al. [9], and Foschini
et al. [12].
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4.5 SIMO Channel Capacity

The discrete-time MIMO channel model that we discussed in
Section 4.4 can be changed to a discrete-time SIMO channel model
if we use a single transmitter antenna at one end and nT receiver
antennas at the other end. In this case, the MIMO channel model
in (4.31) can be rewritten as

y = hx+ n, (4.39)

where the channel matrix h is the nR × 1 matrix given by

h = [h1, h2, · · · , hnR ]T , (4.40)

and elements hi, i = 1, 2, · · · , nR, represent the constant gain of the
channel between the single transmitter antenna and the ith receiver
antenna over a symbol period. Equation (4.39) is known as the
discrete-time SIMO channel.

A channel capacity of the discrete-time SIMO channel model is
given by [9]

C = log2

(
1 + ρ

nR∑
i=1

|hi|
)

(bps/Hz) (4.41)

where hi is the constant gain for ith receiver antenna, i =
1, 2, · · · , nR. Note that the SIMO channel does not have transmitter
diversity since the SIMO system only uses the single antenna at the
transmitter end. Furthermore, increasing the number of nR antennas
at the receiver end only results in a logarithmic increase in average
capacity.

4.6 MISO Channel Capacity

The discrete-time MIMO channel model can also be changed to
a discrete-time MISO channel model if we use nT transmitter
antennas at one end and a single receiver antenna at the other end.
In this case, we can rewrite the MIMO channel model in (4.31) as a
MISO channel as follows:

y = hx + v, (4.42)
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where v is Gaussian noise, and the channel matrix h is the 1 × nT
matrix given by

h = [h1, h2, · · · , hnT ], (4.43)

and
x = [x1, x2, · · · , xnT ]T , (4.44)

where elements hi, i = 1, 2, · · · , nT , represent the constant gain
of the channel between the ith transmitter antenna and the single
receiver antenna over a symbol period. Equation (4.42) is referred to
as the discrete-time MISO channel.

The channel capacity of the discrete-time MISO channel model
is obtained by [9, 13]

C = log2

(
1 +

ρ

nT

nT∑
i=1

|hi|
)

(bps/Hz), (4.45)

where hi is the constant gain for ith transmitter antenna, i =
1, 2, · · · , nT , and the total transmitter power is normalized by using
the number of nT transmitter antennas. Note that the MISO channel
does not have receiver diversity because the MISO system only
uses the single antenna at the receiver end. In addition, we see
that increasing the number of nT antennas at the transmitter end
also results in a logarithmic increase relationship of nT in average
capacity.

4.7 Summary

In this chapter, we have first introduced a channel capacity definition
that was contributed by Shannon in 1949. Shannon’s theoretical
work of the channel capacity has ignited subsequent developments
in the field of communications.

Beginning with a short review of channel capacity, we have
then focused on the fundamental theory of channel capacity for the
Gaussian channels, which are the most important communication
channels, with respect to signal power and noise variance as well as
corresponding probability of error. We have also addressed common
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channel models and capacities for transmission of information
message over a bandlimited wireless channel of radio frequencies
or a bandlimited wireline channel with white and Gaussian noise.
We have then obtained a famous channel capacity for bandlimited
channels in terms of signal power, noise, and frequency bandwidth.
In an extreme case, the channel capacity of the bandlimited channels
approaches an asymptotic value if the frequency bandwidth moves
toward infinity. Sequentially, we have presented a MIMO channel
capacity based on a MIMO antenna system. This leads to a
famous formula of the MIMO channel capacity with respect to a
channel matrix and SNR at any receiver antennas. We have then
demonstrated that the MIMO channel capacity grows linearly and
overall capacity is the sum of capacities of each of the eigenvalues.
In addition, with some modifications, we have expanded the theory
of the MIMO channel capacity into SIMO and MISO channel
capacities for SIMO and MISO antenna systems, respectively.

Unlike the MIMO channel capacity, the SIMO and MISO
channel capacities can only result in a logarithmic increase in
average capacity even if we increase the number of antennas at the
receiver or the number of antennas at the transmitter, respectively.
This is because the SIMO channel does not have transmitter diversity
and the MISO channel does not have receiver diversity. Therefore,
a MIMO channel system is superior to a SIMO or a MISO channel
system in terms of channel capacity.
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5
Smart Antenna Systems

5.1 Introduction

In Chapter 4, we discussed multiple-input multiple-output (MIMO)
systems with a core concept of using space-time signal processing,
where the natural dimension of digital communication data is
matched with the spatial dimension inherent in the use of multiple
spatially distributed antennas. Thus, the MIMO systems can
be viewed as an extension of the smart antennas that are a
popular technology using an antenna array for improving wireless
communications.

The antenna array contains many distributed antenna elements
whose outputs are usually combined or selected to enhance system
performance. In fact, the smart antenna is an antenna array system,
but it has advanced signal processing algorithms to adapt to
different signal environments. In other words, the smart antenna
combines multiple antenna elements with an adaptive signal-
processing capability to optimize its radiation and/or reception
pattern automatically in response to the signal environment [1].
Thus, the smart antenna is able to mitigate fading through diversity
reception and adaptive beamforming in addition to minimizing
interference through spatial filtering, thereby enhancing both analog
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and digital systems.
This chapter is organized as follows. This section presents a

short introduction about smart antenna systems. In Section 5.2,
we begin with a review of smart antennas and beamforming
structures, with an emphasis on switched, delay-and-sum, space-
time, and interpolation beamforming. In Section 5.3, we introduce
beamforming algorithms of MMSE, maximum signal-to-noise ratio
(SNR), and minimum variance beamformer that are derived by using
optimization constraint methods. The beamforming algorithms are
designed to focus on specific signals while suppressing unwanted
others at the same time. A brief summary is finally given in Section
5.4.

5.2 Smart Antennas and Beamforming Structures

A smart antenna system can be customarily classified as one of
five beamformers, including switched beamformer, delay-and-sum
beamformer, space-time beamformer, interpolation beamformer, or
adaptive array beamformer. The first four beamformers employ a
finite number of fixed, predefined patterns, multirate sampling, or
combining strategies, while the adaptive array beamforming uses an
infinite number of patterns that are adjusted in a real-time operation.

5.2.1 Switched Beamforming

A block diagram of a switched beamforming for the smart antenna
system is shown in Figure 5.1, which includes multiple antennas, a
fixed beamforming pattern with a set of the predetermined weight
vectors, N receivers, and a switch controller.

The switched beamforming system tries to form a multiple
fixed beamforming pattern with heightened sensitivity in particular
directions. Control logic of the switch beamforming system detects
signal strength, chooses from one of several predetermined fixed
beamformings, and switches from one beamforming to another
beamforming by using a switch controller to connect with one
of the parallel outputs from the fixed beamforming pattern. The
switched beamforming system combines the outputs of multiple



Smart Antenna Systems 127

Fixed 
beamforming 

pattern

Antennas

.

.

.

.

.

.

.

.

.

.

.

.

Receiver-1

Receiver-N

Switch
controller

.

.

.

Figure 5.1 A block diagram of a switch beamforming for the smart
antenna system.

antennas such that finely directional beams can be formed with more
spatial selectivity than in a conventional and single-element antenna
approach. In other words, the switched beamforming system selects
one of several predetermined fixed-beamforming patterns, which
are based on weighted combinations of antenna outputs, with the
greatest output power in the remote user’s channel. Furthermore,
the switched beamforming system can switch its beamforming
in different directions throughout space by changing the phase
differences of the signals. Thus, the N receivers mitigate multipath
components, which arrive at the receivers at different times, by
exploiting the low correlation between temporal signal fading at
different antennas. This structure of the switched beamforming
system is able to enhance coverage and range extension. However,
at close angle of arrival [2], the switched beamforming system
cannot discriminate between multipath components. This leads to
the inability to combine multipath components coherently.
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Figure 5.2 A block diagram of a delay-and-sum beamforming for
the smart antenna system.

5.2.2 Delay-and-Sum Beamforming

One of the oldest and simplest beamforming is called the delay-
and-sum beamforming, which still remains a powerful approach
today. Figure 5.2 shows a block diagram of the delay-and-sum
beamforming for the smart antenna system, which includes multiple
antennas, a delay ∆i, and a weighting value wi, where i =
0, 1, 2, · · · , N − 1, and a sum of the resulting signals. The delay ∆i

is used to reduce mismatched delay because the mismatched delay
decreases the SNR at the beamforming output and thereby reduces
the array gain. The idea behind it is that if a propagating signal is
present in multiple antennas, the outputs of the multiple antennas,
delayed by appropriate amounts and added together, reinforce the
signal with respect to noise in different directions. Thus, the output
signal of the delay-and-sum beamforming is obtained by

y(t) =
N−1∑
i=0

wixi(t−∆i), (5.1)
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Figure 5.3 A block diagram of a space-time beamforming for the
smart antenna system.

where ∆i is the ith delay, and the weight value wi is sometimes
referred to as the beamforming shading, which is used to enhance the
beamforming shape and reduce sidelobe levels. The weight value wi

can also be calculated by using one of many adaptive algorithms [3].
In this case, the delay-and-sum beamforming can be referred to as
adaptive delay-and-sum beamforming.

5.2.3 Space-Time Beamforming

In the previous discussion of delay-and-sum beamforming, we
assumed that the multiple antennas receive signals without distortion
or spatial filtering. In practice, we should realize that more than
one signal may be present in the propagation field received by the
antennas and that noise can disturb the received signal. In order
to remove unwanted disturbances, we need to insert additional
linear filtering for the signal of interest in only a narrow wanted
frequency band, as shown in Figure 5.3. Filtering the output signal
of the multiple antennas considers both temporally and spatially in
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space-time signal processing. Thus, combining these filter and delay
outputs by using a sum operation to form a beamforming is known
as space-time beamforming or filter-and-sum beamforming.

The output signal y[n] of the discrete-time space-time beam-
forming is obtained by

qi[n] =
M−1∑
k=0

hi[k]xi[n− k], for i = 0, 1, 2, · · · , N − 1, (5.2)

where qi[n] is the ith output signal of the ith spatial filter, hi[n] is the
ith linear-phase finite impulse response (FIR) filter, and xi[n] is the
ith output signal of the ith antenna, and then

y[n] =
N−1∑
i=0

qi[n− di]

=
N−1∑
i=0

M−1∑
k=0

hi[k]xi[n− k − di], (5.3)

where di is the ith delay for ith antenna. Note that the linear FIR
filters are placed on the antenna outputs to concentrate the later
delay-and-sum beamforming operations into a range of temporal
frequencies and to include spatial filtering of antenna signal. Each
passband of the linear FIR filters corresponds to the desired signal
spectrum. Furthermore, these linear FIR filters can be optimally
related to signal spectrum and to noise characteristics. In addition,
all the taps of the linear FIR filters can be updated in real time by
using the adaptive signal processing algorithm. If this is the case,
the space-time beamforming is referred to as adaptive space-time
beamforming.

5.2.4 Interpolation Beamforming

In order to reduce the aberrations due to delay quantization, an
interpolation method in a beamforming can be introduced between
the samples of the antenna signals. Figure 5.4 shows a block diagram
of an interpolation beamforming. Each antenna’s output is passed
through an upsampler, which addsM−1 zeros between the samples,
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Figure 5.4 A block diagram of an interpolation beamforming for
the smart antenna system.

and a lowpass FIR interpolation filter with a cutoff frequency at
π
M

. The output signal of the lowpass FIR interpolation filter with
a higher sampling rate is then subjected to the delay and shading
to form a beamforming. The output signal of the beamforming can
be downsampled by a factor of M to obtain the signal with original
sampling rate.

Upsampling by an integer factor of M involves an operation
relationship between input and output given by

pi[n] =

{
xi[

n
M
], n = 0,±M,±2M, · · ·

0 otherwise,
(5.4)

where i = 0, 1, 2, · · · , N − 1 for the ith antenna. This is equivalent
to

pi[n] =
∞∑

k=−∞
xi[k]δ[n− kM ]. (5.5)

Equations (5.4) and (5.5) indicate that the discrete-time output
sequence pi[n] is obtained by inserting M − 1 zero-valued samples
between adjacent samples of the input sequence xi[n].
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Using (5.3) and (5.5), we obtain the output signal of the
interpolation beamforming as follows:

y[n] =
N−1∑
i=0

M−1∑
k=0

hi[k]pi[n− k − di]

=
∞∑

l=−∞

N−1∑
i=0

M−1∑
k=0

hi[k]xi[l]δ[n− k − di − lM ],

(5.6)

where M is the integer factor determined by the downsampling
processing.

Note that the signal before engaging the space-time beamform-
ing has an effective sampling rate that is M times higher than the
original sampling rate. However, it does not affect the beamforming
calculation operations including filtering, time delays, shading, and
summing. Inserting M − 1 zeros between samples in the time do-
main causes periodic images of the signal spectrum in the frequency
domain. However, lowpass FIR filtering can ideally eliminate all the
images except the original one at baseband from −π/M to π/M .
Thus, the output signal of the interpolation beamforming can be
downsampled by a factor of M because the original sampled signal
did not induce temporal aliasing. Downsampling takes a discrete-
time input signal sequence y[n] and generates a new discrete-time
output signal sequence z[n] given by

z[n] = y[Mn], (5.7)

whereM is an integer factor. Substituting (5.6) into (5.7) obtains the
discrete-time output signal sequence z[n] as follows:

z[n] =
∞∑

l=−∞

N−1∑
i=0

M−1∑
k=0

hi[k]xi[l]δ[(n− l)M − k − di]. (5.8)

After downsampling, the interpolation beamforming output has the
same sampling rate as the original signals. This complete process
of interspersing zeros, lowpass FIR filtering, delaying, summing,
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and downsampling is also referred to as time domain interpolation
beamforming [4]. In addition, the taps of all the lowpass FIR
filters can be updated in real-time operation if we use an adaptive
algorithm. In this case, we refer to it as adaptive interpolation
beamforming. Furthermore, each of the combining upsamplers
and lowpass FIR filters can be efficiently implemented by using
polyphase interpolation decomposition or multistage interpolation
filters [3, 5].

Another type of beamformer that we would like to mention here
was developed for array sensors based on the frequency domain by
using short-time Fourier analysis or the discrete Fourier transform
(DFT), known as the frequency-domain beamformer. With some
modifications, it is also possible to use the frequency-domain
beamformer for the smart antenna system. The interested reader may
refer to [4].

5.3 Beamforming Algorithms

There are many beamformer algorithms derived by using optimiza-
tion constraint methods [2, 4, 6, 7]. The optimization constraint
methods for the beamformer are used to focus on specific signals
while suppressing unwanted others at the same time. In an optimal
sense, we want to determine a set of optimal weight coefficients to
reinforce any signal propagating across the beamformer with a set
of delays. On the other hand, adaptive beamformer algorithms can
vary the shading and increase SNR through the temporal, frequency,
and spatial filtering based on the signal and noise characteristics at
the time of observation.

5.3.1 MMSE Beamformer

This section describes a class of optimum linear FIR filters known
as Wiener filters [3, 8] for a beamformer when a training signal is
available. We focus on developing the derivation of the Wiener-Hopf
equation, which provides the optimum linear FIR filter coefficients
in the optimal sense of mimimum mean square error (MMSE) for
the beamformer.
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Assume that the training signal (an ideal signal) is denoted by
d[n], the input signal of the beamformer is denoted by x[n] , and the
output signal of the beamformer is denoted by y[n]. The optimum
linear FIR filter is used to estimate the MMSE for the beamformer,
y[n] for d[n], given two wide-sense stationary processes jointly,
x[n] and d[n], which are statistically related to each other. We also
define the autocorrelation functions, rx(k) and rd(k), and the cross-
correlation function, rdx(k).

In the discrete-time domain, the error signal e[n] is written as

e[n] = d[n]− y[n]

= d[n]−
M−1∑
k=0

w[k]x[n− k], (5.9)

where w[k] is the filter coefficients, or in vector form,

e[n] = d[n]− wT [n]x[n]. (5.10)

The mean square error (MSE) is a function of the chosen filter
coefficient vector w[n], and can be written as

ξ = E{e[n]e∗[n]}
= E{(d[n]− wT [n]x[n])2}
= E{d[n]d∗[n]− d[n]xT [n]w[n]

−wT [n]x[n]d∗[n] + wT [n]x[n]xT [n]w[n]}
= Var{d[n]} − rdx[n]w[n]− wT [n]rdx[n]

+wT [n]Rx[n]w[n], (5.11)

where rdx[n] = E{x[n]d∗[n]} is the product of the cross-correlation
function and Rx[n] = E{x[n]xT [n]} is the autocorrelation function.

To minimize ξ in (5.11), we make the derivative of ξ with respect
to w[n] equal to zero and obtain the result as follows:

Rx[n]w[n] = rdx[n]. (5.12)

where Rx[n] is an M × M Hermitian Toeplitz matrix of
autocorrelation, w[n] is the filter coefficient vector, and rdx[n] is
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the vector of cross-correlation between the ideal signed d[n] and the
input signal x[n]. Equation (5.12) is referred to as the Wiener-Hopf
equation.

If we further assume that the matrix Rx[n] is invertible, then w[n]
in (5.12) can be solved by

w[n] = R−1
x [n]rdx[n]. (5.13)

Equation (5.13) is known as the normal equation. This is because
the error signal e[n] is orthogonal to each element of the input signal
x[n] given by

E{x[n]e∗[n]} = 0. (5.14)

The corresponding MMSE for the beamformer is given by [3]

ξMMSE = Rd(0)− RT
dx[n]w[n], (5.15)

or in another form

ξMMSE = Rd(0)− rTdx[n]R
−1
x [n]rdx[n]. (5.16)

Note that (5.15) or (5.16) is a single-step algorithm but involves
heavy computation because of computing the inverse autocorrelation
matrix R−1

x [n] and multiplying the cross-correlation matrices rdx[n]
and rTdx[n].

5.3.2 Maximum SNR of the Beamformer

In this section, we discuss another optimization criterion based on
eigenvalue analysis for the maximum beamformer gain. Assume that
an input signal x[n] for a beamformer consists of a desired signal s[n]
and interference and noise n[n] given by

x[n] = s[n] + n[n]. (5.17)

Then the beamformer output can be written as follows:

y[n] = wH [n]x[n]

= wH [n]s[n] + wH [n]n[n]. (5.18)
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The first and second terms on the right side of (5.18) represent
a signal component and an interference and/or noise component,
respectively. Then the SNR of the beamformer output can be formed
by using an FSNR ratio (see Miao [6]),

SNR =
wH [n]Rs[n]w[n]

wH [n]Rn[n]w[n]
, (5.19)

where Rs[n] is the autocorrelation function of the desired signal s[n]
and Rn[n] is the autocorrelation function of the interference and
noise. This FSNR criterion is intuitively attractive because it is easier
to maximize SNR for the beamformer output.

In order to determine the beamformer output y[n], we need
to determine the values of the elements of the filter coefficient
vector w[n] that maximizes the ratio of the FSNR criterion in (5.19).
This is also called the canonical correlation function, the canonical
discriminant function (see Miao [6]), the optimization array gain
(see Johnson and Dudgeon [4]), the Rayleigh-Ritz ratio, or the
signal-to-interference-and-noise ratio (see Reed [2]).

The determination of the filter coefficient vector of the
beamformer that maximizes the FSNR criterion involves solving the
eigenvalue and eigenvector Equation (5.19). To maximize the FSNR

criterion, we need to take the partial derivative of the FSNR with
respect to the filter coefficient vector w[n] and set it equal to zero

∂FSNR

∂w[n]
=

2Rs[n]w[n]

wH [n]Rn[n]w[n]

−
(

2Rn[n]w[n]

wH [n]Rn[n]w[n]

)(
wH [n]Rs[n]w[n]

wH [n]Rn[n]w[n]

)
= 0. (5.20)

Simplying (5.20), we obtain

wH [n]Rs[n]w[n]

wH [n]Rn[n]w[n]
=

Rs[n]w[n]

Rn[n]w[n]
= λ. (5.21)

Therefore, it can be seen that the maximum value of λ is the
largest eigenvalue of the matrix of R−1

n [n]Rs[n] and w[n] is the
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corresponding eigenvector as follows:(
R−1
n [n]Rs[n]− λI

)
w[n] = 0. (5.22)

The corresponding SNR for the beamformer is then obtained by

{FSNR}max = λmax, (5.23)

where λmax is the largest eigenvalue of the matrix R−1
n [n]Rs[n].

Thus, (5.23) indicates that the maximum of SNR for the beamformer
is equal to the maximum eigenvalue of the matrix R−1

n [n]Rs[n].

5.3.3 Minimum Variance Beamformer

Another famous optimization criterion for the beamformer is known
as the minimum variance beamformer [4, 6]. In this method, we
choose the normalization of the filter coefficient vector w[n] such
that

wH [n]Rn[n]w[n] = 1. (5.24)

Equation (5.24) ensures that the ideal signal passes to the
beamformer output having unity gain. This further implies that the
pool covariance matrix of the output signal y[n] has a unity variance.

To maximize the FSNR ratio in (5.19), we form the expression
(see Miao [6]) as follows:

FSNR = maxw[n]{wT [n]Rs[n]w[n]}, (5.25)

subject to
wT [n]Rn[n]w[n] = 1. (5.26)

Now, we let w[n] = R−1/2
n [n]a[n], where a[n] is a new vector, and

then write a new expression of FSNR ratio in terms of the vector a[n]
as follows:

FSNR = wT [n]Rs[n]w[n]− λ(wT [n]Rn[n]w[n]− 1)

= aT [n]R−1/2
n [n]Rs[n]R−1/2

n [n]a[n]

−λ(aT [n]a[n]− 1), (5.27)
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where λ is a nonzero Lagrange multiplier. We take the partial
derivative with respect to the vector a[n] and set it equal to zero

∂FSNR

∂a[n]
= 2R−1/2

n [n]Rs[n]R−1/2
n [n]a[n]− 2λa[n] = 0. (5.28)

Therefore, the eigenvalue and eigenvector problem of maximizing
SNR for the beamformer output is obtained by(

R−1/2
n [n]Rs[n]R−1/2

n [n]− λI
)

a[n] = 0. (5.29)

Solving (5.29) for the eigenvalue λ gives

λ =
1

R1/2
n [n]R−1

s [n]R1/2
n [n]

. (5.30)

Equation (5.30) is referred to as the maximum variance beamformer,
which is used to minimize the output power of the beamformer
subject to the constraint with the constant gain at the angle of arrival
of the desired signal.

Solving (5.29), we can also obtain the vector a[n]. Thus, the
corresponding filter coefficient vector w[n] for the beamformer is
obtained by

w[n] = R−1/2
n [n]a[n]. (5.31)

It can be shown [6] that the term of R−1
n [n]Rs[n] in (5.22) and the

term of R−1/2
n [n]Rs[n]R−1/2

n [n] in (5.29) have the same eigenvalue
by using the maximization and minimization theorem (see Appendix
B).

It is also possible to further optimize the filter coefficients for the
beamformer by using other approaches, which are developed based
on these optimization concepts but with the additional condition of
orthogonality and scalar spread effects, which allow selecting the
greatest output power in the remote user’s channel. The interested
reader may refer to Miao [6] to explore further the optimization
methods based on the generalized optimal declustering analysis for
the beamformer.



Smart Antenna Systems 139

We have discussed selecting the filter coefficients for the
beamformer without regard to the nature of the field into which
the beamformer is placed. The filter coefficients of the beamformer
yielding the optimal gain depend on the characteristics of the
interference and noise. This means that a good set of filter
coefficients for the beamformer should adapt to the beamformer
environment and should not be fixed before placing the beamformer.
This leads to the idea of adapting signal processing algorithms for
the beamformer to the signal environment. For adaptive beamformer
algorithms with an application of a sidelobe canceller based on a
linear predictive approach to array signal processing, we refer the
interested reader to Johnson and Dudgeon [4].

5.4 Summary

In this chapter, we first introduced a smart antenna system in which
an antenna array system with signal processing algorithms adapts
to different signal conditions. This led to mitigating fading through
diversity reception and adaptive beamforming. We then focused on
fundamental beamforming structures and discussed their benefits
with respect to different signal environments. These discussions
have led to the necessary step of understanding how a beamforming
structure affects performances of the smart antenna system, thereby
providing a key guideline of designing the smart antenna system for
digital communication systems.

Of particular importance in the evaluation of smart antenna sys-
tem performance are beamforming algorithms that laid mathemat-
ical foundations based on optimization constraint methods, which
have rapidly developed over the last two decades along with practi-
cal applications to the digital communications systems. The systems
that exist today and those currently under development certainly re-
flect these recent advances in the smart antenna system.

With applications of using beamformer structures and algo-
rithms, the smart antenna system can further enhance performance
of digital radio frequency (RF) systems and mitigate fading through
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diversity reception and space-time processing while minimizing in-
terference through beamformer spatial filtering. Advanced develop-
ment in the smart antenna system will be a key to future digital com-
munication systems with evolving higher data rates and spectral ef-
ficiencies. Therefore, by discussing smart antenna system technolo-
gies, we have placed technical foundations to integrate those tech-
nologies into more advanced development of signal processing tech-
nologies for digital communication systems.
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6
Channel Characterization and
Distortion

6.1 Introduction

Communication channels can be wireless or wired physical
channels, or a combination of both. In any case, those physical
channels usually introduce linear and nonlinear distortions, random
noise, and deterministic interference. Therefore, efficient and
successful communication of messages via imperfect channels is
still one of the major triumphs of information technology.

In wireless communication, a physical channel affects propaga-
tion of radio signals on both forward and reverse links. A signal
propagating through the physical channel usually arrives at the des-
tination along with a number of different paths that are referred to
as multipath. These paths come from scattering, reflection, refrac-
tion, or diffraction of radiated energy off of objects that are located
in the environment. The received signal is much weaker than the
transmitted signal because of phenomena such as mean propagation
loss, slow fading, and fast fading. In addition, digital communication
through a bandlimited wireless channel with multipath phenomena
is subject to intersymbol interference (ISI). This problem can be so

141
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severe that the correct reception of transmitted sequence is not
feasible anymore without including a specific device in a receiver.

In wired communication, for example, a twisted-pair copper
telephone line that was originally intended to carry voice signals
at about a 4-kHz frequency bandwidth is now used to transmit
from several megabits (Mb) to 52 Mb of data per second by using
a digital subscriber loop (DSL), such as HDSL, ADSL, VDSL,
and so forth. This has been possible because of the efficient use
of the high-frequency propagation of copper wires, which suffer
from a great deal of line attenuation and noise. The twisted-pair
copper wire channel usually has different segments with different
gauges ranging from 19 American wire gauges (AWG) to 26 AWG,
multiple bridge taps, a wire drop, and lumped elements. In addition,
far- and near-end crosstalk between pairs in a multipair cable is
the dominant impairment in any DSL system. Therefore, with the
limitation of frequency bandwidth, twisted-pair copper channel has
severe distortion and is subject to ISI.

Communication systems usually operate with limitations of
frequency bandwidth. This causes ISI and out-of-band radiation
in adjacent channels. Pulse-shaping techniques can be designed to
reduce the ISI effects and the spectral width of a modulated signal
simultaneously. This leads to matched filtering at the receiver that
compensates for the ISI caused by multipath within time-dispersive
wireless channels or bandlimited wired channels.

This chapter is organized as follows. In this section, a short
overview and the background of communication channels are
briefly presented. Section 6.2 introduces characteristics of wireless
channels including propagation, multipath, and fading. Section 6.3
describes wired channels that focus on the transmission loop, its
crosstalk, and the simulation loop-model. Section 6.4 presents
channel distortion with emphases on ISI, eye diagrams, and Nyquist
criterion. Subsequently, pulse-shaping techniques that are designed
to reduce and suppress out-of-band radiation while eliminating ISI
effects are given in Section 6.5. Section 6.6 addresses matched
filtering and its method on how to increase signal-to-noise ratio
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(SNR) and reduce ISI and noise interference. A brief summary of
this chapter is given in Section 6.7.

6.2 Wireless Channels

Wireless channels place fundamental limitations on the performance
of radio signals on both forward and reverse links for communica-
tion systems in several ways. The transmission path between a trans-
mitter and receiver can vary from a simple line-of-sight (LOS) path
to a nonline-of-sight (NLOS) path, which is severely obstructed by
buildings, mountains, and foliage. Additionally, when a mobile ter-
minal moves in space, the speed of motion impacts how rapidly the
signal level fades.

6.2.1 Free Space Propagation

In ideal free-space propagation received signal strength can be
predicted when the transmitter and receiver have a clear and
unobstructed LOS path. The free-space power received by a receiver
antenna is given by the Friis free-space equation,

Pr(d) =
PtGtGr

L

(
λ

4πd

)2

, (6.1)

where Pt and Pr(d) are the transmitted and received power,
respectively,Gt andGr are the transmitter and receiver antenna gain,
d is the distance separation between the transmitter and receiver,
λ is the wavelength in meters, and L is the system loss factor.
When L = 1, this indicates no loss in the communication system
implementation. When L ≥ 1, there are extra losses due to effects
such as transmission line attenuation, filter, and antenna losses. The
wavelength λ is related to the carrier frequency by

λ =
c

f
=

2πc

ωc
, (6.2)

where c is the speed of light in meters per second, f is the carrier
frequency in hertz, and ωc is the carrier frequency in radians per
second.
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The path loss for the free-space propagation is defined as the
difference (in decibels) between the effective transmitted power and
the received power given by

PL = 10 log10

(
Pt
Pr

)

= −10 log10

GtGr

L

(
λ

4πd

)2
 (dB). (6.3)

Note that (6.1) and (6.3) do not hold for the distance d = 0.
For this reason, the received power Pr(d) uses a close-in distance
d0 as a known received power reference point to relate to Pr(d) at
the close-in distance d0. Thus, the received power in the free-space
propagation at a distance greater than d0 is obtained by

Pr(d) = Pr(d0)

(
d0

d

)2

, d ≥ d0 ≥ df , (6.4)

where df is known as the Fraunhofer distance (or far-field distance)
given by

df =
2D2

λ
, (6.5)

where D is the largest physical linear dimension of the antenna and
df � λ.

Equation (6.4) can be rewritten in units of dBm if we take the
logarithm of both sides and multiply by 10,

Pr(d) = 10 log10

[
Pr(d0)

0.001

]
+ 20 log10

(
d0

d

)
(dBm), (6.6)

where d ≥ d0 ≥ df , Pr(d) and Pr(d0) are in units of dBm and Watts,
respectively.

Example 6.1

Assume that an antenna with a unity gain has a maximum dimension
of 2 meters, and a transmitter generates 40 Watts of power at a
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500-MHz carrier frequency. If a receiver antenna has a unity gain,
determine (a) a far-field distance df , (b) the transmitter power in
dBm and dBW, and (c) the receiver power in dBm at the far-field
distance df and the receiver power in dBm at the distance of 5 km.

Given the maximum dimension of the transmitter antenna
D = 2 meters, the carrier frequency f = 500 MHz, and the
transmitter power Pt = 40 Watts, we now answer the questions as
follows:

(a) Using (6.2) yields the wavelength λ,

λ =
c

f

=
3× 108 (m/s)
500× 106 (Hz)

= 0.6 (m). (6.7)

Then using (6.5), we obtain the far-field distance as

df =
2D2

λ
=

2(2)2

0.6
= 13.33 (m). (6.8)

(b) The transmitter power in dBm is

Pt = 10 log10

[
Pt (mW)
1 (mW)

]
= 10 log10

(
40× 103

)
= 46.02 (dBm) (6.9)

and the transmitter power in dBW is

Pt = 10 log10

[
Pt (W)
1 (W)

]
= 10 log10 (40)

= 16.02 (dBW). (6.10)

(c) Using (6.1), assume that L = 1 with no loss in the
communication system for implementation. We obtain the receiver
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power at the far-field distance df ,

Pr(df ) =
PtGtGr

L

(
λ

4πdf

)2

=
40× 1× 1

1

(
0.6

4π × 13.33

)2

= 5.132× 10−4 (W). (6.11)

Thus, the receiver power in dBm is obtained by

Pr(df ) = 10 log10 Pr(df ) (mW)

= 10 log10

[
5.132× 10−1 (mW)

]
= −2.897 (dBm). (6.12)

Using (6.6) with d0 = df = 13.33 (m), the received power at d = 5
(km) is obtained by

Pr(d) = 10 log10

[
Pr(d0)

0.001

]
+ 20 log10

(
d0

d

)

= 10 log10

[
5.132× 10−4

0.001

]
+ 20 log10

(
13.33

5× 103

)
= −2.897 (dBm)− 51.483 (dB)

= −54.380 (dBm). (6.13)

6.2.2 Flat Surface Propagation

The path loss model in (6.3) is developed under a condition of the
free-space propagation. However, transmitted signals in the wireless
communications, such as land mobile radio applications, usually do
not experience the free-space propagation. In environments of the
land mobile radio applications, a main path is often accompanied
by a flat surface-reflected path, which may destructively interfere
with the primary path. In this case, the received power of a
more appropriate theoretical model over the flat surface-reflected
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path [1, 2] is given by

Pr(d) =
4PtGtGr

L

(
λ

4πd

)2 [
sin

(
2πhthr
λd

)]2

, (6.14)

where ht and hr are the heights of the transmitter and receiver
antennas, respectively. If d � hthr, using the approximation
sin(x) ≈ x for small x, (6.14) can be rewritten as

Pr(d) =
PtGtGr

L

(
hthr
d2

)2

. (6.15)

Note that the propagation model of (6.15) over a flat surface-
reflected path differs from the free-space propagation of (6.1) in
three ways: (1) there is a direct influence of heights at both ends
of the link, (2) the path loss is not frequency dependent, and (3) the
received power decays with the fourth power rather than the square
of the distance. Thus, at large distance d� hthr, the received power
of (6.15) falls off with distance at a rate of 40 dB/decade.

Using (6.14), the path loss for the propagation over a flat
reflecting surface is defined as the difference (in decibels) between
the effective transmitted power and the received power given by

PL = 10 log10

(
Pt
Pr

)

= −10 log10

4GtGr

L

(
λ

4πd

)2 [
sin

(
2πhthr
λd

)]2
 (dB).

(6.16)

Figure 6.1 shows a propagation path loss over the flat reflecting
surface against the distance of d, with a carrier frequency at 1,800
MHz, ht = 1 m, hr = 7 m, unity gain of the transmitted antenna,
Gr = 2, and no loss for the communication system implementation,
L = 1. In that case, we note that the propagation path loss (or
the received power) has alternate minima and maxima when the
path distance d is relatively small. The last local maximum in the
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Figure 6.1 Propagation path loss over a flat reflecting surface
against distance: fc = 1,800 MHz, ht = 1 m, hr = 7 m,
Gt = 1, Gr = 2, and L = 1.

propagation path loss can be obtained near the far field boundary via
the following equation:

2πhthr
λd

=
π

2
. (6.17)

Since

λ =
c

fc
=

3× 108

1,800× 106
= 0.167 (m), (6.18)

substituting λ, ht, and hr into (6.17) and solving yields d = 168 m.

6.2.3 Multipath Propagation

In a wireless mobile communication system, a transmitted signal can
travel to a receiver over multiple paths. This phenomenon is called



Channel Characterization and Distortion 149

Reflection
Diffraction

Scattering

Figure 6.2 Multipaths based on the three propagation phenomena
of reflection, diffraction, and scattering.

multipath propagation. There are three basic multipath propagation
phenomena that impact propagation in a mobile communication
system, including reflection, diffraction, and scattering. The
multipaths formed by the reflectors, diffractors, and scatterers add
up at a receiver antenna to produce the received signal. Figure 6.2
shows multipaths based on the three basic propagation phenomena
of reflection, diffraction, and scattering.

Reflection takes place when a propagating electromagnetic wave
(or radio wave) impinges upon an object including a building, a
wall, and even the surface of the Earth, and so forth, which has
very large dimensions when compared to the wavelength of the
propagating wave. In other words, when an electromagnetic wave
propagating in one medium impinges up another medium having
different electrical properties, the electromagnetic wave is partially
reflected and partially transmitted.
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Diffraction takes place when an object having sharp irregulari-
ties (or edges) blocks the radio wave. This is to say that the diffrac-
tion allows radio waves to propagate around the curved surface of
the Earth, beyond the horizon, and to propagate behind obstructions.
When a receiver moves deeper into the obstructed (or shadowed)
region, the received field strength decreases rapidly. However, the
diffraction field still exists and usually has sufficient strength to pro-
duce a useful signal for the receiver.

Scattering takes place when the radio wave strokes objects with
dimensions that are small compared to the wavelength. The reflected
energy is spread out in all directions due to scattering when the radio
wave impinges on a rough surface. Objects such as foliage, street
signs, lampposts, and trees tend to scatter energy in all directions,
thereby providing additional radio energy at the receiver.

The received power (or its reciprocal, path loss) is the most
important parameter predicted by large-scale and small-scale fading
and propagation models based on the physics of the reflection,
diffraction, and scattering. The mathematical treatments on the three
basic propagation schemes refer to [1, 3, 4].

6.2.4 Parameters of Multipath Channels

In a multipath propagation environment, several time-shifted,
Doppler spread, and scaled versions of the transmitted signal arrive
at the receiver. This phenomenon creates a so-called multipath-
intensity profile, which describes relationships among parameters of
multipath channels.

A relationship between a delayed power S(τ) in time domain
and a Doppler power spectrum S(υ) in frequency domain for the
multipath channels is shown in Figure 6.3(a, b), where τ is the
delay and υ is the Doppler shift. Figure 6.4(a, b) also shows a
relationship between a space-frequency correlation function R(∆f)
in frequency domain and a space-time correlation function R(∆t)
in time domain for the multipath channels, where ∆f and ∆t are
the frequency and the time, respectively. In addition, the delayed
power S(τ) and the Doppler power spectrum S(υ) can be converted
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Figure 6.3 A relationship between the delayed power S(τ) and
the Doppler power spectrum S(υ) for the multipath
channels.

to the space-frequency correlation function R(∆f) and the space-
time correlation function R(∆t), respectively, by using the Fourier
transform.

Time Delay

The term of time delay is used to refer to the excess delay, which
represents the delay of the signal propagation that exceeds the delay
of the first signal arrival at the receiver. Figure 6.3(a) shows a
relationship of the delayed power S(τ) versus the time delay τ .
For a transmitted signal impulse, the time Tm between the first and
last received component represents the maximum excess delay. The
maximum excess delay is defined to be the time delay during which
multipath energy falls some threshold level below the strongest
component. Generally, the threshold level can be selected at 10 dB
or 20 dB below the level of the strongest component.

In addition to the maximum excess delay, there are other terms,
mean excess delay and rms delay spread, that are also used for the
parameters of the multipath channels. The mean excess delay is
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|R(∆f)|

∆f
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T0
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∆t

(a) (b)Dual functions

Figure 6.4 A relationship between the space-frequency correlation
function R(∆f) and the space-time correlation func-
tion R(∆t) for the multipath channels.

defined by

τ̄ =

∑N
k=1 S(τk)τk∑N
k=1 S(τk)

. (6.19)

The rms delay spread is defined to be the square root of the second
central moment of the power delay S(τ), given by

στ =
√
τ 2 − (τ̄)2, (6.20)

where (τ)2 is the mean squared and τ 2 is the second moment given
by

τ 2 =

∑N
k=1 S(τk)τ

2
k∑N

k=1 S(τk)
. (6.21)

Generally, values of (6.20) are on the order of microseconds in
outdoor mobile radio channels and on the order of nanoseconds in
indoor wireless channels.

Coherence Bandwidth

A relation between the power delay S(τ) in Figure 6.3(a) and the
magnitude frequency response (or the space-frequency correlation
function) R(∆f) in Figure 6.4(a) can be established by using the
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Fourier transform. Both parameters of S(τ) and R(∆f) are related
as follows:

R(∆f) =
∫ ∞

−∞
S(τ) exp(−j2π∆fτ)dτ. (6.22)

Therefore, it is possible to obtain an equivalent description of the
multipath channel in the frequency domain using its frequency
response characteristics.

Coherence bandwidth F0 is inversely proportional to the
maximum excess delay Tm, given by [4–6],

F0 ≈ 1

Tm
. (6.23)

The coherence bandwidth in (6.23), which is used to characterize the
multipath channel in the frequency domain, is a statistical measure
of the range of frequencies over which the multipath channel
passes all spectral components with approximately equal gain and
linear phase. In other words, the coherence bandwidth represents a
frequency range over which frequency components have a strong
potential for amplitude correlation and is a measure of the channel’s
frequency selectivity.

The coherence bandwidth F0 can also be defined as a relation
derived from the rms delay spread. If the coherence bandwidth
uses the bandwidth over which the frequency correlation function
is above 0.9, the coherence bandwidth is then approximately [1],

F0 ≈ 1

50στ
, (6.24)

where στ is the rms delay spread given by (6.20). If the frequency
correlation function is above 0.5, the coherence bandwidth can be
approximately

F0 ≈ 1

5στ
. (6.25)

It should be noted that an exact relationship between the coherence
bandwidth and the maximum excess delay or rms delay spread does
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not exist. The definition of the coherence bandwidth often differs
from one reference to another [7], and tends to depend on the
extent of the correlation, determined subjectively, over which the
two signals are correlated.

Doppler Spread

Doppler spread Ds is a measure of spectral broadening fd, as
shown in Figure 6.3(b), caused by the time rate of change of the
mobile radio channel. The Doppler spread is defined as the range of
frequencies over the received Doppler power spectrum S(υ), with
components in the range from fc − fd to fc + fd, where fc is the
transmitted pure sinusoidal tone of frequency and fd is the Doppler
shift.

The Doppler power spectrum S(υ) was developed by Gans [8]
based on Clarke’s model [9]. Assume that scatterers have a uniform
distribution of signals arriving at all arrival angles throughout the
range [0, 2π). The Doppler power spectrum S(υ) at the antenna
terminals is then given by

S(υ) =


3

2πfm

[
1−

(
υ−fc
fm

)2
]−1/2

, |f − fc| < fm
0, otherwise,

(6.26)

where υ is the Doppler frequency shift and fm is the maximum
Doppler shift given by

fm = max(|fd|) = max
(
V

λ
| cos θ|

)
=
V

λ
, (6.27)

where fd can be either positive or negative depending on the arrival
angle θ, V is the relative mobile velocity, and λ is the signal
wavelength. Thus, in this case, the Doppler spread is obtained by

Ds = fm. (6.28)

Note that the Doppler power spectrum S(υ) in (6.26) is infinite
when f = fc ± fm. This indicates that the Doppler components
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arriving at exactly 0 and 180 degrees have an infinite Doppler power
spectrum. However, this isn’t a problem since the angle of arrival θ is
continuously distributed and the probability of Doppler components
arriving at exactly these angles is zero [1, 8, 9]. Thus, the knowledge
of the Doppler power spectrum S(υ) in (6.26) allows us to determine
how much spectral broadening is imposed on the signal as a function
of the rate of change in the multipath channel state.

Coherence Time

A space-time correlation function R(∆t) versus the time separation
∆t is plotted in Figure 6.4(b). It is the correlation function between
the multipath channel’s response to a sinusoid signal sent at time
t1 and the response to a similar sinusoid sent at time t2, where
∆t = t2 − t1. Coherence time T0 is a statistical measure of the
time duration over which the multipath channel impulse response
is invariant and quantifies the similarity of the multipath channel
response at different times. This is to say that the coherence time
is the time duration over which two received signals have a strong
potential for amplitude correlation and the time domain dual of
Doppler spread. Coherence time T0 and Doppler spread fm are
inversely proportional to one another,

T0 ≈ 1

fm
, (6.29)

where fm is the maximum Doppler shift defined in (6.27).
The coherence time T0 can also be defined as the geometric mean

if the coherence time is over which the time correlation function is
above 0.5 [1],

T0 =

√
9

16πf 2
m

=
0.423

fm
. (6.30)

The definition in (6.30) implies that two signals arriving with a
time separation ∆t greater than the coherence time T0 are affected
differently by the multipath channel.

The relationship of the Doppler power spectrum S(υ) in
Figure 6.3(b) and the space-time correlation function R(∆t) in
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Figure 6.4(b) is related by using the Fourier transform,

S(υ) =
∫ ∞

−∞
R(∆t) exp(−j2πυ∆t)d∆t. (6.31)

Thus, (6.31) indicates that we can obtain an equivalent description
of the multipath channel in the frequency domain using its Doppler
power spectrum characteristics.

Duality Concept

In both Figure 6.3 and Figure 6.4, a duality function is introduced.
Two operations are called a duality function [5, 6] if the behavior of
one with reference to a time-related domain (such as time or time
delay) is identical to the behavior of the other with reference to
the corresponding frequency-related domain (such as frequency or
Doppler frequency shift).

Delay spread and coherence bandwidth, as developed earlier, are
parameters of multipath channels that describe the time-dispersive
nature of the multipath channels in a local area. But both of these
parameters do not provide information about the time-varying nature
of the multipath channels caused either by relative motion between
the transmitter and receiver, or by the movement of objects in
the multipath channels. On the other hand, Doppler spread and
coherence time are also parameters of the multipath channels that
describe the time varying nature of the multipath channel in a
small-scale region. Depending on the parameters of wireless mobile
multipath channels, different transmitted signals will experience
different types of fading over a travel distance from the transmitter
to the receiver.

6.2.5 Fading Characteristics

In a wireless mobile communication channel, in addition to the
path loss as discussed previously, the received signal exhibits
rapid fluctuations of the amplitude over a travel distance from
the transmitter. Thus, a mobile user will usually experience signal
variation in time. This phenomenon is referred to as fading. Fading
is caused by interference between two or more versions of the
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transmitted signal (or multipath waves) that arrive at the receiver at
slightly different times. The receiver antenna combines the multipath
waves to provide a resulting signal that can vary widely in amplitude
and phase, depending on the distribution of the transmitted energy,
the propagation times of the radio waves, and the bandwidth of the
transmitted signal.

At any time t, an instantaneously received fading signal can be
expressed s(t) [7]

s(t) = r(t)ejφ(t), (6.32)

where φ(t) and r(t) are the phase and the envelope of the received
fading signal s(t). In addition, r(t) can be rewritten as

r(t) = rs(t)rf (t), (6.33)

where rs(t) is the long-term (or large-scale) fading and rf (t)
is the short-term (or small-scale) fading. The large-scale fading
represents the average signal power attenuation or the propagation
path loss because of motion over large areas. The small-scale fading
represents the dramatic changes of the amplitude and phase that can
be experienced as a result of small changes in the spatial separation
between a receiver and transmitter due to the multipath propagation.
If no multipath fading is present, then the propagation path loss is
the only major factor that must be considered in the wireless mobile
communication environment. However, a mobile radio roaming over
a large area must process signals that experience both types of fading
with the small-scale fading superimposed on the large-scale fading.

6.2.6 Large-Scale Fading

For the large-scale fading in the wireless mobile communication
environment, the mean path loss PL(d), which is a function of
distance d between the transmitter and receiver, is proportionally
expressed to an nth power of the distance d relative to a reference
distance d0 given by Rappaport [1],

PL(d) ∝
(
d

d0

)n

. (6.34)
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The mean path loss PL(d) is often expressed in decibels, as shown
here,

PL(d) = PL(d0) + 10n log10

(
d

d0

)
(dB), (6.35)

where n is called the path loss exponent, which means the rate at
which the path loss increases with distance. The value of the path
loss exponent n depends on the carrier frequency, antenna heights,
and propagation environment. In free space, n is equal to 2, as seen
in (6.3). When obstructions are present, the value of the path loss
exponent n will be increased accordingly.

Choosing an appropriate free-space reference distance d0 is also
important for the propagation environment. Generally, the value of
the reference distance d0 is taken to be 1,000 meters for large cells,
100 meters for microcells, and 1 meter for indoor channels. The
reference path loss PL(d0) is calculated either using (6.3) or using
field measurements at a distance of d0.

The mean path loss PL(d) in (6.35) is not adequate to describe
any particular setting or signal path because it does not consider
the fact that the surrounding environment clutter may be greatly
different at two different locations with the same distance between
the transmitter and receiver. Cox et al. [10] and Bernhardt [11]
showed that for any value of the distance d, the path loss PL(d) is
a random variable having a log-normal distribution about the mean
distance-dependent value. Thus, the path loss PL(d) in decibels can
be expressed in terms of the mean path loss PL(d) plus a random
variable Xσ as follows,

PL(d) = PL(d) +Xσ

= PL(d0) + 10n log10

(
d

d0

)
+Xσ (dB), (6.36)

whereXσ is a zero-mean Gaussian distributed random variable with
a standard deviation σ in decibels.

The log-normal distribution is that the path loss PL(d) over
the large-scale fading approaches a normal distribution when
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plotted on a logarithmic scale (in decibels). Thus, the log-normal
distribution can be described by using the following probability-
density function,

p(x) =

{
1√
πσ

exp
[
− (log10 x−µ)2

2σ2

]
, x > 0

0, otherwise,
(6.37)

where x in decibels is a random variable representing the large-scale
signal fading and µ and σ are the mean and standard deviation of x.

6.2.7 Small-Scale Fading

Small-scale fading can be referred to as the rapid fluctuation of the
amplitude of a radio wave over a short period of time or travel
distance. Multipath propagation in the wireless communication
channel creates the small-scale fading effects. The three most
important effects given by Rappaport [1] include: (1) signal strength
rapidly changes over a small travel distance or time interval;
(2) random frequency modulations happen because of varying
Doppler shifts on different multipath signals; and (3) time
dispersions are caused due to multipath propagation delays.

Rayleigh Fading

The small-scale fading is also known as Rayleigh fading. If the
multipath reflective paths are large in number and are all NLOS,
the envelope of the received signal can be statistically expressed
by using a Rayleigh fading distribution. The Rayleigh fading
distribution has a probability density function given by

p(r) =

{
r
σ2 exp

(
− r2

2σ2

)
, r ≥ 0

0, otherwise,
(6.38)

where r is the envelope amplitude of the received signal, and σ2 is
the time-average power of the multipath signal. The corresponding
cumulative distribution function, which is the probability of the
envelope of the received signal not exceeding a specified value of
R, is given by the expression

P (R) = Pr(r ≤ R)
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=
∫ R

0
p(r)dr

= 1− exp

(
− R

2

2σ2

)
. (6.39)

The Rayleigh faded component is also called the random, scatter, or
diffuse component.

Ricean Fading

The small-scale fading is called the Ricean fading when there
is a dominant nonfading signal component present, such as the
LOS propagation path. The Ricean fading is often observed in
microcellular and mobile satellite applications

The Ricean fading distribution has a probability density function
given by

p(r) =

{
r
σ2 exp

(
− r2+A2

2σ2

)
I0
(
Ar
σ2

)
, r ≥ 0 and A ≥ 0

0, r < 0,
(6.40)

where r and σ2 are the envelope and average of the Ricean fading
signal, respectively, A is the peak amplitude of the dominant signal,
and I0(·) is the modified Bessel function of zero order, which is
given by Lee [7],

I0(z) =
∞∑
n=0

z2n

22nn!n!
. (6.41)

Note that the Ricean fading distribution in (6.40) presents two
extreme cases: (1) if the absence of a dominant signal A = 0, p(r)
becomes the Rayleigh fading distribution in (6.38); and (2) if the
dominant signal A is large, p(r) becomes a Gaussian distribution.

The Ricean fading distribution is usually expressed in terms of
a parameter k that is defined as the ratio between the deterministic
signal power and the variance of the multipath. The parameter k is
given by

k =
A2

2σ2
, (6.42)
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or in decibels

K = 20 log10

(
A√
2σ

)
, (6.43)

where k (or K) is known as the Ricean factor that completely
specifies the Ricean fading distribution. Note that the Ricean fading
distribution becomes the Rayleigh fading distribution as A → 0,
K → −∞ dB.

Frequency-Selective Fading

A multipath delay spread leads to time dispersion of the multipath
channel, which causes a transmitted signal to undergo either
frequency-selective or flat fading.

The transmitted signal experiences the frequency-selective
fading if

Bs > F0 or Ts < στ , (6.44)

where Bs is the transmitted signal bandwidth, F0 is the coherence
bandwidth defined in (6.23), Ts is the symbol duration, and στ is
the rms delay spread given by (6.20). In other words, for frequency-
selective fading, the transmitted signal has the bandwidth Bs that is
greater than the coherence bandwidth F0 of the multipath channel. In
this case, the multipath channel becomes frequency selective where
the channel gain is different for different frequency components.
This is because the frequency-selective fading is caused by the
multipath delay spread that exceeds the duration of the symbol time
Ts. As time varies, the multipath channel varies in gain and phase
across the spectrum of the transmitted signal, thereby resulting in
time variation and ISI distortion in the received signal.

The transmitted signal experiences flat fading if

Bs � F0 or Ts � στ . (6.45)

This implies that if the multipath channel has a constant gain and
linear phase response over a coherence bandwidth F0, which is
greater than the bandwidth of the transmitted signal Bs, the spectral
characteristics of the transmitted signal through the multipath
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channel are then preserved at the receiver. Flat fading does not
induce ISI distortion, but performance degradation can still be
expected because of a loss in SNR whenever the transmitted signal
is fading.

Time-Selective Fading

A Doppler spread leads to frequency dispersion of the multipath
channel, which causes a transmitted signal to undergo either fast
or slow fading. The fast fading is also referred to as time-selective
fading because amplitude of the transmitted signal varies with
time. Depending on how rapidly the transmitted signal changes
as compared to the rate of change of the multipath channels, the
multipath channels can be classified either as a fast fading or slow
fading channel.

In a fast fading channel, the transmitted signal undergoes the fast
fading (or time-selective fading) if

Ts > T0 or Bs < Ds, (6.46)

where Ts is the duration of symbol time, T0 is the coherence time
defined in (6.29), Bs is the transmitted signal bandwidth, and Ds is
the Doppler spread that is given by (6.28). Equation (6.46) indicates
that the coherence time of the multipath channel is smaller than the
symbol duration of the transmitted signal. This causes frequency
dispersion because of the Doppler spread, thereby leading to signal
distortion at the receiver. The signal distortion of the fast fading
increases if the Doppler spread relative to the bandwidth of the
transmitted signal increases.

In a slow fading channel, the impulse response of the multipath
channel changes much more slowly than the transmitted signal. This
indicates that the Doppler spread of the multipath channel is much
less than the bandwidth of the transmitted signal in the frequency
domain. Thus, the transmitted signal experiences the slow fading if

Ts � T0 or Bs � Ds. (6.47)

As can be seen, (6.46) and (6.47) indicate that the velocity of
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mobile and the transmitted signal in the multipath channel determine
whether the transmitted signal undergoes fast or slow fading.

6.3 Wired Channels

One of the most commonly used wired channels for data
transmission has been the transmission line composed of a pair
of wires (twisted wires) or a coaxial cable. The coaxial cable is
traditionally used for digital communication inside a building, and
for high capacity long-distance facilities in the telephone network.
The pair of wires is used for connection of customer premises
equipment (CPE) at home to a central office (CO). Broadband access
approaches have been developed to provide a very high data rate
over the pair of wires. These broadband access approaches are
commonly known as DSL.

During the last decade, DSL technologies have been an attractive
broadband access service for residential and small business areas.
Several DSL standards, including HDSL, SHDSL, ADSL, and
even VDSL, have been successfully established with tens of
millions of customers throughout the world. Currently, the most
popular asymmetric (ADSL) service reliably delivers up to 8 Mbps
downstream and 800 Kbps upstream, depending on the distance
of the CPE from the CO. However, the ADSL technology does
not support long ranges extended to 18,000 feet and even longer,
which cover up to 90% of telephone customers. The need for a long-
range extended DSL (LDSL) with capabilities of transmitting the
minimum data rate over 200 Kbps is already evident due to the
increasing demands of the customers imposed by the proliferation
of long-reach services [12]. However, in any case, to transmit higher
data rates over a longer distance from CPE to CO, DSL technologies
face challenges due to the wired channel of wire pairs with serious
distortions.

6.3.1 Transmission Loop

A transmission line comprising in-line sections, bridge taps, a drop
wire, and lumped elements can be analyzed by using a two-port
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Figure 6.5 Block diagram of a two-port network with a definition
of voltages and currents for the chain matrix.

network via its chain matrix [13–17]. The two-port network has an
input port and output port for which the input and output currents
are complementary, as shown in Figure 6.5. The matrix that relates
the input voltage and current to the output voltage and current can
be expressed by [

V1

I1

]
=

[
A B
C D

] [
V2

I2

]
, (6.48)

where all quantities are complex functions of frequency, A denotes
the open-circuit transfer funcion,B denotes the open-circuit transfer
admittance, C denotes the short-circuit transfer impedance, and D
denotes the short-circuit current ratio. Equation (6.48) illustrates the
two-port transfer function completely and can be used to analyze
cascade connections of the two-port network. Using the voltage
source Vs and load voltage VL as shown in Figure 6.5, the voltage
transfer function H(f) is obtained by

H(f) =
VL
Vs

=
V2

Vs
. (6.49)

Using (6.48) and the parameters in Figure 6.5, we obtain

V2

V1

=
ZL

B + AZL

, (6.50)
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and

V1 = I1Zs + Vs =
V1

Zin

Zs + Vs, (6.51)

where Zin is the input impedance given by

Zin =
V1

I1
=
AZL +B

CZL +D
. (6.52)

From (6.51), we then obtain,

V1 =
(

Zin

Zin − Zs

)
Vs. (6.53)

Substituting V1 of (6.53) into (6.50) obtains the voltage transfer
function,

H(f) =
ZinZL

(B + AZL)(Zin − Zs)
. (6.54)

Substituting (6.52) into (6.54) yields the voltage transfer function as
follows,

H(f) =
ZL

AZL +B − (CZL +D)Zs

. (6.55)

The output impedance is obtained by

Zout =
V2

I2
=
DZs +B

CZs + A
. (6.56)

Generally, a pair of twisted wire loops of the transmission line
contains several loop segments, each having a particular loop type
or gauge. Each of the loop segments is a transmission line that
can be viewed as a cascade combination of two-port networks.
Figure 6.6 shows a typical end-to-end connection, which includes
in-line sections, bridge taps, a drop wire, and lumped elements, with
the information of the loop segment lengths and gauges. In case of
the cascade combination ofN two-port networks, theABCDmatrix
in (6.48) can be expressed as[

A B
C D

]
=

N∏
i=1

[
Ai Bi

Ci Di

]
. (6.57)
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Figure 6.6 A typical end-to-end connection with in-line sections,
bridge taps, and lumped elements.

In-Line Two-Port Networks

An in-line ABCD matrix of the two-port network with the loop
length Li (feet) is given by Lee and Messerschmitt [15],

Mi =

[
Ai Bi

Ci Di

]

=

[
cosh(γiLi) Z0i sinh(γiLi)
Y0i sinh(γiLi) cosh(γiLi)

]
, (6.58)

where Z0i is the impedance given by

Z0i =

√
Ri + jωLi

Gi + jωCi

, (6.59)

Y0i is the admittance, which is the reciprocal of the impedance given
by Y0i =

1
Z0i

, and

γi =
√
(Ri + jωLi)(Gi + jωCi), (6.60)

where Ri, Li, Gi, and Ci, are the resistance, inductance,
conductance, and capacitance for ith in-line loop segment,
respectively.
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Given the RLGC parameters, the ABCD matrix can be
determined. Thus, the RLGC is important to designers. Usually,
the RLGC parameters are found from field or laboratory tests,
depending on various loop types and gauges.

Bridge Taps

Bridge taps present their open-circuit admittance in the shunt
between two in-line two-port networks as shown in Figure 6.6.
For this case, the ABCD matrix of a bridge tap is given by
Bingham [13],

Mbt =

[
Ai Bi

Ci Di

]

=

[
1 0

Y0bt tanh(γbtLbt) 1

]
. (6.61)

Note that the bridge tap represents an open circuit of the wires
that has a minima of its input impedance to generate a notch in the
end-to-end transfer function at a frequency for which the length
segment is an odd number of quarter wavelengths. Werner [16]
introduces the condition for the first notch as follows,

fnotch =
υ(fnotch)

4Lbt

, (6.62)

where Lbt is the length of the bridge tap expressed in feet and
υ(fnotch) is the propagation velocity of wires over a DSL frequency
range. Other notches occur at frequencies that are equal to (2k +
1)fnotch, where k = 1, 2, 3, · · ·. For loops with several bridge taps,
the location of the notches can be determined by using superposition
heuristically.

In a case of unknown propagation velocity υ(fnotch), the first
notch in the loop’s transfer function is approximately located at

fnotch ≈ 150

Lbt/1, 000
(kHz). (6.63)
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The signal propagates down the bridge tap and reflects back. The
attenuation of the signal is approximately given by [13],

Aatt ≈ α2Lbt

√
fnotch, (6.64)

where α ≈ 6.2 (dB/kft/
√

MHz) for a 24 AWG gauge and α ≈ 7.8
(dB/kft/

√
MHz) for a 26 AWG gauge.

Cascade Combination of the Loop

For the end-to-end loop as shown in Figure 6.6, the chain ABCD
matrix of cascade combination of the loop is given by (6.57)

M =

[
A B
C D

]
=M1MbtM2. (6.65)

Thus, based on (6.65), a voltage transfer function for the end-to-end
loop can be obtained by using (6.55).

6.3.2 Crosstalk

Crosstalk between pairs in a multipair cable as illustrated in
Figure 6.7 is the dominant impairment in any type of DSL system.
The cause of the crosstalk is capacitive and inductive coupling
between the wires due to imbalance in the couplings. A precise
knowledge of individual pair-to-pair crosstalk transfer functions will
be needed in order to implement crosstalk cancellation.

NEXT

Assume that one pair j as shown in Figure 6.7 is considered as
the interferer and the voltages and currents induced in the other
pair i travel in both directions. Thus, the signals, which come back
toward the source of the interferer, add up to form crosstalk. This
crosstalk is referred to as near-end crosstalk (NEXT). The NEXT
represents a crosstalk of a local transmitter into a local receiver and
experiences attenuation. The NEXT power transfer function can be
written as [13, 15, 16, 18, 20]

|HNEXT (f,N)|2 = KNEXT |f |3/2N0.6, (6.66)
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NEXT

FEXT

Pair j

Pair i

Figure 6.7 Crosstalk of the NEXT and FEXT generations in a
multipair cable.

where KNEXT is the aggregate coupling coefficient that will be
different for various standards and N is the total number of NEXT
disturbers.

FEXT

If one pair j is the interferer and the voltages and currents induced in
the other pair i travel in both directions, the signals that continue in
the same direction as the interfering signal add up to form crosstalk.
The crosstalk is known as far-end crosstalk (FEXT). The FEXT
represents a crosstalk of a local transmitter into a remote receiver,
and also experiences attenuation. The FEXT power transfer function
is given by

|HFEXT (f, L,N)|2 = KFEXTL |L(f)|2 |f |2N0.6, (6.67)

where KFEXT is the aggregate coupling coefficient that will be
different for every pair of wire pairs, L is the length of the loop
in feet, N is the total number of FEXT disturbers, and L(f) is the
insertion loss of the loop through which the interferer passes while
the interferer and the signal are adjacent in the same binder.

6.3.3 Simulation Loop Model

A simulation loop model defines a function diagram of the end-to-
end loop with composite impairment noise as shown in Figure 6.8.
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Figure 6.8 A simulation loop model with crosstalk, white, and
broadcast RF noise.

The simulation loop model provides a functional description of
the combined end-to-end loop with impairment noise that must be
probed at the CPE receiver input of DSL transceiver.

The functional diagram of the simulation loop model in
Figure 6.8 has the following elements. (1) The four impairment
noise generators, including the NEXT, FEXT, white, and broadcast
radio frequency (RF) noise, produce noise for the simulation loop
model. (2) The transfer functions H1(f, L) and H2(f, L) describe
the length and frequency depending on the NEXT and FEXT
impairment, respectively. These transfer functions are independent
of the simulation loop models, but can change with the electrical
length of the simulation loop models. (3) Switches S1 to S4 are used
to determine whether a specific impairment generator contributes
to the total impairment during a simulation. (4) An amplifier A is
adjustable and can model the property of increasing the level of
the NEXT, FEXT, and white noise to perform the noise margin
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simulation. Thus, the simulation loop models allow designers to test
performance of various DSL technologies based on loop topology.

Note that depending on different DSL standards, such as
SHDSL, ADSL, and VDSL [18–20], the simulation loop models are
not the same for different loop topology. In addition, the composite
impairment noise, including NEXT, FEXT, broadcast RF, and
background, which is injected into the simulation loop models,
is also different from each other in the various DSL standards.
Therefore, simulating the specific loop models requires referring to
the DSL standards.

6.4 Channel Distortion

Many physical communications channels, including telephone
and mobile radio multipath channels, accept a continuous-time
waveform as the input signal. Consequently, a sequence of source
bits that represent data or a digitized analog signal must be converted
to a continuous-time waveform at the transmitter. Such channels
may be generally characterized as bandlimited linear filters and are
expressed by their frequency response C(f) as

C(f) = A(f)ejφ(f), (6.68)

where A(f) is called amplitude response and φ(f) is called phase
response. Thus, envelope delay or group delay is defined by

τ(f) = − 1

2π

[
dφ(f)

df

]
. (6.69)

Notice that a physical channel is ideal or nondistortion if the
amplitude response A(f) is a constant in (6.68) and the envelope
delay τ(f) is a constant in (6.69) or the phase response φ(f) is a
linear function of frequency given channel bandwidth W occupied
by the transmitted signal. On the other hand, the physical channel
distorts the signal within the channel bandwidth W occupied by the
transmitted signal if the amplitude response A(f) and the envelope
delay τ(f) are not constant. Thus, a distortion is often referred to
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as amplitude distortion if A(f) is not a constant and the distortion
is called delay distortion if τ(f) is not a constant. Therefore, a
succession of pulses transmitted through the physical channel at
rates comparable to the channel bandwidth is smeared to positions
that are no longer distinguishable as well-defined transmitted pulses
in the communication receiver if there are amplitude A(f) and
delay distortion φ(f) caused by a nonideal channel frequency
response characteristic C(f). Instead, those transmitted pulses
overlap, resulting in ISI.

6.4.1 Intersymbol Interference

In this section, we consider the transmission of a pulse amplitude
modulation (PAM) signal through a communication system includ-
ing transmitter filter HT (f), channel C(f), receiver filter HR(f),
and sampling, as shown in Figure 6.9. The message bits {bi} are
mapped to a sequence of amplitude level Ai as the input to transmit-
ter pulse-shaping filter hT (t), where hT (t) represents the impulse
response of the transmitter pulse-shaping filter HR(f). The input
signal to the transmitter pulse-shaping filterHT (f) is the modulated
sequence of delta functions that is expressed as

{Ai} =
N−1∑
i=0

Aiδ(t− iT ), (6.70)

where 1/T is the symbol rate per second. Thus, the transmitted
signal q(t) can be obtained by

q(t) =
N−1∑
i=0

AihT (t− iT ). (6.71)

Assume that H(f) is the overall transfer function of the
combined transmitter, channel, and receiver. Then, the overall
transfer function H(f) is expressed as

H(f) = HT (f)C(f)HR(f). (6.72)
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Figure 6.9 Block diagram of baseband model of a PAM system.

Corresponding of the impulse response in (6.72) is obtained by

h(t) = hT (t) ∗ C(t) ∗ hR(t). (6.73)

Then, the output of the receiver filter in Figure 6.9 is

y(t) =
N−1∑
i=0

Aih(t− iT ) + hR(t) ∗ v(t), (6.74)

where the second term of hR(t) ∗ v(t) is a convolution output of
the receiver filter hR(t) with an input noise v(t). The discrete-time
samples are produced at the output of the sampling function at the
symbol rate of 1/T . Thus, (6.74) can be rewritten at the kth sample
of y(t) as

y[n] = y(kT )

=
N−1∑
i=0

Aih(kT − iT ) + hR(kT ) ∗ v(kT )

= Akh[0] +
N−1∑

i=1,i�=k

Aih(kT − iT )

+hR(kT ) ∗ v(kT ). (6.75)

Notice that the first term on the right side of (6.75) is the kth
transmitted symbol scaled by the overall system impulse response
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h[0] at t = 0. This term is the source bits without error by
multiplying the received samples of 1/h[0] if no other terms are
presented at the right side of (6.75). However, this is impossible
in practical applications because other terms cannot be eliminated
without a special device in the receiver. The second term in (6.75)
is referred to as the ISI that represents the neighboring symbols
interfering with the detection of each desired symbol. The third
term in (6.75) denotes noise intensity because of the input noise
interference with the channel.

6.4.2 Eye Diagrams

In a digital communications system, the amount of the ISI and
noise intensity in (6.75) can be displayed on an oscilloscope. The
received PAM signal y(t) in (6.74) can be displayed on the vertical
input with the horizontal sweep rate at 1/T . The resulting display
is called an eye diagram. For an illustration, Figure 6.10 shows
the eye diagrams based on binary and quaternary PAM modulation.
The effect of the ISI in the system is to cause the eye diagram
to close, thereby reducing the margin for additive noise to cause
errors. The effect of the ISI on reducing the opening of a binary
eye diagram is graphically illustrated in Figure 6.11. There are four
types of distortions including zero crossing, noise margin, peak, and
sensitivity to timing error.

The vertical opening in Figure 6.11 is the separation between
signal levels with worst-case ISI. In some cases, the vertical opening
disappears altogether if the ISI and noise are large enough. In
this case, the eye diagram is called eye-closed. Otherwise, the eye
diagram is referred to as eye-open. An eye-closed means that the bit
decisions are no longer sure and some fraction of these is wrong.
In the limit, this leads to a probability of error close to 0.5. On
the other hand, the wide eye-open in the vertical spacing between
signal levels implies a large degree of immunity to additive noise. In
general, the location of optimum sampling should be placed at the
time instants kT + t0, k = 0, 1, 2, · · · , N , where t0 is selected such
that the maximum of the vertical eye-open can be obtained.
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Figure 6.10 Eye diagrams: (a) a binary PAM and (b) a quaternary

PAM.
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Figure 6.11 Diagram of the intersymbol interference effect on an
eye pattern.

The width of the horizontal eye opening indicates how much a
communication system is sensitive to the timing offset, as illustrated
in Figure 6.11. A very narrow eye opening means that a small timing
offset will result in sampling, while a wide horizontal eye opening
means that a large timing offset can be tolerated.

The slope of the inner eye opening in Figure 6.11 also indicates
the sensitivity to timing jitter or variance in the timing offset. A
very steep slope means that the eye diagram closes rapidly when the
timing offset increases. As a result, a large amount of timing jitter
in the sampling times would significantly increase the probability of
error in the receiver.

The ISI distorts the position of the zero crossing and causes a
reduction in the eye opening. Therefore, the ISI causes the PAM
communication system to be more sensitive to a synchronization
error.

For phase-shift keying (PSK), quadrature amplitude modulation
(QAM), or quadrature phase-shift keying (QPSK) signals, a useful
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display is a two-dimensional scatter plot of the sampled values
y(kT ), which represent the decision variables at the sampling
instants. Figure 6.12 shows a constellation diagram for a four-phase
QPSK constellation. Without the ISI and noise, the superimposed
signals at the sampling instants would result in four distinct points
corresponding to the four transmitted signal phases. In the case of
the ISI and noise, the result is a deviation of the received samples
y(kT ) from the desired four-phase QPSK signal. As a result, the
larger the ISI and noise in a communication system, the larger the
scattering of the received signal relative to the transmitted signal
points.

Error vector magnitude (EVM) [21, 22] is used to measure
the transmitted modulation accuracy between the difference of the
actual transmitted waveform and the ideal signal waveform for PSK,
QAM, or QPSK modulation. For example, the ideal complex I
and Q constellation points associated with QPSK modulation shall
be used as the reference as shown in Figure 6.12. The average
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magnitude of I and Q samples is given by

Imag =
N−1∑
i=0

|I[n]− Imean|
N

, (6.76)

and

Qmag =
N−1∑
i=0

|Q[n]−Qmean|
N

, (6.77)

where the DC offset for I samples is defined by

Imean =
N−1∑
i=0

|I[n]|
N

, (6.78)

and the DC offset for Q samples is defined as

Qmean =
N−1∑
i=0

|Q[n]|
N

. (6.79)

The normalized EVM (NEVM) for I and Q pairs is then obtained
by

VNEVM [n] =

√√√√√1

2

(I[n]− Imean

Imag

)2

+

(
Q[n]−Qmean

Qmag

)2
.

(6.80)
In practice, the ISI and noise based on a reference receiver system
can be accepted for a QAM, PSK, or QPSK communication system
if the following condition of the normalized EVM is satisfied
VNEVM [n] < 0.35.

6.4.3 Nyquist Criterion

In order to eliminate the ISI in (6.75), one of the possible solutions
is to choose the transmitter filter hT (kT ) and receiver filter hR(kT )
such that

h(kT ) =

{
1, k = 0
0, k �= 0.

(6.81)
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Then, the kth received sample in (6.75) is obtained as

y(kT ) = Ak + hR(kT ) ∗ v(kT ). (6.82)

Therefore, in this case, (6.82) indicates that the ISI has been
completely eliminated. As a result, the selection of the transmitter
filter hT (kT ) and receiver filter hR(kT ) in (6.81) is called a zero-
forcing solution because it forces the ISI to zero. However, a zero-
forcing solution may not be an optimal solution depending on the
type of detection scheme used [6]. This is because the probability of
error may also depend on the second term of noise intensity in (6.82)
that generally increases when the ISI is completely eliminated.

Nyquist [23] stated that the ISI could be completely cancelled if
the overall response of the communication system is designed such
that the response due to all symbols except the current symbol is
equal to zero at every sampling instant at the receiver. That is, if
Heff (f) and heff (t) are the transfer function and impulse response
of the overall communication system given by (6.72) and (6.73),
respectively, this condition is mathematically stated as

heff (kT ) =

{
K, k = 0
0, k �= 0,

(6.83)

where T is the symbol period, K is a nonzero constant, and k is the
integer. The corresponding discrete Fourier transform of the impulse
response heff (kT ) is expressed asHeff (e

j2πfT ). Thus, the condition
in (6.83) is equivalent to the frequency-domain condition as follows,

Heff (e
j2πfT ) = K. (6.84)

The relation of either (6.83) or (6.84) is known as the Nyquist
criterion.

In order to satisfy the Nyquist criterion, the channel bandwidth
W must be at least equal to 1

2T
. For the minimum channel bandwidth

W = 1
2T

, (6.84) can be rewritten as

Heff (e
j2πfT ) =

{
T, |f | < 1

2T

0, otherwise.
(6.85)
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Equation (6.85) can be solved to obtain the corresponding impulse
response heff (t) by using the inverse discrete Fourier transform
given by Miao and Clements [24]

heff (t) =
sin(πt/T )

πt/T
, (6.86)

which is called the minimum bandwidth Nyquist pulse. The
frequency band of |f | < 1

2T
in (6.85) is called the Nyquist

bandwidth.
Note that the transfer function in (6.85) satisfies the zero ISI

with a minimum of bandwidth 1
2T

, but it corresponds to a rectangular
filter. The rectangular filter cannot be implemented in practice since
it corresponds to a noncausal system, that is, heff (t) exists for t < 0.

Nyquist also stated that the transfer function in (6.85) convolved
with any arbitrary even function Q(f) with zero magnitude outside
the passband of the rectangular filter results in satisfying the zero ISI
condition. This can be mathematically expressed as

Hcom(e
2jπfT ) =

1

T

[
Heff (e

2jπfT )Q(e2jπfT )
]
, (6.87)

where Q(e2jπfT ) = Q(e−2jπfT ) and Q(e2jπfT ) = 0 for |f | ≥ 1
2T

.
This implies that the corresponding impulse response of the transfer
function in (6.87) is given by

hcom(t) =

[
sin(πt/T )

πt

]
q(t). (6.88)

The Nyquist criterion states that any filter having the form in (6.88)
can also eliminate ISI. A filter that satisfies the Nyquist criterion is
referred to as the Nyquist filter.

6.5 Pulse Shaping

Communication systems, which operate with the minimum band-
width, have not only ISI effects but also out-of-band radiation. Thus,
it is highly desirable to reduce modulation bandwidth and suppress
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the out-of-band radiation while eliminating the ISI simultaneously.
Pulse shaping is one of the techniques that is used to reduce the ISI
effects and spectral width of a modulated signal.

6.5.1 Raised-Cosine Pulse

In practice, given the transmitter filter HT (f), receiver filter HR(f),
and channel response C(f), the cascade HT (f)C(f)HR(f) is
designed to yield zero ISI. Assume that the channel is an ideal. Thus,
the cascade filter of HT (f)C(f)HR(f) may be selected such that

HT (f)C(f)HR(f) = HRC(f), (6.89)

where HRC(f) is a raised-cosine frequency response given by

HRC(f) =


T, 0 ≤ |f | ≤ (1−α)

2T
T
2

{
1− sin

[
πT
α

(
|f | − 1

2T

)]}
, (1−α)

2T
≤ |f | ≤ (1+α)

2T

0, otherwise,
(6.90)

where α is called the rolloff factor and 0 ≤ α ≤ 1, and 1/T is
the symbol rate. The frequency of 1/2T is known as the Nyquist
frequency. The raised-cosine frequency response HRC(f) in (6.90)
becomes an ideal brick wall filter with bandwidth frequency
occupancy at 1/2T when α = 0. When α > 0, the frequency
bandwidth of the raised-cosine frequency response HRC(f) beyond
the Nyquist frequency 1/2T is referred to as the excess bandwidth.
For example, the excess bandwidth of the raised-cosine frequency
response HRC(f) is 50% when α = 1/2. The excess bandwidth of
the raised-cosine frequency response HRC(f) is 100% when α = 1.

The corresponding time-domain raised-cosine pulse of the
raised-cosine frequency response in (6.90) is given by

hRC(t) =

[
sin(πt/T )

πt/T

] [
cos(απ/T )

1− (2αt/T )2

]
. (6.91)

Note that there is no ISI from adjacent symbols at the sampling
instants t = kT for k �= 0 when the channel does not have distortion.
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In this case, the receiver implements the same filter as

HR(f) = HT (f)

=
√
HRC(f). (6.92)

Equation (6.92) is referred to as a square root raised cosine (SRRC)
pulse. The time-domain SRRC corresponding to

√
HRC(f) can be

obtained by taking the inverse Fourier transform, thereby resulting
in

hT (t) =
4α cos[(1 + α)πt/T ] + sin[(1− α)πt/T ](t/T )−1

π
√
T [1− (4αt/T )2]

.

(6.93)
The SRRC in (6.93) is not a causal system. Therefore, in order to
design the causal system of the SRRC transmit and receiver filter,
a truncated time domain and time-shifted pulse is used [2]. On the
other hand, the SRRC filter can also be designed in the frequency
domain

√
HRC(f) based on sampling technology given by [25, 26].

This method results in the lengths of SRRC filter coefficients being
significantly less than the SRRC filter coefficients obtained by the
truncated time-domain method.

6.5.2 Gaussian Shaping Pulse

A Gaussian shaped pulse like the raised-cosine pulse has a transfer
function, but with no zero crossings. It has the transfer function
given by

HG(f) = exp
[
− (αf)2

]
, (6.94)

where

α =

√
2 ln 2

B
, (6.95)

and B is the 3-dB bandwidth of the baseband shaping filter. The
transfer function HG(f) in (6.94) is a bell shape and symmetric at
f = 0.

The corresponding impulse response is given by [1]

hG(t) =

√
π

α
exp

[
−
(
πt

α

)2
]
. (6.96)
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The spectral occupancy of the Gaussian shaping pulse decreases and
its time dispersion of the applied signal increases when α increases.

The Gaussian shape pulse has a narrow absolute bandwidth,
sharp cut off, low overshoot, and a preservation property of
pulse area, but it does not satisfy the Nyquist criterion for
ISI cancellation. Reducing its spectral occupancy may create
degradation in performance because of increased ISI. This leads
to a trade-off design in the choice of α for mobile communication
systems given by [27].

6.6 Matched Filtering

Consider the transmission of an isolated pulse A0δ(t) through the
communication system shown in Figure 6.9. Also assume that the
noise v(t) is white with a spectral density of N0/2. Thus, the input
signal to the receiver filter HR(f) can be expressed as

x(t) = A0hTC(t) + v(t), (6.97)

where hTC(t) is the inverse Fourier transform of the overall transfer
function of the combined transmitter filter and channel,

HTC(f) = HT (f)HC(f). (6.98)

Then, the output of the receiver filter is

y(t) = hR(t) ∗ x(t)
= A0[hR(t) ∗ hTC(t)] + hR(t) ∗ v(t). (6.99)

It should be noted that the first term and the second term on the right
side of (6.99) are the desired signal and the noise, respectively. The
SNR at the sampling instant is therefore obtained by

SNR =
E{|A0|2}

∣∣∣∫∞−∞ hR(−t) ∗ hTC(t)dt
∣∣∣2

N0

2

∫∞
−∞ |hR(t)|2dt

. (6.100)

The receiver filter hR(t) is called an optimal matched filter if
the maximum of SNR in (6.100) can be achieved. In this case,
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to maximize this SNR expression, the receiver impulse response
is hR(t) = h∗TC(−t) and its corresponding transfer function is
HR(f) = H

∗
TC(f).

The matched filter that is derived for the isolated pulse case does
not take into account ISI. In the presence of channel distortion due
to the ISI and noise, the ISI given in the second term of (6.75)
is no longer zero even by using the ideal SRRC transmitter and
receiver filter. Thus, an appropriate front end of the communication
receiver needs to consist of the matched filter along with further
signal processing technology, such as a channel equalizer, for
improved performance. Hence, the matched filter preceded by a
channel equalizer in the communication receiver is usually needed
to minimize its effect on communication system performance.
However, designing the channel equalizer usually requires one
to know the characterization of channel distortion. Therefore, the
channel distortion needs to be estimated either by sending a training
sequence or by using a blind identification method without the
training sequence.

6.7 Summary

In this chapter, channel characterization and distortion were
introduced. We first presented the characteristics of wireless
channels with focusing on multipath propagation and fading, and
the characteristics of wired channels with emphases on the topology
of transmission loop and crosstalk. Second, we described the
fundamental theory of channel distortion, which generates ISI
effects because of bandlimited channel bandwidth, and introduced
the Nyquist criterion for ISI cancellation. We then brought in pulse
shaping techniques for eliminating the ISI and suppressing out-
of-band spectral width at the transmitter, and derived the optimal
matched filter for the receiver.

Wireless channels experience multipath propagation due to
reflection, diffraction, and/or scattering of radiated energy off of
objects located in the environment. Signals at the receiver are much
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feebler than transmitted signals because of propagation path loss. In
addition, received signals may display fading over traveling distance
from the transmitter. The fading includes large-scale fading and
small-scale fading. The large-scale fading represents the average
signal power attenuation or the propagation path loss because of
motion over large areas, while the small-scale fading represents
the dramatic changes of the amplitude and phase because of
the multipath propagation over a spatial separation between the
receiver and transmitter. The small-scale fading is Rayleigh fading
if multipath reflective paths are large in number and there is an
NLOS signal component. When there is a dominant nonfading
signal component present, such as an LOS propagation path, the
small-scale fading is referred to as Ricean fading. In any case, a
mobile radio roaming over a large area has to process the received
signals, which experience both types of fading with the small-scale
fading superimposed on the large-scale fading.

Delay spread leads to time dispersion of the multipath channel,
which makes a transmitted signal undergo either frequency-selective
or flat fading. The frequency-selective fading is caused by the delay
spread, which exceeds the duration of symbol time. In the frequency
domain, the bandwidth of the transmitted signal is greater than
the coherence bandwidth of the multipath channel. This results
in the transmitted signal becoming time varying and hence ISI
distortion at the receiver. Flat fading happens if the multipath
channel has a constant gain and linear phase response over the
coherence bandwidth, which is greater than the bandwidth of the
transmitted signal. In this case, the spectral characteristics of the
transmitted signal through the multipath channel are preserved at the
receiver. Flat fading does not create ISI distortion, but performance
degradation is expected because of loss in SNR whenever the
transmitted signal is fading.

Doppler spread leads to frequency dispersion of the multipath
channel that causes the transmitted signal to experience either fast
fading (time-selective fading) or slow fading. The transmitted signal
undergoes fast fading if coherence time of the multipath channel is
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smaller than the symbol duration of the transmitted signal. On the
other hand, the transmitted signal experiences the slow fading if the
coherence time of the multipath channel changes much slower than
the symbol duration of the transmitted signal. Hence, the velocity
of mobile radio and the transmitted signal in the multipath channel
determine whether the transmitted signal undergoes the fast or slow
fading.

For data communications, a commonly used wired channel is a
transmission line based on a pair of wires. They have been used for
broadband access to carry a very high data rate. The transmission
line usually comprises loop segments, bridge taps, a drop wire, and
lumped elements, each of them having a particular loop gauge. The
bridge taps have an open circuit of the pair of wires, which generate
notches in an end-to-end transfer function.

The two-port network can be used to analyze the transmission
line via a chain matrix. The chain matrix establishes a relationship
between input voltage and current to output voltage and current
through an ABCD matrix. This leads to a simulation loop model
for the transmission line.

A dominant impairment for the transmission line is crosstalk
including NEXT and FEXT. The NEXT represents the crosstalk of a
local transmitter into a local receiver, while the FEXT represents the
crosstalk of the local transmitter into a remote receiver. The crosstalk
is caused by capacitive and inductive coupling between the wires
due to imbalance in the couplings. However, to cancel crosstalk, a
precise knowledge of crosstalk transfer functions is necessary.

Digital communications through both bandlimited wireless and
wired channels are subject to ISI, which can cause performance
degradation at the receiver. An eye diagram, which is a simple
method to study the ISI effects and other channel impairments, is
widely used for analyzing the performance degradation. In addition,
the eye diagram can be used to determine the decision point at
the widest opening of an “eye.” On the other hand, in order to
eliminate the ISI and out-of-band radiation, we have to design
a combined transfer function of a transmitter filter, channel, and
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receiver filter to be a raised-cosine pulse, which meets the Nyquist
criteria for ISI cancellation. In practice, given the transmitter filter
and channel characteristics, we can design the optimal matched filter
to maximize SNR at the receiver. However, this SNR is derived
for an isolated pulse case, which does not take into account ISI.
Therefore, in the presence of the ISI and noise, the receiver should
consist of the optimal matched filter preceded by a channel equalizer
for further signal processing.
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7
Channel Estimation and Blind
Identification

7.1 Introduction

Channel estimation is an important step in signal detection for a
digital communication system, especially when there is little or no
knowledge about a wireless or wired transmission channel. The
channel estimation can be classified as two categories: nonblind and
blind. The essential ingredient in nonblind techniques is the use of a
known training sequence embedded in the transmission data, which
then determines the channel impulse response. We call this method
nonblind channel estimation or channel estimation. On the other
hand, if the training sequence is not available, then it is referred to
as blind identification.

The channel estimation or blind identification is a necessary step
for wireless and wired digital communication system designs. For
the wireless digital communications, in the reverse link, the channel
estimation or blind identification is used to provide the channel
information for equalization, Rake receiver, and/or orthogonal
frequency division multiplexing (OFDM), which provide diversity
and reduce cochannel interference (CCI). The CCI arises from
cellular frequency reuse, and thus limits the quality and capacity of

189
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wireless networks. In the forward link, the channel estimation or
blind identification is needed to design weight vectors to deliver
energy to a selected user without causing significant CCI to other
users. For wired digital communications, the channel estimation or
blind identification is required for using the equalization either in
a time domain or in a frequency domain and discrete multitone
(DMT). Generally, the channel estimation method is to measure a
channel impulse response and noise power spectral density (PSD) or
their equivalents, such as direct measurement of signal-to-noise ratio
(SNR) without measuring impulse response and noise separately. In
a multitone communication channel, the channel estimation directly
estimates signal and noise parameters for each of the subchannels.
However, these estimates can always be converted to an aggregate
channel and noise estimate for a single-channel transmission.

Traditionally, channel estimation is achieved either by sending
the training sequence or by designing a channel estimator based
on a priori knowledge of the channel. This approach is often not
suitable for a wireless channel since little knowledge about such a
wireless channel can be assumed a priori. Even adaptive approaches,
which are attractive in handling time-varying channels, have to
waste a fraction of transmission time for the training sequence.
Recently, in contrast to the adaptive approaches, blind channel
identification attracts much attention in research and practice since
this method does not require the training sequence. The channel
identification is obtained by using only channel output sequences
along with certain assumptions of statistical information on input
sources. Blind identification methods demonstrate the potential
to increase transmission capability because of elimination of the
training sequence in both wireless and wired high-speed digital
communications.

This chapter is organized as follows. In this section, background,
overview, and types of communication channels along with the
methods of channel estimations and blind identifications are briefly
presented. In Section 7.2, we introduce characteristics of discrete-
time channel models. In Section 7.3, we describe the channel
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estimators based on the technique methods of maximum likelihood,
least squares, generalized least squares, and minimum mean-square
error (MMSE). Subsequently, fundamentals of adaptive channel
estimation and algorithms are given in Section 7.4, with emphases
on least mean square (LMS) and recursive least squares (RLS)
and their corresponding convergence and excess mean-squared error
(EMSE) analysis. Section 7.5 discusses channel models of single-
input single-output (SISO), single-input multiple-output (SIMO),
multiple-input multiple-output (MIMO), and their estimations based
on the higher-order statistics (HOS). Blind identifications for the
discrete-time SISO, SIMO, and MIMO channels are given in Section
7.6. A brief summary of this chapter is given in Section 7.7.

7.2 Discrete-Time Channel Models

In digital communications, the transmitter sends discrete-time
symbols at a symbol rate of 1/T per second, and the sampled output
of the matched filter at the receiver is also a discrete-time signal with
sampling rate of 1/T per second. In this case, the cascade of the
analog transmitter HT (f), the channel C(f), the receiver matched
filterHR(f), and the sampler (or A/D converter) can be described by
using the equivalent discrete-time transversal finite impulse response
(FIR) filter with the tap coefficient h[n], where n is some arbitrary
positive integer.

Assume that the discrete-time transversal FIR tap coefficient is

h[n] =

{
bn, n = −N, ...,−1, 0, 1, ..., N
0, otherwise,

(7.1)

and the channel is a bandlimited frequency. Figure 7.1 shows an
equivalent discrete-time channel model, where z−1 is the delay of
T . Its input is the sequence of information symbols s[n]. Thus, its
output is the discrete-time sequence y[n] given by

y[n] =
N∑

k=−N

h[k]s[n− k] + v[n], (7.2)
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z-1 z-1

s[n]

h[-N] h[-N+1] h[N-1]

z-1

y[n]

v[n]
h[N]

z-1

C*(z-1)
1

q[n]

Figure 7.1 Equivalent discrete-time FIR channel model.

where v[n] is the additive noise sequence. The corresponding
z-domain transfer function of (7.2) is then obtained by

Y (z) = H(z)S(z) + V (z), (7.3)

where the z-domain transfer function of the channel H(z) is
expressed as

H(z) =
N∑

n=−N

h[n]z−n. (7.4)

Let the discrete-time channel h[n] be symmetric, that is, h[n] =
h∗[−n]. Then it follows that the z-domain transfer function of the
discrete-time channel is

H(z) = H∗(z−1). (7.5)

Consequently, the H(z) has the 2N symmetric roots, where (1/ρ)∗

is a root if ρ is a root. Therefore, the z-domain transfer function of
the discrete-time channel H(z) can be factored as

H(z) = C(z)C∗(z−1), (7.6)

where C(z) is a polynomial of degree N with the roots ρi and
C∗(z−1) is a polynomial of degree N having the roots 1/ρi, where
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i = 1, 2, · · · , N . Proakis [1] suggested that one choose a unique
C∗(z−1) with minimum phase, that is, the polynomial function has
all its roots inside the unit circle. This is to say that 1/C∗(z−1)
is a physically realizable, stable, and discrete-time infinite impulse
response (IIR) filter. Thus, by using the discrete-time IIR filter
1/C∗(z−1), the output sequence y[n] in Figure 7.1 results in an
output sequence q[n] in the z-domain that can be expressed as

Q(z) = Y (z)

[
1

C∗(z−1)

]

= [H(z)S(z) + V (z)]

[
1

C∗(z−1)

]
= C(z)S(z) +G(z), (7.7)

where G(z) = V (z)/C∗(z−1) is a z-domain white Gaussian noise.
Hence, corresponding the impulse response q[n] in (7.7) is obtained
by

q[n] =
N∑
k=0

c[k]s[n− k] + g[n], (7.8)

where the sequence g[n] is a white Gaussian noise sequence and the
sequence c[n] is a set of tap coefficients of an equivalent discrete-
time FIR filter with a transfer function C(z).

Note that the matched filter at the communication receiver
becomes a time-varying filter if the channel impulse response is
changing slowly with time. As a result, the time variations of
the channel and matched filter pair require a discrete-time filter
with time varying filter coefficients. Consequently, intersymbol
interference (ISI) effects are time-varying, where the tap coefficient
is slowly varying with time. In general, the compensation methods
for the time-varying ISI, which will be discussed in Chapter 8, are
called adaptive equalization techniques. However, in designing a
good equalizer, one usually needs to know the characteristics of a
channel distortion.
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7.3 Channel Estimators

One of the design objectives for receivers is to minimize the
detection error. Generally, the design of an optimal detector requires
the knowledge of the communication channel. In practice, channel
parameters need to be estimated, preferably using only a limited
amount of training data samples. The efficiency of the channel
estimator is particularly important, because the efficiency is a
statistical measure of how effectively an algorithm utilizes the
available training data samples.

The channel estimator is defined as any statistic (known function
of observable random variables that is itself a random variable)
whose values are used to estimate τ(θ), where τ(·) is some function
of the parameter θ. In other words, the channel estimator is always a
statistic, which is both a random variable and a function.

Channel estimation admits two steps: (1) to devise some means
of obtaining a statistic to use as a channel estimator, and (2) to
select criteria and techniques to define and find a “best” estimator
among possible estimators. In this section, we consider three types
of channel estimators based on the framework of maximizing the
likelihood function.

7.3.1 Maximum Likelihood Estimator

There are several methods of finding the channel estimator. One of
these, and probably the most important, is the method of maximum
likelihood. The maximum likelihood estimator can be derived
in a systematic way and has been proved to be asymptotically
optimal [2].

Let us reconsider the discrete-time channel model given by (7.2),
where we now assume that the discrete-time channel vector has a
finite impulse response of order L,

h = {h[1], h[2], · · · , h[L]}T , (7.9)

where {·}T is the transpose of a vector. Suppose that we have
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received N samples of the observations,

y = {y[0], y[1], · · · , y[N − 1]}T . (7.10)

We then have the following linear model given by

y = sh + v, (7.11)

where s is an N × L Toeplitz matrix consisting of samples of the
input sequence {s[n], n = 0, 1, · · · , N − 1} given by

s =


s[0] s[N − 1] · · · s[N − L+ 1]
s[1] s[0] · · · s[N − L+ 2]

...
...

. . .
...

s[N − 1] s[N − 2] · · · s[0]

 , (7.12)

and v is a noise vector given by

v = {v[0], v[1], · · · , v[N − 1]}T . (7.13)

Let θ be the vector of unknown parameters that may contain the
channel vector h and possibly the entire or part of the input vector s.
Assume that the probability space, which describes jointly the noise
vector v and the input vector s, is known. In principle, we can then
obtain the probability density function of the observation vector y
(assuming it exists). The joint pdf of the observation fy(y; θ) is
referred to as the likelihood function, which is considered to be a
function of θ.

The most important case is that a random sample is used to form
the joint pdf fy(y; θ), where θ is a single parameter. The likelihood
function is then given by

fy(y; θ) = f(y[0], θ)f(y[1], θ) · · · f(y[N − 1], θ). (7.14)

Thus, the maximum likelihood estimator is the solution of the
equation

dfy(y; θ)
dθ

= 0. (7.15)
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Note that fy(y; θ) and log
[
fy(y; θ)

]
have their maximums at the

same value of θ. It is sometimes easier to find the maximum of the
logarithm of the likelihood.

If the likelihood function contains the vector of θ, θ =
[θ1, θ2, · · · , θk],

fy(y; θ1, θ2, · · · , θk) =
N−1∏
n=0

fy[n](y[n]; θ1, θ2, · · · , θk), (7.16)

then the maximum likelihood estimators of the parameters
θ1, θ2, · · · , θk are the solution of the k equations,

∂
[∏N−1

n=0 fy[n](y[n]; θ1, θ2, · · · , θk)
]

∂θi
= 0, i = 1, 2, · · · , k. (7.17)

Equation (7.17) may also be easier to work with the logarithm of the
likelihood.

Maximum likelihood estimators usually have good performance
when the sample size of the observation is sufficiently large,
but their implementation is sometimes computationally intensive.
Furthermore, the optimization of the likelihood function is
sometimes hampered because the equation ∂fy(y; θ)/∂θ locates
minimums, local maximums, and maximums. Hence, one must
avoid using a root that actually locates a minimum. In addition, the
likelihood function fy(y; θ) may be represented by a curve where the

actual maximum is at θ̂, but the derivative set equal to 0 would locate
θ
′

as the maximum. Therefore, it is highly desirable that effective
initialization techniques be used in conjunction with the method of
maximum likelihood.

Example 7.1

Assume that a random sample of size N of observations from a
channel output has the normal distribution given by

fx[n](x[n];µ, σ) =
1√
2πσ

exp
[
− 1

2σ2
(x[n]− µ)2

]
, (7.18)
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where −∞ < µ < ∞ and σ > 0. Determine the maximum
likelihood estimators of µ̂ and σ̂.

Using (7.16), the likelihood function L(x[n];µ, σ) is given by

L(x[n];µ, σ) =
N∏
n=1

1√
2πσ

exp
[
− 1

2σ2
(x[n]− µ)2

]

=
(

1

2πσ2

)N/2

exp

[
− 1

2σ2

N∑
n=1

(x[n]− µ)2
]
.

(7.19)

The logarithm of the likelihood function in (7.19) is then obtained
by

L∗ = lnL(x[n];µ, σ)

= −N
2
ln(2π)− N

2
lnσ2 − 1

2σ2

N∑
n=1

(x[n]− µ)2.
(7.20)

In order to determine the location of the maximum likelihood
in (7.20), we calculate

∂L∗

∂µ
=

1

σ2

N∑
n=1

(x[n]− µ), (7.21)

and

∂L∗

∂σ2
= −

(
N

2

)(
1

σ2

)
+

1

2σ4

N∑
n=1

(x[n]− µ)2. (7.22)

Setting these derivatives of (7.21) and (7.22) equal to 0 and
solving the resulting equations for µ and σ2, we find the maximum
likelihood estimators

µ̂ =
1

N

N∑
n=1

x[n], (7.23)
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and

σ̂2 =
1

N

N∑
n=1

(x[n]− µ̂)2. (7.24)

Note that (7.23) and (7.24) turn out to be the sample moments
corresponding to µ and σ2.

7.3.2 Least Squares Estimator

Consider the discrete-time channel model given by (7.11)

y = sh + v, (7.25)

where s is now a knownN×Lmatrix of rank L (assume that training
sequences are available) and v is the noise vector of disturbances.
Also assume merely that the noise vector of disturbances v is not
normally distributed and has the mean E{v} = 0 and the covariance
V {v} = Ω. In the discrete-time channel model when the joint
probability density function of the observable random variables is
not given, then the estimation of h can be approached by using the
method of least squares.

Choosing the values of h minimizes the residual sum of squares

L(y;h) = (y− sh)T (y− sh), (7.26)

where h is defined as the least squares estimator. We then compute

∂L(y;h)
∂h

= −sT (y− sh)− (y− sh)T s

= −2sT (y− sh) . (7.27)

Setting the derivative in (7.27) equal to 0 and solving the resulting
equation for h, we find the least squares estimator

ĥ =
(
sT s

)−1
sTy. (7.28)

Note that the mean of the least squares estimator ĥ is obtained
by

E{ĥ} =
(
sT s

)−1
sTE{y}
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=
(
sT s

)−1
sT (sh + E{v})

=
(
sT s

)−1 (
sT s

)
h. (7.29)

Since (
sT s

)−1 (
sT s

)
= I, (7.30)

the mean of the least squares estimator ĥ is then

E{ĥ} = h. (7.31)

Thus, ĥ is the unbiased estimate of h. Also, the covariance of the
least squares estimator ĥ is given by (see Example 7.2 for proof),

V {ĥ} =
(
sT s

)−1 (
sTΩs

) (
sT s

)−1
, (7.32)

where Ω is the covariance matrix. In particular, assuming Ω =
σ2I, (7.32) simplifies to

V {ĥ} = σ2
(
sT s

)−1
. (7.33)

In this case, (7.33) leads to the optimal property for the least squares
estimator ĥ.

The optimal property is referred to as the Gauss-Markov theorem
in multivariate statistics [3]. We restate the optimal property for the
channel estimator as follows. Consider the discrete-time channel
model in (7.25) and assume the disturbance terms are uncorrelated
with each other Ω = σ2I. The least squares estimator for the channel
estimation given by (7.28) has a covariance matrix that is smaller
than any other linear estimator. In other words, the least squares
estimator is the best linear unbiased estimator.

Example 7.2

The discrete-time channel model is given by (7.25), where the noise
vector of disturbances v is not normally distributed and has the mean
E{v} = 0 and the covariance V {v} = Ω. Applying the method of
least squares obtains the least squares estimator

ĥ =
(
sT s

)−1
sTy. (7.34)
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Show that the covariance matrix of the least squares estimator ĥ is

V {ĥ} =
(
sT s

)−1 (
sTΩs

) (
sT s

)−1
. (7.35)

We know that the covariance is given by

V {ĥ} = E{(ĥ− h)(ĥ− h)T}
= E

{[(
sT s

)−1
sTy− h

] [(
sT s

)−1
sTy− h

]T}

= E
{(

sT s
)−1

sTyyT s
(
sT s

)−1 − 2h
(
sT s

)−1
sTy + hhT

}
.

(7.36)

Since

E
{
2h
(
sT s

)−1
sTy

}
= 2h

(
sT s

)−1
sTE{y}

= 2h
(
sT s

)−1
sT (sh + E{v})

= 2h
(
sT s

)−1 (
sT s

)
h

= 2hhT , (7.37)

then (7.36) can be rewritten as

V {ĥ} =
(
sT s

)−1
sTE{yyT}s

(
sT s

)−1 − hhT . (7.38)

Note that

E{yyT} = E{(sh + v)(sh + v)T}
= shhT sT + 2shE{v}+ E{v2}. (7.39)

Since E{v} = 0, the covariance V {v} = E{v2} = Ω. Now, (7.39)
simplifies to

E{yyT} = shhT sT + Ω. (7.40)

Substituting (7.40) into (7.38) yields the desired result of the
covariance matrix of the least squares estimator ĥ,

V {ĥ} =
(
sT s

)−1 (
sTΩs

) (
sT s

)−1
. (7.41)
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7.3.3 Generalized Least Squares Estimator

The least squares estimator for the channel estimation discussed
above is the best linear unbiased estimator when the covariance
matrix of v equals σ2I. But, this is a special case for the least squares
estimator. In general, the covariance matrix V (v) = Ω �= σ2I. In
this case, the least squares estimator is not the best linear unbiased
estimator. In this section, we introduce a generalized least squares
estimator.

Reconsider the discrete-time channel model in (7.25) if the noise
vector of disturbances v is not normally distributed. Let the mean
E{v} = 0 and the covariance matrix V {v} = Ω. Also assume that
the covariance matrix Ω is known or can be estimated. Multiplying
the matrix 1√

Ω
on both sides of (7.25) yields a new transformed

channel model,

z =
1√
Ω

sh + u, (7.42)

where

z =
1√
Ω

y, (7.43)

and

u =
1√
Ω

v. (7.44)

Since E{v} = 0, then the mean E{u} = 1√
Ω
E{v} = 0, and the

covariance matrix,

V (u) = E{u2} − E2{u}
=

1

Ω
E{v2}

=
1

Ω
V (v)

= I. (7.45)

Thus, (7.45) indicates that the transformed channel model in (7.42)
satisfies the assumptions of the optimal property (Gauss-Markov
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theorem). Hence, using the method of least squares, the best linear
unbiased estimate of h is given by

h̃ =
(

sT
1

Ω
s
)−1

sT
1√
Ω

z

=
(

sT
1

Ω
s
)−1

sT
1

Ω
y. (7.46)

Also, the covariance matrix of h̃ is given by

V (h̃) =
(

sT
1

Ω
s
)−1

. (7.47)

The estimator given by (7.46) is called the generalized least squares
estimator for channel estimation. In this case, the covariance matrix
in (7.47) is the same as the best minimum mean-square error
(MMSE) since the generalized least squares estimator is the best
linear unbiased estimator.

7.3.4 MMSE Estimator

In this section, we present a linear optimum discrete-time solution
that is known as an MMSE estimator based on an FIR Wiener filter
[4–6]. The main result is to derive the discrete-time Wiener-Hopf
equations that provide the FIR filter coefficients of the optimum filter
in the sense of MMSE for the channel estimation.

The MMSE estimator based on the FIR Wiener filter is shown
in Figure 7.2. It is used to produce the MMSE estimate, d[n] for
y[n], given two wide-sense stationary processes jointly, s[n] and
y[n], which are statistically related to each other. It is also assumed
that the autocorrelation functions, rs(k) and ry(k), and the cross-
correlation function, rys(k), are known or can be estimated.

In order to develop the MMSE estimator for the channel
estimation, we need to determine a set of coefficients for the FIR
Wiener filter, w[n], which minimizes the mean square error (MSE)
of the filter output as compared to a channel model output, y[n]. The
error signal e[n] is given by

e[n] = y[n]− d[n]
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s[n]

e[n]

y[n]
d[n]

FIR Wiener
Filter

+

-

Channel

v[n]

+

+

Channel model
q[n]

Figure 7.2 Illustration of the MMSE estimator based on the
Wiener-Hopf optimum solution for the channel estima-
tion.

= y[n]−
M−1∑
k=0

w[k]s[n− k], (7.48)

where M is the number of coefficients of the FIR Wiener filter. In
vector form, the error signal in (7.48) is written as

e[n] = y[n]− wT [n]s[n]. (7.49)

The MSE is a function of the coefficient weight vector w[n] chosen
and is obtained by

ξMSE = E{|e[n]|2}
= E{e[n]eT [n]}
= E{(y[n]− wT [n]s[n])(y[n]− wT [n]s[n])T}
= E{y[n]yT [n]− y[n]sT [n]w[n]

− wT [n]s[n]yT [n] + wT [n]s[n]sT [n]w[n]}
= Var{y[n]} − rys[n]w[n]− wT [n]rys[n]

+ wT [n]Rs[n]w[n], (7.50)
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where rys[n] = E{s[n]yT [n]} is the product of the cross-correlation
function, and Rs[n] = E{s[n]sT [n]} is the autocorrelation function.

To minimize ξMSE , it is necessary and sufficient that the
derivative of ξMSE with respect to w[n] be equal to zero,

Rs[n]w[n] = rys[n], (7.51)

where Rs[n] is an M × M Hermitian-Toeplitz matrix of
autocorrelation,

Rs[n] =


rs[0] rs[1] · · · rs[M − 1]
rs[1] rs[0] · · · rs[M − 2]

...
...

. . .
...

rs[M − 1] rs[M − 2] · · · rs[0]

 , (7.52)

w[n] is the vector of the FIR Wiener filter coefficients,

w[n] =
(
w[0], w[1], · · · , w[M − 1]

)T
, (7.53)

and rys[n] is the vector of cross-correlation between the channel
model output y[n] and the input signal s[n],

rys[n] =
(
rys[0], rys[1], · · · , rys[M − 1]

)T
. (7.54)

The matrix form in (7.51) is called the Wiener-Hopf equation.
If the matrix Rs[n] is invertible, then w[n] can be solved by

w[n] = R−1
s [n]rys[n]. (7.55)

Equation (7.55) is called the MMSE estimator for the channel
estimation or normal equation, since the error signal is orthogonal
to each element of the input vector given by

E{s[n]eT [n]} = 0. (7.56)

The MMSE of the estimate of the channel model output y[n] can
be then computed by using (7.50) as follows,

ξMMSE = E{|e[n]|2}
= E{e[n](y[n]− wT [n]s[n])}
= E{e[n]y[n]} − wT [n]E{s[n]eT [n]}. (7.57)
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Since E{s[n]eT [n]} = 0 given by (7.56), the second term in (7.57)
is equal to zero. Hence,

ξMMSE = E{e[n]y[n]}
= E{(y[n]− wT [n]s[n])y[n]}
= E{y2[n]} − wT [n]E{s[n]y[n]}
= Ry(0)− rTys[n]w[n]. (7.58)

The MMSE can also be expressed in terms of the autocorrelation
matrix Rs[n] and the cross-correlation vector rys[n] in the following:

ξMMSE = Ry(0)− rTys[n]R
−1
s [n]rys[n]. (7.59)

Now, it is useful to consider what must be known to obtain the
MMSE estimator and to estimate ξMMSE in the following steps:

1. Calculate the autocorrelation matrix Rs[n] of the input
vector, s[n].

2. Determine the cross-correlation vector rys[n] between the
input vector, s[n], and the channel model output, y[n].

3. Estimate the variance Ry(0) of the channel model output,
y[n].

4. Compute the optimal coefficients w[n] and the ξMMSE for
the channel estimation.

Further note that, in Figure 7.2, a desired channel output q[n] is
to be estimated from the noise corrupted observation of the channel
model output y[n]

y[n] = q[n] + v[n]. (7.60)

If we assume that the noise v[n] has zero mean and σ2 variance, and
that it is uncorrelated with the desired channel output q[n], then we
obtain

E{q[n]v[n− k]} = 0, (7.61)

and the cross-correlation function between the desired channel
output q[n] and the channel model output y[n]

rqy(k) = E{q[n]y[n− k]}
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= E{q[n](q[n− k] + v[n− k])}
= E{q[n]q[n− k]}+ E{q[n]v[n− k]}
= rq(k). (7.62)

In the matrix form, (7.62) can be written as

rqy[n] = rq[n]. (7.63)

Since the noise v[n] and the desired channel output q[n] are
uncorrelated, it follows that

ry(k) = E{y[n+ k]y[n]}
= E{(q[n+ k] + v[n+ k])(q[n] + v[n])}
= E{q[n+ k]q[n]}+ E{v[n+ k]v[n]}
= rq(k) + rv(k). (7.64)

Therefore, making the autocorrelation matrix Rq[n] for the desired
channel output q[n], and the autocorrelation matrix Rv[n] for the
noise v[n], the MMSE estimator based on the Wiener-Hopf equation
is given by

(Rq[n] + Rv[n])w[n] = rq. (7.65)

Equation (7.65) can be further simplified if specific information of
the statistic of the signal and noise are available.

The MMSE estimator based on the Wiener-Hopf solution is a
single-step optimal algorithm and can be used to solve the channel
estimation. However, from the point of view of implementation, it
is not an efficient algorithm in terms of computation complexities,
especially in a real-time digital signal processing operation.
Furthermore, the optimal coefficient vector w[n] needs to be
computed again if the input signals x[n] and the output response
y[n] are nonstationary. In other words, the optimal coefficient vector
w[n] must be recomputed if the channel is time-varying. This leads
to a very high computation load for each iteration. Therefore, the
direct implementation of the MMSE estimator based on the Wiener-
Hopf solution is not recommended for the real-time digital channel
estimation in the environment of wireless mobile communications.
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Example 7.3

In this example, we introduce the channel estimation by using the
MMSE estimator based on the FIR Wiener filter solution as shown
in Figure 7.2. Suppose that the channel output q[n] is observed in the
presence of uncorrelated white noise v[n]

y[n] = q[n] + v[n], (7.66)

where v[n] is the zero mean and a variance of σ2. Assume that the
discrete-time channel can be expressed in the difference equation

q[n] =
L−1∑
k=0

b[k]s[n− k], (7.67)

and in the z-transfer function

H(z) =
L−1∑
k=0

b[k]z−k. (7.68)

The goal of this example is to estimate the channel output q[n],
reduce the noise in y[n], and to obtain the optimal coefficients of
the FIR Wiener filter for the MMSE estimator.

Consider a first-order discrete-time channel (L = 2) in this
example. By using (7.65), the MMSE estimator based on the
Wiener-Hopf equation is obtained by(

rq[0] + rv[0] rq[1] + rv[1]
rq[1] + rv[1] rq[0] + rv[0]

)(
w[0]
w[1]

)
=

(
rq[0]
rq[1]

)
. (7.69)

The correlation function of the channel output q[n] is given by [7]

rq(k) =
L−k−1∑
l=0

b[l + k]b[l], (7.70)

and the correlation function of the noise is rv(k) = σ2δ(k). Thus the
MMSE estimator based on the Wiener-Hopf equation becomes(

b2[0] + b2[1] + σ2 b[0]b[1]
b[0]b[1] b2[0] + b2[1] + σ2

)(
w[0]
w[1]

)

=

(
b2[0] + b2[1]
b[0]b[1]

)
. (7.71)
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Let b[0] = 1, b[1] = −0.5 and σ2 = 1 in (7.71). We have(
2.25 −0.5
−0.5 2.25

)(
w[0]
w[1]

)
=

(
1.25
−0.5

)
. (7.72)

Solving for w[0] and w[1] yields(
w[0]
w[1]

)
=

(
0.5325
−0.1039

)
. (7.73)

In this case, the MMSE estimator in the z-transfer domain is

W (z) = 0.5325− 0.1039z−1. (7.74)

For the MMSE, we obtain the result as follows:

ξMMSE = E{|e[n]|2}
= rq[0]− (w[0]rq[0] + w − [1]rq[1])

= 0.5324. (7.75)

7.4 Adaptive Channel Estimation and Algorithms

The objective of adaptive channel estimation is to estimate the
channel impulse response h[n] in (7.2) given the input signal source
x[n] and the noise v[n]. The structure of adaptive channel estimation
is shown in Figure 7.3, which is also referred to as the system
identification given by Miao and Clements [6].

In the channel estimation, the adaptive filter model is used to
provide a linear model that represents the best fit to an unknown
channel impulse response h[n]. The unknown channel impulse
response h[n] and the adaptive filter model use the same input
signal source s[n]. Then output of the unknown channel impulse
response h[n] provides the desired signal response for the adaptive
filter model. When the unknown channel impulse response h[n]
is dynamic, the linear model will be time-varying in the channel
estimation.
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Figure 7.3 Block diagram of adaptive channel estimation.

The adaptive filter model can be assumed to be an FIR filter
model,

d[n] =
M−1∑
k=0

bn[k]s[n− k], (7.76)

where bn[k] is the time-varying set of the tap coefficients for the
FIR filter model at the index of n. In a vector form, (7.76) can be
expressed as

d[n] = bT
n [n]s[n], (7.77)

where bT
n [n] = [bn[0], bn[1], ..., bn[M − 1]]. The adaptive process

updates the filter tap coefficients so that they move from an initial
position toward the MMSE solution. The MSE of ξMSE[n] is
obtained by

ξMSE[n] = E{|e[n]|2}, (7.78)

where the error sequence e[n] as shown in Figure 7.3 is written as

e[n] = y[n]− d[n]

=
M−1∑
k=0

h[k]s[n− k] + v[n]−
M−1∑
k=0

bn[k]s[n− k]
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= (h[n]− bn)
T s[n] + v[n], (7.79)

where the channel matrix hT [n] = [h[0], h[1], ..., h[M − 1]].
In order to minimize the MSE function given by (7.78), we need

to update the tap coefficients of the adaptive FIR filter model to
estimate the channel impulse response h[n] at each iteration so that
the MSE in (7.78) can be achieved in the sense of MMSE. The
adaptive algorithm is controlled by the error signal e[n] in (7.79).
The adaptive algorithm uses the error signal e[n] to minimize the
MSE function in (7.78) and updates the tap coefficients of the
adaptive filter in a manner that iteratively reduces the MSE. The
commonly used adaptive algorithms for the channel estimation
include least mean squares (LMS) and recursive least squares
(RLS).

7.4.1 The LMS Algorithms

In this section, we introduce a set of widely used adaptive techniques
called LMS algorithms for the channel estimation. The LMS
algorithms are the simplest and the most used algorithm that serves
as a benchmark standard against other adaptive algorithms.

Consider an adaptive FIR filter used for estimating a desired
signal d[n] from an input signal x[n] as shown in Figure 7.4. The
structure of the adaptive FIR filter is called a transversal filter,
which has N − 1 delay elements, N taps, and N tunable complex
multipliers (or tap weights). The tap weights of the adaptive FIR
filter are described by their physical location in the delay line
structure and have a subscript, n, to explicitly show that they vary
with time. The LMS algorithm, either on a sample-by-sample basis
or on a block-by-block basis, continuously updates these tap weights
of the adaptive FIR filter.

The transfer function of the adaptive FIR filter is described by

y[n] =
M−1∑
q=0

bn[q]x[n− q]

= BT
nx[n], (7.80)
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y[n]

x[n]

d[n]

e[n]

z-1 z-1 z-1

The LMS algorithm for updating each tap weight
+

-

bn[0] bn[1] bn[2] bn[M-2] bn[M-1]

Figure 7.4 The LMS algorithm for updating the adaptive FIR filter.

where bn[q] is a time-varying set of coefficients for the FIR filter and
BT
n = {bn[0], bn[1], · · · , bn[M − 1]}. The objective of the adaptive

process is to adjust the filter tap weights so that they move from their
current position toward the MMSE solution. The MSE of ξMSE[n]
is defined by

ξMSE[n] = E{|e[n]|2}, (7.81)

where the error signal e[n] in Figure 7.4 is given by

e[n] = d[n]− y[n]
= d[n]− BT

nx[n], (7.82)

where d[n] is either an exact scaled replica of the transmitted signal
or a known property of the transmitted signal.

The LMS algorithm updates the tap weights based on the method
of steepest descent. The steepest descent algorithm is an iterative
procedure, which minimizes the MMSE at time n using an estimate
of the tap-weight vector Bn. At time n + 1, a new estimate of the
tap-weight vector Bn+1 is formed by adding a small correction with
a step size µ to the tap-weight vector Bn, which is used to move
the tap-weight vector Bn closer to the desired optimal solution. This
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process can be expressed as follows:

Bn+1 = Bn − 1

2
µ! ξ[n], (7.83)

where Bn+1 is the tap-weight vector at time n+1, and the step size µ
is used to control the rate of convergence. The gradient, which is the
derivative of E{|e(n)|2} with respect to the tap-weight vector Bn, is
given by

!ξ[n] =
∂E{|e(n)|2}

∂Bn

= −2E{e[n]x[n]}, (7.84)

where x[n] is the input signal vector and e[n] is the error signal as
shown in Figure 7.4. Thus, the update equation for tap-weight vector
Bn in the steepest descent algorithm in (7.83) becomes

Bn+1 = Bn + µE{e[n]x[n]}. (7.85)

Note that if the input signal x[n] and the desired signal d[n] are
jointly wide-sense stationary, then we obtain

E{e[n]x[n]} = E{(d[n]− BT
nx[n])x[n]}

= E{d[n]x[n]} − E{x[n]x[n]BT
n}

= rdx[n]− Rx[n]Bn. (7.86)

Thus, in this case, the steepest descent algorithm in (7.85) becomes

Bn+1 = Bn + µ(rdx[n]− Rx[n]Bn). (7.87)

When Bn = R−1
x [n]rdx[n], the second term in (7.87) is zero.

Therefore, (7.87) means that the steepest descent of the adaptive
filter tap-weight vector Bn converges to the solution of the Wiener-
Hopf equation when

lim
n→∞

Bn = R−1
x [n]rdx[n]. (7.88)
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The step size µ satisfies the condition [5]

0 < µ <
2

λmax

, (7.89)

where λmax is the maximum eigenvalue of the autocorrelation matrix
Rx[n].

In general, the steepest descent algorithm has a practical
limitation because the expectation E{e[n]x[n]} is unknown.
However, we can estimate it by using the sample mean,

E{e[n]x[n]} = 1

N

N−1∑
k=0

e[n− k]x[n− k], (7.90)

where N is the number of samples. Substituting (7.90) into (7.85),
the update equation for the tap-weight vector Bn becomes

Bn+1 = Bn +
µ

N

N−1∑
k=0

e[n− k]x[n− k]. (7.91)

In a special case, if we use only one sample for estimating the sample
mean, the update equation for the tap-weight vector Bn in (7.91) has
a particularly simple form

Bn+1 = Bn + µe[n]x[n]. (7.92)

Equation (7.92) is called the LMS algorithm. Equivalently, we
summarize the adaptive channel estimation using the LMS algorithm
as follows:

1. Determine the parameters, including the filter lengthM and
the step size µ.

2. Set the initialization of the filter tap-weight vector, B0 = 0.
3. Compute the LMS algorithm: For n = 0, 1, 2, ..., N,

(a) Calculate the filter output:

y[n] = BT
nx[n]. (7.93)
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(b) Estimate the error signal:

e[n] = d[n]− y[n]. (7.94)

(c) Update the adaptation of the tap-weight vector:

Bn+1 = Bn + µe[n]x[n]. (7.95)

In practice, the adaptive filter system with M tap weights using
the LMS algorithm requires M multiplications and M additions to
update the filter tap weights. Moreover, one addition is needed to
compute the error signal e[n], and one multiplication is needed to
form the product µe[n]x[n]. Thus, M multiplications and M − 1
additions are needed to calculate the output signal of the adaptive
filter. A total of 2(M+1) MACs (multiplier-accumulator) per sample
output are therefore required.

7.4.2 The LMS Algorithm Convergence

The selection of the step size µ in (7.92) must be done carefully.
If the step size µ is too small, the tap-weight vector Bn will adapt
very slowly and may not react to changes in the input signal vector.
However, if the step size µ is too large, the adaptive filter system
using the LMS algorithm will unduly respond to noise in the signal
and may not converge to the MMSE solution.

The LMS algorithm convergence is derived by using a statistical
framework where the tap weight vector Bn is treated as a vector of
random variables. Substituting (7.82) into (7.92) gives the update
equation of the tap weight as follows:

Bn+1 = Bn + µ
(
d[n]− BT

nx[n]
)

x[n]. (7.96)

Taking the expectation of both sides of (7.96) obtains

E{Bn+1} = E{Bn}+ µE{d[n]x[n]} − µE{x[n]xT [n]Bn}. (7.97)

To perform the convergence analysis for (7.97), we assume that the
input signal x[n] and the desired signal d[n] are jointly wide-sense
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stationary. Furthermore, the input signal x[n] and the tap-weight
vector Bn of the LMS adaptation are statistically independent. Note
that this independence assumption for statistical analysis of the LMS
algorithm is often approximately true, and its use is attributed to
Haykin [8]. With this assumption, (7.97) can be rewritten as

E{Bn+1} = E{Bn}+ µrdx[n]− µE{x[n]xT [n]}E{Bn}
= (I− µRx[n])E{Bn}+ µrdx[n]. (7.98)

Further note that the LMS adaptive filter converges to the
solution of the Wiener-Hopf equation when rdx[n] = Rx[n]B
in (7.87), where B is the Wiener-Hopf solution. Thus, (7.98)
becomes

E{Bn+1} = (I− µRx[n])E{Bn}+ µRx[n]B. (7.99)

Subtracting B from both sides in (7.99) gives

E{Bn+1} − B = (I− µRx[n])(E{Bn} − B). (7.100)

Since Rx[n] is an autocorrelation matrix that is symmetric and a
positive definite, by using the spectral decomposition theorem in
Appendix B, Rx[n] can be decomposed into

Rx[n] = V[n]ΛVT [n], (7.101)

where Λ is a diagonal matrix consisting of the eigenvalues of the
autocorrelation matrix Rx[n], and

V[n]VT [n] = I. (7.102)

Then, substituting (7.101) into (7.100) and using the fact in (7.102),
we obtain

VT [n](E{Bn+1} − B) = (I− µΛ)VT [n](E{Bn} − B). (7.103)

Let a new vector be

un = VT [n](E{Bn} − B). (7.104)
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Substituting (7.104) into (7.103) yields

un+1 = (I− µΛ)un. (7.105)

Given an initial vector u0, (7.105) becomes

un+1 = (I− µΛ)n+1u0. (7.106)

Note that (I − µΛ) in (7.106) is a diagonal matrix. Thus, the ith
components of the vector un+1 may be expressed as follows:

un+1(i) = (1− µλi)n+1u0(i). (7.107)

If we want the filter tap-weight vector Bn+1 to converge to the mean
vector B, then the vector un+1 must converge to zero. This requires

|1− µλi| < 1, i = 0, 1, 2, ...,M, (7.108)

where M is the number of filter tap weights. Therefore, in order to
prevent the LMS adaptation from becoming unstable, the value of
the step size µ must be chosen such that

0 < µ <
2

λmax

, (7.109)

where λmax is the maximum eigenvalue of the autocorrelation matrix
Rx[n].

In practice, knowledge of λmax is not available for the
application of the adaptive filter system using the LMS algorithm.
The trace of Rx[n] may be taken as a conservative estimate for λmax.
In this case, (7.109) can be rewritten as

0 < µ <
2

tr{Rx[n]} , (7.110)

where tr{Rx[n]} denotes the trace of autocorrelation matrix Rx[n]. If
the input signal x[n] is wide-sense stationary, then Rx[n] is a Toeplitz
matrix. Thus, the trace tr{Rx[n]} can be rewritten as follows:

tr{Rx[n]} = (M + 1)E{|x[n]|2}, (7.111)
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where E{|x[n]|2} can be estimated by

E{|x[n]|2} = 1

M

M−1∑
k=0

|x(n− k)|2. (7.112)

Therefore, in this case, (7.109) can be reexpressed as follows:

0 < µ <
2

M+1
M

∑M−1
k=0 |x(n− k)|2

. (7.113)

7.4.3 The LMS EMSE Analysis and Misadjustment

In the application of the channel estimation, the LMS tap-weight
vector Bn tends to fluctuate about its optimum value when the tap-
weight vector Bn begins to converge to the mean B. This is because
of the noisy gradient vectors that are used to produce the small
corrections to the tap-weight vector Bn. Thus, the tap-weight vector
Bn does not converge to the mean vector B exactly. If the MSE is
larger than the MMSE by an amount, then the amount is referred to
as the excess mean-squared error (EMSE).

Using (7.82) and letting Ψ = Bn−B, we rewrite the error signal
as follows:

e[n] = d[n]− BT
nx[n]

= d[n]− (B +Ψ)Tx[n]

= emin[n] + ΨTx[n], (7.114)

where emin[n] = d[n] − BTx[n] is the error if the solution of the
Wiener-Hopf equation were used. If the LMS filter is in steady-state
such that E{Ψ} = 0, then the MSE can be expressed as

ξ[n] = E{|e[n]|2}
= ξMMSE + ξEMSE[n], (7.115)

where ξMMSE = E{|eMMSE[n]|2} is the MMSE and ξEMSE[n] is
the EMSE.
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Haykin [8] showed that if the step size µ satisfies (7.109) and the
condition

M∑
i=1

2λi
2− µλi < 1, (7.116)

where λi is the ith eigenvalue of the autocorrelation matrix Rx[n],
then the EMSE for the LMS algorithm is less than the MMSE as
follows:

ξEMSE[∞] = ξMMSE

[
µ

M∑
i=1

λi
2− µλi

]
. (7.117)

Further note that if µ� 2
λmax

, then µλi � 2, and

µ
M∑
i=1

λi
2− µλi ≈ µ

2

M∑
i=1

λi

=
µ

2
tr{Rx[n]}. (7.118)

Substituting (7.118) into (7.117) yields the EMSE as follows:

ξEMSE[∞] ≈ ξMMSE

[
µ

2
tr{Rx}

]
. (7.119)

Equation (7.119) indicates that the ξEMSE[∞] is proportional to the
step size µ when n→∞.

The ratio of the steady-state EMSE ξEMSE[∞] to the MMSE
ξMMSE is called as the LMS misadjustment M. Using (7.117), the
LMS misadjustmentM is defined by

M =
ξEMSE[∞]

ξMMSE

= µ
M∑
i=1

λi
2− µλi . (7.120)

The LMS misadjustmentM is less than unity if the step-size µ holds
the condition in (7.116). If the step size is small such that µ� 2

λmax
,

then the LMS misadjustment is approximately obtained by

M≈ µ

2
tr{Rx[n]}. (7.121)
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The trade-off analysis among the rate of convergence, the
amount of EMSE, and the ability of the adaptive filter to track
the signal are important. Since the filter tap-weight vectors Bn are
far from the optimal solution when the LMS adaptation algorithm
begins, the step size µ can be large in order to move the tap-weight
vectors Bn rapidly toward the desired solution. However, the step
size µ should be decreased to reduce the EMSE ξEMSE[∞] when
the LMS filter begins to converge in the MMSE solution. Therefore,
using the LMS algorithm with a time-varying step size µ[n] is
desirable in the application of channel estimation.

7.4.4 The RLS Algorithms

The RLS algorithm is derived from the least squares solution of
the adaptive filter system for the channel estimation. The RLS
algorithm utilizes information contained in the particular processed
input sample data. This is to say that we can get different adaptive
filters for different input sample data. As a result, the adaptive filter
tap weights that minimize the least squares error will be optimal
for the given sample data rather than statistically optimal over a
particular class of processes.

To derive the RLS algorithm for the adaptive filter system in the
channel estimation, we need to minimize the total sum of squared
errors for all input sample data at discrete-time n. The least squares
error function is defined by

ξ[n] =
n∑
i=0

λn−i|e[i]|2, (7.122)

where 0 < λ ≤ 1 is an exponential weighting factor and e[i] is the
error signal given by

e[i] = d[i]− y[i]
= d[i]− wT [n]x[i], (7.123)

where w[n] is the tap-weight vector of the adaptive filter system at
discrete-time n, and x[i] is the input vector at discrete-time i.
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Setting the derivative of ξ[n] in (7.122) with respect to wk[n]
equal to zero for k = 0, 1, 2, · · · ,M , we generate the optimum
value of the tap-weight vector w[n] defined by the normal equations
written in matrix form:

Rx[n]w[n] = rdx[n], (7.124)

where Rx[n] is an (M + 1) × (M + 1) exponentially weighted
deterministic autocorrelation matrix for x[n] as follows,

Rx[n] =
n∑
i=0

λn−ix∗[i]xT [i], (7.125)

and where rdx[n], the deterministic cross-correlation between d[n]
and x[n] is expressed by

rdx[n] =
n∑
i=0

λn−id[i]x∗[i]. (7.126)

To calculate the least squares estimate of the tap-weight
vector w[n] in (7.124), we need to compute the inverse of the
autocorrelation matrix Rx[n],

w[n] = R−1
x [n]rdx[n]. (7.127)

Equation (7.127) is referred to as the least squares estimate w[n] for
the tap-weight vector. However, performing such an implementation
directly is too time consuming if the number of tap weights, M ,
is relatively high. Therefore, in practice, we compute the least
squares estimate of the tap-weight vector w[n] recursively for n =
1, 2, 3, · · · ,M .

Since Rx[n] and rdx[n] both depend on n, we obtain the recursive
equation for updating the value of the autocorrelation matrix as
follows:

Rx[n] = λRx[n− 1] + x∗[n]xT [n], (7.128)

where Rx[n−1] is the value of the autocorrelation matrix at discrete-
time n − 1, and the matrix product x∗[n]xT [n] can be considered as
the “correction” term in the updating operation.
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In a similar way, the cross-correlation matrix may be updated
recursively,

rdx[n] = λrdx[n− 1] + d[n]x∗[n]. (7.129)

In order to invert the autocorrelation matrix Rx[n], we use the
matrix inversion lemma as follows:

A−1 = (B−1 + CD−1CT )−1

= B− BC(D + CTBC)−1CTB. (7.130)

Let A = Rx[n], B−1 = λRx[n − 1], C = x[n], and D = 1. Then,
substituting the above definitions into (7.130) obtains the recursive
expression of the inverse autocorrelation matrix as follows:

R−1
x [n] = λ−1R−1

x [n− 1]

− λ−2R−1
x [n− 1]x[n]xTR−1

x [n− 1]

1 + λ−1x[n]R−1
x [n− 1]x[n]

. (7.131)

To simplify this formula, we further let

P[n] = R−1
x [n], (7.132)

where P[n] is known as the inverse autocorrelation matrix, and

k[n] =
P[n− 1]x[n]

λ+ xT [n]Px[n− 1]x[n]
, (7.133)

where k[n] is referred to as the gain vector. Using the definitions
in (7.132) and (7.133), we rewrite (7.131) as follows:

P[n] =
1

λ
{I− k[n]xT [n]}P[n− 1]. (7.134)

Equation (7.134) is referred to as the Riccati formula for the RLS
algorithm. As a result, the desired recursive equation for updating
the coefficient-weight vector is given by

w[n] = w[n− 1] +#w[n− 1]

= w[n− 1] + k[n]ξ[n], (7.135)
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where ξ[n] is an a priori estimation error defined by

ξ[n] = d[n]− wT [n− 1]x[n]. (7.136)

As we can see, the implementation of the RLS algorithm requires
the initialization of the recursion formula of (7.134) with a starting
value P[0], which is the nonsingularity of the autocorrelation matrix
Rx[n]. To simplify this procedure of obtaining the initialization
value, we change the expression of (7.128) slightly for the
autocorrelation matrix Rx[n] and write as follows:

Rx[n] = λRx[n− 1] + δλnI, (7.137)

where Rx[n − 1] is given by (7.125), I is the (M + 1) × (M + 1)
identity matrix, and δ is a small positive constant. Note that if
n = 0, (7.137) becomes

Rx[0] = δI. (7.138)

Therefore, the initial value of P[n] is obtained by

P[0] = R−1
x [0]

=
1

δ
I. (7.139)

Finally, we summarize all of the steps of the RLS algorithm for
the channel estimation as follows:

1. Select the filter order of the tap weights M , the exponential
weighting factor, λ, and a small positive constant, δ, to
initialize the matrix P[0] given in (7.139).

2. Initialize the RLS algorithm by choosing P[0] = 1
δ
I, where

δ is a small positive constant and w[0] = 0.
3. For each instant of time, n = 1, 2, · · · , N , we calculate as

follows:

(a) Using (7.136) finds the a priori estimation error.
(b) Using (7.133) calculates the gain vector.
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(c) Using (7.135) updates the tap-weight vector.
(d) Using (7.134) computes the Riccati formula.

In application for the channel estimation, the RLS algorithm
requires [3(N + 1)(N + 2)] MACs (multiplier-accumulator) [6].
Thus, the computational complexity of the RLS algorithm is much
higher than for the LMS algorithm. However, the RLS algorithm
generally converges faster than the LMS algorithm.

For theoretic treatment of the RLS algorithm, we suggest
Haykin [5]. For other RLS methods based on the slide window and
state-space approaches, we refer the reader to Zhao et al. [9] and
Sayed and Kailath [10], respectively.

7.4.5 The RLS Algorithm Convergence

In order to perform the analysis of the RLS algorithm convergence,
we let λ = 1 for mathematical simplification. The autocorrelation
matrix Rx[n] in (7.125) can be then reexpressed as follows:

Rx[n] =
n∑
i=0

x∗[i]xT [i], (7.140)

and the cross-correlation matrix (7.126) becomes

rdx[n] =
n∑
i=0

d[i]x∗[i]. (7.141)

Furthermore, we rewrite (7.123) as follows:

d[i] = wT
c x[i] + ew[i], (7.142)

where ew[i] is white noise with zero mean and variance σ2, and the
weight vector wc is constant. Then, substituting (7.142) into (7.141)
yields the cross-correlation matrix as follows:

rdx[n] =
n∑
i=0

(wT
c x[i] + ew[i])x∗[i]

=
n∑
i=0

x∗[i]xT [i]wc +
n∑
i=0

ew[i]x∗[i]

= Rx[n]wc +
n∑
i=0

ew[i]x∗[i]. (7.143)
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Substituting (7.143) into (7.127), we can rewrite (7.127) as follows:

w[n] = R−1
x [n](Rx[n]wc +

n∑
i=0

ew[i]x∗[i])

= wc + R−1
x [n]

n∑
i=0

ew[i]x∗[i]. (7.144)

In order to analyze the RLS algorithm convergence further, we
now need to make two assumptions as follows:

1. The input vectors, x[1], x[2], ..., x[n], are statistically
independent.

2. The measurement error ew[i] is independent of the input
vector x[i] for n = 1, 2, ..., n.

Given these two assumptions, we take the expectation value for both
sides of (7.144) with n ≥M and obtain

E{w[n]} = E{wc}+ E
{

R−1
x [n]

n∑
i=0

ew[i]x∗[i]

}
= wc, (7.145)

where M is the number of tap weights in the adaptive filter system
and the measurement error ew[i] has zero mean. As a result, (7.145)
indicates that the RLS algorithm is convergent in the mean value,
wc, for n ≥ M . In other words, this means that the RLS algorithm
does not wait for convergence for n→∞.

7.4.6 The RLS EMSE Analysis and Misadjustment

The MSE of the RLS algorithm with setting λ = 1 is given by [6, 8]

ξ[n] = σ2 +
Mσ2

n−M − 1
, n > M + 1 (7.146)

where σ2 is the variance of the measurement error ew[n] and M is
the number of filter tap weights in the adaptive filter system. When
n → ∞, the second term in (7.146) is approximately zero. Under
a stationary environment, (7.146) indicates that the RLS algorithm
generates zero EMSE when n → ∞. Therefore, using (7.120), we
obtain that the RLS misadjustmentM≈ 0.
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7.4.7 Comparison of the Adaptive Algorithms

The RLS algorithm convergence rate is usually an order of
magnitude faster than the LMS algorithm convergence. The reason
is that there are fundamental differences between the RLS algorithm
and the LMS algorithm. The LMS algorithm uses the step size µ,
while the RLS algorithm uses the inverse of the autocorrelation
matrix R−1

x [n] of the input signal vector. This results in a profound
impact on the convergence behavior of the RLS algorithm. Thus, the
RLS algorithm convergence does not wait for n→∞.

The RLS algorithm has approximately zero EMSE. On the
other hand, the EMSE of the LMS algorithm approximately equals
ξMMSE

[
µ
2
tr{Rx}

]
. This is because the EMSE of the LMS algorithm

is proportional to the step size µ when n → ∞. Thus, the
misadjustment of the LMS algorithm is much greater than the RLS
algorithm.

The LMS algorithm has much fewer computation complexities
compared with the RLS algorithm. In addition, the LMS algorithm
does not have a stability issue, while the stablity of RLS algorithms
needs to be considered during operation. This leads to the LMS
algorithm as the most often used adaptive algorithm for adaptive
channel estimation.

Example 7.4

In this example, we show an adaptive channel estimation using the
exponentially weighted RLS algorithm based on the block diagram
of adaptive channel estimation as shown in Figure 7.3. Assume that
the transfer function of unknown channel H(z) has an expression
form as follows:

H(z) = 0.5 + 0.95z−1 − 0.5z−2 − 0.25z−3, (7.147)

and v[n] is white noise with zero mean and unit variance. The input
signal s[n] is the random sequence with 1 or −1.

The goal of the example is to estimate the unknown tap weights
of the fourth-order adaptive FIR filter given by
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y[n] =
3∑

k=0

wn[k]x[n− k], (7.148)

where wn[k] (k = 0, 1, 2, 3) are the tap weights to be estimated using
the exponentially weighted RLS algorithm. Then the error signal is
obtained by

e[n] = d[n]− y[n], (7.149)

and the estimated average mean square error is given by:

ξMMSE[n] =
1

N

N−1∑
k=0

|e[k]|2, (7.150)

where N is the number of input samples.
For initialization of the RLS algorithm, we let the exponential

weight λ = 0.999 and δ = 0.0001. The simulation results are shown
in Figure 7.5. After 1,000 iterations, we see that the tap weights
wn[0], wn[1], wn[2], and wn[3] are converged to 0.5, 0.95, −0.55,
and −0.25, respectively.

7.5 Channel Models and HOS Estimations

In this section, we introduce three commonly used types of the
discrete-time channel structures and their estimation methods based
on statistic assumptions of the higher-order statistics (HOS) (the
order≥ 3). Depending on the number of channel inputs and outputs,
these discrete-time channel structures are classified as either SISO,
SIMO, or MIMO.

7.5.1 SISO Channel Model and Estimation

Consider a discrete-time channel model consisting of a linear time-
invariant (LTI) impulse response h[n] followed by additive noise
v[n] as shown in Figure 7.6. This discrete-time channel is called the
SISO channel. The output sequence y[n] is obtained by

y[n] = q[n] + v[n], (7.151)

where the noise-free signal sequence q[n] can be expressed as
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Figure 7.5 Adaptive channel estimation using the exponentially
weighted RLS algorithm with 1,000 iterations: (a)
estimated coefficients wn[1], wn[2], wn[3], and wn[4];
and (b) estimated average mean square errors.

q[n] =
N∑

k=−N

h[k]s[n− k]. (7.152)

Thus, (7.152) is the noise-free signal distorted by an unknown
discrete-time LTI SISO channel h[n] and a noise sequence v[n]. The
receiver signal-to-noise (SNR) associated with the received signal
y[n] for the discrete-time SISO channel is defined as

SNRSISO =
E{|q[n]|2}
E{|v[n]|2} . (7.153)
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Figure 7.6 The discrete-time single-input single-output (SISO)
channel.

The discrete-time SISO channel can be estimated either by
sending a training sequence or by using a blind estimator. For a
method of the HOS (the order ≥ 3), the blind channel estimation
method is generally based on the following assumptions for the
received signal y[n] modeled by (7.151) and (7.152):

1. The discrete-time LTI SISO channel h[n] is stable.
2. The source signal s[n] is a zero-mean, independent, and

identically distributed non-Gaussian random process with a
variance σ2

s = E{|s[n]|2}.
3. The noise sequence v[n] is a zero-mean Gaussian random

process that can be colored with the correlation function
Rv(k) = E{v[n]v∗[n−k]} and the (p+q)th-order cumulant
Cp,q{s[n]} �= 0.

4. The source signal s[n] is statistically independent of the
noise v[n].

Figure 7.7 shows a block diagram of a discrete-time SISO
channel followed by a linear equalizer hle[n]. The equalization
approach is equivalent to finding the linear equalizer hle[n] such that
Hle(z) = 1/H(z) or an inverse system estimate, that is, z[n] =
βs[n− τ ]. This leads to the name “inverse filtering approach.”
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Figure 7.7 Block diagram of a discrete-time channel SISO and
linear equalizer.

Assume that the output sequence y[n] is generated by
using (7.151) and (7.152) under the above assumptions. By using
blind channel estimation with the estimate of the input signal source
ŝ[n] = z[n], the discrete-time SISO channel can then be estimated
via

ĥ[n] =
E{y[n+ 1]ŝ[n]}
E{|ŝ[n]|2} . (7.154)

If SNRSISO = ∞ in (7.153), the output of the linear equalizer
is indeed equal to z[n] = βs[n − τ ]. In this case, (7.154) leads to
the discrete-time SISO channel estimation ĥ[n] = h[n]. However, in
practice, SNRSISO in (7.153) has finite value. Hence, the resultant
estimator ĥ[n] has bias because of the noise in the output sequence
y[n]. This results in the input signal estimate ŝ[n] consisting of the
estimation error from the output of the linear equalizer.

7.5.2 SIMO Channel Model and Estimation

Consider a channel model consisting of L subchannels fed from a
common input source s[n] as depicted in Figure 7.8. Assume that the
discrete-time channel is modeled as an FIR filter, and the received
signal y[n] is oversampled at t = iT/L, with their individual outputs
yi[n], i = 0, 1, 2, · · · , L−1, sampled at the symbol rate of 1/T . This
channel model is referred to as the discrete-time SIMO channel.
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Figure 7.8 The single-input multiple-output (SIMO) discrete-time
channel.

Each of the subchannels hi[n] has the same time index and its
noise contribution is vi[n], where i = 0, 1, 2, · · · , L − 1. Thus, we
may describe the oversampled discrete-time SIMO channel in the
simplified vector form

yi[n] = hi[n]s[n] + vi[n], i = 0, 1, · · · , L− 1, (7.155)

where the transmitted input signal source vector s[n] consisting of
(M+N) symbols is defined as

s[n] = [x[n], x[n− 1], · · · , x[n−M −N + 1]]T , (7.156)

the N × 1 noise vector is

vi[n] = [vi[n], vi[n− 1], · · · , vi[n−N + 1]]T , (7.157)
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Figure 7.9 The relationship of a transmitter antenna and two
receiver antennas for the SIMO channels.

the N × (M + N) filtering matrix hi[n] (also referred to as a
multichannel filtering matrix) is a Toeplitz structure given by

hi[n] =


hi[0] hi[1] · · · hi[M ] 0 · · · 0
0 hi[0] · · · hi[M − 1] hi[M ] · · · 0
...

...
. . .

...
...

. . .
...

0 0 · · · hi[0] hi[1] · · · hi[M ]

 ,
(7.158)

and the received signal vector is

yi[n] = [yi[n], yi[n− 1], · · · , yi[n−N + 1]]T . (7.159)

At the receiver, each received signal yi[n] consists of NL samples.
It has been noted by Paulraj et al. [11] that the discrete-

time sequence y[n] in the discrete-time SISO channel, obtained
by sampling at the symbol rate at 1/T, is wide-sense stationary,
while the discrete-time sequence y[n] in the discrete-time SIMO
channel obtained by temporal oversampling (at a rate higher
than 1/T ) or spatial oversampling (multiple antenna elements)
is cyclostationary. Figure 7.9 shows the relationship between
a transmitter antenna and two receiver antennas for the SIMO
channels. The cyclostationary signal consists of a number of
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Figure 7.10 The relationship of temporal and spatial oversampling
results in a polyphase-based discrete-time SIMO
channel.

phases, each of which is stationary. A phase corresponds to a
different sampling point in temporal oversampling and a different
antenna element in spatial oversampling. For example, the duality
relationship between temporal and spatial oversampling is illustrated
in Figure 7.10 for polyphase discrete-time SIMO channels.

The cyclostationary property of oversampled signals in the
discrete-time SIMO channel can carry important information about
the channel phase that can be exploited in several ways for blind
identification of the channel. This is because the oversampling of
the discrete-time SIMO channel increases the number of samples in
the signal sequence y[n] and phases in the channel hi[n], but does
not change the value of the data for the duration of the symbol
period. This allows the channel hi[n] to become more rows than
columns (tall) and to have a full-column rank. In addition, the
stationarity of the discrete-time channel makes hi[n] block Toeplitz.
Tallness and Toeplitz properties are keys to the blind identification
of the channel hi[n]. Therefore, exploiting the cyclostationarity of
the signal output y[n] in the discrete-time SIMO channel can lead
to second-order statistics-based blind algorithms to identify the
channels hi[n], which are more attractive than HOS techniques.
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Figure 7.11 Block diagram of MIMO system with multiple
antenna elements.

The discrete-time SIMO channel model has been extensively
used in the fractionally spaced equalizer, the polyphase filter bank–
based equalizer, and subspace-based multichannel identification
given by Moulines et al. [12].

7.5.3 MIMO Channel Model and Estimation

MIMO channels have recently emerged as one of the most signifi-
cant technical breakthroughs in modern digital communication. The
MIMO channel is sometimes referred to as a “volume-to-volume”
wireless link [13]. In an arbitrary wireless communication system,
we consider a wireless link in which the transmitter end and the re-
ceiver end are connected with multiple antenna elements as shown in
Figure 7.11. The rationale behind MIMO channel is to improve the
bit error rate (BER) or the data rate (bits per second) of the commu-
nication for each MIMO user when the signal sequences in the trans-
mit antennas at one end and the receive antennas at the other end are
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Figure 7.12 The discrete-time multiple-input multiple-output
(MIMO) channel.

combined together. This is because MIMO channels and systems
are able to turn multipath propagation into a benefit for the user and
effectively take advantage of random fading as well as multipath de-
lay spread to multiply transfer rates. Inherently, a key idea of MIMO
channels and systems is space-time signal processing, in which time
(or the natural dimensional of digital communication data) is com-
plemented with the spatial dimension by the use of multiple spatially
distributed antennas. Hence, a MIMO channel can be viewed as an
extension of smart antennas, which is a popular technology using
antenna arrays for improving wireless transmission.

Consider K different source signals si[n], where i =
1, 2, · · · , K, simultaneously transmitted through a multipath chan-
nel. At the receiver, all the source signals are received by an
M -element antenna array in the presence of additive noise. The
structure of discrete-time MIMO channel model is depicted in
Figure 7.12.

Let the K × 1 source signal vector be

s[n] = [s1[n], s2[n], · · · , sk[n]]T , (7.160)

theM × 1 noise-free signal vector be

q[n] = [q1[n], q2[n], · · · , qM [n]]T , (7.161)
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theM × 1 noise vector be

v[n] = [v1[n], v2[n], · · · , vM [n]]T , (7.162)

and theM × 1 received signal vector be

y[n] = [y1[n], y2[n], · · · , yM [n]]T . (7.163)

Then, theM × 1 received signal vector can be expressed as

y[n] = q[n] + v[n], (7.164)

where the noise-free signal vector is

q[n] =
N∑

k=−N

H[k]s[n− k], (7.165)

where H[n] = {hji[n]} denotes the channel response from the
transmitted antenna i (i = 1, 2, · · · , K) to the received antenna j
(j = 1, 2, · · · ,M ). Thus, (7.165) is distorted by theM×K discrete-
time LTI MIMO channel H[n], the K × 1 source signal vector s[n],
and theM × 1 noise vector v[n].

Note that the discrete-time MIMO channel in (7.164) and (7.165)
not only has the intersymbol interference (ISI) but also involves
multiple access interference (MAI). This is because each component
of q[n] is a mixture of all the signal si[n], i = 1, 2, · · · , K. When
there is only one source signal for the transmitter, the discrete-time
MIMO channel becomes the discrete-time SIMO channel.

Given the received signal y[n] in (7.164), the receiver SNR
associated with the received signal y[n] is obtained by

SNRMIMO =
E{|q[n]|2}
E{|v[n]|2}

=
E{|y[n]− v[n]|2}
E{|v[n]|2} . (7.166)

The discrete-time MIMO channel can be estimated either by
using an adaptive approach with sending a training sequence or
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by using blind identification. The performance of the adaptive
estimation and/or blind identification for the discrete-time MIMO
channel is mainly dependent on the SNRMIMO in (7.166). In the
past decade, the blind identification of the discrete-time MIMO
channel using HOS has been extensively studied by Tugnait [14],
Papadias and Paulraj [15], Li and Liu [16], Chi and Chen [17],
and Chi et al. [18]. This is generally based on the following
assumptions:

1. The discrete-time MIMO channel H[n] is stable.
2. The source signal s[n] is a zero-mean, independent, and

identically distributed non-Gaussian random process with
the variance σ2

s[k] = E{|s[n]|2} and the (p + q)th-order
cumulant Cp,q{si[n]} �= 0.

3. The source signal si[n], i = 1, 2, · · · , K, is statistically
independent of sj[n] for all j �= i.

4. The noise sequence v[n] is a zero-mean Gaussian random
process that can be spatially correlated and temporally
colored with covariance matrix Rv(k) = E{v[n]v∗[n− k]}.

5. The source signal s[n] is statistically independent of the
noise v[n].

Figure 7.13 shows a block diagram of a discrete-time MIMO
channel followed by a set of linear equalizers hle,i[n], i =
1, 2, · · · ,M , in parallel. Let

hle,i[n] = [hle,1[n], hle,2[n], · · · , hle,M [n]] (7.167)

be a multiple-input single-output (MISO) equalizer that consists of
a linear FIR filter bank with an infinite length. This equalization
approach is to find the linear equalizer hle[n] such that the equalizer
output for a perfect equalization is

z[n] = βsi[n− τ ], (7.168)

where β is a real or complex constant and τ is an integer.
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Figure 7.13 Block diagram of a discrete-time MIMO channel
cascaded with a set of linear equalizers in parallel.

Also define the M × 1 hk[n] as the kth column of the M × K
channel impulse response matrix of H[n]. Thus, the received signal
in (7.164) can be rewritten as

y[n] = [h1[n],h2[n], · · · ,hK [n]] ∗ s[n] + v[n]

=
K∑
i=1

N∑
k=−N

hi[k]si[n− k] + v[n]. (7.169)

Assume that the estimate of the input source signal is ŝi[n] =
z[n] by using (7.168). Then, the discrete-time MIMO channel of
hk[n] can be estimated by

ĥk[n] =
E{y[n+ 1]ŝk[n]}
E{|ŝk[n]|2} . (7.170)

Updating the received signal y[n+ 1] is obtained by

y[n+ 1] = y[n]−
N∑

i=−N

ĥk[i] ∗ sk[n− i]. (7.171)

Equation (7.171) cancels the component of sk[n] from the received
signal matrix y[n]. As a result, one column of the MIMO channel
matrix H[n] can be estimated by using (7.170) and (7.171) for each
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stage. Therefore, the entire estimate of discrete-time MIMO channel
H[n] can be obtained after running K stages.

The output of the filter bank of linear equalizers is indeed equal
to (7.168) when SNRMIMO = ∞ in (7.166). In this case, (7.170)
and (7.171) lead to the discrete-time MIMO channel estimation
Ĥ[n] = H[n]. However, in reality, SNRMIMO in (7.166) is finite
valued. As a result, the resultant estimator Ĥ[n] has bias because
of the noise in the received matrix y[n]. In addition, the estimate
of a column of the MIMO channel matrix H[n] obtained at the kth
stage may suffer from the estimate error for a larger k because of
error propagation of the estimate procedure. This results from the
input signal estimate ŝ[n] consisting of the estimation errors from
the output of the filter bank of the linear equalizers hle[n].

7.6 Blind Channel Identification

Wireless and wired digital communications often require the
identification of the channel impulse response that can facilitate
channel equalization and maximum likelihood sequence detection.
A blind channel identification is used to estimate channel without
using a training sequence. Instead, the channel identification is
achieved by using only the channel output along with certain a
priori statistical information on the input source. The blind channel
identification methods attributed to Tong et al. [19, 20] have attracted
research attention using the second-order cyclostationary statistics.
In fact, the blind channel identification based on the method of
the second-order cyclostationary statistics has been considered a
major technical contribution. In this section, we introduce the
time-domain approach of blind identification for a SISO channel
based on the second-order cyclostationary statistics, subspace-based
blind identification for a SIMO channel, and the frequency-domain
approach of blind identification for a MIMO channel.
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7.6.1 Blind Identification for SISO Channel

Consider the SISO channel as shown in Figure 7.6 with the received
signal vector y[n] in (7.151) satisfying

y[n] = hs[n] + v[n], (7.172)

where h is the channel matrix, s[n] is the source input vector, and
v[n] is the noise vector. If the received signal in (7.172) is sampled
at the baud rate 1/T , then y[n] is a wide-sense stationary process.
In this case, only minimum-phase channels can be identified from
the second-order statistics. This is because the phase information
of the channel is lost in the second-order statistics when its output
is sampled at the baud rate of 1/T . If the sampling rate is
higher than the baud rate of 1/T , the received signal vector y[n]
is then widesense cyclostationary. As a result, the second-order
statistics of the observation with oversampling rates include the
phase information of the SISO channel.

The objective of the blind channel identification in (7.172) is
to identify the channel matrix h from the received signal y[n]. In
order to identify the channel matrix, h must be a matrix with an
M × d full column rank condition. Oversampling can satisfy this.
The input signal source s[n] is a zero mean stationary process with
the autocorrelation function

Rs(k) = E{s[n]sH [n− k]}

=

 Jk, k ≥ 0(
JH
)|k|
, k < 0,

(7.173)

where (·)H is the Hermitian transpose and J is a d×d shifting matrix
as

J =



0 0 · · · 0 0
1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0

 . (7.174)
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Then the correlation matrix of the received signal Ry(k) is obtained
by

Ry(k) = hRs(k)hH + Rv(k). (7.175)

With the assumption of white noise, the noise correlation matrix
Rv(k) can be expressed as

Rv(k) = E{v[n]vH [n− k]}
= σ2JkTs , (7.176)

where σ2 is the unknown noise variance, J is the shift matrix given
in (7.174), and Ts is an integer such that T = Ts#.

There is no a priori information either on the noise covariance
or on the signal space dimension d. However, they can be estimated
from the data covariance matrix Ry(k) in (7.175) when k = 0. It can
be shown by Miao and Clements [6] that the spectral decomposition
or the singular value decomposition (SVD) of Ry(0) must have the
expression form as

UHRy(0)U = Λ, (7.177)

where U is an orthogonal matrix whose columns are normalized
eigenvectors, and

Λ = diag(λ1 + σ
2, · · · , λd + σ2, σ2, · · · , σ2), (7.178)

where λ1 ≥ λ2 ≥ · · · ≥ λd > 0. Therefore, both the noise variance
σ2 and the signal space d can be determined by observing the most
significant singular values of Ry(0).

Tong et al. [19] have shown that if the channel matrix h and the
input signal source s[n] satisfy the linear equation in (7.172) and its
constraints, then the channel matrix h is uniquely identified by using
the second-order cyclostationary statistics of Ry(0) and Ry(1).

The correlation matrices Ry(0) and Ry(1) can be estimated from
the observation data y[n] via time-index averaging,

R̂y(0) =
1

N

[
N−1∑
k=0

y[n]yH [n]

]
, (7.179)
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and

R̂y(1) =
1

N

[
N−1∑
k=0

y[n]yH [n− 1]

]
. (7.180)

Thus, the noise covariance σ2 and the signal space d can be estimated
by using (7.177) along with the estimate of (7.179). Subtracting the
corresponding noise covariance σ2 from the observation correlation
matrix R̂y(0) yields

R̃0 = R̂y(0)− σ̂2I. (7.181)

The SVD of R̃0 in (7.181) has the form

UH
s

[
R̂y(0)− σ̂2I

]
Us = Λsr, (7.182)

where Us is the singular vector associated with the largest singular
value, and Λsr is the positive square-root of the d largest singular
value.

Let the matrix F = Λ−1
sr UH

s and zd denote the smallest singular
value. Then the SVD of the second-order R̃1 can be formed by
subtracting the corresponding noise correlation Rv(1) from the
estimated observation correlation matrix R̂y(1),

R̃1 = F
[
R̂y(1)− Rv(1)

]
FH , (7.183)

where the second-order noise correlation matrix Rv(1) is given by

Rv(1) = σ̂2JTs . (7.184)

The blind channel identification based on the second-order
cyclostationary statistics is obtained as

Ĥ = UsΛsrQ, (7.185)

where
Q = [1, R̃1, R̃

2

1, · · · , R̃
d−1

1 ]zd. (7.186)

The blind channel identification method of (7.186) can provide
the exact identification for nonminimum-phase channels if the
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correlation matrix Ry(k) of the received signal is known exactly.
In addition, this method is usually insensitive to the timing recovery.
This is because sampling of the received signal y[n] is at a rate higher
than the baud rate. Moreover, the full rank condition of channel
matrix h can be achieved if the sampling frequency Fs satisfies the
following condition:

Fs >
1 + d

L
. (7.187)

That is to say that the sampling frequency Fs must be at least
(d + k)/k times faster than the baud rate if L = kT and
there are d symbols having contributions to the received signal
y[n]. Thus, the blind channel identification method can identify
possible nonminimum-phase channels based on the second-order
statistics by exploiting the cyclostationary of the received signal via
oversampling.

In order to obtain a performance measure of the blind channel
identification, the normalized MSE (NMSE) is used. For an M
Monte Carlo trial, the NMSE is defined as

NMSE =
1

M
∑N−1

n=0 |h[n]|2
[
M−1∑
i=0

N−1∑
n=0

∣∣∣ĥi[n]− h[n]∣∣∣2
]
, (7.188)

where ĥi[n] is the estimate of the channel from the ith trial.

7.6.2 Subspace Blind Identification for SIMO Channel

Consider the oversampled discrete-time SIMO channel given
in (7.155). The set of L equations can be combined into a single
matrix form as

Y[n] = H[n]s[n] + V[n], (7.189)

where Y[n] is the LN × 1 multichannel received signal vector

Y[n] = [y0[n], y1[n], · · · , yL−1[n]]
T , (7.190)

and H[n] is the LN × (M +N) multichannel filtering matrix

H[n] = [h0[n],h1[n], · · · ,hL−1[n]]
T , (7.191)
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Figure 7.14 The matrix representation of an oversampled discrete-
time single-input and multiple-output (SIMO) chan-
nel.

where the individual filtering matrix that provides a matrix
description of an oversampled channel is given in (7.158) and V[n]
is the LN × 1 multichannel noise vector

V[n] = [v0[n], v1[n], · · · , vL−1[n]]
T . (7.192)

Figure 7.14 shows a block diagram representation of this
equation that may be viewed as a condensed version of the
discrete-time SIMO channel. In order to proceed with blind channel
identification via statistical channel characterization, the following
assumptions are made:

1. The transmitted signal vector s[n] and multichannel noise
vector v[n] are wide-sense stationary processes that are
statistically independent.

2. The transmitted signal vector s[n] has a zero mean and a
correlation matrix given by

Rs[n] = E{s[n]sH [n]} (7.193)

where the Rs has an (M +N)× (M +N) full column rank.
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3. TheN×1 noise vector v[n] has a zero mean and a correlation
matrix

Rv[n] = E{v[n]vH [n]}
= σ2I, (7.194)

where the noise variance σ2 is assumed to be known.

Accordingly, the received signal vector Y[n] has an LN ×1 zero
mean and a correlation matrix defined by

RY[n] = E{Y[n]Y[n]H}
= E{(H[n]s[n] + V[n])(H[n]s[n] + V[n])}
= E{H[n]s[n]sH [n]HH [n]}+ E{V[n]VH [n]}
= H[n]Rs[n]HH [n] + RV[n]. (7.195)

Invoking the theorem of spectral decomposition given by Miao and
Clements [6], the LN×LN correlation matrix RY[n] in (7.195) can
be expressed in terms of its eigenvalues and associated eigenvectors

RY[n] =
LN∑
k=1

λkqkqH
k , (7.196)

where the eigenvalues decrease in order as

λ0 ≤ λ1 ≤ · · · ≤ λLN−1. (7.197)

Then, the eigenvalues in (7.197) can be classified into two groups
based on the filtering matrix rank theorem

λk > σ
2, k = 0, 1, · · · ,M +N − 1, (7.198)

and

λk = σ2, k =M +N,N +M + 1, · · · , LN − 1. (7.199)

As a result, the corresponding space spanned by the eigenvectors
of the received signal vector RY[n] can be decomposed into two
subspaces:
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1. Signal subspace spanned by the eigenvectors associated with
the eigenvalues λ0, λ1, · · ·, λM+N−1. These eigenvectors are
denoted as

sk = qk, k = 0, 1, · · · ,M +N − 1. (7.200)

2. Noise space spanned by the eigenvectors associated with the
remaining eigenvalues λM+N , λM+N+1, · · ·, λLN−1. These
eigenvectors are written as

nk = qM+N+k, k = 0, 1, · · · , LN − (M +N + 1).
(7.201)

Note that the signal subspace is the orthogonal complement of the
noise subspace. Therefore, using the matrix definition, the noise
equation is obtained by

RY[n]nk = σ2nk, k = 0, 1, · · · , LN − (M +N + 1). (7.202)

Substituting (7.195) along with RV[n] = σ2I into (7.202) and
simplifying yields

H[n]Rs[n]HH [n]nk = 0, k = 0, 1, · · · , LN − (M +N + 1).
(7.203)

Equation (7.203) can be rewritten as

HH [n]nk = 0, k = 0, 1, · · · , LN − (M +N + 1), (7.204)

because both matrices H[n] and Rs[n] are all full column rank. We
need to emphasize that the result of subspace blind identification
in (7.204) is based on the following three assumptions:

1. The received signal is oversampled to ensure that the
multichannel filter matrix H[n] has a full column rank.

2. There is the knowledge of the eigenvectors associated with
LN − (M +N) smallest eigenvalues of the received signal
correlation matrix RY[n].
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3. The noise subspace is orthogonal to the columns of the
unknown multichannel filter matrix H[n].

In addition, a successful use of the subspace decomposition for blind
identification depends on the premise that the transfer functions
of the discrete-time SIMO channel have no common zeros. This
requires the exact knowledge of the channel model order. Therefore,
given these requirements, (7.204) indicates that the cyclostationary
second-order statistics of the received signal Y[n] associated
with the correlation matrix RY[n] are indeed sufficient for blind
identification of the discrete-time SIMO channel.

Equations (7.202) through (7.204) provide the fundamental
theory of using subspace decomposition for blind identification of
the discrete-time SIMO channel. This noise subspace procedure for
blind identification was contributed by Moulines et al. [12] and later
introduced by Haykin [5].

7.6.3 Blind Identification for MIMO Channel

Blind identifications of a discrete-time MIMO channel have
been extensively reported either based on the second-order
cyclostationary statistics of the output data long with corresponding
identifiable conditions given by Gorokhov and Loubaton [21],
Abed-Meraim and Hua [22], and Hua and Tugnait [23] or based
on the higher-order statistics of the system outputs by Mendel [24],
Shamsunder and Giannakis [25], Tugnait [14], and Chi et al. [18].
Diamantaras et al. [26] and Bradaric et al. [27] have researched
the blind identification of FIR MIMO channels with cyclostationary
input using second-order statistics, for which we mainly introduce
results in this section.

The objective of blind identification of an N × N discrete-time
MIMO channel is to identify an unknown convolution FIR system
driven by N unknown input sources by using the second-order
cycostationary input statistics. By exploiting the second-order input
statistics with cyclostationarity, a cross-wise N × N convolution
filtering mixture can be uniquely identified based on the second-
order statistics of the discrete-time MIMO channel output.
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Consider a general N × N discrete-time MIMO channel
with N input signal sources s0[k], s1[k], · · · , sN−1[k] and N
stochastic output sequences y0[k], y2[k], · · · , yN−1[k]. Assume that
each discrete-time channel is a FIR filter with length of L. Thus, the
input and output relationship of this discrete-time MIMO channel
can be written as

yi[k] =
N−1∑
j=0

L−1∑
l=0

hij[l]sj[k − l], i = 0, 1, · · · , N − 1. (7.205)

Let s[n] = [s0[n], s1[n], · · · , sN−1[n]]
T be a vector of N input

sources, H[n] be the N × N impulse response filtering matrix with
elements {hij[n]}, and y[n] = [y0[n], y1[n], · · · , yN−1[n]]

T be the
vector of system output observations. Thus, (7.205) can be expressed
into matrix form as

y[k] =
L−1∑
k=0

H[k]s[n− k]. (7.206)

Taking the discrete-time Fourier transform (DTFT) of both sides
of (7.206) yields

Y(ejω) = H(ejω)S(ejω), (7.207)

where ω ∈ [0, 2π).
Note that the frequency-domain filter matrix H(ejω) in (7.207)

is not identifiable unless some constraints are provided based on its
structure. In other words, the problem as defined in (7.207) is ill
posed and admits an infinite number of solutions. In order to identify
the discrete-time MIMO channel H(ejω) in (7.207) blindly, we need
to provide the following assumptions:

1. The input source {si[n]}, i = 0, · · · , N −1 are uncorrelated,
zero-mean, cyclostationary, and their statistics are unknown.
In addition, the input sources are colors and unidentical, that
is, Rs1(k) �= Rs2(k) for all k.

2. The frequency-domain MIMO filtering matrix H(ejω) is a
full column rank for all ω ∈ [0, 2π).
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3. Hii(e
jω) = 1 for all ω when i = 0, 1, · · · , N − 1. This

indicates that the diagonal channels hii[n] are unit impulse
responses while the cross-channels hij[n], i �= j, have at
least length 2.

4. The cross-channel hij[n] are real or complex FIR filters
without common zeros and zeros on the unit circle.
Moreover, the cross-channel hij[n] and hik[n], i �= j, i �= k,
do not have zeros in conjugate reciprocal pairs.

Under the assumptions of 1 and 2, the relationship of the
identified MIMO channel filtering matrix Ĥ(ejω) and the channel
filter matrix H(ejω) can be obtained by

Ĥ(ejω) = H(ejω)P(ejω)Λ(ejω), (7.208)

where P(ejω) is a column permutation matrix, and Λ(ejω)
is a complex diagonal matrix (see Bradaric et al. [27] for
proof). In other words, the identified MIMO channel filtering
matrix Ĥ(ejω) is related to the channel filter matrix H(ejω) up
to a frequency-dependent permutation ambiguity P(ejω) and a
frequency-dependent diagonal scaling ambiguity Λ(ejω).

Given assumption 4, it is clear that the ambiguity effect of Λ(ejω)
can be eliminated. In this case, without the effect of the permutation
ambiguity, we can obtain the channel filter matrix H(ejω) by the
expression

H̃(ejω) ∼= Ĥ(ejω)

diag
{

Ĥ(ejω)
} , (7.209)

where diag
{

Ĥ(ejω)
}
= Λ(ejω). However, in fact, H̃(ejω) �= H(ejω).

This is because the permutation matrix P(ejω) is unknown.
To obtain the permutation matrix P(ejω), we define the so-

called invariance functions for each pair of rows (k,m), k,m =
0, 1, · · · , N − 1, as follows:

IN1 (ω; k,m) ∼=
N−1∑
j=0

H̃kj(e
jω)

H̃mj(ejω)
(7.210)
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IN2 (ω; k,m) ∼=
N−1∑
j1=0

N−1∑
j2>j1

H̃kj1(e
jω)

H̃mj1(e
jω)

H̃kj2(e
jω)

H̃mj2(e
jω)

(7.211)

IN3 (ω; k,m) ∼=
N−1∑
j1=0

N−1∑
j2>j1

N−1∑
j3>j2

H̃kj1(e
jω)

H̃mj1(e
jω)

H̃kj2(e
jω)

H̃mj2(e
jω)

H̃kj3(e
jω)

H̃mj3(e
jω)

(7.212)
...

INN (ω; k,m) ∼=
N−1∏
j=0

H̃kj(e
jω)

H̃mj(ejω)
. (7.213)

Note that these quantities are the same based on either H̃(ejω) or
H(ejω).

Consider the quantity as

N−1∏
j=0

Hkj(e
jω)H∗

mj(e
jω). (7.214)

The phase in (7.214) equals the phase of INN (ω; k,m) in (7.213) with
a linear phase. Thus, under assumption 4, (7.214) can be computed
from a scalar constant defined as [c(k,m)]2, since an FIR sequence,
which does not have zero-phase convolution components, can be
reconstructed within a scalar from its phase only. Then, we define
PN(ω, k,m) to be the function that can be computed from the phase
of INN (ω; k,m):

PN(ω, k,m) ∼= [c(k,m)]2
N−1∏
j=0

Hkj(e
jω)H∗

mj(e
jω), (7.215)

and we also define the quantity

Mk(ω, k, r) ∼=
∣∣∣PN(ω, k, r)INN (ω; k, r)

∣∣∣1/2
= c(k, r)

N−1∏
j=0

∣∣∣Hkj(e
jω)
∣∣∣ , r = 0, · · · , N − 1.

(7.216)



250 Signal Processing in Digital Communications

Consider a polynomial

Q(INi x
N) = xN +

N−1∑
i=1

(−1)iINi (ω; k, p)xN−i, (7.217)

where p = 1, 2, · · · , N . Also let Xp
i (e

jω) denote the ith root of the
polynomial Q(INi x

N) in (7.217). ThenXp
i (e

jω) will have one of the
following results:

Hk1(e
jω)

Hp1(ejω)
,
Hk2(e

jω)

Hp2(ejω)
, . . . ,

HkN(e
jω)

HpN(ejω)
. (7.218)

For the previously selected r, we define the element of the
following set:

K(ωm; k, r) = {kj1j2...jN (ωm; k, r)}, m = 0, 1, · · · , N − 1,
(7.219)

where

kj1j2...jN (ωm; k, r) =
Mk1(ωm; k, r)

|X1
j1(e

jω)| . . . |Xp
jp(e

jω)| . . . |XN
jN
(ejω)| ,

(7.220)
for j1, j2, · · · , jN = 1, 2, · · · , N .

According to (7.218) with the assumptions 3 and 4, one and only
one element of the set K(ωm; k, r) is independent of the following
frequency:

|X1
j1
(ejω)| = |Hk1(e

jω)|
|H11(ejω)| = |Hk1(e

jω)|, (7.221)

|X2
j2
(ejω)| = |Hk2(e

jω)|
|H22(ejω)| = |Hk2(e

jω)|, (7.222)

...

|XN
jN
(ejω)| = |HkN(e

jω)|
|HNN(ejω)| = |HkN(e

jω)|. (7.223)
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Thus, given a large enough N , we obtain

K(ω0; k, r) ∩K(ω1; k, r) ∩ . . . ∩K(ωN−1; k, r) = {c(k, r)}.
(7.224)

Solving (7.224) yields the scalar constant c(k, r). Assume that there
is not ambiguity at the certain frequency. Hence, the cross-channel
Hkq(e

jω) can be obtained by

kj1j2...jN (ωm; k, r) = c(k, r), (7.225)

Hkq(e
jωm) = Xq

jq(e
jωm). (7.226)

Therefore, an arbitrary cross-channel hkq[k], k, q = 1, 2, · · · , N , of
the MIMO discrete-time channel can be recovered.

In summary, assume that an estimated MIMO channel filtering
matrix Ĥ(ejω) in (7.208) is available by using some kinds of blind
MIMO algorithms. Then the MIMO channel filtering matrix H(ejω)
can be obtained by the following procedure:

1. Determine H̃(ejω) by using (7.209).
2. Compute the invariance functions INk (ω; k, p) for p, k =

1, 2, · · · , N .
3. Obtain PN(ω; k, r) in (7.215).
4. ComputeMk1(ω; k, r) using (7.216)
5. Determine the roots of the polynomial Q(INi x

N) in (7.217).
6. Establish the setK(ω; k, r) in (7.224) and (7.225) for ωm =

(2π/N)m,m = 0, 1, 2, · · · , N − 1.
7. Determine the scalar constant c(k, r) by finding the only

common element of K(ωm; k, r), m = 0, 1, · · · , N − 1,
in (7.224).

8. Find Hkq(e
jωm) by selecting the root in (7.225) and (7.226).

9. Finally compute hkq[k] based on the results of Hkq(e
jωm).

This blind identification procedure of the discrete-time MIMO
channel can achieve a perfect system reconstruction in the absence
of noise. However, in the presence of noise, this blind identification
method for the discrete-time MIMO channel is relatively sensitive.
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This is because this blind identification recovers the discrete-time
MIMO channel from phase, which can be very sensitive to error
with the presence of noise in the discrete-time MIMO channel.

7.7 Summary

In this chapter, channel estimation and blind identification were
introduced. We first presented the characteristics of discrete-time
channel models and estimators, with emphases on the maximum
likelihood, least squares, generalized least squares, and MMSE
estimators. In the special case with the noise covariance equal
to σ2I, the least squares estimator has been shown as the best
linear unbiased estimator for the channel estimation. However,
in a general case, the best linear unbiased estimator is the
generalized least squares estimator. This can be found by using
the new transformed channel model given by (7.42). Second, we
introduced the fundamental theory of adaptive channel estimations
and algorithms. The LMS and RLS adaptive algorithms were
presented along with the analysis of their convergence, EMSE, and
misadjustment. The convergence rate of the RLS algorithm is much
faster than the convergence rate of the LMS algorithm. However,
the LMS algorithm has much fewer computation complexities
compared to the RLS algorithm. Furthermore, the LMS algorithm
does not have a stablity issue, while the RLS algorithm does. Thus,
the LMS algorithm is still the most often used adaptive algorithm
for the channel estimation. We also described the mathematical
treatments of the discrete-time SISO, SIMO, and MIMO channel
models and estimations based on the HOS methods. The blind
identifications for discrete-time SISO, SIMO, and MIMO channels
were then introduced based on the second-order cyclostationary
statistics using observations of the received output signals.

Traditional adaptive channel estimation as widely used for
the wireless and wired digital communications uses a training
sequence or a known input signal source. This approach can
provide a reliable estimation method of an unknown channel for
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a communication receiver system. However, in a time-varying
channel, such as in fast mobile communication, the adaptive
approach may not be appropriate since this approach has to waste a
fraction of the transmission time and frequency bandwidth to use the
training sequence. An alternative way of estimating unknown SISO,
SIMO, and MIMO channels is to use blind identification. Blind
identification of the discrete-time SISO, SIMO, and MIMO channels
has been successfully reported based on either HOS or the second-
order cyclostationary statistics under the statistics assumptions.
However, for the MIMO channel, blind identification is still needed
to be further refined if one wishes to turn this identifiablity approach
into a method of robust channel estimation.

Designing a good channel equalizer usually requires a knowl-
edge of the channel characteristics, which involves channel esti-
mation and identification. In Chapter 8, we will introduce channel
equalizers for communication receivers in detail.
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8
Adaptive Equalizers in
Communication Receivers

8.1 Introduction

Adaptive equalization techniques have been developed over the
last three decades for high-speed, single-carrier and multicarrier
transmission over wireline and wireless channels, such as a twisted
pair of copper wires, coaxial cable, optical fiber, microwave line of
sight (LOS), and nonline of sight (NLOS). Coherence bandwidth
is a statistical measure of the range of frequencies over which the
channel passes all spectral components with approximately equal
gain and linear phase [1]. If the modulation bandwidth exceeds the
coherence bandwidth of the wireline or radio channel, intersymbol
interference (ISI) occurs in such a way that modulation pulses are
spread in time. For such channels, adaptive equalization can provide
the means for combating ISI arising from the bandwidth or time-
dispersive characteristic of the channel and allow us to use the
available channel bandwidth more efficiently.

In a broad sense, the term adaptive equalization can be used to
describe a signal processing operation for minimizing ISI. However,
not every signal processing operation that minimizes ISI is adaptive

257
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equalization. For instance, having prematched filters is not adaptive
equalization. In the wireless channel with random and time-varying
fading, a variety of adaptive equalization techniques can be used
to cancel interference while providing diversity. The diversity is
used to compensate for fading channel impairments, and is usually
implemented by using multiple antennas that are strategically spaced
and connected to a common receiving system. In wireline channel,
adaptive equalization techniques can be used for combating ISI
arising from the bandwidth channel. In any case, equalizations must
track the characteristics of the channel and thus are referred to as
adaptive channel equalizations.

Modern communication systems require many signal processing
techniques that improve the link performance in a variety of
environments. One key part of signal processing techniques for
the digital communication receiver commonly uses an adaptive
equalization because it reduces ISI due to the limited channel
bandwidth. Therefore, the design of such adaptive equalization is
important since it controls the maximum quality attainable from the
view of a communication receiver.

Equalization techniques for reducing ISI on limited bandwidth
channels can be subdivided into two general categories: linear
and nonlinear equalization. The basic linear equalization includes
transversal and lattice equalizer structure. The nonlinear equaliza-
tion methods may be subdivided into four types: decision feedback
equalization (DFE), maximum likelihood symbol detection (MLSD),
maximum likelihood sequence estimation equalizer (MLSEE), and
neural networks–based equalizer (NNE). The DFE usually has
transversal and lattice equalizer structures, while the MLSD and
MLSEE have a transversal equalizer structure along with a channel
estimator. The NNE has multiplayer feedforward networks, recur-
rent networks, and a lattice equalizer structure.

Linear equalizations have their numerical stability and faster
convergence. However, linear equalizations usually do not perform
well on bandlimited channels when the frequency passband has
a deep spectral null. In order to compensate for such distortion,
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linear equalizations attempt to place too much gain in the vicinity
of the spectral null, thereby enhancing the noise present in those
frequency bands. On the other hand, nonlinear equalizations are used
in applications where the channel distortion is too severe for a linear
equalization to handle. However, nonlinear equalizations, such as
DFE, may have their numerical instability due to error propagation.
This leads to closed eye diagram in the digital communication
receiver.

A more robust equalizer is the least mean square (LMS)
algorithm-based equalizer where the criterion used is the minimiza-
tion of the mean square error (MSE) between the desired equalizer
output and the actual equalizer output. Another type of equalizer is
the recursive least squares (RLS) algorithm-based equalizer where
the least square error used is the time average. There are a num-
ber of variations of the LMS and RLS algorithms that are used for
adapting an equalizer.

A blind equalizer performs channel equalization without
a training sequence. In other words, the equalizer performs
equalization on the data without a reference signal. Instead, the
blind equalizer depends on the knowledge of the signal’s structure
and its statistics to perform the channel equalization. Hence,
bandwidth is not wasted by its transmission. The drawback of the
blind equalizer is that the equalizer will typically take longer to
converge compared to a trained equalizer. Although various blind
equalization algorithms exist, the one that has gained the most
popularity is the constant modulus algorithm (CMA). The CMA
minimizes the constant modulus cost function and then adjusts
the taps of the equalizer in an attempt to minimize the difference
between the squared magnitude of the samples and the so-called
Godard dispersion constant. The CMA-based blind equalizer is
rapidly gaining popularity in the wired and wireless communication
receivers.

The organization of this chapter is as follows. In this section
we briefly introduced the background, overview, and types of
equalizations along with the corresponding adaptive algorithms.
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In Section 8.2, we describe basic theory of linear equalizers,
including channel equalizers and the mean square error criterion.
In Section 8.3 we present adaptive linear equalizers and adaptive
algorithms to adjust the tap coefficient for equalizers. In addition,
we discuss the training methodology and tap length selection
for adaptive equalizers. Subsequently, the fundamental fractionally
spaced equalizer (FSE) is given in Section 8.4. In this section,
we introduce the multirate communication system model and
multichannel model-based equalizers. The emphases are given to
the FSE minimum mean square error (MMSE), FSE-CMA, and
FSE constant modulus noise functions as well as FSE constant
modulus performances. Section 8.5 provides the theory of the
decision feedback equalizer (DFE). We also describe the MMSE
for DFE, predictive DFE, FSE-based DFE, and error propagation in
the DFE. The space-time equalizers, including the time-only, space-
only, and space-time MMSE equalizers, are given in Section 8.6.
The diversity equalizer is described in Section 8.7. We introduce the
basic theory of Rake receivers and equalized Rake receivers. Finally,
a brief summary is given in Section 8.8.

8.2 Linear Equalizer

The most common type of channel equalizer used in practice
to combat ISI arising from the bandlimited channel is a linear
equalizer. The linear equalizer can be implemented as a finite
impulse response (FIR) filter (also known as a transversal filter),
with adjustable filter tap coefficients. This type of linear equalizer
is the simplest type available.

A basic structure of a linear transversal equalizer that is most
often used for equalization is shown in Figure 8.1. The input is the
sequence x[n] and the output is the estimated sequence d̂[n]. The
estimated sequence d̂[n] of the nth symbol is given by

d̂[n] =
p∑

k=0

bn[k]x[n− k], (8.1)

where bn[k] are the p filter coefficients of the nth symbol. Then
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Figure 8.1 A linear equalizer with a transversal filter structure.

the estimated sequence d̂[n] is quantized to the nearest information
symbol to form a decision sequence y[n] by using a threshold
detector.

The threshold detector that may be a two-level or a multilevel
quantizer in the linear transversal equalizer is determined according
to the value of the input sequence x[n]. For example, if the input
signal x[n] is a +1 or −1 information sequence, then the two-level
quantizer can be used and is defined by

y[n] =

{
1 d̂[n] ≥ 0

−1 d̂[n] < 0.
(8.2)

The threshold detector in (8.2) is also referred to as a slice in some
literatures.

A switch as shown in Figure 8.1 is used to connect with the
decision sequence y[n] or a training sequence d[n]. When the
switch connects to the decision sequence y[n], the linear transversal
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Figure 8.2 A block diagram of a communication system with a
linear equalizer.

equalizer is referred to as the blind equalizer. In this case, no training
sequence presents during the training mission. The error sequence
e[n] is formed by using the estimated sequence d̂[n] and the decision
sequence y[n]. When the switch connects to the training sequence
d[n], the linear transversal equalizer is called a no-blind equalizer.
In this case, the error sequence e[n] is formed by using the estimated
sequence d̂[n] and the training sequence d[n].

If the decision sequence y[n] is not equal to the estimated
sequence d̂[n], the error sequence e[n] is produced as follows:

e[n] = y[n]− d̂[n]. (8.3)

The error sequence e[n] is used as an input for a block diagram
of adaptive algorithm, which controls the update of p tap-weight
coefficients of the FIR filter during the implementation.

8.2.1 Channel Equalizer

A linear equalizer can be used as a channel equalizer. Figure 8.2
shows a basic block diagram of a communication system employing
a linear equalizer as the channel equalizer. The characteristics of
this linear equalizer can be illustrated from a point of view in the
frequency domain.
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The transmission section contains a transmitting filter with a
frequency response HT (f) in cascade with a channel frequency
response C(f) plus a noise n(t). The receiver section consists of
a receiver filter with frequency response HR(f) in cascade with a
channel equalizing filter, which has a frequency response HE(f).
Assume that the frequency response of the receiver filter HR(f) is
matched to the transmitter filter response such thatHR(f) = H

∗
T (f).

In addition, the product of frequency responses HR(f)H
∗
T (f) is

designed in such a way that there is no ISI at the sampling instant,
t = kT , k = 0, 1, ..., and T the signal interval ( 1

T
is called the

symbol rate) when HR(f)H
∗
T (f) = HRC(f), where HRC(f) is a

raised cosine pulse spectral characteristic.
Note that the frequency response of channel is not ideal as shown

in Figure 8.2. In order to eliminate the ISI, the desired condition for
zero ISI is expressed as

HT (f)C(f)HR(f)HE(f) = HRC(f). (8.4)

Given HR(f)H
∗
T (f) = HRC(f), the frequency response of a linear

equalizer that compensates for the channel distortion is given by

HE(f) =
1

C(f)

=
1

| C(f) |e
−jθc(f). (8.5)

Then the magnitude of the linear equalizer frequency response
HE(f) is as follows:

HE(f) =
1

| C(f) | , (8.6)

and its phase response is obtained by

θE(f) = −θc(f). (8.7)

Thus, in this case, the linear equalizer is referred to as the inverse
channel filter for the channel frequency response. The inverse
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Figure 8.3 A block diagram of a discrete-time channel with a zero-
forcing linear equalizer.

channel filter can completely eliminate ISI caused by the channel
distortion because it forces the ISI to be zero at the sampling instant.
As a result, such a linear equalizer is also called a zero-forcing
equalizer.

Figure 8.3 shows a block diagram of a discrete-time channel with
a zero-forcing equalizer. Assume that the discrete-time channel is a
form of the FIR filter. Consequently, the transmission sequence q[n]
through the discrete-time channel results in an output sequence x[n]
that can be expressed as

x[n] =
N∑
k=0

c[k]q[n− k] + η[n], (8.8)

where c[n] denotes a set of FIR filter coefficients of a discrete-time
channel having a transfer function C(z) and η[n] is an additive white
Gaussian noise (AWGN). Therefore, the estimate sequence d̂[n] to
the threshold detector has a simple form

d̂[n] = q[n] + η[n], n = 0, 1, ..., (8.9)

where q[n] is the desired transmission sequence.
Note that the FIR type of a zero-forcing equalizer usually does

not completely eliminate ISI because it has a finite tap weight of the
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filter coefficients. However, the residual ISI can be further reduced
when the length of filter coefficients of the zero-forcing equalizer is
increased. In theory, the ISI trends to zero in the limit as the filter
length p→∞.

Example 8.1

Consider a channel distorted pulse response denoted by x(t) as the
input to the equalizer as shown in Figure 8.2. The pulse response
prior to the equalizer is given by the expression

x(t) =
1

1 + (5t/T )2
, (8.10)

where 1/T is the symbol rate. The channel distorted pulse is
sampled at the rate of 2/T and equalized by using a zero-forcing
equalizer. We need to determine the three coefficients of a zero-
forcing equalizer.

Since X(f) = HT (f)C(f)HR(f) and x(t) is the signal pulse
corresponding to X(f), then the equalized output signal pulse
response is given by

y(t) =
N∑

n=−N

c[n]x(t− nτ), (8.11)

where τ is the time delay between adjacent taps and is selected as
τ = T/2. The zero-forcing condition can now be applied to the
samples of y(t) taken at times t = mT . These samples are

y(mT ) =
N∑

n=−N

c[n]x
[
mT − n

(
T

2

)]
, m = 0,±1,±2, · · · ,±N.

(8.12)
Notice that only 2N + 1 sampled values of y(t) can be controlled
since there are 2N + 1 equalizer coefficients. Therefore, the zero-
forcing equalizer must satisfy the conditions

y(mT ) =
N∑

n=−N

c[n]x
[
mT − n

(
T

2

)]
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=

{
1, m = 0
0, m = ±1,±2, · · · ,±N .

(8.13)

Equation (8.13) may be expressed in a matrix form as

y = Xc, (8.14)

where X is the (2N + 1) × (2N + 1) matrix, c is the (2N + 1) tap-
coefficient vector, and y is the (2N + 1) column vector. Thus, a set
of 2N +1 linear equations for the tap coefficient of the zero-forcing
equalizer can be obtained.

Specifically, the matrix X with elements of x(mT − nT/2),
where m and n denote the columns and rows, respectively, is given
by

X =


4
29

1
26

4
229

4
29

1 4
29

4
229

1
26

4
29

 . (8.15)

The output signal vector of the zero-forcing equalizer is given as

y = [0 1 0]T . (8.16)

Thus, by inverting the matrix of X, the linear equations y = Xc
can be solved to obtain the optimal solution for the zero-forcing
equalizer as

copt = X−1y

= [−0.266 1.073 − 0.266]T . (8.17)

8.2.2 Mean-Square-Error Criterion

The mean-square-error (MSE) criterion has seen widespread use for
optimizing the filter tap coefficients of the linear equalizer. In the
MSE criterion, the filter tap coefficients of the linear equalizer are
adjusted to minimize the mean of the square error. The cost function
ξ of the MSE criterion, which is formed based on Figure 8.4, is
defined as

ξ = E{e[n]e∗[n]}
= E{|e[n]|2}
= E{|q[n]− d̂[n]|2}, (8.18)
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Figure 8.4 An error function of a discrete-time channel and a linear
equalizer.

where the “E” notation represents the expected value and the cost
function ξ is a quadratic function of the filter tap coefficients of the
linear equalizer.

Assume that the linear equalizer has an infinite number of filter
tap coefficients. In this case, the estimate sequence d̂[n] in (8.1) can
be rewritten as

d̂[n] =
∞∑

k=−∞
bn[k]x[n− k]. (8.19)

The filter tap coefficients bn[k] of the linear equalizer can be selected
so that the error sequence e[n] is orthogonal to the input sequence
x[n−k],−∞ < k <∞, by invoking the theory of the orthogonality
principle in a mean square estimation. Hence, we obtain the equation

E{e[n]x∗[n− k]} = 0, −∞ < k <∞. (8.20)

Substituting the error sequence e[n] into (8.20) yields

E

q[n]− ∞∑
k=−∞

bn[k]x[n− k]
x∗[n− k]

 = 0. (8.21)
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This (8.21) is equivalent to
∞∑

k=−∞
bn[k]E{x[n−k]x∗[n−k]} = E{q[n]x∗[n−k]}, −∞ < k <∞.

(8.22)
Using the expression of x[n] given in (8.8), we can rewrite (8.8)

in terms of the expression of x[n− k] as

x[n− k] =
N∑
l=0

c[l]q[n− k − l] + η[n− k]. (8.23)

Now, we use (8.23) to develop the moments in (8.22) and obtain

E (x[n− k]x∗[n− k]) =
N∑
k=0

c[k]
N∑
j=0

c∗[−j]E{|q[n− k − l]|2}

+N0δkj, (8.24)

and

E (q[n]x∗[n− k]) =
N∑
k=0

c∗[−k]E{q[n]q∗[n− k − l]}. (8.25)

For mathematical convenience, assume that the received signal
power is unity. This implies that the expected values of |q[n−k−l]|2
and q[n]q∗[n− k − l] are also unity.

Substituting (8.24) and (8.25) into (8.21) yields

∞∑
i=−∞

bn[i]

 N∑
k=0

c[k]
N∑
j=0

c∗[−j] +N0δkj

 =
N∑
k=0

c∗[−k]. (8.26)

Taking the z-transform of both sides in (8.26), with a time reversal
of the z-transform properties (see Appendix A), we obtain

B(z)[C(z)C∗(1/z) +N0] = C
∗(1/z), (8.27)

whereC(z) is the transfer function of the channel andN0 is the noise
spectral density. Therefore, the transfer function B(z) of the linear
equalizer based on the MSE solution is obtained by

B(z) =
C∗(1/z)

C(z)C∗(1/z) +N0

. (8.28)
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Given the transfer functionB(z) of the linear equalizer in (8.28),
the minimum value of the cost function ξ can be used for a measure
of the residual ISI and additive noise. In this case, the minimum cost
function ξ of the MSE criterion in (8.18) can be rewritten as

ξmin = E{|e[n]|2}
= E{e[n]q∗[n]} − E{e[n]d̂∗[n]}
= E{e[n]q∗[n]}, (8.29)

since E{e[n]d̂∗[n]} = 0 by leveraging the theory of orgothonality
conditions given in (8.20). It follows that the minimum cost function
ξ is expressed as

ξmin = E{e[n]q∗[n]}
= E{|q[n]|2} −

∞∑
k=−∞

bn[k]E{x[n− k]q∗[n]}

= 1−
∞∑

k=−∞
bn[k]

∞∑
j=−∞

c[j]. (8.30)

Note that the summation in (8.30) is the convolution of filter tap
coefficients bn[k] of the equalizer with the channel coefficients c[n].
If we denote F (z) as the convolution of these two sequences in the
z-domain, then

F (z) = B(z)C(z)

=
C(z)C∗(1/z)

C(z)C∗(1/z) +N0

. (8.31)

Now let the term f0 =
∑∞

k=−∞ bn[k]
∑∞

j=−∞ c[j]. Thus, by the
change in variable z = ejωT in (8.31), the term f0 is obtained by

f0 =
T

2π

∫ π/T

−π/T

|C(ejωT )|2
|C(ejωT )|2 +N0

dω. (8.32)

Thus, the desired MMSE ξMMSE of the linear equalizer is obtained
by substituting (8.32) into the summation in (8.30)

ξMMSE = 1− T

2π

∫ π/T

−π/T

|C(ejωT )|2
|C(ejωT )|2 +N0

dω
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=
T

2π

∫ π/T

−π/T

N0

|C(ejωT )|2 +N0

dω, (8.33)

where C(ejωT ) is the frequency response of the discrete-time
channel and N0 is the noise spectral density.

We observe that if C(ejωT ) = 1 then the ISI is eliminated. In this
case, the MMSE ξMMSE is

ξMMSE =
N0

1 +N0

. (8.34)

Equation (8.34) indicates that 0 ≤ ξMMSE ≤ 1. As a result, the
relationship between signal-to-noise (SNR) and MMSE ξMMSE is
obtained by

SNR =
1− ξMMSE

ξMMSE

. (8.35)

Substituting (8.34) into (8.35) obtains

SNR =
1

N0

. (8.36)

The relationship in (8.35) also holds even if there is residual ISI in
addition to the noise.

We have derived the relationship of MMSE ξMMSE and SNR
to the case in which the linear equalizer is with infinite filter tap
coefficients. As a result, these expresses in (8.33), (8.34), and (8.35)
can be serviced as upper bound limitations of the MMSE and SNR
in theory for the linear equalizer. In the next section, we turn our
attention to the case in which the transversal type of an equalizer
has a finite tap coefficient, along with adaptive algorithms.

Example 8.2

Consider an equivalent discrete-time FIR channel model including
two components a and b, where a and b satisfy the condition
a2 + b2 = 1. Determine the MMSE and the corresponding output
SNR of the linear equalizer.
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The transfer function of the discrete-time channel in the
z-transfer domain is given by

C(z) = a+ bz−1, (8.37)

and then

|C(z)|2 = C(z)C∗(1/z)

= 1 + ab∗z + a∗bz−1. (8.38)

The corresponding frequency response is obtained as

|C(ejωT )|2 = 1 + ab∗ejωT + a∗be−jωT

= 1 + 2|a||b| cos(ωT + φ), (8.39)

where φ is the angle of ab∗.
The MMSE is given by (8.33) if a linear equalizer has an infinite

number of coefficients. Evaluating the integral in (8.33) for the
|C(ejωT )|2 in (8.39) yields

ξMMSE =
T

2π

∫ π/T

−π/T

N0

|C(ejωT )|2 +N0

dω

=
N0

[N2
0 + 2N0 + (|a|2 − |b|2)2]1/2

. (8.40)

In the special case, if a = b = 1√
2
, then the MMSE is

ξMMSE =
N0√

N2
0 + 2N0

, (8.41)

and the corresponding output SNR is obtained by (8.35)

SNR =
1− ξMMSE

ξMMSE

=
(
1 +

2

N0

)1/2

− 1

≈
√

2

N0

, N0 � 1. (8.42)



272 Signal Processing in Digital Communications

Notice that this result in (8.42) is compared with the output SNR
of 1

N0
given in the ideal case of a channel without ISI. A significant

loss in SNR occurs from the discrete-time channel model. This is
because the characteristic of the discrete-time channel model has a
spectral null at ω = π/T when using a = b = 1/

√
2.

8.3 Adaptive Linear Equalizer

An adaptive linear equalizer can be considered a time-varying filter
with the tap weights of the filter coefficients that must constantly
be adjusted at a time instant. For a time-varying channel (wireless
channel) or a channel with unknown characteristics (wireline
channel), an adaptive linear equalizer is designed to track the
channel variations in such a way that (8.5) is approximately satisfied.

The general structure of an adaptive linear equalizer is again
shown in Figure 8.1, where the n is used to denote a discrete-time
index. Note that there is only one input x[n] at any time instant.
The value of the input x[n] depends on the instantaneous state of
the wireless channel or the wireline channel and the particular value
of the noise. Hence, the input signal x[n] is a random process.
Practically, the adaptive linear equalizer as shown in Figure 8.1 has
p− 1 delay elements, p− 1 complex additions, p taps, and p tunable
complex multipliers, which are sometimes referred to as tap weights.

The tap weights of the transversal filter in the adaptive linear
equalizer, which are described by their physical location in the
delay line structure, have a subscript n to explicitly show that they
vary with the discrete-time index. These tap weights are updated
continuously by using an adaptive algorithm, either on a sample-by-
sample basis or on a frame-by-frame basis. The latter case is referred
to as the block adaptive filter [2].

The operation of adaptive algorithm is controlled by the error
sequence e[n]. The error sequence e[n] is produced by comparing
the estimate output sequence of the linear equalizer d̂[n] with
desired signal sequence d[n] that is an exact scaled replica of the
transmitted signal sequence q[n]. Then adaptive algorithm uses the
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error sequence e[n] to minimize a cost function, which usually is an
MSE.

To evaluate the adaptive linear equalizer in Figure 8.1, we define
the input sequence x[n] to the adaptive linear equalizer as a vector
x[n] where

x[n] = {x[n], x[n− 1], x[n− 2], · · · , x[n− p+ 1]}, (8.43)

and the tap weights of the filter coefficients in a vector form as

bn = {bn[0], bn[1], bn[2], · · · , bn[p− 1]}. (8.44)

The estimate output of the adaptive linear equalizer is obtained in a
vector notation by

d̂[n] = bT
nx[n]. (8.45)

Thus, the error signal e[n] is written

e[n] = d[n]− d̂[n]
= d[n]− bT

nx[n]. (8.46)

Taking the expected value of the squared error signal |e[n]|2 yields

ξ = E{|e[n]|2}
= E{|d[n]− bT

nx[n]|2}
= E{|d[n]|2} − 2E{x[n]d∗[n]}bn

+bT
nE{x[n]xT [n]}bn, (8.47)

where it is assumed that the tap weights bn of the filter coefficients
are not time-varying and have converged to the optimum in a
sense. If the input signal x[n] and desired signal d[n] are stationary,
then (8.47) can be rewritten as

ξ = E{|d[n]|2} − 2rdx[n]bn + bT
nRx[n]bn, (8.48)

where rdx[n] = E{x[n]d∗[n]} is the product of the cross-correlation
function of the input signal x[n] and the desired transmitted signal
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d[n], and Rx[n] = E{x[n]xT [n]} is the autocorrelation function of
the input signal x[n].

Note that the MSE ξ in (8.48) is a multidimensional function. If
the equalizer uses two tap weights, then the function of the MSE ξ
is a bowl-shaped paraboloid with plotting the MSE ξ on the vertical
axis and tap weights bn[0] and bn[1] on the horizontal axes. If the
equalizer uses more than two tap weights, then the MSE function is
a hyperparaboloid. In all cases, Widrow and Stearn [3] showed that
the MSE function is concave upward so that a minimum value may
be determined.

To minimize the MSE function ξ in (8.48), the derivate of ξ with
respect to the weight vector bn that is equal to zero yields

Rx[n]bn = rdx[n]. (8.49)

In this case, (8.49) is the same as the Wiener-Hopf solution that was
shown in Chapter 7. As long as the matrix Rx[n] is invertible, then
the optimum weight vector b̂n for the MMSE of a linear equalizer is
obtained by

b̂n = R−1
x [n]rdx[n]. (8.50)

Thus, by minimizing the MSE function ξ in (8.48) in terms of the
weight vector bn of the filter coefficients, it becomes possible to
adaptively tune the tap weights of the linear equalizer to provide
a flat spectral response with minimum ISI for a communication
receiver. This is due to the fact that minimizing the MSE function
ξ leads to an optimal solution for the tap-weight vector bn.

8.3.1 Adaptive Algorithms for an Equalizer

An adaptive algorithm for a linear channel equalizer is required for
channels whose characteristics are unknown and change with time.
In this case, the ISI varies with time. It requires a specific adaptive
algorithm to update the tap weights of the channel equalizer to
reduce the ISI and track such time variations in the channel response.
If the filtering characteristics of the channel are known and time-
invariant, then the tap weights of the equalizer need be updated only
once. To this extent, the adaptive algorithm of the equalizer is still
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needed to update the tap weights of the equalizer to compensate
the channel distortion at the beginning of the transmission session.
Therefore, the equalizers use adaptive algorithms to acquire the filter
coefficients of the equalizer for a new signal, and then track it as
needed.

In Chapter 7, we introduced methods with adaptive algorithms
with great detail for adapting the tap weights of the filter coefficients
for adaptive filters. These methods and algorithms include the
Wiener-Hopf solution and the LMS and RLS algorithms, which
have been extensively used for estimating optimal filter coefficients
and/or adjusting the filter coefficients of the equalizer. Other
algorithms also exist to adapt the filter coefficients such as Kalman
filtering. For further algorithm developments, see [2–6].

This section outlines some practical issues of the adaptive
algorithms with respect to equalizer algorithm performance. There
are four factors that usually determine the performance of an
adaptive algorithm:

• Convergence rate
This factor is referred to as the number of iterations required
for the adaptive algorithm of the equalizer in response to sta-
tionary inputs to converge close enough to the optimal solu-
tion or the Wiener-Hopf solution. A fast rate of convergence
allows the algorithm to rapidly adapt the tap weights of the
equalizer in a stationary environment of unknown statistics.
In addition, it enables the algorithm to track channel varia-
tions while operating in a time-varying environment.

• Misadjustment
This parameter is used to measure the amount that the fi-
nal value of the MSE, averaged over an ensemble of adaptive
equalizers, deviates from the MMSE in an optimal sense. The
MSE is larger than the MMSE by an amount known as the ex-
cess mean square error (EMSE). Hence, the misadjustment is
the ratio of the steady-state value of the EMSE to the MMSE.
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• Stability
In fixed-point implementation, some of the adaptive algo-
rithms of the equalizers are considerably sensitive to round-
off noise and quantization errors. These kinds of errors influ-
ence the stability of the algorithm for the equalizers during
the real-time operations.

• Computational complexity
This means the number of operations needed to make one
iteration of the adaptive algorithm for the equalizer. A small
number of operations result in less cost for the product.

In practice, the trade-off analysis is usually measured in terms
of hardware complexity, chip area, processing consumption, and
cost, in addition to convergence rate, misadjustment, stability, and
computational complexity along with the equalizer structure and its
adaptive algorithm. These factors are directly related to the filter
length of the equalizer and which implementation structure is used.

In wireless communications, the characteristics of the radio
channel and intended use of the subscriber equipment is also a key
element. The speed of the mobile unit determines the channel fading
rate and the Doppler spread that is directly related to the coherence
time of the channel [7]. Hence, the choice of an adaptive algorithm
along with its corresponding rate of convergence for a channel
equalizer depends on the channel data rate and the coherence
time [6, 7].

In wireline communications, the characteristics of the wireline
channel, such as copper-wired telephone channel, are a predominant
factor since the channel distortion is severe. The topology of a
copperwire has complexities that usually contain multibridge taps
and different types of copperwires. In addition, crosstalk between
pairs in a multipair copperwire is the dominant impairment in any
digital subscriber loop (DSL) system. The cause of this crosstalk is
capacitive and inductive coupling between the wires [8]. Therefore,
the choice of an adaptive equalizer structure and its algorithm, along
with its corresponding convergence rate and numerical stability, is
important for a channel equalizer in a DSL system.
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8.3.2 Training Methodology

An adaptive algorithm requires knowledge of the “desired” response
to form the error signal needed for the adaptive equalizer. In theory,
the transmitted sequence is the desired response for an adaptive
equalizer. In practice, however, the adaptive equalizer is physically
separated from the transmitter of its ideal desired response since the
adaptive equalizer is located in the communication receiver. For the
adaptive channel equalizer, there are two methods in which a replica
of the “desired” response may be generated locally to be used with
the error signal in the communication receiver.

1. Training method
This method is used during an initial training phase that
takes place when the communication transmitter and re-
ceiver first establish a connection. A replica of the desired
response is used from the signal sequence d[n], as shown
in Figure 8.1, when the transmitter sends a sequence that is
known to the receiver. In fact, the generator of such a refer-
ence signal must be synchronized with the known transmit-
ted sequence. In addition, Haykin [2] suggested using a test
signal containing a pseudonoise sequence with a broad and
even power spectrum because the pseudonoise sequence has
noiselike properties and a periodically deterministic wave-
form.

2. Decision-directed method
This method is to use the output sequence y[n] of the thresh-
old device in the receiver in Figure 8.1, as the transmitter
sequence during the normal operation. Accordingly, if the
output y[n] is the correct transmitted sequence, then it may
be used as the desired response to form the error sequence
for the purpose of the adaptive equalizer. This method is
said to be decision-directed because it is based on the de-
cisions made by the communication receiver. This approach
is also referred to as blind training since the communication
receiver does not need a known transmitted sequence.
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Note that, in the training method, the adaptive equalizer
algorithm used to adjust the tap-weight settings of the equalizer
corresponds mathematically to searching the unique minimum of
a quadratic error-performance surface. The unimodal nature of this
surface assures convergence of the adaptive algorithm. On the other
hand, the decision-directed method modifies the error performance
by using the estimated and unreliable output sequence into a
multimodal one that may result in complex behavior. Haykin [9] and
Miao [10] indicated that there are two types of error performance
within local minima: (1) desired local minima, whose positions
correspond to tap-weight settings, yielding the same performance
as we obtained by using a known transmitted sequence; and (2)
undesired local minima, whose positions correspond to tap-weight
settings, yielding inferior equalizer performance.

A poor choice of the initial tap-weight settings may cause the
adaptive equalizer to converge to an undesirable local minimum
and stay there during an operation of the decision-directed method.
Generally, for high performance, it is recommended that a linear
adaptive equalizer be trained before it is switched to the decision-
directed method. However, in a nonstationary and time-varying
environment, it is impossible to consider the use of a transmitted
training sequence. In such a case, the linear adaptive equalizer has
to compensate the communication channel in an unsupervised mode.
As a result, in this case, the operation of a linear adaptive equalizer is
referred to as blind equalization. It is clear that the design of a blind
equalizer is more challenging than a conventional adaptive equalizer
because the transmitted sequence does not exist by some practical
means.

8.3.3 Tap Length of Equalizer Coefficients

The computational complexities of a linear adaptive equalizer
mainly depend on the tap length of the equalizer coefficients,
which impacts the equalizer on the entire demodulator in the
communication receiver. This brings into high profile the question
of how long the equalizer’s filter length must be to satisfactorily
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compensate for the dispersion of the channel. In theory, the
symbol-based (sometimes called T -spaced) linear equalizer needs
an infinite-length tap-weight setting to achieve the optimal solution
for the equalizer. However, in fact, there are no clear answers
available because the equalizer length depends on the type of
channel to be equalized and the sample rate with respect to the
transmitted signal bandwidth.

In practice, there are two approaches to selecting an equalizer
length for compensating the dispersion of the channel [11]. The
first method is to build a prototype and test the characteristics of
the actual channel. For example, in a DSL system, the equalizer
length can be determined in this way. The second method is to select
the equalizer length with a presumption that the pulse response of
the equalizer’s convergence will approximately be the inverse of the
channel bandwidth. In this case, if the channel can be well modeled
with a finite length of a pulse response, then the equalizer length will
often need to be three to five times longer than the delay spread of
the channel.

Theoretically, however, this is not always true for an equalizer
with fractional spacing based on a multichannel view of an
oversampled signal. The fractional spacing changes the view
of the equalization problem. Specifically, the length of the
fractionally spaced equalizer can be made shorter and the associated
computation may be substantially reduced. In the next section, we
will introduce the theory of the fractionally spaced equalizer.

8.4 Fractionally Spaced Equalizer

In the previous sections, we have discussed the symbol-based (or
T -spaced) linear equalizer structures, in which the spaces between
adjacent equalizer taps are selected at the symbol rate. However, it
has been shown that the symbol-based equalizer is very sensitive
to the choice of receiver sampling time and phase [12–14]. This is
because the received signal spectrum of the symbol-based equalizer
is dependent on the choice of the sampling delay. In general,
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the symbol-based equalizer cannot compensate for the channel
distortion inherent in the received signal spectrum associated with
the sampling delay. This may result in a significant degradation to
an equalizer performance.

In contrast to the symbol-based equalizer, it has been well
recognized that a fractionally spaced equalizer (FSE) usually
outperforms a symbol-based equalizer [15, 16] because of its
insensitivity to receiver sampling time and phase. In fact, an FSE is
based on sampling the incoming signal at least as fast as the Nyquist
sampling rate.

Assume that the transmitted signal contains a pulse having a
raised cosine spectrum with a rolloff factor β. Thus, its spectrum
is given by

Fmax =
1 + β

2T
. (8.51)

In this case, the incoming signal can be sampled at the
communication receiver with a Nyquist sampling rate

FS = 2Fmax

=
1 + β

T
, (8.52)

and then passed through a channel equalizer with an adjacent tap
spacing at the reciprocal of the Nyquist sampling rate T/(1 + β). If
the rolloff factor β is equal to 1, then we would refer the equalizer
to a T/2-spaced equalizer. If the rolloff factor β is equal to 0.5, then
we would have a 2T/3-spaced equalizer, and so on. Generally, if
an equalizer tap spacing has MT/N , where M and N are integers
and N > M , then the equalizer is referred to as MT/N -spaced
fractionally spaced equalizer. However, in practice, a T/2-spaced
FSE is widely used in many applications.

8.4.1 Multirate Communication System Model

Consider the single-channel communication model with additive
noise as shown in Figure 8.5 for a pulse amplitude modulation
(PAM), phase-shift keying (PSK), or quadrature amplitude modula-
tion (QAM) signal along with a T/L fractionally spaced equalizer,
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Pulse shaping
and channel A/D

Fractionally
space equalizer

Fs = T/L

L

y[n]x[n]

Symbol weighted
impulse train

T

Figure 8.5 A block diagram of a communication system model
with additive noise in cascade with a fractionally
spaced equalizer and a downsampling byL.

where L is an integer. This model assumes that a single continuous-
time filter is used for modeling the dispersive effects of the trans-
mitter’s pulse shaping and output filtering, channel propagation,
and the receiver input filtering. A symbol sequence x[n], which is
spaced T seconds apart and weighted by the amplitude and phase
of the symbols, is transmitted through a pulse shaping filter, modu-
lated onto a propagation channel, and demodulated at the receiver.
We also assume that all processing between the transmitter and re-
ceiver is linear time-invariant (LTI) and can thus be described by the
continuous-time impulse response c(t). The received signal r(t) is
also corrupted by additive channel noise denoted by v(t). The output
of this impulse-driven communication channel is then sampled at a
rate of L/T Hz by using an A/D converter and applied to a fractional
spaced equalizer with complex-valued pulse response. The output of
the fractionally spaced equalizer is then decimated by a factor ofL to
produce the T -spaced output sequence y[n]. Decimation processing
is accomplished by disregarding alternate samples, thus producing
the baud-spaced “soft decisions” y[n] every T seconds.

The partially continuous model of the pulse shaping and channel
block as shown in Figure 8.5 can be accurately replaced by using the
discrete-time multirate system model c[n] as shown in Figure 8.6.
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Fs = T/L

x[n]
input
sequence

y[n]

L
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space equalizerL
Discrete-time

model c[n]

v[n]

r[n]d[n]

Figure 8.6 A discrete-time multirate communication system
model, with additive noise in cascade with a fraction-
ally spaced equalizer and a downsampling byL.

The PSK, PAM, or QAM symbol value, x[n], is impressed on
unit pulses in which each pair is upsampled by L. Then this zero-
filled sequence is applied to a discrete-time system model c[n] that
models the channel propagation and filtering effects represented
by the continuous filter. The received signal r[n] is corrupted by
additive channel noise denoted by the discrete-time random process
v[n] = v[n(T/L)]. Assume that the discrete-time system model
c[n] in Figure 8.6 is an FIR filter with filter order of L(Lc − 1),
where Lc is the channel length. The output of the discrete-time
communication system model is a multirate signal that is used as an
input for the fractionally spaced equalizer. In addition, we assume
that the fractionally spaced equalizer has the tap-weight order of
L(Le−1), where Le is the equalizer length. Then the full rate output
of the fractionally spaced equalizer is downsampled by a factor of L
to create the T -spaced output y[n] every T seconds.

The symbols y[n] are the estimated value from the r[n] by
subsampling the output of y[n]. Mathematically, the relations of the
input x[n] and the output r[n] are given by

r[n] =
N∑
k=0

c[n− kL]x[k] + v[n]

= d[n] + v[n], (8.53)
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and the estimated symbols of the fractionally spaced equalizer are
then obtained by

y[n] =
N∑
k=0

b[k]r[nL− k]. (8.54)

Note that the observations r[n] are cyclostationary [17]. In other
words, the correlation Cr(n,m) = E{r[n]r∗[n+m]} is periodically
time-varying with a period of L. If we assume that the random
process of the input sequence x[n] is zero mean and variance
Cx(0), with independent identical distribution (i.i.d.), and is also
independent of the noise v(n), then it follows from (8.53),

Cr(n,m) = Cx(0)
N∑
k

c[n−kL]c∗[n+m−kL]+Cv(n,m). (8.55)

Thus, the impulse response c[n] of the discrete-time channel can
be identified from the Cr(n,m) by using (8.55). However, Tong
et al. [18] and Ding et al. [19], almost at the same time, showed
that the transfer function of the channel C(z) should satisfy the
identifiability condition that there are no zeros of the channel transfer
function C(z) equispaced on a circle with angle 2π

L
separating one

zero from the next.
This approach in (8.55) is sometimes referred to as blind channel

identification. Note that fractionally spaced equalization can be
performed by adopting an appropriate performance criterion as long
as the impulse response c[n] of the channel is estimated. In the
next section, we introduce the requirement of a fractionally spaced
equalizer to meet the zero-forcing criterion so that the entire transfer
function can be identified based on the multichannel model, given
the estimated impulse response c[n] of the discrete-time channel.

8.4.2 Multichannel Model-Based Equalizer

The discrete-time multirate communication system model in
Figure 8.6 uses the discrete-time channel model with the channel
coefficients c[n] = c[n(T/L)], the discrete-time fractionally spaced
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channel equalizer with the tap coefficients b[n] = b[n(T/L)],
and the discrete-time random process of additive noise n[n] =
n[n(T/L)]. Since there is zero padding of the input sequence x[n]
and decimation at the output sequence y[n], this allows us to redraw
the multirate communication system model in Figure 8.6 as the
multichannel model with single-rate of 1/T structure as shown in
Figure 8.7. The discrete-time multirate channel can be broken into
L subchannels, each of which consists of a finite impulse response
(FIR) filter with the filter order of Lc. The coefficients of each
FIR filter are a decimated version of the pulse response of the
discrete-time multirate channel. The coefficients c0[n] of the first
subchannel are equal to the discrete-time channel c[nL], where
n = 0, 1, 2, · · · , N/L and N/L is an integer. The coefficients c1[n]
of the second subchannel are equal to c[nL + 1]. The coefficients
cL−1[n] of the last subchannel are equal to c[nL + L − 1]. That is,
ci[n] = c[nL+i], where i = 0, 1, 2, · · · , L−1. Similarly, the discrete-
time fractionally spaced equalizer is also decomposed into the L
subspaced equalizers, bi[n] = b[nL+i], where i = 0, 1, 2, · · · , L−1,
and each one is built based on the decimation versions of the pulse
response of the fractional spaced equalizer.

Now the question is: Under what conditions can all the
subspaced equalizers, bi[nL + i], be chosen so that the propagation
channel and other linear filtering embodied in ci[nL + i] can be
perfectly equalized? The performance criterion is to require the
subspaced equalizers to achieve the zero-forcing condition. In other
words, this requires the transfer function from the input signal x[n]
to the output signal y[n] to be the identity system as shown in
Figure 8.6. If the zero-forcing condition is met, then the ISI can be
completely removed. In this case, for the multichannel system in
Figure 8.7, the solution of the zero-forcing condition in the discrete-
time domain is given by

L−1∑
i=0

{
N−1∑
k=0

ci[k]bi[n− k]
}
= δ[n− d], (8.56)

where d is a positive integer that denotes the achieved delay. In
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Figure 8.7 A discrete-time multichannel model-based fractionally
spaced equalizer.

the frequency domain, the zero-forcing condition in (8.56) can be
expressed as

L−1∑
k=0

[
Bk(e

jω)Ck(e
jω)
]
= e−jdω. (8.57)

If the channel c[n] satisfies the identifiability condition, then the
matrix of linear equations in (8.56) is a full rank [20]. Hence, the
solutions for the subspaced equalizers b[m] exist.

In practice, a common choice of L is equal to two for adaptive
equalizers. In this case, the A/D converter in a communication
receiver runs at twice the symbol rate, such as 2FB , resulting
in equalizer taps spaced T/2 seconds apart. From the previous
discussion, this T/2-spaced equalizer can be drawn as two
subchannels, as shown in Figure 8.8. Given the subchannel with even
coefficients c0[n] = c[2n] and odd coefficients c1[n] = c[2n + 1],
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Figure 8.8 A two-channel system of a T/2 fractionally spaced
equalizer.

where n = 0, 1, · · · , N , the equalization objective is to choose the
decomposed equalizer subchannel impulse responses b0[n] = b[2n]
and b1[n] = b[2n + 1] such that the output signal y[n] approximates
the unit delay u[k − d] as closely as possible, where d is a positive
integer for the achieved delay.

The desired result of the zero-forcing condition in the discrete-
time domain is obtained by

N−1∑
k=0

c0[k]b0[n− k] +
N−1∑
k=0

c1[k]b1[n− k] = δ[n− d], (8.58)

or equivalently in the frequency domain as

C0(e
jω)B0(e

jω) + C1(e
jω)B1(e

jω) = e−jdω. (8.59)

Either (8.58) or (8.59) is referred to as the zero-forcing T/2
fractionally spaced equalizer since the sum of the two convolutions
is forced to zero for all delays except d. Thus, a channel can
be perfectly equalized if two conditions can be met as follows:
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(1) the two subchannels do not have common roots; and (2) the
decimated equalizer order Le must at least be equal to or greater
than the decimated channel order Lc − 1. This indicates that if
the delay spread of a channel can be measured or modeled to be
less than some bound, then the fractionally spaced equalizer order
can be shorted. This is contrast to the capabilities of a baud-spaced
equalizer in which the zero-forcing cannot be achieved with a finite-
length equalizer.

8.4.3 FSE-MMSE Function

Referring to Figure 8.6, in the presence of noise, the error signal can
be formed as follows:

e[n] = y[n]− x[n− d], (8.60)

where d denotes a particular delay. We want to minimize the
expected squared magnitude of the recovery error in (8.60) so that
this criterion can be interpreted as the best compromise between ISI
and noise amplification in an optimal sense of MMSE.

To formulate this error function more precisely, we define the P
T -spaced samples of the source sequence into the vector

x[n] = [x[n], x[n− 1], x[n− 2], · · · , x[n−N ]]T , (8.61)

and the corresponding 2N fractionally sampled values of noise into
vector

v[n] = [v[n− 1], v[n− 3], v[n− 5], · · · , v[n− 2N + 1],

v[n], v[n− 2], v[n− 4], · · · , v[n− 2N + 2]]T , (8.62)

where the odd noise samples are followed by the even noise samples.
We also define the P × N baud-spaced block Toeplitz

convolution matrices Ceven[n] and Codd[n] for the even and odd
channel coefficients, respectively, as shown in Figure 8.8, where
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P =M +N + 1, as follows:

Ceven[n] =



c[0] 0 · · · 0

c[2] c[0]
...

... c[2] 0

c[2N − 2]
...

. . . 0
0 c[2N − 2] c[0]
... 0 c[2]

0
...

...
0 0 · · · c[2N − 2]



, (8.63)

and

Codd[n] =



c[1] 0 · · · 0

c[3] c[1]
...

... c[3] 0

c[2N − 1]
...

. . . 0
0 c[2N − 1] c[1]
... 0 c[3]

0
...

...
0 0 · · · c[2N − 1]



. (8.64)

Given a fractionally spaced equalizer with a finite length of 2N , we
form the even and odd taps of equalizer into the vectors, beven[n] and
bodd[n], respectively,

beven[n] = [b[0], b[2], b[4], · · · , b[2N − 2]]T , (8.65)

and
bodd[n] = [b[1], b[3], b[5], · · · , b[2N − 1]]T . (8.66)

Defining the compound matrix in (8.63) and (8.64) and vector
quantities in (8.65) and (8.66) is

C[n] = [Ceven[n] Codd[n]], (8.67)
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and
b[n] = [beven[n] bodd[n]]

T . (8.68)

With these quantities from (8.61) to (8.68), the output sequence
of the fractionally spaced equalizer can be written as

y[n] = xT [n]C[n]b[n] + vT [n]b[n]. (8.69)

Hence, substituting (8.69) into (8.60) yields

e[n] = xT [n]C[n]b[n] + vT [n]b[n]− x[n− d]
= xT [n](C[n]b[n]− hd[n]) + vT [n]b[n], (8.70)

where hd[n] = [0, · · · , 0, 1, 0, · · · , 0]T is the so called “zero-forcing”
system impulse response under the perfect source recovery [21].

Assume that the signal processes and noise are i.i.d. and jointly
uncorrelated with respect to variances σ2

x and σ2
v , respectively. Then

the expected value of the magnitude-squared of the recovery error is
obtained by

E{|e[n]|2} = σ2
x(C[n]b[n]− hd[n])

H(C[n]b[n]− hd[n])

+σ2
vbH [n]b[n], (8.71)

where (·)H in the matrix denotes the Hermitian transpose. Therefore,
the normalized mean square error (NMSE) cost function of the
fractionally spaced equalizer based on (8.71) is

ξNMSE =
E{|e[n]|2}

σ2
x

= (C[n]b[n]− hd[n])
H(C[n]b[n]− hd[n])

+
σ2
v

σ2
x

bH [n]b[n]. (8.72)

The ξNMSE in (8.72) is the sum of a zero-forcing measure,
including the distance between the global channel equalizer impulse
response C[n]b[n] and the optimal zero-forcing hd[n], and of a noise
enhancement measure σ2

v

σ2
x
bH [n]b[n], which is the amount of the

received noise by the equalizer.
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Minimizing ξNMSE in (8.72) with respect to the equalizer
coefficient vector b[n] yields

∂ξNMSE

∂b[n]
= 2CH [n]C[n]b[n]− 2CH [n]hd[n] + 2

σ2
v

σ2
x

b[n]. (8.73)

Equating (8.73) to zero, we obtain

b[n] =
CH [n]hd[n]

CH [n]C[n] + σ2
v

σ2
x
I
. (8.74)

Substituting (8.74) into (8.72) yields the MMSE of the fractionally
spaced equalizer as

ξMMSE = hH
d

I− C[n]CH [n]

CH [n]C[n] + σ2
v

σ2
x
I

hd. (8.75)

Note that (8.75) still contains a function of system delay d. In other
words, the degree of the system delay d can affect the MMSE
performance of a fractionally spaced equalizer. Johnson [22] showed
that the optimum system delay d corresponds to the index of the
minimum diagonal element in (8.75). Thus, the optimal system
delay d is formally given by

d = arg mind

I− C[n]CH [n]

CH [n]C[n] + σ2
v

σ2
x
I

 . (8.76)

Therefore, we recommend that the preselection of the system delay
d is important for a fractionally spaced equalizer in terms of
the MMSE performance because it describes the typical adaptive
equalization scenario when a training sequence is available.

Example 8.3

Assume that an FSE has an infinite-length tap coefficient and
L is an integer of the oversampling factor (refer to Figures 8.6
and 8.7). The sampled output of the antialias filter can be
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decomposed into L interleaved sequences with the z-transforms
Q0(z), Q1(z), Q2(z), · · · , QL−1(z) at a sampling rate of 1/T , where
Qi(z) corresponds to the sample sequence q[kT − iT/L]. Also,
assume that Vi(z) is the transform of a symbol rate sampled
white noise sequence with autocorrelation function Rnn(z) = LV0

2

per dimension, and these noise sequences are independent of one
another. Determine the MMSE of the infinite-length FSE.

The interleaved sequences Hi(z) can be expressed as

Qi(z) = Ci(z)X(z) + Vi(z), (8.77)

where Ci(z) is the transform of the symbol-rate-spaced ith phase of
the c(t) channel sequence c[kT + (i − 1)T/L]. A column vector of
the transform is given by

Q(z) = C(z)X(z) + V(z), (8.78)

where
C(z) = [C0(z), C1(z), · · · , CL−1(z)]

T , (8.79)

V(z) = [V0(z), V1(z), · · · , VL−1(z)]
T , (8.80)

and
Q(z) = [Q0(z), Q1(z), · · · , QL−1(z)]

T . (8.81)

If the FSE output is at a sampling rate of 1/T , then the interleaved
tap weights of the FSE can be written in a row vector as

B(z) = [B0(z), B1(z), · · · , BL−1(z)]. (8.82)

Thus, the FSE output is obtained by

Y (z) = B(z)Q(z), (8.83)

and the error sequence E(z) can then be formed as

E(z) = X(z)− Y (z). (8.84)
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Notice that E(z) in (8.84) should be orthogonal to Q(z) by using the
orthogonality condition. As a result, the expectation of the vectors
E(z) and Q(z) are

E{E(z)Q∗(1/z)} = RxQ(z)− B(z)RQQ(z)

= 0, (8.85)

where

RxQ(z) = E{X(z)Q∗(1/z)}
= ExC∗(1/z), (8.86)

and

RQQ(z) = E{Q(z)Q∗(1/z)}
= ExC(z)C∗(1/z) +

LV0

2
I. (8.87)

Therefore, by solving (8.85), the infinite-length FSE-MMSE tap-
coefficient setting is obtained by

B(z) = RxQ(z)R−1
QQ(z)

=
C∗(1/z)

C(z)C∗(1/z) + L/SNR
(8.88)

The corresponding error sequence has autocorrelation function as

Ree(z) = Ex − RxQ(z)R−1
QQ(z)RQx(z)

=
LV0/2

C(z)C∗(1/z) + L/SNR
. (8.89)

Therefore, the infinite-length FSE-MMSE is then obtained by

ξFSE−MMSE =
T

2π

∫ π/T

−π/T

[
LV0/2

|C(e−jωT )|2 + L/SNR

]
dω. (8.90)

Notice that (8.90) is exactly the same as the MMSE given in (8.33)
for the MMSE linear equalizer as long as the sampling rate exceeds
twice the highest frequency of X(ejωT ).
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8.4.4 FSE Constant Modulus Algorithm

Most equalization techniques, such as those using the LMS
algorithm, use a training sequence to allow the communication
receiver to adjust the fractionally spaced equalizer coefficients. One
obvious drawback of such an approach is that the training causes
a reduction of the useful information rate with respect to the total
information rate. In addition, there are many digital communications
system applications, such as broadcast and wireless configurations,
for which training data is not available. Therefore, blind fractionally
spaced equalization without a training sequence, particularly the
CMA, has received increasing interest since the last decade.

The CMA with application in QAM signals was originally
proposed by Godard [23]. Sometimes the CMA is also referred to
as the Godard algorithm. The CMA was later further developed
with applications for FM signals by Treichler and Agee [24]. It
has been shown that the fractionally spaced equalizer adapted using
the CMA can converge globally to minimize ISI under conditions
[25, 26]. Even for channels with deep spectral nulls, the CMA-based
fractionally spaced equalizer does not require a large number of the
equalizer tap coefficients and can then converge faster [27].

The multichannel vector representation of the blind adaptive
fractionally spaced equalizer using the CMA is shown in Figure 8.9.
The channel output of a communication system can be described
using the baseband representation as

x(t) =
∞∑
n=0

x[n]c(t− nT − t0) + v(t), (8.91)

where T is the symbol period and t0 is a constant of the system delay.
Assume that the input signal x[n] is an independent and identically
distributed sequence and the channel output may be corrupted by
channel noise v(t), which is independent of the input signal x[n].
The input sequence x[n] is passed through an LTI channel with
an impulse response c(t) by the transmitter. The communication
receiver attempts to recover the input sequence x[n] from the
measurable channel output.
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y[n]

.

.

.

x[n]^

H0(z)

H1(z)
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x[n]
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.

.

v0[n]

C0(z)

v1[n]

C1(z)
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CL-1(z)
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xL-1[n]

r0[n]

r1[n]

rL-1[n]

Figure 8.9 A multichannel vector representation of the blind
adaptive fractionally spaced equalizer using the CMA.

Define L as an integer and the oversampling symbol interval as
∆ = T/L. It has been shown by Gardner [28] that the oversampling
can provide channel diversity if the channel bandwidth is greater
than the minimum symbol rate of 1/(2T ). Thus, the output sequence
of the sampled channel is given by

x[k∆] =
∞∑
n=0

x[n]c[k∆− nL∆− t0] + v[k∆]. (8.92)

Let the subchannel frequency response in the z-domain be

Ci(z) =
L−1∑
n

ci[n]z
−n, (8.93)

where the subchannel impulse response in the discrete-time domain
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is
ci[n] ∼= c[k∆+ i∆− t0], i = 0, 1, 2, · · · , L. (8.94)

The oversampled channel output x[k∆] in (8.92) may be divided into
L linearly independent subsequences as

xi[n] = x[n] ∗ ci[n] + v[nT + i∆], i = 0, 1, 2, · · · , L. (8.95)

Hence, these L subsequences xi[n] can be viewed as stationary
outputs of L discrete-time FIR channels ci[n] with a common input
sequence x[n]. This approach is known as the single-input multiple-
output (SIMO) channel.

The adjustable fractionally spaced equalizer Hi(z) is provided
for each subsequence xi[n] of the multichannel. In this case, each
subequalizer Hi(z) is an FIR filter as

Hi(z) =
N−1∑
n=0

hi[n]z
−n, i = 0, 1, 2, · · · , L. (8.96)

Thus, the L FIR filter outputs yi[n] are summed to create the
stationary equalizer output

y[n] =
L−1∑
i=0

yi[n]. (8.97)

The constant modulus (CM) criterion for the fractionally spaced
equalizer is expressed as

ξCM = E{(|y[n]|2 − γ)2}, (8.98)

where y[n] are the fractionally spaced equalizer output sequences
that are coincident with symbol instances and γ is the CM dispersion
constant defined as

γ =
E{|x[n]|4}
E{|x[n]|2} . (8.99)
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Defining the fractionally spaced equalizer coefficients into the
vector as

h0[n] = [h0[1], h0[2], · · · , h0[N − 1]],

h1[n] = [h1[1], h1[2], · · · , h1[N − 1]],
...

...

hL−1[n] = [hL−1[1], hL−1[2], · · · , hL−1[N − 1]]. (8.100)

Then the compound matrix of the fractionally spaced equalizer is
given by

b[n] = [h0[n] h1[n] · · · hL−1[n]]. (8.101)

In order to adaptively adjust the fractionally spaced coefficients b[n]
without a training sequence, the CMA, which can be implemented
to jointly update the L FIR filters to minimize the CM cost function
in (8.98), is the stochastic, gradient search rule that descends
this cost surface by updating the fractionally spaced equalizer
coefficients b[n] according to

hi[n+ 1] = hi[n] + µi(γ − |y[n]|2)y[n]r∗i [n], i = 0, 1, 2, · · · , L,
(8.102)

where µ is a small, positive, tunable step size and ri[n] =
[ri[n], ri[n− 1], · · · , ri[n−N + 1] is a vector of received samples.

Johnson et al. [29] showed that the mean of the CM cost function
in (8.98) represents the average performance of CMA in (8.102).

The step size µi in (8.102) determines the distance covered and
speed towards the negative gradient of the constant modulus cost
surface on each iteration. Making a large step size µi will adjust
the equalizer taps rapidly, but it will also increase the amount of
EMSE as discussed in Chapter 7, which is the amount of error that
is in excess of the optimal case. This is because the tap values take
such large steps that they constantly overshoot the minimum of the
constant modulus cost surface. As a result, instead of converging,
the values of tap-weight equalizer will rattle around the bottom
of one of the constant modulus cost surface bowls. The rattling
phenomenon is referred to as stochastic jitter [30]. On the other
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hand, the small step size µi will make the tap values update very
slowly, thereby increasing the time for convergence. The step size
µi must be selected carefully. A balance is recommended so that the
equalizer is able to track channel variations while keeping the EMSE
relatively small.

8.4.5 FSE-CM Noisy Cost Function

In this section, we are interested in the FSE-CM criterion in terms
of equalizability. In other words, we want to know a measure of
the FSE-CM performance in equalizing a given channel in the
presence of additive noise and then compare the FSE-CM MSE with
an analytical expression of a lower equalizability bound, MMSE
in (8.75) for a given SNR. This comparison should provide a
meaningful measure of the FSE-CM criterion performance.

Note that, from averaging theory, the extreme of the FSE-CM
cost function ξCM in (8.98) is the possible convergence setting of the
CMA in (8.102). Understanding the FSE-CM cost function allows
us to analyze the mean convergence points of the FSE CMA with
additive noise conditions.

In order to have a better understanding of the equalizer
setting with minimizing the FSE-CM criterion, we can establish
an expression for the FSE-CM cost function ξCM in (8.98) with
conditions of an additive noise channel. Assume that the channels
are a set of causal FIRs and the noise vi[n] is independent from the
input signal x[n]. Fijalkow et al. [31] showed that the FSE-CM cost
function in (8.98) can be expressed as

ξCM = Γ0(f[n]) + Φ(b[n]), (8.103)

where

Φ(b[n]) =
σ2
v

σ2
x

bH [n]b[n]

[
2
(
kgfH [n]f[n]− ks

)
+ kg

σ2
v

σ2
x

bH [n]b[n]

]
,

(8.104)
where kg is a Gaussian signal kurtosis that is equal to 3 in the case of
real-valued signals and is equal to 2 in the complex-valued signals,
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and
f[n] = C[n]b[n], (8.105)

and
Γ0(f[n]) = E{(ks − |fT [n]x[n]|2)2}, (8.106)

which is the noise-free cost function, and ks = E{|x[n]|4}
(σ2

x)2
is the

input signal kurtosis that is used to measure the source signal
“compactness.” Equation (8.103) is referred to as the FSE-CM noisy
cost function.

The minimization of the FSE-CM cost function of (8.103) in
the noisy context is equivalent to the minimization of noise-free
cost function Γ0(f[n]) over the vector f[n] regularized by the second
term of the additional deterministic factor, Φ(b[n]). Note that for
most input sequences x[n], for example, a PAM or QAM signal,
ks < kg − 1. This indicates fT [n]f[n] > ks/kg if f[n] is not too close
to the origin f[n] = 0, which is the maximum of ξCM . Therefore,
the deterministic factor Φ(b[n]) has the desirable property to be a
positive convex quadratic function in terms of b[n]. Then, the main
consequence of the regularization is to forbid the FSE norm to be too
high and to reduce the noise enhancement contribution in the FSE
output signal y[n]. Comparing (8.103) with the FSE MSE criterion
in (8.72), we note that the constraint on the term bH [n]b[n] is much
stronger, thereby limiting all noise enhancement.

8.4.6 FSE-CM Performances

For a PAM or QAM signal, the relation between MSE cost function
of the FSE-CM and the FSE NMSE in (8.72) is approximately given
by Endres [32]

ξCM−MSE ≈ 2σ2
x(kg − ks)ξNMSE. (8.107)

Minimizing ξCM−MSE in (8.107) with respect to b[n] obtains

b[n] =
CH [n]hd[n]

CH [n]C[n] + σ2
v

σ2
x
I
. (8.108)
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It is interesting to note that (8.108) is exactly equal to the optimal
vector b[n] given in (8.74) because the term of 2σ2

x(kg − ks)
in (8.107) does not include a direct relationship with the FSE
taps b[n]. Therefore, substituting (8.108) into (8.107) yields the
approximate MMSE of the FSE-CM as

ξCM−MMSE ≈ 2σ2
x(kg − ks)ξMMSE

= 2σ2
x(kg − ks)

hH
d

I− C[n]CH [n]

CH [n]C[n] + σ2
v

σ2
x
I

hd


(8.109)

Therefore, in this case, the MMSE of the FSE-CM receiver may be
approximately upper bounded by ξCM−MMSE

2σ2
x(kg−ks)

.
It is well established that the system delay d in the combined

channel equalizer can influence FSE-CM MSE performance with
variations of several orders of magnitude being typical. It has
been understood that the FSE-CM MSE performance in (8.109)
also depends on the system delay d on the FSE-CM cost function
in terms of describing the relative depth between FSE-CM local
minima associated with different system delays. In general, there
does not exist a closed-form expression for the FSE-CM local
minima settings since the FSE-CM cost function depends on the
fourth-order moment of the FSE vector. Endres et al. [32] found
a closed-form estimate of the FSE-CM local minima for noiseless
binary phase-shift keying (BPSK) signal by approximating the
FSE-CM cost function with a second-order Taylor series expanded
about the length-constrained Wiener settings. However, our results
in (8.109) also suggest that there exist FSE-CM local minima in
close proximity to those MSE local minima that correspond to
better-performing system delays.

8.5 Decision Feedback Equalizer

A decision feedback equalizer employs previous decisions to
eliminate the ISI caused by previously detected symbols on the
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Figure 8.10 A generalized block diagram of a decision feedback
equalizer.

current symbol to be detected. In other words, the basic idea behind
the DFE is that the ISI, induced on future symbols, can be estimated
and subtracted out before detection of subsequent symbols once
an information symbol has been detected and decided upon. The
DFE is inherently a nonlinear communication receiver. However, the
DFE can be analyzed using linear techniques if we assume that all
previous decisions are correct. Thus, in this section, we derive an
MMSE solution and provide the performance analysis for the DFE.

A simple block diagram of a DFE-based communication receiver
is shown in Figure 8.10, where the DFE section consists of two
filters and one decision element. The first filter F (z) is called a linear
feedforward filter (FFF) and it is generally a fractionally spaced FIR
filter with adjustable tap coefficients. Its input is the received filtered
signal r(t) sampled at some rate that is a multiple of the symbol
rate, for example, at rate of 2/T . The output of the FFF is denoted
by y[n], and the input to the decision element is denoted by q[n].
The second filter is a causal, feedback filter (FBF), with 1 − B(z),
where b0 = 1. The FBF is implemented as an FIR filter with symbol-
spaced taps having adjustable tap coefficients. Its input is the set of
previously detected symbols. The output of the FBF is subtracted
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from the output y[n] of the FFF to form the input to the detector.
The FFF will try to shape the channel output signal in such a way
that it is a causal signal. The FBF will then subtract any trailing ISI.
Note that any bias removal in Figure 8.10 is absorbed by the decision
element.

The DFE has a total of N (from −N1 to N2) taps in the FFF and
N3 taps in the FBF, and its output in the discrete-time domain can
be expressed as

q[k] =
N2∑

n=−N1

f ∗[n]y[k − n]−
N3∑
i=1

b[i]x̂[k − i], (8.110)

where f∗[n] and b[n] are the adjustable coefficients of the FFF
and FBF, respectively. Hence, the x̂[k] is decided from q[k] once
it is obtained by using (8.110). Therefore, x̂[k] along with previous
decision x̂[k − 1], x̂[k − 2], · · ·, are fed back into the equalizer, and
x̂[k + 1] is then obtained based on (8.110).

Miao and Clements [6] provided a numeric example of a
conventional DFE with a T -spaced in the FFF and FBF using the
LMS algorithm to adjust the tap coefficient of the equalizer.

8.5.1 MMSE for DFE

In this section, we derive the MMSE for DFE in the z-transfer
domain under the assumption that previous decisions are correct.
However, in practice, this assumption may not be true, and can
be a significant weakness of DFE. However, the analysis becomes
intractable if the errors are included in the decision feedback section.

The error signal e[n] in the DFE section can be expressed as

e[n] = x[n]− q[n]. (8.111)

Then, the MSE of the error signal e[n] is a function of the tap
coefficients f [n] and b[n] chosen and is written

ξDFE = E{|e[n]|2}
= E{|x[n]− q[n]|2}. (8.112)
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The MMSE for DFE jointly optimizes the tap settings of both the
FFF, f [n], and FBF, b[n], to minimize the MSE in (8.112). Thus, the
MMSE for the DFE is obtained by

ξDFE−MMSE ≡ minf [n],b[n]

{
E{|x[n]− q[n]|2}

}
. (8.113)

Note that the error sequence e[n] in (8.111) can be written in the
z-transfer domain as

E(z) = X(z)−Q(z)
= X(z)− {Y (z)− [1−B(z)]X(z)}
= X(z)− {R(z)F (z)− [1−B(z)]X(z)}
= B(z)X(z)− F (z)R(z). (8.114)

Given any fixed function of FBF B(z), minimizing the MSE of the
error signal in (8.114) leads to

E{E(z)R∗(z−1)} = 0, (8.115)

because the error signal e[n] at any time k is uncorrelated with any
equalizer input signal y[n] by using the orthogonality principle. This
allows us to have the relation as

B(z)Pxr(z)− F (z)Prr(z) = 0, (8.116)

where
Pxr(z) = E{X(z)R∗(z−1)}, (8.117)

is the power spectrum of the cross-correlation function Rxy[k] and

Prr(z) = E{R(z)R∗(z−1)}, (8.118)

is the power spectrum of the autocorrelation function Rx[k]. Thus,
for any function of FBF, B(z) with b0 = 1, the function of F (z)
in (8.116) is obtained by

F (z) =
B(z)Pxr(z)

Prr(z)
. (8.119)
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Using (8.114), we obtain the power spectrum of the autocorrela-
tion function for the error sequence

Pee(z) = E{E(z)E∗(z−1)}
= E{|B(z)X(z)− F (z)R(z)|

·
∣∣∣B∗(z−1)X∗(z−1)− F ∗(z−1)R∗(z−1)

∣∣∣}
= B(z)Pxx(z)B

∗(z−1)− 2B(z)Pxr(z)F
∗(z−1)

+F (z)Prr(z)F
∗(z−1). (8.120)

substituting (8.119) into (8.120) obtains the power spectrum of the
autocorrelation function for the error sequence

Pee(z) = B(z)

[
Pxx(z)− Pxr(z)P

∗
xr(z

−1)

P ∗
rr(z

−1)

]
B∗(z−1). (8.121)

Thus, it can be shown that the DFE power spectrum of the
autocorrelation function for the error sequence with arbitrary monic
function B(z) is given by

Pee(z) = B(z)PMMSE−LE(z)B
∗(z−1), (8.122)

where

PMMSE−LE(z) =

[
Pxx(z)− Pxr(z)P

∗
xr(z

−1)

P ∗
rr(z

−1)

]

=
N0

|C(z)|2 +N0

. (8.123)

Equation (8.123) is the power spectrum for the error sequence of
an MMSE linear equalizer. Note that the inverse power spectrum
of the autocorrelation in (8.123) can be expressed into a spectral
factorization as

1

N0

|C(z)|2 + 1 = γ0G(z)G
∗(z−1), (8.124)

where γ0 is a positive real number and G(z) is a filter response.
The function G(z) is called a canonical filter response if it is causal
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(g[k] = 0 for k < 0), monic (g[0] = 1), and minimum-phase. In
this case, the function G∗(z−1) is referred to as anticanonical filter
response. Using the spectral factorization in (8.124), (8.122) can be
expressed as

Pee(z) =
B(z)B∗(z−1)N0

|C(z)|2 +N0

=

[
B(z)B∗(z−1)

G(z)G∗(z−)

](
1

γ0

)

=

∣∣∣∣∣B(z)G(z)

∣∣∣∣∣
2 (

1

γ0

)
. (8.125)

The factional polynomial inside the squared norm in (8.125) is
necessarily monic and causal, and the squared norm has a minimum
value of 1 if and only if B(z) = G(z). This leads to

Pee(z) ≥ 1

γ0

. (8.126)

This result in (8.126) states that the error sequence for the MMSE-
DFE is “white” sequence when minimized since Pee(z) is a constant
and has MMSE-DFE of 1

γ0
. In addition, taking T

2π

∫ π/T
−π/T ln on both

sides of (8.124), we can obtain

T

2π

∫ π/T

−π/T
ln
[
1

N0

|C(ejωT )|2 + 1
]
dω =

ln(γ0) +
T

2π

∫ π/T

−π/T
ln
[
G(ejωT )G∗(e−jωT )

]
dω. (8.127)

Since

T

2π

∫ π/T

−π/T
ln
[
G(ejωT )G∗(e−jωT )

]
dω ≥ 0, (8.128)

then (8.127) can be expressed as

ln(γ0) ≤ T

2π

∫ π/T

−π/T
ln
[
1

N0

|C(ejωT )|2 + 1
]
dω. (8.129)
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The equation in (8.129) leads to a famous expression for the
MMSE of DFE that was first derived by Salz [33] in 1973,

ξMMSE−DFE = exp

{
T

2π

∫ π/T

−π/T
ln

[
N0

|C(ejωT )|2 +N0

]
dω

}
.

(8.130)
The corresponding output SNR of DFE is obtained by

SNRDFE =
1− ξMMSE−DFE

ξMMSE−DFE

= −1 + exp

{
− T
2π

∫ π/T

−π/T
ln

[
N0

|C(ejωT )|2 +N0

]
dω

}
.

(8.131)

Note that if |C(ejωT )|2 = 1, this indicates the absence of ISI. Hence,
in this case, we obtain

ξMMSE−DFE =
N0

1 +N0

. (8.132)

Thus, the corresponding output SNR of DFE is

SNRDFE =
1

N0

. (8.133)

The receiver SNR for the MMSE-DFE can be defined by

SNRR−DFE
∼= Ex
E{|e[n]|2} , (8.134)

where Ex is called the average energy of the complex signal
constellation and the denominator in (8.134) is the MMSE for a
DFE. Therefore, the receiver SNR for the MMSE can now be easily
obtained by

SNRR−DFE =
Ex

ξMMSE−DFE

= Ex · exp
{
− T
2π

∫ π/T

−π/T
ln

[
N0

|C(ejωT )|2 +N0

]
dω

}
.

(8.135)
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In a similar way, if |C(ejωT )|2 = 1 in the absence of ISI, the receiver
SNR for a MMSE-DFE is

SNRR−DFE = Ex
(
1 +

1

N0

)
. (8.136)

It has been shown that the MMSE for a DFE in (8.130) is
smaller than the MMSE for a linear equalizer in (8.33) unless
the squared-norm term of |C(ejωT )|2 is a constant where adaptive
equalization is not needed in this case [12]. Moreover, a DFE
has significantly smaller MMSE than a linear equalizer if there
are nulls in the squared-norm term of |C(ejωT )|2. To that end,
a linear equalizer is well behaved when the channel spectrum is
comparatively flat. However, if the channel is severely distorted or
exhibits nulls in the spectrum, the performance of a linear equalizer
deteriorates and the MMSE of a DFE is much better than a linear
equalizer. In addition, a linear equalizer has difficulty equalizing
a nonminimum phase channel, where the strongest energy arrives
after the first arriving signal component. Therefore, a DFE yields
a significant improvement in performance relative to the linear
equalizer having the same number of tap coefficients. Thus, a
DFE is more appropriate for severely distorted wired and wireless
communication channels.

Example 8.4

In this example, we reconsider Example 8.2 for considering the
discrete-time FIR channel. It is interesting to compare the MMSE
DFE with the value of MMSE given by the MMSE linear equalizer.

Using (8.130), the MMSE DFE for this channel is obtained by

ξMMSE−DFE = exp

{
T

2π

∫ π/T

−π/T
ln

[
N0

Ψ(ω)

]
dω

}

= N0 exp

{
− T
2π

∫ π/T

−π/T
ln [Ψ(ω)] dω

}
(8.137)

where Ψ(ω) = 1 + 2|a||b| cos(ωT + φ) + N0. After the integral
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in (8.137), the MMSE DFE is

ξMMSE−DFE =
2N0

1 +N0 + [(1 +N0)2 − 4|ab|2]1/2 . (8.138)

Notice that ξMMSE−DFE is minimized when |a| = |b| = 1/
√
2.

Thus,

ξMMSE−DFE =
2N0

1 +N0 + [(1 +N0)2 − 1]1/2

≈ 2N0, N0 � 1. (8.139)

The corresponding output SNR is

SNRDFE =
1− 2N0

2N0

≈ 1

2N0

, N0 � 1. (8.140)

This indicates that there is a 3-dB degradation in DFE output
SNR because of the presence of ISI. However, in comparison, the
performance loss of the MMSE linear equalizer is more severe than
the MMSE DFE. Notice that the output SNR of the MMSE linear
equalizer as given by (8.42) is about ΥSNR ≈

√
2/N0 for N0 � 1.

8.5.2 Predictive DFE

Another form of DFE contributed by Belfiore and Park [34] is known
as a predictive DFE in Figure 8.11. This system also consists of
an FFF as in the conventional DFE while the FBF is driven by an
input sequence generated by using the difference of the output of
the decision detector and the output of the FFF directly. Thus, the
FBF is referred to as a noise predictor because it predicts the noise
and the residual ISI contained in the signal at the FFF output and
subtracts it from the decision detector output after some feedback
delay.

Given the infinite length of the FFF in the predictive DFE,
Proakis [12] showed that the power density spectrum of the noise
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Figure 8.11 A block diagram of a predictive decision feedback
equalizer.

output of the FFF is given by

Pnoise(e
jωT ) =

N0|C(ejωT )|2
[N0 + |C(ejωT )|2]2

, |ω| ≤ π
T
. (8.141)

The residual ISI of the FFF output has the power density spectrum
as

PISI(e
jωT ) =

∣∣∣∣∣1− |C(ejωT )|2
N0 + |C(ejωT )|2

∣∣∣∣∣
2

=
N2

0

[N0 + |C(ejωT )|2]2 , |ω| ≤ π
T
. (8.142)

Note that the sum of these two spectra (8.141) and (8.142) represents
the power density spectrum of the total noise and ISI at the output of
the FFF section. Hence, adding (8.141) and (8.142) together yields

EFFF (e
jωT ) =

N0

N0 + |C(ejωT )|2 , |ω| ≤ π
T
. (8.143)
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Based on observation, if |C(ejωT )|2 = 1, then the channel is ideal.
Thus, the MSE can not be reduced further. However, if the channel
has distortion, then the power of the error sequence at the output
of the FFF can be reduced by using linear prediction based on past
values of the error sequence.

Assume that B(ejωT ) is the frequency response of the infinite
length FBF (linear predictor). Then, the error at output of the
predictor is obtained by

EFBF (e
jωT ) = EFFF (e

jωT )− EFFF (e
jωT )B(ejωT )

= EFFF (e
jωT )

[
1−B(ejωT )

]
. (8.144)

The MSE of this error function in (8.144) is

ξ =
1

2π

∫ π/T

−π/T
|1−B(ejωT )|2|E(ejωT )|2dω. (8.145)

Proakis [12] showed that minimizing the MSE of this error function
in (8.145) over the predictor coefficients b[n] yields an optimum
predictor in the form as

B(ejωT ) = 1− G(e
jωT )

g[0]
, (8.146)

where G(ejωT ) is known as the solution of the spectral factorization
using

1

|E(ejωT )|2 = G(ejωT )G∗(ejωT ), (8.147)

and

G(ejωT ) =
∞∑
n=0

g[n]e−jωnT . (8.148)

Thus, the output of infinite length FBF linear predictor is a
white noise sequence with a power spectral density of 1

g2[0]
. The

corresponding MMSE of the predictive DFE is obtained by

ξMMSE−PDFE = exp

{
T

2π

∫ π/T

−π/T
ln

[
N0

|C(ejωT )|2 +N0

]
dω

}
.

(8.149)
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Note that (8.149) is equal to (8.130). Therefore, this indicates that
the MSE performance of the predictive DFE is identical to the
conventional DFE if their lengths are infinite.

The performance of the predictive DFE is suboptimum if the
lengths of the two FFF and FBF filters are finite. This is because
the optimizations of the FFF and FBF predictors in the predictive
DFE are done separately, while the optimizations of the conventional
DFE tap coefficients in the FFF and FBF are done jointly. Therefore,
the conventional DFE yields the minimum MSE while the MSE of
predictive DFE is at least as large as that of the conventional DFE.
Although the predictive DFE has this suboptimality, it has been
suggested by Proakis [12] that it is suitable as an equalizer for trellis-
coded signals where the conventional DFE is not as suitable.

The FBF in the predictive DFE can be implemented by using
a lattice structure given by Zhou et al. [35]. In this case, the RLS
algorithm as discussed in the previous chapter can be used to
produce fast convergence for the predictive DFE.

8.5.3 FSE-DFE

The structures of the conventional and predictive DFEs, which were
analyzed earlier, employ a T -spaced FFF filter for the feedforward
section. Such a structure optimality is based on the assumption
that the receiver analog filter preceding the DFE is matched to
the channel-corrupted pulse response and its output is sampled
at the optimum time instant. However, in practice, the channel
response is not known a priori so that it is not possible to design
an ideal matched filter. Therefore, practical application often uses
the fractionally spaced FFF filter while the FBF filter tap spacing
still remains T -spaced for the feedback section.

Figure 8.12 shows a fractionally spaced FFF filter based on DFE.
The signal is sampled at the communication receiver at a rate of
2/T and then is passed through a T/2-spaced FFF equalizer. It
consists of a serial-to-parallel (S/P) converter and two FFF filters,
F0(z) and F1(z), in the feedforward filter section. The S/P converter
is to convert one sequence r[n] (for n = 0, 1, 2, · · · , 2N ) into
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Figure 8.12 A block diagram of a fractionally spaced filter-based
decision feedback equalizer.

two sequences, r0[n] and r1[n], where r0[n] = r[2n] and r1[n] =
r[2n + 1] for n = 0, 1, 2, · · · , N . Two FFF filters, F0(z) and F1(z),
are operated in parallel, where F0(z) and F1(z) contain all the even
and odd tap coefficients, respectively. The filter outputs y0[n] and
y1[n] are at T -spaced. Then the FBF operates T -spaced when the
switch connects to y0[n], and produces an error sequence by using
the difference between q[n] and x̂[n] after a decision detector. Hence,
the tap coefficients of the filter F0(z) in the feedforward section and
B(z) in the feedback section are updated by using an adaptive DFE
algorithm. The next step is to connect the switch to y1[n]. In a similar
way, the FBF is operated T -spaced and creates the error sequence.
Then, the tap coefficients of the filter F1(z) in the feedforward
section and B(z) in the feedback section are updated based on the
adaptive DFE algorithm by using the error sequence. Therefore,
this FSE-DFE system can achieve the T/2-spaced FFF equalizer
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in the feedforward section while the FBF filter still operates
T -spaced in the feedback section. This system is sometimes referred
to as a fractionally T/2-spaced DFE. This approach is also called
the polyphase-based filter bank DFE.

In general, if an FFF equalizer tap spacing has MT/N , where
M and N are integers and N > M , then the equalizer is referred to
as fractionally MT/N -spaced DFE. Miao and Qi [36] developed
the fractionally 2T/3-spaced DFE using the LMS algorithm for
updating the filter tap coefficients with applications in DSL modems.

The fractionally spaced based DFE has often been implemented
as an adaptive blind equalizer by using CMA technique. Utilizing
the CMA with the FSE-DFE is rapidly gaining popularity. This
is because the FSE-DFE has been proven to suppress timing
phase sensitivity and noise enhancement. In addition, the CMA
based FSE-DFE may be able to overcome some undesirable local
convergence and can be applied to channels with zeros on the unit
circle without noise amplification. Even when some subchannels
have deep spectral nulls, the CMA-based FSE-DFE is capable of
compensating spectral nulls as long as these zeros are not common
to all subchannels while it does not require a large number of tap
coefficients, thereby converging fast. Moreover, the CMA-based
FSE-DFE can equalize nonconstant modulus signals and those with
a constant modulus. This makes it a prime candidate for use with
the varity of signal formats found in the high-speed broadband
communication modems.

8.5.4 Error Propagation

So far, we have not discussed the effect of decision errors in the
feedback section of the DFE. The result of an incorrect decision in
the feedback section of the DFE, which produces additional errors
that would not have occurred if the first decision had been correct,
is referred to as error propagation. Error propagation in the DFE
can be a major concern in practical application for a communication
receiver structure, especially if constellation-expanding codes, or
convolutional codes, are used in concatenation with the DFE.
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Figure 8.13 A block diagram of the Tomlinson precoder.

Therefore, in this section, we introduce the so-called precoding
solution to the error-propagation problem of the DFE.

The precoding essentially moves the feedback section of the
DFE to the transmitter with a minimal transmit-power-increase
penalty without decreasing the DFE SNR. In other words, the basic
idea of the precoding is to move the DFE feedback section to the
transmitter so that the decision errors are impossible to happen.
However, the precoding usually requires a feedback channel.
The precoding is also known as the Tomlinson precoder or the
Tomlinson-Harashima precoder.

Figure 8.13 illustrates the block diagram of the Tomlinson
precoder for a real-signal case. The Tomlinson precoder is used in
the transmitter as a preprocessor to the modulator, and maps the data
symbol x[n] into another data symbol x̃[n] that is in turn applied
to the modulator. The Tomlinson precoder is eventually a device
that is used to eliminate error propagation. However, straightforward
moving of the feedback filter 1/B(z) to the transmitter could result
in increasing transmit power significantly. In order to prevent most
of this power increase, a modulo operator ΓM{x} is employed to
bound the value of x̃[n] before the modulator.

The modulo operator ΓM{x} is a nonlinear function that defines
anM -ary input constellation (PAM and QAM square) with uniform
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spacing d, and is given by

ΓM{x} = x−Md
⌊
x+Md/2

Md

⌋
, (8.150)

where 	y
 denotes the largest integer that is less than or equal to
the value of y, and ΓM{x} can be an arbitrary value. The operation
of the Tomlinson precoder produces an internal signal as shown in
Figure 8.13,

d[n] = x[n]−
∞∑
k=1

b[k]x̃[n− k], (8.151)

where

x̃[n] = ΓM{d[n]}
= ΓM{x[n]−

∞∑
k=1

b[k]x̃[n− k]}. (8.152)

The Tomlinson precoder output x̃[n] is an approximately i.i.d. if
the M -ary input is an i.i.d. In addition, the output sequence of the
Tomlinson precoder is an approximately uniform distribution over
the interval [−Md/2,Md/2).
Example 8.5

Assume that a precoder of modulo operator is forM -ary input PAM
signals withM = 5 and uniform spacing d = 2, and B(z) = 0.5z−1

as illustrated in Figure 8.13. We want to determine the precoder
output of the modulo operator when an input x[n] is a sequence
{5, 4.5, 2.1, 1,−1.5,−6, 2, 9.1}.

Using (8.150), (8.151), and (8.152) with an initial value x̃[−1] =
0, the result of precoder of the modulo operator can be expressed as

ΓM{x} = x− 10
⌊
x+ 5

10

⌋
. (8.153)

Since B(z) = 0.5z−1, then b[1] = 0.5. Thus,

d[n] = x[n]−
∞∑
k=1

b[k]x̃[n− k]
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= x[n]− b[1]x̃[n− 1]

= x[n]− 0.5x̃[n− 1]. (8.154)

The Tomlinson precoder output is then given by

x̃[n] = ΓM{d[n]}
= x[n]− 0.5x̃[n− 1]

−10
⌊
x[n]− 0.5x̃[n− 1] + 5

10

⌋
. (8.155)

Therefore, substituting the input sequence x[n] into (8.155), the
output of the Tomlinson precoder is obtained as
x̃[n] = {−5,−3, 3.6, 0,−1.5,−5.25, 4.625,−3.2125}.

8.6 Space-Time Equalizer

Space-time processing (or smart antennas) provides an effective way
against cochannel interference (CCI), which usually arises from
cellular frequency reuse. The space-time processing that combats
CCI can have a major impact on overall wireless communications
performance. This is because space-time processing with multiple
antennas in the receiver and transmitter is a promising way
of mitigating CCI by exploiting the spatial-temporal dimension,
thereby significantly improving average signal power, mitigating
fading, and reducing CCI and ISI. As a result, this can
greatly improve the capacity, coverage, and quality of wireless
communications.

A space-time equalizer operates simultaneously on all the
antennas, processing signal samples both in space and time domains.
This technique allows the receiver to exploit the difference between
the desired signal and CCI to reduce CCI that arises from the
cellular frequency reuse, thereby increasing the quality and capacity
of wireless networks. Time-only signal processing corresponds to
equalizers that use a weighted sum of signal samples, while space-
only processing corresponds to simple beamforming that uses a
weighted sum of antenna outputs. In this section, we first examine
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Figure 8.14 A block diagram of a time-only equalizer.

the time-only and space-only equalizers, respectively, and then
present the space-time equalizers at the receiver.

8.6.1 Time-Only Equalizer

A time-only equalizer based on the baseband temporal structure is
depicted in Figure 8.14. A continuous-time received signal x(t) is
sampled at baud rate or a higher rate to produce a discrete-time
signal output x[n]. Then the discrete-time signal x[n] is filtered
through a linear equalizer to produce the discrete-time output y[n].
Note that in single-user environments, the equalizer is used to
minimize the channel ISI. However, in the wireless channel, the
equalizer also has to consider minimizing CCI.

Assuming that there are Q users and no additive noise in the
single-input single-output (SISO) environments, the discrete-time
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channel with a single-sensor case, and no oversampling is given by

x[n] =
Q∑
k=1

cksk[n], (8.156)

where a row vector (1 × N ) ck is the FIR channel and a column
vector (N × 1) sk[n] is

sk[n] = [sk[n], sk[n− 1], · · · , sk[n−N + 1]]T . (8.157)

As shown in Figure 8.14, the linear equalizer h is an (M×1) column
vector, and its output can then be expressed as

y[n] = hHx[n], (8.158)

where the (M × 1) received signal vector is given by

x[n] = [x[n], x[n− 1], · · · , x[n−M + 1]]T . (8.159)

Furthermore, we can write x[n] as follows:

x[n] =
Q∑
k=1

Ck s̃k[n], (8.160)

where Ck is theM × (M +N − 1) Toeplitz matrix,

Ck =


ck 0 . . . 0

0 ck 0
...

... 0
. . . 0

0 . . . 0 ck

 , (8.161)

and
s̃k[n] = [sk[n], ..., sk[n−N −M + 2]]T . (8.162)

Combining (8.158) and (8.160) yields the equalizer output as

y[n] = hHCS[n], (8.163)
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where
C = [C1,C2, ...,CQ] (8.164)

and
S = [̃sT1 [n], s̃

T
2 [n], ..., s̃

T
Q[n]]

T . (8.165)

In order to eliminate the ISI and CCI, (8.163) is needed to satisfy
the zero-forcing condition:

hHC = δ[n− d], (8.166)

where d is a positive integer of the achieved delay. However, (8.166)
cannot be satisfied because C is the M × Q(N + M − 1) matrix
that is not a full-column rank. This indicates that joint linear ISI
and CCI can not be cancelled with a time-only equalizer when the
received signal is sampled at the symbol rate. However, with the
oversampling of P , the channel matrix C will be the full-column
rank of block-Toeplitz matrix with size of MP × Q(N +M − 1)
if the equalizer length holds the condition given by Paulraj and
Papadias [37]:

M(P − 1) ≤ Q(N − 1), (8.167)

and if the polynomials corresponding to the rows of C have no
common roots (see Moulines et al. [38]).

In practice, the temporal channel for signal and CCI cannot
be well separated if the symbol waveforms have a small excess
bandwidth. As a result, the channel matrix C is ill conditioned,
and CCI cancellation will lead to excessive noise enhancement.
Therefore, time-only equalizers provide only a small degree of
CCI reduction that is a function of baud synchronization offset
between the signal and the CCI, the excess bandwidth of the symbol
waveform, and the multipath channel response for the signal and the
CCI.

8.6.2 Space-Only Equalizer

A space-only equalizer corresponds to simple beamforming that
uses a weighted sum of antenna outputs. Figure 8.15 shows a
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Figure 8.15 A block diagram of a space-only equalizer.

typical array beamforming structure in which the antenna outputs
are weighted and combined to generate the beamformer output.

Assume that there are Q users and no multipath. The received
signal is given by

x[n] =
Q∑
k=1

cksk[n], (8.168)

where theM×N vector ck denotes the space-only channel that isN
tap-coefficient length for each user, in the absence of delay spread.
Thus, sk[n] is a scalar.

The space-only equalizer of the beamformer output is obtained
by

y[n] = hHx[n], (8.169)

where h is a M × 1 weight vector. Integrating (8.168) and (8.169)
yields the space-only equalizer of the beamformer output as

y[n] =
Q∑
k=1

hHcksk[n], (8.170)
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or equivalently in the vector form as

y[n] = hHCs[n], (8.171)

where the channel matrix is given by

C = [c1, c2, · · · , cQ], (8.172)

and the input signal matrix is

s[n] = [s1[n], s2[n], · · · , sQ[n]]T . (8.173)

If we assume that si[n] is the desired signal, then the zero-forcing
condition cancelling all CCI and ISI is obtained by

hHC = δ[n− i], (8.174)

where ith represents the ith user. However, this requires that M ≥
NQ and the channel matrix C must be of full-column rank. As a
result, purely spatial combining is able to perfectly cancel both ISI
and CCI.

In practice, this is impossible because real channels having
multipath require too many antenna elements. In addition, if either
the multipath angle spread is small or the desired signal and CCI are
not well separated, then the column of C becomes ill-conditioned,
resulting in excessive noise enhancement. The space-only equalizer
can effectively be used to eliminate CCI, but its effectiveness against
ISI depends on the angle spread of multipath. Therefore, in general,
space-time equalizers should be used to improve the performance
over both time-only and space-only equalizers.

8.6.3 Space-Time MMSE Equalizer

In this section, we introduce the space-time equalizer that combines
time-only and space-only equalizers as discussed earlier. We present
the single-user case in which we are interested in demodulating the
signal of interest. Thus, we treat interference from other users as
unknown additive noise. This approach can also be referred to as



Adaptive Equalizers in Communication Receivers 321

.

.

.

s1(t)

C1

Channel

sQ(t)

C2

Channel
s2(t)

x1[n]

x2[n]

xQ[n]

y[n]

Matrix
equalizer

CQ

Channel

H[n]

.

.

.

.

.

.

Figure 8.16 A block diagram of a space-time MMSE equalizer.

interference suppression. Figure 8.16 shows a block diagram of a
space-time MMSE equalizer.

In the presence of CCI, the signal components are likely to be
both spatially and temporally correlated because of delay spread.
The temporal correlation complicates the implementation structure
at the receiver. In this case, a space-time equalizer based on an
MMSE solution is attractive; this is a solution in which the space-
time equalizer combines the input in space and time to generate
an output that minimizes the squared error between itself and the
desired signal.

In the space-time equalizer, the tap coefficient H[k] of the
equalizer beamformer (or matrix equalizer) has the following
expression,

H[k] =


h11[k] h12[k] . . . h1P [k]
h21[k] h22[k] . . . h2P [k]

...
...

. . .
...

hM1 hM2[k] . . . hMP [k]

 , (8.175)
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where M represents the number of taps in each of the channels and
P is the length of the equalizer. The received signal matrix X[k] is
given by

X[k] =


x11[k] x12[k] . . . x1P [k]
x21[k] x22[k] . . . x2P [k]

...
...

. . .
...

xM1 xM2[k] . . . xMP [k]

 . (8.176)

Then the scalar of the equalizer beamformer, y[n], is obtained by

y[k] = tr{HH [k]X[k]}, (8.177)

where “tr” means the trace of a matrix.
The space-time MMSE equalizer chooses the space-time

equalizer tap coefficient so that the MMSE ESTE can be achieved
as

ESTE = arg{minHE||y[k]− s∗[k − d]||2}
= arg{minHE||tr{HH [k]X[k]} − s∗[k − d]||2},

(8.178)

where the superscript “∗” denotes a complex conjugate and d is a
delay factor to be selected to the center of the space-time equalizer
that will strongly affect performance. Equation (8.178) can be solved
by using the least-squares method based on projection theory,

E{X[k](tr{XH [k]H[k]} − s∗[k − d])} = 0. (8.179)

Solving (8.179) yields

H[k] =
(
E{X[k]XH [k]}

)−1
E{X[k]s∗[k − d]}. (8.180)

Note that if the interference and noise are independent of the signal,
then the transmitted signal is a white sequence. Thus, we have

E{X[k]s∗[k − d]} = [0, ..., 0, H̃[k], 0, ..., 0]T

= H̄[k], (8.181)
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where H̃[k] = [h1[k], h2[k]..., hM [k]] and the number of zeros
preceding and succeeding H̃[k] depends upon the selection of d.
Therefore, (8.180) can be rewritten as

H[k] = R−1
XX [k]H̄[k], (8.182)

where R−1
XX [k] =

(
E{X[k]X[k]H}

)−1
.

In practice, we compute the finite sample estimate of RXX [k]
and H̄[k] using the received training samples. In case of the channels
with a slow time-varying over a slot period, an optimal matrix
equalizer during the training period is obtained by using the entire
time slot. If the channels have a fast time-varying, then the optimal
matrix equalizer during the training period should be calculated
by using, for example, a decision-directed adaptive algorithm [39,
40]. Equation (8.182) can be adaptively solved by using popular
algorithms including LMS, RLS, and numerous variants. In Chapter
7, we discussed the trade-off analysis of adaptive algorithms and
their computational complexities.

The space-time MMSE equalizer combines the strengths of
time-only and space-only equalizers to exchange CCI and ISS
reduction against noise enhancement. This technique can primarily
cancel CCI in the spatial domain and ISI either in the space domain
or in the time domain depending on where it can be done more
efficiently. However, the performance of the space-time MMSE
equalizer scheme is influenced by the dominance of the CCI and
ISI as well as the nature of the channel structure.

8.7 Diversity Equalizer

Diversity in the transmission is to use the multiple channels from
a single information source to several communication receivers.
Usually, diversity methods lead to a lower probability of error for
the same transmitted message. This is mainly because a greater
channel-output minimum distance between possible (noiseless)
output data symbols can be achieved with a larger number of channel
output dimensions. However, ISI between successive transmissions



324 Signal Processing in Digital Communications

x[n]

Channel model
c0[n]

Channel model
c1[n]

Channel model
cL-1[n]

.

.

.

.

.

.

v0[n]

v1[n]

vL-1[n]

y0[n]

y1[n]

yL-1[n]

Figure 8.17 A block diagram of a discrete-time basic diversity
channel model.

along with interference between the diversity multidimensions may
cause a potentially complex optimum receiver and detector. Thus,
equalization can again allow productive use of suboptimal detectors
along with other signal processing methods, such as a Rake receiver.
The equalization in the case of diversity is referred to as a diversity
equalizer.

8.7.1 Fundamentals of a Rake Receiver

The basic discrete-time diversity channel is shown in Figure 8.17.
The channel input is labeled by x[n] while the channel output caused
by the same channel input has labels yi[n], i = 0, 1, 2, · · · , L − 1.
The additive noises in the channels are denoted by vi[n], i =
0, 1, 2, · · · , L−1. These channel outputs can be created intentionally
by retransmission of the same input sequence x[n] at different times
and/or center frequencies. On the other hand, propagation delay
spread or multipath in the radio channel merely provides multiple
versions of the transmitted signal at the communication receiver.
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Figure 8.18 A block diagram of a discrete-time L-branch Rake
receiver.

Thus, spatial diversity often occurs in wireless transmission where
L spatially separated antennas may all receive the same transmitted
signal with different filtering and noises that are at least partially
independent. The spatially separated antennas are also referred to as
the technology of smart antennas.

A Rake receiver is a set of parallel matched filters or correlators
in which each operating on one of the diversity channels in
a diversity transmission system is followed by a summing and
decision device as shown in Figure 8.18. The basic idea of such
a Rake receiver was first proposed by Price and Green [41] based
on the analogy of the various matched filters being the “fingers”
of a garden rake and the sum corresponding to the collection of
the fingers at the rake’s pole handle. The original Rake concept
was conceived in connection with a spread-spectrum CDMA system
for wireless communications that achieved diversity essentially in
a code-division dimension discussed by Viterbi [42] and Glisic
and Vucetic [43]. Recently, a variety type of the Rake receivers
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has been used in ultra wideband (UWB) communications, dual-
mode UWB and wireless local area network communications, and
MIMO wireless sensor networks communications [44–46]. The
Rake receiver is sometimes referred to as a diversity combiner to
address other lower-performance suboptimal combining methods,
which do not maximize the overall SNR strength through the
matched filter. In addition, the Rake receiver is also called maximal
combining if it applies a matched filter only to the strongest of
the L diversity paths to save receiver complexity. In this case,
the equivalent channel is thus the channel corresponding to this
maximum-strength path individually.

A Rake receiver utilizes multiple correlators to separately detect
the L strongest multipath components in the spread-spectrum
CDMA communication systems. In other words, each correlator
detects a time-shifted version of the original CDMA transmission,
and each finger of the Rake correlators to a portion of the signal
that is delayed by at least one chip in time from the other fingers.
The outputs of each correlator are then weighted by αi, i =
0, 1, 2, · · · , L − 1, and summed to provide a better estimate of
the transmitted signal that is provided by a signal message. The
weighting coefficients are based on the power or the SNR from each
correlator output. If the output of a special correlator has a large
power or a large SNR, it will then be assigned a larger weighting
factor. In the case of a maximal ration combining diversity scheme,
the overall signal z̃[n] after a summing device is obtained by

z̃[n] =
L−1∑
k=0

αkzk[n]. (8.183)

The weighting coefficients, αk, are usually normalized for the output
signal power of the correlator in such a way that the sum of the
weighting coefficients is unity as

αk =
z2
k[n]∑L−1

i=0 z
2
i [n]

. (8.184)

However, in the case of using adaptive equalizers and diversity
combining, there are other ways to generate the weighting
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coefficients for the Rake receiver. Therefore, choosing weighting
coefficients by using the actual outputs of the correlators yields a
better Rake performance.

Assume that we transmit only one direct-sequence spread
spectrum signal with binary symbols 1 and 0 mapping into bipolar
symbols b[m] of +1 and −1, respectively, and that the demodulator
provides perfect estimates of the channel. We also assume that
the data symbol duration T is a multiple of the chip duration Tc.
The processing (or spreading) gain, defined here as the number of
pseudorandom chips per data symbol, is defined as

G =
T

Tc
=
Bc

B
, (8.185)

where Bc is the spread spectrum signal bandwidth and B is the
baseband signal bandwidth. The overall signal z̃[n] (also called a
decision variable) at the input of the decision device is given by

z̃[n] =
L∑
l=1

[
G∑
k=1

√
Ecb[k]α

2
l +

G∑
k=1

v[k]αl

]
, (8.186)

where v[k] is Gaussian noise and Ec is the transmitted energy per
chip.

For a fixed set of the weighting coefficients αl, l = 1, 2, ..., L,
the decision variable z̃[n] has the mean value

E{z̃[n]} = G
√
Ec

L∑
l=1

α2
l , (8.187)

and the variance

Var{z̃[n]} = GN0

2

L∑
l=1

α2
l . (8.188)

The average probability of bit error Pb can be expressed as

Pb =
1

2
Pr{z̃[n] > 0|b = −1}+ 1

2
Pr{z̃[n] < 0|b = +1}. (8.189)
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If we assume that the probabilities of transmitting symbols −1 and
+1 are equal, we obtain

Pr{z̃[n] > 0|b = −1} = Pr{z̃[n] < 0|b = +1}. (8.190)

The average probability of bit error can then be written as

Pb = Pr{z̃[n] < 0|b = +1}. (8.191)

Assume that the number of chips per data symbol is sufficiently
large. The decision variable z̃[n] can be approximated according to
the central limit theorem. Thus, the probability of error for the fixed
weighting coefficients αl is the probability of the decision variable
z̃[n] in (8.195) given by

Pb(γb) = Q


√√√√(E{z̃[n]})2

Var{z̃[n]}

 , (8.192)

where Q(x) is the complementary error function expressed as

Q(x) =
1√
2π

∫ ∞

0
e−t2/2dt. (8.193)

Substituting (8.187) and (8.188) into (8.192), we obtain

Pb(γb) = Q


√√√√2GEc

N0

L∑
l=1

α2
l


= Q


√√√√2Eb

N0

L∑
l=1

α2
l


= Q

(√
2γb

)
. (8.194)

where Eb is the energy per bit and γb is the total bit energy-to-noise
ratio given by

γb =
Eb

N0

L∑
l=1

α2
l =

L∑
l=1

γl, (8.195)
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where

γl =
α2
lEb

N0

. (8.196)

If αl is Rayleigh distributed, α2
l has a chi-square distribution with

two degrees of freedom [6, 43, 47]. Thus, γl is also chi-square
distributed. Accordingly, the density function is

p(γl) =
1

γ̄l
exp

{
−γl
γ̄l

}
, (8.197)

where γ̄l is the average received bit energy-to-noise ratio defined as

γ̄l =
Eb

N0

E{α2
l }, (8.198)

where E{α2
l } is the average value of α2

l . To compute the density of
γb, we note that the characteristic function of γl is

ψγl(jv) =
1

1− jvγ̄l . (8.199)

Since the fading of the L channels is statistically independent, γl,
l = 1, 2, ..., L, are statistically independent. Thus, the characteristic
function of γb is

ψγb(jv) =
L∏
l=1

1

1− jvγ̄l . (8.200)

Glisic and Vucetic [43] obtained the probability density function of
γb by taking the inverse Fourier transform of (8.200)

p(γb) =
1

(L− 1)!γLl
γ

(L−1)
b exp

{
−γb
γ̄l

}
. (8.201)

Thus, with Rayleigh fading and the distinct mean square values of
γ̄l, the average probability of bit error is

Pb =
∫ ∞

0
Pb(γb)p(γb)dγb

≈
(

2L− 1
L

)
L∏
l=1

(
1

2γ̄l

)
. (8.202)
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Let us assume that the mean square value E{α2
l } is exactly the

same for all tap values. Using (8.195) and (8.198), we obtain the
relationship between γ̄b and γ̄l

γ̄b = γ̄l. (8.203)

Thus, the average probability of bit error in (8.202) can be rewritten
in terms of the average bit energy-to-noise ratio γ̄b as

Pb ≈
(

2L− 1
L

)
L∏
l=1

(
1

2γ̄b

)
. (8.204)

Figure 8.19 shows an average probability of a bit error for a
direct-sequence spread spectrum system with a BPSK modulation
over a Rayleigh fading channel for a Rake receiver: (a) L = 5 in
fading, (b) L = 4 in fading, (c) L = 3 in fading, (d) L = 2 in fading,
and (e) L = 1 in fading. Note that the average probability of bit
error of (8.204) decreases when theL is increased. When the channel
becomes more dispersive, a greater diversity gain is achieved. The
number of taps actually used in the Rake receiver can be less than
the channel length L. However, such a Rake receiver will not capture
all the received signal energy and may suffer from some loss in
performance. Therefore, increasing the number of taps for the Rake
receiver will enhance its performance.

8.7.2 Adaptive Rake Receiver

The performance of the conventional Rake receiver of Figure 8.18
uses a maximal ratio combining, which is a traditional approach
to determine the weighting coefficients for the conventional Rake
receiver. In this section, we introduce an adaptive Rake receiver
followed by an adaptive linear equalizer as shown in Figure 8.20.
The adaptive Rake receiver employs an MMSE combining method
to improve the performance of the Rake receiver in the presence
of interference, such as ISI and interpath interference (IPI). In this
approach, the weighting coefficients αl, l = 0, 2, · · · , L − 1, of the
adaptive Rake receiver are updated in an optimal sense such that the
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Figure 8.19 A probability of bit error for a DS spread spectrum
system with a BPSK modulation over a Rayleigh
fading channel for a Rake receiver.

cost function ξ of the MSE criterion is minimized,

ξ = E{|z̃[n]− b[n]|2}, (8.205)

where

z̃[n] =
L−1∑
l=0

αlzl[n], (8.206)

and b[n], n = 1, 2, · · · ,M , is a training sequence to be transmitted.
To find optimal estimators of the weighting coefficients αl,

l = 0, 2, · · · , L − 1, we shall employ a method of least squares.
For each sample observation (z̃[n], b[n]), the method of least squares
requires that we consider the sum of the M squared deviations.



332 Signal Processing in Digital Communications

r[n] Adaptive
linear

equalizer

Correlator 
p0[n]

Correlator
p1[n]

Correlator
pL-1[n]

.

.

.

z0[n]

z1[n]

zL-1[n]

α0

α1

αL-1

z[n]
~ x[n]

Adaptive
algorithm

Adaptive
algorithm

ea[n]

er[n]

b[n]

b[n]

Figure 8.20 An adaptive Rake receiver followed by an adaptive
linear equalizer.

This criterion is also referred to as the cost function ξ of the MSE
in (8.205) given by

ξ =
1

M

M−1∑
n=0

|z̃[n]− b[n]|2

=
1

M

M−1∑
n=0

∣∣∣∣∣
L−1∑
l=0

αlzl[n]− b[n]
∣∣∣∣∣
2

. (8.207)

In matrix notation, (8.207) can be rewritten as

ξ = (Zα− B)H(Zα− B). (8.208)

Expanding this, we obtain

ξ = BHB−αHZHB− BHZα + αHZHZα. (8.209)
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Note that BHZα is 1× 1 matrix. Hence, it is equal to its Hermitian
transpose that is αHZHB according to the theorem of matrices in
Appendix B. Thus, we find

ξ = BHB− 2αHZHB + αHZHZα. (8.210)

In order to determine the value of α that minimizes ξ, we
differentiate with respect to αl, l = 0, 1, 2, ..., L− 1. Let

∂

∂α
=


∂

∂α0
∂

∂α1
...
∂

∂αL−1

 . (8.211)

Then it follows that

∂

∂α
= −2ZHB + 2ZHZα. (8.212)

Equating to zero gives the matrix form of the least squares normal
equations,

ZHZα = ZHB. (8.213)

Thus, by using the inverse of the matrix ZHZ, we obtain the
optimized weighting coefficients for the Rake receiver

α = (ZHZ)−1ZHB. (8.214)

We refer to the solution of (8.214) as the MMSE Rake receiver.
Neter et al. [48] noted that whenever the columns of ZHZ are

linearly dependent, the normal equations of (8.213) will be linearly
dependent. In that case, no unique solutions can be obtained for αl,
l = 0, 1, 2, · · · , L − 1. Fortunately, in most cases, the columns of
ZHZ are linearly independent, thereby leading to unique solutions
for αl, l = 0, 1, 2, · · · , L− 1.
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8.7.3 Equalized Rake Receiver

Equalization has been used previously to reduce any loss due to
ISI and interference between symbols when the channel bandwidth
is limited. Clearly, the spread-spectrum CDMA signal will often
experience ISI interference between chips and between symbols
in actual transmission because the channel is bandlimited to cause
band limitations of multipath fading or other frequency-dispersive
transmission effects. Usually, the Rake receiver ignores this ISI by
choosing instead to treat the ISI as another user, thereby increasing
the number of overall users. In addition, the effect of IPI that exists
for Rake receiver in the direct-sequence spread spectrum system is
another important factor in system performance. This is because the
spreading ratio in WCDMA systems may be as low as four in order
to increase the high-speed data transmission, such as 2 Mbps, within
a fixed bandwidth. However, using an equalized Rake structure can
reduce those interferences. Simulation results [49–52] in previous
years showed that the performance of the WCDMA system by using
the equalized Rake receiver can be significantly improved over the
conventional Rake receiver.

As shown in Figure 8.20, this is a joint multipath MMSE Rake
receiver combined with an MMSE linear equalizer, which is used
to mitigate residual interference for WCDMA systems. Let the
coefficients of the linear equalizer be cn[k], k = −N,−(N −
1), ...,−1, 0, 1, ..., N − 1, N . Then the output of the linear equalizer
is given by

x[n] =
N∑

k=−N

cn[k]z̃[n− k]. (8.215)

In order to minimize the MSE function, we choose the equalizer
coefficients as an unbiased estimator so that the cost function ξ of
the MSE criterion is minimized,

ξ = E{|x[n]− b[n]|2}, (8.216)

where b[n], n = 1, 2, ...,M , is a training sequence to be transmitted.
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Then, (8.216) can be rewritten as

ξ =
1

M

M−1∑
n=0

|x[n]− b[n]|2

=
1

M

M−1∑
n=0

∣∣∣∣∣∣
N∑

k=−N

cn[k]z̃[n− k]− b[n]
∣∣∣∣∣∣
2

. (8.217)

We now express (8.217) in the matrix form

ξ = (Z̃C− B)H(Z̃C− B). (8.218)

By using the method of least squares in (8.214), we obtain the
optimal coefficients for the MMSE linear equalizer

C = (Z̃
H

Z̃)−1Z̃
H

B. (8.219)

Combining solutions of the MMSE Rake receiver in (8.214) and
the MMSE linear equalizer in (8.219) produces the joint multipath
diversity receiver for the WCDMA systems. The performance of
the joint multipath diversity receiver should be much better than the
performance of the conventional Rake receiver in theory. However,
the updated weighting coefficients of the MMSE Rake receiver and
coefficients of the MMSE linear equalizer are implemented in a
separate way. Thus, it is possible to further improve the performance
by jointly updating the weighting coefficients of the MMSE Rake
receiver and coefficients of the MMSE linear equalizer at the same
time.

A generalized block diagram of equalized Rake receiver is
shown in Figure 8.21. In that case, the weighting coefficients αl,
l = 1, 2, .., L − 1, simple summing device, and linear equalizer of
Figure 8.20 are replaced by using a matrix equalizer withL input and
one output. Let the matrix equalizer W have its 1 × L coefficients
corresponding to w0, w1, ..., wL−1. Each of the L coefficients
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Figure 8.21 A block diagram of a general equalized Rake receiver:
(a) a training-based operation if a switch connects
to b[n] and (b) a blind-based operation if the switch
connects to x̂[n].

contains N values for each of the L equalizers, that is,

W =


w0[n]
w1[n]

...
wL−1[n]

 . (8.220)

Thus, we obtain the output value of z̃[n] as

z̃[n] =
L−1∑
i=0

[
N−1∑
k=0

zi[n]wi[n− k]
]
. (8.221)

In order to find an optimal solution of the equalizer coefficients
wi, i = 1, 2, ..., L−1 for the equalized Rake receiver, we choose the
equalizer coefficients so that the cost function ξ of the MSE criterion
is minimized,

ξ = E{|z̃[n]− b[n]|2}, (8.222)
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where b[n], n = 1, 2, ...,M , is a training sequence to be transmitted.
Then, (8.222) can be rewritten as

ξ =
1

M

M−1∑
n=0

|z̃[n]− b[n]|2

=
1

M

M−1∑
n=0

∣∣∣∣∣
L−1∑
i=0

[
N−1∑
k=0

zi[n]wi[n− k]
]
− b[n]

∣∣∣∣∣
2

. (8.223)

Equation (8.223) can be expressed in the matrix form

ξ =

(
L−1∑
i=0

ziwi − B

)H (L−1∑
i=0

ziwi − B

)
. (8.224)

Expanding (8.224), we obtain

ξ = BHB−
(
L−1∑
i=0

ziwi

)H

B− BH

(
L−1∑
i=0

ziwi

)

+

(
L−1∑
i=0

ziwi

)H (L−1∑
i=0

ziwi

)
. (8.225)

Since
(∑L−1

i=0 ziwi

)H
B = BH

(∑L−1
i=0 ziwi

)
, it is equal to

ξ = BHB−2

(
L−1∑
i=0

ziwi

)H

B+

(
L−1∑
i=0

ziwi

)H (L−1∑
i=0

ziwi

)
. (8.226)

To find the values of wi that minimize ξ in (8.226), we differentiate
with respect to wij , i = 0, 1, 2, ..., L− 1 and j = 1, 2, ..., N . Let,

∂

∂wi

=


∂

∂w0j
∂

∂w1j

...
∂

∂w(L−1)j

 , j = 1, 2, ..., N . (8.227)

Then it follows that

∂

∂wi

= −2
[
L−1∑
i=0

zHi

]
B + 2

[
L−1∑
i=0

zHi

] [
L−1∑
i=0

ziwi

]
. (8.228)
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Equating (8.228) to zero, we obtain the matrix form of the least
squares normal equations,

[
L−1∑
i=0

zHi

] [
L−1∑
i=0

ziwi

]
=

[
L−1∑
i=0

zHi

]
B. (8.229)

Let Z = [z0, z1, ..., zL−1]. Then (8.229) can be rewritten as

[
L−1∑
i=0

zHi

]
ZW =

[
L−1∑
i=0

zHi

]
B. (8.230)

Thus, by using the inverse of the matrix
[∑L−1

i=0 zHi
]

Z, we obtain the
optimal coefficients of the matrix equalizer for the equalized Rake
receiver

W =

[
L−1∑
i=0

zHi Z

]−1 [L−1∑
i=0

zHi

]
B, (8.231)

which also can be called the MMSE equalized Rake receiver.
Such a general equalized Rake receiver must work at least

as well as the performance of the Rake receiver, which can
be considered a special case for spread-spectrum communication
systems.

8.8 Summary

In this chapter, we introduced adaptive equalization in commu-
nication receivers. First, we presented a class of linear equaliz-
ers for channel equalization known as zero-forcing equalizers, and
then adaptive linear equalizers. Second, we described the fractional
spaced equalizer from a point of multichannel model view. Third, the
decision feedback equalizer, which is a nonlinear equalizer, was in-
troduced along with T -space and fractional space for the FFF filters.
Then we introduced diversity equalizers, including the basic theory
of Rake receivers, adaptive Rake receivers, and equalized Rake re-
ceivers that have been used in spread spectrum and UWB communi-
cation receivers.
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A linear equalizer is the simplest type and the most common
type of channel equalizer used in practice to combat ISI arising
from the bandlimited channel. In the linear equalizer, the emphasis
in this chapter is given on the zero-forcing equalizer for channel
equalizer. The performance of the infinite-length tap-coefficient
zero-forcing equalizer that can completely eliminate ISI is expressed
in terms of the MMSE and SNR at its output, which serves as
a rule for comparison with other types of equalizers. In addition,
the linear equalizer has been shown to have stability and a faster
convergence. However, a zero-forcing equalizer usually does not
completely eliminate ISI because it has a finite-length tap-weight
setting. Furthermore, the linear equalizer does not perform well on
bandlimited channels if the frequency passband has deep spectral
null because it attempts to place too much gain in the vicinity of the
spectral null, thereby increasing the noise present in the frequency
bands.

In adaptive equalizers, there are a number of variation algorithms
that exist for adapting an equalizer. The zero-forcing algorithm
developed by Lucky [39] is one used for eliminating the ISI in
wired communications. However, the zero-forcing algorithm may
excessively amplify noise at frequencies where the folded channel
spectrum has high attenuation. Thus, the zero-forcing algorithm-
based equalizer neglects the effect of noise altogether, and is not
often used for wireless communications. A more robust equalizer
uses the LMS algorithm where the criterion used is to minimize the
MMSE between the desired equalizer output and the actual equalizer
output. The LMS algorithm has low computational complexity, but
it tends to have a slow convergence and poor tracking in some cases.
An RLS with its variation algorithms has a much better convergence
and tracking ability than the LMS algorithm. But the RLS algorithm
usually has high computational complexity and may be unstable in
some cases.

In blind equalizers, a CMA algorithm has complexity about
like the LMS level. The CMA-based blind equalizer minimizes the
constant modulus cost function and adjusts the taps of the equalizer
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in an attempt to minimize the difference between the samples’
squared magnitude and the Godard dispersion constant. The CMA
has been well proven to be able to open an eye-diagram and achieve
convergence for the blind equalizer in the communication receivers.
However, the CMA-based equalizer may converge to less than an
optimum setting if the selection of the initial tap values is not
appropriate. This will greatly affect the CMA’s performance because
the constant modulus cost surface is multimodal.

An FSE samples the incoming signal at least as fast as the
Nyquist rate. In some cases, the FSE has a tap spacing of MT/N ,
N > M , but the output of the equalizer is still computed at the
symbol rate. The FSE can compensate for the channel distortion
before aliasing effects occur because of the symbol rate sampling.
In addition, the FSE is insensitive to timing delay during any
arbitrary timing phase. Moreover, the FSE can be considered as a
polyphase filter bank-based equalizer that can be used in SIMO and
MIMO environments. Thus, shorter FSE tap lengths can be selected
to perfectly equalize the channel. Hence, the FSE can achieve a
performance superior to that of a symbol rate-based equalizer. Using
a CMA adaptive algorithm, the FSE has been widely used in blind
equalizers.

A DFE is a nonlinear equalizer that is used in wired and wireless
applications where the channel distortion is too severe for a linear
equalizer to handle. In addition, the DFE has a significantly smaller
MMSE than a linear equalizer. However, the DFE may seriously
suffer error propagation because the result of an incorrect decision
in the feedback section produces additional errors. Therefore, in
practice, so-called precoding is used to remove the error-propagation
problem.

A space-time equalizer is a combination equalizer based on
both time-only and space-only equalizers. The time-only equalizer,
which is used to minimize the channel ISI, is developed based on
a baseband temporal structure. In practice, the temporal channel
structure for signals and CCI cannot be well separated if the symbol
waveforms have a small excess bandwidth. Thus, CCI cancellation
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by using the time-only equalizer will lead to excessive noise
enhancement, that is, the time-only equalizer can only provide a
small degree of CCI reduction. On the other hand, the space-only
equalizer corresponds to simple beamforming by using a weighted
sum of antenna outputs. In theory, we have shown that a purely
spatial combining of the space-only equalizer is able to perfectly
cancel both ISI and CCI. However, in practice, this is impossible
because real channels having a multipath will require too many
antenna elements. Furthermore, this also requires that the multipath
angle spread is not small or that the desired signal and CCI are
well separated. In fact, the space-only equalizer can effectively be
used to eliminate CCI while its effectiveness against ISI depends on
the angle spread of a multipath. Therefore, a space-time equalizer,
which operates simultaneously on all antennas and processes signal
samples both in space and time domains, should be used to improve
the performance. Especially, a space-time MMSE equalizer is able
to exchange CCI and ISS reduction against noise enhancement. The
space-time MMSE equalizer can primarily cancel CCI in the spatial
domain and ISI either in the space or time domains depending on
where it can be done more efficiently. In other words, performance
of the space-time MMSE equalizer is influenced by the dominance
of the CCI, the ISI, and the nature of the channel structure.

A diversity equalizer can be used to reduce ISI between
successive transmissions and interference between diversity multi-
dimensions in a communication receiver. A type of the diversity
equalizer is an equalized Rake receiver, which has been shown to
have been significantly improved to reduce interpath interference
over a conventional Rake receiver in WCDMA systems in addition
to enhancing SNR by combining received signals with multipath.
However, a drawback of the equalized Rake equalizer is greater
computational complexity than that of the conventional Rake
receiver. Therefore, selecting the equalized Rake receiver over the
conventional Rake receiver in a particular communication system
depends on a trade-off of design and analysis.
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9
Multicarrier Modulation, DMT, and
OFDM

9.1 Introduction

Reliably and efficiently transmitting signals with high-speed data
over imperfectly wired and wireless channels is still one of the
central problems of signal processing in digital communications.
Recently, one successful approach to achieving high-speed data
transmission either over a wired or a wireless channel uses a
channel partitioning method to divide the transmission channel into
a number of orthogonal subchannels or subcarriers. The channel
partitioning method constructs a set of parallel subchannels, which
are largely independent. The channel partitioning method is often
referred to as multicarrier modulation (MCM) and is also called
multichannel modulation.

In digital communications, MCM can be classified as discrete
multitone (DMT) or orthogonal frequency division multiplexing
(OFDM), depending on the applications in wired or wireless
channels, respectively. Both DMT and OFDM have the same
channel partitioning where their carrier spacing is selected in such a
way that each of the subcarriers is orthogonal to the other
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subcarriers. The difference between DMT and OFDM is that DMT
usually uses a dynamic loading algorithm to assign a proportionately
large fraction of the digital information to subchannel signals with
the largest signal-to-noise ratio (SNR) of the subchannel output,
while OFDM carries a fixed number of bits on all subchannels.

Over the last decade, DMT has been used in wired digital
communications, including ADSL and VDSL [1–3], over slowly
time-varying wired channels, such as telephone subscriber lines.
DMT is particularly useful for DSL to combat the impairments of the
loop topologies of the telephone subscriber lines. These impairments
are mainly due to signal attenuation, crosstalk, including near-end
crosstalk (NEXT) and far-end crosstalk (FEXT), signal reflections,
radio frequency interference (amateur and AM radio), and impulse
noise. Recently, DMT has been suggested for use in wired power
lines for broadband communications [4].

OFDM has been used in wireless time-varying channels,
especially coded OFDM (COFDM), which allows recovery of lost
subchannels caused by time-varying notches due to multipath fading
and ISI. COFDM is a multicarrier modulation technology and
particularly well suited to provide reliable reception of signals
affected by strong distortions. COFDM has been used in digital
audio broadcasting (DAB) [5], digital video broadcasting (DVB) [6,
7], and portable digital television (DTV) [8]. OFDM played a key
role in multicarrier modulation technology with applications in
wireless local area networks (LANs), such as IEEE 802.11a in 1999
and 802.11g in 2003 [9, 10], and in wireless local and metropolitan
area networks (MANs), such as IEEE 802.16 in 2005 [11].

This chapter is organized as follows. In this section, we briefly
provide an overview and the background of multicarrier modulation,
DMT, and OFDM. Section 9.2 introduces the fundamentals of
DMT modulation, including multitone transmission, geometric
SNR, and the optimization of energy minimums and bit loading
maximums. Section 9.3 presents fast Fourier transform (FFT)–based
OFDM in which we describe OFDM systems, OFDM modulation
and demodulation, and A/D converter resolution requirements. In
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addition, we introduce equalized OFDM, including time-domain
and frequency-domain equalizers. In Section 9.4, filter bank–
based OFDMs are introduced, with an emphasis on filter bank
transmultiplexers, the DFT filter bank, the polyphase-based discrete
Fourier transform (DFT) filter bank, the maximally decimated DFT
transmitter filter bank, and a perfect reconstruction of the DFT filter
bank. A brief summary of this chapter is given in Section 9.5.

9.2 Fundamentals of Discrete Multitone Modulation

The basic concept of transmitting data by dividing it into serveral
interleaved bit streams and using these to modulate several carriers
was published more than 50 years ago by Doelz et al. [12]. Since
then, interest has continuously increased because digital modems
based on the basic concept are used for high-speed data transmission
over wired and wireless channels. The principle of the technique
has been called by different names such as orthogonally multiplexed
QAM [13], OFDM [14], MCM [15], vector coding [16], structured
channel signaling (SCS) [17], DMT modulation [18], and discrete
wavelet multitone (DWMT) modulation [19]. However, we will
refer to it by generic names: MCM, DMT, or OFDM. Unless
otherwise stated, the discussion in this section will concentrate on
the special forms of DMT and OFDM modulations.

The fundamental goal of DMT modulation is to partition
a transmission channel with ISI into a set of orthogonal and
memoryless subchannels, each with its own subcarrier. A sequence
of transmission data is then transmitted through each subchannel,
which is independent of the other subchannels. It is expected that the
channel response within each subchannel is ideally flat, as long as
the channel is partitioned sufficiently well. Thus, DMT modulation
is a special case of channel partitioning where each subchannel has
a frequency index and all of subchannels are independent.

9.2.1 Multitone Transmission

A general basic structure of DMT transmission is shown in
Figure 9.1. A block of serial data bits bi (i = 1, 2, · · · , N )
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Figure 9.1 The basic structure of discrete multitone modulation.

is divided and mapped into a set of parallel symbol sequences
{X[0], X[1], · · · , X[M − 1]} in the frequency domain by using
a serial-to-parallel (S/P) converter and symbol mapping. The
output parallel sequences {X[0], X[1], · · · , X[M − 1]} are passed
through an inverse orthonormal transform to produce several parallel
sequences {x[0], x[1], · · · , x[M − 1]} in the time domain. Each
of the parallel sequences {x[0], x[1], · · · , x[M − 1]} is modulated
onto a subcarrier. {xk}, which is the modulated data sequence,
passes through a channel with noise and {yk} is the received
sequence in the time domain. {x̂[0], x̂[1], · · · , x̂[M − 1]}, which
are the demodulated parallel estimated sequences, are generated
from the received sequence {yk} by using a demodulation, and
are passed through an orthonormal transform to produce several
parallel estimated symbols sequences {X̂[0], X̂[1], · · · , X̂[M − 1]}
in the frequency domain. After the several parallel estimated
sequences {X̂[0], X̂[1], · · · , X̂[M − 1]} are demapped into the
estimated parallel bit sequences, they are formed into the block of
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Figure 9.2 Discrete multitone modulation in the frequency domain.

serial estimated data bits b̂n by using a symbol demapping and a
parallel-to-serial (P/S) converter. In general, the parallel sequences
of {x[0], x[1], · · · , x[M − 1]} and {x̂[0], x̂[1], · · · , x̂[M − 1]} are
orthogonal to each other since the DMT modulation usually uses
the inverse orthonormal transform and the orthonormal transform at
the transmitter and the receiver, respectively.

Viewed in the frequency domain, the DMT modulation divides
the channel of the transmission data into a fixed number of
N parallel, complex, and independent subchannels, as shown in
Figure 9.2. Each of the subchannels is referred to as a “tone,” with a
width of ∆f = 1

T
in the frequency domain, where T is the period of

the multicarrier symbol. Figure 9.3 shows an arbitrary channel curve
of power spectral density (PSD) with vertical “bins” or “tones.” In
this case, if N is sufficiently large, the channel PSD curve will be
approximately flat within each of the subchannels. It is clear that
this assumption is valid in the infinite case. This is because we let
N →∞ and then ∆f → 0, equivalently.

The DMT system continuously uses the concept of multi-
tone transmission methods to achieve the highest levels of perfor-
mance. The multitone transmission of DMT system partitions the
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Channel power spectral density

Frequency (Hz) f0

Notch

Figure 9.3 An arbitrary channel curve of power spectral density
with vertical bins or tones.

transmission channel into a large number of narrowband additive
white Gaussian noise (AWGN) subchannels. Those channels usu-
ally correspond to contiguous disjoint frequency bands. Thus, the
multitone transmission is referred to as multicarrier or multichannel
transmission. If the multitone subchannels have a sufficiently nar-
row bandwidth, then each subchannel has little or even no ISI. In
addition, each subchannel independently approximates an AWGN.
Furthermore, the capacity of such parallel independent subchannels
is the sum of the individual capacities, thereby achieving theoretical
maximum data rates.

Note that each of the vertical tones in Figure 9.3 corresponds
to a subchannel with its own carrier. Within each of subchannels,
the PSD is approximately flat. The height of each vertical tone
represents the approximate amount of information, which is
transmitted over the partial subchannel. Therefore, for the channel
curve of PSD shown in Figure 9.3, we transmit very little data
information over the subchannels at DC and high frequency
as well as less data information over the subchannels at the
notch frequency, where channel attenuation is most severe. As a
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result, a different number of bits can be conveniently assigned
to different subchannels, depending on the SNR in each of the
subchannels. Better subchannels with a higher SNR can transmit
more information, while poor subchannels transmit little or even
no data information. In this way, the overall performance of DMT
transmission can be achieved in an optimal sense.

9.2.2 Geometric SNR

For an AWGN channel, the capacity of a transmission channel is
a theoretical upper bound on the data rate that can be reliably
transmitted. It has been shown in [2] that each of the AWGN
subchannels in a multitone transmission carrying the maximum data
rate or capacity is given by

b̄n =
1

2
log2

(
1 +

SNRn

G

)
, (9.1)

where G is a gap that quantifies the effective loss in SNRn given
fixed probability of symbol error, Pe. In other words, any reliable
and implementable communication system must transmit at a data
rate below the capacity given by (9.1).

The mathematical function of gap G is given by [2, 19]

G =
γm
3Ccg

[
erfc−1

(
Pe
4

)]2
, (9.2)

where γm is the margin (decibels) required to achieve the data and
error rates with all anticipated crosstalk and noise levels (for ADSL
and VDSL, γm = 6 dB is the accepted value), Ccg is the coding gain
(decibels) and measures the excess SNR for that given data rate, and
erfc(x) is the complementary error function,

erfc(x) =
2√
π

∫ ∞

x
e−y2

dy. (9.3)

Assume that all of subchannels have the same Pe in a
multichannel transmission system. This assumption of constant Pe
is valid if all of the subchannels use the same class of codes with
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a constant gap G. In this case, a single performance measure can
be used as characteristic of the multichannel transmission system.
Thus, for a set of N parallel subchannels, the mean number of bits,
B̄, can be expressed as the sum of the number of bits carried on
each subchannel divided by the total number of subchannels, N , as
follows:

B̄ =
1

N

N∑
n=1

b̄n

=
1

N

N∑
n=1

[
1

2
log2

(
1 +

SNRn

G

)]

=
1

2
log2

[
N∏
n=1

(
1 +

SNRn

G

)]1/N

=
1

2
log2

(
1 +

SNRgeo

G

)
, (9.4)

where the SNRgeo is referred to as the geometric signal-to-noise
ratio, and is given by

SNRgeo = G


[

N∏
n=1

(
1 +

SNRn

G

)]1/N

− 1

 . (9.5)

In this case, all the N parallel independent subchannels can be
treated as one AWGN channel with SNRgeo. If the SNRgeo in (9.5)
improves, then the SNRgeo increases. Moreover, the SNRgeo can
be improved when the available energy is distributed nonuniformly
over all or a subset of the parallel subchannels, thereby allowing a
higher performance in DMT transmission, such as ADSL, VDSL,
and LDSL systems [2, 19, 20]. This leads to a processing of
optimizing the bit and energy distribution over a set of N parallel
subchannels. This processing is known as the bit loading algorithm
or referred to as the water-filling algorithm, described in Section
9.2.3.
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9.2.3 Optimum of Energy Minimum and Bit Loading Maximum

One of the crucial designs in the DMT transmission system is
an accurate and efficient bit loading algorithm that will maximize
the transmission capacity on any given loop topology. The water
filling algorithm is a well-known optimal-power distribution used
for parallel communication channels [21]. It can provide a basis
scheme for the power minimization and bit loading maximum in a
DMT transmission system, especially in a multiuser communication
environment. The bit loading algorithm often makes use of (9.1) on
a subchannel-by-subchannel basis in an iterative manner to reduce
the convergence (or training) time. In this case, the water filling
algorithm is called the iterative water filling algorithm. The iterative
water filling algorithm can also be considered a formulating power
allocation in the multiuser interference network in which each user
wants to maximize his or her own data rate over the transmission
subchannels with respect to crosstalk interference from other users
and noise. The iterative water filling algorithm usually converges to
an optimal equilibrium point that is referred to as a stationary point
in an optimal sense.

Maximization of the Data Rate

In order to maximize the transmission data rate R over a set of N
parallel subchannels,

R =
B̄

T
, (9.6)

where 1
T

is the fixed symbol rate. This requires obtaining a
maximization of the achievable mean number of bits B̄. The
maximum mean number of bits, which can be transmitted over those
N parallel subchannels, must maximize the mean number of bits

B̄ =
1

2N

N∑
n=1

[
log2

(
1 +

SNRn

G

)]
, (9.7)

where SNRn on an AWGN subchannel can be expressed by

SNRn =
En|Hn|2
σ2
n

, (9.8)
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where Hn is the subchannel gain, En is the energy of a signal
constellation over the subchannel, and σ2

n is the noise PSD. Note that
|Hn|2
σ2
n

is a fixed function of the subchannel, but En can be varied to

maximize the mean number of bits B̄, subject to an energy constraint
such that an average energy of a signal constellation is

Ēx =
1

N

N∑
n=1

En. (9.9)

Using the Lagrange multiplier method, we set the cost function
that maximizes the mean number of bits B̄ in (9.7) subject to the
constraint in (9.8) as follows:

L =
1

2N

N∑
n=1

[
log2

(
1 +

En|Hn|2
Gσ2

n

)]
+ λ

(
Ēx − 1

N

N∑
n=1

En

)
,

(9.10)
where λ is a constant to be determined. Using the mathematical
formula loga y =

ln y
ln a

, (9.10) can be rewritten as

L =
1

2N ln(2)

N∑
n=1

[
ln

(
1 +

En|Hn|2
Gσ2

n

)]
+ λ

(
Ēx − 1

N

N∑
n=1

En

)
,

(9.11)
Setting the derivative in (9.11) with respect to En to zero, we obtain,

∂L

∂En

=
1

2N ln(2)

N∑
n=1

(
1

En +Gσ2
n/|Hn|2

)
− λ = 0. (9.12)

Thus, (9.12) yields

λ =
1

2N ln(2)

N∑
n=1

(
1

En +Gσ2
n/|Hn|2

)
. (9.13)

Since λ is the constant, (9.7) is maximized subject to (9.9) when

En +
Gσ2

n

|Hn|2 = K, (9.14)
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Figure 9.4 Discrete-time water filling solution for 10 subchannels.

where K is the constant. Equation (9.13) can then be rewritten as

λ =
1

2K ln(2)
. (9.15)

The solution of (9.14) is referred to as the “water filling”
optimization. In other words, the transmit energies with the optimum
water filling should satisfy the condition in (9.14) for the DMT
transmission. When G = 1 (0 dB), we achieve the maximum data
rate for a set of parallel channels.

The water fill solution for the set of parallel subchannels can be
illustrated by using a graph with the curve of an inverted channel
SNR filled with energy (or water) to a constant value. For example,
Figure 9.4 shows a discrete-time equivalent of the water filling
solution for 10 subchannels with a noise-to-signal ratio (NSR) of
qn = σ2

n

|Hn|2 . Note that 8 of the 10 subchannels have positive energies,
while 2 subchannels are eliminated due to zero (subchannel index
at 3) and negative energy (subchannel index at 6), respectively.
Thus, the 8 used subchannels have energy that makes the total
of normalized noise and transmit energy constant for the DMT
transmission.
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The concept of a water filling term arises from the analog of the
curve of Gqn, as shown in Figure 9.4. Water (or energy) is poured
into a bowl, thereby filling the bowl until there is no more water to
use. In this case, the water (or energy) will gradually rise to reach a
constant of a flat level of the bowl. In any subchannel, the amount
of water (or energy) is the depth of the water at the corresponding
point atGqn in the bowl. This process is also referred to as the water
filling optimization for the DMT transmission.

Minimization of Energy

It is also clear that the energy minimization is equivalent to
maximize the data rate. In other words, we want to minimize the
total energy

min
En

{Ēx} = 1

N

N∑
n=1

En, (9.16)

subject to the data rate being fixed according to

B̄ =
1

2N

N∑
n=1

[
log2

(
1 +

En|Hn|2
Gσ2

n

)]
. (9.17)

Using the methods of the Lagrange multiplier and differentiation,
the optimum solution of the energy minimization is again the
optimization of the water filling solution given by (9.14). In this
case, the water (or energy) is poured on until the number of bits per
symbol is equal to the given fixed data rate in (9.17). This method
is sometimes referred to as iterative water filling in the multiuser
environment of parallel subchannels.

Adaptive Bit Loading

Adaptive bit loading based on the optimization of the water filling
solution in (9.14) and the energy constraint in (9.9) can be computed
by using the set of linear equations as follows:

E1 +
Gσ2

1

|H1|2 = K
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E2 +
Gσ2

2

|H2|2 = K

... =
...

En +
Gσ2

n

|Hn|2 = K

1

N
(E1 + E2 + · · ·+ En) = Ēx. (9.18)

As can be seen, there are (N + 1) equations with (N + 1) unknown
parameters. Those unknown parameters are En (n = 1, 2, · · · , N )
and the constant valueK. Equations (9.18) can then be expressed in
a matrix form as follows:

1 0 0 . . . 0 −1
0 1 0 . . . 0 −1
...

...
...

. . .
...

...
0 0 0 . . . 1 −1
1
N

1
N

1
N

. . . 1
N

0





E1

E2
...
En

K

 = −



Gσ2
1

|H1|2
Gσ2

2

|H2|2
...

Gσ2
n

|Hn|2
−Ēn


. (9.19)

Equation (9.19) can be solved by using matrix inversion. The
energies must be positive values for all of the subchannels. However,
the energy solutions of the matrix equation in (9.19) may produce
negative values for some subchannels. If this is the case, the largest
σ2
N

|Hn|2 should be eliminated, and the corresponding energy En should
be zero. The matrix equation in (9.19) can be solved iteratively until
a solution with nonnegative energy occurs.

An intuitive equation obtaining the constantK can be yielded by
summing the first N equations in (9.18),

K =
1

N

(
N∑
n=1

En +G
N∑
n=1

σ2
n

|Hn|2
)

=
1

N

(
NĒx +G

N∑
n=1

σ2
n

|Hn|2
)

= Ēx +
G

N

N∑
n=1

σ2
n

|Hn|2 . (9.20)
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The corresponding energy En can then be obtained by

En = K − Gσ2
n

|Hn|2 , n = 1, 2, · · · , N . (9.21)

Note that if one or more of the energy parameters En < 0, then
the most negative parameter is eliminated first. Then, we can again
solve (9.20) and (9.21), but do so by using N − i (i = 1, 2, · · · ,M ,
and M < N ) to substitute for N in (9.20) for each iteration and
eliminating the corresponding term of σ2

n

|Hn|2 .

Example 9.1

Assume that a discrete-time channel frequency response is given by

H(ejω) = 1 + 0.5e−jω, (9.22)

the constant noise power is 0.25, and Ēn = 1. We want to determine
the water filling solution with G = 1 for four subchannels.

The squared magnitude of discrete-time channel is characterized
by

|H(ejω)|2 = H(ejω)H∗(ejω)

= (1 + 0.5e−jω)(1 + 0.5ejω)

= 1.25 + 0.5(e−jω + ejω)

= 1.25 + cosω. (9.23)

Thus, the characteristics of four subchannels for the water filling
solution are obtained by

σ2
1

|H1|2 =
0.25

1.96× (π/4− 0)
= 0.16

σ2
2

|H2|2 =
0.25

1.25× (π/2− π/4) = 0.25

σ2
3

|H3|2 =
0.25

0.54× (3π/4− π/2) = 0.59

σ2
4

|H4|2 =
0.25

0.25× (π − 3π/4)
= 1.27. (9.24)
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Using (9.20) with all of the subchannels, we obtain

K = Ēx +
G

N

N∑
n=1

σ2
n

|Hn|2

= 1 +
1

4
(0.16 + 0.25 + 0.59 + 1.27)

= 1.5675. (9.25)

The corresponding subchannel energies En for n = 1, 2, 3, 4 are
1.4075, 1.3175, 0.9775, and 0.2975, respectively, which are all
positive. Thereby, the water filling solution has been found.

9.3 FFT-Based OFDM

In theory, OFDM is the same as DMT because both of them
use the same channel partitioning, multicarrier, and multichannel
modulations. However, OFDM differs from DMT in terms of the
water filling optimization and the corresponding adaptive bit loading
algorithm. Generally, OFDM puts equal bits on all of subchannels
used in wireless time-varying channels that have time-varying
notches in fading due to multipath propagation, the speed of the
mobile and surrounding objects, and the transmission bandwidth
of the signal, while DMT uses the adaptive bit loading algorithm
based on optimizing a number of bits bn and the energy En for
each subchannel used in wired slowly time-varying channels. In this
section, we introduce OFDM modulation based on the DFT or FFT
(see DFT in Appendix C and FFT in Appendix D).

9.3.1 OFDM System

The key idea behind OFDM technologies is the partitioning of a
transmission channel into a set of orthogonal subchannels, each with
approximately flat transfer function and AWGN. The transmission
data is then transmitted in parallel on all of the subchannels, each of
which is completely independent. In other words, the basic idea of
OFDM is to transmit blocks of symbols in parallel by using a large
number of orthogonal subcarriers.
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Figure 9.5 The basic structure of the OFDM system.

Figure 9.5 shows structure of an OFDM system, including
the modulation, the digital-to-analog (D/A) converter, channel and
noise, the analog-to-digital (A/D) converter, and demodulation. With
a block transmission, a block of serial data bits bi (i = 1, 2, · · · , N ),
each having a bit period of T , is divided into a block of N parallel
modulated symbols, {X[0], X[1], · · · , X[N − 1]} in the frequency
domain, each having a symbol period of Ts = NT . The block
length of N is usually chosen so that NT � σc where σc is
the root-mean-square (RMS) delay spread of the channel. The
{X[0], X[1], · · · , X[N − 1]} are in parallel modulated by using
N separate subcarriers, with X[i] symbols modulated by the ith
subcarrier. The modulation process is accomplished by using either
a 2N -point inverse discrete Fourier transform (IDFT) operation or
the more computationally efficient 2N -point inverse fast Fourier
transform (IFFT). The parallel output of the 2N -point IDFT is
converted back into a digital serial form, {xk}, with the appropriate
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cyclic prefix attached before passing through the D/A converter,
which operates at a sampling frequency rate of Fs = 2N+ν

T
.

The resulting analog waveform is sent through the channel with
noise. At the receiver, the received analog signal is converted into
digital form by using A/D converter operating at the same sampling
frequency rate of Fs. The resulting digital serial sequence, {yk},
is converted back to the parallel digital received sequence. The
cyclic prefix is then removed to generate the parallel digital received
sequence, {x̂[0], x̂[1], · · · , x̂[2N − 2], x̂[2N − 1]}, which is passed
to the 2N -point DFT (or 2N -point FFT) demodulator. The 2N -
point DFT demodulator converts the discrete-time digital sequence,
{x̂[0], x̂[1], · · · , x̂[2N − 2], x̂[2N − 1]}, back to the parallel symbol
sequence, {X̂[0], X̂[1], · · · , x̂[N − 1]}, in the frequency domain.

Note that the symbol rate on each subcarrier of the OFDM
system is much less than the serial bit rate. Thus, the effects of delay
spread are greatly reduced, thereby reducing or even eliminating the
need of equalization at the receiver. However, the channel dispersion
will still cause consecutive blocks to overlay, which is referred to
as intercarrier interference (ICI). This happens due to the effective
length of the channel impulse response or the channel constraint
length ν. As a result, the tail of the previous block multicarrier
symbol will corrupt the beginning of the current block multicarrier
symbol. This leads to the conclusion that the subchannels are
not strictly independent of each other in the frequency domain.
This results in some kind of residual ISI that will degrade the
performance. In order to mitigate the effect of ICI, we can eliminate
the residual ISI by a guard interval filled with a cyclic prefix between
the blocks that is at least the same as the effective channel impulse
response ν. In practice, the length of cyclic prefix is selected to be
about 25% of the block length of N . However, it is also clear that
using the cyclic prefix is at the expense of the channel capacity.

9.3.2 OFDM Modulation by IFFT

Referring to Figure 9.5, a block of N parallel complex symbols is
{X[0], X[1], · · · , X[N − 1]} in the frequency domain. In order to
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obtain 2N -point time-domain values that are real valued after the
2N -point IFFT operation, the block of N parallel complex input
symbols {X[0], X[1], · · · , X[N − 1]} is expanded to create 2N
parallel complex symbols by using Hermitian symmetry,

X[k] = conj{X[2N − k]}, k = N + 1, N + 2, · · · , 2N − 1.
(9.26)

Note that the subchannel at DC (or the subcarrier index at 0) should
not contain energy, X[0] = 0, and the subchannel centered at the
Nyquist frequency is not used for user data. That subchannel should
have a real value or X[N ] = 0.

For OFDM modulation, the 2N -point IFFT operation at the
transmitter can be implemented by using theN -point IFFT. The idea
of reducing computation complexities is to make a new complex
sequence Y [k] with a N -point operation rather than a 2N -point
operation. For k = 0, 1, · · · , N − 1, we let

G[k] = X[k] + conj{X[2N − k]}, (9.27)

and
H[k] = [X[k] + conj{X[2N − k]}]W−k

N , (9.28)

The new complex sequence Y [k] is then formed by

Y [k] = G[k] + jH[k], k = 0, 1, · · · , N − 1. (9.29)

Thus, the N -point IFFT operation for the new complex sequence
Y [k] is as follows:

y[n] =
1

N

N−1∑
k=0

Y [k]W−kn
N , n = 0, 1, · · · , N − 1. (9.30)

The output y[n] in (9.30) is a complex sequence given by

y[n] = g[n] + jh[n], n = 0, 1, · · · , N − 1. (9.31)

Therefore, the 2N -point real sequence x[n] can be formed by
examining

x[2n] = g[n], n = 0, 1, · · · , N − 1, (9.32)
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and
x[2n+ 1] = h[n], n = 0, 1, · · · , N − 1. (9.33)

The process achieves for the 2N -point IFFT operation by using
the N -point IFFT operation for the OFDM modulation at the
transmitter.

9.3.3 OFDM Demodulation by FFT

In an OFDM demodulation, we have 2N -point real values as an
input sequence x̂[n] (n = 0, 1, · · · , 2N − 1) to produce an N -point
complex value after the FFT operation. If we use the 2N -point FFT
implementation directly, it will cost huge computation complexities
for the OFDM demodulation.

Reducing the computation complexities is possible since the
input signal sequence x̂[n] is real valued in the discrete-time domain.
We split the input sequence x̂[n] into the even-indexed points x̂e[n],

x̂e[n] = x̂[2n], n = 0, 1, 2, · · · , N − 1, (9.34)

and the odd-indexed points x̂o[n],

x̂o[n] = x̂[2n+ 1], n = 0, 1, 2, · · · , N − 1. (9.35)

Then we can convert the 2N -point FFT into the N -point FFT
(k = 0, 1, · · · , N − 1) as follows:

X̂[k] =
2N−1∑
n=0

x̂[n]W nk
2N

=
N−1∑
n=0

x̂[2n]W 2nk
2N +

N−1∑
n=0

x̂[2n+ 1]W
(2n+1)k
2N

=
N−1∑
m=0

x̂e[m]Wmk
N +W k

2N

N−1∑
m=0

x̂o[m]Wmk
N

= FFT{xe[m]}+W k
2N [FFT{xo[m]}] , (9.36)

Note that the FFTs in (9.36) are N -point FFT operations. Hence,
we can calculate the 2N -point FFT for the OFDM demodulation by
using two N -point FFTs of real signals.
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Example 9.2

WLAN 802.11a [9] is the IEEE standard for wireless local
area network, which mainly uses an OFDM system. The ra-
dio frequency of WLAN 802.11a is initially operated for the
5.15–5.25, 5.25–5.35, and 5.725–5.825 GHz with unlicensed na-
tional information structure (U-NII) bands. The OFDM system pro-
vides communication data rate capabilities of 6, 9, 12, 18, 24, 36,
48, and 54 Mbps for the WLAN. The OFDM, which is implemented
by using the 64-point IFFT/FFT, uses 52 subcarriers with modu-
lations, including binary or BPSK, QPSK, 16-QAM, or 64-QAM.
A convolutional encoding of the forward error correction (FEC) is
used with a coding rate of 1

2
, 2

3
, or 3

4
. Among the 52 subcarriers,

48 subcarriers NSD are used for data transmission, and 4 subcarri-
ers NSP are used for pilot information. Each channel has 20-MHz
frequency bands. Thus, the subcarrier frequency spacing ∆F is ob-
tained by ∆F = 20

64
= 0.3125 MHz. The corresponding IFFT/FFT

period TFFT is equal to 1
∆F

= 3.2 µs. The cyclic prefix duration
Tcp is 25% of TFFT , Tcp = 0.8 µs. Hence, the duration of the sig-
nal OFDM symbol with the BPSK modulation Tsignal is equal to
Tcp+TFFT = 4.0 µs. The corresponding repetition frequency of the
signal Fsignal is Fsignal = 1

Tsignal
= 250 kHz.

We now can determine the transmission data rate. For example,
with 64-QAM and a 3

4
coding rate, we solve 2b = 64, where b is the

number of bits, and obtain b = 6 for coded bits per subcarrier. The
coded bits per OFDM symbolNCBPS is equal toNSD×b = 288, and
the data bits per OFDM symbol NDBPS is equal to 288 × 3

4
= 216.

Therefore, the data rate is equal toNDBPS ·Fsignal = 216×250 kHz
= 54 Mbps.

9.3.4 ADC Resolution for the OFDM Modulation

One of the major concerns for OFDM implementation is the
analog front-end design, especially the A/D converter (or D/A
converter) whose resolution plays an important role in OFDM
system performance. Thus, developing an analytical form that
includes all relevant system parameters of the OFDM system is
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important. In this section, we derive a closed-form expression of the
A/D converter resolution for the OFDM system performance.

In uniform quantization, the quantization step size of the A/D
converter or the resolution of the quantization is given by [22],

∆ =
2Xclip

2B
, (9.37)

whereB is the number of bits andXclip is known as clipping or hard
limiting, in which the peak signal amplitude will exceed the full-
scale amplitude of the A/D converter. The corresponding variance
of the quantization error is then

σ2
e =

∆2

12

=
2−2BX2

clip

3
. (9.38)

The signal-to-quantization noise ratio (SQNR), which is a
common measure of the fidelity of A/D converters, is defined as the
ratio of signal power (variance) σ2

x to the quantization noise power
(variance) σ2

e as follows:

SQNR =
σ2
x

σ2
e

=
3 · 22Bσ2

x

X2
clip

=
3 · 22B

µ2
, (9.39)

where µ =
Xclip

σx
is called the clipping factor or referred to as the

peak-to-average ratio (PAR). Equation (9.39) can also be expressed
in decibels (dBs)

SQNR = 6.0206B + 4.7712 + 20 log10

(
σx
Xclip

)
. (9.40)
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Note that the third term in (9.40) suggests that the root mean square
(RMS) value σx of the signal amplitude should be less than the
peak amplitude of the signal. If the RMS value σx is too large, the
peak signal amplitude will exceed the full-scale amplitude of the
A/D converter. In this case, (9.40) has a severe distortion known as
clipping or hard limiting.

In order to develop the overall SNR, we use the assumption given
by Mestdagh [23], which is that the overall quantization noise σ2

e is
a factor α smaller than AWGN σ2

AWGN . With σ2
AWGN = ασ2

e , we
then derive the overall SNR,

SNR =
σ2
x

σ2
e + σ

2
AWGN

=
σ2
x

σ2
e + ασ

2
e

=
1

1 + α

(
σ2
x

σ2
e

)
. (9.41)

Substituting (9.39) into (9.41) yields

SNR =
1

1 + α

(
3 · 22B

µ2

)
. (9.42)

By using log2 on both sides of (9.43), we obtain

log2 SNR = log2

(
1

1 + α

)
+ log2

(
3

µ2

)
+ 2B. (9.43)

We then obtain

B =
log2 SNR + log2(1 + α)− log2(3) + log2 µ

2

2

=
10 log10 SNR + 10 log10(1 + α)− 10 log10 3 + 20 log10 µ

20 log10(2)
.

(9.44)

The corresponding clipping factor µ can be obtained by solving the
probability of clipping given by [24]

PXclip
= 2

∫ +∞

Xclip

1

σ
√
2π

exp

{
− x

2

2σ2

}
dx. (9.45)
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Let y = x√
2σ

and dx =
√
2σdy; we then rewrite (9.45) as

PXclip
= 2

∫ +∞
Xclip√

2σ

1

σ
√
2π
e−y2

(
√
2σ)dy

=
2√
π

∫ +∞

µ√
2

e−y2

dy

= erfc

(
µ√
2

)

= 1− erf

(
µ√
2

)
, (9.46)

where erfc(x) is the complementary error function given by (9.3)

erfc(x) =
2√
π

∫ +∞

x
e−x2

dx

= 1− erf(x), (9.47)

where erf(x) is the error function defined by

erf(x) =
2√
π

∫ x

0
e−x2

dx. (9.48)

A relationship between the normal Gaussian function Φ0,1(z) and
the error function erf(x) is given by

Φ0,1(x) =
∫ x

−∞

1√
2π
e−

z2

2 dz

=
1

2
+

1

2
erf

(
x√
2

)
. (9.49)

Substituting (9.49) into (9.46), we obtain

Φ0,1(µ) = 1− PXclip

2
. (9.50)

If we assume PXclip
≤ 10−7, using a table of the normal function

Φ0,1(µ) given by [25], we obtain µ ≈ 5.0.
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With the factor α = 2 and µ = 5.0, (9.44) can be approximately
rewritten as

B ≈ 10 log10 SNR
6

+ 2.322. (9.51)

Equation (9.51) can be further simplified in terms of the maximum
number of bits bmax carried by each of subchannels. In order to
obtain a bit error rate (BER) lower than a specified value Pe, the term
of 10 log10 SNR in (9.51) must satisfy the relation given by [23, 26]

10 log10 SNR ≥ 10 log10

M − 1

3

[
Φ−1

0,1

(
Pe
4

1

1− 1/
√
M

)]2


+γm − γc, (9.52)

where Φ−1
0,1(x) is the inverse normal Gaussian function of Φ0,1(x)

given by (9.49), M is the QAM constellation size, γm is the noise
margin in decibels, and γc is the coding gain in decibels. Assume that
all of subchannels in the OFDM modulation have the same power.
Thus, the resolution of the A/D converter, B, is determined by the
largest possible QAM constellation size, M = 2bmax , from (9.51)
and (9.52).

If Pe ≤ 10−8, then

Φ−1
0,1

(
Pe
4

1

1− 1/
√
M

)
≈ 6, (9.53)

and (9.52) can be rewritten as

10 log10 SNR ≈ 10 log10(2
bmax · 12) + γm − γc

≈ 3bmax + 10.79 + γm − γc. (9.54)

Substituting (9.54) into (9.51), we obtain the required resolution for
the A/D converter

B ≈ bmax

2
+ 4.12 +

γm − γc
6

. (9.55)

For a general case, with the noise margin γm = 6 dB and the coding
gain γc = 2 dB (e.g., for the forward error correction alone), (9.55)
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can be simplified to

B ≈ bmax

2
+ 5. (9.56)

As a result, (9.55) and (9.56) provide a closed-form expression for
the required A/D converter resolution for OFDM demodulation.

9.3.5 Equalized OFDM

In order to combat ISI due to a dispersive transmission channel,
applying equalization in an OFDM or DMT demodulation system is
usually required. An elegant equalization method relies on inserting
a guard time (or cyclic prefix) between transmitted symbols after
modulation with an IFFT at the transmitter. If the cyclic prefix is
longer than the channel impulse response, demodulation can be
implemented by the means of an FFT at the receiver, followed
by using an equalizer with a single complex coefficient. This
equalization technology works well under the condition that the
duration of the guard time is longer than the channel impulse
response [27, 28]. However, a long cyclic prefix results in a large
overhead with respect to the transmission data rate. In order to
reduce the guard time, a common solution is to shorten the channel
impulse response by using a time-domain equalizer (TEQ) before
the FFT demodulation. However, imperfectly shortened channel
impulse responses lead to ISI between two successive symbols and
intercarrier interference (ICI) between different carriers. Thus, in
this section, we present an overview of the different time-domain
and frequency-domain equalization techniques that can be used for
the OFDM or DMT demodulation system when the channel impulse
response is longer than the cyclic prefix.

Time-Domain Equalization

A transmission channel with severe ISI has a long channel impulse
response. A TEQ is usually needed to handle the situation of the
severe ISI, especially if the cyclic prefix is significantly shorter than
the channel impulse response. Figure 9.6 shows the TEQ in the
signal path before the OFDM or DMT demodulation (or a 2N -point
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T-space linear equalizer
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P
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point
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Y2(k)

YN(k)

P = 2N + ν

Figure 9.6 A time-domain linear equalized OFDM system.

FFT function), where v denotes the length of the cyclic prefix and
P = 2N + v denotes the length of a symbol including cyclic prefix.
Assume that C(z) is the channel andD(z) is the time-domain linear
equalizer as given in Figure 9.6. The goal here is to design a simple
FIR or infinite impulse response (IIR) equalizer D(z) so that the
product D(z)C(z) is a good approximation of an FIR filter with
a small filter length L. This process is referred to as the channel
shortening for the OFDM or DMT demodulation system.

The receiver based on the time-domain linear equalized OFDM
in Figure 9.6 can be expressed in a matrix form:

Y = WXh, (9.57)

where h is theM -tap of the time-domain linear equalizer given by

h =
{
h[0] h[1] · · · h[M − 1] h[M ]

}T
, (9.58)

X is the 2N×M Toeplitz matrix of the input signals x as kth symbol
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given by

X =


x[s1 + v + 1] x[s1 + v] · · · x[s1 + v −M + 2]
x[s1 + v + 2] x[s1 + v + 1] · · · x[s1 + v −M + 3]

...
...

. . .
...

x[s2] x[s2 − 1] · · · x[s2 −M + 1]

 ,
(9.59)

where s1 = k(2N + v) and s2 = (k + 1)(2N + v), and W is the
2N × 2N FFT-matrix given by

W =



1 1 1 · · · 1
1 W W 2 · · · W 2N−1

1 W 2 W 4 · · · W 2(2N−1)

...
...

...
. . .

...
1 W 2N−1 W 2(2N−1) · · · W (2N−1)2

 , (9.60)

whereW = e
−j2π
2N and Y is the output of N -point FFT operation,

Y =
{
Y1[k] Y2[k] · · · YN−1[k] YN [k]

}T
. (9.61)

Note that (9.57) does not consider a synchronization delay δ. In
order to synchronize, the delay δ needs to be added into the matrix
of X in (9.59).

Also note that the z−1 units and decimator by P units form the
polyphase decomposition for the decimator after the TEQ and before
the 2N -point FFT. The polyphase decomposition will provide an
efficient way for decimation implementation. However, the TEQ still
operates at a normal sampling rate since the TEQ is located before
the polyphase decomposition. In other words, the computational
complexities of the TEQ cannot be saved while the 2N -point FFT
operates on downsampling rate by P .

Frequency-Domain Equalization

A frequency-domain equalization (FEQ), which is an alternative
receiver structure as shown in Figure 9.7, is developed based on
a separate MSE optimization for each tone or for each carrier.
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Figure 9.7 A frequency-domain equalized OFDM system.

A detection and decoding system in the OFDM demodulation
cannot be simplified if all of the subcarriers do not have the same
attenuation and phase. Thus, a single-tap FEQ per tone can be used
after the 2N -point FFT demodulation to correct for the attenuation
and phase rotation. In other words, it multiplies the 2N -point FFT
demodulation output by using a diagonal matrix whose elements
are one complex multiplication per tone and are the inverse of the
transform of the shortened channel impulse response.

Note that the z−1 units and decimator by P units form the
polyphase decomposition for the decimator before the 2N -point
FFT. The polyphase decomposition will provide an efficient way for
decimation implementation for the 2N -point FFT, which operates
at a rate downsampled by P . Furthermore, the FEQ operates on the
output of the N -point FFT. Thus, the computational complexities
of the FEQ can be reduced since it performs at the downsampled
rate. The single-tap based FEQ per tone can be updated by using
an adaptive algorithm according to the error signal e[n] = b̂[n] −
b[n], where b̂[n] is the output sequence of the symbol demapping
and parallel-to-serial (P/S) converter and b[n] is a desired symbol
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sequence or a training symbol sequence.
A small MSE of a special tone in the OFDM demodulation

system generally corresponds to a large SNR and a large
transmission capacity for the tone, thereby leading to improved
and more predictable performance. Furthermore, the computational
complexities and memory requirements can be reduced for the
OFDM demodulation system.

9.4 Filter Bank–Based OFDM

In this section, we discuss filter bank approaches for the OFDM
system with an emphasis on FFT transmitter filter banks and receiver
filter banks, perfect reconstruction, and efficient implementation of
polyphase decomposition.

9.4.1 Filter Bank Transmultiplexer

A schematic structure of a filter bank transmultiplexer is shown in
Figure 9.8. It is also called a digital transmultiplexer [29–31]. It was
initially intended to convert transmission data between time division
multiplexed (TDM) and frequency division multiplexed (FDM). Note
that the Hk(z) in Figure 9.8 are referred to as transmitter filters or
transmitter interpolation filters. The output of kth transmitter filter is
expressed as

yk[n] =
∞∑

i=−∞
xk[i]hk[n− iN ], (9.62)

where yk[n] is an interpolated version of xk[n] and has N times
a higher data rate. The 0th transmitter filter H0(z) is assumed
to be a lowpass filter, while other transmitter filters Hk(z), k =
1, 2, · · · , N − 1, are bandpass filters. However, all of the transmitter
filtersHk(z), k = 0, 1, 2, · · · , N−1, usually cover different uniform
frequency bands. The interpolated signals yk[n] are analogous to
modulated versions of baseband signals xk[n]. This is because
the bandwidth is shifted to the passband of the transmitter filters
Hk(z). These are packed into N adjacent frequency bands and
added together to obtain the composite signal y[n]. If the transmitter
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Figure 9.8 A schematic structure of a filter bank transmultiplexer.

filters Hk(z) are chosen as good bandpass filters, we refer to the
composite signal y[n] as a FDM version of the separate signals xk[n],
k = 0, 1, 2, · · · , N − 1. On the other hand, if the transmitter filters
Hk(z) are just chosen as delay elements z−k, then the composite
signal y[n] is the TDM version of the N signals xk[n].

At the receiver, the receiver filtersQk(z), k = 0, 1, 2, · · · , N−1,
separate the received signal r[n] into the N parallel signals rk[n]
that are distorted and noisy versions of the symbols xk[n]. Thus, the
goal is to detect the symbols xk[n] from rk[n] within an acceptable
probability of error, thereby making rk[n] resemble xk[n], k =
0, 1, 2, · · · , N − 1.

Assume that a transfer functionGkm(z) is the decimated version
of the product filter function Hk(z)C(z)D(z)Qm(z). If Gkm(z) is
not a zero for k �= m, then the received symbol rm[n] is affected
by the transmitted symbol xk[i], i �= n. This results in interband
interference. If Gkk(z) is not a constant, then the received symbol
rk[n] is affected by the transmitted symbol xk[i], i �= n, because of
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the filtering effect of Gkk(z). This leads to intraband interference.
However, if interband and intraband interferences are cancelled, then
the filter bank system is called ISI free.

Further assume that the transmitter filtersHk(z) and the receiver
filters Qk(z) are ideal nonoverlapping bandpass filters. Thus, there
is no interband interference. In addition, if the channel C(z) is
completely equalized with the inverse filter or equalizer D(z) =

1
C(z)

, then the filter bank system is ISI free and rk[n] = xk[n] for
all k in the condition of absence of noise. In this case, we have the
perfect symbol recovery. In other words, the filter bank system has
perfect symbol recovery if and only if the transmitter filters Hk(z)
and the receiver filters Qk(z) satisfy the condition given by

Hk(z)Qn(z) |↓N= δ[k − n]. (9.63)

In the time domain, this means that the product filter Pkn(z) =
Hk(z)Qn(z) has the zero-crossing property

pkn[Mn] =

{
0, k �= n
δ[n], otherwise.

(9.64)

Equation (9.63) or (9.64) is called the biorthogonality property.

9.4.2 The DFT Filter Bank

The DFT can be presented by using the matrix form of the DFT as
discussed in Appendix C. The (M ×M ) matrix W of the DFT has
(M ×M ) elements [W]km = W km given by (C.9) in Appendix C,
where W = e

−j2π
M . Note that WT = W since the column vectors wi

of matrix W of the DFT are orthonormal. Then, the quantity W∗ is
equal to W, where the matrix W∗ is a conjugate of the matrix W.

By using the definition of the matrix W and the relationship
between input and output given by (C.8) in Appendix C, we can
obtain

Rk[n] =
M−1∑
i=0

r[n− i]W−ki, k = 0, 1, 2, ...,M − 1. (9.65)
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Figure 9.9 The receiver DFT filter bank for the OFDM demodula-
tion.

Equation (9.65) indicates that we need to compute a set ofM signals
Rk[n] from a set of M signals r[n − i] for every discrete-time
index n as shown in Figure 9.9. In the z-transform domain, we can
rewrite (9.65) in the following form:

Rk(z) =
M−1∑
i=0

z−iW−kiR(z)

=
M−1∑
i=0

(
zW k

)−i
R(z). (9.66)

Thus, we can represent (9.66) as follows:

Rk(z) = Fk(z)R(z), (9.67)

where Fk(z) is expressed as

Fk(z) = F0(zW
k), (9.68)
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and

F0(z) =
M−1∑
i=0

z−i. (9.69)

Equation (9.69) is referred to as a prototype filter, and (9.67) is called
the receiver filter bank for the OFDM demodulation system. Using
the result given by [22], we obtain the frequency response F0(e

jω)
in (9.69) as follows:

F0(e
jω) = e−jω(M−1)/2

[
sin(Mω/2)

sin(ω/2)

]
, (9.70)

and the corresponding magnitude response |H0(e
jω)| is obtained by

|F0(e
jω)| =

∣∣∣∣∣sin(Mω/2)sin(ω/2)

∣∣∣∣∣ . (9.71)

Thus, the kth receiver filter bank Fk(z) has the frequency response

Fk(e
jω) = F0(e

j(ω− 2πk
M

)). (9.72)

Note that (9.72) is a uniformly shifted version of the prototype filter
F0(e

jω). Thus, the receiver filter bank containsM receiver filters for
the OFDM demodulation system. Equation (9.68) or (9.72) is also
referred to as a uniform DFT receiver filter bank.

Miao and Clements [22] indicate that the receiver filter bank
consisting of M filters is obtained from a single prototype filter
F0(z) by uniformly shifting the frequency response based on the
relation in (9.72). Those filters have wide transition bands and small
stopband attenuation. Furthermore, the magnitude response of those
filters has a large amount of overlap because the prototype filter
F0(z) in (9.69) is a very simple filter. However, those problems
can be improved when we introduce the polyphase-based DFT filter
banks discussed in the next section.

9.4.3 Polyphase-Based DFT Filter Bank

A method of polyphase decomposition can be used to implement the
DFT receiver filter bank efficiently. Given the prototype filter F0(z)
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in (9.69), the kth receiver filter in (9.68) can be rewritten into the
M -channel receiver filter bank as follows:

Fk(z) = F0(zW
k)

=
M−1∑
i=0

(z−1W−k)iDi(z
M), (9.73)

since (zW k)M = zM . Substituting (9.73) into (9.67), we obtain

Rk(z) =
M−1∑
i=0

W−ki
[
z−iDi(z

M)R(z)
]
. (9.74)

By using the method of polyphase decomposition in (9.74), an
implementation structure of the DFT receiver filter bank for the
OFDM demodulation system can be shown in Figure 9.10. Note
that if Di(z

M) = 1 for all i in (9.74), then (9.74) is equivalent
to (9.66). This means that Figure 9.9 is a special case of Figure 9.10
when Di(z

M) = 1 for all i. However, the presence of Di(z
M) in

Figure 9.10 allows for increasing the length of the prototype filter
F0(z). As a result, the DFT receiver filter bank, including M filters,
can have a sharper cutoff and a higher stopband attenuation for the
OFDM demodulation system.

9.4.4 Maximally Decimated DFT Transmitter Filter Bank

Decimating outputs of the receiver filter bank in the DFT receiver
filter bank by the decimation factor ofM is interesting in the OFDM
demodulation system. This can be accomplished because each of
these receiver filter outputs has a bandwidth, which is approximately
M times narrower than the bandwidth of the input signal r[n].
Thus, by using the method of noble identity [22], the polyphase
decomposition of the DFT receiver filter bank with a decimation
function of M factor is shown in Figure 9.11. As can be seen,
this polyphase decomposition structure of the DFT receiver filter
bank is an efficient implementation of OFDM demodulation due
to the decimation operation before the receiver filters Di(z

M) for
i = 1, 2, · · · ,M − 1.
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Figure 9.10 Polyphase decomposition of the DFT receiver filter
bank for the OFDM demodulation.

9.4.5 Perfect Reconstruction of the DFT Filter Bank

In this section, we discuss the perfect reconstruction of the DFT filter
bank for the OFDM modulation and demodulation system based
on the fundmental quadrature mirror filter (QMF). Figure 9.12
shows a detailed structure for the perfect reconstruction of the
DFT transmitter and receiver filter banks for the OFDM modulation
and demodulation system. By using the prototype filter in (9.68)
and (9.69), we recall that the kth receiver filter Qk(z) in the receiver
filter bank for the OFDM demodulation system is given by

Qk(z) = Q0(zW
k). (9.75)
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Figure 9.11 Polyphase decomposition of the DFT receiver filter
bank for the OFDM modulation with decimation by a
factor ofM .

The kth transmitter filter Hk(z) in the transmitter filter bank for
the OFDM modulation is obtained by

Hk(z) =W
−kH0(zW

k), (9.76)

where
H0(z) = Q0(z). (9.77)

This indicates that each filter in the transmitter filter bank of
the OFDM modulation system has precisely the same magnitude
response as the corresponding filter in the receiver filter bank of the
OFDM demodulator.
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Figure 9.12 A perfect reconstruction of the DFT transmitter and
receiver filter banks for the OFDM modulation and
demodulation system.

Assume that the channel C(z) is completely equalized with the
inverse filter or equalizer D(z) = 1

C(z)
and is noise free. Under

these conditions, the transmitter filtersHk(z) and the receiver filters
Qk(z) satisfy the biorthogonality property given by (9.63) or (9.64).
Thus, we obtain the polyphase matrix of the transmitter filter bank
given by WH(z), and the polyphase matrix of the receiver filter bank
given by Q(z)W∗. For the perfect symbol recovery, we multiply the
polyphase matrix of the transmitter filters, the channel, the equalizer,
and the polyphase matrix of the receiver filters to yield a combined
polyphase matrix as follows:

WH(z)C(z)D(z)Q(z)W∗ =MI. (9.78)
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As a result, the receiver signals Ri(k), i = 0, 1, 2, · · · ,M − 1,
after the OFDM demodulation satisfies the perfect reconstruction
condition by

Ri(k) =MXi(k −M + 1), i = 0, 1, 2, · · · ,M − 1. (9.79)

Equation (9.79) indicates that the received symbols Ri(k) have an
attenuation of M and a time delay of M − 1 that differs from
the transmitted symbols Xi(k). However, the ISI, interband, and
intraband interferences can be completely canceled because the
transmitter filters in the OFDM modulation and the receiver filters
in the OFDM demodulation satisfy the condition of biorthogonality.

In this section, we have discussed the DFT filter banks based on a
channel frequency response at uniformly spaced points. However, in
practice, filter banks at nonuniformly spaced samples of the channel
frequency response also exist, especially when spaced in octaves.
This is because there are relatively fewer equalizer coefficients
with large values for channels with rapidly decaying frequency
responses, thereby reducing the noise amplification of the channel at
the receiver. On the other hand, the filter banks with nonuniformly
spaced samples can be used for a digital channelizer, which
is a digital transponder of satellite communications. The digital
channelizer is used to decompose an input signal bandwidth into
a set of subchannels that are nonuniformly spaced and recombine
them to form output signals for satellite communications. The
filter banks with nonuniformly spaced samples are referred to as
nonuniform filter banks. The interested reader may refer to [32, 33].

9.5 Summary

In this chapter, multicarrier modulation, DMT, and OFDM are
introduced. We first presented the fundamentals of multicarrier
modulation and DMT with an emphasis on multitone transmission,
geometric SNR, and optimum energy minima and bit loading
maxima. Second, we described the theory of an FFT-based
OFDM system in which we addressed the OFDM modulation and
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demodulation by IFFT and FFT operations, the determination of
the A/D converter resolution, and an equalized OFDM system.
We then introduced the filter bank–based OFDM modulation and
demodulation system, focusing on the DFT (FFT) filter bank
and its corresponding efficient implementation forms including
the polyphase, maximally decimated, and perfect reconstruction
structures at the transmitter and receiver.

DMT has been used in wired, slowly time-varying channels,
especially in telephone lines with NEXT and FEXT impairments and
different loop topologies, while OFDM has been applied in wireless,
time-varying channels with multipath and fading. However, the
fundamentals of DMT and OFDM both belong to the same
multicarrier modulation, and their multicarrier spacing is selected
to ensure that each of the subcarriers is orthogonal to the other
subcarriers. In addition, because of using an FFT for the multicarrier
modulation, the symbol rate on each subcarrier of the DMT and
OFDM system is much less than the serial bit data rate. Thus, the
effects of delay spread in the the DMT and OFDM modulation are
greatly reduced. DMT usually uses a dynamic loading algorithm to
assign bit information to subchannel signals based on a geometric
SNR of subchannel output, thereby leading to a different number
of bits assigned in each of subchannels for the DMT transmitter.
On the other hand, OFDM assigns a fixed number of bits to all
subchannels at the transmitter. Furthermore, both DMT and OFDM
systems are mainly developed based on the DFT (FFT). This is
because the DFT (FFT) can provide efficient implementation for the
DMT and OFDM systems at the transmitter and receiver. However,
the channel dispersion will cause consecutive blocks to overlay in
DMT and OFDM systems, which leads to ICI and ISI. This results
in the degradation of performance. In practice, the DMT and OFDM
systems both use cyclic prefixes (or guard intervals) between the
consecutive blocks to mitigate the effects of ICI and ISI. However,
using the cyclic prefix wastes a fraction of the channel capacity for
the communication system.
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The filter bank–based DMT and/or OFDM system is developed
based on the theory of QMF in which it decomposes the spectral
frequency into subbands in such a way that all the aliasing incurred
in the transmitter is eliminated at the receiver. The approach requires
designing transmitter filter bank and receiver filter bank to meet the
properties of perfect reconstruction, thereby allowing elimination of
amplitude and phase distortion completely at the receiver. Efficient
implementation of the filter banks based on the DMT and/or
OFDM modulation and demodulation system exists by using the
polyphase decomposition along with the FFT structures. However,
this approach usually requires a TEQ before the DMT and/or OFDM
demodulation to compensate the channel dispersion.
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10
Discrete-Time Synchronization

10.1 Introduction

In the previous chapters, the analysis of theory and algorithm
development presumed that a transmitter (or modulator) and receiver
(or demodulator) in the wireless and wireline communication
systems are synchronized already. In other words, both the
transmitter and the receiver know the exact symbol rate, phase, and
timing, and where appropriate, both the transmitter and the receiver
may also know the exact carrier frequency and phase. However,
in practice, the common knowledge of the exact transmission
frequency and/or phase, the same time, and the carrier clocks are not
known unless some information is provided so that the receiver can
synchronize with the transmitter. Coherent demodulation requires
the use of a properly phased carrier at the receiver. The receiver must
estimate the carrier phase from the incoming signal. Furthermore,
symbol timing must be derived from the received signal for both the
coherent and noncoherent demodulation in order to synchronously
sample the output of the matched filters at the proper time instant.
Therefore, the recovery of the transmitted data must include a
method for synchronizing the received data with the transmitted
data. This typically involves a phase detector, a loop filter, a

387
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voltage-controlled oscillator (VCO), and a feedback controlled
sampler in which the frequency and phase are slowly adjusted in
response to synchronization errors in received samples, thereby
setting estimate values close to their correct values. Such a device
for synchronization is often referred to as a phase locked loop (PLL)
and is the essential function for phase and frequency recovery in
many communication applications.

Accurate synchronization is an important consideration in
both wireless and wireline communication system performance,
including digital data storage systems. This is because the
performance of the receiver is critically dependent on the quality of
the synchronization via the PLL. Improper synchronization can have
an adverse impact on the quality of the sample values that are then
used for either symbol-by-symbol or sequence detection in digital
communication receivers. Thus, using robust signal processing
techniques is necessary to provide an optimum sampling instant for
every received signal sample.

In general practice, the PLL will have some finite delay so the
regenerated local phase will have to predict the incoming phase and
then assess how well that prediction did in quantitative form in terms
of phase error. The more quickly the PLL tracks phase deviations
in phase, the more susceptible it will be to random noise and
other imperfections. Thus, the communication system designer must
trade these two competing effects appropriately when designing a
synchronization system. Meanwhile, the design of the transmitted
signals can facilitate or complicate such trade-off analysis for the
receiver system.

In digital communications systems, using completely analog
continuous-time synchronization is uncommon. Most synchroniza-
tion approaches used are either hybrid analog and digital or mixed
continuous- and discrete-time. The discrete-time synchronization
has become important for the communications system designer to
implement because of recent advances in VLSI and digital signal
processing (DSP) technologies, especially in software defined ra-
dio (SDR). Therefore, in this chapter, we consider the theory of
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signal processing techniques for symbol and carrier synchroniza-
tion, which derive the symbol timing and carrier phase from the
information-bearing signal, and focus on the implementation based
on the all discrete-time synchronization approaches.

This chapter is organized as follows. In this section, a
short background and the importance of symbol and carrier
recovery for wireless and wireline communications are presented.
In Section 10.2, we introduce discrete-time PLL functions and
characteristics that are an integral part of most discrete-time
synchronizations for symbol timing and carrier recovery. This
section is focused on a discrete-time loop filter, a phase detector,
and a numerically controlled oscillator (NCO). In Section 10.3,
we describe timing recovery methods, including early-late gate
synchronizers, bandedge timing, decision-directed timing, multirate
timing, polyphase filter bank timing recovery, and multicarrier
modulation timing recoveries. Subsequently, the fundamentals of
discrete-time carrier recovery are given in Section 10.4, with
emphases on carrier phase error, open-loop carrier recovery, carrier
recovery for multiple phase signals, and decision-directed carrier
recovery. Finally, a brief summary of this chapter is provided in
Section 10.5.

10.2 Discrete-Time Phase Locked Loop

The PLL is an integral part of most synchronization schemes for
considering the problems of carrier and symbol synchronization
and timing recovery. The basic theory of PLL schemes has been
extensively studied by Proakis [1], Lee and Messerschmitt [2]
Waggener [3], Razavi [4], and Starr et al. [5], especially in
analog and mixed continuous- and discrete-time domains. Recently
advanced developments in VLSI and DSP technologies allow
implementation of all discrete-time PLL schemes for digital
communications systems to become possible eventually. Thus, in
this section, we focus on reviewing the fundamental concepts of the
discrete-time PLL as shown in Figure 10.1, thereby forming a basis
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Phase
detector

Discrete-time
loop filter H(z)

Discrete-time
VCO

s[k] e[k]φ[k]

v[k]
ωv

Figure 10.1 A block diagram of the discrete-time phase locked
loop.

for discrete-time synchronization.
Assume that the received discrete-time input signal s[k] is given

by
s[k] = As cos(ωvkT + θk), (10.1)

where As is called the constant amplitude response, ωv is called the
constant common phase reference, T is the symbol interval (1/T is
the symbol rate), and θk is the phase of the received discrete-time
input signal.

The discrete-time VCO function expression can be described as

θ̂k+1 = θ̂k + Cvcoe[k]

= θ̂k + Cvcoh[n] ∗ φk, (10.2)

where Cvco is the constant, h[n] is the discrete-time loop filter, and
φk is the phase error, φk = θk− θ̂k, which represents the local phase
at sampling time instant k. The discrete-time VCO also produces the
estimated discrete-time output signal v[k], given by

v[k] = Avco cos(ωvkT + θ̂k), (10.3)



Discrete-Time Synchronization 391

where Avco is the constant value.
Taking the z-transform (see Appendix A) of both sides of (10.2)

obtains

z−1Θ̂(z) = Θ̂(z) + CvcoH(z)Φ(z). (10.4)

where the z-transform of the phase error, Φ(z), is

Φ(z) = Θ(z)− Θ̂(z). (10.5)

Substituting (10.5) into (10.4), we get

z−1Θ̂(z) = [1− CvcoH(z)]Θ̂(z) + CvcoH(z)Θ(z). (10.6)

Thus, we obtain a phase transfer function from the input phase to the
estimated output phase based on (10.6) as

Θ̂(z)

Θ(z)
=

CvcoH(z)z

1− [1− CvcoH(z)]z
. (10.7)

By evaluating (10.7) at z = 1, we notice that the discrete-time PLL
has unity gain to DC phase input.

According to (10.4) and (10.5), we then obtain the transfer
function between the phase error Φ(z) and the input phase Θ(z) as

Φ(z)

Θ(z)
=

1− z
1− z + CvcoH(z)z

, (10.8)

where H(z) is the discrete-time loop filter that determines the N th-
order discrete-time PLL.

10.2.1 Discrete-Time Loop Filter

In this section, we discuss in detail the principles of the first- and
second-order discrete-time PLLs, which have been used extensively
in common digital communications systems.



392 Signal Processing in Digital Communications

First-Order Discrete-Time PLL

For the first-order discrete-time PLL, the discrete-time loop filter is
a constant value, K. In other words, the discrete-time loop filter is
frequency independent, that is,

CvcoH(z) = K. (10.9)

Substituting (10.9) into (10.7) yields

Θ̂(z)

Θ(z)
=

Kz

1− [1−K]z
. (10.10)

In order to have a stability of (10.10), we need to have |1−K| < 1.
This is the same as

0 ≤ K < 2. (10.11)

As can be seen, when K approaches 2, the bandwidth of the overall
loop filter from Θ(z) to Θ̂(z) is wide and can distort the estimated
phase if noise is on the input sinusoid.

Given certain inputs, a steady-state operating point of discrete-
time PLL is often useful to know precisely. The steady-state phase
error ξφk is defined to be

ξφk = lim
k→∞

φk. (10.12)

If the discrete-time PLL does not achieve phase lock, then ξφk �= 0.
On the other hand, if ξφk = 0 for k < 0, then we can determine ξφk
by using the final value theorem for z-transform

ξφk = lim
z→1

(1− z)Φ(z). (10.13)

If we assume that the input phase is

θk = θ0uk, k ≥ 0, (10.14)

where θ0 is a constant and uk is the unit step, then (10.14) has a
z-transform function,

Θ(z) =
θ0z

z − 1
. (10.15)
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Substituting (10.15) and (10.9) into (10.8), the transform form of the
phase error can be obtained as follows

Φ(z) =
(1− z)Θ(z)

1− z + CvcoH(z)z

=
(

1− z
1− z +Kz

)(
θ0z

z − 1

)

=
θ0z

(1−K)z − 1
. (10.16)

Hence, the steady-state phase error ξφk can be obtained by
using (10.13)

ξφk = lim
z→1

(1− z)Φ(z)

= lim
z→1

[
θ0(1− z)z

(1−K)z − 1

]
= 0. (10.17)

Thus, (10.17) indicates that the first-order phase lock loop can track
and decay to zero for any phase difference between a constant θ0 and
an estimated θ̂k.

The first-order phase lock loop usually suffers a constant phase
offset. To illustrate this effect, we assume that the input phase has
frequency offset introduced at time k = 0,

θk = ω0Tkuk, k ≥ 0, (10.18)

where ω0 is the frequency offset and 1/T is the sampling rate. The
z-transform of (10.18) is given by

Θ(z) =
ω0Tz

(z − 1)2
. (10.19)

Then, substituting (10.19) and (10.9) into (10.8), the transform form
of the phase error Φ(z) can be obtained in the following,

Φ(z) =
(1− z)Θ(z)

1− z + CvcoH(z)z
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=
(

1− z
1− z +Kz

) [
ω0Tz

(z − 1)2

]

=
ω0Tz

[1− (1−K)z](1− z) . (10.20)

Therefore, the steady-state phase error ξφk for the frequency offset
ω0 case can also be computed by the final value theorem

ξφk = lim
z→1

(1− z)Φ(z)

= lim
z→1

(1− z)ω0Tz

[1− (1−K)z](1− z)
=

ω0T

K
. (10.21)

As can be seen, (10.21) shows that the first-order phase lock loop
cannot track a nonzero frequency offset ω0T so that the phase error
will not decay to zero. IfK satisfies the condition in (10.11), for very
small frequency offsets, the first-order phase lock loop will incur
only a very small distortion of the phase error. After the first-order
phase lock loop has converged, the magnitude of the frequency offset
|ω0| must be less than Kπ/T to focus the phase within the linear
phase of the modulo-2π phase detector, thereby avoiding cycle slips.
Further note that either increasing K at fixed sampling rate 1/T or
increasing the sampling rate 1/T will increase the bandwidth of the
first-order phase lock loop. As a result, the phase lock loop filter will
filter less noise on the incoming phase, resulting in a lower quality
estimate of the phase.

Second-Order Discrete-Time PLL

In a second-order discrete-time PLL, the phase lock loop filter has a
z-transform form,

CvcoH(z) = α +
β

1− z−1
, (10.22)

where α and β are the proportional and integral step sizes,
respectively. In other words, the offset estimate is found by
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Figure 10.2 A block diagram of the second-order discrete-time
phase locked loop structure.

accumulating the output of the phase lock loop filter with transfer
function in (10.22) and input estimated phase error θk. A block
diagram of the second-order discrete-time PLL structure is shown
in Figure 10.2.

Substituting (10.22) into (10.7) yields

Θ̂(z)

Θ(z)
=

(α+ β)z2 − αz
(α+ β − 1)z2 + (2− α)z − 1

. (10.23)

Consider the case if β = 0; thus, (10.23) reduces to the first-order
discrete-time PLL in (10.10). Equation (10.23) has poles

z1,2 =
α− 2±

√
(2− α)2 + 4(α+ β − 1)

2(α + β − 1)
. (10.24)

For stability, α and β must satisfy the following conditions: 0 ≤ α <
2 and β > 1.

The second-order phase lock loop can track for any frequency
offset between θk and the estimated θ̂k. To illustrate this effect, we
again assume that the input phase has a frequency offset introduced
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at time k = 0,
θk = ω0Tkuk, k ≥ 0, (10.25)

where ω0 is the frequency offset and 1/T is the sampling rate. The
z-transform of (10.25) is

Θ(z) =
ω0Tz

(z − 1)2
. (10.26)

Thus, substituting (10.26) and (10.22) into (10.8), the transform
form of the phase error Φ(z) for the second-order phase lock loop is
obtained by

Φ(z) =
(1− z)Θ(z)

1− z + CvcoH(z)z

=

(
1− z

1− z + [α+ β/(1− z−1)]z

)[
ω0Tz

(z − 1)2

]

=
ω0Tz

1− (2− α)z − (α+ β − 1)z2
. (10.27)

Therefore, the steady-state phase error ξφk of the second-order
discrete-time PLL for the frequency offset ω0 can be calculated by
the final value theorem

ξφk = lim
z→1

(1− z)Φ(z)

= lim
z→1

[
(1− z)ω0Tz

1− (2− α)z − (α+ β − 1)z2

]
= 0. (10.28)

As can be seen, as long as the parameters of α and β are selected
within the stability ranges, the second-order phase lock loop should
be able to track any constant phase or frequency offset. However,
choosing α and β to reject noise, based on making the second-
order phase lock loop too sharp or narrow in bandwidth, may make
its initial convergence to steady-state slow. Therefore, a trade-off
analysis is needed to evaluate the second-order discrete-time PLL in
any particular application.
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10.2.2 Phase Detector

A wide variety of phase detectors, ranging from simple to
complicated, exist. Much design effort is needed in the design of
phase detectors for carrier and time recovery. In this section, we
discuss some variations of phase detectors based on discrete-time
domain operation.

Ideal and Modulo-2π Phase Detectors

A device that can calculate exactly the difference between the input
phase θk and the estimated phase θ̂k at the time index k is referred to
as an ideal discrete-time phase detector, φk = θk − θ̂k.

Given the discrete-time input signal s[k] in (10.1) and the
estimated discrete-time output signal v[k] in (10.3) from the
discrete-time VCO, a seemingly straightforward method to compute
the phase error θk would then be to compute θk and θ̂k, according to

θk = ± arccos{s[k]} − ωvkT, (10.29)

and
θ̂k = ± arccos{v[k]} − ωvkT. (10.30)

Hence, the phase error is φk = θk − θ̂k. However, for a reasonable
implementation of the arccos function, angles can only be produced
between 0 and π in such a way that φk would then always lie between
−π and π. Any difference of magnitude greater than π would
be therefore effectively computed through a modulo operation of
(−π, π). As a result, the arccos function can be implemented by
using a look-up table. We refer to the arccos function look-up
table implementation of the phase detector as a modulo-2π phase
detector.

The comparison of characteristics of the ideal phase detector
and the modulo-2π phase detector is shown in Figure 10.3. The
large difference will not be shown in the phase error even if the
phase difference does exceed |π| in magnitude. This phenomenon
is known as a cycle slip in which the phase detection missed or
added an entire period of the input sinusoid. In most applications,
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Ideal phase detector 

Modulo 2πdetector 

θ − θ

φ

π 2π-2π -π

Figure 10.3 Comparison characteristics of ideal and modulo-2π
phase detectors.

this is an unwelcome phenomenon. Thus, one tries to ensure that
the phase error φk does not exceed π after the modulo-2π phase
detector has converged. Therefore, the phase error φk should be kept
as close to zero as possible so that the modulo-2π phase detector can
be operated correctly under the necessary condition of small phase
error.

Demodulation Phase Detector

A block diagram of a demodulation phase detector is shown in
Figure 10.4. The discrete-time input signal is given by

s[n] = As cos(ωvkT + θk), (10.31)

and the estimated discrete-time output signal from the discrete-time
VCO is given by

ŝ[n] = Avco sin(ωvkT + θ̂k). (10.32)

The digital lowpass filter h[n] is cascaded with the phase error
processing in the phase lock loop. The phase error φk is obtained
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Figure 10.4 A block diagram of a demodulation phase detector.

by

φk = h[n] ∗
[
Avco sin(ωvkT + θ̂k)As cos(ωvkT + θk)

]
, (10.33)

where “∗” is a convolution operation.
Since sin(x) cos(y) = 1

2
[sin(x+ y)+ sin(x− y)], (10.33) can be

rewritten as

φk =
AvcoAs

2
h[n] ∗

[
sin(2ωvkT + θk + θ̂k) + sin(θk − θ̂k)

]
.

(10.34)
Assuming the first term is removed by the digital lowpass filter h[n],
the phase error φk is obtained

φk =
AvcoAs

2
sin(θk − θ̂k). (10.35)

If φk is small, the generation of the phase error does not require the
arcsin function. Since sin(x) ≈ x when x is very small, when θk is
close to θ̂k, (10.35) is approximately equal to

φk ≈ AvcoAs

2
(θk − θ̂k), (10.36)

which is an approximately linear characteristic. Now, φk is a much
more reasonable estimate of the phase error.
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10.2.3 Discrete-Time VCO

An ideal discrete-time VCO has a discrete-time output sinusoid with
an estimated phase θ̂k that is determined by using a discrete-time
input error signal e[k] approximately according to

θ̂k+1 = θ̂k + Cvcoe[k], (10.37)

where Cvco is a constant. In other words, the discrete-time VCO
regenerates the local phase information from the processed phase
error φk in order to match the incoming phase θk. Thus, the phase
reconstruction attempts to force

φk = θk − θ̂k =⇒ 0, (10.38)

by producing a local phase θ̂k so that the estimated discrete-time
output signal v[n] equals the discrete-time input signal s[n] as shown
in Figure 10.1.

According to (10.37), since the e[n] is the discrete-time signal,
the discrete-time VCO can be implemented by using a look-up
table and adder whose output is used to generate the discrete-time
sinusoidal signal v[n] in (10.3). Such an implementation of the
discrete-time VCO is often referred to as an NCO in the literature.

When the discrete-time VCO output frequency is not equal to
the input frequency, but is related by a fixed rational multiple, it is
possible to design a discrete-time PLL to maintain phase lock. Thus,
when the discrete-time PLL is phase locked as

Fin
M

=
Fout
N
, (10.39)

then

Fout =
N

M
Fin, (10.40)

where Fin is the input frequency and Fout is the output frequency and
M and N are integers as shown in Figure 10.5. Thus, the frequency
synthesizer produces an output signal with frequency Fout equal to
N
M

times the input frequency Fin. The discrete-time PLL is called a
frequency synthesizer.



Discrete-Time Synchronization 401

Phase
detector

Discrete-time
loop filter H(z)

Discrete-time
VCO

s[k]

e[k]

φ[k]

v[k]

N..

M..
Input
Freq Fin Output

Freq 

Fout

Figure 10.5 A discrete-time PLL-based frequency synthesizer.

Example 10.1

Assuming that an input clock is at 49.408 MHz, how can we select
M and N such that an output clock is at 65.536 MHz for a discrete-
time PLL-based frequency synthesizer? Since Fin = 49,408 kHz,

Fout = 49,408
N

M
. (10.41)

In order to generate Fout = 65.536 MHz, we could simply set
M = 49,408 and N = 65,536, and the inputs to the phase detector
would be on the order of 1 kHz. Thus, the discrete-time loop filter
H(z) has to have sufficiently narrow bandwidth to remove this
fundamental and its harmonics. In addition, the narrow bandwidth
means that the discrete-time PLL-based frequency synthesizer
responds slowly to changing conditions. On the other hand, if we
note that 49,408 = 193×256 and 65,536 = 256 × 256, then we can
useM = 193 andN = 256. This results in inputs to the phase detector
on the order of 256 kHz, so the bandwidth of the discrete-time
loop filter H(z) can be made larger. Thus, the design significantly
improves the discrete-time loop filter H(z) specifications.
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Figure 10.6 (a) Rectangular pulse and (b) its autocorrelation
function.

10.3 Timing Recovery

Symbol timing or synchronization is concerned with the problem of
determining a clock for periodically sampling the output of matched
filters for the purpose of recovering the transmitted information.
One method for the solution of the problem is to transmit a
clock signal along with the information signal in multiplexed
form to the digital communications receiver. Another method is to
derive the clock signal from the information signal at the digital
communications receiver. In the digital communications receiver,
an analog waveform must be sampled, usually by using an analog-
to-digital (A/D) converter. Sampling at the right times is critical to
achieving good overall performance for the digital communications
receiver. Such a process of synchronizing the sampler (or A/D
converter) with the pulses of the received analog waveform, along
with the PLL, is known as timing recovery.

10.3.1 Early-Late Gate Synchronizer

Suppose that an analog signal pulse s(t), 0 ≤ t ≤ T , is a rectangular
pulse as shown in Figure 10.6(a). The autocorrelation function of
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the rectangular pulse by passing the rectangular pulse through its
matched filter is a triangular pulse, as shown in Figure 10.6(b). In
other words, when the analog signal pulse s(t) is passed through a
filter matched to it, the output of the filter has a maximum value of
t = T . Thus, the proper time is to sample the output of the matched
filter for a maximum value output at t = T , which is the peak of
the autocorrelation function. However, in practice, if we sample the
output of the matched filter early at t = T − δ or late at t = T + δ,
the sampled values will be smaller than the peak value at t = T .
Note that the autocorrelation function is even symmetric relative to
t = T . Hence, the values of the autocorrelation function at t = T−δ
and t = T + δ are equal in magnitude, that is,

|φss(T−δ)| = |φss(T+δ)|. (10.42)

This is to say that the difference in the magnitude of these sampled
values is zero. Therefore, in this situation, the proper time to sample
is at the midpoint between t = T − δ and t = T + δ, for example,
at t = T . This simple condition is the fundamental theory for
a commonly used synchronizer referred to as an early-late gate
synchronizer.

A block diagram of the early-late gate synchronizer, as shown in
Figure 10.7, is realized by using autocorrelators, A/D converters,
square-law devices (|s1[n]|2 and |s2[n]|2), and discrete-time PLL.
The received signal s(t) is multiplied by using a carrier signal,

c(t) = cos(2πfct+ φ̂), (10.43)

to translate in frequency to lowpass and passed through two
autocorrelators. The discrete-time error signal e[n] between the
outputs of two autocorrelators should be zero because the
autocorrelation function of any signal pulse is even symmetric. Thus,
if the sampling timing is off at an optimal position, the discrete-time
error signal e[n] will not be zero,

e[n] = r1[n]− r2[n] �= 0. (10.44)
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Figure 10.7 A block diagram of an early-late gate synchronizer,
where “DT” means discrete-time.

In order to smooth the error signal e[n], it is passed through a
discrete-time lowpass loop filter H(z), whose output is the control
voltage for a discrete-time VCO. The output of the discrete-time
VCO is used to control a symbol waveform generator that feeds
to the autocorrelators. In addition, the clock from the discrete-time
VCO is advanced or delayed by δ and these clock signals then
are used to control the A/D converters to sample the outputs of
the autocorrelators. Note that there is no need to use the symbol
waveform generator if the received signal s(t) is a rectangular pulse.
In this case, the autocorrelators become integrate-and-dump filters.
The early-late gate synchronizer is especially useful for phase-shift
keying (PSK) and pulse amplitude modulation (PAM) signals.
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Figure 10.8 A block diagram of an early-late gate synchronizer, an
alternative form.

A similar realization of the early-late gate synchronizer that is
somewhat easier to implement in the discrete-time domain is shown
in Figure 10.8. In this case, the received signal s(t) is sampled two
extra times by using A/D converters, once prior to the sampling
instant by an amount of δ

2
and once after the sampling instant by

the same amount of δ
2
. The error signal e[n], e[n] = r1[n] − r2[n],

is passed through the discrete-time loop filter whose output is used
to control the discrete-time VCO. The clock from the discrete-time
VCO is advanced or delayed by δ

2
, and these clock signals are then

used to control the A/D converters of sampling the received signal
s(t). The sampling instant for the A/D converters is adjusted until
the two extra samples are equal.
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Figure 10.9 A block diagram of the bandedge timing recovery.

10.3.2 Bandedge Timing Recovery

For quadrature modulated data transmission, one widely used
method that does not depend on knowing a correct carrier frequency
is the so-called bandedge timing recovery, as shown in Figure 10.9.
In this case, the two bandpass filters are narrowband and identical.
If the correct timing phase is selected, an approximate maximum of
the energy should be within the two bandedges. The outputs of the
two narrowband bandpass filters are then multiplied to produce the
maximum value. This means that the output of the multiplier should
be a real value. Thus, at this timing phase, the discrete-time PLL uses
the error signal e[n] from the samples of the imaginary part of the
multiplier output for the phase-lock loop, which is used to adjust the
timing phase for the A/D converter. Although the carrier frequency
is assumed to be known in the design of the narrowband bandpass
filters, this information has little effect as long as the carrier is
close to the correct value. This is typically true in most quadrature
modulated data transmission methods.
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Figure 10.10 A block diagram of the decision-directed timing
recovery.

10.3.3 Decision-Directed Timing Recovery

The basic idea of decision-directed timing recovery is to minimize
the mean square error (MSE) over the sampling time phase, between
a digital matched filter output and a decision output. Decision-
directed timing recovery is also referred to as the minimum mean
square error (MMSE) timing recovery. Figure 10.10 shows a block
diagram of the decision-directed timing recovery. In this figure, the
received signal r(t) is assumed to be the baseband signal and is
sampled at times kT +τk, where T is the symbol interval and thus τk
represents the timing error in the kth sample. After the digital filter
and equalizer processing, the output of the kth sample isQ[kT +τk],
which is dependent on the timing phase. Ideally, τk is a constant that
corresponds to the best sampling phase. However, in practice, τk has
a time variation, which is referred to as the timing jitter. In this case,
the MMSE timing recovery adjusts τk to minimize MSE between the
equalizer output Q[kT + τk] and the decision output Ŝk at the point
“a” or the correct symbols Sk (such as a training sequence during
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a training mode) at the point “b.” That is, to minimize the expected
squared error between the input to the decision Q[kT + τk] and the
output of the decision Ŝk,

ξ(τk) = E{|Ek(τk)|2}
= E{|Q[kT + τk]− Ŝk|2}, (10.45)

where Q[kT + τk] is the equalizer output at sampling time k
corresponding to sampling phase τk. In order to minimize the
expected square error, the update uses a stochastic-gradient estimate
of τ in the opposite direction of the unaveraged derivative of ξ(τk)
with respect to τk. The derivative is as follows:

dξ(τk)

dτk
=

dE{|Ek(τk)|2}
dτk

= E

[
d|Ek(τk)|2
dτk

]

= 2E

{
Re

[
E∗
k(τk)

dEk(τk)

dτk

]}
. (10.46)

Note that Ŝk does not depend on τk in (10.45). Thus, we obtain

dEk(τk)

dτk
=
dQ[kT + τk]

dτk
. (10.47)

Hence, we use the stochastic gradient algorithm by adjusting the
timing phase in the direction opposite the gradient,

τk+1 = τk − β
{

Re

[
E∗
k(τk)

dQ[kT + τk]

dτk

]}

= τk − β
{

Re

[
(Q[kT + τk]− Ŝk)∗dQ[kT + τk]

dτk

]}
,

(10.48)

where β is a step size that is used to empirically ensure stability,
minimize timing jitter, and ensure adequate tracking ability. As a
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Figure 10.11 The detailed structure of the timing error block in the
decision-directed timing recovery design.

result, the block diagram of the timing error in Figure 10.10 can be
redrawn in detail as shown in Figure 10.11.

Further note that the stochastic gradient algorithm in (10.48)
does not guarantee to converge to the optimal timing phase. This
is because Ek(τk) is not a linear function of τk. This indicates that
|Ek(τk)|2 is not a quadratic function of τk.

Using an approximate MMSE technique, we can express the
discrete-time derivative as follows:

dQ[kT + τk]

dτk
= Q[kT + τk] ∗ h[k], (10.49)

where “∗” is a convolutional operation, and h[n] is a discrete-time
FIR filter, with impulse response h[k] ≈ (δk+1 − δk−1)/T . Thus, we
obtain an approximation

dQ[kT + τk]

dτk
≈ Q[(k + 1)T + τk+1]−Q[(k − 1)T + τk−1]

T
= hτk [τk]. (10.50)

Substituting (10.50) into (10.48), adjusting the timing phase in
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the discrete-time domain is approximately given by

τk+1 = τk − βzk[τk], (10.51)

where

zk[τk] = Re
{
(Q[kT + τk]− Ŝk)∗hτk [τk]

}
. (10.52)

The discrete-time derivative can also be found by approximately
taking each sample either one sample ahead or one sample behind
the current estimate τk of the timing phase. By alternating the two
phases, the difference between the error at even samples and the
error at odd samples is an indication of the derivative of the error
with respect to the timing phase. This leads to a popular timing error
detector (TED) that generates the timing error signal ε̂ developed by
Mueller and Müller [6],

ε̂ = Q[kT + τk]Ŝk−1 −Q[(k − 1)T + τk−1]Ŝk. (10.53)

Note that Ŝk in (10.53) is the output of the decision device as
shown in Figure 10.10. The decision device that generates these
decisions Ŝk will invariably introduce a processing delay. Therefore,
the performance of the decision-directed PLL depends critically
on two factors: (1) reliability of the decisions, and (2) processing
delay of the decision device. The reliability of the decision device
is so important because incorrect decisions will drive the timing
estimates away from their optimal values. On the other hand, the
importance of delay is also obvious since a processing delay in a
feedback loop of the discrete-time loop filter in (10.22) can lead
to instability. Increasing the delay moves the closed-loop poles
closer to the unit circle so that the parameter α in (10.22) must be
decreased to maintain stability. However, decreasing α makes the
system less agile to time-varying timing offsets. Therefore, there is
a fundamental trade-off between these two parameters.

10.3.4 Multirate Timing Recovery

A timing recovery that is operated based on multirate signal
processing is called a multirate timing recovery. Figure 10.12
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Figure 10.12 Multirate timing recovery: (a) hybrid and (b) digital
methods.

shows a basic block diagram of multirate timing recovery. The
implementation of communication systems using digital techniques
introduces an oversampling of the analog signal, which is a
topic of intense present activity. In some circumstances, the
oversampling can be synchronized to the symbol rate of the
incoming signal as shown in Figure 10.12(a). In this case, the
timing phase can be recovered in a synchronous digital system in
much the same way as is familiar from analog practice. In other
circumstances, the oversampling cannot be synchronized to the
incoming signal. Figure 10.12(b) shows an asynchronized structure
of timing recovery with oversampling according to Gardner [7] and
Erup et al. [8]. These examples of the asynchronized structure of
timing recovery include digital signal processing of asynchronized
frequency-multiplexed signals, asynchronized digital capture and
subsequent postprocessing of a signal, or avoiding the problem of
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Figure 10.13 An interpolation-based multirate timing recovery.

detection delay processing. Instead of using the discrete-time VCO
of the discrete-time PLL to control the sampling times, we could
instead sample asynchronously and uniformly with a free-running
clock rate at a rate fast enough to avoid aliasing. This may be
the baud rate, a few percent higher than the baud rate, twice the
baud rate, or oversampling the baud rate, depending on the amount
of excess bandwidth and the severity of the worst-case frequency
offset. In any case, for one reason or another, the oversampling clock
must remain independent of the symbol timing in the asynchronous
configuration.

Figure 10.13 shows an interpolation-based multirate timing
recovery. Assume that s(t) is a bandlimited analog signal, such as a
symbol pulse with uniformly spaced at intervals T . The bandlimited
analog signal s(t) can be sampled at a sampling frequency rate Fs =
1
Ts

without aliasing by using an A/D converter. The output of the
A/D converter is x[n] = s[nTs], which is taken at uniform intervals
Ts. Also assume that the ratio of T

Ts
is irrational because the symbol

timing is derived from a source that is independent of the sampling
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clock. The discrete-time sampled signals x[n] are then applied to the
interpolator, which computes interpolations y[n] = y[nTi] at time
Ti, where Ti = T

K
and K is a small integer.

The TED is characterized by using a decision-directed approach
based on the number samples y[n] per symbol and estimated samples
ŷ[n] after the slice as shown in Figure 10.13. There are different TED
approaches as follows:

one-sample Mueller and Müller TED [6]:

e[n] = ŷ[n]y[n− 1]− y[n]ŷ[n− 1]. (10.54)

two-sample and two-point Gardner TED [9]:

e[n] = (y[n]− y[n− 2])ŷ[n− 1]. (10.55)

two-sample crossing-point Gardner TED [9]:

e[n] = (ŷ[n]− ŷ[n− 2])y[n− 1]. (10.56)

In order to adjust the timing for interpolation, a fractional
interval µk must be calculated based on the output η[n] of the NCO
at the nth clock tick. The NCO is controlled by a discrete-time input
signal w[n]. The NCO difference equation between η[n] and w[n] is
given by [7]

η[n] = (η[n− 1]− w[n− 1])mod-1. (10.57)

Equation (10.57) is a modulo-1 operation and denotes the NCO. The
relationship between the output signal µk and the input signal η[n]
at the kth interpolation time is given by

µkTs
η[nk]

=
(1− µk)Ts

1− µ[nk + 1]
. (10.58)

Then, µk can be obtained by solving (10.58) along with (10.57)

µk =
η[nk]

1− η[nk + 1] + η[nk]

=
η[nk]

w[nk]
. (10.59)
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Thus, (10.59) indicates that an estimate of µk can be obtained by
performing a division of η[nk] by w[nk], which are both available
from the input and output of the NCO. Furthermore, to avoid
division, note that a period of the NCO is

Ti =
Ts
w[n]

, (10.60)

which leads to a normalized frequency ratio

1

w[nk]
=
Ti
Ts

= α0. (10.61)

Therefore, the fractional interval in (10.59) can be approximately
obtained by

µk = α0η[nk], (10.62)

where α0 is uniformly distributed. If α0 is too large, then a first-order
correction equation can be used

µk = α0η[nk](2− α0w[nk − 1]). (10.63)

In this method, timing error cannot be accumulated because of
multiplying by using α0 in (10.62) instead of dividing by using
w[n] in (10.59). Thus, the discrete-time feedback loop filter H(z)
in Figure 10.13 is able to remove any constant error.

10.3.5 Polyphase Filter Bank Timing Recovery

In Section 10.3.4, we introduced the multirate timing recovery based
on the multirate signal processing techniques. The multirate signal
processing techniques offer flexibility for symbol timing recovery
and synchronization. Using multirate approaches to symbol
timing recovery and synchronization leads to straightforward
implementation, especially in asynchronous modes. In this section,
we extend the multirate signal processing techniques into multirate
filtering based on polyphase filtering, thereby leading to the
efficiently parallel architecture of polyphase filter bank timing
recovery.
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For an interpolation filter with upsampling by L, a direct
implementation of the polyphase filter bank for the interpolation
filter and upsampling of L requires the operation of the L polyphase
filters, which operate in efficiently parallel architecture. However,
for timing recovery, we only need to select a single stage filter with
L filter coefficients out of the L polyphase filters under control
of the discrete-time PLL. Harris and Rice [10] have proposed
several approaches based on the polyphase filter bank for timing
recovery. The polyphase filter bank is applied to symbol timing
recovery by using a polyphase decomposition of the matched filter to
realize interpolation instead of a separate polynomial interpolation
filter. Thus, interpolation and matched filtering are integrated into a
single filtering operation. The polyphase filter bank incorporates the
timing phase detector in a very efficient manner, thereby making
the polyphase filter bank timing recovery an especially attractive
approach for DSP and FPGA implementation platforms.

Figure 10.14 shows an early-late gate approach for a timing
phase error detector by using a polyphase filter bank implementa-
tion. The interpolation filters corresponding to the early and late
gate approaches are the polyphase filters Hk−1(z) and Hk+1(z) at
the polyphase segments (k − 1) and (k + 1). The received signal
r[n] is filtered with the polyphase filters Hk−1(z) and Hk+1(z) that
are passed through absolute value functions to form corresponding
output signals p[n] and q[n], respectively, where

p[n] = |r[n] ∗ hk−1[n]|
= |r[n] ∗ h[Ln+ k − 1]|, (10.64)

and

q[n] = |r[n] ∗ hk+1[n]|
= |r[n] ∗ h[Ln+ k + 1]|. (10.65)

Thus, the timing phase error detector e[n] can be formed as follows:

e[n] = q[n]− p[n]
= |r[n] ∗ h[Ln+ k + 1]| − |r[n] ∗ h[Ln+ k − 1]|.

(10.66)
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Figure 10.14 An early-late gate approach for a timing error phase
detector based on a polyphase filter bank.

Equation (10.66) is passed through a discrete-time PLL where
output will control a filter bank index control for timing phase
selection.

Figure 10.15 shows another maximum likelihood approach for
timing phase error detectors by using two polyphase filters Hk−1(z)
and Hk+1(z) to compute the discrete-time derivative. The discrete-
time derivative d[n] is formed by using the output p1[n] from the
polyphase filter Hk−1(z) and the output p2[n] from the polyphase
filter Hk−2(z),

d[n] = p2[n]− p1[n]

= r[n] ∗ hk+1[n]− r[n] ∗ hk−1[n]

= r[n] ∗ (hk+1[n]− hk−1[n])
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Figure 10.15 A maximum likelihood timing phase error detector
based on a polyphase filter bank.

= r[n] ∗ (h[Ln+ k + 1]− h[Ln+ k − 1]) . (10.67)

Then, the maximum likelihood timing phase error detector e[n] is
obtained by

e[n] = d[n]q[n]

= r[n] ∗ (h[Ln+ k + 1]− h[Ln+ k − 1]) ·
(r[n] ∗ h[Ln+ k])

= (r[n])2 ∗ (h[Ln+ k + 1]− h[Ln+ k − 1]) ∗ h[Ln+ k].

(10.68)

Equation (10.68) is passed through the discrete-time PLL to control
the filter bank index control for time phase selection.
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10.3.6 Multicarrier Modulation Timing Recovery

Multicarrier modulation, including DMT and OFDM, has shown
great interest with applications in wireless and wireline personal
broadband communication systems, which are expected to provide
ubiquitous, high-quality, and high-rate multimedia transmission.
This is because of its various advantages in the severe effects of
frequency selective fading wireless channels and in the severe effects
of near-end crosstalk (NEXT) and far-end crosstalk (FEXT) on
wireline channels. However, the multicarrier modulation (DMT and
OFDM) systems are vulnerable to synchronization error, including
carrier frequency offsets and symbol timing recovery. The carrier
frequency offsets are usually caused by the inherent instabilities of
the transmitter and receiver carrier frequency oscillators. They can
lead to severe multicarrier modulation system degradation because
of intercarrier interference (ICI) [11]. On the other hand, symbol
timing recovery must be achieved in order to avoid ISI [12].

Timing recovery for the multicarrier modulation systems can
be divided into symbol synchronization and sampling clock
synchronization. The purpose of symbol synchronization is to find
the correct position for the fast Fourier transform (FFT) frame that is
needed to satisfy the synchronization requirement in coherent DMT
and OFDM systems. In contrast to the symbol synchronization, the
purpose of sampling clock synchronization is to align the receiver
sampling clock frequency to that of the transmitter. The sampling
clock frequency error can not only cause ICI but also can result in
a drift in the symbol timing and even further worsen the symbol
synchronization.

Multicarrier modulation timing recovery has been extensively
reported based on the symbol time offset [13], timing error [14],
and frequency synchronization [15]. Sands and Jacobsen [16] have
researched a pilotless timing recovery for multicarrier modulation,
for which we focus on introducing these results in the following
sections.
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The Effect of Sampling Shift

Assume that the system sampling rate is Fs and the length of the
cyclic prefix is v samples. Also let the number of subchannels be
N/2 where N is a relatively large number. Then, each transmitted
symbol Xk is composed of N/2 complex variables and in the time
domain has a duration of N+v

Fs
second. The ith subcarrier has a

frequency fi = iFs
N

for i = 0, 1, · · · , N
2
− 1. Considering the system

in the frequency domain, if a sequence of subsymbols is transmitted
over a channel with a transfer function H(z) with a combined noise
and interference ni,k, the received subsymbols from the channel
output are

Yi,k = Xi,kH(f)|f= iFs
N

+ ni,k

= Xi,kHi + ni,k. (10.69)

If the sampling frequency error is ∆f Hz, the fractional frequency
error is defined as ε = ∆f

Fs
. The sampling instant shifts by ε

Fs
second

in the time domain for each sample. This leads to shift in time (N+v)ε
Fs

for each symbol. Therefore, for the kth symbol, the sampling instant
shift is k(N+v)ε

Fs
. Using the time-shift theorem of Fourier theory given

by [17], which states that a time shift τ has a phase rotation in the
frequency domain of 2πτf , the ith subcarrier during the kth symbol
is accordingly rotated by an angle

φi,k = 2πτf

=
2πτiFs
N

=
2πiεk(N + v)

N
. (10.70)

Thus, the effect of the phase shift on the received subsymbols from
the channel output is expressed as follows:

Yi,k = Xi,kHie
−j[ 2πiεk(N+v)

N ] + ni,k, (10.71)

where the phase shift on the noise term in (10.71) is neglected.
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The Estimate of Frequency Error

Assume that one symbol Xp is transmitted repeatedly during an
acquisition stage. It is not necessary to know the exact signal at the
receiver. However, it is preferred that its power spectrum is a uniform
distribution over the used signal frequency band. Further assume
that the channel insertion loss remains constant and a frequency
rotation on any tone is entirely due to frequency error from symbol
to symbol.

It is also assumed that the noise terms in (10.71) are
uncorrelated, E{ni,kni,k−1} = 0, and the noise term has zero mean,
E{ni,k} = 0. Thus, the estimate of the frequency error can be
obtained from any subchannel by calculating the expected value of
the product of the current subsymbol Yi,k and the complex conjugate
of the previous subsymbol Y ∗

i,k−1. Under these assumptions, we
obtain the expected value E{Yi,kY ∗

i,k−1} as follows:

E{Yi,kY ∗
i,k−1} = E

{[
XpHie

−j
2πiεk(N+v)

N + ni,k

]
·[

XpHie
j

2πiε(k−1)(N+v)
N + ni,k−1

]}
= |Xp|2|Hi|2e−j

2πiε(N+v)
N

= |Xp|2|Hi|2
{
cos

[
2πiε(N + v)

N

]

+ j sin

[
2πiε(N + v)

N

]}
. (10.72)

Since the acquisition symbol Xp is repeatly transmitted, a frame
misalignment of m samples can be treated as a time shift of m

Fs
second. In other words, for the ith subcarrier in the frequency
domain, this is a constant phase rotation as follows:

2πfim

Fs
=

2πim

N
. (10.73)

In order to eliminate the frequency error in (10.72), the terms of Yi,k
and Y ∗

i,k−1 would be multiplied by using e−j2πim/N and ej2πim/N ,
respectively. Thereby, the effect in (10.72) disappears.
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Example 10.2

In this example, for a DMT system in VDSL applications, the
expected frequency error ε is less than 100 ppm (10−4). Assume that
the DMT system has 512 subcarriers and the cyclic prefix is about
40 samples. Thus, for the ith subcarrier during the kth symbol, the
average rotated phase shift is obtained by

2πiε(N + v)

N
=

2π × 255× 10−4 × (512 + 40)

512
< 0.1727.

(10.74)
Given the small phase shift in (10.74), using (10.72) obtains

E{Re(Yi,kY
∗
i,k−1)} ≈ |Xp|2|Hi|2 (10.75)

and

E{Yi,kY ∗
i,k−1} ≈ |Xp|2|Hi|2

[
2πiε(N + v)

N

]
. (10.76)

Based on (10.72), we also note that the phase rotation caused by the
frequency error is proportional to the subchannel frequency index i.
Thus, each subchannel can provide an estimate given by Sands and
Jacobsen [16] as follows:

ε̂i,k =
N [Im(Yi,kY

∗
i,k−1)]

2πiε(N + v)Re(Yi,kY ∗
i,k−1)

, (10.77)

where ε̂i,k is the estimate of the fractional frequency error of the
sampling clock at the ith subcarrier.

Assume that the channel transfer functionHi and noise variance
σ2
i of each subchannel are known or can be estimated. If the

transmission power on each subchannel is Pt, the signal-to-noise
ratio (SNR) of the subchannels is given by

SNRi =
Pt|Hi|2
σ2
i

. (10.78)
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The radial component of the noise will have no effect on the
phase angle of Yi,k. The noise in the tangential direction is about σ2

i

2
,

and the angular noise variance is obtained by

σ2
φ,i =

σ2
i

2Pt|Hi|2

=
1

2SNRi

, (radian2). (10.79)

Translating (10.79) into the frequency error by using (10.70) is given
by

σ2
ε,i =

N2

8[πi(N + v)]2SNRi

. (10.80)

To estimate the frequency error, we need to determine a weighted
sum of these estimates. Using the method of MSE, optimal weights
based on (10.80) are obtained by [16],

wi,opt =
1

σ2
ε,i

∑
i

1
σ2
ε,i

=
i2SNRi∑
i i2SNRi

, (10.81)

and the corresponding minimum error variance ξ2min of the estimate
is given by

ξ2min =
1∑
i

1
σ2
ε,i

=
1

8

[
N

π(N + v)

]2 (
1∑

i i2SNRi

)
. (10.82)

Therefore, the estimate of the frequency error is obtained by

ε̂k =
∑
i

wi,optε̂i,k

=

[
N

2π(N + v)

] [∑
i

iSNRiIm(Yi,kY
∗
i,k−1)

Re(Yi,kY ∗
i,k−1)

](
1∑

i i2SNRi

)
.

(10.83)
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Assuming knowledge of the subchannel SNRi, (10.81), (10.82),
and (10.83) provide the best performance.

The frequency estimate of (10.83) can be used as the input to a
discrete-time loop filter, for example, with the transfer function in
the z-domain given by

H(z) =
Kz−1

1− z−1

(
1 +

βz−1

1− z−1

)
, (10.84)

where K is a constant of loop filter gain of the system, which is
related to the filter bandwidth and settle time, and β is used to control
the damping of the step response. Thus, PLL transient behavior can
be controlled during acquisition.

The Analysis of Timing Jitter

The rotation error will be susceptible to the constellation points,
especially at the edges of square or cross constellations. This is
because the angular separation between points is the smallest. A
square constellation with loading bi bits with minimum separation of
points has edges of distance 2bi/2−1 from the axes [16]. The angular
separation between points at the edges of a square constellation is
about 2

2�bi/2�−1
radians, where )·* denotes the ceiling function.

Note that the sampling phase error τ leads to a phase rotation
at fi of 2πfiτ ; accordingly, the minimum angular separation of
each constellation is reduced by this amount. Assume that, in DMT
and OFDM, bits are loaded onto all subcarriers in use, with equal
detection SNR, and that the nominal constellation point separation
is 2. Then the detection SNR is given by

SNRdet =
22

2σ2
. (10.85)

If the sampling clock jitter is present, the minimum distance between
the constellation points is reduced and the detection SNR becomes

SNRdet−jitter =

[
2− 2πσjfi(2

�bi/2� − 1)
]2

2σ2
. (10.86)
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In order to determine the noise margin reduction, the SNR reduction
can be expressed as follows:

SNRdet−jitter

SNRdet

=
[
1− πσjfi(2�bi/2� − 1)

]2
. (10.87)

Equation (10.87) can be expressed in decibels as

+i = −10 log10

(SNRdet−jitter

SNRdet

)
= −20 log10

[
1− πσjfi(2�bi/2� − 1)

]
(dB). (10.88)

On the other hand, because of the timing jitter, the degradation can
be used to define the maximum tolerable margin reduction+max and
to establish a limit of the jitter as follows:

σj < mini

{
1− 10−�max/20

πfi(2�bi/2� − 1)

}
, (10.89)

where σj is the sampling clock jitter and fi = iFs
N

for i =
0, 1, · · · , (N/2)− 1.

10.4 Carrier Recovery

In the previous section, we derived the symbol timing recovery with-
out knowledge of the carrier frequency and phase. However, coher-
ent demodulation at the receiver requires exactly the known carrier
frequency and phase information to perform the demodulation, with
an independent timing reference.

Wireline channels, such as telephone lines, often introduce
frequency offset. The frequency offset is indistinguishable from
using a different carrier frequency. However, the symbol rate cannot
be changed from a transmitter to a receiver. This is because the
receiver can only receive exactly as many symbols per time unit as
the symbols are sent from the transmitter. Thus, the relationship of
the symbol rate to carrier frequency at the receiver is dependent on
the unknown frequency offset.
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In wireless channels, when either the transmitter or the receiver
is in motion, the carrier frequency at the receiver is subject to a
Doppler shift while the symbol timing is clearly not. Thus, the
resulting frequency offset is similar to that found in the telephone
channels [2], even though the frequency offset is more likely to be
time-varying as the velocity of the receiver changes.

Furthermore, it is also possible for a channel to introduce phase
jitter that appears as fluctuations in the phase of the carrier. Tracking
the phase jitter is necessary to ensure that the phase jitter does not
cause the performance degradation of the receiver system. Even in
the absence of frequency offset, it is still highly recommended to
derive carrier frequency and phase information independently from
the symbol timing so that the phase jitter can be tracked.

In this section, we will first assume that symbol timing is known
and then derive the carrier frequency and phase directly from the
modulated signal, with an assumption that the modulated signal is
transmitted via a suppressed carrier.

10.4.1 Carrier Phase Error

Extracting an accurate carrier phase estimate is important for a
receiver to make carrier synchronization correctly. In order to
emphasize the importance, we consider the effect of a carrier phase
error on the demodulation of PAM, QAM, and multiphase phase-
shift keying (M-PSK) signals.

Effect of the Carrier Phase Error in a PAM Signal

The demodulation of a PAM signal is given by

s(t) = A(t)[cos(2πfct+ φ)], (10.90)

where A(t) is the amplitude, fc is the carrier frequency, and φ is the
carrier phase. Correspondingly, the discrete-time PAM signal s[n]
can be obtained by using an A/D converter, sampling the continuous-
time signal s(t) at a sampling rate of Fs = 1

Ts
. We then have the

discrete-time PAM signal as follows:

s[n] = s(t)|t=nTs



426 Signal Processing in Digital Communications

= A[n][cos(2πfcnTs + φ)],

= A[n]

[
cos

(
2π
fc
Fs
n+ φ

)]
, (10.91)

where A[n] = A(t)|t=nTs . Demodulating the discrete-time PAM
signal s[n] of (10.91) by multiplying with the discrete-time carrier
reference

c[n] = c(t)|nTs
= cos(2πfcnTs + φ̂)

= cos

(
2π
fc
Fs
n+ φ̂

)
, (10.92)

we obtain the demodulation of the discrete-time PAM signal

r[n] = s[n]c[n]

=
A[n]

2

[
cos(φ− φ̂)

]
+
A[n]

2

[
cos

(
4π
fc
Fs
n+ φ+ φ̂

)]
.

(10.93)

Note that the second term of (10.93) can be eliminated by using
a discrete-time lowpass filter. Thus, filtering produces the discrete-
time demodulated PAM signal r[n] as follows:

r[n] =
A[n]

2

[
cos(φ− φ̂)

]
, (10.94)

where φ−φ̂ is called the carrier phase error. The effect of the carrier
phase error reduces the signal level in voltage and in power by the
amount of cos(φ − φ̂) and cos2(φ − φ̂), respectively. For example,
if the phase error is 15 degrees, this results in a signal power loss
of 0.30 dB. If the phase error is 30 degrees, this results in a signal
power loss of 1.25 dB.
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Effect of the Carrier Phase Error in QAM and M-PSK Signals

Discrete-time QAM and M-PSK signals can be expressed as
follows:

s[n] = A[n]

[
cos

(
2π
fc
Fs
n+ φ

)]
−B[n]

[
sin

(
2π
fc
Fs
n+ φ

)]
.

(10.95)
The modulated signal of (10.95) is demodulated by using the two
discrete-time quadrature carriers as follows:

cI [n] = cos

(
2π
fc
Fs
n+ φ̂

)
, (10.96)

and

cQ[n] = − sin

(
2π
fc
Fs
n+ φ̂

)
. (10.97)

Multiplying s[n] in (10.95) with cI [n] in (10.96) followed by using
a discrete-time lowpass filter yields the in-phase component as
follows:

yI [n] = s[n]cI [n]

=
A[n]

2

[
cos(φ− φ̂)

]
− B[n]

2

[
sin(φ− φ̂)

]
.

(10.98)

Similarly, multiplying s[n] in (10.95) with cQ[n] in (10.97) followed
by using a discrete-time lowpass filter yields the quadrature
component as follows:

yQ[n] = s[n]cQ[n]

=
A[n]

2

[
cos(φ− φ̂)

]
+
B[n]

2

[
sin(φ− φ̂)

]
.

(10.99)

Note that (10.98) and (10.99) show a much more severe effect of
phase error in the demodulation of QAM and M-PSK signal than
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Figure 10.16 An open-loop carrier recovery based on a square-law
device.

in the demodulation of a PAM signal given by (10.94). This is
because there is not only a reduction in the power of the desired
signal component by the factor of cos2(φ − φ̂) but also a crosstalk
interference from the in-phase and quadrature components. As
can be seen, a small phase error causes a large degradation in
performance since the average power levels of amplitudes A and B
are similar. Therefore, in general, the phase accuracy requirements
for QAM and M-PSK signals are much higher than those for a PAM
signal.

10.4.2 Open-Loop Carrier Recovery

In this section, we introduce an open-loop carrier recovery method
based on a squaring loop technique. Figure 10.16 shows the block
diagram of the open-loop carrier recovery by using a square-
law device. Assume that the input signal s[n] is a PAM signal
given by (10.91). Generating a carrier from the input signal s[n]
is to square the input signal (s[n])2 and to produce a frequency
component at 2ωc, where ωc = 2πfc, by using the square-law device.
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The output signal of the square-law device is given by

(s[n])2 = (A[n])2
[
cos2

(
2π
fc
Fs
n+ φ

)]

=
(A[n])2

2

[
1 + cos

(
4π
fc
Fs
n+ 2φ

)]
. (10.100)

Note that the input signal s[n] and the amplitude A[n] have a zero
mean, E{s[n]} = E{A[n]} = 0, because the input signal levels
are symmetric about zero. Also, since the PAM is a cyclostationary
stochastic process [1], the expected value of the output signal (s[n])2

of the square-law device is obtained by

E{(s[n])2} = E{(A[n])2}
2

[
1 + cos

(
4π
fc
Fs
n+ 2φ

)]
. (10.101)

Thus, from (10.101), we can clearly see that there is power at the
frequency component at 2fc (or 2ωc) that can be used to drive a
discrete-time PLL tuned to the frequency at 2fc.

Note that the effect of squaring s[n] has removed the sign
information contained in the amplitudeA[n] and then has resulted in
phase coherent frequency components at twice the carrier. As shown
in Figure 10.16, the output signal (s[n])2 of the square-law device is
passed through a discrete-time bandpass filter (BPF), which can be
designed tuned to the double-frequency term given by (10.100). If
the discrete-time input output signal p[n] of the discrete-time BPF is
the sinusoid expressed as follows:

p[n] = cos

(
4π
fc
Fs
n+ 2φ

)
, (10.102)

and the discrete-time output signal of the numerically controlled
oscillator (NCO) is

q[n] = sin

(
4π
fc
Fs
n+ 2φ̂

)
, (10.103)
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where φ̂ denotes the estimate of phase φ, the product of these two
discrete-time signals p[n] and q[n] is obtained by

e[n] = p[n]q[n]

= cos

(
4π
fc
Fs
n+ 2φ

)
sin

(
4π
fc
Fs
n+ 2φ̂

)

=
1

2
sin

[
2(φ− φ̂)

]
+

1

2
sin

(
8π
fc
Fs
n+ 2φ+ 2φ̂

)
.

(10.104)

The second term with the frequency component at 4fc of (10.104)
can be removed by using the loop filter, which is a discrete-
time lowpass filter responding to the low frequency component of
1
2
sin[2(φ − φ̂)]. Generally, this loop filter can be selected to have

a relatively simple transfer function, but a high-order discrete-time
lowpass filter can also be used if a better loop response is needed.
Thus, the discrete-time PLL can be used to further tune the accuracy
of the sinusoid. The output frequency of the discrete-time PLL is
double the desired carrier frequency and is divided by 2 to generate
the carrier frequency.

10.4.3 Carrier Recovery for Multiple Phase Signals

Consider a digital signal transmitted via an M -phase modulation of
a carrier. The discrete-time signal with an M -phase modulation has
an expression as follows:

s[n] = A[n] cos

[
2π
fc
Fs
n+ φ+

2π

M
(m− 1)

]
, (10.105)

where m = 1, 2, · · · ,M , and 2π
M
(m − 1) is the information bearing

component of the signal phase. The goal of carrier recovery is to
remove the information bearing component and then to obtain the
unmodulated carrier of cos(2π fc

Fs
n + φ). Figure 10.17 is the power

ofM carrier recovery forM -phase modulation signals.
The received signal s[n] is passed through an M th power law

device that produces the signal (s[n])M with a number of harmonics
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Figure 10.17 A power of M carrier recovery for multiple phase
signals.

of ωc. A discrete-time bandpass filter tuned to the frequency
component atMωc is able to generate the discrete-time signal p[n],

p[n] = cos

(
2πM

fc
Fs
n+Mφ

)
. (10.106)

Equation (10.106) can drive the discrete-time PLL. Also note that
the term

2π

M
(m− 1)M = 2π(m− 1) = 0, mod 2π, (10.107)

where m = 1, 2, · · · ,M . Therefore, the information of (10.107) has
been eliminated. The discrete-time output signal q[n] of the NCO is
given by

q[n] = sin

(
2πM

fc
Fs
n+Mφ̂

)
. (10.108)

Thus, the product of these two discrete-time signals p[n] and q[n]
yields

e[n] = p[n]q[n]
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= cos

(
2πM

fc
Fs
n+Mφ

)
sin

(
2πM

fc
Fs
n+Mφ̂

)

=
1

2
sin

[
M(φ− φ̂)

]
+

1

2
sin

(
2πM

fc
Fs
n+Mφ+Mφ̂

)
.

(10.109)

The loop filter is a discrete-time lowpass filter that responds only
to the first term of the low frequency component 1

2
sin

[
M(φ− φ̂)

]
and eliminates the second term of the frequency component at
Mfc. Thus, the output of the NCO is divided in frequency by
M to yield sin

(
2π fc

Fs
n+ φ̂

)
. Phase-shifting by π

2
radians yields

cos
(
2π fc

Fs
n+ φ̂

)
. Then, these components can be fed to the

demodulator for the carrier recovery of the M -phase modulation
signal.

10.4.4 Decision-Directed Carrier Recovery

Consider that a discrete-time passband PAM signal has an input to
the system in Figure 10.18:

r[k] = ej(ωckTs+θk)
∞∑

i=−∞
Aip[kTs − iTs], (10.110)

where ωc is the carrier frequency, θk is the frequency offset and phase
jitter, and p[kTs] represents a transmit filter, a linear distortion in the
channel, and a receive filter. If there is a discrete-time demodulation
image of the carrier

q[k] = e−j(ωckTs+φk), (10.111)

where φk is the receiver estimate of the carrier phase, then we obtain
the output of the phase detector

y[k] = ej(θk−φk)
∞∑

i=−∞
Aip[(k − i)Ts]. (10.112)

With any amount of noise and ISI, if the carrier recovery follows
using an equalizer, then the equalizer output should approximately
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εk

NCO

Angle measure

r[k] y[k] y[k]^

w[k]

q[k]

H(z)

Phase detector

Figure 10.18 A decision-direction carrier recovery based on
angular measurement.

satisfy the Nyquist criterion p[k] = c[k]δk, where c[k] is the real
value and greater than 0 for amplitude errors. In this case, (10.112)
can be rewritten as

y[k] = c[k]ej(θk−φk)Ak

= c[k]ejεkAk, (10.113)

where εk is the phase errors, which are due to noise, ISI, phase jitter,
and frequency offset.

Given (10.113), the phase errors can be obtained by [2]

εk = sin−1

[
Im{y[k]A∗

k}
|y[k]||Ak|

]
. (10.114)

Since the symbols Ak are not available in the receiver, we can use
decisions ŷ[k] instead of the the symbols Ak. Thus, (10.114) can be
rewritten as

εk = sin−1

[
Im{y[k]ŷ∗[k]}
|y[k]||ŷ[k]|

]
. (10.115)
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εk’

Re{y[k]} ^

Im{y[k]}

Re{y[k]}

Im{y[k]}^

+ -

Figure 10.19 An implementation structure of the decision-
direction carrier recovery.

Note that for small phase errors, we approximately have

εk ≈ sin(εk), (10.116)

and then

sin(εk) =

[
Im{y[k]ŷ∗[k]}
|y[k]||ŷ[k]|

]
. (10.117)

With small phase errors, the characteristic becomes approximately
linear. Equation (10.117) can be simplified further to omit the
denominator

ε′k = sin(εk) ≈ Im{y[k]ŷ∗[k]}. (10.118)

Thus, in practice, the estimate of the phase error is obtained by

ε′k = Re{ŷ[k]}Im{y[k]} − Re{y[k]}Im{ŷ[k]}. (10.119)

The implementation structure of (10.119) is shown in Figure 10.19,
which represents the block diagram of the angle measure in
Figure 10.18.
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10.5 Summary

In this chapter, discrete-time synchronization techniques, including
the discrete-time PLL, timing, and carrier recoveries, were
introduced. We first described the fundamentals of the discrete-
time PLL with an emphasis on the discrete-time loop filter, phase
detector, and discrete-time VCO. Second, we presented theories and
architectures of the timing recovery, including the early-late gate
synchronizer, bandedge timing recovery, decision-directed timing
recovery, multirate timing recovery, and polyphase filter bank timing
recovery, as well as multicarrier modulation timing recovery. We
then focused on introducing the carrier recovery in which we address
the carrier phase error, open-loop carrier recovery, carrier recovery
for multiple phase signals, and decision-directed carrier recovery.

Timing recovery is used to recover a clock at the symbol rate or
a multiple of the symbol rate from the modulated waveform, while
carrier recovery is used to find exactly the same carrier frequency
and phase to perform coherent demodulation from the data-bearing
signal. Timing recovery can be derived without knowledge of the
carrier phase, but estimating the carrier phase usually needs to know
the symbol timing first. Thus, a receiver should first derive timing,
then estimate the carrier phase, and finally adapt other devices, such
as an equalizer.

Multirate timing recovery was developed based on oversampling
and/or downsampling for the symbol rate of the incoming signal.
It is especially useful in the asynchronized mode. Polyphase filter
bank timing recovery, which is a special case of the multirate
timing recovery, offers flexibility for symbol timing recovery
and synchronization. This technique leads to efficient parallel
architecture for straightforward implementation.
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Appendix A: The z-Transform

A.1 Introduction

In this appendix, we first introduce the z-transform representation,
region of convergence, properties, common pairs of the z-transform,
and the z-transform of the transfer function and then discuss the
corresponding inverse z-transform along with technique methods
for finding the inverse z-transform, including contour integration
and partial fractions expansion. The relationship between the all-
pass and the phase systems is sequentially addressed by using
the z-transform, with an emphasis on the all-pass system and the
minimum-phase system and their relations in the decomposition
phase system, compensation system, and FIR system. Furthermore,
the z-transform can be used to represent a linear time-invariant
(LTI) system, discrete-time transform, digital filtering, and multirate
signal processing, and to allow frequency-domain interpretation.
The z-transform allows the interested reader to bring the power
of the complex variable theory to support the problem analysis of
discrete-time signals and systems.

A.2 The z-Transform

Let X(z) denote the z-transform of a discrete-time signal sequence
x[n]. The z-transform is then defined as

X(z) =
∞∑

n=−∞
x[n]z−n, (A.1)

437
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1

Re

Im

Unit circle
z = ejω

ω

0

Figure A.1 The complex z-plane of a unit circle with the contour
corresponding to z = 1 and the ω representing the
angle between the vector to a point.

where z is a complex variable. Thus, the z-transform is a function
of a complex variable and can be interpreted by using the complex
z-plane.

Figure A.1 shows the complex z-plane of a unit circle plot or a
contour. The contour corresponding to |z| = 1 is a circle of the unit
radius and ω is the angle between the vector to a point z on the unit
circle and the real axis of the complex z-plane. The unit circle plot
is useful for determining the region of convergence (ROC) for the z-
transform. This is because the z-transform does not converge for all
sequences. Thus, for any given discrete-time sequence x[n], all the
values of z for which the z-transform converges are called the ROC.
In other words, the z-transform of the discrete-time signal sequence
x[n] converges absolutely only for values of z in its ROC.
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Note that the convergence of (A.1) depends on the magnitude of
z. This is because the z-transform |X(z)| < ∞ if and only if we
hold the following equation

∞∑
n=−∞

|x[n]||z−n| <∞. (A.2)

If this is the case, the ROC will be bounded by circles centered at
the origin of the complex z-plane. In general, the ROC of the z-
transform can be classified into four configuration regions, including
the interior of a circle, the exterior of a circle, the annulus, and the
entire z-plane. Figure A.2 shows the four configuration regions.

It is most useful for the z-transform if the infinite sum can be
expressed in a closed form of a rational function inside the ROC, for
instance,

X(z) =
P (z)

Q(z)
, (A.3)

where P (z) and Q(z) are polynomials of z. Note that the values of
z are referred to as the zeros of X(z) if the z-transform X(z) = 0.
IfX(z) in (A.3) is infinite, then the values of z are referred to as the
poles of X(z). Furthermore, it is also possible for the poles to take
place at z = 0 or z = ∞. Therefore, in theory, the ROC should not
contain any poles because the X(z) becomes infinite at the poles.

Example A.1

Assume that a discrete-time signal sequence is

x[n] =
(
1

5

)n
u[n], (A.4)

where

u[n] =

{
1, n ≥ 0
0, n < 0.

(A.5)

Then the z-transform of x[n] is obtained by using (A.1),

X(z) =
∞∑

n=−∞

(
1

5

)n
u[n]z−n



440 Signal Processing in Digital Communications

Im
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(d)(c)

Im

Re
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z1
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z2

z1

Figure A.2 The configuration regions of the z-transform: (a) the
interior of a circle, |z| < |z2|; (b) the entire plane; (c)
the exterior of a circle, |z| > |z1|; and (d) an annulus,
|z1| < |z| < |z2|.
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=
∞∑
n=0

(
1

5
z−1

)n
. (A.6)

In order to get the convergence of X(z), we should have

∞∑
n=0

∣∣∣∣15z−1

∣∣∣∣n <∞. (A.7)

Thus, the ROC is the range of values of z for |z| > 1
5
. Within the

ROC, the infinite series in (A.6) converges to

X(z) =
1

1− 1
5
z−1

, for |z| > 1
5
. (A.8)

Example A.2

Consider a discrete-time signal sequence with the sum of two real
exponentials as follows:

x[n] = anu[n] + bnu[n], (A.9)

and

u[n] =

{
1, n ≥ 0
0, n < 0.

(A.10)

where a < 1, b < 1, and a ≥ b. The z-transform X(z) is then
obtained by

X(z) =
∞∑

n=−∞
{anu[n] + bnu[n]}z−n

=
∞∑

n=−∞
anu[n]z−n +

∞∑
n=−∞

bnu[n]z−n

=
∞∑
n=0

(az−1)n +
∞∑
n=0

(bz−1)n

=
1

1− az−1
+

1

1− bz−1

=
2− (a+ b)z−1

(1− az−1)(1− bz−1)
. (A.11)
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In order to converge, we should require that both |az−1| < 1 and
|bz−1| < 1 at the same time. This is equivalent to |z| > a and |z| > b.
As a result, the ROC of (A.11) is |z| > a, since a ≥ b.
A.2.1 The z-Transform Properties

The z-transform has many properties that are useful tools to design
and analyze the discrete-time signals and systems. These properties
are often used to obtain the inverse z-transform of more complicated
expressions. The z-transform properties are summarized below.
There are many references of the z-transform properties. The
interested reader may refer to Miao and Clements [1], Oppenheim
et al. [2], Oppenheim and Schafer [3], and D’Azzo and Houpis [4].

To simplify the notation, we denote X(z) as the z-transform of
x[n] and Rx as the ROC of X(z) as follows:

x[n]
Z⇐⇒ X(z), (A.12)

where the ROC is Rx, which represents a set of values of z with the
condition of rR < |z| < rL.

Linearity

The linearity property states that if

x1[n]
Z⇐⇒ X1(z), ROC = Rx1 , (A.13)

and
x2[n]

Z⇐⇒ X2(z), ROC = Rx2 , (A.14)

then
ax1[n] + bx2[n]

Z⇐⇒ aX1(z) + bX2(z), (A.15)

where the ROC includes Rx1

⋂
Rx2 .

Time Shifting

Time shifting states that if

x[n]
Z⇐⇒ X(z), ROC = Rx, (A.16)
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then
x[n− d] Z⇐⇒ z−dX(z) (A.17)

where d is an integer. The discrete-time signal sequence x[n] is
shifted right if d is positive. The discrete-time signal sequence x[n]
is shifted left if d is negative. Thus, the ROC in (A.17) is Rx except
for the possible addition or deletion of z = 0 or z =∞.

Frequency Shifting or Modulation

Frequency shifting states if

x[n]
Z⇐⇒ X(z), ROC = Rx, (A.18)

then
ejωnx[n]

Z⇐⇒ X(e−jωz). (A.19)

Note that the ejωnx[n] will not be real if the discrete-time signal
sequence x[n] is real unless ω is an integer multiple of π.
Furthermore, even if the poles and zeros of X(z) are in complex
conjugate pairs, they may not have this symmetry after frequency
shifting.

Time Reversal

A signal shows time reversal if

x[n]
Z⇐⇒ X(z), ROC = Rx, (A.20)

then
x[−n] Z⇐⇒ X(z−1), (A.21)

where the ROC is 1
Rx

. In this case, the ROC means that Rx(z) is
inverted. This is to say that if z0 is in the ROC for x[n], then 1/z0 is
in the ROC for x[−n].
Convolution of Two Sequences

The convolution of sequences states if

x1[n]
Z⇐⇒ X1(z), ROC = Rx1 , (A.22)
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and
x2[n]

Z⇐⇒ X2(z), ROC = Rx2 , (A.23)

then
x1[n] ∗ x2[n]

Z⇐⇒ X1(z)X2(z), (A.24)

where the ROC includes Rx1

⋂
Rx2 . In other words, the ROC

contains the intersection of the regions of convergence ofX1(z) and
X2(z). In addition, the ROC may be larger if a pole that borders on
the ROC of one of the z-transforms is eliminated by a zero of the
other ROC of the z-transform.

Multiplication of an Exponential Sequence

When a signal is multiplied by an exponential sequence, the
multiplication of exponential sequence states that if

x[n]
Z⇐⇒ X(z), ROC = Rx, (A.25)

then
zn0x[n]

Z⇐⇒ X(z−1
0 z), (A.26)

where the ROC is |z0|Rx. If Rx has a set of values of z with range
of rR < |z| < rL, then |z0|R0 is the set of values of z such that
|z0|rR < |z| < |z0|rL.

Conjugation of a Complex Sequence

The conjugation of a complex sequence states that if

x[n]
Z⇐⇒ X(z), ROC = Rx, (A.27)

then

x∗[n]
Z⇐⇒ X∗(z∗) (A.28)

Re{x[n]} Z⇐⇒ 1

2
[X(z) +X∗(z∗)] (A.29)

Im{x[n]} Z⇐⇒ 1

2j
[X(z)−X∗(z∗)] (A.30)

The ROC is equal to Rx.
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Differentiation of X(z)

The differentiation of X(z) states that if

x[n]
Z⇐⇒ X(z), ROC = Rx, (A.31)

then

nx[n]
Z⇐⇒ −zdX(z)

dz
, (A.32)

where the ROC is Rx except for the possible addition or deletion of
z = 0 or z =∞.

Initial Value

The initial value states that if a discrete-time signal sequence x[n] is
zero for n < 0 and if limz→∞X(z) exists, then

x[0] = lim
z→∞

X(z). (A.33)

Final Value

The final value states that if X(z) converges for ‖z‖ > 1 and all
poles of (1− z)X(z) are inside the unit circle, then

x[∞] = lim
z→1

(1− z−1)X(z). (A.34)

A.2.2 Common Pairs of the z-Transform

There are many common pairs of the z-transform in literature. In this
section, we list a number of the basic common z-transform pairs that
include values of x[n] only for n ≥ 0, as shown in Table A.1. These
common z-transform pairs are useful for finding the z-transform
X(z) if a discrete-time signal sequence x[n] is given. On the other
hand, these common pairs of the z-transform are also useful for
obtaining the discrete-time signal sequence x[n] corresponding to
a given z-transform X(z).
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Table A.1 The Common z-Transform Pairs

Sequence z-Transform ROC
δ[n] 1 All z
δ[n−m],m > 0 z−m All z except 0
u[n] 1

1−z−1 |z| > 1

−u[−n− 1] 1
1−z−1 |z| < 1

nu[n] z
(z−1)2

|z| > 1

n2u[n] z(z+1)
(z−1)3

|z| > 1

n3u[n] z(z2+4z+1)
(z−1)4

|z| > 1

a|n| 1−a2

(1−az−1)(1−az)
a < |z| < 1

a

an

n
u[n] ea/z All z

anu[n] 1
1−az−1 |z| > |a|

nanu[n] az−1

(1−az−1)2
|z| > |a|

n2anu[n] az(z+a)
(z−a)3

|z| > |a|
n3anu[n] az(z2+4az+a2)

(z−a)4
|z| > |a|

(n+ 1)anu[n] z2

(z−a)2
|z| > |a|

(n+1)(n+2)
2

anu[n] z3

(z−a)3
|z| > |a|

(n+1)(n+2)(n+3)
3

anu[n] z4

(z−a)4
|z| > |a|

−anu[−n− 1] 1
1−az−1 |z| < |a|

−nanu[−n− 1] az−1

(1−az−1)2
|z| < |a|

an(u[n]− u[n−N ]) 1−aNz−N

1−az−1 |z| > 0

[rn cos(ω0n)]u[n]
1−(r cosω0)z−1

1−(2r cosω0)z−1+r2z−2 |z| > r
[rn sin(ω0n)]u[n]

(r sinω0)z−1

1−(2r cosω0)z−1+r2z−2 |z| > r
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A.2.3 The z-Transform Transfer Function

An important application of the z-transform is in the analysis and
representation of a discrete-time LTI system. This is because we can
represent the discrete-time LTI system as follows:

Y (z) = H(z)X(z), (A.35)

where H(z), X(z), and Y (z) are the z-transforms of the system
impulse response, input, and output, respectively. The H(z) of
the z-transform is called the discrete-time system function or the
z-transform transfer function.

The z-transform transfer function can be derived from the LTI
difference equation as follows:

y[n] +
N−1∑
k=1

aky[n− k] =
M−1∑
k=0

bkx[n− k]. (A.36)

By taking the z-transform of each term on both sides of (A.36) and
using the properties of the linearity and the time-shifting, we then
obtain as follows:

Y (z) + Y (z)
N−1∑
k=1

akz
−k = X(z)

M−1∑
k=0

bkz
−k. (A.37)

We solve (A.37) for (A.35) and yield the result as follows:

H(z) =
Y (z)

X(z)

=

∑M−1
k=0 bkz

−k

1 +
∑N−1

k=1 akz
−k
. (A.38)

Equation (A.38) can be further expressed in a factored form

H(z) = b0

[∏M−1
k=1 (1− ckz−1)∏N−1
k=1 (1− dkz−1)

]
. (A.39)

Note that each of the factors (1−ckz−1) in the numerator contributes
a zero at z = ck and a pole at z = 0. Similarly, each of the factors
(1 − dkz−1) in the denominator contributes a pole at z = dk and a
zero at z = 0.
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Example A.3

Consider a discrete-time LTI system with the relationship of the
input and output in a difference equation

y[n]− 1

2
y[n− 1] = x[n] +

1

3
x[n− 1]. (A.40)

By using the z-transform on both sides of (A.40) and the properties
of the linearity and time-shifting, we are able to obtain

Y (z)− 1

2
z−1Y (z) = X(z) +

1

3
z−1X(z). (A.41)

Thus, the z-transform transfer function is given by

H(z) =
Y (z)

X(z)
=

1 + 1
3
z−1

1− 1
2
z−1

. (A.42)

Note that the ROC contains two different possibilities: (1) |z| > 1/2
is associated with the assumption that the impulse response h[n] is
right-sided, and (2) |z| < 1/2 is associated with the assumption that
the impulse response h[n] is left-sided.

A.3 The Inverse z-Transform

The inverse z-transform is derived using the Cauchy integral
theorem contributed by Churchill and Brown [5] and is given by
the contour integral theorem as follows:

x[n] =
1

2πj

∮
C
X(z)zn−1dz, (A.43)

where the integral notation with C is a counterclockwise closed
contour in the ROC ofX(z) and encircling the origin of the complex
z-plane.

Equation (A.43) can be solved by using other approaches,
including the contour integration based on the direction calculation,
examination method, and partial fractions expansion based on the
well-known procedures of containing the common pairs of the
z-transform.
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A.3.1 The Contour Integration

Equation (A.43) can be directly calculated by using the contour
integration. Assume that X(z) is a function of the complex variable
z and C is a counterclockwise closed contour in the ROC of X(z).
If the (k + 1)-order derivative dX(z)

dz
exists on and inside the contour

C, and if X(z) does not have any poles at z = z0, then the inverse
z-transform is obtained by

x[n] =
1

2πj

∮
C

X(z)

(z − z0)k dz

=

 1
(k−1)!

dk−1X(z)
dzk−1

∣∣∣
z=z0

, if z0 is inside C

0, otherwise.
(A.44)

Equation (A.44) is the result in terms of the expression of the Cauchy
residue theorem.

A.3.2 The Examination Approach

Another solution for solving the inverse z-transform is to use the
common pairs z-transform by discovering the relationship between
the z-transform X(z) and the discrete-time signal sequence x[n] as
shown in Table A.1. This approach is often called the examination
method.

To illustrate the examination method, we consider an example of
the z-transform X(z) given by

X(z) =
1

1 + 1
5
z−1

+
1

1− 1
2
z−1

, (A.45)

where the ROC is the annular region 1
5
< |z| < 1

2
. Using the

common pairs z-transform, we can directly obtain the discrete-time
signal sequences as follows:(

−1

5

)n
u[n]

Z⇐⇒ 1

1 + 1
5
z−1

, |z| > 1
5

(A.46)

and

−
(
1

2

)n
u[−n− 1]

Z⇐⇒ 1

1− 1
2
z−1

, |z| < 1
2
. (A.47)
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Then, by using the linearity property, we obtain the discrete-time
signal sequence,

x[n] =
(
−1

5

)n
u[n]−

(
1

2

)n
u[−n− 1]. (A.48)

Note that the discrete-time signal sequence x[n] in this example
grows exponentially if n goes to −∞.

A.3.3 The Partial Fraction Expansion

The partial fraction expansion is referred to as an alternative
expression for the z-transform X(z) as a sum of the terms. Each of
the terms is tabulated to identify the discrete-time signal sequence
x[n] that corresponds to the individual terms by using the common
pairs z-transform in Table A.1.

The partial fraction expansion can be used in a different way
that slightly depends on whether the z-transform transfer function
has all distinct poles or some multiple poles. In the case of the
multiple poles, a procedure of the partial fraction expansion is
more complicated. For a mathematical treatment, the interested
reader may refer to Oppenheim and Schafer [3]. In this section,
we are interested in presenting the procedure of the partial fraction
expansion applying the z-transform transfer function in the case of
single poles. This is because the most filter designs in practice have
this property.

The procedure of the partial fractions expansion for the
z-transform transfer function with distinct poles requires factoring
the denominator of H(z) as follows:

H(z) =

∑M
k=0 bkz

M−k∏N
k=1(z − dk)

. (A.49)

Then we express the discrete-time signal sequence h[n] in the
following form

h[n] = c0δ[n] +
N∑
k=1

ck(dk)
n, (A.50)
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where h[n] is the inverse z-transform of the transfer function H(z).
To obtain the discrete-time signal sequence h[n] in (A.50), we

have to determine the coefficients ck, for k = 0, 1, · · · , N . The first
coefficient c0 is obtained by

c0 = H(z) |z=0

=
bM∏N

k=1(−dk)
. (A.51)

The other coefficients ck for k = 1, 2, · · · , N can be calculated by
using

ck =

(
z − dk
z

)
H(z) |z=dk. (A.52)

To illustrate the operation of the inverse z-transform, we show an
example next.

Example A.4

Consider the z-transform transfer function given by

H(z) =
z2

z2 + z − 12
, (A.53)

where the ROC is the exterior of a circle region |z| > 4. If we factor
the denominator of H(z), we obtain

H(z) =
z2

(z − 3)(z + 4)
. (A.54)

The first coefficient c0 is then determined by

c0 = H(z)|z=0 = 0. (A.55)

The other coefficients c1 and c2 are obtained by

c1 =

[
z − 3

z

z2

(z − 3)(z + 4)

]∣∣∣∣∣
z=3

=
3

7
, (A.56)
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and

c1 =

[
z + 4

z

z2

(z − 3)(z + 4)

]∣∣∣∣∣
z=−4

=
4

7
. (A.57)

Therefore, the inverse z-transform, h[n], is given by

h[n] =
3

7
3nu[n] +

4

7
(−4)nu[n]. (A.58)

A.4 The z-Transform All-Pass and Phase Systems

This section presents a theory and a method of all-pass and phase
systems based on the z-transform. The all-pass and phase systems
have many application values in inverse filtering, compensation for
phase distortion, deconvolution, and system identification in the
areas of signal processing and digital communications.

A.4.1 All-Pass Systems

Assume that a stable system, denoted by Hap(z), has a z-transform
transfer function as follows:

Hap(z) =
z−1 − a∗
1− az−1

, (A.59)

where a∗ is the complex conjugate of a. Equation (A.59) has a
frequency-response magnitude, but it is independent of ω. To see
this, we rewrite (A.59) into the following form in the frequency
domain by using z = ejω and obtain the discrete-time Fourier
transform (DTFT) representation,

Hap(e
jω) =

e−jω − a∗
1− ae−jω

= e−jω

(
1− a∗ejω
1− ae−jω

)
, (A.60)

where the term e−jω has a unity magnitude. Further note that
the remaining term’s numerator and denominator have the same
magnitude because of the complex conjugates of each other. Thus,
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|Hap(e
jω)| in (A.60) is equal to unity. In other words, the z-transform

transfer function systemHap(z) in (A.59) passes all of the frequency
components of its input without changing magnitude gain. Due to
this reason, (A.59) is referred to as the all-pass or the all-phase
system.

There are two important properties of an all-phase system,
including: (1) the group delay of the all-phase system is always
positive, and (2) the phase of the all-phase system is negative within
the frequency range of 0 < ω < π.

A.4.2 Phase Systems

Consider the z-transform of a finite impulse response (FIR) transfer
function system H(z) with an arbitrary length as follows:

H(z) = C0(1− z1z−1)(1− z2z−1) · · · (1− zMz−1), (A.61)

where z = ejω, zi (i = 1, 2, · · · ,M ) denotes the zeros and C0 is
an arbitrary constant. Equation (A.61) is referred to as a minimum-
phase system if all the zeros are inside the unit circle in the z-plane.
Equation (A.61) is called a maximum-phase system if all the zeros
are outside the unit circle in the z-plane. Furthermore, if the FIR
system in (A.61) has some of its zeros inside the unit circle and its
remaining zeros outside the unit circle in the z-plane, we then refer
to the FIR system H(z) as a mixed-phase system.

For the z-transform of an infinite impulse response (IIR) transfer
function system given by

H(z) =
B(z)

A(z)
. (A.62)

Equation (A.62) is referred to as a minimum-phase system if
all the zeros and poles are inside the unit circle in the z-plane.
Equation (A.62) is called a maximum-phase system if all the zeros
are outside the unit circle and all the poles are inside the unit circle
in the z-plane. Moreover, the IIR transfer function system in (A.62)
is known as a mixed-phase system if some, but not all, of the zeros
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are outside the unit circle, and all the poles are inside the unit circle
in the z-plane.

A minimum-phase system means that it has a minimum delay
function, while a maximum-phase system implies that it has a
maximum delay characteristic. In addition, if we are given a
magnitude-square function of H(z) and H(z) is a minimum-phase
system as follows:

C(z) = |H(z)|2
= H(z)H∗(1/z), (A.63)

we can then determine the z-transform transfer function H(z)
uniquely.

A.4.3 Decomposition of Phase Systems

The z-transform of any rational transfer function system H(z) can
be decomposited as follows:

H(z) = Hmin(z)Hap(z), (A.64)

where Hmin(z) is a minimum-phase system and Hap(z) is an all-
phase system. This is to say that any nonminimum-phase system can
be formed into the minimum-phase system Hmin(z) by reflecting
one or more zeros within the unit circle into their conjugate
reciprocal locations outside the unit circle by using (A.64). On
the other hand, a minimum-phase system can be created from a
nonminimum-phase system by reflecting all the zeros lying outside
the unit circle into their conjugate reciprocal locations inside the unit
circle. However, the frequency response transfer function system
in (A.64) will have the same magnitudes in the case of both the
minimum-phase and nonminimum-phase systems.

A.4.4 Compensation Systems

Consider a transmitting signal over a communication channel that
has an undersirable frequency response Hd(z). Let x[n] denote
the input signals and y[n] denote the output signals of the
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communication channel. We want to develop a perfect transfer
function systemHc(z) that is able to compensate the communication
channel distortion, that is, Hc(z) is the inverse of Hd(z) and y[n] =
x[n].

Assume that the transfer function system Hd(z) of the
communication channel is stable and causal and is a rational system.
Thus, by using (A.64), we can decomposite Hd(z) as follows:

Hd(z) = Hmin(z)Hap(z), (A.65)

where Hmin(z) is the minimum-phase system and Hap(z) is the all-
phase system for the communication channel. Now, if we choose the
compensation system Hc(z) to have the following form

Hc(z) =
1

Hmin(z)
, (A.66)

then the overall transfer function system H(z) such that Y (z) =
H(z)X(z) is given by

H(z) = Hd(z)Hc(z) = Hap(z). (A.67)

It is interesting to see that (A.67) corresponds to an all-pass
system. Therefore, the magnitude of frequency response is exactly
compensated, but the phase response is changed to Hap(e

jω).

A.4.5 FIR Systems to Minimum-Phase Systems

The z-transform of any FIR linear phase system can be factored
in terms of a miminum-phase system Hmin(z), a maximum-phase
system Hmax(z), and a Huc(z) that only contains zeros in the unit
circle given by Oppenheim and Schafer [3] as follows:

H(z) = Hmin(z)Huc(z)Hmax(z), (A.68)

where
Hmax(z) = z

−MHmin(1/z), (A.69)

where M is the number of zeros in the minimum-phase system
Hmin(z). Note that the minimum-phase system Hmin(z) in (A.68)
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has all M zeros inside the unit circle, Huc(z) has all N zeros on
the unit circle, and Hmax(z) has all M zeros outside the unit circle.
In fact, all the zeros of the Hmax(z) are the reciprocals of the zeros
of the minimum-phase system Hmin(z). Thus, the order of the z-
transform of any FIR linear phase systemH(z) is equal to 2M +N .

For further reading, we recommend to the interested reader the
books by Miao and Clements [1], Oppenheim and Schafer [3], and
Proakis and Manolakis [6].
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Appendix B: Matrix Theory

B.1 Introduction

In this appendix, we provide a summary of fundamental definitions
and results in a matrix theory. The goal here is to review those results
from the matrix theory that have a direct relevance to this book.
Thus, we present the necessary definitions and results of the matrix
theory along with some of the proofs in detail.

B.2 Vector Definitions

An array of real-valued numbers or complex-valued numbers, which
are denoted by the lowercase bold letter x, is called a vector. The
vector x is assumed to be a row vector given by

x = [x1, x2, x3], (B.1)

or a column vector given by

x =

 x1

x2

x3

 . (B.2)

If the vector x contains real values, the vector x is then said to be a
real vector. If the vector x has complex values, the vector x is then
said to be a complex vector. If the vector x includes N values, the
vector x is then called an N -dimensional vector defined by

457
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x =


x1

x2
...
xN

 , (B.3)

or in another form denoted by xT ,

xT = [x1, x2, ..., xN ], (B.4)

where xT is known as the transpose of the vector x. In general, we
often write a column vector as the transpose of a row vector.

A complex conjugate of the transpose of the vector xT , denoted
by xH , is defined by

xH =
{

xT
}∗

= [x∗1, x
∗
2, ..., x

∗
N ], (B.5)

where xH is called the Hermitian transpose.
In many vector operations, we are interested in finding the

magnitude of a vector x. The magnitude of the vector x is defined
as

‖x‖ =
 N∑
j=1

x2
j

1/2

. (B.6)

Equation (B.6) is also referred to as the Euclidean norm.
Normalizing a vector x by dividing its Euclidean norm is to have

a unit magnitude given by

yx =
x
‖x‖ . (B.7)

Equation (B.7) is called a unit norm vector.
Consider two real vectors a = [a1, a2, · · · , aN ]T and b =

[b1, b2, · · · , bN ]T . The inner product of the two vectors is defined by

< a,b > = aTb

=
N∑
j=1

ajbj. (B.8)



Appendix B: Matrix Theory 459

If (B.8) is equal to zero, then the two vectors a and b are said to be
orthogonal. Furthermore, if the a and b are orthogonal and have unit
norm, then the a and b are said to be orthonormal.

B.3 Matrix Definitions

A rectangular array of numbers is referred to as a matrix. We denote
it by A. If the matrix A has n rows and p columns, then the matrix
A is said to be (n× p) matrix defined by

A = {aij} =


a11 a12 · · · a1p

a21 a22 · · · a2p
...

...
...

...
an1 an2 · · · anp

 , (B.9)

where aij is the value in ith row and jth column of the matrix A,
i = 1, 2, ..., n, and j = 1, 2, ..., p. The transpose of the matrix A is
produced by interchanging the rows and columns defined by

A =


a11 a21 · · · an1

a12 a22 · · · an2
...

...
...

...
a1p a2p · · · anp

 . (B.10)

A matrix (n × n) A is called a square matrix if its number of
rows and number of columns are equal. If a square matrix A has
all of its elements equal to zero except those elements along the
main diagonal, this matrix A is referred to as a diagonal matrix. The
diagonal matrix A is defined by

A =


a11 0 · · · 0
0 a22 · · · 0
...

...
...

...
0 0 · · · ann

 . (B.11)
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Furthermore, a diagonal matrix with the diagonal elements equal to
1 is referred to as an identity matrix given by

I =


1 0 · · · 0
0 1 · · · 0
...

...
...

...
0 0 · · · 1

 . (B.12)

Note that the identity matrix is the multiplicative identity for a
square matrix A, that is,

IA = AI = A. (B.13)

A square matrix A is said to be a Toeplitz matrix if all the
elements along with each of diagonals have the same value. For
instance, we show a (4× 4) Toeplitz matrix as follows:

A =


1 2 9 10
3 1 2 9
5 3 1 2
15 5 3 1

 . (B.14)

Moreover, if a Toeplitz matrix is symmetric, then all of the elements
in the matrix A can be determined by using either the first column
or the first row of the matrix. To see this, we show a (4× 4) Toeplitz
matrix with symmetric elements as follows:

A =


1 4 7 9
4 1 4 7
7 4 1 4
9 7 4 1

 . (B.15)

A matrix A that has nonzero values on and below its main
diagonal is called a lower triangular matrix defined as

A =


a11 0 0 0
a21 a22 0 0
a31 a32 a33 0
a41 a42 a43 a44

 . (B.16)

An upper triangular matrix can be defined in a similar way.
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B.4 Orthogonal Matrices

Consider a square matrix with a dimension (p × p) denoted by
A. If the square matrix AAT = I, the matrix A is then called
the orthonormal. The orthogonal matrix A has many properties as
follows:

1. A−1 = AT .

2. | A |= ±1.

3. aTi aj =

{
1, i = j
0, i �= j, where ai is the columns of matrix A.

4. If A and B are orthogonal matrices, respectively, then, C =
AB is also orthogonal.

B.5 Trace

The trace of the square matrix A with dimension (p × p) is defined
as

tr(A) =
p∑

i=1

aii. (B.17)

Equation (B.17) also satisfies for the operation of two square
matrices A and B and the scalar β with the following properties:

tr(β) = β, (B.18)

tr(A± B) = tr(A)± tr(B), (B.19)

tr(βA) = βtr(A), (B.20)

tr
∑

xTi Axi = tr(A
∑

xixTi ), (B.21)

and
tr(AB) = tr(BA) =

∑
i

∑
j

aijbji. (B.22)

In a special case of (B.22) when the square matrix B = AT , we
obtain

tr(AAT ) = tr(ATA) =
∑
a2
ij. (B.23)
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If the square matrix A is orthogonal, then (B.23) is given by

tr(AAT ) = tr(I) =
p∑

i=1

Iii = p. (B.24)

In addition, for matrices C and D with n× p and p×n, respectively,
the trace function can be expressed as

tr(CD) = tr(DC) =
∑
i

∑
j

cijdji =
∑
j

∑
i

djicij. (B.25)

B.6 Matrix Differentiation

Consider an n× p matrix X and a function of the matrix X, denoted
by f(X). We then take the derivative of matrix function f(X) with
respect to the matrix X and obtain

∂f(X)

∂X
=
∂f(X)

∂xij
, (B.26)

where i = 1, 2, ..., n and j = 1, 2, ..., p. The derivative result is also
an n×pmatrix. Some useful results of the matrix differentiation are
listed as follows:

1. ∂bTx
∂x = b.

2. ∂xTx
∂x = 2x.

3. ∂xTBx
∂x = Bx + xTB.

4. ∂xTBy
∂x = By.

B.7 Determinants

The determinant of an (n × n) square matrix A is denoted by
det(A) and can be solved recursively in terms of the determinants
of (n− 1)× (n− 1) matrices given by

det(A) =
n∑
i=1

(−1)i+jaij det(Aij), (B.27)
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where Aij is the (n−1)× (n−1) matrix that is obtained by deleting
the ith row and the jth column of the matrix A.

If the matrix A is singular, its determinant will be equal to zero.
In this case, there does not exist an inverse of the matrix A. On the
other hand, a square matrix A is said to be singular if det(A) = 0,
and nonsingular if det(A) �= 0.

Assume that A and B are n × n matrices. Then we can list the
properties of the determinants as follows:

1. det(AB) = det(A) det(B).
2. det(AT ) = det(A).
3. det(αA) = αn det(A), where α is a constant.
4. det(A−1) = 1

det(A)
, if A is invertible.

5. The determinant of a diagonal matrix is the product of
its diagonal elements. It is also true for lower or upper
triangular square matrices.

Example B.1

Let a square matrix

A =

[
a b
c d

]
. (B.28)

Then the determinant of the square matrix A using (B.27) is obtained
by

det(A) = ad− bc. (B.29)

Now, let a square matrix

A =

 1 2 3
2 3 2
3 4 3

 . (B.30)

Then the determinant of the square matrix A using (B.27) is obtained
by

det(A) = 1×
∣∣∣∣∣ 3 2
4 3

∣∣∣∣∣− 2×
∣∣∣∣∣ 2 3
4 3

∣∣∣∣∣+ 3×
∣∣∣∣∣ 2 3
3 2

∣∣∣∣∣
= −2. (B.31)
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B.8 Matrix Inversion

If a square matrix A is a nonsingular, det(A) �= 0, then there is a
closed form expression for a matrix inversion given by

A−1 =
adj(A)

det(A)
, (B.32)

where adj(A) is the adjugate of the square matrix A defined by

adj(A) = cofactor of Aji, (B.33)

where the (i, j) element of the adjugate is equal to the cofactor of
the (j, i) element of the square matrix A.

Another useful formula for inverse matrix is known as the matrix
inversion lemma given by

(A + BCD)−1 = A−1 − A−1B(C−1 + DA−1B)−1DA−1, (B.34)

where A is n× n, B is n×m, C is m×m, and D is m× n, and A
and C are nonsingular matrices.

In addition, if matrices A and B are invertible matrices, we have
a property of (AB)−1 = B−1A−1.

B.9 Eigenanalysis

Eigenanalysis is one of the most powerful concepts in the matrix
operation. This is because the eigenanalysis, including eigenvalues
and eigenvectors, provides useful and important information about a
matrix. It also contributes to an important representation for matrices
known as the eigenvalue decomposition.

Consider any square matrix A with dimension n × n. We
establish a matrix function as follows:

E(λ) =| A− λI |, (B.35)

which is an nth order polynomial in λ, where the n roots of E(λ),
λ1, λ2, ..., λn are called eigenvalues of the square matrix A.
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For each of eigenvalues, λi, i = 1, 2, ..., n, the matrix function
(A − λI) is singular. There is at least one nonzero vector, vi, such
that

Avi = λivi. (B.36)

These vectors, vi, are called the eigenvectors of the square matrix
A. In addition, an eigenvector vi is called normalized if it has unit
norm, ‖ vi ‖= vTv = 1.

Another theory of the eigenanalysis is that if a matrix B is
a nonsingular square matrix, then matrices A and BAB−1 have
the same eigenvalues, λi. Furthermore, the matrix BAB−1 has the
eigenvector ui = Bvi. The theory can be proved as follows:

Note that the matrix function in (B.35) can be rewritten as

E(λ) = | A− λI |
= | A− λB−1B |
= | B || A− λB−1B || B−1 |
= | BAB−1 − λI | . (B.37)

Now, it is clear to see from (B.37) that the matrix A and the matrix
BAB−1 have the same eigenvalues. Since vi is an eigenvector of
the matrix A for eigenvalue λi, then there exists a nonzero vector
u satisfying the condition as follows:

BAB−1(Bvi) = λi(Bvi). (B.38)

Therefore, the eigenvector ui = Bvi is an eigenvector of the matrix
BAB−1 for the eigenvalue λi.

B.10 Spectral Decomposition Theorem

Consider any symmetric matrix A with dimension (p× p). Then the
symmetric matrix A can be written as

A = RΛRT

=
p∑

i=1

λirirTi , (B.39)
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where Λ is a diagonal matrix consisting of the eigenvalues of A, R
is an orthogonal matrix whose columns are normalized eigenvectors,
and ri is the corresponding eigenvectors. Equation (B.39) is known
as the spectral decomposition theorem or sometimes referred to as
the Jordan decomposition theorem. This theorem can be approved
as follows.

Assume that there are orthonormal eigenvectors r1, r2, · · · , rp
such that Ari = λiri for some numbers λi. Then we obtain

rTi Arj = λirTi rj

=

{
λi, if i = j,
0, otherwise.

(B.40)

In a matrix form, we can write (B.40) as follows:

RTAR = Λ. (B.41)

Multiplying by using R and RT on both sides of (B.41), we obtain

RRTARRT = RΛRT . (B.42)

Note that RRT = I. Thus, we can rewrite (B.42) as

A = RΛRT . (B.43)

Compared with (B.37), it is interesting to see that the matrix A and
the matrix RΛR have the same eigenvalues. Therefore, the elements
of Λ are exactly the eigenvalues of symmetric matrix A with the
same multiplicity.

Furthermore, if A is a nonsingular symmetric matrix, then for
any integer n, we can have as follows:

Λn = diag(λni ), (B.44)

or in a matrix form,
An = RΛnRT . (B.45)
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In addition, if all the eigenvalues of the symmetric matrix A are
positive, we can even define the rational powers as follows:

Λp/q = diag(λp/qi ), (B.46)

or in a matrix form
Ap/q = RΛp/qRT . (B.47)

for integers q and p, where q > 0. If some of the eigenvalues of
matrix A are zero, then (B.45) and (B.47) still hold if the exponents
p/q are restricted to be positive. This expanded theory can be
approved as follows.

In order to prove the theory in (B.45), using the spectral
decomposition theorem in (B.39), we obtain

A = RΛRT . (B.48)

If we use the power of 2 on both sides of (B.48), then we obtain

A2 = (RΛRT )2

= RΛRTRΛRT

= RΛ2RT . (B.49)

Because of RTR = I, then we obtain,

A−1 = RΛ−1RT , (B.50)

where Λ−1 = diag(λ−1
i ). Therefore, by using induction, the theory

of (B.45) can be proved completely.
In order to prove the theory in (B.47), we use the notation

operation as follows:

Ap = (Ap/q)q

= RΛp/qRT · · ·RΛp/qRT

= RΛp/qRT . (B.51)

There is an important case in (B.47) when p = 1 and q = 2. In
this case, we have

A1/2 = RΛ1/2RT , (B.52)
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where Λ1/2 = diag(λ1/2
i ) and λi ≥ 0 for all i, and

A−1/2 = RΛ−1/2RT , (B.53)

where Λ−1/2 = diag(λ−1/2
i ) and λi > 0 for all i. Equations (B.52)

and (B.53) are called the symmetric square root decomposition of
the matrix A.

Another theory states that for any symmetric matrix A, there
exists an orthogonal transformation given by

y = RTx, (B.54)

such that
xTAx =

∑
i

λiy
2
i . (B.55)

To prove the theory of (B.54) and (B.55), we again consider
using the spectral decomposition theorem of A = RΛRT . Thus, we
can express it as follows:

xTAx = xTRΛRTx

= yTRTRΛRTRy

= yTΛy

=
∑
i

λiy
2
i , (B.56)

where the R is the columns of the eigenvectors for the matrix A and
λ1, ..., λp are the corresponding eigenvalues.

B.11 Singular Value Decomposition

If S is an (n× p) matrix with rank r, then S can be written as

S = UDVT , (B.57)

where U and V are orthonormal matrices of dimensions (n ×
r) and (p × r), respectively, and D is a diagonal matrix with
positive elements. Equation (B.57) is known as the singular value
decomposition theorem.



Appendix B: Matrix Theory 469

To prove the singular value decomposition theorem in (B.57), we
note that U and V are orthonormal matrices of dimensions (n × r)
and (p× r), respectively. Thus, we immediately obtain as follows:

UTU = Ir, (B.58)

and
VTV = Ir. (B.59)

Now, letting Y = STS, we note that Y is a symmetric matrix
with a rank r. We then rewrite the matrix Y by using the spectral
decomposition theorem

Y = STS

= VΛVT , (B.60)

where V is a column orthonormal matrix of eigenvectors of Y and
Λ = diag(λ1, λ2, · · · , λr) with λi > 0 since

λi = vTi STSvi
= ‖ Svi ‖
> 0. (B.61)

Further let di = λ
1/2
i , for i = 1, 2, · · · , r. This implies that

D = diag[d1, d2, · · · , dr]. (B.62)

Also, the U matrix with dimension (n× r) is defined by

ui = d
−1
i Svi, i = 1, 2, · · · , r. (B.63)

Then, we have the results as follows:

uT
i uj = d−1

i d
−1
j vTi STSvi

= λid
−1
i d

−1
j vivj

=

{
1, if i = j,
0, otherwise.

(B.64)
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Therefore, it is interesting to see that the matrix U is also an
orthonormal matrix.

Assume that x is any p× 1 vector; it can then be written as

x =
∑
i

αivi. (B.65)

Also assume that ei is an r × 1 vector that has 1 in the ith position
and 0 elsewhere. Using (B.63), we have the results as follows:

UDVTx =
∑
i

αiUDei

=
∑
i

αidiui

=
∑
i

αiSvi

= Sx. (B.66)

Therefore, the singular value decomposition theorem of S = UDVT

has been approved since the formula in (B.66) holds for any
matrix x.

B.12 Quadratic Forms

The quadratic form of a symmetric matrix A is defined by

Q(x) = xTAx =
n∑
i=1

n∑
j=1

aijxixj, (B.67)

where x = [x1, x2, ..., xn] is a vector of n variables.
IfQ(x) > 0 for all x �= 0, thenQ(x) is called the positive definite

quadratic form. If Q(x) ≥ 0 for all x �= 0, then Q(x) is said to
be the positive semidefinite quadratic form. A symmetric matrix A
is said to be positive definite or positive semidefinite if Q(x) is a
positive definite quadratic form or positive semidefinite quadratic
form, respectively.

An important quantity in matrix theory to manipulate in terms
of eigenvalues and eigenvectors is to use the ratio of two quadratic
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forms given by

F =
xTAx
xTBx

, (B.68)

where B must be positive definite. Equation (B.68) is called the F-
ratio quotient or sometimes referred to as the Rayleigh quotient.
The F -ratio quotient is bounded by the minimum and maximum
eigenvalues

λmin ≤ F ≤ λmax, (B.69)

where λmin and λmax are the minimum and maximum eigenvalues,
respectively.

B.13 Maximization and Minimization Analysis

Consider two symmetric matrices A and B, and B > 0. A maximum
or minimum analysis of

xTAx subject to xTBx = 1 (B.70)

is to solve when x is the eigenvector of B−1A corresponding to the
largest or the smallest eigenvalue of B−1A, respectively.

Let λmax and λmin be the largest and the smallest eigenvalues of
B−1A, respectively. Subject to the constraint (B.70), optimization
solutions provide the results as follows:

maxx(xTAx) = λmax, (B.71)

and
minx(xTAx) = λmin. (B.72)

To prove this theory of the maximization and the minimization
analysis, we let B1/2 denote the symmetric square root of symmetric
matrix B, and let a linear transform be given by

y = B1/2x. (B.73)

Then the theory in (B.70) can be rewritten as

yTB−1/2AB−1/2y subject to yTy = 1. (B.74)
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Now, by using the spectral decomposition for the symmetric matrix,
the matrix B−1/2AB−1/2 can be written in the following form:

B−1/2AB−1/2 = GΛG, (B.75)

where G is an orthogonal matrix and Λ is a diagonal matrix of the
eigenvalues of B−1/2AB−1/2 with λmax ≥ λ2 ≥, ...,≥ λmin ≥ 0.

Further let z = GTy. Then we obtain

zT z = yTGGTy

= yTy. (B.76)

Thus, by using (B.75) and (B.76), the theory in (B.74) can be
rewritten as follows:

maxz(zTΛz) = maxz(
∑
λiz

2
i ) subject to zT z = 1. (B.77)

If the eigenvalues are in descending order, then (B.77) satisfies the
following:

maxz(
∑
λiz

2
i ) ≤ λmaxmaxz(

∑
z2
i ) = λmax. (B.78)

Therefore, the maximization theorem is proved for the maximization
result.

For the minimization theory, the theory in (B.74) can be
rewritten in the following form by using (B.75) and (B.76) as
follows:

minz(zTΛz) = minz(
∑
λiz

2
i ) subject to zT z = 1. (B.79)

If the eigenvalues are in descending order, then (B.79) satisfies the
following:

minz(
∑
λiz

2
i ) ≥ λminminz(

∑
z2
i ) = λmin. (B.80)

Again, this minimization theorem is proved for the minimization
result. This, in turn, proves the result in (B.69) for F -ratio quotient.
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In this appendix, we have summarized the important develop-
ments of the matrix theory, which are particularly useful for un-
derstanding the theory development of signal processing for digital
communications. There are many excellent references on the matrix
theory. To research the relevant topic further, we recommend the in-
terested reader to Mardia, Kent, and Bibby [1]. For understanding
the matrix theory in applications, the interested reader is referred
to Kailath [2], Miao [3], Miao and Clements [4], Vaidyanathan [5],
Johnson and Dudgeon [6], Hayes [7], and Neter et al. [8] to name a
few.
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Appendix C: The Discrete Fourier
Transform

C.1 Introduction

For a finite-duration discrete-time signal, it is possible to develop
a Fourier series representation. When the Fourier series is used
to represent the finite-duration discrete-time signal, we refer to
it as the discrete Fourier transform (DFT). The DFT is also
a discrete sequence that corresponds to samples of the Fourier
transform of the signal, equally spaced in frequency. The DFT
plays a central role in the implementation of a variety of digital
signal processing (DSP) and communication algorithms, such as
orthogonal frequency division multiplexing (OFDM) and discrete
multitone (DMT) modulations.

C.2 DFT Operation

The DFT can be defined as an operation for anN -point discrete-time
input signal x[n] given by [1–3]

X[k] =
N−1∑
n=0

x[n]W nk
N , k = 0, 1, · · · , N − 1, (C.1)

whereWN is the complex quantity expressed as

WN = e−j2π/N

= cos
(
2π

N

)
− j sin

(
2π

N

)
. (C.2)
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Equation (C.1) is a transformation from an N -point discrete-time
input signal x[n] to an N -point set of frequency-domain samples
X[k]. Note that (C.1) can be considered as two nested loops of a
scalar operation containing a complex multiplication and a complex
addition. It can also be viewed as a single loop that computes each
point of frequency-domain samples X[k] by an inner product of an
N -point discrete-time input signal x[n] and an N -point basis factor
W nk

N for n = 0, 1, · · · , N − 1 when k is fixed.
The DFT can also be interpreted as a “frequency sampling” of

the discrete-time Fourier transform (DTFT) given by [2]. It provides
the frequency spectrum of the discrete-time input signal x[n],

X(f) =
∞∑

n=−∞
x[n]e

−j2πfn
Fs , (C.3)

where Fs is called the sampling rate and f is a frequency value, both
in hertz (Hz). Since the discrete-time input signal x[n] has N data
points, the signal frequency range, from 0 to Fs, is divided into N
discrete points with equally spaced frequencies, f = kFs

N
. The DFT

can then be expressed as a discrete variable k for frequency,

X[k] =
N−1∑
n=0

x[n]e
−j2πkn

N

=
N−1∑
n=0

x[n]W kn
N , k = 0, 1, · · · , N − 1, (C.4)

where WN = e−j(2π/N). The region around each of the N points is
referred to as a frequency bin or a “tone.” Each tone has a bandwidth
of 1

NTs
or Fs

N
Hz.

C.3 IDFT Operation

The corresponding inverse discrete Fourier transform (IDFT) is
given by

x[n] =
1

N

N−1∑
k=0

X[k]W−kn
N , n = 0, 1, ..., N − 1. (C.5)
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Note that both the discrete-time input signal x[n] in (C.5) and the
frequency-domain samples X[k] in (C.1) may be complex valued.

C.4 DFT Matrix Operation

In a matrix form, we can consider the N -point DFT as a linear
transformation of the discrete-time complex input signal vector

x =
{
x[0] x[1] · · · x[N − 1]

}T
(C.6)

to another complex vector in the frequency domain

X =
{
X[0] X[1] · · · X[N − 1]

}T
. (C.7)

Thus, the DFT operation in the matrix form becomes

X = Wx, (C.8)

where the matrix W contains the complex exponentials

W =



1 1 1 · · · 1
1 W W 2 · · · WN−1

1 W 2 W 4 · · · W 2(N−1)

· · · · · · ·
· · · · · · ·
· · · · · · ·
1 WN−1 W 2(N−1) · · · W (N−1)2


(C.9)

whereW = e
−j2π
N . The inverse DFT matrix can be obtained by using

the inverse matrix W−1 as follows:

x = W−1X. (C.10)

It should be pointed out that the column vectors wi of matrix W are
orthonormal because the inner product wT

i wj = 0 when i �= j and
the inner product wT

i wi = 1 when i = j. This, in turn, implies that

WW∗ = NI, (C.11)
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where W∗ denotes the complex conjugate of the matrix W, and I is
an (N × N) identity matrix. This is to say that the inverse matrix
W−1 can be obtained as follows:

W−1 =
1

N
W∗. (C.12)

As a result, the inverse DFT matrix in (C.10) can be expressed as

x =
1

N
W∗X. (C.13)

The matrix representations of the DFT in (C.8), (C.10), and (C.13)
are also useful for analyses of uniform DFT filter bank–based
OFDM and DMT modulations.

Note that N complex multiplications and (N − 1) complex
additions are required to compute each value of the DFT in (C.4)
since the discrete-time input signal x[n] may be complex. Therefore,
in order to compute all N values directly, we require a total of
N2 complex multiplications and N(N − 1) complex additions.
In other words, we need N2 complex multiplication and addition
operations. For a real discrete-time input signal x[n], the number of
computations in (C.4) can be halved. This is because the DFT will
be conjugate-symmetric with respect to the frequency value N

2
.
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Appendix D: The Fast Fourier
Transform

D.1 Introduction

In Appendix C, we discussed the DFT and IDFT operations as well
as their matrix forms. A direct computation for the DFT operation
is expensive. However, by exploiting both the symmetry and
periodicity properties of W kn

N , the DFT computational complexity
can be reduced. The method of greatly reduced computation
complexity was popularized when Cooley and Tukey [1] published
a method of an efficient algorithm for the computation of the DFT
in 1965. The efficient algorithm is called the fast Fourier transform
(FFT). In fact, FFT algorithms are developed based on a method of
decomposing a DFT into successively smaller DFTs. This method
leads to a variety of different algorithms, all with comparable
improvements in computational complexity.

D.2 FFT Methods

In this appendix, we present two basic types of the FFT algorithms
with radix-2, which have been extensively used for DMT and OFDM
modulations, including decimation-in-time FFT and decimation-in-
frequency FFT. In the method of decimation in time, the discrete-
time input signal x[n] is decomposed into successively smaller
subsequences such that the computations are made on smaller
transformations. On the other hand, the method of decimation-
in-frequency FFT derives its name from the method in which
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the frequency-domain sequence X[k] is decomposed into smaller
subsequences.

D.2.1 Decimation-in-Time FFT Algorithm

The operation of the decimation-in-time FFT algorithm is based on
decomposing the discrete-time input signal x[n] into successively
smaller subsequences. To illustrate, we consider a DFT with a length
of N given by (C.4) in Appendix C,

X[k] =
N−1∑
n=0

x[n]W kn
N , k = 0, 1, · · · , N − 1. (D.1)

By separating the discrete-time input signal x[n] into its even-
numbered (r = 2n) and odd-numbered (r = 2n + 1) samples, we
obtain

X[k] =
(N/2)−1∑

r=0

x[2r]W 2rk
N +

(N/2)−1∑
r=0

x[2r + 1]W
(2r+1)k
N

=
(N/2)−1∑

r=0

x[2r](W 2
N)

rk + W k
N

(N/2)−1∑
r=0

x[2r + 1](W 2
N)

rk.

(D.2)

Since
W 2

N = e−2j(2π/N) = e−j2π/(N/2) =WN/2, (D.3)

we obtainW 2
N = WN/2. Thus, (D.2) can be expressed as

X[k] =
(N/2)−1∑

r=0

x[2r]W rk
N/2 +W

k
N

(N/2)−1∑
r=0

x[2r + 1]W rk
N/2

= E[k] +W k
NO[k], (D.4)

whereE[k] andO[k] are the
(
N
2

)
-point DFTs of N

2
length sequences

x[2r] and x[2r+1], respectively. Even though a N
2

-point DFT is only
of length N

2
, for values of k greater than N

2
, we use the property that

E[k] = E[((k))N
2
] and O[k] = O[((k))N

2
]. If

(
N
2

)
is still even, each



Appendix D: The Fast Fourier Transform 481

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

x[0]

x[4]

x[2]

x[6]

x[1]

x[5]

x[3]

x[7]

X[0]

X[1]

X[2]

X[3]

X[4]

X[5]

X[6]

X[7]
0
NW

0
NW

0
NW

0
NW

0
NW

0
NW

0
NW

2
NW

2
NW

2
NW

3
NW

1
NW

Figure D.1 The flow graph of a radix-2 decimation-in-time for an
8-point FFT algorithm.

of these can be broken into two
(
N
4

)
-point DFTs. Furthermore, ifN

is equal to 2v, then the decomposition process can be repeated until
the DFT can be computed as a combination of N

2
2-point DFTs. This

algorithm is known as the radix-2 decimation-in-time FFT.
A flow graph for operations of the radix-2 decimation-in-time

algorithm with N = 8 is shown in Figure D.1. Each stage has 4
complex multiplications and 8 complex additions. Since there are
three stages, we have a total of 12 complex multiplications and 24
additions. In general, the number of complex multiplications and
additions is equal to N

2
log2N and N log2N , respectively, because

there are v = log2N stages as well as N/2 complex multiplications
and N complex additions for each stage.
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D.2.2 Decimation-in-Frequency FFT Algorithm

The decimation-in-frequency FFT algorithm breaks the frequency-
domain output sequenceX[k] into smaller and smaller subsequences
in the same manner that we did using the decimation-in-time FFT
algorithm. We again consider the DFT for an N -point frequency-
domain output sequence given by (C.4) in Appendix C,

X[k] =
N−1∑
n=0

x[n]W nk
N , k = 0, 1, · · · , N − 1. (D.5)

The frequency-domain output sequence X[k] in (D.5) can be
split into the even-numbered frequency samples X[2q] and the
odd-numbered frequency samples X[2q + 1]. The even-numbered
frequency samples X[2q] can be computed by

X[2q] =
N−1∑
n=0

x[n]W 2nq
N , q = 0, 1, · · · , (N/2)− 1. (D.6)

Equation (D.6) can be further expressed as

X[2q] =

N
2
−1∑

n=0

x[n]W 2nq
N +

N−1∑
n=N/2

x[n]W 2nq
N

=

N
2
−1∑

n=0

x[n]W 2nq
N +

N
2
−1∑

n=0

x
[
n+

N

2

]
W

2q[n+N
2

]

N .

(D.7)

Since the factors W 2q[n+(N/2)]
N = W 2qn

N W qN
N = W 2qn

N and W 2
N =

WN/2, (D.7) is then equal to

X[2q] =

N
2
−1∑

n=0

x[n]W 2nq
N +

N
2
−1∑

n=0

x
[
n+

N

2

]
W 2nq

N

=

N
2
−1∑

n=0

(
x[n] + x

[
n+

N

2

])
W 2nq

N

=

N
2
−1∑

n=0

(
x[n] + x

[
n+

N

2

])
W nq

N/2 (D.8)
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where q = 0, 1, · · · , (N/2)− 1. Therefore, (D.8) is the (N/2)-point
DFT of the (N/2)-point discrete-time input signal x[n] obtained by
adding the first and the last half of the discrete-time input signal.

Now we consider the specialization for odd-numbered frequency-
domain samples,

X[2q + 1] =
N−1∑
n=0

x[n]W
n(2q+1)
N , q = 0, 1, · · · , (N/2)− 1. (D.9)

Equation (D.9) can be further broken into

X[2q + 1] =

N
2
−1∑

n=0

x[n]W
n(2q+1)
N +

N−1∑
n=N/2

x[n]W
n(2q+1)
N

=

N
2
−1∑

n=0

x[n]W
n(2q+1)
N +

N
2
−1∑

n=0

x
[
n+

N

2

]
W

(n+N
2 )(2q+1)

N

=

N
2
−1∑

n=0

x[n]W
n(2q+1)
N

+ W
(N/2)(2q+1)
N

N
2
−1∑

n=0

x
[
n+

N

2

]
W

n(2q+1)
N . (D.10)

Note that factors W (N/2)2q
N = 1, W (N/2)

N = −1, and W 2
N = WN/2.

Thus, (D.10) can be rewritten as follows:

X[2q + 1] =
(N/2)−1∑
n=0

(
x[n]− x

[
n+

N

2

])
W n

NW
nq
N/2, (D.11)

where q = 0, 1, · · · , (N/2)− 1. Therefore, (D.11) is the
(
N
2

)
-

point DFT of the discrete-time input sequence x[n] obtained by
subtracting the second half of the input sequence from the first half
and multiplying the resulting sequence byW n

N .
Using (D.8) and (D.11), we then define two new

(
N
2

)
-point

discrete-time sequences o[n] and e[n] as follows:

o[n] = x[n] + x
[
n+

N

2

]
, n = 0, 1, · · · , (N/2)− 1, (D.12)
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and

e[n] = x[n]− x
[
n+

N

2

]
, n = 0, 1, · · · , (N/2)− 1. (D.13)

Then, we calculate the
(
N
2

)
-point DFT of the discrete-time sequence

o[n]

X[2q] =
(N/2)−1∑
n=0

o[n]W nq
N/2, q = 0, 1, · · · , (N/2)− 1, (D.14)

and the
(
N
2

)
-point DFT of the discrete-time sequence e[n]W n

N

X[2q + 1] =
(N/2)−1∑
n=0

e[n]W n
NW

nq
N/2, q = 0, 1, · · · , (N/2)− 1.

(D.15)
If the length N = 2v, this decomposition process can be continued
until the N -point DFT has been completely decomposed into N

2

2-point DFTs. In this case, we refer to the algorithm as the radix-
2 decimation-in-frequency FFT.

A flow graph for the radix-2 decimation-in-frequency FFT
algorithm with N = 8 is shown in Figure D.2. In this method, each
stage has 4 complex multiplications and 8 complex additions. The
branches have transmittances of the form W r

8 . Because there are
three stages, we have a total number of 12 complex multiplications
and 24 complex additions. In general, the number of complex
multiplications and additions is equal to N

2
log2N and N log2N ,

respectively; hence, the computational complexity is the same as that
of the decimation-in-time FFT algorithm.

D.2.3 Computational Complexity

In general, for both of the radix-2 decimation-in-time and
decimation-in-frequency FFT algorithms, a total of N

2
log2N

complex multiplications and N log2N additions are required.
However, note that some of the multiplications with the factors

of W 0
N , W

N
2
N , W kN/2

N , and W
kN/4
N are equal to 1, −1, (−1)k,
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Figure D.2 The flow graph of a radix-2 decimation-in-frequency
for an 8-point FFT algorithm.

and (−j)k, respectively. It is clear that these operations are
trivial and do not require actual multiplication. In addition,
some multiplications by the factor of W kN/8

N , which is [(1 −
j)/
√
2]k, can be done by two real multiplications and two real

additions. Furthermore, general complex multiplications can be
computed by three real multiplications and three real additions.
Therefore, the total computational complexity of the radix-2 FFT
algorithm is reduced to

[
N
2
(3 log2N − 10) + 8

]
multiplications and[

N
2
(7 log2N − 10) + 8

]
additions [2].
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D.3 Fixed-Point FFT Algorithm

In DMT and OFDM modulation and demodulation, the FFT and
IFFT algorithms are usually implemented by using a fixed-point
operation. For the fixed-point operation, the FFT twiddle coefficients
and input and output signals need to be quantized. The quantization
formats of digital signals usually used a sign and magnitude, a
one’s complement, or a two’s complement. However, the two’s
complement is most commonly used.

D.3.1 Quantization

Assume that we use a finite number of bits B for the quantization
operation. Then, the quantization operation on a real value can be
represented as follows:

x̂[n] = QB{x[n]}
= Xmx̂B, (D.16)

where Xm is an arbitrary scale factor, and x̂B = b1 · · · bB . The
smallest difference between finite numbers is given by

∆ =
2Xm

2B
. (D.17)

Considering the effect of quantization, we can define a quantization
error given by

e[n] = QB{x[n]} − x[n]. (D.18)

Note that in the case of the two’s-complement rounding, we have

−∆

2
< e[n] ≤ ∆

2
, (D.19)

and in the case of the two’s-complement truncation, we obtain

−∆ < e[n] ≤ 0. (D.20)

However, when the real number is greater than Xm, an overflow
happens.
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In order to analyze the error e[n] in (D.18), let Xm = 1 be a
full scale. We also assume that the quantization error e[n] has the
following properties: (1) the quantization error e[n] is uniformly
distributed over a range from − 1

2B
to 1

2B
, and the variance of the

quantization error e[n] is given by σ2
e = ∆2

12
= 2−2B

3
; and (2)

the quantization error e[n] is uncorrelated with each other and also
uncorrelated with input signal and output signal. This assumption
will be used for analyzing the fixed-point FFT implementation.

D.3.2 Fixed-Point Overflow, Scaling, and SNR

The quantization form for the DFT (or FFT) for the direct
computation can be defined as

X[k] =
N−1∑
n=0

QB{x[n]W kn
N }, k = 0, 1, · · · , N − 1. (D.21)

Note that the term of x[n]W kn
N in (D.21) is a complex product.

With the fixed-point operation, the complex product is expressed as
follows [3]:

QB{x[n]W kn
N } = Re{x[n]} cos

(
2πkn

N

)
+ e1[n, k]

+Im{x[n]} sin
(
2πkn

N

)
+ e2[n, k]

+j

[
Im{x[n]} cos

(
2πkn

N

)
+ e3[n, k]

]

−j
[
Re{x[n]} sin

(
2πkn

N

)
+ e4[n, k]

]
,

(D.22)

where ei[n, k], i = 1, 2, 3, 4, is the quantization errors. Thus, each of
the real multiplications contributes a round-off complex error known
as e[n, k], and the total of complex errors, F [k], to the output at the
kth value is obtained by

F [k] =
N−1∑
n=0

e[n, k]. (D.23)
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The squared magnitude of the complex error e[n, k] is given by

|e[n, k]|2 = (e1[n, k] + e2[n, k])
2 + (e3[n, k] + e4[n, k])

2. (D.24)

The corresponding variance of e[n, k] is obtained by

E{|e[n, k]|2} = 4

(
2−2B

3

)
=

2−2B+1

3
. (D.25)

Therefore, the variance of the total of complex errors F [k] is
obtained by

E{|F [k]|2} =
N−1∑
n=0

E{|e[n, k]|2} = 2−2B+1N

3
. (D.26)

Equation (D.26) indicates that the output noise is proportional to the
FFT length N .

In order to avoid overflow, we require

|X[k]| < 1, k = 0, 1, · · · , N − 1. (D.27)

This requires that the constraint condition as a bound on the input
sequence is given by

|x[n]| < 1

N
, n = 0, 1, · · · , N − 1. (D.28)

Equation (D.28) is sufficient to guarantee no overflow for all stages
of the DFT or FFT algorithm. This method is referred to as input
scaling.

Further assume that the real and imaginary parts of the input
sequence x[n] are uncorrelated, each with a uniform density between
− 1

N
and 1

N
. The variance of the complex input signal is then obtained

by

E{|x[n]|2} = (1/N + 1/N)2

12
=

1

3N2
. (D.29)

Using (D.5), the corresponding output variance of the DFT (or FFT)
is obtained by

E{|X[k]|2} =
N−1∑
n=0

E{|x[n]|2}|W kn
N |2 =

1

3N
. (D.30)
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Combining (D.30) and (D.26) yields the SNRDFT of the fixed-point
DFT or FFT algorithm as follows:

SNRDFT = 10 log10

[
E{|X[k]|2}
E{|F [k]|2}

]

= 10 log10

[
1/(3N)

2−2B+1N/3

]

= 10 log10

(
22B−1

N2

)
(dB). (D.31)

Therefore, with quantization by a fixed number of bits B, the
SNRDFT of the fixed-point DFT or FFT algorithm is inversely
proportional to N2 and decreases as the length of N increases.

D.3.3 Quantization Analysis of the FFT Algorithm

In Section D.3.2, we have discussed the quantization analysis of
the direct implementation for the DFT or FFT algorithm. The
quantization effects depend on the specific FFT algorithms used for
the OFDM modulation. In this section, we focus on the quantization
analysis for the radix-2 FFT algorithm since it has been the most
commonly used for the OFDM modulation.

To prevent overflow, we can require the condition of |X[n]| < 1
N

.
However, there is an alternative scaling procedure that incorporates
an attenuation of 1

2
at the input to each stage. This is because the

maximum magnitude increases by no more than a factor of 2 from
stage to stage in a radix-2 butterfly. Figure D.3 shows the radix-2
butterfly with scaling multipliers and associating fixed-point round-
off noise. With scaling by 1

2
introduced at the input of each of the

butterflies, two noise sources are included with each butterfly. We
assume that the real and imaginary parts of these noise sources are
uncorrelated with each other and also uncorrelated with the other
noise sources. In addition, the real and imaginary parts of these noise
sources are uniformly distributed between − 1

2B
and 1

2B
. Then we

have the variance of e[m, p], the same as (D.25),

E{|e[m, p]|2} = E{|e[m, q]|2} = 2−2B+1

3
. (D.32)



490 Signal Processing in Digital Communications

0.5

0.5WN

r

+

+

Xm-1[p]

Xm-1[q]

Xm[p]

Xm[q]

e[m,p]

e[m,q]

Figure D.3 Butterfly with scaling and corresponding fixed-point
roundoff-noise.

In the radix-2 butterfly structure, a noise source originating at the
mth array will propagate to the output, multiplying by a complex

constant of
(

1
2

)r−m−1
, where r is the number of stages. For the

general case, Oppenheim and Schafer [3] indicate that each output
node connects to 2r−m−1 butterflies and to 2r−m noise sources that
orginate at the mth array. Therefore, at each output node, the mean-
square magnitude of the total noise is obtained by

E{|F [k]|2} =
r−1∑
m=0

(
2r−m

) [(1
2

)2r−2m−2
](

2−2B+1

3

)

=
r−1∑
m=0

[(
1

2

)r−m−2
](

2−2B+1

3

)

= 2
r−1∑
n=0

[(
1

2

)n] (2−2B+1

3

)
. (D.33)

In order to solve (D.33), we use a closed-form formula given in
Appendix E

N∑
n=0

αn =
1− αN+1

1− α . (D.34)

Using (D.34), (D.33) can be further simplified as follows:

E{|F [k]|2} = 2

(
2−2B+1

3

)[
1− (1/2)r

1− (1/2)

]
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= 4

(
2−2B+1

3

) [
1−

(
1

2

)r]
. (D.35)

If the length of N is large, the number of stages r becomes larger
as well. Thus, the term

(
1
2

)r
is negligible. Then we approximately

obtain

E{|F [k]|2} ≈ 4

(
2−2B+1

3

)
. (D.36)

Combining (D.30) and (D.36), we obtain SNRFFT by using the
method of stage-by-stage scaling as follows:

SNRFFT = 10 log10

[
E{|X[k]|2}
E{|F [k]|2}

]

= 10 log10

[
1/(3N)

2−2B+14/3

]

= 10 log10

(
22B−1

4N

)
(dB). (D.37)

With the quantization of a fixed number of bits B, the SNRFFT of
the fixed-point FFT algorithm using the method of stage-by-stage is
inversely proportional to the length of N rather than to the length of
N2. The SNRFFT in (D.37) decreases as the length of N increases.
However, as we can see, the SNRFFT in (D.37) obtained by using the
method of stage-by-stage scaling is much greater than the SNRFFT

in (D.31) obtained by using the method of input scaling.
Figure D.4 shows the SNR of the fixed-point FFT with methods

of input scaling and stage-by-stage scaling at the fixed FFT length
of N = 256 when the number of quantization bits B gradually
increases. The method of stage-by-stage scaling clearly has a more
superior performance than the method of input scaling. For example,
at the quantization bit B = 15, the method of stage-by-stage scaling
has SNR = 135 dB, while the method of input scaling only has
SNR = 95 dB.

Figure D.5 shows the SNR of the fixed-point FFT algorithm
with methods of input scaling and stage-by-stage scaling when the
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Figure D.4 The SNR of the fixed-point FFT with varying
quantization bits B and the fixed length of FFT, N =
256.

FFT length of N increases at the fixed quantization bits B = 15.
The SNR of the fixed-point FFT decreases for both methods of
input scaling and stage-by-stage scaling when the FFT length of
N increases. However, it is also clear that the method of stage-
by-stage scaling is much better than the method of input scaling
for the fixed-point FFT implementation. Therefore, we recommend
using the attenuators of 1

2
at each butterfly stage rather than using

a large attenuation for the input scaling in the fixed-point FFT
implementation for OFDM modulation.

Much research has been done on the FFT algorithms over the
past three decades. For reference, we cite the books by Oppenheim
and Schafer [3], Miao and Clements [2], Chen [4], and Higgins [5].
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Figure D.5 The SNR of the fixed-point FFT with a varying FFT
length N and the fixed quantization bits B.
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Appendix E: Discrete Mathematical
Formulas

E.1 Complex Exponential Formulas

The discrete complex exponential formulas are listed as follows:

ejωn = cos(ωn) + j sin(ωn). (E.1)

cos(ωn) =
1

2
(ejωn + e−jωn). (E.2)

sin(ωn) =
1

2j
(ejωn − e−jωn). (E.3)

E.2 Discrete Closed-Form Formulas

The discrete closed-form formulas are listed as follows:

N∑
k=0

k =
1

2
N(N + 1). (E.4)

N∑
k=0

k2 =
1

6
N(N + 1)(2N + 1). (E.5)

N∑
k=0

αk =
1− αN+1

1− α . (E.6)

N2∑
k=N1

αk =
αN1 − αN2+1

1− α . (E.7)

495



496 Signal Processing in Digital Communications

N∑
k=0

kαk =
α

(1− α)2
[
(1− αN)− (1− α)NαN

]
. (E.8)

N∑
k=0

k2αk =
α

(1− α)3
[
(1 + α)(1− αN)

]
− (E.9)

− α

(1− α)2
[
2NαN + (1− α)N2αN

]
, (E.10)

where |α| < 1 and |α| �= 0, and N2 ≥ N1.

N−1∑
k=0

(a+kd)qk =
a− [a+ (N − 1)d]aN

1− q +
dq(1− qN−1)

(1− q)2 , N ≥ 1.

(E.11)

∞∑
k=0

(a+ kd)qk =
a

1− q +
dq

(1− q)2 , |q| < 1. (E.12)

N∑
k=1

k

(1 + k)!
= 1− 1

(1 + k)!
. (E.13)

N∑
k=0

1

k!(N − k)! =
2N

N !
. (E.14)

E.3 Approximation Formulas

The approximation formulas are listed as follows:

n! =
√
2πn

(
n

e

)n
e

θ
12n , 0 < θ < 1. (E.15)

n! ≈
√
2πn

(
n

e

)n
, for a large value of n. (E.16)

√
2πn

(
n

e

)n
< n! <

√
2πn

(
n

e

)n (
1 +

1

12n− 1

)
. (E.17)
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1

1 + x
≈ 1− x, x� 1. (E.18)

ex ≈ 1 + x, x� 1. (E.19)

(1 + x)n ≈ 1 + nx, x� 1 and n ≥ 1. (E.20)

ln(1 + x) ≈ x, x� 1. (E.21)

sin(x) ≈ x, x� 1. (E.22)

cos(x) ≈ 1− x
2

2
, x� 1. (E.23)

tan(x) ≈ x, x� 1. (E.24)

E.4 Logarithmic Formulas

Assume that a > 0. The logarithmic formulas are listed as follows:

loga a = 1. (E.25)

loga 1 = 0. (E.26)

loga x
α = α loga x. (E.27)

loga y =
logb y

logb a
. (E.28)

aloga y = y. (E.29)

loga b logb a = 1. (E.30)

loga
x

y
= loga x− loga y. (E.31)

loga xy = loga x+ loga y. (E.32)

ln = loge x, e = 2.718281828459 · · ·. (E.33)

log10 y = M ln y, M = 0.434294481903 · · ·. (E.34)

ln y =
1

M
log10 y. (E.35)



498 Signal Processing in Digital Communications



About the Author

George J. Miao received a B.Eng. from Shanghai University of
Science and Technology, an M.S. from Columbia University, and
a Ph.D. in electrical engineering from the Georgia Institute of
Technology. He is the president of Sageco Technologies, LLC. He
specializes in digital signal processing and wireless and wireline
digital communications. His extensive professional experience
includes work for several Fortune 500 companies. He is the coauthor
of the book Digital Signal Processing and Statistical Classification,
for which he received the IEEE New Jersey Coast Section Technical
Accomplishment Award. He is the author of the book Signal
Processing in Digital Communications. He has received a number
of awards, including the IEEE Section Technical Accomplishment
Award for wireless communication patents, the IEEE Chapter
Distinguished Service Award, and the IEEE Region-1 Award “for
innovative work in digital signal processing leading to applications
in wireless communications.” He holds a number of U.S. patents and
patents pending in wireless, wireline, and UWB communications.

Dr. Miao is a Senior Member of the IEEE, a chairman of the
IEEE New Jersey Coast Chapter of Signal Processing/Circuits and
Systems, and a board director of the Chinese Association for Science
and Technology (Greater New York, United States). He has been
named to the International Who’s Who of Information Technology,
Marquis Who’s Who in Science and Engineering, Who’s Who in the
Americas and World, and Who’s Who in Finance and Business.

499



500 Signal Processing in Digital Communications

.



Index

A
A/D converter, 4, 7, 8, 14, 25,

91, 93, 346, 360, 361,
365, 369, 402, 406
clipping probability, 11
dynamic range, 9
filter-band, 10
high-speed, 4, 12
minimum number of bits, 12
multirate, 5
noise shaping, 10
oversampling, 10
resolution, 10
sigma-delta, 10

Adaptive algorithm, 270, 274, 277
Adaptive channel equalizations,

258
Adaptive channel estimation, 208
Adaptive equalization, 257
Adaptive linear equalizer, 272
Adaptive Rake receiver, 330
Additive white Gaussian noise

(see AWGN), 83
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495
Discrete Fourier transform
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Discrete-time random process, 71
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Distortion, 171
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Diversity, 258, 323
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DMT, 190, 345, 359, 369, 383, 418
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DMT transmission, 347, 353, 355
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Doppler shift, 425
Doppler spread, 154
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DWMT, 347
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F
F distribution, 61
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channel, 162

Fast Fourier transform
(see FFT), 346

FBF, 300, 302

FDM, 373
Feedback filter (see FBF), 300
Feedforward filter (see FFF), 300
FEQ, 371, 372
FEXT, 169, 171, 346, 383, 418
FFF, 300, 307
FFT, 359, 363, 372, 384, 418, 479

decimation-in-frequency,
479, 482
decimation-in-time, 479
fixed-point, 489, 491
flow graph, 484
radix-2, 489
radix-2 decimation in
frequency, 484
radix-2 decimation in
time, 481

Filter impulse response, 16
Finite impulse response

(see FIR), 15
FIR, 15, 130, 132, 210, 229, 236

filter, 260, 262, 295
First Nyquist zone, 104
Fixed-point digital filter, 25
Flat surface-reflected path, 146
Fractionally spaced equalizer

(see FSE), 260, 280, 282, 286
Free-space propagation,

143, 146, 147
Frequency dispersion, 162
Frequency diversity, 117
Frequency division multiplexed

(see FDM), 373
Frequency error, 420
Frequency offset,

393, 395, 424, 432, 433
Frequency rotation, 420
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Frequency sampling, 476
Frequency synthesizer, 400
Frequency-domain equalization

(see FEQ), 371
Frequency-domain interpolation

formula, 99
FSE, 260, 280, 290, 291
FSE-CM, 297

cost function, 297
criterion, 297
local minima, 299
MSE performance, 299
noisy cost function, 298

FSE-DFE, 312
Full-band digitization, 12
Full-band frequency range, 13

G
Gaussian, 51
Gaussian channel, 110
Gaussian density function, 51, 53
Gaussian distribution function,

51, 53
Gaussian shaped pulse, 182
Generalized least squares

estimator, 201
Geometric signal-to-noise ratio,

352
Global system mobile

(see GSM), 3
Godard algorithm, 293
GSM, 3
Guard time, 369

H
Half-band filter, 15
Hard limiting, 365, 366

Harmonic sampling, 100
Hermitian transpose, 119, 458
Higher-order statistics

(see HOS), 226
HOS, 226, 228
Hypothesis, 85

I
IC, 6
ICI, 361, 369, 383
Ideal discrete-time phase

detector, 397
Ideal sampled signal, 94
Identifiability condition, 283
IDFT, 360, 476, 479
IDFT in matrix, 477
IF, 13, 100

center frequency, 14
sampling, 13
signal, 14

IF sampling, 100
IFFT, 360, 362
IIR, 453
Impulse radio, 2
Impulse response, 76
In-line loop segment, 166
In-phase component, 427
Independent, 31
Independent and identically

distributed, 41
Infinite impulse response

(see IIR), 453
Information theory, 2
Inline loop segment

ABCD matrix, 167
RLGC parameters, 167

Input scaling, 488, 491
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Instantaneous sampling, 93
Integrated circuits (see IC), 6
Intercarrier interference

(see ICI), 361
Interference suppression, 321
Intermediate frequency

(see IF), 13
Interpolation filter, 415
Intersymbol interference

(see ISI), 141
Intraband interference, 375
Intuitive probability, 27
Inverse z-transform, 437, 448
Inverse autocorrelation matrix,

221
Inverse channel filter, 263
Inverse discrete Fourier

transform (see IDFT), 360
Inverse fast Fourier transform

(see IFFT), 360
Inverse filtering approach, 228
Inverse orthonormal transform,

349
ISI, 141, 142, 161, 174,

176–180, 183–185, 257,
258, 260, 263, 265, 272,
300, 315, 320, 341, 383,
418, 432

ISI cancellation, 187
ISI distortion, 162
ISI effects, 184
ISI free, 375
Iterative water filling

algorithm, 353, 356

J
Jacobian transformation, 43, 65
Johnson noise, 116
Johnson-Nyquist noise, 2
Joint cumulative distribution

function, 34
Jordan decomposition theorem,

466

K
Kalman filter, 25
Kalman filtering, 275
Karhunen-Loève transform, 84

L
Lag, 73
Lagrange multiplier, 356
Lattice equalizer structure, 258
Law of large numbers, 69
Least mean squares

(see LMS), 210
Least squares estimator,

198, 199, 201
Likelihood function, 195
Likelihood ratio test, 85
Limited-band digitization, 13
Line of sight (see LOS), 143
Linear, 258
Linear channel equalizer, 274
Linear equalizations, 258
Linear equalizer,

228, 229, 260, 268
Linear predictor, 309
Linear shift-invariant systems, 26
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Linear time-invariant, 281
Linearly independent, 37
Link budget, 17
Link margin, 17
LMS, 210, 252, 259, 275

adaptation, 216
algorithm, 210, 211, 213,
214, 223, 225, 293, 301
algorithms, 210
filter, 219
misadjustment, 218
steepest descent, 211
trade-off, 219

LNA, 8
Log-normal distribution, 158
Logarithmic formulas, 497
Loop filter, 387
LOS, 143, 185, 257
Low-noise amplifier

(see LNA), 8
LTI difference equation, 447
LTI system, 76–79, 88, 447

discrete-time, 447, 448

M
M-PSK, 425, 427
MAI, 235
Matched filter, 184, 193
Matched filter receiver, 86
Matched filtering, 142
Matched filters, 387
Matrix, 459

determinant, 462
diagonal, 459
differentiation, 462
equalizer, 321
identity, 460

inversion, 464
inversion lemma, 464
lower triangular, 460
nonsingular, 464
orthogonal, 461
singular, 463
square, 461
Toeplitz, 460
trace, 461
upper triangular, 460

Matrix inversion lemma, 221
Matrix theory, 457, 473
Maximal combining, 326
Maximization theorem, 138, 472
Maximum a posteriori rule, 85
Maximum allowable path loss, 21
Maximum analysis, 471
Maximum likelihood detector, 88
Maximum likelihood estimator,

194, 197
Maximum likelihood sequence

estimation equalizer
(see MLSEE), 258

Maximum likelihood symbol
detection (see MLSD), 258

Maximum path loss, 21
Maximum-phase system, 453
MCM, 345, 347
Mean, 35
Mean path loss, 158
Mean square error (see MSE), 81
Method of least squares, 198
Method of maximum likelihood,

194, 196
MIMO, 22, 110, 117, 226, 253

channel, 118, 120, 233,
235, 236, 238, 246
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channel capacity, 120
channel filtering matrix,
248, 251
channel matrix, 237
channel model, 121
channels, 234
system, 120
systems, 117, 125

Minimization theorem, 138
Minimum analysis, 471
Minimum mean square error

(see MMSE), 81, 260
Minimum phase, 193
Minimum receiver sensitivity,

20, 21
Minimum sampling rate, 102
Minimum variance beamformer,

137
Minimum-phase system, 453
Misadjustment, 275
MISO, 110

channel, 122
channel model, 121
equalizer, 236
system, 122

Mixed-phase system, 453
MLSD, 258
MLSEE, 258
MMSE, 81, 82, 88, 133, 202,

204, 209–211, 214, 217,
218, 260, 269, 270, 291
DFE, 301, 302
equalized Rake receiver,
338
linear equalizer,
274, 292, 303, 335
optimal sense, 287

performance, 290
Rake receiver, 335

MMSE estimator, 202, 204–207
MMSE timing recovery, 407
Moment generation function,

37, 38
binomial, 46
poisson, 49
uniform, 46

MSE, 81, 82, 84, 88, 210,
211, 259, 273, 373
criterion, 266, 269

Multicarrier modulation
(see MCM), 345

Multichannel, 4
Multichannel filtering matrix, 231
Multichannel modulation, 345
Multilevel quantizer, 261
Multimode, 4
Multipath, 141
Multipath diversity receiver, 335
Multipath propagation, 149

diffraction, 149, 150
reflection, 149
scattering, 149, 150

Multipath-intensity profile, 150
Multiphase phase-shift keying

(see M-PSK), 425
Multiple access interference

(see MAI), 235
Multiple-input multiple-output

(see MIMO), 22
Multiple-input single-output

(see MISO), 110
Multirate timing recovery,

410, 435
Multivariate Gaussian density
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function, 58
Mutually exclusive, 28

N
N -dimensional vector, 457
NCO, 389, 400, 413
Near-end crosstalk

(see NEXT), 168
NEE, 258
Neural networks based equalizer

(see NNE), 258
NEVM, 178
NEXT, 168, 171, 186, 346,

383, 418
NLOS, 143, 185, 257
NMSE, 242

cost function, 289
Noise figure, 18, 19, 21
Noise floor, 20
Noise margin, 174
Noise predictor, 307
Noise PSD, 354
Noise-shaping filter, 10
Noise-to-signal ratio

(see NSR), 355
Nonblind channel estimation, 189
Noncoherent demodulation, 387
Nonline of sight (see NLOS), 143
Nonlinear, 258
Nonlinear equalization, 258
Nonminimum-phase, 242
Nonminimum-phase system, 454
Nonuniform filter banks, 382
Nonuniformly spaced samples,

382
Normal, 51
Normal equation, 135

Normalized EVM
(see NEVM), 178

Normalized MSE
(see NMSE), 242

NSR, 355
Numerically controlled oscillator

(see NCO), 389
Nyquist criteria, 104
Nyquist criterion, 179, 180
Nyquist filter, 180
Nyquist frequency, 181
Nyquist sampling frequency,

95, 99
Nyquist sampling rate, 280
Nyquist zones, 96, 100

third Nyquist zone, 101
Nyquist-Shannon interpolation

formula, 98
Nyquist-Shannon sampling

theorem, 2, 91, 94, 113

O
OFDM, 22, 189, 345, 359, 369,

383, 418
OFDM demodulation,

363, 372, 379, 382
OFDM modulation, 380
OFDM system performance, 364
Open-circuit transfer admittance,

164
Open-circuit transfer function, 164
Optimal matched filter,

183, 184, 187
Optimal property, 199, 201
Optimality criterion, 83
Optimization array gain, 136
Optimum detector, 85
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Optimum receiver, 86
Optimum sampling, 174
Orthogonal, 37, 459
Orthogonal frequency division

multiplexing (see OFDM), 22
Orthogonal matrix, 461, 472
Orthonormal, 84, 375, 459
Orthonormal basis functions, 84
Orthonormal transform, 349
Overflow, 486, 488
Overlap, 99

P
PAM, 94, 172, 176, 282, 298,

405, 425, 426, 428
PAR, 365
Partial fraction expansion, 450
Partial-band digitization, 13
Path loss, 18, 20, 144
Peak, 174
Peak-to-average ratio

(see PAR), 365
Perfect equalization, 236
Perfect reconstruction, 379
Perfect source recovery, 289
Phase detector, 387, 397

modulo-2, 397
Phase error, 390
Phase jitter, 425, 432, 433
Phase locked loop

(see PLL), 388
Phase offset, 393
Phase reference, 390
Phase rotation, 420
Phase shift, 419
Phase-shift keying

(see PSK), 176

PLL, 388
discrete-time, 389, 412, 430
first-order, 392
second-order, 394
transient behavior, 423

Polyphase decomposition,
377, 378

Polyphase filter bank, 16
Polyphase filter bank timing

recovery, 414
Polyphase filters, 16
Polyphase-based

filter bank DFE, 312
Posteriori, 30
Power spectral density

(see PSD), 74
Power spectrum, 74, 75,

78–80, 88, 105, 303
Precoding, 313
Predictive DFE, 307, 310
Priori, 30
Probability density function, 33
Probability distribution function,

32
Probability of error, 87
Probability theory, 26, 27
Prototype filter, 377
PSD, 74, 87, 349, 350
Pseudorandom, 327
PSK, 176, 177, 282, 405
Pulse amplitude modulation

(see PAM), 94
Pulse-shaping filter, 172

Q
Q-function, 56, 87
QAM, 176, 177, 282, 298, 368,
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425, 427
QMF, 379, 383
QPSK, 176, 177
Quadratic form, 470
Quadrature amplitude

modulation (see QAM), 176
Quadrature mirror filter

(see QMF), 379
Quadrature phase-shift keying

(see QPSK), 176
Quantization error, 487
Quantization noise, 10
Quantization noise power, 12
Quantization operation, 486

R
Radio frequency (see RF), 6
Raised-cosine frequency

response, 181
Rake correlators, 326
Rake receiver, 260, 325

MMSE, 333
Random process, 25
Random signal, 25
Random variable, 26, 31
Random vector, 32
Rational powers, 467
Rayleigh distributed, 64, 329
Rayleigh faded component, 160
Rayleigh fading, 159, 185, 330
Rayleigh fading distribution,

159
Rayleigh quotient, 471
Rayleigh-Ritz ratio, 136
Received power, 150

large-scale, 150
small-scale, 150

Receiver, 17
Receiver sensitivity, 19
Rectangular filter, 180
Recursive least squares

(see RLS), 210
Region of convergence

(see ROC), 438, 439, 442
Resampling operation, 14
RF, 6, 91, 171

components, 12
front end, 8
image-reject bandpass filter,
13
regulations, 13
signal propagation, 9
system, 19
system design, 6
transceiver, 7

Ricean factor, 161
Ricean fading, 160, 185
Ricean fading distribution, 161
Ricean distributed, 66
RLS, 210, 252, 259, 275

algorithm, 219, 223
convergence analysis, 223
convergent in the mean value,
224
exponential weighting
factor, 219
gain vector, 221
misadjustment, 224
normal equations, 220
priori estimation error, 222
Riccati, 221

RMS, 366
ROC, 438, 439, 441, 448
Rolloff factor, 181
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Root mean square
(see RMS), 360, 366

Rotation error, 423

S
Sample mean, 74
Sample rate conversion, 8
Sample space, 27
Sample variance, 74
Sampler, 191
Sampling, 94
Sampling expansion, 106
Sampling frequency, 92
Sampling instant shifts, 419
Sampling interval, 92
Sampling period, 92
Sampling process, 91
Sampling rate, 15, 92, 99,

102, 103, 476
Sampling theorem, 91, 95,

105, 106
SDR, 2, 22
Short-circuit current ratio, 164
Short-circuit transfer

impendance, 164
Signal-to-interference-and-noise

ratio, 136
Signal-to-noise ratio

(see SNR), 12, 142
Signal-to-quantization noise

ratio (see SQNR), 365
Signals, 92

analog signals, 92
digital signals, 92
discrete-time sampled
signals, 92
discrete-time signals, 92

SIMO, 110, 226, 253
channel, 229, 232, 235,
238, 242, 246
channel model, 121

Simulation loop model, 169, 170
Sinc-function, 98
Single-input multiple-output

(see SIMO), 110
Single-input single-output

(see SISO), 120
Singular value decomposition

(see SVD), 120, 240
Singular value decomposition

theorem, 468
SISO, 120, 226, 239, 253, 316

channel, 226, 229, 238
Slice, 261
Slow fading, 162
Slow fading channel, 162
Smart antenna, 4, 125
Smart antenna system, 126, 139
Smart antennas, 234, 325
SNR, 12, 17, 19, 143, 162,

183–185, 227, 235, 270,
272, 351, 366, 423
DFE, 305

Software defined radio
(see SDR), 2, 22

Space-only equalizer, 318, 341
Space-time equalizer, 320, 340
Space-time MMSE equalizer,

320, 323, 341
Space-time modulation, 22
Space-time processing, 315
Space-time signal processing,

117, 125, 234
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Spatial diversity, 117
Spectral decomposition theorem,

466
Spectral efficiency, 22
SQNR, 365
Square root raised cosine

(see SRRC), 182
Square-law device, 428
SRRC, 182
SRRC filter, 182
SSS, 73, 88
Stability, 276
Stage-by-stage scaling, 491
Standard deviation, 36, 51
Standard Gaussian, 53
Standard normal distribution,

111
Stationary, 73
Stationary in the strict sense

(see SSS), 73
Statistically independent, 37
Steady-state phase error,

392, 394
Step size, 214, 219
Stochastic jitter, 296
Stochastic process, 73
Stochastic sampling theorem,

106
Stochastic signal, 25
Subband signals, 10
Subspace decomposition, 246
Sufficiently large, 27
Super-Nyquist sampling, 100
SVD, 120, 240
Symbol rate, 263
Symbol-based equalizer, 279
System identification, 208

T
TDM, 373
TED, 410, 413
TEQ, 369, 371, 384
The z-plane, 439
The z-transform, 437

common pairs, 445
conjugation, 444
convolution, 443
differentiation, 445
final value, 445
frequency shifting, 443
initial value, 445
inverse, 449
linearity, 442
multiplication, 444
properties, 442
time reversal, 443
time shifting, 442

Thermal noise, 115, 116
Threshold detector, 261
Time delay, 151, 156
Time dispersion, 161
Time diversity, 117
Time division multiplexed

(see TDM), 373
Time domain interpolation

formula, 98
Time-domain equalizer

(see TEQ), 369
Time-limited signal, 98
Time-only equalizer, 316, 340
Time-selective fading, 162
Time-varying filter, 272
Timing error, 174
Timing error detector

(see TED), 410
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Timing jitter, 176, 407, 424
Timing offset, 176
Timing recovery, 402, 418, 435
Tomlinson precoder, 313
Tomlinson-Harashima precoder,

313
Total probability theorem, 29
Training method, 277
Transformation function, 43
Transmitter, 17
Transpose of the vector, 458
Transversal filter, 210, 260
Two-port network, 164, 186

U
Ultra wideband (see UWB), 2
Unbiased estimate, 199
Undersampling, 100, 101, 107
Uniform DFT receiver

filter bank, 377
Uniform random variable, 58
Unit norm vector, 458
UWB, 2, 3, 6, 10, 22, 326

V
Variance, 36
VCO, 388, 390

discrete-time, 400, 404, 412
VDSL, 351
Voltage-controlled oscillator

(see VCO), 388

W
Water-filling algorithm, 352
Water-filling optimization, 356
WCDMA, 3, 334, 341
Weak law of large numbers, 69

White Gaussian noise, 193
Wide-sense stationary

(see WSS), 73, 202
Wideband code division multiple

access (see WCDMA), 3
Wiener filters, 133
Wiener-Hopf equation, 204

normal equation, 204
Wired communication, 142
Wireless channels, 143
Wireless communication, 141
Wireless communications, 276
Wireless local area network

(see WLAN), 2
Wireline communications, 276
WLAN, 2, 3, 6
WSS, 73, 74, 76, 88

Z
Zero crossing, 174
Zero ISI, 180, 181
Zero-forcing condition, 265, 286
Zero-forcing equalizer, 264–266
Zero-forcing solution, 179
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