Scott A. Pardo

Fmpirical Modeling
and Data Analysis
for Engineers and
Applied Scientists



Empirical Modeling and Data Analysis for Engineers
and Applied Scientists






Scott A. Pardo

Empirical Modeling and Data
Analysis for Engineers
and Applied Scientists

With contributions by Yehudah A. Pardo

@ Springer



Scott A. Pardo
Ascensia Diabetes Care
Parsippany, NJ, USA

ISBN 978-3-319-32767-9 ISBN 978-3-319-32768-6 (eBook)
DOI 10.1007/978-3-319-32768-6

Library of Congress Control Number: 2016941324

© Springer International Publishing Switzerland 2016

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on
microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer
software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even
in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and
therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true
and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied,
with respect to the material contained herein or for any errors or omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG Switzerland



Preface

Science is about discovery. Discovery is the primary paradigm of science. The primary paradigm of
engineering and “applied science” is design. All scientists, whether physicists, biologists, chemists,
psychologists, sociologists, anthropologists, economists, geologists, or any other “ists,” attempt to
discover things. Sometimes, they want to discover the existence of something; sometimes they want
to discover how something works; sometimes they want to discover how several things are related;
sometimes they want to discover why something exists. Regardless, scientists are in the discovery
business. They do not in general want to alter the natural world; they want to understand it. In
contrast, the primary paradigm of engineering and applied science is design. Engineers, and those
who we will call “applied scientists,” want to design things. Clearly, it is important for the engineers
and applied scientists, whom we will call EASs, to understand nature and natural phenomena, but
understanding is not their goal. Their goal is to exploit nature, hopefully in a beneficial and
benevolent manner, in order to make something happen. Thus, the primary goal of the engineer
and applied scientist is design.

Statistics, as a discipline, is mostly oriented toward the discovery paradigm. Statistics courses
emphasize creating predictive models or classificatory models, either predicting nature or classifying
individuals. Most commonly, we hope to reject the hypothesis of no effect, in favor of discovering an
effect. It seems that often statistics is used to prove or disprove the existence of some phenomenon, as
opposed to aiding in the design of a product or process. This is not to say that statistical methods
cannot be used, or are never used, to help design something. Chemical engineers may use designed
experiments to optimize a process; manufacturing engineers may use experimental data to optimize
the operation of a machine; industrial engineers might use data to determine the optimal number of
operators required in a manual assembly process. This text is about gathering and analyzing empirical
observations (data) in order to aid in making design decisions. The EAS may believe that experimen-
tation is unnecessary for designing. He or she might believe that design decisions should be made
without any empirical observation and that experimentation is only useful for verifying or validating
designs. Every electrical engineer knows that V = IR, but what happens to V if both I and R have
some random components? What about the ideal gas law, P = k%? There seems to be no need for
empirical data when applying these laws. The formulas and equations learned in an elementary
physics course may take on new meaning when accounting for probabilistic variation. Also, there are
many design situations where no simple equation exists. This text is meant to speak to the EAS, and
hopefully motivate her or him to experiment, with the design objective in mind.

Much of the discussion in this book is about models. Models are by definition incorrect. The
question is not whether the model truly represents reality, but rather whether the model adequately
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represents reality with respect to the problem at hand. Many of the ideas presented will focus on how
to gather data in the most efficient way possible in order to construct an adequate model.

The statistical methods presented are not new. In general, the techniques and concepts introduced
in this book are meant to stimulate the reader’s imagination and not meant to be the definitive answers
to problems. Certainly, the ideas presented are not an exhaustive list. The authors hope that this book
will present a variety of design situations familiar to many engineers and applied scientists and inspire
the reader to incorporate experimentation and empirical investigation into the design process.

Software is integrally linked to statistical analyses. Examples in this book have been worked using
several packages/languages/programs, notably SAS, R, JMP, Minitab, and MS Excel. It is the
authors’ belief that there is no “best” software in general. All packages and languages have
advantages and disadvantages. The point of using several types of software was simply to demon-
strate that no one package or language is best overall. This text is not a primer on software, however.
It is assumed that the reader has familiarity with some data analysis software.

This material can be used at the advanced undergraduate or first-year graduate level. The students
who would most benefit from this book are those studying engineering or applied science. The student
would benefit greatly from some accompanying laboratory work. While fully worked examples are
given in every chapter, there is no teacher like hands-on experience. Most of the chapters in this book
are subjects that are covered in an entire book by itself. The goal is to introduce the student to ideas
about empirical investigation in such a way as to motivate him or her to use experimentation as an aid
to design.

The authors encourage instructors to assign the students practical experience in conducting
experiments, making measurements and observations, and analyzing their data. Ideally, the student
should use data that are intrinsically meaningful to him or her, such as experimental data associated
with a thesis or dissertation. The fundamental learning objective of this book is for the reader to
understand how experimental data can be used to make design decisions and to be familiar with the
most common types of experimental designs and analysis methods.

Although the text includes introductory chapters in probability and statistics, it would greatly help
the student to have already been exposed to those subjects, as well as some linear algebra.

We must make a small apology about the letter “p.” We use this letter to symbolize probability,
numbers of parameters in a model, and powers of 5. It can be a little confusing. At least the reader is
warned.

A brief word about data-intensive modeling methods, such as artificial neural networks and fuzzy
algorithms, is appropriate. This is brief, because those methods are not mentioned at all in the text.
While valuable and important, they could have and have had entire texts devoted to those techniques.
This text will focus on methods that can be used with “small” data sets, generally gathered in a
designed experiment.

How to Use This Book as a Text

This book could be used as a text for a course titled something along the lines of “Statistical Methods
for Engineers and Applied Scientists,” “Experimentation in the Design Process,” or “Using Empirical
Data to Aid in the Design of Products and Processes.” It could also provide students some more
in-depth discussion of statistical methods discussed in a Design for Six Sigma course. The first seven
chapters are largely about factorial experimentation, although the material in Chap. 3 on measure-
ment systems does not traditionally appear in experimental design texts. The remaining chapters
might be called “special topics in data analysis,” and much of that material involves application of
experimental designs. The book is intended to stimulate students to engage in empirical investigation
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as part of their design process. It is not a text about engineering design, nor is it strictly an
experimental design text. There are many topics in experimental design and analysis that are not
included (e.g., split-plot designs, One-way ANOVA, partially balanced incomplete blocks, and the
method of steepest ascent), and virtually no discussion about engineering design, per se. Rather, it is
intended to help the student understand how empirical investigation and empirical models could be
used to aid in design. If students had previously taken a course in the elements of probability and
statistical theory, the first two chapters could be skipped. Otherwise, the authors suggest covering
Chaps. 1 and 2 in the first week and one chapter each week thereafter. Some of the chapters, notably
Chaps. 11 (Reliability) and 15 (Robust Design), might require more time than 1 week. Of course, the
instructor should use her or his discretion in including additional materials, excluding some of the
text, or the timing of coverage for any of the text’s material.

Parsippany, NJ, USA Scott A. Pardo
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Chapter 1
Some Probability Concepts

Probability begins with the ideas of “sample space” and “experiment”. An experiment is the
observation of some phenomenon whose result cannot be perfectly predicted a priori. A sample
space is the collection of all possible results (called outcomes) from an experiment. Thus, an
experiment can be thought of as the observation of a result taken from a sample space. These
circular-sounding definitions may be a little annoying and somewhat baffling, but they are easily
illustrated. If the experiment is to observe which face of a six-sided die lands up after throwing it
across a gaming table, then the sample space consists of six elements, namely the array of 1, 2, 3,4, 5,
or 6 dots, as they are typically arrayed on the faces of a six-sided die. An event is a set of outcomes.
So, for example, the set A = {1, 3, 5} could represent the event that an odd number of dots shows up
after throwing a six-sided die. Events have probabilities associated with them. For discrete events,
such as in the die-throwing experiment, the probability is the number of outcomes contained in the
event set divided by the total number of outcomes possible. So, the probability of event A as
previously defined is:

#outcomes in A 3

Pr{A} = ==
r{A} #outcomes possible 6

Sample spaces need not be so discrete or finite; they can be continuous and infinite, in that they can
have an infinite number of outcomes. For example, if a sample space consists of all possible initial
voltages generated by Lil batteries made in a battery manufacturing plant, then it would have an
infinite (but bounded) number of possible outcomes.

A random variable is a mapping from a sample space into (usually) some subset of the real
numbers (possible over the entire real line). Think of the random variable as a “measurement” taken after
the experiment is performed. Thus, the number of dots in the array showing after the die is cast, or the
voltage as measured by a volt meter, would be random variables. There are two basic classes of random
variables, discrete and continuous. Discrete random variables are mapped from the sample space to
(possibly infinite) subsets of integers, and continuous random variables are mapped to (possibly infinite)
subsets of real numbers. The die example is discrete, and the voltage example is continuous.

Every random variable has a probability distribution function that describes the chances of
observing particular ranges of values for the random variable. In the case of discrete random
variables, it also makes sense to talk about the probability of an experiment resulting in a particular
value, e.g., the probability that the number of dots in the die array showing is 4. For continuous
variables, it makes sense to talk about the probability of obtaining a value in a “small” range, but the
probability of obtaining a particular value is 0. This is not to say that particular values of continuous

© Springer International Publishing Switzerland 2016 1
S.A. Pardo, Empirical Modeling and Data Analysis for Engineers and Applied Scientists,
DOI 10.1007/978-3-319-32768-6_1



2 1 Some Probability Concepts

random variables are never observed or measured; it just means that we do not have the ability to
predict a particular value with any non-zero measure of uncertainty.

A probability cumulative distribution function (cdf) describes the probability that a random
variable is less than or equal to a particular value. We will use capital letters to represent the random
variable, and lower case letters to represent particular values. If X is a random variable, then the cdf
for X is symbolized as:

Fx(x) = Pr{X <x}

In the case of discrete random variables, this function is a sum of probabilities for particular values,
p(xp), up to and including the value x:

Fx(x) =) pla)

X <x

The function p(x;) is referred to as the probability mass function (pmf). In the case of continuous
random variables, the summation is replaced with and integral, and the discrete probability
mass function is replaced with something called a probability density function, or pdf (usually;
there are some more or less degenerate cases where a density function does not exist), f(x),
which defines the probability that the random variable would have values observed in a small
interval, dx:

Fx(x)dx = Prix —dx < X < x + dx}

So the cdf is:

In general, the probability mass functions and density functions are defined in terms of parameters
that give these functions their particular characteristics. This book involves several special classes of
density functions and their associated parameters.

There are some special characteristics of random variables called moments. We will only be
concerned with two such characteristics, called expectation (or mean) and variance (and its square
root, called standard deviation). The expectation of a random variable is given by:

Z kP (xx)

EXt=u= +00
X =+ j & (£)de

—00

The sum is for discrete random variables, and the integral for continuous. The expectation is like the
center of gravity for the random variable, if one thinks about the density function describing the
distribution of mass over a beam. The variance is:

Zk(xk — 1)’p(xe)
E[(X - ,u)z] =0 = J~+oo

—00

(& — n)f(&)dé



1 Some Probability Concepts 3

Table 1.1 Some probability density and mass functions

Name Parameters Density or mass function Range of values
Normal s x—p\2 —o00 < x < +
o Aew(-465°) s
Gamma n, A %ﬂ*lexp(fﬂhx) x>0
Chi-squared v 1/2)5 v x>0
4 (régi B lexp(—3)

Student’s t v FG(H.U) [1 +x_2] S —00 < x < 400
Var () v

F v, U r(4342) NOR x>0
()T (2 (1@

Poisson A ﬂ‘zy ‘ k=0,1,2,...

Binomial n,p n\ 4 ke k=0,1,2,3,...n
C(atp)  a— p—1 <

Beta a, p e B 1(1-p) 0<p<1

Again, the summation and integral are for discrete and continuous random variables, respectively.
The square root of ¢ is called the standard deviation, and it is useful in making probability calculations
with the normal probability distribution. Note that the expected value of any function of the form
(X — )" is called the rth moment about the mean. That is, the rth moment about the mean is:

Z(Xk — 1) p(xe)
k
EI(X )] =4 ¥
| €-wrrieae

—00

It turns out that most of the time, parameters of distributions can be expressed in terms of these
moments.

Table 1.1 shows the parametric forms of density and mass functions for several special random
variables referred to in the text.

Some important concepts used throughout the text are mutual exclusivity, independence, condi-
tional probability and conditional expectation. If A and B are two events, the joint probability is the
probability that after the experiment is performed, both A and B would have occurred. Once again
using the die-throwing experiment, suppose A = {odd number of dots showing} B = {number of
dots showing is less than 4}. The joint probability would be the number of outcomes in the
intersection of the two sets A and B divided by the total number of outcomes, namely:

#(1,3,5)0{1,2,3} 2
Pr{A N B} = _Z
" } #(1,2,3,4,56) 6

The probability that either event A occurs, event B occurs, or both event A and B occur is the
probability of the union of the two sets A and B. In general:

Pr{A UB} = Pr{A} 4 Pr{B} — Pr{A N B}
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Two events are called mutually exclusive if:
Pr{ANB} =0
Two events are called independent if:
Pr{A N B} = Pr{A}Pr{B}

Conditional probability is the probability of an event given that another event is known to have
occurred.

The idea is that the probability of an event, given that some particular condition is known to exist,
depends on the particular condition. As an example, the probability that the air temperature at the
earth’s surface, given that it is measured inside the arctic circle in January, is between 35 and 45 °C,
is not the same as the probability of obtaining a temperature between 35 and 45 °C, given temperature
is measured in Death Valley, CA, in the same time period. The notation we will use for conditional
probability is:

pr{A|B}

which is read, “the probability of event A given that B is known to have occurred”, or more simply,
“the probability of A given B”.
The conditional probability is calculated as:

Pr{A NB}

Pr{A|B} = Pr{B)

Manipulating the formula for conditional probability gives an expression for the joint probability in
terms of conditional probabilities:

Pr{An B} = Pr{A|B}Pr{B} = Pr{B|A}Pr{A}
There is a generalization of this relationship, called Bayes’ Theorem. Suppose there are a set of
events, By, B,, ..., By that are mutually exclusive and they partition the sample space, S, i.e.:

{B;} N {B;} = ¢ = {} = the empty set, i # j, and U*_ {B;} =S
Then if A is some other event, then

k k
Pr{A} = Pr{AnB;} = > Pr{A|B;}Pr{B;}
i=1 i=1
Thus, Bayes’ theorem states that

Pr{a[B,}Pr(5,)

Zik:lpr{A|B,~}Pr{B,-}

Pr{Bj[A} =

This theorem, and its continuously-valued analog, is particularly useful when A represents
observations (data), the B; represent different possible values (or sets of values) for some parameter,
Pr{AIB;} is the likelihood of observing A if the parameter is equal to (or in the set) B;, and Pr{B;} is the
degree to which it is believed, prior to getting data A, that the parameter equals (or is in the set) B;.
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Expected values can also be conditional. For example, the average duration of daylight, given that
the location is New York City in June, will not be the same as the average duration of daylight, given
the location is Melbourne, Australia in June. The notation is:

E[Y|y]

where Y is a random variable, and x is a known condition, which in turn could be a particular value of
another random variable, or the value of some parameter. Formally, conditional expectation is defined
in terms of conditional probability mass or density functions. That is, perhaps the density of variable Y
depends of the value of another variable, X. If f(yIX = x) is the conditional density of Y given X = x,
then the conditional expectation of ¥ given X = x is:

+00

E[Y|X :x] = Jyf(yP( :x)dy

—00

Two random variables, X and Y, are said to have a joint probability distribution, with a joint
cumulative distribution function F(x,y) = Pr{X < x AND Y < y}. If it exists, the two variables
have a joint density function:

02F (x,
f(xvy) = %})}))

The two variables are said to be independent if:

F(x,y) = Fx(x)Fy(y)

Fx(x) and Fy(y) are the respective cumulative distribution functions of each random variable. These
one-variable cdfs are referred to as marginal cdfs. Similarly, if the joint density function exists, then
when X and Y are independent:

fe,y) = fx(x) fy(y). The conditional density of Y given X = x is expressed in terms of the joint and
marginal densities:

1,0k =2

Key Points

+ Probability is a mapping from sets, called events, into the interval [0,1].

+ Random Variables (RVs) are mappings from sample spaces into (usually) the real numbers.

« RVs can either be discrete or continuous.

* RVs have cumulative distribution functions (cdfs); discrete RVs have probability mass functions;
continuous RVs usually have probability density functions.

» CDFs often have parametric forms.

» Bayes’ Theorem provides a convenient way of using data to update the uncertainty about a
distribution’s parameters.



6 1 Some Probability Concepts
Exercises and Questions

1. A production lot of 100 million plastic beads consists of 60 % red, 20 % white, and 20 % blue
beads. Five percent of the red beads are defective and 2.5 % of the white beads are defective.
The overall percent defective beads is 7 %. What percent of the blue beads are defective?
A: 17.5 % (Hint: express Pr{Defective} in terms of the conditional probabilities of defective
given bead color)

2. The expected value of the weight of a seed from a hybrid corn plant is 3.0 g, and the variance is
0.01. Assuming that seed weight is normally distributed, what is the probability that a seed will
weigh between 2.75 and 3.25 g? A: ~0.98758

3. Are there any situations where the probability of an event is not conditional?

4. How do you interpret the statement: “There is a 70 % chance of rain tomorrow.”?



Chapter 2
Some Statistical Concepts

This book is concerned with making inferences about parameters of probability distribution
functions. An inference is a generalization made from some specific observations. The specific
observations are the data; the generalization is about the values of the parameters. The data are
presumed to be a (relatively) small subset of values obtained, measured, or observed in some way
from a larger population (sample space). Generally, the parameters are unknown. What we have
instead are sample statistics, which are functions of the data. These statistics are themselves random
variables, in that every new subset of values from the population yields potentially at least a new
value for the statistic. As a result, the sample statistic also has a sample space associated with it, and a
probability distribution function as well. The probability distribution function for a sample statistic is
often referred to as a sampling distribution function (Meyer 1970). The form of the sampling
distribution usually depends on the formula for the statistic, and the distribution function of the
random variable for which the data constitute a subset of values or observations.

One common situation is to make inferences about the expected value of a random variable having
anormal probability density, i.e.: E(X) = — [ T xe (x%”)zdx = u (it is a convenient coincidence
that the expected value of a normally distributed random variable happens to be one of its parameters)

The problem is that both i and o, the two parameters for the normal distribution, may not have
known values. We can only infer something about this expected value based on a finite subset of
values from this normally distributed population. Let xy, x5, X3, ..., X, represent the values of this
finite subset, called a sample. We can compute two sample statistics:

n

_ 1 n 1 _
= 221,:1)(,-, and s = mZ(xf —x)?

i=1

These represent sample estimates for the population parameters y and o. These estimates are referred
to as “point” estimates, in that they are single values, and not a range or interval.

An inference would be made if we wanted to know (infer) that the expected value of this particular
normal distribution was equal to a particular value or not.

There is some formalism, called hypothesis testing, concerning inference. The notion is that we do
not know the value of a parameter, but perhaps we would like to know specifically if the parameter
either equals a particular value or if it falls in some particular range. Hypotheses always come
in pairs; the “null” hypothesis, usually symbolized as H (hence the term “null”) and the alternative,
H,, which is in some sense the logical negation of the null. The idea is that a test statistic, such as X,
would, if the null hypothesis is true, have a value that would fall within some interval with some a

© Springer International Publishing Switzerland 2016 7
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priori determined probability, which we will call 1 — a. The probability, a, is the probability of
obtaining a value of the statistic outside the pre-specified range even though the null hypothesis is
true; this is called Type I risk. Since we do not know if the null is true or not, we only decide to believe
it (accept) or disbelieve it (reject). Often, the alternate hypothesis can be true under an infinite number
of possible alternative values for the parameter of interest. For example, if we were interested in
testing the hypothesis that a population mean, u, was either equal to a specific value, say pq, or that u
is not equal to p, the pair of hypotheses might look like:

Ho: p = po vs. Hy: p # po.

Of course, there are an infinite number of possible values for x that would make the null hypothesis
false. The probability of rejecting the null hypothesis when it is false is called power. The power,
usually symbolized as 1 — f, is a function of alternate values of u (i.e., values other than ug). The
value of f is referred to as Type Il risk. Usually, a curve of power as a function of alternate values of
the parameter is constructed. Oddly enough, this curve is referred to as a “power curve”.

If we “hypothesize” about whether the expected value is equal to py, i.e., some specific value, we
form yet another sample statistic:

VAKX — po)

N

=

This statistic, if the expected value of the random variable X actually is equal to g, has a sampling
distribution called Student’s ¢ with a parameter called degrees of freedom (df) equaling the conve-
nient (and known) value n — 1. The inference to be made is whether it is believable that the expected
value of X is equal to y or not. If the value of the statistic 7 falls within a “reasonable” range we would
expect (say a range that covers 95 % of values for a random variable having a Student’s ¢ distribution
with df = n — 1). In other words, if p = S a= 0.05, and 1, represents the 100p percentile of this
Student’s ¢ distribution, we would expect the sample statistic to fall somewhere between #, = 1 25
and #;_, = fy975 with probability 0.95 (95 %). So the inferential rule for this statistic could be the
following:

If the sample statistic, ¢, falls in the interval (¢y025,f0.975) then we are willing to believe that the
expected value of the random variable we were sampling is equal to u,. Otherwise, we will not
believe it. Alternatively, we can calculate the probability that, given the null hypothesis is true, a
Student’s ¢ variable would be greater than (in absolute value) the computed test statistic, ¢. This
probability is called a p-value. If the p-value is lower than some pre-specified level, say 0.05, then we
would reject the null hypothesis Hy in favor of the alternate, H,. The power is computed by
calculating the probability that the t statistic would fall outside the range (¢ 2s,%0.975) When in fact
4 equals to some values other than pg. If u actually equals p, then the power is equal to 0.05 (i.e., @).
In the case of the ¢ statistics, the power is calculated using probabilities from something called a non-
central ¢ distribution (Bickel and Doksum 2007). The non-central ¢ (which we will symbolize as T”)
distribution has an extra parameter, called the non-centrality parameter (ncp), which would equal in
this case:

Vnlp, — po)

o

nep =

The value of p, is varied, and the power is the probability calculated using the non-central #:

Vi(u, _ﬂo)}

PI‘{T/ < to.025 OR T/ > l0_975|l’le =
(o2
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The values #p g5 and #y 975 are percentiles of the usual (central) ¢ distribution. As sample size
increases, the ability to “detect” departures from H, (i.e., reject the null hypothesis) increases.
There are virtually an infinite number of possible test statistics. However, there are only a few for
which the distribution of the statistic, given some null hypothesis, is relatively easy to use to make
probability calculations. In this text, we will mostly encounter ¢ statistics and F statistics.

A concept closely related to hypothesis testing is the confidence interval. Unlike point estimates,
confidence intervals are ranges of values that have some stated probability (confidence level) of
containing the actual value of parameters. Confidence intervals are computed using data, and they can
be constructed for any parameter. The trick is that the confidence intervals of some parameters are
more difficult to construct than others. Nowadays, with modern computing capabilities, it is relatively
easy to construct confidence intervals for parameters that can be expressed in terms of
expectations. The method of boot-strapping (Efron 1982) is particularly useful in computing confi-
dence intervals. In some important cases, however, confidence intervals have relatively simple
closed-form expressions. In particular, the 100(1 — 2a) % confidence interval for the expected
value, u, given the sample mean, X, and sample standard deviation, s, is:

N
Xtt o (n—1)——=
Vn

The constant #;_,(n — 1) is the 100(1 — «) percentile of s Student’s ¢ distribution with n — 1 degrees
of freedom. The value:

N

N

is the sample estimate of the standard error of the mean, which is the standard deviation of sample
means. Note that as the sample size, n, increases, the width of the confidence interval decreases. Thus
increasing sample size increases the precision of estimation.

One of the nice things about the confidence interval formula for the mean is that it actually yields
atruly 95 % confidence interval for y, regardless of how the random variable X is distributed, at least
as the sample size gets “big enough”. This fact is due to something called the central limit theorem.
Of course, “big enough” depends on how close you need to be to having 100(1 — 2a) % confidence.
Even smaller sample sizes (say 10 or 20) are probably adequate for insuring that the confidence level
is really about 100(1 — 2a) %. In general, and the sample size increases, the width, or imprecision, of
the confidence interval decreases. It is important to understand that increased sample size does not
increase the confidence level; rather, increasing sample size decreases the width of the interval.
Two intervals, having the same confidence level, could have very different widths. Suppose that with
a sample size of n =5, the experimenter obtained a sample mean of X =10 and a sample
standard deviation of s = 2. With this sample size, and a = 0.025, t;_, = tg975 =~ 2.78. Then the
100(1 — 2(0.025)) % = 95 % confidence interval for the mean would be:

2
T+ to,%% < 10.0 427822~ 1004249 = (7.51,1249)

Now suppose the experimenter obtained X = 10 and s = 2, but n = 35. Then #9975 ~ 2.03 and the
95 % confidence interval would be approximately:

K 2
—~10.0 £2.03——= = 10.0£0.69 = (9.31,10.69
N/ V35 ( )

X &£ t0.975
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Both of these are 95 % confidence intervals, and both are based on identical values for the sample
statistics. However, the interval with n = 35 is considerably narrower in width that the interval with
n=>5.

The confidence level is statement about the interval, and not about the parameter. That is, the
parameter is assumed to have some unknown value. The EAS constructs an interval that has a 100
(1 — 2a) % chance of “capturing” the true value of the parameter. The precision of that interval
depends mostly on the sample size.

For an excellent coverage of probability and statistical topics, see Meyer (1970).

A Brief Note on Sample Size Estimation

The topic of how to determine an appropriate sample size is in fact worthy of an entire book.
Generally, sample size is chosen to either provide a particular probability to reject a null hypothesis
when the truth departs from the null assumption by some specific quantity, or to provide a confidence
interval of some pre-specified width. For a much more complete discussion of how to choose a sample
size, see Desu and Raghavarao (1990).

Key Points

+ Statistics are computations made using empirical observations, and are used to estimate
parameters of a population. Any computation with data is referred to as an “estimate”.

» Statistics are themselves random variables, and as such have distributions, called “sampling
distributions”.

» Sampling Distributions are used to make inferences about population parameters, through hypoth-
esis tests and confidence intervals.

» A confidence interval can be constructed for any parameter; some confidence intervals are easier to
compute than others.

Exercises and Questions

1. The 95 % confidence interval, based on a sample of n parts, for mean length of a steel rivet is
(0.245 cm, 0.255 cm). Does this mean that there is a 95 % probability that the true mean length is
between 0.245 and 0.255 cm?

2. How is a confidence interval affected by increasing the sample size? Consider the confidence

interval formula for the expected value.

. What does the width (difference between upper and lower limits) of a confidence interval tell you?

4. Will a sample standard deviation shrink to zero as the sample size increases?

(O]



Chapter 3
Measurement Systems Analysis

The EAS bases most of his or her decisions about design parameters on measurements, so it is
imperative that those measurements be trustworthy. There are two categories of measurement quality
we will discuss, namely accuracy and precision. Accuracy is the degree to which the measurement
differs from the truth, on the average. Precision is the degree to which the measurements vary from
instance to instance of measuring the same unit or item. These definitions would probably be better
termed “inaccuracy” and “imprecision”, but we will use the terms “accuracy” and “precision” to more
or less mean inaccuracy and imprecision. In order to assess accuracy, the true value of the dimension
or performance parameter for each part (or item being measured) in the sample must be known. In lieu
of knowing the true value, a more trustworthy “reference method” might be used to provide a more
accurate and precise measurement against which the measurement system to be evaluated will be
compared. This chapter will treat both the case where only precision can be evaluated (no reference)
and where accuracy may also be evaluated (in comparison to a reference method result).

No Reference Results Available

Initially we will focus on precision. The first question to ask is “how precise is precise enough?”
Consider the problem of measuring items to determine whether or not the dimension or parameter of
interest is within specified limits. The simplest case is when the measurement is continuously-valued,
and the dimension or parameter has both a lower and upper specification limit, and when the
measurement is non-destructive, so that items (which we will refer to as “parts”’) may be measured
multiple times without being altered in any meaningful way. We are hoping that the amount of
variability when an operator measures a particular part multiple times is small compared to the
variability between parts. Furthermore, we are also hoping that regardless of which operator uses the
measurement device (which we will call “gauge”), the differences between operators is small
compared to the differences or variation between parts. Suppose that L and U represent the lower
and upper specification limits, respectively, for the dimension or parameter of interest. That means if
any part’s dimension is anywhere in the interval [L, U], then that part would be considered acceptable
for use. Suppose further that the variation in measurements made on a single part by a single operator
is normally distributed, with standard deviation o,,. Assuming further that on the average, the
measurements are at the midpoint of the specification range, %, then the range 6¢,, would contain
approximately 99.73 % of the measurements made on a single part by a single operator. Since the

© Springer International Publishing Switzerland 2016 11
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Fig. 3.1 Combinations Actual State
of decisions and states Measurement Decision | Partis In-Spec | Part is Out-of-Spec

Part is In-Spec (-) P, Pr{False "-"}

Part is Out-of-Spec (+) | Pr{False "+" P,

range U — L is the range of acceptable values for the dimension, then it would be desirable for the
ratio:

60,
U-L

to be small. Conversely, we would want the reciprocal, which is the “capability index” called C,, to
be large. Keep in mind that in this case, o,, represents the variability in the measurement of a single
part, and not the variability between parts. If C,, were equal to 1, then for a part whose dimension is
exactly at the midpoint of the specification range, there would be approximately a 99.73 % chance
that the measurement would be within the limits. The smaller the within-part, within operator
variation, the larger the value of C,, would get. Values of C, greater than 1 are desirable.

If a part’s dimension is equal to either U or L, then there would be a fairly high chance that the
part’s measurement would be outside the limits. The problem is to assess the conditional
probabilities:

P; = Pr{measurement is within (U,L) | a part’s dimension is truly within (U,L)}
Po = Pr{measurement is outside (U,L) | a part’s dimension is truly outside (U,L)}

Symbolize detection of an out-of-spec part with “+”, and no detection with a “—”. Figure 3.1
illustrates the four possible combinations of measurement-based decisions and actual true states.

Clearly we desire both P; and P, to be “high” probabilities (somewhere in the range of
95-99.99 %). Suppose X represents the measurement, and Y represents the true value of the part’s
dimension. If we assume that both have normal distributions, and that the expected value of X given
Y = y is the true value of the dimension, and the average part’s dimension is truly up, then we can
represent the probability Pr{L < X < UlY = y} mathematically:

U

1 1(x=y 2
Pr{L <X< U|Y = y} = J e*i(a—w) dx
L\/Zﬂaw

The joint probability Pr{L < X < U,L <Y < U} is given by:

U 2U
L ()
Pr{LgXSU,LSYgU}:J—e“ ”B J
V2
7 Top 4

The probability, P, is then:

L

Pr{L<X<U|L <Y <U} =

U . 7%(}'*/48)2
B
JL Vanar © @
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Assuming that the events {Y < L} and {Y > U} are mutually exclusive, then we can partition the
probability P, into two additive terms:

Pr{X <LORX >U|Y <LORY>U}= Pr{X<LORX >U|Y < L}Pr{Y <L}
+ Pr{X <LORX >U|Y > U}Pr{Y > U}
The left-hand side expression is a slight abuse of notation, but we want to emphasize the dependence
upon conditions involving Y. We can make some further simplifying assumptions that if ¥ < L, it is
virtually impossible for X > U, and similarly it is of negligible probability thatif Y > U, X < L. The
approximation is then:

Po=Pr{X<L|Y < L}Pr{Y <L}+ Pr{X > U|Y >U}Pr{Y > U}

The two terms are given by:

\V2rop vV 2ro,,

—00

L 2 L
1 () 1y
Pr{X <L|Y <L}Pr{y <L} = J ¢\ J ——— &) dvdy

and
+00 2400
Pr{X > U|Y > U}Pr{Y > U} J D J L6
r T = e e ow X
) V2rop 5 \V2ro,, Y

Even in their most simple forms, these probabilities have no closed form, and are fairly complex for
computation. As a heuristic, rule-of-thumb, method for determining how much variability and error to
tolerate in a measurement system, first consider the two conditional probabilities:

T 1 _1 «\;)2
Pr{X<LlY=L}= J ¢ {5 d
Gy,
Pr{X>Uly=U} = T L&
g vV 2ro,,

We are assuming that the conditional expectation of X given Y = y is y. Both of these probabilities are
in fact equal to 50 %. This is not helpful. That is, the sum of the two probabilities is 1.0:

Pr{X<L|Y=L} +Pr{X>UlYy=U} = 050 + 0.50 = 1.0

This fact is fairly obvious, and follows from the symmetric nature of the normal density function.
What we need is another parameter, call it €, such that:

L
—-\2
Pr{X<LY=L+¢}= J 21 5 axy = p
V2ro,,
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and:

+00

Pr{X>UlY=U-¢}=
=

2
e 2o )dx:p

l 1 (A‘—UH

where p is a sufficiently small probability. In other words, if the true dimension is inside the
specification range by some small, pre-specified amount €, we want only a small chance that the
measurement would fall outside the range (L, U). The probabilities lead to the following equations:

—c
=z
Oy P

and

where z), is the z-score for probability p. Due to symmetry of the normal distribution, the number of
equations is not sufficient to solve for both € and o,, (i.€., z, = —z;_,). There are two possible ways to
proceed:

1. Pick a value for €, and then solve for the maximum allowable value of o,,:

€

oy =
Z1—p

Once data have been gathered and an estimate of o,, has been computed, the hypothesis:

€

Hy: 0y >—
Z1—p
Can be tested against the alternative:
€
Hi: o0, <—
Z1—p
So, if
2
~ € Xar1—
G, < df,1-a
Z1—p df

where o, is a sample estimate of o,,, and ;(Zf’ 1_q 18 the 100(1 — a) percentile of a Chi-squared
distribution with df degrees of freedom, then reject H, in favor of H;, and conclude that the
measurement system is adequate.

2. Estimate o,, and then compute the estimated value:

Q)

/E\:

wZl—p

If this estimate seems small enough, or to be more conservative, if the upper 100(1 — a) %
confidence limit on €:
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~ (df)o2
Cloa = Z1py\ 5 —
Xdf,a

seems small enough, where df is the degrees of freedom associated with the estimate ,,, then you
know your measurement system is adequate.

An Example: No Reference Method Result

A part has a dimension with specification limits L = 9, U = 16 (the units will go unmentioned). The
same five parts will each be measured twice by each of two operators, Operator A and Operator
B. The data were entered into a Minitab™ 16 project file. Figure 3.2 shows the data.

The analysis is selected from menu options Stat — Quality Tools — Gage Study — Gage R&R
Study (Crossed). Figure 3.3 shows the initial input window.

Figure 3.4 shows the choices made in the “Options” window.

Figure 3.5 shows the output from the Minitab™ session window. There are several references to
ANOVA. The reader not familiar with this concept will be afforded more detail about it in further
chapters.

The single most valuable result from this output is the Repeatability StdDev (SD), i.e., the standard
deviation of measurements within part, within operator. This number is found in the Gage R&R
Table, and it is the estimate of o,, =~ 0.334. The second most valuable results are the degrees of
freedom (column labeled “DF”) associated with this “Repeatability” estimate, which, from the
ANOVA table, is df = 10. We can now make several computations.

65, _ 6(0.334)

~ ~ 0.2
U-L 16 —9 0.2863

Its reciprocal is:

~ 16-9

~———~3.493
P 6(0.334)

Assuming the risk probability p = 0.001, and @ = 0.05,
zi—p = 3.090

€ =35,21_p ~ 0.334(3.090) ~ 1.032

w

A (df)52

10)*(0.334)?
€1_005 = 2100014 —>5 — = 3.090 M

~ 1.644
Xifoa 3.940
Thus, we could say that we are 95 % confident that there is no more than a 0.1 % chance that our

measurement system would indicate that a part was out of the specification range if its dimension was
truly within the interval (9 + 1.644, 16 — 1.644) = (10.644, 14.356).
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Fig. 3.2 Measurement
system example data Session

E Worksheet 1 ***

+ C1-T C2 C3 C4

Operator  Part Rep measurement
1 A 1 1 11.15
2 A 1 2 10.76
3 A 2 1 12.25
4 A 2 2 12.59
5 A 3 1 13.07
6 A 3 7 12.86
7 |A 4 1 13.75
8 A - 2 13.92
9 A 5 1 14.76
10 A S 2 15.12
1 B 1 1 10.31
12 B 1 2 10.76
13 B s 1 12.05
14 B 2 2 12.37
16 B 3 1 12.85
16 B 3 2 12.42
17 |B 4 1 13.31
18 B - 2 14.51
19 B 5 1 14.41
20 B 5 2 15.06
21

When Reference Method Results Are Available

The confidence statement about the risk probability, p, depends upon the assumption that measure-
ment errors are normally distributed, that variation in the parts is also normally distributed, and that
the conditional expectation of the measurement, given the true value of the part’s dimension, is the
true dimension, i.e.

EX[Y =y) =y
In other words, the calculations presume a perfectly accurate, albeit not perfectly precise, measure-

ment system. If, however, the system is not perfectly accurate, then it is possible that
EXlY = y) = f(y), where f is some function. Perhaps the most common form of f'is linear:



When Reference Method Results Are Available

p
Gage R&R Study (Crossed)
Part numbers: | Part
Operators: Operator

Measurement data: measurement

Method of Analysis
(¢ ANOVA
(" Xbar andR

Fig. 3.3 Minitab™ 16 Gage R&R Study (Crossed) initial input window

Gage R&R Study (Crossed) - ANOVA Options

Study variation: I 6 (number of standard deviations)

Process tolerance
(¢ Enter at least one specification limit

Lower spec: |9—

Upper spec: [

(" Upper spec - Lower spec: I—

Historical standard deviation: I

Aipha to remove interaction term:  [T10°
[~ Display probabilities of misclassification

T

=
’-=
|~ Do not display percent contribution 1
[~ Do not display percent study variation r
[~ Draw graphs on separate graphs, one graph per page
Tite: | Gauge Study - Operators Crossed with Parts (Non-Destructive Measurments) A

Help I OK

Fig. 3.4 Gage R&R (crossed) options

17



18 3 Measurement Systems Analysis

12/31/2013 12:36:21 PM

Welcome to Minitab, press Fl for help.
Gage R&R Study - ANOVA Method

Gage R&R for measurement

Gage name: Measurement Gauge
Date of study: Now

Reported by: S. Pardo
Tolerance:

Misc:

Two-Way ANOVA Table With Interaction

Source DF 58 MS F P
Part 4 38.7254 9.68135 272.820 0.000
Operator 1 0.2360 0.23603 6.651 0.06l

Part * Operator “ 0.1419 0.03549 0.250 0.903
Repeatability 10 1.4200 0.14200

Total 19 40.5233
Gage R&R
$Contribution
Source VarComp 95% CI (of VarComp) 95% CI
Total Gage R&R 0.12401 (0.074, 24.135) 4.93 ( 0.60, 89.93)
Repeatability 0.11156 (0.060, 0.277) 4.43 ( 0.36, 15.87)
Reproducibility 0.01245 (0.000, 24.021) 0.49 ( 0.00, 89.41)
Operator 0.01245 (0.000, 24.021) 0.49 ( 0.00, 89.41)
Part-To-Part 2.39245 (0.841, 19.955) 95.07 (10.07, 99.40)
Total Variation 2.516d46 (0.964, 32.266) 100.00
Process tolerance = 7
Study Var
Source StdDev (SD) 95% CI (6 * SD) 95% CI
Total Gage R&R 0.35215 (0.272, 4.%13) 2.11291 (1.629, 29.476)
Repeatability 0.33401 (0.245, 0.527) 2.00407 (1.467, 3.161)
Reproducibility 0.11157 (0.000, 4.901) 0.66939 (0.000, 29.407)
Operator 0.11157 (0.000, 4.901) 0.66939 (0.000, 29.407)
Part-To-Part 1.54675 (0.917, 4.467) 9.28052 (5.502, 26.803)
Total Variation 1.58633 (0.982, 5.680) 9.51801 (5.892, 34.082)
$Study Var $Tolerance
Source {(%5V) 95% CI (SV/Toler) 95% CI
Total Gage R&R 22.20 ( 7.73, 94.83) 30.18 (23.27, 421.09)
Repeatability 21.06 ( 6.02, 39.84) 28.63 (20.96, 45.15)
Reproducibility 7.03 ( 0.00, 94.55) 9.56 ( 0.00, 420.10)
Operator 7.03 ( 0.00, 94.55) 9.56 ( 0.00, 420.10)
Part-To-Part 97.50 (31.74, 95.70) 132.58 (78.59, 382.90)
Total Variation 100.00 135.97 (B84.18, 486.89)

Number of Distinct Categories = 6
95% CI = (0.473271, 18.2322)

Fig. 3.5 Minitab Gage R&R Study (crossed) output
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E(X|Y =y) =B+ By

The only way to obtain estimates of the parameters 5y and f; would be to have pairs of values (x, y)
for at least two parts. That is, for each part, obtain a value x using the measurement system of interest,
together with a value y that represents the true dimension. If another measurement method, one that
may be more accurate and precise, but possibly more difficult or expensive to use, is available, then a
linear regression may be used to estimate the parameters f, and f;.

Suppose the estimates of f and S, are by and by, respectively. Following the earlier arguments,
and generalizing from the conditional probabilities gives:

L — (by+b(L+7%))

G

Zp
and

U — (bo—l—b](U—/é\))

Cw

=Z1yp

Solving for € gives:

- —ZPEW + (1 — b])L — by

€
L
by

and

~ Z]_paw,—(l—bl)U+bo
EU = bl

Thus, the “point” estimate of the interval of part dimensions for which there is a 100p % chance of
getting a measurement outside [L, U] is [L +¢, U— ’EU].

Unfortunately, obtaining a confidence limit for €; and €, is not so simple when ffy # 0 and §; # 1.
However, even the point estimates [L +¢,U— EU] may give enough insight into the adequacy of
the measurement system.

Example Revisited: With Reference Method Results

By way of example, suppose in the previous example we had measured the parts using another, much
more precise and accurate system. Figure 3.6 shows the original data with the reference method
(called “Reference”) added.

Figure 3.7 shows a scatter plot of measurement by Reference, with the regression line. Figure 3.8
shows the results of the regression analysis done with Minitab.

With by = 0.873 and b, = 0.990, p = 0.001, o,, = 0.334, the estimates of €, and €, are

2, ~ 0252

and
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Fig. 3.6 Measurement

system data with reference ﬂ Worksheet 1 *™*
added

+ C1-T Cc2 =) c4 C5

Operator| Part ' Rep | measurement Reference
1 |A 1] 1 11.15 10.18
2 |A 1 2 10.76 9.91
3 |A 2 1 12.25 11.55
4 A 2 2 12.59 11.96
5 |A 3 1 13.07 12.41
6 A 3 2 12.86 12.20
7 |A 4 1 13.75 12.99
8 A 4 2 13.92 13.26
9 A 5 1 14.76 13.94
10 A 5 2 15.12 14.35
1 |B 1 1 10.31 947
12 B 1 2 10.76 10.18
13 |B 2 1 12.05 11.14
14 |B 2 2 12.37 11.60
15 |B 3 1 12.85 12.15
16 |B 3 2 12.42 11.73
17 B 4 1 13.31 12.58
18 |B 4 2 14.51 13.76
19 |B 5 1 14.41 13.67
20 B 5 2 15.06 14.19
21 |

€, ~ 1.763

Thus, the interval of part dimensions that is estimated to yield only a p = 0.001 chance of obtaining a
measurement outside the specification range is approximately

[L+7%, U-¢] ~ [9.25, 14.24]

The approach of evaluating the adequacy of a measurement system described above may be used
whenever the measurement of interest is continuously valued, regardless of whether the dimension
has a two-sided specification (L and U) or a single-sided specification (either L or U but not both).
This is an advantage over the use of C,, which requires a two-sided specification. Furthermore, the
approach can be used whether there does not exist any “reference method” for determining the “true”
value of a part’s dimension (or performance parameter) or whether such a method exists and a part
may be measured both with the system in question and the reference method.
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Scatterplot with Regression measurement = b0 + b1*Reference
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Fig. 3.7 Scatter plot with measurement and reference

Regression Analysis: measurement versus Reference

The regression equation is
measurement = 0.873 + 0.990 Reference

Predictor Coef SE Coef T P
Constant 0.8734 0.1926 4,53 0.000
Reference 0.99004 0.01573 62.93 0.000

S = 0.1009%20 R-Sg = 99.5% R-Sgladj) = 99.5%

Analysis of Variance

Source DF 58 MS F P
Regression 1 40.340 40.340 3960.80 0.000
Residual Error 18 0.183 0.010

Total 19 40.523

Unusual Observations

Obs Reference measurement Fit SE Fit Residual St Resid
1 10.2 11.1486 10.9520 0.0385 0.1966 2.11R
12 10.2 10.7642 10.9520 0.0385 -0.1879 -2.01R

R denotes an observation with a large standardized residual.

Fig. 3.8 Regression analysis for measurement vs. reference
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Concerning Numerical Precision

Data are often reported and recorded based on some number of significant digits (whether or not the
data are recorded in scientific or engineering notation). There is no universally accepted standard for
how much numerical precision should be used in reporting sample statistics. The topic of numerical
precision will be largely ignored in this text. However, this is not to say that it is unimportant. Rather,
the EAS must use his or her judgment, based on the particular context. A rule of thumb that some
people have employed is that the statistic should be reported to one more decimal place of precision
than the measurements themselves. However, even this is not universally true. For example, when
reporting proportions, or percentages, the rules guiding the reporting of means and standard
deviations may not apply. Furthermore, the numerical precision for reporting p-values may vary
from one application/context to another. The experimenter must determine what makes sense in each
context.

Key Points

» Experimentation depends on measurement, so insuring that measurement systems are both accu-
rate and precise enough is paramount.

 If a reference measurement is available, it may be possible to assess both precision and accuracy.

» Without a reference, only precision can be assessed.

Exercises and Questions

1. What is required in order to assess accuracy of a measurement system?
2. What is ¢,,? Why is it important? How would you estimate it? Can you compute a confidence
interval for it?



Chapter 4
Modeling with Data

Engineers and Applied Scientists (EASs) require mathematical models to predict the value of some
critical performance variable or some characteristic of a product or process output. Generally, there
are two kinds of variables:

1. Inputs
2. Outputs

As a point of terminology, we will often refer to the output variables as “response variables” or
simply “responses”, and the input variables as “regressors”, in that we will rely heavily upon multiple
regression methods for building models from empirical observations. Sometimes the input variables
are referred to as “factors”, especially in relation to a class of data gathering plans called “factorial
experiments”.

Furthermore, the EAS would like to have a mathematical equation to describe the relationships
between the input and output variables, i.e.,

Outputs = f(Inputs)

The bad news is that often the function “f” is unknown. The good news is that we have a means of
approximating “f’, even when it is unknown. The bad news is that we must obtain empirical observations
under a variety of conditions in order to approximate f. The good news is that someone has created a
means of determining the fewest possible number of conditions under which to gather data in order to
approximate f with a polynomial function. The bad news is that in order to accomplish this approximation,
we need to know that f'is at least piecewise continuous and differentiable. The good news is that most
functions we will ever care about are in fact piecewise continuous and differentiable, at least in the range
of inputs that is of interest. The bad news is that f may be highly nonlinear, and polynomial functions, even
of higher orders, may not “fit” very well. The good news is that we can often make some relatively simple
transformations (usually on input variables) so that we can reasonably approximate f as a polynomial in
the transformed variables. OK, so we end the discourse about bad news/good news on a good note.

There are some special cases for the function “f” that will be important. The first is the case were
all or some of the inputs are discrete, or categorical. In those cases, identical methods will be used to
approximate f, but the interpretation will be very different than in the case where the inputs are
continuously valued. The other case is where the general form of “f” is known or at least guessed, and
it is inherently non-linear in terms of the coefficients or parameters. In this text, we will only consider
a very special non-linear case. The reader interested in a more general and complete treatment of
non-linear model building should consult Seber and Wild (1989).
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Polynomial Approximation

Every student of first year calculus knows that any infinitely differentiable function can be
approximated with a Taylor/Maclaurin polynomial, and the error in such an approximation is
determined by the order to which one decides to truncate such a polynomial.

In other words, if fis infinitely differentiable, it can be expressed as an infinite Taylor/Maclaurin
series:

where /*(0) is the kth derivative of f evaluated at x = 0. Furthermore, we can approximate f with a
finite polynomial function of the form:

Inasmuch as we have no knowledge of f per se, we cannot evaluate any of its derivatives. So how can
we evaluate the coefficients of the polynomial f (x)

£%(0)
k!

Br =

and how can we possibly evaluate (or control) the error in the approximation?

Empirical Approximation

Let us begin with a motivating, simplified example. Suppose an EAS is designing a joint in which two
subassemblies are held together with an epoxy adhesive. Once the epoxy is applied and the two
subassemblies are joined, the epoxy must “cure” for some period of time in order to insure that the
joint has sufficient strength. Of course, shorter cure times would be desirable, since less time for
manufacturing means larger numbers of units produced per unit time. The required minimum pull
strength is 7.000 N, or approximately 1.574 lbs. The design problem can be stated as: find the
minimum cure time that insures a pull strength no less than 7.000 N.

Inasmuch as the “optimal” cure time is unknown, the EAS performs an experiment in which she
makes three pairs of subassemblies, joins them with the epoxy, and allows each to cure. After
T = 60.0 s, she measures the bond’s pull strength (force required to pull the two subassemblies
apart) of one of the assemblies. After 1, = 70.0 s, she measures the pull strength of the second
assembly, and after T3 = 80.0 s, she measures the pull strength of the third. Her data are shown in
Table 4.1.
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Table. 4.1 EpOXy cure time Time (S) Pull strength (N)
experiment 1

60.0 3.843

70.0 5.494

80.0 6.710

The EAS makes a plot of her data, shown in Fig. 4.1

Experiment 1: Pull Strength (N)

8.000
7.500
7.000
6.500
6.000
5.500
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4.500
4.000
3.500
3.000
2.500
2.000

55.0 60.0 65.0 70.0 75.0 80.0 85.0

Cure Time (seconds)

Force = 0.1433*Time - 4.684

Force (Newtons)

Fig. 4.1 Plot of pull strength data, experiment 1

Tablg 4.2 Epoxy cure time Time (s) Pull strength (N)
experiment 2

85.0 6.810

95.0 7.463

105.0 7.273

The EAS noticed that none of her cure times seemed to produce the desired pull strength. She fit a
least squares regression (Draper and Smith 1998) line to her data, to obtain a predictive equation, and
attempted to project the cure time required to obtain the pull strength of at least 7.000 N. Solving for
time, she found that the minimum cure time appeared to be approximately 81.6 s. She runs a second
experiment, this time using cure times of 85, 95, and 105 s. Her data for experiment 2 are shown in
Table 4.2.

Much to her chagrin, the cure time of 85 s yielded a pull strength of only 6.810 N, and she requires
7.000 N. The cure time of 95 s yielded a higher-than-minimally-desired force (7.463 N). Oddly
enough, the pull strength decreased from 7.463 to 7.273 N at a cure time of 105 s. A decrease in pull
strength after extending the cure time by 10 s seemed unlikely, but it clearly occurred. Before
performing yet a third experiment, she decides to plot all the data from both experiments on a single
graph, shown in Fig. 4.2.

Now the EAS has come to three realizations:

1. The function that underlies the relationship between cure time for this epoxy and pull strength is
certainly not linear over all time;

2. Either the underlying pull strength function is not monotonically increasing, or there is some noise
in the measurements;

3. Extrapolating beyond the range of the observed time points is at best risky.



26 4 Modeling with Data

Experiment 1 & 2: Pull Strength (N)
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Fig. 4.2 Plot of pull strength data, experiment 1 and 2
Table 4'3_ Exper.iment Experiment Replicate Time (s) Pull strength (N)
1 and 2 with replicates
1 1 60.0 3.843
1 2 60.0 3.546
1 1 70.0 5.494
1 2 70.0 5.923
1 1 80.0 6.710
1 2 80.0 6.334
2 1 85.0 6.810
2 2 85.0 7.186
2 1 95.0 7.463
2 2 95.0 7.316
2 1 105.0 7.273
2 2 105.0 7.752

The data are plotted in Fig. 4.3

If the function of cure time that describes pull strength were known, and it was differentiable, then
the minimization problem would be simple. Differentiate the function with respect to cure time, set
the derivative equal to zero, and solve subject to the constraint that pull strength must be at least
7.000 N. In fact, it would be even simpler, in that all the EAS would need to do is find the cure time
that yields a pull strength of 7.000 N, as long as the pull strength function is non-decreasing.

Meanwhile, our EAS has decided to repeat the two experiments she performed, so see just how
much noise there is in the measurements. She obtained pull strength data for additional subassemblies
using the cure times of experiments 1 and 2. Her original data, together with the additional “repeat”
data, are shown in Table 4.3. We will refer to the repeated measurements as “replicates”.

With these data, the EAS will attempt to approximate the data-generating function using the
Taylor series approach. She will first guess at the highest order term to include in her polynomial
approximation. Given the apparent curvature (imagine a curve going through the middle of the points
in Fig. 4.3) a second order approximation seems appropriate. The approximating function, which we
will call the “model” would have the form:
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Experiment 1 & 2, with Replicates
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Fig. 4.3 Experiment 1 and 2 with replicated results

f(1) =By +Bit+ P’ +e

The variable 7 represents cure time (in seconds) and the symbol & represents random “noise”,
which, for reasons that will become clear later, will be assumed to have a normal (Gaussian)
distribution with mean 0 and some standard deviation. The coefficients, fy, are the Taylor series
coefficients:

£%(0)

Using the method of least squares, the data are used to obtain estimates of the fy (and an estimate of
the standard deviation of noise). The predictive model (i.e., the way in which the pull strength is
predicted for a given cure time, 7) turned out to be:

7)) = —16.04215 + 0.47377r — 0.002387

Figure 4.4 shows all the data, together with the prediction equation over the cure time range 60—105 s.

Our EAS computed the average result at each of the time points for which she collected data, and
then computed, using her empirical model equation, the predicted pull strength at each of those time
points. Table 4.4 shows the data with the averages and predictions.

She noticed that the predicted value of pull strength was too low at 80 s and too high at 95 s. Again,
using the prediction model, she found that at 84.7 s, the predicted pull strength was approximately
7.002 N (an artifact of rounding time to the nearest tenth of a second), which is only 0.002 N above
her specification limit of 7.000 N. So, using data in two separate experiments, with a total of 6 cure
times, and two replicates per cure time, the EAS was able to approximate the function that governs
how pull strength was related to cure time for this epoxy and the two subassemblies being joined.
Furthermore, she was able to use this approximation to determine a cure time that would provide her
with the desired pull strength.

There are, unfortunately, some more questions to answer:
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Fig. 4.4 Pull strength data 8 7
with prediction equation 1 °
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Table 4.4 Pull strength data with averages, SDs, and predictions
Experiment Replicate Time (s) Pull strength (N) Ave. SD Predicted
1 1 60.0 3.843 3.695 0.2105 3.811
1 2 60.0 3.546
1 1 70.0 5.494 5.708 0.3035 5.453
1 2 70.0 5.923
1 1 80.0 6.710 6.522 0.2662 6.618
1 2 80.0 6.334
2 1 85.0 6.810 6.998 0.2664 7.022
2 2 85.0 7.186
2 1 95.0 7.463 7.389 0.1033 7.474
2 2 95.0 7.316
2 1 105.0 7.273 7.513 0.3385 7.448
2 2 105.0 7.752

1. How can we assess the error in the model? Perhaps we should have carried out the Taylor series to
more terms. Perhaps the model is good for predicting the data we observed, but how good would it
actually be at predicting the pull strength of a joint cured for 84.7 s?

2. How can we assess the probabilistic variation in future results? If we did the experiment with many
subassembly pairs cured at 91.9 s, would all of the resulting joints have a pull strength of 7.385 N?
What is the probability that a joint would have a pull strength of at least 7.385 N if cured for 91.9 s?
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Examining Model Adequacy

ANOVA (analysis of variance) can be used to decide whether or not the model had any ability to
explain or predict the outcomes that were observed. Briefly, ANOVA is a method for partitioning the
sums of squared differences between each observation and the mean of all observations, regardless of
the conditions under which those observations were obtained. Symbolically, ANOVA provides the
terms in the following equation:

SST = SSM + SSE

SST stands for Total sums of squares, SSM stands for Model sums of squares, anci SSE stands for Error
sums of squares. If f;; represents the jth force observed at the ith cure time, and f is the average of all
the pull strength forces, then

6

2 6 2
ST=33 (7 7) =23 -6+ 2+F
j=1

i=1j i=1 j=1

6
ssM ="+ (fi —F)’
i=1

6

SSE = Zi (f] —f)2

i=1

The analysis of variance (ANOVA) allows us to test whether or not the model accounted for
anything more than random variation, completely unrelated to the cure time. In this case, the plot
shown in Fig. 4.4 most likely dispels any thoughts that there was no relationship between pull strength
and cure time. In more complex situations, where the variable on the left side of the equation is
potentially a function of multiple variables on the right, plots may not be so obvious. Therefore, a test
of significance is the first line of defense in deciding whether or not a model has any meaning. To
perform the test, we compute the ratios:

MS el = SSM/ (k — 1)
MSerror = SSE/(n — 1 — (k — 1))

where n = 6 * 2 = 12, or the total number of observations used to fit the model, and £ = number of
parameters (coefficients) in the model = 3. MS stands for “Mean Square”.
Finally, we form the ratio:

F= MSmodel/MSermr

This ratio, if there is no relationship between the left side of the model equation and the terms on the
right (other than noise), and assuming that noise is Gaussian, has an F' distribution with numerator
degrees of freedom k — 1 and denominator degrees of freedom n — 1 — (k — 1). If this F ratio statistic is
larger than say the 95th percentile of an F distribution with the corresponding degrees of freedom, or
analogously if the p-value for the statistic is below a pre-specified value (usually 0.05, or 5 %) then
we begin to believe that there is at least some ability of our model to predict, i.e., controlling cure time
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Table 4.5 ANOVA table

Source DF Sum of squares Mean square F ratio
for second order model

Model 2 20.4639015 10.2319507 152.613

Error 9 0.60340636 0.06704515 -

Total 11 21.0673078 - -

has at least some effect on pull strength. Table 4.5 shows the ANOVA results, together with the F
ratio. The 95th percentile of an F distribution with 2 and 9 degrees of freedom in numerator and
denominator, respectively, is approximately 4.2565. Since the sample F ratio is clearly greater than
this, we suspect that the model has some value.

A frequently used measure of goodness for models is called Adjusted R?. It is referred to as the
coefficient of determination (Draper and Smith 1998) and is a measure of the amount of variation in
the data explained by the model. It is computed as:

MSE
de,zl_i
ay MST

where MST = SST / (n — 1) = Total Mean Square. In this case,

0.06704
adj 1.91521 96499

The closer Adjusted R?is to 1, the “better” the model.
A related quantity, called simply R?, is given by the formula:

E
R —1-E

Inasmuch as this quantity does not include the degrees of freedom, it does not account for the sample
size or the number of parameters in the model. Therefore, we will avoid using it or discussing it any
further.

An important assumption required to make the F ratio actually have an F distribution is that the
random errors, or noise, associated with observations, are not only normally distributed, but the noise
has the same standard deviation, or variance, regardless of the values of the regressors. The condition
of constant variance is the most important assumption. Violation of this assumption is referred to as
heteroscedasticity (Armitage 1971).

Another question is, why stop at a second-order model? The EAS has a total of 6 cure times at
which the pull strength was measured. She could fit up to a fifth order polynomial to her data. Surely
the Taylor series approximation would be improved with every additional term. However, she would
potentially be making the mistake of over-parameterizing. That is, suppose that in truth the underly-
ing function was a second-order polynomial. Then adding three other terms would only be adding
noise to the fit. In fact, adding too many terms might make the model fit quite well, but it would have
poor predictability. There is a balance between reducing errors in the model with respect to actual
observations and making a model that is perfect for the observed data but predicts future observations
poorly. The balance is chosen to satisfy the dictum (razor) of William Ockham (or sometimes spelled
Occam), circa 1320 CE:

Pluralitas non est ponenda sine neccesitate

Or, roughly, don’t over-explain the data (but don’t under-explain them either). The rule of
Ockham’s Razor is also referred to as the rule of parsimony.
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Table 4.6 C,, calculations n Order P MSE, . SSE, C, Ad. R2
12 Fifth 6 0.06726 0.40357 6.00 0.96488
12 Fourth 5 0.06726 0.43267 4.43 0.96773
12 Third 4 0.06726 0.47941 3.13 0.96871
12 Second 3 0.06726 0.60341 2.97 0.96499
12 First 2 0.06726 3.59026 45.38 0.81254

One method for choosing the “right” order model employs Mallow’s C,, (Draper and Smith 1998).
This C, statistic is not to be confused with the capability index C, as it applies to measurement
systems analysis. Here is how Mallow’s C,, works:

The highest order model the EAS can fit to these data is fifth order. A fifth order polynomial would
thus have six parameters (including the intercept). Suppose she fits this model and obtains the SSE and
MSE for it. Call the MSE for the fifth order model MSE,,,,. Then she proceeds to fit fourth, third,
second, and first order models, and records the MSE (not the SSE) for each. Let SSE,, represent the
SSE for a model with p parameters. Mallow’s C,, statistic is:

_ SSE,
" MSE

—(n—2p)

where n = the total sample size (in this case n = 12), and p = number of parameters in the model
(including the intercept). The idea is that if the (p-1)th order model was correct, then the expected
value of C,, would be approximately:

2

E[C)] :E[;SEE:M] — (n—2p) %%— (n=2p)=p

So, the idea is to compute C,, for all models up to max(p) — 1, and choose the model with the smallest
C), that is approximately equal to p. Table 4.6 shows all the computations for C,, and for Adjusted R>.

Thus, the second order model (with p = 3) has the smallest C), that is approximately equal to p.
Although the second-order model does not have the highest Adjusted R* of the models fit to the data,
it is probably the best choice, since it not only has the lowest value of C,,. But also its C,, value is very
close to p = 3. The EAS concludes that the best polynomial approximation to the pull strength as a
function of cure time is second order (quadratic).

Examining Variation

The residuals, or differences between actual observations and predicted values, reveal a lot about
variability. Figure 4.5 shows a histogram of the residuals for the second order model.

With only n = 12 residuals, the histogram is not a good indicator of whether the residuals are
distributed normally (Gaussian). However, the standard deviation of the residuals gives some
indication of how much noise may be affecting the measurements. With a residual standard deviation
of s = 0.2342 N, we can get some idea of how much variation there would be in a predicted value of
pull strength at any given cure time. Another estimate of noise standard deviation is obtained from the
ANOVA for the model. The ANOVA algebraically “partitions the total variation of the data into two
additive terms, one for the “model” and one for error, or noise. From this partitioning, we obtain
another estimate of the noise standard deviation, sometimes called root mean square error, or RMSE.
For these data with the quadratic model the EAS fit, the RMSE was s ~ 0.2589.
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Fig. 4.5 Histogram and
sample statistics for
residuals from second order
model
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The standard error of a prediction (assuming that the model is actually perfect, which is rarely
actually true) is given by the formula:

SE(5]20) = s7/7,[T 7] "'

1
To — 70
7

where:



Verification 33
and:

1 T%

i T;z 7%2

The ’ indicates matrix transpose.
The variable 7, represents the cure time of interest. With n = 12, and 7, = 84.7,

SE (3|70 = 84.7) ~ 0.1085

What are the implications? The EAS can use this standard error calculation to create a 95 % lower
confidence limit for a predicted value at 84.7 s. That is, the value:

y — 1(0.95,n — p)SE(3|70)

is a feasible lower limit for what to expect as a predicted pull strength at 7 cure time seconds. The
letter ¢ represents a percentile from a Student’s ¢ distribution. In this particular case,

#0.95,12 -3 =9) = 1.8331

The 95 % lower confidence limit for a predicted value of pull strength at 84.7 s is therefore
approximately 7.002 — 1.8331 * 0.1085 ~ 6.803 N. In other words, if the model is correct, then
there is approximately a 95 % chance that the predicted value of pull strength at 84.7 s would be no
less than 6.803 N.

Some people may be tempted to interpret the limit as a 95 % percentile of pull strengths at 84.7 s.
This is not correct. The limit gives 95 % confidence about predicted values coming from this
quadratic model with n = 12 observations. The limit is a measure of repeatability of
predictions. Given that the lower specification limit for pull strength is 7.000 N, and given that the
lower confidence bound on predicted values at 84.7 is 6.803 N < 7.000 N, the EAS is concerned that
84.7 may not be adequate cure time. After all, it is feasible that she could have gathered a different set
of subassemblies, joined them and measured pull forces at the same cure times as in her experiments
1 and 2, fit a second order polynomial model, and obtained a predicted pull strength value less than
7.000 N. The EAS wants to have a high level of confidence (99 %) that the pull strength of joints will
be at least 7.000 N. In other words, she wants to find the smallest value of 7, such that:

y —1(0.99,n — p)SE(3]70) > 7.000

Using a numerical solver program, she finds that a cure time of 89.7 s yields a lower 99 % confidence
limit for predicted value of pull strength to be approximately 6.988 N.

Verification

Once our EAS has made the decision to set the cure time to 89.7 s, she decides wisely to validate her
decision. She looks at the data she had already gathered, and notices that only at 95 s and 105 s were
all observations of pull strength over the 7.000 N limit. She computes the 99 % lower confidence
limits of predicted pull strength at 90, 92.5, and 95 s, which are 7.0007 N, 7.100 N, and 7.160 N,
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Table 4.7 Validation Time (s)  Pull strength (N)  Meanpull  SD pull
experiment results 89.7 7.581 7.305 0.3904
89.7 7.029
92.5 7.320 7.203 0.1644
92.5 7.087
Table 4.8 ANOVA f(_)r Source DF Sum of squares Mean square F ratio
second order model with
additional data Model 2 23.2476748 11.6238374 252.2918
Error 13 0.59894883 0.04607299
C. total 15 23.8466237 - -
Table 4.9 Mallow’s C, Order P MSE . SSE, C, Adj. R
and adjusted R~ original -
and with new data 12 Fifth 6 0.06726 0.40357 6.00 0.9649
12 Fourth 5 0.06726 0.43267 4.43 0.9677
12 Third 4 0.06726 0.47941 3.13 0.9687
12 Second 3 0.06726 0.60341 2.97 0.9650
12 First 2 0.06726 3.59026 45.38 0.8125
16 Second 3 0.06773 0.8506 2.56 0.9590
16 Third 4 0.06773 0.85060 4.56 0.9637
16 Fourth 5 0.06773 0.66551 3.83 0.9621
16 Fifth 6 0.06773 0.62702 5.26 0.9608
16 Sixth 7 0.06773 0.60959 7.00 0.9576

respectively. Being cautious, she decides to repeat the experiment at 89.7 s, and at 92.5 s (half-way
between 90 and 95 s). Her results are given in Table 4.7.

Based on these results, it appears 89.7 s is sufficient. However, standard deviation of pull strength
at 89.7 s is approximately 0.3904, and 0.1644 at 92.5 s. Of course, these are all computed using only
n = 2 observations. Although the average results at both 89.7 and 92.5 exceeded the specification
limit, the EAS is concerned about individual results due to the relatively large standard deviations.
Noticing that all other conditions (raw material lots, machinery, even operators) have not changed
between her model-fitting runs and the “verification” runs, the EAS decides to add the new data to the
old and refit the second order model. The new model is:

7(r) = —16.08556 + 0.472977 — 0.002387>

The adjusted R? for this model is 0.9364, which is lower than the model with the earlier data. The
ANOVA for the new model is given in Table 4.8.

The critical value for the F Ratio is approximately 3.8056, so clearly the model has meaning.
Relative to a fifth order model with the new data, Mallow’s C,, is 8.86, which is much higher than the
second order model with the original data. The EAS decides to fit third, fourth, fifth, and sixth order
models with the new data. Table 4.9 shows the C,, calculations, together with the adjusted R? values.

The fifth order model has a C,, that is closest to the theoretical ideal (C, ~ p), and it has a fairly
high adjusted R%. Therefore, the EAS decides to use the fifth order model fit to the total dataset. She
then computed the lower bound on the predicted pull strength at each time point she observed.
Figure 4.6 shows the observed data, the predicted values and the 99 % lower bounds. Drawing an
horizontal line at pull strength = 7.0, and noting where it intersects the 99 % lower limit, the EAS
decides that her best choice of cure time is approximately 92.5 s.
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There is one small issue. Our EAS reads a book on regression methods, such as Draper and Smith
(1998), and discovers that the standard error formula she used to compute the lower 99 % bound on
predicted values did not account for variation in future values of observations. To account for the
additional variability, she would have to use the standard error formula:

SE (3 w0, future) = S\/m

She also discovers another type of limit, called a precision limit (Dunn 2010) that is computed as:
y —1(0.99,n — p)s

where s is the root mean square error from the regression. She plots all the limits, together with the
predicted values, over the entire range of times used in her experiments. The plot is shown in Fig. 4.7.

Now the EAS is not so certain that 92.5 s is in fact adequate. The most optimistic limit, 99 %
prediction lower limits, indicates that 92.5 s would be adequate with 99 % probability. The most
pessimistic limit, future value 99 % lower limits, and even the next most pessimistic limit, the
precision 99 % lower limit, indicate that 105 s may not be adequate. The model indicates an
inexplicable dip in pull strength between 92.5 and 95 s. All the observations past 92.5 s (admittedly
only four values) gave pull strengths over the lower specification limit of 7.000 N. The EAS decides
that the dip in pull strength may be due to random effects, and the model is falsely indicating lower
than desirable pull strengths between 92.5 and 105 s. So, she decides to hedge her bets, and set the
time to 95 s. However, she is not so careless as to run at 95 s without at least a small test.



36 4 Modeling with Data
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Table 4.10 Confirmatory tests Time (s)  Pull strength (N)  Meanpull  SD pull
at cure time = 95.0 s
95.0 7.639 7.466 0.2455
95.0 7.292

To confirm her decision, the EAS makes two more tests at a cure time of 95.0 s. The results are
shown in Table 4.10. It appears that her decision was well-founded, as the two pull strengths were
both greater than 7.0. Furthermore, the standard deviation is low enough so that the specification limit
approximately 1.9 standard deviation units below the sample mean of 7.466. The sample z-score for
the limit of 7.000, based on the mean and standard deviation of these two values, yields approxi-
mately a 97 % chance of obtaining pull strengths above the lower limit. Therefore, the EAS has
strong confidence that the cure time of 95.0 s will in fact yield acceptable pull strengths.

What We Have Discovered

Sometimes we are trying to make a decision about one controllable variable or set of controllable
variables that affect a critical output or response variable (or set of variables). It may be that there is
some functional relationship between the input and output variables, but its exact mathematical form
may be unknown. We presumed that this unknown mathematical form is “smooth”, or in other words,
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infinitely differentiable. Thus we employed a Taylor series sort of argument as an attempt to
approximate the function with a polynomial.

Choosing the order of the polynomial approximation is not a simple process. Even in the case of a
single input variable (e.g., cure time) we were not certain what order to choose. If we had only obtained
functional values (outputs, i.e., pull strength) at two different values of the input variable, we could
only have approximated the relationship with a first order polynomial. Recognizing the possibility that
a first order approximation might be insufficient, the EAS chose three points. There is no absolute rule
about the order of approximation; choosing is more art than science. Clearly the number of points
should exceed the highest order approximation you would ever want to consider by 1. So, if you
thought that the highest order approximation you would want was second order, then select three input
values. Often the choice of approximation is constrained by resources; you may only have budget or
time enough to collect data at two input variable points. The EAS must make stakeholders and
decision-makers aware of the limitations and risks associated with the experimentation. Fewer input
points results in a cruder approximation. In the case of the example, not only was the linear approxi-
mation inadequate, but the range of input points did not include the “optimal” point. It may be possible
to make decisions about experimental conditions in a sequential fashion, adding new data to previously
collected data. Once the EAS discovered that her three input point did not seem to cover the desired
output, she was able to add data from additional points. In her case, interfering conditions such as raw
material lots, different machines/production lines, operators, and test equipment were not an issue.
Thus, she had the luxury of adding points as she performed analyses.

We saw that the method of least squares can be used to find an approximating polynomial.
Inasmuch as the approximation is made using empirical observations, and that observations have a
random component, some statistical methods should be employed to determine whether the approxi-
mation was reasonable. The first tool was the ANOVA for the model, which indicates whether or not
there is any relationship between the approximation and the actual underlying function. We used the
F-ratio test and the adjusted R statistic to decide if our approximating process was on track. We then
used Mallow’s C,, to help choose an order of approximation. By obtaining data at a sufficient number
of input points, we were able to compare C,, for a number of polynomials, and we were able to choose
the polynomial approximation for which C,, was closest to the number of parameters in the model. We
also want adjusted R? told be as close to 1 as possible, but sometimes we may decide to trade
increased R for a closer to optimal C . Using the C, criterion is in concert with Ockham’s Razor, or
the principle of parsimony in model building.

Once the model is built, the next step is to determine the optimal input point, that is, the point at
which the output is closest to whatever value we desire. Desires are usually either to minimize,
maximize, obtain a particular threshold value (either minimum or maximum) or obtain a specific
target value for the output. If you want to maximize or minimize some objective function “on the
average”, it may be sufficient to find an adequate polynomial model fit to data, and then use
deterministic optimization methods (e.g., modified Newton-Raphson methods) to find the optimal
point, at which no data may have been gathered yet. In any empirical investigation, the variation in
sample results should be considered. Once an optimal point is selected, some additional data at (or at
least near) the optimal point should be obtained. These data may verify that the selected point is in
fact acceptable, or they might indicate that there is enough variability in the response to warrant
accounting for a margin of error. Confidence limits for predicted values, or prediction limits, may be
useful in choosing an operating point that provides adequate margin.

We are not necessarily advocating incrementally increasing the range of the experimental factor
(s), in this case cure time, and consequently incrementing the order of polynomial approximation.
More frequently, there is more than one factor involved, and choosing experimental conditions in a
multifactor experiment is better achieved through the use of factorial experimental design, the topic
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of the next chapter. In this chapter we are trying to illustrate how an unknown function can be
reasonably approximated by a polynomial fit to data.

A Note About Outliers

Sometimes a small number of points can be so influential as to drastically alter the order of the “best”
approximating polynomial. Such points are often referred to as “outliers”. Be aware that just because
a point is highly influential does not make it “wrong”, or worthy of discarding. Much more could be
said about “outliers”. For now, it is sufficient to be aware that there are some diagnostic calculations
for identifying points as highly influential, and that identification of high influence is not sufficient
reason to discard a point from analyses or model-building.

Key Points

* Models are useful for approximating real phenomena.

» Polynomial models can be built using empirical observations via least squares regression.

» Models can be assessed for adequacy.

« Adjusted R? is one measure of model adequacy; ANOVA and confidence intervals for predicted
values are other measures.

+ The order of the polynomial fit should follow Ockham’s Razor, or the rule of parsimony.

Exercises and Questions

1. Do you agree with the decision our EAS made about the pull strength problem? Would you have
done anything differently?
2. What are the issues associated with over-fitting, or having too many parameters/terms in a model?



Chapter 5
Factorial Experiments

We have emphasized the need of the EAS to construct an approximating function to relate product
design features to performance measures. The EAS needs a method for choosing the different
combinations of input feature/characteristic values in the most efficient manner possible. Also,
sometimes the EAS is faced with the problem of deciding which smaller subset of too many input
variables are most important, that is, have the greatest influence on the response. Attempting to
optimize a response over many inputs may be at best difficult, if not completely impractical. The EAS
will need a plan that involves the fewest number of input variable points to determine whether or not
each potential input variable should or should not be investigated further. This chapter will be largely
concerned with making such plans, which are termed “factorial experiments”. In this context, the
input variables will often be referred to as “factors”.

The initial screening of factors involves a linear (first order) approximation to the response
function. For each input variable, the question to be answered is whether changing the variable
increases or decreases the average value of the response, or if changing the input variable induces no
change on the average. Admittedly, this assessment is crude. However, if the EAS is faced with more
input variables that can be simultaneously optimized in an economically feasible fashion, it may be
the best assessment that can be made. Suppose, for example, there were five input variables that were
of potential interest. In order to fit a fourth order polynomial in each input variable simultaneously,
the EAS would require 5° = 3125 points. Imagine if the EAS wanted to duplicate results at each point.
The EAS would require N = 6250 measurements of the response variable. This is probably infeasi-
ble. If, however, the EAS desires to decide whether any of the input variables could be disregarded
initially, he should consider using a linear approximation to the response function.

In order to fit a linear function to data, two points are minimally required for each input variable.
The potential values to be included in the experiment for a given factor are called “levels”. In the case
of five input variables, the number points would be 2° = 32, corresponding to all possible
combinations of two levels per factor, with r = 5 factors. This is considerably fewer than 3125.

A first order model may have the form:

y="5h+ Zﬁixi + Zzyijxixj te
Py

i#]

The symbol € represents the random “noise” that is associated with response values observed or
measured under “identical” conditions, at least in terms of the input variables. The EAS could include
higher-order cross-product terms in the first order model, e.g.:
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xixjxg (3-way)
xixpxpx (4-way)

X103 . . . X, (r-way)

Generally, for a first order model used primarily to decide which inputs are truly important, anything
beyond the two-way cross-products is overkill.

In order to obtain statistical estimates of the coefficients ; and y;;, some minimum number of
points must be selected for data gathering. Suppose there were & input variables, and the EAS wanted
to estimate coefficients for a “complete” linear model, i.e., including all possible cross-product terms.
Then, as mentioned earlier, the minimum number of points would be 2k, So,ifk =5, 2% =32 points
would be required. With duplicate response values at each point, a total of n = 64 measurements
would be required.

Assessing the Effect of Each Factor

In the case of a single input variable, or factor, to assess the linear effect of the factor, x, on a response
variable, y, we require observations of y at two different values, or levels, of x. The levels chosen
should cover the range of interest. That is, the lower of the two levels should be the lowest value for
which x could feasibly be set, and the highest level should be the highest value at which x could
feasibly be set. Denote the low and high levels of x by x~ (for low) and x* (for high). Let y~ represent
the value of response y* observed at x~, and y* the value of the response at x*. The effect of x is
estimated by

E=y"—y~

If n observations or measurements of the response variable are obtained at each condition, then the
average value of the response under each condition is used to compute the effect:

E=y" -y
Notice that the slope of the line segment joining the points, (x 7,y ) and (x*,y*) is given by:

b:T_T __E
xt —x— xt—x"

Now suppose we computed the midpoint between x~ and x™:

X~ +xt
m =
2

Then transform, or code, the x variable into a new variable whose range is (—1, +1) with midpoint O:

X—m

H=——""_
%(x*—x*)
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When x = x~, H = —1; when x = x*, H = +1; when x = m, H = 0. Now the new slope, call it &/,
with respect to the coded input variable, w, is given by:

This coding transformation is called Helmert coding, named after Professor Dr. Friedrich Robert
Helmert. Unless otherwise specified, we will assume that all input variables are expressed as Helmert-
coded. Thus —1 will represent the lowest level, and +1 the highest level, of each factor in the
experimental design.

We would like to gather data under various conditions determined by multiple input factors in such
a way as to allow the independent estimation of all coefficients in the first order model. Each unique
condition will be called a “run”. The collection of conditions used to gather the data for fitting the
model (i.e., estimating the coefficients) is called an experiment. The collection of conditions is also
called an experimental design, or simply “design”.

Assessing the Cross-Product, or Interaction Effects

Suppose there is more than one input factor that may have some effect on the response. It is possible
that the first order approximation model should include at least the two-way cross-product terms.
Cross-product terms are also called interaction effects, in that the levels of all factors included in the
cross-product “interact” in their joint effect on the response. Just as in the main effect of each factor
individually, and interaction effect can be computed. The two-way interaction effect for any two
factors would be the difference between the effect of the first factor when the second is at its “low”
(—1) level, and the effect of the first factor when the second is at its “high” (+1) level. The choice of
which factor is “first” and which is “second” is arbitrary. If there were exactly two input factors, x;
and x,, coded to (—1, +1), the experimental runs could be symbolized as in Table 5.1.

If the symbols y(—,—), y(—,+), y(+,—), and y(+,+) represent the average responses in each run,
then the effect of x1 at each level of x2 can be computed as:

Ev__1 = y(+v _) - y(_’ _)
Ex2:+1 = y(+7 +) - y(*7 +)

The interaction effect is computed as:

Eo—11 — En="
Exl,x2 = %
Table 5.1 A two-factor, two-level Run X X y
experiment 1 ] 1 ( )
_ _ y(=—
2 -1 +1 y (=)
3 +1 -1 y(+-)
4 +1 +1 y (+,+)
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The coefficient corresponding to this cross-product term is:

Exl ,x2

by = >

It turns out that the coefficients computed in the fashion described are actually the least squares
estimates.

A Three-Factor Example

Consider the following example. The processing of a liquid chemical mixture can have different
yields (in volume), depending on how the temperature (°C), pressure (kP), and dwell time (s) are set.
Nominally, the temperature has been set at 37°C, the pressure at 12.00 kP, and dwell time of 300 s.
The yield has been averaging 20 liters (L) per batch. An EAS is assigned the task of increasing the
volume yield, if possible. He decides to perform an experiment to fit a first order model in the three
factors. The levels and their coded values for all the runs are shown in Table 5.2.

There are 2° = 8 runs, representing all possible combinations of levels for the three factors. The
model to be fit is:

y = PBo + ByHi + BHs + B3H3 + v, HiHy + yp3HoHz + v 3H{H3 + 8123H HHs +- €

The three-way cross-product term is probably not necessary, but since all possible combinations of
factor levels are included in the design, it is possible to estimate the coefficient for this term. The EAS
decides to get n = 2 duplicate values for each run. The data are given in Table 5.3.

There are two very important properties of this experimental design that are made apparent by the
use of Helmert coding. The first is balance; for any input factor, there are equal numbers of
observations made when the input factor is set to its low (—1) value and its high (+1) value. If you
sum all the —1’s and +1’s in any column, the result is zero. The second is orthogonality; if each of the
columns in Table 5.3 are thought of as column vectors, the dot product of any two columns is zero.
Balance and orthogonality greatly simplify the calculations of least squares.

Once the data are gathered, the analysis begins with a least squares fit, or estimation of the
coefficients in the first order model.

With two-level experiments, where each input variable is Helmert-coded, there is a simple way to
compute the effects and coefficients for each term in the first order model. Suppose 4;; represents the
Jth coded value for the ith input variable, and y; represents the jth value of the response variable. If
there are m = 2% unique runs in the experiment, with n replicate values for each run, then the estimate
of the effect, E;, and the least squares estimate of the coefficient, f;, are given by:

Table 5.2 Experimental

Natural Coded
design—volume yield -
Run Temp Pressure Time H, H, H;
1 32 10 240 -1 -1 -1
2 32 10 360 —1 —1 +1
3 32 14 240 -1 +1 -1
4 32 14 360 -1 +1 +1
5 42 10 240 +1 —1 —1
6 42 10 360 +1 -1 +1
7 42 14 240 +1 +1 -1
8 42 14 360 +1 +1 +1
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Table 5.3 Volume yield experiment

43

Run Temp Pressure Time H, H, H; Volume
1 32 10 240 —1 —1 —1 20.8
1 32 10 240 -1 -1 -1 20.8
2 32 10 360 -1 -1 1 21.6
2 32 10 360 —1 —1 1 21.3
3 32 14 240 -1 1 -1 17.8
3 32 14 240 -1 1 -1 17.7
4 32 14 360 —1 1 1 17.9
4 32 14 360 -1 1 1 17.7
5 42 10 240 1 -1 -1 17.6
5 42 10 240 1 —1 —1 17.8
6 42 10 360 1 -1 1 16.5
6 42 10 360 1 -1 1 16.7
7 42 14 240 1 1 -1 24.1
7 42 14 240 1 1 -1 24.4
8 42 14 360 1 1 1 23.3
8 42 14 360 1 1 1 23.0
Table 5.4 Volume yield data with calculations of some of the coefficient estimates

Run Temp Pressure Time H, H, H; y=volume H;*y Hy*y Hs*y H,*Hy*y
1 32 10 240 -1 -1 -1 208 —20.8 —20.8 —20.8 20.8
1 32 10 240 -1 -1 -1 208 —-20.8 -20.8 —20.8 20.8
2 32 10 360 -1 -1 1 216 —-21.6 -21.6 21.6 21.6
2 32 10 360 -1 -1 1 213 —-21.3 —-21.3 21.3 21.3
3 32 14 240 -1 1 -1 17.8 —17.8 17.8 —17.8 —17.8
3 32 14 240 -1 1 —1 17.7 —-17.7 17.7 —17.7 —17.7
4 32 14 360 —1 1 1 17.9 —17.9 17.9 17.9 —-17.9
4 32 14 360 -1 1 1 17.7 —-17.7 17.7 17.7 —17.7
5 42 10 240 1 -1 —1 17.6 17.6 —17.6 —17.6 —17.6
5 42 10 240 1 -1 -1 17.8 17.8 —17.8 —17.8 —17.8
6 42 10 360 1 -1 1 16.5 16.5 —16.5 16.5 —16.5
6 42 10 360 1 -1 1 16.7 16.7 —16.7 16.7 —16.7
7 42 14 240 1 1 -1 241 24.1 24.1 —24.1 24.1
7 42 14 240 1 1 -1 244 24.4 24.4 —24.4 24.4
8 42 14 360 1 1 1 233 233 23.3 23.3 23.3
8 42 14 360 1 1 1 230 23.0 23.0 23.0 23.0
SUM: 7.8 12.8 -3.0 39.6
COEFF: 0.49 0.80 -0.19 2.48

Bi=
Ei=1—) hyy;
Py

Ei 1 Jm
bi=—= %Zhﬁy/’

Jj=1
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The least squares estimates of any two-way interaction coefficients are computed in a similar fashion:

E‘ nm
ij = 7 = %thkhjkyjk

Table 5.4 illustrates the computations of some of the coefficient estimates for the volume yield data.

The only reason these simple formulas for the least squares estimates of the coefficients work is
because this is a two-level, balanced, orthogonal design, where each input factor is Helmert-coded.

Figure 5.1 shows the output from the “Fit Model” function of the software package JMP 8.0. Note
the agreement between the “Parameter Estimates” section of the Figure and the results in Table 5.4.

Now that the estimates of the first order approximation model are obtained, the next stage is to
decide which input variables are likely to have a non-zero effect on the response. In Fig. 5.1, in the
Parameter Estimates section, along with the “Term” and “Estimate” columns are three others: Std
Error, t Ratio, and Prob >|t|. The Std Error (SE) column is the standard error of the estimated
coefficient, or parameter estimate, given by:

M error M error
o \/ Seror _ [MS :
nm n2

The t Ratio is:

_b
"~ SE

where b represents the estimate of the coefficient for the term in question. The formula for SE only has
this simple form due to Helmert coding.

Finally, the column labeled “Prob >|t|” is the p-value for testing the hypothesis that the coefficient
is actually 0. P-values less than some pre-specified level (usually 0.05) are considered statistically
significant, meaning that the actual coefficient does not appear to be 0. Any terms for which the
p-value is above the pre-determined threshold are candidates to be excluded from the model.

Figure 5.2 shows Minitab 16 output for the same data and model.

Figure 5.3 shows output (and SAS code) from SAS 9.2

Figure 5.4 shows the output and code for R 3.0.1

Notice that JMP calls v/MS,,,,, the “Root Mean Square Error”, Minitab calls it “S”, SAS calls it
“Root MSE”, and R calls it “Residual standard error”.

In examining the fit of this model, we notice several things. One is that all the three factors, H, H,,
and H3, are significant at the 0.05 level. Thus it does not appear that any of the three are candidates to
be ignored. Another is that the interaction terms, H,*H;3 and H,*H,*H3, are not significant at the 0.05
level. The fact that these interactions are not significant does not imply that any of the factors included
in the interaction are not important to control. Yet another thing is that the adjusted R? is relatively
high (0.99674), indicating that possibly the first order polynomial may be a good enough
approximation.

We notice that the run with the highest average volume is run 7, with H; = +1 (Temperature
= 42°C) H, = +1 (Pressure = 14 kP) and H; = —1 (Time = 240 s). The average volume was
24.25 L, which is an improvement over the current volume of 20.0 L. Notice also that the predicted
value of volume for run 7 conditions is:

Volume = 19.9 + 0.487(+1) + 0.800(+1) — 0.188(—1) + 2.48(+1) — 0.363(—1) — 0.0750(—1)
+0.0750(—1) = 24.25
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Volume Predicted P<.0001
RSg=1.00 RMSE=0.1581

Summary of Fit

RSquare 0.998262
RSquare Adj 0.996742
Root Mean Square Error 0.158114
Mean of Response 19.9375

Observations (or Sum Wgts) 16

Analysis of Variance

Source DF Sum of Mean Square
Squares

Model 7 114.89750 16.4139

Error 8 0.20000 0.0250

C.Total 15 115.09750

Parameter Estimates

Term Estimate Std Error  t Ratio

Intercept 19.9375 0.039528 504.38

H1 0.4875 0.039528 12.33

H2 0.8 0.039528 20.24

H3 -0.1875 0.039528 -4.74

H1*H2 2.475 0.039528 62.61

H1*H3 -0.3625 0.039528 -9.17

H2*H3 -0.075 0.039528 -1.90

H1*H2*H3 0.075 0.039528 1.90

Fig. 5.1 JMP output—volume yield first order model

F Ratio

656.5571
Prob > F
<.0001*

Prob>|t|
<.0001*
<.0001*
<.0001*
0.0015%*
<.0001*
<.0001*
0.0943

0.0943
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Welcome to Minitab, press Fl for help.
Regression Analysis: Volume versus H1, H2, H3, H12, H13, H23, H123

The regression equation is
Volume = 19.9 + 0.487 H1 + 0.800 H2 - 0.188 H3 + 2.48 H12 - 0.363 H13
- 0.0750 H23 + 0.0750 H123

Predictor Coef SE Coef i P
Constant 19.9375 0.0395 504.38 0.000

H1 0.48750 0.03953 12.33 0.000

HZ2 0.80000 0.03953 20.24 0.000

H3 -0.18750 0.03953 -4.74 0.001

H12 2.47500 0.03953 62.61 0.000

H13 -0.36250 0.03953 -9.17 0.000

H23 -0.07500 0.03953 -1.90 0.094

H123 0.07500 0.03953 1.90 0.094

S = 0.158114 R-5g = 99.8% R-Sg(adj) = 99.7%
Analysis of Variance

Source DF 55 MS F P
Regression 7 114.898 16.414 656.56 0.000
Residual Error 8 0.200 0.025

Total 15 115.098

Source DF Seqg S8
H1 1 3.802
H2 1 10.240
H3 1 0.563
H12 1 98.010
H13 1 2.103
H23 1 0.090
H123 1 0.090

Fig. 5.2 Minitab output—volume yield first order model

It turns out that the least squares-based predicted value of the response (also called the least-squares
mean) for any run is actually the arithmetic average response for that run, provided the experiment is
balanced. This is another convenient consequence of the two-level experimental design. Many
software systems provide least squares means as outputs.

Since this EAS had no specific goal for volume (other than to make it as high as possible), it may
be that the only additional experimentation he would want to perform is confirmatory, namely,
replicates of run 7, H; = +1 (Temp = 42°C), H, = +1 (Pressure = 14 kP) and H; = —1 (Time
= 240 s). Upon completing another two replicates, the EAS obtained the values 24.4 L and 24.5 L.
These two values, and their average, 24.45 L, were close enough to the prediction that the EAS
decided that the best conditions were at Temperature = 42°C, Pressure = 14 kP, and Time = 240 s.

It is quite possible that the chosen operating conditions are suboptimal. The presumption is that the
chosen range of input factors in which the experiment was conducted at least contains the optimal
point. Secondly, there is no way using the data gathered in this two-level experiment to decide that
any higher order terms would improve the polynomial approximation. It might be helpful to perform
the experiment at an intermediate point; something between the “corners” as defined by the high and
low levels of the input factors. Recall that the factors in natural units were Helmert-coded by
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subtracting the midpoint values from the high and low values of each factor. The midpoints for each
factor would then be coded (or mapped) to the value 0. The “center” of the experimental space in
coded units would then be at H; = 0,1 = 1, 2, 3. If the average response at this center point is “close’
to the predicted value from the first order model, then it is more believable that no higher order terms
are necessary. Note that at the Helmert-coded center point, the predicted value is the intercept
estimate, which was ~19.94 L.

The center point conditions for the volume yield experiment are Temperature = 37°C, Pressure
= 12 kP, Time = 300 s. The EAS obtained two replicate values for the center point: 20.3 L and
19.6 L, for an average response of 19.95 L. This is very close to the intercept estimate of 19.94 L.
Therefore, evidence indicates that the first order model is adequate within the range of the input
factors in which the experiment was conducted.

libname stuff 'H:\Experimentation for Design & Validation\Data &
Analyses';

data calc;

set stuff.d20130812 example 5 1 volume;

/e ks ek de s ek e st ok ko e ok ok ok ok ko e ok ke ok ke ko ok ok ke ok ko ke ok ok e ok ok ko ke ek ok ok ke ke ke ek ok

+* *
* variables: Run, Temp, Pressure, Time, H1, H2, H3, Volume %
* *

R R R

run;,

proc glm data=calc;
model Volume = H1 H2 H3 H1*H2 H1*H3 H2*H3 H1*H2*H3/est;
run;

The SAS System ©8:19 Monday, August 12, 2013 8
The GLM Procedure

General Form of Estimable Functions

Effect Coefficients
Intercept L1
H1 L2
H2 L3
H3 L4
H1*H2 L5
H1*H3 L6
H2*H3 L7
H1*H2*H3 L8

Fig. 5.3 SAS output—volume yield first order model
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The SAS System @8:19 Monday, August 12, 2813 9

The GLM Procedure

Dependent Variable: Volume  Volume
Sum of
Source DF Squares Mean Square F Value Pr > F
Model 7 114.8975680 16.4139286 656.56 <.0801
Error 8 B.2080000 9.0256000
Corrected Total 15 115.8975000
R-Square Coeff Var Root MSE Volume Mean
9.998262 @.793048 8.158114 19.9375@
Source DF Type I 55 Mean Square F Value Pr > F
H1 1 3.80250008 3.80250000 152.18 <.08e1
H2 1 18.24000000 18. 24008088 489,60 <.0801
H3 1 @.56258008 @.56258008 22.58 8.8815
H1*¥H2 1 98.91000008 98.91000008 3920.49 <.0881
H1*H3 z: 2.16256000 2.18250000 84.18 <.0801
H2*H3 1 8.89%288008 8. 89208008 3.68 @.8943
H1*H2*H3 1 8.09800808 9.89200000 3.68 9.0943
Source DF Type III S5 Mean Square F Value Pr » F
H1 1 3.88258080 3.88258008 152.1@ <.8801
H2 1 18.24000000 16. 240000080 489,60 <.0881
H3 1 8.56256800 9.56256000 22.50 8.0815
H1*H2 1 98 .9le0ee0e 98. 0108008 3528.48 <.8801
H1*H3 1 2.108256008 2.10256000 84.10 <.0801
H2*H3 1 9.09000000 8.89000000 3.68 9.8943
H1*H2*H3 1 8.8%208208 8.e%e08e08 3.68 8.8943
Standard
Parameter Estimate Error t Value Pr > |t
Intercept 19.93758080 ©.83952847 584,38 <.eeal
H1 8.48756080 ©.83952847 12.33 <.eeel1
H2 0.80000000 08.83952847 28.24 <.8881
H3 -8.18758000 8.83952847 -4.74 8.8e815
H1*H2 2.475088000 8.83952847 62.61 <.eeel
H1*H3 -8.36250000 8.83952847 -9.17 <.eeel
H2*H3 -8.8750e000 8.83952847 -1.98 @.a943
H1*H2*H3 @.a75ee080 ©.83952847 1.90 @.8943

Fig. 5.3 (continued)

Non-continuously Valued Input Factors and Multiple Comparisons

Often factors are ordinal or even nominal valued. That is, a setting on a machine might have only
discrete, albeit ordered, values (slow, medium, and fast speeds, for example) or a factor’s levels may
have no order at all (colors, such as white or red, for example). In these cases, Helmert coding can still
be used, but the interpretation of the output is very different. Instead of fitting the model to be
predictive, the model is discriminatory. That is, rather than interest in estimating the model
coefficients, we would be more interested in estimating the effect, and testing whether the effect
for a given term is significantly different from zero. Most the models we have created so far were
predictive polynomial approximations to the relationship between the response and the factors. The
number of parameters associated with a factor or an interaction was one, and it was interpreted as a



Non-continuously Valued Input Factors and Multiple Comparisons 49

> setwd("H:\\Personal Data\\Experimentation for Design & Validation\\Data &
Analyses\\")

> df1 <- read.csv("20130812 example 5 1 volume.csv")

>

> attach(df1)

=

> first order <- Im(Volume ~ HI + H2 + H3 + H1*H2 + H2*H3 + H2*H3 + HI*H2*H3)
=

> summary(first_order)

Call:
Im(formula = Volume ~ H1 + H2 + H3 + H1 * H2 + H2 * H3 + H2 *
H3 + HI1 * H2 * H3)

Residuals:
Min 1Q Median 3Q Max
-0.15 -0.10 0.00 0.10 0.15

Coefficients:
Estimate Std. Error t value Pr(>|t))
(Intercept) 19.93750  0.03953 504.383 < 2e-16 ***

H1 0.48750 0.03953 12.333 1.74e-06 ***
H2 0.80000 0.03953 20.239 3.71e-08 ***
H3 -0.18750 0.03953 -4.743 0.00146 **

H1:H2 2.47500 0.03953 62.613 4.71e-12 ***
H2:H3 -0.07500 0.03953 -1.897 0.09435 .
H1:H3 -0.36250 0.03953 -9.171 1.61e-05 ***
H1:H2:H3 0.07500 0.03953 1.897 0.09435.

Signif. codes: 0 “***70,001 “***0.01 “** 0.05 " 0.1 * " 1

Residual standard error: 0.1581 on 8 degrees of freedom
Multiple R-squared: 0.9983, Adjusted R-squared: 0.9967
F-statistic: 656.6 on 7 and 8 DF, p-value: 2.132e-10

>
> detach(dfl)

Fig. 5.4 R output—volume yield first order model

slope. When factors are discrete, the notion of slope does not really apply. Even in the case where a
discrete factor has only two levels, the effect, as described in the beginning of this chapter, is a more
meaningful measure than slope. In Figs. 5.2 and 5.3, the reader may have noticed tables with columns
labeled “source” and “DF”. The “source was the factor or regressor variable, and DF was the degrees
of freedom associated with the factor, and it was always one. In the case of discrete factors, the
degrees of freedom associated with the factor are the number of levels —1. The degrees of freedom for
a factor are actually the number or parameters required to represent the factor’s effect. In the case of
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two-level factors, and in fact for any continuously valued factor, only one parameter is required. If a
factor is continuous, then the parameter can be interpreted as a slope. In the case of discrete factors,
the parameters associated with those factors are only useful inasmuch as they are used to assess the
factor’s effect.

Usually, in the case of discrete factors, the EAS wants to know more specifically which
combinations of levels for a factor differ significantly from each other. Tests of significance
comparing specific combinations of factor levels are called multiple comparison tests (Montgomery
2001). These tests are generally only applied if the overall effect is significant, and are most useful
when a factor has more than two levels. The tests are designed to control for inflating the chance of
concluding that a significant difference between pairs of specific combinations of factor levels exists,
when in fact it does not. One such test is the Tukey-Kramer test (Montgomery, ref.cit.), or sometimes
referred to as Tukey’s Honestly Significant Difference, or HSD, test (Adler 2010). Figure 5.5 shows R
code for an example with one discrete factor having three levels (called “first”, “second”, and
“third”). The R Output for the example, including the Tukey HSD test, is shown in Fig. 5.6. The
columns labeled “lwr” and “upr” in the output for the TukeyHSD function are the lower and upper
limits of simultaneous 95 % confidence intervals for the differences between the average response at
the particular levels being compared. By “simultaneous” we mean that jointly the confidence level for
all the intervals is 95 %. The p adj column is the p-value, adjusted to account for multiple
comparisons.

In this example, the factor fF1 is significant (p = 1.111e-05). While level “second” differs
significantly from level “third” (p = 0.0000122) and from level “first” (p = 0.0007988), level
“first” does not differ significantly from level “third” (p = 0.3909875).

If all the factors in the experiment, continuous or non-continuous, are restricted to two levels, then
we can take advantage of all the computational efficiencies afforded by 2* factorial designs. So, the
designs and their associated characteristics are not restricted to only continuously valued factors. In
fact, both discrete and continuous factors may be included in a single experimental design.

It is possible that in addition to controlling levels of discrete and continuous factors, the EAS may
find that there are one or more continuously-valued quantities that vary without control, but which can

Fig. 5.5 Example R code setwd("H:\\P
with Tukey HSD function Analyses\\")
dfl <- read.csv("20150121 Example Multiple Comparisons.csv")

ersonal Data\\Experimentation for Design & Validation\'\Data &

attach(dfl)

fI'1 <- factor(F1, 1:3)
levels(fF1) <- ¢("first","second","third")

model123 <- aov(Y ~ {F1, na.action=na.omit)

TukeyHSD requires an aov object as its first argument

= 3 F*

ukeyHSD(x=model123,which="{F1",ordered=TRUE)

summary(model123)

H

# Note that the anova function will be the same as summary(model123)
# if model123 is an aov object

anova(model123)
detach(dfl)
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> setwd("H:\\Personal Data\\Experimentation for Design & Validation\\Data &

Analyses\\")

> df1 <-read.csv("20150121 Example Multiple Comparisons.csv")

g
> attach(df1)
5
> {F1 <- factor(F1, 1:3)
> levels(fF1) <- c("first","second","third")
=
>
> model123 <- aov(Y ~ fF1, na.action=na.omit)
> #
> # TukeyHSD requires an aov object as its first argument
> #
> TukeyHSD(x=model123,which="{F1",ordered=TRUE)
Tukey multiple comparisons of means
95% family-wise confidence level

Fit: aov(formula =Y ~ fF1, na.action = na.omit)

$fF1

diff lwr upr p adj
first-third 1 -0.8374262  2.837426  0.3909875
second-third 4 2.1625738 5.837426  0.0000122
second-first 3 1.1625738  4.837426  0.0007988
>

> summary(model123)

Df Sum SqMeanSq  F value Pr(>F)
fF1 2 130.0 65.00 1515 1:118-05 *%*
Residuals 42 180.2  4.29
Signif. codes: 0 “*** (0.001 “***0.01 “** 0.05 . 0.1 " 1
> #

> # Note that the anova function will be the same as summary(model123)

> # if model123 is an aov object
> #
>

Fig. 5.6 R output for TukeyHSD function
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> anova(model123)
Analysis of Variance Table

Response: Y
Df Sum Sq Mean Sq F value Pr(>F)
fF1 2 130.00  65.00 15.152  1.111e-05 ***
Residuals 42 180.18 4.29
Signif. codes: 0 “***7(0.001 “*** 0.01 “** 0.05°.70.1 *’ 1
>

> detach(dfl)

In this example, the factor fF1 is significant (p = 1.111e-05). While level “second”
differs significantly from level “third” (p = 0.0000122) and from level “first”

(p = 0.0007988), level “first” does not differ significantly from level “third”

(p = 0.3909875).

Fig. 5.6 (continued)

be measured. For example, the ambient temperature may not be completely controllable, and it may
have some effect on experimental response variables. A version of ANOVA, called Analysis of
Covariance (ANCOVA) was developed to allow the experimenter to compare the levels of discrete
factors while compensating for a free-varying “covariate”, which may attenuate the response signal.
ANCOVA is a sort of combined ANOVA and regression. It is not the same as including a continu-
ously varying but uncontrolled input in a regression model; rather ANCOVA is a means of adjusting
the test of significance for discrete factors, to compensate for unwanted effects of the covariates.
Inasmuch as this text focuses mostly on constructing predictive models, and not so much on
determining the significance of discrete factors, no more will be said about ANCOVA. The
Montgomery text already cited several times has an excellent coverage of this topic.

Matrix Form

Suppose H is the matrix of all the columns relating to the intercept and each input factor coefficient,
including each cross-product terms (obtained by row-wise multiplication of the factors in the cross-
product terms). Furthermore, let Y represent the vector of all the Volume (response) results. They
would look like Fig. 5.7.

The first order model can be represented by the vector equation:

Y=HO0+¢
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Fig. 5.7 Matrix

. H Matrix Y vector
representation of volume
yield experiment Intercept |H1|H2|H3|H1H2|H1H3 |H2H3 |H1H2H3 | |y=Volume
1 11 A1 1 1 1 -1 20.8
1 A1 11 1 1 -1 20.8
1 411 4 A 1 216
1 S A4 A 1 21.3
1 401 1 A 1 -1 1 17.8
1 41 1 A 1 -1 1 17.7
1 411 1 A 1 -1 17.9
1 401 1 a1 A 1 -1 17.7
1 111 -1 1 1 17.6
1 111 1 A 1 1 17.8
1 111 A 1 -1 -1 16.5
1 111 1 -1 -1 16.7
1 11 1 1 4 A -1 24.1
1 11 1 1 4 A -1 24.4
1 1 1 1 1 1 1 1 23.3
1 1 1 1 1 1 1 1 23.0
where:
" B T
I
Pa
0 — | P
712
713
723
_6123_

and € is a nm X 1 vector of random noise variables. If @ represents a vector of the ordinary least
squares estimates of the model coefficients, then it can be expressed in the vector equation:

0 — [H’HFH’Y

That is, 8 is the solution to the least squares minimization problem (Draper and Smith 1998), namely
to find the values of the coefficients that minimize the sum of squared errors (SSE).
Recall the formula for the standard error of predicted values:

SE(5|ho) = s\/hy[H'H] "k

where s is the root mean square error, and h( represents a particular design point (i.e., a value
corresponding to each column of the H matrix) in the Helmert-coded input variable space. Once again
the Helmert coding simplifies the computations. The matrix H'H has diagonal elements all equal to
np, where p = number of parameters in the model = number of columns in the matrix H, and all
off-diagonal elements equal to 0. The inverse of such a matrix is simply the reciprocal of the diagonal
elements on its diagonal and zero everywhere else. That means:
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SE(5|ho) = s\/ ly[H'H] "o =

Forrun7, by = [+1, +1, +1, =1, +1, =1, — 1, — 1], and

Sl=

SE(5]ho) = \%

With s ~ 0.1581, the 99 % lower confidence bound on the predicted value for run 7 is:

0.1581
V2

So, now we have seen three different ways to compute the least squares estimates of the first order
polynomial coefficients using data from a balanced, 2* factorial experiment:

y —1(0.99,16 — 8)SE(y|ho) ~ 24.25 — 2.896x ~23.93

1. Compute the “effect” in terms of differences in average response at the high and low levels of the
input factor, and then dividing by 2;

2. Using the coded column for the input factor, multiply it row-wise with the corresponding response
variable values, and then sum the products; divide by the total number of response values;

3. Use the matrix/vector solution to the least squares minimization problem;

All three of these methods yield the same answer. Method 2 only works for Helmert-coded,
balanced, orthogonal two-level experiments.

Reducing the Model

Inasmuch as two interaction terms in the Volume Yield model were not significant (i.e., the p-values
for the t-ratios of their coefficient estimates were greater than 0.05), we might consider what would
happen if we “reduced” the model, excluding the H,H; and H;H,Hj; terms, which both had associated
p-values of approximately 0.09435 (Fig. 5.4). The JMP output for the reduced model is shown in
Fig. 5.8.

Apart from missing the H,H; and H;H,Hj terms, the coefficients in the new model are identical to
those of the corresponding terms in the full model. The reduced model has a lower adjusted R?
(0.9950 instead of 0.9967), a higher root means square error (0.1949 instead of 0.1581), and therefore
correspondingly higher standard errors for the coefficients (0.0487 instead of 0.0395). The only
question is whether the reduced model gives better predictions than the full model. For run 7, the
predicted value of volume with the full model was 24.25 L. With the reduced model, it is also about
24.25 L. The two models agree very closely at all the runs. Table 5.5 shows the predicted values at
each of the 8 runs. Of course, since the intercept estimates are identical for the two models, the
predicted values at the center point run, H; = H, = Hz = 0, are the same.

The only way to assess which model yields superior predictions is to replicate runs at which the
two predictions (full and reduced model) do not agree. In particular, since the HH3 and H;H,H;
interactions were dropped in the reduced model, it might be instructional to replicate a run in which
all three coded variables had the same sign, and a run in which one variable differed in sign from the
other two. Run 1 (H; = H, = H; = —1) and run 8 (H; = H, = H; = +1) are the two runs where all
variables have the same sign. Any of the other runs would satisfy the 2 out of 3 runs having different
signs. However, note that the predicted values for runs 5, 6, and 7 are identical, so the information
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Response Volume
Actual by Predicted Plot

25
24
w2
3224
<21 4
g 20 4
3 19
184
17 4
16 <=

1 1 1 1 1 ] 1 1
16 17 18 19 20 21 22 23 24 25
Volume Predicted P<.0001
RSg=1.00 RMSE=0.1949

55

Summary of Fit
RSquare 0.996698
RSquare Adj 0.995048
Root Mean Square Error 0.194936
Mean of Response 19.9375
Observations (or Sum Wgts) 16
Analysis of Variance
Source DF  Sum of Squares Mean Square F Ratio
Model 5 114.71750 22.9435 603.7763
Error 10 0.38000 0.0380 Prob > F
C. Total 15 115.09750 <.0001*
Parameter Estimates
Term Estimate Std Error t Ratio Prob>|t|
Intercept 19.9375 0.048734 409.11 <.0001*
H1 0.4875 0.048734 10.00 <.0001*
H2 0.8 0.048734 16.42 <.0001*
H3 -0.1875 0.048734 -3.85 0.0032*
H1*H2 2.475 0.048734 50.79 <.0001*
H1*H3 -0.3625 0.048734 -7.44 <.0001*
Fig. 5.8 JMP output—reduced model—volume yield first order model
Table 5.5 Predicted values, full Run Full model Reduced model
and reduced models
1 20.80 20.95
2 21.45 21.30
3 17.75 17.60
4 17.80 17.95
5 17.70 17.70
6 16.60 16.60
7 24.25 24.25
8 23.15 23.15
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about which model yields a better prediction would not be available. So, in order to assess which
model yields better predictions, runs 2, 3, or 4 are the best candidates.

Before obtaining any further experimental data, however, examine the differences in the
predictions. Are those differences materially different? Furthermore, does it matter, since the
maximum prediction for both models is 24.25 L at “run 7” conditions? Since the function being
maximized is linear in the parameters, and the only constraints on the inputs are that they fall within
specified ranges (coded to the range —1 to +1), there are no intermediate settings of the input variables
that will increase the polynomial approximation to the yield function. Therefore, given that the center
point data did not indicate any higher order effects beyond the linear model, and given that the
reduced model did not yield any alteration in what appeared to be the optimal conditions, the EAS
may conclude that the process should be run at “run 7” conditions, namely temperature = 42°C,
pressure = 14 kP, and time = 240 s. The 99 % lower bound on expected volume yield is:

0.1949
V2

3 — 1(0.99,16 — 6)SE (5] o) ~ 24.25 — 2.764x ~ 23.92

based on the reduced model.
To reiterate the modeling, analysis, and decision process:

1. Choose an objective, such as maximizing yield, minimizing waste, or obtaining a measurement
that exceeds some lower limit. In all the cases discussed in this chapter, there is a single output, or
response variable, and that is can be expressed as a real number.

2. Choose a set of candidate input variables, which are those controllable factors that are suspected

to have some effect on the output response.

. Choose operating ranges for each of the controllable input factors.

. Fit the full, first order polynomial to Helmert-coded input variables.

. Obtain some runs at the center point.

. Compare the average of the center point runs to the intercept. Are they “close”?

. Determine which, if any, terms in the full model have coefficients that are not significantly

different from zero.

8. Compute predicted values for a reduced model, which only contains terms with significant
coefficients.

9. Find the run conditions that provide the “best” predicted output response. Compute bounds for
the prediction (lower, upper, or both).

10. If possible, consider obtaining some additional data using conditions that were not included in the
original experiment (other than the center point). Compute a predicted value from the model, and
compare it to the actual average response from the additional run(s). Are they “close”? Does the
prediction “seem” reasonable?

11. If the predicted values seem close to the actual results obtained from additional runs, then use the
run conditions that yield the “best” predicted value.

12. If the average value of the center point runs is not close to the predicted value of the response, or
the actual values of additional runs are not close to predicted values, then a higher order
approximation may be necessary.

NN bW

Keep in mind that there are potentially other phenomena that may affect the modeling and analysis
process. There can be budgetary as well as physical constraints that limit your ability to experiment. It
is possible that some input factors may only have either an operating minimum or maximum, so that
choosing a range may be challenging. Of course, measurement systems for both output and input
variables may constrain the ability to know the true optimal value or choose optimal operating/design
conditions. And noise levels may make confidence limits wider than desirable for a given sample size.
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Key Points

» System features can be thought of as input factors that affect the value of a performance measure,
called the response variable.

+ Factorial experiments are sets of factor values used to assess the effects of each factor on the
average value of the response variable.

» Two-level factorial experiments are used to find first-order approximating polynomials. They can
tell you if increasing a given factor increases, decreases, or does not change the average value of
the response.

 Interaction effects are assessed by including two-way cross-products of input factors into the
model.

Exercises and Questions

1. What order polynomial can be fit using data from a two-level factorial experiment?

2. How can a center point run be useful?

3. What analyses can be used for discrete factors? How do those analyses differ from continuous
factors?



Chapter 6
Fractional Factorial Designs

In the two-level experiment with k input factors, there are 2* possible runs. For k = 3, there are only
eight runs. But even with five factors, 2° = 32 runs may be prohibitively expensive and time
consuming. The question is whether it is possible to use some subset of all possible runs and still
be able to fit a first order polynomial approximation to the response function. The answer is yes, but
you must give up some resolution in your approximation. The amount of resolution lost is generally in
terms of which interaction effects which can be included in your model.

The process of selecting the subset of runs is called fractional replication, and the experimental
designs resulting from the process are called fractional factorials. The term comes from the fact that
selected fractions of the total number of runs are of the form %, where p = 1,2, 3,... So, for example,
if there are five factors over which the experiment is to be performed, then there are 2° = 32 possible

1 . . . . . .
runs, and a o or one-half fraction would require only 16 of those runs. This section will deal with a
sort of taxonomy for fractional factorial designs, in terms of the amount of information lost, together
with a method for choosing the particular fraction of the total number of possible runs. The method of
choosing those runs will preserve balance and orthogonality, the two essential characteristics that

allow for the unambiguous estimation of model coefficients.

Resolution

The degree to which information is lost when a fraction of the total number of runs are used in an
experiment is called resolution. A complete, full factorial design has full resolution. The next resolution
level most commonly employed is called Resolution V (Roman numeral 5), or ResV. The resolution in
a design limits the order of interaction, or cross-product terms, which can be included in a model. For
ResV designs, the approximating first order polynomial can have all possible two-way cross-product, or
interaction, terms. All three-way or higher order cross-product terms are what is called “aliased” with
two-way terms. That means the coefficient estimates for any three-way terms will be identical to the
estimate for some two-way term. The other resolution levels we will discuss are ResIV (where single
factor terms are not aliased with each other, although they are aliased with higher order cross-product
terms, and two-way cross-products are aliased with other two-way cross-products and higher order
cross-products, but no cross-product terms are aliased with any single factor terms) and ReslII (where
two-way and higher order cross-product terms are all aliased with single factor terms, but single-factor
terms are not aliased with each other). Generally, a design is of resolution K if the lowest order term that
any k-order term is aliased with is K-k. So for example, in a ResV (K = 5) design, the lowest order term

© Springer International Publishing Switzerland 2016 59
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Table 6.1 An experiment Run H1 H2 H3 Y
with aliasing
1 -1 -1 -1 Yi
2 -1 1 -1 y2
3 1 —1 1 y3
4 1 1 1 Y4

any first-order term will be aliased with is a 5 — 1 = fourth order cross-product term, second order
terms will be aliased with 5 — 2 = third-order terms, and of course third-order terms will be aliased
with 5 — 3 = second-order terms.

First, we will illustrate the idea of aliasing. Secondly we will describe a method for dividing the 2*
runs into 27 subsets, or fractional designs, in such a way as to preserve balance and orthogonality.
Then we will discuss a method for determining p in order to have a particular resolution.

Aliasing

Suppose we had three Helmert-coded input factors, call them H;, H,, and Hs. Suppose that we had
chosen to make only four runs, as shown in Table 6.1. If we did this experiment, then the estimate for
the coefficients of factors H; and H; would be identical. They are said to be aliased. Suppose we tried
to fit the model:

y = ﬁ() + ﬁlHl + ﬁsz + |33H3 +e
Using the information in Table 6.1, we would have the following estimates of the coefficients f; and fs:

(=Dy; + (=Dy, + (+1)y3 + (+1)yq

by = i

and

(=Dyi + (=Dy, + (+1)y3 + (+1)ys
4

by =

So the estimates would be identical.

If we tried to use a computer program to compute the estimates of the model coefficients, we
would get an error message, telling us about a singular matrix or collinearity or some other message
that indicates the least squares estimates for the coefficients could not be computed. So, in models fit
to data from fractional factorial experiments, care must be taken to only include terms in the model
that are not aliased with each other.

In all fractional factorials, the single-factor terms of the models will be aliased with some other
terms. We would like to exclude from the model the higher-order cross-product terms that are aliased
with lower-order terms, so that the model would give us the best approximation possible. Generally,
the higher the order of the cross-product, the less important it is in terms of approximation. The
largest fraction of a 2* design that would be able to preserve balance and orthogonality would be 27
or one half of the total number of runs. To select such a fraction, write down the runs of a complete or
full 2° = ! design, using Helmert-coded levels. Then compute the levels for the kth factor by
multiplying across the columns of the £ — 1 factors. For example, suppose we wanted a one-half
fraction of a 2* experiment. The rows of the 2© ~ P = 27 full factorial would look like Table 6.2:
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Table 6.2 Full 22 factorial

- Run H1 H2
experiment 1 1 1
2 -1 1
3 1 -1
4 1 1
Table 6.3 One-half fraction Run H1 H2 H3 = HIH2
of the 2% design
1 -1 -1 1
2 -1 1 -1
3 1 -1 -1
4 1 1 1

To add the third factor, equate it to the interaction (cross-product) term W W:

Table 6.3 illustrates this fractional design:

Thus, in this fractional design, the third factor, Hj, is aliased with the H;H, cross-product.
Similarly, you can verify that the single-factor term W1 is aliased with the W,W; cross-product,
and Hj; is aliased with H{H3. Thus, the only model that can be fit using this experiment that would
include all three input variables is:

y = Bo + B Hi +BHo + psHs + ¢
It would be possible to fit instead the model:
y = ﬁ() + B]H] + B2H2 + B]zHlH2 +e€

In fact, the estimates of 33 and B, would be identical. Of course, we are hoping that the single-factor
term Hj is actually dominating the two-way cross-product H;H,. The tacit assumption is that the
higher order the cross-product, the less influence it has on the response variable. Of course, it is
possible that this assumption is incorrect.

Generating a Fractional Factorial

To create a 27 fraction of a 2% design, first write down in Helmert-coded for all the runs for any
subset of k — p factors. Then create a new column for the next factor, by multiplying the coded values
for k — p of the previously selected factors. Do this for each additional column, choosing different
combinations of the other factor columns.

As an example, consider the 2" or one-half fraction of a 2° design. In a full two-level, five-factor
experiment, there would be 25 = 32 runs. In an half-fraction, there would be ;—? = 16 runs.

Suppose we label the factors H1, H2, H3, H4, and H5. First, write down the coded columns of a full
2* design in, say, H1 through H4. There would be 2* = 16 runs for this design. Then, compute the
column for H5 = HI*H2*H3*H4. Table 6.4 illustrates the design.

In this experiment, for example, run 1 would have factors HI-H4 all set to their “low” (—1) level,
and H5 set to its “high” (+1) level. The coefficient estimate for H5 would be identical to that of the
fourth order cross-product term HIH2H3H4. Similarly, the levels of H1 would be identical to those of
the fourth-order cross-product H2ZH3H4HS. Again, invoking Ockham’s razor, we will opt to include
the first-order term H1 in our model, and exclude the fourth-order terms. Note that the lowest order
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Table56.4 ‘Half—fraction Run H1 H2 H3 H4 H5 = HIH2H3H4
of a 2” design ) 1 1 _1 1
-1 -1 -1 1 -1
—1 -1 1 -1 -1
-1 -1 1 1 1
-1 1 -1 -1 -1
—1 1 —1 1 1
-1 1 1 -1 1
—1 1 1 1 —1
-1
-1 -1 1 1
-1 1 -1 1
-1 1 1 -1
1
1 —1 1 —1
1 1 —1 -1
1 1 1 1
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cross-product terms for which any first-order term is aliased isa 5 — 1 = fourth order term. Also, the
second-order terms are aliased with third-order terms (check, for example, the column for the HIH2
term and for the H3H4HS5 column). Thus, the £ = second order terms are aliased with the 5 — 2 =
third-order terms. Since second order cross-products are not aliased with each other or with first order
terms, this half-fraction of the 2° design is a ResV design.

There is a simply procedure to determine exactly which terms are aliased. First, we chose the H5
term to be aliased with the fourth-order term HIH2H3H4. We obtained the H5 column by multiplying
across the rows the columns of H1, H2, H3, and H4. Any column multiplied by itself, row by row,
would yield a column of all +1’s. Multiplying any column by a column of all +1’s would yield the
original column. In other words, the column of all +1’s acts like a multiplicative identity. Since we
chose to alias H5 with HIH2H3H4, we will call the product I = HIH2H3H4HS (= H5*HS) the
generator of the design. To find out which other terms any term is aliased with, simply multiply the
symbol for that term with the identity, and recognize that any term multiplied by itself will yield a
column of all +1’s, so that it can simply be ignored. Here are the aliases for our half-fraction design:

H1*I = H1’H2H3H4H5 = H2H3H4H5
H2#I = H1H2?H3H4H5 = HIH3H4H5
H3*I = HIH2H3’H4H5 = HIH2H4H5
H4*1 = HIH2H3H4?H5 = HIH2H3H5
H5*1 = HIH2H3H4H5% = HIH2H3H4
H1H2*I = H1?H2?H3H4H5 = H3H4H5
H1H3*I = H1?H2H3’H4H5 = H2H4H5
H1H4*1 = H1?H2H3H4?H5 = H2H3H5
H1H5*I = H1?H2H3H4H5% = H2H3H4
H2H3*I = HIH2?H3?H4H5 = H1H4H5
H2H4*I = HIH2?H3H4°H5 = H1H3H5
H2H5%1 = HIH2°H3H4H5% = HIH3H4
H3H4*I = HIH2H3?H4°H5 = H1H2H5
H3H5*1 = HIH2H3?H4H5% = HI1H2H4
H4H5%1 = HIH2H3H4%H5% = H1H2H3
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Table 6.5 Two possible half-fractions of a 2° design

Run H1 H2 H3 H4 H5 = HIH2H3H4 H5(alt) = —H1H2H3H4
1 -1 -1 —1 -1 1 -1
2 -1 -1 -1 1 -1 1
3 -1 -1 1 -1 -1 1
4 -1 -1 1 1 1 -1
5 -1 1 -1 -1 -1 1
6 -1 1 -1 1 1 -1
7 —1 1 1 -1 1 -1
8 -1 1 1 1 -1 1
9 1 -1 -1 -1 -1 1
10 1 -1 -1 1 1 -1
11 1 -1 1 -1 1 -1
12 1 -1 1 1 -1 1
13 1 1 -1 -1 1 -1
14 1 1 -1 1 -1 1
15 1 1 1 -1 -1 1
16 1 1 1 1 1 -1

Since the term HIH2H3H4HS5 = I (column of all +1°’s) it is actually aliased with the intercept
term. Recall from Chap. 4 that the “design” (H) matrix had a column of all 1’s appended to the
columns of the input variables, and that this column was used in the estimation of the intercept.

Now it is easy to see that all the first-order terms are aliased with fourth order terms, and all the
second-order terms are aliased with third-order terms, and the fifth-order term is aliased with the
intercept. Mr. Ockham would tell us to (at least in the beginning) include the lowest order terms not
aliased with each other in our model. Our model would then be:

y="5h+ ZﬁiHi + ZZ}’UHI'H/’ te
py

i#j

There are always two one-half fraction designs for any full 2* design corresponding to %I. So, we
used I = HIH2H3H4HS to generate the half fraction; we could also have used I = —H1H2H3H4HS5.
That is, instead of assigning to the HS column the row-wise product of the columns H1, H2, H3, and
H4, we could just as easily taken those products and multiplied them by —1. Table 6.5 shows the
original half-fraction with H5 = H1H2H3H4, and an alternate fraction where HS
(alt) = —H1H2H3H4.

Either of these fractions (use either H5 or H5(alt)) would allow us to fit the same model containing
the first and second-order cross-product terms. Neither is superior in any statistical sense. It is
possible that one of the fractions may be easier to execute for some physical reason. Both fractions
are ResV.

Aside from controlling the nature of aliasing, the process we have used to select a half-fraction
preserves balance and orthogonality. Thus the coefficient estimation procedure is identical for
fractional and full two-level designs. The only thing that has changed is the model which we can
fit to the data. Clearly, using fractional designs induces a loss in information; we are hoping that
Ockham was right, and that we are losing the least important bits of information as a tradeoff for
economy.
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Table 6.6 A one-quarter g, HI H2 H3 H4 HS5 = HIH2H3 H6 = H2H3H4
fraction 1 =) 1 =) 1 =)
-1 -1 -1 1 ~1 1
~1 ~1 1 ~1 1 1
~1 -1 1 1 1 -1
-1 1 -1 -1 1 1
~1 1 ~1 1 1 ~1
~1 1 1 -1 ~1 -1
1 1 1 1 ~1 1
1 ~1 ~1 ~1 1 ~1
-1 ~1 1 1 1
1 1 -1 1 1
~1 1 1 ~1 ~1
1 ~1 -1 -1 1
~1 1 -1 1
1 1 1 ~1
1 1 1 1
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Generating a One-Quarter Fraction

Suppose we had not five factors, but six factors with which to experiment. A full factorial in six
factors would require 2° = 64 runs. A one-half fraction would require 2° ~ ' = 32 runs. If we could
only afford 16 runs, we would need to generate a 2™~ or one-quarter fraction of the total 64 runs. The
method is very similar to that for generating the 2" fraction. First, write down the runs for a full 2*
design in factors H1, H2, H3, and H4 (the full factorial with the required number of runs). Then assign
to another column for HS the levels (in Helmert-coded form) computed from the row-wise product of
H1, H2, and H3. Then assign to yet another column for H6 the product of H2, H3, and H4. In the
quarter-fraction design, there are p = 2 generators. The result will be a 16-run design with six
factors. Table 6.6 shows the design.

To determine the aliases of each other term, multiply the term by each generator, HIH2H3HS and
H2H3H4H6. Furthermore, multiply each term by the product of HIH2H3HS and H2H3H4H6 =
H1H4HSHG. Just as in the case of the half-fraction, we define identity products based on the terms we
chose to alias, namely I = HIH2H3HS = H2H3H4H6. However, since I*I = I, we must also
include in the definition of the identity the product of HI1H2H3HS and H2H3H4H6, or
HIH2H3H5*H2H3H4H6 = HIH2’H3°H4HSH6 = HIH4H5HS. So, the full definition of the iden-
tity cross-product is:

I = HIH2H3HS5 = H2H3H4H6 = H1H4H5H6.
To determine the aliases of each term, multiply those terms by the identities:

H1*I = H2H3H5 = HIH2H3H4H6 = H4H5H6
H2*I = HIH3HS = H3H4H6 = H1H2H4H5H6
H3*I = HIH2HS = H2H4H6 = H1H2H3H5H6
H4*1 = HIH2H3H4H5 = H2H3H6 = HIH5H6
H5*I = HIH2H3 = H2H3H4H5H6 = H1H4H6
H6*I = HIH2H3H5H6 = H2H3H4 = H1H4H5

The second-order products have an interesting alias structure. For example:

H1H2*I = H3HS5 = H1H3H4H6 = H2H4H5H6
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Notice that this second-order product term is aliased with another second-order product. That
means, in our model, we cannot have both H1H2 and H3H5.

The design of this one-quarter fraction is ReslIV, since for the k = second-order product terms,
they are aliased with another K — k =4 — 2 = 2, or second-order cross-product. The problem is
that now the modeler must chose only a subset of the second-order cross-product terms to include in
the model. Sometimes, physical laws and known phenomena may dictate which cross-product is most
likely to have an effect, but sometimes it is altogether unclear.

In order to generate the half-fraction design with r factors, we wrote down a full design in k — 1
factors, and added a column by aliasing the last factor with the (k — 1)th-order cross-product term. In
the case of the quarter-fraction, we wrote down a full design in k — 2 factors, and then aliased each of
the two remaining factors with (k — 3)th-order cross-products. We could have chosen to alias H5 with
the product HIH2H3H4, and H6 with H2H3H4HS. If we had, then the identity relation would have
been:

I = HIH2H3H4HS5 = H2H3H4H5H6 = H1H6.

Thus, the single factor terms H1 and H6 would be aliased each other, and we would only be able to
include one of them in the model.

Just as in the case of the half-fraction, there are multiple quarter-fraction designs associated with
any pair of cross-product terms. In other words, we could have used any combination of
+HI1H2H3H5 and +H2H3H4H6 to generate the columns for HS and H6. Regardless of which of
the four combinations we chose, the resulting design would be ResIV, and the same models could be
fit using any of the four resulting designs.

Smaller Fractions and Resolution III Designs

In a ResllII design, all single-factor terms are aliased with K — k = 3 — 1 = 2, or second-order cross-
products. That means our model will only include single-factor terms (again invoking Mr. Ockham’s
rule). Such designs and models are mostly useful when there are so many factors (>>5) and the EAS

Table 6.7 An eighth-fraction design in seven factors
Run W1 w2 W3 w4 W5 = W1 W2 W6 = W2W3 W7 = W3W4
—1 —1 —1 —1 1 1 1
-1 -1 -1 1 1 1 -1
-1 -1 1 -1 1 -1 -1
—1 —1 1 1 1 —1 1
-1 1 -1 -1 -1 -1 1
-1 1 -1 1 -1 -1 -1
-1 1 1 -1 -1 1 -1
-1 1 1 1 -1 1 1
1 -1 -1 -1 -1 1 1
-1 -1 1 -1 1 -1
-1 1 -1 -1 -1 -1
-1 1 1 -1 -1 1
1 -1 -1 1 -1 1
1 -1 1 1 -1 -1
1 1 -1 1 1 -1
1 1 1 1 1 1
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must choose a smaller subset (at least initially) with which to experiment. The ReslII designs are like
heats in a race; they really meant as a means of eliminating factors. Consider a 27 ~ * design, with
seven factors in 2’ ~ * = 2* = 16 runs. To generate the design, write down a full 24 design in H1, H2,
H3, and H4, and then compute columns for H5, H6, and H7 by aliasing these single-factor terms with
second-order cross-products. Table 6.7 shows the design.

The identity is:

I = HIH2H5 = H2H3H6 = H3H4H7

That is, there are p = 3 generators in this 2 fraction of a 2’ deign. As in the case of the quarter
fraction, the products of these identity elements are also identity elements. There are three pairs of
products and 1 three-way product. So, the complete definition of the identity is:

I = HIH2H5 = H2H3H6 = H3H4H7 = HIH3H5H6 = HIH2H3H4H5H7 = H2H4H6H7
= H1H4H5H6H7

The aliases for the single-factor terms are:

H1*I = H2H5 = HIH2H3H6 = HIH3H4H7 = H3H5H6 = H2H3H4H5H7 = HIH2H4H6H7

= H4H5H6H7

H2*I = HIHS = H3H6 = H2H3H4H7 = H1H2H3H5H6 = HIH3H4H5H7 = H4H6H7
= H1H2H4H5H6H7

H3*I = HIH2H3HS5 = H2H6 = H2H4H7 = H1H5H6 = H1H2H4H5H7 = H2H3H4H6H7
= HIH3H4H5H6H7

H4*1 = HIH2H4H5 = H2H4H6 = H3H7 = HIH3H4H5H6 = HIH2H3H5H7 = H2H6H7
= H1H5H6H7

H5*I = HIH2 = H2H3H5H6 = H3H4H5H7 = HIH3H6 = H1H2H3H4H7 = H2H4H5H6H7
= H1H4H6H7

H6*I = HIH2H5H6 = H2H3 = H3H4H6H7 = H1H3H5 = H1IH2H3H4H5H6H7 = H2H4H7
= HI1H4H5H7

H7*1 = HIH2H5H7 = H2H3H6H7 = H3H4 = HIH3H5SH6H7 = HIH2H3H4HS = H2H4H6
= H1H4H5H6

All the single-factor terms are aliased with a second-order cross-product. The model should be
simply:

y=Bo+ > BHi+e
i=1

Some Terms and Some Generalities

The collection of terms used as identities are referred to as the defining relation of the fractional
design. Each particular term is called a word in the defining relation. The size of a word is the number
of factors comprising the word. In the case of half fractions, there is always exactly one word in a
defining relation. In order to obtain the highest resolution, the word for the half-fraction should be
comprised of k factors. In the case of the quarter fraction, there are always three words in the defining
relation, one for each of the p = 2 generator words, and the product of those two words.

It is generally desirable to maximize the resolution of a fractional design. The resolution is equal to
the smallest word in the defining relation. For a half-fraction, there is always exactly one word in the
defining relation. In a quarter-fraction, there are always three. In an eighth-fraction design with
k factors, there are
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()+()+6)

words in the defining relation. In general, for a 277 fraction, the number of words in the defining

relation is:
p p p D\ _op_
(D)= (3)+ (3) =+ (p) -2

We usually will choose to alias p of the single-factor terms such that the smallest word in the defining
relation will be as large as possible. The resolution will depend on the number of runs (i.e., the size of
the fraction) and factors, namely N = 2% =7 and k. Unfortunately, there is not in general a unique
mapping from k and p to a defining relation. The smallest word in the defining relation will be the
product of the two words with the greatest number of common factors.

Recall that there are 27 277 fractions of any design for a given defining relation. There is no
particular statistical benefit or detriment in choosing any of these 27 fractions. The fraction in which
all the words have positive signs is called the principle fraction.

Several statistical software packages will generate the runs for fractional designs.

Figure 6.1 shows a screen shot of Minitab 16 menu selections for generating a fractional factorial
design.
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Fig. 6.1 Minitab 16 screen shot—creating a fractional factorial design—Part 1
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Fig. 6.2 Minitab 16 screen shot—creating a fractional factorial design—Part 2

Figure 6.2 shows the next Minitab screens in the design process.

We have asked Minitab to select the design with the default generator words, that we have six
factors, and that we want a 16-run design. Note that in the main “Create Factorial Design” window,
the user may select the “Factors” button to provide names for the factors, and even select codes for the
low and high levels of each factor. The default coding is Helmert. The “Options” button allows the
user to control how the design columns will be presented, and order in which the run rows will appear
in the worksheet.

Table 6.8 shows the Session Window output, which describes the design and its alias structure.

The factors are named A-F, even though the user may have chosen more meaningful names. The
“+” signs are used in the way we have previously used “="" in describing aliases.

Figure 6.3 is a screen shot of the Minitab worksheet. In the worksheet, the factor names given by
the user appear as column headings. The columns labeled CenterPt and Blocks have no meaning in
this context; their meaning will be apparent later in the text. The columns StdOrder and RunOrder are
identical here. The user has the option of asking Minitab to provide an order in which the different
runs should be executed. In many cases, the user may want to perform the runs in a random order, in
order to mitigate the potential effects of order on the response.

A similar process for generating the design can be achieved with SAS 9.1 PROC FACTEX.
Figure 6.4 shows the SAS code to generate the design.

The output from these statements is shown in Fig. 6.5.

This SAS procedure uses the symbol “0” to represent the complete alias structure for the identity,
or defining relation.
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Table 6.8 The 2° ~ ? fractional design—Minitab output
9/2/2013 10:01:37 AM

Welcome to Minitab, press Fl1 for help.

Fractional Factorial Design

Factors: 6 Base Design: 6, 16 Resolution: IV
Runs: 16 Replicates: 1 Fraction: 1/4
Blocks: 1 Center pts (total):

Design Generators: E = ABC, F = BCD

Alias Structure

I + ABCE + ADEF + BCDF

A + BCE + DEF + ABCDF
B + ACE + CDF + ABDEF
Cc ABE BDF + ACDEF
D + AEF + BCF + ABCDE
E + ABC + ADF + BCDEF
F + ADE + BCD + ABCEF

AB + CE + ACDF + BDEF

AC + BE + ABDF + CDEF
AD + EF + ABCF + BCDE
\E + BC + DF + ABCDEF

AF + DE + ABCD + BCEF
BD + CF + ABEF + ACDE
BF + CD + ABDE + ACEF
ABD + ACF + BEF + CDE
ABF + ACD + BDE + CEF

The designs generated by Minitab and SAS are very similar, but not identical. However, both
designs are ResIV. In the Minitab design, since HIH5 = H2H3 (AE = BC in Minitab’s notation),
only one of these two-way cross-products could be included in the model. In the SAS design, H1HS is
not aliased with H2H3, so both of those terms could be included in the model.

JMP, another software package, can also be used to generate design tables. Figure 6.6 shows the
screens, together with the output table.

JMP refers to fractional factorials as “screening designs”. It also adds a column in the output table
that identifies the pattern of low and high levels for each run. For example, the pattern *“----—"
indicates that the run has all six factors set to their “low” (—1) level.

Fries and Hunter (1980) described another measure of assessing design quality in addition to
resolution. They called it aberration. It is the number of words in the defining relation with the
smallest size. It is possible for two designs to have the same resolution, yet one may be somewhat
more desirable. That is, the fewer words in the defining relation with the smallest size, then lower the
amount of aliasing. Hinkelmann and Kempthorne (2005) give an example of two 2% = %, ResIV
designs. The first, they call D1, has the defining relation:

I = HIH2H3H4HS5 = H3H4H5H7 = HIH2H6H7 = H2H4H5H8 = H1IH3H6HS8 = H2H3H7HS
= H1H4H5SH6H7HS
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Fig. 6.3 The 2°72 fractional design—Minitab worksheet

The other, D2, has the relation:

I = H3H4H5H6 = HIH2H4H5H7 = H1IH2H3H6H7 = H1H2H3HS5HS8 = H3H4H7HS8
= H5H6H7HS

Design D2 has only three words of size 4, but D1 has 5. Both designs are ResIV, but in some sense
D2 may be more desirable. SAS PROC FACTEX can be told explicitly to provide the minimum
aberration design for a given resolution. However, it is not necessarily true that the minimum
aberration design is best. Usually, the default design for a given resolution and/or maximum number
of runs will be perfectly sufficient. In the case of ResIII designs, usually the objective of “screening”,
or reducing the number of factors in which to experiment, the first-order model approximation is very
coarse. Thus, concern over aberration may be of secondary or even lower priority relative to creating
a design with a sufficiently low number of runs. In the case of ResV designs, minimizing aberration
would result in reducing the numbers of four-way cross-products to which the two-way cross-
products are aliased. Again, this is probably of considerably lesser importance than obtaining a
ResV design. The biggest issue is for ResIV designs, since two-way cross-products are aliased with
each other. However, minimizing aberration generally only affects the three-way and higher order
cross-product terms, which are more likely to be excluded from the models fit to ResIV design data
anyway. However, especially in ResIV designs, care must be taken to note which two-way cross-
products are aliased, so that an appropriate model can be fit.
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options nonumber nodate linesize=80 pagesize=54;

libname fact 'H:\Personal Data\Experimentation for Design &
Validation\Data & Analyses';

/* use 1lib fact to create an output dataset

containing the design

proc factex;

factors H1 H2 H3 H4 HS5 Hé6;

size fraction=4;

model res=4;

examine design aliasing(6) confounding;
output out=frac;

titlel 'Figure 6.4 - 2**(6-2) Res IV Design';
run;

data fact.f20130903 resIV_2 6 design;
set frac;

run;

Fig. 6.4 SAS Proc FACTEX code for generating the 2°2 ResIV design

Blocking Effects

Blocking effects are factors that are not of particular interest to the designer, but are unavoidable
constraints to making experimental runs. For example, raw material for making an injection-molded
part may come in batches, or lots, and differences between lots may affect the value of the response
variable. When all the runs cannot be completed using a single batch, or in other words, within a
single block, then a decision must be made as to how to split the runs between two or more blocks.
One method is to include the block variable as another factor, and in designing a fractional factorial,
alias the block factor with some higher-order interaction (Montgomery 2001). For example, suppose
the EAS wants to do a full four factor, two-level experiment. The coded factor names are H1, H2, H3,
and H4. This is a 2* experiment, with 16 runs. The EAS cannot perform all 16 runs in a single day, and
she is concerned that there may be some day-to-day differences. She lets a fifth factor, B1, equal to the
product of the levels (rows) of the other four factors, Bl = HIH2H3H4. The factor B1 represents
Day, and it is aliased with the four-way cross-product term. Table 6.9 shows the runs. The value of B1
determines on which day the run is to be conducted (e.g., Bl = —1 is for Day 1, and B1 = +1 is for
Day 2). This method for assigning run to blocks works well for 2 ~ 7 fractional designs if the number
of blocks required to perform all the necessary runs is a power of 2. If not, then splitting the runs into
multiple blocks is more complex. For more complicated blocking systems, the reader is directed to
Cochran and Cox (1992).
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Figure 6.5 - 2**(6-2) Res IV Design

6 Fractional Factorial Designs

The FACTEX Procedure

Design Points

Experiment
Number H1 H2 H3 H4 H5 H6
5 1 0 5 0 1 1 1 0 e e e e i
1 -1 -1 -1 -1 -1 -1
2 -1 -1 -1 1 1 1
3 -1 -1 1 -1 1 1
4 -1 -1 1 1 -1 -1
5 -1 1 -1 -1 1 -1
6 -1 1 -1 1 -1 1
7 -1 1 1 -1 -1 1
8 -1 1 1 i 5 1 -1
9 1 -1 =1 =1 -1 1
18 1 -1 -1 1 1 -1
11 | -1 1 -1 1 -1
12 1 -1 1 1 -1 1
13 1 1 -1 -1 i ) 1
14 1 1 -1 1 -1 -1
15 1 1 1 =1 -1 -1
16 1 1 1 1 1 1

Table 6.8 - 2**(6-2) Res IV Design
The FACTEX Procedure

Factor Confounding Rules

H5 H2*H3*H4
H6 = H1*H3*H4

Figure 6.5 - 2**(6-2) Res IV Design
The FACTEX Procedure

Aliasing Structure

@ = H1*H2*HS5*H6
H1 = H2*HS5*H6
H2 = H1*HS*H6 =
H3 = H1*H4*H6 =
H4 = H1*H3*H6 =
HS = H1*H2*H6 =
H6 = H1*H2*H5 =
H1*H2 = HS*H6 =
H1*H3 = H4*H6 =
H1*H4 = H3*H6 =
H1*H5 = H2*H6 =
H1*H6 = H2*H5 =
H2*H3 = H4*H5 =
H2*H4 = H3*HS
H1*H2*H3
H1*H2*H4

Fig. 6.5 Proc FACTEX output

= H1*H3*H4*H6 = H2*H3*H4*HS5

= H3*H4*H6 = H1*H2*H3*H4*H5

H3*H4*H5 = H1*H2*H3*H4*H6
H2*H4*HS5 = H1*H2*H3*H5*H6
H2*H3*HS5 = H1*H2*H4*H5*H6
H2*H3*H4 = H1*H3*H4*H5*H6
H1*H3*H4 = H2*H3*H4*H5*H6
H1*H3*H4*H5 = H2*H3*H4*H6
H1*H2*H4*H5 = H2*H3*H5*H6
H1*¥H2*H3*H5 = H2*H4*H5*H6
H1*H2*H3*H4 = H3*H4*H5*H6
H3*H4 = H1*H2*H3*H4*H5*H6
H1*H2*H4*H6 = H1*H3*H5*H6

= H1*H2*H3*H6 = H1*H4*H5*H6
H1*H4*H5
H1*H3*H5

H2*H4*H6
H2*H3*H6

H3*H5*H6
H4*H5*H6
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Fig. 6.6 JMP 2°72 Res IV design

The Moral

The moral of the fractional factorial design story is:

1. Fractional designs can save money/time, but you will pay in terms of the information and level of
approximating the response function you can achieve;

2. ResV designs provide a premium balance between level of approximation and economys; all the
two-way cross-products are aliased with only the higher-order terms, which generally provide less
impact on the approximation;

3. ReslII designs are really only useful to narrow down, in a rational fashion, the number of factors in
which to experiment;

4. ReslV designs can be useful, especially if it is possible to use prior knowledge to determine which
two-way cross-product terms are most likely to have an impact on the response variable(s);

5. The generation of these fractional designs is done in a manner that preserves balance and
orthogonality, the two properties that allow for the optimal estimation of the model coefficients;
the generation techniques also control the amount of information that is lost (resolution);

6. There are several software packages that will generate the runs for fractional designs.
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Table 6.9 A 2* Pattern HI H2 H3 H4 Bl = HIH2H3H4
experiment in two blocks
—_— -1 -1 -1 -1 1
———+ -1 -1 -1 1 -1
—— -1 -1 1 -1 -1
——++ -1 -1 1 1 1
—+—— -1 1 -1 -1 -1
—+—+ —1 1 —1 1 1
—++— -1 1 1 -1 1
—4++ —1 1 1 1 —1
b 1 -1 -1 -1 -1
+——+ 1 -1 -1 1 1
+—+— 1 —1 1 —1 1
+—++ 1 —1 1 1 -1
++—— 1 1 -1 -1 1
++—+ 1 1 —1 1 —1
+++— 1 1 1 -1 —1
++++ 1 1 1 1 1
Table 6.10° Hypodermic  vaiapje Factor Units Low (—1) High (+1)
needle variables—five -
factors X1 Primary angle degrees 14.5 15.5
X2 Secondary angle degrees 9.5 10.5
X3 Side angle degrees 4.5 5.5
X4 Primary length mm 0.245 0.255
X5 Secondary length mm 0.095 0.105
Examples
ResV

An EAS is trying to design an hypodermic needle. The needle point geometry has three angles,
primary bevel angle (X1), secondary bevel angle (X2), and side bevel angle (X3). In addition to the
angles, there are the primary bevel length (X4) and secondary bevel length (X5) factors. The EAS
decides to perform a two-level experiment in the five factors. He can afford 16 runs, and he can
perform n = 3 replicates for each run. Thus he decides to perform a 2°> ~ ' half-fraction, which is
ResV. The factors and their associated low and high levels, are given in Table 6.10. The runs, with
Helmert-coded variables, are shown in Table 6.11.
The defining relation for this design has only one word:

I = H1H2JH3H4HS5

Since it is a half-fraction, it has only one generator. We have chosen the principal fraction, having
purposely aliased H5 with the four-way cross-product H5 = +H1H2H3H4.

Accordingly, each single factor term is aliased with no lower than a four-way cross-product, and
each two-way cross-product is aliased with no lower than a three-way cross-product. Again, follow-
ing Ockham, the model will be:
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Table 6.11 257! ResV design with coded levels
Primary angle Secondary angle Side angle Primary length Secondary length

X1 X2 X3 X4 X5
Run H1 H2 H3 H4 H5
-1 -1 -1 -1 1
-1 -1 —1 1 -1
-1 -1 1 -1 -1
-1 -1 1 1 1
-1 1 -1 -1 -1
-1 1 -1 1 1
-1 1 1 -1 1
-1 1 1 1 -1
9 1 -1 -1 -1 -1
-1 -1 1 1
-1 1 -1 1
-1 1 1 -1
1 -1 -1 1
1 -1 1 -1
1 1 -1 -1
1 1 1 1

0NN B W=

—
(98}
— = e = e =

y=7Ppo+ ZﬂiHi + ZZ}’UHI'HJ te
i1

i

The response variable for this needle design experiment is the penetration force generated using a
fixture that penetrates a needle through simulated skin, driving the needle at a constant velocity. The
force the needle imparts on the artificial skin membrane is measured continuously, from the time the
needle contacts the membrane to the time after the needle tip has broken through and completely
penetrated, and the peak force is recorded. Lower forces imply a better needle. Table 6.12 shows all
the data for the 16 runs.

Figure 6.7 shows the output from JMP “Fit Model” function. Note that the p-values for testing the
hypotheses that model coefficients are actually O are greater than 0.05 in most of the cases. In fact, the
only terms with significant coefficients are H1 (or X1 = primary angle), H3 (or X3 = side angle), HS
(X5 = secondary length) and the interaction, or cross-product terms, H1*H4 and H2*HS. Although
by themselves, H2 and H4 did not have significant coefficients, since they are factors in significant
two-way cross-products, they are potentially important. In the spirit of parsimony, we will drop out
those two-way cross-products from the model, and use predicted values from a reduced model:

y=Po+ PiH1 + prHy + f3H3 + PyHa + fsHs + v, HiHy + yosHoHs + €

Figure 6.8 shows the JMP output for the reduced model. The adjusted R? was slightly increased in the
reduced model

Figure 6.9 shows the R code and output for the same model.

Figure 6.10 shows the SAS code and output for the same reduced model.

When using Minitab to fit the same model, the user must create columns for the cross-
products. Figure 6.11 illustrates via screen shot how such columns can be computed.

Figure 6.12 shows the Minitab output.
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Table 6.12 257! ResV needle design data
Run H1 H2 H3 H4 H5 Peak force Run Hl1 H2 H3 H4 H5 Peak force

1 -1 -1 -1 -1 1 0.092 9 1 1 -1 -1 -1 0085
1 -1 -1 -1 -1 1 0.098 9 1 -1 -1 -1 -1 0077
1 -1 -1 -1 -1 1 0.114 9 1 -1 -1 -1 -1 0061
2 -1 -1 -1 1 -1 0.026 10 1 -1 -1 1 1 0.156
2 1 -1 -1 1 -1 0.043 10 1 -1 -1 1 1 0.108
2 1 -1 -1 1 -1 0.033 10 1 -1 -1 1 1 0.134
3 -1 -1 1 -1 -1 0.121 11 1 -1 1 -1 1 0.119
3 -1 -1 1 -1 -1 0.142 11 1 -1 1 -1 1 0113
3 -1 -1 1 -1 -1 0.106 11 1 -1 1 -1 1 0.103
4 -1 -1 1 1 1 0.064 12 1 -1 1 1 -1 0155
4 -1 -1 1 1 1 0.058 12 1 -1 1 1 -1 015
4 1 -1 1 1 1 0.059 12 1 -1 1 1 -1 0124
5 -1 1 -1 -1 -1 0.063 13 1 1 -1 -1 1 0.107
5 -1 1 -1 -1 -1 0.058 13 1 1 -1 -1 1 0.097
5 -1 1 -1 -1 -1 0.046 13 1 1 -1 -1 1 0.118
6 -1 1 -1 1 1 0.077 14 1 1 -1 1 -1 0106
6 -1 1 -1 1 1 0.059 14 1 1 -1 1 -1 0084
6 -1 1 -1 1 1 0.073 14 1 1 -1 1 -1 0104
7 -1 1 1 -1 1 0.182 15 1 1 1 -1 -1 004
7 -1 1 1 -1 1 0.171 15 1 1 1 -1 -1 0047
7 -1 1 1 -1 1 0.146 15 1 1 1 -1 -1 o101
8 -1 1 1 1 -1 0.025 16 1 1 1 1 1 0205
8 -1 1 1 1 -1 —0.003 16 1 1 1 1 1 0202
8 -1 1 1 1 -1 0.03 16 1 1 1 1 1 0203
ReslV

Suppose that instead of only having five input factors for needle design, the EAS also has an
additional variable, namely lubrication quantity (X6). With six factors, even if they are limited to
two levels, the total number of possible runs is 2° = 64. The EAS can only afford to perform 16 of
these 64 possible combinations. Thus, he requires a 2° ~ 2, or one-quarter fractional design. SAS Proc
Factex can be used to generate such a design, as illustrated in Fig. 6.13.

What’s wrong with this design? Earlier we found that the only two-way cross-products that
seemed to be significant were HIH4 and H2HS. In the above design, the cross-product HIH6
(primary angle * lubrication) is aliased with H2HS (secondary angle * secondary bevel length). As
we have no information on H6 or HIH6, we would rather not have it aliased with something we
already know is significant. JMP allows us to alter the generators for the design and examine the alias
structure. Figure 6.14 is a screen shot of the design window.

H1*H2 = H3*H6
H1*H3 = H2*H6 = H4*HS5
H1*H4 = H3*HS5
H1*H5 = H3*H4
H1*H6 = H2*H3
H2*H4 = H5*H6
H2*HS5 = H4*H6

The generators for this design are:

HS5 = HIH3H4
H6 = HIH2H3
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Response Peak Force
Actual by Predicted Plot

0.20

Peak Force Actual
o
=
1

0.05 | .
0.00 4 .
II‘ 3 I 2 I i 1 d I
0.00 005 0.10 0.15 0.20
Peak Force Predicted
P<.0001 RSq=0.93 RMSE=0.0154
Summary of Fit
RSquare 0.934704
RSquare Adj 0.904097
Root Mean Square Error 0.015431
Mean of Response 0.097524
Observations (or Sum Wgts) 48
Analysis of Variance
Source DF  Sum of Squares Mean Square F Ratio
Model 15 0.10908229 0.007272 30.5385
Error 32 0.00762019 0.000238 Prob>F
C. Total 47 0.11670248 <.0001*
Parameter Estimates
Term Estimate Std Error t Ratio Prob>|t|
Intercept 0.0975242 0.002227 43.78 <.0001*
H1 0.0191509 0.002227 8.60 <.0001*
H2 0.0000191 0.002227 0.01 0.9932
H3 0.0133806 0.002227 6.01 <.0001*
H4 -0.002715 0.002227 -1.22 0.2318
H5 0.0215434 0.002227 9.67 <.0001*
H1*H2 0.0011526 0.002227 0.52 0.6084
H1*H3 8.2933e-5 0.002227 0.04 0.9705
H1*H4 0.0303754 0.002227 13.64 <.0001*
H1*H5 0.0005212 0.002227 0.23 0.8165
H2*H3 0.001496 0.002227 0.67 0.5066
H2*H4 0.0023208 0.002227 1.04 0.3052
H2*H5 0.0176203 0.002227 7.91 <.0001*
H3*H4 -0.00218 0.002227 -0.98 0.3350
H3*H5 0.0028511 0.002227 1.28 0.2097
H4*H5 7.6315e-5 0.002227 0.03 0.9729

Fig. 6.7 JMP Fit Model output—ResV needle design experiment
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Response Peak Force
Actual by Predicted Plot
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Peak Force Predicted
P<.0001 RSq=0.93 RMSE=0.0147

Summary of Fit
RSquare 0.925606
RSquare Adj 0.912587
Root Mean Square Error 0.014733
Mean of Response 0.097524
Observations (or Sum Wgts) 48

Analysis of Variance

Source
Model
Error
C. Total

Lack Of Fi
Source
Lack Of Fit
Pure Error
Total Error

Parameter Estimates

Term
Intercept
H1

H2

H3

H4

H5
H1*H4
H2*H5

6 Fractional Factorial Designs

DF  Sum of Squares Mean Square F Ratio
7 0.10802054 0.015432 71.0971
40 0.00868193 0.000217 Prob > F
47 0.11670248 <.0001*
t
DF  Sum of Squares Mean Square F Ratio
8 0.00106174 0.000133 0.5573
32 0.00762019 0.000238 Prob>F
40 0.00868193 0.8042
Max RSq
0.9347
Estimate Std Error t Ratio Prob>|t|
0.0975242 0.002126 45.86 <.0001*
0.0191509 0.002126 9.01 <.0001*
0.0000191 0.002126 0.01 0.9929
0.0133806 0.002126 6.29 <.0001*
-0.002715 0.002126 -1.28 0.2090
0.0215434 0.002126 10.13 <.0001*
0.0303754 0.002126 14.28 <.0001*
0.0176203 0.002126 8.29 <.0001*

Fig. 6.8 JMP “Fit Model” output—ResV needle design experiment—reduced model
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dfl <- read.csv("20130909 Example 5 2 Needle.csv")
attach(df1)

first order <- Im(Peak ~ H1 + H2 + H3 + H4 + H5 +
H1*H4 + H2*H5)

summary(first order)
detach(dfl)

Call:
Im(formula = Peak ~ H1 + H2 + H3 + H4 + H5 + H1 * H4 + H2 * HS)

Residuals:
Min 1Q Median 3Q Max
-0.029708 -0.008313 0.001292 0.007208 0.037708

Coefficients:
Estimate  Std. Error tvalue Pr(>|t|)
(Intercept) 9.754e-02 2.128¢-03 45.830 < 2e-16 ***

H1 1.908e-02 2.128e-03 8.966 4.07e-11 ***
H2 3.093e-18 2.128e-03 0.000  1.000
H3 1.342¢-02 2.128e-03 6.304  1.77e-07 ***
H4 -2.750e-03 2.128e-03 -1.292 0.204
HS 2.154e-02 2.128e-03 10.121  1.36e-12 ***

H1:H4  3.037e-02 2.128e-03 14.272 <2e-16 ***
H2:H5 1.758e-02 2.128e-03 8.262 3.51e-10 ***

Signif. codes: 0 “***>(0.001 “*** 0.01 “*> 0.05 > 0.1 *’ 1

Residual standard error: 0.01475 on 40 degrees of freedom
Multiple R-squared: 0.9254, Adjusted R-squared: 0.9123
F-statistic: 70.88 on 7 and 40 DF, p-value: <2.2e-16

Fig. 6.9 R “lm” code and output—ResV needle design experiment—reduced model

In this design, HIH6 is not aliased with either HIH4 or H2HS. Furthermore, H2H6 is not aliased
with either H1H4 or H2H5. Of course, H1H4 and H2HS5 are not aliased with each other. There is, of
course, no guarantee that the H4H6 cross-product is not significant, and it is aliased with H2HS,
which we already believe is significant. Inasmuch as we already are operating under the constraints of
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libname stuff 'H:\Personal Data\Experimentation for Design &
Validation\Data & Analyses';

data calc;

set stuff.d20130909 example 5 2 needle;

/****************************************#******************#**

* *
* yvariables: X1 = primary angle *
* X2 = secondary angle 4
* X3 = side angle i
* X4 = primary length 2
* X5 = secondary length *
* *
* Hi = Xi coded to (-1,+1) *
* *
******‘k‘k**********‘k**‘k****‘k*************‘k‘k*************‘k*******/
run;
proc means data=calc;
var Peak;
by Run;
run;
proc glm data=calc;
model Peak = H1 H2 H3 H4 H5
H1*H4 H2*H5/est;
run;
The SAS System 08:59 Thursday, September 12, 2013 6
The GLM Procedure
General Form of Estimable Functions
Effect Coefficients
Intercept L1
H1 L2
H2 L3
H3 L4
H4 LS
H5 L6
H1*H4 L7
H2*H5 L8
The SAS System 88:59 Thursday, September 12, 2813 7

Fig. 6.10 SAS “Proc GLM” code and output—ResV needle design experiment—reduced model
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The GLM Procedure

Dependent Variable: Peak Peak

Sum of
Source DF Squares Mean Square F Value Pr > F
Model 7 ©.10802054 9.081543151 71.1@ <.8ee1
Error 40 ©.098868193 9.80021705
Corrected Total 47 9.11670248
R-Square Coeff Var Root MSE Peak Mean
0.925686 15.10657 9.0814733 0.897524
Source DF Type I SS Mean Square F Value Pr > F
H1 1 0.81760429 08.01768429 81.11 <.8081
H2 1 ©.080000002 0.0800000082 0.00 ©.9929
H3 1 0.008859391 0.0808859391 39.59 <.8001
H4 1 ©.808035383 0.808035383 1.63 ©.2090
HS 1 08.82227776 08.02227776 102.64 <.9081
H1*H4 1 8.84428787 8.84428787 284.85 <.8e01
H2*H5 1 0.01490287 0.01490287 68.66 <.8001
Source DF Type III SS Mean Square F Value Pr > F
H1 1 0.81760429 9.01760429 81.11 <.8ee1
H2 1 0.00000002 0.080000002 0.00 ©.9929
H3 1 ©.80859391 ©.00859391 39.59 <.8081
H4 1 0.0808035383 0.80035383 1.63 0.2090
HS 1 0.82227776 08.02227776 102.64 <.9081
H1*H4 1 0.84428787 0.84428787 204.85 <.9001
H2*H5 1 8.81490287 ©.01498287 68.66 <.8081
Standard
Parameter Estimate Error t Value Pr > |t
Intercept ©.0975241683 9.08212646 45.86 <.0001
H1 ©.01915688759 0.00212646 9.01 <.0001
H2 0.0000190995 ©.00212646 0.01 0.9929
H3 ©.0133805777 ©.00212646 6.29 <.0001
H4 -.0027150337 ©.00212646 -1.28 0.2090
H5 0.0215434438 ©.00212646 10.13 <.0001
H1*H4 0.0303753825 ©.00212646 14.28 <.0001
H2*H5 0.0176203436 ©.00212646 8.29 <.0001

Fig. 6.10 (continued)

only allowing 16 runs, and that we also realize we are at best approximating the relationship between
peak force and the six input variables, we must recognize that such an experiment and modeling
exercise is flawed. However, the flaws are outweighed by obtaining at least an ability to approximate.
Furthermore, once a model is constructed, it is not chiseled in stone; a new model may be constructed,
and potentially additional experimentation may be used to adjudicate which cross-products are truly
active.
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edheaAmE

Fig. 6.11 Minitab screen shot—computing a cross-product column
Based on the above alias structure, and the prior experience, we might consider fitting the model:

y :ﬂ() +ﬁ1H1 +ﬂ2H2 +ﬂ3H3 +ﬂ4H4 +ﬂ5H5 +ﬂ6H6
+ 714 1 Hy + 7osHoHs + y16H 1 He + yosHoHeg + €

Figure 6.15 shows the JMP output from fitting the model. As in the five-factor experiment, H1 (coded
version of X1), H3, and HS are all significant single-factor terms, and H2 and H4 are not significant.
In addition, H6 (coded for X6 = lubrication quantity) is a significant single-factor term. The two-way
cross-products, HIH4 and H2HS are still significant, and so is HIH6. H2H6, however is not
significant. As in the five factor model, we will keep H2 and H4 in the model, since they are part
of significant two-way cross-products, but it appears that we could reduce the model by excluding the
H2H6 cross-product. Figure 6.16 shows the JMP output for the reduced model. Although the
estimates of the coefficients for terms included in the reduced model did not change, the adjusted
R? actually increased, and the p-values for the coefficients changed slightly.

By way of illustration, Fig. 6.17 shows the SAS program and output for fitting the same reduced
model.
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Welcome to Minitab, press Fl1 for help.

Retrieving project from file:

'H:\\Personal Data\Experimentation for

Design & Validation\Data & Analyses\20130909 Example 5.2 5-Factor Needle
Design Experiment.MPJ'

Regression Analysis: Peak Force versus H1, H2, H3, H4, H5, H1H4, H2H5

The regression equation is
Peak Force = 0.0975 + 0.0191 H1 - 0.00000 HZ + 0.0134 H3 - 0.00275 H4
+ 0.0215 H5 + 0.0304 H1H4 + 0.0176 H2HS

Predictor Coef SE Coef T P
Constant 0.097542 0.002128 45.83 0.000

Hl 0.019083 0.002128 8.97 0.000

H2 -0.000000 0.002128 -0.00 1.000

H3 0.013417 0.002128 6.30 0.000

H4 -0.002750 0.002128 -1.29 0.204

H5 0.021542 0.002128 10.12 0.000

H1HA4 0.030375 0.002128 14.27 0.000

HZHS 0.017583 0.002128 8.26 0.000

S = 0.0147454 R-5g = 92.5% R-5g(adj}) = 91.2%
Analysis of Variance

Source DF 55 MS F P
Regression 7 0.107885 0.015412 70.88 0.000
Residual Error 40 0.008697 0.000217

Total 47 0.116582

Fig. 6.12 Minitab “Regression” output—ResV needle design experiment—reduced model

Res 111

An EAS is designing a simple RLC circuit with impressed voltage of the form:
V(t) = Vg cos (wt)

She implements the circuit on an electronics “breadboard”, in order to decide on parameter settings
by experimentation. Table 6.13 shows the input parameters and the ranges of values over which she
intends to experiment.

The variables Th(0) and Thdot(0) represent the initial conditions for the associated homogeneous
equation. The output response variable of interest is the current over a 100 ms period. The question is
which parameters are most important in terms of affecting this current. Even though the equation for
an RLC circuit is well known: LQ(t) + RO (1) + £0(t) = Vocos (wr) and I(r) = %, it is not clear
which inputs have the largest effect on current. Furthermore, due to thermal and other sources of
noise, the current is not deterministically known. The EAS realizes that a full, 27 = 128 run factorial
experiment is not realistically possible. In fact, even though she will use a breadboard “prototype” to
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6 Fractional Factorial Designs

Figure 6.13 - 2**(6-2) Res IV Design with minabs

The FACTEX Procedure

Design Points

Experiment
Number H1 H2 H3 H4 H5 H6
FEFFFFFFFFFFF R R FFFFF SRR FFFFSSSSFFFFFEFFSFFFFFFELSSSFF
1 -1 -1 -1 -1 -1 -1
2 -1 -1 -1 1 1 1
3 -1 -1 1 L § 1 1
4 ~1 =1 1 1 -1 -1
5 -1 1 -1 -1 1 -1
6 -1 1 -1 1 -1 1
7 -1 1 1 =1 -1 1
8 -1 1 1 1 1 -1
9 1 -1 -1 -1 -1 1
10 1 -1 -1 1 1 -1
11 1 -1 1 =1 1 =1
12 1 -1 1 1 -1 1
13 1 1 -1 -1 1 1
14 1 1 -1 il -1 -1
15 1 1 1 =1 -1 -1
16 1 1 1 1 1 1
Figure 6.13 - 2**¥(6-2) Res IV Design with minabs
The FACTEX Procedure
Factor Confounding Rules
HS5 = H2*H3*H4
H6 = H1*H3*H4
Figure 6.13 - 2**(6-2) Res IV Design with minabs

Aliasing Structure

@ = H1*H2*H5*H6 =

The FACTEX Procedure

= H1*H3*H4*HE = H2*H3*H4*H5

H1 = H2*H5*H6 = H3*H4*H6 = H1*H2*H3*H4*H5
H2 = H1*H5*H6 = H3*H4*HS5 = H1*H2*H3*H4*H6
H3 = H1*H4*H6 = H2*H4*H5 = H1*H2*H3*HS5*H6
H4 = H1*H3*H6 = H2*H3*H5 = H1*H2*H4*H5*H6
H5 = H1*H2*H6 = H2*H3*H4 = H1*H3*H4*H5*H6
H6 = H1*H2*HS5 = H1*H3*H4 = H2*H3*H4*H5*H6
H1*¥H2 = H5*H6 = Hl*H3*H4*H5 = H2*H3*H4*He
H1*H3 = H4*H6 = H1*H2*H4*H5 = H2*H3*H5*H6
H1*H4 = H3*H6 = H1*H2*H3*H5 = H2*H4*H5*H6
H1*HS5 = H2*H6 = H1*H2*H3*H4 = H3*H4*H5*H6
H1*H6 = H2*HS = H3*H4 = H1*H2*H3*H4*HS5*H6
H2*¥H3 = H4*H5 = H1*H2*H4*H6 = H1*H3*HS5*H6
H2*¥H4 = H3*HS5 = H1*H2*H3*H6 = H1*H4*H5*H6
H1*¥H2*H3 = H1*H4*H5 = H2*H4*He = H3*H5*H6
H1*H2*H4 = H1*H3*H5 = H2*H3*H6 = H4*H5*H6

Fig. 6.13 SAS Factex output—

2972 fractional factorial
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Fig. 6.14 JMP screening design window—altering the design generators

make measurements, she can only afford the time to make eight runs, with two replicate current
measurements for each run. The data are given in Table 6.14.

The column labeled “Pattern” indicates the levels of each of the seven factors for the run (“—”
means low level, “+” means high level).

Since this was a Res III experiment, no cross-product terms can be included in the approximating
formula. Figure 6.18 shows the JMP output with coefficient estimates for each of the single-factor
terms, and the intercept.

All the factors are significant (p < 0.05). The factors L, C, omega, and V, have coefficients that
are an order of magnitude or more greater than those of the other factors. Thus, it appears that these
factors have the most influence, so that further experimentation might involve these four factors only,
with the others set to a constant value.

In this case, the natural values for the levels of the factors were used to fit the model (i.e., estimate
the coefficients). One of the disadvantages of using natural units is scale. That is, each factor is
expressed in different units, so interpreting relative differences in the magnitude of the model
coefficients might be difficult. Figure 6.19 shows the output of fitting the same model, but using
Helmert-coded factors.

By using coded units, the coefficients are now on a common scale. The EAS can now see that
inductance, L, is not as influential as it had appeared when the factors were expressed in natural units.
Capacitance was the most influential, followed by the phase angle. The initial charge, Ihdot(0),
appears to be more important than initial current, Ih(0), which was not the conclusion the EAS might
draw using the natural units.
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Actual by Predicted Plot
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Peak Force Formula Predicted

Y P p— S B E—
0 0.050.10.150.20.25 0.3 0.35 0.4

P<.0001 RSg=0.99 RMSE=0.0106

Summary of Fit

RSquare

RSquare Adj

Root Mean Square Error
Mean of Response
Observations (or Sum Wgts)

Analysis of Variance

0.990599
0.988058
0.010647
0.200598

48

6 Fractional Factorial Designs

Source DF  Sum of Squares Mean Square F Ratio
Model 10 0.44194408 0.044194 389.8746
Error 37 0.00419415 0.000113 Prob > F
C. Total 47 0.44613823 <.0001*
Parameter Estimates

Term Estimate Std Error t Ratio Prob>|t|
Intercept 0.2005975 0.001537 130.53 <.0001*

H1 0.0198903 0.001537 12.94 <.0001*

H2 0.0002717 0.001537 0.18 0.8606

H3 0.011411 0.001537 7.43 <.0001*

H4 0.001042 0.001537 0.68 0.5019

H5 0.0216945 0.001537 14.12 <.0001*

H6 -0.078184 0.001537 -50.88 <.0001*
H1*H4 0.0303036 0.001537 19.72 <.0001*
H2*H5 0.0167656 0.001537 10.91 <.0001*
H1*H6 -0.029938 0.001537 -19.48 <.0001*
H2*H6 0.0010424 0.001537 0.68 0.5018

Fig. 6.15 JMP output from fitting model to 2°7 ResIV needle design experiment
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Response Peak Force Formula
Actual by Predicted Plot
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Peak Force Formula Predicted
P<.0001 RSq=0.99 RMSE=0.0106

Summary of Fit

RSquare

RSquare Adj

Root Mean Square Error
Mean of Response
Observations (or Sum Wgts)

Analysis of Variance

Source DF  Sum of Squares
Model 9 0.44189192
Error 38 0.00424631
C. Total 47 0.44613823

Parameter Estimates

0.990482
0.988228
0.010571
0.200598

48

Mean Square

Term Estimate Std Error
Intercept 0.2005975 0.001526
H1 0.0198903 0.001526
H2 0.0002717 0.001526
H3 0.011411 0.001526
H4 0.001042 0.001526
H5 0.0216945 0.001526
H6 -0.078184 0.001526
H1*H4 0.0303036 0.001526
H2*H5 0.0167656 0.001526
H1*H6 -0.029938 0.001526

0.049099
0.000112

t Ratio
131.47
13.04
0.18
7.48
0.68
14.22
-51.24
19.86
10.99
-19.62

Fig. 6.16 JMP output from fitting reduced model to 2°~2 ResIV needle design experiment

F Ratio
439.3855
Prob>F

<.0001*

Prob>|t|
<.0001*
<.0001*

0.8596
<.0001*

0.4988
<.0001*
<.0001*
<.0001*
<.0001*
<.0001*

87
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libname stuff 'H:\Personal Data\Experimentation for Design &
Validation\Data & Analyses';

data calc;

set stuff.d20130917 example 5 3 needle6;

/**************************************************************

* *
* variables: X1 = primary angle i
* X2 = secondary angle i
® X3 = side angle ®
* X4 = primary length *
* X5 = secondary length *
% X6 = lubrication quantity F
* *
* *
* *
* *

Hi = Xi coded to (-1,+1)

X EE XX RS EE RS E RS SRS RS R EEE RS R R R R R R SRR R R R R R R R R R R E R EEE R EEREEEEE"

/

run;

proc glm data=calc;
model Peak = H1 H2 H3 H4 H5 H6
H1*H4 H2*H5 H1*H6/est;
run;

The SAS System @7:36 Tuesday, September 17, 2013 6
The GLM Procedure

General Form of Estimable Functions

Effect Coefficients
Intercept L1
H1 L2
H2 L3
H3 L4
H4 LS
H5 L6
H6 L7
H1*H4 L8
H2*H5 L9
H1*H6 L1e
Dependent Variable: Peak Peak
Ssum of
Source DF Squares Mean Square F Value Pr > F

Fig. 6.17 SAS code and output from fitting reduced model to 2°~2 ResIV needle design experiment
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Model
Error

Corrected Total

R-Square
9.990482
Source
H1
H2
H3
H4
H5
H6
H1*H4
H2*H5
H1*H6
Source
H1
H2
H3
H4
H5
H6
H1*H4
H2*H5
H1*H6
Parameter
Intercept
H1
H2
H3
H4
H5
H6
H1*H4
H2*H5
H1*H6

Fig. 6.17 (continued)

9 9.44189192 ©.94909910 439,39
38 0.08424631 9.08011174
47 0.44613823
Coeff Var Root MSE Peak Mean
5.269730 9.018571 9.200598
DF Type I 55 Mean Square F Value
1 ©.81898999 ©.81898999 169.94
1 ©.000RB354 9.00000354 9.83
1 0.00625016 0.00625016 55.93
1 0.00005212 0.00005212 0.47
1 9.02259123 9.82259123 202.17
1 0.29341381 08.29341381 2625.75
1 ©.84407866 9.84487866 394.46
1 0.01349209 0.01349209 120.74
1 0.04302032 0.04302032 384.99
DF Type III SS Mean Square F Value
1 0.01898999 08.01898999 169.94
1 0.00000354 0.00000354 8.e3
1 0.00625016 0.00625016 55.93
b & ©.88ee5212 9.88e85212 0.47
1 0.02259123 0.02259123 202.17
1 ©.29341381 ©.29341381 2625.75
1 0.04407866 0.04407866 394.46
1 ©.81349289 ©.91349289 128.74
1 0.04302032 0.04302032 384.99
Standard
Estimate Error t Value
0.2005975432 ©.00152578 131.47
©.0198963195 0.00152578 13.04
©.0002717242 0.00152578 0.18
©.0114110357 0.00152578 7.48
0.0010420384 0.00152578 0.68
©.0216944836 0.00152578 14.22
-.0781843184 ©.00152578 -51.24
©.0303835538 0.00152578 19.86
©.0167655957 0.00152578 10.99
-.08299375457 ©.00152578 -19.62

89

<.0001

Pr > F

.6e01
.8596
.00l
.4988
.0001
.e00e1
.0001
.0ee1
.0e01

AAAAABDADA

.0ee1
.8596
.0ee1
.4988
.0ee1
.0e01
.0001
6001
.01

AA A A ADA®A

Pr > |t]

<.0001
<.0001
0.8596
<.0001
0.4988
<.0001
<.eeel
<.0001
<.0001
<.0e01
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Table 6.13 - Circuit Factor Symbol Low (~1) High (+1) Units

parameters
Inductance L 0.2 0.5 henry
Resistance R 300 500 ohm
Capacitance C 0.0001 0.0005 farad
Frequency ® 0.5 1 radian
Initial voltage Vo 0.5 1 volt
Initial current Th(0) 1 2 amp
Initial charge Thdot(0) 1 2 coulomb

Table 6.14 Data for 2’~* Res III RLC experiment

Pattern L R C omega Vo Th(0) Thdot(0) I meas.

R 0.2 300 0.0001 0.5 1 2 2 1.40E—05
S 02 300 0.0001 0.5 1 2 2 1.39E—05
S 02 300 0.0005 1 0.5 1 2 1.55E—04
S 0.2 300 0.0005 1 0.5 1 2 1.56E—04
S 02 500 0.0001 1 0.5 2 1 2.66E—05
—t—+—+— 0.2 500 0.0001 1 0.5 2 1 2.80E—05
—tt—t—— 0.2 500 0.0005 0.5 1 1 1 9.33E—05
b 02 500 0.0005 0.5 1 1 1 9.68E—05
+——++—— 0.5 300 0.0001 1 1 1 1 5.30E—05
bt — 0.5 300 0.0001 1 1 1 1 5.47E—05
P 0.5 300 0.0005 0.5 0.5 2 1 3.98E—05
+—+——+— 0.5 300 0.0005 0.5 0.5 2 1 4.19E—05
+H————+ 0.5 500 0.0001 0.5 0.5 1 2 6.70E—06
et 0.5 500 0.0001 0.5 0.5 1 2 8.08E—06
bt 0.5 500 0.0005 1 1 2 2 3.40E—04
et 0.5 500 0.0005 1 1 2 2 341E—04

A Special ReslII Design: Plackett-Burman

If there are many factors that potentially have importance, ResIII designs are useful to narrowing
down the experimental space to the “vital few”. In particular, if number of factors, &, is such that k + 1
is a multiple of 4, and not a power of 2 (e.g., k = 11, 19, or 23), then a special class of ReslIII designs,
called Plackett-Burman Designs (PBD, Montgomery 2001), with number of runs equaltoN = k + 1,
can be useful. To generate the design matrix for a PBD, the EAS must begin with a sort of “seed”
column, which depends on the number of factors. The column will have k rows. The seed column is
assigned to the first factor, H1. The column for the second factor, H2, is created by assigning the value
in the kth row of the previous column to the first row of the new column, and then the value of the first
row of the previous column becomes the value of the second row, the second row of the previous
column becomes the value in the third row, etc., until £ rows are completed. Once k columns are
generated, add a single row to the bottom of the matrix, where this row in every column is set to the
low level (—1) of the corresponding factor. Table 6.15 shows a list of “seed” columns for k = 11,
19, 23, 27. Note that a “—” implies the Helmert-coded level of —1, and “+” the level +1.

As an example, for k = 11 factors, the PBD would look like Table 6.16.

The Plackett-Burman design is balanced, with equal numbers of runs with low (—1) and high (+1)
levels of each factor. Furthermore, the columns are all orthogonal to each other. One criticism of the
PBD is that the alias structure is very difficult to determine (Hinkelmann and Kempthorne 2005).
However, if the EAS has decided to use a ReslIII design, simply knowing that all interactions are
unresolvable, or completely aliased with each other and the main effects, may be sufficient. For a
more complete set of seed columns, see Cochran and Cox (1992).
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Response | meas.
Summary of Fit

RSquare

RSquare Adj

Root Mean Square Error
Mean of Response
Observations (or Sum Wgts)

Analysis of Variance

0.999929
0.999868
1.24e-6
9.178e-5
16

91

Source DF  Sum of Squares Mean Square F Ratio
Model 7 1.74407e-7 2.4915e-8 16206.52
Error 8 1.2299e-11 1.537e-12 Prob>F
C. Total 15 1.74419e-7 <.0001*
Parameter Estimates
Term Estimate Std Error t Ratio Prob>|t|
Intercept -0.000568 2.415e-6 -235.0 <.0001*
L 0.0001253 2.067e-6 60.65 <.0001*
R 2.5719e-7 3.1e-9 82.97 <.0001*
Cc 0.3307891 0.00155 213.43 <.0001*
omega 0.0002099 1.24e-6 169.29 <.0001*
VO 0.000136 1.24e-6 109.69 <.0001*
Ih(0) 0.0000276 6.2e-7 44.53 <.0001*
Ihdot(0) 7.506e-5 6.2e-7 121.07 <.0001*

Fig. 6.18 Analysis output for 27 ~* Res III RLC experiment
Response | meas.
Summary of Fit
RSquare 0.999929
RSquare Adj 0.999868
Root Mean Square Error 1.24e-6
Mean of Response 9.178e-5
Observations (or Sum Wats) 16
Analysis of Variance
Source DF  Sum of Squares Mean Square F Ratio
Model 7 1.74407e-7 2.4915e-8 16206.52
Error 8 1.2299%e-11 1.537e-12 Prob > F
C. Total 15 1.74419e-7 <.0001*
Parameter Estimates
Term Estimate Std Error t Ratio Prob>|t|
Intercept 0.0000918 3.1e-7 296.09 <.0001*
L(0.2,0.5) 0.0000188 3.1e-7 60.65 <.0001*
R(300,500) 0.0000257 3.1e-7 82.97 <.0001*
C(0.0001,0.0005) 0.0000662 3.1e-7 213.43 <.0001*
omega(0.5,1) 0.0000525 3.1e-7 169.29 <.0001*
V0(0.5,1) 0.0000340 3.1e-7 109.69 <.0001*
1h(0)(1,2) 0.0000138 3.1e-7 44.53 <.0001*
Ihdot(0)(1,2) 0.0000375 3.1e-7 121.07 <.0001*

Fig. 6.19 Analysis output for 2’~* Res III RLC experiment—Helmert-coded factors
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Table 6.15 Some “Seed”

Row k=11 k=19 k=23 k=27

columns for selected

Plackett-Burman designs ! + + + +
2 + + + —
3 - - + +
4 + — + +
5 + + + +
6 + + - +
7 — — + -
8 - + - -
9 - - + —
10 + + + —

[NCIE ORI NS I NS I NS i NS B NS I S B i e et e
NN R WD = O 00NN R W~
I

! RN

[ N N (. (.

o+ o+ |+ |+

Table 6.16 Ak =11 Run HI H2 H3 H4 H5 H6 H7 HS H9 HI0O HII

Plackett-Burman design
1 1 -1 1 -1 -1 -1 1 1 1 -1 1
2 1 1 -1 1 -1 -1 -1 1 1 1 -1
3 -1 1 1 -1 1 -1 -1 -1 1 1 1
4 1 -1 1 1 -1 1 -1 -1 -1 1 1
5 1 1 -1 1 1 -1 1 -1 -1 -1 1
6 1 1 1 -1 1 1 -1 1 -1 -1 -1
7 -1 1 1 1 -1 1 1 -1 1 -1 -1
8 -1 -1 1 1 1 -1 1 1 -1 1 -1
9 -1 -1 -1 1 1 1 -1 1 1 -1 1
10 1 -1 -1 -l 1 1 1 -1 1 1 -1
1 -1 1 -1 -1 -1 1 1 1 -1 1 1
2 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

Key Points

 Fractional Factorial experiments allow the experimenter to run a subset (fraction) of the total
number of combinations of levels of all factors, and still be able to fit a first-order model.

» The drawback of fractional factorials is called aliasing; aliasing means that some effects are not
resolvable, because they are computed identically to some other effects. The level of fractional
replication dictates the degree of aliasing.
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» There are classes of the degree of aliasing, called Resolution; Res V allows the experimenter to
include all two-way cross-product terms in the model; Res IV allows for including some two-way
cross-products; Res III only allows for first-order terms (no cross-products).

» Helmert coding transforms the range of the input factors to the interval [—1,+1]. This transforma-
tion is unitless and scale-free.

» A center point is a set of factor values where each factor is set at the midpoint of its experimental
range. Results from center points can be useful in detecting the presence of second-order effects.

Exercises and Questions

1. Generate a ReslII experiment with 11 factors. What model could be fit to the data from this design
if all 11 factors are included? What is the defining relation for the design?

2. Describe a situation where a ResIV design would be appropriate.

3. How, and under what circumstances, would you convince stakeholders that a ResV design is worth
its cost?



Chapter 7
Higher Order Approximations

Two-level factorial or fractional factorial experimental designs are used for obtaining a first-order
approximation to the response function. They are particularly useful for selecting a smaller subset of
potential input factors with which to formulate a better approximation equation. In this chapter, we
will discuss some classes of experimental designs useful for fitting second-order (Quadratic)
approximating equations.

A two-level experiment cannot support the inclusion of second-order terms in a model. If a center
point is included in a two-level design, a plot of model residuals against model predicted values may
indicate the need for second-order terms. If the residual plot shows that at the predicted response for
the center point, the residuals are appreciably higher or lower than they are at the other predicted
values, then it is likely that a second-order effect exists, and a second-order model is required for good
predictability. Consider a full two-level, three-factor experiment with replication at the center point,
together with the observed response, the predicted values, and the residuals, shown in Table 7.1.
A first-order model was fit to these data:

Y =By + BiH1 + BoH2 + B3H3 + B, HIFH2 + B, HIH3 + oy H2FH3 + ¢

The residual plot is shown in Fig. 7.1. Note that the residuals at the three replicates of the center point
run are appreciably greater than the residuals at the other runs. This indicates that at least one factor
has an associated higher-order effect on the response.

A Brief Digression: Residuals, Heteroscedasticity, and Normality

A plot of residuals against predicted values can help identify “outlier” points, which may have
unusual response values due to unintended or uncontrolled effects. When examining a residual plot,
the EAS should ask whether there were any extenuating conditions that might be the cause of an
unusually high or low residual value. If, in the case of center points, all the residuals at the center
seem to be higher or lower than all the other residuals, it is reasonable to guess that higher-order
effects exist. In fact, if the residuals at any particular point seem to “group” together and depart from
the values of residuals at other points, higher-order effects that are not accounted for in the model may
exist. A simple method for deciding whether a residual is “unusually” large in magnitude, is to
normalize the residuals, by dividing them by the standard deviation of the residuals. The normalized
residuals are said to be “Studentized” (Draper and Smith 1998). The idea is that if residuals are
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Table 7.1 A two-level, Run HI H2 H3 Y Predicted Y  Residual Y
three-factor experiment
with a center point 1 -1 -1 -1 —10.15 -9.25 —0.90
2 -1 -1 1 —8.51 —6.94 —1.57
3 -1 1 —1 —5.26 —3.70 —1.57
4 -1 1 1 —1.61 -0.71 —0.90
5 1 -1 -1 —10.26 —8.70 —1.57
6 1 -1 1 0.73 1.62 —0.90
7 1 1 -1 —4.96 —4.07 —0.90
8 1 1 1 5.37 6.94 —1.57
9 0 0 0 1.32 -3.10 442
9 0 0 0 —0.68 —3.10 2.42
9 0 0 0 —0.10 —3.10 3.00
Fig. 7.1 Residual plot for
the two-level, three-factor °
experiment with a center 4 -
point
3 °
> °
—
[
>
°
3 1-
o
0 -
-1 ° [ [ ) [ )
[ ] ° [ ] [ ]
2 +r-rrrrrr-r---r---T-rTTrr
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Predicted Y

distributed as normal with mean 0 and some unknown standard deviation, then the Studentized residuals
will be approximately #-distributed, with n—1 degrees of freedom. Thus, any Studentized residual that
fell outside, say, a 99 % range for a t-distributed random variable with n—1 degrees of freedom (7 oos,
10.995), would be somewhat suspect. Furthermore, if more than about 1 % of residuals fell outside this
range, the model might be suspect. In general, whenever there are residuals that seem appreciably higher
or lower than the majority, the EAS should investigate possible “assignable causes”.

Residuals plotted against predicted values can also reveal a lack of homogeneity of noise variance.
If the plot looks like a funnel, with the small end of the funnel at the lower predicted values, and the
larger end near the larger predicted values, then this is an indication that noise variance increases
proportionally to the value of the response, a common form of heteroscedasticity. Figure 7.2
illustrates this phenomenon.

If this is the case, then it may be helpful to make a transformation of the response. The model can
be fit to the transformed response, and the tests of significance for the coefficients may be more
correct. A widely-used family of transformations is the Box-Cox transformation (Box et al. 1978):

A
Yorig -1
-1
ﬂYurig

trans —

The value of 4 is chosen to minimize the variance of residuals. A special limiting case when 4 — 0 is
Yirans = In(Y,,;5). The Box-Cox transformation can only be applied when the response, Y, is
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Fig. 7.2 Residual plot
illustrating proportional
noise variance

Residual Y

positive. In general, any obvious pattern in a residual vs. predicted plot usually indicates either
higher-order effects not included in the model, or non-homogeneous noise variance.

Another assumption required for p-values to be valid is the normality of errors, or noise. One way
to assess the validity of the normality assumption is to perform one of a number of tests using the
residuals. The Shapiro-Wilk test and the Kolmogorov-Smirnov test (Conover 1999) are two such
tests. Figure 7.3 shows the output of the distribution-fitting function in JMP. The Prob < W is the
p-value for the Shapiro-Wilk test. If the p-value is below the pre-specified threshold (usually 0.05),
then reject the null hypothesis that the data come from a normal population. If the residuals from a
model fail a test for normality, there are a number of possible remedies. The Box-Cox transformations
can sometimes induce normality. Replacing the observations with their relative ranks (i.e., the rank of
the smallest observation is 1, and the rank of the largest is n) can be used to induce symmetry in the
distribution. The Johnson family of transformations (Johnson 1949) can also be useful for inducing
normality. Perhaps the most common is the Sy transformation (U stands for unbounded):

z=y+8sinh ! ((y - &)/)

The parameters, v, 9, €, and A can be estimated from data.
Another Johnson transformation is called Sg (B for bounded), and is given by:

z=y+68n((y—&)/(E+A—y)) foré <y <E&+42

The new variable will have approximately a normal distribution with mean 0 and standard deviation
1 (called a “standard normal”), under the null hypotheses that none of the factors have any relation-
ship to the response. Minitab will perform the estimation and provide the transformed data. Figure 7.4
shows the Minitab output transforming data column Y.

Note that Minitab uses the Anderson-Darling goodness-of-fit test, a test similar to the Shapiro-
Wilk test. Also, Minitab decided to use the Sg transformation.

The histograms of the original data and the transformed data are given in Fig. 7.5.
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Distributions

Residual Data

—

— T

Normal(-7e-17,1.95786)

Quantiles

100.0% maximum 499249
99.5% 499249
97.5% 3.87533
90.0% 2.18291
75.0% quartile 1.34319
50.0% median 0.24814
25.0% quartile -1.4752
10.0% -2.7011
2.5% -4.1095
0.5% -5.23
0.0% minimum -5.23

Fitted Normal
Parameter Estimates

Type Parameter Estimate Lower 95% Upper 95%
Location M -7.11e-17 -0.388481 0.388481
Dispersion o} 1.9578554 1.7190104 2.2743921

-2log(Likelihood) = 417.15764118077

Goodness-of-Fit Test
Shapiro-Wilk W Test

w Prob<W
0.990752 0.7253

Note: Ho = The data is from the Normal distribution. Small p-values reject Ho.

Fig. 7.3 Histogram with normal density fit and Shapiro-Wilk test
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Johnson Transformation for Y
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Fig. 7.4 Johnson SU transformation

Back to Second-Order Designs

By restricting the factor levels to only two possible values, the only approximation equation we can fit
is first-order. In order to fit a second-order equation, we will need three values. If we had & potential
input factors, and we generated an experiment in which each factor was varied with three levels, the
number of runs would be 3*. Even with a relatively small number of factors, the number or
experimental runs would soon become large and probably too expensive. While fractional designs
for three-level factors are quite possible, the aliasing structure of such designs is quite complex, and
can be difficult at best to interpret. A center point (all factors set to their middle value, which
corresponds to coded variables set to 0) would provide a third value. However, since it is identically
the same point in the design for all the factors, the quadratic terms for each factor would be aliased
with each other. We require a means for including a squared term for each factor uniquely in the
approximating model. We will therefore only talk about two classes of experimental designs that will
allow fitting a second-order approximating equation. Those two are called Central Composite
Designs (CCDs) and Box-Behnken Designs (BBDs). Both of these classes of designs can be fairly
economical, and both will allow the EAS to fit a second-order approximating equation.

Rotatability

In the two-level experiments, we were concerned with orthogonality and balance. For designs used to
fit second-order approximations, another characteristic is important, namely rotatability. Rotatability
is the characteristic that the standard error of predicted values would be the same for all points
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Summary for Y

Anderson-Darling Normality Test
A-Squared 1.87
P-Value < 0.005
Mean 182.65
/ StDev 87.03
Variance 7574.90
Skewness 1.25043
Kurtosis 2.23291
N 100
Minimum 41.24
1st Quartile 116.52
A ,— Median 160.83
v v v . T 3rd Quartile 228.03
100 200 300 400 500 Maximum 503.46
95% Confidence Interval for Mean
- 165.38 199.92
95% Confidence Interval for Median
149.53 186.15
95% Confidence Interval for StDev
® .
95% Confidence Intervals 76.42 10111
Mean | i
Median |
150 160 170 180 190 200
Summary for Johnson
Anderson-Darling Normality Test
A-Squared 0.21
/_\ P-Value 0.859
Mean -0.04427
StDev 0.99975
Variance 0.99949
Skewness 0.0283614
Kurtosis 0.0067473
N 100
Minimum -2.90826
1st Quartile -0.78725
Median -0.10924
v v v + T — 3rd Quartile 0.64402
-2 =il 0 1 2 Maximum 2.49648
95% Confidence Interval for Mean
I B -0.24264 0.15411
95% Confidence Interval for Median
-0.26377 0.20296
95% Confidence Interval for StDev
® .
95% Confidence Intervals 0.87778 1.16138
Mean | {
Median | - |
-0.3 -0.2 -0.1 0.0 0.1 0.2

Fig. 7.5 Histograms of raw and Johnson-Transformed data
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(experimental conditions) equidistant from the center point. The standard error for the predicted
values are given by:

SE(5|ho) = s\/ hy[H H] ' ho

Where H is a matrix of experimental runs, where entries are in Helmert-coded units. The lower case
hy represents a particular combination of values for the terms, which can be thought of as a point in
the “term” space.

The CCD and BBD families are all rotatable.

CCD

A central composite design is a 2°7 fractional factorial with two other conditions added: center
points and axial points. Center points were discussed earlier. They are conditions where all the input
factors are set to their “middle” value, i.e., the center of the range in which the experiment is being
conducted. In some cases, where replicates are expensive or in some way difficult to obtain, center
points may be the only condition in which replication is performed. Axial points are points that go
beyond the “low” and ‘“high” values set for experimentation, and allow for unique estimation of
coefficients for quadratic terms in each factor. There are two axial conditions associated with each
factor. If H; represents the coded values for factor X;, then the coded axial points would be where all
the other H; (j # i) variables are set equal to 0, and H; is set to /7, Irl > 1. Usually, r is set equal to
k, the number of factors.

As an example, consider a two-factor experiment. The two coded factors are H1 and H2. The value
—1 represents a “low” value for the corresponding factor in natural units, and +1 represents a “high”
value. The runs in the CCD that correspond to those of the two-level design are referred to as “corner”
points. The set of corner points for the two factors are given in Table 7.2.

The center point run is where H1 = H2 = 0. The axial points are where

Hl = +/r = £v2 ~ +£1.414, H2 = +/r = £v/2 ~ +1.414. Table 7.3 shows all the runs for
this CCD.

Table 7.2 Corner point Run H1 H2

runs for a two-factor

experiment ! -1 -1
2 -1 +1
3 +1 -1
4 +1 +1

Table 7.3 All runs for the

Run H1 H2
two-factor CCD
1 -1 -1
2 —1 +1
3 +1 -1
4 +1 +1
5 0 0
6 —1.414 0
7 +1.414 0
8 0 —1.414
9 0 +1.414




102 7 Higher Order Approximations

Arm Length

Number of

—
Twists

Fig. 7.6 The mangonal

Clearly, if for example, Run 6 requires that the coded variable H1 be set equal to —1.414, then
H1 = —1 cannot be the code for the lowest POSSIBLE value of X1. Rather, HI = —1 represents a
low value for X1, but not the lowest possible value. The Helmert coding formula:

X—m

H=———
%(x+—x—)

Is still valid, but x~ and x* no longer represent the most extreme values for the uncoded (natural units)
factor. In fact, x~ and x™ must be set such that

1 1
maxX < m+§R\/lz and minX > m—ER\/lz

where R =x" —x~ and m = szf.

A Medieval EAS, Geoffrey Llewellyn, the Yeoman, is trying to decide how to set up a new kind of
catapult, called a mangonal. The mangonal works by torsion. The throwing arm is attached to a
twisted rope that provides tension. The arm is pulled down by another line, tightening the torsion
rope. When the pulling line is released, the torsion rope unwinds, propelling the arm forward.
A crossbar stops the arm, and the projectile (usually a rock) is released into ballistic flight. The
crossbar angle governs the release angle for the projectile. Figure 7.6 shows a picture of a mangonal.
Unbelievably, Geoffrey actually discovered all of the laws of motion attributed to Isaac Newton, who
was born about 250 years after Geoffrey had faced his catapult problem. Some say that Sir Isaac
actually discovered an old palimpsest, which had all of Geoffrey’s notes covered by a portrait of the
Earl of Phlegmingham, Geoffrey’s Liege Lord. It turned out that the Earl was having a little war with
his next-door neighbor, who had an imposing castle with lots of archers. The Earl asked Geoffrey to
figure out how to deploy this new mangonal in an optimal fashion. Geoffrey figures that he and his
crew must inflict some serious damage to the castle without getting shishkababed by enemy arrows.

Using the equations of ballistic flight, Geoffrey computed the altitude of the projectile after ¢ units
of time in flight:

3(6) = —% o + (v sin (8))¢
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¢ = gravitational constant (~9.8 m/s)
6 = launch angle

t = time (s)

vo = initial velocity (m/s)

The distance the projectile would travel after t units of time would be
x(t) = (vo cos (6))t

Geoffrey wants the projectile to hit the window of the castle’s “keep” (the most protected part of the
castle) while he and his crew are out of range from the archers on the castle walls. He soon discovers
that the arrows cannot fly more than100 m from the castle wall. The keep is approximately 25 m away
from the wall, and spies have told Geoffrey that the window to the keep is approximately 9 m high
with its center 40 m from the ground. The wall of the castle is only 15 m high. So, Geoff decides that
his catapult must be placed 125 m away from the target, he wants the projectile to achieve an height
of 40 m after it has traveled the 125 m. In other words, he wants to have #; the flight time to be
such that:

1 .
y(tf) = *Egt]% + (vosin (9))tr = 40

and
x(tr) = (vocos (8))1y = 125

These are of course two equations in three unknowns, # 6, and v,. This is further complicated by the
fact that while the launch angle, 0, can be set by altering the position of the crossbar on the mangonal,
the initial velocity, vy, cannot easily be set. Geoffrey knows that v is mostly a function of the number
of twists in the launching rope, but this function is at best elusive, and pretty much unknown.
Geoffrey, being fairly adept at algebra, realizes that he can solve the x() equation for #; and then
substitute the solution in the y(f) equation. This solving and substitution process gives him:

125

= —
77 Yo cos @)

1 (125\°
y(vo,0) = _Eg(W) sec?(0) + 125tan (0) — 40 = 0

Undaunted, Geoffrey decides to make one change of variables:

1

Moy =—
0 Vo

So that the equation is now:

2

125
¥(10,0) = —Tgn%secz(e) +125tan (9) —40=0

Geoffrey thinks about setting the launch angle, 8, equal to 45°. If he did, then his equation would be
simply:
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Table 7.4 Experimental Run Rotations Arm
runs for catapult
experiment—natural units 1 10 2
2 10 3
3 15 2
4 15 3
5 9.0 2.5
6 16.0 25
7 12.5 1.8
8 12.5 32
9 12.5 2.5
10 12.5 2.5
Table 7.5 Experimental Run H1 H2
runs for catapult
experiment—coded units 1 -1 -1
2 -1 1
3 1 —1
4 1 1
5 —1.414 0.0
6 1.414 0.0
7 0.0 —1.414
8 0.0 1.414
9 0.0 0.0
10 0.0 0.0

y(19,45) = —125%g3 +85 =0 =5 = + %, or in other words, he would need

vo = 125, /% ~ 42.44m/s

If the launch angle, 0, is 45°, and initial velocity is 42.44 m/s, then the terminal time should equal:

125

" = 3 ddcos (45) ° +1058

Wow! This is great! Geoffrey was ecstatic. Now all he needed to do was figure out how many twists of
the launching rope it would take to achieve this velocity. But, Geoff also realizes that he can alter the
length of the throwing arm (lever), and that might affect the initial velocity. This problem calls for an
experiment. Geoffrey has his intrepid crew construct a 120 m tower with a painted target centered at
approximately 40 m off the ground. Then he had the crew move the catapult approximately 125 m
away from the tower. Now, Geoff needs a plan. He decide to vary the number of twists (rotations of a
tightening gear) between 10 and 15, and the length of the launch lever arm (which was cleverly
designed to be continuously adjustable) between 2 and 3 m. Figure 7.6 shows a picture of Geoffrey’s
mangonal. Table 7.4 shows the various runs that Geoff and his crew decided to try.

Oddly enough, they chose a two-factor CCD, with two replicates at the center point. Note the axial
points extend beyond the lower (—1) and upper levels (+1) for the two factors. Table 7.5 shows the
same design in Helmert-coded units.

The axial points are located at £+ (\/5) coded units away from the center point in each variable’s
direction.
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Table 7.6 Catapult

- . Rotations Arm Y(p
experimental runs with data .

10 2 353
10 3 77.6
15 2 84.2
15 3 103.8

9 2.5 49.0
16 25 101.2
12.5 1.8 57.0
12.5 32 98.4
12.5 2.5 81.5
12.5 2.5 85.2

So, if everything works according to plan, the optimal conditions would result in a flight time of
approximately 4.165 s. As it turns out, time measurement was not quite up to the thousandths of a
second in Geoff’s day. In fact, Geoff could not even measure time to the nearest minute. What he
could do was measure the height, in meters, at which the projectile struck the tower. This is precisely
what he did. Of course, he wanted to reuse his practice tower, so instead of launching rocks, Geoff had
his crew launch watermelons. They had the added advantage of leaving a nice mark where they hit, so
the height could be easily measured. Table 7.6 shows the data he and his crew gathered.

Figure 7.7 shows the JMP output from fitting a second-order model to the data.

All the terms in the model had significant coefficients, and the adjusted R* was approximately
0.9953. Thus it looks like the model will provide reasonable approximations to the height at time of
impact (Y (#) response variable. Table 7.7 shows the actual data together with the model predictions.

All things considered, Geoff was pretty happy with his model. The next step was to find the
optimal conditions for rotations and arm length, in order to hit the tower at approximately 40 m from
the ground. Using JMP “Contour Profiler”, we are able to see a contour in the approximating second-
order “surface” where the height is equal to 40 m, approximately. Figure 7.8 shows the plot. The
contour shown on the plot is the 40-m mark. Thus any point (Rotations, Arm length) on this contour is
predicted to yield a striking height of 40 m. For example, if Rotations is set to about 9.62 turns, and
Arm Length is approximately 2.17 m, then the model predicts the striking height from 125 m away
would be at 40 m.

We have found that with approximately 9.62 rotations with an arm length of approximately 2.17 m
will deliver the projectile at the 40 m mark (predicted value ~ 40.19 m) on the keep of the castle, as
long as the catapult is 125 m from the outer wall (and safely out of archery range). The 95 %
confidence interval for this predicted value is approximately (37.00 m, 43.37 m). Since the window
was 9 m in height, with the center at 40 m, they figured that they had a pretty good chance of getting
the projectile to fly through it. However, to verify the optimal conditions, Geoffrey had his crew try
out the optimal conditions. They attained a height of 40.48 m, which is a little high, but close enough.

Our EAS used factors in natural units to fit his approximating model. In this case, he was interested
in obtaining a predictive equation, not in comparing magnitudes of coefficients. It was more intuitive
to be able to relate the factors in their natural units to the response variable.

The reader might notice a few flaws in our analysis of the catapult problem. For one thing, the
projectile is not exactly massless. Secondly, the projectile certainly will provide some air resistance.
Thirdly, we have assumed that the window in the keep tower will be open when the projectile arrives.
Well, these are all good points, but the bottom line is that we have employed a CCD to obtain an
approximating equation for making design decisions.
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110
100
90
S804 .. A—
< 70 -
=
= 60 -
50 2
40 o5
30 1 1 I 1 | I 1
30 40 50 60 70 80 90 100110
Y(tf) Predicted P<.0001
RSq=1.00 RMSE=1.5841
Summary of Fit
RSquare 0.997917
RSquare Adj 0.995314
Root Mean Square Error 1.584079
Mean of Response 77.31769
Observations (or Sum Wgts) 10
Analysis of Variance
Source DF  Sum of Squares Mean Square F Ratio
Model 5 4809.7117 961.942 383.3500
Error 4 10.0372 2.509 Prob > F
C. Total 9 4819.7489 <.0001*

Parameter Estimates

Term Estimate Std Error t Ratio Prob>|t|
Intercept -418.4074 36.68011 -11.41 0.0003*
Rotations 36.730859 3.401491 10.80 0.0004*
Arm 150.09318 17.00746 8.83 0.0009*
Rotations*Arm -4.556887 0.633632 -7.19 0.0020*
Rotations**2 -0.714163 0.120068 -5.95 0.0040*
Arm**2 -12.58032 3.00169 -4.19 0.0138*

Fig. 7.7 Second-order approximating model for catapult data

BBD

The Box-Behnken designs consist of “face center” points, together with a design center. A face center
is a run in which one factor is set to its center value and the other factors are at one of their extreme
(low or high) values. In a two-factor experiment (such as the catapult problem), there are four face
centers. Table 7.8 shows the runs for a BBD.



BBD

107

Table 7.7 Catapult data

Rotations Arm  Y(t)

Model predictions

with model predictions

10 2 35.3 36.2
10 3 77.6 77.8
15 2 84.2 85.0
15 3 103.8 103.9
9 2.5 49.0 48.4
16 2.5 101.2  100.8
12.5 1.8 57.0 56.0
12.5 32 98.4 98.3
12.5 2.5 81.5 83.3
12.5 2.5 85.2 83.3
Contour Profiler
HorizVert Factor Current X
Rotations 9.6189024
Arm 2.1670732
Response Contour CurrentY Lo Limit Hi Limit
~ Pred Formula Y(tf) 40 40.021949
3.2
Pred Formula Y(tf)
3
2.8 o
2.6 +
£
<
2.4 -
2.2
2
i \Pred F la Y(tf)
18 ] ] ] = OI'mlua ] ] ] ]
9 10 1 12 13 14 15 16
Rotations

Fig. 7.8 Optimal contour—catapult model

A BBD will allow the analyst to fit a second-order model to the data, and it requires fewer design
points than the CCD. As in the case of the CCD, it is common to replicate the design-center point.
There are some disadvantages. Unlike the CCD, there is no two-level design “embedded” in the BBD
(consider runs 1-4 in Tables 7.4 and 7.5). Should data be lost at the axial or center points of the CCD,
at least a first-order model can be fit. The other potential issue is the fact that there are no axial points,
per se, in the BBD. Thus, it might be helpful to extend the lower and upper limits of the experimental

ranges for the factors in the BBD.



108 7 Higher Order Approximations

Table 7.8 BBD for a Run Type H1 H2
two-factor experiment
1 Face-center -1 0
2 Face-center +1 0
3 Face-center 0 1
4 Face-center 0 +1
5 Design-center 0 0

Another Slight Digression: Hypothesis Tests About Model Parameters

Sometimes the EAS may want to test an hypothesis about a given parameter in a model. One question
that the EAS might ask is the power provided by a particular design to test such an hypothesis. As an
example, consider a second-order model.

Fit a model of the form:

Vi = Po + Zﬁixi + Zﬁijxi‘xj + Z}/ixiz + €iji
i i\ i

Let X represent the design matrix, which has a column for each parameter in the model, and a row for
each run and replicate. Usually, the levels of the regressors (x) are coded via Helmert coding. Since
this is a second-order model, the levels will be coded to —1, 0, and +1 (assuming a designed
experiment).

The least-squares estimates of the parameters will be called by, b;, b;;, and g;, corresponding to the
intercept, first order terms, cross-product terms, and the second order terms.

If b represents the vector of least-squares parameter estimates, then the variance-covariance matrix
of the estimates is given by:

2]
V(b) = o [X X}
where o represents the standard deviation of noise, e. This standard deviation is assumed to be
constant over all observations. The standard error of any parameter component of the vector b is the
square root of the corresponding diagonal component in the matrix V(b). Call the diagonal element of
[X'X]™" ¢, so that the standard error of by is:
SE (bk) = OCrk

Under the null hypothesis that f; = vy, the statistic:

bk—l/
t= 0

ECkk

has a Student’s t distribution with degrees of freedom equaling the error degrees of freedom (dfe)
from the model (assuming Gaussian noise, ). The symbol & is the estimate of &, which is usually the
root mean square error from the model fitting. So, to test the hypothesis:

Ho: i = v against the alternative Hy: f; # 1

Compare the statistic |t| to a 100(1—a/2) percentile of a central Student’s ¢ distribution, t; . If
[t| > t;_as, then reject Ho.

Under the alternative hypothesis that f; = A # vy, the statistic has a non-central ¢ distribution
(Johnson et al. 1995) with dfe degrees of freedom and non-centrality parameter:
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Table 7.9 Three factor StdOrder RunOrder PtType Blocks XI X2 X3

Box-Behnken design—

from Minitab 16 1 1 2 1 -1 -1 0
2 2 2 1 1 -1 0
3 3 2 1 1 1 0
4 4 2 1 11 0
5 5 2 1 10 -1
6 6 2 1 10 -1
7 7 2 1 10 1
8 8 2 1 10 1
9 9 2 1 0 -1 -1
10 10 2 1 0 1 -1
1 1 2 1 0 -1 1
12 12 2 1 0 1 1
13 13 0 1 0 0 0
14 14 0 1 0 0 0
15 15 0 1 0 0 0

Table 7.10 X'X ™' for three factor Box Behnken design
X0 X1 X2 X3 X12 X13 X23 X1S X2S X3S

X0 0.3333 0 0 0 0 0 0 —0.1667 —0.1667 —0.1667
X1 0 0.125 0 0 0 0 0 0 0 0
X2 0 0 0.125 0 0 0 0 0 0 0
X3 0 0 0 0.125 0 0 0 0 0 0
X12 0 0 0 0 0.25 0 0 0 0 0
X13 0 0 0 0 0 0.25 0 0 0 0
X23 0 0 0 0 0 0 0.25 0 0 0
X1S —0.1667 0 0 0 0 0 0 0.2708 0.0208 0.0208
X2S —0.1667 0 0 0 0 0 0 0.0208 0.2708 0.0208
X3S —0.1667 0 0 0 0 0 0 0.0208 0.0208 0.2708
A— Lo
6 Cik

Note that the value of ¢y is dependent upon the number of runs and replicates. It is also dependent on
the way in which the factors are coded.

Suppose the experiment consists of a three factor Box-Behnken design with Helmert coding, and
replication only at the center point. Furthermore, suppose that three center points are run. Thus, the
experiment consists of 15 runs, as illustrated in Table 7.9. The design matrix would include the
columns X1, X2, and X3 in Table 7.9, and additional columns for the intercept, the three two-way
cross-product terms and the three second-order terms. In total, the design matrix, X, would have
10 columns and 15 rows.

Table 7.10 shows the inverse of the matrix X'X, namely X’ X

Note that X0 represents the entry for the intercept, X12, X13, X23 are the entries for the two-way
cross-product terms, and X1S, X28S, and X3S are the entries for the squared terms.

We will consider testing the hypothesis Hy: >3 = vy = 0 against the alternative Hy: f,; # 0.

As an example, the value of c7; = +/0.25 corresponds to the standard error of the coefficient for the
X23 cross-product term (X2*X3). The standard error for the estimate b,s is:

SE(by) = oc17 = 6v/0.25
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Power Curve
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Fig. 7.9 Power curve for testing Hy: /3 = 0

In this design with a second-order model there are 15 — 10 = 5 degrees of freedom for error. If an a
priori guess for the value of ¢ can be obtained, then a power or operating characteristic (OC) curve
(Grant and Leavenworth 1980), which is I—power plotted against alternative values for the parame-
ter, can be constructed for the hypothesis test.

The 97.5th percentile of a central Student’s t distribution with five degrees of freedom is approxi-
mately 2.5706. The power is the probability that a non-central t statistic will exceed (in absolute
value) this percentile:

A
Prit'| df =5,ncp =
4 P cv0.25

A
=Pr |t'|df =5,ncp = ——— | > 2.5706
{ ( 4 P 8\/0.25') ' }

Where 7 represents a non-central t with df degrees of freedom and non-centrality parameter ncp. Note
that ncp is a function of 4, the alternate value of the regression parameter. At A = vy, the probability is
a. The power here is calculated for both positive and negative values of 4, but the x-axis only shows
the absolute value of 4.

Figure 7.9 shows the power curve with an assumed & = 0.02, and with the null hypothesis that
Ho: 23 = 0.

Figure 7.10 shows the R script that was used to generate the power curve.

2
< —2.5706 OR t’<d — S.ncp = > > 2.5706}
> N (W

o
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options(na.action=na.exclude)

i

# setwd tells R which folder to use for this script
#

setwd("H:\\Personal Data\\Scott\\Documents\\PROGRAMS\\R\\")

power <- ¢()

lamda <- ¢()

nep <- ¢()

df1 <- read.csv("20141002 Box Behnken 3 Factor Design.csv'")

xmat <- data.matrix(df1) #converts data frame into a matrix

sigmahat <- 0.02

nu0 <- 0.0

xmatprime <- t(xmat) #transpose function

Xtx <- xmatprime %*% xmat

xtxinv <- solve(xtx)

se_b23 <- sqrt(xtxinv|[7,7])*sigmahat

lamda <- ¢(nu0, nu0+0.01, nu0+0.02, nu0+0.03, nu0+0.04, nu0+0.05, nu0+0.06,
nu0+0.07, nu0+0.08, nu0+0.09)

delta <- lamda - nu0

crit_val <- qt(.95,5)

# Here we use the 95th percentile of the t-distribution

# so that we can plot the absolute value of delta, instead of negative and

# positive values. That is, we only plot in the program non-negative values of delta

# with the understanding that we have sort of folded the power curve.
# the power curve ought to go from negative values of delta to positive values

#
ncp <- delta / se b23 # this divides each component of delta by the scalar se b23
power <- pt(crit_val, 5, ncp, lower.tail = FALSE)

plot(delta,power,type="b",main="Power Curve")

Fig. 7.10 R script for generating the power curve
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# note that solve can also be used to solve systems

# if a left-hand side vector is also given as an input to the function
#

#you can plot power as a function of delta or lamda

#

# this writes xtxinv to a .csv file
#

write.csv(xtxinv,file

—_n

xtxinverse.csv'")

Fig. 7.10 (continued)

Key Points

» In order to fit a second-order polynomial model, the factors/regressors must have at least three
levels included in the experiment.

* A Center Point run with a two-level experiment can help detect the presence of higher order
effects.

» A Central Composite Design (CCD) is a two-level factorial design with a center point and axial or
face-centered points added.

» A Box-Behnken Design (BBD) requires fewer points than a CCD, but does not include the “corner
points” of a two-level design.

» Both CCDs and BBDs are rotatable.

» Confidence intervals and hypothesis tests can be computed for model parameters.

Exercises and Questions

1. How many unique runs (not including any replicates) would a Box-Behnken design in five factors
require?

2. Would you ever consider using a Central Composite Design with 10 factors? If yes, in what
situation?



Chapter 8
Mixture Experiments

The basic mixture/formulation problem is to decide, for a given set of components, how much of each
component should be put into the mixture. Commonly, the quantity of the mixture is fixed (either by
weight or volume) so that the amount of each component can be expressed as a fraction or percent of
the whole mixture.

Generally there is a response variable that is an unknown function of the distribution of
components, also referred to as mixture variables. The EAS must use empirical data to find an
approximating equation to describe the relationship between the response and the mixture variables.
So far, this is sounding a lot like the problems in factorial experimentation. The big difference is that
we cannot choose the “levels” of the mixture variables independently of each other. That is, if there
are only two components, and one comprises 25 % of the mixture, then the other must comprise
75 %. So, in experimentation with mixture variables, we cannot simply choose low and high values,
and pick various combinations of low and high levels for each of the mixture variables.

Mixture variables, call them xy, satisfy the following constraints:

xx >0,k=1,q,

q
ZX,‘ =1.
i=1

There are several points to mention about these constraints. First, it is allowable for any given mixture
variable (also called components) to equal O or 1. Secondly, a mixture is defined by a combination of
values for the mixture variables. Thirdly, the constraint that all the values of the components add to
1 could be slightly altered, to say that they must add to a fixed value, say A. In other words, the
summation constraint could be:

ixi = A.
i=1

For our discussions, we will assume that the mixture variables have been “normalized”, so that their
values are proportions of the total mixture.

The constraints on mixture variables creates a geometric structure for the space in which mixtures
are defined. The structure is called a simplex. While the topological and geometric properties of the
simplex are fascinating, we will not discuss them, except to elucidate properties of experiments. As in

© Springer International Publishing Switzerland 2016 113
S.A. Pardo, Empirical Modeling and Data Analysis for Engineers and Applied Scientists,
DOI 10.1007/978-3-319-32768-6_8



114 8 Mixture Experiments

the case of factorial experiments, we will not provide a complete exposition of mixture experiments
and their associated analyses. We will cover some basic ideas.

The First-Order Model

Suppose the EAS must create a mixture of ¢ components. Suppose further that the quality of any
mixture can be assessed by measuring a response variable, Y. Perhaps the EAS wants to maximize Y,
or minimize it, or even have Y fall between two specification limits. The first step is to be able to
predict the value of Y given a particular mixture. So, as in the case of the factorial experiments, the
EAS needs an approximating equation, or model. A first-order model might look like:

q
yi="Pb+ Zﬂixi +¢ for j=1,m.
i=1

This implies that in order to estimate the ¢ + 1 coefficients, m > g + 1. Now consider the equivalent
model:
¥ = Bo >y xi + 3oL, ixi + ¢, which is equivalent since ) 7 | x; = 1. Rearranging terms gives:
V= S, (Bo+ Pi)xi + ¢ and making the assignment @; = f§, + f; we can express the first-order
model as:

V= >, aix; + ¢; which has only ¢ parameters to estimate. The interpretation of this “reduced”
model is also more intuitive, perhaps. After all, the response variable must equal O if all the
components are set to 0 (i.e., there is no mixture on which to make any measurements).

Example: First-Order Model

Suppose a mixture may be made of exactly two components, x; and x,. Furthermore, suppose it is
possible to use only one of either of these two components as the entire mixture. That is, suppose the
mixture could consist of 100 % of component one (x; = 1, x, = 0) or vice versa (x; = 0, x, = 1).
The classic example is mixing different octane-numbered gasolines, and measuring the miles per
gallon (we will use the English Standard units for this example, rather than metric or SI units). So the
experimental design will be mixtures of two types of gasoline, high octane and regular octane. Let x;
represent the proportion of the tank filled with high octane gas, and x, the proportion of the tank filled
with regular. The response, Y will represent the miles per gallon, computed as the number of miles
driven divided by gallons used. The next question is how to collect the data that will allow us to
generate the approximating equation.

Here is one thought. Suppose we try one case where only the high octane gas is used (v; = 1,
X, = 0) and another with only regular octane gas (x; = 0, x, = 1). Suppose further we replicate the
experiment. Table 8.1 shows the data.

Figure 8.1 shows SAS code and output for fitting the first-order model.

The fitted model is:

y = 30.54x; +24.17x,

Since x; + x, = 1 (one of the mixture constraints), the model clearly indicates that the optimal
mixture (highest mpg) is predicted to be x; = 1, x, = 0.
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Table 8.1 Octane

- . High octane Regular octane mpg
experiment—2-Point x1 X2 y
design

1 0 30.9
0 1 22.0
1 0 30.2
0 1 26.4

One thing that may be bothering you is that our model was a linear function fit to two points,
namely (x; = 1, x, = 0) and (x; = 0, x, = 1). We had no observations of mpg for any non-pure
mixtures. Suppose we add the point, x; = 0.5, x, = 0.5. The data are shown in Table 8.2. They are
graphically depicted in Fig. 8.2. The SAS output for the refitted first-order model is given in Fig. 8.3.

Notice that the mpg results at the 50/50 mixture was higher than any of the other observations.

There is not a big change. The fitted model is now:

y= 3357X1 + 27.20)62
It appears that the optimal mixture is still 100 % high octane (x; = 1, x, = 0). Yet the data seem to

indicate that this may not be the case. In factorial experiments, the midpoint, or centroid, data may
indicate that a first-order model is inadequate.

The Second-Order Model
In the case with independent factors, a second-order model might look like:

Y =Po+ Bixt + Poxz + BraXixa + Bax; + fax; + ¢

We have already discussed eliminating the intercept in the case of mixture variables. Since the values
of the mixture variables are dependent on each other (since their total must add to 1), notice that:

x% =x1(l —x) =x; — x1x and x% =x(l—x1) =x — x1x
Replacing these expressions in the model (assuming we have already eliminated the intercept):
y = Prx1 + Poxa + Praxixy + faxy + faxixg + faxa — faxixa + ¢
Collecting terms:
y=B1+B3)x1 + (By + Ba)x2 + (Bro — B3 — Pa)xixa + €
Relabeling the parameters leaves us with:
Yy = a1X1 + Xy + ajpxixy + €
The second-order model went from having six parameters to having only three parameters to
estimate. Our old friend William Ockham would be proud. Of course, it is half as expensive to

estimate three parameters compared to estimating six. The two-variable cross-product terms are
referred to as “quadratic” terms in the context of mixture experiments.
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libname stuff 'H:\Personal Data\Experimentation for Design &
Validation\Data & Analyses';

data calc;

set stuff.d20131124 first order octane exp; /* do not include the

sas7bdat extension here */
/**********‘A’***************************************************

* *
* variables: xl1 = high octane L
* X2 = regular *
3 y = mpg #
* *
* *
* *
********************ﬁ-******************************************/

run;
proc sort data=calc;
by x1 x2;
run;
proc means data=calc;
var y;
by x1 x2;
run;
proc glm data=calc;

model y = x1 x2/est noint;

run;

The SAS System 87:84 Sunday, November 24, 2813 4

The MEANS Procedure

Analysis Variable : y y

N Mean Std Dev Minimum Maximum
fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff
24.1745718 3.8843234 21.993625@ 26.355517@

ffff;‘h‘J‘)‘fffff;‘f)‘J‘f)‘Hfff:‘J‘H.f)‘ffffff)‘J‘.f.ffffh‘)‘)‘)‘fffffﬂ:‘fﬂﬁfﬁ

Analysis Variable : y y

N Mean Std Dev Minimum Maximum
fff:FfJ‘.fJ‘.f.fffffff.ff.f.ffff:Fff.fJ‘J‘.f.ffffffJ‘J‘.f.f.fffffffffffffffﬁfﬁfffﬁ
30.5417982 8.5130367 38.1790264 30.9045699

fffffffffffffffHffffffffffHffffffffffffffffffffffffﬁﬁfffﬁfﬁ

Fig. 8.1 Octane experiment—SAS code and output
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Dependent Variable: y vy

The SAS System

The GLM Procedure

Number of Observations Read
Number of Observations Used

The SAS System

The GLM Procedure

97:04 Sunday, November 24, 2013

4
4

87:84 Sunday, November 24, 2813

General Form of Estimable Functions

Effect Coefficients
x1 L1
x2 L2

The SAS System

The GLM Procedure

Sum of
Source DF Squares
Model 2 3034.422639
Error 2 9.776257
Uncorrected Total 4 3044 .198896
R-Square Coeff Var Root M
8.996789 8.881352 2.2189

NOTE: No intercept term is used: R-square is not corrected for the mean.

Source
x1
x2
Source

x1
x2

Parameter

x1
x2

Fig. 8.1 (continued)

DF Type I SS

1 1865.602872

1 1168.819766

DF Type III SS

1 1865.602872

1 1168.819766
Standard
Estimate Error
30.54179818 1.56335836
24.17457100 1.56335036

87:04 Sunday, November 24, 2013

Mean Square F Value
1517.211319 318.39
4.,888129
SE y Mean
11 27.35818
Mean Square F Value
1865.682872 381.66
1168.819766 239.11
Mean Square F Value
1865.6082872 381.66
1168.819766 239.11
t Value Pr o> |t
19.54 @.ee26
15.46 8.ee42

Pr > F

8.8832

Pr > F

8.ee26

@.0842

Pr > F

0.0026
8.0042
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Fitting the second-order model to the data in Table 8.2 is accomplished using the SAS Code and its

associated output in Fig. 8.4.

So now the predictive equation is:

y = 30.54x; +24.17x; + 36.37x1x;,
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Table 8.2 Octane

8 Mixture Experiments

- . High octane Regular octane mpg
experiment—3-Point x1 X2 y
design

1 0 30.9
0 1 22.0
1 0 30.2
0 1 26.4
0.5 0.5 37.9
0.5 0.5 35.0
Fig. 8.2 Graphic 40.0
presentation of octane x2
experiment data 4 + 0o
i 4+ 0.5
35.0 O 1
@ J
E 30.0- 8
>
<
25.0
1 <
20.0 T T T T T
0 0.25 0.5 0.75 1

x1 = proportion high octane

Table 8.3 shows the data together with predicted values from both first-order and second-order

models.

It appears that the second-order model gives better predictions, at least for those conditions used to

fit the model.

Another question we might ask is, what is the optimal mixture? Clearly this optimization must be
performed subject to the mixture constraints, so the problem could be described as a nonlinear

program:
Maximize: y = 30.54x; + 24.17x; + 36.37xx,
Subject to:

XIZO
XQZO

xX1+x =1

There are many solver programs. Figure 8.5 shows a screen shot from JMP Profiler which can be used
to find optimal values for factors or mixture variables. Notice that the constraint:

xX1+x =1

was added. The non-negativity constraints did not need to be added, since the JMP profiler will only
plot the objective function (the model) over the range of values observed for the mixture variables.
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The SAS System @7:84 Sunday, November 24, 2813 14
The GLM Procedure

General Form of Estimable Functions

Effect Coefficients
x1 L1
x2 L2
The SAS System 87:e4 Sunday, November 24, 2813 15

The GLM Procedure

Dependent Variable: y vy

Sum of
Source DF Squares Mean Sguare F Value Pr > F
Model 2 5581.412829 2796.766414 89.88 8.eee5
Error 4 124.196867 31.849017
Uncorrected Total 6 5705.688896
R-Square Coeff Var Root MSE y Mean
8.978233 18.33625 5.572164 38.38879

NOTE: No intercept term is used: R-square is not corrected for the mean.

Source DF Type I SS Mean Square F Value Pr > F
x1 1 38e5.120968 3865.1268968 122.55 6.ee04
x2 1 1776.291861 1776.291861 57.21 8.ee16
Source DF Type III 55 Mean Square F Value PP
x1 1 2785.855835 2785.855835 87.12 e.eee7
x2 1 1776.291861 1776.291861 Sl 21 8.eele6
Standard

Parameter Estimate Error t Value Pro> |t

x1 33.57248332 3.59681678@ 9.33 8.eee7

x2 27.208517614 3.59681678@ 7.56 8.ee16

Fig. 8.3 Octane experiment—SAS output with centroid point added

Figure 8.6 shows the profiler graphs in greater detail. Note that the optimal mixtureisx; = 0.58 (58 %
high octane) and x, = 0.42 (42 % regular octane). The expected maximum response is 36.73 mpg.

Constraints in Mixture Designs

Typically mixtures or formulations have constraints on the components. Rarely are there mixture
problems that allow for “pure blends”, i.e., a mixture where x; = 1 and x; = 0, j # i. In fact, there can
be many different constraints. Perhaps most simply are those constraints where some or all
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libname stuff 'H:\Personal Data\Experimentation for Design &
Validation\Data & Analyses';
data calc;

set stuff.d20131124 first order octane mid; /* do not include the

sas7bdat extension here */

/ R A EEEEEE SRR AR LA R AL SR A SRS SRR A SRR A AR A AR R R AR R SRS SRR RS EEE SRR

* *
* yvariables: x1 = high octane *
3 X2 = regular %
- y = mpg -
* *
* *
* *

***************************************************************/

run;
proc glm data=calc;
model y = x1 x2 xl1*x2/est noint;

run;

The GLM Procedure

Number of Observations Read 6
Number of Observations Used 6
The SAS System 87:48 Tuesday, November 26, 2013 3

The GLM Procedure

General Form of Estimable Functions

Effect Coefficients
x1 L1
%2 L2
x1*x2 L3

Fig. 8.4 Octane experiment—second-order model
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The SAS System

The GLM Procedure

Dependent Variable: y y

@7:48 Tuesday, November 26, 2013

Sum of
Source DF Squares Mean Square F Value
Model 3 5691.627639 1897.209213 487.89
Error 3 13.981257 4.660419
Uncorrected Total 6 5785 .688896
R-Square Coeff Var Root MSE y Mean
8.997558 7.1@3937 2.1588080 308.38879
NOTE: No intercept term is used: R-square is not corrected for the mean.
Source DF Type I SS Mean Square F Value
x1 1 3865.120968 3805.120968 816.48
%2 1 1776.291861 1776.291861 381.14
Xx1%¥x2 1 118.2148180 110.214818 23.65
Source DF Type III SS Mean Square F value
x1 1 1865.662872 1865.602872 400.31
X2 1 1168.819766 1168.819766 250.80
x1*x2 1 110.214818 118.214818 23.65
Standard

Parameter Estimate Error t Value Pr > |t

x1 30.54179818 1.526508248 208.81 @.ee83

x2 24.174571e8 1.52658248 15.84 @.8eees5

x1*x2 36.36726163 7.47838393 4.86 @.8166

Fig. 8.4 (continued)

Pr > F

9.0082

Pr > F

<.eee1

9.0083

09.0166

Pr > F

0.0003

9.0085

09.0166
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Table 8.3 Octane

- . High octane Regular octane mpg First Second
experiment data with x1 X2 y order order
predictions

1 0 30.9 33.6 30.5

0 1 22.0 27.2 242

1 0 30.2 33.6 30.5

0 1 26.4 27.2 24.2

0.5 0.5 37.9 30.4 36.4

0.5 0.5 35.0 30.4 36.4
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Fig. 8.5 Optimization of second-order model

components must comprise some minimum proportion of the mixture and no more than some
maximum:

Li<x;<U,i=1,q

Choosing the particular combinations of mixture variable values to include in an experiment becomes
more complicated. For one thing, the summation constraint:

must still be satisfied for each mixture included in the experiment. Therefore, constraints placed on
individual mixture variables must be feasible, in the sense that the summation constraint must be
satisfied, as well as all the other constraints. For example, suppose we had decided to constrain the
high octane variable to be no less than 60 % of the mixture, and at the same time we had constrained
the regular octane variable to be no less than 50 % of the mixture. These two constraints would be
infeasible, also referred to as inconsistent. When there are only two mixture variables, determining
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Fig. 8.6 Optimal mixture from second-order model

whether or not constraints may be inconsistent is fairly simple. For mixtures with more than two
components, where constraints are expressed as lower and upper bounds, a procedure can be followed
to detect whether constraints are inconsistent.

1. Compute the ranges, R, = U; — L;,i =1, ¢

2. If:
q
Ri>1- > LiorLi+ » U<l
= i
Then the constraint U, is said to be unattainable.
3. If:

R; > iUl — 1.
i=1

Then the constraint L; is said to be unattainable.

If any of the constraints are unattainable, then the constraints are inconsistent. The values must be
adjusted by raising upper limits or lowering lower limits.

Optimal Design

Generally, computers are used to evaluate algorithms for finding sets of mixtures that satisfy
constraints, and adjusting constraints to make them consistent. The experimental designs are usually
chosen to satisfy an optimality criterion based on standard errors, either standard errors of the
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coefficient estimates, or standard errors of predicted values. The most common, and easiest to satisfy,
is called D-optimality. A D-optimal design is a set of points chosen to minimize the volume of the
joint confidence region of the model parameters. A G-optimal design is a set of points that minimizes
the maximum standard error of a predicted value (within the set of points in the design). A V-optimal
design minimizes the average standard error of predicted values (again, within the design points).
In JMP, V-optimality is called I-optimality.

Optimal designs are optimal with respect to the order of the model being fit. Let X represents a
matrix of design points (i.e., a set of mixtures), where the columns are assigned to each of the terms in
the model, and the rows are the values each term takes for a given mixture. Then these optimality
criteria are realized by doing the following: X

D-Optimality: choose a set of mixtures that minimizes the determinant of the matrix [X X} .
This minimizes the imprecision of estimation for the model parameters.

G-Optimality: choose a set of mixtures that minimizes the maximum value of x’ [X X] ~'x. This
minimizes the width of confidence intervals for an individual predicted value.

V-Optimality: choose a set of points that minimizes %x’ [X X} x, where n = the number of
mixtures included in the design. This minimizes the width of confidence intervals for the average
predicted value.

In practice, the optimal designs are chosen by computer program for a fixed number of points, or
mixtures, to include in the experiment. So, before an optimal design may be chosen, the experimenter
must specify to the software both a model order and a number of design points.

A particularly excellent text on mixture experiments is that of Wendell F. Smith (2005).

Key Points

» Mixture experiments involve factors whose “levels” add to a constant that is the same for each run;
usually the constant is 1.

» Second-order mixture experiments have second-order cross-product terms, but no squared terms.

* Analyses for mixture experiments are the same as those for designs with factors whose levels are
independently chosen from one another.

» The choice of design can be done to satisfy various optimality criteria, such as minimizing the
parameter estimate variance (D-optimal), minimizing individual predicted value variance
(G-optimal), or minimizes average predicted value variance (V-optimal).

Exercises and Questions

1. Create a mixture design for fitting a second-order model with four mixture components, X1, X2,
X3, X4, and the following constraints:

X1 > 0.025
X2+4+X3<0.60
X4 > 0.15

2. What sort of designs might be constructing if there are both mixture components and processing
variables?



Chapter 9
Some Examples and Applications

Range Finding

Once an optimal point has been found, it may be desirable to find ranges of the factors where the
response may not be optimal but may be sufficient. The approach we will take is based on the notion
of inverse regression (Draper & Smith, 1998).

Suppose a first-order model has been fit:

Yy =bo+ bix

Suppose further that we have determined a range of values for the response variable, y, that are
acceptable. Let the range be described as:

YoEt O
The range of x values expected to yield acceptable values of the response are:

by

XL =

and
¥ _y0+5—b()
U—ibl

The estimation issue is that since both by and b, have sampling variation, we would like to obtain
some kind of probabilistic bounds on x; and x;. Using the standard error formula for a predicted value
from a simple linear regression, the lower confidence limit for a “predicted” value of y, — & would be

given by:
. 1 (e —%)°
yL yO S n + SSX

where  SS, =>"", (x; — x)%, ¢ is the appropriate percentile of a Student’s t distribution,
¥, = bo + bixr, and s is the RMSE from the regression. Solving for x;; entails finding the roots of
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a quadratic polynomial, and using the smaller real root as the lower confidence limit on x;. A similar
process could be followed for x;;;, namely, solving:

Po = yot 6415y | Ly Qv =9
U= n SS.

For the sake of being conservative, use the larger real root as the upper confidence limit for x;;. In the
cases of no real roots, one could use j:|z|, where z is the complex root. The idea of using the
confidence limits for the potential range of x values is to provide the experimenter with a set of
experimental conditions to use in an exploratory fashion. That is, once the range of x values is
determined algebraically, an experiment should be performed, to verify that the response values are in
fact acceptable at the extended limits on x.
More generally, suppose the polynomial model is fit:
Y=bo+b1Z +byZy+ ...+ bZy

Note that the Z; could be powers of a single regressor, or they could be other variables. The inverse
regression problem would be to find values of the Z;, call them Zjo, such that

Yo =bo+b1Z) + 023+ ...+ b Z}
To obtain point estimates for the ranges of the regressors, solve:
Yo — 8=bo+bZE +bZ5 + ...+ b Zf
and
Yo+ 6=bo+b0Z! +b:ZY + ...+ bzl
Finding confidence limits for the ZjL and the ZjU would involve finding solutions to:
PSE® = (bo + b1 ZE + byZE + . 4 B ZE — (5, — 5))°
and

£SE* = (bo + 0i1ZVY + 0oZ8Y + ...+ b ZlV — (5, + 6))2

SE =35 zz) [Z'Z]71z0

10
Z 1
0 = :
zZ
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Z = matrix of regressor values
s = RMSE fromregression
t = appropriate percentile of Student’s t distribution.

A Quadratic Example

Suppose the equation resulted from a least squares fit:
y = 10.39 + 38.10x — 48.80x
Figure 9.1 illustrates the data and the approximating polynomial.

The root mean square error (RMSE) from the model was s = 0.7124. If x,, represents the optimal
point, then the estimate of the optimal response is the solution to:

22
21 H
20 q
19 H
18 - Qe
17
16
15 ©
14 H
13 ©
12 A
11
> 10
9 o
8 -
7 -
6 -
5 -
4 -
3 4

f T T T T T T T T T T T T T
-02-01 0 01 02 03 04 05 06 07 08 09 1 11

X

Y O Y obs. -+ —— Quadratic Fit

Fig. 9.1 Data and polynomial fit for quadratic range finding example



128 9 Some Examples and Applications

38.10 — 48.80xp = 0,x9 =~ 0.3904, y, ~ 17.83

Suppose that any value of the response withiny, + § = 17.83 £ 0.15would be acceptable. Then
all that is necessary to find values of x such that:

bo+ bix+bx* =y, — & (9.1)
or

bo + bix+bx* =y, + & (9.2)
Since the value of y, is a maximum for this quadratic function, the solutions to equation (9.1) are what
we seek. The solutions are therefore x; ~ 0.3349 and x; = 0.4458. That is, these are “point
estimates” for the limits of acceptable x values. However, a 100(1-a)% confidence limit for y, —

would be:
Yo — 6 — tSE (?0 |x0) where t is the appropriate percentile of a Student’s t distribution and

SE(?O‘xO) =s\/x [XJX]_lxo

and
Xo = | Xo

1 x  x
2
1 X12 Xy

As usual, s represents the RMSE from the regression. To find confidence limits x; or xy, find the
solutions to the equation:

bo + bix+bx* =y, — 8 — tSE(¥o|%0)
With
SE(¥o|x0) ~ 0.2165
then:
Yo — 6 — 1SE(Yo|xo) = 17.2088.

The 95 % confidence limits are x; =~ 0.2779 and x;; &~ 0.5029. This interval may be interpreted as the
range of x values which is 95 % certain of yielding an acceptable response value.

Once the range of x values has been determined, a confirmatory experiment is appropriate. That is,

observe the value of y at x; and at x;; and check to see if your observations actually are within the
desired range of the response.
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Fig. 9.2 Excel set-up for finding limits with quadratic response equation

By accounting for sampling variation in the predicted value, the solutions x; and x; may yield
response values that are outside the acceptable range of performance. However, by performing an
additional experiment over the range (x;, xy/), the EAS may find that there is a wider interval in x,
beyond the “point estimate” limits, over which acceptable response values can be obtained with a
high degree of probability.

In the case of the quadratic approximating equation in a single factor, solving for the limits (x;, x;)
can be accomplished with the quadratic solution formula. When there are more than one regressors, or
there are higher-order terms, such formulas may not exist. Numerical methods can be used, however.
The MS Excel™ Solver Add-in provides a tool for solving maximization/minimization/root-finding
problems subject to constraints. Figure 9.2 shows an Excel worksheet with a set-up for finding limits
using Solver.

Figure 9.3 shows the Solver window.

Since there are two solutions to the equation, the Solver must be executed twice, with a starting
value for x (X) that is lower than desirable, and a starting value of x that is higher than desirable. In
this case, the objective is to set the function:

Diff Y1 CL = Ycalc — (Y, — tSE — 6)
to equal 0, by changing the value of X. Ycalc is given by:

Yecale = b0 + b1#X + b2¥X?
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Table 9.1 Blender experimental Factor Low (—1) High (+1)
factors and levels -
Plunger shape Rectangular Circular
Plunger size 6.4 cm 9.7 cm
Type of surface Concentrated Distributed
Plunger force ON 40N
Rotation None Rotation

A Factorial Problem

Otto and Wood (2001) describe the use of a factorial experiment to aid in the design of a household
blender. The objective is to design a device that will liquefy solid vegetable matter. The
experimenters chose to attempt to blend 200 g of vegetables for 10 s. The response variable is the
percent of the 200 g that are liquid after 10 s of blending. Their design concept involves adding a
plunger that imparts a force on the vegetables as they are being blended. There were five factors:

. Plunger shape
. Plunger size

DA W -

. Plunger rotation

. Type of surface (part of the plunger that contacts the vegetables)
. Plunger force (force imparted on the vegetables)

Suppose the experimenters decided to use a one-half fraction of a 2> design, that is, 2>, which is
resolution V. That is, they decided to use exactly two different values for each factor. Table 9.1 shows

the factors and their levels.

Figure 9.4 shows the experimental design alias structure as generated using Minitab 16.
Notice that the generator effect for this design is the five-way cross-product term, so that each main
effect is aliased with a four-way cross-product and each two-way cross-product is aliased with a
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Welcome to Minitab, press F1 for help.

Fractional Factorial Design

Factors: ol Base Design: 5, 16 Resolution:
Runs: 16 Replicates: 1 Fraction:
Blocks: 1 Center pts (total): 0

Design Generators: E = ABCD

Alias Structure

I + ABCDE
A + BCDE
B + ACDE
C + ABDE
D + ABCE
E + ABCD
AB + CDE
AC + BDE
AD + BCE
AE + BCD
BC + ADE
BD + ACE
BE + ACD
CD + ABE
CE + ABD

DE + ABC

Fig. 9.4 Blender experimental design

12
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Table 9.2 Runs for the Run PShape P.Size

5.1 . Surface P.Force Rotation
27" blender experiment

-1 -1 -1 -1 1

1 -1 -1 -1 -1
-1 1 -1 -1 -1

1 1 -1 -1 1
-1 -1 1 -1 -1

1 -1 1 -1 1
-1 1 1 -1 1

1 1 1 -1 -1
9 -1 -1 -1 1 -1
10 1 -1 -1 1
11 -1 1 -1 1
12 1 1 -1 -1
13 -1 -1 1 1
14 1 -1 1 -1
15 -1 1 1 —1
16 1 1 1 1

0 NN AW =

— e e e b e

three-way cross-product. The model we will fit to data will therefore only include main effects and
two-way cross-product terms.

Table 9.2 shows the runs for this ¥ fractional design.

Each run was replicated twice (each of the 16 prototypes were run with two loads of 200 g each).
The data are given in Table 9.3.

Figure 9.5 shows the ANOVA output from JMP 11.

Figure 9.6 shows the residual plot for this model. Inasmuch as the residuals plotted against the
expected results average percent blended for each run) show no discernable pattern, it seems
reasonable to believe that the underlying assumption of constant noise variance is true. Thus, the
p-values are fair indicators that the effects we have observed are repeatable. All main effects were
significant (p < 0.0001). Table 9.4 shows the average response for each main effect at each of the two
levels. Three two-way cross-products were significant; P.Shape*Rotation, P.Size*P.Force, and P.
Force*Rotation. Figure 9.7a, b, and c shows the interaction plots for the significant cross-products.

If the experimenters were to use the mean results by factor and level, then they might conclude that
the best design would be P.Shape = circular, P.Size = 9.7 cm (radius of plunger), Surface =
concentrated, P.Force = 40 N, and Rotation = Rotate. There are some possible problems with this
conclusion. The interaction plot of P.Force*Rotation indicates that P.Force = 0 N and Rotation =
None is the best (i.e., highest percent blended). A post-hoc comparison indicates that in fact there is a
significant (repeatable) difference between all four combinations of P.Force and Rotation, and that P.
Force = 40 N and Rotation = None is the best configuration. Figure 9.8 shows the comparisons,
together with p-values, using the Tukey Honestly Significant Difference (HSD) method.

Finally, consider the run that yielded the best results, namely run 12, which had P.Shape =
circular, P.Size = 9.7 cm, Surface = concentrated, P.Force = 40 N, and Rotation = None. The
data seem to lead to three different conclusions about the best design. Of the three contenders, only
one has data (Run 12) that were actually observed in the experiment. One way to adjudicate this
situation is to compute predicted values for each of the three possible configurations. A model can be
fit, using the Helmert-coded levels, and incorporating only those interactions that were significant in
the ANOVA. Figure 9.9 shows the regression fit output. Note that all coefficients are significantly
different from 0 (p < 0.0001), and adjusted R? is approximately 0.9963, indicating a good fit.
Table 9.5 summarizes the three possible configurations, together with predicted response values
and associated 95 % confidence intervals.
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Table 9.3 Blender experiment data

Run P.Shape P.Size (cm) Surface P.Force (N) Rotation Percent Blended
1 Rect. 6.4 Concentrated 0 Rotate 63.86
1 Rect. 6.4 Concentrated 0 Rotate 66.91
2 Circ. 6.4 Concentrated 0 None 42.28
2 Circ. 6.4 Concentrated 0 None 41.05
3 Rect. 9.7 Concentrated 0 None 7.80
3 Rect. 9.7 Concentrated 0 None 6.22
4 Circ. 9.7 Concentrated 0 Rotate 67.38
4 Circ. 9.7 Concentrated 0 Rotate 68.57
5 Rect. 6.4 Distributed 0 None 3.73
5 Rect. 6.4 Distributed 0 None 2.58
6 Circ. 6.4 Distributed 0 Rotate 64.86
6 Circ. 6.4 Distributed 0 Rotate 65.14
7 Rect. 9.7 Distributed 0 Rotate 44.82
7 Rect. 9.7 Distributed 0 Rotate 47.04
8 Circ. 9.7 Distributed 0 None 24.22
8 Circ. 9.7 Distributed 0 None 26.47
9 Rect. 6.4 Concentrated 40 None 29.32
9 Rect. 6.4 Concentrated 40 None 24.64
10 Circ. 6.4 Concentrated 40 Rotate 36.39
10 Circ. 6.4 Concentrated 40 Rotate 40.36
11 Rect. 9.7 Concentrated 40 Rotate 70.86
11 Rect. 9.7 Concentrated 40 Rotate 68.62
12 Circ. 9.7 Concentrated 40 None 94.66
12 Circ. 9.7 Concentrated 40 None 95.84
13 Rect. 6.4 Distributed 40 Rotate 20.16
13 Rect. 6.4 Distributed 40 Rotate 20.22
14 Circ. 6.4 Distributed 40 None 45.42
14 Circ. 6.4 Distributed 40 None 44.70
15 Rect. 9.7 Distributed 40 None 56.00
15 Rect. 9.7 Distributed 40 None 54.08
16 Circ. 9.7 Distributed 40 Rotate 69.80
16 Circ. 9.7 Distributed 40 Rotate 67.40

It appears that in this case, the run with the best observed response values (Run 12, Alt. 3) is the
optimal choice for the product design. The presence of interaction effects made the choice indicated
by maximizing the average results of the main effects (Alt. 1) yield a suboptimal design choice.
Furthermore, simply choosing the design based on the optimal results for only one of the significant
interaction effects also proved to yield a less desirable alternative (Alt. 2).

Despite the fact that the conditions of Run 12 were clearly the best, based on the model and
experimental data, it would be prudent to obtain some additional data with all three alternatives.
Table 9.6 shows the results of three replicates of the experiment with the three alternative designs.

The means and standard deviations (SD) of percent blended for each of the alternatives is given in
Table 9.7.

The confirmatory experiment indicates that in fact Alternative 3 (Run 12 from original experi-
ment) appears to be the winning design for the product. It also appears to have the added benefit of
having the most consistent results (smallest SD). In order to test whether we should believe that the
reduced SD is a repeatable phenomenon, we can compute the ratios of variances:



Response Percent Blended

Summary of Fit

RSquare

RSquare Adj

Root Mean Square Error
Mean of Response
Observations (or Sum Wgts)

Analysis of Variance

Source DF Sum of Squares
Model 15 19377.324
Error 16 40.065
C. Total 31 19417.388

Effect Tests
Source Nparm
P.Shape

P.Size

Surface

P.Force

Rotation
P.Shape*P.Size
P.Shape*Surface
P.Shape*P.Force
P.Shape*Rotation
P.Size*Surface
P.Size*P.Force
P.Size*Rotation
Surface*P.Force
Surface*Rotation
P.Force*Rotation
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Fig. 9.5 ANOVA output—blender experiment

Fig. 9.6 Residual by
expected plot 2
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0.997937
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<.0001*
<.0001*
<.0001*
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0.2337
0.4899
<.0001*
0.1948
<.0001*
0.5851
0.8006
0.9055
<.0001*
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Table 9.4 Mean response

Factor Level Least sq mean Std error
by factor and level
P.Shape Rect. 36.677 0.3956
P.Shape Circ. 55.909 0.3956
P.Size 6.4 cm 38.226 0.3956
P.Size 9.7 cm 54.360 0.3956
Surface Concentrated 51.547 0.3956
Surface Distributed 41.039 0.3956
P.Force ON 40.183 0.3956
P.Force 40 N 52.403 0.3956
Rotation None 37.438 0.3956
Rotation Rotate 55.149 0.3956

P - DAy, 1.363
SD3,, 0.319%

~ 18.26

Under the null hypothesis of no difference in variances between Alternative 1 and Alternative
2, the statistic F'; has an F distribution with 3 — 1 = 2° of freedom in both numerator and denomi-
nator. The p-value from an F distribution with 2° of freedom in the numerator and denominator is
approximately 0.0519, which is close to significant. Similarly,

_ SD3,, _0.586

Fy= ~
2T SD2,, 03192

~ 3.37

which has a p-value of approximately 0.2288. This is clearly not significant. Although a larger sample
size might yield significant p-values, the experimenters/designers should determine whether the
additional experimentation would be worth knowing that the most desirable alternative in mean
response is also the most consistent.

Another Factorial Problem

From elementary physics, we know that voltage, V, is electrical potential, the potential energy
required to move electrical charge, ¢, through a conductor. The change in voltage is electromotive
force, namely the force required to move a charge through the conductor between two points along
the conductive path. Work, W, is the change in voltage times the electrical charge. Power, P, is the
work per unit time, ¢. The mathematical expressions are the following:

14
AV == => W =gAV
q

w
p_V_ qAV
t t

From Ohm’s law, we know the relationship between voltage, V, current, /, and resistance, R:

V=IR
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So:
AV = IR — IR

where I, and R are the initial values of current and resistance.
An implantable defibrillator is a device that is used to “restart” a heart that has stopped beating.
The most commonly known cause of heart stoppage is called ventricular fibrillation. Then ventricles

P.Shape*Rotation
Least Squares Means Table

Level Least Sq Mean Std Error
rect.,None 23.044572 0.55946819
rect.,Rotate 50.309776 0.55946819
circ.,None 51.830708 0.55946819
circ.,Rotate 59.987394 0.55946819

LS Means Plot
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P.Size*P.Force
Least Squares Means Table
Level Least Sq Mean Std Error
6.4cm,0ON 43.802038 0.55946819
6.4cm,40N 32.649846 0.55946819
9.7cm,0ON 36.563768 0.55946819
9.7cm,40N 72.156797 0.55946819
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Fig. 9.7 (a) Significant interaction plots—P.Shape*rotation; (b) significant interaction plots—P.Size*P.Force;
(c) significant interaction plots—P.Force*rotation



Another Factorial Problem

C
P.Force*Rotation
Least Squares Means Table

Level Least Sq Mean

ON,None 19.293506
ON,Rotate 61.072300
40N,None 55.581774
40N,Rotate 49.224870

LS Means Plot
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Fig. 9.7 (continued)

P.Force*Rotation
Least Squares Means Table

Level Least Sq Mean
ON,None 19.293506
OM,Rotate 61.072300
40N,None 55.581774
40N, Rotate 49.224870

LSMeans Differences Tukey HSD
o=

0.050 Q=

2.86102

Level

ON,Rotate A

40N,Mone B

40N, Rotate C
ON,None D

40N

P.Force

Std Error
0.55946819
0.55946819
0.55946819
0.55946819

Levels not connected by same letter are significantly different.

Level - Level Difference
ONM,Rotate OM,None 41.77879
40N,None ON,None 36.28827
40M,Rotate OMN,MNone 2993136
ON,Rotate 40N, Rotate 11.84743
40N,None 40N,Rotate 6.35690
OM,Rotate 40N,None 5.49053

Std Err Dif
0.7912075
0.7912075
0.7912075
0.7912075
0.7912075
0.7912075

Fig. 9.8 Pairwise comparisons of P.Force*rotation cross-product (tukey HSD)

Std Error
0.55946819
0.55946819
0.55946819
0.55946819
None =e-
Rotat -+
Least Sq Mean
61.072300
55.581774
49.224870
19.293506
Lower CL Upper CL
39.51513 4404245
34.02461 38.55193
27.66770 32.19502
9.58377 1411109
4.09324 8.62056
3.22687 7.75419
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p-Value
<.0001*
<.0001*
<.0001*
<.0001*
<.0001*
<.0001*
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Response Percent Blended

Summary of Fit

RSquare

RSquare Adj

Root Mean Square Error
Mean of Response
Observations (or Sum Wgts)

Analysis of Variance

0.997223
0.996257
1.531213
46.29311

32

9 Some Examples and Applications

Source DF Sum of Squares Mean Square F Ratio
Model 8 19363.462 242043 1032.338
Error 23 53.926 234 Prob > F
C. Total 31 19417.388 <.0001*
Lack Of Fit
Source DF Sum of Squares Mean Square F Ratio
Lack Of Fit i 13.861504 1.98021 0.7908
Pure Error 16 40.064596 2.50404 Prob > F
Total Error 23 53.926100 0.6055
Max RSq
Parameter Estimates
Term Estimate Std Error t Ratio Prob>|t|
Intercept 46.293113 0.270683 171.02 <.0001*
P.Shape 9.6159383 0.270683 35.52 <.0001*
P.Size 8.0671702 0.270683 29.80 <.0001*
Surface -5.253818 0.270683 -19.41 <.0001*
P.Force 6.1102094 0.270683 22.57 <.0001*
Rotation 8.8554725 0.270683 3272 <.0001*
P.Shape*Rotation -4.777129 0.270683 -17.65 <.0001*
P.Size*P.Force 11.686305 0.270683 4317 <.0001*
P.Force*Rotation -12.03392 0.270683 -44 .46 <.0001*
Fig. 9.9 Multiple regression Fit of reduced model—helmert-coded regressors
Table 9.5 Possible conclusions about optimal design
Alt. 1 Alt. 2 Alt. 3
Factor Main effects Interaction Best run
P.Shape Circular (+1) Circular (+1) Circular (+1)
P.Size 9.7 cm (+1) 9.7 cm (+1) 9.7 cm (+1)
Surface Concentrated (—1) Concentrated (—1) Concentrated (—1)
P.Force 40 N (+1) ON(—1) 40 N (+1)
Rotation Rotate (+1) None (—1) None (—1)
Predicted response 79.07 35.32 94.98
LCL (mean) 77.39 33.64 93.30
UCL (mean) 80.75 37.00 96.66
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Table 9.6 Three alternative designs: Confirmatory experiment results

Alternative P.Shape P.Size (cm) Surface P.Force (N) Rotation Percent blended
Alt. 1 Circ. 9.7 Concentrated 40 Rotate 80.84
Alt. 1 Circ. 9.7 Concentrated 40 Rotate 78.65
Alt. 1 Circ. 9.7 Concentrated 40 Rotate 81.16
Alt. 2 Circ. 9.7 Concentrated 0 None 35.69
Alt. 2 Circ. 9.7 Concentrated 0 None 36.82
Alt. 2 Circ. 9.7 Concentrated 0 None 35.99
Alt. 3 Circ. 9.7 Concentrated 40 None 96.15
Alt. 3 Circ. 9.7 Concentrated 40 None 96.34
Alt. 3 Circ. 9.7 Concentrated 40 None 95.71

Table 9.7 Means and standard

e Alternative N Mean % blended SD
deviations of percent blended 3
for alternative designs Alt. 1 3 80.216 1.362

Alt. 2 3 36.165 0.586
Alt. 3 3 96.067 0.319

are the power pumps of the heart. They regularly pump blood into and out of the heart, and their
pumping cycle is regulated by electrical impulses. If those impulses are interrupted or altered, the
ventricles may not pump. If the pulses increase their frequency, the ventricles may pump so rapidly
that they fail. Rather than pumping steadily, they may simply vibrate, or fibrillate. Ventricular
fibrillation (VF) is a form of heart attack.

An implantable defibrillator has a sensor that detects increased frequency of the electrical impulses
being delivered to the ventricles. If the rate increases beyond some predetermined threshold, the
defibrillator will discharge electrical energy to the heart’s regulator (usually in the range of
200-360 J) to hopefully interrupt the increased impulse rate, and avoid ventricular fibrillation.

There are several factors that affect the delivered voltage. There is the resistance of the cardiac
lead (wire cable) that delivers the voltage. There is the voltage source (battery). The resistance
encountered at the site where the lead contacts the heart’s natural pacemaker affects the delivered
voltage. The power required to end fibrillation is a probabilistic quantity. That is, a given power level
has some probability of stopping the VF. Even if total resistance is known, and the voltage from the
battery is fixed, the required power cannot be known with certainty.

The energy unit Joules (J) can be expressed as coulomb-volts:

J=CV

Coulombs, in turn, are a product of current, in amperes, and duration of electrical flow, in seconds, s.
Thus:

C=Is
J=1Vs

From Ohm’s law, current is the ratio of voltage to resistance:

I =

x| <
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So, the energy (E, measured in Joules) delivered by the defibrillator is:

V2
E=—s
R

In addition to controlling V and s, the EAS may choose to use either a monophasic or biphasic wave
form. That means either current flows in one direction, or current changes direction in the middle of
the wave form. Generally, it has been shown that biphasic waveforms require less energy E to
cardiovert (defibrillate) than the monophasic approach. The voltage and the duration of the shock can
be controlled. The resistance, R, is a function of the patient’s physiology, so it cannot be controlled.
However, it can be measured.

In practice, the energy to charge the capacitor in the defibrillator is selected. The voltage can be
calculated:

Suppose that the EAS has a cardiac simulator, where heart tissue resistance (in ohms) can be selected,
and where VF can be simulated. This simulator allows the EAS to simulate the action of the
defibrillator, which may or may not stop the VF event. The EAS decides that the factors to be varied,
and the ranges over which they will be varied are:

Energy (E)—in Joules—180-360 J (center value = 270 J)
Heart Resistance (R)—in ohms—2250-5400 Q (center = 3825 Q)
Wave-form duration (s)—in seconds—0.02-0.03 s (center = 0.025 s)

The EAS decides to use a 3-factor CCD experiment. In each “run”, the experiment will be
replicated 100 times. The response for the experiment will be the proportion of times in which
defibrillation was achieved. Since the simulator includes some random components, so each time the
simulator is run, the outcome is uncertain. The experiment will be repeated at the centerpoint run two
times, to get an estimate of variability.

Table 9.8 shows the design points in natural and coded units, and the response (Percent Success).

Figure 9.10 shows the JMP output for fitting the full second-order model.

Five of the terms have coefficients that are not significantly different from zero. One of them is a
main effect, s, the duration of the pulse. Three of them are higher-order terms with s as a component.
Apparently the pulse duration, as long as it is between 20 and 30 ms, has no appreciable effect on the
probability of defibrillating. Refitting the model without these terms will yield a more parsimonious
(remember our friend, William Ockham) model. The fit is shown in Figure 9.11.

Now all terms are significant. The final model, with regressors in Helmert-coded units, is:

Pr{defibrillation} = 93.03 + 12.42*E — 7.57*R 4 6.84*E*R — 7.32%F?

Recall that Pr{defibrillation} is expressed as a percent.

Since resistance, R, is not a design variable, one can ask the question, “for a given value of R, what
value of £ will make Pr{defibrillation} > 95 %, subject to the constraints that E < 360J ?”” Table 9.9
shows some results.

Of course, 95 % may not be a sufficient likelihood for achieving defibrillation. However, the point
is that the model can be used to make a guess at the energy required. The EAS can then use the
fundamental relationships:
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Table 9.8 Central composite design with percent success data

E R S E-coded R-coded s-coded Percent success (%)
180 2250 0.02 —1 -1 -1 79
180 2250 0.03 -1 —1 1 78
180 3825 0.025 -1 0 0 89
180 5400 0.02 —1 1 —1 95
180 5400 0.03 -1 1 1 94
270 2250 0.025 0 -1 0 80
270 3825 0.02 0 0 -1 90
270 3825 0.025 0 0 0 90
270 3825 0.025 0 0 0 90
270 3825 0.03 0 0 1 89
270 5400 0.025 0 1 0 95
360 2250 0.02 1 -1 -1 82
360 2250 0.03 1 -1 1 81
360 3825 0.025 1 0 0 91
360 5400 0.02 1 1 -1 96
360 5400 0.03 1 1 1 95

Response Percent Success

Summary of Fit

RSquare 0.99442
RSquare Adj 0.98605
Root Mean Square Error 1.589104
Mean of Response 88.45292
Observations (or Sum Wgts) 16

Analysis of Variance

Source DF Sum of Squares Mean Square F Ratio
Model 9 2700.1937 300.022 118.8086
Error 6 15.1515 2525 Prob > F
C. Total 15 2715.3452 <.0001*

Parameter Estimates

Term Estimate Std Error t Ratio Prob>|t|
Intercept 93.565317 0.752333 12437 <.0001*
E-coded 12.418758 0.502519 2471 <.0001*
R-coded -7.56774 0.502519 -15.06 <.0001*
s-coded -0.295609 0.502519 -0.59 0.5778
E-coded*R-coded 6.8446563 0.561833 12.18 <.0001*
E-coded*s-coded 0.1192137 0.561833 0.21 0.8390
R-coded*s-coded -0.357064 0.561833 -0.64 0.5485
E-coded*E-coded -6.569138 0.9787 -6.71 0.0005*
R-coded*R-coded -1.585718 0.9787 -1.62 0.1563
s-coded*s-coded -0.024973 0.9787 -0.03 0.9805

Fig. 9.10 Defibrillator full second-order model
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Response Percent Success

Summary of Fit

RSquare

RSquare Adj

Root Mean Square Error
Mean of Response
Observations (or Sum Wgts)

Analysis of Variance

0.990936
0.987641
1.495771
88.45292

16

9 Some Examples and Applications

Source DF Sum of Squares Mean Square F Ratio
Model 4 2690.7345 672.684 300.6636
Error 11 24,6106 2.237 Prob > F
C. Total 15 2715.3452 <,0001*
Parameter Estimates
Term Estimate Std Error t Ratio Prob>|t|
Intercept 93.02842 0.610646 152.34 <.0001*
E-coded 12.418758 0.473004 26.26 <.0001*
R-coded -7.56774 0.473004 -16.00 <.0001*
E-coded*R-coded 6.8446563 0.528835 12.94 <.0001*
E-coded*E-coded -7.320794 0.772413 -9.48 <.0001*
Fig. 9.11 Defibrillator reduced second-order model
Table 9.9 Model results g (coged) E () R (coded) R (Q) Pr{Defib} (%)
for achieving Pr
{defibrillation} > 95 % —0.572 218.5 -1 2250 95.01
0.177 285.9 0 3825 95.00
0.662 329.6 1 5400 95.00
E=1Vs
V
I=—
R
ER
V=4—

to determine voltage and current.
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Key Points

» Applications of experimental designs include range finding and optimization.
+ Confidence intervals for predicted values will provide a means incorporating variability in
product/system design.

Exercises and Questions

Design an experiment, execute it, and fit a model/analyze the data. Discuss why you chose the
particular design and the model.



Chapter 10
Binary Logistic Regression

What Are the Odds?

Most people have heard the term “Odds”, and know that it has something to do with the likelihood of
obtaining a “successful” outcome in some sort of game or trial. If P represents the probability of
“success”, then 1 — P is the probability of “not success”. The odds are:

As an example, suppose the “game” is to toss a 6-sided die. Perhaps we are interested in the odds of
obtaining an even number of dots face up after the throw. Clearly there are n = 6 possibilities for the
outcome, and 3 of them (2, 4, 6) are even. So:

And
3
1—-P=—
6

The odds of an even result (in comparison to not even) is then:

P 3/6 3
:7:7:7:1
O=1"p 3/6 3

Thus, the odds of “even” versus “not even” are 1, which, ironically, is called “even odds”. That is,
there is no greater or lesser likelihood of obtaining an “even” number versus a “not even” number.
Suppose we consider a different pair of events, namely obtaining either a “1”, “2”, “3” or a “5” versus
anything else (either “4” or “6”). Then we have:

4
P=-
6
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2
1-p==
6

P 4 4
1-P 2/6 2

Now we say that it is two times as likely for obtaining either “1”, “2”, “3” or a “5” versus not, or the
odds of either “17, “2”, “3” or a “5” are 2 to 1 in favor. Now, if you are told that the odds are 3 to 1 in
favor of a particular horse to win a race, you know that it is three times as likely that this horse will
win, versus not (i.e., some other horse will win).

An odds ratio is the ratio of odds for two different conditions. Suppose there are two teams in a
sporting event. Each team has some probability of winning, and consequently a probability of losing.
Let P, represent the probability that team 1 will win, and P, the win probability for team 2. We
presume that the probabilities of winning are not conditioned on the fact that these particular two
teams are competing against each other. Thus P; and P, are not necessarily complementary; P is not
necessarily equal to 1 — P,. Then the odds for each team are:

0,=_"11

'Y 1Cp
P,

0:

2T 1P,

The odds ratio is then:

01 _Pi/(1-P))
0, Py/(1—Py)

The odds ratio in the number of times more likely the “numerator” team is to win compared to the
“denominator” team. Suppose P; = 0.90 and P, = 0.45. Then the odds ratio of team 1 to team 2 is:

01 _Pi/(1=Py) _090/0.10 .
0, P,/J(1—P,) 045/0.65

So team 1 is 13 times more likely than team 2 to win the contest. Note that the ratio of P to P; is only
0.90/0.45 = 2. This ratio does not incorporate the probability that a given team could lose.
The Logit Transformation

It will be convenient to use the natural logarithm of odds rather than the odds directly. So we will
define the logit (pronounced “low-jit”) of P to be:
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If one was given the logit’s value, one could solve for P:

1
P=—"
1 +e?

Keep in mind that P represents the probability of obtaining a “success”, however success is

defined. Furthermore, we will define a Bernoulli random variable, Y, to have the following binary
values:

Y — 1 if “success”
a 0 otherwise
Thus,
P=Pr{Y =1}

Suppose that the logit was in fact a linear function of some regressor, X, so that:

P(X
By solving for P(X), we get:
1 1

P(X)=Pr{Yy =1]X} = 11 o0 11 e-GohX)

Once data are collected, the parameters f, and f; may be estimated. The estimates may be

obtained in many ways, but a common way is via maximum likelihood. The likelihood function for
a sample of binary results, y, 5, . . .,yn, and the associated regressor values xy, xa,. . .,X,, i given by:

1p) = [T )1 = atx)

where:

ePothixi 1
71'()6,‘) - 1 + ePotPrxi - 1 + ePotPrxi

=Pr{Y = 1|x}

The idea is to find values of fy and f; that maximize the likelihood function. Generally it is easier
to maximize the logarithm of the likelihood function, since it involves sums and not products. Taking
the natural log of L(f), differentiating with respect to f, and f,, and setting the partial derivatives
equal to O gives the equations:

and
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in(yi —(x;)) =0

Inasmuch as both of these equations are non-linear with respect to the two unknown parameters, there
is no closed form solution. Rather, numerical approximation methods such as Newton-Raphson must
be employed.

Once the model parameters are estimated, a measure of goodness is given by:

. 7 1—7;
D=-2 [yiln (—’) +(1— y,.)ln( ’)}
; Vi -y,

Where 7; = —1——is the predicted probability that Y = 1 when X = x;. Note that if y; = 0, then the

1+efotPr1vi
first term in the sum is set to 0, and if y; = 1, then the second term is set to 0. The quantity D is called
the deviance (Hosmer and Lemeshow 1989), and is analogous to the sums of squares for error in a
usual multiple regression model. It can be used to compare the goodness of fit for models with
different combinations of regressors. In general, lower deviance is more desirable.
It is fairly easy to generalize the logistic equation to multiple regressors:

I |
L+e ) 1 4o '8

P(X)=Pr{Y = 1|x} =

x = [1x1 xp - - -x¢] is a vector of regressors (the “1” is the “regressor” for the intercept)
and
Po
p= | i | is avector of unknown parameters.
P

The values of the x; could be chosen in a designed experimental fashion, say a 2 ~ P design. The y;
are binary observations. For the Moment, we will assume that the x; are continuously valued
regressors, and our objective is to find a predictive equation for the probability of a “success”
(Y = 1) in terms of the x;. Furthermore, in building this probability model, we would like to determine
which if any of the regressors (x;) actually affect the probability that ¥ = 1.

Example: Continuous Regressors

Consider the problem of designing a natural gas pipeline (White 2012). Suppose that the EAS wants
to maximize the probability that the pipe will not leak. Furthermore, to simplify the problem, suppose
that there are only three design factors to be considered:

Pipe outer diameter (OD)
Pipe wall thickness (WT)
Specified minimum yield strength (SMYS)

OD and WT are fairly obvious in their nature, and will be measured in inches. SMYS is defined to
be the force (in psi) at which the steel used to make the pipe begins to stretch (White, ref.cit.).
Table 10.1 shows these factors and the range over which our EAS is interested.

The EAS asks the engineering lab to put together several prototype systems, and perform a leak
test. The response for each test is binary; either the pipe leaked (¥ = 0) or not (Y = 1). Furthermore,
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Table 10.1 Pipeline factors and levels

Factor Low Middle High Units
Outer diameter (OD) 48 60 72 Inches
Wall thickness (WT) 6 12 18 Inches
Specified max yield strength (SMYS) 60,000 70,000 80,000 psi

Table 10.2 Box-Behnken

Run OD WT SMYS
design—3 factors, 13 runs
1 48 6 70,000
2 48 12 60,000
3 48 12 80,000
4 48 18 70,000
5 60 6 60,000
6 60 6 80,000
7 60 12 70,000
8 60 18 60,000
9 60 18 80,000
10 72 6 70,000
11 72 12 60,000
12 72 12 80,000
13 72 18 70,000

the EAS decides to fit a logistic function using data from a 3-factor Box-Behnken design, with each
design point replicated n = 15 times. Table 10.2 shows the design points (runs). Run #7 is the center
point.

The EAS first uses Helmert coding to transform the regressors into the interval (—1,+1), and then
fits the data to the model using the R code shown in Fig. 10.1. The R output is shown in Fig. 10.2.

The last line of code stores all the predicted probabilities for “success” (no leak), as computed by
the logistic model. Figure 10.3 shows SAS code for fitting the same model. The SAS procedure
GENMOD allows the use to compute confidence intervals for predicted values at each point.
Figure 10.4 shows the SAS output. Table 10.3 shows the predicted probabilities of No Leak, together
with 95 % confidence limits (LCL, UCL) for each run.

One might ask just how the confidence intervals for predicted values are computed. Assume the
vector:

Xk

represents a particular point in the regressor space. Then the predicted logit at this point is:

Ax)=xp
and
_ [5o
p= |
P

is the vector of coefficient estimates.
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setwd("H:\\Personal Data\\Experimentation for Design & Validation\\Data & Analyses\\")

df1 <-read.csv("20140813 pipeline.csv")

attach(df1)

model_bin <- glm(No.Leak ~ OD.coded + WT.coded + SMYS.coded,

+ family = binomial("logit"),na.action=na.omit)

summary(model_bin)

confint(model_bin)

anova(model bin,test="Chisq") #computes a sequential likelihood ratio chi squared #statistic for
each effect in the model

#

df1$probmod <- predict(model bin,type="response")

#

# for glm objects the predict function defaults to returning log odds ratios

# the parameter type ="response" will make predict return predicted probabilities of a
response

#

tapply(probmod,SMY S.coded,quantile)

tapply(probmod,WT.coded,quantile)

tapply(probmod,OD.coded,quantile)
write.csv(dfl,file="20140814.pipeline.probs.csv")

Hln

Fig. 10.1 Logistic regression R code

The variance of the estimated logit at x is:
V(E) = xZx

where I is the estimate of the variance-covariance matrix of the coefficient estimates. The standard
error, SE (/1 of the estimated logit is the square root of the variance.
The confidence limits for the logit are:

2(x) + SE (E(x)) —xp+ z1-aV X Ex

The computation of the estimated variance-covariance matrix is given by Hosmer and Lemeshow
(1989). The variance-covariance matrix is the inverse of the information matrix. The information
matrix has diagonal elements:

n
> xapi(l=p)),
i=1

where the sum is over all the individual observations, and the off-diagonal elements are:

n
injxilpi(l - pi)
i=1
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setwd("H:\\Personal Data\\Experimentation for Design & Validation\\Data &
Analyses\\")

> dfl <- read.csv("20140813 pipeline.csv")

>

> attach(df1)

> model bin <- glm(No.Leak ~ OD.coded + WT.coded + SMYS.coded,family =
binomial("logit"),na.action=na.omit)

-2

> summary(model bin)

Call:
glm(formula = No.Leak ~ OD.coded + WT.coded + SMYS.coded, family =
binomial("logit"),

na.action = na.omit)

Deviance Residuals:
Min 1Q Median 3Q Max
-2.77081 -0.50964 0.07307 0.44988 2.05206

Coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept)  0.1320  0.2304 0.573 0.56659
OD.coded 1.5417 0.5345 2.884 0.00392 **
WT.coded 2.1432 0.5358 4.000 6.33e-05 *%**
SMYS.coded 3.6493 0.5977 6.105 1.03e-09 *#**

Signif. codes: 0 “****(0.001 “**” 0.01 *** 0.05 > 0.1 *” 1
(Dispersion parameter for binomial family taken to be 1)

Null deviance: 270.20 on 194 degrees of freedom
Residual deviance: 118.91 on 191 degrees of freedom
AIC: 126.91

Number of Fisher Scoring iterations: 7

> confint(model bin)

Waiting for profiling to be done...
25% 97.5%

(Intercept) -0.3189782 0.5910472

OD.coded  0.6907986 3.0069397

WT.coded 1.2935005 3.6102790

SMYS.coded 2.6647122 5.1900525

Fig. 10.2 Logistic regression R output



152 10 Binary Logistic Regression

> anova(model bin,test="Chisq") #computes a sequential likelihood ratio chi squared
statistic

Analysis of Deviance Table

Model: binomial, link: logit

Response: No.Leak

Terms added sequentially (first to last)

Df Deviance Resid. Df Resid.Dev Pr(>Chi)
NULL 194 270.20

OD.coded 1 5.682 193 264.52 0.01714 *
WT.coded 1 20.266 192 244.25 6.74e-06 ***
SMYS.coded 1 125345 191 11891 <2.2e-16 ***
Signif. codes: 0 “***¥7(0.001 “*** 0.01 ***0.05°.70.1 "1

> # for each effect in the model

> #

> df1Sprobmod <- predict(model bin,type="response")

> #

> # for glm objects the predict function defaults to returning log odds ratios
> # the parameter type ="response" will make predict return predicted probabilities of a
"1" response
> #
o
> tapply(probmod,SMYS.coded,quantile)
$-1
0% 25% 50% 75% 100%
0.003468696 0.005600981 0.064050325 0.141830938 0.201957029

$°0°
0% 25% 50% 75% 100%
0.02784503 0.38474718 0.53296297 0.67558022 0.97847852

$' 1
0% 25% 50%  75% 100%
0.8372891 0.8871400 0.9494515 0.9956931 0.9973342

Fig. 10.2 (continued)
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> tapply(probmod,WT.coded,quantile)
$-1
0% 25% 50% 75% 100%
0.003468696 0.021750946 0.206296105 0.497882656 0.837289081

$0°
0% 25% 50% 75% 100%
0.006311743 0.121788908 0.532962966 0.903757017 0.995146058

$1
0%  25% 50% 75%  100%
0.2019570 0.5571744 0.8270294 0.9831924 0.9973342

> tapply(probmod,OD.coded,quantile)
$-r
0% 25% 50% 75% 100%
0.006311743 0.022461707 0.351712622 0.732624416 0.903757017

$o
0% 25% 50% 75% 100%
0.003468696 0.201957029 0.532962966 0.837289081 0.997334218

$1°
0%  25% 50% 75%  100%
0.1217889 0.3190076 0.6816129 0.9826454 0.9951461

=
> write.csv(df1,file="20140814.pipeline.probs.csv")

Fig. 10.2 (continued)

The p; are the predicted probabilities at each observation:

1
bi=——7~
1+e
The confidence intervals for the predicted values are given by inverting the logit transformation:

1

l4e (io£sE (i)

Fleiss et al. (2003) gives a simplified formula for the standard error of logits when there is a single
regressor, X:

SE (logit (ﬁ(x))) = \/se (ﬁo> + 2xcov (ﬁo, ﬁ1> + 22 (se (ﬁl> ) ’
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libname stuff 'H:\Personal Data\Experimentation for Design &
Validation\Data & Analyses';

data calc;

set stuff.d20140815 pipeline; /* do not include the sas7bdat

extension here */
/***\‘r**\‘r*****\‘r*************************************************

*

* variables: xl1 = OD_coded *
i X2 = WT_coded %
% x3 = SMYS coded e
% y = No Leak *
* *
* *
* *
************************%****************k**k**************k***/

run;

proc sort data=calc;
by OD_coded WT_coded SMYS coded;
run;

proc means data=calc;
var No_ Leak;
run;

proc genmod data=calc descending; * the "descending" parameter makes
the model for Pr{Y = 1} :
model No_Leak = OD_coded WT_coded SMYS_coded/dist = bin link = logit;
output out=NLoutest PREDICTED=predprob LOWER=lcl UPPER=ucl;
run;

data stuff.o20140815 pipeline output;
set NLoutest;

run;

Fig. 10.3 SAS proc GENMOD for logistic regression

where:
logit(ﬁ(x)) = ,/B\O + ,Elx

Wi ZPi(l —Pi)

n

— . Wik
_ i=1
XW_ n

Wi

=1
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The SAS System

The MEANS Procedure

Analysis Variable : No_lLeak
Mean Std Dev Minimum Maximum
fffffffffffffffffffffffﬁffffﬁfffffffffffffffffffﬁﬁffffffffffﬁf
195 8.5128205 8.5011222 a 1.06eeee8

T FFFFFFFFFF AR SR FFFFF AT EFFEFEF IS A A FFFFFFFF A A FFFFFF
The SAS System
The GENMOD Procedure

Model Information

Data Set WORK . CALC
Distribution Binomial
Link Function Logit
Dependent Variable No_Leak
Number of Observations Read 195
Number of Observations Used 195
Number of Events 100
Number of Trials 195

Response Profile

Ordered Total
Value No_Leak Freguency
1N 1 100

2 2] 95

PROC GENMOD is modeling the probability that No_Leak="1'.

Criteria For Assessing Goodness Of Fit

Criterion DF Value Value/DF
Log Likelihood -59.4532
Full Log Likelihood -59.4532
AIC (smaller is better) 126.9063
AICC (smaller is better) 127.1169
BIC (smaller is better) 139.9983

Algorithm converged.

Analysis Of Maximum Likelihood Parameter Estimates

18:85 Friday, August 15, 2014

18:85 Friday, August 15, 2814

Standard Wald 95% Confidence Wald
Parameter DF Estimate Error Limits Chi-Square Pr » Chisg
Intercept 1 8.1320 @.2384 -98.3196 ©.5836 9.33 09.5666
0D_coded 1 1.5417 @8.5345 9.4941 2.5893 8.32 9.0839
WT_coded 1 2.1432 8.5358 1.8931 3.1933 16.0@ <.8881
SMYS_coded 1 3.6493 @.5978 2.4778 4.8289 37.27 <.0ee1
Scale -] 1.0000 ©9.0000 1.0008 1.8000

NOTE: The scale parameter was held fixed.

Fig. 10.4 SAS proc GENMOD output
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Table 10.3 Percentiles Run OD WT  SMYS  Predicted prob  LCL UCL

for predicted probability

of 1o leak by run 1 48 6 70,000  0.0278 0.0037  0.1790
2 48 12 60,000  0.0063 0.0008  0.0492
3 48 12 80,000  0.9038 0.7823  0.9608
4 48 18 70,000 0.6756 04800  0.8245
5 60 6 60,000  0.0035 0.0004  0.0282
6 60 6 80,000  0.8373 0.6763  0.9269
7 60 12 70,000 0.5330 04208  0.6419
8 60 18 60,000  0.2020 0.0961  0.3758
9 60 18 80,000  0.9973 0.9774  0.9997
10 72 6 70,000 0.3847 02200  0.5810
11 72 12 60,000  0.1218 0.0527  0.2567
12 72 12 80,000  0.9951 0.9605  0.9994
13 72 18 70,000 0.9785 0.8541  0.9972

Table 10.4 Input parameters for minimum acceptable Pr{No Leak} = P,

Optimization

Effect Coeff Coded level Coeff * Effect Decoded Units
Intercept 0.132 1 0.132 NA
OD 1.5417 0.018024677 0.027788645 60.22 Inches
WT 2.1432 0.830706743 1.780370691 16.98 Inches
SMYS 3.9493 0.672261325 2.654961652 7,6722.61 Psi

Logit: 4.595120988

exp(—logit): 0.010100999

Pr{Y = 1}: 0.990000011

Goal 0.99

Diff —1.12621E—-08

X

COV(ﬂO;ﬂ]) = _SSW
Back to the example. The optimal run was #9, which had OD at the center value (60 in.), and WT and
SMYS at their high values (18 in., 80,000 psi, respectively). The highest predicted value, however, is
achieved when all three factors are set to their highest levels, namely OD = 72, WT = 18, SMYS
= 80,000. Under these conditions, the predicted probability of no leak is approximately 0.9994. The
largest coefficient of the coded factors is for SMYS, so we can conclude that this is the most
influential factor in determining the probability of no leak.

One might ask what values of the regressors would yield some minimally acceptable probability,
call it P, of no leak. The EAS could use the MS Excel solver to compute the values of the regressors
that yield at least a P,,,;, probability of no leak. For example, suppose P, = 0.99. Table 10.4 shows
the computations and the solution as provided by the Excel solver function.
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So, subject to the constraints that OD < 72 in., WT < 18 in., and SMYS < 80,000 psi, the
solution that yields an estimated P,,;, = 0.99 is OD ~ 60 in., WT =~ 17 in., SMYS ~ 76,723 psi.
Of course, it may be that such specifications would require custom manufacturing, so that it could be
more economical to choose materials with specifications equal to those in run #9.

Example: A Discrete Factor

Logistic regression can be used to compare probabilities of success between discrete groups, much
like ANOVA or t-tests are used to compare averages. We will consider a simple case of a single
factor, call it X, with two discrete states. For convenience, the two states will be coded as X = 1 and
X = 0. The response variable, Y, is of course binary, with its states coded as Y = 1 for “success” and
Y = 0 for “non-success”. As done earlier, we use the logit transformation, and assume it has a linear
relationship to the factor, namely:

P(X)
AX)=In(0) =lh| ——— | = X
0 =1n(0) = in( L0 ) =4y
P(X) is the probability that Y = 1 given X.
The inverse logit is:
1 1

P(X)=Pr{y =1]X} =

1+ e X 14 e GothX)

The way in which the coefficients are estimated is identical in nature to the case where the regressors
were continuously-valued, namely via maximum likelihood. The only thing that differs is the
interpretation.

The odds of Y = 1 given X are:

The odds ratio is:

o(1) efoth
0(0) o

Thus /1 is the number of times more likely to obtain a “success” when X = 1 than it is when X = 0.
The natural logarithm of the odds ratio is called the “log odds ratio” and in the logistic case is simply
b

The value of the log odds ratio could be a design criterion. For example, an EAS may desire to
improve a design by at least doubling its odds of achieving some goal. In that case, the EAS would
want:

=2
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Table 10.5 Summary of

App Result Count  Percent (%)
new vs. current App
experimental results Current  Non-success 4 20.00
Current  Success 16 80.00
New Non-success 2 10.00
New Success 18 90.00

Or in other words:
B, =In(2) = 0.69315
Suppose a human factors engineer has tried to improve a computer “App” to increase the ease with

which users can perform a task. The current App has an 80 % success rate for first-time users, so the
odds of success are:

The EAS wished to increase the success rate to 90 %, so the odds of success using the new App
would be:

P, 9
On = = — = 9
1-P, .1
The desired odds ratio is then:
On Pn 1- Pn
—:7/( ):2:2.25
o. PJ/(1-P.) 4

A new prototype App was created, and an experiment was performed with a sample of 40 subjects
randomly selected from the target population. Half were randomly selected to use the current App,
and half to use the new App. The results of the experiment are summarized in Table 10.5

Figure 10.5 shows the SAS Genmod code for analyses the data. The states for the App are coded as
App = 0 for Current and App = 1 for New. Figure 10.6 shows the Genmod output. In this analysis,
the “noint” option was used in the Proc Genmod. Genmod will then produce estimates of log odds for
each App. The estimate for App = O is the log odds for the Current App, and the estimate for
App = 1 is the log odds for the New App. Note that in the “App Least Squares Means” Table, the
“Estimate” column is the log odds for each level of App. Thus, the estimated odds of success for the
Current App are:

0. ~ e!3893 ~ 4.00

And the estimated odds of success for the New App are:

~ ™11 2 9.00

=)
s

Thus it appears that the EAS has achieved his goal. Of course, the confidence intervals (see the
columns labeled “Lower” and “Upper” in the App Least Squares Means Table) for the odds are fairly
wide, due to the relatively small sample size.
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libname stuff 'H:\Personal Data\Experimentation for Design &
Validation\Data & Analyses';

data calc;

set stuff.d20141005_example 9 5_odds_ratio; /* do not include the
sas7bdat extension here */

lll,a"*'k'x'J'r*'\k'\k"x'J'r***'k*ir'J'f*****'x*i‘***'k'x'J'ri'*'k'k*'.ir'J'r**'k'\k******w******‘k****'\k*‘k

* *
* wvariables: App = version of App (Current or New) *
e Subject = subject ID (1-20 for each App) %
* Result = binary response (1 = success, 0 = not) *

*
*

%* *
* *
* e

s e e ok ko ok ko e ko o ko ko ok ok ke ok ok
run;

proc sort data=calc;
by App;
run;

proc means data=calc;
var Result;
by App;
run;

proc genmod data=calc descending; * the "descending" parameter makes
the model for Pr{Y = 1} ;

Class App:;

model Result = App/dist = bin link = logit noint;

LSMEAN App/CL;

output out=NLoutest PREDICTED=predprob LOWER=1lcl UPPER=ucl;

run;

data stuff.o020140921 odds_ratio_output;
set NLoutest;

run;

Fig. 10.5 SAS Genmod code—computer App example (single categorical factor)

Figure 10.7 shows the output from the JMP 11 “Fit Model” function. Note that this version of JMP
does not allow the “no intercept” option for logistic regression. The estimate for the intercept minus
the estimate for the “App” term is approximately —2.1972, which gives the log odds for the reciprocal
of the odds for success using the New App. The point to consider is that interpreting the output of
software, especially for logistic regression with discrete regressors must be done carefully.

For this simple example, the odds, and hence the log odds, for both Current and New Apps can
be computed very easily. Recall that with the Current App, 16 out of 20, or 80 %, of the
participants were successful. With the New App, 18 out of 20 were successful (90 %). The odds
can be computed as:
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The SAS System 88:23 Monday, October 6, 2014 1

The MEANS Procedure

Analysis Variable : Result

Mean Std Dev Minimum Maximum
fffffffffﬁfﬁffffffffffffffffffffffffffffffffffffffffffﬁffffffff
20 ©.8000000 0.4183913 e 1.0000000

FEFEFFFFFFFFEF S FFFSF AL EFFIFSSF S FFFFFFFSSEFFFFFAFFFFSFFFFFSFSS

Analysis Variable : Result

N Mean Std Dev Minimum Maximum
FEFFFFFFFEFFEFFFSFFSFSSFSFISFSFSSFFSFFEFFEFFFFFFFESSFSFFSFFSSF
20 8.9000000 8.3877935 8 1.0008000

SFEFSFFSSFEFFFS SRS FFSFFFAFRFR AR AFFS SR FR AR AFEFAFSAFILS

The SAS System 08:23 Monday, October 6, 2014 2
The GENMOD Procedure

Model Information

Data Set WORK . CALC
Distribution Binomial
Link Function Logit
Dependent Variable Result
Number of Observations Read 48
Number of Observations Used 48
Number of Events 34
Number of Trials 48

Class Level Information
Class Levels Values

App 2 81

Response Profile

Ordered Total
Value Result Freguency

1 1 34

2 2] 6

PROC GENMOD is modeling the probability that Result='1'.

Parameter Information

Parameter Effect App
Prml Intercept

Prm2 App 2]
Prm3 App 1

Fig. 10.6 SAS Genmod output—computer App example (single categorical factor)
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Criteria For Assessing Goodness Of Fit

Criterion DF Value Value/DF
Log Likelihood -16.5897
Full Log Likelihood -16.5897
AIC (smaller is better) 37.9194
AICC (smaller is better) 37.3437
BIC (smaller is better) 4@.3972
The SAS System 88:23 Monday, October 6, 20814 3

The GENMOD Procedure

Algorithm converged.

Analysis Of Maximum Likelihood Parameter Estimates

Standard Wald 95% Confidence Wald
Parameter DF Estimate Error Limits Chi-Square Pr > Chisg
Intercept 2] @.0000 ©.06000 0.0000 0.0000 : :
App 2] 1 1.3863 @.55% @.29e6 2.4819 6.15 @.e131
App 1 1 2.1972 @8.7454 0.7364 3.6581 8.69 0.0032
Scale e 1.0000 @.00080 1.0000 1.0000

NOTE: The scale parameter was held fixed.

Lagrange Multiplier Statistics
Parameter Chi-Square Pr > ChiSg

Intercept

App Least Squares Means

Standard
App Estimate Error z Value Pr > |z Alpha Lower Upper
] 1.3863 8.5599 2.48 8.e131 a.es 8.2986 2.4819
1 2.1972 8.7454 2.95 8.e032 09.85 8.7364 3.6581

Fig. 10.6 (continued)

0, =——=14.00
O =520
and

~ 090

0n = §75= 900

The standard error formula for logits when there is a single regressor simplifies even further when
that regressor is discrete with only two states. The basic equations remain unchanged, however the
following simplifications (Fleiss et al. 2003) can be substituted:
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Ordinal Logistic Fit for Result

Whole Model Test

10 Binary Logistic Regression

Model -LoglLikelihood DF ChiSquare Prob>ChiSq
Difference 0.398656 1 0.797311 0.3719
Full 16.509708

Reduced 16.908364

RSquare (U) 0.0236

AlCc 37.3437

BIC 40.3972

Observations (or Sum Wats)

Measure

Entropy RSquare
Generalized RSquare
Mean -Log p

RMSE

Mean Abs Dev
Misclassification Rate
N

Parameter Estimates
Term
Intercept[non-success]
Appl[Current]

40

Training Definition
0.0236 1-Loglike(model)/Loglike(0)
0.0346 (1-(L(0)/L(model))*(2/n))/(1-L(0)*(2/n))
04127 ¥ -Log(p[jl}/n
0.3536 v S(y[jl-pl)*/n
0.2500 3 [y[jl-p(jll/n
0.1500 3 (p[j]#pMax)/n
40 n

Effect Likelihood Ratio Tests

Source Nparm
App 1

Estimate Std Error

-1.7917595 0.4658475

0.40546511 0.4658475
L-R ChiSquare Prob>ChiSq
0.79731115 0.3719

Fig. 10.7 JMP output for logistic regression with a discrete regressor

SSW = nnpn(l _pn) -

Zwi = nvpc(l _pz:) + n"p"(l _p”)
i=1

Y nl’lpn(l _pn)

" nCpc'(l 71)0) + nﬂpn(l 7pn)

{nﬂpn(l — pn)}z

ChiSquare
14.79
0.76

Prob>ChiSq
0.0001*
0.3841

nnpn(l _pn)nCpc(l - pc)

nep.(1=p.)+ map, (1 =p,)  nep(1—p.)+ np,(1—p,)

Note that the subscripts “c” and “n” refer to Current or New App, respectively.

Key Points

» (Qdds, the ratio of the probability of “success” and its compliment, are a measure of the chance of

SucCcess.

» The log of odds gives rise to the logit transformation.
» Binary logistic regression is a means of creating a predictive model for probabilities when the

response variable is binary.
» The parameters in a binary logistic regression model are the log odds.



Exercises and Questions 163
Exercises and Questions

1. Suppose equal numbers of two varieties of rice, A and B, are planted in a greenhouse/lab. After a
fixed [period, the number of shoots that sprouted were counted. For variety A, 90 % of the seeds
sprouted, and 85 % of the variety B seeds sprouted. What are the odds for sprouting for each, and
the odds ratio of variety A to variety B?

2. Assuming that for both varieties in question 1, n = 100, compute 95 % confidence intervals for
the logits of the probability of sprouting for each variety. Then transform the confidence interval
limits into limits on the probability of sprouting (inverse logit, or logistic transform).



Chapter 11
Reliability, Life Testing, and Shelf Life

The Reliability and Related Functions

Everything will fail, eventually. Reliability is a probability that a system (or a component) will fail no
sooner than 7 time units from the time it begins operating. Reliability has many manifestations, or one
might consider reliability as a special case of probabilities that some specific type of event will occur
no sooner than ¢ units from some initial reference time. Other manifestations include survival of
patients having a particular disease, or the shelf life of drugs. For simplicity, we will refer to
reliability in terms of time to failure, with the understanding that this time could be the time from a
reference point to the occurrence of some specific type of event (such as death, progression of disease,
a drug concentration in a human body drops below some threshold, or potency/reactivity loss). The
point is to derive a model by which the probability of interest can be predicted, and to incorporate
design parameters into this model. In this way, we hope to help the EAS design a system so that it will
have a desired reliability for a particular time-to-event.

To begin, we borrow from elementary chemical kinetics (Whitten et al. 2004), and consider a first-
order system. Suppose we can measure a response variable that indicates the degree to which a system
is operating properly (we realize this could be challenging in many cases, but it is our point of
departure.) Let Y(#) be the response variable observed at time 7. A first-order differential equation
model that describes the change in this response over time can be expressed as:

ar(s)
= —AY (1)

With initial condition Y(0) = y,, the solution to the equation is:

Y(r) = ype ¥

Some may recognize this as the equation governing first-order chemical reaction kinetics (Whitten
et al. 2004), or the equation for radioactive decay (Rutherford 1900). The parameter A is called the
rate parameter (as in the rate of reaction). If we presume that the response variable Y(7) is a decreasing
function of time, as in the case of analyte concentrations in chemical reactions, then it is a maximum
at t = 0, and its maximum value is yo. Thus we can express the response as a proportion of its initial
value, namely:

© Springer International Publishing Switzerland 2016 165
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The proportion can be thought of at a probability, namely the probability that the value of the
response is not zero after ¢ time units. So, if we replace Y(¢) with a new variable, namely T = the
time at which Y(¢) is zero, then we can express the value of Y(¢) as a proportion of its initial value with
Pr{T > t}, or:

Pr{T>ty=e"

It turns out that this is the complement of the cumulative distribution function of an exponential
random variable. That is,

Pr{T<t}=1-P{T>1}=1-—¢"*

In the language of Reliability, the parameter 4 is called the failure rate. The exponential time to failure
variable is characterized by a constant failure rate. That is, potentially the rate of failure could change
with time, ¢. if 4(f) represents the failure rate, then for the exponential time to failure variable,

h(t) =2 ¥t

The exponential time to failure variable is related to a discrete random variable with a Poisson
distribution. The variable, X, is the number of failures (or events) within a fixed length of time. It has a
Poisson distribution if:

() e

Pr{X =X 1

At} =

The value of ¢ is a fixed length of time, and 4 is the (constant) failure rate.

Suppose that the failure rate actually changes with time. For example, the rate of failure could be
fairly high initially, then drop after a “burn-in” period to a constant, and then climb back up after the
product reaches a “wear-out” time. Such a failure rate function is sometimes called a “bath-tub”
curve, as illustrated in Fig. 11.1.

The failure rate function is also called the hazard rate function.

To generalize our initial first-order differential equation model for the response variable Y(r), we
could replace the constant A with A(7):
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Fig. 11.1 “Bath-tub”
failure rate curve

h(t)

time

Of course, if h(f) = A (a constant), then:

The function:

is called the cumulative failure rate or cumulative hazard rate function for our new random variable T,

time to failure. So, in general, using our slightly generalized first order kinetics model,
t
h(z)dz o

PHT > 1} = e_JO —e

If we define the reliability function to be:

R(t)=Pr{T >t} = eJO =e

Then the reliability function can be thought of as a curve in time. We also have some potentially

useful relationships:
—InR(t) = H(1)




168 11 Reliability, Life Testing, and Shelf Life

Another related pair of functions is:
F(f)y=1—-R(t)=1—¢ 10
G(t) = —InF(r)

F(?) is the cumulative distribution function for time-to-failure.
Thus we have the relationship:

R(f)=1—¢C0

The design problem is to state either the reliability function or cumulative failure rate function in
terms of design parameters, and then choose values of those parameters that yield the desired
reliability curve.

Obtaining an Empirical Reliability Model

Suppose the EAS does not know the specific form of R(¢), H(¢), or h(¢). She or he could perform an
experiment to obtain a polynomial approximation. We will call the experiment a Life Test. In this
experiment, n items (devices, systems, components) will be “started” and allowed to run until failure.
The elapsed time from start to failure will be recorded. Suppose the n times to failure are ordered form
shortest to longest. Call these times ¢y, 5, . . ., f, . . ., t,. These times are referred to as “order statistics”
(Conover 1999). Compute the empirical reliability function:

_ kK on—k
R(zk):pZ:”n k=1, n

or the empirical cumulative distribution function:

~ ~

k
F(l‘k):lfR(tk):; k=1,n

For a lack of a better term, we will call this formula, or estimator, the empirical maximum likelihood
(EML) estimator. Now suppose that the cumulative hazard rate function, H(¢), can be approximated
by a low order polynomial in #, for example:

H(t) = Bo+ Pt + Bot?
Given the relation:
—InR(t) = H(¢)

It may be advantageous to approximate G(f) as a second-order polynomial, i.e.:

G(1) = By+ Bt + B’
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The EAS can now obtain via least squares an estimate of the parameters f, and thus an approxima-
tion formula for R(¢). That is, the estimated approximation formula would be:

R() = 1= exp(—=G(1) = 1 —exp(—fy — Pyt — Bor’)

The ﬁi are the least squares estimates of the H(f) approximation formula parameters. The approxima-
tion formula could be used to interpolate values of R(#), but interpolation is not its most important use.
More importantly, it can be used as a design tool.

Relating the g; to Design Parameters

Consider a system with design factors or parameters, xi, X2, . . .,Xj, . . ., X,,. The EAS could perform a
designed experiment in these factors, where the response is T = time to failure. At each run in the
experiment, the reliability function approximation can be fit to the data. In this way, the reliability
parameters can be related to the design factors. That is, we want to obtain an approximation formula
that allows us to predict each of the parameters, f, £, and f,, as polynomial functions of the design
factors xy, X, ..., Xj, ..., X, These approximating polynomials are obtained once again via least
squares. Pardo (2009) describes how this methodology can be used for designing solid dosage forms
for pharmaceuticals.

An example will help. Suppose the EAS wants to design an artificial hip joint replacement. The
design will be a metal-on-polyethylene system. The questions are which metal material (steel or
aluminum), the shape of the polyethylene (PE) pin (or truncated cone), and the type of lubricant
(albumin or gamma globulin) to use. Normally, hip joint replacements are intended to last 15-20
years with a high degree of probability. That is, the expectation is that the reliability at 15 years
should be at least 90 %. The EAS decides to perform a 2° factorial experiment in the three factors,
metal, PE, and lube. Table 11.1 shows the eight different prototypes to be constructed.

A simulator device was constructed, so that years of wear could be achieved without actually
implanting the devices in people and waiting for them to fail. A total of n = 10 units of each
prototype were constructed and tested on the simulator until they failed.

Table 11.2 shows the time-to-failure data from the simulator. For each prototype, the times have
been sorted from shortest to longest, and the empirical reliability has been calculated.

For each of the prototypes, a second order polynomial approximation was fit to

G (1) = —InF (t) = o + Pyt + pof? +

Table 11.3 shows the resulting estimates of the parameters. In addition, the predicted reliability at
t = 20 years is computed for each prototype.

Table 11.1 2 factorial

experiment in hi Prototype Metal PE pin Lube
re;)lacement protI())types 1 Steel Cone Albumin
2 Steel Cone GG
3 Steel Cylinder Albumin
4 Steel Cylinder GG
5 Aluminum Cone Albumin
6 Aluminum Cone GG
7 Aluminum Cylinder Albumin
8 Aluminum Cylinder GG
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Table 11.2 Time-to-failure (years) data from simulator experiments

Rhat Pl P2 P3 P4 P5 PS P7 PB

0.9 16.23 18.37 16.36 14.30 21.48 24.05 19.71 22.28
0.8 18.25 18.56 18.51 16.84 22.01 24.63 20.93 22.57
0.7 18.95 18.72 18.72 17.76 22.90 26.86 21.43 22.95
0.6 19.27 19.21 18.95 19.86 23.20 27.35 21.67 24.17
0.5 19.41 20.94 18.97 20.38 23.86 29.09 23.53 25.29
0.4 20.05 21.83 19.59 20.63 24.08 29.51 24.07 25.66
0.3 20.42 22.01 19.79 20.77 24.71 30.10 24.57 25.66
0.2 20.91 22.62 20.37 21.99 25.57 30.50 24.93 26.12
0.1 21.19 22.80 20.71 23.57 25.59 31.00 25.40 26.53
0 21.95 24.05 21.21 24.10 26.64 31.51 25.56 27.63

Table 11.3 Parameter estimates for second-order polynomial fits to H(t)
G(t) = BO + B1#t + B2*¢>

Prototype Metal PE pin Lube BO Bl B2 R(20)
P1 Steel Cone Albumin 15.11 —1.04 0.02 0.459
P2 Steel Cone GG 28.92 —2.38 0.05 0.610
P3 Steel Cylinder Albumin 16.06 —1.08 0.02 0.351
P4 Steel Cylinder GG 9.65 —0.67 0.01 0.506
P5 Aluminum Cone Albumin 58.80 —4.43 0.08 0.973
P6 Aluminum Cone GG 16.97 —0.88 0.01 0.975
P7 Aluminum Cylinder Albumin 29.81 —-2.21 0.04 0.869
P8 Aluminum Cylinder GG 41.50 —2.92 0.05 0.974

If the design objective is to achieve a 95 % reliability at ¢+ = 20 years, it is clear that Steel is not
adequate. What is not clear is whether there is an interaction between The PE Pin and the Lube. It
appears that the Cone shape may be superior to Cylinder, but it may be that Cylinder with GG is at
least as good as Cone with Albumin.

An ANOVA could be performed to determine which factors have an effect on time-to-failure, at
least on the average. Figure 11.2 shows the output from JMP.

The residual by predicted value plot indicates that the noise variance is constant over the range of
failure times, so the p-values are probably valid. The only statistically significant (i.e., probably
repeatable) interaction effect was between Metal and Lube. However, the difference in average
failure time for Cone, between Albumin and GG (~2.9 years), and the difference for Cylinder
between Albumin and GG (~2.2 years) were not much different that the difference for Aluminum
between Albumin and GG (~3.1 years) and for Steel between Albumin and GG (~1.0 years). The
greater discrepancy was for the Metal/Lube interaction, which was apparently large enough to make
the interaction significant.

Table 11.4 shows the mean and standard deviations (SD) for time-to-failure and the mean
predicted reliability at 20 years for each level of the three factors. The maxima for both mean failure
time and reliability are shown in bold font. Note that the conditions that yield maximal values are
Aluminum, Cone, and GG (P6). The average time-to-failure for this condition is 28.46 years, and the
predicted reliability at 20 years is 0.975. A close second place is Aluminum, Cylinder, GG (P8), with
a predicted reliability of 0.974. A very close third place is Aluminum, Cone, Albumin (P5), with
predicted R(20) = 0.973. The lower SD for P5 indicates that it may yield more consistent wear and
hence more predictable time-to-failure. The lower limit of the 95 % confidence interval for predicted
reliability at 20 years for P5 is 0.9585, which actually exceeds our design criterion (0.950).

The ANOVA has indicated several things we might not have known without this experiment:

1. Metal type, Pin type, and Lube type all significantly affect the time-to-failure;
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Response Time

Summary of Fit

RSquare

RSquare Adj

Root Mean Square Error
Mean of Response
Observations (or Sum Wgts)

Analysis of Variance

0.68492
0.659023
2.10263
22.55525
80

Mean Square
116.927
4421

DF Sum of Squares

Source DF Sum of Squares
Model 6 701.5640
Error 73 322.7368
C. Total 79 1024.3008
Effect Tests
Source Nparm
Metal 1 1
PE Pin 1 1
Lube 1 1
Metal*PE Pin 1 1
Metal*Lube 1 1
PE Pin*Lube 1 1
Residual by Predicted Plot
4 .
L/ * ] e ®
2 ' ®
© s 2 .
= ' 8 o b4
B o
$ 0 -------- ' -.- - L ‘ ‘
o , o
£ 3 3
= -2 * ° s .
$ ' . ® H
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Time Predicted

Fig. 11.2  ANOVA for hip replacement time-to-failure

531.37741
39.67744
82.25568
12.49781
2217618
13.57952

30

F Ratio
26.4479
Prob > F
<.0001*

F Ratio
120.1925
8.9747
18.6055
2.8269
5.0160
3.0716

Prob > F
<.0001*
0.0037*
<.,0001*

0.0970
0.0282*
0.0839
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1

Effect Details
Metal
Least Squares Means Table

Level Least Sq Mean
Aluminum 25.132500
Steel 19.978000
PE Pin

Least Squares Means Table

Level Least Sq Mean
Cone 23.259500
Cylinder 21.851000
Lube

Least Squares Means Table

Level Least Sq Mean
Albumin 21.541250
GG 23.569250

Metal*PE Pin
Least Squares Means Table

Level Least Sq Mean
Aluminum,Cone 26.232000
Aluminum,Cylinder 24.033000
Steel,Cone 20.287000
Steel,Cylinder 19.669000
Metal*Lube

Least Squares Means Table

Level Least Sq Mean
Aluminum,Albumin 23.592000
Aluminum,GG 26.673000
Steel, Albumin 19.490500
Steel,GG 20.465500

Fig. 11.2 (continued)

Reliability, Life Testing, and Shelf Life

Std Error
0.33245494
0.33245494

Std Error
0.33245494
0.33245494

Std Error
0.33245494
0.33245494

Mean
25.1325
19.9780

Mean
23.2595
21.8510

Mean
21.5413
23.5693

Std Error
0.47016229
0.47016229
0.47016229
0.47016229

Std Error
0.47016229
0.47016229
0.47016229
0.47016229
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LS Means Plot

30 Aluminu -
Steel e o
c
=
v
S |
E
|_
15
Albumin GG
Lube

PE Pin*Lube
Least Squares Means Table

Level Least Sq Mean Std Error
Cone,Albumin 21.833500 0.47016229
Cone,GG 24.685500 0.47016229
Cylinder,Albumin 21.249000 0.47016229
Cylinder,GG 22.453000 0.47016229

Fig. 11.2 (continued)

Table 11.4 Mean time-to-failure and predicted R(20)
Time-to-failure

Prototype ~ Metal PE pin Lube N Mean SD Pred. R(20) LCL-R(20) UCL-R(20)
P5 Aluminum  Cone Albumin 10 24.00 1.66 0.973 0.9585 0.9826
Po Aluminum  Cone GG 10 2846 2.62 0975 0.9117 0.9930
P7 Aluminum  Cylinder  Albumin 10 23.18 2.08 0.869 0.8290 0.9001
P8 Aluminum  Cylinder GG 10 2489 181 0974 0.9039 0.9930
P1 Steel Cone Albumin 10 19.66 1.64 0.459 0.3844 0.5239
P2 Steel Cone GG 10 2091 2.06 0.610 0.4510 0.7229
P3 Steel Cylinder Albumin 10 1932 137 0.351 0.2158 0.4627
P4 Steel Cylinder GG 10 20.02 3.02 0.506 0.4434 0.5610

2. Although related, the probability that time-to-failure exceeds 20 years and the mean time to failure
are not surrogates for each other;

3. The effect of Lube may in fact depend on the type of Pin; The interaction effect may be more
apparent in terms of consistency of wear;

Had we not constructed the low-order polynomial approximations for G(t), we would not have
been able to generate predictions for reliability at 20 years. Had we not used a designed experiment,
we might not have realized that all three factors actually do affect time-to-failure. Furthermore,
without both the designed experiment and the models for G(#), we might not have discovered that the
Pin type and Lube type interact with each other in terms of reliability, even though they do not appear
to interact in terms of mean time-to-failure.
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Censored Time-to-Failure

Sometimes limits are placed on the length of time over which experimental units will be observed, or
on the number of units (out of a sample of size n) that will be allowed to fail before the test is stopped.
Such restrictions are called censoring. Stopping the test at a fixed time is referred to as Type I
censoring (Mann et al. 1974), and stopping the test after a fixed number of units fail is called Type II
censoring (Mann et al. 1974) The question is how to estimate reliability in the face of such censoring.
We will address Type I censoring first.

Suppose the EAS did a life test with a sample of n experimental units, and stopped the test after
T ,.ax time units. Out of the n units on test, only » < n actually failed. The remaining » — r units were
still functioning at time 7,,,.. Suppose further that the r failure times are sequenced from shortest to
longest, and that ¢, 1,, 13, . . ., t, represent those order statistics. So the empirical reliability function
could be represented as it was when there was no censoring:

_ ko on—k
Rt)=1— Z:"n k=1, r

The is the EML with right-censoring (EMLC). The EAS could treat this computed empirical
reliability function in the exact same way he or she did when there was no censoring. There is
another method for computing an empirical reliability function at times other than those which were
explicitly observed failure times. The method is due to Kaplan and Meier (1958), and is described in
Lee (1992). The formula for the Kaplan—-Meier (K—M) estimator is:

= n—k
RO =11=00

tkgr
where 1, are the failure times for uncensored observations. At ¢t = f, this formula can be written as:

~ ~ n—k
R(ty) =R(ty—1) ————
(1) = R(n1)
The K-M estimator is particularly useful if censoring can occur even though the time has not
exceeded T, For example, a unit may fail during the test, but due to some cause other than the
particular failure mode of interest.

The variance, and thus standard error, of the K—M reliability estimate, can be approximated (Lee
1992) by:

3
V(ﬁ(lk)) =~ ]AQZ([;();(” _ l‘)(nl_ i+ 1)

L

The approximate standard error is the square root of this variance approximation

Using either the EML, EMLC, or K-M estimators, the highest reliability estimate is at failure time
t1,and itis (n — 1)/ n. The lowest reliability value would be at tr. If » = n, then EML = EMLC, and
at t,, R(t,) = 0. For the K-M estimator, this is not the case if there are any intermediate censored
failures (i.e., if a unit fails before T,,,, in some mode other than the one(s) of interest).

As an example, consider an EAS testing a circuit board. She is concerned about a particular
component failing. She puts n = 15 boards on test, and sets T,,,,, = 1000 h. Some of the boards fail
before T,,.., and some do not. Of the boards that fail, some of them had a failure in a component other
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Table 11.5 Censored failure times with Kaplan—Meier estimates

k Time-to-failure  Censored? (n —k)/(n —k+1) R(tg) K-M Factor SE LCL UCL

1 870 Uncensored  0.9333 0.9333 0.00476  0.06441 0.8071  1.0000
2 872 Uncensored  0.9286 0.8667 0.01026  0.08777 0.6946  1.0000
3 884 Uncensored  0.9231 0.8000 0.01667 0.10328 0.5976  1.0000
4 889 Uncensored  0.9167 0.7333 0.02424  0.11418 0.5095 0.9571
5 909 Uncensored  0.9091 0.6667 0.03333  0.12172  0.4281 0.9052
6 915 Uncensored  0.9000 0.6000 0.04444  0.12649 0.3521 0.8479
7 916 Uncensored  0.8889 0.5333 0.05833  0.12881 0.2809 0.7858
8 932 Uncensored  0.8750 0.4667 0.07619 0.12881 0.2142 0.7191
9 937 Censored

10 939 Uncensored  0.8333 0.3889 0.10952 0.12870 0.1366 0.6411
11 951 Uncensored  0.8000 0.3111 0.15952 0.12426  0.0676  0.5547
12 962 Uncensored  0.7500 0.2333 0.24286 0.11499 0.0080 0.4587
13 979 Uncensored  0.6667 0.1556 0.40952  0.09955 0.0000 0.3507
14 1000 Censored

15 1000 Censored

than the one of interest. Those boards that failed due to other components are censored. Table 11.5
shows the failure times, whether the failures were censored or not, the intermediate calculation
(n—k)/(m—k+ 1), the K-M estimator for R(#;), and an approximate 95 % confidence interval
(LCL, UCL) for the reliability at each uncensored failure time. The column labeled “factor” is the
summation term:

: 1
Z:(n—i)(n—i—l-l)

i=1

Note that for censored observations, no computation is made. The ninth failure time was censored,
as this unit failed in a mode that was not of interest to the EAS.

Regardless of how the reliability estimates were obtained (EML, EMLC, K-M), the computations
for F (), the polynomial approximation of G(¢), and the computation of predicted values for R(¢)
follow the same procedures.

Accelerated Life Tests

In the case of the hip replacement problem, the EAS had a simulator that could simulate years of life
in a fairly short time. Sometimes, the simulation of life is performed by subjecting experimental units
to some condition which is presumed to accelerate the failure process in such a way as to allow the
EAS to predict the increase in the failure rate. Commonly, temperature is used as the accelerating
condition. Presuming that the increase in failure rate is proportional to an increase in the rate of a
chemical reaction, a model called the Arrhenius Reaction Rate Law (Mann et al. 1974) is employed to
relate the failure rate to temperature. The Arrhenius model is:

—E/K
Ap = Aexp <P/>
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The constant A is specific to the particular materials and reactions that underlie the failure mode. The
constant E is called the energy of activation, and is also specific to the materials and chemical
reactions involved in failure. The letter K stands for Boltzmann’s constant, and P is the temperature in
degrees Kelvin (we use the letter P, for “parameter”, so as to not confuse it with T for time-to-failure).
So Ap is the average failure rate at temperature P. The usual presumption is that the time-to-failure
follows an exponential distribution, so that at temperature P, the reliability function is given by:

R(1|P) = e

The question is how to determine the degree of acceleration achieved by exposing experimental units
to a particular temperature, say P4. The first problem is to estimate the parameters A and B = —E/K
(note that B is just a normalized energy of activation). The answer depends on the nature of the data.
Life tests may be performed by placing » units into a temperature chamber, at a fixed temperature, P,
for a given time, T. At time T, the units are taken out and inspected or tested, and the number of units
that “survive”, § = s, are counted. Assuming that the time-to-failure is exponentially distributed, and
an estimate of the reliability at time T is p, = 7, then the reliability is given by:

R (T|PA) =Ml = Py =~
Solving for 14 gives an estimate for the failure rate:

i) —In()

A T T

Suppose an experiment was performed where n; units were put on test for 7 time units at temperature
P, and another n, units put on test for 7 time units at temperature P,. Then we would have two
equations in the two unknowns A and B:

-B
—In <S—l> = TAexp <—>
np P1

—B
—In (s_2> = TAexp (—)
o Py
Taking logs on both sides yields:

K B
ln(—ln (l>> = InT + InA — —
n Py
ln(ln <S—2>) T+ mA-2
) Py

These in turn yield the solutions for the estimates:

B= Py [an - ln(—ln;—l> + lnT}
1
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~ P P P
InA = 2 In —lnS—2 + “n —lns—1 + “Unr
P, — P, np ) ny P,

Thus, an expression for the estimate of parameter B in only known quantities is:

~ P, S Py S Py S
B=P In| —In— —In| —In— —InT | — In| —In— InT
1{P2_Pl[n< nn2)+P2n( nn1>+P2n } n( nnl)—i—n ]

These estimates will allow the EAS to determine how much acceleration was achieved at any given
temperature, P,, compared to a lower temperature, P;. The estimates of B and A may be useful for
future experiments or tests, provided that the materials involved in such tests are at least similar if not
identical to those used to obtain the estimates.
Suppose that the EAS has at least an hypothetical failure rate desired at say 25 °C = 25 + 273
= 298°K = Py. Such a failure rate might be determined by having a specification or requirement
that the reliability at time T must be at least r,. Assuming the exponential time-to-failure, the failure
rate is given by:

—ln(ro)
Ty

Ao =

Now suppose that the EAS wants to accelerate the failure process k times, so that the actual test time
would need to be T, = % (“a” stands for “accelerated”). This would also mean that the failure rate
under the accelerated conditions would need to be:

Ao = ko

The EAS must choose a temperature, P, > P, to achieve the desired acceleration.
Using the Arrhenius equation:

—-B/P, 1 1
p=OPBP) L (p(L L
exp(—B/Po) Py P,
Since k is actually given (i.e., the desired acceleration to allow the test to occur in a short enough
time), and Py is known, the equation can be solved for P,:

P, — BP

B — P oll’lk
The only thing required is a value for B, the normalized energy of activation. A simple experiment as
described earlier can be used to obtain an estimate of B.

Recall that test temperatures should be expressed in degrees Kelvin (°K) when using these
equations.

There are two potential drawbacks to the procedures described for determining parameters of an
accelerated life test. First, we have assumed that the time-to-failure is affected by temperature in the
way described by the Arrhenius equation. Secondly, we have assumed that time-to-failure has an
exponential distribution. Both of these assumptions stem from a more fundamental assumption that
the failure process is related to a first-order chemical reaction (Chow 2007). While these assumptions
may not be completely valid, they may provide at least a practical approach to determining the
amount of acceleration achieved by putting units on test at temperature P, for time T,.
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As an example, consider a life test with Py = 25 °C = (25 + 273 = 298)°K and P, is 40 °C =
(40 + 273 = 313)°K. At Py, a test with no = 30 units is performed for Ty = 720 h. At P,, the test is
also performed for Ty = 720 h. with n, = 30 units. At P,, the number of “surviving” units was
so = 29. At P,, the number of operating units after 720 h. was s, = 20. Figure 11.3 shows some R
code, together with session window output, for computing the estimates of A, B, and k.

Note that due to the vectorized nature of the computations in R, and the fact that the data were
entered with separate rows for the 25 and 40 °C inputs, R computes the parameter estimates as vectors
of length 2.

In this example, increasing temperature from 25 to 40 °C results in an acceleration of about 18.8
times. Thus, the 720 h at 40 °C is equivalent to 18.8%720 = 13,536 h at 25 °C, or about 1.54 years. If
the EAS wished to simulate 2 years = 17,532 h with a test of 720 h, then he or she would need a test
temperature that would yield an acceleration of approximately 17,532/720 = k = 24.35 times. Using
the equation for Pa, given B and k, yields:

_ BPy 18231.39 % 298
B — Pylnk  18231.39 — 298 * In(24.35)

P, ~ 314.1°K = 41.1°C

So, it turns out that a relatively small change (1.1 °C) in the test temperature would give the desired
acceleration.

Finally, the EAS may want to have an estimate of the failure rate at the new test temperature of
41.1 °C. Using the Arrhenius equation:

Ap = Aexp (’73) ~ 0.0012, or approximately 0.0012 failures per hour at 41.1 °C. The estimated
failure rate at 25 °C would then be:

Je  0.0012
Jo = 24~ 2772 1 0.000049
"7 % T 2435

The estimated probability that the device would last 2 years is given by the exponential reliability
function:

R(Z years|25°C) _ e—().()()()()49*]7532 ~ 04236,

or about a 42.36 % chance that the device will not fail before 2 years. Recall that at 25 °C, there were
29 out of 30 parts that survived after only 720 h. It does not seem unreasonable to expect such a low
reliability at 2 years. The question of why may require a designed experiment in the features the EAS
determines may have a critical impact on reliability. Armed with the Arrhenius parameter estimates,
the EAS may perform the experiment at 41.1 °C for 720 h per each experimental set of prototypes. If
the only information per unit tested is whether at 720 h it was or was not operational, logistic
regression methods may well be appropriate to determine which device features are most critical, and
what particular choices for each critical feature may be optimal.

Stability and Shelf Life

Shelf life is the amount of time an item may remain unused and still perform adequately. Chemical
products, such as pharmaceuticals, paint, solvents, and even food items are subject to the problem of
estimating, controlling, and elongating shelf life. Shelf life is closely related to reliability, although
the two are not identical concepts. We will treat the case where there is a continuously-valued quality
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setwd("H:\\Personal Data\\Experimentation for Design & Validation\\Data & Analyses\\")
df1 <- read.csv("20141110 accelerated life test.csv")
attach(dfl)

# inputs:

# Test = index

# TempC = test temp in degrees C

# Time = test time in hours

# n = number of units on test

# s = number surviving units after test

i

# the R function "log" is the natural logarithm

#

TK1 <- TempC[1] + 273

TK2 <- TempC|[2] + 273

nl <-n[l]

n2 <-n[2]

sl <-s[l]

s2 <-5[2]

InA <- (TK2)ATK2 - TK1)*(log(-log(s2/n2)) + TK1*log(-log(s1/n1))/TK2 + log(Time))
B <- TK1*(InA - log(-log(s1/nl)) + log(Time))

K <- exp(-B/TK2) / exp(-B/TK1)

df2 <- cbind(InA,B.K)
write.csv(df2,file="20141110.acceleration.parameters.csv")

> setwd("H:\\Personal Data\\Experimentation for Design & Validation\\Data &
Analyses\\")

> df1 <-read.csv("20141110 accelerated life test.csv")
>

> attach(df1)

e

>

> # inputs:

> # Test = index

> # TempC = test temp in oC

> # Time = test time in hours

> # n = number of units on test

> # s = number surviving units after test

> #

> # the R function "log" is the natural logarithm
> #

>TKI1 <- TempC[1] + 273

>TK2 <- TempC[2] + 273

>nl <-n[1]

>n2 <-n[2]

>sl <-g[1]

Fig. 11.3 R code for accelerated life test parameter estimation
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>52 <-5[2]

>

> InA <- (TK2)/(TK2 - TK1)*(log(-log(s2/n2)) + TK 1*log(-log(s1/n1))/TK2 +
log(Time))

> B <- TK1*(InA - log(-log(s1/n1)) + log(Time))

> K <- exp(-B/TK2) / exp(-B/TK1)

>

> df2 <- cbind(InA,B,K)
=

> write.csv(df2,file="20141110.acceleration.parameters.csv")
> InA

[1]51.21562 51.21562
>B

[1]18231.39 18231.39
>K

[1] 18.76342 18.76342
>

Fig. 11.3 (continued)

response variable. Furthermore, we will assume that this variable is monotonic with respect to time
spent “on the shelf”, and that it is continuously degrading. As in the cases of Chaps. 5-8, the shelf-life
variable can be optimized over the list of critical features, components, or factors. We will concen-
trate on how to estimate shelf life, following methods described by Chow (2007).

Assume that the quality variable, Y, is linearly related to shelf time, S, i.e.:

Y:ﬂ0+ﬂls+€

There are two sorts of shelf-life problems; (1) find the time, S,, such that there is a 100p % chance that
the value of Y will still be acceptable; (2) determine the probability, p, that Y is acceptable at a
pre-determined “warranty” time, S,,. For both of these problems, a prediction interval approach will
be employed.

Recall that earlier, the standard error of a predicted value from a polynomial regression model was
presented. As a special case of a linear model in a single regressor, namely time, the formula for a
future predicted value at time = s, is:

SE(IA/|sk) =0 1+1+ (sx —5)°

4 2;1(& -5

The standard deviation of the noise variable, €, namely o, is estimated by the root mean square error of
the regression fit, 6. The lower confidence limit for a predicted value of Y at time = s, is then:

Y, =Y i ! sk —5)°
Y, =Y, —tia(n—2)5 1+”+M
=1\


http://dx.doi.org/10.1007/978-3-319-32768-6_5
http://dx.doi.org/10.1007/978-3-319-32768-6_8
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To solve problem 1, we will employ the inverse regression approach (Draper and Smith 1998). To
find the time, s;, at which it is expected the response variable, Y, would be no lower than the lower
specification limit, L, with probability 1 — «a, solve the equation for s;:

- 1 —35)?
L=, —tialn—25, 141y I
" Zi:l(si_s)

Solving yields:

where ¢ is the 100(1 — o) percentile of a ¢ distribution with n — 2 degrees of freedom.

Problem 2 is simpler. Presume that there is a desired warranty time, call it s,,, and we want to know
how likely it is that the product will have an adequate value of Y at that time. If the predicted value of
Y at s, is IA/SW, then the lower confidence limit for the predicted value at time s,,, is:

' 1 ,—3)°
Y, =Y -5, |1+-+ (5w =)

Sw N 2
" Zi:l(si —5)

Setting IAKL = L and solving for 7 gives:

The probability that Y will not fall below Y, before time s,,, Pr{Y > Y, |s,,}, is Pr{T < z*|n — 2},
the probability that T, a Student’s f random variable with n — 2 degrees of freedom, will be less than ¢

Generally, design problems cannot afford to wait for product to be put on test until the expiration
or warranty time has elapsed. Thus, some form of accelerated test is generally required. Presume that
the accelerating parameter is temperature. The question is how to determine the temperature and the
degree to which acceleration is achieved at that temperature. The methods for determining the
Arrhenius parameters described earlier could be employed. However, since the response
variable, Y, is continuously valued, and is assumed here to be monotonic and linear with respect to
time, there is another possible approach. Perform the test at a fixed set of times, say sy, $5,. . .S, at two
temperatures, P, and P,, both of which are greater than the “nominal” temperature, P, (typically
Py =125 °C), and P, > P;. Obtain slope estimates for each set of data. Call the estimates b,
(at temperature P) and b, (at temperature P,). An estimate of the acceleration rate for a temperature
difference of Ap = P, — Py is kap = b, / by. If the EAS desires to simulate T, time units with
T, < T, time units, she or he would require k, ~ Ty / T,,. Let
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A, = P, — Py be the temperature difference from nominal required to achieve acceleration k.
Then:

Bu_ ki, _ ke
Ap  kap ‘" kap

Ap

So, to simulate T, time units at nominal temperature P, test over T, time units at temperature
P, = Py + A,. The number of time points at which to measure Y should be at least 3, 2 more than the
highest order term in the model, but 4 or 5 would be better. For the purposes of assessing the adequacy
of the model (which we have assumed was first-order), replication at each time point in the form of
multiple units measured, is highly recommended.

For the EAS, the values of s; or / depend on the product, which is in turn dependent upon the
chemical or other components. If prototype products are formulated in a designed experimental
fashion, then either s, or ¢ could act as response variables. In that way, a desired prototype
formulation could be found.

In the shelf life discussion so far, we have only dealt with a case where the quality response
variable is monotonically decreasing, and that there was a lower limit of acceptability. The case
where Y is monotonically increasing, with an upper limit of acceptability, is analogous.

The purpose of this section was to provide some ideas concerning shelf-life testing, and to
encourage the use of designed experiments in order to achieve a desired shelf-life with some stated
level of probability. Shelf-life is a fairly broad topic, and those who are interested are encouraged to
read the book by Professor Chow (2007)

Key Points

+ Reliability is the probability that something will not fail before a given time.

» Time-to-event variables give rise to reliability.

+ Reliability models stem from the same first-order differential equation describing radioactive
decay and chemical reaction kinetics.

e The cdf, reliability, and hazard functions for a time-to-event variable are all related; one can be
derived from the others.

*  When the hazard rate is a constant, time-to-event has an exponential distribution.

» Accelerated life tests involve a model for assessing the degree to which the hazard rate is affected
by “accelerated” conditions (most notably temperature).

» Shelf life or stability is often assessed using regression models.

Exercises and Questions

1. The Weibull cumulative distribution function can be expressed as: F(¢) = 1 — exp (—(oct)/j ) where
a and f are called the scale and shape parameters, respectively. Derive the hazard rate function, A(#).

2. Could you use the cumulative hazard rate function, H(¢), of the Weibull distribution together with
sample life test data to estimate the values of @ and f§ via least squares regression? How would you
do it?
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3. Given a set of uncensored life test data, would you rather approximate H(f) with a low-order
polynomial or assume that the time-to-failure has a Weibull distribution?

4. A failure process has a failure rate that follows the Arrhenius law, with B = 6700. At P, = 25 +
273 = 298°K, what temperature would you recommend to accelerate the failure rate 10 times?

5. At Py = 298°K, what is the failure rate if A = 1.0EO5 (per hour)?



Chapter 12
Some Bayesian Concepts

Bayesian statistical methods are based on Bayes’ theorem, which was described in Chap. 1. Suppose
X represents a continuously-valued random variable, and f(x1) is its density function given parameter
6. In the Bayesian world, the parameter 0 is also treated as a random variable, with a density function
g(0). This density is referred to as the prior density for €, inasmuch as it is formulated prior to
obtaining any observations of X. The idea is that g(@) represents our prior belief about the likelihood
that O takes on a value in any particular range. Generally, g(0) is also a function of some other
parameters, which we will call hyperparameters, whose values are chosen to reflect the prior belief
about the possible range of values for 6. The observation of X, call it x, is assumed to be dependent on
the value of 6. The dependency is expressed as a likelihood function, symbolized by L(x6). Once the
data, x, are observed, the Bayesian would like to update his or her belief concerning the probability
that the unknown parameter, 0, falls in any particular range. The updated belief is expressed as a
conditional density function, called the posterior density, and is expressed as g(flx). Bayes’ theorem
provides a method for deriving the posterior density given the prior density and the likelihood
function:

L(x|0)g(0)
J, L(x|r)g(r)de

g(0lx) =

Conjugacy is a condition that greatly simplifies computations. A likelihood function and a prior
distribution are said to be a conjugate pair if the resulting posterior distribution is of the same form as
the prior. For conjugate pairs, the posterior distribution has hyperparameters whose values are
generally a closed-form function of the prior hyperparameters and the data. Generally this relation-
ship is the reason why conjugacy greatly simplifies computations.

We will focus on two particular but hopefully useful conjugate cases. The first is the case where
data are binomially distributed with a beta distribution as the prior for the success probability
parameter. The second case has normally distributed data, where the mean parameter has a normal
prior. A very complete exposition of Bayesian methods is given in Gelman et al. (1997).
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Binomial Data with Beta Prior

Let X be a binomially distributed random variable with probability mass function:

L(x

p.n) = (Z)px0<—PVx

Furthermore, suppose the parameter p is unknown, and n represents the sample size to be drawn.
Then we might choose as a prior distribution for p a beta with hyperparameters « and f, i.e.,

_a+p)

a7

g(p)

Then, given the data x = number of “successes” observed in a sample of size n, the posterior
probability density function of p is given by:

F(a+ﬂ+n) a+x—1 ftn—x—1
C(a+x)0(B+n—x) =)

g(plx.n) =

In other words, the posterior distribution for p is also beta, with hyperparameters
a+x and f+n—x

The prior hyperparameters, a and f, can be thought of as the best guess for percent success () and
percent failure (). That is, if the EAS chooses a and f so that their sum adds to 100, then she or he
could choose their respective values to represent the best guess, prior to getting any data, on the
probability of success and failure. It is not necessary to have a + f = 100; it is just a potentially
convenient way to quantify prior belief.

The expected value of a beta-distributed random variable (i.e., p) is given by:

a
a+p

E[pla.p] =

That means the expected value for the posterior distribution is:

a—+x

E[p|a+x,ﬁ+n x} = aihin
Note that unlike the normal distribution, the expected value for the beta is not the value of p that
maximizes the density function.

Suppose an EAS has some belief that a particular part design has a 90 % chance of performing
properly. She chooses a beta prior for p, the probability of proper performance, and sets @ = 90, and
p = 10. Figure 12.1 shows the prior density for p.

The value of p that maximizes the density is 0.908, which is close, but not identical, to the expected
value of 0.90 (0 %).

She performs a test with n = 100 parts, and finds that only x = 75 perform adequately. The
posterior expectation is:
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Fig. 12.1 Prior beta
density for p
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The prior and posterior densities are shown in Fig. 12.2.
The value of p that maximizes the posterior density is 0.828, and not the expected value of 0.825.
The prior probability that p is at least 0.90 is approximately 53.55 %. The posterior probability is

only about 0.07 %. It appears that this design is not adequate, assuming that the EAS was hoping
there was at least a 90 % chance that the part would perform properly.
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Normal Data with Normal Prior

The normal likelihood for X given y and o is:

L[x|u, 0] = 6\}5 exp(—O.S (= ”)2)

That is, the likelihood for an individual observation is the normal density function. For a random
sample of n values, the likelihood is:

(Y I, | mux
L[xl, ...,x,,|,u,0] = <a—\/§£) eXp<_%;xi +7_§>

Suppose that ¢ is known (at least, for now). If the prior density chosen for the unknown parameter,
U, is also a normal density of the form:

1 o 2
g(ﬂ’#o,ro) = m—zﬂexp (—0.5 (ﬂ TO”") >

Then the posterior parameters after observing n values of X would be:

X is the arithmetic average of the n values of X.

The posterior density of 4 would then be:

1 B 2
g(:u’ﬂinfn) = . mexp (—0.5 <’u TI’“") >
n 7

As an example, consider an electrical motor. It is guessed that this motor can generate 44.5
Newton-meters (Nm) of torque. The EAS recognizes that each unit may vary the amount of torque
even if the same voltage is applied. He has found a record of torque measurements where the reported
standard deviation, 6, was 1.105 Nm. The mean torque values were also reported, with a mean value
of uy = 44.50 Nm. The standard deviation of these means was 7o = 0.300 Nm. He plans to make
torque measurements on some new units, but he does not want to disregard historical data. He decides
that the mean torque should have a prior density assigned, with uy = 44.50 Nm and 7y = 0.300 Nm.
His experiment with n = 10 units yields ¥ = 47.56 Nm. Using these data, he updates his prior
hyperparameters:
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Prior to obtaining any data, the EAS was about 95 % certain that the value of p was somewhere
between o — 1.9675 = 44.50 — 1.96(0.300) ~ 4391 Nm and o — 1.9675 = 44.50 + 1.96
(0.300) =~ 45.09 Nm. After obtaining the data, he now believes with 95 % certainty that p is
somewhere between p, — 1.967, = 45.80 — 1.96(0.228) =~ 45.35 Nm and y,, — 1.967,, = 45.80 +
1.96(0.228) =~ 46.25 Nm. These intervals are called “credible intervals” (Gelman et al. 1997), and are
a sort of analog to the classical frequentist confidence interval concept. Figure 12.3 illustrates the
prior and posterior densities of y. Figure 12.4 gives the R code that was used to generate the graph.

When ¢ is Unknown

The previous analyses presumed that somehow the parameter ¢ was known. While it may be possible
that historical data might give rise to a more or less trustworthy value for o, it often will not be the
case. It turns out that determining a posterior distribution for p when o is also unknown is more
complex. Gelman, et al., give a sort of way to get a reasonable approximation. First, assume a prior
distribution for ¢. In particular, suppose that (%has a gamma distribution with hyperparameters v, and

2
Po = % The posterior hyperparameters, given the data:
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setwd("H:\\Personal Data\\Experimentation for Design & Validation\\Data &
Analyses\\")

dfl <- read.csv("20141127 example 12.2 priors and data.csv")
# Inputs:

# Mu0 - prior mean hyperparameter

# Tau0 - prior sd hyperparameter

# sigma - sd of measurements

# n - sample size

# xbar - observed arithmetic average

#

attach(dfl)

mu <- ¢()

pdf0 <- ¢()

pdfl <-¢()

denom <- (1/Tau0**2) + (n/sigma**2)

it

# compute posterior hyperparameters:

#

Mun <- (Mu0*(1/Tau0**2) + xbar*(n/sigma**2))/denom
Taun <- sqrt(1 / denom)

mulow <- min(Mu0-5*Tau0,Mun-5*Taul)
muhigh <- max(Mu0+5*Tau0,Mun+5*Taul)
mu <- seq(mulow, muhigh,0.05)

pdf0 <- dnorm(mu,Mu0,Tau0)

pdfn <- dnorm(mu,Mun, Taun)

height <- max(max(pdf0),max(pdfn))

incr <- 0.1

#

#col=1 Black
#col=2 Red

#col =3 Green

# col =4 Blue

# col =5 Light Green

#col =6 Violet

#col=7 Yellow

# col =8 Light Grey

it

plot(mu,pdf0,axes=F,type="n",main="PDFs - Prior &

Posterior" xlim=c(mulow,muhigh),ylim=c(0,height+incr),xlab="Mu",ylab="PDF")
axis(side=2,at=seq(0,height+6,0.1)) #defines y-axis
axis(side=1,at=seq(mulow,muhigh,0.1)) #defines x-axis
points(mu,pdf0,pch=1,type="b",Ity=2,col=1)
points(mu,pdfn,pch=2,type="b",Ity=1,col=4)
legend(43,1.8,legend=c("prior","posterior"),pch=c(1,2),lty=c(2,1))

Fig. 12.4 R code for generating the prior and posterior density graph
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oI
Ch :ZZ(H —M)2
i=1

are:
Uy =Vp+n
5 _ 2fy + no?
" w+n

You may have noticed a small fly in this ointment, namely that the posterior parameters depend on
knowing . It turns out that the joint distribution of 4 and ¢ can be derived in a closed form. However,
another method may be used to estimate the posterior expected value of p. The method, referred to as
the Monte Carlo Markov Chain (MCMC) method, is described in Gelman et al. (1997). The idea is to
randomly draw a value from the prior distribution of % Then use this value to randomly generate a
value from the posterior distribution of . Then, in turn, use this randomly generated value of p to
randomly generate a value of % from its posterior distribution. Continually iterate, updating the
hyperparameters at each iteration, for N times.

Our EAS decides to run an MCMC program, with N = 10,000, as illustrated in Fig. 12.5. The
output values of the prior and posterior hyperparameters, together with the sample mean and standard
deviation of the raw data, are given in Table 12.1. The prior and posterior density functions are plotted
in Fig. 12.6.

In this relatively simple case, the data have overwhelmed the prior guess; the posterior
hyperparameter u, is equal to the sample mean, rounding to two decimal places of numerical
precision.

How can Bayesian methods be used to aid in design? One idea is to have a set of prior
hyperparameters for each run in a designed experiment. After obtaining data, update the
hyperparameters, and compute credible intervals corresponding to each run for the parameter of
interest. As a simple example, consider a single continuously valued response variable with a single
continuously valued regressor.

The conditional expectation for the response, y, is:

EMX] =Py +pix

The response variable is usually assumed to have a normal distribution with this conditional
expectation and variance o2 Thus, the likelihood function is based on the normal density:

_ 1 1(y =By —Bix\’
y(X)—G ZﬂeXp<—§<7a ) )

The regression coefficients, fy and f;, are assumed to have a bivariate normal prior distribution
with mean vector:

and covariance matrix:

AX'X]"
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setwd("H:\\Personal Data\\Experimentation for Design & Validation\\Data &
Analyses\\")
df1 <- read.csv("20141128 example 11.3 data.csv")
# Inputs:
# Mu0 - prior mean hyperparameter
# Tau0 - prior sd hyperparameter
# sigma - sd of measurements
# x = vector of data values
i
attach(df1)
mu <- ¢()
pdf0 <- ¢()
pdf1 <-¢()
N <- 10000
Mu0 <- 44.5
Tau0 <- 0.300
nu0 <- 100
sig0 <- 1
betal <- (nu0*sig0**2)/2
sigma <- 1 / rgamma(1,shape=nu0,scale=beta0)
xbar <- mean(x)
n <- length(x)
nun <- nu0 +n
for (iin 1:N) {
denom <- (1/Tau0**2) + (n/sigma**2)
#
# compute posterior hyperparameters:
#
Mun <- (Mu0*(1/Tau0**2) + xbar*(n/sigma**2))/denom
Taun <- sqrt(1 / denom)
murand <- rnorm(1,mean=Mun,sd=Taun)
ssX <- (x - murand)**2
sig2ml <- mean(ssx)
nu0 <- nu0 +n
beta0 <- (2*betal + n*sig2ml) / nu0
sigma <- 1 / rgamma(l,shape=nu0,scale=beta0)

j

Fig. 12.5 MCMC program (R code)
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mulow <- min(Mu0-5*Tau0,Mun-5*Tau0)
muhigh <- max(Mu0+5*Tau0,Mun+5*Tau0)
mu <- seq(mulow, muhigh,0.05)

pdf0 <- dnorm(mu,Mu0, Tau0)

pdfn <- dnorm(mu,Mun, Taun)

height <- max(max(pdf0),max(pdfn))

incr <- 0.1

#

# col =1 Black
#col =2 Red
#col =3 Green
# col =4 Blue

# col =5 Light Green
#col=6 Violet

#col =7 Yellow

# col =8 Light Grey
i

plot(mu,pdf0,axes=F.type="n",main="PDFs - Prior &

193

Posterior" xlim=c(mulow,muhigh),ylim=c(0,height+incr),xlab="Mu",ylab="PDF")

axis(side=2,at=seq(0,height+6,0.1)) #defines y-axis
axis(side=1,at=seq(mulow,muhigh,0.1)) #defines x-axis

points(mu,pdf0,pch=1,type="b",Ity=2,col=1,cex=0.3)
points(mu,pdfn,pch=2.type="b".Ity=1,col=4,cex=0.3)

legend(43,10,legend=c("prior","posterior"),pch=c(1,2),lty=c(2,1))

Fig. 12.5 (continued)

Table 12.1 MCMC output

where:

MCMC parameters

nu(
betal
sig0
MuO
Tau0
Mun
Taun
xbar

sd(x)

100
50

44.5
0.300
47.56
0.0037
47.56
0.167
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Fig. 12.6 Prior and posterior densities from MCMC program

Here it is assumed that ¢ is known. The conditional updating formulae (Box and Tiao 1973) for the
posterior mean vector of the coefficients is given by:

a==X'X"' X'y + XXy,

N —

Y1
with y = | i | being the vector of n observed values of the response.

n

An MCMC procedure could be used to update the posterior parameters for the coefficients, using

the same prior and posterior conditional gamma conjugate pair for %, with p replaced with:

u(x;) = o +rxi

so that:

7 =3 0wt

i=1
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Typically, the estimate 6> from a regression model would use n — k as the denominator, where
k = number of model coefficients (in this case, k = 2).

If data are obtained sequentially, the EAS can use a recursive updating formula for the regression
posterior hyperparameters, given by Judge et al. (1985). The updating formulae, given a new pair of
values, X,.1, Yn+1, 1S:

Snxn+1 (yn-H B x;1+1yﬂ)

Yn-o—l = Yn + 7
1+x,.,S,x,
and
!
S o S - Snxn+1x,,+1sn
n+1 — On 7
1+ x,,,8:%,
where

x/n+1 = [1 xn+l] and

1 S
i=1 i=1
D3 = () [ Don e
i=1

S, =

As an alternative, somewhat unorthodox, model, suppose that the prior hyperparameters are the
slope, 1, and intercept, B, of a linear model, with an unknown noise variance:

p o~ N(fy+pix, 75)

and:

1 2
— ~ Gammal| vy, 7y = Y%
o? 2

With a normal likelihood function, the conditional posterior distribution of p, given o, is also
normal, with posterior hyperparameters:

L (o + i) + 550

1 n
o +0'2

H(X) =

The values of fy and 3, could be obtained by least squares either using previously gathered data or
even a partial subset of the data just gathered (i.e., partition the data into a “training set” and a “test
set”; the training set could be used to obtain prior values for the hyperparameters). Of course, the
parameters fy and f; could also have prior distributions assigned with their own hyperparameters,
making the model complex, and a good candidate for MCMC methods.
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Key Points

» Bayes’ Theorem provides a means of incorporating prior information about parameters together
with empirical observations.

« Bayesian methodology quantifies information about parameters using probability distributions
that describe the degree of uncertainty about the parameters.

» The parameter distribution describing the uncertainty about the parameter before any new data are
gathered is called the prior distribution.

» The probability function that describes the chance of observing particular values given particular
parameter values is called the likelihood function .

» The posterior distribution for parameters describes the uncertainty about those parameters after
data have been gathered; it is computed using the prior distribution and the likelihood function.

« If the posterior distribution can be derived analytically, and has the same parametric form as the
prior, then the prior and associated likelihood function are said to be a conjugate pair.

» Even when a likelihood function and prior are not conjugate, they can be used to compute the
posterior distribution. A technique for using computer simulation with non-conjugate pairs is
called Monte Carlo Markov Chains (MCMCs).

Exercises and Questions

1. Suppose a binomial likelihood function is used together with a uniform prior distribution, namely:

where a and b are constants, b > a. What would the posterior distribution for p look like? Are
these a conjugate pair?

2. Discuss the appropriateness of Bayesian methods for utilizing experimental data to aid in design.
Consider the formulation of prior distributions, and the possible uses of MCMC methods.



Chapter 13
Validation and Verification

The terms validation and verification often are used in very specific ways (Nash and Wachter 2007).
Here we will use the terms somewhat loosely, more or less adhering to the following definitions:
Validation: demonstrating that within some tolerance ranges for product or process features, the
values of response variables (measures of goodness) are acceptable with some associated probability
measure.
Verification: demonstrating that a predictive model predicts new response values within accept-
able range of error.

Verification

Beginning with the epoxy example in Chap. 4, we have admonished the EAS to verify predictions by
obtaining some new experimental results. We did not suggest any formal verification process or
procedure. If the predicted response is y (x), where x is a vector of input variable values, and y,(x) is
the average of m new response values obtained to verify the model, then the EAS would want the
difference y,(x) — ¥ (x) to be within some desired limits. Using the data from the model fitting, we
would have an estimate of the variability in this difference, namely:

Var(y,(x) —=5(x)) = — +s*(3(x))

S|

An approximate 95 % confidence interval for the difference would be:

2

Y(¥) =¥ () £rg75(n +m— (k+ 1))\~ +s5e*(y(x))

SERY

The symbol se refers to the estimated standard error of the predicted value, and 7 is the sample size
used to fit the model. The symbol ¢ o75(n + m — (k + 1)) represents the 97.5th percentile of s Student’s
t distribution with n + m — (k + 1) degrees of freedom. If this confidence interval falls within a
desirable range, then the model is verified with 95 % confidence. This is a very simplistic verification
process, but it may be sufficient. More sophisticated methods might include saving some data as a
“test” set, and not including them in the fitting process. Other methods might include an iterative
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process, where random subsets of data are selected to fit, and then the differences between predicted
and actual responses could be computed. In each iteration, the mean square error (MSE) could be
computed for the “test” set of m values (m < n):

m

1 N 2
MSE = ;Z(yi _yj)

J=1

The MSE values from all the iterations could be averaged, and the square root of the average MSE
could be computed (call is root mean square, or RMSE). If this number is a “small enough” percentage
of the average actual response values, then the model might be considered as verified.

Validation

We will use the word “validation” to mean validating that the product or process performs adequately,
once it has been designed and manufactured. Of primary importance is defining the range of response
values that would be considered “adequate”. The next question is by how much can any of the product
features vary and still provide with sufficient probability response values that will fall within the
adequate range. One possible means is to interpolate data from an experiment used to optimize the
product design, by finding the ranges of factor or regressor values that will result in predicted values
falling within the adequate performance range. As an example, consider the hip replacement example
in Chap. 10. The desired reliability at 20 years of life was 95 %. The 95 % confidence interval for
reliability at 20 years for design PS5 was (95.85 %, 98.26 %). Since, in this case, the features, or
factors, were discrete, the EAS may consider this design “validated”, at least with respect to
reliability. For continuously valued design features with a continuous response, the methods
described in Chap. 8, Range Finding, would be appropriate for product validation. Note that a
confirmatory experiment, centered around the “optimal” design point, should be executed. By way
of simple example, suppose there is only a single continuously valued feature (regressor). Suppose
further that a first-order model is adequate. Suppose x* represents the desired design point. Further-
more, suppose that the values of x that describe the acceptable operating range are x;; and xyy, as
defined in Chap. 8. The EAS performs a confirmatory experiment with x = x;; and x = xyy, and
observes n values of the response at each of these points. She then computes the means and standard
deviations y for each group. The desired value for the response at optimal point x* is y*, and the limits
of acceptability are y* + 6. Compute the confidence range of a future value for the response at each
of x;; and xyy, namely:

1 [ 1
L=y, +ts4/1+—- and U=y y —tsy/1+~—
n n

IfL > y* — §and U < y* + §, then the product is valid with respect to y, in terms of x. The value of
t is the 100(1 — a) percentile of s Student’s ¢ distribution with n — 1 degrees of freedom. The ideas
are first, that if the value of the response was truly y* — é or y* + §, the EAS would be satisfied with
performance, and that the true performance could not be both y* — ¢ and y* + § simultaneously.

The same notions apply when there is an optimal vector of feature/setting values, x*, but the
computation of limit vectors, x;; and xy, is more complicated.

Sometimes validation is based on a discrete random variable, b, with a Bernoulli distribution, i.e.,
the variable b equals 1 if an observation is a “success” and O otherwise. There may be a minimum
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desired probability of “success”, say p*. If n independent Bernoulli observations, b;, i = 1, n, are
obtained, and

i=1

then X, the number of successes out of n independent Bernoulli trials, has a binomial distribution.
Thus, a critical value, or acceptance criterion, x., can be found for X. That is, x, is chosen so that:

n xe—1
Pz = (1)) 0 =1 ()6 )
To be conservative, one should choose the critical value, x,., such that:
1 —a=sup Pr{X > xc|p*, n}
The term “sup” is an abbreviation for “supernum”, or least upper bound. The reason for specifying
that 1 — a should be the least upper bound on the probability of “passing” the test when the actual

probability of “success” is p* is due to the discrete nature of the variable X. For example, if n = 100,
p* = 0.90, and we want 1 — a = 0.95. If we choose x. = 85, then

Pr{X >85[p" = 0.90,n = 100} ~ 0.9601
If we choose x. = 86, then

Pr{X > 86

p  =0.90,n =100} ~ 0.9274

Since we want 1 — a = 0.95 to be the least upper bound on the probability of “passing”, then we
should choose x. = 86 instead of 85. That is, with n» = 100 and p* = 0.90, it is not possible to find an
integer critical value such that the probability of passing is exactly 0.95.

Such a criterion can be thought of as the critical value for testing the Noninferiority hypothesis
(Pardo 2014):

Hy : Pr{success} < p" versus the alternative H, : Pr{"success”} > p".

In other words, if X > x,, then reject the null hypothesis, Hy, in favor of H,,.

Validation is usually a multivariate problem, inasmuch as any product will have more than one key
response variable measuring the product’s performance. That is, there could be k response variables,
YDy Y, that describe the performance of a product or system. Furthermore, suppose all the
Y > 0, and that they are dependent on the same vector or regressors, x, which represent the product
or system features. One strategy is to map the multiple responses into “desirability” functions, which
can then be mapped into an overall desirability. There are three forms of desirability mappings:
lowest-is-best, target-is-best, and highest-is-best. For each response variable, Yy ), let Y, IOW(-f ) be a
value a little less than the minimum value of Y/, and Yhigh(j ) be a value a little greater than the
maximum. Also, suppose that if there is a target value, it is represented as Y,(f,z.g, Y,(’o)vL < Yf{),.g < Y,E’i)gh.
Then the lowest-is-best desirability is given by:
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4V — M
v _y0

high low

The highest-is-best desirability is:

NG
g0 (X =Y
Y0 0

high low

The target-is-best desirability is:

targ

AV =11=

max(Y,(llii,h - Y,((/;), g Yt%g - Yl(z’))w)

The overall desirability, D, is the geometric mean of the dv

D= (dVa®.. .d<k>)l/k

The parameter r > 0 is selected by the EAS; if »r = 1, then desirability is linear; if r < 1, the
desirability is convex (less discriminating); r > 1 then it is concave (more discriminating).
The maximum possible value for D is 1. The EAS may optimize simultaneously with respect to all
the response variables by finding the values of the regressors that maximize D. The idea is to suppose
that x* represents the vector of regressors that maximize D (subject of course to whatever constraints
there may be on x), and D* is the optimal value of overall desirability. Also let é be a vector of
tolerances for the components of x*. Then suppose the two vectors x* + § are used to find values of
D based on an experimental run with the regressor values x* — § and x* + §. Furthermore, suppose
the EAS defines a range of tolerance for desirability, namely that predicted desirability off the optimal
point must be no less than D* — p, where p is some predetermined quantity. Let the two values D_ 5
and D srepresent the predicted (average) overall desirabilities at each of the two “suboptimal” points.
Then the conditions for validation are:

N D+()>D

vn vn

where sp_; and sp,; are the standard deviations of overall desirabilities D_s and D5, n is the sample
size (not required to be the same for both —6 and +6 cases), and ¢ is the 100(1 — o) percentile of a
Student’s t distribution with n — 1 degrees of freedom.

Validation is a complex process that involves much more than the analyses of experimental data.
The techniques mentioned in this chapter, and in Chap. 8, will potentially aid in minimizing the
amount of experimentation necessary for validation. More details on the ideas of the tests for
validation can be found in Pardo (2014).

D ;+1

>D"—p and D+5—|—t
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Key Points

« Validation involves demonstrating that a product or system performs adequately as long as input
features are within tolerances.

 Verification involves showing that a predictive model predicts adequately.

» A priori limits on performance must be identified in order to validate.

+ Validation may be multivariate (multiple response variables).

» Desirability functions may help in validation or optimization.

» The general notions of equivalence and non-inferiority apply to validation.

Exercises and Questions

1. Consider a product having k continuously valued features, x, x5,. . ., X; and a single continuously
valued key response variable, y. Suppose that using an approximating polynomial model, optimal
values of the x; were found. Describe a strategy for validating the product if the allowable tolerance
for the optimal value of the response, y*, is %6.

2. Are computations using predicted response values, where the prediction equation was generated
using the design-generating data, sufficient for validating a product? Why or why not?

3. Consider a multivariate validation problem, where at least some of the response variables of
interest do not have symmetric distributions. How important is this fact in determining acceptance
limits for overall desirability?



Chapter 14
Simulation and Random Variable Generation

Originally, simulation meant using an electronic computer to generate pseudo-random numbers,
uniformly distributed between 0 and 1 (Law and Kelton 1982). The single use of these numbers,
called pseudo-random because they appear to have a uniform probability distribution, but in fact any
sequence of them can be predicted exactly, was to perform numerical integration. Suppose an EAS
wanted to compute a numerical approximation to an integral:

where f(x) is some fairly complicated and intractable function of x. Of course, nowadays there are
many excellent numerical integration codes available. However, there was a time when such
computing facilities were not easily obtained. It is true that if f(U) is a function of a random variable,
U, and U has density function g(u), then

+00

Ef(U)) = jf<u>g<u>du

—00

This fact is sometimes referred to as the “Law of the Unconscious Statistician” (Allen 2006). Now
suppose U is uniformly distributed between a and b. Then

1
g(u):mVu,a <u <b

And therefore:

b
1= (b= @E((U) = (b~ )|, du

So, if we randomly generated N values of U, uy, u,, ..., uy, and computed
y1 = fluy), y» = flwo), ..., yv = fluy) then an approximation to integral / is:
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~ 1 &
I'=(b—a)) v
Ve

This integral approximation method was the original reason for what became known as Monte Carlo
simulation. In Chap. 12, Monte Carlo simulation methods were used to assess Bayesian posterior
distributions. It turns out that there can be some non-Bayesian applications of Monte Carlo simulation
to the design problem.

Consider a deceptively simple-looking problem. An EAS wished to compute the middle 95 % of a
force distribution. She knows that F = ma, and that the average mass is 5 g (0.005 kg) with a standard
deviation of 0.0002 kg. She wants the average force to be approximately 1 N. In order to achieve a 1 N
force, she believes she requires (on the average) an acceleration of 200 m/s*. The question is how
much standard deviation in both mass (m) and acceleration (a) should she allow so that the force will
be between 1 N £ §, with 6 = 0.025 N, 95 % of the time? The variance of the product of two random
variables is not the product of the variances. In fact, Springer (1979) has shown that the product of
two normally distributed random variables is not necessarily normal. The analytic expressions for the
product’s density and cdf are in fact quite complicated, involving infinite series. Our EAS decides to
try simulation. She uses the R code shown in Fig. 14.1, with N = 100,000 simulated values of mass
and acceleration, and gets the histogram of forces shown in Fig. 14.2. The histogram appears quite
symmetrically distributed. Figure 14.3 shows the mean, standard deviation 2.5th percentile, and
97.5th percentile of Force.

If Force were normally distributed, we would expect about 95 % of the results to fall between
MForce £ 1.96*SForce = 0.9999829 + 1.96(0.03997325) ~ (0.9216, 1.0783). This is fairly close
to the range of the 2.5th to 97.5th percentiles (0.9213, 1.0782). The standard deviations used for mass
and acceleration were both 0.0002. The standard deviation of Force was approximately 0.0400.
Certainly, the Force standard deviation is not the square root of the sums of variances of mass and
acceleration. In order to help find distributional parameter values for mass and acceleration that will
satisfy her requirements on Force, the EAS decides to use a full factorial experiment in four factors,
with a center point run. Table 14.1 shows the factors and their low, high, and midpoint levels in
natural units. Table 14.2 shows the experimental runs in Helmert-coded form. Table 14.3 shows the
input values for mass and acceleration, and the Force statistics.

The results of the experiment were somewhat disappointing. The highest percent within the
tolerance range (1 £ 0.025) was only 81.19 %, at the center point. The EAS suspects that
the phenomenon has curvature, so she adds runs to make a Central Composite Design (CCD). The
complete results are shown in Table 14.4.

Run 22 is promising. The middle 95 % was (0.9961, 1. 0039), and 100 % of all N = 100,000
simulated results fell within the tolerance range. This run had all factors set to their center level,
except for the standard deviation of mass, set to its low level. Thus, through simulation the EAS has
discovered that in order to meet the specifications for Force, she will need to reduce the variability in
the Mass variable.

Although it seems that run 22 was best, the EAS wanted to know which factor had the greatest
influence on the percent falling within the desired range for Force. Table 14.5 shows the coefficients
of a full second-order model fit to the data with Helmert-coded regressors, sorted by model parameter
estimate magnitudes. Note that the largest magnitudes were the squared terms. It appears that the
greatest effect is average mass squared (MuM*MuM), followed by the standard deviation of mass
squared (SigM*SigM). Without the simulation, and naively computing Force by multiplying average
mass and average acceleration, the EAS would not have concluded that reducing mass variability was
critical.


http://dx.doi.org/10.1007/978-3-319-32768-6_12

14 Simulation and Random Variable Generation

setwd("H:\\Personal Data\\Experimentation for Design & Validation\\Data &

Analyses\\")

#dfl <- read.csv("20141215 Example 13.2 F EQ MA.csv")

# Inputs:

# MuM - average mass (kg): L = 0.0045 H = 0.0055, C = 0.005
# SigM - std.dev. of mass (kg): L. = 0.00001 H = 0.00018 C = 0.000095
# MuA - average acceleration (m/s**2): L. =195 H= 205 C =200

205

# SigA - std.dev. of acceleration (m/s**2): L. = 0.00001 H = 0.0002 C = 0.000105

# N = simulation sample size

# delta = tolerance for 95% range on Force
i

#attach(df1)

Force <- ¢()

Mass <- ¢()

Accel <-¢()

intol <- ¢()

MuM <- 0.005

SigM <- 0.0002

MuA <- 200

SigA <-0.0002

N <- 100000

delta <- 0.025

#

#

#

Mass <- rnorm(n = N, mean = MuM, sd = SigM)
Accel <- rnorm(n = N, mean = MuA, sd = SigA)
Force <- Mass*Accel

hForce <- hist(Force)

for (iin 1:N) {

if ((Force[i] <= 1 + delta) & (Force[i] >= 1 - delta)) {
intol[i] <- 1

}

else {

intol[i] <- 0

}

b

Fig. 14.1 Force simulation R code
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pintol <- mean(intol)

MForce <- mean(Force)

SForce <- sd(Force)

lq <- quantile(Force,probs=c(0.025))
uq <- quantile(Force,probs=c(0.975))
MForce

SForce

Iq

uq

pintol

Fig. 14.1 (continued)
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Fig. 14.2 Histogram of force, N = 100,000

The simulation has saved time and expense in creating multiple prototype systems. An actual
experiment at the “optimal” conditions (average mass = 0.005 kg, standard deviation of mass
= 0.00001 kg, average acceleration = 200 m/sz, standard deviation of acceleration = 0.000105 m/sz)
must be performed, and Force must be measured. However, the search for good operational conditions is
greatly reduced.
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Fig. 14.3 Force statistics > MForce

from simulation [1] 0.9999829
> SForce
[1] 0.03997325
> 1Iq
2.5%

0.9213199
> uq

97.5%
1.078199
>pintol
0.46862

Table 14.1 Four factors

3 Factor Low (—1) High (+1) Midpoint (0) Units
and their levels

MuM  0.0045 0.0055 0.005 kg
SigM  0.00001 0.00018  0.000095 kg
MuA 195 205 200 m/s>

SigA 0.00001 0.0002 0.000105 m/s”

Table 14.2 Full factorial Pattern MuM SigM MuA SigA

experiment (Helmert-

coded levels) T -1 -1 -1 -1
- —1 —1 —1 1
——t— -1 -1 1 -1
——++ -1 -1 1 1
—+—— —1 1 —1 —1
—+—+ -1 1 -1 1
—t+— -1 1 1 -1
L —1 1 1 1
0 0 0 0 0
+——— 1 -1 -1 -1
+——+ 1 -1 -1 1
+—+— 1 -1 1 -1
+—++ 1 -1 1 1
++—— 1 1 —1 —1
++—+ 1 1 -1 1
+++— 1 1 1 -1
++++ 1 1 1 1

Another Example: Heat Transfer in a Bioreactor

An EAS wishes to design a thermal regulation system for a bioreactor that will be used to grow a
tissue-engineered arterial graft. The bioreactor design is a cylinder of 2 mm thick crystal polystyrene
tissue-culture plastic with an inner diameter of 5 mm. Cells will be seeded on the inner surface and
liquid media (modeled as water) will be pumped through the length of the cylinder at 30 cm/s
(approximate velocity of arterial blood). The bioreactor must be maintained at 37 £ 0.5 °C for optimal
cell growth. The EAS decides to design a thermostat-based system that consists of a temperature
sensor and a heater. The heat transfer through this system will be modeled as a combination of
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Table 14.3 Input parameters and results for force simulation—full factorial
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Run Pattern MuM SigM MuA SigA MForce SForce Iq uq % In Tol.
1 —_ -1 —1 —1 -1 0.8775 0.00194 0.8737 0.8813 0.00 %
2 ———+ -1 -1 -1 1 0.8775 0.00194 0.8737 0.8813 0.00 %
3 ——t — -1 -1 1 -1 0.9225 0.00204 0.9185 0.9265 0.00 %
4 ——++ —1 —1 1 1 0.9225 0.00205 0.9185 0.9265 0.00 %
5 —t—— -1 1 —1 -1 0.8776 0.03512 0.8085 0.9461 0.26 %
6 —+—+ -1 1 -1 1 0.8774 0.03519 0.8084 0.9465 0.27 %
7 —++— -1 1 1 -1 0.9224 0.03699 0.8498 0.9948 7.52 %
8 —+++ -1 1 1 1 0.9226 0.03684 0.8502 0.9951 747 %
9 0 0 0 0 0 1.0000 0.018985 0.9629 1.0371 81.19 %
10 +——— 1 —1 —1 -1 1.0725 0.00195 1.0687 1.0763 0.00 %
11 +——+ 1 -1 -1 1 1.0725 0.00195 1.0687 1.0763 0.00 %
12 +—+— 1 -1 1 -1 1.1275 0.00205 1.1235 1.1315 0.00 %
13 +—++ 1 —1 1 1 1.1275 0.00205 1.1235 1.1315 0.00 %
14 ++—— 1 1 -1 -1 1.0725 0.03514 1.0039 1.1412 0.00 %
15 ++—+ 1 1 -1 1 1.0724 0.03497 1.0040 1.1410 8.52 %
16 +++— 1 1 1 -1 1.1275 0.036797 1.0557 1.2001 0.26 %
17 ++++ 1 1 1 1 1.1275 0.037044 1.0550 1.1999 0.27 %
Table 14.4 Central composite design for force simulation

Run Pattern MuM SigM MuA SigA MPForce SForce Iq uq % In Tol.
1 —— -1 -1 -1 -1 0.8775 0.00194 0.8737 0.8813 0.00 %
2 ———+ -1 -1 -1 1 0.8775 0.00194 0.8737 0.8813 0.00 %
3 ——+— -1 -1 1 -1 0.9225 0.00204 0.9185 0.9265 0.00 %
4 ——++ -1 -1 1 1 0.9225 0.00205 0.9185 0.9265 0.00 %
5 —+—— -1 1 -1 -1 0.8776 0.03512 0.8085 0.9461 0.26 %
6 —+—+ -1 1 -1 1 0.8774 0.03519 0.8084 0.9465 0.27 %
7 —++— -1 1 1 -1 0.9224 0.03699 0.8498 0.9948 7.52 %
8 —+++ -1 1 1 1 0.9226 0.03684 0.8502 0.9951 7.47 %
9 0 0 0 0 0 1.0000 0.018985 0.9629 1.0371 81.19 %
10 +——— 1 -1 -1 -1 1.0725 0.00195 1.0687 1.0763 0.00 %
11 +——+ 1 -1 -1 1 1.0725 0.00195 1.0687 1.0763 0.00 %
12 +—t+— 1 -1 1 -1 1.1275 0.00205 1.1235 1.1315 0.00 %
13 +—++ 1 -1 1 1 1.1275 0.00205 1.1235 1.1315 0.00 %
14 ++—— 1 1 -1 -1 1.0725 0.03514 1.0039 1.1412 0.00 %
15 ++—+ 1 1 -1 1 1.0724 0.03497 1.0040 1.1410 8.52 %
16 +++— 1 1 1 -1 1.1275 0.036797 1.0557 1.2001 0.26 %
17 ++++ 1 1 1 1 1.1275 0.037044 1.0550 1.1999 0.27 %
18 000— 0 0 0 —1 1.0001 0.039949 0.9218 1.0785 46.97 %
19 000+ 0 0 0 1 0.9998 0.04017 0.9216 1.0790 46.63 %
20 00—0 0 0 -1 0 0.9749 0.01857 0.9385 1.0112 49.50 %
21 00+0 0 0 1 0 1.0250 0.01948 0.9868 1.0632 49.79 %
22 0-00 0 -1 0 0 1.0000 0.00200 0.9961 1.0039 100.00 %
23 0+00 0 1 0 0 0.9999 0.03605 0.9292 1.0706 51.40 %
24 —000 -1 0 0 0 0.9000 0.01898 0.8628 0.9374 0.00 %
25 +000 1 0 0 0 1.1001 0.01895 1.0632 1.1374 0.00 %

conduction through the polystyrene and convection due to the flow of media. The outer air temperature

is assumed to be 25 °C.

The power output of the heater will increase or decrease depending on the value measured by the
temperature sensor. The success of the thermal regulation system potentially depends on the noise
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Table 14.5 Full second-order force model parameter estimates (sorted)

Term Estimate Abs(estimate) Std error t ratio Prob > Itl
MuM —0.00359 0.003594444 0.030901 —0.12 0.9097
MuA 0.003756 0.003755556 0.030901 0.12 0.9057
MuM*SigM —0.00404 0.00404375 0.032775 -0.12 0.9043
SigM*MuA 0.004044 0.00404375 0.032775 0.12 0.9043
SigA 0.004528 0.004527778 0.030901 0.15 0.8864
SigM*SigA 0.005306 0.00530625 0.032775 0.16 0.8746
MuM*SigA 0.005356 0.00535625 0.032775 0.16 0.8734
MuA*SigA —0.00536 0.00535625 0.032775 —0.16 0.8734
SigM —0.01335 0.01335 0.030901 —-0.43 0.6749
MuM*MuA —0.01403 0.01403125 0.032775 —-0.43 0.6776
MuA*MuA —0.08461 0.084614124 0.08215 —1.03 0.3273
SigA*SigA —0.11306 0.113064124 0.08215 —1.38 0.1988
SigM*SigM 0.175936 0.175935876 0.08215 2.14 0.0579
MuM*MuM —0.58106 0.581064124 0.08215 —7.07 <.0001
Intercept 0.614041 0.614040678 0.056607 10.85 <.0001

Table 14.6 Heater factors and levels

Factor Units Low High Comment

sens.prec Digits 2 4 Digits of numerical precision, sensor temp

sens.noise Kelvin 3 5 Std.dev. of noise in sensor temperature measurement

sens.time Seconds 3 5 Time delay for sensor reading

heat.prec Digits 2 4 Digits of numerical precision, heater power output

heat.noise Watts 3 5 Std.dev. of noise in heater power

heat.time Seconds 9 11 Time delay for heater response

heat.factor No units 0.001 0.002 Factor for incrementally increasing power proportional to temp

level and numerical precision of both the temperature sensor and the heating element. In addition, the
EAS will consider the delay inherent in the temperature sensor or the heating element. Lower noise
level, greater numerical precision, and shorter delay are expected to improve the thermal regulation,
but also make the system components more expensive. Noise level is quantified as a standard
deviation, and numerical precision is the number of decimal places to which temperature and heater
power are computed. Through an experiment with the simulation program, the EAS hopes to
determine the relative importance of the factors, and if possible, the minimum accuracy, minimum
precision, and maximum delay required to maintain the bioreactor temperature within specification
limits with a high degree of probability.

Table 14.6 shows all the factors under consideration, together with the range of values (low and
high) the EAS would like to investigate.

With seven factors, the EAS decides to perform a ResIII fractional factorial, in order to estimate
the relative importance of the factors. Figure 14.4 shows the Minitab alias structure output for the 27~
fractional design.

Figure 14.5 shows the runs with Helmert-coded factors.

This experimental design only requires eight runs. Since it is ReslIIl, it is most useful for ranking
the importance of the factors, helping the EAS reduce the dimensions of the experimental factor
space.

Figure 14.6 shows the R code that implements the simulation.

The temperature equation is based on heat conduction equation for a closed cylinder (Incropera
and De Witt 1990):
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[7] minitab - U * -
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Fig. 14.5 Runs for the 27 design

Q = 2kyn L AT/ In(r2/r1)

and on the convection equation:

Q = hAAT.
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setwd("H:\\Personal Data\\Experimentation for Design & Validation\\Data &
Analyses\\")
dfl <- read.csv("20141225 Example 14.2 Heat Transfer Inputs.csv")

sens.prec <- df1S$sens.prec;
sens.noise <- df1$sens.noise;
sens.time <- df1$sens.time;
heat.prec <- df1S$heat.prec;
heat.noise <- df1S$heat.noise;
heat.time <- df1Sheat.time;
heat.factor <- df1$heat.factor;

Huthadnt e R e e

#Values for heat transfer calculations- All units SI (m, kg, etc.)

D <- 0.005; #inner diameter of bioreactor (characteristic length, meters)

L <- 0.1; #length, meters, of bioreactor

rl <- 0.0025; #inner radius (meters)

1r2<-0.0045; #outer radius (2 mm thickness)

kwater <- 0.58; # (W/(m*K))thermal conductivity of water- assumed to be fluid in
bioreactor

kps <- 0.13; #thermal conductivity of crystal polystyrene

Tair <- 298; #temperature of surrounding air (K)

A <- (pi*r1”2)*L; #surface area across which convection occurs

Nu <- 3.66; #Nusselt number for laminar internal flow in a cylinder assuming constant
wall temperature

h <- Nu¥kwater/D; #convection coefficient

HutR e R e R e
#it##Initialize output vectors
mn<- ¢();

std<-c();

ave.prob.in.spec<-c();

HtitH
#Outer loop to run through simulations
for(k in 1:length(df1[,1])){

HitHHHHHHE

#initialize loop variables

iterations <- 100; #number of simulation runs

totaltime <- 2100; #number of time units (sec) over which each simulation runs
mn.sum <- 0; #mean temperature

Fig. 14.6 Heat transfer simulation code
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var.sum <- 0; #standard deviation of temperature
prob.in.spec <- ¢()

#simulation loop
for(i in 1:iterations){

#initialize variables
temp.set <- 37 + 273; #desired temperature of bioreactor
temp.curr <- 25 + 273; #current temperature of bioreactor
temp.dat <- ¢(); #stored values of temperature data
smem <- rep(temp.curr,sens.time[k]); #memory of sensor
hmem <- rep(0, heat.time[k]);#memory of heater
Q <- 0; #initialize power
temp.in.spec <- ¢();
#runs each simulation for a specified period of time
for(t in I:totaltime){
#update power output of heater
Q <- Q + (temp.set-smem| 1 ])*heat.factor[k];
hmem <- hmem[-1];
hmem <- append(hmem,round(Q + norm(1,0,heat.noise[k]),heat.prec[k]));

#update actual temperature
#reactor temperature in terms of power
temp.curr <- Q/(2*kps*pi*L/(log(r2/r1))+ h*A) + Tair;
temp.dat <- append(temp.dat, temp.curr);
#update measured temperature
smem <- smem|[-1]
#update sensor memory taking into account sensor noise and precision

smem <- append(smem, round(temp.curr+rnorm(1, 0, sens.noise[k]),sens.prec[k]))

if (temp.curr - 273 >=36.5 & temp.curr - 273 <= 37.5) {
temp.in.spec|t] <- 1
}

else {
temp.in.spec[t] <- 0

j

1
}

#collect summary statistics
mn.sum <- mn.sum + mean((temp.dat-273)[300:length(temp.dat)])
var.sum <- var.sum-+var((temp.dat-273)[300:length(temp.dat)])
prob.in.spec[i] <- mean(temp.in.spec[300:length(temp.dat)])

}

HEH R R R

Fig. 14.6 (continued)
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#output

mn <- append(mn,mn.sum/iterations) #mean of means

std <- append(std,sqrt(var.sum/iterations))# sqrt of mean variance

# rmn <- round(mn,2)

# rstd <- round(std,2)

# time <- c(1:totaltime)/60 #generate vector for plotting x-axis in minutes
ave.prob.in.spec <- append(ave.prob.in.spec,mean(prob.in.spec));

j
df2 <- cbind(df1,mn,std,ave.prob.in.spec)
write.csv(df2,file="20141225 Example 13.2 Heat Transfer Outputs.csv")

Fig. 14.6 (continued)

Table 14.7 The 27 + center point runs with results

sens. sens. sens. heat. heat. heat. heat. ave.prob.in.

Run prec noise time prec noise time factor mn std spec

1 2 3 3 4 5 11 0.0010 36.901 0.2956 0.9136
2 4 3 3 2 3 11 0.0010 36.907 0.2948 0.9163
3 2 5 3 2 5 9 0.0010 36.908 0.3615 0.8392
4 4 5 3 4 3 9 0.0010 36.885 0.3654 0.8294
5 2 3 5 4 3 9 0.0020 36.988 0.2549 0.9405
6 4 3 5 2 5 9 0.0020 37.001 0.2493 0.9470
7 2 5 5 2 3 11 0.0020 37.005 0.4302 0.7362
8 4 5 5 4 5 11 0.0020 36.982 0.4244 0.7387
9 3 4 4 3 4 10 0.0015 36.969 0.2946 0.8892
9 3 4 4 3 4 10 0.0015 36.967 0.2858 0.8975
9 3 4 4 3 4 10 0.0015 36.999 0.2867 0.9045

The variables and constants are:

ks = thermal conductivity of polystyrene ~ 0.13

L = length

r2 = outer radius

rl = inner radius

h = Nu*ky.e:/D = heat transfer coefficient (convection)

Nu = Nusselt number for laminar internal flow in a cylinder assuming constant wall
temperature ~ 3.66

Kwater = thermal conductivity constant for water ~ 0.58

D = inner diameter of bioreactor

AT = Current temperature inside bioreactor—initial temperature (i.e., air temperature)

The EAS decides that in addition to the eight runs, he will replicate at a center point run (run 9).
Table 14.7 shows the runs and the results.

The main effects model was fit to the average proportion of temperatures within the 37.0 £ 0.5 °C
specifications. This response was called “ave.prob.in.spec” in the simulation program. The model was
fit using Helmert-coded factor levels. The results are given in Fig. 14.7. Note that the residual plot
indicates the presence of second-order effects, as evidenced by the larger residual values at the center
point. The only factor that was significant was sens.noise. Using the sorted parameter estimate table,
and given the indication of the presence of second-order effects, the EAS decides to perform a
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Response ave.prob.in.spec

Summary of Fit

14 Simulation and Random Variable Generation

RSquare 0.93608
RSquare Adj 0.786934
Root Mean Square Error 0.034223
Mean of Response 0.868373
Observations (or Sum Wgts) 11

Analysis of Variance

Source DF Sum of Squares Mean Square F Ratio
Model 7 0.05145543 0.007351 6.2763
Error 3 0.00351361 0.001171 Prob > F
C. Total 10 0.05496904 0.0797
Lack Of Fit
Source DF Sum of Squares Mean Square F Ratio
Lack Of Fit 1 0.00339629 0.003396 57.8945
Pure Error 2 0.00011733 0.000059 Prob > F
Total Error 3 0.00351361 0.0168*
Max RSq
Parameter Estimates
Term Estimate Std Error t Ratio Prob>|t|
Intercept 0.8683727 0.010319 84.16 <.0001*
sens.prec 0.0002375 0.0121 0.02 0.9856
sens.noise -0.071738 0.0121 -5.93 0.0096*
sens.time -0.017013 0.0121 -141 0.2544
heat.prec -0.002062 0.0121 -0.17 0.8755
heat.noise 0.0020125 0.0121 0.17 0.8785
heat.time -0.031413 0.0121 -2.60 0.0806
heat.factor 0.0010625 0.0121 0.09 0.9356
Residual by Predicted Plot
0.04
.
g 003 .
2
€ 002 »
a
£ o001
8
g 000 + = = = = === = s s s s m e e ey
-0.01 - .e - [
0.75 08 0.85 09 0.95

ave.prob.in.spec Predicted

Fig. 14.7 Regression fit (from JMP) for main effects model
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Sorted Parameter Estimates

Term Estimate
sens.noise -0.071738
heat.time -0.031413
sens.time -0.017013
heat.prec -0.002062
heat.noise 0.0020125
heat.factor 0.0010625
sens.prec 0.0002375

Fig. 14.7 (continued)

Std Error
0.0121
0.0121
0.0121
0.0121
0.0121
0.0121
0.0121

Table 14.8 Levels for the Box—Behnken experiment

t Ratio t Ratio

-5.93
-2.60
-141
-0.17
0.17
0.09
0.02

215

Prob>|t|
0.0096*
0.0806
0.2544
0.8755
0.8785
0.9356
0.9856

Factor Units Low High Comment

sens.prec Digits 4 Digits of numerical precision, sensor temp

sens.noise Kelvin 2 4 Std.dev. of noise in sensor temperature measurement

sens.time Seconds 4 6 Time delay for sensor reading

heat.prec Digits 2 Digits of numerical precision, heater power output

heat.noise Watts 1 Std.dev. of noise in heater power

heat.time Seconds 9 11 Time delay for heater response

heat.factor No units 0.002 Factor for incrementally increasing power proportional to temp

Table 14.9 Runs with
coded levels for the Box—
Behnken experiment

Patte rn sens.noise heat.time sens.time
——0 -1 -1 0
—0— —1 0 -1
-0+ -1 0 1
—+0 -1 1 0
0—— 0 -1 -1
0—+ 0 -1 1
0 0 0 0
0 0 0 0
0 0 0 0
O+— 0 1 -1
O++ 0 1 1
+—0 1 -1 0
+0— 1 0 -1
+0+ 1 0 1
0 1 1 0

second-order experiment in the top three factors, namely sens.noise, heat.time, and sens.time.
Furthermore, he does some exploratory runs and decides to alter the ranges of the factors. The
EAS chooses a Box—Behnken experiment with three replicates at the center point. The other factors

were kept constant. Table 14.8 shows the factor levels for the second-order experiment.

Table 14.9 shows the coded levels of the three factors varied in the Box—Behnken experiment.
Table 14.10 shows the natural levels, together with the fixed values of the other factors not included,

and the data.

Figure 14.8 shows the second-order model fit to the ave.prob.in.spec response.

The only significant effect was sens.noise*sens.noise. A reduced second-order model was then fit,
with only the sens.noise, heat.time, sense.noise*heat.time (not significant in the full model, but
having a coefficient twice as big as the next largest coefficient), and sens.noise*sens.noise terms
included. Figure 14.9 shows the results of the fit.
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Table 14.10 Box—Behnken runs with natural levels, fixed values, and data

sens. sens. sens. heat. heat. heat. heat. ave.prob.in.

Run prec noise time prec noise time factor mn std spec

1 4 2 5 2 1 9 0.002 37.006 0.1687 0.9968
2 4 2 4 2 1 10 0.002 37.008 0.1645 0.9970
3 4 2 6 2 1 10 0.002 36.997 0.1680 0.9968
4 4 2 5 2 1 11 0.002 36.999 0.1688 0.9963
5 4 3 4 2 1 9 0.002 36.994 0.2469 0.9463
6 4 3 6 2 1 9 0.002 36.995 0.2520 0.9433
7 4 3 5 2 1 10 0.002 36.996 0.2521 0.9441
7 4 3 5 2 1 10 0.002 36.998 0.2579 0.9408
7 4 3 5 2 1 10 0.002 36.980 0.2604 0.9347
8 4 3 4 2 1 11 0.002 36.979 0.2555 0.9404
9 4 3 6 2 1 11 0.002 36.997 0.2562 0.9411
10 4 4 5 2 1 9 0.002 36.998 0.3439 0.8409
11 4 4 4 2 1 10 0.002 36.993 0.3347 0.8479
12 4 4 6 2 1 10 0.002 36.975 0.3366 0.8466
13 4 4 5 2 1 11 0.002 36.997 0.3304 0.8581

Now all the terms, except for the main effect of heat.time, in the model have significant
coefficients. However, since the sens.noise*heat.time term was significant, the heat.time main effect
will be left in the model.

Figure 14.10 shows the Optimization for the reduced second-order model, using the JMP Custom
Profiler function. The optimal design has sens.noise = —1 (2 K) and heat.time = —1 (9 s). These
values are predicted to virtually insure with 100 % probability that the bioreactor will remain in the
temperature range 37 + 0.5 °C.

One note of information about sample means taken over time series data is appropriate. The mean
of the temperatures within a simulation replicate is calculated over temperatures observed in a time
sequence, or time series. Thus, the values of temperature are not independent of each other. In the
case of a random sample, the sample average has estimated variance:

In the case of an average of time series data (which are said to be autocorrelated, or correlated with
previous values in time), the estimated variance is (Cryer 1986):

~ 52 il k
vE =214 1-%5
®="r+ Z[ n}pk

where:

5 = Z;: (x5 = %) (%46 — %)
‘ Zji] (X/ - )_6)2

and:



Another Example: Heat Transfer in a Bioreactor

Response ave.prob.in.spec

Summary of Fit

RSquare 0.997248
RSquare Adj 0.992295
Root Mean Square Error 0.00501
Mean of Response 093141

Observations (or Sum Wgts)

Analysis of Variance

Source DF Sum of Squares
Model 9 0.04547442
Error 5 0.00012548
C. Total 14 0.04559991

Parameter Estimates
Term

Intercept

sens.noise

heat.time

sens.time
sens.noise*heat.time
sens.noise*sens.time
heat.time*sens.time
Sens.noise*sens.noise
heat.time*heat.time
sens.time*sens.time

Residual by Predicted Plot

0.004 . e
i -*
3 L]
2 0002
& .
2 0.000 .
T S et
£ »
€ -0.002 s
o
¢ . .
= .0.004
L]
-0.006
0.85 0.9 0.95 1

ave.prob.in.spec Predicted

Fig. 14.8 JMP output—full second-order model Fit

15

Mean Square
0.005053
0.000025

Estimate
0.9398964
-0.074176
0.0010737
-0.000494
0.0044434

-0.00028
0.0009078
-0.018795
0.0019015
0.0009812

F Ratio
201.3282
Prob > F

<.0001*

Std Error
0.002892
0.001771
0.001771
0.001771
0.002505
0.002505
0.002505
0.002607
0.002607
0.002607

t Ratio
32496
-41.88
0.61
-0.28
177
-0.11
0.36
-7.21
0.73
038

217

Prob>|t|
<.0001*
<.0001*

0.5708
0.7914
0.1363
0.9152
0.7318
0.0008*
0.4985
0.7221
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Sorted Parameter Estimates

Term Estimate Std Error t Ratio t Ratio Prob>|t|
sens.noise -0.074176 0.001771 -41.88 il <.0001*
sens.noise*sens.noise -0.018795 0.002607  -7.21 Il 0.0008*
sens.noise*heat.time 0.0044434 0.002505 177 | | 0.1363
heat.time*heat.time 0.0019015 0.002607  0.73 Il 0.4985
heat.time 0.0010737 0.001771  0.61 Il 0.5708
sens.time*sens.time 0.0009812 0.002607 0.38 Il] 0.7221
heat.time*sens.time 0.0009078  0.002505 0.36 Il] 0.7318
sens.time -0.000494 0.001771 -0.28 Il 0.7914
sens.noise*sens.time -0.00028 0.002505  -0.11 If! 0.9152

Fig. 14.8 (continued)

Note that the sample variance estimator used here has the factor%instead of the more usual ﬁ This is
more for convenience of computation. Practically speaking, the use of n versus n—1 usually has little
impact.

The function, p,, is the sample autocorrelation function (acf). The values of the variable k are
called “lags”. The R function acf(x) produces the sample autocorrelation function. As an example,
consider the time series generated by the heat transfer simulation, stored in temp.dat. The R command
for computing the acf for the steady state temperature data (beginning 5 min after the simulation
began) is:

rho <- acf(temp.dat[300:2100], lag.max = 1799)

Figure 14.11 shows the plot of the acf which is automatically created by the R function.

The new vector, rhg, stores the acf values.

The square root of V (%) is the estimated standard error of the mean, and is required for computing
confidence intervals for the mean.

In this chapter, two examples of how simulation involving the generation of random variables can
assist in making design decisions. Both of these examples incorporated prior knowledge of the
physical aspects of the systems under consideration, but in a non-Bayesian manner. Although
equations that describe the phenomena were known, when uncertainty about input parameters or
when uncontrollable sources of noise exist, simulation aids in predicting and optimizing system
response.

Key Points

* Monte Carlo simulation involves the generation of random variable values using a computer
program.

» Even simple equations of physics cannot necessarily be used to determine the distributional
characteristics of a response variable when the inputs are assumed to be random variables.

» Once input parameters are determined, a simulation program can be constructed, and designed
experiments with the program can be performed to characterize the response distribution.

» Experimenting with a simulation program is less expensive than creating multiple prototypes.

+ Simulation models may be non-Bayesian in nature.

» Any conclusions drawn from a simulation must be verified by actual experimentation.
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Response ave.prob.in.spec

Summary of Fit

RSquare 0.996777
RSquare Adj 0.995487
Root Mean Square Error 0.003834
Mean of Response 0.93141
Observations (or Sum Wats) 15

Analysis of Variance

Source DF Sum of Squares Mean Square F Ratio

Model 4 0.04545292 0.011363 773.0695

Error 10 0.00014699 0.000015 Prob > F

C. Total 14 0.04559991 <.0001*

Lack Of Fit

Source DF Sum of Squares Mean Square F Ratio

Lack Of Fit 4 0.00009590 0.000024 2.8159

Pure Error 6 0.00005109 8.514e-6 Prob > F

Total Error 10 0.00014699 0.1242
Max RSq

Parameter Estimates

Term Estimate Std Error t Ratio Prob>|t|
Intercept 0.9415436 0.001449 649.75 <.0001*
sens.noise -0.074176 0.001355 -54.72 <.0001*
heat.time 0.0010737 0.001355 0.79 0.4467
sens.noise*heat.time 0.0044434 0.001917 232 0.0429*
sens.noise*sens.noise -0.019001 0.001984 -9.58 <,0001*

Residual by Predicted Plot
0.0075

0.005

0.0025 ]

-0.0025

ave.prob.inspec Residua
o
L}
L}
L}
L}
1
1
L4
L}

-0.005

-0.0075
0.85 09 095 1

ave.prob.inspec Predicted

Sorted Parameter Estimates

Term Estimate Std Error t Ratio t Ratio Prob>|t|
sens.noise -0.074176 0.001355 -54.72 i <.0001*
sens.noise*sens.noise -0.019001 0.001984  -9.58 | <.0001*
sens.noise*heat.time 0.0044434 0.001917 2.32 Il 0.0429*
heat.time 0.0010737  0.001355 0.79 I 0.4467

Fig. 14.9 Reduced model second-order fit
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Factor Current X Lock Lo Limit  Hi Limit

sens.noise -10 -1 1

heat.time -10 -1 1

Response CurrentY Lolimit Hilimit Benchmark

Pred Formula ave.prob.in.spec C—————————— 1 1.0000881 . . 0.9415436
Optimization

Convergence Convergence

Objective Trips Max Cycles Max Iter Limit Criterion
1.0000881453 20 50 250 0.000001 0
Maximize

Fig. 14.10 Optimization of reduced second-order model—from JMP custom profiler

Series temp.dat[300:2100]

ACF

0 500 1000 1500
Lag

Fig. 14.11 Plot of the time.dat ACF
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Exercises and Questions

1. Consider the Ideal Gas Law: PV = nRT, where P is pressure, V is volume (of a gas in a closed
container), n is the moles of gas, R is the gas’ constant (i.e., a constant specific to the type of gas),
and T is temperature. Suppose that V and T vary probabilistically, having normal distributions
with some range of values for their respective means and standard deviations. Design an experi-
ment with a simulation to assess the distribution of P, and how it is affected by the means and
standard deviations of V and T, and by the value of nR.

2. In the Force example of the text, what, if anything, would you do differently? Would you have
changed the range of factor levels after the first experimental run?

3. Based on the results in Table 14.4, would you guess that the normal distribution is a reasonable
approximation to the distribution of Force? Hint: consider the interval mean 41.96*standard
deviation of Force, and the lower and upper quantiles of the simulated Force distribution at optimal
conditions (Table 14.4, Run #22). You may also use a Shapiro—Wilk or other test for normality.

4. Fit a first-order main effects model to the response “mn” in Table 14.7. Do you conclude the same
thing about the presence of second-order effects as in the case of the ave.prob.in.spec response?

5. Fit a second-order model to the “mn” response using the data in Table 14.10. Use Helmert-coded
factors. Do you conclude the same thing about the significance of factors as in the fit for ave.prob.
in.spec?



Chapter 15
Taguchi Methods” and Robust Design

Dr. Genichi Taguchi (Taguchi and Wu 1980) described methods for using designed experiments in
designing and improving products and processes. The Taguchi approach differs from the methods
described in previous chapters, mostly due to their lack of fitting polynomial models to data.
Nevertheless, Taguchi methods can be a useful tool in developing product or process designs. We
will describe some of the rudiments of his methods, together with some additional ideas. The
elements we will consider are the quadratic loss function and signal-to-noise ratios, control and
noise parameters, and the designs referred to as orthogonal arrays.

The Quadratic Loss Function

Presume for the moment that the variable X represents a measure of quality. Furthermore, suppose
that ideally X = 7, which we will call the target value for X.

The “loss” is the degree to which X differs from z. For reasons that may not be apparent, we will
measure this loss in the squared deviation:

L(X) = k(X —7)°

The value of k only determines the rate at which the loss changes, so we will generally let k = 1.
The objective for robust design is to find values of control parameters that minimize the average
loss in the face of noise parameters whose values vary in an uncontrolled fashion (except in the
experimentation process).
The loss function can be applied to situations where it is desirable to minimize X or maximize
X. Let = = 0. The, the loss function is:

L(X) = kX?

Clearly minimizing X will minimize the loss, so that the objective of minimizing loss is achieved by
minimizing X. Similarly, let:
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so that the loss with respect to Y is:
1
L(Y) = kY" = k=

Thus minimizing the loss is achieved by maximizing X.

One might ask why, especially in the case of minimizing or maximizing X, it is valuable to use the
quadratic loss function. The answer lies in the expected value of L(X). For our discussions, we will
simply let k = 1. Then if E[X] = u is the expected value of X, and V[X] = o~ is the variance of X,
then it can be derived that:

E[L(X)] =E [(X - 1)2} = (u—1) 40

Thus, minimizing the average quadratic loss simultaneously minimizes the average difference of
X from target and the variability of X. When one statistic is simultaneously related to mean and
variance, so that either having a mean closer to target or reducing variability gives it a more desirable
value, it has been called a “concurrent” statistic (Barker 1990).

Some people may have an aversion to minimizing, and Dr. Taguchi recognized this. So, he created
what he called the “signal-to-noise” ratio (SNR). The SNR is nothing more than the loss function
expressed in decibels. So, minimizing the expected value of the loss function is equivalent to
maximizing the expected value of:

SNR = —10log,(L(X)

Aside from an emotional tie to maximization, there is no particular reason to use the SNR transfor-
mation of the loss function. Taguchi’s original work did not concern itself with the statistical
significance of parameters; he presumed that all parameters were meaningful, and that their effects
were already known to be repeatable. However, it may be valuable to be able to assess the signifi-
cance of design parameters. As such, it will be much easier to use the loss function directly, as its
statistical sample properties are easier to derive than are those of the SNR.

Suppose a sample of values of X is obtained, xy, x5, . . ., x,,. Then the sample average loss function is:

n

~ 1
L(X],.Xz, o '7'Xn) = _Z(xi - T)z

n i=1

If the variable X is normally distributed with expected value y and variance ¢, then:
2 _n 2

2
~ 0o Xi—u H—T\2 o* , n(u— 1)
r=2 ( ) ORIV L i
n; c * c n% (n c?

Ve (n, A= "(”6;27)7) stands for a non-central Chi-squared random variable with n degrees of freedom

and non-centrality parameter 2 (Johnson et al. 1995). Although both x and ¢ are generally unknown,
an approximate 100(1 — 2a) % confidence interval is
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where:

and ;(;,2 (n,jl\) = the 100pth percentile of a non-central Chi-squared distribution with n degrees of
freedom and non-centrality parameter A.

The statistics i, ¢ are sample estimates of x and o, respectively. Since the loss function is in
squared units, it is somewhat uninterpretable as it stands. One possible remedy is to divide it by 77, so
that the loss is expressed as a proportion (or percent) of the target value, and take its square root (and
the square roots of the confidence limits divided by 7%). We will call this computation the root mean
square percent loss.

Suppose we wanted to compare average loss between two different designs for a product. If the
null hypothesis is that the average loss does not differ with respect to variable X, then if 21 represents
the average loss for a sample of n; observations of X with design 1 and Zz the average loss for a
sample of n, observations of X with design 2, then the ratio:

L o~
m Ly
ﬁ:n'znl:i
ml, L
62,,2

has a doubly non-central F distribution (F”) with n; and n, numerator and denominator degrees of
freedom, respectively and numerator and denominator non-centrality parameters:

respectively. Now we have a means of deciding whether to believe that the average loss for one
design is different from that of another. Compare the sample statistic F to the lower and upper tails of
a doubly non-central F with n; and n, degrees of freedom and non-centrality parameters A;, k = 1,
2. The only problem is that the parameters y and ¢ are unknown. If we are also hypothesizing that
u = 7, then the non-centrality goes away, so we are only comparing the statistic to percentiles of the
usual (central) F distribution. If, however, we are not willing to make that assumption, then one
possibility is to aggregate all the data from both designs and compute the sample average and standard
deviation, call them g and . These can then be used to “approximate” the actual numerator and
denominator non-centralities. Thus the estimated non-centrality parameters for the numerator and
denominator would be:

Zk_nk(/%;f) k=12

Inasmuch as percentiles of doubly non-central F distributions are somewhat hard to find, a reasonable
approximation may be obtained with the formula described by Johnson et al. (1995). That is, if
F"(p, ni, ny, 41, A,) represents a percentile of a doubly non-central F, and F(p, n;, n,, 4;) the same
percentile for a singly non-central F (with non-centrality 4, in the numerator only) then:
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" ﬂ/ _l !
F' = <1+2> F
n3

Figure 15.1 shows some R code for computing the approximate percentiles of a doubly non-central F.

setwd("H:\\Personal Data\\Experimentation for Design & Validation\\Data &
Analyses\\")

df1 <- read.csv("20150325 non-central F parameters.csv')

#

#

attach(df1)

# Ref: Johnson, Kotz, Balakrishnan, (1995) Continuous Univariate Distributions
# Vol. 2, 2nd Ed. p. 502 John Wiley and Sons, New York

#

# inputs:

# nul = sample size 1

# nu2 = sample size 2

# Target

# mu = hypothetically common mean
# sigma = hypothetically common standard deviation
#

#

alpha <- 0.025

Ztau <- (Target - mu) / sigma

lamdal <- nul*(Ztau**2)
lamda2 <- nu2*(Ztau™*2)

Fprime low <- gf(alpha,df1=nul,df2=nu2,ncp=lamdal) # this is the lower tail value for

# singly noncentral F
Fprime_high <- gf(1-alpha,df1=nul,df2=nu2,ncp=lamdal) # this is the upper tail value
# for singly non-central F

xfactor <- 1 + (lamda2/nu2)

Fdp low <- Fprime low / xfactor; # lower tail value doubly non-central F
Fdp high <- Fprime high / xfactor; #upper tail value doubly non-central F

xfactor
Fprime low
Fprime high
Fdp low
Fdp high

Fig. 15.1 Computing percentiles of doubly non-central F distributions
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For inputs:
nul =nu2 = 8, Target = 100, mu = 95, and sigma = 1.2, the outputs are:

> xfactor
[1]18.36111

> Fprime low
[1]8.898236
> Fprime high
[1]51.24304
> Fdp_low
[1]0.4846241
> Fdp high
[1]2.790846

Fig. 15.1 (continued)

Parameter Design: Noise Parameters, Control Parameters,
Inner and Outer Arrays

Taguchi identified the need for choosing designs that would be about to perform under the normally
uncontrollable conditions of the environment in which they would be used. The optimization step is
referred to as “Parameter Design”. He divided the design parameters into two groups:

Control: those things whose values the EAS can choose; Noise: those things whose values that the
EAS cannot choose, but must have his or her design perform well regardless of those values

For example, an engineer may choose the materials and dimensions of a cardiac lead, the cable that
delivers electrotherapy from a pacemaker to the heart, but she cannot choose the impedance that the
heart tissue will present. The materials and dimensions are control parameters, whereas the imped-
ance is a noise parameter.

Dr. Taguchi suggested that two experimental designs should be performed together. The designs
are referred to as the inner array (for control parameters) and the outer array (for noise parameters).
The idea is that for every run in the inner array, a complete experiment in the noise parameters (outer
array) should be performed. The noise array would be constructed by varying in a controlled fashion
the noise parameters, in order to have a measure of loss over a wider range of noise “conditions” for
each combination of the control parameters. In that way, the combination of the control parameter
values that minimizes the loss (or maximizes the SNR) in face of the noise parameter variation would
be the most “robust” choice for the product or process design.

The experimental designs employed by Taguchi are of a general class called “Orthogonal Arrays”.
All fractional factorials (or, for that matter, full factorials) are orthogonal arrays, but not all orthogo-
nal arrays are fractional factorials. In order to simplify the choices of experimental design, Taguchi
created a sort of catalogue of orthogonal arrays, categorized by the number of runs (rows). He used
the letter “L”, which stands for Latin Square, together with the number of rows to designate the
design. A Latin Square is a k X k array of k unique items, usually symbolized with capital Latin
letters, such that each item appears in each column and each row exactly once. The orthogonal array is
a sort of generalization of the Latin Square. Thus, the “L8” array has eight rows, or runs, and it can be
used with up to seven parameters (or factors, as we have called them). The fewer the number of
factors (columns) used from a given array, the greater the resolution. Figure 15.2 shows the L8 array,
as generated using JMP 11. This is a two-level design, with the “low” level designated with a “1” and
the “high” level with a “2”. That is, Taguchi preferred to represent the levels as positive integers,
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:riiy‘“ The Taguchi L8 X1|x2|x3|x4|x5|x6|x7| Pattern
BERERERERED D E—
111 1]2]2]2]2]-—++++
12211 1]2]2]-++——++
11222211 ]-++++—-
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Fig. 154 Combined L8 and L4 arrays

rather than with Helmert coding. With k = 7 parameters, this is a 27~* fractional factorial design of
Resolution III. If only columns X1, X2, and X4 were used (i.e., only kK = 3 parameters) this array
would constitute a 2* full factorial design.

The L4 array is given in Fig. 15.3. The L4 is a 2* full factorial design in two factors. Note that here
the columns have been designated as N1 and N2, and we will use this to illustrate the noise array.

Suppose the EAS has decided that there are k = 3 control parameters, and k = 2 noise parameters.
Then he would combine the L8 and L4 arrays, so that each run in the L8array has all four of the L4
array completed. Figure 15.4 illustrates the combined arrays.

The empty cells in the Figure represent the quadratic loss values, given target 7. The columns not
being used are blacked out. The first row represents a run where all three control parameters are set to
their “low” level. The eighth row is a run where all three control parameters are set to their “high”
level. For each row, observations are obtained at four different “noise” conditions.

The idea would be to average the loss over all rows where a given parameter is set to its “low”
value, and compare it to the loss averaged over all the rows where the parameter was set to its “high
level”. The parameter value to use in the design would be the one that yielded the lowest average loss.
This methodology is a considerable departure from all the methods discussed so far, in that we are not
finding an approximating polynomial to predict optimal factor (or regressor, or in the Taguchi
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terminology, parameter) values or settings. The biggest disadvantage is that the Taguchi approach
does not allow us to interpolate between levels. The advantage is that it is very simple to implement.

Example: Pharmaceutical Tablet Dissolution

The EAS is designing a tablet for delivering a drug orally. It is desired for the tablet to dissolve at a
certain rate. In particular, the measure of goodness is to have half the tablet’s mass dissolved in the
stomach after 4 h. The time for 50 % of the tablet to dissolve will be called Ds,. The target value for
Dsq is 240 min = 4 h. There are three control parameters of interest in this case:

T = processing temperature of the tablet formation (°C);

C = drying and time (minutes)

P = force used to compact the wet ingredients into the tablet form (Newtons).
The two noise parameters are:

pH = The pH of stomach contents;

V = volume of stomach contents prior to introducing the tablet.

An experimental chamber, in which both pH and V can be controlled, will be used to perform the
tests. The L8 and L4 arrays will be employed. The levels for the L8 (control parameters) are given in
Table 15.1, and the levels for the L4 array are in Table 15.2. The columns of the L8 array that are not
to be used in the experiment are blacked out, except for their column headings.

The quadratic loss is:

Loss = (Dsoy — 240)?

The data (D5 and Loss) are given in Table 15.3. They are arrayed for each run of the Inner Array,
by Outer Array run.

In order to apply the Taguchi decision process, compute the average loss for each level of each
control parameter. The levels that yield the lower of the two average losses are the Taguchi choice.
Table 15.4 shows the average loss values, the square root of the mean loss as a percentage of target,
the ratios of the loss at level 1 to the loss at level 2, and the critical values from the (approximate)
doubly non-central F distribution. Note that the parameter values used to compute the critical values
were: I = 261.9 and ¢ = 50.27, which are the estimates obtained over all 8 * 4 = 32 observations
(i.e., the null hypothesis being that none of the control parameters actually affected the Ds).

Table 15.1 L8 inner T(C) C(min) X3 P(N) X5 X6 X7
array.—dlssolutlon 38 20 e
experiment

38 30 55

3845 45

345 55

2 30 45

2 30 55

2 4 45

2 45 55

Table 15.2 L4 outer

) i pH V (mL)
array—dissolution
experiment 1.5 175
1.5 300
35 175

3.5 300
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Table 15.3 The

A : . Inner array run T C P pH \% D 50 Loss

dissolution experiment—

data 1 38 30 45 1.5 175 211 840.20
2 38 30 55 1.5 175 312 5160.33
3 38 45 45 1.5 175 210 915.23
4 38 45 55 1.5 175 310 4850.13
5 42 30 45 1.5 175 207 1065.15
6 42 30 55 1.5 175 311 5035.05
7 42 45 45 1.5 175 212 789.66
8 42 45 55 1.5 175 311 5065.48
1 38 30 45 1.5 300 205 1232.08
2 38 30 55 1.5 300 309 4753.45
3 38 45 45 1.5 300 211 825.11
4 38 45 55 1.5 300 310 4907.88
5 42 30 45 1.5 300 231 89.82
6 42 30 55 1.5 300 316 5834.86
7 42 45 45 1.5 300 216 575.42
8 42 45 55 1.5 300 316 5839.29
1 38 30 45 35 175 208 1026.59
2 38 30 55 35 175 308 4576.54
3 38 45 45 35 175 219 450.90
4 38 45 55 35 175 312 5227.32
5 42 30 45 35 175 213 724.06
6 42 30 55 35 175 313 5338.02
7 42 45 45 35 175 209 967.91
8 42 45 55 35 175 318 6116.37
1 38 30 45 35 300 209 939.10
2 38 30 55 35 300 309 4717.00
3 38 45 45 3.5 300 215 623.48
4 38 45 55 35 300 306 4325.93
5 42 30 45 35 300 212 760.75
6 42 30 55 35 300 305 4270.60
7 42 45 45 35 300 213 706.23
8 42 45 55 35 300 311 5075.41

Table 15.4 Dissolution experiment—mean loss table

Mean loss Root mean loss/target

Level T C P C P

1 2835.70 2897.73 783.23 22.2 % 22.4 % 11.7 %

2 3015.88 2953.86 5068.35 22.9 % 22.6 % 29.7 %

L1/L2 0.9403 0.9810 0.1545

F"(0.025) 0.3648 0.3648 0.3648

F"(0.975) 2.7508 2.7508 2.7508

The only ratio of L1/L2 that was significant at the @ = 0.05 level was for the control parameter P,

the compacting force.

The EAS concludes that setting the compacting force to its low level of 45 N will on the average
get the value of Dsq closest to the target of 240 min with the least amount of variation in the face of
variable gastric fluid pH and volume. The values of processing temperature (T') and time (C) may be
set to whatever are the most economical values. Using the classical Taguchi approach, the EAS would
have chosen the low levels of all three control parameters, since the low levels yielded the minimum
mean loss. It is possible that the low levels of T'and C are in fact the most economical, but it would not

have necessarily been true.
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Ta.ble 15.5 Mean Dsg— pH v N Mean D50
noise parameter array
1.5 175 8 260.5
1.5 300 8 264.3
3.5 175 8 262.5
3.5 300 8 260.2
Table 15.6 Mean loss— v T C P Mean loss
control parameter array
with two noise conditions 300 38 30 45 1085.59
300 38 30 55 4735.222
300 38 45 45 724.292
300 38 45 55 4616.903
300 42 30 45 425.287
300 42 30 55 5052.729
300 42 45 45 640.826
300 42 45 55 5457.348
Table 15.7 Mean Loss—decision table using only two noise conditions
Mean loss Root mean loss/target
Level T C P T C P
1 2790.50 2824.71 719.00 22.0 % 22.1 % 11.2 %
2 2894.05 2859.84 4965.55 22.4 % 223 % 29.4 %
L1/L2 0.9642 0.9877 0.1448
F"(0.025) 0.2281 0.2281 0.2281
F"(0.975) 4.4148 4.4148 4.4148

Fowlkes and Creveling (1995) suggested an alternative to a factorial outer array design. They
suggest using a single combination of control parameter values, and perform an array experiment
with only noise parameters. Then find the combination of noise parameters that yields the highest
average value of the response (not the loss, or signal-to-noise, but the raw response itself) and the
combination of values that yields the lowest average response. Then use only those two sets of noise
parameter conditions when running the full inner array. The notion is that:

1. The two conditions chosen would yield the highest variability, so that choosing the control
parameter conditions that minimizes the loss in face of the noise conditions would in fact be the
most robust design choice;

2. Noise parameters and Control parameters do not interact.

Using the tablet dissolution example, the average value of the response, D50, for each of the noise
parameter conditions, is shown in Table 15.5. The conditions that yield the highest and lowest mean
Dsq are pH = 3.5,V = 300 (lowest mean D5y = 260.2 min) and pH = 1.5, V = 300 (highest mean
Dso = 264.3 min). Had only data from those two noise parameter conditions been used, the average
loss for the control parameter array would have been as shown in Table 15.6. Finally, the mean loss
table for minimizing loss using only the two “extreme” noise conditions is shown in Table 15.7.

This table would lead us to the same conclusion (that P = 45 N is optimal, and both parameters
T and C could be set to the most economical level) as did Table 15.4 with four (2%) noise conditions.
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Generating Two-Level Orthogonal Arrays

As was mentioned early, all two-level fractional factorials are orthogonal arrays. The methods for
generating 2°77 fractional designs have already been discussed. The two-level arrays are generally
generated as 2P fractions. First, the number of runs, N (a power of 2) is selected. The fractional
factorial associated with N is a 277 design, with k = N — 1. Thus, k=P — ON=1=P — N 50 that
p =N — logoN — 1. The maximum number of factors that can be used with an LN array is
k=N—-1.

Consider the L8 array shown in Fig. 15.2. In this case, N=8,s0 k=8 — 1 =7 andp =8 —
log;8 — 1 = 4. Thus, the L8 array is a 27~* factional factorial. Table 15.8 shows the values of N, k,
and p for N = 4, 8, 16, and 32.

The Taguchi orthogonal arrays are not the only orthogonal arrays that can be generated for N — 1
factors with N runs. The method for generating fractional designs described in Chap. 6 can be used to
generate the Taguchi arrays, but the particular design (array) that is generated depends on the choice
of generators. Statistically, the 287 fractional design chosen does not affect the outcome or method of
the analyses.

Generating Three-Level Orthogonal Arrays

Generating three-level arrays is slightly more complex than it is for two-level arrays. The three-level
arrays will have numbers of runs equal to powers of 3 (L9 and L27, for example) and the mixed-level
arrays will have both 2 and 3 as factors (L12, L18, L36).

The number of runs, N, in a three-level array is equal to 3k , where k = (N — 1)/2 is the
maximum number of factors that can be used with the array. The design parameters are derived in
a very similar fashion as those for the two-level arrays. For three-level arrays, 37 = 3N !7 = N,
so that p = N — logsN — 1. Table 15.9 shows the parameters N, p, and k for L9, L27, and L81
arrays.

In general, three-level fractional factorial experiments are not the most efficient designs for
incorporating a third level. The second-order designs described in Chap. 7 are more efficient.
Generating 3° 7 fractional designs requires a different kind of coding, where levels are designated
as 0, 1, or 2, instead of —1, 0, and +1. Furthermore, interaction effects are not only a function of the

Table 15.8 Equivalence L4 ) L16 L32
of some orthogonal arrays

and two-level fractional N 4 8 16 32
factorials k=N-1 3 7 15 31
log2(N) 2 3 4 5
p 1 4 11 26
2 4 8 16 32
Note: LN array is the same as a 2%P fractional factorial
Table 15.9 Equivalence Lo 27 T

of some orthogonal arrays

and three-level fractional N 9 27 81

factorials k=N -1/2 4 13 40
log3(N) 2 3 4
P 6 23 76
3 9 27 81

Note: LN array is the same as a 3P fractional factorial
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number of factors interacting, but also the order of the term (either 1 or 2). Montgomery (2001) gives
an excellent explanation of how interaction terms are formulated in three-level experiments, and a
method for generating 37 designs. Hinkelmann and Kempthorne (2005) give a more abstract
discussion of the algebraic and combinatorial properties of the three-level fractions and orthogonal
arrays. Kacker et al. (1991) give a very thorough, general, and mathematically detailed description of
how orthogonal arrays can be generated.

We will use the L9 array to demonstrate the method for generating 37 fractional designs, but we
will not attempt to generalize the process here.

For an L9 array, consider a 3*~ fractional design. Each term in a four-factor model can be thought
of as a product of each factor, with an exponent of 0, 1, or 2 on each factor. So, for example, if X1 is
the first factor, then the term:

X1'X2°X3%X4? = X1X42

Let X1, X2, X3, X4 represent the columns of the experimental array, where each row is some
combination of 0's, 1's, or 2 s.

In order to identify a particular fraction having 3*~2 = 3% = 9 runs, consider two unique terms of
the form:

X1 al X2(12X3(13X4(14

where the exponents, ai, take the values 0, 1, or 2.
If each run in the full 3* experiment is thought of as a column vector, x, whose elements are a
combination of 0's, 1, and 2 s, and a; is the vector:

Then the product aj/-x =0, 1, or 2 (mod 3). The designation “mod 3” means that the product is
reduced to its remainder after being divided by 3. To select runs for a 372 fraction, chose a set of
values 6, and &,, where each of the J; equals either 0, 1, or 2. Then for each run in the full 3*
experiment, compute aj’x and select those runs where

a}x = 6;mod(3), j=12
The set of runs where 6, = 6, = 0 is called the principal fraction. The equations
ax = §;mod(3), j=1,2

Are called the Defining Contrasts (Montgomery 2001). As an example consider the set of a;(i) and 5;
coefficients given in Table 15.10.

Of the 3* = 81 possible runs in a four-factor, three-level experiment, there are only nine satisfying
the defining contrasts in Table 15.10. They constitute an L9 array, and are given in Table 15.11.

As in the case of the two-level arrays, the aliasing and resolution of the L9 array depend on the
choices of defining contrasts and number of factors (<4) that are used with this array.

Table 15.10 Coefficients
for the defining contrasts of
a3*? experiment
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Table 15.11 An L9 array

Pattern X1 X2 X3 X4
1111 0 0 0 0
1223 0 1 1 2
1332 0 2 2 1
2122 1 0 1 1
2231 1 1 2 0
2313 1 2 0 2
3133 2 0 2 2
3212 2 1 0 1
3321 2 2 1 0

options nonumber nodate linesize=80 pagesize=54;
libname fact 'H:\Personal Data\Experimentation for Design &
Validation\Data & Analyses';
/* use 1lib fact to create an output dataset
containing the design

* f

/

proc factex;

factors H1 H2 H3 H4/NLEV=3;

size fraction=9;

model res=maximum/;

examine aliasing;

output out=frac;

titlel 'Table 15.9 - 3**(4-2) Res III Design';
run;

data fact.f20150331 resIII 3 4 design;
set frac;

run;

Fig. 15.5 SAS PROC FACTEX code for generating an L9 array

There are options for generating three-level fractional designs in JMP, Minitab, and SAS. The SAS
PROC FACTEX code for generating an L9 array is given in Fig. 15.5

Table 15.12 shows the array that was generated. SAS uses Helmert coding, so that

0— —1

1—20

2 — +1

Mixed-Level Arrays

Taguchi generated arrays that can accommodate both two-level and three-level factors simulta-
neously. The numbers of runs in these arrays are multiples of 6 (2 * 3). The most common would
be the L12 and L18 arrays. An example of an L12 array, generated with JMP, is given in Table 15.13.
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Table 15.12 L9 array Table 15.9 — 3#%(4-2) Res III design

Igilg?lg(j by SAS PROC Th.e EACTEX procedure
Aliasing structure
HI = (2*H2) + (2*H3) = H2 + H4 = H3 + (2%H4)
(2*H1) = H2 + H3 = (2*H2) + (2*H4) = (2*H3) + H4
H2 = (2*H1) + (2*H3) = HI1 + (2*H4) = H3 + H4
(2*H2) = HI + H3 = (2*H1) + H4 = (2*H3) + (2*H4)
H3 = (2*H1) + (2*H2) = H1 + H4 = H2 + (2*H4)
(2*H3) = HI1 + H2 = (2*H1) + (2*H4) = (2*H2) + H4
H4 = HI + (2%H2) = (2*HI) + H3 = H2 + (2*H3)
(2*H4) = (2*H1) + H2 = H1 + (2*H3) = (2*H2) + H3

H1 H2 H3 H4

—1 -1 -1 -1

-1 0 1 1

-1 1 0 0

0 —1 1 0

0 0 0 -1

0 1 -1 1

1 —1 1

1 0 -1 0

1 1 1 -1

Table 15.13 An L12 array X1 X2 X3 Pattern

1 1 1 -
1 1 2 ——0
1 1 3 ——+
1 2 1 -+ -
1 2 2 -+0
1 2 3 —++
2 1 1 +——
2 1 2 +—-0
2 1 3 +—+
2 2 1 ++—
2 2 2 0
2 2 3 +++

This L12 array is an L4 array in two 2-level factors, expanded 3 times, once for each level of an
additional three-level factor. The L18 designs and their generation are more complex, and will not be
discussed. However, it is fairly simple to generate such arrays with the aforementioned software.
Table 15.14 shows an L18 array, generated using the Minitab DOE function, with one 2-level factor
and three 3-level factors.

Tolerance Design

Once the Parameter Design step is performed, and optimal values for the control parameters are
selected, an analysis called Tolerance Design may be performed to help reduce variation in the
response. Barker (1990) provides an example of a Tolerance Design analysis following a Parameter
Design experiment for selecting optimal control parameter values in an electrical circuit. The
Tolerance Design analysis is used to find which control parameters contribute the most to total
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Table 15.14 An L18 array

&
>
S
>
R
=

W W W N NN = = = W N e e
W N = LN = W= N =N =W =
DO = W= NN = W= W W~ Wi -

NN NN NN DNN = = = e = e = e

variability in the response (impedance). The total variability in the response is related by an equation
to the contribution to variability from each control parameter. The equation is used to determine the
degree to which each control parameter’s contribution to variance should be reduced in order to
achieve a desired level of overall variability. To create the equation, Barker first performs what is
called a variance components analysis (Searle et al. 2006). The idea is to take the total variance in a
set of data and ascribe to each term in a model a proportion of that variance. In order to accomplish
this, each term contributing to variance would be identified as a “random effect” in many software
packages. Figure 15.6 shows a screen from JMP “Fit Model” function for the tablet manufacturing
problem. The control parameters are identified as random effects via the “Attributes” feature. Note
that the method for estimating the variance components is set to REML (Restricted Maximum
Likelihood). This is the preferred method, as it can guarantee that all the components of variance
will be non-negative (a negative variance is an algebraic impossibility, so that any estimation method
should reflect this).

Figure 15.7 shows the JMP output for this model.

The column labeled “Pct of Total” gives the contribution of each term to the total variance of the
response, Ds,. The total variance was approximately 119.37, or a total standard deviation of about
10.93 min. If the response was centered at the target of 240 min, then about 95 % of the values would
be expected to be somewhere between 240 £+ 1.96*%10.93, or from 218.58 to 261.42 min. If the EAS
wants to reduce the 95 % “range” of D5, values, she might want to know how much each control
parameter contributes to the total variance, and therefore know which parameters provide the greatest
potential for affecting a reduction in the variability. The equation Barker uses would be, for our
example:

Total Variance = V(Total) = 119.37
0.00442%V(T) + 0.0000%V(C) + 0.8126%V(P) + 0.1830%V (residual)

The variance due to residual error (pure noise) is V(residual) = 21.84. Suppose that a reduction in the
95 % range of D5 is desired to be 240 £ 15 min, or (225,255). In other words, the EAS would want
240 — 1.96VV(Total) = 225, so V(Total) would have to be V(Total) = (%)2 ~ 58.57. Thus, the
reduction in Total Variance requires is 58.57/119.37 ~ 0.4907. If T and P represent the required
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fraction of their current variance, and R represents residual variance, then the Total Variance
Equation could be written as:

0.4907 = 0.00442*T" + 0.8126*P" + 0.1830*R"
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Subtracting out the contribution of residual variance (as a fraction of the Total Variance) gives:
0.4907 — 0.1830%21.84/119.37 = 0.4572 = 0.00442*T" + 0.8126%P"

The next step is to find a reduced fraction of variance for either T* or P* to satisfy the equation.
Since this is a single equation in two unknowns (fortunately, C contributed nothing to the Total
Variance), some trial-and-error is required. Presume for a moment that the fraction of total variance
due to T does not change, i.e., T" = 1.0000. Then solve the equation for P

P" = (0.4572 — 0.00442(1))/0.8126 ~ 0.5572

That means in order to reach the goal of a 95 % range for D5, to be (225, 255), we need to reduce
the variance component for P from 96.9961 to 0.5572%96.9961 ~ 54.0462. Of course, further
experimentation with the factor P may be required in order to achieve the desired goal in reduction
to variance contribution.

Summary

Taguchi Methods® were developed as a means of using factorial experiments to improve process or
product design performance. The designs are sometimes not as efficient as fractional factorials that
include both control and noise parameters in a single “array”. In particular, the use of three-level
Taguchi designs may be much less efficient than second-order response surface designs such as Box—
Behnken or Central Composite. While Taguchi used the ‘“‘signal-to-noise” transformation of the
quadratic loss function, it may be easier to use the loss function directly, in light of its more tractable
sampling properties. Taguchi’s implied presumption is that no control parameter would be included
in an experiment if the parameter was not already known to significantly affect the response variable.
Nevertheless, Dr. Taguchi provided a relatively easy method to assess alternative product or process
designs, and he introduced the notion of a loss function as a design tool.

One element of the discussion about robust design that is glaringly missing is the use of
approximating polynomials. Although the traditional Taguchi approach does not include fitting
models, least squares can of course be used with the orthogonal array designs. Approximating
polynomials might be used to fit the raw response data, or the loss function. In the case of loss, it
might be helpful if the logarithm of the absolute value of loss be used as the response, in order to
improve the fit and thus the predictive capability of the polynomial.

Key Points

» Dr. Taguchi considered that the appropriate response variable was the degree of loss due to
missing a target value.

» He used the quadratic loss function, and transformed it into what he called signal-to-noise ratios
(SNRs), so that the objective of design was to maximize SNR rather than minimize loss.

» The loss function has a fairly tractable set of sampling properties, so that it is possible to create
confidence intervals for it and compare average loss between two designs.

» Dr. Taguchi recognized that product and process design were multifactorial in nature, and he
employed factorial experiments to find optimal values of all the factors or features of the product
design.
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Dr. Taguchi also recognized that factors can be classified into two main categories, namely control
and noise “parameters”. The control parameters are the factors to be optimized in face of the
variation possible among the noise parameters.

The control and noise parameters are varied in two independent experimental arrays. The control
array is called the “inner” array, and the noise array is called the “outer” array. The original idea
was to run a complete outer array for every run of the inner array.

A potentially economical method for representing noise without needing to completely replicate
the entire noise array for every run of the control parameter array is to run the noise array for one
set of control parameter conditions or states, and then find the two noise conditions that provide the
minimum and maximum average value of the raw response variable, and using only those two
noise conditions in conjunction with the control parameter array.

The experimental process is performed in two stages, parameter design and tolerance design.
Parameter design is for optimization of the control parameter values. Tolerance design analyses
helps determine the degree to which contributions to overall variance from each control parameter
should be reduced in order to achieve an overall reduction in response variability.

Exercises and Questions

1.

An EAS must design a better (humane) mousetrap. There are three control parameters:

(a) Box height
(b) Box length
(c) Door spring strength (controls the speed of closure)

There are two noise parameters:

N1) mouse length

N2) mouse speed

Assume a mouse may be simulated with a mechanical device having a particular length and speed.
What arrays would you suggest?

. Using the data in Table 15.3, compute a two-sided 95 % confidence interval for the root mean

square percent loss when P = 45 N (optimal conditions).
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