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Preface

Algebraic statistics is a rapidly developing field, where ideas from statistics and
algebra meet and stimulate new research directions. Statistics has been relying on
classical asymptotic theory as a basis for statistical inferences. This classical basis
is still very useful. However, when the validity of asymptotic theory is in doubt, for
example, when the sample size is small, statisticians rely more and more on various
computational methods. Similarly, algebra has long been considered as the purest
field of mathematics, far apart from practical computations. However, due mainly
to the development of Gröbner basis technology, algebra is now becoming a field
where computations for practical applications are feasible. It is an interesting trend,
because historically algebra was invented to speed up various calculations.

These two trends meet in the field of algebraic statistics. Algebraic algorithms
are now very useful and essential for some practical statistical computations such as
Markov chain Monte Carlo tests for discrete exponential families, which is the main
topic of this book. On the other hand algebraic structures and computational needs of
statistical models provide new challenging problems to algebraists. Some algebraic
structures are naturally motivated from statistical modeling, but not necessarily from
pure mathematical considerations.

Algebraic statistics has two origins. One origin is the work by Pistone and Wynn
in 1996 on the use of Gröbner bases for studying confounding relations in factorial
designs of experiments. Another origin is the work by Diaconis and Sturmfels in
1998 on the use of Gröbner bases for constructing a connected Markov chain for
performing conditional tests of a discrete exponential family. These two works
opened up the whole new field of algebraic statistics. In this book we take up the
second topic. We give a detailed treatment of results following the seminal work of
Diaconis and Sturmfels. We also briefly consider the first topic in Chap. 15 of this
book.

As a general reference to the first origin of algebraic statistics we mention
Pistone et al. [118]. For the second origin we mention Drton et al. [55], Pachter and
Sturmfels [116], and our review paper [15]. For Japanese people the following two
books are very useful: Hibi [86], and JST CREST Hibi team [93]. The Markov bases
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database (http://markov-bases.de/) provides very useful online material
for studying Markov bases.

Algebraic statistics gave us some exciting opportunities for research and col-
laboration. In particular we enjoyed working with Takayuki Hibi and Hidefumi
Ohsugi, who are the leading researchers on Gröbner bases in Japan. Since 2008
Takayuki Hibi has a project, “Harmony of Gröbner Bases and the Modern Industrial
Society,” in the mathematics program of the Japan Science and Technology Agency.
Algebraic statistics offers a rare ground where algebraists and statisticians can talk
about the same problems, albeit often with different terminologies. This book is
intended for statisticians with minimal backgrounds in algebra. As we ourselves
learned algebraic notions through working on statistical problems, we hope that
this book with many practical statistical problems is useful for statisticians to start
working on algebraic statistics.

In preparing this book we very much benefited from comments of Takayuki Hibi,
Hidehiko Kamiya, Kei Kobayashi, Satoshi Kuriki, Mitsunori Ogawa, Hidefumi
Ohsugi, Toshio Sakata, Tomonari Sei, Kentaro Tanaka, and Ruriko Yoshida.

Finally we acknowledge great editorial help from John Kimmel.

Kagoshima, Japan Satoshi Aoki
Niigata, Japan Hisayuki Hara
Tokyo, Japan Akimichi Takemura
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15 Gröbner Basis Techniques for Design of Experiments . . . . . . . . . . . . . . . . . 261
15.1 Design Ideals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
15.2 Identifiability of Polynomial Models and the Quotient

with Respect to the Design Ideal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262
15.3 Regular Two-Level Designs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267
15.4 Indicator Functions .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269

16 Running Markov Chain Without Markov Bases . . . . . . . . . . . . . . . . . . . . . . . . 275
16.1 Performing Conditional Tests When a Markov Basis

Is Not Available . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275
16.2 Sampling Contingency Tables with a Lattice Basis . . . . . . . . . . . . . . . . 275
16.3 A Lattice Basis for Higher Lawrence Configuration . . . . . . . . . . . . . . . 277
16.4 Numerical Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278

16.4.1 No-Three-Factor Interaction Model . . . . . . . . . . . . . . . . . . . . . . . 278
16.4.2 Discrete Logistic Regression Model . . . . . . . . . . . . . . . . . . . . . . . 282

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295





Part I
Introduction and Some Relevant

Preliminary Material

In Part I of this book we give introductory material on performing exact tests using
Markov basis and a short survey on Gröbner basis.

In Chap. 1, using the example of Fisher’s exact test for the independence model in
two-way contingency tables, we give an introduction to exact tests. We also discuss
conditional independence model for three-way contingency tables.

In Chap. 2 we discuss basic notions of Markov chain and Markov bases. In
particular we explain the Metropolis-Hastings procedure for adjusting transition
probabilities to achieve a desired stationary distribution.

Chapter 3 is a brief summary of results in the theory of Gröbner basis. In this
chapter we collect relevant facts on ideals in polynomial rings and their Gröbner
bases, which are often needed for discussion of Markov bases.

In this book, R,Q,Z,N = {0,1, . . .} stand for the set of reals, rationals, integers
and nonnegative integers, respectively. For a positive integer n, we denote the set of
n-dimensional vectors of elements from R,Q,Z,N, by R

n,Qn,Zn,Nn, respectively.



Chapter 1
Exact Tests for Contingency Tables and Discrete
Exponential Families

1.1 Independence Model of 2×××2 Two-Way
Contingency Tables

The theory of exact tests for discrete exponential families is best explained by
Fisher’s exact test of homogeneity of two binomial populations and the indepen-
dence model of 2× 2 contingency tables. We begin with the test of homogeneity of
two binomial populations. An excellent introduction to contingency tables is given
in [59]. We also refer to Agresti [3] as a survey paper of the exact methods.

Fisher’s exact test can be applied to three different sampling schemes: (i) test of
homogeneity of two binomial populations, (ii) test of independence in multinomial
sampling for 2 × 2 tables, (iii) the main effect model for logarithms of mean
parameters of independent Poisson random variables in 2× 2 tables. We discuss
these three sampling schemes in this order. With this example we confirm that the
same Markov basis can be used for different sampling schemes.

Let X be distributed according to a binomial distribution Bin(n1, p1), where n1 is
the number of trials and p1 is the success probability. Let Y be distributed according
to the binomial distribution Bin(n2, p2). Suppose that X and Y are independent.
We can display X and Y in the following 2× 2 contingency table:

X n1 −X n1

Y n2 −Y n2

t n− t n

where t = X +Y and n = n1 + n2. The hypothesis of homogeneity of two binomial
populations is specified as

H : p1 = p2.

S. Aoki et al., Markov Bases in Algebraic Statistics, Springer Series
in Statistics 199, DOI 10.1007/978-1-4614-3719-2 1,
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The joint probability function of X and Y is written as

p(x,y) =

(
n1

x

)
px

1(1− p1)
n1−x
(

n2

y

)
py

2(1− p2)
n2−y.

Note that here we are using the conventional notational distinction between random
variables X ,Y in capital letters and their values x,y in lower-case letters. However,
for the rest of this book for notational simplicity we do not necessarily stick to this
convention.

Under the null hypothesis H, the joint probability is written as

p(x,y) =

(
n1

x

)(
n2

y

)
px+y

1 (1− p1)
n−(x+y). (1.1)

This joint probability depends on (x,y) through t = x + y. Therefore from the
factorization theorem for sufficient statistics (see Sect. 2.6 of Lehmann and Romano
[98]), T = X +Y is a sufficient statistic under the null hypothesis H. Given T = t,
the conditional distribution of X does not depend on the value of p1 = p2. Hence
by using X as the test statistic, we obtain a testing procedure, whose level does not
depend on the value of p1 = p2; that is, we obtain a similar test (Sect. 4.3 of [98]).

Under H the distribution of T = X +Y is the binomial distribution Bin(n, p1).
Therefore the conditional distribution of X given T = t is calculated as

P(X = x | T = t) =

(n1
x

)( n2
t−x

)
pt

1(1− p1)
n−t(n1+n2

t

)
pt

1(1− p1)n−t
=

(n1
x

)( n2
t−x

)
(n

t

)

=
n1!n2!t!(n− t)!

n!x!(n1 − x)!(t − x)!(n2 − t + x)!
. (1.2)

This is a hypergeometric distribution. Indeed the conditional distribution does not
depend on the value of p1 = p2.

The null hypothesis H is rejected if the value of X is too large or too small.
Because the distribution of X is not symmetric when n1 �= n2, the rejection region
is usually determined by unbiasedness consideration. For optimality of similar
unbiased test see Sect. 4.4 of [98]. This testing procedure is called Fisher’s exact test.
It is an exact test because the significance level is computed from the hypergeometric
distribution. It is also called a conditional test because we use the conditional null
distribution given T = t. In contrast, the usual large-sample test is based on the
large-sample normal approximation to the following “z-statistic”:

z =
p̂1 − p̂2√

p̂1(1− p̂1)
n1

+ p̂2(1− p̂2)
n2

, p̂1 =
X
n1

, p̂2 =
Y
n2

.
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Table 1.1
Cross-classification of belief
in afterlife by gender

Belief in Afterlife

Gender Yes No or Undecided

Females 509 116
Males 398 104

The test based on z is an unconditional test. However, when the sample size is small,
it is desirable to use the exact test (Haberman [68]).

In the case of homogeneity of two binomial populations, we saw that X +Y (total
number of successes) is a sufficient statistic. We could also take n−X −Y (total
number of failures) or even the pair (X +Y,n−X −Y ) as a sufficient statistic. Note
that the pair contains redundancy, but it is still a sufficient statistic, because fixing
(x+ y,n− x− y) is equivalent to fixing x+ y. Furthermore we could also include
n1 and n2 into the sufficient statistic, although these values are fixed in the case of
homogeneity of two binomial populations. Indeed T = (X +Y,n− X −Y,n1,n2)
is a sufficient statistic, because given the value of the vector T the conditional
distribution of X is the hypergeometric distribution in (1.2) and it does not depend
on p1 = p2.

Next we discuss the multinomial sampling scheme. Let xi j, i = 1,2, j = 1,2, be
frequencies of four cells of a 2×2 contingency table. The row sums and the column
sums (i.e., the marginal frequencies) are denoted as xi+,x+ j, i, j = 1,2. The total
sample size is n = x11 + x12 + x21 + x22. The data are displayed as follows.

x11 x12 x1+

x21 x22 x2+

x+1 x+2 n
(1.3)

At this point we mention some customary terminology of contingency tables.
We look at the frequencies in (1.3) as the frequencies of a two-dimensional random
variable Y = (Y1,Y2), such that both Y1 and Y2 take the values 1 or 2. For example, in
Table 1.1 taken from Chap. 2 of [5], Y1 is the gender and Y2 is the belief in afterlife.
The values taken by a variable are often called levels of the variable. For example,
in Table 1.1 two levels of the variable “gender” are “female” and “male”. In this
terminology xi j is the joint frequency such that Y1 takes the level i and Y2 takes the
level j. The row and the column of the contingency table are sometimes called axes
of the table. Then Y1 is the random variable for the first axis and Y2 is the random
variable for the second axis.

Let

pi j ≥ 0, i = 1,2, j = 1,2,
2

∑
i, j=1

pi j = 1

be the probabilities of the cells. In a single multinomial trial, we observe one
of the four cells according to the probabilities. With n independent and identical
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multinomial trials, the joint probability function of XXX = (X11,X12,X21,X22) is
given as

p(xxx) =

(
n

x11,x12,x21,x22

)
px11

11 px12
12 px21

21 px22
22 . (1.4)

As in this example, we use the boldface letter xxx for the vector of frequencies and call
xxx the frequency vector. When necessary, we make the notational distinction between
column vector and row vector. For example, xxx is meant as a column vector when we
write xxx = (x11,x12,x21,x22)

′. We use ′ for denoting the transpose of a vector or a
matrix in this book.

Let pi+ = pi1 + pi2, i = 1,2, denote the marginal probability of the first variable
of the contingency table and similarly let p+ j = p1 j + p2 j, j = 1,2, denote the
marginal probability of the second variable. The hypothesis of independence H in
the multinomial sampling scheme is specified as follows:

H : pi j = pi+p+ j, i = 1,2, j = 1,2. (1.5)

On the other hand, if there is no restriction on the probability vector ppp =
(p11, p12, p21, p22), except that the elements of ppp are nonnegative and sum to one,
we call the model saturated.

Write ri = pi+ and c j = p+ j. Then pi j = ric j under H. Note that in (1.5),

1 =
2

∑
i=1

pi+ =
2

∑
j=1

p+ j.

However, when we write ri = pi+ and c j = p+ j, we can remove the restriction 1 =
r1 + r2 = c1 + c2 and only assume that ri and c j are nonnegative such that the total
probability is 1:

1 =
2

∑
i, j=1

ric j = (r1 + r2)(c1 + c2).

Furthermore we can incorporate the total probability into the normalizing constant
and write the probability as

pi j =
1

(r1 + r2)(c1 + c2)
ric j, i, j = 1,2, (1.6)

where we only assume that ri and c j are nonnegative without any further restrictions.
In this example of 2× 2 tables, the normalizing constant is obvious and the above
discussion may be pedantic. However, for more general models of contingency
tables, it is best to consider the joint probability in the form of (1.6).

Under H, with the normalization 1 = (r1 + r2)(c1 + c2), the joint probability
function p(xxx) is written as
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p(xxx) =

(
n

x11,x12,x21,x22

)
(r1c1)

x11(r1c2)
x12(r2c1)

x21(r2c2)
x22

=

(
n

x11,x12,x21,x22

)
rx1+

1 rx2+
2 cx+1

1 cx+2
2

=

(
n

x11,x12,x21,x22

)
px1+

1+ px2+
2+ px+1

+1 px+2
+2 . (1.7)

Hence the sufficient statistic under H is given as

T = (x1+,x2+,x+1,x+2).

Given T , in the case of the 2× 2 table, there is only one degree of freedom in
xxx. Namely, if x11 is given, then the other values x12,x21,x22 are automatically
determined as

x12 = x1+− x11, x21 = x+1 − x11, x22 = n− x1+− x+1 + x11.

As mentioned above, let us consider (i, j) as the pair of levels of two random
variables Y1 and Y2. Under the null hypothesis H of independence in (1.5), Y1

and Y2 are independent. Suppose that we observe n independent realizations
(y1

1,y
1
2), . . . ,(y

n
1,y

n
2) of (Y1,Y2). Then xi+ is the number of times that Y1 takes the

value i. Hence x1+ is distributed according to the binomial distribution Bin(n, p1+).
Similarly x+1 is distributed according to the binomial distribution Bin(n, p+1).
Furthermore they are independent. Therefore the joint distribution of x1+ and x+1 is
written as

p(x1+,x+1) =

(
n

x1+

)
px1+

1+ px2+
2+

(
n

x+1

)
px+1
+1 px+2

+2 . (1.8)

From (1.7) and (1.8) it follows that the conditional distribution of X11 given the
sufficient statistic is computed as follows.

p(x11 | x1+,x2+,x+1,x+2) =

( n
x11,x12,x21,x22

)
px1+

1+ px2+
2+ px+1

+1 px+2
+2( n

x1+

)
px1+

1+ px2+
2+

( n
x+1

)
px+1
+1 px+2

+2

=

( n
x11,x12,x21,x22

)
( n

x1+

)( n
x+1

) =
x1+!x2+!x+1!x+2!
n!x11!x12!x21!x22!

. (1.9)

This is again a hypergeometric distribution. Equation (1.9) is clearly the same as
(1.2) if we write the row sums and the column sums as n1 = x1+, n2 = x2+, t = x+1,
n− t = x+2. Therefore Fisher’s exact test is the same in this multinomial sampling
scheme as in the case of testing the homogeneity of two binomial populations.

Note that in this scheme n is fixed and x2+ = n− x1+ and x+2 = n− x+1 can be
omitted from the sufficient statistic T = (x1+,x2+,x+1,x+2). However, as in the first
scheme we can allow the redundancy in the sufficient statistic.



8 1 Exact Tests for Contingency Tables and Discrete Exponential Families

Finally we consider the sampling scheme of Poisson random variables. Let Xi j,
i, j = 1,2, be independently distributed according to the Poisson distribution with
mean λi j. The joint probability of XXX is written as

p(xxx) =
2

∏
i, j=1

λ xi j
i j

xi j!
e−λi j .

Consider the null hypothesis H that λi j can be factored as

H : λi j = ric j, i, j = 1,2,

where ri,c j are nonnegative. Again by writing down the joint probability under the
null hypothesis H, we can easily check that a sufficient statistic under H is given by
T = (x1+,x2+,x+1,x+2), where now the redundancy is only in x+2 = x1+ + x2+−
x+1. Instead of writing out the joint probability, we use the following property of
independent Poisson random variables for verifying that T is a sufficient statistic
under H. Let n = X11+X12+X21+X22. Then n is distributed as the Poisson random
variable with mean μ = ∑2

i, j=1 λi j. Under H, μ = (r1 + r2)(c1 + c2). Given n, the
conditional distribution of (X11,X12,X21,X22) is the multinomial distribution with
cell probabilities pi j = λi j/μ . Under H, the cell probability is written as

pi j =
1

(r1 + r2)(c1 + c2)
ric j, i, j = 1,2,

which is the same as (1.6). From this fact we see that T = (x1+,x2+,x+1,x+2) is a
sufficient statistic under H. Given T , the conditional distribution of xxx is the same as
the multinomial case; that is, X11 follows the hypergeometric distribution in (1.9).

We now note the relation between the cell frequencies and the sufficient statistic.
The column vector of cell frequencies xxx = (x11,x12,x21,x22)

′ and the column vector
of the sufficient statistic (x1+,x2+,x+1,x+2)

′ are related as follows:

⎛
⎜⎜⎝

x1+

x2+

x+1

x+2

⎞
⎟⎟⎠=

⎛
⎜⎜⎝

1 1 0 0
0 0 1 1
1 0 1 0
0 1 0 1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

x11

x12

x21

x22

⎞
⎟⎟⎠ . (1.10)

We write this as ttt = Axxx and call the matrix A the configuration for the above three
models.

1.2 2×××2 Contingency Table Models as Discrete
Exponential Family

In the previous section we explained three sampling schemes for 2× 2 contingency
tables and pointed out that they share the same sufficient statistic when redundancies
are allowed. In this section we present the standard formulation of the sampling
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schemes as discrete exponential family models. We confirm that the sufficient
statistics under the null hypothesis correspond to nuisance parameters. Hence fixing
the sufficient statistic has the effect of eliminating the nuisance parameters and the
resulting conditional test is a similar test. Here we only consider the multinomial
scheme of the previous section, because the other cases can be treated in a similar
manner.

A family of joint probability functions p(xxx) = p(xxx;θθθ), θθθ ∈Θ , is said to form an
exponential family (see Sect. 2.7 of [98]) if p(xxx,θθθ ) is written in the following form.

p(xxx;θθθ ) = h(xxx)exp

(
k

∑
j=1

Tj(xxx)φ j(θθθ )−ψ(θθθ)

)
. (1.11)

By the factorization theorem (Sect. 2.6 of [98]), T = (T1(xxx), . . . ,Tk(xxx)) is a sufficient
statistic of this family. Note that p(xxx;θθθ) and ψ(θθθ) depend on θθθ only through φφφ =
(φ1, . . . ,φk) and we can write ψ(φφφ) instead of ψ(θθθ). In Chap. 4 we simply denote
φ j(θθθ ) itself as θ j .

Let pi j, i, j = 1,2, denote the cell probabilities in the multinomial sampling of a
2× 2 contingency table. Now consider the following transformation:

φ1 = log
p12

p22
, φ2 = log

p21

p22
, λ = log

p11 p22

p12 p21
. (1.12)

In the region where the elements of the probability vector ppp = (p11, p12, p21, p22)
are positive, the transformation is one-to-one and the inverse transformation is
written as

p11 =
eφ1+φ2+λ

1+ eφ1 + eφ2 + eφ1+φ2+λ ,

p12 =
eφ1

1+ eφ1 + eφ2 + eφ1+φ2+λ ,

p21 =
eφ2

1+ eφ1 + eφ2 + eφ1+φ2+λ ,

p22 =
1

1+ eφ1 + eφ2 + eφ1+φ2+λ . (1.13)

Substituting this into (1.4) we can write the joint probability function of xxx as

p(xxx) =

(
n

x11,x12,x21,x22

)
exp
(
(x11 + x12)φ1 +(x11 + x21)φ2 + x11λ

−n log(1+ eφ1 + eφ2 + eφ1+φ2+λ )
)
. (1.14)

This is written in the form (1.11) and hence the family of p(xxx) forms an exponential
family. By putting r1 = eφ1 ,r2 = 1,c1 = eφ2 ,c2 = 1 we see that the null hypothesis
of the independence (1.5) is equivalently written as

H : λ = 0.
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Note that λ is the parameter of interest for the null hypothesis and φ1,φ2 are the
nuisance parameters under the null hypothesis. Under the null hypothesis, λ = 0 is
no longer a parameter of the family of distributions and the distributions under the
null hypothesis are parametrized by the nuisance parameters φ1,φ2. In (1.14) the
sufficient statistic corresponding to (φ1,φ2) is

x1+ = x11 + x12, x+1 = x11 + x21.

In (1.11) and (1.14) we considered the joint probability of the frequency vector.
In fact, when we consider a single observation n = 1, then the cell probabilities are
already in the exponential family form. Write

log ppp = (log p11, log p12, log p21, log p22),

ψ(φ1,φ2) = log(1+ eφ1 + eφ2 + eφ1+φ2).

Taking the logarithms of pi j in (1.13) with λ = 0, in a matrix form we can write

log ppp = (φ1,0,φ2,0)

⎛
⎜⎜⎝

1 1 0 0
0 0 1 1
1 0 1 0
0 1 0 1

⎞
⎟⎟⎠−ψ(φ1,φ2)× (1,1,1,1). (1.15)

Note that the matrix on the right-hand side is the configuration A appearing in the
right-hand side of (1.10).

1.3 Independence Model of General Two-Way
Contingency Tables

Generalizing the discussion of the previous section we now consider the indepen-
dence model of general I × J two-way contingency tables. The discussion on three
sampling schemes is entirely the same as in the case of 2× 2 tables. Therefore we
only discuss the multinomial sampling.

Let pi j, i = 1, . . . , I, j = 1, . . . ,J, denote the cell probabilities of an I × J
contingency table. Let pi+ and p+ j denote the marginal probabilities. The null
hypothesis of independence is written as

H : pi j = pi+p+ j, i = 1, . . . , I, j = 1, . . . ,J.

We can also write pi j = ric j without requiring that ris and c js correspond to
probabilities. Let xi j denote the frequency of the cell (i, j). A sufficient statistic



1.3 Independence Model of General Two-Way Contingency Tables 11

T under the null hypothesis H is the set of the row sums xi+, i = 1, . . . , I and the
column sums x+ j, j = 1, . . . ,J. Let n denote the total sample size.

Under the null hypothesis the joint probability of xxx = {xi j} is written as

p(xxx) =

(
n

x11, . . . ,xIJ

) I

∏
i=1

J

∏
j=1

(pi+p+ j)
xi j

=

(
n

x11, . . . ,xIJ

) I

∏
i=1

pxi+
i+

J

∏
j=1

p
x+ j
+ j .

Also, under the null hypothesis, as in the case of 2×2 tables, the vector of row sums
{xi+} and the vector of column sums {x+ j} are independently distributed according
to multinomial distributions:

p({xi+}) =
(

n
x1+, . . . ,xI+

)
px1+

1+ · · · pxI+
I+ ,

p({x+ j}) =
(

n
x+1, . . . ,x+J

)
px+1
+1 · · · px+J

+J .

From this fact, the conditional distribution of xxx = {xi j} given the sufficient statistic
ttt is written as

p(xxx | T = ttt) =
p({xi j})

p({xi+})p({x+ j}) =
( n

x11,...,xIJ

)
( n

x1+,...,xI+

)( n
x+1,...,x+J

)

=
∏I

i=1 xi+! ∏J
j=1 x+ j!

n!∏i, j xi j!
. (1.16)

This distribution is often called the multivariate hypergeometric distribution.
However in this book we show many variations of distributions of this type and
we often refer to them simply as hypergeometric distributions.

Given the row sums and the column sums, the degrees of freedom in the
frequency vector xxx is (I − 1)× (J − 1) because the elements of the last row and
the last column are determined uniquely from the other elements. This degrees of
freedom is also the dimension of the parameter of interest when the joint probability
distribution is written in the exponential family form. More precisely let

φ1i = log
piJ

pIJ
, i = 1, . . . , I − 1,

φ2 j = log
pI j

pIJ
, j = 1, . . . ,J− 1,

λi j = log
pi j pIJ

piJ pI j
, i = 1, . . . , I − 1, j = 1, . . . ,J− 1. (1.17)
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Then the null hypothesis is written as

H : λi j = 0, i = 1, . . . , I − 1, j = 1, . . . ,J− 1.

One consequence of the multidimensionality of the parameter of interest is that
there is no unique best choice for a test statistic, even under the requirement of
similarity and unbiasedness.

Let
m̂i j = np̂i j =

xi+x+ j

n

denote the “expected frequency” of the cell (i, j), where p̂i j is the maximum
likelihood estimate (MLE) of pi j. For testing the null hypothesis of independence,
popular test statistics are Pearson’s chi-square test

χ2(xxx) = ∑
i

∑
j

(xi j − m̂i j)
2

m̂i j
≥ cα ⇒ reject H

and the (twice log) likelihood ratio test

G2(xxx) = 2∑
i

∑
j

xi j log
xi j

m̂i j
≥ cα ⇒ reject H,

where cα is the critical value for the respective test statistic. G2(xxx) is actually twice
the logarithm of the likelihood ratio. In the usual asymptotic theory, cα is approx-
imated by the upper α-quantile of the chi-square distribution with (I − 1)(J− 1)
degrees of freedom. In this book we denote the chi-square distribution with m
degrees of freedom by χ2

m.
These two statistics are “omnibus test statistics” in the sense that all possible

alternative hypotheses are roughly equally treated. When some specific deviations
from the null hypothesis are expected, then a more suitable test statistic, which is
sensitive against the deviation, can be used. For performing a test of H, once a
test statistic is chosen, it only remains to evaluate its null distribution. As in the
previous section, in this book we consider exact tests; that is, we are interested in
the distribution of a test statistic under the hypergeometric distribution (1.16).

At this point we investigate the conditional sample space; that is, the set of
contingency tables given the sufficient statistic for I × J case. As in the 2× 2 case,
the relation between the sufficient statistic and the frequency vector is written in a
matrix form. Let ttt = (x1+, . . . ,xI+,x+1, . . . ,x+J)

′ denote the (column) vector of the
sufficient statistic and let xxx = (x11,x12, . . . ,x1J,x21, . . . ,xIJ)

′ denote the frequency
vector. Then

ttt = Axxx, (1.18)

where the configuration A is an (I + J)× IJ matrix consisting of 0s and 1s as in
(1.10).



1.3 Independence Model of General Two-Way Contingency Tables 13

An explicit form of A can be given using the Kronecker product notation. For
two matrices, C = {ci j} : m1 ×n1 and D : m2 ×n2, their Kronecker product C⊗D is
an m1m2 × n1n2 matrix of the following block form

C⊗D =

⎛
⎜⎝

c11D . . . c1n1D
...

...
cm11D . . . cm1n1D

⎞
⎟⎠ . (1.19)

Let 111n = (1, . . . ,1)′ denote the n-dimensional vector consisting of 1s and let Em

denote an m×m identity matrix. Then A in (1.18) is written as

A =

(
EI ⊗ 111′J
111′I ⊗EJ

)
.

Alternatively let eee j,n = (0, . . . ,0,1,0, . . . ,0)′ ∈ R
n denote the jth standard basis

vector of R
n. When the dimension n is clear from the context, we simply write

the standard basis vector as eee j instead of eee j,n. Then the columns of A are of the form

(
eeei,I

eee j,J

)
, i = 1, . . . , I, j = 1, . . . ,J. (1.20)

We sometimes denote the stacked vector in (1.20) as

eeei,I ⊕ eee j,J =

(
eeei,I

eee j,J

)
. (1.21)

It is easily checked that the rank of A is

rank A = I+ J− 1.

Hence the dimension of the kernel of A is given as

dim ker A = IJ − (I+ J− 1) = (I− 1)(J− 1).

As mentioned above, this dimension corresponds to the fact that, if we ignore the
requirement of nonnegativity, we can choose the elements of the first I−1 rows and
the first J − 1 columns freely. With the additional requirement of nonnegativity, the
conditional sample space given the sufficient statistic is defined as

Fttt = {xxx ∈ Z
IJ | xxx ≥ 000, ttt = Axxx}, (1.22)

where xxx ≥ 000 means that the elements of xxx are nonnegative. We call Fttt the fiber of ttt
(or also call it the t-fiber). The hypergeometric distribution in (1.16) is a probability
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distribution over the fiber Fttt . When a test statistic φ(xxx) is given, we want to evaluate
the distribution of φ(xxx), where xxx is distributed according to the hypergeometric
distribution over Fttt .

Suppose that φ is chosen such that a larger value of φ indicates more deviation
from the null hypothesis, as in Pearson’s chi-square statistic or the likelihood ratio
statistic. Then testing can be conveniently performed via p-value. Let xxxo denote the
observed contingency table. The p-value of xxxo is defined as

p = P(φ(xxx)≥ φ(xxxo) | H) = ∑
xxx∈Fttt ,φ(xxx)≥φ(xxxo)

p(xxx | ttt = Axxxo,H), (1.23)

which is the probability under the hypergeometric distribution of observing the
value φ(xxx) which is larger than or equal to φ(xxxo). Given the level of significance
α , we reject H if p ≤ α .

There are three methods to evaluate the p-value in (1.23).

1. By enumerating Fttt , ttt = Axxxo, and performing the sum in (1.23) for all xxx ∈ Fttt

such that φ(xxx)≥ φ(xxxo).
2. Directly sampling xxx from the hypergeometric distribution and approximating

(1.23) by Monte Carlo simulation.
3. By sampling xxx by a Markov chain whose stationary distribution is the hypergeo-

metric distribution, that is, by a Markov chain Monte Carlo method.

Clearly the enumeration is the best if it is feasible. However, when the row
sums and the column sums become large, the size of the fiber Fttt becomes large
and the enumeration becomes infeasible. In the case of the independence model
of this section, direct sampling of a frequency vector from the hypergeometric
distribution is easy to carry out. In more complicated models treated later in the
book, though, direct sampling is not easy. On the other hand, there exists a general
theory of constructing a Markov chain having the hypergeometric distribution as the
stationary distribution. Hence the subject of this book is the Markov chain sampling
from the fiber Fttt .

In the next chapter, again employing the independence model of I × J contin-
gency tables, we discuss how to perform Markov chain sampling from the fiber Fttt .

1.4 Conditional Independence Model of Three-Way
Contingency Tables

In this section we discuss the conditional independence model for three-way
contingency tables. It is a relatively simple model in the sense that for each level of
the conditioning variable, the problem reduces to the case of an independence model
of two-way contingency tables for the other variables. However, it is a convenient
model for introducing a notation for general m-way contingency tables in the next
section.
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Consider an I1 × I2 × I3 three-way contingency table xxx. We denote each cell of
the table by a multi-index iii = (i1, i2, i3). For a positive integer J write

[J] = {1, . . . ,J}.
The set of the cells is the following direct product

I = {iii = (i1, i2, i3) | i1 ∈ [I1], i2 ∈ [I2], i3 ∈ [I3]}= [I1]× [I2]× [I3].

With this notation the three-way contingency table, or the frequency vector, is
denoted as

xxx = {x(iii) | iii ∈ I }.
Note that this notation is somewhat heavy and in fact for three-way tables we prefer
to use subscripts i, j,k. The merit of this notation is that it can be used for general
m-way tables.

For a subset D ⊂ {1,2,3} of the variables, let iiiD denote the set of indices in D.
For example,

iii{1,2} = (i1, i2).

Note that iiiD corresponds to the D-marginal cell of the contingency table. The set of
D-marginal cells is denoted by

ID = ∏
k∈D

[Ik]. (1.24)

For example I{1,2} = {(i1, i2) | i1 ∈ [I1], i2 ∈ [I2]}. The D-marginal frequencies of xxx
are written as

xD(iiiD) = ∑
iiiDC∈IDC

x(iiiD, iiiDC), (1.25)

where DC denotes the complement of D. Note that in x(iiiD, iiiDC), for notational
simplicity, the indices in ID are collected to the left. Also we are writing x(iiiD, iiiDC)
instead of x((iiiD, iiiDC )). In the two-way case

xi+ = x{1}(i) = ∑
j

xi j.

For a probability distribution {p(iii), iii ∈ I }, we denote the D-marginal probability
as pD(iiiD). Note that in xD(iiiD) and pD(iiiD), the subset D is indicated twice. If there
is no notational confusion we alternatively write

x(iiiD),xD(iii), p(iiiD) or pD(iii) (1.26)

for simplicity.
We call a D-marginal probability distribution saturated if there is no restriction

on the probability vector {pD(iiiD), iiiD ∈ ID}.
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Let Y1,Y2,Y3 be random variables corresponding to the three axes of the contin-
gency table. We consider the model that Y1 and Y3 are conditionally independent
given the level i2 of Y2. The relevant conditional probabilities are written as

p(i1, i3 | i2) =
p(iii)

p{2}(i2)
, p(i1 | i2) =

p{1,2}(i1, i2)
p{2}(i2)

, p(i3 | i2) =
p{2,3}(i2, i3)

p{2}(i2)
.

In the following we omit subscripts to p and write, for example, p(i1, i2) instead of
p{1,2}(i1, i2). Similarly we write x(i1, i2) instead of x{1,2}(i1, i2). The null hypothesis
of conditional independence is written as

H :
p(iii)
p(i2)

=
p(i1, i2)

p(i2)
× p(i2, i3)

p(i2)
, ∀iii ∈ I , (1.27)

or equivalently as

H : p(iii) =
1

p(i2)
p(i1, i2)p(i2, i3), ∀iii ∈ I . (1.28)

Here we are assuming p(i2) > 0. In the case p(i2) = 0 for a particular level i2, we
have p(iii) = p(i1, i2) = p(i2, i3) = 0 for indices containing this level i2 of Y2. Hence
in this case we understand (1.28) as 0 = 0× 0/0. Let

α(i1, i2) =
p(i1, i2)

p(i2)
, β (i2, i3) = p(i2, i3).

Then the conditional independence model is written as

H : p(iii) = α(i1, i2)β (i2, i3). (1.29)

Note that there is some indeterminacy in specifying α and β . For example we can
include the factor 1/p(i2) into β (i2, i3) instead of into α(i1, i2).

We can show that (1.27), (1.28), and (1.29) are in fact equivalent. Suppose that
p(iii) = p(i1, i2, i3) can be written as p(iii) = α(i1, i2)β (i2, i3). Then

p(i2) = ∑
i1,i3

p(i1, i2, i3) = ∑
i1,i3

α (i1, i2)β (i2, i3) =

(
∑
i1

α(i1, i2)

)(
∑
i3

β (i2, i3)

)
,

p(i1, i2) = ∑
i3

p(i1, i2, i3) = α(i1, i2)∑
i3

β (i2, i3),

p(i2, i3) = ∑
i1

p(i1, i2, i3) =

(
∑
i1

α(i1, i2)

)
β (i2, i3).
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Therefore

p(i1, i2)p(i2, i3)
p(i2)

=
α(i1, i2)β (i2, i3)(∑i′1 α(i′1, i2))(∑i′3 β (i2, i′3))

(∑i′1 α(i′1, i2))(∑i′3 β (i2, i′3))

= α(i1, i2)β (i2, i3)

= p(iii)

and hence (1.28) holds. This shows that the null hypothesis of conditional indepen-
dence can be written in any one of (1.27), (1.28), and (1.29).

Now suppose that we observe a contingency table xxx of sample size n from the
conditional independence model. The joint probability function is written as

p(xxx) =
n!

∏iii∈I x(iii)! ∏
iii∈I

(α(i1, i2)β (i2, i3))x(iii)

=
n!

∏iii∈I x(iii)! ∏
iii{1,2}∈I{1,2}

α(i1, i2)
x(i1,i2) ∏

iii{2,3}∈I{2,3}
β (i2, i3)x(i2,i3). (1.30)

Hence a sufficient statistic T is the set of {1,2}-marginals and {2,3}-marginals of xxx:

T = ({x(iii{1,2}) | iii{1,2} ∈ I{1,2}}, {x(iii{2,3}) | iii{2,3} ∈ I{2,3}}).

In this case the marginal distribution of T is not immediately clear and hence
the conditional probability of xxx given T = ttt is also not immediately clear. However,
without worrying about the marginal distribution of T at this point, we can proceed
as follows. Let A be the configuration relating the frequency vector to the sufficient
statistic: ttt = Axxx. Define Fttt = {xxx≥ 0 | ttt = Axxx} as in (1.22). The terms containing the
parameters α,β on the right-hand side of (1.30) are fixed by the sufficient statistic,
therefore these terms do not appear in the conditional distribution of xxx given ttt. It
follows that the conditional distribution of xxx given ttt is written as

p(xxx | ttt) = c× 1

∏iii∈I x(iii)!
, c =

[
∑

xxx∈Fttt

1

∏iii∈I x(iii)!

]−1

. (1.31)

As in the previous examples, an exact test of the null hypothesis H of conditional
independence can be performed if either we can enumerate the elements of Fttt

or if we can sample from this distribution. Note that we often call (1.31) the
hypergeometric distribution over Fttt .

In general, the normalizing constant c cannot be written explicitly. The Markov
chain sampling discussed in the next chapter can be performed without knowing the
explicit form of the normalizing constant. This is one of the major advantages of
Markov chain Monte Carlo methods.
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It turns out that for the conditional independence model the marginal distribution
of the sufficient statistic T and the normalizing constant c can be written down
explicitly. This is a special case of the result of Sundberg [140] for decomposable
models, which is studied in Chap. 8. In the following section, we explain the
marginal distribution of T . The following section can be skipped, because the
normalizing constant c is not needed for performing Markov chain Monte Carlo
methods.

1.4.1 Normalizing Constant of Hypergeometric Distribution
for the Conditional Independence Model

For illustration let us explicitly write out the configuration for relating the frequency
vector to the sufficient statistic for the case of 2×2×2 tables. We order the elements
of T according to the level of Y2. Then ttt = Axxx is written as

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x{1,2}(1,1)
x{1,2}(2,1)
x{2,3}(1,1)
x{2,3}(1,2)
x{1,2}(1,2)
x{1,2}(2,2)
x{2,3}(2,1)
x{2,3}(2,2)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 0 0
0 0 1 1
1 0 1 0
0 1 0 1

0

0
1 1 0 0
0 0 1 1
1 0 1 0
0 1 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x(1,1,1)
x(1,1,2)
x(2,1,1)
x(2,1,2)
x(1,2,1)
x(1,2,2)
x(2,2,1)
x(2,2,2)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (1.32)

where the big 0 is the 4×4 zero matrix. Note that the 8×8 matrix on the right-hand
side is a block diagonal with identical blocks. Furthermore, the diagonal block is
the same as on the right-hand side of (1.10). Partition xxx on the right-hand side of
(1.32) into two 4-dimensional subvectors xxx1,xxx2. We call each xxxi2 , i2 = 1,2, the slice
of the contingency table xxx by fixing the level i2 of the second variable. Similarly we
partition ttt on the left-hand side of (1.32) into two 4-dimensional subvectors ttt1, ttt2.
Then clearly

xxx ∈ Fttt ⇔ xxx1 ∈ Fttt1 and xxx2 ∈ Fttt2 , (1.33)

where Fttt1 and Fttt2 are fibers in (1.22) for the independence model of 2 × 2
contingency tables.

We have thus far looked at the 2 × 2 × 2 case. However, it is clear that a
similar result holds for the general I1 × I2 × I3 case. Namely, when we sort the cells
according to the levels of Y2, then the configuration is in a block diagonal form with
identical blocks, which correspond to the configuration of the independence model
for I1 × I3 contingency tables.
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Also from (1.16) it follows that for I× J contingency tables we have

∑
xxx∈Fttt

1

∏i, j xi j!
=

n!

∏I
i=1 xi+!∏J

j=1 x+ j!
.

Combining this with (1.33) and by summing for each slice separately, we have the
following expression of c−1 in (1.31) for the conditional independence model.

1
c
=

I2

∏
i2=1

x(i2)!

∏I1
i1=1 x(i1, i2)!∏I3

i3=1 x(i2, i3)!

=
∏i2∈I{2} x(i2)!

∏(i1,i2)∈I{1,2} x(i1, i2)!∏(i2,i3)∈I{2,3} x(i2, i3)!
.

If we apply this sum to (1.30), we see that the joint probability distribution of T is
given as

p(T ) =
n!∏i2∈I{2} x(i2)!

∏(i1,i2)∈I{1,2} x(i1, i2)!∏(i2,i3)∈I{2,3} x(i2, i3)!

× ∏
iii{1,2}∈I{1,2}

α(i1, i2)
x(i1,i2) ∏

iii{2,3}∈I{2,3}
β (i2, i3)x(i2,i3).

Then the conditional probability in (1.31) is explicitly written as

p(xxx | ttt) =
∏(i1,i2)∈I{1,2} x(i1, i2)!∏(i2,i3)∈I{2,3} x(i2, i3)!

∏i2∈I{2} x(i2)!∏iii∈I x(iii)!
. (1.34)

1.5 Notation of Hierarchical Models for m-Way
Contingency Tables

In this section we introduce notation for general m-way contingency tables and hi-
erarchical models for these tables. The notation introduced here is used extensively
later in this book, such as Chaps. 8 and 9. Readers may skip this section and check
the notation when it is needed later in the book.

In the previous section we considered three-way contingency tables. We general-
ize the notation to m-way tables. The set of the cells for an m-way table is the direct
product

I = {iii = (i1, . . . , im) | i1 ∈ [I1], . . . , im ∈ [Im]}= [I1]×·· ·× [Im].
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An m-way contingency table, or the frequency vector, is denoted by xxx = {x(iii) | iii ∈
I }. We denote the set of m variables as Δ = [m] = {1, . . . ,m}. The notation for
marginal cells, marginal frequencies, and marginal probabilities was already given
in (1.24), (1.25), and (1.26).

Consider the logarithm of the probability function of the conditional indepen-
dence model in (1.29):

log p(iii) = logα(i1, i2)+ logβ (i2, i3). (1.35)

Here log p(iii) is written as a sum of two functions, one of which depends only on
(i1, i2) and the other depends only on (i2, i3).

Generalizing this formulation we now define a hierarchical model for m-way
contingency tables. Let D1, . . . ,Dr be subsets of Δ , such that there is no inclusion
relation between Di and D j, 1≤ i �= j ≤m. Denote D = {D1, . . . ,Dr}. A hierarchical
model with the generating class D is defined as follows.

log p(iii) = ∑
D∈D

μD(iiiD), (1.36)

where μD is a function depending only on the marginal cell iiiD. For a general
hierarchical model let

K = K (D) = {D | D ⊂ Di for some Di ∈ D}

denote the set of subsets of D1, . . . ,Dr. Note that K has the following property,

A ∈ K , B ⊂ A ⇒ B ∈ K .

A family of subsets of Δ satisfying this property is called a simplicial complex
([96]). Note that D1, . . . ,Dr are maximal elements of K with respect to set
inclusion. Maximal elements of a simplicial complex K are called facets of K .
From a statistical viewpoint, the facets correspond to maximal interaction terms in
the hierarchical model. In a hierarchical model, when an interaction term is present
in the model, then all smaller interaction terms and the main effects included in the
interaction term are also present in the model. This is a natural assumption, because,
for example, a two-variable interaction is usually interpreted only in the presence of
main effects of the variables.

A sufficient statistic for a hierarchical model is given by the set of marginal
frequencies for D1, . . . ,Dr:

T = {xD(iiiD) | iiiD ∈ ID,D ∈ D}.

Finally we discuss indeterminacy of μDs in (1.36). As an example consider again
the conditional independence model in (1.35). There is some indeterminacy on the
right-hand side of (1.35). One way of resolving this indeterminacy is to use the
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standard ANOVA (analysis of variance) decomposition (e.g., Scheffé [132]). In
(1.35) we can write

log p(iii) = μ0 + μ1(i1)+ μ2(i2)+ μ3(i3)+ μ12(i1, i2)+ μ23(i2, i3), (1.37)

where we require

0 =
Ij

∑
i j=1

μ j(i j), j = 1,2,3, 0 =
I1

∑
i1=1

μ12(i1, i2) =
I2

∑
i2=1

μ12(i1, i2), ∀i1, i2,

0 =
I2

∑
i2=1

μ23(i2, i3) =
I3

∑
i3=1

μ23(i2, i3), ∀i2, i3.

Under these requirements the right-hand side of (1.37) is unique. Similarly, for a
general hierarchical model we can uniquely express log p(iii) as

log p(iii) = ∑
D∈K

μD(iiiD), (1.38)

where for every D = { j1, . . . , jl} ∈ K we require

Ijh

∑
i jh

=1

μD(i j1 , . . . , i jl ) = 0, h = 1, . . . , l.

Another popular method for avoiding the indeterminacy is to treat a particular
level, for example, the last level I j, j = 1, . . . ,m, as the “base level” and require for
every D ∈ K , D �= /0, that

μD(i j1 , . . . , i jl ) = 0, if i jh = I jh for some h = 1, . . . , l. (1.39)

In the case of a complete independence model of two-way tables, this corresponds
to the lattice basis in (2.5).



Chapter 2
Markov Chain Monte Carlo Methods
over Discrete Sample Space

2.1 Constructing a Connected Markov Chain over
a Conditional Sample Space: Markov Basis

In the previous chapter we discussed exact tests for some simple models of
contingency tables. As we discussed at the end of Sect. 1.3, the Markov chain Monte
Carlo method is general and useful when the cardinality of conditional sample space
(fiber) is large. We first consider connectivity of a Markov chain, without fully
specifying the transition probabilities.

Consider the independence model of general two-way contingency tables in
Sect. 1.3. The fiber is the set of I × J contingency tables with fixed row sums and
column sums:

Fttt = {xxx ≥ 0 | xi+, i ∈ [I], x+ j, j ∈ [J] are fixed according to ttt}. (2.1)

Let A be the configuration in (1.18). The kernel of A is denoted by kerA. The set of
integer vectors in kerA is called the integer kernel of A and is denoted by

kerZ A = {zzz | Azzz = 0,zzz ∈ Z
η}, η = IJ.

An element of kerZ A is called a move for the configuration A. If xxx and yyy belong to
the same fiber Fttt , then yyy− xxx is a move, because

A(yyy− xxx) = Ayyy−Axxx = ttt − ttt = 0. (2.2)

Now consider the following integer matrix zzz = zzz(i1, i2; j1, j2) = {zi j},

zi j =

⎧⎨
⎩

+1, (i, j) = (i1, j1),(i2, j2),
−1, (i, j) = (i1, j2),(i2, j1),

0, otherwise.
(2.3)
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The nonzero elements of zzz(i1, i2; j1, j2) are depicted as

j1 j2
i1 +1 −1
i2 −1 +1

. (2.4)

Adding zzz(i1, i2; j1, j2) to a contingency table xxx does not alter the row sums and the
column sums. Hence zzz(i1, i2; j1, j2) is a move for A in (1.18); that is, zzz(i1, i2; j1, j2)∈
kerZ A. We call a move of the form (2.4) a basic move for the independence model
of two-way contingency tables. Because of the elements −1 in zzz(i1, i2; j1, j2), xxx+ zzz
contains a negative element if xi2 j1 = 0 or xi1 j2 = 0. If both of these elements are
positive, then xxx+ zzz is in Fttt if xxx ∈Fttt . We have “moved” from xxx to xxx+ zzz in Fttt . This
is why we call zzz(i1, i2; j1, j2) a move. The following is an example of adding a move
for the case of I = J = 3, i1 = j1 = 1, i2 = j2 = 2.

2 1 1 4
2 0 2 4
1 2 0 3
5 3 3

+

1 −1 0
−1 1 0
0 0 0

=

3 0 1 4
1 1 2 4
1 2 0 3
5 3 3

.

Suppose that we always use the last row I and the last column J in the move and
let i2 = I and j2 = J. Then

{zzz(i1, I; j1,J) | 1 ≤ i1 ≤ I− 1,1 ≤ j1 ≤ J− 1}
forms a basis of kerZ A. More precisely the set forms a lattice basis of kerZ A in
the sense that every zzz ∈ kerZ A is uniquely written as an integer combination of
zzz(i1, I; j1,J)s. In fact the elements of the last row and the last column of zzz = {zi j} ∈
kerZ A are uniquely determined from the other elements. Hence zzz ∈ kerZ A can be
uniquely written as

zzz =
I−1

∑
i1=1

J−1

∑
j1=1

zi1 j1 × zzz(i1, I; j1,J), (2.5)

because both sides have the same elements in the first I − 1 rows and the first J − 1
columns. This is related to use of the last level as the base level discussed at the end
of Chap. 1.

Note that the lattice basis is very simple for the independence model of I × J
tables. However, for the fiber in (2.1) we are requiring nonnegativeness of the
frequency vectors. As an example consider the following two elements of the fiber
for I = J = 3 with 1 = x1+ = x2+ = x+1 = x+2, 0 = x3+ = x+3.

1 0 0 1
0 1 0 1
0 0 0 0
1 1 0 2

,

0 1 0 1
1 0 0 1
0 0 0 0
1 1 0 2

.
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We see that we cannot add or subtract any of zzz(i1,3; j1,3) to/from these tables
without making some cell frequency negative. However, obviously these two tables
are connected by the following move:

1 −1 0
−1 1 0
0 0 0

.

This example suggests that we can move around a fiber if we can use all moves of
the form (2.3).

Let B ⊂ kerZ A be a finite set of moves for a configuration A. B is called a
Markov basis if for all fibers Fttt and for all elements xxx,yyy ∈ Fttt , xxx �= yyy, there exist
K > 0, zzz1, . . . ,zzzK ∈ B and ε1, . . . ,εK ∈ {−1,1}, such that

yyy = xxx+
K

∑
k=1

εkzzzk, xxx+
L

∑
k=1

εkzzzk ∈ Fttt , L = 1, . . . ,K − 1. (2.6)

The first condition says that by adding or subtracting elements of B, we can move
from xxx to yyy. The second condition says that on the way from xxx to yyy we never
encounter a negative frequency. Therefore if a Markov basis B is given, then we can
move all over any fiber by adding or subtracting moves from B. Thus connectivity
of every fiber is guaranteed by a Markov basis. We define Markov basis again in
Chap. 4 for a general configuration A. In this introductory explanation, we give a
proof that a Markov basis for the I×J independence model of two-way contingency
tables is given by the set of moves zzz(i1, i2; j1, j2). We state this as a theorem.

Theorem 2.1. Let

B = {zzz(i1, i2; j1, j2) | 1 ≤ i1 < i2 ≤ I,1 ≤ j1 < j2 ≤ J}.

B forms a Markov basis for the I× J independence model of two-way contingency
tables.

The following proof is a typical “distance reducing argument,” that is frequently
used in later chapters of this book.

Proof. We argue by contradiction. Suppose that B is not a Markov basis. Then there
exists a fiber Fttt and two elements xxx,yyy ∈ Fttt of the fiber, such that we cannot move
from xxx to yyy by the moves of B as in (2.6). Let

Nxxx = {yyy ∈ Fttt | we cannot move from xxx to yyy by moves of B}.

Then Nxxx is not empty by assumption. For zzz= {zi j}∈ kerZ A, let |zzz|=∑I
i=1 ∑J

j=1 |zi j |
denote its 1-norm. In Sect. 4.3 we define degzzz as |zzz|/2.
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Define

yyy∗ = argmin
yyy∈Nxxx

|xxx− yyy|. (2.7)

yyy∗ is one of the closest elements of Fttt that cannot be reached from xxx by B:

|xxx− yyy∗|= min
yyy∈Nxxx

|xxx− yyy|.

Now let www = xxx− yyy∗ and consider the signs of elements of www. Because www contains
a positive element, let wi1 j1 > 0. Then because www is a move, there exist j2 �= j1
with wi1 j2 < 0 and i2 �= i1 with wi2 j1 < 0. Hence for yyy∗ = {y∗i j} we have y∗i1 j2

> 0,
y∗i2 j1

> 0. Then

yyy∗+ zzz(i1, i2; j1, j2) ∈ Fttt .

yyy∗ cannot be reached from xxx by B, therefore yyy∗+ zzz(i1, i2; j1, j2) cannot be reached
from xxx by B either and yyy∗+ zzz(i1, i2; j1, j2) ∈ Nxxx. Now we check the value of |xxx−
(yyy∗+ zzz(i1, i2; j1, j2))|.
• If wi2 j2 > 0, then |xxx− (yyy∗+ zzz(i1, i2; j1, j2))|= |xxx− yyy∗|− 4 ,
• If wi2 j2 ≤ 0, then |xxx− (yyy∗+ zzz(i1, i2; j1, j2))|= |xxx− yyy∗|− 2 .

Therefore for both cases, |xxx − (yyy∗ + zzz(i1, i2; j1, j2))| < |xxx − yyy∗|. However, this
contradicts the minimality in (2.7) of yyy∗. ��

By this theorem, we can construct a connected Markov chain over any fiber. We
choose i1, i2 ∈ [I] and j1, j2 ∈ [J] randomly. We add or subtract zzz(i1, i2; j1, j2) to/from
the current state xxx and move to yyy = xxx+ zzz(i1, i2; j1, j2) as long as there is no negative
frequency in yyy. In the case where yyy contains a negative element, we choose another
set of indices i1, i2 ∈ [I] and j1, j2 ∈ [J] and continue. Then connectivity of every
fiber is guaranteed by Theorem 2.1.

Note that in the above explanation we are not precisely specifying the probability
distribution of choosing an element zzz(i1, i2; j1, j2). Also, when we say “add or
subtract,” we are not exactly saying which to choose. In fact, we should choose the
sign of a move zzz(i1, i2; j1, j2) (i.e., whether we add it or subtract it) with probability
1/2. This is related to the Markov chain symmetry for the Metropolis–Hastings
algorithm in the next section. Other than the choice of the sign of a move, the
distribution for choosing a move can be arbitrary.

In this section we considered the independence model of two-way contingency
tables. We now briefly mention the conditional independence model of three-way
contingency tables. As we saw in the previous section, the conditional independence
model of three-way contingency tables can be treated as the two-way independence
model given each level of the conditioning variable. Therefore a Markov basis for
the conditional independence model of three-way contingency tables is given as a
union of Markov bases for two-way cases in each slice of the contingency table
given the level of the conditioning variable. The two-way independence model and
the conditional independence model of three-way contingency tables are actually
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simple examples. Markov bases for more complicated models of contingency tables
are in fact difficult and each model needs separate consideration. One notable
exception is the decomposable model studied in Chap. 8.

On the other hand, there exists a general algorithm to compute a Markov basis in
the form of the Gröbner basis for any configuration. So is the problem of obtaining
a Markov basis already solved by a general algorithm? The answer is yes and no,
depending on the viewpoint. The existence of a general algorithm means that the
answer is yes from a certain theoretical viewpoint. On the other hand, for practical
purposes, the computation of the Gröbner basis for a complicated model is often
infeasible in a practical amount of time and in this sense the answer is no. Therefore,
both theoretical investigations of Markov bases for specific models and the further
general improvements in the algorithms for Gröbner basis computation are very
much needed at present.

2.2 Adjusting Transition Probabilities
by Metropolis–Hastings Algorithm

In this section we explain how to construct a Markov chain that has a specified
distribution as the stationary distribution. A good reference on important facts on
Markov chains is Häggström [69].

Consider a Markov chain over a finite sample space F . Suppose that the elements
of F are given as

F = {xxx1, . . . ,xxxs}. (2.8)

Let {Zt , t = 0,1,2, . . .}, Zt ∈ F , be a Markov chain over F with the transition
probability Q = (qi j):

qi j = P(Zt+1 = xxx j | Zt = xxxi), 1 ≤ i, j ≤ s.

A Markov chain is called symmetric if Q is a symmetric matrix (qi j = q ji).
Let

πππ = (π1, . . . ,πs)

denote the initial probability distribution of Z0 (by standard notation, we consider πππ
as a row vector). πππ is called a stationary distribution if

πππ = πππQ.

πππ is the eigenvector from the left of Q with the eigenvalue 1.
It is known that the stationary distribution exists uniquely under the assumption

that the Markov chain is irreducible and aperiodic. We only consider Markov
chains satisfying these conditions. Under these conditions, starting from an ar-
bitrary state Z0 = xxxi, the distribution of Zt for large t is close to the stationary
distribution πππ . Therefore if we can construct a Markov chain with the “target”
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stationary distribution πππ , then by running a Markov chain and discarding a large
number t of initial steps (called burn-in steps), we can consider Zt+1,Zt+2, . . . as
observations from the stationary distribution πππ .

For our problem, the target distribution πππ is already given as the hypergeometric
distribution over the fiber in (1.31). We want to construct a Markov chain over
Fttt just for the purpose of sampling from the hypergeometric distribution. For this
purpose the Metropolis–Hastings algorithm is very useful. By the algorithm, once
we can construct an arbitrary irreducible (i.e., connected) chain over Fttt , we can
easily modify the stationary distribution to the given target distribution πππ .

Theorem 2.2 (Metropolis–Hastings algorithm). Let πππ be a probability distribu-
tion on F . Let R = (ri j) be the transition probability matrix of an irreducible,
aperiodic, and symmetric Markov chain over F . Define Q = (qi j) by

qij = rij min

(
1,

π j

πi

)
, i �= j,

qii = 1−∑
j �=i

qi j. (2.9)

Then Q satisfies πππ = πππQ.

This result is a special case of Hastings [82] and the symmetry assumption on R
can be removed relatively easily. In this book we only consider symmetric R and the
simple statement of the above theorem is sufficient for our purposes.

Proof (Theorem 2.2). It suffices to show that the above Q is “reversible” in the
following sense.

πiqi j = π jq ji. (2.10)

In fact, under the reversibility

πi = πi

s

∑
j=1

qi j =
s

∑
j=1

π jq ji

and we have πππ = πππQ. Now (2.10) clearly holds for i = j. Also for i �= j

πiqij = πirij min

(
1,

π j

πi

)
= rij min(πi,π j) ;

hence (2.10) holds if ri j = r ji. ��
Equation (2.10) is often called the detailed balance or detailed balance equation.
An important advantage of the Markov chain Monte Carlo method is that it

does not need the explicit evaluation of the normalizing constant of the stationary
distribution πππ . We only need to know πππ up to a multiplicative constant. In fact in
(2.9) the stationary distribution only appears in the form of ratios of its elements
πi/π j and the normalizing constant is canceled.

Another important point in (2.9) is how the transition probability ri j is modified.
It is modified by min(1,π j/πi), which does not depend on how ri j is specified.
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In fact (2.9) can be understood as follows. ri j is the proposal transition probability.
Suppose that we are at state i and we propose to move to j with the conditional prob-
ability ri j by some random mechanism. Then after the proposal, we actually move to
j with probability min(1,π j/πi) (or stay at i with probability 1−min(1,π j/πi)). We
can do this even without knowing the value of ri j , as long as it is symmetric. This
fact is relevant in the application of the Markov basis, because when a Markov basis
element is chosen “randomly,” the probability distribution of choosing an element
can be arbitrary, as long as there is a positive probability of choosing every element.
Irrespective of the distribution, the Metropolis–Hastings algorithm yields a Markov
chain whose stationary distribution is πππ .

By Theorem 2.2 we only need to construct one Markov chain, which is
irreducible, aperiodic, and symmetric. By the Metropolis–Hastings algorithm,
we can then modify the transition probability to achieve the desired stationary
distribution πππ .

In the previous section we obtained a Markov basis for two-way tables. Once
a Markov basis is obtained for some model, it is easy to construct an irreducible
and symmetric Markov chain over FAxxxo , where xxxo is the observed frequency vector
and FAxxxo is the fiber containing xxxo. For example, at each step of the Markov chain,
randomly choose an element zzz ∈ B of the Markov basis and the sign ε ∈ {−1,+1}.
If xxx + εzzz ∈ Fttt then we move to xxx + εzzz. If xxx + εzzz �∈ Fttt we stay at xxx. Then the
resulting Markov chain is irreducible and symmetric. It is important to note that this
holds irrespective of the distribution of choosing an element from B, as long as each
element of B is chosen with positive probability. On the other hand, the sign of ε
should be chosen with probability 1/2.

We can then apply the Metropolis–Hastings algorithm of Theorem 2.2 to this
Markov chain. The resulting algorithm is given as follows.

Algorithm 2.1

Input: Observed frequency vector xxxo, Markov basis B, number of steps N,
configuration A, the null distribution f (·), test statistic T (·), ttt = Axxxo.

Output: Estimate of the p-value.
Variables: obs, count, sig, xxx, xxxnext .
Step 1: obs= T (xxxo), xxx = xxxo, count= 0, sig= 0.
Step 2: Choose zzz ∈ B randomly. Choose ε ∈ {−1,+1} with probability 1

2 .
Step 3: If xxx+ εzzz �∈ Fttt then xxxnext = xxx and go to Step 5. If xxx+ εzzz ∈ Fttt then let u

be a uniform random number between 0 and 1.
Step 4: If u ≤ f (xxx+εzzz)

f (xxx) then let xxxnext = xxx+ εzzz and go to Step 5. If u > f (xxx+εzzz)
f (xxx)

then let xxxnext = xxx and go to Step 5.
Step 5: If T (xxxnext)≥ obs then let sig= sig+ 1 .
Step 6: xxx = xxxnext , count= count+ 1 .
Step 7: If count< N then go to Step 2.
Step 8: The estimate of p-value is sig/N .

We should mention one important point concerning the counting of steps. There
are two cases where we stay at the same state xxxnext = xxx. One case is that we reject
a move zzz because xxx+ εzzz �∈ Fttt in Step 3. Another case is that the proposed state is
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rejected because of u > f (xxx+ εzzz)/ f (xxx) in Step 4. In both cases, we evaluate the
value of the test statistic T (xxxnext) = T (xxx) and the counter count is increased. For
unbiased estimation of the p-value, we need to include both cases in evaluation of
T and the counting of the steps.

In Step 3, if xxx is close to the boundary of Fttt , then it may be the case that xxx+εzzz �∈
Fttt with high probability. In this case we might be tempted to choose zzz depending
on xxx such that the probability of xxx+ εzzz ∈ Fttt is higher. This is an interesting topic
for investigation, although it is not trivial to guarantee the symmetry ri j = r ji if we
choose a move depending on the state.

The above point can be illustrated by the following very simple example.
Consider a configuration A= (1,1), which is a 1×2 matrix. Let t = Axxx, xxx = (x1,x2)

′
and consider the fiber with t = 2:

F2 = {(x1,x2) | x1 + x2 = 2,x1,x2 ∈ N}, N= {0,1,2, . . .}.

Then zzz = (1,−1)′ is a move, which obviously connects F2. The fiber is depicted as
in Fig. 2.1, where the states are labeled by the values of x1.

Note that zzz cannot be subtracted from (0,2) and zzz cannot be added to (2,0),
because these operations produce −1. Therefore if we are at (0,2) we can only add
zzz. Similarly if we are at (2,0) we can only subtract zzz. Now suppose that we want to
sample from the uniform distribution over F2. Then in the Metropolis–Hastings
algorithm, min(1,π j/πi) ≡ 1. Therefore we stay at the same state only because
of Step 3 of Algorithm 1. If we ignore the rejections in Step 3 for this example,
the transition probabilities of the chain are depicted in Fig. 2.2. The stationary
distribution of this chain is given by

(π(0,2),π(1,1),π(2,0)) =
(

1
4
,

1
2
,

1
4

)
,

which is not uniform.
On the other hand if we count the rejections in Step 3, then the Markov chain

has self-loops and the transition probabilities of the chain are depicted in Fig. 2.3.
For this chain the stationary distribution is the uniform distribution, which was our
target.
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Algorithm 2.1 is a very simple algorithm and various improvements are possible.
For example, grouping several steps of Algorithm 2.1 in one step makes the
convergence to the stationary distribution faster. This can be achieved as follows.

Algorithm 2.2 Modify Steps 2, 3, 4 in Algorithm 2.1 as follows.

Step 2: Choose zzz ∈ B randomly.
Step 3: Let I = {n | xxx+ nzzz ∈ Fttt}.
Step 4: Choose xxxnext from {xxx+ nzzz | n ∈ I} according to the probability

pn =
f (xxx+ nzzz)

∑
n∈I

f (xxx+ nzzz)
.

Note that both in Algorithms 2.1 and 2.2, the target distribution f (·) appears in
the form of the ratio. Hence we do not need to compute the normalizing constant for
f (·). Often the computation of the normalizing constant is difficult, therefore this is
an important advantage of the Markov chain Monte Carlo method.



Chapter 3
Toric Ideals and Their Gröbner Bases

Readers can skip this chapter and come back to individual results when they are
referenced in later chapters. There are many good textbooks on computational
algebra and Gröbner basis. This chapter is based on a great deal Chapter 1 of [93] by
Takayuki Hibi, although for individual results we cite Cox et al. [42] as a reference.
Sturmfels [139] gives more specific results relevant for algebraic statistics and toric
ideals.

In presenting results on polynomial rings, the difference of standard notation for
statistics and algebra is annoying. For example, in statistics n usually denotes the
sample size, whereas in the notation for polynomial rings n usually stands for the
number of indeterminates, which corresponds to the total number of cells |I |. In
this book x(iii) stands for the frequency of the cell iii, whereas in the polynomial ring,
x1, . . . ,xn usually denote indeterminates.

In this chapter we use a mixture of these different notations to make the
correspondences easier to understand.

3.1 Polynomial Ring

Let Q,R,C denote the fields of rational numbers, real numbers and complex num-
bers, respectively. Let k stand for any of these fields. We denote the indeterminates
by u1, . . . ,uη , where η = |I | is the total number of the cells. A monomial in
u1, . . . ,uη is a product of powers of us (with the coefficient 1 ∈ k). For k = Q and
η = 3,

u2
1u2u3

3 (3.1)

is an example of a monomial in u1,u2,u3. We write this as uuuxxx where xxx = (2,1,3)
and uuu = (u1,u2,u3). Note that the elements of xxx are used as powers, rather than
as indeterminates. This notation is used because frequencies in a contingency table
correspond to the powers of a monomial. Each indeterminate uiii stands for a cell

S. Aoki et al., Markov Bases in Algebraic Statistics, Springer Series
in Statistics 199, DOI 10.1007/978-1-4614-3719-2 3,
© Springer Science+Business Media New York 2012
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iii in a contingency table. Hence the monomial u2
1u2u3

3 in (3.1) corresponds to the
following 1× 3 contingency table,

2 1 3 .

A monomial is called square-free if the power for each uiii is at most one.
A polynomial is a finite sum of monomials multiplied by coefficients in k. Again

for k =Q and η = 3, an example of a polynomial is

3
2

u2
1u2u3

3 +
1
3

u1u3
2u2

3.

A polynomial with more than two terms does not correspond to a contingency table.
In Chap. 1 we denoted the vector of frequencies as xxx = (x(1), . . . ,x(η)) ∈ N

η .
Accordingly we also often denote uiii as u(iii). Below we use these two indexing
notations interchangeably. Then a monomial is written as

uuuxxx = ∏
iii∈I

u(iii)x(iii).

A polynomial f is written as

f = ∑
xxx∈Nη

cxxxuuuxxx,

where the sum is finite; that is cxxx ∈ k is zero except for a finite number of xxx.
The set of polynomials in uuu with coefficients from k is written as

k[uuu] = k[u1, . . . ,uη ].

k[uuu] is called the polynomial ring in u1, . . . ,uη over k. It is called a ring because
the operations of addition f + g and multiplication f g of polynomials are defined
for k[uuu].

Let M denote the set of monomials in k[uuu]. Let v = uuuxxx and w = uuuyyy be two
monomials in M. Then w divides v if yyy ≤ xxx:

x(iii)≤ y(iii) for all iii ∈ I .

We write w|v if w divides v. Let M ⊂M be a subset of monomials. v ∈ M is called
a minimal element of M if w ∈ M,w|v implies v = w. We present Dickson’s lemma
(Sect. 2.4 of [42]) in the following form.

Lemma 3.1 (Dickson’s Lemma). Let M ⊂ M be a nonempty set of monomials.
The set of minimal elements of M is finite.
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Another important notion on the polynomial ring is the notion of an ideal.
A subset I ⊂ k[uuu] is called an ideal of k[uuu] if

• f ,g ∈ I ⇒ f + g ∈ I.
• f ∈ I, g ∈ k[uuu] ⇒ f g ∈ I.

Let { fλ | λ ∈ Λ} ⊂ k[uuu] be a nonempty set of polynomials. Let I denote the set
of polynomials of the form

∑
λ∈Λ

gλ fλ , gλ ∈ k[uuu], ∀λ ∈ Λ ,

where the sum is finite, that is, gλ = 0 except for a finite number of λ . Clearly this
I is an ideal. This I is called the ideal generated by { fλ | λ ∈ Λ} and is denoted by

I = 〈{ fλ | λ ∈ Λ}〉.

{ fλ | λ ∈ Λ} is called a set or a system of generators of I. In particular if { fλ | λ ∈
Λ}= { f1, . . . , fs} is a finite set, then I = 〈{ fλ | λ ∈ Λ}〉 is simply denoted as

I = 〈 f1, . . . , fs〉.

An ideal I is called a monomial ideal if it is generated by a subset M ⊂ M of
monomials. By Dickson’s lemma, a monomial ideal I = 〈M〉 is generated by the
(finite) set of minimal monomials v1, . . . ,vs ∈ M:

I = 〈v1, . . . ,vs〉. (3.2)

Note that the set of minimal monomials of M is unique.

3.2 Term Order and Gröbner Basis

Term order (term ordering, monomial ordering) is a total order ≺ on the set M of
monomials, such that

• 1 ≺ v for 1 �= v.
• v ≺ w implies vt ≺ wt for every t ∈M.

An example of a term order is pure lexicographic term order ≺lex, where v =
uuuxxx is ordered by the lexicographic order of the exponents xxx = (x1, . . . ,xη ). In the
lexicographic order we order the indeterminates as

u1 � u2 � ·· · � uη .
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Another example is the graded lexicographic term order ≺grlex, where monomials
v = uuuxxx are first compared by the total degree |xxx|1 = ∑iii∈I x(iii) and then (in the case
of the same degree) by the lexicographic order of xxx. The third example is the graded
reverse lexicographic term order ≺grevlex, where monomials are first compared by
the total degree and then (in the case of the same degree) uuuxxx �grevlex uuuyyy if the last
nonzero element of xxx− yyy is negative.

Let f = c1v1 + · · ·+ csvs ∈ k[uuu] be a nonzero polynomial, where 0 �= c j ∈ k, v j ∈
M, j = 1, . . . ,s. Given a term order ≺, we can take v1 such that v1 � v j, j = 2, . . . ,s.
v1 is called the initial monomial (leading monomial, leading term) of f and written
as in≺( f ). For example, with the pure lexicographic term order, the initial monomial
of f = (3/2)u2

1u2u3
3 +(1/3)u1u3

2u2
3 is given by

in≺( f ) = in≺(
3
2

u2
1u2u3

3 +
1
3

u1u3
2u2

3) = u2
1u2u3

3.

For an ideal I �= {0}, its initial ideal in≺(I) is defined as

in≺(I) = 〈{in≺( f ) | 0 �= f ∈ I}〉,

which is the monomial ideal generated by initial monomials of f ∈ I, f �= 0. By
(3.2) there exist f1, . . . , fs ∈ I such that in≺(I) = 〈in≺( f1), . . . , in≺( fs)〉. Based on
this fact a Gröbner basis is defined as follows.

Definition 3.1. Fix a term order ≺. A finite subset G = { f1, . . . , fs} of nonzero
elements of an ideal I is a Gröbner basis of I with respect to the term order if

in≺(I) = 〈in≺( f1), . . . , in≺( fs)〉.

More informally, { f1, . . . , fs} is a Gröbner basis of I if the initial monomial of
any f ∈ I is divisible by the initial monomial of some f j , j = 1, . . . ,s.

From this definition it is not immediately clear that G is indeed a set of generators
of I. However, again based on Dickson’s lemma, it can be shown that G is indeed a
set of generators of I (Sect. 2.5 of [42]).

Proposition 3.1. I is generated by any Gröbner basis G of I.

The following “Hilbert basis theorem” (Theorem 4 in Sect. 2.5 of [42]) is an
immediate consequence of this proposition.

Corollary 3.1 (Hilbert basis theorem). Every ideal I of the polynomial ring k[uuu]
has a finite set of generators.

If in≺( f1), . . . , in≺( fs) are minimal monomials of {in≺( f ) | 0 �= f ∈ I}, then G =
{ f1, . . . , fs} is a minimal Gröbner basis, in the sense that any proper subset of G is no
longer a Gröbner basis. Given a minimal Gröbner basis G = {in≺( f1), . . . , in≺( fs)},
no initial monomial in≺( fi) is divisible by any one of the other initial monomials
in≺( f j), j �= i. However, other (noninitial) monomials appearing in fi may be
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divisible by some in≺( f j), j �= i. By replacing noninitial monomials appearing in
fi with the remainders by f j , j �= i, we arrive at the reduced Gröbner basis. More
formally, the reduced Gröbner basis is defined as follows.

Definition 3.2. A Gröbner basis G is reduced if (i) for each f ∈ G, the coefficient of
in≺( f ) is one, and (ii) for each f ∈ G, no monomial appearing in f lies in 〈{in≺(g) |
g ∈ G,g �= f}〉.

It is known that the reduced Gröbner basis is unique for any given term order ≺.
Given a term order ≺ and an ideal I, a monomial v is called a standard monomial

if v �∈ in≺(I). Every polynomial f ∈ k[uuu] is a unique finite linear combination of
monomials with coefficients from k, thus k[uuu] is an infinite-dimensional vector space
over k, where the monomials are the basis vectors. Similarly I can be regarded
as a vector space over k. Regarding them as vector spaces means that we only
consider addition of polynomials and ignore multiplication of polynomials. Then
we can regard the “quotient ring” k[uuu]/I as a complementary linear subspace of I in
k[uuu]. Concerning this quotient vector space k[uuu]/I, the following theorem holds (cf.
Sect. 5.3 of [42], Chapter 1 of [139]).

Theorem 3.1. The set of standard monomials forms a basis of the vector space
k[uuu]/I over k.

An ideal I is zero-dimensional if the vector space k[uuu]/I over k is finite-
dimensional (Appendix D of [42]). By Theorem 3.1, I is zero-dimensional if and
only if the number of standard monomials is finite. Theorem 3.1 for the case of a
zero-dimensional ideal is fundamental for a Gröbner basis approach to design of
experiments in Chap. 15.

We now consider dividing a polynomial by a set of polynomials. For univariate
polynomials f (u) and g(u), the division of f by g can be performed by repeatedly
eliminating the leading term (i.e., the initial monomial) of f (u) by the leading term
of g. The resulting expression is

f (u) = q(u)g(u)+ r(u),

where q(u) is the quotient and r(u) is the remainder with degr < degg. A
generalization of this division to more than one indeterminate is given as follows.
Fix a term order ≺. Let f �= 0 be the dividend and let g1, . . . ,gs �= 0 be the divisors.
Then f can be written as follows.

f = q1g1 + · · ·+ qsgs + r, q1, . . . ,qs ∈ k[uuu], (3.3)

where (i) if r �= 0, then every monomial appearing in r is divisible by none of
in≺(g1), . . . , in≺(gs), and (ii) in≺( f ) � in≺(qigi) for i = 1, . . . ,s. r is the remainder
of this division. Actually there is an algorithm called the division algorithm (Chapter
1 of [42]) that yields (3.3). In general, a remainder r is not unique and the
output of the division algorithm depends on the order of g1, . . . ,gs. However,
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if G = {g1, . . . ,gs} is a Gröbner basis for an ideal I, then the remainder r is uniquely
determined. Also in this case we have

r = 0 ⇔ f ∈ I. (3.4)

3.3 Buchberger’s Algorithm

The importance of the theory of Gröbner basis lies in the fact that there is an
algorithm to compute the Gröbner basis. For two monomials v = uuuxxx, w = uuuyyy, the
least common multiple of them is defined as lcm(v,w) = uuumax(xxx,yyy), where max
denotes the elementwise maximum. For nonzero polynomials f ,g ∈ k[uuu], let c f and
cg denote coefficients of their initial monomials. The S-polynomial of f and g is
defined as

S( f ,g) =
lcm(in≺( f ), in≺(g))

c f · in≺( f )
f − lcm(in≺( f ), in≺(g))

cg · in≺(g) g. (3.5)

The right-hand side looks somewhat complicated, but the purpose of the operation
on the right-hand side is to cancel the initial monomials of f and g. For example,
with the pure lexicographic term order,

S

(
1
2

u1u2 − 2u3u4,u1u3 − u2u5

)
=

u1u2u3
1
2 u1u2

(
1
2

u1u2 − 2u3u4

)

−u1u2u3

u1u3
(u1u3 − u2u5)

= −4u2
3u4 + u2

2u5. (3.6)

Fix a term order ≺. The following theorem is called Buchberger’s criterion
(Theorem 6, Sect. 2.5 of [42]).

Theorem 3.2 (Buchberger’s Criterion). Let G = {g1, . . . ,gs} be a set of genera-
tors of an ideal I �= {0}. G is a Gröbner basis of I if and only if for all pairs i �= j,
the remainder on division of S(gi,g j) by G (listed in some order) is zero.

Based on this criterion, the following simple idea can be implemented as an
algorithm, called Buchberger’s algorithm to compute a Gröbner basis of I =
〈g1, . . . ,gs〉:

As long as G = {g1, . . . ,gs} is not a Gröbner basis of I, keep adding to G a
remainder of some S(gi,g j) by G.

Note that Buchberger’s algorithm can be used when a finite set of generators of
I is known. In contrast, toric ideals, which are important for algebraic statistics, are
defined implicitly and the problem is to obtain a set of generators for the ideals.
In this case Buchberger’s algorithm cannot be used directly. However, it is also
fundamental to toric ideals via the elimination theory described in the next section.
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3.4 Elimination Theory

In the polynomial ring k[uuu], uuu = (u1, . . . ,uη), consider the set of polynomials
involving only uζ+1, . . . ,uη , where 1 ≤ ζ < η . Let k[uζ+1, . . . ,uη ] denote the set of
these polynomials. For an ideal I of k[uuu], it is easy to check that I ∩ k[uζ+1, . . . ,uη ]
is an ideal of k[uζ+1, . . . ,uη ]. I ∩ k[uζ+1, . . . ,uη ] is called an elimination ideal
because the indeterminates u1, . . . ,uζ are eliminated.

The main use of the elimination ideal is for solving a set of polynomial equations.
For a Markov basis, its use is to give a general algorithm for computing a Gröbner
basis of a toric ideal (see Proposition 3.2 below).

When a Gröbner basis G of I with respect to the lexicographic order u1 � ·· · � uη
is given, it is straightforward to obtain a Gröbner basis of the elimination ideal
(Sect. 3.1 of [42]).

Theorem 3.3 (The Elimination Theorem). Let G be a Gröbner basis of I with
respect to the lexicographic order u1 � ·· · � uη . Then

G ∩ k[uζ+1, . . . ,uη ]

is a Gröbner basis of the elimination ideal I ∩ k[uζ+1, . . . ,uη ].

3.5 Toric Ideals

So far we summarized relevant facts on a Gröbner basis of a general ideal I of
k[uuu]. For the theory of Markov basis we only need to consider a special kind of
ideal, called a toric ideal. In this section we give more detailed explanations than in
previous sections, because toric ideals are not covered in [42].

For defining a toric ideal we start with a ν ×η integer matrix A. We call A a
configuration. In this book we assume that the row vector (1,1, . . . ,1) is in the real
vector space spanned by the rows of A; that is, there exists a ν-dimensional real
vector θ such that

θ ′A = (1,1, . . . ,1). (3.7)

This assumption is called homogeneity of the toric ideal (Lemma 4.14 of [139]).
Under the assumption of homogeneity, for zzz ∈ kerZ A

0 = θ ′Azzz = (1,1, . . . ,1)zzz = ∑
iii∈I

z(iii). (3.8)

In algebraic statistics, the rows of A are indexed by sufficient statistics and the
columns of A are indexed by the cells iii of the sample space I . Hence let us denote
the elements of A as a j(iii), j = 1, . . . ,ν , iii = 1, . . . ,η . Let aaa(iii) = (a1(iii), . . . ,aν(iii))′
denote the iii th column of A. We often consider A also as a set of its column vectors
{aaa(iii), iii= 1, . . . ,η}. Note that under the homogeneity, each column aaa(iii) is a nonzero
vector, because otherwise θ ′A has 0 in the iiith position.
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A difference of two monomials (with coefficient 1 and −1)

f = w− v, v = uuuxxx, w = uuuyyy

is called a binomial. For a monomial v = uuuxxx or the frequency vector xxx, the support
is defined as the set of (indices of) indeterminates with positive powers:

supp(uuuxxx) = supp(xxx) = {iii | x(iii)> 0}. (3.9)

A binomial w− v is called square-free if both w and v are square-free monomials.
Consider two nonnegative integer vectors xxx,yyy ∈ N

η such that

Axxx = Ayyy.

Then zzz = yyy− xxx belongs to kerZ A. Now we give the first definition of toric ideal
IA ⊂ k[uuu].

Definition 3.3. The toric ideal IA = 〈{uuuyyy − uuuxxx | Axxx = Ayyy, xxx,yyy ∈ N
η}〉 is the ideal

generated by binomials uuuyyy − uuuxxx such that yyy− xxx ∈ kerZ A.

For example, for the configuration A in (1.18) for the independence model of
I × J two-way contingency tables, IA is the ideal generated by uuuxxx − uuuyyy, where xxx,yyy
share the common row sums and column sums.

So far we allowed negative elements in A. We now argue that without loss
of generality we can assume that the elements of A are nonnegative under the
assumption of homogeneity. Let aaa ∈ N

ν be a column vector whose elements are
large enough. We add aaa (1,1, . . . ,1) to A. Let Ã = A+aaa(1,1, . . . ,1) be the resulting
matrix whose elements are nonnegative. Note that θ ′Ã is written as

θ ′Ã = (1,1, . . . ,1)+θ ′aaa(1,1, . . . ,1) = (1+θ ′aaa)(1,1, . . . ,1).

By appropriately choosing aaa we can make 0 �= (1+θ ′aaa). Hence Ã also satisfies the
assumption of homogeneity. Now by (3.8) we have kerZ A = kerZ Ã and IA = IÃ.
Therefore we can assume that the elements of A are nonnegative.

We are now going to present another definition of a toric ideal. Introduce
indeterminates q1, . . . ,qν corresponding to the rows of A. Let qqq = {q1, . . . ,qν} and
let k[qqq] denote the polynomial ring in qqq over k. Consider a map πA from k[uuu] to k[qqq]
such that each indeterminate u(iii) is mapped to a monomial in k[qqq] as

πA : u(iii) �→ qqqaaa(iii) = qa1(iii)
1 qa2(iii)

2 . . .qaν(iii)
ν ,

where aaa(iii) is the iiith column of A. For a polynomial f ∈ k[uuu], πA( f ) is obtained by
substituting qqqaaa(iii) into the indeterminate u(iii), iii ∈ I . Then, for a monomial uuuxxx =

∏iii∈I u(iii)x(iii),
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πA(uuu
xxx) = πA(∏

iii∈I

u(iii)x(iii)) = ∏
iii∈I

πA(u(iii))
x(iii) = ∏

iii∈I

qqqaaa(iii)x(iii)

=
ν

∏
j=1

q
∑iii∈I x(iii)a j(iii)
j = qqqAxxx (3.10)

and for a polynomial f = ∑xxx cxxxuuuxxx ∈ k[uuu]

πA( f ) = ∑
xxx

cxxxπA(uuu
xxx) = ∑

xxx
cxxxqqqAxxx ∈ k[qqq].

We see that πA is a homomorphism from k[uuu] to k[qqq].
Let us illustrate πA for the case of the independence model of two-way tables

under the multinomial sampling scheme. Let (i, j) denote the cell of a two-way
table and consider the probability pi j of the cell as an indeterminate (instead of u(iii)).
Under the independence model pi j = ric j. We can understand this as “substituting
ric j into pi j” and consider

πA : pi j �→ ric j.

For I = J = 2, consider the following contingency table:

xxx =
1 2
1 0

. (3.11)

The probability, without the hypothesis of independence, of this contingency table
xxx is written as

p(xxx) =

(
4

1,2,1,0

)
pppxxx = 12p11p2

12 p21.

Furthermore under the hypothesis H of independence, by substituting cir j into pi j,
the probability of xxx is given by

πA(12p11p2
12 p21) = 12πA(p11)πA(p2

12)πA(p21) = 12(r1c1)(r1c2)
2(r2c1)

= 12r3
1r1

2c2
1c2

2.

By (3.10) the exponents of ri and c j on the right-hand side correspond to the
marginal frequencies of xxx. Indeed, for example, r3

1 on the right-hand side shows
that the first row sum of xxx is x1+ = 3.

Now the second definition of IA is given as the kernel of this πA.

Definition 3.4.
IA = { f ∈ k[uuu] | πA( f ) = 0}. (3.12)

It can be shown that Definitions 3.3 and 3.4 are equivalent. See Lemma 4.1 of
[139]. By (3.10) it is easily seen that

Ayyy = Axxx ⇔ πA(uuu
yyy − uuuxxx) = 0. (3.13)
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Hence the ideal in Definition 3.3 is clearly a subset of the ideal in Definition 3.4.
We need some extra argument to show that they are the same.

Again consider an example of 2× 2 table. Let xxx be as in (3.11) and let

yyy =
2 1
0 1

,

which has the same marginal frequencies as xxx. Then

πA(uuu
yyy − uuuxxx) = πA(uuu

yyy)−πA(uuu
xxx)

= (r1c1)
2(r1c2)(r2c2)− (r1c1)(r1c2)

2(r2c1)

= r3
1r2c2

1c2
2 − r3

1r2c2
1c2

2 = 0.

Hence uuuyyy − uuuxxx ∈ IA.
A Gröbner basis of IA can be obtained by the elimination theory of the previous

section and Definition 3.4. Let k[qqq,uuu] = k[q1, . . . ,qν ,u1, . . .uη ] be the polynomial
ring in q1, . . . ,qν ,u1, . . .uη over k. Consider an ideal

JA = 〈{u(iii)− qqqaaa(iii), iii ∈ I }〉

of k[qqq,uuu]. Then IA is characterized as an elimination ideal of JA. Combining this fact
with Buchberger’s algorithm and the elimination theory, a Gröbner basis of IA can
be computed as follows (Algorithm 4.5 of [139]).

Proposition 3.2. The toric ideal IA is written as

IA = JA ∩ k[uuu].

Let ≺ be the pure lexicographic term order such that q1 � ·· · � qν � u1 � ·· · � uη .
By Buchberger’s algorithm compute a Gröbner basis G of JA. Then G ∩ k[uuu] is a
Gröbner basis of IA.

In this algorithm, as long as q j � ui for all 1≤ j ≤ ν , 1 ≤ i ≤ η , the orders within
qqq and uuu can be different from the lexicographic term order.

As mentioned above, in Definitions 3.3 and 3.4 no finite set of generators of IA is
given and Proposition 3.2 gives a general algorithm for obtaining a set of generators
of IA in the form of a Gröbner basis.

However, it is also of interest to consider Buchberger’s algorithm for a toric ideal,
when a finite set of generators is known. Consider the operation of forming an S-
polynomial in (3.5) and (3.6). In (3.6), for illustrative purpose, we had coefficients
1
2 and 2. Suppose we compute the S-polynomial of two binomials. For example,

S(u1u2 − u3u4,u1u3 − u2u5) =
u1u2u3

u1u2
(u1u2 − u3u4)− u1u2u3

u1u3
(u1u3 − u2u5)

= −u2
3u4 + u2

2u5. (3.14)
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We note that the right-hand side is a binomial. It is clear that this holds for two
arbitrary binomials and the following lemma holds.

Lemma 3.2. The S-polynomial of two binomials is a binomial.

This lemma is important for proving the fundamental theorem of Markov basis
in Sect. 4.4. Furthermore, from this lemma the following result can be shown
(Corollary 4.4 of [139]).

Proposition 3.3. For any term order, the reduced Gröbner basis of a toric ideal IA

consists of binomials.

This is consistent with Proposition 3.2 and Definition 3.3, because the reduced
Gröbner basis G of JA consists of binomials and hence G ∩ k[uuu] consists of
binomials as well. Also by Definition 3.2 it is obvious that G ∩ k[uuu] is reduced
if G is reduced.



Part II
Properties of Markov Bases

In Part II of this book, we define Markov bases more precisely and develop a general
theory of Markov bases.

In Chap. 4 we define Markov bases for discrete exponential family models and
discuss other relevant bases, such as lattice bases and the Graver basis.

In Chap. 5 we consider minimality of Markov bases and establish basic structures
of minimal Markov bases. We define the notion of indispensable moves and
establish a condition for the existence of the unique minimal Markov basis.

In Chap. 6 we give a formal presentation of the distance reduction argument,
which is often very useful for proving that a given set of moves forms a Markov
basis.

Finally in Chap. 7 we define the notion of invariance of Markov bases using the
notion of action of groups on the set of cells.



Chapter 4
Definition of Markov Bases and Other Bases

4.1 Discrete Exponential Family

As in Chap. 1 let I denote a finite sample space. Because of many applications to
contingency table models, we call an element iii ∈ I a cell. We consider a family
{p(iii;θθθ )}, θθθ = (θ1, . . . ,θν ) of distributions over I of the form

log p(iii;θθθ ) =
ν

∑
j=1

θ ja j(iii)−ψ(θθθ), (4.1)

where exp(−ψ(θθθ )) is the normalizing constant of the exponential family. Note that
θ j was denoted as φ j(θθθ ) in (1.11). Equation (4.1) corresponds to the multinomial
sampling scheme of Chap. 1. This model is often called a log affine model of
probability distributions over I . Let η = |I | and let

A = {a j(iii)}, j = 1, . . . ,ν, iii ∈ I

denote a ν ×η matrix with the ( j, iii) element a j(iii). A is the configuration introduced
in the previous chapter. In many regression settings, A corresponds to the design
matrix of regressors. Then it is natural to call A a design matrix. Actually the
transpose A′ of A is called the design matrix in regression settings. In our setting
a configuration A has more columns than rows. In a regression setting the design
matrix usually has more rows than columns.

It is also useful to look at the rows aaaj = (a j(iii), iii ∈ I ) of the configuration A.
Except for the (negative logarithm of the) normalizing constant ψ , (4.1) implies
that the logarithm of the probability vector {p(iii;θθθ), iii ∈ I } lies in the linear space
spanned by the rows of A. In this sense we call the linear space spanned by the
rows of A the model space and denote it by rowspan(A). In this book, we assume
homogeneity (3.7); that is, the constant row vector (1,1, . . . ,1) is in rowspan(A).

In many contingency table models we often allow linear dependence among the
rows of A for symmetry of describing the model. For example, in the two-way
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independence model we usually take ν = I+ J for the independence model of I× J
two-way tables, although the degrees of the model (the dimension of the model) is
I+ J− 1. Therefore ν is not necessarily the dimension of rowspan(A).

Let q j = eθ j , j = 1, . . . ,ν . Taking the exponential, (4.1) is written in the monomial
form

p(iii;θθθ ) = e−ψ(θθθ)×
ν

∏
j=1

q
a j(iii)
j = e−ψ(θθθ)qqqaaa(iii). (4.2)

The exponential family notation in (4.1) is more traditional in statistics. The
monomial form (4.2) is often called a “toric model” in algebraic statistics. In the
exponential form it is assumed that p(iii;θθθ )> 0 for all iii. However in (4.2) p(iii;θθθ ) = 0
is allowed.

Suppose that we obtain n observations from the distribution (4.1) under the
multinomial sampling and let x(iii), iii ∈ I denote the frequencies of the cells. Then
the joint probability function of the frequency vector xxx = {x(iii)}iii∈I is written as

p(xxx) =
n!

∏iii∈I x(iii)! ∏
iii∈I

p(iii;θθθ )x(iii)

=
n!

∏iii∈I x(iii)!
exp

{
ν

∑
j=1

θ j ∑
iii∈I

a j(iii)x(iii)− nψ(θθθ)

}
. (4.3)

Then a sufficient statistic of the model is given by t j = ∑iii∈I a j(iii)x(iii), j = 1, . . . ,ν .
We write this relation as

ttt = Axxx, (4.4)

where ttt = (t1, . . . , tν )′ is the ν-dimensional column vector of t js and xxx is the
η-dimensional column vector of frequencies. Then (4.3) is written as

p(xxx) =
n!

∏iii∈I x(iii)!
exp(θθθ ′Axxx− nψ(θθθ)). (4.5)

We denote the set of frequency vectors as X = N
η and the set of frequency

vectors with the common value of the sufficient statistic by

Fttt = {xxx ∈ X | Axxx = ttt}

and call it a ttt-fiber. We denote the set of possible values of the sufficient statistic as

T = TA = {ttt | ttt = Axxx, xxx ∈ N
η}. (4.6)

TA is often referred to as a semigroup generated by A. In the notation of Sect. 3.5,
let qqq = {q1, . . . ,qν} be indeterminates corresponding to the rows of A and let k[qqq]
denote the polynomial ring in qqq. The image πA(k[uuu]), which is a subring of k[qqq], is
called the semigroup ring associated with the configuration A.
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Under the assumption of homogeneity, let θθθ ′ be a row vector such that θθθ ′A =
(1,1, . . . ,1). Then for two frequency vectors xxx, x̃xx in the same fiber we have

000 = Ax̃xx−Axxx ⇒ 0 = θθθ ′Ax̃xx−θθθ ′Axxx = ∑
iii

x̃(iii)−∑
iii

x(iii).

Therefore the sample size n of frequency vectors in the same fiber is common. We
call this sample size n the degree of xxx as well as the degree of ttt = Axxx:

n = degxxx =∑
iii

x(iii) and degttt = degxxx (for any xxx such that ttt = Axxx).

In this book we sometimes write |xxx|= degxxx and |ttt|= degttt, although degttt is not the
1-norm of the vector ttt. Also note that each fiber is finite, because

Fttt ⊂ {xxx ∈ N
η | degxxx = degttt}

and the right-hand side is a finite set.
Given the values of the sufficient statistic ttt, the conditional distribution of xxx does

not depend on the parameters θθθ = (θ1, . . . ,θν ). Note that the marginal probability
function of ttt is written as

p(ttt) = ∑
xxx∈Fttt

n!

∏iii∈I x(iii)!
exp

{
ν

∑
j=1

θ jt j − nψ(θ1, . . . ,θν )

}
.

Therefore the conditional distribution of xxx given ttt is written as

p(xxx | ttt) = c× 1

∏iii∈I x(iii)!
, xxx ∈ Fttt , (4.7)

where c is the normalizing constant. We call (4.7) the hypergeometric distribution
over the fiber Fttt .

If we can sample from the hypergeometric distribution, we can perform the
conditional tests of the fit of the model (4.3). The Markov basis allows us to
construct a Markov chain over the fiber Fttt for this purpose. The normalizing
constant

c = cttt =

[
∑

xxx∈Fttt

1

∏iii∈I x(iii)!

]−1

cannot be expressed in a closed form except for special cases, such as the decompos-
able models for contingency tables. In this respect, the Markov chain Monte Carlo
method is especially useful, because a Markov chain can be constructed without
knowing the normalizing constant.



50 4 Definition of Markov Bases and Other Bases

4.2 Definition of Markov Basis

A Markov basis is a set of “moves” for constructing a Markov chain over any fiber.
Let zzz ∈ Z

η denote an η-dimensional column vector of integers. zzz is called a move if
Azzz = 0; that is, zzz belongs to the integer kernel

kerZ A = kerA ∩ Z
η

of A. If Axxx = ttt and zzz is a move, then

A(xxx+ zzz) = Axxx = ttt.

Therefore by adding zzz to xxx we remain in the same fiber as long as xxx+ zzz does not
contain a negative element. If xxx+ zzz contains a negative element, then we have to
choose another move zzz to add to xxx. Suppose that we have a set of moves B, then
by adding moves from B to the current frequency vector we can “move around” a
fiber. Our purpose is to find a finite set of moves B = {zzz1, . . . ,zzzL}, such that we can
move all over the fiber. For the Markov basis we also require that zzz1, . . . ,zzzL allow
us to move all over every fiber ttt, namely, for every possible value of the sufficient
statistic ttt.

Note that −zzz is a move if zzz is a move. When xxx+ zzz contains a negative element,
we might try xxx− zzz instead. So we can also subtract a move from xxx. For convenience
we often ignore the sign of zzz and think of ±zzz as a move.

Suppose that we are given a finite set of moves B = {zzz1, . . . ,zzzL}. We consider an
undirected graph G = Gttt,B whose vertices are the elements of a fiber Fttt . We draw
an (undirected) edge between xxx and yyy if there exists zzz ∈ B such that yyy = xxx+ zzz or
yyy = xxx− zzz. Being able to move all over Fttt corresponds to the connectedness of Gttt,B .
Therefore we are led to the following definition of a Markov basis.

Definition 4.1. A finite set B = {zzz1, . . . ,zzzL} of moves is called a Markov basis if
Gttt,B is connected for every ttt ∈ T .

In this definition we require the finiteness of B. This causes no difficulty because
the existence of a Markov basis is guaranteed by Hilbert’s basis theorem (see
Corollary 3.1 of Chap. 3). Note that the definition of a Markov basis in Definition 4.1
is equivalent to the earlier definition given in (2.6).

How about uniqueness in the definition of a Markov basis? Except for some
special cases, Markov bases are not unique. First, if B is a Markov basis, then
B ∪{zzz} is a Markov basis for every move zzz. Therefore when we ask the question
of uniqueness, we naturally should consider Markov bases that are minimal in the
sense of set inclusion. Even with the requirement of minimality, Markov bases are
not unique in general. This fact leads to various notions and classes of Markov bases.

Another point in the definition of a Markov basis is that it is common for every
fiber Fttt , ∀ttt ∈ T . Given a particular data set xxx ∈ FAxxx, the set of moves connecting
FAxxx alone may be smaller and need not be a Markov basis. However, at present there
is no general methodology for obtaining a set of moves connecting a particular fiber.
Therefore we use Definition 4.1, except for Chap. 13.
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At this point we discuss the basic relation between the model space rowspan(A)
and the kernel of A. It is a standard fact in linear algebra that

rowspan(A)⊥ = kerA, rowspan(A) = (kerA)⊥, (4.8)

where ⊥ denotes the orthogonal complement. The first equality can be seen as
follows. For www ∈R

η ,

www ∈ kerA ⇔ Awww = 000

⇔ θθθ ′Awww = 0, ∀θθθ ∈ R
ν

⇔ www ∈ rowspan(A)⊥. (4.9)

The second equality holds because (L⊥)⊥ = L for any subspace L of Rη . It is useful
to remember that the model space of A and the kernel of A are equivalent in the sense
of (4.8). In studying a statistical model, we can use either rowspan(A) or kerA.

4.3 Properties of Moves and the Lattice Basis

In this section we summarize basic properties of moves. For a move zzz ∈ kerZ A, we
distinguish its positive elements and negative elements. Collect the positive elements
of zzz into its positive part zzz+ ∈ N

η as

z+(iii) = max(0,z(iii)), iii ∈ I .

Similarly define the negative part zzz− of zzz by z−(iii) = −min(0,z(iii)), iii ∈ I . Then zzz
is written as the difference of its positive part and negative part

zzz = zzz+− zzz−.

Note that Azzz = 0 means that Azzz+ = Azzz−; that is, the positive part and the negative
part of a move belong to the same fiber. In view of this fact we sometimes say that
zzz is a move belonging to the fiber Fttt , where ttt = Azzz+. We define the degree of zzz
(degzzz) by the degree of zzz+ (or zzz−). Note that

|zzz|= 2degzzz,

where |zzz| is the 1-norm of zzz.
For zzz ∈ Z

η , the support of zzz is defined to be the set of cells where zzz is nonzero:

supp(zzz) = {iii | z(iii) �= 0}. (4.10)

Note that supports of zzz+ and zzz− are disjoint:

supp(zzz+) ∩ supp(zzz−) = /0.
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Now let xxx and yyy be two frequency vectors of the same fiber with disjoint supports
(supp(xxx)∩ supp(yyy) = /0). Then

zzz = yyy− xxx

is a move with zzz+ = yyy and zzz− = xxx. Therefore a move is in a one-to-one relation to
an ordered pair of two frequency vectors in the same fiber with disjoint supports.

Note that zzz = yyy−xxx for xxx,yyy ∈Fttt is always a move. However, if supports of xxx and
yyy have a nonempty intersection, then xxx is larger than zzz− in some cell iii. Similarly yyy
is larger than zzz+ in some cell iii. In fact we can write

zzz+ = yyy−min(xxx,yyy), zzz− = xxx−min(xxx,yyy), (4.11)

where min(xxx,yyy) is the elementwise minimum of xxx and yyy.
In the definition of Markov basis, we are concerned whether adding a move zzz to

a frequency vector xxx produces a negative cell. Write

xxx+ zzz = (xxx− zzz−)+ zzz+.

Here we are subtracting the frequencies zzz− from xxx and then adding the frequencies
zzz+ in different cells. Therefore xxx+ zzz contains a negative cell if and only if xxx− zzz−
contains a negative cell. In other words, xxx+ zzz does not contain a negative cell if and
only if

xxx ≥ zzz−, (4.12)

where the inequality is elementwise. When (4.12) holds, we say that zzz can be added
to xxx. When zzz can be added to xxx or can be subtracted from xxx, we say that zzz is
applicable to xxx.

By (4.11), in the notation of monomials and binomials of the previous chapter,
xxx+ εzzz = yyy, ε =±1, if and only if

uuuyyy = uuuxxx + εuuumin(xxx,yyy)(uuuzzz+ − uuuzzz−). (4.13)

A move zzz is called square-free if uuuzzz+ − uuuzzz− is a square-free binomial; that is, if the
elements of zzz are −1,0, or 1.

Markov bases are difficult exactly because we are worried about producing
negative elements. Suppose that we just ignore the nonnegativeness of elements of
frequency vector. Then the notion of a basis is simple. Note that kerZ A as a subset
of Zη is closed under integer multiplication and addition:

zzz1,zzz2 ∈ kerZ A ⇒ azzz1 + bzzz2 ∈ kerZ A, ∀a,b ∈ Z.

A subset of Zη with this property is called an integer lattice. Let d = dimkerZ A =
η − rankA denote the dimension of linear space spanned by the elements of kerZ A
in R

η . It is a standard fact [134] that an integer lattice contains a lattice basis
{zzz1, . . . ,zzzd}, such that every zzz ∈ kerZ A is a unique integer combination of zzz1, . . . ,zzzd .
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Given A, it is fairly easy to obtain a lattice basis of kerZ A using the Hermite normal
form of A. In statistical applications, the configuration A often has redundant rows
as in the case of two-way contingency tables in Sect. 1.3. However, kerA and hence
kerZ A are defined by linearly independent rows of A. Therefore consider A : ν ×η
with linearly independent rows; rank A = ν . Then there exists an integer matrix U
with detU =±1 (called a unimodular matrix) such that

AU = (B,0),

where B is a ν×ν upper triangular matrix with positive elements. Then the columns
ν + 1, . . . ,η of U give a lattice basis of kerZ A. See Sect. 4.1 of [134].

In the case of the independence model of I × J two-way contingency tables, as
elements of the lattice basis we can take the moves

+1 −1
−1 +1

where the lower-right +1 is in the (I,J) cell. However, as we saw in Sect. 2.1, these
moves do not form a Markov basis.

On the other hand, it is easy to see that a Markov basis B always contains a
lattice basis. Given any zzz �= 000 ∈ kerZ A, we can move from zzz− to zzz+ by a sequence
of moves from B, namely we can write

zzz+ = zzz−+ ε1zzzi1 + · · ·+ εKzzziK , ε j =±1, zzzi j ∈ B, j = 1, . . . ,K.

Then zzz = zzz+− zzz− is written as an integer combination of elements of B.
So far we have considered the integer lattice kerZ A. We now look at the integer

lattice L generated by the columns of A:

L = ZA = {Azzz | zzz ∈ Z
η}.

Also let

cone(A) = R≥0A = { ∑
iii∈I

ciiiaaa(iii) | ciii ≥ 0, iii ∈ I }

denote the cone generated by the column of A. Then the semigroup TA in (4.6) is
clearly a subset of L ∩ cone(A):

TA ⊂ L ∩ cone(A). (4.14)

We introduce some terminology concerning the semigroup TA. If the equality
holds in (4.14) then the semigroup TA is called normal. L∩ cone(A) is called the
saturation of TA (Definition 7.24 of [105]). When TA is not normal, the elements
of L ∩ cone(A) \TA are called holes of the saturation of TA [85, 145, 146]. If
L∩ cone(A)\TA is a finite set, then the semigroup is called very ample [113].

Although in this book we do not go into details on normality of semigroups, the
notion of normality is important for Proposition 5.4 and in discussing non-square-
free indispensable moves in Sect. 9.5.
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4.4 The Fundamental Theorem of Markov Basis

In this section we explain relations between moves and binomials of a toric ideal.
Then we prove the fundamental theorem of Markov bases, which states that a
Markov basis is a set of generators of a toric ideal. For readability we repeat some
material from Chap. 3.

Consider the monomial form of the model (4.2):

p(iii) ∝
ν

∏
j=1

q
a j(iii)
j .

Let us regard p(iii), iii ∈ I , as “symbols” or indeterminates rather than probabilities.
Also let us regard q j, j = 1, . . . ,ν , as indeterminates. Then the above model

assigns to each indeterminate p(iii) a monomial ∏ν
j=1 q

a j(iii)
j in q js. We formalize this

consideration as follows. Let k be a field, such as the field R of real numbers. Let
k[ppp] = k[p(iii), iii ∈ I ] be the polynomial ring in ppp = {p(iii), iii ∈ I }. Similarly define
k[qqq] = k[q1, . . . ,qν ] to be the polynomial ring in q1, . . . ,qν . As in Sect. 3.5, define a
homomorphism πA : k[ppp]→ k[qqq] by

πA(p(iii)) =
ν

∏
j=1

q
a j(iii)
j .

πA for a general polynomial of k[ppp] is defined by a homomorphism, that is, by

substituting ∏ν
j=1 q

a j(iii)
j into each p(iii). The toric ideal IA is defined as the kernel

of πA:

IA = kerπA = { f ∈ k[ppp] | πA( f ) = 0}.

These notions have already been illustrated in Chap. 1 and Sect. 3.5 with the
example of two-way tables.

Let xxx be a frequency vector. As in Chap. 3, xxx is identified with the monomial

pppxxx = ∏
iii∈I

p(iii)x(iii),

which corresponds to the joint probability of xxx except for the multinomial coeffi-
cient. A move zzz = zzz+− zzz− corresponds to a binomial v = pppzzz+ − pppzzz− . pppzzz+ − pppzzz− is in
IA if and only if zzz = zzz+− zzz− is a move (see (3.13)). Now the fundamental theorem
of Markov bases established by [50] states that a Markov basis corresponds to a
system of generators of IA.

Theorem 4.1 ([50]). A finite set of moves B is a Markov basis for A if and only if
the set of binomials {pppzzz+ − pppzzz− | zzz ∈ B} generates the toric ideal IA.

The “only if” (necessity) part is easy to prove. However, the proof of the “if”
part (sufficiency) is somewhat hard. Because this theorem is of basic importance for
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the whole theory of Markov bases, we give a careful proof. For a finite set of moves
B = {zzz1, . . . ,zzzL} for a configuration A, we write the set of corresponding binomials
as FB = {pppzzz+i − pppzzz−i , i = 1, . . . ,L}.

Proof. We first show the necessity: if B is a Markov basis for A then FB generates
IA. Binomials generate (cf. Definition 3.3) the toric ideal IA, therefore we only
need to show that any binomial f = pppyyy − pppxxx, Axxx = Ayyy, belongs to the ideal 〈FB〉.
Inasmuch as B is a Markov basis, xxx and yyy(∈ FAxxx) are mutually accessible by B.
Hence

yyy = xxx+
S

∑
j=1

ε jzzzi j , xxx+
s

∑
j=1

ε jzzzi j ∈ FAxxx, 1 ≤ s ≤ S,

for some S > 0, ε j ∈ {−1,1}, zzzi j ∈ B, j = 1, . . . ,S. Write xxxs = xxx+∑s
j=1 ε jzzzi j , 0 ≤

s ≤ S, with xxx0 = xxx and xxxS = yyy. Then by (4.13), with the notation for indeterminates
ppp instead of uuu, it follows that

pppxxxs = pppxxx +
s

∑
j=1

ε j pppmin(xxx j−1,xxx j)(ppp
zzz+i j − ppp

zzz−i j ), s = 1, . . . ,S.

Hence

pppyyy − pppxxx =
S

∑
j=1

ε j ppp
min(xxx j−1,xxx j)(ppp

zzz+i j − ppp
zzz−i j ) ∈ 〈FB〉. (4.15)

This proves the necessity part.
Next we prove the “if” part (sufficiency). We want to show that if IA is generated

by FB, then every xxx,yyy(�= xxx) ∈ FAxxx is mutually accessible by B. By the assumption
pppyyy − pppxxx can be written as a finite sum

pppyyy − pppxxx =
L

∑
i=1

fi(ppp)(pppzzz+i − pppzzz−i ), (4.16)

where fi(ppp)∈ k[ppp], i= 1, . . . ,L, are polynomials in ppp. Expand fi(ppp) into monomials.
Then allowing repetitions, we can write pppyyy − pppxxx as a finite sum

pppyyy − pppxxx = ∑
l

al ppphhhl (ppp
zzz+il − ppp

zzz−il ), al ∈ k. (4.17)

In Lemma 4.1 below we show that we can choose al as integers. Given this fact,

instead of al ppphhhl (ppp
zzz+il − ppp

zzz−il ), we can write |al | times the binomial ppphhhl (ppp
zzz+il − ppp

zzz−il )
and use εl =±1. Then by allowing further repetitions, we can write pppyyy − pppxxx as

pppyyy − pppxxx =
S

∑
j=1

ε j ppp
hhh j (ppp

zzz+i j − ppp
zzz−i j ), ε j =±1. (4.18)

Note that (4.18) is already similar to (4.15). The difference between them is that
in (4.15) the order of the terms from xxx to yyy on the right-hand is already given. On the
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other hand the sum on the right-hand side of (4.18) is not ordered for moving from xxx
to yyy. We need to find a suitable path from xxx to yyy on the right-hand side of (4.18). The
path can be found as follows. Expand (4.18) into 2S terms. Then at least one term has

to be equal to pppxxx. Namely for some j we have pppxxx = ε j ppphhhj ppp
zzz+i j or pppxxx = −ε j ppphhh j ppp

zzz−i j .

Then by (4.13) we can move from xxx to xxx1 such that pppxxx1 = pppxxx − ε j ppphhhj ppp
zzz+i j or pppxxx1 =

pppxxx + ε j ppphhhj ppp
zzz+i j . In either case we can now write

pppyyy − pppxxx1 = ∑
l �= j

εl ppphhhl (ppp
zzz+il − ppp

zzz−il ),

where the sum on the right-hand side is a sum of S− 1 terms. Now we can employ
induction on S and find the steps xxx2, . . . ,xxxS to move from xxx to yyy = xxxS. This proves
the sufficiency. ��

In the above proof of sufficiency, the proof of the integerness of coefficients al in
(4.17) is left to the following lemma.

Lemma 4.1. If FB generates IA, then each binomial pppyyy − pppxxx ∈ IA can be written as
a finite sum

pppyyy − pppxxx = ∑
l

al ppphhhl (ppp
zzz+il − ppp

zzz−il ), (4.19)

where the als are integers.

We give two different proofs of this lemma. The first proof is based on a Gröbner
basis. The second proof is longer, but only uses linear algebra.

Proof. Denote a Gröbner basis of IA by {g1, . . . ,gL}, which is obtained by Buch-
berger’s algorithm from the set of generators FB of IA. Because pppyyy − pppxxx ∈ IA =
〈g1, . . . ,gL〉, the binomial pppyyy − pppxxx is written as

pppyyy − pppxxx =
L

∑
i=1

figi, fi ∈ k[ppp].

By expanding fi into monomials, pppyyy − pppxxx is further written as

pppyyy − pppxxx = ∑
l

al pppvvvil gil ,

where a j ∈ k. Note that the sum on the right-hand side corresponds to a division
by a Gröbner basis and each step of the division is an operation of eliminating the
leading term by a monomial with coefficient ±1. Hence, if we allow repetitions, we
can indeed assume a j =±1. On the other hand, because g1, . . . ,gL ∈ IA = 〈FB〉 each
element of the Gröbner basis is written as

g j = ∑
�

d�pppwww�(ppp
zzz+i� − ppp

zzz−i� ).
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The right-hand side corresponds to obtaining g j by the Buchberger algorithm from
the set of generators. In Lemma 3.2 we saw that the S-polynomial of two binomials
is again a binomial. This implies that we can also assume d� = ±1. Therefore, the
binomial pppyyy − pppxxx can be written as (4.17) where al are integers. This completes our
first proof.

We now give an alternative proof. By the assumption, (4.19) holds with al ∈ k.
At this point als are not necessarily integers and we want to show that we can
always replace al by integers. Note that there are only a finite number of monomials
appearing in (4.19). Choose a sufficiently large D such that the degrees of all
monomials in (4.19) are less than or equal to D. Let MD denote the set of monomials
of degrees less than or equal to D. Let M = |MD| denote the cardinality of MD. Then
MD is a basis of the M-dimensional vector space VD of polynomials of degree less
than or equal to D.

With respect to this basis, each binomial is represented as a column vector with
two nonzero elements which are 1 and −1 and other elements are zeros. Let N = ND

denote the number of binomials whose degrees are less than or equal to D. Let C
be an M×N matrix whose columns correspond to binomials of degree less than or
equal to D. Then the right-hand side of (4.19) is written as

bbb =Caaa,

where bbb corresponds to pppyyy − pppxxx. Now by Lemma 4.2 below, there exists an M ×M
permutation matrix P and an N ×N unimodular matrix U such that C̃ = PCU is of
the form (4.20) below. Then bbb =Caaa can be equivalently written as

Pbbb = C̃ãaa, ãaa =U−1aaa.

From the form of C̃, it is clear that ãaa can be chosen to be an integer vector. Then
aaa =Uãaa is an integer vector. This finishes our second proof. ��
Lemma 4.2. Let C be an M ×N matrix, such that each column ccc of C has two
nonzero elements which are 1 and −1; namely, ccc is written as ccc = eeei − eee j, i �= j,
where eeei is the ith standard basis vector with 1 in the ith position. Then by the
following three elementary operations (i) sign change of columns, (ii) addition (or
subtraction) of a column to (or from) another column, and (iii) permutation of rows,
C can be transformed to the following block diagonal form.

⎛
⎜⎜⎜⎜⎜⎝

Bd1 0 . . . 0 0
0 Bd2 . . . 0 0
...

...
. . .

...
...

0 0 . . . BdK 0
0 0 . . . 0 0

⎞
⎟⎟⎟⎟⎟⎠
, where Bd =

⎛
⎜⎜⎜⎜⎜⎝

1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1
−1 −1 . . . −1

⎞
⎟⎟⎟⎟⎟⎠

: d× (d− 1). (4.20)
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Proof. We give a proof based on the induction on the number of columns. Let M be
fixed. If N = 1, the result is trivial. Suppose that the result holds up to N and consider
adding a new column ccc. We can assume that the first N columns have already been
transformed to the form in (4.20). Let the new column be denoted as ccc = eeei − eee j.
There are four cases to consider.

Case 1. If neither of i, j belongs to (the rows of the) blocks Bd1 , . . . ,BdK , then ccc=B2

forms a new block.

Case 2. If both of i, j belong to a block, say Bd1 , then ccc can be transformed to 0.
This is obvious if ccc is equal to some column of Bd1 . Otherwise ccc is the difference of
the ith and jth columns of Bd1 .

Case 3. Suppose that i belongs to, say, Bd1 and j does not belong to any block. Let
j = d1 + 1 without loss of generality. Subtracting the ith column from ccc, we obtain

(0, . . . ,0︸ ︷︷ ︸
d1−1

,1,−1)′.

Adding this to other columns of Bd1 we obtain a new block of the form Bd1+1.

Case 4. Suppose that i and j belong to different blocks, say Bd1 and Bd2 . If i = d1

and j = d2, then adding ccc to the columns of Bd1 we obtain a new block of the form
Bd1+d2 . Otherwise, if i < d1, subtract the ith column from ccc. Similarly if j < d2, then
subtract the jth column from ccc. Then ccc is transformed to eeed1 − eeed2 and this reduces
to the former case. ��

This lemma shows that the diagonal block of the Smith normal form of C is the
identity matrix and every elementary divisor of C is 1 (cf. Sect. 4.4 of [134]).

Remark 4.1. We can consider columns of C in Lemma 4.2 as edges of a graph.
Consider a graph G with M vertices. For ccc = eeei − eee j, draw an edge between i
and j. Then it can be easily seen that the blocks in (4.20) correspond to connected
components of G .

Remark 4.2. Two proofs of Lemma 4.2 look different but they are essentially the
same. The second proof is based on the relations among vectors with two nonzero
elements which are 1 and −1, such as

⎛
⎝ 1
−1
0

⎞
⎠+

⎛
⎝ 0

1
−1

⎞
⎠=

⎛
⎝ 1

0
−1

⎞
⎠ ,

where the second element is canceled. This in fact corresponds to forming an
S-polynomial of two binomials.
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4.5 Gröbner Basis from the Viewpoint of Markov Basis

In the previous section we discussed the Gröbner basis from an algebraic viewpoint.
Here we discuss it from the viewpoint of the Markov basis. In Chap. 3 we have
already summarized relevant facts on the Gröbner basis. Here we discuss the
Gröbner basis from a viewpoint close to our definition of the Markov basis. In the
case of the Markov basis we tend to ignore the sign of a move zzz. In the Gröbner
basis it is important to keep track of the sign of the move.

As in Chap. 3 let a term order ≺ be given. Let G = {g1, . . . ,gL} ⊂ k[ppp] be a
Gröbner basis with respect to ≺, such that g1, . . . ,gL are binomials. Then g1, . . . ,gL

correspond to moves. By Proposition 3.3 the reduced Gröbner basis consists of
binomials. Write

gl = pppzzz+l − pppzzz−l , pppzzz+l = in≺(gl), l = 1, . . . ,L.

As before we identify the monomial pppxxx with the frequency vector xxx.
Because the term order is the total order, every fiber Fttt (which is finite as

remarked in Sect. 4.1) has the unique minimum element xxx∗ttt . For any other xxx �= xxx∗ttt of
the fiber, pppxxx − pppxxx∗ttt ∈ IA. Also pppxxx � pppxxx∗ttt . Therefore pppxxx is divisible by some in≺(gl);
that is, xxx ≥ zzz+l . Dividing pppxxx by gl corresponds to moving from xxx to xxx− (zzz+l − zzz−l ),
which is a smaller element than xxx in Fttt . On the other hand, pppxxx∗ttt is divisible by none
of in≺(gl), l = 1, . . . ,L, because otherwise pppxxx∗ttt would not be the minimum element
of Fttt . By the definition of the standard monomial (cf. Sect. 3.2) we have now shown
the following fact.

Lemma 4.3. Given a term order ≺, {pppxxx∗ttt | ttt ∈T } is the set of standard monomials
of IA.

Now let B be any finite set of moves. For a given term order we always choose
a sign of a move zzz = zzz+− zzz− ∈ B by

pppzzz+ � pppzzz− .

In a fiber Fttt , we draw a directed edge from yyy to xxx if there exists zzz ∈ B such that

yyy− xxx = zzz.

Then each fiber Fttt becomes a directed graph Ḡttt,B. As discussed in the previous
section, if yyy− xxx = zzz then

xxx = zzz−+min(xxx,yyy), yyy = zzz++min(xxx,yyy).

Hence pppyyy � pppxxx by the second property of the term order. Therefore by subtracting
zzz ∈ B from yyy, we always move to a smaller element of the fiber and there exists no
directed loop in Ḡttt,B; that is, Ḡttt,B is a directed acyclic graph (DAG). We now have
the following proposition.
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Proposition 4.1. A finite set of moves B is a Gröbner basis if and only if from every
element of every Ḡttt,B there exists a directed path to the minimum element xxx∗ttt of the
fiber.

Proof. If B is a Gröbner basis, then by Lemma 4.3 from every element of every
Ḡttt,B there exists a directed path to the minimum element xxx∗ttt .

Conversely, suppose that from every state of every Ḡttt,B there exists a directed

path to the minimum element xxx∗ttt . Then every xxx ∈ Fttt is divisible by some pppzzz+ ,
zzz ∈ B. Hence B is a Gröbner basis. ��

4.6 Graver Basis, Lawrence Lifting, and Logistic Regression

Finally we discuss the Graver basis and the Lawrence lifting. Consider a sum of two
moves zzz = zzz1 + zzz2. We say that there is no cancellation of signs in this sum if

supp(zzz+) = supp(zzz+1 )∪ supp(zzz+2 ), supp(zzz−) = supp(zzz−1 )∪ supp(zzz−2 ).

In this case we also say that zzz is a conformal sum of zzz1 and zzz2. Similarly we say that
there is no cancellation of signs in the sum of m moves zzz = zzz1 + · · ·+ zzzm (or zzz is a
conformal sum of m moves) if

supp(zzz+) = supp(zzz+1 )∪·· ·∪ supp(zzz+m), supp(zzz−) = supp(zzz−1 )∪·· ·∪ supp(zzz−m).

We also say that zzz1 + · · ·+ zzzm is a conformal decomposition of zzz. We call a move
zzz conformally primitive if it cannot be written as a sum of two nonzero moves zzz =
zzz1+zzz2 with no cancellation of signs. For clarity we say “conformally” primitive, but
usually a conformally primitive move is simply called a primitive move. A binomial
corresponding to a conformally primitive move is called a primitive binomial.

Definition 4.2. The Graver basis is the set of conformally primitive moves.

In Sect. 5.4.3 we show that the Graver basis is finite. We first see that the Graver
basis is a Markov basis. For xxx,yyy in the same fiber let zzz = yyy− xxx. If a move zzz is not
conformally primitive, then we can recursively decompose zzz into a conformal sum
of moves. This implies that zzz can be written as a conformal sum

zzz = zzz1 + · · ·+ zzzm, (4.21)

where zzz1, . . . ,zzzm are (not necessarily distinct) nonzero elements of the Graver basis.
Then we can move from xxx to yyy by the above sequence of conformally primitive
moves. This shows that the Graver basis is a Markov basis. Also note that because
of no cancellation of signs, whenever zzz is applicable to some xxx, zzz can be replaced by
zzz1, . . . ,zzzm in arbitrary order without causing negative elements on the way.

As an important example we consider the Graver basis for the independence
model of I× J contingency tables.
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Definition 4.3. For 2 ≤ r ≤ min(I,J), let i1, . . . , ir be distinct row indices and let
j1, . . . , jr be distinct column indices. Denote iii[r] = (i1, . . . , ir), jjj[r] = (i1, . . . , ir). A
loop of degree r

zzzr(iii[r]; jjj[r]) = {zi j}, 1 ≤ i1, . . . , ir ≤ I, 1 ≤ j1, . . . , jr ≤ J, (4.22)

is a move such that

zi1 j1 = zi2 j2 = · · ·= zir−1 jr−1 = zir jr = 1,
zi1 j2 = zi2 j3 = · · ·= zir−1 jr = zir j1 =−1,

and all the other elements are zeros.

There is at most one +1 and −1 in each row and each column of a degree r loop.
An example of a loop of degree r = 3 is depicted as follows.

1 −1 0
0 1 −1
−1 0 1

.

Then we have the following proposition.

Proposition 4.2. Loops of degree 2 ≤ r ≤ min(I,J) form the Graver basis for the
independence model of I× J contingency tables.

Proof. Consider any nonzero move zzz. Let zzz(i1, j1) > 0. Because the i1-row sum of
zzz is zero, we can find j2 such that zzz(i1, j2) < 0. The j2-column sum of zzz is zero,
therefore we can now find i2 such that zzz(i2, j2) > 0. Visiting cells in this way,
we come back to a cell that was already visited. Among such “cycles,” consider
a shortest one. Then the shortest one is a loop, namely, the row indices and the
column indices are distinct among themselves. Taking away this loop, we have a
move of smaller degree. If we apply this procedure recursively, we can express zzz as
a conformal sum of loops.

On the other hand, it is obvious that each loop cannot be written as a conformal
sum of other nonzero moves. This proves the proposition. ��

Let A be a configuration. The Lawrence lifting Λ(A) of A is the configuration
((2ν +η)× 2η matrix)

Λ(A) =

⎛
⎝ A 0

0 A
Eη Eη

⎞
⎠ , (4.23)

where Eη is the η ×η identity matrix. Note that

(0 A) = (A A)− (A 0) = A(Eη Eη )− (A 0).
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Therefore the second block (0 A) in (4.23) is redundant for defining kerΛ(A). Hence
instead of Λ(A) we can also use

Λ̃ (A) =

(
A 0

Eη Eη

)
. (4.24)

However it is more convenient to retain the second block in Λ(A) for explanation.
From (4.23), an element of kerΛ(A) is of the form

(
zzz
−zzz

)
,

where zzz ∈ kerA. Clearly zzz = zzz1 + zzz2 is a conformal sum of two moves for A if and
only if (

zzz
−zzz

)
=

(
zzz1

−zzz1

)
+

(
zzz2

−zzz2

)

is a conformal sum of two moves for Λ(A). By this observation we have the
following proposition.

Proposition 4.3. Let {zzz1, . . . ,zzzL} be the Graver basis for A. The Graver basis of
Λ(A) is given by {(

zzz1

−zzz1

)
, . . . ,

(
zzzL

−zzzL

)}
. (4.25)

From the viewpoint of statistical models, the Lawrence lifting corresponds to
a logistic regression. See Christensen [37] for a detailed treatment of logistic
regression. Consider the model (4.1). We make two copies I ′ and I ′′ of the sample
space I and consider a corresponding pair of cells (iii′, iii′′). Call iii′ a “success” of
the cell iii and iii′′ a “failure” of the cell iii. Consider a Bernoulli random variable
Yiii ∈ {0,1}, such that

P(Yiii = 1) = piii =
exp(∑ν

j=1 θ ja j(iii))

1+ exp(∑ν
j=1 θ ja j(iii))

. (4.26)

We let Yiii = 1 correspond to an observation in iii′ and Yiii = 0 correspond to an
observation in iii′′.

For each iii, observe niii independent Bernoulli random variables with the success
probability (4.26). Let x(iii′) be the frequency of the cell iii′ (i.e., the number of
successes for the cell iii) and let x(iii′′) = niii − x(iii′) be the number of failures. Under
the logistic regression model, x(iii′) has the binomial distribution Bin(niii, piii).

We now consider the sufficient statistic for the logistic regression model. It is
easily seen that a sufficient statistic for this logistic regression model, when niiis are
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fixed and regarded as parameters, is a sufficient statistic for the original A computed
from the number of successes x(iii′), iii ∈ I . When niiis are fixed, we can alternatively
compute a sufficient statistic for the original A from the number of failures x(iii′′),
iii ∈ I . As in the discussion on three sampling schemes for 2×2 contingency tables
in Sect. 1.1, we can also regard niiis as a part of a sufficient statistic. If we vary niiis and
regard them as arbitrary nonnegative integers, then the configuration of the logistic
regression is given by the Lawrence lifting (4.24).

As we show in Sect. 5.4.3 the unique Markov basis of Λ(A) coincides with the
Graver basis of Λ(A) and the latter is essentially the same as the Graver basis of A
by Proposition 4.3. Hence if we allow arbitrary nonnegative niiis, then we need the
Graver basis of A. However, it seems that many elements of the Graver basis of A
are needed in order to guarantee the connectivity when some niiis are zeros. When all
niiis are positive and fixed, connectivity of a particular fiber may be guaranteed by a
proper subset of the Graver basis. This problem is discussed mainly in Chap. 13.

In this chapter we discussed a Markov basis, a lattice basis, a Gröbner basis, and
the Graver basis. We here summarize implications among them. By definition of
these bases, the inclusion relations between them are given as follows.

a lattice basis ⊂ a minimal Markov basis ⊂ a reduced Gröbner basis

⊂ the Graver basis.



Chapter 5
Structure of Minimal Markov Bases

5.1 Accessibility by a Set of Moves

Let B = {zzz1, . . . ,zzzL} be a finite set of moves, which may not be a Markov basis. Let
xxx,yyy(�= xxx) ∈ Fttt . We say that yyy is accessible from xxx by B and denote this by

xxx ∼ yyy (mod B),

if there exists a sequence of moves zzzi1 , . . . ,zzziL from B and ε j = ±1, j = 1, . . . ,L,
such that yyy = xxx+∑L

j=1 ε jzzzi j and

xxx+
h

∑
j=1

ε jzzzi j ∈ Fttt , h = 1, . . . ,L− 1; (5.1)

that is, we can move from xxx to yyy by moves from B without causing negative
elements on the way. Obviously the notion of accessibility is symmetric and
transitive:

xxx ∼ yyy ⇒ yyy ∼ xxx (mod B),

xxx1 ∼ xxx2, xxx2 ∼ xxx3 ⇒ xxx1 ∼ xxx3 (mod B).

Allowing moves to be 000 also yields reflexivity. Therefore accessibility by B is
an equivalence relation and each fiber Fttt is partitioned into disjoint equivalence
classes by moves of B. We call these equivalence classes B-equivalence classes of
Fttt . Because the notion of accessibility is symmetric, we also say that xxx and yyy are
mutually accessible by B if xxx ∼ yyy (mod B).

Let xxx and yyy be elements from two different B-equivalence classes of Fttt . We say
that a move zzz = xxx− yyy connects these two equivalence classes.

S. Aoki et al., Markov Bases in Algebraic Statistics, Springer Series
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In this chapter the set of moves with degree less than or equal to n,

Bn = {zzz | degzzz ≤ n}, (5.2)

is of particular importance. Consider Bn−1-equivalence classes of a fiber Fttt with
n = degttt. Let Kttt denote the number of equivalence classes and partition Fttt as

Fttt = Fttt,1 ∪·· ·∪Fttt,Kttt . (5.3)

We also define

Bttt = {zzz ∈ kerZ A | ttt = Azzz+ = Azzz−}= {zzz ∈ kerZ A | zzz+,zzz− ∈ Fttt}. (5.4)

We call zzz ∈ Bttt a move belonging to Fttt .
The equivalence classes Fttt,1, . . . ,Fttt,Kttt in (5.3) can be understood as follows. Let

xxx,yyy ∈ Fttt . Suppose that there exists zzz with degzzz ≤ n− 1, such that

yyy = xxx+ zzz = (xxx− zzz−)+ zzz+.

Then xxx− zzz− is not a zero vector and supp(xxx− zzz−) �= /0. Because supp(xxx− zzz−) is
contained in both supp(xxx) and supp(yyy), we have

supp(xxx) ∩ supp(yyy) �= /0.

Conversely if supp(xxx) ∩ supp(yyy) �= /0 then deg(yyy− xxx) < n and yyy− xxx ∈ Bn−1. We
have shown that

deg(yyy− xxx)< n ⇔ supp(xxx) ∩ supp(yyy) �= /0.

Now if xxx and yyy are in the same Bn−1-equivalence class Fttt,k, then there exists a
sequence of states xxx = xxx0,xxx1, . . . ,xxxL = yyy, such that deg(xxx j − xxx j−1)< n, j = 1, . . . ,L,
or equivalently supp(xxx j) ∩ supp(xxx j−1) �= /0. Therefore the equivalence classes
in (5.3) can be understood as the connected components of the following graph G.
The set of vertices of G is the fiber Fttt and G has an undirected edge between xxx and
yyy ∈ Fttt if and only if deg(yyy− xxx)< n.

5.2 Structure of Minimal Markov Basis and Indispensable
Moves

A Markov basis B is minimal if no proper subset of B is a Markov basis.
A minimal Markov basis always exists, because from any Markov basis, we can
remove redundant elements one by one, until none of the remaining elements can
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be removed any further. From this definition, a minimal Markov basis is not sign-
invariant in the sense that for each zzz ∈ B, −zzz is not a member of B when B is
a minimal Markov basis, because −zzz can be omitted from B without affecting the
connectivity.

At this point, we discuss the signs of moves in a Markov basis. In discussing
minimality of Markov bases, it is sometimes more convenient if both (or neither
of) zzz and −zzz belong to a Markov basis. We call a set of moves B sign-invariant if
zzz ∈ B implies −zzz ∈ B. We call a sign-invariant Markov basis minimal if no proper
sign-invariant subset of B is a Markov basis. If a sign-invariant Markov basis B
is minimal, then for each move zzz ∈ B, we can leave exactly one of zzz and −zzz in
the Markov basis and have a minimal Markov basis without the requirement of sign
invariance. Conversely if B is a minimal Markov basis, then B ∪ (−B), where
−B = {−zzz | zzz ∈ B} is a minimal sign-invariant Markov basis.

For each ttt, let n= degttt and consider the Bn−1-equivalence classes of Fttt in (5.3).
Let xxx j ∈ Fttt, j, j = 1, . . . ,Kttt , be representative elements of the equivalence classes
and let

zzz j1, j2 = xxx j1 − xxx j2 , j1 �= j2

be a move connecting Fttt, j1 and Fttt, j2 . Note that we can connect all equivalence
classes with Kttt − 1 moves of this type, by forming a tree, where the equivalence
classes are interpreted as vertices and connecting moves are interpreted as edges of
an undirected graph. Now we state the main theorem of this chapter. The following
result was already known to algebraists in Theorem 2.5 of [28]. For the rest of this
chapter we write |ttt| for degttt.

Theorem 5.1. Let B be a minimal Markov basis. For each ttt, B ∩ Bttt consists of
Kttt − 1 moves connecting different B|ttt|−1-equivalence classes of Fttt , in such a way
that the equivalence classes are connected into a tree by these moves.

Conversely choose any Kttt −1 moves zttt,1, . . . ,zttt,Kttt−1 connecting different B|ttt|−1-
equivalence classes of Fttt , in such a way that the equivalence classes are connected
into a tree by these moves. Then

B =
⋃

ttt:Kttt≥2

{zttt,1, . . . ,zttt,Kttt−1} (5.5)

is a minimal Markov basis.

Proofs of this theorem and the following corollaries are given at the end of this
section. Note that no move is needed from Fttt with Kttt = 1, including the case where
Fttt is a one-element set. If Fttt = {xxx} is a one-element set, no nonzero move is
applicable to xxx, but at the same time we do not need to move from xxx at all for such
an Fttt .

In principle this theorem can be used to construct a minimal Markov basis from
below as follows. As the initial step we consider ttt with the sample size n = |ttt|= 1.
Because B0 consists only of the zero move B0 = {000}, each point xxx ∈Fttt , |ttt|= 1, is
isolated and forms an equivalence class by itself. For each ttt with |ttt|= 1, we choose
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Kttt − 1 degree 1 moves to connect Kttt points of Fttt into a tree. Let B̃1 be the set of
chosen moves. B̃1 is a subset of the set B1 of all degree 1 moves. Every degree
1 move can be expressed by nonnegative integer combination of chosen degree 1
moves, thus it follows that B̃1 and B1 induce the same equivalence classes for each
Fttt with |ttt|= 2. Therefore as the second step we consider B̃1-equivalence classes of
Fttt for each ttt with |ttt|= 2 and choose representative elements from each equivalence
class to form degree 2 moves connecting the equivalence classes into a tree. We add
the chosen moves to B̃1 and form a set B̃2.

We can repeat this process for n = |ttt| = 3,4, . . .. By the Hilbert basis theorem
there exists some n0 such that for n ≥ n0 no new moves need to be added. Then a
minimal Markov basis B of (5.5) is written as B = B̃n0 . The difficulty with this
approach is that the known theoretical upper bound for n0 in Proposition 5.3 below
is large.

Theorem 5.1 clarifies to what extent the minimal Markov basis is unique. If an
equivalence class consists of more than one element, then any element can be chosen
as the representative element of the equivalence class. Another indeterminacy is
how to form a tree of the equivalence classes. In addition there exists a trivial
indeterminacy of a Markov basis B in changing the signs of its elements.

We say that a minimal basis B is unique if all minimal bases differ only by sign
changes of the elements; that is, if B∪ (−B) is the unique minimal sign-invariant
Markov basis. In terms of binomials, a unique minimal Markov basis corresponds
to a unique minimal system of binomial generators of a toric ideal. In view of
Lemma 5.3 below, we have the following corollary to Theorem 5.1.

Corollary 5.1. A minimal Markov basis is unique if and only if for each ttt, Fttt itself
constitutes one B|ttt|−1-equivalence class or Fttt is a two-element set.

In this corollary the importance of a two-element set Fttt = {xxx,yyy} is suggested.
Therefore we make the following definition.

Definition 5.1. A move zzz = yyy − xxx is indispensable if Fttt = {xxx,yyy} is a two-
element set.

In this definition we are not assuming that the supports of xxx and yyy are
disjoint. However min(xxx,yyy) is canceled in zzz = yyy − xxx. We also call a binomial
uuuzzz+ −uuuzzz− indispensable if zzz = zzz+− zzz− is an indispensable move. The notion of the
indispensable move was given in Takemura and Aoki [142]. Ohsugi and Hibi [110]
proved some properties of indispensable moves, in particular for configurations
arising from finite graphs. In Theorem 2.4 of [111], Ohsugi and Hibi showed that
the set of indispensable binomials is characterized as the intersection of binomials
in the reduced Gröbner bases with respect to all lexicographic term orders.

Using the notion of indispensability, we state another corollary, which is more
convenient to use.

Corollary 5.2. The unique minimal Markov basis exists if and only if the set of
indispensable moves forms a Markov basis. In this case, the set of indispensable
moves is the unique minimal Markov basis.
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From these corollaries it seems that the minimal Markov basis is unique only
under special conditions. It is therefore of great interest whether the minimal
Markov basis is unique for some standard problems in m-way (m ≥ 2) contingency
tables with fixed marginals. On the other hand for the simplest case of one-
way contingency tables, the minimal Markov basis is not unique. These facts are
confirmed in Sect. 5.4, Chaps. 8 and 9.

For the rest of this section we give a proof of Theorem 5.1 and its corollaries. We
also state some lemmas, which are of some independent interest.

Lemma 5.1. If a move zzz is applicable to at least one element of Fttt , then

degzzz ≤ |ttt|, (5.6)

where the equality holds if and only if ttt = Azzz+ = Azzz−.

Proof. Let zzz be applicable to xxx ∈ Fttt . Then by (4.12), x(iii) ≥ z−(iii), ∀iii ∈ I .
Summing over I yields (5.6).

Concerning the equality, if zzz is applicable to xxx ∈ Fttt and the equality holds
in (5.6), then x(iii) = z−(iii), ∀iii ∈ I and

ttt = Axxx = ∑
iii∈I

a(iii)x(iii) = ∑
iii∈I

a(iii)z−(iii) = Azzz−.

Conversely if ttt = Azzz+ = Azzz−, then degzzz = |ttt| by the definition of degzzz and |ttt|. ��
Lemma 5.1 implies that in considering mutual accessibility between xxx,yyy ∈ Fttt ,

we only need to consider moves of degree smaller than |ttt| or moves zzz with ttt =
Azzz+ = Azzz−. Lemma 5.1 also implies the following simple but useful fact.

Lemma 5.2. Suppose that Fttt = {xxx,yyy} is a two-element set and suppose that the
supports of xxx and yyy are disjoint. Then Kttt = 2 and xxx,yyy are B|ttt|−1-equivalence classes
by themselves. Furthermore zzz = yyy− xxx belongs to each Markov basis.

Proof. Suppose that yyy is accessible from xxx by B|ttt|−1. Then there exists a nonzero
move zzz with degzzz ≤ |ttt|−1 such that zzz is applicable to xxx. If xxx+ zzz = yyy, then zzz = yyy−xxx
and degzzz = |ttt|, because the supports of xxx and yyy are disjoint. Therefore xxx+ zzz �= yyy and
Fttt contains a third element xxx+ zzz, which is a contradiction. Therefore yyy and xxx are in
different B|ttt|−1-equivalence classes, implying that yyy and xxx are B|ttt|−1-equivalence
classes by themselves.

Now consider moving from xxx to yyy. Because they are B|ttt|−1-equivalence classes
by themselves, no nonzero move zzz of degree degzzz < |ttt| is applicable to xxx. By
Lemma 5.1, only moves zzz with ttt = Azzz+ = Azzz− are applicable to xxx. If any such
move is different from yyy− xxx, then as above Fttt contains a third element. It follows
that in order to move from xxx to yyy, we have to move by exactly one step using the
move zzz = yyy− xxx. Therefore zzz has to belong to any Markov basis. ��

Lemma 5.2 can be slightly modified to yield the following result for the case
where supports of xxx and yyy are not necessarily disjoint.
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Lemma 5.3. Suppose that Fttt = {xxx,yyy} is a two-element set. Then zzz = yyy−xxx belongs
to each Markov basis.

Proof. If the supports of xxx and yyy are disjoint, then the result is already contained
in Lemma 5.2. Otherwise let vvv = min(xxx,yyy) and consider yyy− vvv and xxx− vvv. Then the
supports of yyy− vvv and xxx− vvv are disjoint and by Lemma 5.2 again

zzz = (yyy− vvv)− (xxx− vvv) = yyy− xxx

belongs to each Markov basis. ��
The following lemma concerns replacing a move by series of moves.

Lemma 5.4. Let B be a set of moves and let zzz0 �∈ B be another nonzero move.
Assume that zzz+0 is accessible from zzz−0 by B. Then for each xxx, to which zzz0 is
applicable, xxx+ zzz0 is accessible from xxx by B.

This lemma shows that if zzz+0 is accessible from zzz−0 by B, then we can always
replace zzz0 by a series of moves from B.

Proof. Suppose that zzz0 is applicable to xxx. Then we assume xxx ≥ zzz−0 without loss of
generality. By the definition of accessibility (cf. (5.1)), we can move from zzz−0 to zzz+0
by moves from B without causing negative elements on the way. Then the same
sequence of moves can be applied to xxx without causing negative elements on the
way, leading from xxx to xxx+ zzz0. ��

Now we are ready to prove Theorem 5.1 and its corollaries.

Proof (Theorem 5.1). Let B be a minimal Markov basis. For each zzz ∈ Bn \
(B ∩ Bn), zzz+ is accessible from zzz− by B ∩ Bn, because no move of degree
greater than n is applicable to zzz+ as stated in Lemma 5.1. Considering this fact and
Lemma 5.4, it follows that Bn and B ∩ Bn induce the same equivalence classes in
Fttt , |ttt|= n+ 1. Fix a particular ttt. Write

{zzz1, . . . ,zzzL}= B ∩ Bttt ,

where Bttt is the set of moves belonging to Fttt defined in (5.4). For any j =
1, . . . ,L, let

xxx = zzz+j , yyy = zzz−j .

If xxx and yyy are in the same B|ttt|−1-equivalence class, then by Lemma 5.4, zzz j can be
replaced by a series of moves of lower degree from B and B \ {zzz j} remains to
be a Markov basis. This contradicts the minimality of B. Therefore zzz+j and zzz−j are
in two different B|ttt|−1-equivalence classes connecting them. Now we consider an
undirected graph whose vertices are B|ttt|−1-equivalence classes of Fttt and whose
edges are moves zzz1, . . . ,zzzL. Considering that B is a Markov basis, and no move of
degree greater than |ttt| is applicable to each element of Fttt as stated in Lemma 5.1,
this graph is connected. On the other hand if the graph contains a cycle, then there
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exist zzz j, such that zzz+j and zzz−j are mutually accessible by B \ {zzz j}. By Lemma 5.4
again, this contradicts the minimality of B. It follows that the graph is a tree.
Because any tree with Kttt vertices has Kttt − 1 edges, L = Kttt − 1.

Reversing the above argument, it is now easy to see that if Kttt − 1 moves
zttt,1, . . . ,zttt,Kttt−1 connecting different B|ttt|−1-equivalence classes of Fttt are chosen in
such a way that the equivalence classes are connected into a tree by these moves,
then

B =
⋃

ttt:Kttt≥2

{zttt,1, . . . ,zttt,Kttt−1}

is a minimal Markov basis. ��
Proof (Corollary 5.1). From our argument preceding Corollary 5.1, it follows
that if the minimal Markov basis is unique, then for each ttt, Fttt itself constitutes
one B|ttt|−1-equivalence class or Fttt is a two-element set {xxxttt,1,xxxttt,2}, such that
xxxttt,1 �∼ xxxttt,2 (mod B|ttt|−1). Therefore we only need to prove the converse. Suppose
that for each ttt, Fttt itself constitutes one B|ttt|−1-equivalence class or Fttt is a
two-element set. By Lemma 5.3, for each two-element set Fttt = {xxx,yyy}, the move
zzz = yyy− xxx belongs to each Markov basis. However, by Theorem 5.1 each minimal
Markov basis consists only of these moves. Therefore a minimal Markov basis is
unique. ��
Proof (Corollary 5.2). By Lemma 5.3, indispensable moves belong to each Markov
basis. Therefore if the set of indispensable moves forms a Markov basis, then it is
the unique minimal Markov basis.

On the other hand if the set of indispensable moves does not constitute a Markov
basis, then there is a term with Kttt ≥ 3 in (5.5) and in this case a minimal Markov
basis B is not unique as discussed after Theorem 5.1.

From these considerations it is obvious that if the unique minimal Markov basis
exists, it coincides with the set of indispensable moves. ��

5.3 Minimum Fiber Markov Basis

In this section we discuss the union of all minimal Markov bases and define the
minimum fiber Markov basis. Let zzz = zzz+ − zzz− be a move of degree n. We call zzz
nonreplaceable by lower degree moves if

zzz+ �∼ zzz− (mod Bn−1), (5.7)

that is, if zzz connects different Bn−1-equivalence classes of Fttt � zzz+. Clearly an
indispensable move is nonreplaceable by lower degree moves. Let

BMF = {zzz | zzz is nonreplaceable by lower degree moves}. (5.8)
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We call BMF the minimum fiber Markov basis. In actuality, we have the following
fact.

Proposition 5.1. BMF is the union of all minimal Markov bases.

Proof. From the argument of the previous section, for all minimal Markov bases B,
the set of sufficient statistics

{ttt | ttt = Azzz+ = Azzz−,zzz ∈ B}= {ttt | Fttt is not a single B|ttt|−1-equivalence class}

is common and it is equal to the set of fibers of the moves in BMF. A minimal
Markov basis is constructed by arbitrarily choosing moves zzz connecting different
B|ttt|−1-equivalence classes of Fttt into a tree. Because BMF is the union of all these
moves, it is the union of all minimal Markov bases. ��

By construction the minimum fiber Markov basis is invariant in the sense of
Chap. 7.

5.4 Examples of Minimal Markov Bases

5.4.1 One-Way Contingency Tables

We start with the simplest case of one-way contingency tables. Let xxx = (xi) be an
I-dimensional frequency vector and A = (1, . . . ,1) = 111′I . In this case, ttt is the sample
size n. This situation corresponds to testing the homogeneity of mean parameters
for I independent Poisson variables conditional on the total sample size n. In this
case, a minimal Markov basis is formed as a set of I − 1 degree 1 moves, but is not
unique.

A minimal Markov basis is constructed as follows. First consider the case of
n = |ttt|= 1. There are I elements in Fttt as

Fttt = {eee1, . . . ,eeeI}.

Each element xxx ∈ Fttt forms an equivalence class by itself. To connect these points
into a tree, there are II−2 ways of choosing I − 1 degree 1 moves by Cayley’s
theorem (see, e.g., Chap. 4 of Wilson [149]). One example is

B = {eee1 − eee2,eee2 − eee3, . . . ,eeeI−1 − eeeI}.

It is easily verified that no move of degree larger than 1 is needed.
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5.4.2 Independence Model of Two-Way Contingency Tables

The next example is the independence model of two-way contingency tables
discussed in Chaps. 1 and 2. In Theorem 2.1 we have shown that the set of degree 2
moves displayed as

+1 −1
−1 +1

(5.9)

is a Markov basis. In addition, this is the unique minimal Markov basis.
Indeed, consider marginal frequencies, where the ith row sum, the i′th row sum,

the jth column sum, and the j′th column sum are ones and all other marginal
frequencies are zeros. Then the relevant marginal frequencies are displayed as
follows.

j j′

i 1
i′ 1

1 1 2

.

Clearly there are only two elements of this fiber:

1 0
0 1

,
0 1
1 0

.

The move in (5.9) is the difference of these two elements and hence it is
indispensable.

5.4.3 The Unique Minimal Markov Basis for the Lawrence
Lifting

One remarkable example of the existence of the unique minimal Markov basis is the
Lawrence lifting Λ(A) in Sect. 4.6. In Proposition 4.3 we gave the Graver basis of
Λ(A). We now show that it is actually the unique minimal Markov basis of Λ(A), by
showing that each move in (4.25) is indispensable. This also shows that the Graver
basis for the configuration A is finite, because a minimal Markov basis for Λ(A) is
finite.

Proposition 5.2. For the Lawrence lifting Λ(A), the Graver basis given by (4.25)
is the unique minimal Markov basis

Proof. Let zzz = zzz+ − zzz− be a conformally primitive move for A and let ttt = Azzz+.
Consider the fiber of (

zzz
−zzz

)
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for Λ(A). Note that

(
zzz
−zzz

)+

=

(
zzz+

zzz−

)
,

(
zzz
−zzz

)−
=

(
zzz−

zzz+

)
.

Then

⎛
⎝ ttt

ttt
zzz++ zzz−

⎞
⎠= Λ(A)

(
zzz+

zzz−

)
= Λ(A)

(
zzz−

zzz+

)
, where Λ(A) =

⎛
⎝ A 0

0 A
Eη Eη

⎞
⎠ .

Now suppose that

⎛
⎝ ttt

ttt
zzz++ zzz−

⎞
⎠= Λ(A)

(
xxx
yyy

)
=

⎛
⎝ Axxx

Ayyy
xxx+ yyy

⎞
⎠ .

Then zzz+,zzz−,xxx,yyy ∈Fttt for the configuration A. Note that supp(zzz+) ∩ supp(zzz−) = /0.
Now decomposing xxx,yyy into these disjoint supports write

xxx = xxx1 + xxx2, yyy = yyy1 + yyy2, s.t. supp(xxx1),supp(yyy1)⊂ supp(zzz+),

supp(xxx2),supp(yyy2)⊂ supp(zzz−).

Then by zzz++ zzz− = xxx+ yyy we have

zzz+ = xxx1 + yyy1, zzz− = xxx2 + yyy2.

This implies

ttt = Axxx1 +Ayyy1 = Axxx2 +Ayyy2.

On the other hand ttt = Axxx = Axxx1 +Axxx2. Similarly ttt = Ayyy1 +Ayyy2. Hence

000 = (Axxx1 +Ayyy1)− (Axxx1 +Axxx2) = A(yyy1 − xxx2).

Similarly 000 = A(xxx1 − yyy2). Then

zzz = zzz+− zzz− = (xxx1 + yyy1)− (xxx2 + yyy2)

= (yyy1 − xxx2)+ (xxx1 − yyy2),

which is a conformal sum. By primitiveness of zzz, either yyy1 − xxx2 = 0 or xxx1 − yyy2 = 0.
It follows that {(

zzz+

zzz−

)
,

(
zzz−

zzz+

)}

is a two-element fiber for Λ(A). ��
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Concerning the finiteness of the Graver basis, we cite the following important
theoretical upper bound to the highest degree of elements in the Graver basis. In
Definition 3.3 the toric ideal is defined in terms of kerZ A. When we remove linearly
dependent rows from the configuration A, kerZ A does not change. Hence we can
assume without loss of generality that the rows of A : ν×η are linearly independent.

Proposition 5.3 (Corollary 4.15 of Sturmfels [139]). The degree of primitive
moves for the configuration A with linearly independent rows is bounded from
above by

1
2
(ν + 1)(η −ν)D(A),

where

D(A) = max{|det(aaai1 , . . . ,aaaiν )| | 1 ≤ i1 < · · ·< iν ≤ η}
is the maximum of the absolute value of the determinants of ν ×ν submatrices of A.

For the case that the semigroup generated by the columns of A is normal, the
following much better upper bound on Markov bases is known.

Proposition 5.4 (Theorem 13.14 of Sturmfels [139]). Let A : ν ×η be a configu-
ration such that the semigroup generated by columns of A is normal. Then the toric
ideal IA is generated by binomials of degree at most ν .

5.5 Indispensable Monomials

Extending the notion of indispensable moves, in this section we define indispensable
monomials of a toric ideal and establish some of their properties. Indispensable
monomials were introduced in [19]. They are useful for searching for indispensable
binomials of a toric ideal and for proving the existence or nonexistence of a unique
minimal system of binomial generators of a toric ideal. In this section we identify a
frequency vector xxx with a monomial uuuxxx and use two notations interchangeably.

First we define an indispensable monomial. Hereafter, we say that a Markov basis
B contains xxx if it contains a move zzz containing xxx (i.e., zzz+ = xxx or zzz− = xxx holds) by
abusing the terminology.

Definition 5.2. A monomial uuuxxx is indispensable if every system of binomial
generators of IA contains a binomial f such that uuuxxx is a term of f .

We also call a frequency vector xxx indispensable if uuuxxx is an indispensable mono-
mial. From this definition, any Markov basis contains all indispensable monomials.
Therefore the set of indispensable monomials is finite. Note that both terms of an
indispensable binomial uuuzzz+ − uuuzzz− are indispensable monomials, but the converse
does not hold in general.
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Now we present an alternative definition.

Definition 5.3. A frequency vector xxx is a minimal multielement if |FAxxx| ≥ 2 and
|FA(xxx−eeeiii)|= 1 for every iii ∈ supp(xxx).

Here xxx− eeeiii is the frequency vector obtained by subtracting one frequency from xxx in
the cell iii.

Proposition 5.5. xxx is an indispensable monomial if and only if xxx is a minimal
multielement.

Proof. First, we suppose that xxx is a minimal multielement and want to show that it
is an indispensable monomial. Let n = degxxx and consider the fiber FAxxx. We claim
that {xxx} forms a single Bn−1-equivalence class. In order to show this, we argue
by contradiction. If {xxx} does not form a single Bn−1-equivalence class, then there
exists a move zzz with degree less than or equal to n− 1, such that

xxx+ zzz = (xxx− zzz−)+ zzz+ ∈ FAxxx.

Inasmuch as degxxx = n, degzzz ≤ n− 1, we have 000 �= xxx− zzz− and

supp(xxx) ∩ supp(xxx+ zzz) �= /0.

Therefore we can choose iii ∈ supp(xxx)∩ supp(xxx+ zzz) such that

A(xxx− eeeiii) = A(xxx+ zzz− eeeiii), xxx− eeeiii �= xxx+ zzz− eeeiii.

This shows that |FA(xxx−eeeiii)
| ≥ 2, which contradicts the assumption that xxx is

a minimal multielement. Therefore we have shown that {xxx} forms a single
Bn−1-equivalence class. Because we are assuming that |FAxxx| ≥ 2, there exists
some other Bn−1-equivalence class in FAxxx. By Theorem 5.1 each Markov basis
has to contain a move connecting {xxx} to another equivalence class of FAxxx, which
implies that each Markov basis has to contain a move zzz containing xxx. We now have
shown that each minimal multielement has to be contained in each Markov basis;
that is, a minimal multielement is an indispensable monomial.

Now we show the converse. It suffices to show that if xxx is not a minimal
multielement, then xxx is a dispensable monomial. Suppose that xxx is not a minimal
multielement. If xxx is a 1-element (|FAxxx| = 1), obviously it is dispensable. Hence
assume |FAxxx| ≥ 2. In the case that FAxxx is a single Bn−1-equivalence class, no move
containing xxx is needed in a minimal Markov basis by Theorem 5.1. Therefore we
only need to consider the case that FAxxx contains more than one Bn−1-equivalence
class. Because xxx is not a minimal multielement, there exists some iii ∈ supp(xxx) such
that |FA(xxx−eeeiii)

| ≥ 2. Then there exists yyy �= xxx− eeeiii, such that Ayyy = A(xxx− eeeiii). Noting
that degyyy = deg(xxx− eeeiii) = n− 1, a move of the form

zzz = yyy− (xxx− eeeiii) = (yyy+ eeeiii)− xxx
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satisfies 0 < degzzz ≤ n− 1. Then

yyy+ eeeiii = xxx+ zzz

and xxx and yyy+ eeeiii belong to the same Bn−1-equivalence class of FAxxx. Because xxx �=
yyy+eeeiii, Theorem 5.1 states that we can construct a minimal Markov basis containing
yyy+ eeeiii, but not containing xxx. Therefore xxx is a dispensable monomial. ��

We give yet another definition.

Definition 5.4. xxx is a minimal iii-lacking 1-element if |FAxxx|= 1, |FA(xxx+eeeiii)| ≥ 2, and
|FA(xxx+eeeiii−eeejjj)|= 1 for each jjj ∈ supp(xxx).

We then have the following result.

Proposition 5.6. The following three conditions are equivalent: (1) xxx is an indis-
pensable monomial, (2) for each i∈ supp(xxx), xxx−eeeiii is a minimal iii-lacking 1-element,
(3) for some iii ∈ supp(xxx), xxx− eeeiii is a minimal iii-lacking 1-element.

By the previous theorem we can replace the condition (1) by the condition that xxx
is a minimal multielement.

Proof. (1) ⇒ (2). Suppose that xxx is a minimal multielement. Then for any iii ∈
supp(xxx), xxx − eeeiii is a 1-element and |FA((xxx−eeeiii)+eeeiii)

| = |FAxxx| ≥ 2. If xxx − eeeiii is not
a minimal iii-lacking 1-element, then for some jjj ∈ supp(xxx − eeeiii), |FA(xxx−eee jjj)

| ≥ 2.
However, jjj ∈ supp(xxx−eeeiii)⊂ supp(xxx) and |FA(xxx−eee jjj)

| ≥ 2 contradicts the assumption
that xxx is a minimal multielement.

It is obvious that (2)⇒ (3).
Finally we prove (3) ⇒ (1). Suppose that for some iii ∈ supp(xxx), xxx − eeeiii is a

minimal iii-lacking 1-element. Note that |FAxxx|= |FA((xxx−eeeiii)+eeeiii)
| ≥ 2. Now consider

jjj ∈ supp(xxx). If jjj ∈ supp(xxx − eeeiii) then |FA(xxx−eee jjj)
| = |FA((xxx−eeeiii)+eeeiii−eeejjj)

| = 1. On
the other hand if jjj �∈ supp(xxx − eeeiii), then jjj = iii because jjj ∈ supp(xxx). In this case
|FA(xxx−eeejjj)|= 1. This shows that xxx is a minimal multielement. ��

Proposition 5.6 suggests the following: Find any 1-element xxx. It is often the case
that each eeeiii, iii = 1, . . . ,η , is a 1-element. Randomly choose 1 ≤ iii ≤ η and check
whether xxx + eeeiii remains to be a 1-element. Once |Fxxx+eeeiii | ≥ 2, then subtract eee jjjs,
jjj �= iii, one by one from xxx such that it becomes a minimal iii-lacking 1-element. We can
apply this procedure for finding indispensable monomials of some actual statistical
problem.

We illustrate this procedure with an example of a 2× 2× 2 contingency table.
Consider the following problem where η = 8,ν = 4, and A is given as

A =

⎛
⎜⎜⎝

1 1 1 1 1 1 1 1
1 1 1 1 0 0 0 0
1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0

⎞
⎟⎟⎠ .
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We write indeterminates as

uuu = (u111,u112,u121,u122,u211,u212,u221,u222).

To find indispensable monomials for this problem, we start with the monomial uuuxxx =
u111 and consider xxx+ eeeiii, i ∈ I . Then we see that

• u2
111,u111u112,u111u121,u111u211 are 1-element monomials

• u111u122,u111u212,u111u221 are 2-element monomials
• u111u222 is a 4-element monomial.

From this, we found four indispensable monomials, u111u122,u111u212,u111u221, and
u111u222, because each of u122,u212,u221,u222 is a 1-element monomial.

Starting from the other monomials, similarly, we can find the following list of
indispensable monomials:

• u111u122,u111u212,u111u221,u112u121,u112u211,u112u222,u121u222,u121u211,
u122u221,u122u212,u211u222,u212u221, each of which is a 2-element monomial.

• u111u222,u112u221,u121u212,u122u211, each of which is a 4-element monomial.

The next step is to consider the newly produced 1-element monomials,
u2

111,u111u112,u111u121,u111u211, and so on. For each of these monomials, consider
adding eeeiii, iii ∈ I one by one, checking whether they are multielement. For example,
we see that the monomials such as

u3
111,u

2
111u112,u111u2

112, . . .

are again 1-element monomials (and we have to consider these 1-element monomi-
als in the next step). On the other hand, monomials such as

u2
111u122,u111u112u122,u

2
111u222,u111u112u221, . . .

are multielement monomials. However, it is seen that they are not minimal
multielement, inasmuch as

u111u122,u112u122,u111u222,u112u221, . . .

are not 1-element monomials. To find all indispensable monomials for this problem,
we have to repeat the above procedure for monomials of degree 4,5, . . .. Indis-
pensable monomials belong to any Markov basis, in particular to the Graver basis,
therefore Proposition 5.3 again gives an upper bound for the degree of indispensable
monomials and we can stop at this bound.

We mention that analogous to Theorem 2.4 in [111], the set of indispensable
monomials is characterized as the intersection of monomials in reduced Gröbner
bases with respect to all lexicographic term orders. Further characterizations of
indispensable binomials and indispensable monomials are given in [31, 63, 115].



Chapter 6
Method of Distance Reduction

6.1 Distance Reducing Markov Bases

Throughout this book, we use the method of distance reduction (or a distance-
reducing argument) of Takemura and Aoki [143] for finding a Markov basis for a
given configuration. We have already seen a typical example in Sect. 2.1 for proving
that the set of basic moves in (2.4) forms a Markov basis for the independence model
of I × J contingency tables. In this section we first formalize the idea of distance
reduction by a set of moves.

Consider a metric d(xxx,yyy) on a fiber Fttt . Although we are mainly concerned with
the 1-norm in the following, here we consider a general metric. A metric d = dttt on
Fttt can be defined in various ways. If a metric d is defined on the whole space of
frequency vectors X = N

|I |, we can consider the restriction of d to each Fttt

dttt(xxx,yyy) = d(xxx,yyy), xxx,yyy ∈ Fttt .

If d(·) is a norm on the set Z
|I | of integer vectors, such as the 1-norm |zzz| =

∑iii∈I |z(iii)|, dttt is defined by dttt(xxx,yyy) = d(xxx − yyy). For notational simplicity we
suppress the subscript ttt in dttt hereafter.

Now we introduce the notion of a distance reduction by a set of moves. Let B be
a set of moves. We call B d-reducing for xxx,yyy ∈ Fttt if there exists an element zzz ∈ B
and ε = ±1 such that εzzz is applicable to xxx or yyy and we can decrease the distance;
that is,

xxx+ εzzz ∈ Fttt and d(xxx+ εzzz,yyy)< d(xxx,yyy), or

yyy+ εzzz ∈ Fttt and d(xxx,yyy+ εzzz)< d(xxx,yyy). (6.1)

We simply call B d-reducing if B is d-reducing for every xxx,yyy(�= xxx) ∈ Fttt and for
every ttt. Alternatively we say that B is norm-reducing if it is clear which metric d
is used in the context.

S. Aoki et al., Markov Bases in Algebraic Statistics, Springer Series
in Statistics 199, DOI 10.1007/978-1-4614-3719-2 6,
© Springer Science+Business Media New York 2012
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We call B strongly d-reducing for xxx,yyy ∈ Fttt if there exist elements zzz1,zzz2 ∈ B
and ε1,ε2 =±1 such that xxx+ ε1zzz1 ∈ Fttt , yyy+ ε2zzz2 ∈ Fttt and

d(xxx+ ε1zzz1,yyy)< d(xxx,yyy) and d(xxx,yyy+ ε2zzz2)< d(xxx,yyy). (6.2)

We call B strongly d-reducing if B is strongly d-reducing for every xxx,yyy(�= xxx) ∈ Fttt

and for every ttt. Clearly if B is strongly d-reducing, then B is d-reducing.
The following fact on d-reducing set of moves B is obvious, but very useful.

Proposition 6.1. Let a metric d be given on each fiber Fttt . A set of finite moves B
is a Markov basis if it is d-reducing.

Instead of a formal proof, we give the following argument on how two states are
connected by a set of moves from B.

If B is d-reducing, then for every xxx,yyy(�= xxx) ∈ Fttt , there exist k > 0, εl = ±1,
zzzl ∈ B, xxxl ∈ Fttt , yyyl ∈ Fttt , l = 1, . . . ,k, with the following properties.

(i) xxxk = yyyk.
(ii) d(xxxl ,yyyl)< d(xxxl−1,yyyl−1), l = 1, . . . ,k, where xxx0 = xxx and yyy0 = yyy.

(iii) (xxxl ,yyyl) = (xxxl−1 + εlzzzl ,yyyl−1) or (xxxl ,yyyl) = (xxxl−1,yyyl−1 + εlzzzl), l = 1, . . . ,k.

Given the above sequence of frequency vectors, we can move from xxx to xxxk = yyyk
and then reversing the moves we can move from yyyk to yyy. Thus yyy is accessible from
xxx by B. Note that in this sequence of moves the distances

d(xxx,xxx1), . . . ,d(xxx,xxxk),d(xxx,yyyk−1) . . . ,d(xxx,yyy)

might not be monotone increasing.
On the other hand, if B is strongly d-reducing, then starting from yyy, we can

always decrease the distance by moving from the side of yyy; that is, we can find k > 0
and yyy = yyy0,yyy1, . . . ,yyyk−1,yyyk = xxx in Fttt such that yyyl = yyyl−1 + εlzzzl , εl = ±1, zzzl ∈ B,
l = 1, . . . ,k, and

d(xxx,yyyk−1),d(xxx,yyyk−2), . . . ,d(xxx,yyy)

are strictly increasing.
Note that a Markov basis is not necessarily d-reducing. By a Markov basis, we

can connect any two states xxx,yyy in the same fiber as

xxx = xxx0 → xxx1 → ··· → xxxk−1 → xxxk = yyy

by the moves in a Markov basis. Hence by moving from xxx to yyy, we can eventually
decrease the distance between xxx and yyy to 0. However, in difficult cases, we might
need to make a detour, so that initially the distance increases or stays the same as

d(xxx,yyy)≤ d(xxx1,yyy) and d(xxx,yyy)≤ d(xxx,xxxk−1).
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6.2 Examples of Distance-Reducing Proofs

In this section we give two examples of distance-reducing arguments. The first
example is a minimal Markov basis for a complete independence model of three-
way contingency tables. The second example is a minimal Markov basis for the
Hardy–Weinberg model. These examples are treated again in Sect. 7.2 from the
viewpoint of symmetry of Markov bases.

6.2.1 The Complete Independence Model of Three-Way
Contingency Tables

Consider I×J×K contingency tables. Under the complete independence model the
probability of the cell (i, j,k) is written as

pi jk = pi++p+ j+p++k,

where pi++, p+ j+, p++k denote one-dimensional marginal probabilities. With lex-
icographic ordering of indices, the configuration A for the complete independence
model of three-way tables is written as

A =

⎛
⎝111′I ⊗ 111′J ⊗EK

111′I ⊗EJ ⊗ 111′K
EI ⊗ 111′J ⊗ 111′K

⎞
⎠ .

A sufficient statistic consists of one-dimensional marginal frequencies. In this case,
we construct a minimal Markov basis as follows.

There are two obvious patterns of moves of degree 2. An example of moves of
type I is

z111 = z222 = 1, z211 = z122 =−1,

with the other elements being 0. For the case of a 2× 2× 2 table, this move can be
displayed as follows.

+1 0
0 −1

−1 0
0 +1

.

All the other moves of type I are obtained by permutation of indices or axes.
An example of moves of type II is

z111 = z122 = 1, z112 = z121 =−1,

with the other elements being 0. For the case of a 2× 2× 2 table, this move can be
displayed as follows.
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+1 −1
−1 +1

0 0
0 0

.

All the other moves of type II are obtained by permutation of indices or axes. Let
B∗ be the set of type I and type II degree 2 moves. Then we have the following
proposition.

Proposition 6.2. B∗ is a Markov basis for three-way contingency tables with fixed
one-dimensional marginals.

Proof. In this problem it is obvious that no degree 1 move is applicable to any
frequency vector. Furthermore it is easy to verify that every degree 2 move is either
of type I or type II. It remains to verify that for degttt ≥ 3, Fttt itself constitutes one
B∗-equivalence class. Suppose that for some ttt, Fttt consists of more than one B∗-
equivalence class. Let F1,F2 denote two different B∗-equivalence classes. Choose
xxx ∈ F1,yyy ∈ F2 such that

|zzz|= |yyy− xxx|= ∑
i, j,k

|yi jk − xi jk|

is minimized. Because xxx and yyy are chosen from different B∗-equivalence classes,
this minimum has to be positive. In the following we let z111 > 0 without loss of
generality.

Case 1. Suppose that there exists a negative cell zi011 < 0, i0 ≥ 2. Then because
∑ j,k zi0 jk = 0, there exists ( j,k), j+ k > 2, with zi0 jk > 0. Then the four cells

(1,1,1), (i0,1,1), (i0, j,k), (1, j,k)

are in the positions of either a type I move or a type II move. In either case we can
apply a type I move or a type II move to xxx or yyy and make |zzz| = |yyy− xxx| smaller,
which is a contradiction. This argument shows that zzz cannot contain both positive
and negative elements in any one-dimensional slice.

Case 2. Now we consider the remaining case, where no one-dimensional slice of
zzz contains both positive and negative elements. Because ∑ j,k z1 jk = 0, there exists
( j1,k1), j1,k1 ≥ 2, such that z1 j1k1 < 0. Similarly there exists (i1,k2), i1,k2 ≥ 2, such
that zi11k2 < 0. Then the four cells

(1, j1,k1),(1,1,k1),(i1,1,k2),(i1, j1,k2)

are in the positions of a type II move (if k1 = k2) or a type I move (if k1 �= k2) and
we can apply a degree 2 move. By doing this, |zzz|= |yyy−xxx| may remain the same, but
now z11k1 becomes negative and this case reduces to Case 1. Therefore Case 2 itself
is a contradiction. ��

We show in the following that B∗ is not a minimal Markov basis. Let zzz be a
degree 2 move and let ttt = Azzz+. If zzz is a type II move, it is easy to verify that Fttt is
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a two-element set {zzz+,zzz−}. Therefore degree 2 moves of type II are indispensable.
On the other hand, if zzz is a type I move, Fttt is a four-element set. For the 2× 2× 2
case, let ttt = (z1++,z2++,z+1+,z+2+,z++1,z++2)

′ = (1,1,1,1,1,1)′. Then we have

F(1,1,1,1,1,1)′ =

{
1 0
0 0

0 0
0 1

,
0 1
0 0

0 0
1 0

,
0 0
1 0

0 1
0 0

,
0 0
0 1

1 0
0 0

}
.

To connect these elements to a tree, only three moves of type I are needed. In the
2× 2× 2 case, there are 44−2 = 16 possibilities, such as

{
+1 −1
0 0

0 0
−1 +1

,
0 +1
−1 0

0 −1
+1 0

,
0 0
+1 −1

−1 +1
0 0

}

or {
+1 −1
0 0

0 0
−1 +1

,
+1 0
−1 0

0 −1
0 +1

,
+1 0
0 −1

−1 0
0 +1

}

and so on. From these considerations, a minimal Markov basis for I × J×K tables
consists of

3

(
I
2

)(
J
2

)(
K
2

)

degree 2 moves of type I and

I

(
J
2

)(
K
2

)
+ J

(
I
2

)(
K
2

)
+K

(
I
2

)(
J
2

)

degree 2 moves of type II.

6.2.2 Hardy–Weinberg Model

We next discuss the Hardy–Weinberg model. It is a standard model in population ge-
netics. Consider a multiallele locus with alleles A1,A2, . . . ,AI . The allele frequency
data are usually given as the genotype frequency. The probability of the genotype
AiA j in an individual from a random breeding population is given by

P(AiA j) =

{
q2

i (i = j)

2qiq j (i �= j),

where qi is the proportion of the allele Ai, i = 1, . . . , I. Because the Hardy–Weinberg
law plays an important role in the field of population genetics and often serves as a
basis for genetic inference, much attention has been paid to tests of the hypothesis
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that a population being sampled is in the Hardy–Weinberg equilibrium against the
hypothesis that disturbing forces cause some deviation from the Hardy–Weinberg
ratio. See [43, 67, 90].

For the Hardy–Weinberg model, the frequency vector is written as

xxx = (x11,x12, . . . ,x1I ,x22,x23, . . . ,x2I,x33, . . . ,xII)
′.

If the frequencies are written in a matrix, only the upper triangular part has the
frequencies. A sufficient statistic ttt = (t1, . . . , tI)′ is the frequencies of the alleles Ai ,
i = 1, . . . , I, and is given as

ti = 2xii +∑
j �=i

xi j, i = 1, . . . , I,

where we write xi j = x ji for i > j. The configuration A is an I×(I(I+1)/2
)

matrix.
In terms of the standard basis vectors, the columns of A are written as 2eeei, i= 1, . . . , I
and eeei + eee j, 1 ≤ i < j ≤ I.

Guo and Thompson [67] constructed a connected Markov chain over any fiber.
Their basis consists of three types of degree 2 moves, namely, type 0, type 1, and
type 2. Here “type” refers to the number of nonzero diagonal cells in the move. The
examples of the moves are displayed as

type 0:

0 +1 −1 0
0 0 −1

0 +1
0

, type 1:

+1 −1 −1 0
0 +1 0

0 0
0

, type 2:

+1 −2 0 0
+1 0 0

0 0
0

.

By the distance-reducing argument we first show that these moves form a Markov
basis.

Proposition 6.3. The above three types of moves form a Markov basis for the
Hardy–Weinberg model.

Proof. Suppose that xxx and yyy (yyy �= xxx) are in the same fiber.
First consider the case that xii = yii, i= 1, . . . , I. We look at the type 0 move above.

Because yyy �= xxx, there exist some i < j such that xi j > yi j. By relabeling the levels
we can assume that i = 1, j = 2. Then because 2x11 +∑I

j=2 x1 j = 2y11 +∑I
j=2 y1 j,

there exists some j′ > 2 such that x1 j′ < y1 j′ . We can again assume that j′ = 3. Also
because x12+2x22+∑I

j=3 x2 j = y12+2y22+∑I
j=3 y2 j, there exists some j′′ > 2 such

that x2 j′′ < y2 j′′ . If j′′ �= 3, then we can add a type 0 move to yyy and reduce the distance
|yyy−xxx|. In the case j′′ = 3, we can then find j′′′ > 3 such that x3 j′′′ > y3 j′′′ . We can put
j′′′ = 4. In this case we can subtract a type 0 move from xxx and reduce the distance
|yyy− xxx|.

Now consider the case that there exists some i, such that xii > yii. We can assume
i = 1. If there are 1< j < j′ such that x1 j < y1 j, x1 j′ < y1 j′ , then letting j = 2, j′ = 3,
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we can add a type 1 move to yyy and reduce |yyy− xxx|. On the other hand, if there is only
one j > 1 satisfying x1 j ≤ y1 j, then y1 j ≥ 2 holds and we can add a type 2 move to
yyy and reduce |yyy− xxx|. ��

We now show the above basis is not minimal and a minimal basis is not unique.
Consider Fttt with degttt = 2 for the above three types of moves. If ttt = Azzz+ = Azzz−
for moves zzz of type 1 or type 2, there are two elements in Fttt and the move of type
1 or type 2 is the difference of these two elements. Hence type 1 and type 2 moves
are indispensable.

But if ttt = Azzz+ = Azzz− for a move zzz of type 0, there are three elements in Fttt . Then
to connect these three elements to form a tree, we can choose two moves to construct
a minimal Markov basis. (There are three ways of doing this.) For example, consider
the case of I = 4 and ttt = (1,1,1,1)′. F(1,1,1,1)′ is written as

F(1,1,1,1)′ =

⎧⎪⎪⎨
⎪⎪⎩

0 1 0 0
0 0 0

0 1
0

,

0 0 1 0
0 0 1

0 0
0

,

0 0 0 1
0 1 0

0 0
0

⎫⎪⎪⎬
⎪⎪⎭

.

To connect these three elements to a tree, any two of the following type 0 moves of
degree 2,

0 +1 −1 0
0 0 −1

0 +1
0

,

0 +1 0 −1
0 −1 0

0 +1
0

,

0 0 −1 +1
0 +1 −1

0 0
0

,

can be included in a minimal Markov basis. Accordingly, I(I − 1)(I− 2)(I− 3)/12
moves of type 0, I(I − 1)(I − 2)/2 moves of type 1 and I(I − 1)/2 moves of type 2
constitute a minimal Markov basis.

6.3 Graver Basis and 1-Norm Reducing Markov Bases

The 1-norm |zzz| = ∑iii∈I |ziii| = 2degzzz on the set Z|I | of integer vectors is a natural
norm to consider for Markov bases. In this section we discuss the relation between
the Graver basis and the 1-norm reducing Markov bases. We show that the Graver
basis is always 1-norm reducing.

We have the following proposition.

Proposition 6.4. The Graver basis is strongly 1-norm reducing.

Proof. Let xxx,yyy ∈ Fttt , yyy �= xxx, be in the same fiber. Express yyy− xxx as a conformal sum
of nonzero elements of the Graver basis:

yyy− xxx = zzz1 + · · ·+ zzzm.
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Then |yyy− xxx| = |zzz1|+ · · ·+ |zzzm|. Now zzz1 can be subtracted from yyy and at the same
time zzz1 can be added to xxx to give

|(yyy− zzz1)− xxx|= |yyy− (xxx+ zzz1)|= |zzz2|+ · · ·+ |zzzm|< |yyy− xxx|. ��

Note that the Graver basis is rich enough that we can take zzz1 = zzz2 in the definition
of strong distance reduction in (6.2).

Proposition 6.5. A set of moves B is 1-norm reducing if and only if for every
element zzz = zzz+− zzz− of the Graver basis, B is 1-norm reducing for zzz+,zzz−.

Proof. We only have to prove sufficiency. Let xxx,yyy ∈ Fttt be arbitrarily given and
let yyy− xxx = zzz1 + · · ·+ zzzm be a conformal sum of elements of the Graver basis. By
assumption B is 1-norm reducing for zzz+1 ,zzz

−
1 . Among four possible cases, without

loss of generality, consider the case that zzz ∈ B is applicable to zzz+1 and

|(zzz+1 + zzz)− zzz−1 |< |zzz+1 − zzz−1 |= |zzz1|. (6.3)

Because zzz is applicable to zzz+1 , zzz− ≤ zzz+1 ≤ (yyy− xxx)+. Furthermore (6.3) implies that

/0 �= supp(zzz+)∩ supp(zzz−1 )⊂ supp(zzz+)∩ supp((yyy− xxx)−).

It follows that zzz is applicable to yyy and |(yyy+ zzz)− xxx|< |yyy− xxx|. ��
Note that the same statement holds for strong 1-norm reduction with exactly the

same proof.

Proposition 6.6. A set of moves B is strongly 1-norm reducing if and only if for
every element zzz = zzz+− zzz− of the Graver basis, B is strongly 1-norm reducing for
zzz+,zzz−.

6.4 Some Results on Minimality of 1-Norm Reducing
Markov Bases

In this section we discuss minimality of 1-norm reducing Markov bases. Inasmuch
as the material in this section is not used in other parts of this book, the reader can
skip this section.

Suppose that B is a 1-norm reducing Markov basis. Then any B′ ⊃ B is a 1-
norm reducing Markov basis as well. In view of this, it is of interest to consider
minimality of 1-norm reducing Markov bases. A 1-norm reducing Markov basis
B is minimal if no proper subset of B is a 1-norm reducing Markov basis. For a
1-norm reducing Markov basis B, we can examine each element zzz of B one by
one, and see whether B \ {zzz} remains to be a 1-norm reducing Markov basis. If
B \ {zzz} remains to be 1-norm reducing, we remove zzz, recursively, until none of
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the remaining elements can be removed any further. Then we arrive at a minimal
1-norm reducing Markov basis. Therefore every 1-norm reducing Markov basis B
contains a minimal 1-norm reducing Markov basis.

Exactly the same argument holds concerning minimality of strongly 1-norm
reducing Markov bases. Every strongly 1-norm reducing Markov basis contains a
minimal strongly 1-norm reducing Markov basis.

In Chap. 5 we considered minimality of Markov bases. A similar argument can
be applied to the question of minimality of 1-norm reducing Markov bases.

In order to study this minimality question we introduce three closely related
notions of degree reduction of a move zzz by other moves. We say that a move
zzz = zzz+ − zzz− is 1-norm reducible by another move zzz′ �= ±zzz if zzz′ is applicable to
zzz+ and |zzz + zzz′| < |zzz| or zzz′ is applicable to zzz− and | − zzz+ zzz′| = |zzz− zzz′| < |zzz|. We
say that a move zzz = zzz+− zzz− is strongly 1-norm reducible by a pair of (other) moves
zzz1,zzz2 �=±zzz if zzz1 is applicable to zzz+ and |zzz+zzz1|< |zzz| and furthermore zzz2 is applicable
to zzz− and |zzz− zzz2|< |zzz|. Finally we say that zzz is 1-norm reducible by a lower degree
move zzz′ if |zzz′|< |zzz| and zzz is 1-norm reducible by zzz′.

Consider the implications among these notions. If zzz is strongly 1-norm reducible
by zzz1,zzz2, then zzz is clearly 1-norm reducible by zzz1 (or zzz2). Now we show that if zzz
is 1-norm reducible by a lower degree move zzz′, then zzz is strongly 1-norm reducible
either by the pair zzz′,zzz+zzz′ or by the pair zzz′−zzz,zzz′. To show this, first consider the case
that zzz′ is applicable to zzz+ and |zzz+ zzz′|< |zzz|. Let zzz′′ = zzz+ zzz′. Then |zzz− zzz′′|= |zzz′|< |zzz|
and we only need to check that zzz′′ is applicable to zzz−. In fact

zzz′′ = zzz+− zzz−+(zzz′)+− (zzz′)− = (zzz+− (zzz′)−)+ (zzz′)+− zzz−

≥ (zzz′)+− zzz−.

This implies that (zzz′′)− ≤ zzz− and zzz′′ is applicable to zzz−. Similarly if zzz′ is applicable
to zzz−, we can check that zzz is strongly 1-norm reducible by the pair zzz′ − zzz,zzz′.

Based on the above observation, we define three notions of irreducibility of a
move. We call zzz 1-norm irreducible if it is not 1-norm reducible by any other move
zzz′ �= zzz. We call zzz strongly 1-norm irreducible if it is not strongly 1-norm reducible
by any pair of other moves. Finally we call zzz 1-norm lower degree irreducible if it is
not 1-norm reducible by any lower degree move. We state the above implications of
the properties of moves, as well as further implications among indispensability and
conformal primitiveness, in the following proposition.

Proposition 6.7. For a move zzz, the following implications hold.

indispensable ⇒ 1-norm irreducible

⇒ strongly 1-norm irreducible

⇒ 1-norm lower degree irreducible

⇒ conformally primitive. (6.4)
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Proof. If zzz is not conformally primitive, then zzz is clearly 1-norm reducible by a
lower degree move. This proves the last implication.

If zzz is 1-norm reducible by zzz′ �= ±zzz, then zzz− �= zzz+ + zzz′ ∈ Fttt or zzz+ �= zzz−+ zzz′ ∈
Fttt , where ttt = Azzz+. Therefore Fttt is not a two-element fiber. Therefore zzz is
not indispensable. This proves the first implication. Other implications hold by
definition. ��

We now state two lemmas.

Lemma 6.1. If zzz is 1-norm reducible by another move zzz′ �= ±zzz, then there exists a
conformally primitive move zzz′′ �= zzz, |zzz′′| ≤ |zzz′|, such that zzz is 1-norm reducible by zzz′′.

Proof. If zzz′ is itself conformally primitive, just let zzz′′ = zzz′. If zzz′ is not conformally
primitive, write zzz′ as a conformal sum zzz′ = zzz1 + · · ·+ zzzm of nonzero elements of
the Graver basis. Among two possible cases, without loss of generality, consider
the case that zzz′ is applicable to zzz+ and |zzz + zzz′| < |zzz|. In this case (zzz′)− ≤ zzz+

and supp((zzz′)+)∩ supp(zzz−) �= /0. Because supp((zzz′)+) = supp(zzz+1 )∪·· ·∪ supp(zzz+m),
there exists some l such that supp((zzzl)

+) ∩ supp(zzz−) �= /0. Furthermore zzz−l ≤
(zzz′)− ≤ zzz+ and |zzzl |< |zzz′| ≤ |zzz|. This implies that zzz is 1-norm reducible by zzz′′ = zzzl �= zzz.

��
Lemma 6.2. Let zzz be a 1-norm irreducible move. Then either zzz or −zzz belongs to
every 1-norm reducing Markov basis.

Proof. We argue by contradiction. Let zzz = zzz+− zzz− be 1-norm irreducible and let
B be a 1-norm reducing Markov basis containing neither zzz nor −zzz. Because B is
1-norm reducing, B is 1-norm reducing for zzz+,zzz−. But this contradicts the 1-norm
irreducibility of zzz in view of (6.1). ��

We say that there exists a unique minimal 1-norm reducing Markov basis if all
minimal 1-norm reducing Markov bases coincide except for sign changes of their
elements. We now state the following proposition.

Proposition 6.8. There exists a unique minimal 1-norm reducing Markov basis if
and only if 1-norm irreducible moves form a 1-norm reducing Markov basis.

Proof. Every 1-norm irreducible move (or its sign change) belongs to every 1-norm
reducing Markov basis, thus if the set of 1-norm irreducible moves is a 1-norm
reducing Markov basis, then it is clearly the unique minimal 1-norm reducing
Markov basis ignoring the sign of each move.

Conversely suppose that 1-norm irreducible moves do not form a 1-norm
reducing Markov basis. Then every 1-norm reducing Markov basis contains a 1-
norm reducible move. Let B be a minimal 1-norm reducing Markov basis and let
zzz0 ∈ B be 1-norm reducible. Consider

B̃ = (B ∪ BGraver)\ {zzz0,−zzz0},
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where BGraver is the Graver basis. We show that B̃ is a 1-norm reducing Markov
basis. If this is the case, B̃ contains a minimal 1-norm reducing Markov basis
different from B even if we change the signs of the elements.

Now by Propositions 6.1 and 6.5, it suffices to show that for every zzz = zzz+ −
zzz− ∈ BGraver, B̃ is 1-norm reducing for zzz+,zzz−. If zzz0 is not conformally primitive,
B̃ ⊃ BGraver and B̃ is 1-norm reducing. Therefore let zzz0 be conformally primitive.
Each conformally primitive zzz = zzz+ − zzz− �= zzz0 is already in B̃ and B̃ is 1-norm
reducing for zzz+,zzz−. The only remaining case is zzz = zzz0 itself, but by Lemma 6.1, zzz0

is 1-norm reducible by a conformally primitive zzz′ �=±zzz0, zzz′ ∈ B̃. ��



Chapter 7
Symmetry of Markov Bases

7.1 Motivations for Invariance of Markov Bases

In this chapter we study properties of Markov bases from the viewpoint of
invariance. This is partly motivated by the fact that Gröbner bases depend on a given
term order and a reduced Gröbner basis does not preserve the symmetry inherent in a
given statistical model. For example, hierarchical models for multiway contingency
tables (cf. Sect. 1.5) are symmetric with respect to permutations of the levels of each
axis of the table. In group-theoretic terminology, the direct product of symmetric
groups acts on the set of multiway tables and hierarchical models are invariant with
respect to this group action.

By utilizing invariance we can give a concise description of Markov bases by
orbit lists. To illustrate this, we consider the no-three-factor interaction model for
three-way tables, which is treated in Chap. 9. In Table 7.1 we list the numbers of
the elements of the unique minimal Markov basis, along with the numbers of the
reduced Gröbner basis elements calculated by 4ti2 [1] and the numbers of the orbits
with respect to the action of the direct product of symmetric groups for the problem
of 3× 3×K (K ≤ 7) contingency tables with fixed two-dimensional marginals. As
we show in Sect. 7.6, a set of moves is partitioned into orbits that are equivalence
classes by the action of the group. As we show in Chap. 9, there are at most six
orbits of indispensable moves for these problems.

In these examples, a minimal Markov basis is unique. Furthermore it is minimal
invariant in the sense of Sect. 7.6. Therefore the representative basis elements for
each orbit contain all the information of the minimal Markov basis. To perform
the Markov chain Monte Carlo simulations using these orbit lists, users can first
randomly choose an orbit, and then apply a random group action to the represen-
tative basis element for each step of the chain. Another interesting consideration is
how to choose a minimal Markov basis if it is not unique. For such cases, different
minimal Markov bases contain different numbers of orbits in general, and some
basis elements in these orbits are not necessarily needed for connectivity.

S. Aoki et al., Markov Bases in Algebraic Statistics, Springer Series
in Statistics 199, DOI 10.1007/978-1-4614-3719-2 7,
© Springer Science+Business Media New York 2012
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Table 7.1 Number of the elements of the unique minimal Markov bases, the reduced
Gröbner bases, and orbits for 3 × 3 × K,K ≤ 7, tables with fixed two-dimensional
marginals

K 3 4 5 6 7

Number of the elements in the unique
minimal Markov basis

81 450 2,670 10,665 31,815

Number of the elements in the
reduced Gröbner basis

110 622 3,240 12,085 34,790

Number of orbits in the unique
minimal Markov basis

4 5 6 6 6

In Table 7.1 we have considered permutation of the levels for each axis. If the
number of levels of the axes is common and if in addition the hierarchical log-linear
model considered is symmetric with respect to permutations of axes, we can further
consider the permutation of the axes themselves. For example in the case of the
3× 3× 3 contingency tables with no three-factor interactions, we can consider the
permutation of the axes. As we show in Chap. 9, if this additional symmetry of axes
is considered, there are only two orbits corresponding to moves of degree 4 and
degree 6, whereas if this additional symmetry is not considered there are four orbits
as indicated in Table 7.1. This question leads to the notion of the largest symmetry
in a given model, which we define in Sect. 7.4.

7.2 Examples of Invariant Markov Bases

In this section we consider two simple examples of invariant Markov bases. They
are the 2× 2× 2 contingency tables with fixed one-dimensional marginals and the
Hardy–Weinberg model, which were already treated in Sect. 6.2.

We use the following notation for our moves. Moves in minimal bases contain
many zero cells. Furthermore, often the nonzero elements of a move contain either 1
or −1. Therefore a move can be concisely denoted by locations of its nonzero cells.
We express a move zzz of degree n as zzz = iii1 · · · iiin − jjj1 · · · jjjn, where iii1, . . . , iiin are the
cells of positive frequencies of zzz and jjj1, . . . , jjjn are the cells of negative frequencies
of zzz. In the case z(iii) > 1, iii is repeated z(iii) times. Similarly jjj is repeated −z( jjj)
times if z( jjj)<−1. We use a similar notation for contingency tables as well. xxx with
degxxx = n is simply denoted as xxx = iii1 · · · iiin.

First consider the 2 × 2 × 2 contingency tables with fixed one-dimensional
marginals. As shown in Sect. 6.2, the minimal Markov basis for this problem is not
unique. Each minimal Markov basis contains six indispensable elements and three
dispensable elements. Consider dispensable elements. The reduced Gröbner basis
with respect to the graded reverse lexicographic order contains three dispensable
moves (binomials) such as

(121)(212)− (111)(222), (122)(211)− (111)(222), (112)(221)− (111)(222).
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It is seen that these three dispensable basis elements are in different orbits with
respect to permutation of levels. On the other hand, another minimal basis is
constructed from three dispensable basis elements such as

(121)(212)− (111)(222), (122)(211)− (111)(222), (112)(221)− (121)(212).

In this basis, the second and the third binomials are in the same orbit. In fact, we see
that (112)(221)− (121)(212) can be produced from (122)(211)− (111)(222) by
interchanging the cell indices 1,2 in the second axis. Accordingly, if we consider an
action of the direct product of symmetric groups, only two basis elements such as

(121)(212)− (111)(222), (122)(211)− (111)(222)

have to be included in our list, because the third basis element can be produced by
permuting the second axis.

Furthermore, because the number of levels is common for three axes in the 2×
2× 2 case, we can also permute the axes. If we consider invariance with respect
to this larger group, then a single representative element among dispensable ones
such as

(112)(221)− (111)(222)

is sufficient to describe an invariant Markov basis.
We now consider the Hardy–Weinberg model of Sect. 6.2.2 for I alleles. The

direct product of symmetric groups is not appropriate in this case, because the
contingency table xxx = {xi j}1≤i≤ j≤I is of an upper triangular form. However, it is
clear that this problem has the symmetry with respect to a simultaneous permutation
of the levels (i.e., alleles). It can be checked (see [12]) that a minimal invariant
Markov basis with respect to this group action consists of three orbits, with the
representative moves given as

(11)(22)− (12)(12), (11)(23)− (12)(13), (12)(34)− (13)(24). (7.1)

In this case, the unique minimal Markov basis does not exist as we have seen in
Sect. 6.2.2. However, the minimal invariant Markov basis given in (7.1) can be
shown to be the unique minimal invariant Markov basis.

7.3 Action of Symmetric Group on the Set of Cells

In this section we formulate the symmetry of a given toric model in terms of the
action of a group on the set of cells. As the most important example we consider
the direct product of symmetric groups acting on the cells of multiway contingency
tables by permutations of levels for each axis. Decomposable models (Chap. 8) and
more general hierarchical models (Chap. 9) are invariant with respect to this group.
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First we give a brief list of definitions and notations of a group action. Basic
facts on group action in statistical problems are found in Chap. 6 of [98] or Chap. 4
of [58]. More comprehensive treatment is given in [56]. Let a group G act (from the
left) on a set I . This means that each element g ∈ G is a map I → I sending iii to
giii, and the following conditions are satisfied

eiii = iii, ∀iii ∈ I , (7.2)

(g1g2)iii = g1(g2iii), ∀g1,g2 ∈ G, ∀iii ∈ I , (7.3)

where e is the identity element of G. Under these conditions, the inverse element
g−1 of g in G is also the inverse of g as a map from I to I . This implies that
each g is a bijection from I to I . In this book as I we are considering the set of
cells, which is a finite set. Hence each g ∈ G is just a permutation of the cells of I
and G is a subgroup of the symmetric group Sη , η = |I |, which is the group of all
permutations of the cells of I .

Define G(iii) = {giii | g ∈ G} as the orbit through iii. Let I /G denote the orbit
space, that is, the set of orbits. The action of G is called transitive, if the whole G is
one orbit. Let Giii = {g | giii = iii} denote the isotropy subgroup (pointwise stabilizer)
of iii in G. If G acts on I , the action of G on the set of functions f on I is induced
by (g f )(iii) = f (g−1iii).

Because the frequency vector xxx is considered as a function I →N, the action of
G on the set X = N

η of frequency vectors is defined as

(gxxx)(iii) = x(g−1iii).

This is again just a permutation of elements of xxx.
Let us write out the permutation matrix for g. (gxxx)(iii) = x(g−1iii) means that the

iiith element of gxxx is the (g−1iii)th element of xxx. Let

Pg = {piii jjj}= {δiii,g jjj} (7.4)

denote an η ×η permutation matrix, where δ is Kronecker’s delta. Then the iiith
row of Pg has 1 at the column jjj = g−1iii and hence the iiith element of Pgxxx is the
(g−1iii)th element of xxx. Equivalently, the (giii)th element of Pgxxx is the iiith element
of xxx. Therefore we have

gxxx = Pgxxx.

From this it follows that

Pg1g2 = Pg1Pg2 , ∀g1,g2 ∈ Sη and Pg−1 = P′
g, ∀g ∈ Sη . (7.5)

Similarly G acts on a move zzz by (gzzz)(iii) = z(g−1iii). If we write zzz = zzz+− zzz−, then

gzzz = Pgzzz = Pgzzz+−Pgzzz− = gzzz+− gzzz−.

We also call a move zzz = zzz+− zzz− symmetric with respect to G if zzz+ = gzzz− for some
g ∈ G. Conversely, a move zzz is asymmetric if G(zzz+) ∩ G(zzz−) = /0.
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As G consider the direct product of symmetric groups, which is our main
example. Let G� = SI� denote the symmetric group on {1, . . . , I�} for � = 1, . . . ,m
and let

G = G1 ×G2 ×·· ·×Gm (7.6)

be the direct product. We write an element of g ∈ G as

g = g1 ×·· ·× gm =

(
1 · · · I1

σ1(1) · · · σ1(I1)

)
×·· ·×

(
1 · · · Im

σm(1) · · · σm(Im)

)
.

G acts on the set of cells I of m-way contingency tables by

iii′ = giii

= (g1i1, . . . ,gmim)

= (σ1(i1), . . . ,σm(im)) . (7.7)

Now we consider the action of G on the set of sufficient statistics T in (4.6). We
go back to the general definition of a group action. Let h : I → T be a surjection.
If the following condition holds,

h(iii) = h(iii′)⇒ h(giii) = h(giii′), ∀g ∈ G, (7.8)

then the action of G on T is induced by defining

gttt = h(giii), where ttt = h(iii). (7.9)

Indeed gttt is well defined, because by (7.8) gttt does not depend on iii such that ttt = h(iii).
Then by choosing iii for each ttt ∈ T , (7.2) and (7.3) for ttt are easily verified as

ettt = h(eiii) = h(iii) = ttt,

(g1g2)ttt = h((g1g2)iii) = h(g1(g2iii)) = g1h(g2iii) = g1(g2h(iii)) = g1(g2ttt).

Note that (7.9) is written as

h(giii) = gh(iii), ∀g ∈ G,∀iii ∈ I . (7.10)

We call h satisfying (7.10) equivariant. We can also say that h and the group action
commute (i.e., hg = gh).

Conversely suppose that G acts on both I and T and the surjection h : I → T
is equivariant. Then

h(iii) = h(iii′) ⇒ gh(iii) = gh(iii′) ⇒ h(giii) = h(giii′)

and (7.8) holds.
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Consider again the direct product of symmetric groups in (7.6). A sufficient
statistic for hierarchical models for contingency tables consists of various marginal
frequencies. Note that G acts on the marginal cells iiiD, D = {s1, . . . ,sk} ⊂ [m] =
{1, . . . ,m}, by

iii′D = giiiD
= (gs1 is1 , . . . ,gsk isk)

= (σs1(is1), . . . ,σsk (isk)).

Hence G acts on marginal tables by

xxx′D = gxxxD = {xD(g
−1iiiD)}iiiD∈ID .

Considering this action simultaneously for various marginals D1, . . . ,Dr ⊂ [m], the
action of G on the sufficient statistic ttt = (xxxD1 , . . . ,xxxDr ) of a hierarchical model is
defined by

gttt = (gxxxD1 , . . . ,gxxxDr).

An important point here is that the map of taking marginal frequencies is
equivariant; that is, we have the following lemma.

Lemma 7.1. (gxxx)D = gxxxD for all g ∈ G and xxx ∈ N
η .

This lemma clearly holds, because taking the marginal sums after permutation of
levels of axes is the same as first taking the marginal sums and permuting the axes
in the marginal cells. By Lemma 7.1 and the above argument, the action of G on the
set T of marginal frequencies ttt is induced from the action of G on xxx.

7.4 Symmetry of a Toric Model and the Largest Group
of Invariance

In the previous section we considered the direct product of symmetric groups acting
on the set of multiway contingency tables as our main example. In the case of the
Hardy–Weinberg model, the set of cells was an upper triangular matrix and the
symmetry was not described by the direct product of symmetric groups. Now we
consider how to define a symmetry of a given toric model or a configuration A.

Consider the toric model in (4.5). The probability distribution of xxx depends on
θθθ ′A, and θθθ ′A is an element of the row space of A, rowspan(A). Assuming that θθθ ∈
R

ν is a free parameter vector, the set of probability distributions of the toric model
is identified with rowspan(A). In this sense, when we consider the symmetry of a
given toric model, it is reasonable to require that the symmetry be defined in terms
of rowspan(A).

Multiplying A from the right by P′
g results in a matrix AP′

g whose columns are
permutations of columns of A by g ∈ Sη . The reason we take the transpose P′

g is to
preserve the action of G “from the left.” By defining gA = AP′

g, we have

(g1g2)A = AP′
g1g2

= A(Pg1Pg2)
′ = AP′

g2
P′

g1
= g1(g2A). (7.11)
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In gA = AP′
g, we can think of P′

g as multiplying each row of A from the right, namely
G acts on the set of η-dimensional row vectors ααα by gααα = αααP′

g. Note that the space
of row vectors can be considered as the dual vector space of the space of column
vectors.

In Sect. 7.2, the complete independence model of 2×2×2 contingency tables is
clearly invariant with respect to the direct product of symmetric groups S2 × S2 × S2.
The Hardy–Weinberg model for I alleles is invariant with respect to permutation of
alleles SI . In view of these examples we make the following definition.

Definition 7.1. Let G⊂ Sη be a subgroup of Sη . A configuration A is invariant with
respect to G if rowspan(A) = rowspan(AP′

g) for all g ∈ G.

In Sect. 4.2 we discussed the relation rowspan(A)⊥ = kerA. Then we have

rowspan(A) = rowspan(AP′
g) ⇔ kerA = ker(AP′

g).

Also note that

ker(AP′
g) = {zzz | AP′

gzzz = 0}= {Pgzzz | Azzz = 0}= Pg kerA, (7.12)

where on the right-hand side Pg is now multiplying column vectors from the left.
Hence an equivalent definition of invariance with respect to G is given as follows.

Definition 7.2. A configuration A is invariant with respect to G if kerA = Pg kerA
for all g ∈ G.

So far we have defined the invariance of the configuration A with respect to
a given G. When A is given first, it is natural to consider all g ∈ SI such that
rowspan(A) = rowspan(AP′

g), or equivalently kerA = Pg kerA. Here the notion of
setwise stabilizer [136] is useful. Let a group G act on a set X from the left. For a
subset V of X , let

GV = {g | gV = V }

denote the setwise stabilizer of V . (Note that GV forms a subgroup of G.) As
we have discussed already, G acts on the set of η-dimensional column vectors
by g : xxx �→ Pgxxx and the set of η-dimensional row vectors by g : ααα �→ αααP′

g. From
this viewpoint, the set of g such that rowspan(A) = rowspan(AP′

g) is the setwise
stabilizer Growspan(A). Equivalently it is the setwise stabilizer GkerA. Therefore we
are led to the following definition.

Definition 7.3. For a given configuration A, the largest group of invariance is
the setwise stabilizer GkerA of kerA in the symmetric group Sη , where G acts on
the set of η-dimensional column vectors. Alternatively, it is the setwise stabilizer
Growspan(A), where G acts on the set of η-dimensional row vectors.

From now on, among two equivalent definitions, we mainly consider GkerA. The
notion of the largest group of invariance was introduced in [12].
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In Sect. 7.3 we considered the induced action on the set of sufficient statistics.
We want to check that the induced action on the set of sufficient statistics T is
defined also for the largest group of invariance. We try to define gttt, ttt = Axxx, by

gttt = Agxxx.

If ttt = Axxx = Ax̃xx, then xxx − x̃xx ∈ kerA. For g ∈ GkerA, g(xxx − x̃xx) ∈ kerA and hence
Ag(xxx− x̃xx) = 0. Therefore gttt does not depend on the choice of xxx in ttt = Axxx. Hence
the induced action of GkerA on T is well defined.

It should be noted that a configuration A is invariant with respect to a group H if
and only if H is a subgroup of the largest group of invariance GkerA. Also because
GkerA acts on T , any subgroup H of GkerA also acts on T .

We have given the definition of the largest group of invariance for a general
configuration A. For many configurations A it is often surprisingly hard to determine
the largest group of invariance GkerA, although some obvious subgroup of GkerA is
easy to find. We discuss one simple example in the next section.

7.5 The Largest Group of Invariance for the Independence
Model of Two-Way Tables

As we have stated above, it is often surprisingly hard to determine the largest group
of invariance G for a given A. The symmetry in the independence model of two-
way tables seems to be trivial. However, to prove that the obvious symmetry is the
largest, we need some careful arguments. For showing that a given candidate group
is the largest group of invariance, in [135], we developed a “perturbation method.”
Here we illustrate the perturbation method with the independence model of two-way
tables.

Consider I × J contingency tables with fixed row sums and column sums. The
configuration is clearly invariant with respect to the direct product SI × SJ , which
seems to be the largest group of invariance if I �= J.

In the case of square tables I = J, there is an additional symmetry of interchang-
ing the two axes. Although this is again a symmetric group S2, for clarity we denote
the group of interchanging the axes by H2. Then the largest group of invariance for
the square case seems to be the subgroup of SI2 generated by SI × SI and H2. In the
square case, we can first decide whether to flip the axes, and then we can arbitrarily
and independently permute the levels of two axes. This is called the wreath product
(e.g., [129]) of groups and written as

SI wr H2.

Now we have the following result.

Proposition 7.1. The largest group of invariance for I × J contingency tables with
fixed row sums and column sums is SI × SJ if I �= J and SI wr H2 if I = J.
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The rest of this section is devoted to a sketch of a proof of this proposition. We
mainly consider the case I �= J. In the process of proving the case I �= J, it will
become clear that the additional symmetry in the square case is given by H2. We
now assume I > J without loss of generality.

By the form of the configuration A in (1.20), an element of rowspan(A) is an
I× J-dimensional (row) vector with components of the form

{αi +β j}1≤i≤I,1≤ j≤J, αi,β j ∈ R.

Write γi j = αi + β j. For four distinct pairs (i1, j1),(i2, j2),(i3, j3),(i4, j4) consider
the following linear combination

δ = γi1 j1 + γi2 j2 − γi3 j3 − γi4 j4 .

Inasmuch as kerA is spanned by the basic moves in (2.4), δ = 0 if (i1, j1),(i2, j2),
(i3, j3),(i4, j4) are the four cells in a rectangular position as in (2.4). By taking αi,β j

sufficiently “generic” it is clear that δ �= 0 unless the four cells are in a rectangular
position.

This can be made explicit as follows. Let b > 0 be a large positive integer. For
our case b = 5 is good enough. Let

αi = bi, β j = bI+ j. (7.13)

Then by the uniqueness of the base b expansion of a positive integer δ , for this
choice of αi and β j, δ �= 0 unless the four cells are in a rectangular position. Let
γγγ = {bi + bI+ j} denote the I × J-dimensional vector with these elements. In the
following we consider γγγ as an I × J table.

Now consider g ∈ Growspan(A) and let γ̃γγ = gγγγ. By the consideration immediately
following (7.4), the g(i, j) element of γ̃γγ is the (i, j) element of γγγ . Consider the lower-
right cell (I,J) of γγγ . Then the value bI+bI+J is in the g(i, j) cell of γ̃γγ . Write (i∗, j∗)=
g(I,J) and consider the following linear combination of elements of γ̃γγ:

δ̃ (i2, j2) = γ̃i∗ j∗ + γ̃i2 j2 − γ̃i∗ j2 − γ̃i2 j∗

= γIJ + γg−1(i2, j2)
− γg−1(i∗, j2)− γg−1(i2, j∗),

where the four cells (i∗, j∗),(i2, j2),(i∗, j2),(i2, j∗) are distinct; that is, i2 �= i∗ and
j2 �= j∗. Because g and g−1 are bijections, the four cells (I,J),g−1(i2, j2),g−1(i∗, j2),
g−1(i2, j∗) are distinct as well. Furthermore, because γ̃ ∈ rowspan(AP′

g) =

rowspan(A), δ̃ (i2, j2) = 0 for all choices of (i2, j2). By our particular choice (7.13)
of γγγ , we see that (I,J),g−1(i2, j2),g−1(i∗, j2),g−1(i2, j∗) have to be in a rectangular
position. This means that, either

1. g−1(i∗, j2) is in the last row and g−1(i2, j∗) is in the last column, or
2. g−1(i∗, j2) is in the last column and g−1(i2, j∗) is in the last row.

We note that these two cases cannot mix. In fact, if g−1(i2, j∗) and g−1(i∗, j2) are
both in the last column for some i2 and j2, then it can be easily seen that δ̃ (i2, j2)
cannot be zero for this i2 and j2. It follows that either g−1(i2, j∗), i2 �= i∗, are all in
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the last column, or they are all in the last row. Because we have assumed I > J, the
second case is impossible and we have {g−1(i2, j∗)}i2=1,...,I = {(i,J)}i=1,...,I . This
means that the last column of γγγ is moved to the j∗th column of γ̃γγ .

Now we can similarly argue for other columns and other rows of γγγ . Then it
follows that g moves columns of γγγ to columns of γ̃γγ and rows of γγγ to rows of γ̃γγ .
Hence g is an element of SI × SJ.

7.6 Characterizations of a Minimal Invariant Markov Basis

Now we go back to invariant Markov bases. Let B ⊂ kerZ A be a set of moves. For
convenience in this section we assume that B is sign invariant (see Sect. 5.2). Let
the configuration A be invariant with respect to a group G. We call B G-invariant if
G(B) = B. Note that B is G-invariant if and only if

g ∈ G,zzz ∈ B =⇒ gzzz ∈ B.

In other words, B is G-invariant if and only if it is a union of orbits B =
⋃

zzz∈B∗ G(zzz)
for some subset B∗ ⊂ kerZ A of moves.

A finite sign invariant set B ⊂ kerZ A is an invariant Markov basis if it is a
Markov basis and it is G-invariant. An invariant Markov basis is minimal if no
proper sign invariant and G-invariant subset of B is a Markov basis. A minimal
invariant Markov basis always exists, because from any invariant Markov basis, we
can remove orbits one by one, until none of the remaining orbits can be removed
any further.

Partition X = N
η by the degree (total sample size) of the frequency vectors as

X = ∪∞
n=1Xn, Xn = {xxx ∈ X | degxxx = n}.

Similarly partition the set of sufficient statistics as

T = ∪∞
n=1Tn.

In considering the orbits of G acting on X , we note that degxxx = deg(gxxx), ∀g ∈ G,
and hence G(Xn) = Xn for all n. Therefore we can consider the action of G on
each Xn separately. Similarly we can consider the action of G on each Tn separately
because degttt = deg(gttt),∀g ∈ G.

Consider a particular sufficient statistic ttt ∈ Tn. As in (5.4) let

Bttt = {zzz ∈ kerZ A | zzz+,zzz− ∈ Fttt}
be the set of moves whose positive and negative parts belong to the fiber Fttt . Let
G(ttt) ∈ Tn/G be the orbit through ttt. Let

BG(ttt) =
⋃

ttt′∈G(ttt)

Bttt ′

denote the union of the set of moves Bttt ′ over the orbit G(ttt) through ttt.
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Let B ⊂ kerZ A be a finite set of moves. An important observation is that B is
partitioned as

B =
⋃
n

⋃
α∈Tn/G

Bn,α , (7.14)

where we define

Bn,α = B∩Bα , α ∈ Tn/G.

Inasmuch as B is invariant if and only if it is a union of orbits G(zzz), the following
lemma holds.

Lemma 7.2. B is invariant if and only if Bn,α is invariant for each n and α ∈
Tn/G.

Proof. Let zzz ∈ Bn,α and ttt = Azzz+ ∈ α . Then it follows that gzzz ∈ Bgttt ⊂ Bα and the
lemma is proved. ��

This lemma shows that we can restrict our attention to each Bn,α in studying the
invariance of a Markov basis.

In characterizing a Markov basis and its minimality, in Chap. 5 we argued that
it is essential to consider B|ttt|−1-equivalence classes of Fttt , where Bn is the set of
moves of degree less than or equal to n defined in (5.2). As in Chap. 5 we write |ttt|
for degttt.

Considering group actions on the set of moves and each fiber, we characterize
the structure of a minimal invariant Markov basis. As we show in the following,
the relation between the action of the isotropy subgroup Gttt and B|ttt|−1-equivalence
classes of Fttt is important. For the rest of this section, we write the set of B|ttt|−1-
equivalence classes of Fttt as Httt for simplicity; that is, Httt = Fttt/B|ttt|−1.

Now we state the following theorem.

Theorem 7.1. Let B be a minimal G-invariant Markov basis and let B =⋃
n
⋃

α∈Tn/G Bn,α be the partition in (7.14). Then each Bn,α , α ∈ Tn/G, is
a minimal invariant set of moves, where Bn,α ∩ Bttt , ttt ∈ α , connects B|ttt|−1-
equivalence classes of Fttt and

Bn,α = G(Bn,α ∩Bttt) (7.15)

for any ttt ∈ α .
Conversely, from each α ∈ Tn/G with |Httt | ≥ 2, where ttt ∈ α is a representative

sufficient statistic, choose a minimal Gttt -invariant set of moves B∗ ⊂Bttt connecting
B|ttt|−1-equivalence classes of Fttt , where Gttt ⊂ G is the isotropy subgroup of ttt, and
extend B∗ to G(B∗). Then

B =
⋃
n

⋃
α∈Tn/G

|Httt |≥2,ttt∈α

G(B∗)

is a minimal G-invariant Markov basis.
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This theorem only adds a statement of minimal G-invariance to the structure of a
minimal Markov basis considered in Chap. 5

In principle this theorem can be used to construct a minimal invariant Markov
basis by considering

⋃
α∈Tn/G Bn,α ,n = 1,2,3, . . . step by step. By the Hilbert basis

theorem, there exists some n0 (cf. Proposition 5.3), such that for n ≥ n0 no new
moves need to be added. Then a minimal invariant Markov basis is written as⋃n0

n=1
⋃

α∈Tn/G Bn,α .
To prove Theorem 7.1, we prepare some lemmas in the following.
First, we derive some basic properties of orbits of G acting on each fiber. As we

stated before, we consider the action of G on each Xn separately. Let

FG(ttt) =
⋃

ttt′∈G(ttt)

Fttt ′

denote the union of fibers over the orbit G(ttt) through ttt. Let xxx∈Fttt . Because ttt(gxxx) =
gttt, it follows that

gxxx ∈ Fgttt ⊂ FG(ttt).

Therefore G(FG(ttt)) = FG(ttt). This implies that Xn is partitioned as

Xn =
⋃

α∈Tn/G

Fα , (7.16)

where α runs over the set of different orbits and we can consider the action of G on
each FG(ttt) separately.

Consider a particular FG(ttt). An important observation is that there is a direct
product structure in FG(ttt). Write

G(ttt) = {ttt1, . . . , ttta}, (7.17)

where a = a(ttt) = |G(ttt)| is the number of elements of the orbit G(ttt) ⊂ Tn. Let
b= b(ttt) = |FG(ttt)/G| be the number of orbits of G acting on FG(ttt) and let xxx1, . . . ,xxxb

be representative elements of different orbits; that is,

FG(ttt) = G(xxx1)∪·· ·∪G(xxxb) (7.18)

gives a partition of FG(ttt). Then we have the following lemma.

Lemma 7.3. We use the notations (7.17) and (7.18). Then FG(ttt) is partitioned as

FG(ttt) =
a⋃

i=1

b⋃
j=1

Fttt i ∩G(xxx j), (7.19)

where each Fttt i ∩G(xxx j) is nonempty. Furthermore if ttt ′i = gttti, then Fttt i � xxx �→ gxxx ∈
Fttt ′i gives a bijection between Fttt i ∩G(xxx) and Fttt′i ∩G(xxx).
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Proof. Let FG(ttt) = Fttt1 ∪ ·· · ∪Fttta be a partition. Intersecting this partition with

FG(ttt) =
⋃b

j=1 G(xxx j) gives the partition of (7.19). Let xxx ∈ Fttt . Then the orbit G(xxx)
intersects each fiber; that is, G(xxx)∩Fttt i �= /0 for i = 1, . . . ,a. Because every g ∈ G is
a bijection of FG(ttt) to itself and

g(Fttt ∩G(xxx)) = Fgttt ∩G(xxx),

g gives a bijection between Fttt i ∩G(xxx) and Fttt ′i ∩G(xxx). ��
In particular for each j, Fttt i ∩ G(xxx j), i = 1, . . . ,a, have the same number of

elements

|Fttt1 ∩G(xxx j)|= · · ·= |Fttta ∩G(xxx j)|.

In addition, for ttti, ttt ′i ∈ G(ttt) such that ttt ′i = gttti, the map g : Gttti → gGtttig
−1 gives an

isomorphism between Gttti and Gttt′i = gGtttig
−1, where Gttti and Gttt ′i are the isotropy

subgroup of ttti and ttt ′i in G, respectively. Therefore there exists the following
isomorphic structures in Fttt i ,

(Gttti ,Fttt i)� (Gttt ′i ,Fttt ′i). (7.20)

Considering the isomorphic structure of (7.20), now we can focus our attention
on each fiber. Consider a particular fiber Fttt . Here we can restrict our attention to
the action of Gttt on Fttt . As we have stated before, the relation between the action
of Gttt and Httt = Fttt/B|ttt|−1 (the B|ttt|−1-equivalence classes of Fttt ) is essential. First
we show the following lemma.

Lemma 7.4. For any integer n, if xxx′ is accessible from xxx by Bn, then gxxx′ is
accessible from gxxx by Bn.

Proof. Note that degzzz ≤ n if and only if deg(gzzz) ≤ n. If xxx′ is accessible from xxx by
Bn, then there exist L > 0, zzz1, . . . zzzL ∈ Bn, ε1, . . . ,εL ∈ {−1,1}, satisfying

xxx′ = xxx+
L

∑
s=1

εszzzs, xxx+
l

∑
s=1

εszzzs ∈ Fttt for 1 ≤ l ≤ L.

Applying g to both sides of the equations we get

gxxx′ = gxxx+
L

∑
s=1

εsgzzzs, gxxx+
l

∑
s=1

εsgzzzs ∈ Fgttt for 1 ≤ l ≤ L .

Because gzzzs ∈ Bn for s = 1, . . . ,L, the lemma is proved. ��
This lemma holds for all g ∈ G. In particular, gxxx ∈ Fttt(xxx) if g ∈ Gttt . This implies

that an action of Gttt is induced on Httt . In the sequel let Xγ ∈ Httt denote each
equivalence class:

Httt = {Xγ}1≤γ≤|Httt |.
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Fig. 7.1 A direct product
structure of FG(ttt) (a = 3,
b = 2, p = 1,qi = 2, ri = 2)

Let π : xxx �→ Xγ denote the natural projection of xxx to its equivalence class. Then
Lemma 7.4 states

π(xxx) = π(xxx′) ⇒ π(gxxx) = π(gxxx′).

Let xxx ∈ Xγ and g ∈ Gttt . Then gxxx belongs to some Bn−1-equivalence class Xγ ′ . By
Lemma 7.4, this γ ′ does not depend on the choice of xxx ∈ Xγ and we may write
γ ′ = gγ . By definition a group action is bijective, therefore the following lemma
holds.

Lemma 7.5. g ∈ Gttt : Xγ �→ Xγ ′ is a bijection of Httt to itself.

Now we give a proof of Theorem 7.1.

Proof (Theorem 7.1). Let B be a minimal invariant Markov basis and consider
the partition (7.14). Then each Bn,α ,α ∈ Tn/G, is G-invariant from Lemma 7.2.
Moreover, from the argument of Chap. 5, each zzz = zzz+ − zzz− ∈ Bn,α is a move
connecting Xγ ∈ Httt and Xγ ′ ∈ Httt , γ �= γ ′, that is, zzz+ ∈ Xγ and zzz− ∈ Xγ ′ , from
the minimality of B. In this case, gzzz = gzzz+ − gzzz− is a move connecting Xgγ and
Xgγ ′ . Applying g−1 the converse is also true. This implies that the way Bn,α ∩Bttt

connects the Bn−1-equivalence classes Httt is the same for all ttt ∈ α and hence the
relation (7.15) holds.

Conversely, to construct a minimal invariant Markov basis, we only have to
consider sets of moves connecting B|ttt|−1-equivalence classes of each Fttt from the
argument of Chap. 5. Considering the isomorphic structure (7.20) of Lemma 7.3 and
Lemma 7.5, we see that the structure of Httt′ is common for all ttt ′ ∈ G(ttt). Therefore
it suffices to consider the Gttt-invariant set of moves Bttt for some representative
sufficient statistic ttt ∈ α satisfying |Httt | ≥ 2 for each α ∈ Tn/G. ��

Here we give an illustration of a direct product structure of FG(ttt). Figure 7.1
shows a structure of FG(ttt) where a = a(ttt) = |G(ttt)| = 3 and b = b(ttt) = |FG(ttt)/
G| = 2. In each Fttt ⊂ FG(ttt), there are two B|ttt|−1-equivalence classes: |Httt | = 2.



7.6 Characterizations of a Minimal Invariant Markov Basis 105

Figure 7.1 also shows Gttt orbits in each Fttt . In fact, Fig. 7.1 is derived from an
example of 2 × 2× 2 × 2 contingency tables, where the following marginals are
fixed:

D1 = {1,2}, D2 = {1,3}, D3 = {2,3}, D4 = {3,4}.
We see the above structure by considering xxx = (1111)(1221)(2122)(2212), for
example. In this case, Fttt(xxx) is an eight-element set as follows.

(1111)(1221)(2122)(2212), (1111)(1222)(2121)(2212),
(1112)(1222)(2121)(2211), (1112)(1221)(2122)(2211),

}
Xγ(� xxx)

(1121)(1211)(2112)(2222), (1121)(1212)(2111)(2222),
(1122)(1212)(2111)(2221)︸ ︷︷ ︸

Gttt (xxx)

, (1122)(1211)(2112)(2221).

In this chapter we have discussed properties of minimal invariant Markov bases.
Then a natural question is to seek some conditions for the uniqueness of a minimal
invariant Markov basis. In [13] we gave some characterizations of the uniqueness
of a minimal invariant Markov basis. However, the characterizations are not simple
and the argument is rather long. Therefore we omit discussion of uniqueness of a
minimal invariant Markov basis.



Part III
Markov Bases for Specific Models

In Part III of this book, we present results on Markov bases for some specific models,
which are important for applications. We give many numerical examples to illustrate
the application of Markov basis methodology to practical statistical problems.

In Chap. 8 we give a thorough discussion of Markov bases for decomposable
models of contingency tables. For decomposable models we have a complete
description of minimal Markov bases and minimal invariant Markov bases.

In Chap. 9 we discuss Markov bases for no-three-factor interaction models of
three-way contingency tables and some other hierarchical models. We see that for
general hierarchical models the structure of Markov bases is very complicated.

In Chap. 10 we discuss two-way tables with structural zeros and fixed subtable
sums. We give explicit forms of Markov bases and give some numerical examples
of a running Markov chain with the obtained Markov bases.

In Chap. 11 we explain applications of the Markov basis approach to experi-
mental designs, where the response variables are discrete. In standard textbooks
on experimental design, the response variables are usually assumed to be normally
distributed. When response variables are discrete it is more appropriate to use
exact tests. We give many numerical examples, because this topic is of practical
importance.

In Chap. 12 we introduce groupwise selection models, where the Gröbner basis
approach works particularly well and testing these models can be performed easily.
We illustrate the use of these models by analyzing educational and allele frequency
data.

Finally in Chap. 13 we study the problem of connecting some specific fibers by
a subset of a Markov basis. In some problems, when we consider connectivity of
specific fibers, it is possible to describe a subset of a Markov basis that connects
these fibers. A typical example is the logistic regression model with positive sample
size for each level of a covariate.



Chapter 8
Decomposable Models of Contingency Tables

8.1 Chordal Graphs and Decomposable Models

In this section we summarize some properties of the decomposable model and
chordal graphs according to Lauritzen [97] and Hara and Takemura [74, 75, 76].

We use the notation of hierarchical models introduced in Sect. 1.5. Let Δ = [m] =
{1, . . . ,m} denote the set of variables of an m-way contingency table xxx = {x(iii) | iii ∈
I }. Let D = {D1, . . . ,Dr} be the set of facets of a simplicial complex K such that
Δ = ∪r

j=1D j. Let p(iii) denote the cell probability for iii. Then the hierarchical model
for D is defined as

log p(iii) = ∑
D∈D

μD(iii),

where μD depends only on iiiD. D is called a generating class for the model. In this
chapter, we often identify a hierarchical model with its generating class D .

As defined in Sect. 1.4, for a subset of the variables V ⊂ Δ , let xxxV and zzzV denote
the V -marginal sums of xxx and zzz with entries given by

xV (iiiV ) = ∑
iiiVC∈IVC

x(iiiV , iiiVC ), zV (iiiV ) = ∑
iiiVC∈IVC

z(iiiV , iiiVC)

for iiiV ∈ IV = ∏δ∈V Iδ . We often denote iii = (iiiV , iiiVC) by appropriately reordering
indices. A sufficient statistic ttt for D is the set of marginal sums for all D ∈ D ,

ttt = {xxxD | D ∈ D}.

Hence a move zzz for the generating class D satisfies zzzD = 000 for all D ∈ D .
Marginal tables xxxD1 , . . . ,xxxDr are called consistent if, for any r1, r2, (Dr1 ∩Dr2)-

marginal of xxxDr1
is equal to the (Dr1 ∩Dr2)-marginal of xxxDr2

([52]). The consistency
of the marginal tables is obviously a necessary condition for the existence of xxx.
However, it does not necessarily guarantee the existence of xxx in general (e.g.,
[46, 91, 148]). This is closely related to the notion of normality of semigroups given
in Sect. 4.3. We again discuss normality in Sect. 9.5.

S. Aoki et al., Markov Bases in Algebraic Statistics, Springer Series
in Statistics 199, DOI 10.1007/978-1-4614-3719-2 8,
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Let G be a graph with the vertex set Δ and an edge between δ ,δ ′ ∈ Δ if and only
if there exists D ∈ D such that δ ,δ ′ ∈ D. G is called the independence graph of D
(e.g., Dobra and Sullivant [54]). For V ⊂ Δ , denote by G (V ) the subgraph induced
by V ; that is, V is the set of vertices of G (V ) and the edges of G (V ) are those in
G restricted to V . V ⊂ Δ is called a clique if G (V ) is complete; that is, every pair
of vertices in V is an edge of G . A clique V of G is called maximal if every proper
superset of V is not a clique of G . A hierarchical model for D is called graphical
if there exists a graph whose set of maximal cliques is given by D (e.g., Edwards
[57]).

A graphical model is called decomposable if G is chordal; that is, every cycle of
G with length greater than three has a chord. A clique tree T = (D ,E ) of G is a
tree with the vertex set D satisfying

D∩D′′ ⊂ D′ for all D′ on the path between D and D′′ in T .

A graph is chordal if and only if there exists a clique tree of it ([30, 64]). When
(D,D′) ∈ E , S = D∩D′ is called a minimal vertex separator of G . Let S be the
multiset

S := {D∩D′ | (D,D′) ∈ E },
where the same minimal vertex separator may be included several times (e.g.,
[97]). Denote a marginal probability for iiiD by pD(iiiD). Then p(iii) and its maximum
likelihood estimator p̂(iii) are written by

p(iii) =
∏D∈D pD(iiiD)

∏S∈S pS(iiiS)
, p̂(iii) =

∏D∈D xD(iiiD)
n ∏S∈S xS(iiiS)

,

respectively.
A vertex is called simplicial if its adjacent vertices form a clique of G . Any

chordal graph with at least two vertices has at least two simplicial vertices and if
the graph is not complete, these can be chosen to be nonadjacent ([51]). For D ∈ D
of a decomposable model, let Simp(D) denote the set of simplicial vertices in D
and let Sep(D) denote the set of nonsimplicial vertices in D. If Simp(D) �= /0, D is
called a simplicial clique. A simplicial clique D is called a boundary clique if there
exists another clique D′ ∈ D such that Sep(D) = D∩D′ ([137]). Simplicial vertices
in boundary cliques are called simply separated vertices. A maximal clique D is a
boundary clique if and only if there exists a clique tree such that D is its endpoint
([74]).

Dobra [52] showed that decomposable models have a Markov basis consisting of
only square-free moves of degree 2. In the next section, we give a proof of this fact.
For convenience, denote a square-free move zzz of degree 2 with z(iii) = z( jjj) = 1 and
z(iii′) = z( jjj′) =−1 by

zzz = iii jjj− iii′ jjj′.

This notation was already used in Sect. 7.2. Similarly, xxx = iii jjj denotes a frequency
vector with one frequency at cells iii and jjj.
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8.2 Markov Bases for Decomposable Models

The simplest decomposable model is the two-way complete independence model
D = {{1},{2}}. Consider an R×C table. A sufficient statistics for this model is the
set of row sums and column sums, thus every move zzz = {zi j} satisfies

zi+ =
C

∑
j=1

zi j = 0, z+ j =
R

∑
i=1

zi j = 0.

In Theorem 2.1 we saw that the set of the following degree 2 moves

zzz(i, i′; j, j′) := (i j)(i′ j′)− (i j′)(i′ j), 1 ≤ i < i′ ≤ R, 1 ≤ j < j′ ≤C (8.1)

forms a Markov basis for R×C two-way complete independence models.
Consider a decomposable model consisting of two maximal cliques D = {D,D′}.

Denote A := D \D′, B := D′ \D, and S := D∩D′. When A = {1}, B = {2}, and
S = /0, the model coincides with the two-way complete independence model. When
D = {1,2}, D′ = {2,3}, A = {1}, B = {3}, and S = {2}, the model coincides with
the conditional independence model of three-way contingency tables in Sect. 1.4.

Proposition 8.1. Define B(D,D′) by the following set of square-free moves of
degree 2,

B(D,D′) = {(iiiAiiiSiiiB)(iii
′
AiiiSiii′B)− (iiiAiiiSiii′B)(iii

′
AiiiSiiiB) | iiiA, iii

′
A ∈IA, iiiB, iii

′
B ∈IB, iiiS ∈IS}.

Then B(D,D′) forms a Markov basis for D = {D,D′}.

Proof. Let xxx,yyy (yyy �= xxx) be two tables in the same fiber of the model D and let
zzz = yyy− xxx. Denote by zzziiiS the iiiS-slice of zzz:

zzziiiS = {z(iiiAiiiSiiiB) | iiiA ∈ IA, iiiB ∈ IB}.

Assume zzziiiS �= 000 without loss of generality. Consider zzziiiS as a two-way integer array
with the set of levels IA×IB. Let zzziiiS

A and zzziiiS
B denote the A-marginal table and the B-

marginal table of zzziiiS , respectively. The assumption that zzzD = 000 and zzzD′ = 000 implies
that zzziiiS

A = 000 and zzziiiS
B = 000. Therefore zzziiiS is regarded as a move of a two-way complete

independence model. Hence from Theorem 2.1 we can reduce |zzz|1 by a square-free
move of degree 2 of the form (iiiAiiiSiiiB)(iii′AiiiSiii′B)− (iiiAiiiSiii′B)(iii′AiiiSiiiB). ��

The above arguments are generalized to general decomposable models. Let T
be a clique tree of G . Denote by Te = (De,Ee) and T ′

e = (D ′
e,E

′
e) the two induced

subtrees of T obtained by removing an edge e ∈ E from T . Let Ve and V ′
e be

Ve =
⋃

D∈De

D, V ′
e =

⋃
D∈D ′

e

D.
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Then Te and T ′
e are clique trees of chordal graphs G (Ve) and G (V ′

e), respectively.
Define the set BT of square-free moves of degree 2 as

BT =
⋃
e∈E

B(Ve,V
′
e). (8.2)

Denote Se :=Ve ∩V ′
e , Re :=Ve \ Se and R′

e :=V ′
e \ Se.

Lemma 8.1. Suppose that

zzz∗ = (iiiRe iiiSe)(iii
′
Re

iii′Se
)− ( jjjRe

iiiSe)( jjj′Re
iii′Se

) ∈ BTe ,

iiiRe , iii
′
Re
, jjjRe

, jjj′Re
∈ IRe , iiiSe , iii

′
Se
∈ ISe

is a move of De. Then

zzz = (iiiRe iiiSe iiiR′
e
)(iii′Re

iii′Se
iii′R′

e
)− ( jjjRe

iiiSe iiiR′
e
)( jjj′Re

iii′Se
iii′R′

e
) ∈ BT

for any iiiR′
e
, iii′R′

e
∈ IR′

e
.

Proof. Obviously zzzV ′
e
= 000 and hence zzzD = 000 for all D ∈ D ′

e. Because zzzVe = zzz∗, we
also have zzzD = 000 for all D ∈ De. Hence zzz is a move for D = De ∪D ′

e. Because
zzzV ′

e
= 000, there exists an edge e∗ ∈ Ee such that zzz ∈ B(Ve∗ ,V ′

e∗). ��
Theorem 8.1 (Dobra [52]). BT forms a Markov basis of the decomposable
model D .

Proof. The proof is by induction on the number of maximal cliques r. When r = 2,
BT coincides with the Markov basis in Proposition 8.1. Suppose that the theorem
holds for any decomposable models with r− 1 maximal cliques.

Let xxx,yyy (yyy �= xxx) be two tables in the same fiber F of the decomposable model D .
Let D ∈ D be an endpoint of T and suppose that e := (D,D′) ∈ E . Then we can set

Ve = Δ \ (D\D′), V ′
e = D, De = D \ {D}, D ′

e = {D}

and define Te as above. Then the marginal tables xxxVe and yyyVe
lie in the same fiber

F ′ of De. From the inductive assumption, BTe is a Markov basis for De. Hence
there exists a sequence of moves zzz1

Ve
, . . . ,zzzl

Ve
such that

yyyVe
= xxxVe +

l

∑
k=1

zzzk
Ve
, xxxVe +

l′

∑
k=1

zzzk
Ve
∈ F ′

for 1 ≤ l′ ≤ l. From Lemma 8.1, there exists a sequence of moves zzz1, . . . ,zzzl of D ′
such that

xxx+
l′

∑
k=1

zzzk ∈ F
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for 1 ≤ l′ ≤ l. Define yyy′ = xxx+∑l
k=1 zzzk. Then yyy and yyy′ satisfy yyyVe

= yyy′Ve
and yyyV ′

e
= yyy′V ′

e
.

Hence yyy and yyy′ are accessible by moves in B(Ve,V ′
e). ��

Dobra [52] proposed the following algorithm for generating moves from BT .

Algorithm 8.1 (Dobra [52])

1. For each edge e ∈ E of T :

a. Define Ve, V ′
e and Se as above.

b. Calculate the weights we representing the number of degree 2 moves:

we ←
[

2 · ∏
δ∈Ve\Se

(
Iδ
2

)
· ∏

δ∈V ′
e\Se

(
Iδ
2

)]∏δ∈Se Iδ

.

2. Normalize the weights w2, . . . ,wr.
3. Randomly select an edge e ∈ E with probability we.
4. Uniformly pick up a move in B(Ve,V ′

e).

8.3 Structure of Degree 2 Fibers

In the previous section we showed that every decomposable model has a Markov
basis consisting of square-free moves of degree 2. As discussed in Sect. 5.3, the set
of fibers of the minimum fiber Markov basis for a decomposable model coincides
with the set of degree 2 fibers with more than one element. Therefore the structure
of degree 2 moves is equivalent to that of degree 2 fibers. In this section, we discuss
the structure of such fibers in detail this section is mainly based on [71].

Let Fttt be a fiber with degttt = 2. For a given ttt we say that a variable δ ∈ Δ
is degenerate if there exists a unique level iδ such that x{δ}(iδ ) = 2. Otherwise, if
there exist two levels iδ �= i′δ such that x{δ}(iδ ) = x{δ}(i′δ ) = 1, then we say that δ is
nondegenerate. Degeneracy or nondegeneracy of δ does not depend on a particular
xxx ∈ Fttt , because one-dimensional marginals are determined from marginals of the
facets xxxD, D ∈ D . If all the variables δ ∈ Δ are degenerate, then Fttt = {xxx} is a
one-element fiber with frequency x(iii) = 2 at a particular cell iii. This case is trivial,
therefore below we consider the case that at least one variable is nondegenerate.

From the fact that there exist at most two levels with positive one-dimensional
marginals for each variable, it follows that we only need to consider 2 × ·· · × 2
tables for studying degree 2 fibers. Therefore we set I1 = · · ·= Im = 2, I = {0,1}m

without loss of generality.
For a given ttt of degree 2, let Δ̄ttt denote the set of nondegenerate variables. As

noted above, we assume that Δ̄ttt �= /0. Each xxx ∈ Fttt is of the form x(iii) = x(iii′) = 1
for iii �= iii′ and remaining entries are 0. For nondegenerate δ ∈ Δ̄ttt the levels of the
variable δ in iii and iii′ are different:

{iδ , i
′
δ }= {0,1}, ∀δ ∈ Δ̄ttt ,
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or equivalently i′δ = 1− iδ , ∀δ ∈ Δ̄ttt . In the following, we use the notation i∗δ =
1− iδ . More generally, for a subset of variables V = {δ1, . . . ,δk} and a marginal cell
iiiV = (iδ1

, . . . , iδk
), we write

iii∗V ≡ (i∗δ1
, . . . , i∗δk

) = (1− iδ1
, . . . ,1− iδk

).

Let us identify xxx = iiiiii′ ∈ Fttt with the set {iii, iii′} of its two cells of frequency one.
Then we see that the number of elements of fibers |Fttt | is at most 2|Δ̄ttt |−1. Let G (Δ̄ttt)
be the subgraph of G induced by Δ̄ttt ⊂ Δ .

Lemma 8.2. Suppose that ttt is a set of consistent marginal frequencies of a
contingency table with degttt = 2. Let Γ be any subset of a connected component
in G (Δ̄ttt). Then the marginal table xxxΓ = {xΓ (iiiΓ ) | iΓ ∈IΓ } is uniquely determined.

Proof. Let r(Γ ) be the number of generating sets D ∈ D satisfying Γ ∩ D �= /0. We
prove this lemma by induction on r(Γ ). When r(Γ ) = 1, the lemma obviously holds.
Suppose that the lemma holds for all r(Γ ) < r′ and we now assume that r(Γ ) = r′.
Let Γ1 ⊂ Γ and Γ2 ⊂ Γ satisfy

Γ1 ∪Γ2 = Γ , Γ1 ∩Γ2 �= /0, r(Γ1)< r′, r(Γ2)< r′.

Because r(Γ1) < r′ and r(Γ2) < r′, both xxxΓ1 and xxxΓ2 are uniquely determined.
Suppose that

xΓ1(iiiΓ1\Γ2
, iiiΓ1∩Γ2) = 1, xΓ1(iii

∗
Γ1\Γ2

, iii∗Γ1∩Γ2
) = 1. (8.3)

Then from the consistency of ttt, there uniquely exists iiiΓ2\Γ1
∈ IΓ2\Γ1

, such that

xΓ2(iiiΓ2\Γ1
, iiiΓ1∩Γ2) = 1, xΓ2(iii

∗
Γ2\Γ1

, iii∗Γ1∩Γ2
) = 1. (8.4)

Hence the table xxxΓ = {x( jjjΓ ) | jjjΓ ∈ IΓ } with entries

x( jjjΓ ) =

{
1, if jjjΓ = (iiiΓ1\Γ2

, iiiΓ1∩Γ2 , iiiΓ2\Γ1
) or jjjΓ = (iii∗Γ1\Γ2

, iii∗Γ1∩Γ2
, iii∗Γ2\Γ1

),

0, otherwise

is consistent with ttt.
Suppose that there exists another marginal table xxx′Γ which is consistent with ttt

such that xΓ ( jjjΓ ) = xΓ ( jjj∗Γ ) = 1 and jjjΓ �= (iiiΓ1\Γ2
, iiiΓ1∩Γ2 , iiiΓ2\Γ1

). Then we have at
least one of

xΓ1(iiiΓ1) = 0 or xΓ2(iiiΓ2) = 0.

This contradicts (8.3) and (8.4). ��
Theorem 8.2. Let Fttt be a degree 2 fiber such that Δ̄ttt �= /0 and let c(ttt) be the number
of connected components of G (Δ̄ttt). Then

|Fttt |= 2c(ttt)−1.
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Proof. Denote by Γ1, . . . ,Γc, c = c(ttt), the connected components of G (Δ̄ttt). Define
Γc+1 := Δ \ Δ̄ttt . By definition, there exists iiiΓc+1 such that

iiiΓc+1 = {iiiδ | δ ∈ Γc+1, x{δ}(iiiδ ) = 2}.
From Lemma 8.2, the marginal cells iiiΓk , k = 1, . . . ,c, satisfying xΓk (iiiΓk ) = xΓk (iii

∗
Γk
) =

1 uniquely exist. Now define Ittt by

Ittt = {iiiΓ1 , iii
∗
Γ1
}×{iiiΓ2 , iii

∗
Γ2
}× ·· ·×{iiiΓc , iii

∗
Γc
}×{iiiΓc+1},

where × denotes the direct product of sets. Suppose that jjj ∈ Ittt . Define

xxx jjj = {x jjj(iii) | iii ∈ I }, x jjj(iii) =

{
1, if iii = jjj or iii = jjj∗,
0, otherwise.

Then we have F (Ittt ) := {xxx jjj | jjj ∈ Ittt} ⊂ Fttt and |F (Ittt )|= 2c−1.
Suppose that xxx ∈ F (Ittt). If there exists xxx′ = {x′(iii) | iii ∈ I } such that xxx′ ∈ Fttt ,

xxx′ /∈ F (Ittt ), there exists a cell jjj ∈ I and 1 ≤ k ≤ c+ 1 such that x′( jjj) = 1 and
jjjΓk

�= iiiΓk . This implies that there exists Dl ∈ D such that xxx′Dl
(iiiDl ) �= xxxDl (iiiDl ). Hence

we have |Fttt |= 2c−1. ��
As mentioned in Sect. 8.1, for a consistent ttt such that degttt > 2, the fiber Fttt may

be empty in general. However Theorem 8.2 shows that, in the case of degttt = 2, if a
consistent ttt such that Δ̄ttt �= /0 is given, then Fttt �= /0 for any hierarchical model. We
also note that Theorem 8.2 holds for general hierarchical models.

8.4 Minimal Markov Bases for Decomposable Models

In this section we discuss Markov bases for decomposable models from a viewpoint
of minimality (cf. Chap. 5).

Let degttt = 2. Let Tttt be any tree whose nodes are elements of Fttt . Denote the set
of edges in Tttt by BTttt . We can identify each edge (xxx,xxx′) ∈ BTttt with a move zzz =
xxx− xxx′. So we identity BTttt with a set of moves for Fttt . In this section, we consider
only sign invariant Markov bases. Hence identify zzz = xxx− xxx′ with −zzz = xxx′ − xxx and
consider the edges in Tttt as undirected.

Let Bnd be

Bnd = {ttt | degttt = 2, |Fttt | ≥ 2}. (8.5)

As mentioned above, the set of fibers of the minimum fiber Markov basis for
decomposable models coincides with the set of degree 2 fibers with more than one
element. Hence we can provide the complete description of minimal Markov bases
for decomposable models as follows.

Theorem 8.3. Define B0 by

B0 =
⋃

ttt∈Bnd

BTttt . (8.6)
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(000)(111) (001)(110)

(011)(100) (010)(101)

BTt1

(000)(110) (010)(100)

BTt2

(001)(111) (011)(101)

BTt3

(000)(011) (010)(001)

BTt4

(100)(111) (110)(101)

BTt5

(000)(101) (001)(100)

BTt6

(010)(111) (011)(110)

BTt7

Fig. 8.1 BTtttl
in the complete independence model of three-way contingency tables

Then B0 is a minimal Markov basis and (8.6) is a disjoint union. Conversely every
minimal Markov basis can be written as in (8.6).

Example 8.1 (The complete independence model of 2× 2× 2 contingency tables).
Consider the model D = {{1},{2},{3}}. Bnd for the model has seven elements.
Denote them by ttt1, . . . , ttt7. Figure 8.1 shows an example of BTtttl

for t = 1, . . . ,7.
ttt1, . . . , ttt7 satisfy

Δ̄ttt1 = {1,2,3}, Δ̄ttt2 = Δ̄ttt3 = {1,2},
Δ̄ttt4 = Δ̄ttt5 = {2,3}, Δ̄ttt6 = Δ̄ttt7 = {1,3}. (8.7)

The union of all these moves is a minimal Markov basis for the model. Inasmuch as
Fttt1 is a four-element fiber, Tttt1 is not uniquely determined. Hence minimal Markov
bases are not unique for this model.

As seen from this example, minimal Markov bases are not necessarily uniquely
determined. The following corollary provides a necessary and sufficient condition
on decomposable models to have the unique minimal Markov basis.

Corollary 8.1. There exists the unique minimal Markov basis for a decomposable
model if and only if the number of connected components in any induced subgraph
of G is less than three.

Proof. Suppose that G (Δ̄ttt) has more than two connected components. Then because
|Fttt | ≥ 4 from Theorem 8.2, Tttt is not uniquely determined. For a different tree T ′

ttt ,
BTttt �= BT ′

ttt
. Hence minimal Markov bases are not unique either.
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1 2 3 4 1

2

3

4

5

6

Fig. 8.2 Examples of chordal graphs satisfying the condition of Corollary 8.2

Conversely assume that the number of connected components of G (Δ̄ttt) for any
ttt ∈Bnd is two. Then Tttt for any ttt ∈Bnd is uniquely determined. Hence the minimal
Markov basis is also unique. ��
Corollary 8.2. For a decomposable model, there exists the unique minimal Markov
basis if and only if G has only two boundary cliques D and D′ such that D′′ ⊂D∪D′
for all D′′ ∈ D .

Proof. Suppose that G has two boundary cliques D and D′ such that D′′ ⊂ D∪D′
for all D′′ ∈ D . Then any vertex in D′′ is adjacent to D or D′. Hence the number of
connected components for any induced subgraph of G is at most two.

Conversely suppose that there exists D′′ ∈ D such that D′′ �⊂ D∪D′. Then the
subgraph induced by the union of D′′ \ (D∪D′), Simp(D) and Simp(D′) has three
connected components. ��

The graphs with r = 2 always satisfy the conditions of the corollary. For r ≥ 3
the graph with

D = {{1, . . . ,r− 1},{2, . . . ,r}, . . . ,{r, . . . ,2r− 2}} (8.8)

satisfies the conditions of the corollary. Figure 8.2 shows the graphs satisfying (8.8)
for r = 3,4. We can easily see that any induced subgraph of the graphs in the figure
has at most two connected components.

From a viewpoint of minimality, Dobra’s Markov basis BT is characterized as
follows.

Theorem 8.4. A decomposable model has a clique tree T such that BT is a
minimal Markov basis if and only if the model has the unique minimal Markov
basis.

Proof. When a decomposable model has a unique minimal Markov basis, BT

coincides with it.
Suppose that there exist three vertices in G which are not adjacent to one

another. Let 1,2, and 3 be three such vertices and assume that l ∈ Dl , Dl ∈ D ,
for l = 1,2,3. Define {1,2,3}C = Δ \ {1,2,3}. Consider a degree 2 fiber Fttt such
that Δ̄ttt = {1,2,3} and x{1,2,3}C(iii{1,2,3}C) = 2 for some iii{1,2,3}C . Then |Fttt |= 4 from
Theorem 8.2 and we can denote the four elements by
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D1 D2 D3 D4
Fig. 8.3 T in Example 8.2

(0000)(1111)

(0001)(1110)

(0010)(1101)

(0011)(1100)

(0100)(1011)

(0111)(1000)

(0110)(1001)

(0101)(1010)

Fig. 8.4 BT
ttt for ttt such that

Δ̄ttt = {1,2,3,4}

xxx1 = (000 iii{1,2,3}C)(111 iii{1,2,3}C), xxx2 = (001 iii{1,2,3}C)(110 iii{1,2,3}C),

xxx3 = (010 iii{1,2,3}C)(101 iii{1,2,3}C), xxx4 = (011 iii{1,2,3}C)(100 iii{1,2,3}C). (8.9)

A minimal Markov basis connects these four elements by three moves. Let T =
(D ,E ) be any clique tree for G and T ′ = (D ′,E ′) be the smallest subtree of T
satisfying Dl ∈ D ′ for l = 1,2, and 3. Then we can assume that T ′ satisfies either
of the following two conditions,

(i) D2 is an interior point and D1 and D3 are endpoints on the path.
(ii) All of D1, D2, and D3 are endpoints of T ′.

In both cases there exists e∈ E such that D1,D2 ⊂Ve and D3 ⊂V ′
e . Then BT (Ve,V ′

e)
includes the following two moves,

zzz1 = xxx1 − xxx2, zzz2 = xxx3 − xxx4.

On the other hand there also exists e′ ∈ E such that D1 ⊂Ve′ and D2,D3 ⊂V ′
e′ . In

this case BT (Ve′ ,V
′
e′) includes the following two moves,

zzz3 = xxx1 − xxx4, zzz4 = xxx2 − xxx3.

Thus BT includes at least four moves for the fiber Fttt , which implies that BT is
not minimal for the model which does not have the unique minimal Markov basis.

��
Example 8.2 (The complete independence model of 2 × 2 × 2 × 2 contingency
tables). Consider the model D = {{1},{2},{3},{4}} and Dl = {l} for l = 1, . . . ,4.
Let Fttt be the fiber with Δ̄ttt = {1,2,3,4}; that is, c(ttt) = 4 and |Fttt | = 8. Consider
BT for T in Fig. 8.3. Denote the set of moves for Fttt belonging to BT by BT

ttt .
Figure 8.4 shows BT

ttt . As seen from Fig. 8.4, BT
ttt includes 12 moves. Because

|Fttt |= 8, 7 moves are sufficient to connect Fttt .
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8.5 Minimal Invariant Markov Bases

In this section we discuss Markov bases for decomposable models from the
viewpoint of invariance under the action of the direct product of symmetric groups
G = GI1,...,Im = SI1 × ·· ·× SIm on the levels of the variables and provide a minimal
G-invariant Markov basis.

Here we denote c = c(ttt) for simplicity. Let Γl , l = 1, . . . ,c, be connected
components of G (Δ̄ttt) and let Γc+1 = Δ \ Δ̄ttt . For a subset of vertices V ⊂ Δ , denote

000V :=

|V |︷ ︸︸ ︷
0 · · ·0, 111V :=

|V |︷ ︸︸ ︷
1 · · ·1 .

As a representative fiber F 0
ttt , we can consider ttt such that the levels of all degenerate

variables are determined as 0:

F 0
ttt � xxxttt

0 ≡ (000Δ )(111Δ̄ttt
000Γc+1).

Then any xxx ∈ F 0
ttt is expressed as follows,

xxx = (000Γ1 iiiΓ2 · · · iiiΓc 000Γc+1)(111Γ1 iii∗Γ2
· · · iii∗Γc

000Γc+1),

iiiΓl = 000Γl or iiiΓl = 111Γl , l = 2, . . . ,c.

Let GΓl , l = 2, . . . ,c, be the diagonal subgroup of S|Γl |
2 defined by

GΓl = {ḡ = (g, . . . ,g) | g ∈ S2} ⊂ S|Γl |
2 .

Define Gttt = GΓ2 ×·· ·×GΓc and let g ∈ Gttt act on xxx ∈ F 0
ttt by

g(xxx) = (000Γ1 ḡ2(iiiΓ2) · · · ḡc(iiiΓc) 000Γc+1)(111Γ1 ḡ2(iii
∗
Γ2
) · · · ḡc(iii

∗
Γc
) 000Γc+1).

Clearly g(xxx) ∈ F 0
ttt for xxx ∈ F 0

ttt and furthermore for any xxx ∈ F 0
ttt there exists g ∈ Gttt

such that xxx = g(xxxttt
0). This shows that Gttt ⊂ GI1,...,Im is the setwise stabilizer of F 0

ttt
acting transitively on F 0

ttt . Then Gttt ⊂GI1,...,Im is isomorphic to a c-fold direct product
of S2s:

Sc
2 = S2 ×·· ·× S2.

Therefore the structure of Fttt is equivalent to the structure of the fiber Fttt ′ with
Δ = Δ̄ttt ′ = {1, . . . ,c}.

Let BGttt be a minimal Gttt-invariant set of moves that connects F 0
ttt . Let κ(ttt) be

the number of Gttt -orbits included in BGttt . As representative moves of Gttt-orbits in
BGttt we can consider

zzzttt
k = xxxttt

0 − xxxttt
k ∈ Bttt , xxxttt

k ∈ F 0
ttt , k = 1, . . . ,κ(ttt).
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This is because we can always send xxx in zzz = xxx− xxx′ to xxxttt
0 by the transitivity of Gttt .

Denote B0
Gttt

= {zzzttt
1, . . . ,zzz

ttt
κ(ttt)}. Define the set of ttt that induces representative fibers by

B0
nd = {ttt | xxxttt

0 ∈ F 0
ttt } ⊂ Bnd. (8.10)

By Theorem 7.1 a minimal GI1,...,Im -invariant Markov basis can be expressed by

BG =
⋃

ttt∈B0
nd

κ(ttt)⋃
k=1

GI1,...,Im (zzz
ttt
k), (8.11)

where GI1,...,Im (zzz
ttt
k) denotes the GI1,...,Im -orbit through zzzttt

k. Hence in order to clarify
the structure of BG, it suffices to consider 2×·· ·×2 tables and investigate κ(ttt) and
B0

Gttt
for each F 0

ttt .
As mentioned above, the structure of F 0

ttt is equivalent to the one of the fiber
with Δ̄ttt = Δ = {1, . . . ,c} and G (Δ̄ttt) is totally disconnected. We first consider the
structure of such a fiber. F 0

ttt satisfies

F 0
ttt = {(0 iii2 · · · iiic)(1 iii∗2 · · · iii∗c) | (iii2 · · · iiic) = iiiΔ\{1} ∈ IΔ\{1}} (8.12)

and (0 · · ·0)(1 · · ·1) ∈ F 0
ttt . Then we can identify Gttt with Sc−1

2 . For g ∈ Sc−1
2 , we

write g = (g1, . . . ,gc), where gl ∈ S2 for l = 1, . . . ,c. A representative move of an
Sc−1

2 -orbit is written by

zzzttt = (0 · · ·0)(1 · · ·1)− (0 iiiΔ\{1})(1 iii∗Δ\{1})

for some iiiΔ\{1} ∈ IΔ\{1}. We first consider deriving κ(ttt) and BGttt . Let V c−1 =

{0,1}c−1 denote the (c− 1)-dimensional vector space over the finite field GF(2),
where the addition of two vectors is defined to be XOR of the elements. Let ⊕
denote the XOR operation. Let ◦ denote the group operation of Sc−1

2 .

Lemma 8.3. Sc−1
2 is isomorphic to V c−1.

Proof. Consider the map φ : Sc−1
2 →V c−1 such that φ(g) = vvv=(v2, . . . ,vc)∈V c−1,

where

vl =

{
0, if gl(iiil) = iiil ,
1, if gl(iiil) = iii∗l ,

for l = 2, . . . ,c and {iiil , iii
∗
l } = {0,1}. For g′ = (g′2, . . . ,g

′
c) ∈ Sc−1

2 , g′l ∈ S2, and vvv′ ∈
V c−1, define φ(g′) = vvv′ = (v′2, . . . ,v

′
c). Then we have φ(g ◦ g′) = ṽvv = (ṽ2, . . . , ṽc),

ṽvv ∈ V c−1, where

ṽl =

{
0, if gl ◦ g′l(iiil) = iiil ,
1, if gl ◦ g′l(iiil) = iii∗l

for l = 2, . . . ,c. Hence we have

ṽl = vl ⊕ v′l, l = 2, . . . ,c.
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Therefore φ is a homomorphism. It is obvious that φ is a bijection. Therefore Sc−1
2

is isomorphic to V c−1. ��
Based on this lemma, we can show the equivalence between Sc

2-orbits in a
minimal Sc

2-invariant set of moves that connects F 0
ttt and a (vector space) basis of

V c−1.

Theorem 8.5. Let V 0 = {vvvk = (vk2, . . . ,vkc), k = 2, . . . ,c} be any basis of V c−1.
Define xxxttt

0, xxxttt
vvvk
∈ F 0

ttt by

xxxttt
0 = (00 · · ·0)(11 · · ·1), xxxttt

vvvk
= (0 vk2 · · ·vkc)(1 v∗k2 · · ·v∗kc),

where v∗kl = 1⊕ vkl. Let BGttt be an Sc−1
2 -invariant set of moves in F 0

ttt . Then BGttt

is a minimal Sc−1
2 -invariant set of moves that connects F 0

ttt if and only if the
representative moves of the Sc−1

2 -orbits in BGttt are expressed by zzzttt
vvvk

= xxxttt
0 − xxxttt

vvvk
,

k = 2, . . . ,c. Hence κ(ttt) = c− 1.

Proof. Suppose that BGttt is a minimal Sc−1
2 -invariant set of moves that connects Fttt

and that BGttt includes κ(ttt) orbits Sc−1
2 (zzzttt

1), . . . ,S
c−1
2 (zzzttt

κ(ttt)), where

zzzttt
k = xxxttt

0 − xxxttt
k, xxxttt

k = (0 iiik2 · · · iiikc)(1 iii∗k2 · · · iii∗kc)

for iiikl ∈ Il , k = 1, . . . ,κ(ttt), l = 2, . . . ,c. Let gk ∈ Sc−1
2 satisfy gk(xxxttt

0) = xxxttt
k for

k = 1, . . . ,κ(ttt). We write gk = (gk2, . . . ,gkc), gkl ∈ S2 for l = 2, . . . ,c. Let Httt =
{g1, . . . ,gκ(ttt)} ⊂ Sc−1

2 be a subset of Sc−1
2 . As mentioned above, F 0

ttt can be
expressed as in (8.12). Hence for any xxx ∈ F 0

ttt there exists g ∈ Sc−1
2 satisfying

xxx = g(xxxttt
0). BGttt connects F 0

ttt if and only if there exists p ≤ κ(ttt) such that

xxx = xxxttt
0 − zzzttt

k1
− gk1(zzzttt

k2
)−·· ·− gkp−1 ◦ · · · ◦ gk1(zzzttt

kp
)

and g = gkp ◦ · · · ◦ gk1 . Hence BGttt is a minimal Sc−1
2 -invariant set of moves that

connects Fttt if and only if Httt satisfies

∀g ∈ Sc−1
2 , ∃p ≤ κ(ttt), ∃gk1 ∈ Httt , . . . ,∃gkp ∈ Httt s.t. g = gkp ◦ · · · ◦ gk1 (8.13)

and no proper subset of Httt satisfies (8.13).
Denote V 0 = φ(Httt)⊂ V c−1. From Lemma 8.3, (8.13) is equivalent to

∀vvv ∈ V , ∃vvv1 ∈ V 0, . . . ,∃vvvp ∈ V 0 s.t. vvv = vvv1 ⊕·· ·⊕ vvvp. (8.14)

From the minimality of BGttt no proper subset of V 0 satisfies (8.14). This implies
that V 0 is a basis of V c−1 and hence κ(ttt) = c− 1. If we define gk = φ−1(vvvk+1) for
k = 1, . . . ,c− 1, we have gkl(0) = vk+1,l and hence gk(xxxttt

0) = xxxttt
k = xxxttt

vvvk+1
. Therefore

zzzttt
vvvk

, k = 2, . . . ,c, are the representative moves of the Sc−1
2 -orbits in BGttt .
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Conversely suppose that the representative moves of BGttt are zzzttt
vvvk

, k = 2, . . . ,c.
V 0 satisfies (8.14) and no proper subset of V 0 satisfies (8.14). Hence if we define
gk = φ−1(vvvk+1) and Httt = {g1, . . . ,gc−1}, Httt satisfies (8.14) and no proper subset
of Httt satisfies (8.14). Hence BGttt is a minimal Sc−1

2 -invariant set of moves that
connects Fttt . ��

For example, we can set V 0 = {vvv2, . . . ,vvvc} as

vvv2 = (11 · · ·11), vvv3 = (01 · · ·11), . . . , vvvc−1 = (00 · · ·011), vvvc = (00 · · ·01),

and then the representative moves in a minimal G-invariant Markov basis are

zzz0
2 = (00 · · ·0)(11 · · ·1)− (011 · · ·11)(100 · · ·00),

zzz0
3 = (00 · · ·0)(11 · · ·1)− (001 · · ·11)(110 · · ·00),

...
...

...

zzz0
c = (00 · · ·0)(11 · · ·1)− (000 · · ·01)(111 · · ·10). (8.15)

So far we have focused on Fttt such that Δ̄ttt = Δ = {1, . . . ,c} and G (Δ̄ttt) is totally
disconnected. Now we consider a fiber for a general ttt of a general decomposable
model. Define ḡkl ∈ GΓl by

ḡkl(000Γl ) =

{
0 · · ·0 if vkl = 0,
1 · · ·1 if vkl = 1

(8.16)

for k = 2, . . . ,c and l = 2, . . . ,c and define gk ∈ Gttt by

gk(xxx) = (000Γ1 ḡk2(iiiΓ2) · · · ḡkc(iiiΓc) 000Γc+1)(111Γ1 ḡk2(iii
∗
Γ2
) · · · ḡkc(iii

∗
Γc
) 000Γc+1). (8.17)

Denote xxxttt
vvvk
= gk(xxxttt

0) and zzzttt
vvvk
= xxxttt

0 − xxxttt
vvvk

. By following (8.11) and Theorem 8.5, we
can easily obtain the following result.

Theorem 8.6. BGttt is a minimal Sc−1
2 -invariant set of moves that connects F 0

ttt if
and only if the representative moves of the Sc−1

2 -orbits in BGttt are expressed as zzzttt
vvvk

,
k = 2, . . . ,c. Hence κ(ttt) = c− 1. Then

BG =
⋃

ttt∈B0
nd

c⋃
k=2

GI1,...,Im(zzz
ttt
k)

is a minimal GI1,...,Im -invariant Markov basis. Conversely every minimal GI1,...,Im -
invariant Markov basis can be written in this form.

Example 8.3 (The complete independence model of three-way contingency tables).
Define ttt1, . . . , ttt7 as in Fig. 8.1 of Example 8.1. Then B0

nd = {ttt1, ttt2, ttt4, ttt6}. Figure 8.5
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G((000)(111))(000)(111) (001)(110)

(011)(100) (010)(101) G((011)(100))

G((001)(110))

BGt1
G(BGt1

)

G((010)(101))

G((000)(110)) G((010)(100))(000)(110) (010)(100)

BGt2

G((000)(011)) G((010)(001))(000)(011) (010)(001)

BGt4

G((000)(101)) G((001)(100))(000)(101) (001)(100)

BGt6

G(BGt2
)

G(BGt4
)

G(BGt6
)

BG

Fig. 8.5 The structure of minimal G2,2,2-invariant Markov bases for the complete independence
model of three-way contingency tables

shows a structure of BG for the I1 × I2 × I3 complete independence model of three-
way contingency tables. The left half of the figure shows the structure of BGtttt

for
2× 2× 2 tables.

c(ttt1) = 3 and hence κ(ttt1) = 2. If we set vvvttt
1 = (10) and vvvttt

2 = (01), we have

zzzttt1
1 = (000)(111)− (010)(101), zzzttt1

2 = (000)(111)− (001)(110).

The orbits S2
2(zzz

ttt1
1 ) and S2

2(zzz
ttt1
2 ) are expressed in dotted lines and solid lines,

respectively, in the figure.
c(tttl) = 2 and κ(tttl) = 1 for l = 2,4,6. There exists one orbit in BGtttl

for l = 2,4,6.
Then from Theorem 8.6 a minimal G2,2,2-invariant Markov basis is expressed by

BG = G(zzzttt1
1 )∪G(zzzttt1

2 )∪G(zzzttt2
1 )∪G(zzzttt4

1 )∪G(zzzttt6
1 ).

Dobra’s Markov basis BT is characterized from a viewpoint of invariance as
follows. Because BT does not depend on the levels of the variables, BT is GI1,...,Im -
invariant. Based on the result of Theorem 8.5, we can show that BT is not always
a minimal invariant Markov basis.
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···D1 D2 Dr
Fig. 8.6 The clique tree
with two endpoints

Theorem 8.7. BT is minimal invariant if and only if T has only two endpoints.

Proof. It suffices to show that the theorem holds for 2×·· ·×2 tables. Suppose that
T = (D ,E ) has more than two endpoints. Let D1, D2, and D3 be three of them.
Then they are boundary cliques. Suppose 1,2,3 ∈ Δ are simply separated vertices
in D1, D2, and D3, respectively. In the same way as the argument in the proof of
Theorem 8.4, there exist e,e′,e′′ ∈ E such that

D1,D2 ∈Ve, D3 ∈V ′
e ,

D2,D3 ∈Ve′ , D1 ∈V ′
e′ ,

D3,D1 ∈Ve′′ , D2 ∈V ′
e′′ .

Consider the moves for the fiber F 0
ttt for ttt such that Δ̄ttt = {1,2,3}. Define zzz5

and zzz6 by

zzz5 = xxx1 − xxx3, zzz6 = xxx2 − xxx4,

where xxx1, . . . ,xxx4 are defined in (8.9). Then we have

zzz1,zzz2 ∈ BT (Ve,V
′
e), zzz3,zzz4 ∈ BT (Ve′ ,V

′
e′), zzz5,zzz6 ∈ BT (Ve′′ ,V

′
e′′).

We note that {zzz1,zzz2}, {zzz3,zzz4}, and {zzz5,zzz6} are S2
2-orbits in BT

ttt . Because κ(ttt) = 2,
BT is not minimal invariant.

Suppose that T has only two endpoints. Then T is expressed as in Fig. 8.6.
Let Γ1, . . . ,Γc be the c connected components of G (Δ̄ttt). Suppose that δl ∈ Γl . The
structure of F 0

ttt is equivalent to the one of F 0
ttt′ such that Δ̄ttt′ = {δ1, . . . ,δc−1} and

G (Δ̄ttt′) is totally disconnected. So we restrict our consideration to such a fiber.
Denote by F 0

ttt ′ the representative fiber for ttt′. Let

Bttt ′ = {xxx− xxx′ | xxx,xxx′ ∈ F 0
ttt ′ , xxx �= xxx′}

denote the set of all moves in F 0
ttt ′ . Without loss of generality we can assume that

δl ∈ Dπ(l), where π(1)< · · ·< π(c(ttt′)). Define el = (Dl−1,Dl) ∈ E , Sl =Dl−1∩Dl ,
Vl =Vel \Sl and V ′

l =V ′
el
\Sl for l = 2, . . . ,c(ttt ′). Then the moves in BT (Vl ,V ′

l ) are
expressed as

zzz = (iiiVl iiiV ′
l
iiiSl )( jjjVl

jjjV ′
l
, iiiSl )− (iiiVl jjjV ′

l
iiiSl )( jjjVl

iiiV ′
l
, iiiSl ),

iiiVl , jjjVl
∈ IVl , iiiV ′

l
, jjjV ′

l
∈ IV ′

l
, iiiSl ∈ ISl . (8.18)

If Vel ∩ Δ̄ttt′ = /0 or V ′
el
∩ Δ̄ttt′ = /0, then we have BT (Vel ,V

′
el
)∩Bttt ′ = /0. If Vel ∩ Δ̄ttt ′ �= /0

and V ′
el
∩ Δ̄ttt ′ �= /0, then there exists 2 ≤ k(el) ≤ c(ttt ′) satisfying δk ∈ Vl for all k <

k(el) and δk ∈V ′
l for all k ≥ k(el). Then
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D1

T 1 T 2

D2 D3 D4

D1

D2

D3 D4

Fig. 8.7 Clique trees
for the four-way complete
independence model

D1 D2 D4D3

(0000)(1110) (0010)(1100)

(0110)(1000) (0100)(1010)

D1 D2 D4D3

(0000)(1110) (0010)(1100)

(0110)(1000) (0100)(1010)

Fig. 8.8 The structure of BT 1

ttt

BT (Vel ,V
′
el
)∩Bttt′ = Sc−1

2 (zzz0
k(el )

),

where zzz0
k(el )

is defined as in (8.15). Hence we have

BT
ttt ′ =

⋃
el∈E

BT (Vel ,V
′
el
)∩Bttt′ =

c(ttt′)⋃
k=2

Sc−1
2 (zzz0

k),

which contains c(ttt ′)− 1 orbits for all ttt ′ ∈ B0
nd. Hence BT is minimal GI1,...,Im -

invariant. ��

Example 8.4 (The complete independence model of four-way contingency tables).
As an example we consider the 2 × 2 × 2 × 2 complete independence model
D = {Dl = {i}, i = 1, . . . ,4}. Both T 1 and T 2 in Fig. 8.7 are clique trees for
D . From Theorem 8.7, BT 1

is a minimal S3
2-invariant Markov basis. Consider the

representative fiber F 0
ttt such that Δ̄ttt = {1,2,3}. For j = 1,2, denote the two induced

subtrees of T j obtained by removing the edge el by T j
el and T j

el

′
. Figure 8.8 shows
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D1

D2

D4

D3

(0000)(1110) (0010)(1100)

(0110)(1000) (0100)(1010)

D1

D2

D4

D3

(0000)(1110) (0010)(1100)

(0110)(1000) (0100)(1010)

D1

D2

D4

D3

(0000)(1110) (0010)(1100)

(0110)(1000) (0100)(1010)

Fig. 8.9 The structure of BT 2

ttt

T 1
el

, T 1
el

′
and BT 1

(Vel ,V
′
el
)∩Bttt . If we remove e3 from T 1, 1, 2, and 3 are still

connected and hence BT 1
(Ve3 ,V

′
e3
)∩Bttt = /0. Therefore BT 1

ttt contains κ(ttt) = 2
orbits.

On the other hand because T 2 has three endpoints, BT 2
is not a minimal S3

2-

invariant Markov basis. Figure 8.9 shows T 2
el

, T 2
el

′
, and BT 2

(Vel ,V
′
el
)∩Bttt . We

can see that BT 2

ttt contains three orbits. As seen from this example, in general the
minimality of M T depends on clique trees T .

Example 8.5. We consider the model defined by the chordal graph in Fig. 8.10. The
clique tree of this graph is uniquely determined by T 2 in Fig. 8.7. As seen from this
example, there exist decomposable models such that BT for every clique tree T is
not minimal GI1,...,Im -invariant.



8.6 The Relation Between Minimal and Minimal Invariant Markov Bases 127

D1

D2 D3

D4

Fig. 8.10 A chordal graph
whose clique tree is uniquely
determined

8.6 The Relation Between Minimal and Minimal Invariant
Markov Bases

From a practical point of view a GI1,...,Im -invariant Markov basis is useful because
its representative moves give the most concise expression of a Markov basis. On the
other hand a minimal Markov basis is also important because the number of moves
contained in it is minimum among Markov bases. Here we consider the relation
between a minimal and a minimal GI1,...,Im -invariant Markov basis and give an
algorithm to obtain a minimal Markov basis from representative moves of a minimal
GI1,...,Im -invariant Markov basis.

As mentioned in the previous section, the set of Gttt -orbits in a minimal Gttt -
invariant set BGttt of moves that connects F 0

ttt has a one-to-one correspondence
to a basis V 0 of V c−1. Define ḡkl ∈ GΓl and gk ∈ Gttt as in (8.16) and (8.17). Let
Httt = {g1, . . . ,gc−1} ⊂ Gttt . Now we consider generating a set of moves B∗

ttt in Fttt by
the following algorithm.

Algorithm 8.2
Input: Fttt , Httt = {g1, . . . ,gc−1}
Output: B∗

ttt

begin
B∗

ttt ← /0;
Choose any element xxx1 in Fttt ;
for k = 2 to c do
begin

for l = 1 to 2k−2 do
begin

xxxl+2k−2 := gk−1(xxxl);
zzzl+2k−2 := xxxl − xxxl+2k−2 ;
B∗

ttt ← B∗
ttt ∪{zzzl+2k−2};

end
end
return B∗

ttt ;
end
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(0000)(1111)

(0001)(1110)

(0010)(1101)

(0011)(1100)

(0100)(1011)

(0111)(1000)

(0110)(1001)

(0101)(1010)

Gt(z2 )

Gt(z3 )

Gt(z4 )

(0000)(1111)

(0001)(1110)

(0010)(1101)

(0011)(1100)

(0100)(1011)

(0111)(1000)

(0110)(1001)

(0101)(1010)

x1

x5

x3

x7x6

x4

x8

BG t B∗
t

z2

z3

z4

z5

z6

z7

z8

x2

x1

x5

x3

x7x6

x4

x8

z2

z3

z4

z5

z6

z7

z8

x2

Fig. 8.11 BGttt and B∗
ttt generated by Algorithm 8.2

Theorem 8.8. B∗
ttt generated by Algorithm 8.2 is a minimal set of moves that

connects Fttt .

Proof. Inasmuch as |B∗
ttt | = 20 + 21 + · · ·+ 2c−1 = 2c − 1, it suffices to show that

xxxl �= xxxl′ for l �= l′. Suppose that there exist l and l′ such that l �= l′ and xxxl = xxxl′ and
that xxxl and xxxl′ are expressed as

xxxl = gkp ◦ · · · ◦ gk1(xxx1), xxxl′ = g
k′

p′ ◦ · · · ◦ gk′1(xxx1),

where k1 < k2 < · · · < kp ≤ c− 1 and k′1 < k′2 < · · · < k′p′ ≤ c− 1. Without loss of
generality we can assume p ≤ p′. Then we have

gkp ◦ · · · ◦ gk1 = g
k′

p′ ◦ · · · ◦ gk′1 (8.19)

and there exists l ≤ p such that kl �= k′l . From Lemma 8.3 (8.19) is equivalent to

vvvk1 ⊕·· ·⊕ vvvkp = vvvk′1 ⊕·· ·⊕ vvvk′
p′
,

which contradicts that V 0 is a basis of V c−1. Hence we have xxxl �= xxxl′ for l �= l′. ��
From (8.6) we obtain the following result.

Corollary 8.3. B∗ =
⋃

ttt∈Bnd
B∗

ttt is a minimal Markov basis.

Example 8.6 (The complete independence model of a four-way contingency table).
We consider the same fiber as in Example 8.2. Define V 0 = {vvv2,vvv3,vvv4} by vvv2 =
(100), vvv3 = (010), and vvv4 = (001). Figure 8.11 shows BGttt and B∗

ttt generated by
Algorithm 8.2 with xxx1 = (0000)(1111).



Chapter 9
Markov Basis for No-Three-Factor Interaction
Models and Some Other Hierarchical Models

9.1 No-Three-Factor Interaction Models
for 3×3×K Contingency Tables

The no-three-factor interaction model for three-way contingency tables is one of
the simplest nondecomposable hierarchical models. In this chapter, we write I ×
J ×K contingency tables as xxx = {xi jk | iii = (i jk) ∈ I } where I = {1, . . . , I}×
{1, . . . ,J}×{1, . . . ,K}. The generating class of no-three-factor interaction models is
D = {{1,2},{1,3},{2,3}}. Therefore the cell probability for iii = (i jk) is written as

log pi jk = μ{1,2}(i j)+ μ{1,3}(ik)+ μ{2,3}( jk).

With lexicographic ordering of indices, the configuration A for this model is
written as

A =

⎛
⎝EI ⊗EJ ⊗ 1′K

EI ⊗ 1′J ⊗EK

1′I ⊗EJ ⊗EK

⎞
⎠ .

As we see below, the structure of Markov bases for this model is very complicated.
In fact, the closed-form expression of Markov bases for this model of general I ×
J×K tables is not yet obtained at present. Instead, we show the structure of minimal
Markov basis for I = J = 3 cases (i.e., 3× 3×K contingency tables) given in [10].
The arguments in [10] are based on the distance-reducing proofs in Chap. 6: first we
give a candidate set of moves B∗, and in order to show that Fttt constitutes one B∗-
equivalence class for any ttt, we suppose F1 and F2 are different B∗-equivalence
classes of Fttt for some ttt, then choose xxx ∈ F1 and yyy ∈ F2 such that

|yyy− xxx|= ∑
i, j,k

|yi jk − xi jk|> 0

is minimized, and finally derive a contradiction.

S. Aoki et al., Markov Bases in Algebraic Statistics, Springer Series
in Statistics 199, DOI 10.1007/978-1-4614-3719-2 9,
© Springer Science+Business Media New York 2012
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For an I × J × K table xxx = {xi jk}, i-slice (or i = i0 slice) of xxx is the two-
dimensional slice {xi0 jk}1≤ j≤J,1≤k≤K, where i = i0 is fixed. We similarly define
j-slice and k-slice. In this chapter, to display I× J×K contingency tables, we write
I i-slices of size J×K as follows.

x111 · · · x11K
...

...
x1J1 · · · x1JK

x211 · · · x21K
...

...
x2J1 · · · x2JK

· · ·
xI11 · · · xI1K

...
...

xIJ1 · · · xIJK

.

We also use the concise expression of moves in Chap. 7 by the locations of nonzero
cells. For example, a move of 3× 3× 3 table displayed as

+1 −1 0
−1 +1 0

0 0 0

−1 +1 0
0 −1 +1

+1 0 −1

0 0 0
+1 0 −1
−1 0 +1

is also written as

(111)(122)(212)(223)(231)(321)(333)− (112)(121)(211)(222)(233)(323)(331).

In this chapter, it is always assumed that the indices are integers such that

1 ≤ i1, i2, . . . , iI ≤ I, i1, i2, . . . , iI all distinct,
1 ≤ j1, j2, . . . , jJ ≤ J, j1, j2, . . . , jJ all distinct,
1 ≤ k1,k2, . . . ,kK ≤ K, k1,k2, . . . ,kK all distinct.

9.2 Unique Minimal Markov Basis for 3×3×3 Tables

First we define the most elementary eight-entry move.

Definition 9.1. A move of degree 4 is a move mmm4(i1i2, j1 j2,k1k2) ∈ kerZA
written as

(i1 j1k1)(i1 j2k2)(i2 j1k2)(i2 j2k1)− (i1 j1k2)(i1 j2k1)(i2 j1k1)(i2 j2k2).

We call this move a basic move for the no-three-factor interaction model. Figure 9.1
gives a three-dimensional view of the basic move. From the definition, the relation

mmm4(i1i2, j1 j2,k1k2)=mmm4(i1i2, j2 j1,k2k1)=mmm4(i2i1, j1 j2,k2k1)=−mmm4(i2i1, j1 j2,k1k2)

holds. These moves of degree 4 are the most elementary moves in the sense that
all the other moves of higher degrees in kerZA are written as linear combinations
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+1 -1

+1

+1

+1

-1

-1

-1

Fig. 9.1 2×2×2 move
of degree 4 (basic move)

of these degree 4 moves with integral coefficients. Namely, the set of basic moves
contains a lattice basis of kerZ A. It is seen that the basic moves are indispensable
(see Definition 5.1) because

{(i1 j1k1)(i1 j2k2)(i2 j1k2)(i2 j2k1), (i1 j1k2)(i1 j2k1)(i2 j1k1)(i2 j2k2)}
constitutes a two-element fiber.

For I×J×K tables with fixed two-dimensional marginals, the set of basic moves
is not a Markov basis when at least two of I,J,K are larger than 2. To see this,
consider 3× 3× 3 contingency tables having two-dimensional marginals as xi j· =
xi·k = x· jk = 2 for all 1≤ i, j,k ≤ 3. There are 132 elements in this fiber, but elements
such as

2 0 0
0 2 0
0 0 2

0 2 0
0 0 2
2 0 0

0 0 2
2 0 0
0 2 0

are not connected to any other element in the fiber by the basic moves. This simple
example suggests that the following moves of degree 6 are needed for the Markov
basis.

Definition 9.2. Moves of degree 6 are a move mmmI
6(i1i2, j1 j2 j3,k1k2k3) ∈ kerZA

written as

(i1 j1k1)(i1 j2k2)(i1 j3k3)(i2 j1k2)(i2 j2k3)(i2 j3k1)

−(i1 j1k2)(i1 j2k3)(i1 j3k1)(i2 j1k1)(i2 j2k2)(i2 j3k3),

a move mmmJ
6(i1i2i3, j1 j2,k1k2k3) ∈ kerZA written as

(i1 j1k1)(i1 j2k2)(i2 j1k2)(i2 j2k3)(i3 j1k3)(i3 j2k1)

−(i1 j1k2)(i1 j2k1)(i2 j1k3)(i2 j2k2)(i3 j1k1)(i3 j2k3)

and a move mmmK
6 (i1i2i3, j1 j2 j3,k1k2) ∈ kerZA written as

(i1 j1k1)(i1 j2k2)(i2 j2k1)(i2 j3k2)(i3 j1k2)(i3 j3k1)

−(i1 j1k2)(i1 j2k1)(i2 j2k2)(i2 j3k1)(i3 j1k1)(i3 j3k2).
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Similarly to the basic move, the relations

mmmI
6(i1i2, j1 j2 j3,k1k2k3) = mmmI

6(i1i2, j2 j3 j1,k2k3k1) = mmmI
6(i2i1, j1 j3 j2,k2k1k3),

mmmI
6(i1i2, j1 j2 j3,k1k2k3) =−mmmI

6(i2i1, j1 j2 j3,k1k2k3)

and similar relations for mmmJ
6(i1i2i3, j1 j2,k1k2k3) and mmmK

6 (i1i2i3, j1 j2 j3,k1k2) are
derived from the definition. We see that all the moves of degree 6 are indispensable.

Note that the moves of degree 6 are obtained as combinations of two basic
moves. To see this, we provide a complete list of the patterns that are obtained by
the sum of two overlapping basic moves. For basic moves mmm4(i1i2, j1 j2,k1k2) and
mmm4(i′1i′2, j′1 j′2,k

′
1k′2), define

ΔI = δi1i′1 + δi1i′2 + δi2i′1 + δi2i′2 ,

ΔJ = δ j1 j′1 + δ j1 j′2 + δ j2 j′1 + δ j2 j′2 ,

ΔK = δk1k′1 + δk1k′2 + δk2k′1 + δk2k′2

and

Δ = ΔI +ΔJ +ΔK,

where δi j = 1 if i = j, and = 0 otherwise. Because two moves are overlapping,
ΔI,ΔJ ,ΔK ≥ 1. Furthermore, ΔI ≤ 2, because i1 �= i2 and i′1 �= i′2. Similarly, ΔJ ,ΔK ≤
2, therefore Δ ∈ {3,4,5,6}. Corresponding to the values of Δ , all the patterns are
classified as follows.

• Δ = 3: mmm4(i1i2, j1 j2,k1k2) and mmm4(i′1i′2, j′1 j′2,k
′
1k′2) overlap at one nonzero entry.

In this chapter, we call this case a combination of type 1 or a type-1 combination.
If the signs of this overlapping cell are opposite, a move of degree 7 is obtained.
Figure 9.2 gives a three-dimensional view of this type of move.

• Δ = 4: mmm4(i1i2, j1 j2,k1k2) and mmm4(i′1i′2, j′1 j′2,k
′
1k′2) overlap at two nonzero entries.

We call this case a combination of type 2 or a type-2 combination. If the pairs
of signs of these two cells are opposite, an indispensable move of degree 6 in
Definition 9.2 is obtained. Figure 9.3 gives a three-dimensional view of this type
of move.

• Δ = 5: mmm4(i1i2, j1 j2,k1k2) and mmm4(i′1i′2, j′1 j′2,k
′
1k′2) overlap at four nonzero entries

along a two-dimensional rectangle. If all the pairs of signs are canceled, a basic
move is again obtained as

mmm4(i1i2, j1 j2,k1k2) = mmm4(i1i2, j1 j2,k1k3)+mmm4(i1i2, j1 j2,k3k2)

= mmm4(i1i2, j1 j3,k1k2)+mmm4(i1i2, j3 j2,k1k2)

= mmm4(i1i3, j1 j2,k1k2)+mmm4(i3i2, j1 j2,k1k2).

• Δ = 6: mmm4(i1i2, j1 j2,k1k2) and mmm4(i′1i′2, j′1 j′2,k
′
1k′2) overlap completely.
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Fig. 9.2 3×3×3 move
of degree 7
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Fig. 9.3 2×3×3 move
of degree 6

In the above list, the cases of Δ = 3 and Δ = 4 yield so called “two-step moves;” that
is, two basic moves are needed to construct these moves of degree 6 and degree 7.
As we see in Theorem 9.1 below, the moves of degree 7 in Fig. 9.2 are not needed
for a minimal Markov basis. To demonstrate this point, consider the following two
3× 3× 3 tables.
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Fig. 9.4 2×3×3 move
of degree 6 (as another
combination of type 2)

xxx :
0 0 0
0 1 0
0 0 1

0 0 1
1 0 0
0 1 0

1 0 0
0 0 1
0 0 0

yyy :
0 0 0
0 0 1
0 1 0

1 0 0
0 1 0
0 0 1

0 0 1
1 0 0
0 0 0

.

These two tables are the negative part and the positive part of the move of degree 7,

(123)(132)(211)(222)(233)(313)(321)− (122)(133)(213)(221)(232)(311)(323),

and mutually accessible by this move: yyy− xxx. However, instead of adding yyy− xxx to
xxx, mmm4(23,12,13) can be added to xxx, and then, mmm4(12,23,32) can be added to xxx+
mmm4(23,12,13), to obtain yyy. Note that the move yyy− xxx is a type-1 combination of
mmm4(23,12,13) and mmm4(12,23,32). xxx+mmm4(23,12,13) does not contain a negative
element, whereas xxx+mmm4(12,23,32) contains a negative element (2,2,3). Note also
that mmm4(23,12,13) and mmm4(12,23,32) overlap at this cell. Because the two basic
moves are canceling at this cell, it is obvious that at least one of these basic moves
(that has +1 at this cell) can be added without causing negative elements. On the
other hand, because the type-2 combination has two overlapping cells, it cannot be
avoided that one of these two elements becomes negative in adding basic moves one
by one. For this reason, the type-2 combination is essential.

We also note that the expression of the move of degree 6 as a type-2 combination
of two basic moves is not unique. Figure 9.4 illustrates the same move of degree 6
shown in Fig. 9.3, but the overlapping cells of the two basic moves are different.

Now we give a unique minimal Markov basis for 3× 3× 3 case.
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Theorem 9.1. The set of basic moves mmm4(i1i2, j1 j2,k1k2) and moves of degree 6,
mmmI

6(i1i2, j1 j2 j3,k1k2k3),mmmJ
6(i1i2i3, j1 j2,k1k2k3),mmmK

6 (i1i2i3, j1 j2 j3,k1k2) constitutes
a unique minimal Markov basis for 3× 3× 3 tables.

Note that the minimality and the uniqueness directly hold if this set of moves
constitutes a Markov basis, because it is composed of indispensable moves only.
See Corollary 5.2 in Chap. 5.

Following the distance-reducing proofs in Chap. 6, we consider the pattern of
zzz = yyy− xxx where xxx and yyy have the same two-dimensional marginals. Before we give
a proof of Theorem 9.1, we show a useful lemma concerning the patterns of two-
dimensional slices of yyy− xxx for general 3× 3×K cases.

Definition 9.3. Let C be a two-dimensional matrix with elements ci j. Then a
rectangle is a set of four entries (ci1 j1 ,ci2 j1 ,ci2 j2 ,ci1 j2) with alternating signs.
Similarly, a 6-cycle is a set of six entries (ci1 j1 ,ci2 j1 ,ci2 j2 ,ci3 j2 ,ci3 j3 ,ci1 j3) with
alternating signs.

Using the fact that all the marginal totals of zzz = yyy− xxx are zeros, it can be easily
shown that any nonzero entry of zzz has to be a member of either a rectangle or a
6-cycle in all of the i-, j-, and k-slices when xxx and yyy are 3× 3×K contingency
tables.

Lemma 9.1. Let xxx and yyy be 3×3×K contingency tables and let zzz= yyy−xxx. Consider
zzz after minimizing |zzz| by applying the basic moves and the moves of degree 6 without
causing negative entries on the way. Then

(a) No k-slice of zzz contains 6-cycles.
(b) There is at least one rectangle in either an i-slice or a j-slice unless zzz = 0.

Proof. In the proof of this lemma, we display k-slices of zzz instead of our usual
display of i-slices.

To prove (a), suppose that, without loss of generality, k = 1 slice of zzz contains
the following 6-cycle

i\ j 1 2 3
1 + − ∗
2 − ∗ +

3 ∗ + −
.

Because z11· = 0, there exists at least one negative element in z112,z113, . . . ,z11K . Let
z112 < 0 without loss of generality. As is shown above, z112 has to be an element of
either a rectangle or a 6-cycle in the k = 2 slice. These two cases are considered,
respectively, as follows.

Case 1. z112 is an element of a 6-cycle.
It is seen that the negative entries in the 6-cycle in the k = 2 slice, which
includes z112, can be either (i) (z112,z222,z332) or (ii) (z112,z232,z322). In case (i),
mmm4(12,12,12) can be added to xxx without causing negative entries to make |zzz| smaller
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because x121,x211,x112,x222 > 0. On the other hand, in case (ii), mmmK
6 (132,123,12)

can be added to xxx without causing negative entries to make |zzz| smaller because
x121,x211,x331,x112,x232,x322 > 0. These imply that Case 1 is a contradiction.

Case 2. z112 is an element of a rectangle.
It is seen that the negative entries in the rectangle, which includes z112, can be
either (i) (z112,z222), (ii) (z112,z232), (iii) (z112,z322), or (iv) (z112,z332). In case
(i), mmm4(12,12,12) can be added to xxx without causing negative entries and |zzz| can
be made smaller as in (i) of Case 1. In case (ii), it follows that z132,z212 > 0 and
mmm4(12,13,21) can be added to yyy without causing negative entries and make |zzz|
smaller because y111,y231,y132,y212 > 0. Case (iii) is the symmetric case of (ii).

In case (iv), the two k-slices, {zi j1} and {zi j2}, are represented as

{zi j1} :

i\ j 1 2 3
1 + − ∗
2 − ∗ +

3 ∗ + −
{zi j2} :

i\ j 1 2 3
1 − ∗ +

2 ∗ ∗ ∗
3 + ∗ −

.

In this case, because z331,z332 < 0, at least one of z333, . . . ,z33K has to be positive.
Let z333 > 0 without loss of generality. Here, z333 is again an element of either
a rectangle or a 6-cycle. But as already seen in Case 1, there cannot be another
6-cycle in the k �= 1 slice. Thus z333 has to be a member of a rectangle. Moreover,
for the same reason as (i)–(iii) of Case 2, the k = 3 slice has to be a mirror image of
the k = 2 slice:

{zi j1} :

i\ j 1 2 3
1 + − ∗
2 − ∗ +

3 ∗ + −
{zi j2} :

i\ j 1 2 3
1 − ∗ +

2 ∗ ∗ ∗
3 + ∗ −

{zi j3} :

i\ j 1 2 3
1 + ∗ −
2 ∗ ∗ ∗
3 − ∗ +

.

However, mmm4(13,13,23) can be added to yyy or mmm4(13,13,32) can be added to xxx
without causing negative entries and |zzz| can be made smaller, which contradicts the
assumption. These imply that Case 2 also is a contradiction.

These considerations indicate that the 6-cycle cannot be included in any 3×3 slices
and the proof of (a) is completed.

Next (b) is proved. Suppose zzz has nonzero entries and let z111 > 0 without loss
of generality. It is known that z111 is a member of a rectangle in the k = 1 slice from
(a). Then let the k = 1 slice be represented as

i\ j 1 2 3
1 + − ∗
2 − + ∗
3 ∗ ∗ ∗
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without loss of generality. We are assuming that there exists no rectangle in the 3×K
i-slices or j-slices of zzz. Write z112 < 0 without loss of generality because z11· = 0.

{zi j1} :

i\ j 1 2 3
1 + − ∗
2 − + ∗
3 ∗ ∗ ∗

{zi j2} :

i\ j 1 2 3
1 − ∗ ∗
2 ∗ ∗ ∗
3 ∗ ∗ ∗

.

From the assumption, it follows that z122,z212 ≤ 0 because otherwise either i = 1
slice or j = 1 slice has a rectangle. We also have z222 ≥ 0 because otherwise we
can add mmm4(12,12,12) to xxx without causing negative entries and make |zzz| smaller.
Hereafter we display nonnegative elements by 0+ and nonpositive elements by 0−.

{zi j1} :

i\ j 1 2 3
1 + − ∗
2 − + ∗
3 ∗ ∗ ∗

{zi j2} :

i\ j 1 2 3
1 − 0− ∗
2 0− 0+ ∗
3 ∗ ∗ ∗

.

Inasmuch as z112 has to be an element of a rectangle in a k = 2 slice, z132 > 0,z312 >
0 and z332 < 0 are derived.

{zi j1} :

i\ j 1 2 3
1 + − ∗
2 − + ∗
3 ∗ ∗ ∗

{zi j2} :

i\ j 1 2 3
1 − 0− +

2 0− 0+ ∗
3 + ∗ −

.

It is seen that if z131 < 0, there appears a rectangle in the i = 1 slice; and if z311 < 0,
there appears a rectangle in the j = 1 slice. These contradict the assumption.

Then it follows that z131,z311 ≥ 0. Here we write z123 > 0 without loss of
generality, because z12· = 0.

{zi j1} :

i\ j 1 2 3
1 + − 0+
2 − + ∗
3 0+ ∗ ∗

{zi j2} :

i\ j 1 2 3
1 − 0− +

2 0− 0+ ∗
3 + ∗ −

{zi j3} :

i\ j 1 2 3
1 ∗ + ∗
2 ∗ ∗ ∗
3 ∗ ∗ ∗

.

It is seen that if z113 < 0, there appears a rectangle in the i = 1 slice; and if z223 < 0,
there appears a rectangle in the j = 2 slice. These contradict the assumption. Then
it follows that z113,z223 ≥ 0.

{zi j1} :

i\ j 1 2 3
1 + − 0+
2 − + ∗
3 0+ ∗ ∗

{zi j2} :

i\ j 1 2 3
1 − 0− +

2 0− 0+ ∗
3 + ∗ −

{zi j3} :

i\ j 1 2 3
1 0+ + ∗
2 ∗ 0+ ∗
3 ∗ ∗ ∗

.
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z123 has to be an element of a rectangle in the k = 3 slice, therfore z133,z323 < 0 and
z333 > 0 are derived.

{zi j1} :

i\ j 1 2 3
1 + − 0+
2 − + ∗
3 0+ ∗ ∗

{zi j2} :

i\ j 1 2 3
1 − 0− +

2 0− 0+ ∗
3 + ∗ −

{zi j3} :

i\ j 1 2 3
1 0+ + −
2 ∗ 0+ ∗
3 ∗ − +

.

But then a rectangle (z132,z133,z333,z332) appears in the j = 3 slice, which contra-
dicts the assumption and the proof of (b) is completed. ��

Now we carry out a proof of Theorem 9.1 using Lemma 9.1.

Proof (Theorem 9.1). As we have stated, we only need to show that the elements of
zzz = yyy−xxx have to be all zero after minimizing |zzz| by applying the basic moves or the
moves of degree 6 without causing negative entries on the way.

Suppose zzz has nonzero entries. Let z111 > 0 without loss of generality. From
Lemma 9.1(a), z111 has to be an element of rectangles, in each of the i = 1, j =
1, and k = 1 slices. We can take one of these rectangles in the i = 1 slice as
(z111,z112,z122,z121) without loss of generality.

+ − ∗
− + ∗
∗ ∗ ∗

∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

.

Next consider the j = 1 slice. We claim that z111 and z112 are elements of the
same rectangle in j = 1 slice. To prove this, consider the sign of z113. If z113 ≥ 0,
the rectangle containing z111 in the j = 1 slice contains z112, and if z113 < 0, the
rectangle containing z112 in the j = 1 slice contains z111. Therefore, z111 and z112

are elements of the same rectangle in the j = 1 slice and the rectangle can be taken
as (z111,z112,z212,z211) without loss of generality.

+ − ∗
− + ∗
∗ ∗ ∗

− + ∗
∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

.

Now consider the rectangle in the k = 1 slice containing z111. For a similar reason as
above, this rectangle also contains z121. In addition, if z221 > 0, mmm4(12,12,21) can
be added to yyy without causing negative entries and |zzz| can be made smaller, which
contradicts the assumption. Hence, the rectangle in the k = 1 slice including z111 has
to be (z111,z121,z321,z311).

+ − ∗
− + ∗
∗ ∗ ∗

− + ∗
0− ∗ ∗
∗ ∗ ∗

− ∗ ∗
+ ∗ ∗
∗ ∗ ∗

.
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Next consider the rectangle in the j = 2 slice including z121. For a similar reason
as above, this rectangle also contains z122. Hence, the rectangle in the j = 2 slice
including z121 has to be (z121,z122,z322,z321).

+ − ∗
− + ∗
∗ ∗ ∗

− + ∗
0− ∗ ∗
∗ ∗ ∗

− ∗ ∗
+ − ∗
∗ ∗ ∗

.

However, mmm4(13,12,12) can be added to xxx without causing negative entries and |zzz|
can be made smaller, which contradicts the assumption. From these considerations,
a set of the basic moves and the moves of degree 6 is shown to be a Markov basis
for the 3× 3× 3 case. All these moves are indispensable, therefore the minimality
and the uniqueness also follow. This completes the proof of Theorem 9.1. ��

9.3 Unique Minimal Markov Basis for 3×3×4 Tables

The next indispensable move is constructed as a three-step move. For the case of
a general I × J ×K contingency table, there are several types of such a move. One
is a 2× 4× 4 move of degree 8 and another is a 3× 4× 4 move of degree 9. We
consider these moves in Sect. 9.5. For the 3 × 3×K case, the following type of
move is needed.

Definition 9.4. A move of degree 8 is a move mmm8(i1i2i3, j1 j2 j3,k1k2k3k4) ∈ kerZA
written as

(i1 j1k1)(i1 j2k2)(i2 j1k3)(i2 j2k1)(i2 j3k4)(i3 j1k2)(i3 j2k4)(i3 j3k3)

−(i1 j1k2)(i1 j2k1)(i2 j1k1)(i2 j2k4)(i2 j3k3)(i3 j1k3)(i3 j2k2)(i3 j3k4).

Figure 9.5 gives a three-dimensional view of this type of move. From the definition,
the relation

mmm8(i1i2i3, j1 j2 j3,k1k2k3k4) =−mmm8(i1i3i2, j2 j1 j3,k2k1k4k3)

= mmm8(i1i3i2, j1 j2 j3,k2k1k3k4)

is derived.
Now we state a theorem for the 3× 3× 4 case.

Theorem 9.2. The set of basic moves mmm4(i1i2, j1 j2,k1k2), moves of degree 6,
mmmI

6(i1i2, j1 j2 j3,k1k2k3),mmmJ
6(i1i2i3, j1 j2,k1k2k3),mmmK

6 (i1i2i3, j1 j2 j3,k1k2), and moves
of degree 8, mmm8(i1i2i3, j1 j2 j3,k1k2k3k4) constitutes a unique minimal Markov basis
for 3× 3× 4 tables.
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Fig. 9.5 3×3×4 move of degree 8

Proof. Similarly to the proof of Theorem 9.1, we only need to show that the set
of the moves of degree 4,6, and 8 above constitutes a Markov basis; that is, the
pattern of zzz = yyy− xxx has to be of all zero entries after minimizing |zzz| by adding the
basic moves, the moves of degree 6 or degree 8, without causing negative entries on
the way.

Suppose zzz has nonzero entries. Let z111 > 0 without loss of generality. From
Lemma 9.1(b), we can also assume that there is a rectangle including z111 in either
an i= 1 slice or a j = 1 slice. We can take one of these rectangles in the i = 1 slice as
(z111,z112,z121,z122) without loss of generality. Moreover, z211 < 0,z221 > 0 without
loss of generality because it is known from Lemma 9.1(a) that z111 is an element of
a rectangle in the k = 1 slice.

+ − ∗ ∗
− + ∗ ∗
∗ ∗ ∗ ∗

− ∗ ∗ ∗
+ ∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

.

As in the proof of Theorem 9.1, by considering the sign of z132, we see that z112

and z122 are members of the same rectangle in the k = 2 slice. Then (z212,z222)
and/or (z312,z322) has to be (+,−). But if z212 > 0, mmm4(12,12,21) can be added to
yyy without causing negative entries; and if z222 < 0, mmm4(12,12,12) can be added to
xxx without causing negative entries; and |zzz| can be made smaller. These imply that
z312 > 0,z322 < 0 and z212 ≤ 0,z222 ≥ 0. Similarly, if z311 < 0, mmm4(13,12,12) can
be added to xxx without causing negative entries; and if z321 > 0, mmm4(13,12,21) can
be added to yyy without causing negative entries; and |zzz| can be made smaller, which
forces z311 ≥ 0 and z321 ≤ 0.
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+ − ∗ ∗
− + ∗ ∗
∗ ∗ ∗ ∗

− 0− ∗ ∗
+ 0+ ∗ ∗
∗ ∗ ∗ ∗

0+ + ∗ ∗
0− − ∗ ∗
∗ ∗ ∗ ∗

.

Inasmuch as z21· = 0, let z213 > 0 without loss of generality, which forces z123 ≤ 0,
otherwise, mmm4(12,12,31) can be added to yyy without causing negative entries and
|zzz| can be made smaller. The fact that z213 > 0 also forces z323 ≤ 0, otherwise,
mmmJ

6(132,21,123) can be added to yyy without causing negative entries and |zzz| can
be made smaller.

+ − ∗ ∗
− + 0− ∗
∗ ∗ ∗ ∗

− 0− + ∗
+ 0+ ∗ ∗
∗ ∗ ∗ ∗

0+ + ∗ ∗
0− − 0− ∗
∗ ∗ ∗ ∗

.

Because z·23 = 0, it follows that z223 ≥ 0. This implies z224,z233 < 0 because z22· =
z2·3 = 0.

+ − ∗ ∗
− + 0− ∗
∗ ∗ ∗ ∗

− 0− + ∗
+ 0+ 0+ −
∗ ∗ − ∗

0+ + ∗ ∗
0− − 0− ∗
∗ ∗ ∗ ∗

.

From symmetry (in interchanging roles of + and −), z114,z314 ≥ 0, other-
wise, mmm4(12,12,14) can be added to xxx without causing negative entries or
mmmJ

6(132,12,124) can be added to xxx without causing negative entries and |zzz| can
be made smaller. These also imply z214 ≤ 0,z234 > 0 because z·14 = z2·4 = 0.

+ − ∗ 0+
− + 0− ∗
∗ ∗ ∗ ∗

− 0− + 0−
+ 0+ 0+ −
∗ ∗ − +

0+ + ∗ 0+
0− − 0− ∗
∗ ∗ ∗ ∗

. (9.1)

Because z31· = z32· = z3·3 = z3·4 = 0, it follows that z313 < 0,z324 > 0,z333 > 0,
z334 < 0.

+ − ∗ 0+
− + 0− ∗
∗ ∗ ∗ ∗

− 0− + 0−
+ 0+ 0+ −
∗ ∗ − +

0+ + − 0+
0− − 0− +

∗ ∗ + −
.

But mmm8(132,123,2134) can be added to yyy (or mmm8(123,123,1234) can be added to xxx)
without causing negative entries and |zzz| can be made smaller.

From these considerations, a set of the basic moves, the moves of degree 6 and
degree 8, is shown to be a Markov basis for the 3× 3× 4 case. This is a set of
indispensable moves, thus this is a unique minimal Markov basis and Theorem 9.2
is proved. ��
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9.4 Unique Minimal Markov Basis for 3×3×5 and 3×3×K
Tables for K > 5

Continuing the above discussion, next we consider a four-step move. For the case
of a 3× 3×K contingency table, only a move of the following type needs to be
considered.

Definition 9.5. A move of degree 10 is a move mmm10(i1i2i3, j1 j2 j3,k1k2k3k4k5) ∈
kerZA written as

(i1 j1k1)(i1 j2k2)(i1 j2k5)(i1 j3k4)(i2 j1k3)(i2 j2k1)(i2 j3k5)(i3 j1k2)(i3 j2k4)(i3 j3k3)

−(i1 j1k2)(i1 j2k1)(i1 j2k4)(i1 j3k5)(i2 j1k1)(i2 j2k5)(i2 j3k3)(i3 j1k3)(i3 j2k2)(i3 j3k4).

Figure 9.6 gives a three-dimensional view of this type of move. From the definition,
the relation

mmm10(i1i2i3, j1 j2 j3,k1k2k3k4k5) = mmm10(i1i3i2, j3 j2 j1,k4k5k3k1k2)

= −mmm10(i1i2i3, j3 j2 j1,k5k4k3k2k1)

is derived.
As for a connected Markov chain, the next theorem holds for the 3× 3× 5 case.

Theorem 9.3. The set of basic moves mmm4(i1i2, j1 j2,k1k2), moves of degree 6,
mmmI

6(i1i2, j1 j2 j3,k1k2k3), mmmJ
6(i1i2i3, j1 j2,k1k2k3), mmmK

6 (i1i2i3, j1 j2 j3,k1k2), moves of
degree 8, mmm8(i1i2i3, j1 j2 j3,k1k2k3k4), and moves of degree 10, mmm10(i1i2i3, j1 j2 j3,
k1k2k3k4k5), constitutes a unique minimal Markov basis for the 3× 3× 5 tables.

+1 -1

+1-1

+1-1

+1 -1

+1 -1
+1-1

+1

-1

+1-1

+1

-1+1

-1

Fig. 9.6 3×3×5 move of degree 10
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Interestingly, this set of moves is shown to be a unique minimal Markov basis for
the general 3× 3×K(K ≥ 5) case. We give a main result of this section.

Theorem 9.4. The set of basic moves mmm4(i1i2, j1 j2,k1k2), moves of degree 6,
mmmI

6(i1i2, j1 j2 j3,k1k2k3), mmmJ
6(i1i2i3, j1 j2,k1k2k3), mmmK

6 (i1i2i3, j1 j2 j3,k1k2), moves of
degree 8, mmm8(i1i2i3, j1 j2 j3,k1k2k3k4), and moves of degree 10, mmm10(i1i2i3, j1 j2 j3,
k1k2k3k4k5), constitutes a unique minimal Markov basis for 3×3×K(K ≥ 5) tables.

Proof (Theorem 9.3). Again all we have to show is that the pattern of zzz = yyy− xxx
must be of all zero entries after minimizing |zzz| by adding the basic moves, the moves
of degree 6, degree 8, or degree 10, without causing negative entries on the way.

Suppose zzz has nonzero entries. For a similar reason leading to (9.1) in the proof
of Theorem 9.2, the patterns can be restricted to

+ − ∗ 0+ ∗
− + 0− ∗ ∗
∗ ∗ ∗ ∗ ∗

− 0− + 0− ∗
+ 0+ 0+ − ∗
∗ ∗ − + ∗

0+ + ∗ 0+ ∗
0− − 0− ∗ ∗
∗ ∗ ∗ ∗ ∗

without loss of generality. Because z31· = z32· = 0, at least one of z313 and z315 has
to be negative and at least one of z324 and z325 has to be positive. But we have
already seen that (z313,z324) = (−,+) contradicts the assumption. In addition, if
(z315,z325) = (−,+), it follows that z115 ≤ 0, z125 ≥ 0 (otherwise mmm4(13,12,25) can
be added to yyy without causing negative entries and mmm4(13,12,52) can be added to
xxx without causing negative entries and |zzz| can be made smaller) and (z215,z225) =
(+,−) because z·15 = z·25 = 0. But mmmJ

6(132,21,125) can be added to yyy without
causing negative entries and mmmJ

6(132,12,125) can be added to xxx without causing
negative entries and |zzz| can be made smaller. All of these contradict the assumption.

The remaining patterns are (z313,z325) = (−,+) or (z315,z324) = (−,+). Consid-
ering the symmetry, we write (z313,z325) = (−,+) without loss of generality. Then
the patterns are, without loss of generality, summarized as

+ − ∗ 0+ ∗
− + 0− ∗ ∗
∗ ∗ ∗ ∗ ∗

− 0− + 0− ∗
+ 0+ 0+ − ∗
∗ ∗ − + ∗

0+ + − 0+ 0+
0− − 0− 0− +

∗ ∗ ∗ ∗ ∗
.

z·24 = z1·4 = z3·3 = z3·5 = 0, thus it follows that z124 > 0,z134 < 0,z333 > 0,z335 < 0.

+ − ∗ 0+ ∗
− + 0− + ∗
∗ ∗ ∗ − ∗

− 0− + 0− ∗
+ 0+ 0+ − ∗
∗ ∗ − + ∗

0+ + − 0+ 0+
0− − 0− 0− +

∗ ∗ + ∗ −
.



144 9 No-three-factor interaction models and other hierarchical models

If z225 < 0, mmm8(123,123,1235) can be added to xxx without causing negative entries
and |zzz| can be made smaller, which contradicts the assumption. Similarly, if z235 > 0,
mmm8(123,213,1253) can be added to yyy without causing negative entries and |zzz| can
be made smaller, which contradicts the assumption. These imply z225 ≥ 0,z234 ≤ 0,
which also imply z125 < 0,z135 > 0 inasmuch as z·25 = z·35 = 0.

+ − ∗ 0+ ∗
− + 0− + −
∗ ∗ ∗ − +

− 0− + 0− ∗
+ 0+ 0+ − 0+
∗ ∗ − + 0−

0+ + − 0+ 0+
0− − 0− 0− +

∗ ∗ + ∗ −
.

But mmm10(123,321,45321) can be added to yyy (or mmm10(123,123,12354) can be added
to xxx) without causing negative entries and |zzz| can be made smaller, which contradicts
the assumption.

From these considerations, the set of the basic moves, the moves of degree 6,
degree 8, and degree 10 is shown to be a Markov basis for the 3×3×5 case. Because
this is a set of indispensable moves, this is a unique minimal Markov basis and
Theorem 9.3 is proved. ��

Proof (Theorem 9.4). Again we can begin with the following pattern.

+ − ∗ 0+ ∗ ∗
− + 0− ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗

− 0− + 0− ∗ ∗
+ 0+ 0+ − ∗ ∗
∗ ∗ − + ∗ ∗

0+ + ∗ 0+ ∗ ∗
0− − 0− ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗

.

As we have seen in the proof of Theorem 9.3, z313 has to be nonnegative and z324

has to be nonpositive, because either one of (z313,z326) = (−,+) and (z316,z324) =
(−,+) also contradicts the assumption. The case of (z316,z326) = (−,+) also
contradicts the assumption for a similar reason to that of (z315,z325) = (−,+). Hence
the remaining patterns are (z315,z326) = (−,+) and (z316,z325) = (−,+). We write
(z315,z326) = (−,+) without loss of generality.

+ − ∗ 0+ ∗ ∗
− + 0− ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗

− 0− + 0− ∗ ∗
+ 0+ 0+ − ∗ ∗
∗ ∗ − + ∗ ∗

0+ + 0+ 0+ − ∗
0− − 0− 0− ∗ +

∗ ∗ ∗ ∗ ∗ ∗
.

According to the symmetry in interchanging the roles of {+,−}, the roles of
{z2 jk,z3 jk}, and the roles of {(zi j3,zi j4),(zi j5,zi j6)}, the patterns can be restricted to

+ − ∗ 0+ ∗ 0−
− + 0− ∗ 0+ ∗
∗ ∗ ∗ ∗ ∗ ∗

− 0− + 0− 0− 0−
+ 0+ 0+ − 0+ 0+
∗ ∗ − + ∗ ∗

0+ + 0+ 0+ − 0+
0− − 0− 0− 0− +

∗ ∗ ∗ ∗ + −
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for a similar reason to the proof of Theorem 9.2. Because z·13 = z·15 = z·24 = z·26 = 0,
it follows that z113 < 0,z115 > 0,z124 > 0 and z126 < 0. z1·3 = z1·4 = z1·5 = z1·6 = 0
also forces z133 > 0,z134 < 0,z135 < 0 and z136 > 0.

+ − − 0+ + 0−
− + 0− + 0+ −
∗ ∗ + − − +

− 0− + 0− 0− 0−
+ 0+ 0+ − 0+ 0+
∗ ∗ − + ∗ ∗

0+ + 0+ 0+ − 0+
0− − 0− 0− 0− +

∗ ∗ ∗ ∗ + −
.

But this pattern includes moves of degree 6. We can add mmmI
6(21,132,134) to

yyy, mmmI
6(12,132,134) to xxx, mmmI

6(13,132,256) to yyy, or mmmI
6(31,132,256) to xxx without

causing negative entries and make |zzz| smaller, which contradicts the assumption.
From these considerations, it is shown that the set of the basic moves, the moves

of degree 6, degree 8, and degree 10 is also a Markov basis for the 3×3×K (K ≥ 5)
case. The minimality and the uniqueness directly hold again. Note that although we
have displayed 3× 3× 6 tables, the above argument does not involve k slices for
k ≥ 7. Therefore we obtain the same contradiction for the 3×3×K (K ≥ 7) tables.
This completes the proof. ��

A result corresponding to Theorem 9.4 for Gröbner bases was given in [27].

9.5 Indispensable Moves for Larger Tables

The fact that the structure of a minimal Markov basis for 3 × 3 × K tables is
essentially explained by 3× 3× 5 tables is very attractive. Such a theoretical result
seems important because even if we can obtain the reduced Gröbner basis for the
3× 3× 6 table by an algebraic algorithm, we have to carry out new calculations to
obtain results for 3× 3× 7 or 3× 3× 8 problems. In fact, the following result is
shown in [131] as a special case of the Graver complexity of the higher Lawrence
lifting (see Sect. 9.8 below).

Proposition 9.1 (Corollary 2 of [131]). For any positive integers I,J, there exists
a positive integer m such that every element of a minimal Markov basis for the
I × J × K tables with fixed two-dimensional marginal frequencies is included in
I× J×m.

The above m is called a Markov complexity for the configuration A. The values of
m for some cases are computed in [131]. For the example of the 3× 3×K table
with fixed two-dimensional marginal frequencies, an upper bound of the Markov
complexity is given by the Graver complexity, which is computed to be 9 by [131].
Therefore no new type of conformally primitive move appears for K ≥ 10.

The results of the previous section are not derived by algebraic algorithms but
by “thoroughly checking symmetry by inspection” ([10]) based on the distance-
reducing proofs in Sect. 6. Of course, if we carry out a similar method for problems
of larger sizes, the number of the cases we have to consider becomes huge. In [9], a
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similar approach of distance-reducing proofs is carried out for the 3× 4×K cases.
The result of [9] is that “for 3 × 4× K problems, it is sufficient to consider up
to K = 8, and the set of the 20 kinds of moves up to 16 degree forms a unique
minimal Markov basis.” The truth of this proposition has not yet been confirmed by
algebraic algorithms. On the other hand, as for the development of the algorithms
for calculating Gröbner bases, calculating Markov bases for the 4×4×4 tables has
been used as a benchmark problem since about 2002. This problem is first solved
completely by [83] using 4ti2 ([1]). In [83], it is reported that “148,654 elements in
15 kinds of moves form a minimal Markov basis for the 4×4×4 problem.” See [15]
for an overview of the history of calculating Markov bases for 4× 4× 4 problems.

We have already pointed out that the type-2 combination is essential in Sect. 9.2.
In fact, from the three-dimensional views of the indispensable moves in the unique
minimal Markov basis for 3× 3×K cases in Figs. 9.3, 9.5, and 9.6, we see that
they are constructed as the type-2 combination of several basic moves. However,
structure of the indispensable moves for general I × J × K cases can be more
complicated. To see this point, we show the unique minimal Markov basis for the
3×4×4 case. It is composed of basic moves, moves of degree 6 (2×3×3,3×2×
3,3× 3× 2), and moves of degree 8 (3× 3× 4,3× 4× 3), and moves of degree 8
(2× 4× 4) like

+1 −1 0 0
0 +1 −1 0
0 0 +1 −1
−1 0 0 +1

−1 +1 0 0
0 −1 +1 0
0 0 −1 +1
+1 0 0 −1

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

, (9.2)

moves of degree 9 (3× 4× 4, Fig. 9.7) like

+1 −1 0 0
−1 0 +1 0
0 +1 −1 0
0 0 0 0

−1 +1 0 0
+1 0 0 −1
0 0 0 0
0 −1 0 +1

0 0 0 0
0 0 −1 +1
0 −1 +1 0
0 +1 0 −1

,

and moves of degree 10 (3× 4× 4, Fig. 9.8) like

+1 −1 0 0
−1 +1 0 0
0 0 +1 −1
0 0 −1 +1

−1 +1 0 0
0 0 0 0
+1 0 −1 0
0 −1 +1 0

0 0 0 0
+1 −1 0 0
−1 0 0 +1
0 +1 0 −1

.

Among the newly obtained moves, the 3×4×4 move of degree 10 is interpreted
as a type-2 combination of a basic move and a move of degree 8, which is similar to
the 3×3×5 move of degree 10 shown in Sect. 9.4. However, the 3×4×4 move of
degree 9 is new in the sense that this is a type-2 combination of a basic move and a
move of degree 7. Recall that the move of degree 7 itself is not needed to construct
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Fig. 9.7 3×4×4 move of degree 9
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Fig. 9.8 3×4×4 move of degree 10
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a connected Markov chain. In this chapter, we have only considered combinations
of basic moves that happen “one at a time.” But it might be worthwhile to think of
this degree 9 move as a combination of three basic moves that happens “all at once,”
and every two of these basic moves are type-1 combinations. The move of degree 9
suggests the difficulty in forming a conjecture on a minimal Markov basis for larger
tables.

On the other hand, we see that the 2×4×4 moves of degree 8 displayed in (9.2)
are conformally primitive (see Definition 4.2 of Sect. 4.6). From Proposition 4.2,
for general 2× J×K tables, each conformally primitive move of degree 2m can be
written as

(1 j1k1)(1 j2k2) · · · (1 jmkm)(2 j1k2)(2 j2k3) · · · (2 jmk1)

−(2 j1k1)(2 j2k2) · · · (2 jmkm)(1 j1k2)(1 j2k3) · · · (1 jmk1)

and it is also indispensable. Therefore, for 2 × J ×K tables, the unique minimal
Markov basis exists as the Graver basis. This is the consequence of the fact that
2× J ×K no-three-factor interaction model is the Lawrence lifting (cf. Sects. 4.6
and 5.4.3) of the J×K two-way complete independence model.

As another difficulty in larger tables, we show that a minimal Markov basis can
include non-square-free indispensable moves. It is easy to check that the following
two 3× 4× 6 moves are indispensable.

+1 −1 0 0 0 0
0 +1 −1 0 0 0
0 0 +1 0 0 −1
−1 0 0 0 0 +1

0 +1 0 −1 0 0
0 −1 0 0 +1 0
0 0 0 +1 0 −1
0 0 0 0 −1 +1

−1 0 0 +1 0 0
0 0 +1 0 −1 0
0 0 −1 −1 0 +2
+1 0 0 0 +1 −2

, (9.3)

+1 −1 0 0 0 0
0 +1 −1 0 0 0
0 0 +1 −1 0 0
−1 0 0 +1 0 0

−1 0 0 0 0 +1
0 0 +1 0 −1 0
0 0 −1 0 0 +1
+1 0 0 0 +1 −2

0 +1 0 0 0 −1
0 −1 0 0 +1 0
0 0 0 +1 0 −1
0 0 0 −1 −1 +2

.

Though the complete structure of the minimal Markov bases for general I×J×K
problems is not obtained at present, all the minimal Markov bases for 3× 3×K
cases, 4× 4× 4 cases by [83], and also 3× 4×K cases by [9] turned out to be
unique. These results suggest the following conjecture.

Conjecture 9.1. For no-three-factor interaction models of three-way contingency
tables, there exists a unique minimal Markov basis.

The indispensable move in (9.3) has +2 and −2; that is, both the positive part
and the negative part are non-square-free. It is known (cf. Lemma 6.1 of [111]) that
existence of an indispensable move with both parts non-square-free implies that the
semigroup associated with the configuration is not normal. The example of a hole for
the 3×4×6 contingency table in Sect. 10 of [148] corresponds to the indispensable
move (9.3). Results on normality of semigroups for larger tables are summarized in
[113]. Normality for the 3× 5× 5 case was recently established by [29].
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9.6 Reducible Models

Let [m] = {1, . . . ,m} be the set of variables and let K denote a simplicial complex
on [m]. Denote by D the set of maximal elements (i.e., facets) of K . Then, as seen
in Sects. 1.5 and 8.1, the hierarchical model associated with K is defined as

log p(iii) = ∑
D∈D

μD(iiiD). (9.4)

A sufficient statistic ttt for this model is the set of marginal frequencies for each facet

ttt = {xD(iiiD), iiiD ∈ ID,D ∈ D}.

In the following we identify K with the hierarchical model (9.4).
We note that D is considered as a hypergraph such that each facet in D is a

hyperedge of D . Here we introduce some notions on hypergraphs according to
Badsberg and Malvestuto [20] and Malvestuto and Moscarini [101]. A subset D
of a hyperedge of D is called a partial edge. We note that the submodel induced by
a partial edge is saturated. A partial edge S is a separator of D if the subhypergraph
of D induced by [m]\ S is disconnected. A partial edge separator S of D is called a
divider if there exist two vertices u,v ∈ [m] that are separated by S but by no proper
subset of S. When D is graphical, a partial edge separator and a divider are the
clique separator and clique minimal vertex separator [97], respectively (e.g., Hara
and Takemura [78], Leimer [99]).

If two vertices u,v ∈ [m] are not separated by any partial edge, u and v are
called tightly connected. A subset C ⊂ [m] is called a compact component if
every pair of variables in C is tightly connected. Denote the set of maximal
compact components of D by C . Then there exists a sequence of maximal compact
components C1, . . . ,C|C | such that

(C1 ∪·· ·∪Ck−1)∩Ck = Sk (9.5)

and Sk, k = 2, . . . , |C |, are dividers of D . We denote S = {S2, . . . ,S|C |}. S is a
multiset in general. The property (9.5) is called the running intersection property.
Then cell probability p(iii) is expressed as a rational form of marginal probabilities,

p(iii) =
∏C∈C p(iiiC)

∏S∈S p(iiiS)
.

MLE is expressed as a rational form of the MLE of marginal probabilities,

p̂(iii) =
∏C∈C p̂(iiiC)

∏S∈S p̂(iiiS)
=

∏C∈C p̂(iiiC)

∏S∈S (x(iiiS)/n)
. (9.6)
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If D does not have a divider (i.e., if |C | = 1), the corresponding hierarchical
model (9.4) is called prime. On the other hand, if D has a divider, the corresponding
hierarchical model is called reducible (e.g., Develin and Sullivant [49], Hoşten and
Sullivant [88]).

9.7 Markov Basis for Reducible Models

From (9.6), in order to compute the MLE of a reducible model, it suffices to compute
the MLEs of marginal models p(iiiC) for each maximal compact component. In the
same way, a Markov basis for a reducible hierarchical model is also constructed
from Markov bases of marginal models for maximal compact components. In this
section we discuss the divide-and-conquer approach to the computation of a Markov
basis for reducible models by Hoşten and Sullivant [88] and Dobra and Sullivant
[54].

For a subset of variables D ⊂ [m], denote by K (D) the submodel induced by D.
Let (A1,A2,S) be a decomposition of D and define V1 := A1 ∪ S and V2 := A2 ∪ S.
Denote by AV1 = {aaaV1(iiiV1)}iiiV1

∈IV1
and AV2 = {aaaV2(iiiV2)}iiiV2

∈IV2
the configurations

for the marginal models K (V1) and K (V2), where aaaV1(iiiV1) and aaaV2(iiiV2) denote
column vectors of AV1 and AV2 , respectively. Noting that iiiV1 = (iiiA1 iiiS) and iiiV2 =
(iiiSiiiA2), the configuration A for a reducible model is written by

A = AV1 ⊕S AV2 = {aaaV1(iiiA1 iiiS)⊕ aaaV2(iiiSiiiA2)}iiiA1
∈IA1

,iiiS∈IS,iiiA2
∈IA2

,

where

aaaV1(iiiA1 iiiS)⊕ aaaV2(iiiSiiiA2) =

(
aaaV1(iiiA1 iiiS)
aaaV2(iiiSiiiA2)

)

denotes the stacked vector (1.21).
As in previous sections we denote a move zzz with degree d by

zzz = iii1 · · · iiid − iii′1 · · · iii′d ,

where iii1, . . . , iiid ∈ I are cells of positive elements of zzz and iii′1, . . . , iii
′
d ∈ I are cells

of negative elements of zzz. iiik appears z(iiik) times in {iii1, . . . , iiid} and in the same way
iii′k appears |z(iii′k)| times in {iii′1, . . . , iii

′
d}.

Assume that B(V1) and B(V2) are Markov bases for K (V1) and K (V2),
respectively. Let zzz1 = {z1(iiiV1)}iiiV1

∈IV1
and zzz2 = {z2(iiiV2)}iiiV2

∈IV2
be degree d moves

in B(V1) and B(V2), respectively. Because S is a partial edge separator, K (S) is
saturated and we have

∑
iiiV1\S∈IV1\S

z1(iiiV1) = 0, ∑
iiiV2\S∈IV2\S

z2(iiiV2) = 0.
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Hence zzz1 and zzz2 can be written as

zzz1 = (iii1 jjj1) · · · (iiid jjjd)− (iii′1 jjj1) · · · (iii′d jjjd),

zzz2 = ( jjj1kkk1) · · · ( jjjdkkkd)− ( jjj1kkk′1) · · · ( jjjdkkk′d), (9.7)

respectively, where iiil , iii
′
l ∈ IA1 , jjjl ∈ IS and kkkl ,kkk

′
l ∈ IA2 for l = 1, . . . ,d.

Definition 9.6 (Dobra and Sullivant [54]). Define zzz1 ∈B(V1) as in (9.7). Let kkk :=
{kkk1, . . . ,kkkd} ∈ IA2 ×·· ·×IA2 . Define zzzkkk

1 by

zzzkkk
1 := (iii1 jjj1kkk1) · · · (iiid jjjdkkkd)− (iii′1 jjj1kkk1) · · · (iii′d jjjdkkkd).

Then we define Ext(B(V1)→ K ) by

Ext(B(V1)→ K ) := {zzzkkk
1 | kkk ∈ IA2 ×·· ·×IA2}.

Lemma 9.2. Suppose that zzz1 ∈ B(V1) as in (9.7). Then Ext(B(V1) → K ) is the
set of moves for K .

Proof. Let zzz ∈ Ext(B(V1)→ K ). Then we have

Azzz =

(
∑iiiV1∈IV1

aaaV1(iiiV1)zV1(iiiV1)

∑iiiV2
∈IV2

aaaV2(iiiV2)zV2(iiiV2)

)
,

where
zV1(iiiV1) = ∑

iii
VC

1
∈I

VC
1

z(iii), zV2(iiiV2) = ∑
iii
VC

2
∈I

VC
2

z(iii).

Because zV1(iiiV1) = z1(iiiV1) and zzz1 ∈ B(V1), ∑iiiV1∈IV1
aaaV1(iiiV1)zV1(iiiV1) = 0. From

Definition 9.6, zV2(iiiV2) = 0 for all iiiV2 ∈ IV2 . Hence Azzz = 0.

The following theorem by Dobra and Sullivant [54] shows that a Markov basis
for K is computed recursively from Markov basis for the induced submodel K (C),
C ∈ C .

Theorem 9.5 (Dobra and Sullivant [54]). Let B(V1) and B(V2) be Markov
bases for K (V1) and K (V2), respectively. Let BV1,V2 be a Markov basis for the
decomposable model with two cliques V1 and V2. Then

B := Ext(B(V1)→ K )∪Ext(B(V2)→ K )∪BV1,V2 (9.8)

is a Markov basis for K .

Proof. Let xxx,xxx′ ∈Fttt be two tables in the same fiber Fttt . As in the previous sections
we denote xxx and xxx′ as

xxx1 = (iii1 jjj1kkk1) · · · (iiin jjjnkkkn), xxx2 = (iii′1 jjj′1kkk′1) · · · (iii′n jjj′nkkk′n),
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1

3

2

4

Fig. 9.9 The independence
graph for D

where iiik, iii
′
k ∈ IA1 , jjjk, jjj′k ∈ IS, kkkk,kkk

′
k ∈ IA2 . Let xxxV1 and xxx′V1

be V1-marginal sum
of xxx and xxx′, respectively. Because xxxV1 and xxx′V1

belong to the same fiber for K (V1),
there exists a sequence of moves zzz1

V1
, . . . ,zzzt

V1
connecting xxxV1 and xxx′V1

. We note that
zzz1

V1
is written as

zzz1
V1

= (iii′′1 jjj1) · · · (iii′′m jjjm)− (iii1 jjj1) · · · (iiim jjjm),

where 0 < m < n. Define zzz1 by

zzz1 = (iii′′1 jjj1kkk1) · · · (iii′′m jjjmkkkm)− (iii1 jjj1kkk1) · · · (iiim jjjmkkkm). (9.9)

Then zzz1 ∈ Ext(B(V1) → K ) and xxx + zzz1 ≥ 000. By iterating this procedure with
zzz2

V1
, . . . ,zzzt

V1
, we can define zzz2, . . . ,zzzt ∈ Ext(B(V1) → K ) in the same way as

(9.9) such that xxx1 + ∑t′
l=1 zzzl ≥ 000 for all t ′ ≤ t and V1- and V2-marginal sums of

yyy := xxx+∑t
l=1 zzzs are yyyV1

= xxx′V1
and yyyV2

= xxxV2 , respectively.
On the other hand xxx′V2

and yyyV2
also belong to the same fiber for K (V2) and hence

xxx′V2
and yyyV2

are connected by moves in B(V2). By using the same argument as above,

there exist moves www1, . . . ,wwws ∈ Ext(B(V2)→ K ) such that xxx1 +∑s′
l=1 wwwl ≥ 0 for all

s′ ≤ s and V1- and V2-marginal sums of yyy′ := xxx+∑s
l=1 wwwl are yyyV1

= xxx′V1
and yyyV2

= xxxV2 ,
respectively. ��

In general it is not easy to obtain an explicit list of a Markov basis for a
hierarchical model. This theorem shows that when we study the structure of Markov
bases for hierarchical models, we only need to focus on Markov bases for prime
models. Hara et al. [73] extend this result to a more general class of log affine models
which is called the hierarchical subspace model.

Example 9.1. Consider the model

D = {{1,2},{1,3},{2,3},{2,4},{3,4}}.

Let K be the corresponding simplicial complex. Assume that the number of levels
for all variables are two; that is, Ik = 2 for k = 1,2,3,4. The independence graph for
D is described as in Fig. 9.9. In this model S := {2,3} is a divider and hence K is
reducible. Then D is decomposed by S into two no-three-factor interaction models
D1 := {{1,2},{1,3},{2,3}} and D2 := {{2,3},{2,4},{3,4}}. Let V1 := {1,2,3}
and V2 := {2,3,4}.
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A Markov basis for D1 consists of one move

i1\i2 1 2
1 1 −1
2 −1 1

i3 = 1

i1\i2 1 2
1 −1 1
2 1 −1

i3 = 2

(Develin and Sullivant [49]). This move are described as

(111)(212)(221)(122)− (211)(112)(121)(222).

By Definition 9.6, moves in Ext(B(V1)→ K ) are described as

(111k1)(212k2)(221k3)(122k4)− (211k1)(112k2)(121k3)(222k4),

where k1,k2,k3,k4 ∈ I4 = {1,2}. For example, when (k1,k2,k3,k4) = (1,1,2,2),
the corresponding move in Ext(B(V1)→ K ) is

i1\i2 1 2
1 1 0
2 −1 0

i3 = 1

i1\i2 1 2
1 −1 0
2 1 0

i3 = 2

i1\i2 1 2
1 0 −1
2 0 1

i3 = 1

i1\i2 1 2
1 0 1
2 0 −1

i3 = 2
i4 = 1 i4 = 2

.

Moves in Ext(B(V2)→ K ) are obtained in the same way.
BV1,V2 is a Markov basis for the decomposable model associated with the graph

in Fig. 9.9. BV1,V2 is obtained by following the argument in Chap. 8. Then

B := Ext(B(V1)→ K )∪Ext(B(V2)→ K )∪BV1,V2

forms a Markov basis for D .

9.8 Markov Complexity and Graver Complexity

In this section we give a brief review of the recent progress on the evaluation of
complexity of Markov bases and the Graver basis for hierarchical models.

In Sect. 4.6 we discussed the Lawrence lifting of a configuration A : ν × η .
Santos and Sturmfels [131] introduced the rth Lawrence lifting (or the rth Lawrence
configuration) Λ (r)(A) as the following configuration.
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Λ (r)(A) =

⎛
⎜⎜⎜⎜⎜⎝

A 0 0 · · · 0
0 A 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · A
Eη Eη Eη · · · Eη

⎞
⎟⎟⎟⎟⎟⎠

: (rν +η)× (rη). (9.10)

As in the ordinary Lawrence lifting, we can omit one block of rows from Λ (r)(A)
and write the the rth Lawrence lifting also as

Λ̃ (r)(A) =

⎛
⎜⎜⎜⎜⎜⎝

r−1︷ ︸︸ ︷
A 0 · · · 0 0
0 A 0 · · · 0
...

. . .
. . .

. . .
...

0 · · · 0 A 0
Eη Eη · · · Eη Eη

⎞
⎟⎟⎟⎟⎟⎠

: ((r− 1)ν +η)× (rη). (9.11)

It can be easily seen that the configuration of no-three-factor interaction model for
I × J × r tables is the rth Lawrence lifting of the configuration A for the I × J two-
way independence model.

From a statistical viewpoint, as we saw in Sect. 4.6, the Lawrence lifting
corresponds to a logistic regression. Similarly the rth Lawrence lifting corresponds
to an unordered multinomial logistic regression, where the response variable Y =Yiii

can take r different levels for each cell iii and the probability P(Yiii = k), k = 1, . . . ,r,
is expressed as

P(Yiii = k) = p(iii,k) =
exp(θθθ ′

ka(iii))

∑r
h=1 exp(θθθ ′

ha(iii))
, (9.12)

where θθθ k is a ν-dimensional parameter vector, k = 1, . . . ,r. For each cell iii we
observe niii independent trials, each trial taking one of the r levels. Let x(iii,k), k =
1, . . . ,r, denote the frequency of the level k among niii trials. Then (x(iii,1), . . . ,x(iii,r))
has the multinomial distribution Mult(niii,(p(iii,1), . . . , p(iii,r))). For each cell iii, the
lowest block of rows (Eη , . . . ,Eη) of Λ (r)(A) corresponds to fixing the total number
of frequencies

niii = x(iii,1)+ · · ·+ x(iii,r).

As explained in Sect. 4.6, when niiis are allowed to vary over nonnegative integers,
the rth Lawrence lifting is the configuration for the multinomial logistic regres-
sion model.

The result on the bound of complexity of Markov basis for 3× 3×K tables in
Theorem 9.4 led to many investigations of its generalizations. Santos and Sturmfels
[131] gave a first general result on the complexity of the Graver basis of Λ (r)(A),
which was already mentioned in Proposition 9.1. Note that zzz ∈ kerZΛ (r)(A) is an
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ηr-dimensional integer column vector and we can express it as zzz′ = (zzz′1, . . . ,zzz
′
r). zzz

belongs to kerZΛ (r)(A) if and only if

Azzzi = 0, i = 1, . . . ,r, and
r

∑
i=1

zzzi = 0.

We call zzzi the ith slice of zzz. Define the type of zzz by

type(zzz) = |{i | zzzi �= 0}|,

which is the number of nonzero slices of zzz. Let BGr(Λ (r)(A)) denote the Graver
basis of Λ (r)(A). For a given configuration A define the Graver complexity g(A) by

g(A) = max
r≥1

{type(zzz) | zzz ∈ BGr(Λ (r)(A))}.

As we see below in Proposition 9.2, there is an explicit characterization for g(A) and
g(A) is indeed finite. Because the configuration of the no-three-factor interaction
model is the higher Lawrence lifting of the two-way independence model and the
Markov complexity mentioned in Proposition 9.1 is bounded from above by the
Graver complexity g(A), Proposition 9.2 also implies that the Markov complexity is
bounded for the no-three-factor interaction model.

Let BGr(A) denote the Graver basis of A consisting of conformally primitive
moves zzz(1), . . . ,zzz(η

′) for A, where η ′ = |BGr(A)|. Write each conformally primitive
move zzz(i) as an η-dimensional integer column vector and let

G (A) = (zzz(1), . . . ,zzz(η
′))

be an η ×η ′ integral matrix. Furthermore let BGr(G (A)) denote the Graver basis of
G (A).

Note that G (A) does not satisfy the homogeneity assumption in (3.7), because
the sign of zzz(i) is arbitrary. However, conformally primitive moves and the Graver
basis for G (A) can be defined without the homogeneity assumption.

Now we present a characterization of the Graver complexity, which shows
that g(A) is given by the maximum 1-norm of the elements of the Graver basis
BGr(G (A)) of the Graver basis of A. Note that two Graver bases are nested in this
result.

Proposition 9.2 (Theorem 3 of [131]). g(A) is given as

g(A) = max{|ψψψ| | ψψψ ∈ BGr(G (A))}, (9.13)

where | · | denotes the 1-norm.

Proof. Let zzz1, . . . ,zzzr be slices of zzz ∈ kerZΛ (r)(A) and suppose that zzz is confor-
mally primitive. Suppose that zzzi has a nontrivial conformal decomposition, say,
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zzzi = yyy1 + · · ·+ yyyk, where yyy1, . . . ,yyyk are conformally primitive moves for A. In this
case we can remove the ith slice from zzz and insert slices corresponding to yyy1, . . . ,yyyk.
Then we obtain a conformally primitive move for Λ (r+k−1). This argument shows
that in considering g(A), we only need to look at conformally primitive moves
zzz ∈ kerZΛ (r)(A) such that their slices are all conformally primitive moves for A.
Also we can assume that no slice of zzz is a negative of another slice of zzz.

Write the Graver basis of A as BGr(A) = {zzz(1), . . . ,zzz(η
′)}. For a given zzz whose

slices are conformally primitive moves of A, let ψ = (ψ1 . . . ,ψη ′) be an integer
vector such that ψi counts the number of times zzz(i) appears as a slice of zzz. Then
|ψ | = type(zzz). Furthermore it is easily seen that zzz has a nontrivial conformal
decomposition if and only if ψ has a nontrivial conformal decomposition. Therefore
zzz is conformally primitive if and only if ψ belongs to BGr(G (A)). This proves the
proposition. ��

Hoşten and Sullivant [89] introduced a generalized form of the higher Lawrence
lifting. For two configurations A,B with the same number of columns, they
considered a configuration of the following form,

Λ (r)(A,B) =

⎛
⎜⎜⎜⎜⎜⎝

A 0 0 · · · 0
0 A 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · A
B B B · · · B

⎞
⎟⎟⎟⎟⎟⎠
, (9.14)

and generalized Proposition 9.2 to this form. Furthermore they showed that the
configuration for a hierarchical model for I1 × ·· · × Im contingency tables can be
written in this form by letting r = I1 and considering the slices of the first axis.
Their results imply that the number of slices appearing in the Graver basis for a
hierarchical model is bounded if we increase the number of levels for a single axis.

The no-three-factor interaction model is often called the three-way transportation
problem in integer programming. The importance of three-way transportation
problems for the general integer programming problem is discussed in [47]. The
Graver complexity of an integer matrix is studied in [45, 84] and [23] from the
viewpoint of integer programming.

9.9 Markov Width for Some Hierarchical Models

The complexity of Markov bases is also evaluated by maximal degrees of minimal
Markov bases, which is also called Markov width. In this section we summarize
some important facts on maximal degrees of minimal Markov bases for hierarchical
models.
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A graphical model containing only two factor interaction effects corresponding
to edges of an independence graph is called a graph model. Let G = ([m],E) be a
graph with the vertex set [m] and the edge set E . We assume that the model is binary,
that is, the number of levels for every variable is Iv = 2, v ∈ [m]. Denote by μ(G)
the Markov width of the graph model corresponding to G.

Develin and Sullivant [49] discuss Markov width of some binary graph models.

Theorem 9.6 ([49]). The binary graph model for the complete graph G with m ≥ 3
has the Markov width μ(G)≥ 2m− 2.

Theorem 9.7 ([49]). The binary graph model for the cycle graph G with m≥ 3 has
a Markov basis consisting of moves with degrees two and four. Therefore μ(G) = 4.

Let Km,n denote the complete bipartite graph with partitions of sizes m and n.

Theorem 9.8 ([49]). The binary graph model for the bipartite graph K2,n has a
Markov basis consisting of moves with degrees two and four. Therefore μ(K2,n) = 4.

Petrović and Stokes [117] characterize Markov width of some classes of hier-
archical model in term of Betti numbers of Stanley–Reisner ideals for a simplicial
complex Δ . For details, refer to Petrović and Stokes [117].



Chapter 10
Two-Way Tables with Structural Zeros
and Fixed Subtable Sums

10.1 Markov Bases for Two-Way Tables with Structural
Zeros

10.1.1 Quasi-Independence Model in Two-Way Incomplete
Contingency Tables

Let xxx = {xi j} be an R×C contingency table and denote by S ⊂I = {(i, j) | 1 ≤ i ≤
R,1 ≤ j ≤ C} the set of cells that are not structural zeros. In a structural zero cell,
no frequency is observed by definition, such as the number of people with driver’s
licenses under the age of 10. We consider models for cell probabilities in incomplete
contingency tables {

log pi j = μ +αi +β j + γi j, (i, j) ∈ S,
pi j = 0, otherwise.

(10.1)

As a null hypothesis for (10.1), we consider H0 : γi j = 0 for (i, j) ∈ S; that is,
{

log pi j = μ +αi +β j, (i, j) ∈ S,
pi j = 0, otherwise.

(10.2)

The model (10.2) is called the quasi-independence model (Bishop et al. [26]). In
this section we provide a full description of the unique minimal Markov basis for
the quasi-independence model. Rapallo ([124,125]) discuss the quasi-independence
model mainly from the viewpoint of Gröbner basis.

Denote by B(S) the set of moves for the quasi-independence model (10.2) on
S. A sufficient statistic for the quasi-independence models is ttt = (x1+, . . . ,xR+,
x+1, . . . ,x+C). Therefore

B(S) = {zzz = {zi j} | zi+ = z+ j = 0, zi j = 0 for (i, j) �∈ S}.
We denote a structural zero by [0] to distinguish it from a sampling zero.

S. Aoki et al., Markov Bases in Algebraic Statistics, Springer Series
in Statistics 199, DOI 10.1007/978-1-4614-3719-2 10,
© Springer Science+Business Media New York 2012
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When S =I , (10.2) is equivalent to the two-way complete independence model.
Then, as shown in Sec. 5.4 the set of all basic moves

B0 = {zzz(i, i′; j, j′) | 1 ≤ i < i′ ≤ R,1 ≤ j < j′ ≤C}

in (8.1) forms the unique minimal Markov basis for the two-way complete indepen-
dence model. However when S �= I , B0 ∩B(S) is not always a Markov basis.

Example 10.1. Consider a fiber Fttt of 3× 3 contingency tables having structural
zero cells as the diagonal elements; that is, S = {(i, j), i �= j} with xi+ = x+ j = 1
for all 1 ≤ i, j ≤ 3. Then Fttt contains only the following two elements,

[0] 1 0
0 [0] 1
1 0 [0]

and
[0] 0 1
1 [0] 0
0 1 [0]

,

which implies that the degree 3 move

[0] −1 +1
+1 [0] −1
−1 +1 [0]

is indispensable.

In a two-way table, two cells (i, j) and (i′, j′) are associated if (i, j),(i′, j′) ∈ S
and either i = i′ or j = j′. S′ ⊂ S is connected if for every pair of cells (i, j) and
(i′, j′) in S′, there exists a chain of cells, any two consecutive members of which
are associated. An incomplete two-way table is connected if its nonstructural zero
cells form a connected set. An incomplete table that is not connected is said to be
separable ([26, 102]). Separable two-way contingency tables can be rearranged to
a block diagonal form with connected subtables after an appropriate interchange of
rows and columns.

Example 10.2. Consider the following 4× 8 contingency table,

x11 [0] [0] x14 x15 [0] [0] x18

[0] x22 x23 [0] [0] x26 x27 [0]
[0] x32 x33 [0] [0] x36 x37 [0]
x41 [0] [0] x44 x45 [0] [0] x48

.

By an appropriate interchange of rows and columns, we can obtain the following
separable table with exactly two connected subtables

x11 x14 x15 x18 [0] [0] [0] [0]
x41 x44 x45 x48 [0] [0] [0] [0]
[0] [0] [0] [0] x22 x23 x26 x27

[0] [0] [0] [0] x32 x33 x36 x37

.
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It is clear that the minimal Markov basis for this example consists of basic moves
only. This is obvious from the fact that the two connected subtables do not contain
structural zeros.

Example 10.3. The minimal Markov basis for the following separable 6×7 contin-
gency table

x11 x12 x13 [0] [0] [0] [0]
[0] [0] x23 x24 [0] [0] [0]
x31 x32 [0] x34 [0] [0] [0]
[0] [0] [0] [0] x45 x46 [0]
[0] [0] [0] [0] [0] x56 x57

[0] [0] [0] [0] x65 [0] x67

(10.3)

is the union of the minimal Markov bases for two subtables,

x11 x12 x13 [0]
[0] [0] x23 x24

x31 x32 [0] x34

and
x45 x46 [0]
[0] x56 x57

x65 [0] x67

. (10.4)

Therefore we only need to consider the case where S is connected.

10.1.2 Unique Minimal Markov Basis for Two-Way
Quasi-Independence Model

Assume that the level indices i1, i2, . . . and j1, j2, . . . are all distinct; that is,

im �= in and jm �= jn for all m �= n.

Denote iii[r] = (i1, . . . , ir), jjj[r] = (i1, . . . , ir). The loop zzzr(iii[r]; jjj[r]) was defined in
Definition 4.3.

Definition 10.1. A loop of degree r in Definition 4.3 is a move on S if zzzr(iii[r]; jjj[r])∈
B(S). The support of zzzr(iii[r]; jjj[r]) is the set of its nonzero cells {(i1, j1),(i1, j2), . . . ,
(ir, j1)}.

The following integer arrays are examples of loops of degree 2, 3, and 4 on some
S. In fact they are df 1 loops as defined in Definition 10.2.

+1 −1 0 0 0
−1 +1 0 0 0
0 0 0 0 0
0 0 0 0 0

,

+1 −1 [0] 0 0
−1 [0] +1 0 0
[0] +1 −1 0 0
0 0 0 0 0

,

+1 −1 [0] [0] 0
−1 [0] +1 [0] 0
[0] +1 [0] −1 0
[0] [0] −1 +1 0

. (10.5)

The following lemma was proved as Proposition 4.2.



162 10 Two-Way Tables with Structural Zeros and Fixed Subtable Sums

Lemma 10.1. Any R×C move zzz ∈ B(S) is expressed as a finite sum of loops on S,

zzz = ∑
k

akzzzr(k)(i1(k), . . . , ir(k); j1(k), . . . , jr(k)),

where ak is a positive integer, r(k)≤min{R,C}, and there is no cancellation of signs
in any cell.

Example 10.4. Let zzz ∈ B(S) be 4× 5 integer array expressed as follows,

zzz =

3 −2 0 −2 1
−2 3 0 0 −1
−1 −1 2 0 0

0 0 −2 2 0

.

Then zzz has a decomposition

zzz =

2 −2 0 0 0
−2 2 0 0 0

0 0 0 0 0
0 0 0 0 0

+

1 0 0 −1 0
0 0 0 0 0

−1 0 1 0 0
0 0 −1 1 0

+

0 0 0 −1 1
0 1 0 0 −1
0 −1 1 0 0
0 0 −1 1 0

= 2zzz2(1,2;1,2)+ zzz3(1,4,3;1,4,3)+ zzz4(1,4,3,2;5,4,3,2),

satisfying the condition of Lemma 10.1. We note that the decomposition is not
unique in general. It is easy to check that

zzz = zzz2(1,2;1,2)+ zzz2(1,2;5,2)+ zzz3(1,4,3;1,4,3)+ zzz4(1,4,3,2;1,4,3,2)

is another decomposition of zzz.

Suppose xxx,yyy ∈ Fttt . Then the difference zzz = yyy− xxx is in B(S). Hence to move
from xxx to yyy, we can add a sequence of loops in Definition 10.1 to xxx, without
forcing negative entries on the way. In other words, the set of all the loops of degree
2, . . . ,min{I,J} on S constitutes a trivial Markov basis.

Definition 10.2. A loop zzzr(iii[r]; jjj[r]) is called df 1 if R(iii[r]; jjj[r]) does not contain
support of any loop on S of degree 2, . . . ,r− 1, where

R(iii[r]; jjj[r]) = {(i, j) | i ∈ {i1, . . . , ir}, j ∈ { j1, . . . , jr}}.

Lemma 10.2. zzzr(iii[r]; jjj[r]) is df 1 if and only if R(iii[r]; jjj[r]) contains exactly two
elements in S in every row and column.
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Proof. The case r = 2 is obvious. Suppose that r ≥ 3.
First we show the necessity; that is, if zzzr(iii[r]; jjj[r]) is df 1 then R(iii[r]; jjj[r]) contains

exactly two elements in S in every row and column by showing its contraposition.
Without loss of generality we can suppose that zzzr([r]; [r]) is a degree r loop and that
(1,a) ∈ S, 3 ≤ ∃a ≤ r. Then this loop is decomposed into two loops on S as

zzzr([r]; [r]) = zzzr−a+2([1,a : r]; [1,a : r])+ zzza−1([a− 1]; [a,2 : a− 1]), (10.6)

where we define i : j = {i, i+ 1, . . . , j} for i < j. An example for r = 5 and a = 4 is
represented as follows.

+1 −1 [0] 0 [0]
[0] +1 −1 [0] [0]
[0] [0] +1 −1 [0]
[0] [0] [0] +1 −1
−1 [0] [0] [0] +1

=

+1 0 [0] −1 [0]
[0] 0 0 [0] [0]
[0] [0] 0 0 [0]
[0] [0] [0] +1 −1
−1 [0] [0] [0] +1

+

0 −1 [0] +1 [0]
[0] +1 −1 [0] [0]
[0] [0] +1 −1 [0]
[0] [0] [0] 0 0
0 [0] [0] [0] 0

.

The nonzero cells of the two loops in the right-hand side of (10.6) overlap at (1,a)∈
S only. Hence R([r]; [r]) contains their supports, which contradicts the assumption.

Next we show the sufficiency. Suppose that zzzr([r]; [r]) is a degree r loop such
that R([r]; [r]) contains exactly two elements in S in every row and column. Then it
is sufficient to show that R([r]; [r]) does not contain support of any loop of degree
2, . . . ,r − 1 on S. From the assumption, (1,1) is the only cell in S in R([r− 1];1),
because zzzr([r]; [r]) has exactly two nonzero elements there: z11 =+1 and zr1 =−1.
Hence z11 is zero in any loop in R([r− 1]; [r]). Moreover, by using the constraints
z1· = z·2 = z2· = · · ·= zr−1· = 0, it is shown that the only element of B0(S) that can
be contained in R([r− 1]; [r]) is the zero contingency table. ��

The loops in (10.5) are examples of df 1 loops of degree 2, 3, and 4 on some S
in 4× 5 integer arrays. Denote the positive part and the negative part of a df 1 loop
zzzr(iii[r]; jjj[r]) as zzz+r (iii[r]; jjj[r]) and zzz−r (iii[r]; jjj[r]), respectively. Then

zzzr(iii[r]; jjj[r]) = zzz+r (iii[r]; jjj[r])− zzz−r (iii[r]; jjj[r]). (10.7)

Let Fttt be a fiber such that zzz+r (iii[r]; jjj[r]),zzz
−
r (iii[r]; jjj[r]) ∈Fttt . Then Fttt is a two-element

fiber; that is, every df 1 move is an indispensable move for the quasi-independence
model (10.2).

Theorem 10.1. The set of df 1 loops of degree 2, . . . ,min{R,C} constitutes the
unique minimal Markov basis for the quasi-independence model of R×C contin-
gency tables with structural zeros.

Proof. We have already seen that the set of loops forms a Markov basis. We have
also seen that every df 1 loop is indispensable. Therefore it suffices to show that the
set of the df 1 loops is itself a Markov basis.
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Table 10.1 An example of a
block triangular table: Initial
and final ratings on disability
of stroke patients

Final state

Initial state A B C D E

E 11 23 12 15 8
D 9 10 4 1 [0]
C 6 4 4 [0] [0]
B 4 5 [0] [0] [0]
A 5 [0] [0] [0] [0]

Source: Bishop and Fienberg [25]

Suppose a Markov basis contains non-df-1 loops. Without loss of generality
let zzzr([r]; [r]) be a non-df-1 loop of the highest degree and (1,a) ∈ S,3 ≤ ∃a ≤ r.
Then this loop is decomposed as (10.6). The two loops overlap (i.e., have nonzero
element in a common position) only at (1,a) ∈ S. The (1,a) elements of these loops
are −1 and +1, thus we can add or subtract these loops in an appropriate order
to/from xxx ∈ Fttt(S) without forcing negative entries on the way, instead of adding
or subtracting zzzr([r]; [r]) to/from xxx. Therefore zzzr([r]; [r]) can be removed from the
Markov basis and the remaining set is still a Markov basis. ��

10.1.3 Enumerating Elements of the Minimal Markov Basis

In this section we discuss how to list all the elements of the unique minimal Markov
basis for some specific quasi-independence models. By considering the structure
discussed in Lemma 10.2, we can obtain an explicit form of the minimal basis for
some typical situations, which play important roles in applications.

Block Triangular Tables

For a row index i, define J (i) := { j | (i, j) ∈ S}. An incomplete table is called of
block triangular form if, for every pair i and i′, either J (i) ⊂ J (i′) or J (i) ⊃
J (i′) holds ([26,66]). Table 10.1 shows an example of a block triangle contingency
table from Bishop and Fienberg [25]. In this case, the unique minimal Markov basis
is the set of basic moves on S.

Square Tables with Diagonal Elements Being Structural Zeros

There are many situations that contingency tables are square and all the diagonal
elements are structural zeros. Table 10.2 is an example of such tables. It is obvious
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Table 10.2 An example
of a square table with
diagonal elements being
structural zeros

Passive participant

Active participant R S T U V W

R [0] 1 5 8 9 0
S 29 [0] 14 46 4 0
T 0 0 [0] 0 0 0
U 2 3 1 [0] 28 2
V 0 0 0 0 [0] 1
W 9 25 4 6 13 [0]

Source: Ploog [121]

that the unique minimal Markov basis for such tables contains degree 3 loops which
correspond to every triple of the structural zeros. For examples, degree 3 loops
such as

[0] −1 +1 0 0 0
+1 [0] −1 0 0 0
−1 +1 [0] 0 0 0
0 0 0 [0] 0 0
0 0 0 0 [0] 0
0 0 0 0 0 [0]

or

[0] 0 0 0 0 0
0 [0] 0 0 +1 −1
0 0 [0] 0 0 0
0 0 0 [0] 0 0
0 −1 0 0 [0] +1
0 +1 0 0 −1 [0]

are needed to construct a connected Markov chain. It is seen that for I × I

contingency tables, there are

(
I
2

)(
I− 2

2

)
degree 2 moves and

(
I
3

)
df 1 degree

3 loops in the unique minimal Markov basis.

General Incomplete Tables

In general, we can use the following recursive algorithm to list all the elements in
the minimal basis.

Algorithm 10.1
Input: I = {1, . . . ,R},J = {1, . . . ,C},S
Output: elements of the unique minimal Markov basis
ListMoves(I ;J )
{

Choose i∗ ∈ I and J (i∗) = { j | (i∗, j) ∈ S};
List df 1 moves that have ±1 elements in R(i∗;J (i∗));
I ← I \ {i∗};
if I �= /0

ListMoves(I ;J );
else exit;

}
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Table 10.3 Classification
of Purum marriages

Sib of husband

Sib of wife Marrim Makan Parpa Thao Kheyang

Marrim [0] 5 17 [0] 6
Makan 5 [0] 0 16 2
Parpa [0] 2 [0] 10 11
Thao 10 [0] [0] [0] 9
Kheyang 6 20 8 0 1

Source: White [150]

Example 10.5. To illustrate the algorithm, we list the elements of the unique
minimal Markov basis for the incomplete table of the form in Table 10.3.

According to the algorithm, we first choose i∗ = 1 and hence J (i∗) = {2,3,5}.

We also denote Ĩ = I −{i∗}= {2,3,4,5}, and J̃ = J \J (i∗) = {1,4}.

J̃ J (i∗)
1 4 2 3 5

i∗ 1 [0] [0] x12 x13 x15

2 x21 x24 [0] x23 x25

3 [0] x34 x32 [0] x35

Ĩ 4 x41 [0] [0] [0] x45

5 x51 x54 x52 x53 x55

Next step of the algorithm is to list all df 1 loops that have ±1 elements in
R(i∗;J (i∗)). To perform this step, we can make use of the fact that such a loop has
exactly one +1 and one −1 both in R(i∗;J (i∗)) and R(Ĩ ;J (i∗)). For example,
if we select {2,3} from J (i∗) and {2,3} from Ĩ , we can ignore column 5 and
row 5. We can also ignore column 1 because this column has only one cell in S
when we ignore the rows 4 and 5. Then the table is reduced to the following.

J̃ J (i∗)
1 4 2 3

i∗ 1 [0] [0] x12 x13

Ĩ 2 x21 x24 [0] x23

3 [0] x34 x32 [0]
4 x41 [0] [0] [0]

This subtable contains zzz3(1,2,3;2,3,4). Similarly we can list all loops that have
exactly one +1 and one −1 both in R(i∗;J (i∗)) and R(Ĩ ;J (i∗)) by listing all
pairs of columns in J (i∗). In this case,

• If we select {2,3} from J (i∗), zzz3(1,2,3;2,3,4) and zzz2(1,5;2,3) are listed.
• If we select {2,5} from J (i∗), zzz2(1,3;2,5) and zzz2(1,5;2,5) are listed.
• If we select {3,5} from J (i∗), zzz2(1,2;3,5) and zzz2(1,5;3,5) are listed.
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Table 10.4 Effects of
decision alternatives on the
verdicts and social
perceptions of simulated
jurors

Condition

Alternative 1 2 3 4 5 6 7

First-degree 11 [0] [0] 2 7 [0] 2
Second-degree [0] 20 [0] 22 [0] 11 15
Manslaughter [0] [0] 22 [0] 16 13 5
Not guilty 13 4 2 0 1 0 2

Source: Vidmar (1972)

Table 10.5 Maximum likelihood estimate for Table 10.6

Condition

Alternative 1 2 3 4 5 6 7

First-degree 14.05 [0] [0] 2.61 3.64 [0] 1.70
Second-degree [0] 21.93 [0] 19.55 [0] 13.75 12.77
Manslaughter [0] [0] 20.95 [0] 17.78 8.95 8.32
Not guilty 9.95 2.07 3.05 1.84 2.58 1.30 1.21

Substitute I ← Ĩ and iterate a similar procedure until I = /0. Then we can see that
basic moves and a degree 3 loop zzz3(1,2,3;2,3,4) form the unique minimal Markov
basis.

Example 10.6. As seen in Example 10.3, the unique minimal Markov basis for the
separable table (10.3) is the union of the unique minimal Markov bases for two
subtables (10.4). By using Algorithm 10.1, we easily see that it is {zzz2(1,3;1,2),
zzz3(1,2,3;1,3,4), zzz3(1,2,3;2,3,4), zzz3(4,5,6;5,6,7)}.

10.1.4 Numerical Example of a Quasi-Independence Model

In this section we give an example of testing the hypothesis of quasi-independence
for a given data set via the MCMC method. Table 10.4 shows a data collected by
Vidmar [147] for discovering the possible effects on decision making of limiting
the number of alternatives available to the members of a jury panel. This is a 4× 7
contingency table that has 9 structural zero cells. The degree of freedom for testing
quasi-independence is 9. The maximum likelihood estimate under the hypothesis of
quasi-independence is calculated by an iterative method as displayed in Table 10.5.
See Bishop et al. [26] for maximum likelihood estimation of incomplete tables.

As a test statistic, we use the (twice log) likelihood ratio statistic

G2 = 2∑
S

xi j log
xi j

m̂i j
,

where m̂i j is the MLE of the expectation parameter mi j. The observed value of G2

is 18.816 and the corresponding asymptotic p-value is 0.0268 from the asymptotic
distribution χ2

9 .
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Fig. 10.1 Asymptotic and exact distributions for G2 under the quasi-independence model

To perform the Markov chain Monte Carlo method, first we obtain the unique
minimal Markov basis. From the considerations in the above sections, we easily
see that a set of basic moves and a degree 3 loop zzz3(1,2,3;5,4,6) constitute
the unique minimal Markov basis. The estimated exact p-value is 0.0444, with
estimated standard deviation 0.00052. Figure 10.1 shows a histogram of the Monte
Carlo sampling generated from the exact distribution of the likelihood ratio statistic
under the quasi-independence hypothesis, along with the corresponding asymptotic
distribution χ2

9 . We see that the asymptotic distribution understates the probability
that the test statistic is greater than the observed value, and overemphasizes the
significance.

10.2 Markov Bases for Subtable Sum Problem

10.2.1 Introduction of Subtable Sum Problem

Let xxx = {xi j} be an R×C table and let S ⊂ I be a subset of cells of xxx. Consider the
following model for cell probabilities {pi j},

log pi j =

{
μ +αi +β j + γ, (i, j) ∈ S,
μ +αi +β j, otherwise,

(10.8)

where two-way interactions exist only on S.
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The model (10.8) includes some practical models. When S is rectangular, that
is, S = {(i, j) | 1 ≤ i ≤ r,1 ≤ j ≤ c} for r ≤ R,c ≤ C, (10.8) coincides with the
block interaction model or two-way change point model ([87, 107]). For a square
table such that frequencies along the diagonal cells are relatively larger (or smaller)
compared to off-diagonal cells, the following model is often used

log pi j = μ +αi +β j + γiδi j, (10.9)

where δi j is Kronecker’s delta. The model (10.9) is also called the quasi-
independence model for a square table. We can consider the null hypothesis
γ1 = · · ·= γR = γ:

log pi j = μ +αi +β j + γδi j. (10.10)

Then (10.10) belongs to (10.8) with S = {(i, j) | i = j}. We call the model (10.10) a
common diagonal effect model (CDEM) and discuss it again in Sect. 10.2.3.

Let x(S) denote the sum of cell counts in a subtable S,

x(S) = ∑
(i, j)∈S

xi j.

Then a sufficient statistic ttt for (10.8) is the set of row sums, column sums, and x(S)

ttt = {x1+, . . . ,xR+,x+1, . . . ,x+C,x(S)}. (10.11)

For S = /0 or S = I , we have x( /0) ≡ 0 or x(I ) = x++ = n. In these cases x(S)
is redundant and the model reduces to the two-way complete independence model.
Therefore in the following, we consider S which is a nonempty proper subset of I .
We note that x(SC) = x++−x(S), where SC is the complement of S. Therefore fixing
x(S) is equivalent to fixing x(SC).

In the following section we discuss Markov bases for the model (10.8). We
call the problem the subtable sum problem. We note that if x(SC) = 0 (which is
equivalent to x(S) = x++), the fiber Fttt is the one of the quasi-independence model
with structural zeros in Sc. Hence the unique minimal Markov basis for a quasi-
independence model is a subset of the Markov basis for subtable sum problems.

10.2.2 Markov Bases Consisting of Basic Moves

In this section we denote by B(S) the set of moves for (10.8); that is,

B(S) := {zzz = {zi j} | zi+ = 0, z+ j = 0, z(S) = 0}.
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Fig. 10.2 The pattern
P and P t

We note that z(S) = z(SC) = 0. Therefore B(S) is equivalent to B(SC). As shown
in Chap. 8 the set B0 of all basic moves forms the unique minimal Markov basis
for the two-way complete independence model. Define the set of basic moves for
(10.8) by

B0(S) := B0 ∩B(S).

B0(S) does not always form a Markov basis for (10.8).
Figure 10.2 shows patterns of 2× 3 and 3× 2 tables. A shaded area represents a

cell belonging to S. In the following, let a shaded area represent a cell belonging to S
or a rectangular block of cells belonging to S. We call these two patterns in Fig. 10.2
the pattern P and Pt , respectively. Then a necessary and sufficient condition on S
that B0(S) forms a Markov basis for (10.8) is given by the following theorem.

Theorem 10.2 (Hara et al. [79]). B0(S) is a Markov basis for (10.8) if and only if
there exist no patterns of the form P or Pt in any 2× 3 and 3× 2 subtable of S or
SC after any interchange of rows and columns.

Note that if B0(S) is a Markov basis for (10.8), it is the unique minimal Markov
basis, because basic moves in B0(S) are all indispensable.

The proof of necessity is easy and is given in the following Proposition 10.1. The
proof of sufficiency is given by the distance reducing method. However, the proof is
complicated and is omitted here. For details, see Sect. 3 of Hara et al. [79]. Gröbner
bases for the subtable sum problem are studied in Ohsugi and Hibi [112].

Proposition 10.1. If there exists a pattern of P or Pt in any 2× 3 and 3 × 2
subtable after any interchange of rows and columns, B0(S) is not a Markov basis
for (10.8).

Proof. Assume that S has the pattern P . Without loss of generality we can assume
that P belongs to {(i, j) | i = 1,2, j = 1,2,3}. Consider a fiber such that

• x1+ = x2+ = 2, x+1 = x+2 = 1, x+3 = 2,
• xi+ = 0 and x+ j = 0 for all (i, j) /∈ {(i, j) | i = 1,2, j = 1,2,3},
• ∑(i, j)∈S xi j = 1.

Then it is easy to check that this fiber contains only the following two elements

1 1 0
0 0 2

and
0 0 2
1 1 0

,
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(i) 2×2 block diagonal set (ii)(block-wise) 4×5 and 4×4 triangular sets

Fig. 10.3 2×2 block diagonal set and triangular sets

which implies that

zzz =
1 1 −2

−1 −1 2
(10.12)

is an indispensable move. Therefore if S has the pattern P , there does not exist
a Markov basis consisting of basic moves. When S has the pattern Pt , a proof is
similar. ��

After an appropriate interchange of rows and columns, if S satisfies that

S = {(i, j) | i ≤ r, j ≤ c}∪{(i, j) | i > r, j > c}

for some r < R and c < C, we say that S is equivalent to a 2 × 2 block diagonal
set. Figure 10.3(i) shows a 2× 2 block diagonal set. A 2× 2 block diagonal set is
decomposed into four blocks consisting of one or more cells.

As in Sect. 10.1.3, we say that S is equivalent to a triangular set if, for every pair
i and i′, either J (i) ⊂ J (i′) or J (i)⊃ J (i′). A triangular set is expressed as in
Fig. 10.3(ii) after an appropriate interchange of rows and columns.

Proposition 10.2. There exist no patterns of the form P or Pt in any 2× 3 and
3× 2 subtable of S after any interchange of rows and columns if and only if S is
equivalent to a 2× 2 block diagonal set or a triangular set.

For the proof of Proposition 10.2, see Sect. 3.2 in Hara et al. [79]. From
Proposition 10.2, Theorem 10.2 is rewritten as follows.

Corollary 10.1. B0(S) is a Markov basis for (10.8) if and only if S is equivalent to
a 2× 2 block diagonal set or a triangular set.

The block interaction model ([87, 107]) is equivalent to a triangular set. There-
fore, from Corollary 10.1, B0(S) forms the unique minimal Markov basis for the
block interaction model.
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10.2.3 Markov Bases for Common Diagonal Effect Models

In the CDEM (10.10), there exist patterns P . Therefore any Markov basis for
CDEM has to contain moves of degree greater than two. In this section we provide
a Markov basis for CDEM (10.10).

A sufficient statistic of CDEM is ttt in (10.11) with x(S) = ∑R
i=1 xii. As mentioned

in Sec. 10.2, when x(S) = 0, the fiber coincides with the one with structural zeros
in diagonal cells discussed in Sec. 10.1.3. Hence the following types of moves are
required in a Markov basis.

• Type I : zzz2(i, i′; j, j′), where i, i′, j, j′ are all distinct.
• Type II : zzz3(i, i′, i′′; j, j′, j′′), where i, i′, i′′, j, j′, j′′ are all distinct.

In addition to these moves, we introduce the following four types of moves.

• Type III (dispensable moves of degree 3 for min(R,C)≥ 3):

i i′ i′′

i +1 0 −1
i′ 0 −1 +1
i′′ −1 +1 0

.

Note that given three distinct indices i, i′, i′′, there are three moves in the same
fiber:

+1 0 −1
0 −1 +1
−1 +1 0

+1 −1 0
−1 0 +1
0 +1 −1

0 −1 +1
−1 +1 0
+1 0 −1

.

Any two of these suffice for the connectivity of the fiber. Therefore we can choose
any two moves in this fiber for minimality of Markov basis.

• Type IV (indispensable moves of degree 3 for max(R,C)≥ 4):

i i′ j
i +1 0 −1
i′ 0 −1 +1
j′ −1 +1 0

,

where i, i′, j, j′ are all distinct. We note that Type IV is similar to Type III but
unlike the moves in Type III, the moves of Type IV are indispensable.

• Type V (indispensable moves of degree 4 which are non-square-free):

j j′ j′′

i +1 +1 −2
i′ −1 −1 +2

,

where i = j and i′ = j′; that is, two cells are on the diagonal. Note that we also
include the transpose of this type as Type V moves.
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• Type VI: (square-free indispensable moves of degree 4 for max(R,C)≥ 4):

j j′ j′′ j′′′′

i +1 +1 −1 −1
i′ −1 −1 +1 +1

,

where i = j and i′ = j′. Type VI includes the transpose of this type.

Theorem 10.3 (Hara et al. [80]). The above moves of Types I–VI form a Markov
basis for the CDEM with min(R,C)≥ 3 and max(R,C)≥ 4.

Proof. Let xxx and yyy be two tables in the same fiber. If

xii = yii, ∀i = 1, . . . ,min(R,C),

then the problem reduces to the structural zero problem in Sect. 10.1.3. Therefore
we only need to consider the difference

yyy− xxx = zzz = {zi j},
where there exists at least one i such that zii �= 0. Note that in this case there are two
indices i �= i′ such that

zii > 0, zi′ i′ < 0,

because the diagonal sum of zzz is zero. Without loss of generality we let i = 1,
i′ = 2. We prove the theorem by exhausting various sign patterns of the differences
in other cells and confirming the distance reduction by the moves of Types I–VI. We
distinguish two cases: z12z21 ≥ 0 and z12z21 < 0.

Case 1 (z12z21 ≥ 0): In this case without loss of generality assume that z12 ≥ 0,
z21 ≥ 0. Let 0+ denote a cell with a nonnegative value of zzz and let ∗ denote a cell
with an arbitrary value of zzz. Then zzz looks like

+ 0+ ∗ · · ·
0+ − ∗ ·· ·
∗ ∗ ∗ · · ·
...

...
...

. . .

.

Note that there has to be a negative cell on the first row and on the first column. Let
z1 j < 0, z j′1 < 0. Then zzz looks like

1 2 · · · j · · ·
1 + 0+ · · · − · · ·
2 0+ − ·· · ∗ · · ·

...
...

...
... · · ·

j′ − ∗ · · · ∗ · · ·
...

...
...

...
. . .

.
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If j = j′, we can apply a Type III move to reduce the 1-norm. If j �= j′, we can apply
a Type IV move to reduce the 1-norm. This takes care of the case z12z21 ≥ 0.

Case 2 (z12z21 < 0): Without loss of generality assume that z12 > 0, z21 < 0. Then
zzz looks like

+ + ∗ · · ·
− − ∗ · · ·
∗ ∗ ∗ · · ·
...

...
...

. . .

.

There has to be a negative cell on the first row and there has to be a positive cell
on the second row. Without loss of generality we can let z13 < 0 and at least one of
z23,z24 is positive. Therefore zzz looks like

+ + − ∗ ∗ · · ·
− − ∗ + ∗ · · ·
∗ ∗ ∗ ∗ ∗ · · ·
...

...
...

...
...

. . .

or

+ + − ∗ ·· ·
− − + ∗ · · ·
∗ ∗ ∗ ∗ · · ·
...

...
...

...
. . .

. (10.13)

These two cases are not mutually exclusive. We look at zzz as the left pattern
whenever possible. Namely, whenever we can find two different columns j, j′ ≥ 3,
j �= j′ such that z1 jz2 j′ < 0, then we consider zzz to be of the left pattern. We first take
care of the case where zzz does not look like the left pattern of (10.13); that is, there
are no j, j′ ≥ 3, j �= j′, such that z1 jz2 j′ < 0.

Case 2–1 (zzz does not look like the left pattern of (10.13)): If there exists some j ≥ 4
such that z1 j < 0, then in view of z23 > 0 we have z1 jz23 < 0 and zzz looks like the left
pattern of (10.13). Therefore we can assume

z1 j ≥ 0, ∀ j ≥ 4.

Similarly

z2 j ≤ 0, ∀ j ≥ 4

and zzz looks like
+ + − 0+ · · · 0+
− − + 0− ·· · 0−
∗ ∗ ∗ ∗ · · · ∗
...

...
...

...
...

...

Because the first row and the second row sum to zero, we have

z13 ≤−2, z23 ≥ 2.

However then we can apply Type V move to reduce the 1-norm.
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Case 2–2 (zzz looks like the left pattern of (10.13)): Suppose that there exists some
i ≥ 3 such that zi3 > 0. If z33 > 0, then zzz looks like

+ + − ∗ ∗ · · ·
− − ∗ + ∗ · · ·
∗ ∗ + ∗ ∗ · · ·
∗ ∗ ∗ ∗ ∗ · · ·
...

...
...

...
...

. . .

.

Then we can apply a type III move involving

z12 > 0, z13 < 0, z22 < 0, z24 > 0, z33 > 0, z34 : arbitrary

and reduce the 1-norm. On the other hand if zi3 > 0 for i ≥ 4, then zzz looks like

+ + − ∗ ∗ · · ·
− − ∗ + ∗ · · ·
∗ ∗ ∗ ∗ ∗ · · ·
∗ ∗ + ∗ ∗ · · ·
∗ ∗ ∗ ∗ ∗ · · ·
...

...
...

...
...

. . .

.

Then we can apply a type IV move involving

z11 > 0, z13 < 0, z21 < 0, z24 > 0, zi3 > 0, zii : arbitrary

and reduce the 1-norm. Therefore we only need to consider zzz that looks like

+ + − ∗ ∗ · · ·
− − ∗ + ∗ · · ·
∗ ∗ 0− ∗ ∗ · · ·
...

...
...

...
... · · ·

∗ ∗ 0− ∗ ∗ · · ·

.

Similar consideration for the fourth column of zzz forces

+ + − ∗ ∗ · · ·
− − ∗ + ∗ · · ·
∗ ∗ 0− 0+ ∗ · · ·
...

...
...

...
... · · ·

∗ ∗ 0− 0+ ∗ · · ·

.
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However, because the third and fourth column’s sum to zero, we have z23 > 0 and
z14 < 0 and zzz looks like

+ + − − ∗ ·· ·
− − + + ∗ · · ·
∗ ∗ 0− 0+ ∗ · · ·
...

...
...

...
... · · ·

∗ ∗ 0− 0+ ∗ · · ·

.

Then we apply a Type VI move to reduce the 1-norm.

Now we have exhausted all possible sign patterns of zzz and shown that the 1-norm
can always be decreased by some move of Types I–VI. ��

Because moves of Type I, II, IV, V, and VI are indispensable, we have the
following corollary.

Corollary 10.2. A minimal Markov basis for the diagonal sum problem with
min(R,C) ≥ 3 and max(R,C) ≥ 4 consists of moves of Types I, II, IV, V, VI and
two moves of Type III for each given triple (i, i′, i′′).

10.2.4 Numerical Examples of Common Diagonal
Effect Models

In this section we give examples of testing the null hypothesis of CDEM (10.10)
against the alternative hypothesis of the quasi-independence model (10.9) for two
real data sets via the MCMC method. Denote expected cell frequencies under the
quasi-independence model and CDEM by

m̂QI
i j = np̂QI

i j , m̂S
i j = np̂S

i j,

respectively. These expected cell frequencies can be computed via the iterative
proportional fitting (IPF). IPF for the quasi-independence model is explained in
Chap. 5 of [26]. IPF for the common diagonal effect model is given as follows.
The superscript k denotes the step count.

1. Set mS,k
i j = mS,k−1

i j xi+/mS,k−1
i+ for all i, j and set k = k+ 1. Then go to Step 2.

2. Set mS,k
i j = mS,k−1

i j x+ j/mS,k−1
+ j for all i, j and set k = k+ 1. Then go to Step 3.

3. Set mS,k
ii = mS,k−1

ii x(S)/mS,k−1(S) for all i = 1, . . . ,min(R,C) and mS,k
i j =

mS,k−1
i j (n − mS,k−1(S))/(n − x(S)) for all i �= j, where mS,k−1(S) is the sum

of fitted diagonal frequencies. Then set k = k+ 1 and go to Step 1.

After convergence we set

m̂S
i j = mS,k

i j for all i, j.
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Table 10.6 Married couples in Arizona

Never/occasionally Fairly often Very often almost always

Never/occasionally 7 7 2 3
Fairly often 2 8 3 7
Very often 1 5 4 9
Almost always 2 8 9 14

log likelihood ratio
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Fig. 10.4 A histogram of sampled tables via MCMC with a Markov basis computed for
Table 10.6. The solid line shows the asymptotic distribution χ2

3

We can initialize mS,0 by

mS,0
i j = n/(R ·C) for all i, j.

As the discrepancy measure from the hypothesis of the common diagonal model,
we calculate (twice) the log likelihood ratio statistic

G2 = 2∑
i

∑
j

xi j log
m̂QI

i j

m̂S
i j

for each sampled table xxx = {xi j}. In all experiments we sampled 10,000 tables after
8,000 burn-in steps.

The first example is Table 2.12 from [4]. Table 10.6 summarizes responses of 91
married couples in Arizona about how often sex is fun. Columns represent wives’
responses and rows represent husbands’ responses.

The value of G2 for the observed table in Table 10.6 is 6.18159 and the
corresponding asymptotic p-value is 0.1031 from the asymptotic distribution χ2

3 .
A histogram of sampled tables via MCMC with a Markov basis for Table 10.6 is

shown in Fig.10.4. We estimated the p-value 0.12403 via MCMC with the Markov
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Table 10.7 Relationship between birthday and death day

Jan Feb March April May June July Aug Sep Oct Nov Dec

Jan 1 0 0 0 1 2 0 0 1 0 1 0
Feb 1 0 0 1 0 0 0 0 0 1 0 2
March 1 0 0 0 2 1 0 0 0 0 0 1
April 3 0 2 0 0 0 1 0 1 3 1 1
May 2 1 1 1 1 1 1 1 1 1 1 0
June 2 0 0 0 1 0 0 0 0 0 0 0
July 2 0 2 1 0 0 0 0 1 1 1 2
Aug 0 0 0 3 0 0 1 0 0 1 0 2
Sep 0 0 0 1 1 0 0 0 0 0 1 0
Oct 1 1 0 2 0 0 1 0 0 1 1 0
Nov 0 1 1 1 2 0 0 2 0 1 1 0
Dec 0 1 1 0 0 0 1 0 0 0 0 0

log likelihood ratio
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Fig. 10.5 A histogram of sampled tables via MCMC with a Markov basis computed for
Table 10.7. The solid line shows the asymptotic distribution χ2

11

basis defined in Theorem 10.3. Therefore the CDEM model is accepted at the
significance level of 5%. We also see that χ2

3 approximates these observed data well.
The second example is Table 1 from [50]. Table 10.7 shows data gathered to

test the hypothesis of an association between birthday and death day. The table
records the month of the birth and death for 82 descendants of Queen Victoria ([50]).
A widely stated claim is that (birthday, death day) pairs are associated. Columns
represent the month of the birthday and rows represent the month of the death
day. As discussed in [50], Pearson’s χ2 statistic for the usual independence model
is 115.6 with 121 degrees of freedom. Therefore the usual independence model
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is accepted for these data. However, when the CDEM is fitted, the Pearson’s χ2

becomes 111.5 with 120 degrees of freedom. Therefore the fit of CDEM is better
than the usual independence model.

We now test the CDEM against the quasi-independence model. The value of G2

for the observed table in Table 10.7 is 6.18839 and the corresponding asymptotic
p-value is 0.860503 from the asymptotic distribution χ2

11.
A histogram of sampled tables via MCMC with a Markov basis for Table 10.7 is

shown in Fig. 10.5. We estimated the p-value 0.89454 via MCMC with the Markov
basis in Theorem 10.3. There exists a large discrepancy between the asymptotic
distribution and the distribution estimated by MCMC due to the sparsity of the table.
This result indicates that the exact test via Markov basis technology is effective.



Chapter 11
Regular Factorial Designs with Discrete
Response Variables

11.1 Conditional Tests for Designed Experiments
with Discrete Observations

11.1.1 Conditional Tests for Log-Linear Models of Poisson
Observations

First we investigate the case where the observations are counts of some events. In
this case, it is natural to consider a Poisson model. To clarify the procedures of
conditional tests, we take a close look at an example of fractional factorial design
with count observations. Table 11.1 is a 1

8 fraction of a full factorial design, that is,
a 27−3 regular fractional factorial design, defined from the aliasing relation

ABDE = ACDF = BCDG = I,

and response data analyzed in [40] and [70]. There are 16 = 27−3 runs in the whole
experiment.

In Table 11.1, the observation x is the number of defects arising in a wave-
soldering process in attaching components to an electronic circuit card. In Chap. 7
of [40], the following seven factors of a wave-soldering process are considered: (A)
prebake condition, (B) flux density, (C) conveyer speed, (D) preheat condition, (E)
cooling time, (F) ultrasonic solder agitator, and (G) solder temperature, each at two
levels with three boards from each run being assessed for defects. Here we code the
two levels as {0,1}. The aim of this experiment is to decide which levels for each
factor are desirable to reduce solder defects.

In this chapter, we only consider designs with a single observation for each run.
This is natural for the settings of Poisson models, because the set of the total counts
for each run is a sufficient statistic for the parameters. The same argument also holds
for the settings of binomial models in Sect. 11.1.3. In our example, we focus on the
totals for all runs in Table 11.1. We also ignore the second observation in run 11,

S. Aoki et al., Markov Bases in Algebraic Statistics, Springer Series
in Statistics 199, DOI 10.1007/978-1-4614-3719-2 11,
© Springer Science+Business Media New York 2012
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Table 11.1 Design and number of defects x for the wave-solder experiment

Factor x

Run A B C D E F G 1 2 3

1 0 0 0 0 0 0 0 13 30 26
2 0 0 0 1 1 1 1 4 16 11
3 0 0 1 0 0 1 1 20 15 20
4 0 0 1 1 1 0 0 42 43 64
5 0 1 0 0 1 0 1 14 15 17
6 0 1 0 1 0 1 0 10 17 16
7 0 1 1 0 1 1 0 36 29 53
8 0 1 1 1 0 0 1 5 9 16
9 1 0 0 0 1 1 0 29 0 14
10 1 0 0 1 0 0 1 10 26 9
11 1 0 1 0 1 0 1 28 173 19
12 1 0 1 1 0 1 0 100 129 151
13 1 1 0 0 0 1 1 11 15 11
14 1 1 0 1 1 0 0 17 2 17
15 1 1 1 0 0 0 0 53 70 89
16 1 1 1 1 1 1 1 23 22 7

which is an obvious outlier as pointed out in [70]. We use the weighted total of
run 11 as (28+ 19)× 3/2 = 70.5 � 71. Hence we have the η-dimensional column
vector of frequencies as

xxx = (69,31,55,149,46,43,118,30,43,45,71,380,37,36,212,52)′.

In this chapter, η , the dimension of the frequency vector xxx defined in Chap. 4, is
the number of runs and the sample space is written as I = {1, . . . ,η}. For this
frequency vector xxx, we can define the conditional sampling space in a similar way
to the previous chapters. A slight difference is that a natural sampling model for
this type of data is the Poisson model rather than the multinomial model described
in (4.3) of Chap. 4.

We adopt the theory of generalized linear models [104] as follows. Assume that
the observations xxx = {x(iii), iii ∈ I } = {x(1), . . . ,x(η)} are mutually independently
distributed as Poisson distributions with the mean parameters {μ(iii), iii ∈ I }.
Because the canonical link function for a Poisson distribution is log(·), we express
the mean parameter μ(iii) as

log μ(iii) =
ν−1

∑
j=0

θ ja j(iii). (11.1)

Note that we express the ν-dimensional parameter as {θ0, . . . ,θν−1} instead of
{θ1, . . . ,θν} in this chapter, because it is more traditional in the theory of the
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(generalized) linear models to include the intercept term. The joint probability
function of xxx is written as

p(xxx) =
η

∏
iii=1

μ(iii)x(iii)

x(iii)!
e−μ(iii) =

(
η

∏
iii=1

e−μ(iii)

x(iii)!

)
exp

(
ν−1

∑
j=0

θ j

η

∑
iii=1

a j(iii)x(iii)

)
.

Then we have a sufficient statistic for the parameter {θ0, . . . ,θν−1} as {t0, . . . , tν−1}
where t j = ∑η

iii=1 a j(iii)x(iii). We write this relation ttt = Axxx as we have seen in (4.4) of
Chap. 4.

The conditional distribution of xxx given ttt, the hypergeometric distribution (4.7),
is written as

p(xxx | ttt) = c× 1

∏η
iii=1 x(iii)!

, xxx ∈ Fttt , c =

[
∑

xxx∈Fttt

1

∏η
iii=1 x(iii)!

]−1

, (11.2)

where Fttt = {xxx ≥ 0 | Axxx = ttt} is the fiber.
To define conditional tests, we specify the null model and the alternative model

in terms of the parameter θ . Suppose the null model is ν-dimensional and expressed
as (11.1). Then the null model is regarded as a subspace of some high-dimensional
model if ν < η . For example, the highest-dimensional model is the saturated model,
which is written as

log(μ(iii)) =
η−1

∑
j=0

θ ja j(iii).

If we consider various goodness-of-fit tests, the alternative model is the saturated
model and the hypotheses are written as

H0 : (θν , . . . ,θη−1) = (0, . . . ,0),
H1 : (θν , . . . ,θη−1) �= (0, . . . ,0).

On the other hand, if we consider the significance test of some additional individual
effects, the alternative model is written in the form of

H1 : (θν , . . . ,θν+m−1) �= (0, . . . ,0),

where θν , . . . ,θν+m−1 express the additional effects to the null model with m degrees
of freedom. In the two-level case, a single effect is expressed as a single parameter.
On the other hand, for the three-level case, a single effect has more than one degree
of freedom. We see how to specify models in the form of (11.1) in Sect. 11.1.2.

Depending on the hypotheses, we also specify the appropriate test statistic T (xxx).
For example, the likelihood ratio test statistic or Pearson’s chi-square test statistic is
frequently used. Once we specify the null model and the test statistic, our purpose is
to calculate the p-value. Similarly to the context of the analysis of the contingency
tables, the Markov chain Monte Carlo procedure is a valuable tool, especially when
the traditional large-sample approximation is inadequate and the exact calculation
of the p-value is infeasible.
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11.1.2 Models and Aliasing Relations

Now we consider how to define models in terms of θ . In other words, we have to
define a ν × η configuration matrix A with the ( j, iii) element a j(iii) to define the
sufficient statistic ttt = Axxx and fiber Fttt . In the literature of designed experiments,
A′, the transpose of A, is usually called a design matrix. It is also called a covariate
matrix or a model matrix. Unlike the other literature of designed experiments, we
call a matrix A (not A′) a design matrix or a configuration matrix, which is consistent
with the other chapters in this book. We illustrate how to define A corresponding to
the main and interaction effects we want to consider in the cases of two-level and
three-level regular fractional factorial designs see [16] for two-level case and [17]
for three-level case for detail. See also the literature on designed experiments such
as [151] for detail.

First we define a regular fractional factorial design. The theories of the regular
fractional factorial designs with two or three levels are well developed and elegantly
written in the literature dealing with theoretical aspects of the designed experiments.
See [123], for example. In this section we first consider the two-level case and then
consider the three-level case.

11.1.2.1 Two-Level Case

Suppose there are s controllable factors, Y1, . . . ,Ys, with two levels. Let D be a 2s

full factorial design with levels being 0 and 1 as in Table 11.1. Therefore

D = {(y1, . . . ,ys) | yi ∈ {0,1}, i = 1, . . . ,s}.
In most of the literature considering designed experiments from an algebraic
viewpoint, two levels are coded as {−1,1} rather than {0,1}. There is no essential
difference between them. In this section we use the coding {0,1}, because it
generalizes to the three-level case somewhat more easily. In Chap. 15 we use the
coding {−1,1}.

A fractional factorial design F is a subset of D . F is a regular fractional factorial
design if there are some k > 0 and ci j ∈ {0,1}, i = 1, . . . ,k, j = 0, . . . ,s satisfying

F = D ∩
{
(y1, . . . ,ys)

∣∣∣∣∣
s

∑
j=1

ci jy j ≡ ci0 (mod 2), i = 1, . . . ,k

}
.

The k relations
s

∑
j=1

ci jy j ≡ ci0 (mod 2), i = 1, . . . ,k

are called defining relations or aliasing relations. Without loss of generality, we
assume that k relations are linearly independent over the finite field GF(2) = {0,1},
where the addition is carried out modulo 2. For example, three relations

y1 + y2 + y3 + y4 ≡ 0, y1 + y2 + y4 + y5 ≡ 0, y3 + y5 ≡ 0
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are linearly dependent in GF(2) inasmuch as

(y1+y2+y3+y4)+(y1+y2+y4+y5)≡ 2y1+2y2+y3+2y4+y5 ≡ y3+y5 (mod 2).

Considering the change of levels 0 ↔ 1 for each factor, we can also assume that
ci0 = 0, i = 1, . . . ,k without loss of generality.

Denote the observation at level (y1, . . . ,ys) as xy1···ys . A simple way of modeling
is to treat the elements of θ as a parameter contrast of the main and the interaction
effects. Note that the main effect of Y1 is given by

1
2s−1

(
∑

y2,...,ys

x0y2···ys − ∑
y2,...,ys

x1y2···ys

)
, (11.3)

whereas the interaction effect of Y1 and Y2 is given by

1
2s−2

(
∑

y3,...,ys

(x00y3···ys + x11y3···ys)− ∑
y3,...,ys

(x01y3···ys + x10y3···ys)

)
.

We construct a design matrix A so that each element of Axxx corresponds to the
sufficient statistic for the parameter contrast of the main and interaction effect as
follows.

Definition 11.1. For models of regular fractional factorial design F with two
levels, a design matrix A = {a j(iii)} is an ν ×η matrix satisfying

• The first row of A is (1, . . . ,1).
• If the model includes the main effect of the factor Yp, there is j such that the row

j of A is

a j(iii) =

{
1 for yp = 0,
0 for yp = 1.

• If the model includes the m-factor interaction effect Yp1 × ·· · ×Ypm , there is j
such that the row j of A is

a j(iii) =

{
1 for yp1 + · · ·+ ypm ≡ 0 (mod 2),
0 for yp1 + · · ·+ ypm ≡ 1 (mod 2).

Note that we define A as the simplest form in the above definition. For example,
to reflect the main effect of Yp, we only use the sum ∑yp=0 xy1···ys instead of (11.3).
This simplification is valid because we consider the intercept term. The constant

1
2s−1 also can be ignored because we consider the same conditional sample space
Fttt . These simplifications allow us to regard the design matrix A as the configuration
of the toric ideal that we consider in this book.
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Example 11.1. We construct a design matrix A for the wave-soldering data given in
Table 11.1. For the simple main effect model, A is constructed as

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0
1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
1 0 1 0 0 1 0 1 0 1 0 1 1 0 1 0
1 0 0 1 1 0 0 1 0 1 1 0 0 1 1 0
1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

If we include the interaction effect of Y1 ×Y2 (A × B in Table 11.1), the row

(1,1,1,1,0,0,0,0,0,0,0,0,1,1,1,1)

is added to A. Similarly, if we include the three-factor interaction Y1 ×Y2 ×Y3,
the row

(1,1,0,0,0,0,1,1,0,0,1,1,1,1,0,0)

is added to A. The design matrix for the saturated model has η = 16(= ν) rows,
which is the Hadamard matrix of order 16, when 0 is replaced by −1.

Note that we can only consider models consistent with the aliasing relations. For
example, if the aliasing relation

y1 + y2 + y3 + y4 ≡ 0 (mod 2)

exists, the two two-factor interaction effects, Y1 × Y2 and Y3 × Y4 are not
simultaneously identifiable. In this case, at most one of Y1 ×Y2 and Y3 ×Y4 can
be included in the model. Mathematically, this corresponds to the singularity of the
matrix AA′ in GF(2). See [14] for detail.

11.1.2.2 Three-Level Case

Next we consider three-level designs. We code the three levels of s controllable
factors Y1, . . . ,Ys as {0,1,2}. Then the 3s full factorial design is

D = {(y1, . . . ,ys) | yi ∈ {0,1,2}, i = 1, . . . ,s},
and F ⊂ D is a fractional factorial design. F is a regular fractional factorial design
if there are some k > 0 and ci j ∈ {0,1,2}, i = 1, . . . ,k, j = 0, . . . ,s satisfying

F = D ∩
{
(y1. . . . ,ys)

∣∣∣∣∣
s

∑
j=1

ci jy j ≡ ci0 (mod 3), i = 1, . . . ,k

}
.
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Similarly to the two-level case, we assume that the k relations

s

∑
j=1

ci jy j ≡ ci0 (mod 3), i = 1, . . . ,k

are independent over GF(3). Without loss of generality, we also assume ci0 = 0 for
i = 1, . . . ,k. In addition, we assume that the coefficient for the first nonzero factor is
1, that is,

ci j∗ = 1, j∗ = min{ j | ci j �= 0}
for i = 1, . . . ,k without loss of generality. This notational convention is presented
in [151].

To define a design matrix A, we also consider the sufficient statistics for the
parameter contrast of the main and the interaction effects. The difference from the
two-level case is that there is more than one degree of freedom in the three-level
case. For example, to consider the main effect of Y1, we might be interested in
pairwise comparison of the average responses of three sets, giving

1
3s−1

(
∑

y2,··· ,ys

x0y2···ys − ∑
y2,··· ,ys

x1y2···ys

)
(11.4)

which compares responses to level 0 and level 1,

1
3s−1

(
∑

y2,··· ,ys

x0y2···ys − ∑
y2,··· ,ys

x2y2···ys

)
(11.5)

which compares responses to level 0 and level 2, and

1
3s−1

(
∑

y2,··· ,ys

x1y2···ys − ∑
y2,··· ,ys

x2y2···ys

)

which compares responses to level 1 and level 2. However, these three comparisons
are not independent inasmuch as we can calculate the third comparison from the
other two comparisons.

In this sense, the degree of freedom for the main effect is two. We express
the main effect of each factor as two parameters, which correspond to the two
comparisons (11.4) and (11.5). Similarly, there are 2m degrees of freedom for the m-
factor interaction. For example, two-factor interaction Y1 ×Y2 is decomposed into
two components, namely, Y1Y2 and Y1Y2

2. Y1Y2 expresses the group satisfying

y1 + y2 ≡ 0,1,2 (mod 3),

whereas Y1Y2
2 expresses the group satisfying

y1 + 2y2 ≡ 0,1,2 (mod 3).
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Each group has two degrees of freedom as we have seen. Similarly, three-factor
interaction Y1 ×Y2 ×Y3 is decomposed into four components, Y1Y2Y3, Y1Y2Y2

3,
Y1Y2

2Y3, Y1Y2
2Y2

3, and so on.
Now we give a definition.

Definition 11.2. For models of a regular fractional factorial design F with three
levels, a design matrix A = {a j(iii)} is a ν ×η matrix satisfying

• The first row of A is (1, . . . ,1),
• If the model includes the main effect of the factor Yp, there are j1 and j2 such

that the row j1 of A is

a j1(iii) =

{
1 for yp = 0,
0 for yp = 1,2

and the row j2 of A is

a j2(iii) =

{
1 for yp = 1,
0 for yp = 0,2.

• If the model includes the m-factor interaction effect Yp1 ×·· ·×Ypm , there are 2m

distinct js such that the row j of A is

a j(iii) =

{
1 for yp1 + cp2yp2 + · · ·+ cpmypm ≡ c0 (mod 3),
0 for yp1 + cp2yp2 + · · ·+ cpmypm ≡ 1− c0,2 (mod 3),

for c0 = 0,1, cpr = 1,2, r = 2, . . . ,m.

Similarly to the two-level cases, we can only consider a model that is consistent with
the aliasing relations. Because this point is somewhat complicated in the three-level
case, we illustrate it by an example.

Example 11.2. Table 11.2 shows a 34−1 fractional factorial design defined by

y1 + y2 + y3 + 2y4 ≡ 0 (mod 3). (11.6)

In the traditional expression of designed experiments, this design is written as Y4 =
Y1Y2Y3.

For this design, the model consistent with the aliasing relation is specified
as follows. From the relation (11.6), for example, we see that the components
expressed as Y1Y2, Y3Y2

4 and Y1Y2Y2
3Y4 are mutually confounded with each other

(in other words, linearly dependent over GF(3)). In fact, by adding y1 + y2 to both
side of (11.6), we have

y1 + y2 ≡ 2y1 + 2y2 + y3 + 2y4 ≡ y1 + y2 + 2y3 + y4 (mod 3),

which means that the three groups defined by y1+y2 ≡ 0,1,2 (mod 3) are identical
to the three groups defined by y1 + y2 + 2y3 + y4 ≡ 0,1,2 (mod 3). Similarly, by
adding 2(y1 + y2) to both side of (11.6), we have

2y1 + 2y2 ≡ 3y1 + 3y2 + y3 + 2y4 ≡ y3 + 2y4 (mod 3),
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Table 11.2 Design and
observations for a 34−1

fractional factorial design

Factor

Run Y1 Y2 Y3 Y4 x

1 0 0 0 0 x1

2 0 0 1 1 x2

3 0 0 2 2 x3

4 0 1 0 1 x4

5 0 1 1 2 x5

6 0 1 2 0 x6

7 0 2 0 2 x7

8 0 2 1 0 x8

9 0 2 2 1 x9

10 1 0 0 1 x10

11 1 0 1 2 x11

12 1 0 2 0 x12

13 1 1 0 2 x13

14 1 1 1 0 x14

15 1 1 2 1 x15

16 1 2 0 0 x16

17 1 2 1 1 x17

18 1 2 2 2 x18

19 2 0 0 2 x19

20 2 0 1 0 x20

21 2 0 2 1 x21

22 2 1 0 0 x22

23 2 1 1 1 x23

24 2 1 2 2 x24

25 2 2 0 1 x25

26 2 2 1 2 x26

27 2 2 2 0 x27

which means that the three groups defined by 2y1 + 2y2 ≡ 0,1,2 (mod 3), or
equivalently by y1 + y2 ≡ 0,1,2 (mod 3), are also identical to the three groups
defined by y3 + 2y4 ≡ 0,1,2 (mod 3). Following the usual notational convention,
we write this relation as

Y1Y2 = Y3Y2
4 = Y1Y2Y2

3Y4.

By the similar modulus 3 calculus, we can derive all the aliasing relations as follows.

Y1 = Y2Y3Y2
4 = Y1Y2

2Y2
3Y4 Y2 = Y1Y3Y2

4 = Y1Y2
2Y3Y2

4
Y3 = Y1Y2Y2

4 = Y1Y2Y2
3Y2

4 Y4 = Y1Y2Y3 = Y1Y2Y3Y4

Y1Y2 = Y3Y2
4 = Y1Y2Y2

3Y4 Y1Y2
2 = Y1Y2

3Y4 = Y2Y2
3Y4

Y1Y3 = Y2Y2
4 = Y1Y2

2Y3Y4 Y1Y2
3 = Y1Y2

2Y4 = Y2Y2
3Y2

4
Y1Y4 = Y1Y2

2Y2
3 = Y2Y3Y4 Y1Y2

4 = Y2Y3 = Y1Y2
2Y2

3Y2
4

Y2Y2
3 = Y1Y2

2Y2
4 = Y1Y2

3Y2
4 Y2Y4 = Y1Y2

2Y3 = Y1Y3Y4

Y3Y4 = Y1Y2Y2
3 = Y1Y2Y4

. (11.7)
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From the above relations, we can clarify models for which all the effects are
simultaneously estimable for the design (11.6). For example, the model of the main
effects for the factors Y1,Y2,Y3,Y4 and the two-factor interaction effects Y1×Y2 is
estimable, because the two components Y1Y2, Y1Y2

2 of Y1×Y2 are not confounded
with any main effect. Among the models of the main effects and two two-factor
interaction effects, the model with Y1 × Y2 and Y1 × Y3 is estimable, whereas
the model with Y1 × Y2 and Y3 ×Y4 is not estimable because the components
Y1Y2 and Y3Y2

4 are confounded. In [151], main effects or components of two-
factor interaction effects are called clear if they are not confounded with any other
main effects or components of two-factor interaction effects. Moreover, a two-factor
interaction effect, say Y1 × Y2 is called clear if both of its components, Y1Y2

and Y1Y2
2, are clear. Therefore (11.7) implies that each of the main effect and the

components, Y1Y2
2,Y1Y2

3,Y1Y4,Y2Y2
3,Y2Y4,Y3Y4 are clear, and there is no clear

two-factor interaction effect.
We give a design matrix for Table 11.2. The design matrix for the main effect

model is given as

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0
1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0
1 0 0 0 0 1 0 1 0 0 0 1 0 1 0 1 0 0 0 1 0 1 0 0 0 0 1
0 1 0 1 0 0 0 0 1 1 0 0 0 0 1 0 1 0 0 0 1 0 1 0 1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

If we include the two-factor interaction Y1 ×Y2, the four rows

⎛
⎜⎜⎝

1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0
0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1
1 1 1 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0

⎞
⎟⎟⎠

are added to A. If we want to include another two-factor interaction, Y3 ×Y4 cannot
be estimated because Y1Y2 and Y3Y2

4 are confounded.
On the other hand, the models with two two-factor interactions Y1 ×Y2 and

Y1 ×Y3 are estimable. In this case, the four rows

⎛
⎜⎜⎝

1 0 0 1 0 0 1 0 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0
0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 0 1 0 0 1 0 0 1
1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1
0 0 1 0 0 1 0 0 1 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0

⎞
⎟⎟⎠
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are also added to A. In addition, we can include the three-factor interaction
Y1 ×Y2 ×Y3 inasmuch as none of four components, Y1Y2Y3,Y1Y2Y2

3,Y1Y2
2Y3,

Y1Y2
2Y2

3, is confounded with the four main effects and the components of the
two-factor interaction effects. In this case, the eight rows

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 1 0 1 0 0 0 1 0 1 0 1 0 0 0 1 0 1 0 0 0 0 1
0 1 0 1 0 0 0 0 1 1 0 0 0 0 1 0 1 0 0 0 1 0 1 0 1 0 0
1 0 0 0 1 0 0 0 1 0 1 0 0 0 1 1 0 0 0 0 1 1 0 0 0 1 0
0 0 1 1 0 0 0 1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 0 1 1 0 0
1 0 0 0 1 0 0 0 1 0 0 1 1 0 0 0 1 0 0 1 0 0 0 1 1 0 0
0 1 0 0 0 1 1 0 0 1 0 0 0 1 0 0 0 1 0 0 1 1 0 0 0 1 0
1 0 0 0 0 1 0 1 0 0 1 0 1 0 0 0 0 1 0 0 1 0 1 0 1 0 0
0 0 1 0 1 0 1 0 0 1 0 0 0 0 1 0 1 0 0 1 0 1 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

are further added to A.

11.1.3 Conditional Tests for Logistic Models of Binomial
Observations

Next we consider the case that the observation for each run is a ratio of counts.
The arguments, especially the relations between the identifiable models and aliasing
relations, are almost the same as the Poisson case. Therefore we give a brief
consideration on the sufficient statistics and the design matrix here. Table 11.3 is
a 1/2 fraction of a full factorial design (that is, a 24−1 fractional factorial design)
defined from the relation

ACD = I (11.8)

and response data given by [103] and reanalyzed in [70]. In Table 11.3, the
observation x is the number of good parts out of 1,000 during the stamping process
in manufacturing windshield modeling. The purpose of Martin et al. [103] is to
decide the levels for four factors, (A) poly-film thickness, (B) oil mixture, (C)
gloves, and (D) metal blanks, which most improve the slugging condition.

As for a statistical model for this type of data, it is natural to suppose that the
distribution of the observation x(iii) is the mutually independent binomial distribution
Bin(μ(iii),niii), iii = 1, . . . ,η , where niii = 1,000, i = 1, . . . ,η(= 8) for this example.
Following the theory of generalized linear models, we consider the logit link, which
is the canonical link for the binomial distribution. It expresses the relation between
the mean parameter μ(iii) and the systematic part as

logit(μ(iii)) = log
μ(iii)

1− μ(iii)
=

ν−1

∑
j=0

θ ja j(iii).
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Table 11.3 Design and
number of good parts x out
of 1,000 for the windshield
molding slugging experiment

Factor

Run A B C D x

1 0 0 0 0 338
2 0 0 1 1 826
3 0 1 0 0 350
4 0 1 1 1 647
5 1 0 0 1 917
6 1 0 1 0 977
7 1 1 0 1 953
8 1 1 1 0 972

The joint probability function in this case is written as

η

∏
iii=1

(
niii

x(iii)

)
μ(iii)x(iii)(1− μ(iii))niii−x(iii)

=
η

∏
iii=1

(
niii

x(iii)

)
(1− μ(iii))niii

(
μ(iii)

1− μ(iii)

)x(iii)

=
η

∏
iii=1

(
niii

x(iii)

)
(1− μ(iii))niii exp

(
ν−1

∑
j=0

θ j

η

∑
i=1

a j(iii)x(iii)

)
,

which implies that a sufficient statistic for the parameter θ is t j = ∑η
i=1 a j(iii)x(iii) and

n1, . . . ,nη . Consequently, the exact conditional tests are based on the conditional
distribution,

p(xxx | ttt,n1, . . . ,nη ) = c× 1

∏η
i=1 x(iii)!(niii − x(iii))!

, (11.9)

where c is the normalizing constant determined from ttt and n1, . . . ,nη written as

c =

[
∑

xxx∈Fttt

1

∏η
iii=1 x(iii)!(niii − x(iii))!

]−1

and

Fttt = {xxx | Axxx = ttt, x(iii) ∈ {0, . . . ,niii}, iii = 1, . . . ,η}
is the fiber.

For notational convenience, we extend xxx to

x̃xx = (x(1), . . . ,x(η),n1 − x(1), . . . ,nη − x(η))′

for the binomial model. Corresponding to this x̃xx, we also extend the ν × η
matrix A to

Ã =

(
A 0

Eη Eη

)
, (11.10)
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where 0 is the ν ×η zero matrix and Eη is the identity matrix of the order η . Ã is
the Lawrence lifting of the configuration A. See (4.24) in Sect. 4.6. Using x̃xx and Ã,
the condition that Axxx and n1, . . . ,nη are fixed is simply written that Ãx̃xx is fixed.

Once the configuration is given as (11.10), the procedure for conducting the exact
test by the Markov chain Monte Carlo method is the same as in the Poisson case.

11.1.4 Example: Wave-Soldering Data

We give an example of calculating the p-value for the wave-soldering data in
Table 11.1. First we have to define a null model in which we are interested.
Following [70], we focus on the model of seven main effects and two two-
factor interactions, A×C and B×D. Note that the parameters for this model are
simultaneously identifiable. The dimension of the parameter of this null model is
ν = 10, therefore the residual has η −ν = 16− 10= 6 degrees of freedom.

We now consider goodness-of-fit tests. Traditional χ2 tests evaluate the upper
probability for some discrepancy measures such as the deviance, the likelihood ratio,
or Pearson’s chi-square, based on the asymptotic distribution, χ2

η−ν . Here we use the
(twice log) likelihood ratio statistic

G2(xxx) = 2
η

∑
iii=1

x(iii) log
x(iii)

μ̂(iii)
,

where μ̂(iii) is the maximum likelihood estimate for μ(iii) under the null model (that
is, fitted value), given by

μ̂ = (64.53,47.25,53.15,151.08,30.43,46.79,115.24,32.53,
49.42,46.13,70.90,360.54,35.19,30.26,232.14,51.42)′

for our example. For the observed data xxxo, G2(xxxo) is calculated as G2(xxxo) =
19.096 and the corresponding asymptotic p-value is 0.0040 from the asymptotic
distribution χ2

6 . This result tells us that the null hypothesis is highly significant and
is rejected.

Next we calculate the same p-value by the Markov chain Monte Carlo method.
We use a Markov basis as a minimal Markov basis obtained by 4ti2 [1]. After
100,000 burn-in steps, we construct 1,000,000 Monte Carlo samples. In contrast
to the asymptotic p-value 0.0040, the estimated p-value is 0.032, with estimated
standard deviation 0.0045, where we use a batching method to obtain an estimate
of variance; see [82] and [128]. Figure 11.1 shows a histogram of the Monte Carlo
sampling generated from the conditional distribution of the likelihood ratio statistic
under the null hypothesis, along with the corresponding asymptotic distribution χ2

6 .
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Fig. 11.1 Asymptotic and Monte Carlo estimated conditional distribution

11.2 Markov Bases and Corresponding Models
for Contingency Tables

Now we investigate relationships between contingency tables and regular fractional
factorial designs of two or three levels. As is shown in the previous chapters of this
book, Markov bases have been mainly considered in the context of contingency
tables. For example, minimal Markov bases of the decomposable models of
contingency tables are considered in Chap. 8. In this chapter, considering the
fractional factorial designs, we encounter some new models and Markov bases, that
do not correspond to hierarchical models of contingency tables.

11.2.1 Rewriting Observations as Frequencies
of a Contingency Table

The arguments of this section are very simple; that is, we rewrite observations as
if they were the frequencies of a contingency table with minimal support size. We
explain this idea by considering the relation between the fractional factorial designs
with eight runs and 23 (Poisson model) and 24 (logistic model) contingency tables.
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Table 11.4 Eight-run 2s−k fractional factorial designs (s− k = 3)

Number of factors s Resolution Design Generators

4 IV Y4 = Y1Y2Y3

5 III Y4 = Y1Y2, Y5 = Y1Y3

6 III Y4 = Y1Y2, Y5 = Y1Y3, Y6 = Y2Y3

7 III Y4 = Y1Y2, Y5 = Y1Y3, Y6 = Y2Y3,Y7 = Y1Y2Y3

Recall that there are s controllable factors, Y1, . . . ,Ys assigned to some regular
fractional factorial design, which is defined by k linearly independent defining
relations. Because we consider the factors with two levels, there are η = 2s−k runs
in the design. Here we consider the case that s− k = 3. We first show the list of
the most frequently used designs with eight runs in Table 11.4. Here we use the
expression such as Y4 = Y1Y2Y3 to define design, which is given by

{0,1}4 ∩{(y1,y2,y3,y4) | y4 ≡ y1 + y2 + y3 (mod 2)}.

Such an expression is standard in the context of the designed experiments.
We clarify the relationships between these designs and the models of 23

contingency tables xxx = {x(i1i2i3)}, 1 ≤ i1, i2, i3 ≤ 2, for Poisson observations, and
the models of 24 contingency tables xxx = {x(i1i2i3i4)}, 1 ≤ i1, i2, i3, i4 ≤ 2, for
the binomial observations. We also write indices as subscripts for the rest of this
chapter: we write xi1i2i3i4 instead of x(i1i2i3i4), for example. In the case of Poisson
observations, we write eight observations as if they are the frequencies of a 23

contingency table;

xxx = (x111,x112,x121,x122,x211,x212,x221,x222)
′.

In the case of s = 5, for example, the design and the observations are given as
follows.

Factor

Run Y1 Y2 Y3 Y4 Y5 xxx

1 0 0 0 0 0 x111

2 0 0 1 0 1 x112

3 0 1 0 1 0 x121

4 0 1 1 1 1 x122

5 1 0 0 1 1 x211

6 1 0 1 1 0 x212

7 1 1 0 0 1 x221

8 1 1 1 0 0 x222

For this type of data, we define a ν-dimensional parameter θ and the design ma-
trix A according to an appropriate model we consider, as explained in Sect. 11.1.2.1.
First consider the simple main effect model Y1/Y2/Y3/Y4/Y5 (ν = 6). To test this
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model against various alternatives, the Markov chain Monte Carlo testing procedure
needs a Markov basis for the configuration

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1 1 1
1 1 1 1 0 0 0 0
1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0
1 1 0 0 0 0 1 1
1 0 1 0 0 1 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
.

Note that each component of Axxx corresponds to a sufficient statistic under the null
model Y1/Y2/Y3/Y4/Y5. In this case, a sufficient statistic is given as

x···, x1··, x2··, x·1·, x·2·, x··1, x··2,
x11·+ x22·, x12·+ x21·, x1·1 + x2·2, x1·2 + x2·1,

(11.11)

where we use the notations such as

x··· =
2

∑
i1=1

2

∑
i2=1

2

∑
i3=1

xi1i2i3 , xi1·· =
2

∑
i2=1

2

∑
i3=1

xi1i2i3 , xi1i2· =
2

∑
i3=1

xi1i2i3

for marginal frequencies. Here we see that the sufficient statistic (11.11) is nothing
but a sufficient statistic for the conditional independence model Y1Y2/Y1Y3,
given as

{xi1i2·}, {xi1·i3}, i1, i2, i3 = 1,2. (11.12)

The one-to-one relation between (11.11) and (11.12) is easily shown as

xi1i2· =
xi1··+ x·i2· − (xi1i∗2·+ xi∗1i2·)

2
, xi1·i3 =

xi1··+ x··i3 − (xi1·i∗3 + xi∗1·i3)
2

,

(11.13)

where {i1, i∗1},{i2, i∗2}, and {i3, i∗3} are distinct indices, respectively. This correspon-
dence is, of course, due to the aliasing relations Y4 = Y1Y2, Y5 = Y1Y3.

We consider another model. Because there are eight observations, we can
estimate eight parameters at most (in the saturated model). Because the saturated
model cannot be tested, let us consider the models of ν = 7 parameters. If we
restrict our attention to hierarchical models, five main effects and one of the two-
factor interaction effects, Y2Y3,Y2Y5,Y3Y4,Y4Y5, can be included in the models,
inasmuch as the aliasing relation is given as

Y1 = Y2Y4 = Y3Y5, Y2 = Y1Y4, Y3 = Y1Y5, Y4 = Y1Y2, Y5 = Y1Y3,

Y2Y3 = Y4Y5, Y2Y5 = Y3Y4 = Y1Y2Y3.

If our null model includes Y2Y3 or Y4Y5 (i.e., if our null model is written as
Y1/Y2Y3/Y4/Y5 or Y1/Y2/Y3/Y4Y5), we add the row

(1 0 0 1 1 0 0 1)
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to the design matrix A. In this case, a sufficient statistic under the null model includes
x·11 + x·22 and x·12 + x·21 in addition to (11.11), which is nothing but a well-known
sufficient statistic for the no-three-factor interaction model, Y1Y2/Y1Y3/Y2Y3,

{xi1i2·}, {xi1·i3}, {x·i2i3}, i1, i2, i3 = 1,2,

by the similar relations to (11.13).
On the other hand, if our null model includes Y2Y5 or Y3Y4, that is, if our null

model is written as Y1/Y2Y5/Y3/Y4 or Y1/Y2/Y3Y4/Y5, we have to add the row

(1 0 0 1 0 1 1 0)

to the design matrix A. In this case, a sufficient statistic under the null model includes
x111 + x122 + x212 + x221 and x112 + x121 + x211 + x222 in addition to (11.11). This is
one of the models that do not have corresponding models in the hierarchical models
of three-way contingency tables. We write this new model as

Y1Y2/Y1Y3 +(Y1Y2Y3).

A sufficient statistic for this model is

{xi1i2·}, {xi1·i3}, i1, i2, i3 = 1,2,
x111 + x122 + x212 + x221, x112 + x121 + x211 + x222.

Similarly, we can specify the corresponding models of three-way contingency
tables (for the factors Y1,Y2,Y3) to all the possible models for the designs of
Table 11.4, as if the observations were the frequencies of a 23 contingency table. The
result is summarized in Table 11.5. In Table 11.5, we use the notation (Y1Y2Y3) for
the models where the sufficient statistic contains {x111 + x122 + x212 + x221, x112 +
x121 + x211+ x222}.

In the case of binomial observations, there are 16 observations. Similarly to the
Poisson case, we treat the observations as if they were the frequencies of a 24

contingency table. In the case of s = 5, for example, the design and the observations
are given as follows.

Factor

Run Y1 Y2 Y3 Y4 Y5 xxx
1 0 0 0 0 0 x1111 x1112

2 0 0 1 0 1 x1121 x1122

3 0 1 0 1 0 x1211 x1212

4 0 1 1 1 1 x1221 x1222

5 1 0 0 1 1 x2111 x2112

6 1 0 1 1 0 x2121 x2122

7 1 1 0 0 1 x2211 x2212

8 1 1 1 0 0 x2221 x2222
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Table 11.5 Eight-run 2s−k fractional factorial designs and the corresponding
models of three-way contingency tables (s− k = 3)

Design : s = 4, Y4 = Y1Y2Y3

ν Null model Corresponding model of 23 table

5 Y1/Y2/Y3/Y4 Y1/Y2/Y3 +(Y1Y2Y3)

6 Y1Y2/Y3/Y4 Y1Y2/Y3 +(Y1Y2Y3)

7 Y1Y2/Y1Y3/Y4 Y1Y2/Y1Y3 +(Y1Y2Y3)

Design : s = 5, Y4 = Y1Y2, Y5 = Y1Y3

ν Null model Corresponding model of 23 table

6 Y1/Y2/Y3/Y4/Y5 Y1Y2/Y1Y3

7 Y1/Y2Y3/Y4/Y5 Y1Y2/Y1Y3/Y2Y3

Y1/Y2Y5/Y3/Y4 Y1Y2/Y1Y3 +(Y1Y2Y3)

Design : s = 6, Y4 = Y1Y2, Y5 = Y1Y3, Y6 = Y2Y3

ν Null model Corresponding model of 23 table

7 Y1/Y2/Y3/Y4/Y5/Y6 Y1Y2/Y1Y3/Y2Y3

For this type of data, we also specify parameter θ and the design matrix according
to the appropriate models, by replacing A by Ã of (11.10). Note that the elements of
xxx are ordered as

xxx = (x1111,x1121, . . . ,x2211,x2221,x1112,x1122, . . . ,x2212,x2222)
′.

Accordingly, correspondences to the models of 24 contingency tables are easily
obtained and the result is given in Table 11.6. In Table 11.6, we use the notations
(Y1Y2Y3) and (Y1Y2Y3Y4) for the models where a sufficient statistic contains
{xi1i2i3·}, i1, i2, i3 = 1,2, and {x111� + x122� + x212� + x221�,x112� + x121� + x211� +
x222�}, �= 1,2, respectively.

Table 11.6 is automatically converted from Table 11.5 as follows. By definition,
Y4 is added to all the generating sets. Note also that the sufficient statistic for each
model includes {xi1i2i3·},1 ≤ i1, i2, i3 ≤ 2, by definition, which yields Table 11.6.
Therefore the models that do not include all of Y1Y2,Y1Y3 and Y2Y3 do not
correspond to hierarchical models.

In (11.13), we see that the sufficient statistic Axxx for the main effect model of
25−2 fractional factorial design is equivalent to the two-dimensional marginals of
23 contingency tables. This correspondence is due to the aliasing relations Y4 =
Y1Y2,Y5 = Y1Y3. In fact, such a correspondence holds in general. We now state
a proposition for the general two-level and three-level regular fractional factorial
designs.

Proposition 11.1. For 2s and 3s full factorial designs, write observations as
xxx = {xi1···is}. Then the necessary and the sufficient condition that the {i1, . . . , in}-
marginal n-dimensional table (n ≤ s) is uniquely determined from Axxx is that
the design matrix A includes the contrasts for all (the components of) m-factor
interaction effects Y j1 ×·· ·×Y jm for all { j1, . . . , jm} ⊂ {i1, . . . , in},m ≤ n.
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Table 11.6 Eight-run 2s−k fractional factorial designs and the corresponding models of three-way
contingency tables (s− k = 3)

Design : s = 4, Y4 = Y1Y2Y3

ν Null model Corresponding model of 24 table

5 Y1/Y2/Y3/Y4 Y1Y4/Y2Y4/Y3Y4 +(Y1Y2Y3)+(Y1Y2Y3Y4)

6 Y1Y2/Y3/Y4 Y1Y2Y4/Y3Y4 +(Y1Y2Y3)+(Y1Y2Y3Y4)

7 Y1Y2/Y1Y3/Y4 Y1Y2Y4/Y1Y3Y4 +(Y1Y2Y3)+(Y1Y2Y3Y4)

Design : s = 5, Y4 = Y1Y2, Y5 = Y1Y3

ν Null model Corresponding model of 24 table

6 Y1/Y2/Y3/Y4/Y5 Y1Y2Y4/Y1Y3Y4 +(Y1Y2Y3)

7 Y1/Y2Y3/Y4/Y5 Y1Y2Y4/Y1Y3Y4/Y2Y3Y4/Y1Y2Y3

Y1/Y2Y5/Y3/Y4 Y1Y2Y4/Y1Y3Y4 +(Y1Y2Y3)+(Y1Y2Y3Y4)

Design : s = 6, Y4 = Y1Y2, Y5 = Y1Y3, Y6 = Y2Y3

ν Null model Corresponding model of 24 table

7 Y1/Y2/Y3/Y4/Y5/Y6 Y1Y2Y4/Y1Y3Y4/Y2Y3Y4/Y1Y2Y3

Proof. We just count the degrees of freedom. The saturated model for the 2n full
factorial design is expressed as the contrast for the total mean, n contrasts for the
main effects,

(n
m

)
contrasts for the m-factor interaction effects for m = 2, . . . ,n,

because they are linearly independent and

1+ n+
n

∑
m=2

(
n
m

)
= 2n.

Similarly, the saturated model for the 3n full factorial design is expressed as the
contrast for the total mean, 2× n contrasts for the main effects, 2m × (n

m

)
contrasts

for the m-factor interaction effects for m = 2, . . . ,n, inasmuch as they are linearly
independent and

1+ 2n+
n

∑
m=2

2m
(

n
m

)
= (1+ 2)n = 3n. ��

Proposition 11.1 states that the hierarchical models for the controllable factors
in the full factorial designs just correspond to the hierarchical models for the
contingency table. On the other hand, hierarchical models for the controllable
factors in the 2s−k and 3s−k fractional factorial designs do not correspond to the
hierarchical models for the 2s and 3s contingency tables in general. This is because
A contains only part of the contrasts of interaction elements in the case of fractional
factorial designs, especially for the cases of three-level designs. Consequently, many
interesting structures appear in considering Markov bases for the fractional factorial
designs.
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Table 11.7 Sixteen-run 2s−k fractional factorial designs (s− k = 4)

Number of
Factors s Resolution Design Generators
5 V Y5 = Y1Y2Y3Y4

6 IV Y5 = Y1Y2Y3,Y6 = Y1Y2Y4

7 IV Y5 = Y1Y2Y3,Y6 = Y1Y2Y4, Y7 = Y1Y3Y4

8 IV Y5 = Y1Y2Y3,Y6 = Y1Y2Y4, Y7 = Y1Y3Y4Y8 = Y2Y3Y4

9 III Y5 = Y1Y2Y3,Y6 = Y1Y2Y4, Y7 = Y1Y3Y4Y8 = Y2Y3Y4,
Y9 = Y1Y2Y3Y4

10 III Y5 = Y1Y2Y3,Y6 = Y1Y2Y4, Y7 = Y1Y3Y4 Y8 = Y2Y3Y4,
Y9 = Y1Y2Y3Y4, Y10 = Y3Y4

11.2.2 Models for the Two-Level Regular Fractional Factorial
Designs with 16 Runs

Next we consider fractional factorial designs with 16 runs, that is, the case of s−k =
4. Table 11.7 is a list of 16-run 2s−k fractional factorial designs (s− k = 4,s ≤ 10)
from Sect. 4 of [151].

By similar considerations to the 8-run cases, we can seek the corresponding
models of 24 contingency tables for Poisson observations, and models of 25 con-
tingency tables for the binomial observations. Modeling for binomial observations
can be easily obtained from the Poisson case as we have seen, therefore we only
consider the Poisson case here.

Because at most 16 parameters are estimable for the 16-run designs, we can
consider various models of main effects and interaction effects. For example, the
saturated model of the s = 5 design, Y5 = Y1Y2Y3Y4, can include all the main
effects and two-factor interactions,

Y1Y2/Y1Y3/Y1Y4/Y1Y5/Y2Y3/Y2Y4/Y2Y5/Y3Y4/Y3Y5/Y4Y5.

Note that for the models of s = 5,6,7,8 in Table 11.7, each main effect and two-
factor interaction is simultaneously estimable. (On the other hand, for the resolution
III models of s = 9,10, some of the two-factor interactions are not simultaneously
estimable.) Among the models that include all the main effects and some of the
two-factor interaction effects, some models have the corresponding hierarchical
model in the 24 contingency tables when we write the 16 observations as xxx =
{xi1i2i3i4}, i1, i2, i3, i4 = 1,2.

For example, for the s = 6 design of Y5 = Y1Y2Y3,Y6 = Y1Y2Y4, the model of
6 main effects and 5 two-factor interaction effects,

Y1Y2/Y1Y3/Y1Y4/Y2Y3/Y2Y4/Y5/Y6,
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Table 11.8 Sixteen-run 2s−k fractional factorial designs and the corresponding hierarchical
models of 24 contingency tables (s− k = 4)

Design : s = 6, Y5 = Y1Y2Y3,Y6 = Y1Y2Y4

ν = 12
Representative null model Y1Y2/Y1Y3/Y1Y4/Y2Y3/Y2Y4/Y5/Y6

Num. of the null models 48
Corresponding model of 24 table Y1Y2Y3/Y1Y2Y4

Design : s = 6, Y5 = Y1Y2Y3,Y6 = Y1Y2Y4

ν = 13
Representative null model Y1Y2/Y1Y3/Y1Y4/Y2Y3/Y2Y4/Y3Y4/Y5/Y6

Num. of the null models 96
Corresponding model of 24 table Y1Y2Y3/Y1Y2Y4/Y3Y4

Design : s = 7, Y5 = Y1Y2Y3,Y6 = Y1Y2Y4,Y7 = Y1Y3Y4

ν = 12
Representative null model Y1Y2/Y1Y3/Y1Y4/Y2Y3/Y2Y4/Y3Y4/Y5/Y6/Y7

Num. of the null models 36 = 729
Corresponding model of 24 table Y1Y2Y3/Y1Y2Y4/Y1Y3Y4

Design : s = 8, Y5 = Y1Y2Y3,Y6 = Y1Y2Y4,Y7 = Y1Y3Y4,Y8 = Y2Y3Y4

ν = 12
Representative null model Y1Y2/Y1Y3/Y1Y4/Y2Y3/Y2Y4/Y3Y4/Y5/Y6/Y7

Num. of the null models 46 = 4096
Corresponding model of 24 table Y1Y2Y3/Y1Y2Y4/Y1Y3Y4/Y2Y3Y4

has a corresponding model of Y1Y2Y3/Y1Y2Y4 for the 24 contingency tables. By
the aliasing relations

Y1Y2 = Y3Y5 = Y4Y6, Y1Y3 = Y2Y5, Y1Y4 = Y2Y6, Y1Y5 = Y2Y3,

Y1Y6 = Y2Y4, Y3Y4 = Y5Y6, Y3Y6 = Y4Y5 = Y1Y2Y3Y4,

it is seen that there are 3 ·2 ·2 ·2 ·2= 48 distinct models such as

Y1Y2/Y1Y3/Y1Y4/Y1Y5/Y1Y6/Y5/Y6,

Y1Y2/Y1Y3/Y1Y4/Y1Y5/Y2Y4/Y5/Y6,

Y1Y2/Y1Y3/Y1Y4/Y2Y3/Y1Y6/Y5/Y6,

Y1Y2/Y1Y3/Y1Y4/Y2Y3/Y2Y4/Y5/Y6,
...

Y4Y6/Y2Y5/Y2Y6/Y2Y3/Y1Y6/Y5/Y6,

Y4Y6/Y2Y5/Y2Y6/Y2Y3/Y2Y4/Y5/Y6,

which correspond to the model of Y1Y2Y3/Y1Y2Y4 in the 24 contingency tables.
By similar considerations, we can specify all the models for the designs of
Table 11.7, which correspond to some hierarchical models in the 24 contingency
tables. The result is shown in Table 11.8.
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One of the merits of specifying corresponding hierarchical models of
contingency tables is a possibility to make use of already known general results on
Markov bases of contingency tables. For example, we see in Chap. 8 that a Markov
basis can be constructed by degree 2 basic moves for the decomposable models in
the contingency tables. In our designed experiments, therefore, the Markov basis
for the models that correspond to decomposable models of contingency tables
can be constructed by basic moves (square-free moves of degree 2) only. Among
the results of Tables 11.5, 11.6, and 11.8, there are two models that correspond
to decomposable models in the contingency tables. We can confirm that minimal
Markov bases for these models consist of basic moves as follows.

• 25−2 fractional factorial design of Y4 = Y1Y2,Y5 = Y1Y3:
The main effects model Y1/Y2/Y3/Y4/Y5 corresponds to the decomposable
model Y1Y2/Y1Y3 of the 23 contingency tables. This is a conditional inde-
pendence model between Y2 and Y3 given Y1 and a minimal Markov basis is
constructed by basic moves as

(111)(122)− (112)(121), (211)(222)− (212)(221).

• 26−2 fractional factorial design of Y5 = Y1Y2Y3,Y6 = Y1Y2Y4:
The model Y1Y2/Y1Y3/Y1Y4/Y2Y3/Y2Y4/Y5/Y6 corresponds to the de-
composable model Y1Y2Y3/Y1Y2Y4 of the 24 contingency tables. This is a
conditional independence model between Y3 and Y4 given {Y1,Y2} and a
minimal Markov basis is again constructed by basic moves as

(1111)(1122)− (1112)(1121), (1211)(1222)− (1212)(1221),
(2111)(2122)− (2112)(2121), (2211)(2222)− (2212)(2221).

For the other designs of Table 11.7 (p = 5,9,10), all the models include the
sufficient statistic

x1111 + x1122+ x1212 + x1221+ x2112+ x2121 + x2211+ x2222,

x1112 + x1121+ x1211 + x1222+ x2111+ x2122 + x2212+ x2221,

and therefore have no corresponding hierarchical models in the 24 contingency
tables. For example, a sufficient statistic of the main effect models for the 25−1

design of Y5 = Y1Y2Y3Y4 is

{xi1···}, {x·i2··}, {x··i3·}, {x···i4}, i1, i2, i3, i4 = 1,2,
x1111 + x1122+ x1212 + x1221+ x2112+ x2121 + x2211+ x2222,

x1112 + x1121+ x1211 + x1222+ x2111+ x2122 + x2212+ x2221,

and a sufficient statistic of the main effect models for the 210−6 design of

Y5 = Y1Y2Y3, Y6 = Y1Y2Y4, Y7 = Y1Y3Y4, Y8 = Y2Y3Y4, Y9 = Y1Y2Y3Y4,

Y10 = Y3Y4
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is

{xi1i2i3·}, {xi1i2·i4}, {xi1·i3i4}, {x·i2i3i4}, i1, i2, i3, i4 = 1,2,
x1111 + x1122+ x1212 + x1221+ x2112+ x2121 + x2211+ x2222,

x1112 + x1121+ x1211 + x1222+ x2111+ x2122 + x2212+ x2221.

11.2.3 Three-Level Regular Fractional Factorial Designs
and 3s-k Continent Tables

Next we consider the three-level designs. As the simplest example, we first consider
a design with 9 runs for three controllable factors, that is, 33−1 fractional factorial
design. Write three controllable factors as Y1,Y2,Y3, and define Y3 =Y1Y2. In this
design, the design matrix for the main effects model of Y1,Y2,Y3 is defined as

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1 1 1 1
1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0
1 0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 1 0
1 0 0 0 0 1 0 1 0
0 1 0 1 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

To investigate the structure of the fiber, write the observation as a frequency of
the 3× 3 contingency table, x11, . . . ,x33. Then the fiber is the set of tables with the
same row sums {xi1·}, column sums {x·i2}, and the contrast displayed as

0 1 2
1 2 0
2 0 1

.

Concerning a minimal Markov basis, we see that the moves to connect the following
three-element fiber are sufficient,

⎧⎨
⎩

1 0 0
0 1 0
0 0 1

,

0 1 0
0 0 1
1 0 0

,

0 0 1
1 0 0
0 1 0

⎫⎬
⎭ .

Therefore any two moves from the following three moves,

(11)(22)(33)− (12)(23)(31),
(11)(22)(33)− (13)(21)(32),
(12)(23)(31)− (13)(21)(32),

is a minimal Markov basis.
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For the rest of this chapter, we consider three types of fractional factorial designs
with 27 runs, which are important for practical applications. We investigate the
relations between various models for the fractional factorial designs and the 3×3×3
contingency table. In the context of the Markov basis for the contingency tables,
the Markov basis for the 3 × 3 × 3 contingency tables has been investigated by
many researchers, especially for the no-three-factor interaction model in Chap. 9.
In the following, we investigate Markov bases for some models; we are especially
concerned with their minimality, unique minimality, and indispensability of their
elements (cf. Sect. 5.2). Similarly to Chap. 9, we write three 3× 3 slices to display
3× 3× 3 moves of higher degrees.

11.2.3.1 34−1
IV Fractional Factorial Design Defined from Y4 = Y1Y2Y3

In the case of four controllable factors for design with 27 runs, we have a resolution
IV design by setting Y4 = Y1Y2Y3. As seen in Sect. 11.1.2.2, all the main effects
are clear, whereas all the two-factor interactions are not clear in this design.

For the main effect model in this design, the sufficient statistic is written as

{xi1··}, {x·i2·}, {x··i3}

and
x111 + x123 + x132 + x213 + x222+ x231 + x312 + x321 + x333,

x112 + x121 + x133 + x211 + x223+ x232 + x313 + x322 + x331,

x113 + x122 + x131 + x212 + x221+ x233 + x311 + x323 + x332.

By 4ti2 [1], the minimal Markov basis for this model consists of 54 degree 2 moves
and 24 degree 3 moves. All the elements of the same degrees are on the same orbit
(see Chap. 7).

The moves of degree 2 connect three-element fibers such as

{(112)(221), (121)(212), (122)(211)} (11.14)

into a tree, and the moves of degree 3 connect three-element fibers such as

{(111)(122)(133), (112)(123)(131), (113)(121)(132)} (11.15)

into a tree. For the fiber (11.14), for example, two moves such as

(121)(212)− (112)(221), (122)(211)− (112)(221)

are needed for a Markov basis.
Considering the aliasing relations given by (11.7), we can consider models with

interaction effects. We see by using 4ti2 that the structures of the minimal Markov
bases for each model are given as follows.
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• For the model of the main effects and the interaction effect Y1 × Y2, 27
indispensable moves of degree 2 such as (113)(321)− (111)(323) and 54
dispensable moves of degree 3 constitute a minimal Markov basis. The degree
3 elements are on two orbits; one connects 9 three-element fibers such as (11.15)
and the other connects 18 three-element fibers such as

{(111)(133)(212), (112)(131)(213), (113)(132)(211)}.

• For the model of the main effects and the interaction effects Y1 ×Y2,Y1 ×Y3, 6
dispensable moves of degree 3, 81 indispensable moves of degree 4 such as

−1 +1 0
+1 −1 0
0 0 0

−1 0 +1
+1 0 −1
0 0 0

0 0 0
0 0 0
0 0 0

(11.16)

and 171 indispensable moves of degree 6, 63 moves such as

−1 +1 0
+1 0 −1
0 −1 +1

−1 0 +1
0 +1 −1
+1 −1 0

0 0 0
0 0 0
0 0 0

(11.17)

and 108 moves such as

−1 +1 0
+1 −1 0
0 0 0

−1 0 +1
0 0 0
+1 0 −1

+1 0 −1
−1 0 +1
0 0 0

constitute a minimal Markov basis. The degree 3 elements connect three-element
fibers such as (11.15).

• For the model of the main effects and the interaction effects Y1 × Y2,Y1 ×
Y3,Y2 × Y3, 27 indispensable moves of degree 6 such as (11.17) and 27
indispensable moves of degree 8 such as

+2 −1 −1
−1 +1 0
−1 0 +1

−1 +1 0
+1 −1 0
0 0 0

−1 0 +1
0 0 0
+1 0 −1

constitute a unique minimal Markov basis.
• For the model of the main effects and the interaction effects Y1 × Y2,Y1 ×

Y3,Y1×Y4, 6 dispensable moves of degree 3 constitute a minimal Markov basis,
which connects three-element fibers such as (11.15).
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11.2.3.2 35−2
III Fractional Factorial Design Defined

from Y4 = Y1Y2,Y5 = Y1Y2
2Y3

In the case of five controllable factors for designs with 27 runs, the parameter
contrasts for the two main factors are allocated by two aliasing relations.

In this section, we consider two designs from Table 5A.2 of [151]. First we
consider the 35−2

III fractional factorial design defined by Y4 = Y1Y2,Y5 = Y1Y2
2Y3.

For this design, we can consider the following nine distinct hierarchical models
(except for the saturated model). Minimal Markov bases for these models are
calculated by 4ti2 as follows.

• For the model of the main effects of Y1,Y2,Y3,Y4,Y5, 27 indispensable moves
of degree 2 such as (112)(221)− (111)(222), 56 dispensable moves of degree 3,
54 indispensable moves of degree 4 such as

+1 0 0
+1 −1 0
−1 0 0

−1 0 0
0 +1 0
0 0 0

0 0 0
0 −1 0
0 +1 0

and 9 indispensable moves of degree 6 such as

+2 0 0
0 −1 0
−1 0 0

−1 0 0
+1 +1 0
0 −1 0

0 −1 0
−1 0 0
0 +2 0

constitute a minimal Markov basis. The degree three moves are in three orbits,
which connect three types of three-element fibers, that is,

18 moves for 9 fibers: {(111)(123)(132), (113)(122)(131), (112)(121)(133)},
36 moves for 18 fibers: {(111)(123)(212), (113)(122)(211), (112)(121)(213)},
2 moves for the fiber: {(112)(223)(331), (131)(212)(323), (121)(232)(313)}.

• For the model of the main effects and the interaction effect Y1 × Y3, 18
dispensable moves of degree 3, 162 indispensable moves of degree 4 such
as (11.16), 81 indispensable moves of degree 5 such as

−1 +1 +1
+1 −1 −1
0 0 0

0 0 0
+1 0 0
−1 0 0

−1 0 0
0 0 0
+1 0 0

and 54 indispensable moves of degree 5 such as

−1 +2 0
+1 −1 0
0 −1 0

−1 0 0
+1 0 0
0 0 0

0 0 0
−1 0 0
+1 0 0
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and 54 indispensable moves of degree 6 such as (11.17) constitute a minimal
Markov basis. The degree 3 moves connect three-element fibers such as

{(111)(123)(132), (112)(121)(133), (113)(122)(131)}. (11.18)

• For the model of the main effects and the interaction effect Y3 × Y5, 27
indispensable moves of degree 2 such as (112)(221)− (111)(222) constitute the
unique minimal Markov basis.

• For the model of the main effects and the interaction effects Y1 ×Y3,Y1 ×Y5,
6 dispensable moves of degree 3 and 81 indispensable moves of degree 6 such
as (11.17) constitute a minimal Markov basis. The degree 3 moves connect three-
element fibers such as (11.18).

• For the model of the main effects and the interaction effects Y1 ×Y3,Y2 ×Y3,
27 indispensable moves of degree 4 such as (11.16) and 54 indispensable moves
of degree 6 such as

−1 +1 0
+1 0 −1
0 −1 +1

+1 −1 0
−1 0 +1
0 +1 −1

0 0 0
0 0 0
0 0 0

(11.19)

constitute the unique minimal Markov basis.
• For the model of the main effects and the interaction effects Y1 ×Y3,Y3 ×Y5,

27 indispensable moves of degree 4 such as (11.16) and 54 indispensable moves
of degree 6 such as (11.17) constitute the unique minimal Markov basis.

• For the model of the main effects and the interaction effects Y1 × Y3,Y1 ×
Y5,Y3 ×Y5, 9 indispensable moves of degree 6 such as (11.17) constitute the
unique minimal Markov basis.

• For the model of the main effects and the interaction effects Y1 × Y3,Y2 ×
Y3,Y3 ×Y4, 9 indispensable moves of degree 6 such as (11.17) constitute the
unique minimal Markov basis.

• For the model of the main effects and the interaction effects Y1 × Y3,Y2 ×
Y3,Y3 ×Y5, 9 indispensable moves of degree 6 such as (11.19) constitute the
unique minimal Markov basis.

11.2.3.3 35−2
III Fractional Factorial Design Defined from

Y4 = Y1Y2,Y5 = Y1Y2
2

Next we consider 35−2
III fractional factorial design defined from Y4 = Y1Y2,Y5 =

Y1Y2
2. For this design, we can consider the following four distinct hierarchical

models (except for the saturated model). Minimal Markov bases for these models
are calculated by 4ti2 as follows.
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• For the model of the main effects of Y1,Y2,Y3,Y4,Y5, 108 indispensable moves
of degree 2 such as (112)(121)− (111)(122) constitute the unique minimal
Markov basis.

• For the model of the main effects and the interaction effect Y1 × Y3, 27
indispensable moves of degree 2 such as (112)(121)− (111)(122) constitute the
unique minimal Markov basis.

• For the model of the main effects and the interaction effects Y1 ×Y3,Y2 ×Y3,
27 indispensable moves of degree 4 such as

−1 +1 0
+1 −1 0
0 0 0

+1 −1 0
−1 +1 0
0 0 0

0 0 0
0 0 0
0 0 0

and 54 indispensable moves of degree 6 such as (11.19) constitute the unique
minimal Markov basis.

• For the model of the main effects and the interaction effects Y1 × Y3,Y2 ×
Y3,Y3 ×Y4, 9 indispensable moves of degree 6 such as (11.19) constitute the
unique minimal Markov basis.



Chapter 12
Groupwise Selection Models

12.1 Examples of Groupwise Selections

First we introduce two data sets from the viewpoint of the groupwise selection.
In Sect. 12.1.1, we take a close look at patterns of subject selections in the
National Center Test for university entrance examinations in Japan. In Sect. 12.1.2,
we illustrate an important problem of population genetics from the viewpoint of
groupwise selection.

12.1.1 The Case of National Center Test in Japan

One important practical problem of groupwise selections is the entrance exam-
ination for universities in Japan. In Japan, as the common first-stage screening
process, most students applying for universities take the National Center Test (NCT
hereafter) for university entrance examinations administered by the National Center
for University Entrance Examinations (NCUEE). Basic information on the NCT is
available on the NCUEE website ([106] in the references.

After obtaining the NCT score, students apply to departments of individual uni-
versities and take second-stage examinations administered by the universities. Due
to time constraints of the NCT schedule, there are rather complicated restrictions on
possible combinations of subjects. Furthermore, each department of each university
can impose different additional requirements on the combinations of subjects of
NCT to students applying to the department.

In NCT, students, or examinees, can choose subjects in mathematics, social
studies, and science. These three major subjects are divided into subcategories. For
example, mathematics is divided into Mathematics 1 and Mathematics 2 and these
are then composed of individual subjects. In the test carried out in 2006, examinees
could select two mathematics subjects, two social studies subjects, and three science
subjects at most as shown below. The details of the subjects can be found on

S. Aoki et al., Markov Bases in Algebraic Statistics, Springer Series
in Statistics 199, DOI 10.1007/978-1-4614-3719-2 12,
© Springer Science+Business Media New York 2012
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Table 12.1 Number of examinees who take social studies subjects

Geography and History Civics

WHA WHB JHA JHB GeoA GeoB ContS Ethics P&E

1 subject 496 29,108 1,456 54,577 1,347 27,152 40,677 16,607 25,321
2 subjects 1,028 61,132 3,386 90,427 5,039 83,828 180,108 27,064 37,668

Table 12.2 Number of examinees who select two social studies subjects

Geography and History

Civics WHA WHB JHA JHB GeoA GeoB

ContSoc 687 39,913 2,277 62,448 3,817 70,966
Ethics 130 10,966 409 10.482 405 4,672
P&E 211 10,253 700 17,497 817 8,190

Table 12.3 Number of examinees who take science subjects

Science 1 Science 2 Science 3

CSciB BioI ISci BioIA CSciA ChemI ChemIA PhysI EarthI PhysIA EarthIA

1 subject 2,558 80,385 511 1,314 1,569 19,616 717 14,397 10,788 289 236
2 subjects 6,878 79,041 523 1,195 26,848 158,027 2,777 106,822 6,913 905 259
3 subjects 7,942 18,519 728 490 6,838 20,404 437 18,451 8,423 361 444

web pages and publications of NCUEE. We omit mathematics for simplicity, and
only consider selections in social studies and science. In parentheses we show our
abbreviations for the subjects in this chapter.

• Social Studies:

◦ Geography and History: One subject from {World History A (WHA), World
History B (WHB), Japanese History A (JHA), Japanese History B (JHB),
Geography A (GeoA), Geography B (GeoB)}

◦ Civics: One subject from {Contemporary Society (ContSoc), Ethics, Politics
and Economics (P&E)}

• Science:

◦ Science 1: One subject from {Comprehensive Science B (CSciB), Biology I
(BioI), Integrated Science (IntegS), Biology IA (BioIA)}

◦ Science 2: One subject from {Comprehensive Science A (CSciA), Chemistry
I (ChemI), Chemistry IA (ChemIA)}

◦ Science 3: One subject from {Physics I (PhysI), Earth Science I (EarthI),
Physics IA (PhysIA), Earth Science IA (EarthIA)}

Frequencies of the examinees selecting each combination of subjects in 2006 are
given on the NCUEE website. Part of them are reproduced in [8], which we show in
Tables 12.1–12.5.

As seen in these tables, examinees may select or not select these subjects. For
example, one examinee may select two subjects from social studies and three
subjects from science, whereas another examinee may select only one subject from
science and none from social studies. Hence each examinee is categorized into one
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Table 12.4 Number of examinees who select two science subjects

Science 2 Science 3

CSciA ChemI ChemIA PhysI EarthI PhysIA EarthIA

Science 1 CSciB 1,501 1,334 23 120 3,855 1 44
BioI 21,264 54,412 244 1,366 1,698 5 52
ISci 147 165 50 43 92 5 21
BioIA 128 212 715 16 33 29 62

Science 3 PhysI 3,243 101,100 934 – – – –
EarthI 485 730 20 – – – –
PhysIA 43 54 768 – – – –
EarthIA 37 20 23 – – – –

Table 12.5 Number of examinees who select three science subjects

Science 3 PhysI EarthI

Science 2 CSciA ChemI ChemIA CSciA ChemI ChemIA

Science 1 CSciB 1,155 5,152 17 1,201 317 7
BioI 553 10,901 31 3,386 3,342 16
ISci 80 380 23 62 34 4
BioIA 6 114 39 22 22 10

Science 3 PhysIA EarthIA

Science 2 CSciA ChemI ChemIA CSciA ChemI ChemIA

Science 1 CSciB 16 5 16 48 5 3
BioI 30 35 19 130 56 20
ISci 32 13 27 48 14 11
BioIA 12 6 150 57 8 44

of the (6+ 1)× ·· ·× (4+ 1) = 2,800 combinations of individual subjects. Here 1
is added for not choosing from the subcategory. As mentioned above, individual
departments of universities impose different additional requirements on the choices
of NCT subjects. For example, many science or engineering departments of national
universities ask the students to take two subjects from science and one subject from
social studies.

Let us observe some tendencies of the selections by the examinees to illustrate
what kind of statistical questions one might ask concerning the data in Tables 12.1–
12.5.

(i) The most frequent triple of science subjects is {BioI, ChemI, PhysI} in
Table 12.5, which seems to be consistent with Table 12.3 because these three
subjects are the most frequently selected subjects in Science 1, Science 2
and Science 3, respectively. However in Table 12.4, although the pairs {BioI,
ChemI} and {ChemI, PhysI} are the most frequently selected pairs in {Science
1, Science2} and {Science 2, Science 3}, respectively, the pair {BioI, PhysI} is
not the first choice in {Science 1, Science 3}. This fact indicates differences in
the selection of science subjects between the examinees selecting two subjects
and those selecting three subjects.
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(ii) In Table 12.2 the most frequent pair is {GeoB, ContSoc}. However, the most
frequent single subject from geography and history is JHB both in Tables 12.1
and 12.2. This fact indicates the interaction effect in selecting pairs of social
studies.

These observations lead to many interesting statistical questions. However
Tables 12.1–12.5 only give frequencies of choices separately for social studies and
science; that is, they are the marginal tables for these two major subjects. In this
chapter we are interested in independence across these two subjects, such as “are
the selections on social studies and science related or not?” We give various models
for NCT data in Sect. 12.2.1 and numerical analysis in Sect. 12.5.1.

12.1.2 The Case of Hardy–Weinberg Models for Allele
Frequency Data

We also consider problems of population genetics. This is another important
application of the methodology of this chapter.

The allele frequency data are usually given as genotype frequencies. For multi-
allele locus with alleles A1,A2, . . . ,Am, the probability of the genotype AiA j in an
individual from a randomly breeding population is q2

i (i = j) or 2qiq j (i �= j),
where qi is the proportion of the allele Ai. These are known as the Hardy–Weinberg
equilibrium probabilities as we have seen in Sect. 6.2.2. The Hardy–Weinberg law
plays an important role in the field of population genetics and often serves as a
basis for genetic inference, therefore much attention has been paid to tests of the
hypothesis that a population being sampled is in the Hardy–Weinberg equilibrium
against the hypothesis that disturbing forces cause some deviation from the Hardy–
Weinberg ratio. See [43] and [67] for example. Although Guo and Thompson [67]
consider the exact test of the Hardy–Weinberg equilibrium for multiple loci, the
exact procedure becomes infeasible if the data size or the number of alleles is
moderately large. Therefore MCMC is also useful for this problem. In Sect. 6.2.2,
we have considered minimal Markov bases for the conditional tests of the Hardy–
Weinberg model by using MCMC.

Due to the rapid progress of sequencing technology, more and more information
is available on the combination of alleles on the same chromosome. A combination
of alleles at more than one locus on the same chromosome is called a haplotype
and data on haplotype counts are called haplotype frequency data. The haplotype
analysis has gained increasing attention in the mapping of complex disease genes,
because of the limited power of conventional single-locus analyses.

Haplotype data may come with or without pairing information on homologous
chromosomes. It is technically more difficult to determine pairs of haplotypes
of the corresponding loci on a pair of homologous chromosomes. A pair of
haplotypes on homologous chromosomes is called a diplotype. In this chapter we
are interested in diplotype frequency data, because haplotype frequency data on
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individual chromosomes without pairing information are standard contingency table
data and can be analyzed by statistical methods for usual contingency tables. For the
diplotype frequency data, the null model we want to consider is the independence
model that the probability for each diplotype is expressed by the product of
probabilities for each genotype.

We consider the models for genotype frequency data and diplotype frequency
data in Sect. 12.2.2. Note that the availability of haplotype data or diplotype data
requires a separate treatment in our arguments. Finally we give numerical examples
of the analysis of diplotype frequency data in Sect. 12.5.2.

12.2 Conditional Tests for Groupwise Selection Models

In the context of selection problems, a finite sample space I is the space of possible
selections and each element iii ∈ I represents a combination of choices. We also
call each iii ∈ I a cell, following the terminology of contingency tables, It should
be noted that unlike the case of standard multiway contingency tables, our index set
I cannot be written as a direct product in general. We show the structures of I for
NCT data and allele frequency data in Sects. 12.2.1 and 12.2.2, respectively.

Let p(iii) denote the probability of selecting the combination iii (or the probability
of cell iii) and write ppp= {p(iii)}iii∈I . In this chapter, we do not necessarily assume that
ppp is normalized. In fact, in the models of this chapter, we only give an unnormalized
functional specification of p(·). Recall that we need not calculate the normalizing
constant 1/∑iii∈I p(iii) for performing an MCMC procedure (cf. Chap. 2). Denote
the result of the selections by n individuals as xxx = {x(iii)}iii∈I , where x(iii) is the
frequency of the cell iii.

In the models considered in this chapter, the cell probability p(iii) is written as
some product of functions that correspond to various marginal probabilities. Let J
denote the index set of the marginals. Then our models can be written as

p(iii) = h(iii) ∏
jjj∈J

q( jjj)a jjj(iii), (12.1)

where h(iii) is a known function and the q( jjj)s are the parameters. An important point
here is that the sufficient statistic ttt = {t( jjj), jjj ∈ J } is written in a matrix form as

ttt = Axxx, A = (a jjj(iii)) jjj∈J ,iii∈I , (12.2)

where A is a ν ×η matrix of nonnegative integers and ν = |J |, η = |I |. As in
Sect. 1.1 we call A a configuration.

As we have seen in Chap. 2, we can perform a conditional test of the model (12.1)
based on the conditional distribution given the sufficient statistic ttt. An important
point in this chapter is that we can make use of the theory of the Gröbner basis for
the Segre–Veronese configuration to obtain a Markov basis.
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12.2.1 Models for NCT Data

Following the general formalization above, we formulate data types and their
statistical models in view of NCT. Suppose that there are J different groups (or
categories) and m j different subgroups in group j for j = 1, . . . ,J. There are m jk

different items in subgroup k of group j (k = 1, . . . ,m j, j = 1, . . . ,J). In NCT, J = 2,
m1 = |{Geography and History, Civics}| = 2 and similarly m2 = 3. The sizes of
subgroups are m11 = |{WHA, WHB, JHA, JHB,GeoA, GeoB}| = 6 and similarly
m12 = 3, m21 = 4, m22 = 3, m23 = 4.

Each individual selects c jk items from the subgroup k of group j. We assume
that the total number τ of items chosen is fixed and common for all individuals.
In NCT c jk is either 0 or 1. For example, if an examinee is required to take two
science subjects in NCT, then (c21,c22,c23) is (1,1,0), (1,0,1), or (0,1,1). For
the analysis of genotypes in Sect. 12.2.2, c jk ≡ 2 although there is no nesting of
subgroups, and the same item (allele) can be selected more than once (selection
“with replacement”).

We now set up our notation for indexing a combination of choices carefully.
In NCT, if an examinee chooses WHA from “Geography and History” of Social
Studies and PhysI from Science 3 of Science, we denote the combination of these
two choices as (111)(231). In this notation, the selection of c jk items from the
subgroup k of group j is indexed as

iii jk = ( jkl1)( jkl2) . . . ( jklc jk ), 1 ≤ l1 ≤ ·· · ≤ lc jk ≤ m jk.

Here iii jk is regarded as a string. If nothing is selected from the subgroup, we
define iii jk to be an empty string. Now by concatenation of strings, the set I of
combinations is written as

I = {iii = iii1 . . . iiiJ}, iii j = iii j1 . . . iii jmj , j = 1, . . . ,J.

For example, the choice of (P&E, BioI, ChemI) in NCT is denoted by iii =
(123)(212)(222). In the following we denote iii′ ⊂ iii if iii′ appears as a substring of iii.

Now we consider some statistical models for ppp. For NCT data, we consider three
simple statistical models, namely complete independence model, subgroupwise
independence model, and groupwise independence model. The complete indepen-
dence model is defined as

p(iii) =
J

∏
j=1

mj

∏
k=1

iii jk⊂iii

c jk

∏
t=1

q jk(lt ) (12.3)

for some parameters q jk(l), j = 1, . . . ,J; k = 1, . . . ,m j; l = 1, . . . ,m jk. Note that
if c jk > 1 we need a multinomial coefficient in (12.3). The complete independence
model means that each p(iii), the inclination of the combination iii, is explained by
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the set of inclinations q jk(l) of each item. Here q jk(l) corresponds to the marginal
probability of the item ( jkl). However, we do not necessarily normalize them as
1 = ∑

mjk
l=1 q jk(l), because the normalization for ppp is not trivial anyway. The same

comment applies to other models below.
Similarly, the subgroupwise independence model is defined as

p(iii) =
J

∏
j=1

mj

∏
k=1

iii jk⊂iii

q jk(iii jk) (12.4)

for some parameters q jk(·), and the groupwise independence model is defined as

p(iii) =
J

∏
j=1

q j(iii j) (12.5)

for some parameters q j(·).
In this chapter, we treat these models as the null models and give testing

procedures to assess their fitting to observed data following the general theory in
Chap. 2.

12.2.2 Models for Allele Frequency Data

Next we consider the allele frequency data. First we consider the models for the
genotype frequency data. We assume that there are J distinct loci. In the locus j,
there are m j distinct alleles, A j1, . . . ,A jmj . In this case, we can imagine that each
individual selects two alleles for each locus with replacement. Therefore the set of
the combinations is written as

I = {iii = (i11i12)(i21i22) . . . (iJ1iJ2) | 1 ≤ i j1 ≤ i j2 ≤ m j, j = 1, . . . ,J}.

For the genotype frequency data, we consider two models of hierarchical
structure, namely the genotypewise independence model

p(iii) =
J

∏
j=1

q j(i j1i j2) (12.6)

and the Hardy–Weinberg model

p(iii) =
J

∏
j=1

q̃ j(i j1i j2), (12.7)
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where

q̃ j(i j1i j2) =

{
q j(i j1)

2 if i j1 = i j2,

2q j(i j1)q j(i j2) if i j1 �= i j2.
(12.8)

Note that for both cases the sufficient statistic ttt can be written as ttt = Axxx for an
appropriate matrix A as shown in Sect. 12.5.2.

Next we consider the diplotype frequency data. In order to illustrate the
difference between genotype data and diplotype data, consider a simple case of
J = 2,m1 = m2 = 2 and suppose that genotypes of n = 4 individuals are given as

{A11A11,A21A21}, {A11A11,A21A22}, {A11A12,A21A21}, {A11A12,A21A22}.

In these genotype data, for an individual who has a homozygote genotype on
at least one locus, the diplotypes are uniquely determined. However, for the
fourth individual who has the genotype {A11A12,A21A22}, there are two possible
diplotypes: {(A11,A21),(A12,A22)} and {(A11,A22),(A12,A21)}.

Now suppose that information on diplotypes is available. The set of combinations
for the diplotype data is given as

I = {iii = iii1iii2 = (i11 · · · iJ1)(i12 · · · iJ2) | 1 ≤ i j1, i j2 ≤ m j, j = 1, . . . ,J}.

In order to determine the order of iii1 = (i11 . . . iJ1) and iii2 = (i12 . . . iJ2) uniquely, we
assume that these two are lexicographically ordered; that is, there exists some j such
that

i11 = i12, . . . , i j−1,1 = i j−1,2, i j1 < i j2

unless iii1 = iii2.
For the parameter ppp = {p(iii)} where p(iii) is the probability for the diplotype iii, we

can consider the same models as for the genotype case. Corresponding to the null
hypothesis that diplotype data do not contain more information than the genotype
data, we can consider the genotypewise independence model (12.6) and the Hardy–
Weinberg model (12.7). A sufficient statistic for these models is the same as we have
seen above.

If these models are rejected, we can further test independence in diplotype data.
For example, we can consider a haplotypewise Hardy–Weinberg model

p(iii) = p(iii1iii2) =

{
q(iii1)2 if iii1 = iii2,
2q(iii1)q(iii2) if iii1 �= iii2.

A sufficient statistic for this model is given by the set of frequencies of each
haplotype and the conditional test can be performed as in the case of the Hardy–
Weinberg model for a single gene by formally identifying each haplotype as an
allele.
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12.3 Gröbner Basis for Segre–Veronese Configuration

In this section, we introduce toric ideals of algebras of the Segre–Veronese
type [109] with a generalization to fit statistical applications in this chapter. We
use the notation and the terminology of Sect. 3.

Fix integers τ ≥ 2, M ≥ 1 and sets of integers b= {b1, . . . ,bM}, c= {c1, . . . ,cM},
r = {r1, . . . ,rM}, and s = {s1, . . . ,sM} such that

(i) 0 ≤ ci ≤ bi for all 1 ≤ i ≤ M,
(ii) 1 ≤ si ≤ ri ≤ ν for all 1 ≤ i ≤ M.

Let Aτ,b,c,r,s ⊂ N
ν denote the configuration consisting of all nonnegative integer

vectors ( f1, f2, . . . , fν ) ∈ N
ν such that

(i) ∑ν
j=1 f j = τ .

(ii) ci ≤ ∑ri
j=si

f j ≤ bi for all 1 ≤ i ≤ M.

Let k[Aτ,b,c,r,s] denote the semigroup ring generated by all monomials ∏ν
j=1 q j

f j

over the field k and call it an algebra of Segre–Veronese type. Note that the present
definition generalizes the definition in [109].

Several popular classes of semigroup rings are Segre–Veronese type algebras.
If M = 2, τ = 2, b1 = b2 = c1 = c2 = 1, s1 = 1, s2 = r1 + 1 and r2 = ν , then the
semigroup ring k[Aτ,b,c,r,s] is the Segre product of polynomial rings k[q1, . . . ,qr1 ]
and k[qr1+1, . . . ,qν ]. On the other hand, if M = ν , si = ri = i, bi = τ , and ci = 0
for all 1 ≤ i ≤ M, then the semigroup ring k[Aτ,b,c,r,s] is the classical τth Veronese
subring of the polynomial ring k[q1, . . . ,qν ]. Moreover, if M = ν , si = ri = i, bi = 1,
and ci = 0 for all 1 ≤ i ≤ M, then the semigroup ring k[Aτ,b,c,r,s] is the τth square-
free Veronese subring of the polynomial ring k[q1, . . . ,qν ]. In addition, Veronese
type algebras (i.e., M = ν , si = ri = i, and ci = 0 for all 1 ≤ i ≤ M) are studied
in [48] and [139].

Let k[Y ] denote the polynomial ring with the set of variables

{
y j1 j2··· jτ

∣∣∣∣∣ 1 ≤ j1 ≤ j2 ≤ ·· · ≤ jτ ≤ ν,
τ

∏
k=1

q jk ∈ {qqqaaa1 , . . . ,qqqaaaη }
}
,

where k[Aτ,b,c,r,s] = k[qqqaaa1 , . . . ,qqqaaaη ]. The toric ideal IAτ,b,c,r,s is the kernel of the sur-
jective homomorphism π : k[Y ] −→ k[Aτ,b,c,r,s] defined by π(y j1 j2··· jτ ) = ∏τ

k=1 q jk .
A monomial yα1α2···ατ yβ1β2···βτ · · ·yγ1γ2···γτ is called sorted if

α1 ≤ β1 ≤ ·· · ≤ γ1 ≤ α2 ≤ β2 ≤ ·· · ≤ γ2 ≤ ·· · ≤ ατ ≤ βτ ≤ ·· · ≤ γτ .

Let sort(·) denote the operator that takes any string over the alphabet {1,2, . . . ,d}
and sorts it into weakly increasing order. Then the quadratic Gröbner basis of toric
ideal IAτ,b,c,r,s is given as follows.
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Theorem 12.1. There exists a monomial order on k[Y ] such that the set of all
binomials

{yα1α2···ατ yβ1β2···βτ − yγ1γ3···γ2τ−1yγ2γ4···γ2τ | sort(α1β1α2β2 · · ·ατ βτ) = γ1γ2 · · ·γ2τ}
(12.9)

is the reduced Gröbner basis of the toric ideal IAτ,b,c,r,s . The initial ideal is generated
by square-free quadratic (nonsorted) monomials.

In particular, the set of all integer vectors corresponding to the above binomials
is a Markov basis. Furthermore, the set is minimal as a Markov basis.

Proof. The basic idea of the proof appears in Theorem 14.2 in [139].
Let G be the above set of binomials. First we show that G ⊂ IAτ,b,c,r,s. Suppose

that m = yα1α2···ατ yβ1β2···βτ is not sorted and let

γ1γ2 · · ·γ2τ = sort(α1β1α2β2 · · ·ατ βτ).

Then, m is square-free because the monomial y2
α1α2···ατ is sorted. The binomial

yα1α2···ατ yβ1β2···βτ − yα ′
1α ′

2···α ′
τ
yβ ′

1β ′
2···β ′

τ
∈ k[Y ] belongs to IAτ,b,c,r,s if and only if

sort(α1α2 · · ·ατ β1β2 · · ·βτ) = sort(α ′
1α ′

2 · · ·α ′
τ β ′

1β ′
2 · · ·β ′

τ), thus it is sufficient to
show that both yγ1γ3···γ2τ−1 and yγ2γ4···γ2τ are variables of k[Y ]. For 1 ≤ i ≤ M, let
ρi = |{ j | si ≤ γ2 j−1 ≤ ri}| and σi = |{ j | si ≤ γ2 j ≤ ri}|. Because γ1 ≤ γ2 ≤ ·· · ≤ γ2τ ,
ρi and σi are either equal or they differ by one for each i. If ρi ≤ σi, then
0≤σi−ρi ≤ 1. Because 2ci ≤ ρi+σi ≤ 2bi, we have σi ≤ bi+1/2 and ci−1/2≤ ρi.
Thus ci ≤ ρi ≤ σi ≤ bi. If ρi > σi, then ρi−σi = 1. Because 2ci ≤ ρi+σi ≤ 2bi, we
have ρi ≤ bi +1/2 and ci −1/2 ≤ σi. Thus ci ≤ σi < ρi ≤ bi. Hence yγ1γ3···γ2τ−1 and
yγ2γ4···γ2τ are variables of k[Y ].

By virtue of the relation between the reduction of a monomial by G and sorting
of the indices of a monomial, it follows that there exists a monomial order such that,
for any binomial in G , the first monomial is the initial monomial. See also Theorem
3.12 in [139].

Suppose that G is not a Gröbner basis. By Theorem 3.1 there exists a binomial
f ∈ IAτ,b,c,r,s such that both monomials in f are sorted. This means that f = 0 and f
is not a binomial. Hence G is a Gröbner basis of IAτ,b,c,r,s . It is easy to see that the
Gröbner basis G is reduced and a minimal set of generators of IAτ,b,c,r,s. ��

Theorem 12.1 states that the minimal Markov basis for the Segre–Veronese
configuration IAτ,b,c,r,s is constructed as the basic moves defined by (12.9). The theory
of Segre–Veronese configuration was further generalized to a class of configurations
called nested configurations. Toric ideals for nested configurations possess many
nice properties. See Aoki et al. [7], and Ohsugi and Hibi [114].
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12.4 Sampling from the Gröbner Basis
for the Segre–Veronese Configuration

Here we describe how to run a Markov chain using the Gröbner basis given in
Theorem 12.1.

First, given a configuration A in (12.2), we check that (with appropriate reorder-
ing of rows) that A is indeed a configuration of Segre–Veronese type. It is easy
to check that our models in Sects. 12.2.1 and 12.2.2 are of Segre–Veronese type,
because the restrictions on choices are imposed separately for each group or each
subgroup. Recall that each column of A consists of nonnegative integers whose sum
τ is common.

We now associate with each column aaa(iii) of A a set of indices indicating the rows
with positive elements a jjj(iii) > 0 and a particular index jjj is repeated a jjj(iii) times.
For example, if ν = 4,τ = 3, and aaa(iii) = (1,0,2,0)′, then row 1 appears once and
row 3 appears twice in aaa(iii). Therefore we associate the index (1,3,3) with aaa(iii). We
can consider the set of indices as τ ×η matrix Ã. Note that Ã and A carry the same
information.

Given Ã, we can choose a random element of the reduced Gröbner basis of
Theorem 12.1 as follows. Choose two columns (i.e., choose two cells from I ) of
Ã and sort 2× τ elements of these two columns. From the sorted elements, pick
alternate elements and form two new sets of indices. For example, if τ = 3 and the
two chosen columns of Ã are (1,3,3) and (1,2,4), then by sorting these six elements
we obtain (1,1,2,3,3,4). Picking alternate elements produces (1,2,3) and (1,3,4).
These new sets of indices correspond to (a possibly overlapping) two columns of Ã,
hence to two cells of I . Now the difference of the two original columns and the two
sorted columns of Ã correspond to a random binomial in (12.9). It should be noted
that when the sorted columns coincide with the original columns, then we discard
these columns and choose two other columns. Then we can perform an MCMC
procedure as explained in Chap. 2.

12.5 Numerical Examples

In this section we present numerical experiments on NCT data and diplotype
frequency data.

12.5.1 The Analysis of NCT Data

First we consider the analysis of NCT data concerning selections in social studies
and science. Because NCUEE currently does not provide cross-tabulations of
frequencies of choices across the major subjects, we cannot evaluate the p-value
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Table 12.6 The data set of the number of examinees in NCT in 2006 (n= 195,094)

ContS Ethics P&E CSiA Chem Phys Earth

WH 32,352 8,839 8,338 CSiB 1,648 1,572 169 4,012
JH 51,573 8,684 14,499 Bio 21,392 55,583 1,416 1,845
Geo 59,588 4,046 7,175 Phys 3,286 102,856 – –

Earth 522 793 – –

of the actual data. However, for the models in Sect. 12.2.1, the sufficient statistics
(the marginal frequencies) can be obtained from Tables 12.1–12.5. Therefore in this
section we evaluate the conditional null distribution of Pearson’s χ2 statistic by
MCMC and compare it to the asymptotic χ2 distribution.

In Sect. 12.2.1, we considered three models, the complete independence model,
subgroupwise independence model, and groupwise independence model, for the
setting of groupwise selection problems. Note, however, that the subgroupwise
independence model coincides with the groupwise independence model for NCT
data, because c jk ≤ 1 for all j and k. Therefore we consider fitting the complete
independence model and the group-wise independence model for NCT data.

As we have seen in Sect. 12.1.2, there are many kinds of choices for each
examinee. However, it may be natural to treat some similar subjects as one subject.
For example, WHA and WHB may well be treated as WH, ChemI and Chem IA
may well be treated as Chem, and so on. As a result, we consider the following
aggregation of subjects.

• In social studies: WH = {WHA, WHB}, JH = {JHA, JHB}, Geo = {GeoA,
GeoB}

• In science: CSiB = {CSiB, ISci}, Bio = {BioI, BioIA}, Chem = {ChemI,
ChemIA}, Phys = {PhysI, PhysIA}, Earth = {EarthI, EarthIA}

In our analysis, we take a look at examinees selecting two subjects for social studies
and two subjects for science. Therefore

J = 2,m1 = 2,m2 = 3,m11 = m12 = 3,m21 = m22 = m23 = 2,
c11 = c12 = 1,(c21,c22,c23) = (1,1,0) or (1,0,1) or (0,1,1).

The number of possible combinations is then ν = |I | = 3 · 3 × 3 · 22 = 108.
Accordingly our sample size is n = 195,094, which is the number of examinees
selecting two subjects for science from Table 12.3. Our data set is shown in
Table 12.6.

From Table 12.6, we can calculate the maximum likelihood estimates of the
numbers of the examinees selecting each combination of subjects. The sufficient
statistics under the complete independence model are the numbers of the examinees
selecting each subject, whereas the sufficient statistics under the groupwise inde-
pendence model are the numbers of the examinees selecting each combination of
subjects in the same group. The maximum likelihood estimates calculated from the
sufficient statistics are shown in Table 12.7. For the complete independence model
the maximum likelihood estimates can be calculated as in Sect. 5.2 of [26].
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The configuration A for the complete independence model is written as

A =

⎛
⎝E3 ⊗ 111′3 ⊗ 111′12

111′3 ⊗E3 ⊗ 111′12

111′9 ⊗ B

⎞
⎠

and the configuration A for the groupwise independence model is written as

A =

(
E9 ⊗ 111′12

111′9 ⊗E ′
12

)
,

where En is the n× n identity matrix, 111n = (1, . . . ,1)′ is the n× 1 column vector of
1s, ⊗ denotes the Kronecker product, and

B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

111100000000
000011110000
100010001100
010001000011
001000101010
000100010101

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
.

Note that the configuration B is the vertex-edge incidence matrix of the (2,2,2)
complete multipartite graph. Quadratic Gröbner bases of toric ideals arising from
complete multipartite graphs are studied in [109].

Given these configurations we can easily run a Markov chain as discussed
in Chap. 2. After 5,000,000 burn-in steps, we construct 10,000 Monte Carlo
samples. Two figures in Fig. 12.1 show histograms of the Monte Carlo sampling
generated from the exact conditional distribution of Pearson’s chi-square statistics
for the NCT data under the complete independence model and the groupwise
independence model along with the corresponding asymptotic distributions χ2

98 and
χ2

88, respectively.

12.5.2 The Analysis of Allele Frequency Data

Next we give a numerical example of genome data. Table 12.8 shows diplotype
frequencies on the three loci, T-549C (locus 1), C-441T (locus 2), and T-197C
(locus 3) in the human genome 14q22.1, which are given in [108]. Although the
data are used for the genetic association studies in [108], we simply consider fitting
our models. As an example, we only consider the diplotype data of patients in the
population of blacks (n = 79).
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Fig. 12.1 Asymptotic and Monte Carlo sampling distributions of NCT data

Table 12.8 PTGDR diplotype frequencies among patients and con-
trols in each population. (The order of the SNPs in the haplotype is
T-549C, C-441T, and T-197C.)

Whites Blacks

Diplotype Controls Patients Controls Patients

CCT/CCT 16 78 7 10
CCT/TTT 27 106 12 27
CCT/TCT 48 93 4 12
CCT/CCC 17 45 3 9
TTT/TTT 9 43 2 7
TTT/TCT 34 60 8 6
TTT/CCC 4 28 1 6
TCT/TCT 11 20 7 0
TCT/CCC 6 35 1 2
CCC/CCC 1 8 0 0

Table 12.9 The genotype frequencies for patients among blacks of PTGDR data

locus 3 CC CT TT

locus 2 CC CT TT CC CT TT CC CT TT

locus 1 CC 0 0 0 9 0 0 10 0 0
CT 0 0 0 2 6 0 12 27 0
TT 0 0 0 0 0 0 0 6 7

First we consider the analysis of genotype frequency data. Although Table 12.8
is diplotype frequency data, here we ignore the information on the haplotypes and
simply treat them as genotype frequency data. Because n= 3 and m1 =m2 =m3 = 2,
there are 33 = 27 distinct sets of genotypes (i.e., |I | = 27), and only 8 distinct
haplotypes appear in Table 12.8. Table 12.9 is the set of genotype frequencies of
patients in the population of blacks.

Under the genotypewise independence model (12.6), the sufficient statistic is
the genotype frequency data for each locus. On the other hand, under the Hardy–
Weinberg model (12.7), the sufficient statistic is the allele frequency data for each
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Table 12.10 MLE for PTGDR genotype frequencies of patients among blacks under the Hardy–
Weinberg model (upper) and genotypewise independence model (lower)

locus 3 CC CT TT

locus 2 CC CT TT CC CT TT CC CT TT

locus 1 CC 0.1169 0.1180 0.0298 1.939 1.958 0.4941 8.042 8.118 2.049
0 0 0 1.708 2.018 0.3623 6.229 7.361 1.321

CT 0.2008 0.2027 0.0512 3.331 3.362 0.8486 13.81 13.94 3.519
0 0 0 4.225 4.993 0.8962 15.41 18.21 3.268

TT 0.0862 0.0870 0.0220 1.430 1.444 0.3644 5.931 5.988 1.511
0 0 0 1.169 1.381 0.2479 4.262 5.037 0.9040

locus, and the genotype frequencies for each locus are estimated by the Hardy–
Weinberg law. Accordingly, the maximum likelihood estimates for the combinations
of the genotype frequencies are calculated as Table 12.10.

The configuration A for the Hardy–Weinberg model is written as

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

222222222 111111111 000000000
000000000 111111111 222222222
222111000 222111000 222111000
000111222 000111222 000111222
210210210 210210210 210210210
012012012 012012012 012012012

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

and the configuration A for the genotypewise independence model is written as

A =

⎛
⎝E3 ⊗ 111′3 ⊗ 111′3

111′3 ⊗E3 ⊗ 111′3
111′3 ⊗ 111′3 ⊗E ′

3

⎞
⎠ .

Because these two configurations are of the Segre–Veronese type, again we can
easily perform MCMC sampling as discussed in Chap. 2. After 100,000 burn-in
steps, we construct 10,000 Monte Carlo samples. Two figures in Fig. 12.2 show
histograms of the Monte Carlo sampling generated from the exact conditional dis-
tribution of Pearson goodness-of-fit χ2 statistics for the PTGDR genotype frequency
data under the Hardy–Weinberg model and the genotypewise independence model
along with the corresponding asymptotic distributions χ2

24 and χ2
21, respectively.

From the Monte Carlo samples, we can also estimate the p-values for each
null model. The values of Pearson goodness-of-fit χ2 for the PTGDR genotype
frequency data of Table 12.9 are χ2 = 88.26 under the Hardy–Weinberg models,
whereas χ2 = 103.37 under the genotype-wise independence model. These values
are highly significant (p < 0.01 for both models), which implies the susceptibility
of the particular haplotypes.
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Fig. 12.2 Asymptotic and Monte Carlo sampling distributions of PTGDR genotype frequency
data

Table 12.11 Observed frequency and MLE under the Hardy–Weinberg model for PTGDR
haplotype frequencies of patients among blacks

Haplotype Observed MLE under HW Haplotype Observed MLE under HW

CCC 17 6.078 TCC 0 5.220
CCT 68 50.410 TCT 20 43.293
CTC 0 3.068 TTC 0 2.635
CTT 0 25.445 TTT 53 21.853

Next we consider the analysis of the diplotype frequency data. In this case of
n = 3 and m1 = m2 = m3 = 2, there are 23 = 8 distinct haplotypes, and there are

|I |= 8+

(
8
2

)
= 36

distinct diplotypes, whereas there are only four haplotypes and ten diplotypes in
Table 12.8. The numbers of each haplotype are calculated as the second column
of Table 12.11. Under the Hardy–Weinberg model, the haplotype frequencies are
estimated proportionally to the allele frequencies, which are shown as the third
column of Table 12.11.

The maximum likelihood estimates of the diplotype frequencies under the
Hardy–Weinberg model are calculated from the maximum likelihood estimates for
each haplotype. These values coincide with appropriate fractions of the values for
the corresponding combinations of the genotypes in Table 12.10. For example, the
MLE for the diplotype CCT/CCT coincides with the MLE for the combination of
the genotypes (CC,CC,TT) in Table 12.10, whereas the MLEs for the diplotype
CCC/TTT, CCT/TTC, CTC/TCT, CTT/TCC coincide with the 1

4 fraction of the
MLE for the combination of the genotypes (CT,CT,CT), and so on. Because
we know that the Hardy–Weinberg model is highly significantly rejected, it is
natural to consider the haplotypewise Hardy–Weinberg model given in Sect. 12.2.2.
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Table 12.12 MLE for PTGDR diplotype frequencies of patients among blacks
under the haplotypewise Hardy–Weinberg model

Diplotype Observed MLE Diplotype Observed MLE

CCT/CCT 10 14.6329 TTT/TCT 6 6.7089
CCT/TTT 27 22.8101 TTT/CCC 6 5.7025
CCT/TCT 12 8.6076 TCT/TCT 0 1.2658
CCT/CCC 9 7.3165 TCT/CCC 2 2.1519
TTT/TTT 7 8.8892 CCC/CCC 0 0.9146

0

0.02

0.04

0.06

0.08

0.1

0.12

0 10 20 30 40 50 60

Fig. 12.3 Asymptotic and Monte Carlo sampling distributions of PTGDR diplotype frequency
data under the haplotypewise Hardy–Weinberg model (d f = 9)

Table 12.12 shows the maximum likelihood estimates under the haplotypewise
Hardy–Weinberg model. It should be noted that the MLE for the other diplotypes
are all zeros.

We perform the Markov chain Monte Carlo sampling for the haplotypewise
Hardy–Weinberg model. The configuration A for this model is written as

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

200000001111111000000000000000000000
020000001000000111111000000000000000
002000000100000100000111110000000000
000200000010000010000100001111000000
000020000001000001000010001000111000
000002000000100000100001000100100110
000000200000010000010000100010010101
000000020000001000001000010001001011

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,
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which is obviously of the Segre–Veronese type. We give a histogram of the Monte
Carlo sampling generated from the exact conditional distribution of Pearson’s chi-
square statistics for the PTGDR diplotype frequency data under the haplotypewise
Hardy–Weinberg model, along with the corresponding asymptotic distributions χ2

9
in Fig. 12.3.

The p-value for this model is estimated as 0.8927 with the estimated standard
deviation 0.0029. (We also discard the first 100,000 samples, and use a batching
method to obtain an estimate of variance; see [82] and [128].) Note that the
asymptotic p-value based on χ2

9 is 0.6741.



Chapter 13
The Set of Moves Connecting Specific Fibers

13.1 Discrete Logistic Regression Model with One Covariate

Let {1, . . . ,J} be the set of levels of a covariate and let x1 j and x2 j, j = 1, . . . ,J, be
the numbers of successes and failures for a covariate j, respectively. Let p j be the
probability for success. Assume that xi j be distributed as a binomial distribution

xi j ∼ Bin(x+ j, p j).

Then the binary logistic regression model with one discrete covariate is described as

logit(p j) = log
p j

1− p j
= α +β j, j = 1, . . . ,J. (13.1)

A sufficient statistic for the model is ttt = (x1+,∑J
j=1 jx+ j). Usually the column sums

x+1, . . . ,x+J are also fixed and positive by a sampling scheme. In order to perform
conditional tests, we need the set of moves connecting contingency tables not only
sharing ttt but satisfying xi j ≤ x+ j for i = 1,2 and j = 1, . . . ,J.

Consider the following Poisson logistic regression model

xi j ∼ Po(λi j), λ1 j = λ p j, λ2 j = λ (1− p j), (13.2)

where p j satisfies (13.1). A sufficient statistic for the model (13.2) is

ttt1 := (x1+,x+1, . . . ,x+J,
J

∑
j=1

jx+ j) = ttt ∪ (x+1, . . . ,x+J).

We note that a Markov basis of (13.2) also connects every fiber for (13.1). In the
rest of this section we discuss a Markov basis for the Poisson logistic regression
model (13.2).

S. Aoki et al., Markov Bases in Algebraic Statistics, Springer Series
in Statistics 199, DOI 10.1007/978-1-4614-3719-2 13,
© Springer Science+Business Media New York 2012
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Table 13.1 Maximal degrees and numbers of moves of the minimal Markov basis for
the model (13.2)

J 10 11 12 13 14 15 16

Max deg 18 20 22 24 26 28 30
# of moves 1,830 3,916 8,569 16,968 34,355 66,066 123,330

Moves zzz = {zi j} for the model satisfy (z1+,z+1, . . . ,z+J) = 000 and

J

∑
j=1

jz+ j = 0. (13.3)

The configuration for this model is written as a Lawrence lifting by

Λ(A) =

(
A 0
EJ EJ

)
, A =

(
1 1 . . . 1
1 2 . . . J

)
, (13.4)

where EJ denotes the J× J identity matrix.
Table 13.1 presents maximal degrees and numbers of moves of minimal Markov

bases for Λ(A) computed by 4ti2. In general Markov bases for Λ(A) become large
and very complicated as seen from the table. As mentioned earlier, however, x+ j

can be assumed to be positive. Actually many moves in a Markov basis for (13.2)
are required only for fibers with x+ j = 0.

Now we introduce the following subset of Markov bases consisting only of
degree 4 moves.

Definition 13.1. Let eee j be defined by a 2× J integer array with 1 in the (1, j)-cell,
−1 in the (2, j)-cell, and 0 everywhere else. Define B1 by the set of moves zzz = (zi j)
satisfying

1. zzz = eee j1 − eee j2 − eee j3 + eee j4 .
2. 1 ≤ j1 < j2 ≤ j3 < j4 ≤ J.
3. j1 − j2 = j3 − j4.

Then zzz ∈ B1 is expressed as

zzz =
j1 j2 j3 j4
1 −1 −1 1

−1 1 1 −1
.

Proposition 13.1 (Hara et al. [81]). B1 connects all fibers with x+ j > 0, j =
1, . . . ,J, for the model (13.2).

Before we give a proof of this proposition, we present a lemma.
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Lemma 13.1. Let zzz = {zi j} be any move for (13.2). Then there exist j1 < j2 and
j3 < j4 satisfying the following conditions.

(a) z1 j1 > 0, z1 j2 < 0, z1 j3 < 0, z1 j4 > 0.
(b) z1 j1 = 1 implies j1 �= j4.
(c) z1 j2 =−1 implies j2 �= j3.
(d) z1 j = 0 for j1 < j < j2 and j3 < j < j4.

Proof. (a), (b), and (c) are obvious from the constraint (13.3) and z1+ = 0. We can
assume without loss of generality that there exist j1 < j2 such that z1 j1 > 0, z1 j2 < 0,
z1 j ≥ 0 for 1 ≤ j < j1 and z1 j = 0 for j1 < j < j2. Because there exist j2 ≤ j3 < j4
satisfying (a), (b), and (c), we can choose j3 and j4 to satisfy (d). ��

The following theorem shows that a subset of B1 still connects all fibers with
x+ j > 0,∀ j.

Theorem 13.1 (Chen et al. [33]; Hara et al. [81]). The set of moves

B∗
1 = {zzz ∈ B1 | j2 = j1 + 1, j3 = j4 − 1} (13.5)

connects every fiber satisfying x+ j > 0, j = 1, . . . ,J, for the univariate logistic
regression model (13.2).

This theorem was first introduced by Chen et al. [33] without an explicit proof
and Chen et al. [35] discussed this problem from an algebraic viewpoint. An explicit
proof is given by Hara et al. [81]. However, the proof is complicated and omitted
here. Refer to [81] for details of the proof.

13.2 Discrete Logistic Regression Model with More
than One Covariate

In this section we extend the argument in the previous section to the model with
more than one covariate. Let I0 denote the set of success and failure and I1 =
{1, . . . , I1}, . . . ,IK = {1, . . . , IK} be the sets of levels of K covariates. For ik ∈ Ik,
k = 0, . . . ,K, denote iii1:K := (i1, . . . , iK) and iii := (i0, iii1:K)

′. Let

iii | i0 = 1 := (1, iii1:K)
′, iii | i0 = 2 := (2, iii1:K)

′.

Then x(iii | i0 = 1) and x(iii | i0 = 2) are the frequencies of successes and failures,
respectively, for a level iii1:K . Let p(iii | i0 = 1) be the probability of success for a level
(i1, . . . , iK) and p(iii | i0 = 2) = 1− p(iii | i0 = 1). Let x(iii | i0 = 1) be distributed as a
binomial distribution

x(iii | i0 = 1)∼ Bin(x1:K(iii1:K), p(iii | i0 = 1)),
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where x1:K(iii1:K) := x(iii | i0 = 1)+x(iii | i0 = 2). Denote βββ :=(β0, . . . ,βK)
′. The model

is described as

log
p(iii | i0 = 1)

1− p(iii | i0 = 1)
= (1, iii1:K)βββ . (13.6)

A sufficient statistic for this model is

x0(1) :=
K

∑
k=1

Ik

∑
ik=1

x(1, iii1:K),
Ik

∑
ik=1

ikx0k(1, ik), k = 1, . . . ,K,

where x0k(1ik) = ∑l �=k ∑Il
il=1 x(1, iii1:K). Note that x1:K(iii1:K) are also fixed by a

sampling scheme for every (i1, . . . , iK). In the same way as the model with one
covariate, we need a set of moves connecting contingency tables sharing

tttK =

{
x0(1),

Ik

∑
ik=1

ikx0k(1ik), k = 1, . . . ,K, x1:K(iii1:K), iii1:K ∈ I1 ×·· ·×IK

}
.

Such a set of moves is equivalent to a Markov basis of the Poisson logistic regression
model x(iii)∼ Po(λ (iii)) where

λ (iii | i0 = 1) = λ p(iii | i0 = 1), λ (iii | i0 = 2) = λ (1− p(iii | i0 = 1)), (13.7)

with p(iii) satisfying (13.6).
Let

Ak =

(
1 1 · · · 1
1 2 · · · Ik

)
= (aaak,1, . . . ,aaak,Ik ),

where aaak,ik = (1, ik)′ are column vectors. The configuration of the model (13.7) is
also described as the Lawrence lifting of the Segre product A1 ⊗·· ·⊗AK:

Λ(A1 ⊗·· ·⊗AK) =

(
A1 ⊗·· ·⊗AK 0

EI1···IK EI1···IK

)
,

where

Ak ⊗Al =
(

aaak,ik ⊕ aaal,il , ik = 1, . . . , Ik, il = 1, . . . , Il

)
, aaak,ik ⊕ aaal,il =

(
aaak,ik
aaal,il

)

and EI1···IK is the (I1 · · · IK)× (I1 · · · IK) identity matrix. Then any move in this model
zzz = {z(iii)} satisfies

z0(1) =
K

∑
k=2

Ik

∑
ik=1

z(iii | i0 = 1) = 0,
Ik

∑
ik=1

ikz0k(1ik) = 0, k = 1, . . . ,K,

z1:K(iii1:K) = z(iii | i0 = 1)+ z(iii | i0 = 2) = 0,

where z0k(1ik) = ∑l �=0,l �=k ∑Il
il=1 z(iii). As an extension of moves in Definition 13.2,

we introduce the following class of degree 4 moves.
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Definition 13.2. Let jjj ∈ I1 × ·· ·×IK . Let eee( jjj) be an integer array with 1 at the
cell (1, jjj), −1 at the cell (2, jjj), and 0 everywhere else. Define BK by the set of
moves zzz = {z(iii)} satisfying

1. zzz = eee( jjj1)− eee( jjj2)− eee( jjj3)+ eee( jjj4).
2. jjj1 − jjj2 = jjj3 − jjj4 �= 0.

Example 13.1. We give some examples of moves for K = 2. Let jjjl := ( jl1, jl2),
l = 1, . . . ,4. Then the following integer arrays are (i0 = 1)-slices of moves in B2.

(1) j12 = · · ·= j42 (2) j12 = · · ·= j42, j21 = j31

j11 j21 j31 j41

j12 1 −1 −1 1
j11 j21 j41

j12 1 −2 1

(3) j12 = j22, j32 = j42 (4) j12 = j22, j21 = j31

j11 j21 j31 j41

j12 1 −1 0 0
j32 0 0 −1 1

j11 j21 j41

j12 1 −1 0
j32 0 −1 1

(5) ( j21, j22) = ( j31, j32) (6) j12 = j42, j21 = j31

j11 j21 j41

j12 1 0 0
j22 0 −2 0
j42 0 0 1

j11 j21 j41

j22 0 −1 0
j12 1 0 1
j32 0 −1 0

.

Theorem 13.2 (Hara et al. [81]). B2 connects every fiber satisfying x1:2(iii1:2)> 0,
∀iii1:2.

Hara et al. [81] gave a proof of this theorem. This theorem can also be proved
by the distance-reducing argument. However, the proof is complicated and omitted
here. Refer to [81] for details.

It is also possible to extend the argument to the model with three dummy
variables; that is, K = 3 and I1 = I2 = I3 = 2. In this case ttt3 is written as

ttt3 :=
{

x0(1), x0k(11)+ 2x0k(12), x1:3(iii1:3), ik = 1,2, k = 1,2,3
}
.

Because x0(1) = x0k(11)+ x0k(12), a table sharing ttt is equivalent to a table sharing

{
x0(1), x0k(11), x0k(12), x1:3(iii1:3), ik = 1,2, k = 1,2,3

}
.

Therefore a move zzz = (z(iii)) satisfies

z1(1) = 0, z0k(11) = 0, z0k(12) = 0, z1:3(iii1:3) = 0, ik = 1,2. (13.8)
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Theorem 13.3. Assume that I1 = I2 = I3 = 2. Then B3 connects every fiber
satisfying x1:3(iii1:3)> 0, ∀i1, i2, i3.

Chen et al. [35] gave an algebraic proof for this theorem. Here we give another
proof of the theorem by the distance-reducing argument.

Proof. Let xxx,yyy (yyy �= xxx) be two tables in the same fiber Fttt3 and let zzz = yyy− xxx.
From (13.8), zzz012(iii0:2 | i0 = 1) = {z012(1i1i2),(i1, i2) ∈ {1,2}×{1,2}} satisfies

zzz012(1, i1, i2) =
z012(111) z012(112)
z012(121) z012(122)

=
0 0
0 0

or
a −a

−a a

for a �= 0.

Case 1. Suppose that

zzz012(1i1i2) =
0 0
0 0

.

Without loss of generality, we can assume that z(1111)> 0. This implies that

z(1112)< 0, z(2112)> 0, z(2111)< 0.

Because z03(11) = 0, there exist i1 and i2 such that (i1, i2) �= (1,1),

z(1i1i21)< 0, z(2i1i21)> 0.

Then
z(1i1i22)> 0, z(2i1i22)< 0

from the assumption. Let

zzz0 = (1111)(1i1i22)(2i1i21)(2112)− (1112)(1i1i21)(2i1i22)(2111) ∈ B3.

Then xxx− zzz0 ∈ Fttt or yyy+ zzz0 ∈ Fttt and the distance is reduced by eight.

Case 2. The case that

zzz012(1i1i2) =
a −a

−a a

for a > 0.
Without loss of generality we can assume that z(1111)> 0 and z(2111)< 0.

Case 2-1. The case that z(1121)< 0, z(1211)< 0, and z(1221)> 0.
This assumption implies that z(2121)> 0, z(2211)> 0, and z(2221)< 0,

z(1111) z(1121)
z(1211) z(1221)
z(2111) z(2121)
z(2211) z(2221)

=

+ −
− +

− +

+ −
.
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Define a move zzz2 by

zzz2 = (1121)(1211)(2111)(2221)− (1111)(1221)(2121)(2211)∈ B3.

Then xxx− zzz0 ∈ Fttt or yyy+ zzz0 ∈ Fttt and the distance is reduced by eight.

Case 2-2. The case that z(1121)< 0, z(1211)< 0, and z(1221) = 0.
This assumption implies that z(2121)> 0, z(2211)> 0, and z(2221) = 0,

z(1111) z(1121)
z(1211) z(1221)
z(2111) z(2121)
z(2211) z(2221)

=

+ −
− 0
− +

+ 0

.

Then the sign patterns of i3 = 1 slices of xxx and yyy satisfy either

x(1111) x(1121)
x(1211) x(1221)
x(2111) x(2121)
x(2211) x(2221)

−
y(1111) y(1121)
y(1211) y(1221)
y(2111) y(2121)
y(2211) y(2221)

=

+ 0+
0+ +

0+ +

+ 0+

−
0+ +

+ +

+ 0+
0+ 0+

(13.9)

or
x(1111) x(1121)
x(1211) x(1221)
x(2111) x(2121)
x(2211) x(2221)

−
y(1111) y(1121)
y(1211) y(1221)
y(2111) y(2121)
y(2211) y(2221)

=

+ 0+
0+ 0+
0+ +

+ +

−
0+ +

+ 0+
+ 0+

0+ +

, (13.10)

where 0+ denotes that the cell count is nonnegative. In the case of (13.9), we can
apply zzz2 to xxx and the distance is reduced by four. In the case of (13.10), we can
apply −zzz2 to yyy and the distance is reduced by four.

More generally, if zzz has either of the following patterns of signs,

z(i01i2i3) z(i01i′2i′3)
z(i02i2i3) z(i02i′2i′3)
z(i′01i2i3) z(i′01i′2i′3)
z(i′02i2i3) z(i′02i′2i′3)

=

+ −
− 0
− +

+ 0

,

+ 0
− +

− 0
+ −

or

+ −
0 +

− +

0 −

for i0 �= i′0 and (i2, i3) �= (i′2, i
′
3), we can show that the distance is reduced by a move

in B3 in the same way.

Case 2-3. In the case where

z(i0i11i3) z(i0i′11i′3)
z(i0i12i3) z(i0i′12i′3)
z(i′0i11i3) z(i′0i′11i′3)
z(i′0i12i3) z(i′0i′12i′3)

=

+ −
− 0
− +

+ 0

,

+ 0
− +

− 0
+ −

or

+ −
0 +

− +

0 −
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for i0 �= i′0 and (i1, i3) �= (i′1, i
′
3), the distance is reduced by a move in B3 in the same

way as Case 2-2.

Case 2-4. In the case where z(1121)< 0, z(1211)≥ 0, and z(1221)≥ 0,

z(1111) z(1121)
z(1211) z(1221)
z(2111) z(2121)
z(2211) z(2221)

=

+ −
0+ 0+
− +

0− 0−
.

We have z(1212)< 0, because z012(121)< 0. If z(1112)> 0, we have

z(1112) z(1121)
z(1212) z(1221)
z(2112) z(2121)
z(2212) z(2221)

=

+ −
− 0+
− +

+ 0−
.

Then in a similar way as in Cases 2-1 and 2-2, we can reduce the distance by a move

zzz3 = (1112)(1221)(2121)(2212)− (1121)(1212)(2112)(2221)∈ B3.

If z(1222)> 0, we have

z(1111) z(1121)
z(1212) z(1222)
z(2111) z(2121)
z(2212) z(2222)

=

+ −
− 0+
− +

+ 0−
,

and we can reduce the distance by a move

zzz3 = (1111)(1222)(2121)(2212)− (1121)(1212)(2111)(2222)∈ B3

in a similar way.
We assume that z(1112) ≤ 0 and z(1222) ≤ 0. Because z03(12) = 0, we have
z(1122)> 0 and

z(1122) z(1121)
z(1212) z(1211)
z(2122) z(2121)
z(2212) z(2211)

=

+ −
− 0+
− +

+ 0−
.

Then we can reduce the distance by at least four by a move

zzz4 = (1122)(1211)(2121)(2212)− (1121)(1212)(2122)(2211).

In the case where z(1121)≥ 0, z(1211)< 0 and z(1221)≥ 0, the proof is similar.
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Case 2-5. In the case where z(1121)< 0, z(1211)≥ 0, and z(1221)< 0:
because z012(121) < 0 and z012(122) > 0, we have z(1212) < 0, and z(1222) > 0
and

z(1111) z(1121)
z(1212) z(1222)
z(2111) z(2121)
z(2212) z(2222)

=

+ −
− +

− +

+ −
.

Hence we can reduce the distance by eight by a move

zzz5 = (1111)(1222)(2121)(2212)− (1121)(1212)(2111)(2222).

In the case where z(1121)≥ 0, z(1211)< 0, and z(1221)< 0, the proof is similar.

Case 2-6. In the case where z(1121)< 0, z(1211)< 0, and z(1221)< 0:
because z012(122)> 0, we have z(1222)> 0. If z(1122)≤ 0 or z(1212)≤ 0,

z(1111) z(1122)
z(1211) z(1222)
z(2111) z(2122)
z(2211) z(2222)

=

+ −
− +

− +

+ −
or

z(1111) z(1121)
z(1212) z(1222)
z(2111) z(2121)
z(2212) z(2222)

=

+ −
− +

− +

+ −
.

we can reduce the distance by four by

zzz6a = (1111)(1222)(2122)(2211)− (1121)(1212)(2111)(2222)∈ B3

or

zzz6b = (1111)(1222)(2121)(2212)− (1121)(1212)(2111)(2222)∈ B3.

Assume that z(1122)> 0 and z(1212)> 0. Because z03(12) = 0, we have z(1112)<
0 and

z(1111) z(1121)
z(1112) z(1122)
z(2111) z(2121)
z(2112) z(2122)

=

+ −
− +

− +

+ −
.

Then we can reduce the distance by eight by a move

zzz6c = (1111)(1122)(2121)(2112)− (1121)(1112)(2111)(2122)∈ B3. ��

We conjecture that for any K the set of moves BK connects every fiber with
positive response marginals for the logistic regression with K covariates. However,
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the theoretical proof seems to be difficult at this point. Recently Kashimura et al.
[94] showed that it is impossible to extend the proof of Theorem 13.2 given in Hara
et al. [81] to the model with K > 2 covariates.

13.3 Numerical Examples

13.3.1 Exact Tests of Logistic Regression Model

Table 13.2 refers to coronary heart disease incidence in Framingham, Massachusetts
[2, 41]. A sample of male residents, aged 40 through 50, were classified on blood
pressure and serum cholesterol concentration. In the (1,1) cell 2/53 means that there
are 53 cases, 2 of whom exhibited heart disease. We examine the goodness-of-fit of
the model (13.6) with K = 2,

log
p(iii | i0 = 1)

1− p(iii | i0 = 1)
= β0 +β1i1 +β2i2, (13.11)

where I1 = 7 and I2 = 8. We first test the null hypotheses Hβ1
: β1 = 0 and Hβ2

: β2 =
0 versus (13.11) using the (twice log) likelihood ratio statistics Lβ1

and Lβ2
. Then

we have Lβ1
= 18.09 and Lβ2

= 22.56 and the asymptotic p-values are 2.1× 10−5

and 2.0×10−6, respectively, from the asymptotic distribution χ2
1 . We estimated the

exact distribution of Lβ1
and Lβ2

via MCMC with the sets of moves B1 and B∗
1

defined in Sect. 13.1.
Figures 13.1 and 13.2 represent histograms of sampling distributions of Lβ1

and
Lβ2

. The solid lines in the figures represent the density function of the asymptotic
chi-square distribution with degree of freedom one. The estimated p-values and
their standard errors are essentially 0 for all cases. Therefore both Hβ1

and Hβ2
are

rejected. We can see from the figures that there is almost no difference between two
histograms computed with B1 and B∗

1 .

Table 13.2 Data on coronary heart disease incidence

Serum cholesterol (mg/100ml)

1 2 3 4 5 6 7Blood
pressure < 200 200–209 210–219 220–244 245–259 260–284 > 284

1 < 117 2/53 0/21 0/15 0/20 0/14 1/22 0/11
2 117–126 0/66 2/27 1/25 8/69 0/24 5/22 1/19
3 127–136 2/59 0/34 2/21 2/83 0/33 2/26 4/28
4 137–146 1/65 0/19 0/26 6/81 3/23 2/34 4/23
5 147–156 2/37 0/16 0/6 3/29 2/19 4/16 1/16
6 157–166 1/13 0/10 0/11 1/15 0/11 2/13 4/12
7 167–186 3/21 0/5 0/11 2/27 2/5 6/16 3/14
8 > 186 1/5 0/1 3/6 1/10 1/7 1/7 1/7

Source : Cornfield [41]
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Fig. 13.1 Histograms of Lβ1
via MCMC with B1 and B∗

1 (a) A histogram with B1
(b) A histogram with B∗
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Fig. 13.2 Histograms of Lβ2
via MCMC with B1 and B∗

1 (a) A histogram with B1
(b) A histogram with B∗

1

Next we set (13.11) as the null hypothesis and test it against the following
ANOVA type logit model,

log
p(iii)

1− p(iii)
= μ +α1,i1 +α2,i2 , (13.12)

where ∑I1
i1=1 α1,i1 = 0 and ∑I2

i2=1 α2,i2 = 0 by likelihood ratio statistic L. The value
of L is 13.08 and the asymptotic p-value is 0.2884 from the asymptotic distribution
χ2

11. We computed the exact distribution of L via MCMC with B2. As an extension
of B∗

1 in Theorem 13.1 to the bivariate model (13.6), we define B∗
2 by the set of

moves
zzz = eeei11i11 − eeei21i22 − eeei31i32 + eeei41i42
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Fig. 13.3 Histograms of L via MCMC with B2 and B∗
2 (a) A histogram with B2 (b) A histogram

with B∗
2

satisfying (i11, i12)− (i21, i22) = (i31, i32)− (i41, i42) is either of (±1,0), (0,±1),
(±1,±1), or (±1,∓1). We also estimated the exact distribution of L with B∗

2 .
Figure 13.3 represents histograms of L computed with B2 and B∗

2 . The estimated
p-value and its standard error with B2 are 0.2703 and 0.0292, respectively. Those
with B∗

2 are 0.2977 and 0.0252, respectively. Therefore the model (13.6) is accepted
in both tests.

The p-values estimated with B2 and B∗
2 are close and there is little difference

between the two histograms. From these results of the experiment, B∗
2 is also

expected to connect every fiber with positive response variable marginals. However,
the proof has not been given at this point.

13.4 Connecting Zero-One Tables with Graver Basis

In some practical problems, the cell counts have upper bounds (e.g., Rapallo and
Yoshida [126]). In this section we consider the case where cell counts are restricted
to be either zero or one. The most common example is the Rasch model [127]
used in the item response theory. The Rasch model can be interpreted as a logistic
regression, where the number of trials is just one for each combination of covariates.

The following theorem is a basic fact on the connectivity of fibers with a zero-one
restriction for the model with the configuration A.

Proposition 13.2 (Hara and Takemura [77]). Let B0 denote the set of square-
free moves of the Graver basis BGR of IA. Then B0 is strongly distance reducing
for tables of the model corresponding to IA with the zero-one restriction.

Proof. Let xxx, yyy be two zero-one tables of the same fiber. They are connected by a
conformal sum of primitive moves

yyy = xxx+ zzz1 + · · ·+ zzzK . (13.13)
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Because there is no cancellation of signs on the right-hand side, once an entry
greater than or equal to 2 appears in an intermediate sum of the right-hand side,
it cannot be canceled. Therefore it follows that xxx+ zzz1 + · · ·+ zzzk has zero-one entries
for k = 1, . . . ,K and zzz1, . . . ,zzzK ∈B0. There are no sign cancellations in (13.13), thus
zzz1, . . . ,zzzK can be added to xxx in any order and −zzz1, . . . ,−zzzK can be added to yyy in any
order. Therefore B0 is strongly distance reducing. ��

13.5 Rasch Model

The Rasch model has been extensively studied and practically used for evaluating
educational and psychological tests. Suppose that I1 persons take a test with I2

dichotomous questions. Let xi j ∈ {0,1} be a response to the jth question of the
ith person. Hence the I1 × I2 table xxx = {xi j} is considered as a two-way contingency
table with zero-one entries. Assume that each xi j is independent. The Rasch model
is expressed as

P(xi j = 1) =
exp(αi −β j)

1+ exp(αi −β j)
, (13.14)

where αi is an individual’s latent ability parameter and β j is an item’s difficulty
parameter. Then the set of row sums xi+ = ∑J

j=1 xi j and column sums x+ j = ∑I
i=1 xi j

is a sufficient statistic for αi and β j.
Many inference procedures have been developed (e.g., Glas and Verhelst [65])

and most of them rely on asymptotic theory. However, as Rasch [127] pointed out, a
sufficiently large sample size is not necessarily expected in practice for this problem
and Rasch [127] proposed using an exact testing procedure.

The conditional distribution of zero-one tables given person scores and item
totals is easily shown to be uniform. In order to implement an exact test for the
Rasch model via the Markov basis technique, we need a set of moves that connects
every fiber of two-way zero-one tables with fixed row and column sums. It is easy
to show that the set of basic moves of the two-way complete independence model

i i′

j 1 −1
j′ −1 1

connects every fiber of zero-one tables with fixed row and column sums (e.g., Ryser
[130]). Many Monte Carlo procedures via the Markov basis technique to compute
distribution of test statistics to test the goodness-of-fit of the Rasch model have been
proposed (e.g., Besag and Clifford [24], Ponocny [122], Cobb and Chen [38]). Chen
and Small [36] provided a computationally more efficient Monte Carlo procedure
for implementing exact tests by using sequential importance sampling.
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13.6 Many-Facet Rasch Model

The many-facet Rasch model is an extension of the Rasch model to multiple items
and polytomous responses (e.g., Linacre [100]). Suppose that I1 articles are rated by
I2 reviewers from I3 aspects on the grade of I4 scales from 0 to I4−1. x(i1i2i3i4) = 1
if the reviewer i2 rates the article i1 as the i4th grade from the aspect i3 and otherwise
x(i1i2i3i4) = 0. Then xxx = {x(i1i2i3i4)} is considered as an I1 × I2 × I3 × I4 zero-one
table. We note that xxx satisfies x123(i1i2i3) = ∑I4−1

i4=0 x(i1i2i3i4) = 1 for all i1, i2, and i3.
Then the three-facet Rasch model for xxx is expressed as

P(xi1i2i3i4 = 1) =
exp
[
i4(βi1 −βi2 −βi3)−βi4

]
∑I4−1

i4=0 exp
[
i4(βi1 −βi2 −βi3)−βi4

] . (13.15)

In general, the V -facet Rasch model is defined as follows. Let xxx = {x(iii)},
iii = (i1, . . . , iV+1) be an I1 × ·· · × IV+1 zero-one table. Assume that IV+1 =
{0, . . . , IV+1 − 1} and that xxx satisfies

x(iii{1,...,V}) =
IV+1−1

∑
iV+1=0

x(iii) = 1.

Then the V -facet Rasch model is expressed as

P(x(iii) = 1) =
exp
[
iV+1(βi1 −βi2 − . . .−βiV )−βiV+1

]
∑IV+1−1

iV+1=0 exp
[
iV+1(βi1 −βi2 − . . .−βiV )−βiV+1

] . (13.16)

When V = 2, I3 = 2, and βi3 = const for i3 ∈ {0,1}, the model coincides with the
Rasch model (13.14). Define ttt0 by

ttt0 =

{
IV+1−1

∑
iV+1=0

iV+1 · x(iii{v,V+1})

∣∣∣∣∣ iii{v,V+1} ∈ I{v,V+1}, v = 1, . . . ,V

}
.

Then a sufficient statistic ttt is given by

ttt = ttt0 ∪{x(iV+1) | iV+1 ∈ IV+1}.

When βiV+1 is constant for iV+1 ∈ IV+1, ttt is given by

ttt = ttt0 ∪{x+},
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Table 13.3 The number of square-free moves of the Graver basis for the
three-way complete independence model

Degree of moves

I1 × I2 × I3 2 3 4 5 6

2×2×2 12 0 0 0 0
2×2×3 33 48 0 0 0
2×2×4 64 192 96 0 0
2×2×5 105 480 480 0 0
2×3×3 90 480 396 0 0
2×3×4 174 1,632 5,436 1,152 0
2×3×5 285 3,840 23,220 33,120 720
3×3×3 243 3,438 19,008 12,312 0

where x+ = ∑iii∈I x(iii). In the case of the three-facet Rasch model (13.15), ttt is
expressed as follows,

ttt =

{
I4−1

∑
i4=0

i4xi1++i4 , i1 ∈ I1,
I4−1

∑
i4=0

i4x+i2+i4 , i2 ∈ I2,

I4−1

∑
i4=0

i4x++i3i4 , i3 ∈ I3, x+++i4 , i4 ∈ I4

}
.

In order to implement exact tests for the many-facet Rasch model, we need a
set of moves that connects any fiber F̃ttt of zero-one tables. In general, however, it
is not easy to derive such a set of moves. As seen in the previous section, in the
case of the Rasch model (13.14), the set of basic moves for the two-way complete
independence model connects any fiber. For the many-facet Rasch model (13.16),
however, the basic moves do not necessarily connect all fibers. Consider the case
where V = 3 and I4 = 2. In this case, ttt0 is written as

ttt0 = {xi1++1,x+i2+1,x++i31 | iv ∈ Iv,v = 1,2,3}.

Because x(i4) = ∑iv∈Iv x(i{v,4}) for v = 1,2,3, ttt0 is a sufficient statistic. ttt0 is
equivalent to a sufficient statistic of three-way complete independence model for
the (i4 = 1)-slice of xxx. From Proposition 13.2, the set of square-free moves of the
Graver basis for the three-way complete independence model connects any fiber
F̃ttt . Table 13.3 shows the number of square-free moves of the Graver basis for the
I1 × I2 × I3 three-way complete independence model computed via 4ti2 [1]. We see
that when the number of levels is greater than two, the sets include moves with
degree greater than two. This fact does not necessarily imply that higher degree
moves are required to connect every fiber for the three-way complete independence
model. However, we can give an example which shows that the degree 2 moves do
not connect all fibers of the three-way complete independence model.
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Example 13.2 (A fiber for 3 × 3 × 3 three-way complete independence model).
Consider the following two zero-one tables xxx and yyy in the same fiber of the three-
way complete independence model.

xxx :=

k
1 2 3

1 0 0 0
j 2 0 0 1

3 0 0 1
i = 1

0 1 1
0 1 1
1 1 1
i = 2

0 0 0
0 0 1
1 1 1
i = 3

yyy :=

k
1 2 3

1 0 0 0
j 2 0 0 0

3 0 1 1
i = 1

0 0 1
1 1 1
1 1 1
i = 2

0 0 1
0 0 1
0 1 1
i = 3

.

The difference of the two tables is

zzz =
0 0 0
0 0 1
0 −1 0

0 1 0
−1 0 0
0 0 0

0 0 −1
0 0 0
1 0 0

and we can easily check that zzz is a move for the three-way complete independence
model.

Let Δ̄ be the set of degenerate variables defined in Chap. 8. Then degree 2 moves
for the three-way complete independence model are classified into the following
four patterns.

1. Δ̄ = {1,2,3} :

i3 i′3
i2 1 0
i′2 0 −1

i1

,

i3 i′3
i2 −1 0
i′2 0 1

i′1

.

2. Δ̄ = {1,2} :

i3 i′3
i2 1 0
i′2 −1 0

i1

,

i3 i′3
i2 0 −1
i′2 0 1

i′1

.

3. Δ̄ = {1,3} :

i3 i′3
i2 1 −1
i′2 0 0

i1

,

i3 i′3
i2 −1 1
i′2 0 0

i′1

.
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4. Δ̄ = {2,3} :

i3 i′3
i2 1 −1
i′2 −1 1

i1

.

However, it is easy to check that if we apply any move in this class to xxx or yyy, −1
or 2 has to appear. Therefore we cannot apply any degree 2 moves to either xxx or yyy.
Hence a degree 3 move is required to connect this fiber.

This example shows that the set of basic moves does not necessarily connect
every zero-one fiber for the many-facet Rasch model. As seen in Table 13.3, the
number of square-free moves in the Graver basis is too large even for three-way
tables. When the number of cells is greater than 100, it seems to be difficult to com-
pute the Graver basis via 4ti2 in a practical length of time. Hence implementations
of exact tests by using the Graver basis are limited to very small models at this point.

13.7 Latin Squares and Zero-One Tables
for No-Three-Factor Interaction Models

Zero-one tables also appear quite often in the form of incidence matrices for
combinatorial problems. Here as an example we consider Latin squares. A Latin
square is an n×n table filled with n different symbols in such a way that each symbol
occurs exactly once in each row and column. A 3× 3 Latin square is written as

1 2 3
2 3 1
3 1 2

. (13.17)

When the symbols of an n× n Latin square are considered as co-ordinates of the
third axis (sometimes called the orthogonal array representation of a Latin square),
it is a particular element of a fiber for the n×n×n no-three-factor interaction model
with all two-dimensional marginals (line sums) equal to 1. For example, the 3× 3
Latin square (13.17) is considered as a 3× 3× 3 zero-one table xxx = {xi1i2i3},

xxx =

i2
1 0 0

i1 0 0 1
0 1 0

,

i2
0 1 0

i1 1 0 0
0 0 1

,

i2
0 0 1

i1 0 1 0
1 0 0

i3 = 1 i3 = 2 i3 = 3

(13.18)

with xi1i2+ = 1, x+i2i3 = 1, xi1+i3 = 1 for all i1, i2, and i3. One of the reasons to
consider a Markov basis for Latin squares is to generate a Latin square randomly.
[60] advocated choosing a Latin square randomly from the set of Latin squares, and
[92] gave a Markov basis for the set of n× n Latin squares.
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Because the set of Latin squares is just a particular fiber, it may be the case that a
minimal set of moves connecting all Latin squares is smaller than the set of moves
connecting all zero-one tables. This is indeed the case as we show for the simple
case of n = 3. We first present a connectivity result for 3× 3× 3 zero-one tables
with all line sums fixed.

Let zzz = {zi jk}i, j,k=1,2,3 be a move for 3×3×3 no-three-factor-interaction model.
From Chap. 9 the minimal Markov basis consists of basic moves such as

zzz =
1 −1 0
−1 1 0
0 0 0

−1 1 0
1 −1 0
0 0 0

0 0 0
0 0 0
0 0 0

(13.19)

and degree 6 moves such as

zzz =
1 −1 0
0 1 −1
−1 0 1

−1 1 0
0 −1 1
1 0 −1

0 0 0
0 0 0
0 0 0

. (13.20)

However, these moves do not connect zero-one tables of the 3×3×3 no-three-factor
interaction model. We need the following type of degree 9 move, which corresponds
to the difference of two Latin squares:

zzz =
1 −1 0
0 1 −1
−1 0 1

0 1 −1
−1 0 1
1 −1 0

−1 0 1
1 −1 0
0 1 −1

. (13.21)

Proposition 13.3. The set of basic moves (13.19), degree 6 moves (13.20), and
degree 9 moves (13.21) forms a Markov basis for 3× 3× 3 zero-one tables for the
no-three-factor interaction model.

Proof. Consider any line sum, such as 0 = z+11 = z111 + z211 + z311 of a move zzz.
If (z111,z211,z311) �= (0,0,0), then we easily see that {z111,z211,z311} = {−1,0,1}.
By a similar consideration as in Sect. 9.2, each i- or j- or k-slice is either a loop of
degree 2 or loop of degree 3, such as

1 −1 0
−1 1 0
0 0 0

or
1 −1 0
0 1 −1
−1 0 1

. (13.22)

Now we consider two cases: (1) there exists a slice with a loop of degree 2, and (2)
all slices are loops of degree 3.

Case 1. Without loss of generality, we can assume that the (i = 1)-slice of zzz is the
loop of degree 2 in (13.22). Then we can further assume that z211 =−1 and z311 = 0.
Now suppose that z222 = −1. If z212 = 1 or z221 = 1, we can reduce |zzz| by a basic
move. This implies z212 = z221 = 0. But then z213 = z223 = 1 and this contradicts the
pattern of {z213,z223,z233}= {−1,0,1}.
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By the above consideration we have z222 = 0 and z322 = −1. By a similar
consideration for the cells zi12 and zi21, i = 1,2,3, we easily see that zzz is of the
form

1 −1 0
−1 1 0
0 0 0

−1 1 0
0 0 0
1 −1 0

0 0 0
1 −1 0
−1 1 0

,

which is a degree 6 move.

Case 2. It is easily seen that the only case where degree 6 moves cannot be applied
is of the form of the move of degree 9 in (13.21). This proves that connectivity is
guaranteed if we add degree 9 moves. ��

We also want to show that degree 9 moves are needed for connectivity. Consider

xxx =
1 0 1
0 1 0
0 0 1

0 1 0
0 1 1
1 0 0

0 0 1
1 0 0
1 1 0

.

By a simple program it is easily checked that if we apply any basic move or any
move of degree 6 to xxx, −1 or 2 has to appear. Hence degree 9 moves are required to
connect zero-one tables.

Now consider 3×3 Latin squares (13.18). It is well known that there is only one
isotopy class of 3×3 Latin squares (Chap. III of [39]); that is, all 3×3 Latin squares
are connected by the action of the direct product S3×S3×S3 of the symmetric group
S3 which is generated by transpositions, and a transposition corresponds to a move
of degree 6 in (13.20). Therefore, the set of 3× 3 Latin squares in the orthogonal
array representation is connected by the set of moves of degree 6 in (13.20). In view
of Proposition 13.3, we see that we do not need basic moves or degree 9 moves for
connecting 3× 3 Latin squares.

There are two isotopy classes for 4× 4 Latin squares (1.18 of III.1.3 of [39])
and representative elements of these two classes are connected by a basic move.
Transposition of two levels for a factor corresponds to a degree 8 move of the
following form.

zzz =

1 −1 0 0
0 1 −1 0
0 0 1 −1
−1 0 0 1

−1 1 0 0
0 −1 1 0
0 0 −1 1
1 0 0 −1

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

.

Therefore the set of 4× 4 Latin squares is connected by the set of basic moves and
moves of degree 8 of the above form. We can apply a similar consideration to the
celebrated result of 22 isotopy classes of 6× 6 Latin squares derived by [60].



Part IV
Some Other Topics of Algebraic Statistics

In the last part of this book, we discuss some other topics of algebraic statistics.
In Chap. 14 we explain a relation between the Markov basis methodology and

disclosure limitation problem. In particular we show that the technique of swapping
records for the disclosure limitation problem is closely related to the Markov basis
and results on the Markov basis for hierarchical models can be applied to the
disclosure limitation problem.

In Chap. 15 we give a brief survey on the use of the Gröbner basis for the design
of experiments, mainly based on recent results of the authors. As we discussed in the
preface to this book, application of the Gröbner basis to the design of experiments
was one of the two sources for the field of algebraic statistics.

Finally in Chap. 16 we explain how we can run a Markov chain with a lattice
basis, when a Markov basis is not available, namely when it is not possible to
compute a Markov basis by an algebraic algorithm within a practical amount of
time. As we saw in Part III of this book, Markov bases tend to be complicated
except for some nice models, such as decomposable models of contingency tables.
Even if Markov bases are not available, we can run a Markov chain with a lattice
basis, which is much easier to compute. With many numerical examples, we confirm
that a Markov chain with a lattice basis works well.



Chapter 14
Disclosure Limitation Problem and Markov
Basis

14.1 Swapping with Some Marginals Fixed

Consider a microdata set where all variables of the data set have already been
categorized. Suppose that a statistical agency is considering granting access to
such a microdata set to some researchers and that the data set contains some rare
and risky records. Swapping of observations is one of the useful techniques of
protecting these records (Dalenius and Reiss [44], Schlorer [133], Takemura [141]).
If some marginals from the data set have already been published, it is desirable
to perform the swapping in such a way that the swapping does not disturb the
published marginal frequencies. Therefore it is important to determine whether it
is possible to perform swapping of risky records under the restriction that some
marginals are fixed.

Here we give an illustration with a simple hypothetical example. Suppose that a
microdata set contains the following two records.

Sex Age Occupation Residence
Male 55 Nurse Tokyo

Female 50 Police officer Tokyo

If we swap “occupation” between these two records, we obtain

Sex Age Occupation Residence
Male 55 Police officer Tokyo

Female 50 Nurse Tokyo
.

By this swapping the one-dimensional marginals are preserved, but the two-
dimensional marginal of {age, occupation} is disturbed. If we swap both age and
occupation we obtain

Sex Age Occupation Residence
Male 50 Police officer Tokyo

Female 55 Nurse Tokyo

S. Aoki et al., Markov Bases in Algebraic Statistics, Springer Series
in Statistics 199, DOI 10.1007/978-1-4614-3719-2 14,
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and the {age, occupation}-marginal is also preserved. This simple example shows
that the observations can be freely swapped if we fix only the one-dimensional
marginals, but observations have to be swapped in two variables together to keep
two-dimensional marginals fixed.

A categorized microdata set is considered as a contingency table. For example,
two records in the above example correspond to two frequencies in the following
three-way subtable with residence = Tokyo:

Police officer Nurse
Male Female Male Female

50 1 0 0 0
55 0 0 0 1

. (14.1)

Swapping “occupation” is equivalent to adding an integer array

Police officer Nurse
Male Female Male Female

50 −1 0 1 0
55 0 1 0 −1

. (14.2)

We note that this is a move for the three-way complete independence model.
Therefore all one-dimensional marginals are preserved. In this way swapping under
the condition of fixed marginals is equivalent to adding a move for the model where
the marginals are in the sufficient statistic.

A swapping preserving all two-dimensional marginals in the above example
corresponds to adding a move of a no-three-factor interaction model as discussed
in Chap. 9. As shown in Chap. 9, there is no degree 2 move for the no-three-factor
interaction model and the minimum degree of moves of the model is four. This
shows that there is no swapping between these two records and at least four records
are required to preserve all two-dimensional marginals.

Therefore swappability of the given two records such that a given set of marginals
is fixed depends on the existence of degree 2 moves in the corresponding model.
In the following sections we give some necessary and sufficient conditions for
swappability of two given records.

14.2 E-Swapping

Consider an n×m microdata set XXX consisting of observations on m variables for
n individuals (records). As mentioned above we assume that the variables have
already been categorized. Therefore we can identify the microdata set with an
m-way contingency table, if we ignore the labels of the individuals. If x(iii) = 1,
we say that the record falling into cell iii is a sample unique record.
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Let E be a nonempty proper subset of the set of variables Δ = {1, . . . ,m}. For two
records of xxx falling into cells iii = (iiiE , iiiEC) and jjj = ( jjjE , jjjEC), iii �= jjj, swapping of iii
and jjj with respect to E ⊂ Δ , or more simply E-swapping, means that these records
are changed as

{(iiiE , iiiEC),( jjjE , jjjEC)}→ {(iiiE , jjjEC),( jjjE , iiiEC)}=: (iii′, jjj′). (14.3)

Note that E-swapping is equivalent to EC-swapping. Also note that if iiiE = iii′E or
iiiEC = iii′EC , then swapping in (14.3) results in the same set of records. In the example
of the previous section, swapping “residence” does not make any difference.
Therefore (14.3) results in a different set of records if and only if

iiiE �= iii′E and iiiEC �= iii′EC . (14.4)

From now on we say that E-swapping is effective if it results in a different set of
records.

Proposition 14.1. For a subset D ⊂ Δ , D-marginals {xD(iiiD) | iiiD ∈ ID} are fixed
by E-swapping if and only if one of the following four conditions holds.

(i) D ⊂ E, (ii) D ⊂ EC, (iii) iiiE∩D = iii′E∩D, (iv) iiiEC∩D = iii′EC∩D. (14.5)

Proof. It is obvious that if one of the conditions holds, then D-marginals are not
altered. On the other hand assume that none of the four conditions holds. Let
D1 = D ∩ E and D2 = D ∩ EC. These are nonempty because (i) and (ii) do not
hold. Furthermore iD1 �= jD1 and iD2 �= jD2 because (iii) and (iv) do not hold. Let
iD = (iD1 , iD2). Then xD(iiiD) = xD(iiiD1 , iiiD2) is decreased by 1 by this swapping and
this particular D-marginal changes. ��

14.3 Equivalence of Degree-Two Square-Free Move
of Markov Bases and Swapping of Two Records

As mentioned in Sect. 14.1, swapping records in a microdata set is equivalent to
applying a move to a contingency table xxx = {x(iii)}. It is intuitively clear that a
square-free move of degree 2 and swapping of observations of two records are
equivalent. However, there is at least a conceptual difference between them, because
a move is defined for a given set of marginals D whereas E-swapping is defined only
in terms of two records and a subset E .

Now we give a proof of this equivalence. An effective E-swapping in (14.3)
changes the cell frequencies of iii, jjj, iii′, and jjj′ into

x(iii)→ x(iii)−1, x( jjj)→ x( jjj)−1, x(iii′)→ x(iii′)+1, x( jjj′)→ x( jjj′)+1. (14.6)
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Hence if this E-swapping fixes all D-marginals, then the difference between the
post-swapped table and the pre-swapped table is a square-free move of degree 2
for D .

Next we show that any square-free move of degree 2 (14.6) for D can be
expressed by E-swapping (14.3) for some E ⊂ Δ . Write

iii = (i1, . . . , im), jjj = ( j1, . . . , jm), iii′ = (i′1, . . . , i
′
m), jjj = ( j′1, . . . , j′m).

We first show that {iδ , jδ }= {i′δ , j′δ} for 1≤ δ ≤m. Because
⋃

t Dt =Δ , there exists
t for any δ such that δ belongs to Dt . In the case where iiiDt = jjjDt

, two records of
xDt (iiiDt ) have to be preserved in iii′Dt

and jjj′Dt
. Hence iii′Dt

= jjj′Dt
= iiiDt = jjjDt

. On the
other hand if iiiDt �= jjjDt

, each one record of both xDt (iiiDt ) and xDt ( jjjDt
) has to be

preserved in {iii′Dt
, jjj′Dt

}, which implies {iiiDt , jjjDt
} = {iii′Dt

, jjj′Dt
}. Therefore we have

{iδ , jδ }= {i′δ , j′δ } for 1 ≤ δ ≤ m.
If we set

E = {δ | i′δ = jδ}= {δ | iδ = j′δ },
E satisfies (14.3). This completes the proof of the equivalence of E-swapping and a
square-free move of degree 2 for D .

14.4 Swappability Between Two Records

Consider two records in a categorized microdata set. In the following we recognize
the two records as a contingency table xxx = {x(iii)} in a degree 2 fiber that was
discussed in Sect. 8.3. Consider a swapping between these two records preserving
marginals in D = {D1, . . . ,Dr}. Note that if some variable has the same value
in two records, swapping or no swapping of the variable does not make any
difference. Therefore we should only look at variables taking different values in
two records. Let

Δ̄ = {δ | iδ �= i′δ} (14.7)

denote the set of nondegenerate variables defined in Sect. 8.3. Note that (14.4) holds
if and only if

E ∩ Δ̄ �= /0 and EC ∩ Δ̄ �= /0. (14.8)

Therefore E-swapping is effective if and only if E ∩ Δ̄ �= /0 and EC ∩ Δ̄ �= /0. In
particular Δ̄ has to contain at least two elements, because if Δ̄ has less than two
elements swapping between iii and jjj cannot result in a different set of records.

As an example, consider the hypothetical example of Sect. 14.1.

Sex Age Occupation Residence
Male 55 Nurse Tokyo

Female 50 Police officer Tokyo
(14.9)

Then Δ̄ = {1,2,3}. E = {2,3}= {age,occupation} results in an effective swapping.
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The following lemma says that the variables in Δ̄ ∩ D have to be swapped
simultaneously or otherwise stay together in order not to disturb D-marginals.

Lemma 14.1. An effective E-swapping fixes D-marginals if and only if Δ̄ ∩D ⊂ E
or Δ̄ ∩D ⊂ EC under (14.8).

Proof. We have to check that at least one of the four conditions in (14.5) holds if
and only if Δ̄ ∩D ⊂ E or Δ̄ ∩D ⊂ EC.

Assume that one of the four conditions in (14.5) holds. If D ⊂ E , then Δ̄ ∩D ⊂ E .
Similarly if D ⊂ EC, then Δ̄ ∩D ⊂ EC. Now suppose iE∩D = jE∩D. Then

/0 = Δ̄ ∩ (E ∩D) = (Δ̄ ∩D)∩E ⇒ Δ̄ ∩D ⊂ EC.

Similarly if iEC∩D = jEC∩D then Δ̄ ∩D ⊂ E .
Conversely assume that Δ̄ ∩D ⊂ E or Δ̄ ∩D ⊂ EC. In the former case Δ̄ ∩D∩

EC = /0 and this implies (iv) iEC∩D = jEC∩D. Similarly in the latter case (iii) iE∩D =
jE∩D holds. ��

In the above lemma, E is given. Now suppose that two records iii, jjj and a marginal
D are given and we are asked to find a nonempty proper subset E ⊂ Δ such
that E-swapping is effective and fixes D-marginals. As a simple consequence of
Lemma 14.1 we have the following lemma.

Lemma 14.2. Given two records iii, jjj and D ⊂ Δ , we can find E ⊂ Δ such that E-
swapping is effective and fixes D-marginals if and only if Δ̄ ∩DC �= /0 and |Δ̄ | ≥ 2.

Proof. If Δ̄ ∩DC �= /0 and |Δ̄ | ≥ 2, then choose s ∈ Δ̄ ∩DC and let E = {s} be a
one-element set. Then E satisfies the requirement.

If |Δ̄ | ≤ 1, there is no E-swapping resulting in a different set of records as
mentioned above. On the other hand if Δ̄ ∩DC = /0 or Δ̄ ⊂ D, then by Lemma 14.1
Δ̄ ⊂ E . But this contradicts EC ∩ Δ̄ �= /0 in (14.8) and there exists no E satisfying the
requirement. ��

Based on the above preparations we now consider the following problem. Let
two records iii, jjj and a set of marginals D = {D1, . . . ,Dr} be given. We are asked to
find E such that E-swapping fixes all marginals of D and results in a different set of
records.

Theorem 14.1 (Takemura and Hara [144]). Let G D be the independence graph
with respect to D and let G (Δ̄) denote the subgraph of G D induced by Δ̄ ⊂Δ . Given
two records iii, jjj and a generating class D , we can find E ⊂ Δ such that E-swapping
is effective and fixes all D-marginals, ∀D ∈ D , if and only if G (Δ̄ ) is not connected.

Proof. As discussed in Sect. 14.1 the variables δ and δ ′ belonging to some D ∈ D
either have to be swapped out simultaneously or stay together. It follows that any
variable in a connected component of G (Δ̄) has to be swapped out simultaneously or
stay together simultaneously. Therefore there exists no E ⊂ Δ such that E-swapping
is effective and fixes all D-marginals when G (Δ̄ ) is connected.
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Fig. 14.2 G(Δ̄)

Conversely assume that G (Δ̄) is not connected. Let γΔ̄ be a connected component
of GΔ̄ . Then for any two vertices {δ ,δ ′} such that δ ∈ γΔ̄ and δ ′ ∈ Δ̄ \ γΔ̄ there
exists no D ∈ D satisfying {δ ,δ ′} ⊂ D. Therefore if we set E = γΔ̄ , E-swapping is
effective and fixes all D-marginals. ��

This theorem is essentially equivalent to Theorem 8.2. Theorem 8.2 says that a
necessary and sufficient condition on degree 2 fibers to have more than one element
is that G (Δ̄) be disconnected. Having more than one element in a degree 2 fiber
means that it is possible to swap any two of the elements.

As an example consider D consisting of all two-element sets of Δ ; that is, all
two-dimensional marginals are fixed. Then G (D) is complete and hence G (Δ̄) is
also complete. In particular G (Δ̄) is connected and Theorem 14.1 says that we
cannot find an effective swapping fixing all two-dimensional marginals.

As an illustrative example again consider the table in (14.9). Suppose that we
want to fix the following set of two-dimensional marginals

D = {{1,4},{2,3},{2,4},{3,4}},
where 1= sex, 2 = age, 3= occupation, and 4= residence. In this case D is also the
set of edges of G D (Fig. 14.1). Then G (Δ̄) has the vertices 1,2,3, and only one edge
{2,3} (Fig. 14.2). Therefore G (Δ̄ ) is not connected. Again let E = {2,3}. We see
that E-swapping is effective and fixes all marginals in D . On the other hand if

D = {{1,2},{2,3},{3,4}},
then it is easy to see that G D is connected and no effective swapping is possible if
we fix all marginals for this D .

Let S D be the set of the minimal vertex separators of G D . Let adj(δ ), δ ∈ Δ
denote the set of vertices that are adjacent to δ . Define adj(A) for A⊂ Δ by adj(A) =⋃

δ∈A adj(δ )\A. Then we obtain the following lemma.

Lemma 14.3. G (Δ̄ ) is not connected if and only if there exist S ∈ S D and two
connected components γα and γβ of G D (Δ \ S) satisfying

S∩ Δ̄ = /0, γα ∩ Δ̄ �= /0, γβ ∩ Δ̄ �= /0. (14.10)
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Proof. Assume that G (Δ̄ ) is not connected. Let γΔ̄ ,1 and γΔ̄ ,2 be any two connected
components of G (Δ̄). For any pair of vertices (α,β ) such that α ∈ γΔ̄ ,1 and

β ∈ γΔ̄ ,2, adj(γΔ̄ ,1) is a (α,β )-separator (not necessarily minimal) in G D . Note

that adj(γΔ̄ ,1)∩ Δ̄ = /0. Hence there exists Sα ,β ∈ S D such that Sα ,β ⊂ adj(γΔ̄ ,1)

and Sα ,β ∩ Δ̄ = /0. Therefore there exists a minimal (α,β )-separator such that
Sα ,β ∩ Δ̄ = /0.

Because each of γΔ̄ ,1 and γΔ̄ ,2 is a connected component, Sα ,β satisfying Sα ,β ∩
Δ̄ = /0 also separates any pair of vertices in γΔ̄ ,1 and γΔ̄ ,2 other than (α,β ). Hence

Sα ,β separates γΔ̄ ,1 and γΔ̄ ,2 in G D . This implies that γΔ̄ ,1 and γΔ̄ ,2 belong to different

connected components of G D(Δ \ Sα ,β ). Therefore (14.10) is satisfied.
On the other hand if there exist S, γα , and γβ satisfying (14.10), it is obvious that

G (Δ̄) is not connected. ��
By the above lemma, we have the following corollary.

Corollary 14.1. Given two records iii, iii′ and a generating class D , we can find
E ⊂ Δ such that E-swapping is effective and fixes all D-marginals, ∀D ∈ D , if and
only if there exist S ∈ S D and two connected components γα and γβ of G D (Δ \ S)
satisfying (14.10); that is,

iiiS = iii′S, iiiγα �= iii′γα , iiiγβ �= iii′γβ
. (14.11)

Proof. Note that S∩ Δ̄ = /0 if and only if iiiS = iii′S. Similarly γα ∩ Δ̄ �= /0 if and only
if iiiγα �= iii′γα and γβ ∩ Δ̄ �= /0 if and only if iiiγβ �= iii′γβ

. Therefore the corollary follows
from Lemma 14.3. ��

14.5 Searching for Another Record for Swapping

So far we have considered some necessary and sufficient conditions for E-swapping
between two records iii, iii′ to be effective and fix D-marginals for general hierarchical
models. In this section we provide a simple algorithm to find another record that is
swappable for a particular sample unique record iii by using the results in the previous
section.

Given a particular record iii, by Corollary 14.1, we could scan through the
microdata set for another record jjj satisfying the conditions of Corollary 14.1.
Instead of checking the conditions of Corollary 14.1 for each jjj, we could first
construct the list S D of minimal vertex separators S and the connected components
γα , γβ of G D(Δ \S). Then for a particular triple (S,γα ,γβ ) we could check whether
there exists another record jjj satisfying (14.11) of Corollary 14.1. Actually it is
straightforward to check the existence of jjj satisfying (14.11). Because we require
iiiS = jjjS, we only need to look at the slice of the contingency table given the value
of iiiS. Then in this slice we look at the {iγα , iγβ }-marginal table. By the requirement
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i

j

α

βFig. 14.3 jjj swappable with iii
in a diagonal position

iiiγα �= jjjγα , iiiγβ �= jjjγβ
, we omit the “row” iiiγα and the “column” iiiγβ from the marginal

table. If the resulting table is nonempty, then we can find another record jjj in a
diagonal position to iii and we can swap observations in jjj and iii. See Fig. 14.3.

More precisely, for γα , γβ , S, write γα ,β = γα ∪ γβ ∪ S. Define a subtable
x̄xxγα,β (iii

′
γα,β

| iiiγα,β ) by

x̄xxγα,β (iii
′
γα,β

| iiiγα,β ) :=
{

x̄γα,β (iii
′
γα,β

| iiiγα,β )
}

=
{

xγα,β (iii
′
γα,β

) | iii′γα �= iiiγα , iii
′
γβ

�= iiiγβ , iii
′
S = iiiS

}
.

x̄xxγα,β (iii
′
γα,β

| iiiγα,β ) �= 000 denotes that there exists at least one positive count in

x̄xxγα,β (i
′
γα,β

| iγα,β ).

Lemma 14.4. There exists a record iii′ with iiiS = iii′S, iiiγα �= iii′γα , and iiiγβ �= iii′γβ
if and

only if x̄xxγα,β (iii
′
γα,β

| iiiγα,β ) �= 000.

The proof of this lemma is obvious and omitted. Therefore it remains to
compute the set of minimal vertex separators S D and the connected components
of G D (Δ \ S). Shiloach and Vishkin [138] proposed an algorithm for computing
connected components of a graph. On listing minimal vertex separators there exist
algorithms by Berry et al. [21] and Kloks and Kratsch [95]. The input of their
algorithms is G D . However, in our case generating class D is given in advance.
It may be possible to obtain more efficient algorithms if we also use the information
of D as the input.

The following algorithm searches for another record jjj that is swappable for a
sample unique record iii and swaps them if one exists.

Algorithm 14.1 (Finding jjj swappable for a given iii)
Input : xxx, D , S D , iii
Output : a post-swapped table xxx′ = {x′(iii)}
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begin
xxx′ ← xxx ;
for every S ∈ S D do
begin

compute connected components of G D(Δ \ S) ;
for every pair of connected components (γα ,γβ ) do
begin

if x̄xxγα,β (iii
′
γα,β

| iiiγα,β ) �= 000 then
begin

select a marginal cell iii′γα,β
such that x̄γα,β (iii

′
γα,β

| iiiγα,β ) �= 0 ;

select a cell jjj ∈ I such that jjjγα,β
= iii′γα,β

;
E ← γα ;
E-swapping between iii and jjj;
x′(iii)← x(iii)− 1;
x′( jjj)← x( jjj)− 1;
x′( jjjE , iiiEC)← x( jjjE , iiiEC)+ 1;
x′(iiiE , jjjEC)← x(iiiE , jjjEC)+ 1;
exit ;

end if
end for

end for
if xxx′ = xxx then iii is not swappable ;

end



Chapter 15
Gröbner Basis Techniques for Design
of Experiments

15.1 Design Ideals

Consider fractional factorial designs of m controllable factors. We assume that the
levels of each factor are coded as elements of a field k, which is a finite extension of
the field Q of rational numbers. In the original paper [120], only the case of k = Q

is considered. However, coding the levels of factors with more than two levels by
complex numbers is considered in [119]. We see it briefly in Sect. 15.4. This chapter
is mainly based on [18].

A fractional factorial design without replication is defined as a finite subset of
km. In the algebraic arguments, this subset is considered as the set of solutions
of polynomial equations, called an algebraic variety, and the set of polynomials
vanishing on all the solutions is called an ideal. This ideal, design ideal, is a key
item in this chapter.

Now we define design ideals. Let D be the full factorial design of m factors. We
call a (proper) subset F � D a fractional factorial design. Let k[x1, . . . ,xm] be the
polynomial ring of indeterminates x1, . . . ,xm with the coefficients in k. Then the set
of polynomials vanishing on the points of F

I(F ) = { f ∈ k[x1, . . . ,xm] | f (x1, . . . ,xm) = 0 for all (x1, . . . ,xm) ∈ F}
is the design ideal of F .

In this chapter, we suppose there are n runs (i.e., points) in a fractional factorial
design F ⊂D . A general method to derive a basis (i.e., a set of generators) of I(F )
is to make use of the algorithm for calculating the intersection of the ideals. By
definition, the design ideal of the design consisting of a single point, (a1, . . . ,am) ∈
km, is written as

〈x1 − a1, . . . ,xm − am〉 ⊂ k[x1, . . . ,xm].

Therefore the design ideal of the n-run design, F = {(ai1, . . . ,aim), i = 1, . . . ,n}, is
given as

I(F ) =
n⋂

i=1

〈x1 − ai1, . . . ,xm − aim〉. (15.1)

S. Aoki et al., Markov Bases in Algebraic Statistics, Springer Series
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To calculate the intersection of ideals, we can use the theory of Gröbner bases.
In fact, by introducing the indeterminates t1, . . . , tn and the polynomial ring
k[x1, . . . ,xm, t1, . . . , tn], (15.1) is written as

I(F ) = I∗ ∩ k[x1, . . . ,xm],

where

I∗ = 〈ti(x1 − ai1), . . . , ti(xm − aim), i = 1, . . . ,n, t1 + · · ·+ tn − 1〉

is an ideal of k[x1, . . . ,xm, t1, . . . , tn]. Therefore we can obtain a basis of I(F ) as the
reduced Gröbner basis of I∗ with respect to a term order satisfying {t1, . . . , tn} �
{x1, . . . ,xm}. This is an elimination theory, one of the important applications of
Gröbner bases we have seen in Sect. 3.4.

15.2 Identifiability of Polynomial Models and the Quotient
with Respect to the Design Ideal

As one of the merits of considering a design ideal, we consider the identifiability
or the confounding of polynomial models. To define these concepts, we revisit
a design matrix discussed in Chap. 11, where we defined a design matrix for the
two-level case in Definition 11.1 and the three-level case in Definition 11.2. We
extend these and give a general definition. We write a monomial of {x1, . . . ,xm} as
xxxααα = xα1

1 · · ·xαm
m . The polynomial model is written as

f (xxx) = ∑
ααα∈L

θααα xxxααα , (15.2)

where L is a set of exponents and θθθ = (θααα)ααα∈L is a parameter.

Definition 15.1. Let F ⊂ D be a fractional factorial design of m factors with n
runs. Let F = {aaai = (ai1, . . . ,aim) ∈ km, i = 1, . . . ,n}. Consider the polynomial
model (15.2). Then the matrix

A = [aaaααα
i ]i=1,...,n; ααα∈L

is called a design matrix for L .

Note that the definition of the design matrix above differs slightly from the defi-
nition in Chap. 11; that is, we defined A as the transpose of A in Chap. 11. Although
it is somewhat confusing, we use the conventional definition of experimental design
only in this chapter, whereas it is better to transpose A for clarifying the relation
between the design matrix and the configuration matrix of the toric ideals. Note also
that there are |L | columns in A. Write as yyy = (y1, . . . ,yn)

′ an observation vector
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for the design F . Then if A is of full rank, the usual least square estimator of the
parameter in (15.2) is written as

θ̂θθ = (A′A)−1A′yyy.

In this sense, we define the identifiability of the polynomial model as follows.

Definition 15.2. The polynomial model (15.2) is called identifiable by F if the
design matrix for L is of full rank.

An important identifiable model is a saturated model. In the saturated model
in which |L | = n holds, A is a square full rank matrix and the estimator of the
parameter is θ̂θθ = A−1yyy. In this case, (15.2) is an interpolatory polynomial.

Example 15.1 (Regular 25−2
III design). Let F be a regular 25−2

III design of m = 5
factors with two levels defined as x1x2x4 = x1x3x5 = 1. F contains n = 8 runs and
is displayed as follows.

Run\factor x1 x2 x3 x4 x5

1 1 1 1 1 1
2 1 1 −1 1 −1
3 1 −1 1 −1 1
4 1 −1 −1 −1 −1
5 −1 1 1 −1 −1
6 −1 1 −1 −1 1
7 −1 −1 1 1 −1
8 −1 −1 −1 1 1

The design matrix for the main effect model, that is, a polynomial model written as

f (xxx) = θ00000 +θ10000x1 +θ01000x2 +θ00100x3 +θ00010x4 +θ00001x5, (15.3)

is given as

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1
1 1 1 −1 1 −1
1 1 −1 1 −1 1
1 1 −1 −1 −1 −1
1 −1 1 1 −1 −1
1 −1 1 −1 −1 1
1 −1 −1 1 1 −1
1 −1 −1 −1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Inasmuch as this A is of full rank, the polynomial model (15.3) is identifiable by F .
Another polynomial model

f (xxx) = θ00000 +θ10000x1 +θ01000x2 +θ00100x3 +θ00010x4 +θ00001x5

+θ01100x2x3 +θ00110x3x4 (15.4)
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is also identifiable by F because the design matrix for this model,

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1 1 1
1 1 1 −1 1 −1 −1 −1
1 1 −1 1 −1 1 −1 −1
1 1 −1 −1 −1 −1 1 1
1 −1 1 1 −1 −1 1 −1
1 −1 1 −1 −1 1 −1 1
1 −1 −1 1 1 −1 −1 1
1 −1 −1 −1 1 1 1 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

is of full rank. The polynomial model (15.4) is one of the saturated models. It is also
one of the interpolatory polynomials and the parameter θθθ is estimated as θ̂θθ = 1

8 A′yyy
because A−1 = 1

8 A′. Note that this A is an Hadamard matrix. On the other hand, the
polynomial model

f (xxx) = θ00000 +θ10000x1 +θ01000x2 +θ00100x3 +θ00010x4 +θ00001x5 +θ11000x1x2

is not identifiable by F because the design matrix for this model is not of full rank.

The design we considered in Example 15.1 is a regular two-level design, thus
we have already considered an identifiability of models in Chap. 11. Of course, the
arguments in this chapter are valid for general designs. We see another example.

Example 15.2. Consider a fractional factorial design of three factors x1,x2 ∈
{−1,1}, x3 ∈ {−1,0,1} given as follows.

Run\factor x1 x2 x3

1 1 1 1
2 1 −1 0
3 1 −1 −1
4 −1 1 0
5 −1 1 −1
6 −1 −1 1

For this 6-run design, we can consider several identifiable polynomial saturated
models with six parameters such as

f1(xxx) = θ000 +θ100x1 +θ010x2 +θ001x3 +θ002x2
3 +θ011x2x3 (15.5)

or
f2(xxx) = θ000 +θ010x2 +θ001x3 +θ002x2

3 +θ011x2x3 +θ012x2x2
3. (15.6)
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The design matrices for these models are given as

A1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1
1 1 −1 0 0 0
1 1 −1 −1 1 1
1 −1 1 0 0 0
1 −1 1 −1 1 −1
1 −1 −1 1 1 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

and A2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1
1 −1 0 0 0 0
1 −1 −1 1 1 −1
1 1 0 0 0 0
1 1 −1 1 −1 1
1 −1 1 1 −1 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
.

Any submodel of these saturated models is also an identifiable polynomial model.

Now we consider the relation between the identifiability and the design ideal.
The key item is the set of standard monomials defined in Sect. 3.2. For a design F ,
we fix a term order τ and consider a Gröbner basis Gτ of I(F ). Then the set of
standard monomials is defined as

Estτ(F ) = {xxxααα | xxxααα is not divisible by any of the leading terms
of the elements of the Gröbner basis of I(F )}

= {xxxααα | xxxααα �∈ 〈LT(g), g ∈ I(F )〉}.
Then from Theorem 3.1 in Sect. 3.2 (i.e., the fact that Estτ(F ) is a basis of the
vector space k[x1, . . . ,xm]/I(F )), we have the following results.

Theorem 15.1. Let F be a design with n runs and τ be a term order. Write

Estτ(F ) = {xxxααα | ααα ∈ L }, (15.7)

where L is the set of exponents in the elements in Estτ(F ). Then

1. |L |= n holds.
2. The polynomial model (15.2) is identifiable by F if L is defined as (15.7).

This result is known as the first application of Gröbner basis theory by Buch-
berger and Hironaka in the 1960s to statistics. Pistone and Wynn [120] revisit this
result in the statistical framework, saying “This important point does not seem to be
stated explicitly in the statistical literature,” and show many examples with actual
computations using MAPLE software.

Theorem 15.1 shows how to construct an identifiable polynomial model from
Gröbner basis theory. In fact, although the dimension is independent of the order,
the elements of Estτ(F ) depend on the chosen term order. Let us check this fact by
the previous example.

Example 15.3 (Continuation of Example 15.2). Consider the 6-run design of Exam-
ple 15.2. Under the lexicographic term order with x1 � x2 � x3, the Gröbner basis
of I(F ) is calculated as

{x2
2 − 1, x3

3 − x3, x1 − x2x2
3 − x2x3 + x2},
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where the leading terms are underlined. Therefore the set of standard monomials is

Estlex(F ) = {1, x2, x3, x2
3, x2x3, x2x2

3},
which gives the saturated polynomial model (15.6). On the other hand, under the
graded reverse lexicographic term order of x1 � x2 � x3, the Gröbner basis of I(F )
is calculated as{

x2
1 − 1, x2

2 − 1, x3
3 − x3, x1x2 − x2

3 − x3 + 1, x1x3 − x2x3 − x1 + x2,

x2x2
3 + x2x3 − x1 − x2

}
,

which yields the set of standard monomials

Estgrevlex(F ) = {1, x1, x2, x3, x2
3, x2x3}.

This basis gives the saturated polynomial model (15.5).

As we saw in Example 15.3, we have several identifiable polynomial models in
general by varying term order. In application, it seems efficient to select a term order
by considering the model structures that we want to use. For example, when main
effects are more important than interaction effects, a term order that reflects the total
order of terms such as the graded reverse lexicographic term order may be used. (See
the model (15.5), for example.) On the other hand, when one effect dominates all
the others, a simple lexicographic term order may be used (see the model (15.6), for
example). The next interesting question is whether all the identifiable polynomial
models can be obtained by the algebraic approach. Unfortunately, the answer is no.
One of the counterexamples from [118] is given below.

Example 15.4. Consider the design F = {(0,0),(0,−1),(1,0),(1,1),(−1,1)}.
Varying term order τ , we have two sets as Estτ(F ), {1,x1,x2

1,x2,x1x2} and
{1,x2,x2

2,x1,x1x2}. However, there does not exist τ that gives another identifiable
model {1,x1,x2,x2

1,x
2
2} as Estτ(F ).

In [22], an interesting subset of the hierarchical polynomial models, namely,
corner cut models, is considered and called a design generic if all the corner cut
models of size n are identifiable.

Another look of the set Estτ(F ) is the representative of an equivalence class
congruent modulo I(F ). In fact, the vector space k[x1, . . . ,xm]/I(F ) is the set of
classes of remainders of the polynomials in k[x1, . . . ,xm] with respect to the division
by Gτ . Thus, for f ∈ k[x1, . . . ,xm], the equivalence class of f in k[x1, . . . ,xm]/I(F ) is

{g ∈ k[x1, . . . ,xm] | f − g ∈ I(F )}.

Each of the equivalence classes in k[x1, . . . ,xm]/I(F ) can be seen as an aliasing
class in the sense that only one term from each class can be included in the same
identifiable model. We summarize this point.
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Definition 15.3. Two models, f and g, are confounded (or aliased) under the design
F if f − g ∈ I(F ).

The methods of constructing the design matrix in Chap. 11 are based on the idea
of choosing each column of the design matrix so that each corresponding term of
the polynomial model is in a different equivalence class. In Chap. 11, we identified a
monomial xxxaaa = xa1

1 · · ·xam
m with a main or an interaction effect between the m factors

x1, . . . ,xm. For example, of two level factors, xxxaaa is identified with a main effect if
∑m

i=1 ai = 1, and a two-factor interaction effect if ∑m
i=1 ai = 2, and so on. Then two

main or interaction effects are confounded in the design F if xxxaaa1xxxaaa2 is identically
equal to +1 or −1 for all the points in xxx∈F . This confounding relation is expressed
in terms of the design ideal as follows.

Proposition 15.1. Let c ∈ {−1,+1}. Then the following two conditions are
equivalent.

(i) xxxaaa1xxxaaa2 = c for all xxx ∈ F (ii) xxxaaa1 − cxxxaaa2 ∈ I(F )

In general, we have to calculate a Gröbner basis to judge whether a given
polynomial belongs to a given ideal, that is, to solve the ideal membership problem.

15.3 Regular Two-Level Designs

We saw in Sect. 15.2 that the identifiability of the terms in polynomial models can
be treated algebraically by considering the Gröbner basis of the design ideal. As
we have seen in Example 15.2, these theories can be used for arbitrary design F ,
regardless of being regular or nonregular.

In the statistical literature, however, the theory of regular fractional factorial
designs is well developed. For example, an elegant theory based on linear algebra
over the finite field GF(2) is well established for regular two-level fractional
factorial designs. See [123]. On the other hand, it is very difficult to derive
theoretical results for general nonregular fractional factorial designs. One of the
merits of the algebraic approach is that we need not distinguish whether the design
is regular because the design is characterized simply as a set of points. In fact,
many important concepts such as resolution and aberration, which are originally
defined for regular designs, can be generalized naturally to nonregular designs by
an algebraic approach. See [153] or [152], for example. As another approach to
deal with nonregular designs, some classes or criteria of nonregular designs are
considered from the viewpoint of algebra. See [14] and [6], for example.

Nevertheless, it is instructive to consider the simple setting of regular designs to
understand the practicality of Gröbner basis theory in designs of experiments. In
this section, we focus on regular fractional factorial designs with two-level factors.
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Similarly to Example 15.1, we code two levels of factors as {−1,+1}. Therefore
for a monomial xxxaaa = xa1

1 · · ·xam
m of the indeterminates x1, . . . ,xm representing m

factors, it is sufficient to consider aaa = (a1, . . . ,am) ∈ {0,1}m. The full factorial
design of m factors with two levels is expressed as

D = {(x1, . . . ,xm) | x2
1 = · · ·= x2

m = 1}= {−1,+1}m,

and the design ideal of D is written as

I(D) = 〈x2
1 − 1, . . . ,x2

m − 1〉.
Without loss of generality, we consider a regular 2m−s fractional factorial design
F ⊂ D generated by s defining relations

{xxxaaa� = 1, �= 1, . . . ,s}, (15.8)

such that xxxaaa� = 1 for all xxx ∈ F . One of the expressions of the design ideal for the
regular design is obtained directly by this defining relation.

Proposition 15.2. The design ideal for the regular two-level fractional factorial
design F defined by (15.8) is written as

I(F ) = 〈x2
1 − 1, . . . ,x2

m − 1,xxxaaa1 − 1, . . . ,xxxaaas − 1〉. (15.9)

Note that the basis in the expression (15.9) is not a Gröbner basis in general.
In the arguments of Sect. 15.1, we used elimination theory as a general method to
obtain a basis of the design ideal and obtain a reduced Gröbner basis as a result.
However, one of the obvious bases can be obtained directly from the defining
relation for the regular fractional factorial designs without calculating a Gröbner
basis.

Example 15.5 (27−4
III design). Consider the design known as the orthogonal array

L8(27) of resolution III with the defining relation

x1x2x3 = x1x4x5 = x2x4x6 = x1x2x4x7 = 1

given as follows.

Run\factor x1 x2 x3 x4 x5 x6 x7

1 1 1 1 1 1 1 1
2 1 1 1 −1 −1 −1 −1
3 1 −1 −1 1 1 −1 −1
4 1 −1 −1 −1 −1 1 1
5 −1 1 −1 1 −1 1 −1
6 −1 1 −1 −1 1 −1 1
7 −1 −1 1 1 −1 −1 1
8 −1 −1 1 −1 1 1 −1
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From (15.9), the design ideal for this design is expressed as

I(F ) = 〈x2
1 − 1, . . . ,x2

7 − 1,x1x2x3 − 1,x1x4x5 − 1,x2x4x6 − 1,x1x2x4x7 − 1〉.

On the other hand, the reduced Gröbner basis of I(F ) is

{x2
7 − 1, x2

6 − 1, x2
5 − 1, x3 − x5x6, x2 − x5x7, x1 − x6x7, x4 − x5x6x7} (15.10)

under the lexicographic term order with x1 � ·· · � x7, and

{x2
7 − 1, x2

6 − 1, x2
5 − 1, x2

4 − 1, x2
3 − 1, x2

2 − 1, x2
1 − 1,

x1x2 − x3, x1x3 − x2, x2x3 − x1, x1x4 − x5, x1x5 − x4, x4x5 − x1,

x2x4 − x6, x2x6 − x4, x4x6 − x2, x3x4 − x7, x3x7 − x4, x4x7 − x3,

x2x5 − x7, x2x7 − x5, x5x7 − x2,x3x5 − x6, x3x6 − x5, x5x6 − x3,

x1x6 − x7, x1x7 − x6, x6x7 − x1}

(15.11)

under the graded reverse lexicographic term order with x1 � ·· · � x7. As we have
seen, the set of standard monomials for these Gröbner bases,

Estlex = {1, x5, x6, x7, x5x6, x5x7, x6x7, x5x6x7}

and

Estgrevlex = {1, x1, x2, x3, x4, x5, x6, x7}
present the interpolatory polynomials. Moreover, the expression (15.10) or (15.11)
enables us to identify the confounding relations between the factors. For example,
we see that two-factor interactions x2x3 and x4x5 are confounded because x2x3 −
x4x5 ∈ I(F ). This is verified from (15.10) as

x2x3 − x4x5 = x3(x2 − x5x7)+ x5x7(x3 − x5x6)− x5(x4 − x5x6x7)

and from (15.11) as

x2x3 − x4x5 = (x2x3 − x1)− (x4x5 − x1).

15.4 Indicator Functions

In this section, we briefly introduce an indicator function, which was first defined
by [61].

Definition 15.4. The indicator function of a design F ⊂ D is a polynomial f ∈
k[x1, . . . ,xm] satisfying
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f (xxx) =

{
1, if xxx ∈ F ,

0, if xxx ∈ D \F .

There is a one-to-one correspondence between the indicator function and the
design F under the appropriate constraints. For example, if each factor has
two levels coded as {−1,+1}, the indicator function has a unique square-free
representation under the constraint x2

i = 1, i = 1, . . . ,m.
General cases are also considered in [119]. For the case that xi is an ni-level factor

for i = 1, . . . ,m, [119] introduces a complex coding, xi ∈ Ωni = {ω0, . . . ,ωni−1}
where Ωni is the set of the nith roots of the unity, and considers the polynomials
in the complex field C. Note that all fractional factorial designs can be obtained
by adding further polynomial equations, called generating equations, to {xni

i − 1 =
0, i = 1, . . . ,m}, in order to restrict the number of solutions. The generating equation
is a generalized concept of defining relations of regular fractional factorial designs.
The indicator function forms a generating equation by itself. For example, in the
two-level case, the design ideal of the fractional factorial design F is written as

I(F ) = 〈x2
1 − 1, . . . ,x2

m − 1, f (xxx)− 1〉,

where f (xxx) is the indicator function of F .
The indicator function is a polynomial, therefore it can be incorporated into the

theory of computational algebraic statistics naturally. In fact, many important results
in the field of computational algebraic statistics are related to the indicator functions.
It is also shown that some concepts of designed experiments such as confounding,
resolution, orthogonality, and estimability are related to the structure of the indicator
function of a design. In addition, because the indicator function is defined for
any design, some classical notions for regular designs, such as confounding and
resolution, can be generalized to nonregular designs naturally by the notion of the
indicator function. See [62] or [154].

We show some basic results on the indicator functions of the two-level regular
fractional factorial designs. Consider 2m−s fractional factorial design F generated
by s defining relations (15.8). The s defining relations generate an additive group
{xxxaaa = 1 | aaa ∈ AF}, where

AF =

{
aaa

∣∣∣∣∣ aaa =
s

∑
�=1

u�aaa�, u� ∈ {0,1} for �= 1, . . . ,s

}
. (15.12)

The summation above is as in GF(2). Then the indicator function of F is written as

f (xxx) =
1
2s (1+ xxxaaa1) · · · (1+ xxxaaas) =

1
2s ∑

aaa∈AF

xxxaaa. (15.13)

Note that the coefficient baaa of the monomial xxxaaa equals 2−s for all aaa ∈ AF and 0
otherwise.
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Example 15.6 (Continuation of Example 15.5). The indicator function of the 27−4
III

design in Example 15.5 is written as

f (xxx) =
1
16

(1+ x1x2x3)(1+ x1x4x5)(1+ x2x4x5)(1+ x1x2x4x7).

The set of the exponents in the expansion of the right-hand side forms a
group (15.12).

Next we consider the design ideal for adding factors, as a simple application of
the indicator function. The additional factors may be real controllable factors, whose
levels are determined by some defining relations. For the purpose of Markov bases
in Chap. 11, the additional factors are formal and correspond to interaction effects
included in a null hypothesis.

Let F1 be a fractional factorial design of the factors x1, . . . ,xm. Consider
adding factors y1, . . . ,yk to F1. We suppose the levels of the additional factors are
determined by the defining relations among x1, . . . ,xm as

y1 = e1xxxbbb1 , . . . ,yk = ekxxxbbbk ,

where e1, . . . ,ek ∈ {−1,1}. Write this new design of x1, . . . ,xm,y1, . . . ,yk as F2. The
run sizes of F1 and F2 are the same.

Let f1 and f2 be the indicator functions of F1 and F2, respectively. Then we
have

f2(x1, . . . ,xm,y1, . . . ,yk) =
1
2k (1+e1y1xxxbbb1) · · · (1+ekykxxxbbbk ) f1(x1, . . . ,xm). (15.14)

In fact, for (x1, . . . ,xm,y1, . . . ,yk) ∈ F2, (x1, . . . ,xm) ∈ F1 and

e1y1xxxbbb1 = · · ·= ekykxxxbbbk = 1

hold, which yields f2 = 1. Conversely, if (x1, . . . ,xm,y1, . . . ,yk) �∈ F2, then (x1, . . . ,
xm) �∈ F1 or some of e1y1xxxbbb1 , . . . ,ekykxxxbbbk has to be −1, which yields f2 = 0.
Note that (15.14) generalizes the indicator function of regular fractional factorial
designs (15.13), by taking f1 ≡ 1, that is, by assuming the full factorial design for
x1, . . . ,xm.

From the above result, we have an expression of I(F2) as

I(F2) = 〈x2
1 − 1, . . . ,x2

m − 1,y2
1 − 1, . . . ,y2

k − 1, f1 − 1, f2 − 1〉.

If we fix the term order τ on x1, . . . ,xm and σ on x1, . . . ,xm,y1, . . . ,yk, Estτ(F1)
and Estσ (F2) are defined. Estτ(F1) and Estσ (F2) contain the same number of
monomials because the run sizes of F1 and F2 are the same. In particular, if we use
a lexicographic term order σ with {y1, . . . ,yk} �σ {x1, . . . ,xm}, then Estτ (F1) =
Estσ (F2) holds. We end this chapter with the following example.
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Example 15.7 (The indicator function and the standard monomials under the
lexicographic term order for adding factors). Let F1 be a 24−1

IV fractional factorial
design of x1,x2,x3,x4 defined by x1x2x3x4 = 1 and F2 be a fractional factorial design
of x1,x2,x3,x4,y1,y2 by adding y1 = x1x2,y2 = x1x3 to F1.

F1

run\factor x1 x2 x3 x4

1 1 1 1 1
2 1 1 −1 −1
3 1 −1 1 −1
4 1 −1 −1 1
5 −1 1 1 −1
6 −1 1 −1 1
7 −1 −1 1 1
8 −1 −1 −1 −1

F2

run\factor x1 x2 x3 x4 y1 y2

1 1 1 1 1 1 1
2 1 1 −1 −1 1 −1
3 1 −1 1 −1 −1 1
4 1 −1 −1 1 −1 −1
5 −1 1 1 −1 −1 −1
6 −1 1 −1 1 −1 1
7 −1 −1 1 1 1 −1
8 −1 −1 −1 −1 1 1

The indicator function of F1 is

f1(x1,x2,x3,x4) =
1
2
(1+ x1x2x3x4)

from (15.13). Then the indicator function of F2 is calculated as

f2(x1,x2,x3,x4,y1,y2) =
1
4
(1+ y1x1x2)(1+ y2x1x3) f1(x1,x2,x3,x4)

=
1
8
(1+ y1x1x2)(1+ y2x1x3)(1+ x1x2x3x4)

from (15.14). Inasmuch as the reduced Gröbner basis of I(F1) under the lexico-
graphic term order with x1 � ·· · � x4 is

{x1 − x2x3x4, x2
2 − 1, x2

3 − 1, x2
4 − 1},

the set of the standard monomials for this Gröbner basis is given as

Estlex(F1) = {1, x2, x3, x4, x2x3, x2x4, x3x4}.

On the other hand, because the reduced Gröbner basis of I(F2) under the
lexicographic term order with y1 � y2 � x1 � ·· · � x4 is

{y1 − x3x4, y2 − x2x4, x1 − x2x3x4, x2
2 − 1, x2

3 − 1, x2
4 − 1},

we see

Estlex(F2) = {1, x2, x3, x4, x2x3, x2x4, x3x4}= Estlex(F1).
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Of course, such a result is due to the lexicographic term order. Under the graded
reverse lexicographic term order, on the other hand, the reduced Gröbner bases are
calculated as

{x2
1 − 1, x2

2 − 1, x2
3 − 1, x2

4 − 1, x1x2 − x3x4, x1x3 − x2x4, x1x4 − x2x3}

for I(F1) and

{y2
1 − 1, y2

2 − 1, x2
1 − 1, x2

2 − 1, x2
3 − 1, x2

4 − 1, y1y2 − x1x4,

y1x1 − x2, y1x2 − x1, y1x3 − x4, y1x4 − x3,

y2x1 − x3, y2x2 − x4, y2x3 − x1, y2x4 − x3,

x1x2 − y1, x1x3 − y2, x1x4 − x2x3, x2x4 − y2, x3x4 − y1}

for I(F2), respectively, and therefore the sets of the standard monomials are given as

Estgrevlex(F1) = {1,x1,x2,x3,x4,x2x3,x2x4,x3x4}

and

Estgrevlex(F2) = {1,y1,y2,x1,x2,x3,x4,x2x3},
respectively.



Chapter 16
Running Markov Chain Without Markov Bases

16.1 Performing Conditional Tests When a Markov Basis
Is Not Available

As discussed in the previous chapters, explicit forms of Markov bases are known
only for some simple structured models. Furthermore general algorithms for Markov
basis computation often fail to produce Markov bases even for moderate-sized
models in a practical amount of time. Hence so far we could not perform exact
tests based on Markov basis methodology for many important practical problems,
such as no-three-factor interaction models with many levels and logistic regression
models with many covariates.

Some methodologies alternative to the Markov basis approach have been
proposed. The sequential importance sampling (SIS) developed by Yuguo Chen
and others (Chen and Small [36], Chen et al. [32], Chen et al. [34]) provides an
algorithm for producing contingency tables by filling the cells of a table starting
from the empty table. In SIS we never subtract a frequency from an existing table.
Hence the problem of negative frequency is avoided in SIS. In the examples given
in the above papers, SIS is found to work efficiently.

More recently Dobra [53] proposed a dynamic Markov basis, where elements of
a Markov basis are computed dynamically during a Monte Carlo simulation.

In this section we propose another method based on a lattice basis for problems,
where a Markov basis is not known [72].

16.2 Sampling Contingency Tables with a Lattice Basis

For a configuration matrix A, let

kerZ A = kerA∩Z
|I | = {zzz ∈ Z

|I | | Azzz = 0}

S. Aoki et al., Markov Bases in Algebraic Statistics, Springer Series
in Statistics 199, DOI 10.1007/978-1-4614-3719-2 16,
© Springer Science+Business Media New York 2012
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denote the integer kernel of A. By definition a move is an element of kerZ A. Let
d = dimkerA = |I | − rankA be the dimension of linear space spanned by the
elements of kerA in R

|I |. As mentioned in Sect. 4.3, the integer lattice kerZ A
possesses a lattice basis L = {zzz1, . . . ,zzzd} and every move zzz ∈ kerZ A is written as
a unique integer combination of zzz1, . . . ,zzzd (e.g., Schrijver [134]). As we mentioned,
the computation of a lattice basis for a given A is relatively easy. Also, for many
statistical models, where a Markov basis is hard to obtain, we can more easily
identify a lattice basis.

A Markov basis is defined as a set of moves connecting every fiber. Let k[uuu],
uuu = {u(iii), iii ∈ I } be a polynomial ring and let IL = 〈uuuzzz | zzz ∈ L 〉 be the ideal
generated by a lattice basis L . The toric ideal IA is obtained from IL by taking a
saturation [105, 139],

IA =

(
IL :

〈
∏
iii∈I

u(iii)

〉)

=

{
v ∈ k[uuu] |

(
∏
iii∈I

u(iii)

)m

v ∈ IL for some m > 0

}
.

In this way a Markov basis is computed from a lattice basis. Intuitively this fact
also shows that when the frequency of each cell is sufficiently large, the fiber is
connected by the lattice basis L . However, a lattice basis itself does not guarantee
the connectivity of every fiber. By definition every move is written as an integer
combination of elements of a lattice basis. Hence, if we generate moves in such
a way that every integer combination of elements of a lattice basis has a positive
probability, then we can indeed guarantee the connectivity of every fiber.

Usually a lattice basis contains exactly d elements. Here we allow redundancy of
a lattice basis: we call a finite set L of moves a lattice basis if every move is written
by an integral combination of the elements of L .

Let L = {zzz1, . . . ,zzzK}, K ≥ d, be a lattice basis. Then any move zzz ∈ kerZ A is
expressed as

zzz = α1zzz1 + · · ·+αKzzzK , α1, . . . ,αK ∈ Z.

Then we can generate a move zzz by generating the integer coefficients α1, . . . ,αK .
Here we use the following two methods to generate α1, . . . ,αK . Both methods
generate all integer combinations of elements of L with positive probabilities and
hence guarantee the connectivity of all the fibers.

Algorithm 16.1

Step 1. Generate |α1|, . . . , |αK | from a Poisson distribution with mean λ ,

|αk| iid∼ Po(λ )

and exclude the case |α1|= · · ·= |αK |= 0.
Step 2. αk ← |αk| or αk ←−|αk| with probability 1

2 for k = 1, . . . ,K.
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Algorithm 16.2

Step 1. Generate |α|= ∑K
i=1 |αi| from geometric distribution with parameter p

|α| ∼ Geom(p)

and allocate |α| to α1, . . . ,αK according to multinomial distribution

α1, . . . ,αK ∼ Mult(|α|;1/K, . . . ,1/K).

Step 2. αk ← |αk| or αk ←−|αk| with probability 1
2 for k = 1, . . . ,K.

16.3 A Lattice Basis for Higher Lawrence Configuration

Let Λ (r) be the rth Lawrence configuration in (9.10). Many practical statistical
models including the no-three-factor interaction model and the discrete logistic
regression model discussed in the previous chapters have Lawrence configurations.
In general a Markov basis for the Lawrence configuration is very difficult to compute
(e.g., Chen et al. [33], Hara et al. [81]). On the other hand, because the computation
of a lattice basis is easy, Algorithms 16.1 and 16.2 are available even for such
models. Furthermore we can compute a lattice basis of Λ (r)(A) from a lattice basis
of A by Proposition 16.1. This proposition is closely related to Proposition 4.3 for
r = 2 and was first discussed in Santos and Sturmfels [131].

Proposition 16.1. Let the column vectors of B form a lattice basis of A. Then the
column vectors of

B(r) =

⎛
⎜⎜⎜⎜⎜⎜⎝

r−1︷ ︸︸ ︷
B 0 · · · 0

0 B
. . .

...
...

. . .
. . . 0

0 · · · 0 B
−B −B · · · −B

⎞
⎟⎟⎟⎟⎟⎟⎠

(16.1)

form a lattice basis of higher Lawrence configuration Λ (r)(A).

Proof. We can interpret the rth Lawrence lifting as r slices of the original contin-
gency table corresponding to A. The number of the cells for Λ (r)(A) is |I | = rm,
where m is the number of cells (columns) of A. Let

zzz =

⎛
⎜⎝

zzz1
...

zzzr

⎞
⎟⎠= yyy− xxx =

⎛
⎜⎝

yyy1 − xxx1
...

yyyr − xxxr

⎞
⎟⎠
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be a move of Λ (r)(A). We can express zzz1 = Bααα1. Then using the rth slice as a “base
level,” we can write

zzz =

⎛
⎜⎜⎜⎜⎜⎝

B
0
...
0
−B

⎞
⎟⎟⎟⎟⎟⎠

ααα1 +

⎛
⎜⎜⎜⎜⎜⎝

0
zzz2
...

zzzr−1

zzzr +Bααα1

⎞
⎟⎟⎟⎟⎟⎠
.

Note that the first block of zzz is now eliminated. Performing the same operation
recursively to other blocks we are left with the (r−1)th slice and rth slice, which is
similar to Proposition 4.3. ��

In this proposition we only used the last slice as the base level. A more symmetric
lattice basis can be obtained by columns of all pairwise differences of slices, for
example, for r = 3, ⎛

⎝ B B 0
−B 0 B
0 −B −B

⎞
⎠ .

The lattice bases in the above propositions may contain redundant elements.
However, the set of moves including redundant elements is sometimes preferable for
moving around the fiber. In general the computation of a lattice basis of A is easier
than the computation of a lattice basis of Λ (r)(A). Sometimes we can compute a
Markov basis for A even when it is difficult to compute a Markov basis of Λ (r)(A).
If a Markov basis for A is known, we can use it as a lattice basis for A and apply the
above propositions for obtaining a lattice basis of Λ (r)(A).

16.4 Numerical Experiments

In this section we apply the proposed method to the no-three-factor interaction
model and the discrete logistic regression model and show the usefulness of the
proposed method.

16.4.1 No-Three-Factor Interaction Model

As discussed in Chap. 9, the structure of the no-three-factor interaction model

log pi jk = μ{1,2}(i j)+ μ{1,3}(ik)+ μ{2,3}( jk)
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is complicated and the closed-form expression of Markov bases for this model of
general tables is not yet obtained at present. Even by using 4ti2, it is difficult to
compute a Markov basis for contingency tables larger than 5×5×5 tables within a
practical amount of time.

This model has the higher Lawrence configuration in (9.10) such that A is a
configuration for the two-way complete independence model. The set of basic
moves of form

i1 i′1
i2 1 −1
i′2 −1 1

is known to be a Markov basis for the two-way complete independence model.
By using this fact and Proposition 16.1, we can compute a lattice basis as a set
of degree 4 moves,

i3 i′3
i1 i′1

i2 1 −1
i′2 −1 1

i1 i′1
i2 −1 1
i′2 1 −1

.

In this experiment we compute an exact distribution of the (twice log) likelihood
ratio (LR) statistic of the goodness-of-fit test for the no-three-factor interaction
model against the three-way saturated model

log pi1i2i3 = μ{1,2,3}(i1i2i3).

We computed the sampling distribution of the LR statistic for I× I× I (I = 3,5,10)
three-way contingency tables. Then the degree of freedom of the asymptotic χ2

distribution of the LR statistic is (I−1)3. We set the sample size as 5I3. For 3× 3× 3
tables, the number of burn-in samples and iterations are (burn-in, iteration) =
(1,000,10,000). In 3× 3× 3 tables, as discussed in Sect. 9.1, a minimal Markov
basis is known and we also compute a sampling distribution by a Markov basis. In
other cases, we set (burn-in, iteration) = (10,000,100,000).

Figure 16.1 presents the results for 3×3×3 tables. Left, center, and right figures
are histograms, paths, and correlograms of the LR statistic, respectively. Solid lines
in the left figures are asymptotic χ2 distributions with 8 degrees of freedom. αk is
generated from Po(λ ), λ = 1,10,50. We can see from the figures that the proposed
methods show comparative performance to the sampling with a Markov basis.
Although the sampling distribution and the path are somewhat unstable for λ = 50,
in other cases the sampling distributions are similar and the paths are stable after the
burn-in period. Unless we set λ extremely high, the performance of the proposed
method is robust against the distribution of αk.

Figure 16.2 presents the results for 5× 5× 5 and 10× 10× 10 tables. In these
cases the Markov basis cannot be computed via 4ti2 within a practical amount
of time by an Intel Core 2 Duo 3.0 GHz CPU machine. So we compute sampling
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Fig. 16.1 Histograms, paths of LR statistics, and correlograms for 3 × 3 × 3 no-three-factor
interaction model ((burn-in, iteration) = (1,000,10,000)): (a) a Markov basis; (b) a lattice basis
with Po(1); (c) a lattice basis with Po(10); (d) a lattice basis with Po(50)



16.4 Numerical Experiments 281

D
en

si
ty

0 20 40 60 80 100 120

0 20 40 60 80 100 120

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

0e+00 2e+04 4e+04 6e+04 8e+04 1e+05

0e+00 2e+04 4e+04 6e+04 8e+04 1e+05

0e+00 2e+04 4e+04 6e+04 8e+04 1e+05

0e+00 2e+04 4e+04 6e+04 8e+04 1e+05

40
60

80
10

0
12

0
40

60
80

10
0

number of sampling
LR

 s
ta

tis
tic

0 2e+04 4e+04 6e+04 8e+04 1e+05

0

a

b

c

d

2e+04 4e+04 6e+04 8e+04 1e+05

0 2e+04 4e+04 6e+04 8e+04 1e+05

0 2e+04 4e+04 6e+04 8e+04 1e+05

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

−
0.

2
0.

4
0.

6
0.

8
1.

0
0.

0
0.

2
−

0.
2

0.
4

0.
6

0.
8

1.
0

0.
0

0.
2

−
0.

2
0.

4
0.

6
0.

8
1.

0

Lag

A
C

F

D
en

si
ty

number of sampling

LR
 s

ta
tis

tic

Lag

A
C

F

D
en

si
ty

0 200 400 600 800

0 200 400 600 800

80
0

75
0

70
0

65
0

60
0

85
0

80
0

75
0

70
0

65
0

LR
 s

ta
tis

tic

Lag

A
C

F

D
en

si
ty

number of sampling

number of sampling

LR
 s

ta
tis

tic

Lag

A
C

F

Fig. 16.2 Histograms, paths of LR statistics, and correlograms of paths for no-three-factor
interaction model ((burn-in, iteration) = (10,000,100,000)): (a) 5 × 5 × 5, a lattice basis with
Geom(0.1); (b) 5 × 5 × 5, a lattice basis with Geom(0.5); (c) 10 × 10 × 10, a lattice basis
with Po(10); (d) 10×10×10, a lattice basis with Po(50)

distributions by using a lattice basis. For 5× 5× 5 tables, α1, . . . ,αK are generated
from Geom(p), p = 0.1,0.5. The degree of freedom of the asymptotic χ2 distribu-
tion is 64. Also in this case we can see that the proposed methods perform well.
The approximation of the sampling distributions to the asymptotic χ2 distribution is
good and the paths are stable after the burn-in period.
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For 10 × 10 × 10 tables, α1, . . . ,αK are generated from Po(λ ), λ = 10,50.
The degree of freedom of the asymptotic χ2 distribution is 729. In this case the
performances of the proposed methods look less stable. We also compute the cases
where the sample sizes are 10I3 and 100I3 but the results are similar. This is
considered to be because the sizes of fibers of 10× 10× 10 tables are far larger
than those of 3× 3× 3 or 5× 5× 5 tables and it is more difficult to move around
all over a fiber. Even if we use a Markov basis, the result might not be improved.
Increasing the number of iterations might lead to a better performance.

Comparing the paths with λ = 10, the path with λ = 50 looks relatively more
stable. For larger tables, larger λ might be preferable to move around a fiber.

16.4.2 Discrete Logistic Regression Model

In Sects. 13.1 and 13.2 we discussed a Markov basis for the binomial logistic
regression model with discrete covariates. Here we consider more general logistic
regression models with multinomial responses. We use the same notations as in
Sect. 13.2. The model with one covariate and the model with two covariates are
described as

pi1|i2 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

exp(μi1 +αi1 i2)

1+∑I1−1
i′1=1 exp(μi′1 +αi′1 i2)

, i1 = 1, . . . , I1 − 1,

1

1+∑I1−1
i′1=1 exp(μi′1 +αi′1 i2)

, i1 = I1,

where i2 ∈ I2 and

pi1|i2i3 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

exp(μi1 +αi1 i2 +βi1i3)

1+∑I1−1
i′1=1 exp(μi′1 +αi′1 i2 +βi′1 i3)

, i1 = 1, . . . , I1 − 1,

1

1+∑I1−1
i′1=1 exp(μi′1 +αi′1 i2 +βi′1 i3)

, i1 = I1,

where (i2, i3) ∈ I2 ×I3, respectively. pi1|i2 and pi1|i2i3 are conditional probabilities
that the value of the response variable equals i1 given the covariates i2 and (i2, i3),
respectively. I2 and I2 ×I3 are designs for covariates. As discussed in Sects. 13.1
and 13.2, the structure of Markov bases for the discrete logistic regression model is
complicated even for the case where responses are binary I1 = 2 and covariates are
equally spaced. Table 16.1 presents the highest degrees and the numbers of moves in
the minimal Markov bases of binomial logistic regression models with one covariate
computed by 4ti2. Even for models with one covariate, if a covariate has more than
20 levels, it is difficult to compute Markov bases of models via 4ti2 within a practical
amount of time by a computer with a 32-bit processor.
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Table 16.1 The highest degrees and the number of moves in a minimal Markov basis
for binomial logistic regression models with one covariate

Number of levels of a covariate

10 11 12 13 14 15 16

Maximum degree 18 20 22 24 26 28 30
Number of moves 1,830 3,916 8,569 16,968 34,355 66,066 123,330

The logistic regression model with r responses has the rth Lawrence con-
figuration (9.10) where A is a configuration for the Poisson regression model.
The computation of Markov bases of Poisson regression model is relatively easy.
Therefore a lattice basis can be computed by Proposition 16.1 and we can apply the
proposed method to these models.

In the experiment we computed the LR statistics for the goodness-of-fit test of a
binomial or trinomial logistic regression model with two covariates against a model
with three covariates

pi1|i2i3i4 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

exp(μi1 +αi1 i2 +βi1 i3 + γi1 i4)

1+∑I1−1
i′1=1 exp(μi′1 +αi′1 i2 +βi′1 i3 + γi′1 i4)

, i1 = 1, . . . , I1 − 1,

1

1+∑I1−1
i′1=1 exp(μi′1 +αi′1 i2 +βi′1 i3 + γi′1 i4)

, i1 = I1,

where (i2, i3) ∈ I2 ×I3, i4 ∈ I4. We assume that I2 ×I3 are 4× 4 and 10× 10
checkered designs as described in the following figure for the 4×4 case, where only
(i2, i3) in dotted patterns have positive frequencies.

1 2 3 4

1

2

3

4

We also assume that I4 = {1,2,3,4,5}. The degrees of freedom of the asymptotic
χ2 distribution of the LR statistic is 1. We set the sample sizes for 4 × 4 and
10 × 10 designs at 200 and 625, respectively. We also set (burn-in, iteration) =
(1,000,10,000).

Figures 16.3 and 16.4 present the results for a binomial and a trinomial logistic
regression model with a 4× 4 checkered design, respectively. Solid lines in the left
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Fig. 16.3 Histograms, paths of LR statistics, and correlograms of paths for discrete logistic
regression model ((burn-in, iteration) = (1,000,10,000)): (a) a Markov basis; (b) a lattice basis
with Po(1); (c) a lattice basis with Po(10); (d) a lattice basis with Po(50)

figures are asymptotic χ2 distributions. αk is generated from Po(λ ), λ = 1,10,50.
We can compute Markov bases in these models by 4ti2. So we also present the
results for Markov bases. The figures show that the proposed methods show the
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Fig. 16.4 Histograms, paths of LR statistics, and correlograms of paths for trinomial discrete logit
model ((burn-in, iteration) = (1,000,10,000)): (a) a Markov basis; (b) a lattice basis with Po(1);
(c) a lattice basis with Po(10); (d) a lattice basis with Po(50)

comparative performance to a Markov basis also in these models. We note that the
paths are also stable even for the case where α1, . . . ,αK are generated from Po(50).

Figure 16.5 presents the results for a 10× 10 checkered pattern. In this case
Markov bases cannot be computed via 4ti2 by a computer with a 32-bit processor.
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Fig. 16.5 Histograms, paths of LR statistics, and correlograms of paths for discrete logistic
regression model ((burn-in, iteration) = (1,000,10,000)): (a) binomial, a lattice basis with
Geom(0.1); (b) binomial, a lattice basis with Geom(0.5); (c) trinomial, a lattice basis
with Geom(0.1); (d) trinomial, a lattice basis with Geom(0.5)

αk is generated from Geom(p), λ = 0.1,0.5. Also in these cases the results look
stable. These results show that the proposed method is practical for the logistic
regression models.
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Symbols
3×3×K contingency tables, 129
G-invariant, 100
L1-norm, 25
S-polynomial, 38
d-reducing, 79
p-value, 14, 227
z-statistic, 4
B-equivalence classes of Fttt , 65
1-norm, 25
1-norm irreducible, 87
1-norm lower degree irreducible, 87
1-norm reducible by a lower degree move, 87
1-norm reducible by another move, 87
4ti2, 146, 193

A
accessible, 65
aliasing relation, 181, 184, 189
allele frequency, 212
alternative model, 183
ANOVA (analysis of variance), 21
applicable, 52
axis, 5

B
base level, 21, 24
basic move, 24, 130
basis

Gröbner, 36
Graver, 60
lattice, 52
Markov, 50

batching method, 193, 227
binomial, 40, 191

primitive, 60
square-free, 40

binomial distribution, 3
block triangular, 164
boundary clique, 110
Buchberger’s algorithm, 38
Buchberger’s criterion, 38
burn-in steps, 28, 193, 221, 224

C
cell, 5, 47
chi-square distribution, 12
chordal, 110
clear, 190, 204
clique, 110

boundary, 110
maximal, 110

clique tree, 110
common diagonal effect model (CDEM), 169
compact component, 149
conditional sample space, 13
conditional test, 4
configuration, 8, 23, 39, 47, 213
conformal decomposition, 60
conformal sum, 60
conformally primitive, 60, 148
confounding, 262
consistent marginal tables, 109
covariate matrix, 184

D
DAG, 59
decomposable model, 202
defining relation, 184
degree, 49, 51
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design
2s full factorial, 184, 198
2s−k fractional factorial, 198, 200, 201, 263,

267
3s full factorial, 186, 198
3s−k fractional factorial, 203, 206, 207
fractional factorial, 181, 261
full factorial, 261
regular fractional factorial, 181, 267
three level, 186

design ideal, 261
design matrix, 47, 184, 262
detailed balance, 28
Dickson’s lemma, 34
diplotype, 212
diplotype frequency, 216, 221
directed acyclic graph, 59
distance reducing argument, 25
distance-reducing argument, 79
divider, 149
division algorithm, 37

E
elimination ideal, 39
equivariant, 95
exact test, 4
expected frequency, 12
exponential family, 9, 47

F
facet, 20
factor, 181, 261

additional, 271
factorization theorem, 4
fiber, 13, 48

three-element, 203, 206
finite field, 120, 184, 267
Fisher’s exact test, 4
fitted value, 193
frequency vector, 6

G
generalized linear models, 182
generating class, 20, 109
generating equations, 270
generators, 35
genotype frequency, 212, 215, 223
Gröbner basis, 36

reduced, 37
graph

chordal, 110

independence, 110
graph model, 157
graphical model, 110, 149
Graver basis, 60, 148
Graver complexity, 145, 155
group action, 94

transitive, 94

H
Hadamard matrix, 186, 264
haplotype frequency, 212
Hardy-Weinberg model, 83, 212, 215, 224

haplotype-wise, 216, 226
Hermite normal form, 53
hierarchical model, 149
higher Lawrence configuration, 153
higher Lawrence lifting, 145, 153
Hilbert basis theorem, 36
homogeneity, 39, 47
homogeneity of two binomial populations, 3
hyper geometric distribution, 183
hyperedge, 149
hypergeometric distribution, 4, 7, 11, 17, 49
hypergraph, 149

I
ideal, 35

design, 261
elimination, 39
monomial, 35
toric, 39
zero-dimensional, 37

identifiability, 262
incomplete contingency table, 159
independence graph, 110
independence model

complete, 214, 221
genotype-wise, 215, 224
group-wise, 215, 221
subgroup-wise, 215

indeterminate, 33
indicator functions, 269
indispensable binomial, 68
indispensable monomial, 75
indispensable move, 68, 131
induced group action, 95
induced subgraph, 110
initial ideal, 36
initial monomial, 36
integer kernel, 50
integer lattice, 52
interaction effect, 184, 187
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invariance, 91
invariant, 97
invariant Markov basis, 100
isotropy subgroup, 94
item response theory, 240
iterative proportional fitting (IPF), 176

J
joint probability, 4

K
Kronecker product, 13

L
Latin square, 245
lattice basis, 24, 52, 276
Lawrence lifting, 61, 193
leading term, 36
level, 5, 181, 261
likelihood ratio test, 12, 183, 193
log affine model, 47
logistic regression, 62
logistic regression model, 229
loop, 61

M
main effect, 184, 263
marginal cell, 15
marginal frequency, 5, 15
marginal probability, 6
Markov basis, 25, 50
Markov chain

detailed balance, 28
reversible, 28

Markov chain Monte Carlo method, 14
Markov complexity, 145
Markov width, 156
maximum likelihood estimate (MLE), 12
MCMC, 14
method of distance reduction, 79
Metropolis-Hastings algorithm, 28
minimal element, 34
minimal invariant Markov basis, 100
minimal Markov basis, 66, 203
minimal vertex separator, 110, 149
minimum fiber Markov basis, 72
model

saturated, 6, 15
model matrix, 184
model space, 47

monomial, 33
initial, 36
leading, 36
square-free, 34
standard, 37, 265

move, 23, 50
asymmetric, 94
basic, 24
belonging to a fiber, 66
connecting, 65
square-free, 52
symmetric, 94

multinomial sampling scheme, 5
multivariate hypergeometric distribution, 11
mutually accessible, 65

N
National Center for University Entrance

Examinations, 209
National Center Test, 209
negative part, 51
nested configurations, 218
no cancellation of signs, 60, 162
no-three-factor interaction model, 129
non-decomposable hierarchical models, 129
nonreplaceable by lower degree moves, 71
norm reducing, 79, 129
normal semigroup, 53, 75, 109
normalizing constant, 47, 192
nuisance parameter, 9, 10
null model, 183, 193, 215

O
omnibus test statistic, 12
orbit, 94
orbit space, 94

P
parameter contrast, 185
partial edge, 149
partial edge separator, 149
Pearson’s chi-square test, 12, 183, 193, 221,

227
permutation matrix, 94
Poisson distribution, 8
Poisson model, 181
polynomial models, 262
polynomial ring, 34
positive part, 51
prime model, 150
primitive, 60
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primitive binomial, 60
probability vector, 6
proposal transition probability, 29

Q
quasi-independence model, 159
quotient, 37

R
Rasch model, 241

many-facet, 242
reducible model, 149, 150
remainder, 37
resolution, 204
run of an experiment, 181
running intersection property, 149

S
sample size n, 5
sample unique record, 252
sampling scheme, 3
saturated, 6, 15
saturated model, 6, 15, 183, 199, 263
Segre product, 232
Segre-Veronese, 217
semigroup, 48

hole, 53
normal, 53
saturation, 53
very ample, 53

semigroup ring, 48, 217
sequential importance sampling, 275
set of generators, 35
sign-invariant, 67
similar test, 4
simplicial clique, 110
simplicial complex, 20
simplicial vertex, 110
simply separated vertex, 110
simultaneously estimable, 190
slice, 18
sorted, 217
square-free, 34, 40
stabilizer

pointwise, 94

setwise, 97
stacked vector, 13, 150
standard basis vector, 13, 57
standard monomial, 37
stationary distribution, 27
strongly d-reducing, 80
strongly 1-norm irreducible, 87
strongly 1-norm reducible by a pair of moves,

87
structural zero, 159
sufficient statistic, 4
support, 40, 51
symmetric group, 94
symmetric Markov chain, 27
system of generators, 35

T
target distribution, 28
term order, 35, 59

graded lexicographic, 36
graded reverse lexicographic, 36
pure lexicographic, 35

the largest group of invariance, 97
three-way contingency tables, 129
three-way transportation problem, 156
tightly connected, 149
toric ideal, 39
toric model, 48
transition probability, 27
transitive group action, 94
transpose, 6
type-1 combination, 132
type-2 combination, 132

U
unconditional test, 5
unimodular matrix, 53

W
wreath product, 98

Z
zero-dimensional ideal, 37
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