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Preface

This book is intended to provide a collection of topics outlining pretest and Stein-
type shrinkage estimation techniques in a variety of regression modeling problems.
Since the inception of the shrinkage estimation, there has been much progress in
developing improved estimation strategies both in terms of theoretical develop-
ments and their applications in solving real-life problems.

Recently, LASSO and related penalty-type estimation have become popular in
problems related to variable selection and predictive modeling. In this book,
selected penalty estimation techniques have been compared with the full model,
submodel, pretest, and shrinkage estimators in some regression models. Further,
one chapter is dedicated to estimation problem in pooling data from several
sources. Several real data examples have been presented along with Monte Carlo
simulations to appraise the performance of the estimators in real settings. The book
is suitable as reference book for a graduate course in regression analysis and
combining data from several sources. The selection of topics and the coverage will
be equally useful for the researchers and practitioners in this field.

This book is organized into six chapters. The chapters are standalone so that
anyone interested in a particular topic or area of application may read that specific
chapter. Those new to this area may read the first two chapters and then skip to the
topic of their interest. Here is a brief outline of the contents.

In Chap. 1, we briefly describe pretest, shrinkage and penalty estimation strategies
for estimating regression parameters in a multiple regression model.

In Chap. 2, linear shrinkage, and shrinkage pretest strategies for estimating the
normal and Poisson means from a single sample have been presented. Large
sample properties of the estimators are appraised and compared with the classical
estimators.

Combining several sources of information can lead to improved estimates of the
parameters of interest. In Chap. 3, efficient estimation strategies based on pretest
and James-Stein principles for pooling data from several sources have been dis-
cussed. Simultaneous estimation of several coefficients of variation has been
considered to illustrate the usefulness of pretest and shrinkage estimates.

In Chap. 4, shrinkage and pretest estimation in a multiple regression model
have been discussed. Several penalty estimators such as LASSO, adaptive LASSO,
and SCAD estimators have been presented. Monte Carlo simulation studies are
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provided and applications of suggested estimators using real data examples are
given.

In Chap. 5, shrinkage, pretest, and penalty estimation strategies have been
extended to partially linear regression models. The properties of the risk of the
estimators have been studied both theoretically and through Monte Carlo studies.

In Chap. 6, shrinkage and penalty estimation strategies have been studied in a
Poisson regression model. The performances of the estimators have been appraised
through real data example as well as Monte Carlo simulation experiments.
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Chapter 1
Estimation Strategies

Abstract Inference under uncertain prior information has been common for several
decades in statistical and related literature. In the context of a regression model, we
introduce the basic notion of full model, submodel, pretest, and shrinkage estimation
strategies.Webriefly discuss somepenalty estimators and compare itwith nonpenalty
estimators.

Keywords Regressionmodel ·Pretest and shrinkage estimation ·Penalty estimation

1.1 Introduction

For the past few decades, the use of uncertain prior information (UPI) or nonsample
information (NSI) has been common in the statistical inference of conditionally
specified models. Uncertain prior information is generally incorporated in a model
via a conjectured constraint on the model parameters, thus giving rise to candidate
submodels. The constraint on the parameters is usually obtained through expert opin-
ion or from past data. Alternatively, candidate submodels can be obtained by using
existing variable selection techniques, such as AIC or BIC, among others, when
models are assumed to be sparse. Generally speaking, a submodel is more feasible
and practical in a host of applications. When the conjectured constraint holds, or the
submodel based on variable selection approach is true, analysis of such submodels
leads to efficient statistical inferences than would be obtained through the full model.
No matter how the submodel is obtained, either by variable selection technique or
by imposing the constraints based on expert opinion, the estimators based on a sub-
model may become considerably biased and inefficient if the submodel is not the
true representative of the data at hand. Recently, simultaneous variable selection and
estimation of submodel parameters has become quite popular. However, such pro-
cedures may also produce biased estimators of the candidate submodel parameters.
An example of a procedures along this line of thought is penalty estimation and their
variants.

S. E. Ahmed, Penalty, Shrinkage and Pretest Strategies, SpringerBriefs in Statistics, 1
DOI: 10.1007/978-3-319-03149-1_1, © The Author(s) 2014
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A different, but related breed of estimators, existed in the literature for more than
five decades, is the so-called pretest and shrinkage estimators which attempt to incor-
porate uncertain prior information into the estimation procedure. Bancroft (1944)
suggested the pretest estimation (PE) strategy. The pretest estimation approach uses
a test to decide the estimator based on either the full model or a submodel. Broadly
speaking, Bancroft (1944) suggested two seemingly unrelated problems on pretest-
ing strategy. One is a data pooling problem from various sources based on a pretest
approach and other one is related to simultaneous model selection and pretest esti-
mation problem in regression model. Since then a bulk of research has been done
using the pretest estimation procedure in many applications. However, the pretest
estimator can also be seen as arising indirectly from the study of the admissibility
of the sample mean vector in a multivariate normal distribution (Stein 1956; James
and Stein 1961). In fact, the James–Stein shrinkage estimation technique may be
regarded as a smooth version of the Bancroft (1944) pretest estimation procedure.

Since its inception, both pretest and shrinkage estimation strategy has received
considerable attention from researchers and practitioners. More importantly, it has
been analytically demonstrated that shrinkage estimation strategy outshines the clas-
sical estimators in many scenarios. During the past two and half decades, Ahmed
and his co-researchers, among others, have demonstrated that shrinkage estimators
dominate the classical estimators in terms of mean squared error (MSE) for a host of
statistical models. A detailed description of shrinkage estimation and large sample
estimation techniques in a regression model can be found in Ahmed (1997). Pretest,
shrinkage and likelihood-based methods continue to play vital roles in statistical
inference. These strategies can be used for both variable selection and post estima-
tion. Further, pretest and shrinkage methods provide extremely useful techniques for
combining data from various sources. For instance, estimation methodologies in the
arena of meta analysis are essentially of this type.

To fix the idea of pretest and shrinkage estimation, let us consider for the rest
of this chapter the estimation problem in a multiple linear regression model and the
remaining discussion follows. If Y = (y1, y2, . . . , yn)∼ is a vector of responses, and
the superscript (∼) denotes the transpose of a vector or matrix, and X is an n × p fixed
design matrix, β = (β1, . . . , βp)

∼ is an unknown vector of parameters, then we have
the following regression model

Y = Xβ + ε, (1.1)

where ε = (ε1, ε2, . . . , εn)∼ is the vector of unobservable random errors.
Suppose that we have a set of covariates to fit a regression model for the purpose

of predicting a response variable. If a a priori is known or suspected that a subset of
the covariates do not significantly contribute to the overall prediction of the average
response, they may be left aside and a model without these covariates may be consid-
ered (sparse model). In other situations, a subset of the covariates may be considered
as a nuisance, meaning that they are not of primary interest to the researcher but
they cannot be completely ignored either (model with nuisance parameters). In such
cases, the effect of the nuisance parameters must be taken into account in estimating
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the coefficients of the remaining regression parameters. A candidate model for the
data that involves only the important covariates (or active predictors) in predict-
ing the response is called a restricted model or a submodel since we use a subset
of the covariates after putting some restrictions on the nuisance covariates. On the
other hand, a model that takes all the variables into consideration is termed as the
unrestricted model/candidate full model or simply the full model.

Full Model Estimation

Based on the sample information only, the full model or unrestricted estimator (UE)
of the regression coefficient is given by

β̂UE = (X ∼X)−1X ∼Y .

Uncertain Prior Information

Suppose based on prior information it is possible to restrict the regression coefficients
to a given subspace as follows:

Hβ = h,

where, H is a known matrix and h is a vector of known constants.

Auxiliary Information

A more interesting application of the above restriction is that β can be partitioned
as β = (β ∼

1,β
∼
2)

∼. The subvectors β1 and β2 are assumed to have dimensions p1
and p2 respectively, with p1 + p2 = p. In high-dimensional data analysis, it is
assumed that the model is sparse. In other words, it is plausible that β2 may be set
to a null vector. This auxiliary information regarding subvector β2 can be obtained
by applying existing variable selection procedures.

Submodel Estimation

Thus, under the subspace restriction the submodel estimator or restricted estimator
(RE) is given by

β̂RE = β̂UE − (X ∼X)−1H ∼(H(X ∼X)−1H ∼)−1(Hβ̂UE − h).

Similarly, a submodel estimator can be constructed using auxiliary information, that
is β2 = 0.

1.1.1 Pretest and Shrinkage Estimation

In a regression setup, pretest and shrinkage estimation arise when we have prior
information about a subset of the available covariates. The prior information may
or may not positively contribute to the estimation process. Nevertheless, it may be
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advantageous to use the UPI when sample information is limited or the quality of
the data at hand is poor, or even the estimate based on sample data may not be
reliable. It is however, important to note that the consequences of incorporating UPI
depend on the quality or usefulness of the information being added into the estimation
process. Any uncertain prior information may be tested before incorporating it into
the model. Based on the idea of Bancroft (1944), uncertain prior information may be
validated through a pretest, and depending on such validation, the information may
be incorporated into the model as a parametric restriction, thus choosing between
the submodel and the full model estimation procedure.

Once we have a submodel estimator along with the full model estimator, we can
test the validity of the subspace information, using a suitable test statistic φn . In
pretest estimation framework, we consider testing the restriction in the form of the
following null hypothesis:

H0 : Hβ = h.

The preliminary test estimator (PE) or simply pretest estimator for the regression
parameter β is obtained as

β̂PE = β̂UE − (β̂UE − β̂RE)I (φn < cn, α), (1.2)

where I (·) is an indicator function, and cn, α is the 100(1 − α) percentage point of
the test statistic φn .

In the framework proposed by Stein (1956), the shrinkage estimator or Stein-
type estimator takes a hybrid approach by shrinking the full model estimator to a
plausible alternative estimator (submodel estimator). In this framework, the estimates
are essentially being shrunken toward the submodel estimators.

A Stein-type shrinkage estimator (SE) β̂S of β can be defined as

β̂S = β̂RE + (β̂UE − β̂RE)
{
1 − kφ−1

n

}
, k ≥ 3.

The positive-part shrinkage estimator (PSE) has been suggested in the literature.
A PSE has the form

β̂S+
1 = β̂RE

1 + (β̂UE
1 − β̂RE

1 )
{
1 − kφ−1

n

}+
,

where we define the notation z+ = max(0, z). This adjustment controls for the
over-shrinking problem in SE.

Shrinkage estimation method combines estimates from the candidate full model
and a submodel in an optimal way dominating the full model estimator.

For a sparse model, a schematic flowchart of shrinkage estimation is shown in
Fig. 1.1.
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Fig. 1.1 Flowchart of
shrinkage estimation strategy

1.1.2 Penalty Estimators

The penalty estimators are members of the penalized least squares family and they
are obtained by optimizing a quadratic function subject to a penalty. Popular penalty
estimators includes the least absolute and shrinkage operator (LASSO), adaptive
LASSO, group LASSO, the smoothly clipped absolute deviation (SCAD), and min-
imax concave penalty (MCP), among others. They are so called because the penalty
term is used in the penalized least squares to obtain the estimate of the regression
parameters. The main idea in such estimation rule is that the regression coefficients
with weak or no effects are shrunken toward the zero vector when model is sparse.
The process often eliminates some of the covariates completely by shrinking their
coefficients to exactly zero. Thus, the procedure performs variable selection and
shrinkage together. In a sense, the procedure selects a submodel and estimates the
regression parameters in the submodel. This technique is fruitful when the model is
sparse, and applicable when number of predictors (p) is greater than the number of
observations (n), a so-called ultrahigh dimensional model.

In shrinkage estimation strategies, if prior information about a subset of the covari-
ates is available, then the estimates are obtained by incorporating the available infor-
mation. However, in the absence of prior information, one might go with usual
variable selection process to sort out the significant covariates. A typical variable
selection process is likely to drop some of the covariates from the model. This is
equivalent to having some prior knowledge about the dropped covariates that their
coefficients are zero. Any suitable model selection criteria such as AIC, BIC, or
penalty can be considered to achieve this objective.

Examining side-by-side the shrinkage and penalty estimation strategies, we see
that the output of penalty estimation resembles shrinkage methods as it shrinks and
selects the variables simultaneously. However, there is an important difference in how
the shrinkingworks in penalty estimationwhencompared to the shrinkage estimation.
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The penalty estimator shrinks the full model estimator toward zero and depending
on the value of the tuning or penalty parameter, it sets some coefficients to zero
exactly. Thus, penalty procedure does variable selection automatically by treating all
the variables equally. It does not single out nuisance covariates, or for that matter,
the UPI, for special scrutiny as to their usefulness in estimating the coefficients of
the active predictors. However, SCAD, MCP, and adaptive LASSO, on the other
hand, are able to pick the right set of variables while shrinking the coefficients of
the regression model. Lasso-type regularization approaches have some advantages
of generating a parsimony sparse model, but are not able to separate covariates with
small contribution and covariates with no contributions. This could be a serious
problem if there was a large number of covariates with small contributions and were
forced to shrink toward zero. In the reviewed published studies on high-dimensional
data analysis, it has been assumed that the signals and noises are well separated.

Apparently, there has been no study in the reviewed literature at one place which
compares the relative performance of pretest, shrinkage, and penalty estimators. One
of the objectives of the book is to present the relative properties of pretest, shrinkage,
and penalty estimators in some useful models. Therefore, it is worth exploring the
performance of the penalty and shrinkage estimators when it is suspected a priori
that the parameters may be reduced to a subspace.

This presentation is fundamental, because pretest and Stein’s methods may be
appropriate for model selection problems and there is a growing interest in this area
to fill the gap between two competitive strategies. Further, there is a dire need to
investigate a more realistic case where there are small signals in the model and it
cannot be effectively removed from the noise. The goal of this monograph is to
discuss some of the issues involved in the estimation of the parameters in a host of
models that may be over-parameterized by including toomany variables in themodel
using shrinkage and pretest estimation strategies. For example, in genomics research,
it is common practice to test a candidate subset of genetic markers for association
with disease (e.g., Zeggini et al. 2007). Here the candidate subset is found in a
certain population by doing genome wide association studies. The candidate subset
is then tested for disease association in a new population. In this new population, it
is possible that genetic markers not found in the first population are associated with
disease. Shrinkage strategy is generally used to trade-off between bias and efficiency
in a data adaptiveway in order to providemeaningful analytical solutions to problems
in genetic epidemiology and other applications.

1.2 Organization of the Book

This book is divided into six chapters.
In Chap.2, we presented linear shrinkage and shrinkage pretest strategies for

estimating the normal and Poissonmeans from a single sample, respectively. Asymp-
totic properties of the estimators have been proposed and compared with the classical
estimators.

http://dx.doi.org/10.1007/978-3-319-03149-1_2
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In Chap.3, we extend the idea of pretest shrinkage strategies to a multiple sample
case. Several estimators are proposed when multiple samples are available. For the
multisample case, we demonstrate that the suggested shrinkage strategy is superior
to the classical estimation strategy based on the sample data alone.

Shrinkage and pretest estimation in a multiple regression model are introduced in
Chap.4.Asymptotic bias and risk expressions of the estimators have been derived and
the performance of shrinkage estimators is compared with the classical estimators
using a real data example and through Monte Carlo simulation experiments. Several
penalty estimators such as LASSO, adaptive LASSO, and SCAD estimators have
been discussed. Monte Carlo simulation studies have been used to compare the
performance of shrinkage and penalty estimators.

We discuss shrinkage, pretest, and penalty estimation, in partially linear model
in Chap.5. The risk properties of the estimators have been studied using asymptotic
distributional risk and Monte Carlo simulation studies.

In Chap.6 we considered shrinkage estimation in a Poisson regression model.
This model assumes the response variable to have a Poisson distribution, and also
that the logarithm of its expected value can be modeled by a linear combination
of unknown parameters. We appraise the performance of shrinkage, penalty, and
maximum likelihood estimators in this context with real data example and through
Monte Carlo simulation experiments.
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Chapter 2
Improved Estimation Strategies in Normal
and Poisson Models

Abstract In this chapter, we consider the estimation of the mean parameter from
two commonly used statistical models in practice. In a classical approach, we esti-
mate the parameter based on the available sample information at hand only. On the
other hand, in Bayesian framework, we assume prior distribution on the parameter
of interest to obtain an improved estimation. In semi-classical approach, we assume
that an initial value of the parameter is available from past investigation or any other
sources whatsoever. The main focus in this chapter is to combine sample information
and nonsample information to obtain an improved estimator of themean parameter of
normal and Poisson models, respectively. To improve the estimation accuracy linear
shrinkage and pretest estimation strategies are suggested. The performance of the
suggested pretest estimator is appraised by using the mean squared error criterion.
The relative efficiency of the suggested estimators with respect to a classical esti-
mator is investigated both analytically and numerically. Not surprisingly, the linear
shrinkage estimator outperforms its competitors when the nonsample information
is nearly correctly specified. The pretest estimator is relatively more efficient than
the classical estimator in the most interesting part of the parameter space. The sug-
gested shrinkage pretest estimation strategy is easy to implement and does not require
any tuning or hyperparameter. We strongly recommend using the shrinkage pretest
estimation method for practical problems, since it does not drastically suffer postes-
timation bias or any other implications, unlike other methods, which fail to report
the magnitude of the bias whether negligible or not negligible. The shrinkage pretest
strategy precisely reports its strength and weakness.

Keywords Pretest and linear shrinkage estimation · Normal and poisson models ·
Bias and MSE

S. E. Ahmed, Penalty, Shrinkage and Pretest Strategies, SpringerBriefs in Statistics, 9
DOI: 10.1007/978-3-319-03149-1_2, © The Author(s) 2014
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2.1 Introduction

In this chapter, we consider the estimation of the single-valued parameter β based
on a random sample of size n. To fix the idea, suppose we obtained observations
x1, . . . , xn from a random variable X with probability density function (pdf) f .
Further, let F be the cumulative distribution function (cdf) of the random variable X .
Suppose β is the mean parameter of X ∼ F . The usual statistical problem concerns
inference on the mean parameter β . Although the estimation of the mean parameter
is a classic problem, it leads to inference strategies for more involved and complex
situations when β may be a vector or a matrix of unknown quantities. We will
address these situations later. Here, we confine ourselves to point estimation of the
mean parameter β . The statistical objective is to understand the unknown quantity β

in a model class F = fX {x; β : β ≥ ε} where ε is the parameter space, has a finite
dimension, and does not increase with the sample size.

The sample mean β̂ = X = ∑n
i=1 xi/n is a traditional and natural point estimator

of β , and has been used in its own right before the beginning of statistics as a subject.
This estimator is intuitively appealing and is a classic example of the method of
moments estimation. Loosely speaking, we say that an estimator will be good if
its values are near the true value of β . Mathematically speaking, we designate an
estimator as an unbiased estimator if E(β̂) = β . We note the sample mean is an
unbiased estimator of the mean parameter β . Further, X is a consistent estimator
of β . It is very common to check the accuracy of the estimator using the notion of
mean squared error (MSE), which is defined as

MSE(β̂; β) = E{(β̂ − β)2}.

The MSE can be conveniently decomposed into two components:

MSE(β̂; β) = Var(β̂) + {bias(β̂; β)}2,

where
Var(β̂) = E[{(β̂ − E(β̂)}2]

is a measure of the dispersion of β̂ and

bias(β̂; β) = E(β̂) − β.

The first and foremost goal of statistical inference is to have an estimator with an
MSE as small as possible. MSE can be used to measure the relative performance of
two estimators for evaluating the same parameter. We will pick an estimator with the
lowest MSE for further investigation. We consider the estimator β̂1 to be relatively
better (more efficient) than β̂2 if

MSE(β̂1; β) ≤ MSE(β̂2; β)
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where strict inequality holds for at least one value of β .
If a random sample is taken from a normal (Gaussian) distribution with known

variance, then β̂ is also the maximum likelihood estimator (MLE) of β . Then

MSE(β̂MLE) = MSE(X) = φ 2

n
.

Thus, for a fixed sample size n, the MSE of β̂MLE assumes a constant value of φ 2

n .

Now, a natural question arises that asks how we can improve the efficiency of β̂MLE

for a given n. In this pursuit, one should look into the parameter space ε for any
additional information. It may be possible that β ≥ α ⊂ ε . This information can
be used in forming a new estimation strategy in the hope that it will perform better
than β̂MLE . In many real-life problems, practitioners have some conjectures about
the value of parameter β based on experience or familiarity with the experiment
or survey under investigation. Suppose, in a biological experiment, a researcher is
focused on estimating the growth rate parameter of a certain bacterium after apply-
ing some catalyst when it is suspected a priori that the growth parameter may be
approximated by a specified value. In a controlled experiment, the ambient condition
will not contribute to varying growth rates. Therefore, the biologist may have a good
reason to suspect that the approximate value is the true growth rate parameter for
her experiment. It is widely accepted that, in applied science, an experiment is often
performed with some prior knowledge of the outcome, or to confirm a hypothetical
result, or to re-establish existing results. It is reasonable, then, to move the point
estimator of β close to an approximation of β , say β0. However, such information
regarding the parameter is considered as nonsample information (NSI) or uncertain
prior information (UPI).

2.2 Estimation Strategies

In this section, we provide some alternative estimation strategies to estimate the
parameter on interest at hand, when some prior information about the parameter is
readily available. We will evaluate the performance of the estimators using MSE
criterion.

2.2.1 Linear Shrinkage Strategy

Our main focus is to improve the estimation of β when it is generally assumed
that the sample data may come from a distribution that is fairly close to a normal
distribution. The data may be contaminated by a few observations, which will have
a very negative impact on the sample estimate β̂ . Hence, in an effort to stabilize the
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parameter estimation of β , we consider the problem of estimating β when some prior
information regarding the population parameter is available. In a number of real-
world problems, the practitioner may have both an approximation of β that provides
a constant βo and sample information that provides a point estimator β̂ . The quality
of βo is unknown; however, the analyst appreciates its ability to approximate β . Our
problem is to combine the approximation βo and the sample result β̂ . Consequently,
we define a MSE-optimal linear shrinkage estimator as

β̂ L S = cβo + (1 − c)β̂ , (2.1)

where c denotes the shrinkage intensity. Ideally, the coefficient c is chosen to min-
imize the mean squared error. Further, c may also be defined as the degree of con-
fidence in the prior information βo. The value of c ≥ [0, 1] may be assigned by the
experimenter according to confidence in the prior value of βo. If c = 0, then we use
the sample data only.

The key advantage of this construction is that it outperforms the classical estimator
β̂ in some part of the parameter space. Estimators constructed as linear (or, more
precisely, convex) combinations of other estimators or guessed values as in (2.1)
are also known as composite estimators. However, the composite estimator β̂ L S

can be interpreted as a linear shrinkage estimator (LSE), as it shrinks the sample
estimator β̂ toward βo. A lot of attention has been paid to this estimator, which is
evident by the extensive publication in this area. Ahmed et al. (2011) developed
asymptotic theory for this type of estimator. Ledoit and Wolf (2003) applied this
strategy to estimate the covariance matrix. They suggested that shrinking theMLE of
the covariance matrix toward structured covariance matrices can produce a relatively
small estimation error in comparisonwith theMLE.Ahmed andKhan (1993),Ahmed
(1991a, b, c), and others pointed out that such an estimator yields a smallerMSEwhen
a priori information βo is correct or nearly correct. We will show that β̂ S will have
a smaller MSE than β̂ when β is close to βo. However, β̂ L S becomes considerably
biased and inefficient when the restriction may not be judiciously justified. Thus,
the performance of this shrinkage procedure depends upon the correctness of the
uncertain prior information.

To get some insight, let us consider the estimation of the normal mean parameter.
Consider X ∼ N (μ, φ 2) based on a sample size n, β̂ = β̂MLE = X . For the
sake of brevity, we assume that the population variance is known in the remaining
discussion. The linear shrinkage estimator is given in (2.1). The bias(β̂LS; β) = −cδ,
where δ = β − βo. For c �= 0, the bias is an unbounded function of δ. We know that
the bias will not go away unless β = βo. However, it is widely accepted or “generic”
to incorporate some bias in the estimation process to achieve a decrease inMSE. This
is referred to as the “bias-variance trade-off” in statistics and the related literature.
To confirm this characteristic of such estimators, let us look at the MSE expression
of β̂ L S :

MSE(β̂ L S; β) = φ 2

n

[
1 − c(2 − c) + c2Δ

]
,
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where Δ = nδ2

φ 2 . Hence, we achieve our objective in lowering the MSE by incorpo-

rating the prior information in the estimation strategy. Clearly, β̂ L S will outperform
the classical estimator X whenΔ is small. However, for large values of δ the opposite
conclusion will hold. It is possible to choose an estimator of optimal c that mini-
mizes the MSE. The key question in this type of estimator is how to select a value
for the shrinkage parameter c such that it may be regarded as an optimal estimator.
In some situations, it may suffice to fix the parameter c at some given value. Another
choice is to choose the parameter c in a data-driven fashion by explicitly minimizing
a suitable risk function. A common but also computationally intensive approach is
to estimate the minimizing c by using cross-validation. On the other hand, from a
Bayesian perspective, one can employ the empirical Bayes technique to infer c. In
this case, c is treated as a hyperparameter and may be estimated from the data by
optimizing the marginal likelihood. Here, we treat c as the degree of trust in the
prior information about the parameter β = β0. In conclusion, it is clear that β̂ L S is
a convex combination of β̂ and X through the fixed value of c ≥ (0, 1), and β̂ L S

has a smaller MSE than X for small values of δ at the expense of its performance
in the rest of the parameter space induced by δ. Not only that, its MSE becomes
unbounded as δ → ∞. If the prior information is bad in the sense that the error
in guessing is large, the linear shrinkage estimator will be inferior to the classical
estimator. Alternatively, if the information is good, i.e., the guessing error is small,
the linear shrinkage estimator offers a substantial gain over the classical estimator.

The above insight leads a to pretest estimation when the uncertain information is
rather suspicious, and it is useful to construct a compromised estimator by performing
a pretest on the prior information. Therefore,weobtain the pretest estimator as convex
combinations of classical and linear shrinkage estimators via a test statistic. Useful
discussions on some of the implications of pretest in parametric theory are given
in Bancroft (1944), Sclove et al. (1972), Efron and Morris (1972), Judge and Bock
(1978), and Ahmed and Saleh (1990), among others. For some asymptotic results on
the subject we refer to Ahmed and Khan (1993), Ahmed (1991a, b, c), Ali and Saleh
(1991), and Ahmed et al. (2011), among others.

2.2.2 Shrinkage Pretest Strategy

When the prior information is not trustworthy, it may be desirable to formulate a
pretest estimator (PE) denoted by β̂ P which incorporates a pretest on βo. Thus, we
consider the shrinkage pretest estimator (SPE) defined by

β̂ P = β̂ I (Dn ≥ cα) + βo I (Dn < cα), (2.2)

where I (A) is the indicator function of set A, Dn = n(x−βo)2

φ 2 is the test statistic for
the null hypothesis Ho: β = βo, and cα is the upper 100α% point of the distribution
of Dn . We consider testing Ho: β = βo against Ha : β �= βo (or β < βo or β > βo).
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Further, PE can be written in a more computationally attractive form as follows:

β̂ P = β̂ − (β̂ − βo)I (Dn < cα). (2.3)

Essentially, we have replaced a fixed constant c in (2.1) with a dichotomous random
quantity I (Dn < cα) to obtain (2.3). In return, we will achieve an estimator with a
bounded MSE in terms of δ. It is important to remark that β̂ P performs better than β̂

in some parts of the parameter space. The use of β̂ P may, however, be limited due to
the large size of the pretest. Ahmed (1992) proposed a shrinkage pretest estimation
strategy replacing βo by β̂ L S in (2.2) as follows:

β̂SP = β̂ I (Dn ≥ cα) + [(1 − c)β̂ + cβo]I (Dn < cα), (2.4)

or, equivalently,
β̂SP = β̂ − c(β̂ − βo)I (Dn < cα). (2.5)

Ahmed (1992) discovered that β̂SP significantly improves upon β̂ P in the size of
the test, and dominates β̂ in a large portion of the parameter space. However, the
estimators based on the pretest strategy are biased.

The expression for the bias of β̂SP is obtained with the aid of the following lemma
from Judge and Bock (1978).

Lemma 2.1 Let Z ∼ N (μ, 1). Then we have the following:

E{ZI(0 < Z2 < z)} = μP(χ2

v, μ2
2

< z)

where χ2

v, μ2
2

has a chi-square distribution with v degrees of freedom and noncen-

trality parameter μ2

2 .

The bias expression for the shrinkage pretest estimator is given as follows:

bias(β̂ S P ; β) = −cδH3(χ
2
1,α;Δ),

where H3(χ
2
1,α;Δ) is the noncentral chi-square distribution function with noncen-

trality parameter Δ and 3 degrees of freedom.
Now, we outline the derivation of the bias expression for β̂SP,

bias(β̂SP; β) = E(β̂SP − β)

= E(β̂ − β − c(β̂ − β0)I (Dn < cα))

= E(β̂ − β) − cE[(β̂ − β0)I (Dn < cα)]
= −c

φ√
n

E(Z I (Dn < cα)) (using Lemma 2.1)

= −cδH3(χ
2
1,α;Δ).



2.2 Estimation Strategies 15

For c = 1, bias(β̂ P ;Ψ) = −δH3(χ
2
1,α;Δ). Both pretest estimators (β̂ P , and β̂SP)

are unbiasedwhenΔ = 0.Also, they are asymptotically unbiasedwhen δ → ∞ since
limδ→∞ δH3(χ

2
1,α;Δ) = 0. The bias functions of both pretest estimators increase to

their maxima as Δ increases, then decrease towards 0 as Δ further increases. Also,
it is seen from the bias expression that as the value of c becomes larger, the variation
in bias becomes greater. Finally, bias(β̂SP; β) < bias(β̂ P ; β) for c ≥ (0, 1). One
may also view c as a bias reduction factor or bias controlling factor in the pretest
estimation.

The expression of MSE(β̂SP; β) is readily obtained with the use of the following
lemma from Judge and Bock (1978).

Lemma 2.2 Let Z ∼ N (μ, 1). Then

E{Z2 I (0 < Z2 < z)} = P

(
χ2

3, μ2
2

< z

)
+ μ2P

(
χ2

5, μ2
2

< z

)
.

Using Lemmas (2.1) and (2.2), we present expressions for the MSE of the shrink-
age pretest estimator.

MSE(β̂ S P ; β) = φ 2

n

[
1 − c(2 − c)H3(χ

2
1,α;Δ)

+ cΔ{2H3(χ
2
1,α;Δ) − (2 − c)H5(χ

2
1,α;Δ)}].

A sketch of the derivation is given below:

MSE(β̂ S P ; β) = E(β̂ S P − β)2

= E(β̂ − β − c(β̂ − β0)I (Dn < cα))2

= E(β̂ − β)2 + c2E[(β̂ − β0)
2 I (Dn < cα)]

− 2cE[(β̂ − β)(β̂ − β0)I (Dn < cα)]

= φ 2

n
+ c2

φ 2

n
E(Z2 I (Dn < cα))

− 2cE[(β̂ − β0 + β0 − β)(β̂ − β0)I (Dn < cα)].

Now, the third term equals

− 2cE[(β̂ − β0)
2 I (Dn < cα)] + 2cE[(β − β0)(β̂ − β0)I (Dn < cα)]

= −2c
φ 2

n
E(Z2 I (Dn < cα)) + 2c

φ 2

n
E(ZI(D < cα)).

Therefore, we have
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MSE(β̂SP; β) = φ 2

n
+ c2

φ 2

n
H3(χ

2
1,α; Δ) + c2ΔH5(χ

2
1,α; Δ)

− 2c
φ 2

n
H3(χ

2
1,α; Δ) − 2cΔ

φ 2

n
H5(χ

2
1,α; Δ) + 2cΔ

φ 2

n
H3(χ

2
1,α; Δ)

= φ 2

n
{1 + c(c − 2)H3(χ

2
1,α; Δ) + (c2 − 2c)ΔH5(χ

2
1,α; Δ)

+ 2cΔH3(χ
2
1,α; Δ)}

= φ 2

n
[1 − c(2 − c) + cΔ{2H3(χ

2
1,α; Δ) − (2 − c)H5(χ

2
1,α; Δ)}].

Ideally, one would like to find the optimal value of c such that MSE of β̂ S P is
minimized. Theoretically this is possible byminimizing theMSE of β̂ S P with respect
to c. Thus, we get the MSE-optimal shrinkage pretest weight

copt = H3(χ
2
1,α;Δ) + ΔH5(χ

2
1,α;Δ) − ΔH3(χ

2
1,α;Δ)

H3(χ
2
1,α;Δ) + ΔH5(χ

2
1,α;Δ)

.

Not surprisingly, the optimum value of c is a function of Δ and is unknown, but it
can be estimated using the sample data. However, we treat c as a constant and the
remaining discussion is as follows. For c = 1, we get the MSE of β̂ P as follows:

MSE(β̂ P ; β) = φ 2

n

[
1 − H3(χ

2
1,α;Δ)

+ Δ{2H3(χ
2
1,α;Δ) − H5(χ

2
1,α;Δ)}].

2.2.3 Relative Performance

We note that the MSE of β̂ is a constant line, while the MSE of β̂ L S is a straight
line in terms of Δ, which intersects the MSE of β̂ at Δ = (2 − c)/c. If the prior
information is correct, then the MSE of β̂ L S is less than the MSE of β̂ . In addition,

MSE(β̂ L S; β) ≤ MSE(β̂; β) when Δ ≥
[
0,

2 − c

c

]
.

Hence, for Δ in this interval, β̂ L S performs better than β̂ . Alternatively, when Δ

deviates from the origin beyond (2 − c)/c, the MSE of β̂ L S increases and becomes
unbounded. Thus, departure from the restriction is fatal to β̂ L S but is of less concern
to β̂ .

In an attempt to identify some important characteristics of β̂ L S , first note that
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H5(χ
2
1,α;Δ) ≤ H3(χ

2
1,α;Δ) ≤ H3(χ

2
1,α; 0), (2.6)

for α ≥ (0, 1) and Δ ≥ 0. The first two terms of (2.6) converge to 0 as Δ approaches
infinity. Using these results, we compare the MSE performance of β̂ S P with β̂ .

MSE(β̂SP) ≥ MSE(β̂)

ifΔ ≥ (2 − c)H3(χ
2
1,α;Δ){2H3(χ

2
1,α;Δ) − (2 − c)H5(χ

2
1,α;Δ)}−1. (2.7)

Thus, β̂ S P dominates β̂ whenever

Δ < (2 − c)H3(χ
2
1,α;Δ){2H3(χ

2
1,α;Δ) − (2 − c)H5(χ

2
1,α;Δ)}−1. (2.8)

It is evident from (2.7) that MSE of β̂ S P is less than the MSE of β̂ if Δ is equal to or
near 0. As the level of the significance approaches one, the MSE of β̂ S P tends to the
MSE of β̂ . Also, when Δ increases and tends to infinity, the MSE of β̂ S P approaches
the MSE of β̂ . Further, for larger values of Δ, the value of the shrinkage pretest MSE
increases, reaches its maximum after crossing the MSE of the classical estimator,
and then monotonically decreases and approaches the MSE of β̂ . Therefore, there
are points in the parameter space where the shrinkage pretest estimator has larger
MSE than the classical estimator and a sufficient condition for this result to occur
is that (2.7) holds. Figure2.1 shows that the MSE of shrinkage pretest estimator for
c = 0.1, 0.3, 0.5, 0.7, 0.9 and theMSE of β̂ L S estimator for c = 0.5 at some selected
values of α. It appears from the figure that the smaller the value of α, the greater the
variation is in themaximum andminimum values of theMSE of the shrinkage pretest
estimator. On the other hand, MSE of β̂ L S is a linear function of Δ and increases
without a bound as Δ increases.

Now, we investigate the MSE performance of β̂ P .

MSE(β̂ P ) ≥ MSE(β̂)

Δ ≥ (H3(χ
2
1,α;Δ){2H3(χ

2
1,α;Δ) − H5(χ

2
1,α;Δ)}−1. (2.9)

Thus, the range of the parameter space in (2.7) is smaller than that in (2.9). Therefore,
theMSE of β̂ S P will be less than that of theMSE of β̂ in a larger parameter space than
that of β̂ P . Hence, the shrinkage pretest estimator provides a wider range than that of
the traditional pretest estimator in which it dominates the classical estimator β̂ . This
indicates the superiority of the shrinkage pretest estimator over the pretest estimator.

The MSE difference

MSE(β P ; β) − MSE(β̂SP; β) = Δ
φ 2

n
{2(1 − c)H3(χ

2
1,α;Δ)

− (1 − c)2H5(χ
2
1,α;Δ)}

− φ 2

n
(1 − c)2H3(χ

2
1,α;Δ), (2.10)
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Fig. 2.1 Comparison of MSE for different values of Δ

suggests that MSE(β̂ P ) ≤ MSE(β̂ S P ) whenever

Δ ≤ (1 − c)H3(χ
2
1,α;Δ){2H3(χ

2
1,α;Δ) − (1 − c)H5(χ

2
1,α;Δ)}−1. (2.11)

Thus, β̂ S P outshines β̂ P when

Δ > (1 − c)H3(χ
2
1,α;Δ){2H3(χ

2
1,α;Δ) − (1 − c)H5(χ

2
1,α;Δ)}−1. (2.12)
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It is seen that the MSE of β̂ P will be smaller than β̂ S P for small values of Δ,
which may be negligible for larger values of c. Alternatively, when the value of Δ

increases, then β̂ S P will dominate β̂ P in the rest of the parameter space. For a given
c, letΔc be a point in the parameter space at which theMSE of β̂ S P and β̂ P intersect.
Then, for Δ ≥ (0,Δc], β̂ P performs better than β̂ S P , while for Δ ≥ [Δc,∞), β̂ S P

dominates β̂ P . Further, for large values of c (close to 1), the interval (0,Δc] may not
be significant. Nonetheless, β̂ P and β̂ S P share a common asymptotic property: as Δ

grows and tends to infinity, their MSEs converge to a common limit, i.e., to the MSE
of β̂ .

Hence, it is clear that none of the pretest estimators dominate each other, however,
their MSE functions are bounded in Δ. Importantly, the shrinkage pretest estimator
renders a wider range of values of the noncentrality parameter than the usual pretest
estimator in which it dominates the classical estimator. However, it is important to
remember that atΔ = 0, the linear shrinkage estimator will be the best choice. Also,
both pretest estimators have smaller MSE than that of β̂ for small values of Δ.

2.2.4 Size of the Pretest

Estimation strategy based on pretesting is a function of the size of the pretest. For
this purpose, we use the notion of relative MSE. The relative MSE (RMSE) of β̂ to
the estimator β̂ ψ is defined by

RMSE(β̂ ψ : β̂ ) = MSE(β̂ , β)

MSE(β̂ ψ, β)
.

Keep in mind that a value of RMSE greater than 1 signifies improvement of β̂ ψ over
β̂ . The RMSE of β̂ S P to β̂ is given by

RMSE(β̂ S P : β̂ ) = MSE(β̂ , β)

MSE(β̂ S P , β)
= 1

1 + g(α,Δ, c)
, (2.13)

where

g(α,Δ, c) = Δc
{
2H3(χ

2
1 ;Δ) − 2(2 − c)H5(χ

2
1 ,Δ)

}

− 2(2 − c)H3(χ
2
1 ;Δ). (2.14)

Note that RMSE is a function of α, Δ, and c. This function, for α �= 0, has its
maximum at Δ = 0 with value

Emax = {1 − 2(2 − c)H3(χ
2
1 ; 0)}−1(> 1).
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Moreover, for fixed values ofα and c, RMSEdecreases asΔ increases from0, crosses
the line RMSE = 1, attains a minimum value at a point Δmin, and then increases
asymptotically to 1. However, for fixed c, Emax is a decreasing function of α while
the minimum efficiency is an increasing function of α. On the other hand, for any
fixed α, the maximum value of RMSE is a decreasing function of c and the minimum
efficiency is an increasing function of c. The shrinkage factor c may also be viewed
as a variation controlling factor among the maximum and minimum RMSE.

One method to determine α and c is to use a maxmin rule. For this, we allocate
a value of the minimum RMSE (Emin) that we are willing to accept. Consider the set

A = {α, c|RMSE(α∗, c∗,Δ) ≥ Emin, ∀Δ}.

The estimator is chosen, which maximizes RMSE(α, c,Δ) over all α, c ≥ A, and Δ.
Thus, we solve for α∗ and c∗ such that

sup
α,c≥A

{
inf
Δ

RMSE(α∗, c∗,Δ)

}
= Emin. (2.15)

For given c = c0 we determine the value of α such that

sup
α,c≥A

{
inf
Δ

RMSE
(
α∗, c0,Δ

)} = Emin. (2.16)

Table 2.1 provides the values of maximum RMSE (Emax), minimum RMSE (Emin),
and the value of α∗ for c = 0.05, 0.1(0.1)1.0.

Table 2.1 shows that, when c increases, the minimum relative MSE increases and
maximum MSE decreases. Hence, c∗ cannot satisfy (2.16) as it does not exist. The
value of c can be determined by the researcher according to a prior belief about the
uncertain prior information. However, we recommend the following two cases for
selecting the size of the pretest:

Case 1: Suppose the experimenter does not know the size of the test but knows c = co

and wishes to accept an estimator which has relative MSE no less than Emin. Then
the maxmin principle determines α = α∗ such that

RMSE(α∗, co,Δ) = Emin.

As an example, for c = 0.5 to achieve an RMSE of at least 0.72, Table2.1 shows
α = α∗ = 0.10. Such a choice of α∗ would yield an estimator with a maximum
RMSE of 1.72 at Δ = 0 and with a minimum guaranteed RMSE of 0.73. On the
other hand, if the practitioner wishes to rely on data completely, then from Table2.1
the size of the pretest will be approximately 0.25. Also, the maximum RMSE drops
from 1.72 to 1.38. Thus, the use of a traditional pretest estimator is limited by the size
ofα, and the level of significance as compared to a shrinkage pretest estimator.Hence,
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Table 2.1 Maximum and minimum RMSE of β̂SP relative to β̂

c
α 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 RMSE

0.01 1.09 1.21 1.49 1.87 2.41 3.19 4.32 5.99 8.25 10.67 11.83 Emax

0.94 0.88 0.77 0.66 0.58 0.50 0.43 0.38 0.33 0.29 0.26 Emin

10.00 9.00 9.00 9.00 9.00 8.00 8.00 8.00 8.00 8.00 8.00 Δmin

0.025 1.08 1.18 1.42 1.73 2.13 2.64 3.30 4.08 4.91 5.60 5.88 Emax

0.95 0.90 0.81 0.72 0.64 0.57 0.51 0.45 0.41 0.36 0.33 Emin

8.00 8.00 8.00 8.00 7.00 7.00 7.00 7.00 7.00 7.00 6.00 Δmin

0.05 1.07 1.15 1.35 1.58 1.85 2.17 2.53 2.90 3.24 3.49 3.58 Emax

0.96 0.92 0.84 0.77 0.71 0.64 0.58 0.53 0.48 0.44 0.40 Emin

7.00 7.00 7.00 7.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 Δmin

0.10 1.05 1.11 1.25 1.40 1.55 1.72 1.89 2.04 2.16 2.24 2.27 Emax

0.97 0.94 0.88 0.83 0.78 0.73 0.68 0.63 0.59 0.55 0.51 Emin

6.00 6.00 6.00 6.00 6.00 5.00 5.00 5.00 5.00 5.00 5.00 Δmin

0.15 1.04 1.09 1.18 1.29 1.39 1.49 1.59 1.67 1.73 1.77 1.79 Emax

0.97 0.95 0.91 0.87 0.82 0.78 0.74 0.70 0.66 0.63 0.59 Emin

5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 Δmin

0.20 1.03 1.07 1.14 1.21 1.28 1.35 1.41 1.46 1.50 1.53 1.53 Emax

0.98 0.96 0.93 0.89 0.86 0.83 0.79 0.76 0.73 0.69 0.66 Emin

5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 4.00 4.00 Δmin

0.25 1.02 1.05 1.11 1.16 1.21 1.26 1.30 1.33 1.36 1.37 1.38 Emax

0.98 0.97 0.94 0.92 0.89 0.86 0.83 0.81 0.78 0.75 0.72 Emin

5.00 5.00 5.00 5.00 5.00 5.00 4.00 4.00 4.00 4.00 4.00 Δmin

0.30 1.02 1.04 1.08 1.12 1.16 1.19 1.22 1.24 1.26 1.27 1.27 Emax

0.99 0.98 0.95 0.93 0.91 0.89 0.87 0.84 0.82 0.80 0.77 Emin

5.00 5.00 5.00 5.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00 Δmin

the shrinkage pretest estimator has a remarkable edge over the pretest estimator with
respect to the size of the pretest.

In real-life situations, the population variance φ 2 is rarely known to the experi-
menter. In the above discussion, we assumed that φ 2 is known primarily to keep the
mathematical treatment simple and straightforward, and to keep clear and concise
ideas and concepts about the notion of the proposed estimation strategies. How-
ever, one can easily implement the linear shrinkage and shrinkage pretest estimation
strategies for the case when φ 2 is unknown.

2.2.5 Estimation Strategies when Variance is Unknown

Now, we provide a brief outline for estimating the normal mean parameter when φ 2

is unknown via shrinkage linear and shrinkage pretest estimation strategies. There
will be no effect on the construction and MSE derivation of the linear shrinkage
estimator. However, the pretest estimation strategy will be affected since the strategy
depends on testing the mean when φ 2 is unknown. In this case, the test statistic will
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no longer follow a normal (χ2) distribution; instead, it will have a t (F)-distribution.
This will slightly effect the derivation of the MSE for the pretest estimation.

To fix the idea, let us consider X ∼ N (β, φ 2). The statistical objective is to
estimate the mean parameter β when φ is unknown using linear shrinkage and
pretest estimation strategies. The linear shrinkage estimator given in (2.1) remains
unchanged. However, the shrinkage pretest estimators are defined as follows:

β̂ S P = β̂ − c(β̂ − βo)I (Dn < cα), (2.17)

where

Dn = n(x − βo)
2

s2
,

and s2 is the usual estimator for sample variance φ 2. Further, cα = F1, n−1(α) is the
upper α-level critical value from a central F-distribution.

The MSE expression for this estimator can readily be obtained by using Lemmas
2.1 and 2.2 as follows:

MSE(β̂ S P ; β) = φ 2

n

[
1 − c(2 − c)H3,v

(
1

3
F1,v(α);Δ

)

+ cΔ
{
2H3,v

(
1

3
F1,v(α);Δ

)
− (2 − c)H5,v

(
1

5
F1,v(α);Δ

)}]
,

where Hv1,v2(·;Δ) is the cumulative distribution function of a noncentral
F-distribution with (v1, v2) degrees of freedom and noncentrality parameter Δ =
n(μ−μ0)

2

φ 2 .

The behavior of β̂ S P essentially remains the same as in the case when the variance
was known and, hence, is not further pursued. For the selection of α, we suggest
using α = 0.05 for β̂ S P . For a more precise selection of α, tables for maximum and
minimum RMSE can also be prepared.

2.3 Estimation in Non-normal Models

The linear shrinkage and shrinkage pretest strategies can be implemented for non-
normal models by using available asymptotic results for the classical methods, and
then establishing the large sample asymptotic theory for the shrinkage and pretest
estimators.

For the sake of brevity and to emphasize the application point of view,we next con-
sider the estimation of the Poisson model parameter λ. The suggested methodology
can easily be implemented for other commonly used discrete models and non-normal
models.
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2.3.1 A Discrete Model: Poisson Distribution

Let us consider the estimation of the Poisson mean parameter: X ∼ P(λ). Based on
a sample size n, the MLE of λ is λ̂ = λ̂MLE = X . Our main focus here is to improve
the estimation of λ when it is generally assumed that the sample data may come
from a distribution that is fairly close to the parameter λ of the Poisson distribution.
However, the data may be contaminated by a few observations, which will have a
very negative impact on the sample estimate λ̂. Hence, in an effort to stabilize the
parameter estimation of λ, we consider the problem of estimating λwhen some prior
information regarding the model parameter λ is available. In a number of real-world
problems, the practitioner may have both an approximation of λ that provides a
constant λo and sample information that provides a point estimator λ̂. The quality
of λo is unknown; however, the analyst appreciates its ability to approximate λ.
The classical problem is to combine the approximation λo and the sample result λ̂.
Consequently, we consider estimators based on shrinkage and pretest estimation.

Suppose the analyst wishes to report the point estimator defined by the linear
combination

λ̂L S = cλo + (1 − c)λ̂, (2.18)

in which wewould choose, in ideal circumstances, the coefficient c so as to minimize
the mean squared error. Further, c may also be defined as the degree of confidence in
the prior information λo.The value of c ≥ [0, 1]may be assigned by the experimenter
according to confidence in the prior value of λo. If c = 0, then we use the sample data
only.Wemay choose an estimator of optimal c thatminimizes theMSE.However, the
optimal value of c depends on the unknown parameter λ and thus it is not accessible.
Aswe pointed out earlier, such an estimator yields a smallermean squared error when
a prior information λo is correct or nearly correct. We will demonstrate that λ̂L S will
have a smallerMSE than λ̂whenλ is close toλo. However, λ̂L S becomes considerably
biased and inefficient when the restriction may not be judiciously justified. Thus,
the performance of this shrinkage procedure depends upon the correctness of the
uncertain prior information. As such, when the prior information is not trustworthy,
it may be desirable to formulate a shrinkage pretest estimator denoted by λ̂S P which
incorporates a pretest on λo. Thus, we consider the shrinkage pretest estimator which
is defined by

λ̂S P = λ̂I (Ln ≥ cα) + [(1 − c)λ̂ + cλo]I (Ln < cα), (2.19)

where I (A) is the indicator function of set A and Ln is the test statistic for the null
hypothesis Ho: λ = λo,

Ln = {√n(λ̂ − λo)}2
λ̂

. (2.20)

We consider testing Ho: λ = λo against Ha : λ �= λo. For moderate and large values
of n and under the null hypothesis, the test statistic Ln follows a χ2-distribution
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with one degree of freedom, which provides the asymptotic critical values. Thus,
the critical value cα of Ln may be approximated by χ2

1,α , the upper 100α% critical
value of the χ2 distribution with 1 degree of freedom.

Note that the above result is based on the asymptotic normality of λ̂. Consequently,
the properties of the proposed improved estimators will be of an asymptotic nature.

2.3.2 Local Alternative and Asymptotic Criterion

It is important to note that for a fixed alternative that is different from the null hypoth-
esis, the power of the test statistics will converge to one as n → ∞. Hence, to explore
the asymptotic power properties of Ln and to avoid the asymptotic degeneracy, we
specify a sequence of local alternatives. Here, the local alternative setting is more
reasonable since estimators based on the pretest principle are usually useful in the
cases where λ and λ0 are close. Therefore, for a given sample of size n a sequence
{Kn} of local alternatives is considered which is given by

Kn : λn = λo + δ√
n
. (2.21)

Here δ is a fixed real number. Stochastic convergence of λ̂ to the parameter λ ensures

that λ̂
p→ λ under local alternatives aswell, where the notation

p→means convergence
in probability.

Furthermore, it is rather sensible to establish and compare the asymptotic proper-
ties of listed competitive estimators under local alternatives.We define an asymptotic
mean squared error (AMSE) as the limit of the MSE for large n computed under
the local alternatives. Similarly, the asymptotic bias (AB) of an estimator may be
defined as the limit of the bias.

2.3.3 Asymptotic Bias and Asymptotic Mean Squared Error

The asymptotic bias of an estimator β̃ of the parameter β is defined as

AB(β̃; β) = lim
n→∞ E{√n(β̃ − β)}. (2.22)

Under local alternatives, AB(λ̂L S) = −c δ. Clearly, this is an unbounded function
of δ. The expression of the asymptotic bias for the shrinkage pretest estimator is

AB(λ̂S P ) = −c δG3(χ
2
1,α;Δ), (2.23)
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where Gv(·;Δ) is the cumulative distribution function of a noncentral chi-square
distribution with v degrees of freedom and noncentrality parameter Δ. The expres-
sion of AB(λ̂S P ) is obtained with the aid of the Lemma 2.1. Since lim δ→∞
δG3(χ

2
1,α;Δ) = 0, we can safely conclude that λ̂S P is asymptotically unbiased,

with respect to δ. For c = 1, AB(λ̂P ) = −δG3(χ
2
1,α;Δ). The quantities AB(λ̂S P )

and AB(λ̂P) are 0 at Δ = 0. The bias functions of both pretest estimators increase to
their maxima as Δ increases, then decrease toward 0 as Δ further increases. Also, it
is seen from the AB expression that the larger the value of c, the greater the variation
in the bias. Thus, the analysis remains the same as for a fixed sample size.

Under the local alternatives in (2.21), we present the expressions for the AMSE
for the estimators under consideration.

AMSE(λ̂S; λ) = AMSE(λ̂; λ)[1 − c(2 − c) + c2Δ], (2.24)

where AMSE(λ̂; λ) = λ.

AMSE(λ̂S P ; λ) = AMSE(λ̂; λ)[1 − c(2 − c)G3(χ
2
1,α;Δ)

+ c2Δ{2G3(χ
2
1,α;Δ) − (2 − c)G5(χ

2
1,α;Δ)}]. (2.25)

The expression of AM SE(λ̂S P ) is readily obtained with the use of the Lemma 2.2.
The shrinkage pretest strategy preserves itsMSE characteristics in the non-normal

(large-sample) scenario. The relative performance of the shrinkage pretest estimator
to the classical estimator is identical to the findings of Sect. 2.2.3.

For c = 1 we get the AMSE of λ̂P as follows:

AMSE(λ̂P ; λ) = λ[1 + Δ{2G3(χ
2
1,α;Δ) − G5(χ

2
1,α;Δ)}

ΔG3(χ
2
1,α;Δ)] (2.26)

and AMSE(λ̂P ; λ) ≥ AMSE(λ̂S P ; λ). Accordingly,

Δ ≥ G3(χ
2
1,α;Δ){2G3(χ

2
1,α;Δ) − G5(χ

2
1,α;Δ)}−1. (2.27)

Again, similar conclusions can be drawn regarding the competitive performance of
two pretest estimators as of those in Sect. 2.2.3.

2.4 Chapter Summary

We presented improved estimation strategies for estimating normal and Poisson
means by utilizing the nonsample information (using approximate values of the para-
meter), respectively. We suggested linear shrinkage and shrinkage pretest strategies
for estimating the mean parameters. The properties of the proposed estimators were
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appraised and compared with the classical estimator using bias and MSE measures.
The analysis revealed that the shrinkage pretest estimator is a bounded function of
approximation error, and it offers substantial MSE reduction when the approxima-
tion is nearly correct. The suggested shrinkage pretest estimation strategy is easy to
implement and does not require any tuning or hyperparameter. It also gives a compa-
rable performance in simulation.We strongly recommend using the shrinkage pretest
estimation method for practical problems, since it does not suffer drastically postes-
timation bias or any other implications, unlike other methods which fail to report the
magnitude of the bias, whether negligible or not negligible. The shrinkage pretest
strategy precisely reports its strengths and weaknesses.

In the next chapter, we extend the pretest shrinkage strategy to amultisample case.
In this scenario, we also suggest a nonlinear shrinkage estimation which resembles
the Stein-rule estimation. More importantly, we will demonstrate that the suggested
shrinkage strategy is superior to the classical estimation strategy.
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Chapter 3
Pooling Data: Making Sense or Folly

Abstract Pooling data from various sources to improve the parameter estimation is
an important problem from the practitioner’s perspective. If the pooling procedure
is carried out judiciously, a much more efficient estimation strategy can be achieved
for the targeted parameter. However, it is imperative that underlying assumptions for
pooling the data are investigated thoroughly before merging the data into a single
data set, and suggesting a pooled estimator based on a grand data. In this chapter,
we explore various estimation strategies for pooling data from several sources. We
suggest some efficient estimation strategies based on pretest and James–Stein prin-
ciples. We consider simultaneous estimation of several coefficients of variation to
demonstrate the power and beauty of pretest and shrinkage estimation in pooling
data. We investigate the asymptotic and finite sample properties of these estima-
tors using mean squared error criterion. We showcase that the shrinkage estimators
based on the James–Stein rule dominate the benchmark estimator of coefficients of
variation.

Keywords Coefficients of variation · Pretest and shrinkage estimation · Meta-
analysis · Bias and efficiency

3.1 Introduction

In this chapter, we consider the problems that may occur when estimating the
parameter vector from several models of interest based on differing sample sizes. We
plan to investigate whether or not all samples are drawn from the same population,
and this information is used to improve the usual estimates of the parameters of
interest. The estimators are based on the shrinkage, pretest, and James–Stein rules.
Instead of using the classical several normal means estimation problem, we consider
simultaneous estimation of coefficients of variation from several independent normal
models. The proposed estimation strategies can be effectively implemented to a host
of estimation problems and various statistical models. In that sense, the suggested
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estimation strategies are very general; however, their properties are developed in the
context of estimating coefficients of variation.

The coefficient of variation (CV) of a randomvariable X withmeanμ and standard
deviation β is defined by the ratio β/μwithμ ∼= 0. For convenience of notation, CV
will be denoted by the Greek letter ε. This ratio is a measure of relative dispersion,
and is useful in many applications. Further, noting that the population coefficient of
variation ε is a pure number and is free from units of any measure. The coefficient
of variation can be used to compare the variability of two different populations. It
is sometimes a more informative quantity than β . For example, a value of 15 for β

has not much meaning unless it can be compared with μ. If β is known to be 23
and μ is 9500, then the magnitude of the variation is small relative to its mean.The
coefficient of variation play an important role in financial markets and statistical
quality control, and other fields. As an example, in the study of the precision of a
measuring instrument, engineers are typically more interested in estimating ε than
estimating β in its own right.

Now, we turn our attention to multi-sample estimation problem. For example
the multiple independent random samples are obtained at different time points or
from populations that have similar characteristics to estimate the CV. The experi-
menters are interested in the analysis of data sets collected in separate studies of the
same phenomenon. Data sets analyzed in such a manner are so-called meta-analysis.
However, meta-analysis does not go beyond the assumption of equality of the para-
meters at hand.

Generally speaking, the population coefficient of variation is fairly stable over
time and over similar types of characteristics. In this data collection process, it is
logical to consider that ε1 = ε2 = · · · = εk . In the reviewed literature, the assump-
tion of the homogeneity of coefficients of variation is common in biological and
agricultural experiments. The main theme of this chapter is to consider the problem
of simultaneous estimation of εi , i = 1, 2, . . . , k when the assumption of equality of
the parameters may or may not hold. Thus, we showcase a much broader and unified
estimation strategy for the estimation of several parameters.

To begin the work let us consider here that Yi1, Yi2, . . . , Yini (i = 1, 2, . . . , k)

is a random sample of size ni taken from the i th population modeled by a normal
distribution. Let us borrow matrix algebra notation and define the mean parameter
vectorμ = (μ1, μ2, . . . , μk)

≥ and covariance matrix β 2
i I(k×k), where I is an identity

matrix. The individual CV is defined by εi = βi
μi

, μi ∼= 0, i = 1, 2, . . . , k. In reality

μi and β 2
i are usually unknown, the unrestricted estimator (UE) of μi and β 2

i are
denoted by μ̂i and β̂ 2

i , respectively, and

μ̂i = 1

ni

ni∑
j=1

Yi j and β̂ 2
i = 1

ni

ni∑
j=1

(Yi j − μ̂i )
2. (3.1)

Similarly,
γ̂ = (ε̂1, . . . , ε̂k)

≥,
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where ε̂i = β̂i/μ̂i , i = 1, 2, . . . k. Further,

≤
ni

(
ε̂ 2

i

2
+ ε̂ 4

i

)− 1
2

(ε̂i − εi )
D⊂ N (0, 1), (3.2)

where
D⊂ means convergence in distribution, see Ahmed (2002).

The plan for this chapter is as follows: in Sect. 3.2, we introduce various improved
estimation strategies for CV parameter vector. We then present some useful asymp-
totic results which are given in Sect. 3.3. In Sect. 3.4, the expressions and analysis
for asymptotic bias and risk of the estimators are provided. The result of a limited
simulation study is presented in Sect. 3.5.

3.2 Efficient Estimation Strategies

We introduce improved estimation strategies for the parameter vector γ = (ε1, . . . ,

εk)
≥ which incorporates both sample information and the conjecture so that all the

coefficients of variation may be the same or similar. In a sense, we are describing
two models here:

• A full model with εi , i = 1, . . . , k parameters of interest to estimate based on
sample information only.

• A candidate submodel with one common parameter ε , that is ε1 = ε2 = · · · =
εk = ε to be estimated based on sample size n.

Clearly, the estimator based on a submodel will outperform the estimators on
a full model, if the homogeneity assumption of the parameter holds. However, an
important statistical question is what happens if this assumption judiciously cannot
be justified. Regardless, whether a submodel is selected by a human eye or by any
other approach, the estimation consistency of selected submodel parameter(s) is
questionable. We address this estimation problem in this chapter. We suggest some
efficient estimation techniques which efficiently combine the information from both
full model and submodel.

For estimation purposes, constraint on the parametric space can be presented in
the form of the null hypothesis,

Ho : ε1 = ε2 = · · · = εk = ε (unknown). (3.3)

First, we propose a candidate submodel estimator (CSE) or so-called pooled
estimator of the common parameter ε.
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3.2.1 Candidate Submodel Estimation Strategy

A candidate submodel estimator or pooled estimator of ε is defined by

γ̂ CS = (ε̂ CS
n , . . . , ε̂ CS

n )≥ = ε̂ CS
n 1k, ε̂ CS

n =
k∑

i=1

ni ε̂i/n, n = n1 + · · · + nk .

(3.4)

Similarly, the shrinkage candidate submodel estimator (SCSE) of ε may be
defined as

γ̂ SCS = γ̂ − φ(γ̂ − γ̂ CS), φ ∈ (0, 1), (3.5)

whereφ is a constant andmay be regarded as the degree of trust in the null hypothesis.
If φ = 1, then we obtain the CSE. Clearly, γ̂ SCS is a convex combination of γ̂ and
γ̂ CS through a fixed value of φ ∈ (0, 1). As in the case of the one-sample problem
(Chap.2), we will show that both γ̂ SCS and γ̂ CS have a smaller MSE than γ̂ in an
interval near the null hypothesis at the expense of its performance in the rest of the
parameter space. Not only that, their MSEs become unbounded as the hypothesis
error grows. If the prior information is bad in the sense that the hypothesis error
is large, the pooled estimators are inferior to γ̂. Alternatively, if the information is
good, i.e., the hypothesis error is small, γ̂ SCS and γ̂ CS offer a substantial MSE gain
over γ̂.

The above insight leads to pretest and James–Stein type shrinkage estimation
strategies when the hypothesis information is rather suspicious. A test statistic plays
an integral role in construction of pretest and shrinkage estimators. For this reason
we suggest following test statistic for the null hypothesis Ho in (3.3).

Test Statistic

A large-sample test statistic for the null hypothesis is obtained by defining the nor-
malized distance of ε̂ from ε̂ CS:

Dn = n(γ̂ − γ̂ CS)≥Γ̂ −1
n (γ̂ − γ̂ CS), (3.6)

where

Γ̂ −1
n = Ωn

α̂2
, Ωn = Diag

(
δ1,n, . . . , δk,n

)
, δi,n = ni

n
, α̂2 = 1

2
(ε̂ CS)2 + (ε̂ CS)4.

Assuming lim(δi,n) = δi is fixed for i = 1, . . . , k, and Γ̂n converges Γ. Under the
null hypothesis, the distribution of Dn converges in distribution to a Δ2 distribution
with (k−1) degrees of freedom. Hence, the upper α-level critical value ofDn defined
by cα may be approximated by this distribution. For more information, we refer to
Ahmed (2002), and for k = 1 and 2, we refer to Ahmed (1994) and Ahmed (1995),
respectively.

http://dx.doi.org/10.1007/978-3-319-03149-1_2
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3.2.2 Pretest Estimation Strategy

The pretest estimator (PE) of γ is defined by

γ̂ P = γ̂ − (γ̂ − γ̂ CS)I (Dn < cα), (3.7)

where I (A) is an indicator function of a set A. It is important to remark that γ̂ P

performs better than γ̂ in important parts of the parameter space.
Again, we remark here the use of γ̂ P may, however, be limited due to the large

size of the pretest. Further, we recall that γ̂ SCS provides a wider range than γ̂ CS in
which it dominates γ̂. Thus, it is logical to replace γ̂ CS by γ̂ SCS in (3.7).

3.2.3 Shrinkage Pretest Estimation Strategy

The shrinkage pretest estimator (SPE) is defined by incorporating φ in (3.7) or
replacing γ̂ CS by γ̂ SCS in (3.7) as follows:

γ̂ SP = γ̂ − φ(γ̂ − γ̂ CS)I (Dn < cα). (3.8)

In the two-sample problem (k = 2), Ahmed (1995) established that γ̂ SP significantly
improves upon γ̂ P in the size of the test, and dominates γ̂ in a large portion of the
parameter space.

It is well established in the reviewed literature that the estimators based on the
pretest method are sensitive to departure from Ho and may not be efficient for
all γ. Thus, we propose Stein-type estimators which will combine the sample and
nonsample information in a superior way to the preceding estimators.

3.2.4 Shrinkage Estimation Strategy

The Stein-type shrinkage estimator (SSE) is defined by

γ̂ S = γ̂ − {(k − 3)D−1
n }(γ̂ − γ̂ CS), k → 4. (3.9)

By design and structure of this estimator, one can expect that this estimator will
provide uniform improvement over γ̂, noting that suggested shrinkage estimator is
not a convex combination of γ̂ CS and γ̂. Therefore by design, the γ̂ S may not remain
nonnegative. In an effort to fix this problem with γ̂ S , we introduce a positive part
shrinkage estimator.
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3.2.5 Improved Shrinkage Estimation Strategy

We define the positive part estimator (PSE) as follows:

γ̂ PS = γ̂ − (k − 3)D−1
n (γ̂ − γ̂ CS)

− {1 − (k − 3)D−1
n }I (Dn < k − 3)(γ̂ − γ̂ CS), k → 4. (3.10)

Having defined all these estimators we need to assess the relative performance
of these estimators. Accordingly, we establish an asymptotic criterion and establish
some interesting and meaningful results in the section below to achieve our goal.

3.3 Asymptotic Theory and Methodology

Let us consider the following weighted quadratic loss function:

L(γ ∞, γ ) = n(γ ∞ − γ )≥ Q(γ ∞ − γ ), (3.11)

where γ ∞ is an estimator of γ and Q is a known positive semi-definite matrix.
We plan to use the notion of asymptotic distributional risk to establish the

asymptotic properties of all aforementioned estimators. To do so, let us assume
that we have G( y) = limn⊂∞ P{≤n(γ ∞ −γ ) √ y}. Now, we define the asymptotic
distributional risk by

ADR(γ ∞, Q) ∗ R(γ ∞, Q) =
∫ ∫

· · ·
∫

y≥ Q ydG( y) = trace( QQ∞), (3.12)

where Q∞ = ∫ ∫ · · · ∫ yy≥dG( y).
It is exceedingly important to calculate the ADR of the estimators when the null

hypothesis may not hold. To be fair, we need to provide the general risk analysis of
the suggested estimators relative to full model estimator when the null hypothesis
or assumed parametric restriction may not hold. We achieve this objective by first
defining a sequence of local alternatives as follows:

K(n) : γ = γn, where γn = γ + δ≤
n
, δ is a real fixed vector. (3.13)

Note that that (3.3) is a special case of {K(n)}.
Further, the test statistic in (3.6) is consistent against fixed γ such that γ ∼∈ Ho.

Hence, both pretest and shrinkage estimators, involving the test statistic are asymp-
totically equivalent to the unrestricted estimator for the fixed alternatives. This further
strengthened the use of contagious local alternative of our work. We refer to Ahmed
(2001) for some insights on this matter.
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Theorem 3.1 If γ ∼∈ Ho, then γ̂ CS and γ̂ SCS will have an unbounded asymptotic
risk. However, γ̂ P , γ̂ SP, γ̂ S, and γ̂ PS will have the same finite risk as of that of γ̂.

Proof A sketch of the proof is given below.

≤
n(γ̂ P − γ̂ )≥ Q

≤
n(γ̂ P − γ̂ ) = {I (Dn < cα)}{≤n(γ̂ − γ̂ CS)≥ Q

≤
n(γ̂ − γ̂ CS)}

√ {Dn I (Dn < cα)}chmax( QΩ−1)

√ {Dn I (Dn < cα)}trace( QΩ−1), (3.14)

where chmax(A) is the largest characteristic root of a matrix A. For γ ∼∈ Ho,
E{Dn I (Dn < cα)} √ cα{P(Dn < cα)}. The test statistic Dn is consistent, hence
E{Dn I (Dn < cα)} ⊂ 0 as n ⊂ ∞.Consequentially, for a fixed γ the estimators
based on full model, γ̂ P and γ̂ SP will have the same ADR.

Investigating the asymptotic characteristic of γ̂ S , we note that

≤
n(γ̂ S − γ̂ )≥ Q

≤
n(γ̂ S − γ̂ ) = (k − 3)2D−2

n {≤n(γ̂ − γ̂ CS)≥ Q
≤

n(γ̂ − γ̂ CS)}
√ (k − 3)2{n(γ̂ − γ̂ CS)≥ Q(γ̂ − γ̂ CS)}−1

√ {chmax( QΩ−1)}2 √ {trace( QΩ−1)}2. (3.15)

Noting that, if {Dn = 0}, then we will have γ̂ S = γ̂ = γ̂ CS . For γ ∼∈ Ho,

E{D−1
n I (Dn > 0)} ⊂ 0 as n ⊂ ∞.

This clearly suggests that γ̂ S and γ̂ will become asymptotically risk equivalent for
every γ not in Ho. We can expect a similar analysis for γ̂ PS.

On the other hand, n ⊂ ∞ the estimator based on a submodel,

(γ̂ CS − γ )
a.s.⊂ a(∼= 0),

for any γ ∼∈ Ho,

n(γ̂ CS − γ )≥ Q(γ̂ CS − γ )
p⊂ +∞, as n ⊂ ∞.

This clearly indicates that for large n theADRof γ̂ CS , approaches+∞when γ ∼∈ Ho.

In the light of the results of the above theorem, we present the expression for
ADR under local alternatives, and then compare the respective performances of the
estimators. We begin the process, by establishing three lemmas. The results of these
lemmas will facilitate the derivation of the ADR of the estimators.

Lemma 3.1 Let us define

Xn = ≤
n(γ̂ − γo), Yn = ≤

n(γ̂ − γ̂ CS),

then under the local alternatives, we obtain the following joint asymptotic distribution
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(
Xn

Yn

)
∀ N2k

{(
δ

δ∞

)
,

(
Γ A
A≥ A

)}
as n ⊂ ∞, (3.16)

where

δ∞ = Hδ, H = Ik − JΩ, J = 1k1
≥
k, Γ = lim(Γ̂n), A = Γ H ≥

Lemma 3.2 Define Zn = ≤
n(γ̂ CS −γo), then under the local alternatives the joint

distribution of

(
Zn

Yn

)
∀ N2k

{(
0
δ∞

)
,

(
α 2 J 0

0 A

)}
as n ⊂ ∞. (3.17)

Here we assume that ω≥δ = 0, where ω = (δ1, . . . , δk).

Lemma 3.3 The test statistic Dn follows a noncentral chi-square distribution with
(k − 1) degrees of freedom and a noncentrality parameter

χ = δ∞≥Γ −1δ∞, as n ⊂ ∞. (3.18)

Hence, under the null hypothesis for large n, Dn will closely follow the chi-square
distribution with (k−1) degrees of freedom. For given α, the critical value ofDn may
be approximated by Δ2

k−1,α , the upper 100α% point of the chi-square distribution
with (k − 1) degrees of freedom.

3.4 Asymptotic Properties

In this section, we provide expressions for the asymptotic distributional bias (ADB)
and ADR of the estimators.

To start the work, let Ψk(x ;χ) to describe the noncentral chi-square distrib-
ution function with noncentrality parameter χ and k degrees of freedom. Further,

E
(
Δ−2m

k (χ)
)

= ∫ ∞
0 x−2mdψk(x ;χ). Now, we define the bias of an estimator γ ∞

as B(γ ∞) = E{limn⊂∞
≤

n(γ ∞ − γ(n))}.
The expressions for the bias of the suggested estimators are given in the theorem

below:

Theorem 3.2
B(γ̂ ) = 0,

B(γ̂ CS) = −δ∞,

B(γ̂ SCS) = −φδ∞,
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B(γ̂ P ) = −δ∞ψk+1(Δ
2
k−1,α;χ),

B(γ̂ SP) = −φδ∞ψk+1(Δ
2
k−1,α;χ),

B(γ̂ S) = −(k − 3)δ∞E(Δ−2
k+1(χ)),

B(γ̂ PS) = −δ∞ [
ψk+1(k − 3;χ) + E{Δ−2

k+1(χ)I (Dn > k − 3)}
]
.

Proof

B(γ̂ CS) = lim
n⊂∞

≤
nE( ˆγ CS − γn)

= E(−Yn)

= −δ∞.

B(γ̂ SCS) = lim
n⊂∞

≤
nE(γ̂ SCS − γn)

= lim
n⊂∞

≤
nE(γ̂n − φ(γ̂n − γ̂ CS) − γn)

= lim
n⊂∞

≤
nE(γ̂n − φ(γ̂n − γ̂ CS) − γ0 − δ≤

n
)

= E(Xn) − φ E(Yn) − δ

= δ − φδ∞ − δ

= −φδ∞.

B(γ̂ P ) = lim
n⊂∞

≤
nE(γ̂ P − γn)

= lim
n⊂∞

≤
nE(γ̂n − (γ̂n − γ̂ CS)I (Dn < cα) − γn)

= lim
n⊂∞

≤
nE(γ̂n − (γ̂n − γ̂ CS)I (Dn < cα) − γ0 − δ≤

n
)

= E(Xn) − E(Yn I (Dn < cα)) − δ

= δ − δ∞ψk+1(Δ
2
k−1,α;χ) − δ

= −δ∞ψk+1(Δ
2
k−1,α;χ).

B(γ̂ SP) = lim
n⊂∞

≤
nE(γ̂ SP − γn)

= lim
n⊂∞

≤
nE(γ̂n − φ(γ̂n − γ̂ CS)I (Dn < cα) − γn)
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= lim
n⊂∞

≤
nE(γ̂n − φ(γ̂n − γ̂ CS)I (Dn < cα) − γ0 − δ≤

n
)

= E(Xn) − φ E(Yn I (Dn < cα)) − δ

= δ − φδ∞ψk+1(Δ
2
k−1,α;χ) − δ

= −φδ∞ψk+1(Δ
2
k−1,α;χ).

B(γ̂ S) = lim
n⊂∞

≤
nE(γ̂ S − γn)

= lim
n⊂∞

≤
nE(γ̂n − {(k − 3)D−1

n }(γ̂n − γ̂ CS) − γn)

= lim
n⊂∞

≤
nE(γ̂n − {(k − 3)D−1

n }(γ̂n − γ̂ CS) − γ0 − δ≤
n
)

= E(Xn) − (k − 3)E(YnD
−1
n ) − δ

= δ − (k − 3)δ∞E(Δ−2
k+1(χ)) − δ

= −(k − 3)δ∞E(Δ−2
k+1(χ)).

B(γ̂ PS) = lim
n⊂∞

≤
nE(γ̂ PS − γn)

= lim
n⊂∞

≤
nE(γ̂ S + (1 − (k − 3)D−1

n )(γ̂ CS − γ̂n)I (Dn < k − 3) − γn)

= lim
n⊂∞

≤
nE(γ̂ S − γn − (1 − (k − 3)E(YnD

−1
n I (Dn < k − 3),

and after some algebraic manipulation we get the desired result.
Now, we use the following transformation to obtain a measurable analysis of the

bias functions:
B∞(.) = [B(γ ∞)]≥Γ −1[B(γ ∞)],

we term B∞(.) as the asymptotic quadratic bias of an estimator of the parameter
vector γ. The corollary below showcases the expression for the asymptotic quadratic
bias of the estimators.

Corollary 3.1
B∞(γ̂ ) = 0,

B∞(γ̂ CS) = χ,

B∞(γ̂ SCS) = φ2χ,

B∞(γ̂ P) = χ[ψk+1(Δ
2
k−1,α; χ)]2,

B∞(γ̂ SP) = φ2χ[ψk+1(Δ
2
k−1,α; χ)]2,
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B∞(γ̂ S) = (k − 3)2χ[E(Δ−2
k+1(χ))]2,

B∞(γ̂ PS) = χ
[
(k − 3)E(Δ−2

k+1(χ)) − E{[(k − 3)Δ−2
k+1(χ) − 1]I (Dn < k − 3)}

]2
.

3.4.1 Bias Analysis

Clearly, the bias functions of all the estimators except γ̂ are a function of χ. Since
χ is a common parameter for the bias functions, it makes sense that we examine the
respective characteristics of the quadratic bias of the estimators for different valuesχ.
Observing that the magnitude of bias of γ̂ CS and γ̂ SCS increases without a bound
and tends to ∞ as χ ⊂ ∞; however, the bias of γ̂ CS approaches infinity faster than
that of γ̂ SCS .

The bias function of both pretest estimators starts from 0, increases to a certain
point, then decreases gradually to 0. Further, B∞(γ̂ SP) = φ B∞(γ̂ P ) < B∞(γ̂ P ) for
φ ∈ (0, 1). Thus, γ̂ SP has asymptotically less bias than that of γ̂ P depending upon
the value of φ . Hence, φ may be considered as a bias reduction factor in the pretest
estimation.

By nature, the shrinkage estimators are biased in general. The bias of γ̂ S starts
from 0 at χ = 0, then increases to a certain point, then decreases toward 0, since
E(Δ−2

λ (χ)) is a decreasing log-convex function ofχ. The behavior of γ̂ PS is similar
to γ̂ S ; however, the bias curve of γ̂ PS remains below the curve of γ̂ S for all values
of χ. Figure 3.1 displays these features of the estimators.

The expressions for ADR or simply risk are given in the following theorem.

Theorem 3.3 Under local alternatives, the ADRs of the estimators are given by

R(γ̂ ; Q) = tr( QΓ ), (3.19)

R(γ̂ CS; Q) = tr( QΓ ) − tr( QB) + δ∞≥
Qδ∞ (3.20)

Where B = Γ − α 2o J

R(γ̂ SCS; Q) = tr( QΓ ) + φ(φ − 2)tr( QB) + φ2δ∞≥
Qδ∞ (3.21)

R(γ̂ P ; Q) = tr( QΓ ) − tr( QB)ψk+1(Δ
2
k−1,α;χ)

− 2tr( Qδδ≥Γ −1B≥)[ψk+3(Δ
2
k−1,α;χ) − ψk+1(Δ

2
k−1,α;χ)]

+ δ∞≥
Qδ∞ψk+3(Δ

2
k−1,α;χ) (3.22)



38 3 Pooling Data: Making Sense or Folly

0 5 10 15 20

0
1

2
3

4
k=3

Δ

B
ia

s

SCSE
SPE
SSE
PSE

0 5 10 15 20
Δ

B
ia

s

0 5 10 15 20

0
1

2
3

4

Δ

B
ia

s

0 5 10 15 20

0
1

2
3

4
0

1
2

3
4

k=5

k=7 k=9

Δ

B
ia

s

Fig. 3.1 Bias of the estimators for k = 3, 5, 7, 9, and α = 0.1, φ = 1

R(γ̂ SP; Q) = tr( QΓ ) + φ(φ − 2)tr( QB)ψk+1(Δ
2
k−1,α;χ)

− 2φ tr( Qδδ≥Γ −1B≥)[ψk+3(Δ
2
k−1,α;χ) − ψk+1(Δ

2
k−1,α;χ)]

+φ2δ∞≥
Qδ∞ψk+3(Δ

2
k−1,α;χ) (3.23)

R(γ̂ S; Q) = tr( QΓ ) − 2(k − 3)tr( QB≥)E(Δ−2
k+1) − 2(k − 3)tr( Qδδ≥Γ −1B≥)

[E(Δ−2
k+3) − E(Δ−2

k+1)] + (k − 3)2tr( QB)E(Δ−4
k+1)

+ (k − 3)2δ∞≥
Qδ∞E(Δ−4

k+3) (3.24)

R(γ̂ PS; Q) = R(γ̂ S; Q) + 2tr( QB)E[(1 − (k − 3)Δ−2
k+1)I (Δ2

k+1 < (k − 3))]
− tr( QB)E[(1 − (k − 3)Δ−2

k+1)
2 I (Δ2

k+1 < (k − 3))]
+ δ∞≥

Qδ∞E[(1 − (k − 3)Δ−2
k+3)

2 I (Δ2
k+1 < (k − 3))]. (3.25)

The proof of (3.19)–(3.25) is given below. First, we obtain themean squared error
matrices (MSEM) of the estimator, and then we obtain the risk expressions.
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Proof

MSEM(γ̂ ) = E
{
lim

n⊂∞ n(γ̂ − γn)(γ̂ − γn)≥
}

= E
{
lim

n⊂∞(Xn − δ)E(Xn − δ)≥
}

= Γ .

Thus,

R(γ̂ ; Q) = tr( QΓ ).

MSEM(γ̂ CS) = E
{
lim

n⊂∞ n(γ̂ CS − γ )(γ̂ CS − γn)≥
}

= E
{
lim

n⊂∞ n[γ̂ CS − γ̂n + γ̂ − γn][γ̂ CS − γ̂ + γ̂n − γn]≥
}

= E[−Yn + (Xn − δ)][−Yn + (Xn − δ)]≥
= E[YnY ≥

n] − E[Yn(Xn − δ)≥]
− E[(Xn − δ)Y ≥

n] + E[(Xn − δ)(Xn − δ)≥]
= B + δ∞δ∞≥ − 2E[XnY ≥

n] + 2δE(Y ≥
n) + Γ

= B + δ∞δ∞≥ − 2B + Γ

= Γ − B + δ∞δ∞≥
.

Hence,

R(γ̂ CS; Q) = tr( QΓ ) − tr( QB) + δ∞≥
Qδ∞.

MSEM(γ̂ SCS) = E
{
lim

n⊂∞ n(γ̂ SCS − γn)(γ̂ SCS − γn)≥
}

= E
{
lim

n⊂∞ n[γ̂n − γn − φ(γ̂n − γ̂ CS)]
[γ̂n − γn − φ(γ̂n − γ̂ CS)]≥}

= E[γ̂n − γn − φYn][γ̂n − γn − φYn]≥
= E[(Xn − δ) − φYn][(Xn − δ) − φYn]≥
= E[(Xn − δ)(Xn − δ)≥] − φ E[(Xn − δ)Y ≥

n]
− φ E[Yn(Xn − δ)≥] + φ2E[YnY ≥

n]
= Γ − 2φ E[XnY ≥

n] + 2φδE(Y ≥
n) + φ2E[YnY ≥

n]
= Γ − 2φ B + φ2[B + δ∞δ∞≥ ].
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Therefore,

R(γ̂ SCS; Q) = tr( QΓ ) + φ(φ − 2)tr( QB) + φ2δ∞≥
Qδ∞.

MSEM(γ̂ P ) = E
{
lim

n⊂∞ n(γ̂ P − γn)(γ̂ P − γn)≥
}

= E
{
lim

n⊂∞ n[γ̂n − γn − (γ̂n − γ̂ CS)I (Dn < k − 3)]
[γ̂n − γn − (γ̂n − γ̂ CS)I (Dn < k − 3)]≥}

= E
{
lim

n⊂∞ n[γ̂n − γn − Yn I (Dn < k − 3)]
[γ̂n − γn − Yn I (Dn < k − 3)]≥}

= E[(Xn − δ) − Yn I (Dn < k − 3)]
[(Xn − δ) − Yn I (Dn < k − 3)]≥

= E[(Xn − δ)(Xn − δ)≥] − E[(Xn − δ)Y ≥
n I (Dn < k − 3)]

− E[Yn I (Dn < k − 3)(Xn − δ)≥] + E[YnY ≥
n I (Dn < k − 3)]

= Γ − 2E[XnY ≥
n I (Dn < k − 3)] + 2δE(Y ≥

n I (Dn < k − 3))

+ E[YnY ≥
n I (Dn < k − 3)]

= Γ − 2B≥ψk+1(Δ
2
k−1,α;χ)

− 2δδ≥Γ −1B[ψk+3(Δ
2
k−1,α;χ) − ψk+1(Δ

2
k−1,α;χ)]

− 2δδ∞≥
ψk+1(Δ

2
k−1,α;χ) + 2δδ∞≥

ψk+1(Δ
2
k−1,α;χ)

+ Bψk+1(Δ
2
k−1,α;χ) + δ∞δ∞≥

ψk+3(Δ
2
k−1,α;χ)

= Γ − Bψk+1(Δ
2
k−1,α;χ)

− 2δδ≥Γ −1B≥[ψk+3(Δ
2
k−1,α;χ) − ψk+1(Δ

2
k−1,α;χ)]

+ δ∞δ∞≥
ψk+3(Δ

2
k−1,α;χ).

Thus,

R(γ̂ P ; Q) = tr( QΓ ) − tr( QB)ψk+1(Δ
2
k−1,α;χ)

− 2tr( Qδδ≥Γ −1B≥)[ψk+3(Δ
2
k−1,α;χ) − ψk+1(Δ

2
k−1,α;χ)]

+ δ∞≥
Qδ∞ψk+3(Δ

2
k−1,α;χ).

MSEM(γ̂ SP) = E
{
lim

n⊂∞ n(γ̂ SP − γn)(γ̂ SP − γn)≥
}

= E
{
lim

n⊂∞ n[γ̂n − γn − φ(γ̂n − γ̂ CS)I (Dn < k − 3)]
[γ̂n − γn − φ(γ̂n − γ̂ CS)I (Dn < k − 3)]≥}
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= E
{
lim

n⊂∞ n[γ̂n − γn − φYn I (Dn < k − 3)]
[γ̂n − γn − φYn I (Dn < k − 3)]≥}

= E
{
lim

n⊂∞[(Xn − δ) − φYn I (Dn < k − 3)]
[(Xn − δ) − φYn I (Dn < k − 3)]≥}

= E[(Xn − δ)(Xn − δ)≥] − φ E[(Xn − δ)Y ≥
n I (Dn < k − 3)]

− φ E[Yn I (Dn < k − 3)(Xn − δ)≥] + φ2E[YnY ≥
n I (Dn < k − 3)]

= Γ − 2φ E[XnY ≥
n I (Dn < k − 3)] + 2φδE(Y ≥

n I (Dn < k − 3))

+ φ2E[YnY ≥
n I (Dn < k − 3)]

= Γ − 2φ B≥ψk+1(Δ
2
k−1,α;χ)

− 2φδδ≥Γ −1B[ψk+3(Δ
2
k−1,α;χ) − ψk+1(Δ

2
k−1,α;χ)]

− 2φδδ∞≥
ψk+1(Δ

2
k−1,α;χ) + 2φδδ∞≥

ψk+1(Δ
2
k−1,α;χ)

+ φ2Bψk+1(Δ
2
k−1,α;χ) + φ2δ∞δ∞≥

ψk+3(Δ
2
k−1,α;χ)

= Γ − 2φ Bψk+1(Δ
2
k−1,α;χ)

− 2φδδ≥Γ −1B≥[ψk+3(Δ
2
k−1,α;χ) − ψk+1(Δ

2
k−1,α;χ)]

+ φ2Bψk+1(Δ
2
k−1,α;χ) + φ2δ∞δ∞≥

ψk+3(Δ
2
k−1,α;χ).

Hence,

R(γ̂ SP; Q) = tr( QΓ ) + φ(φ − 2)tr( QB)ψk+1(Δ
2
k−1,α;χ)

− 2φ tr( Qδδ≥Γ −1B≥)[ψk+3(Δ
2
k−1,α;χ) − ψk+1(Δ

2
k−1,α;χ)]

+ φ2δ∞≥
Qδ∞ψk+3(Δ

2
k−1,α;χ).

MSEM(γ̂ S) = E
{
lim

n⊂∞ n(γ̂ S − γn)(γ̂ S − γn)≥
}

= E
{
lim

n⊂∞ n[γ̂n − γn − (k − 3)D−1
n (γ̂n − γ̂ CS)]

[γ̂n − γn − (k − 3)D−1
n (γ̂n − γ̂ CS)]≥}

= E
{
lim

n⊂∞[(Xn − δ) − (k − 3)D−1
n Yn][(Xn − δ) − (k − 3)D−1

n Yn]≥
}

= E[(Xn − δ)(Xn − δ)≥] − (k − 3)E[(Xn − δ)Y ≥
nD

−1
n ]

− (k − 3)E[D−1
n Yn(Xn − δ)≥]

+ (k − 3)2E[YnY ≥
nD

−2
n ]

= Γ − 2(k − 3)E[XnY ≥
nD

−1
n ] + 2(k − 3)δE(Y ≥

nD
−1
n )

+ (k − 3)2E[YnY ≥
nD

−2
n ]

= Γ − 2(k − 3)B≥E(Δ−2
k+1) − 2(k − 3)δδ≥Γ −1B≥[E(Δ−2

k+3) − E(Δ−2
k+1)]

− 2(k − 3)δδ∞≥
E(Δ−2

k+1) + 2(k − 3)δδ∞≥
E(Δ−2

k+1)
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+ (k − 3)2BE(Δ−4
k+1) + (k − 3)2δ∞δ∞≥

E(Δ−4
k+3)

= Γ − 2(k − 3)B≥E(Δ−2
k+1) − 2(k − 3)δδ≥Γ −1B≥[E(Δ−2

k+3) − E(Δ−2
k+1)]

+ (k − 3)2BE(Δ−4
k+1) + (k − 3)2δ∞δ∞≥

E(Δ−4
k+3),

so the risk of the estimator is

R(γ̂ S; Q) = tr( QΓ )

− 2(k − 3)tr( QB≥)E(Δ−2
k+1)

− 2(k − 3)tr( Qδδ≥Γ −1B≥)[E(Δ−2
k+3) − E(Δ−2

k+1)]
+ (k − 3)2tr( QB)E(Δ−4

k+1) + (k − 3)2δ∞≥
Qδ∞E(Δ−4

k+3).

MSEM(γ̂ PS) = E
{
lim

n⊂∞ n(γ̂ PS − γn)(γ̂ PS − γn)≥
}

= E
{
lim

n⊂∞ n[γ̂ S − γn − (1 − (k − 3)E(YnD
−1
n I (Dn < k − 3))]

[γ̂ S − γn − (1 − (k − 3)E(YnD
−1
n I (Dn < k − 3))]≥

}

= MSEM(γ̂ S) − 2E{(γ̂ S − γn)Y ≥
n(1 − (k − 3)D−1

n )I (Dn < k − 3)}
+ E(YnY ≥

n(1 − (k − 3)D−1
n )2 I (Dn < k − 3))}

= MSEM(γ̂ S) + 2E(YnY ≥
n(1 − (k − 3)D−1

n )I (Dn < k − 3))

− 2E(YnY ≥
n(1 − (k − 3)D−1

n )2 I (Dn < k − 3))

+ E(YnY ≥
n(1 − (k − 3)D−1

n )2 I (Dn < k − 3))

= MSEM(γ̂ S) + 2E(YnY ≥
n(1 − (k − 3)D−1

n )I (Dn < k − 3))

− E(YnY ≥
n(1 − (k − 3)D−1

n )2 I (Dn < k − 3))

= MSEM(γ̂ S) + 2BE[(1 − (k − 3)Δ−2
k+1)I (Δ2

k+1 < (k − 3))]
+ 2δ∞δ∞≥

E[(1 − (k − 3)Δ−2
k+3)I (Δ2

k+1 < (k − 3))]
− BE[(1 − (k − 3)Δ−2

k+1)
2 I (Δ2

k+1 < (k − 3))]
− δ∞δ∞≥

E[(1 − (k − 3)Δ−2
k+3)

2 I (Δ2
k+1 < (k − 3))],

where E{(γ̂ S − γn)Y ≥
n(1 − (k − 3)D−1

n )I (Dn < k − 3)} equals to

E{[(γ̂ CS − γn) + (1 − (k − 3)D−1
n )Yn]Y ≥

n(1 − (k − 3)D−1
n )I (Dn < k − 3)}

= E{[−Yn + (1 − (k − 3)D−1
n )Yn]Y ≥

n(1 − (k − 3)D−1
n )I (Dn < k − 3)}

= −E(YnY ≥
n(1 − (k − 3)D−1

n )I (Dn < k − 3))

+ E(YnY ≥
n(1 − (k − 3)D−1

n )2 I (Dn < k − 3)).
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Finally, we obtain the risk expression as follows:

R(γ̂ PS; Q) = R(γ̂ S; Q) + 2tr( QB)E[(1 − (k − 3)Δ−2
k+1)I (Δ2

k+1 < (k − 3))]
− 2tr( QB)E[(1 − (k − 3)Δ−2

k+1)
2 I (Δ2

k+1 < (k − 3))]
+ δ∞≥

Qδ∞E[(1 − (k − 3)Δ−2
k+3)

2 I (Δ2
k+1 < (k − 3))].

3.4.2 Risk Analysis

We critically examine and discuss the risk functions of the estimators and investigate
the relative performance of all the estimators.

First of all, theADRof γ̂ is constant (independent ofχ) with the value trace( QΓ ).
The risk functions of the other estimators involved a common parameter, χ, so we
mainly study the properties of the estimators using risk functions in terms of χ for
the comparison purpose.

The risk of γ̂ CS is a linear function ofχ and it becomes unbounded asχ increases.
Noting that

R(γ̂ CS; Q) √ R(γ̂ ; Q) if χ √ QB.

The ADR of γ̂ SCS has similar characteristics.
The pretest estimators have some interesting properties. The ADR of γ̂ SP is

bounded in χ and it begins with an initial value of [trace( QΓ ) − trace( QB)φ(2 −
φ)ψk+1(Δ

2
k−1,α; 0)]. The risk of pretest estimators is lowest at χ = 0. However, as

χ deviates from the null hypothesis, the ADR function of γ̂ SP monotonically ap-
proaches theADRof γ̂ after crossing the risk function of γ̂ and achieving amaximum
value. The risk function of γ̂ P also follows a similar pattern. In fact,

R(γ̂ SP; Q)

R(γ̂ CS
n , Q)

√ 1 if

χk √ trace( QB){1 − φ(2 − φ)ψk+1(Δ
2
k−1,α;χ)}

1 − 2φψk+1(Δ
2
k−1,α;χ) + φ(2 − φ)ψk+3(Δ

2
k−1,α;χ)

.

In other words, γ̂ SP is superior to γ̂ CS if

χk ∈
[
0,

trace( QB){1 − φ(2 − φ)ψk+1(Δ
2
k−1,α;χ)}

1 − 2φψk+1(Δ
2
k−1,α;χ) + φ(2 − φ)ψk+3(Δ

2
k−1,α;χ)

)
.

We note that
R(γ̂ SP; Q) √ R(γ̂ ; Q) if
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χk √ trace( QB)(2 − φ)ψk+1(Δ
2
k−1,α;χ)

2ψk+1(Δ
2
k−1,α;χ) − (2 − φ)ψk+3(Δ

2
k−1,α;χ)

,

and
R(γ̂ P ; Q) √ R(γ̂ ; Q) if

χk √ trace( QB)ψk+1(Δ
2
k−1,α;χ)

2ψk+1(Δ
2
k−1,α;χ) − ψk+3(Δ

2
k−1,α.χ)

.

Hence, γ̂ SP has better performance in a bigger part of parameter space than γ̂ P . As a
special case, γ̂ SP dominates γ̂ in the interval

[
0, trace( QB)(2 − φ)φ−1

)
, and γ̂ P per-

forms better than γ̂ ifχ ∈ [0, traceQB). This shows the superiority of γ̂ SP over γ̂ P .
Now, let us determine the conditions under which γ̂ SP dominates γ̂ P . First, con-

sider the case when χ = 0. In this case,

R(γ̂ SP; Q) − R(γ̂ P ; Q) = trace( QB)(1 − φ)2ψk+1(Δ
2
k−1,α;χ) > 0.

Thus, γ̂ P has a smaller risk than that of γ̂ SP when χ = 0. Alternatively,

R(γ̂ P ; Q) = R(γ̂ SP; Q) − trace( QB)(1 − φ)2ψk+3(Δ
2
k−1,α;χ)

+χk

{
2(1 − φ)ψk+1(Δ

2
k−1,α;χ) − (1 − φ)2ψk+3(Δ

2
k−1,α;χ)

}
,

(3.26)

indicating that the risk of γ̂ P will be smaller than γ̂ SP for rather small values of χ,
which may be negligible for larger values of φ . As χ increases, then the difference
in (3.26) becomes positive and γ̂ SP dominates γ̂ P in the rest of the parameter space.
For a given φ , let χkφ be a point in the parameter space at which the risk of γ̂ SP

and γ̂ P intersect. Then, for χ ∈ (0,χkφ ], γ̂ P performs better than γ̂ SP, while for
χk ∈ (χkφ ,∞), γ̂ SP dominates γ̂ P .

We now turn to investigate the properties of the Stein-type shrinkage estimators.
At χ = 0, the risk difference is

R(γ̂ ; Q) − R(γ̂ S; Q) = trace( QB)(k − 3)E{2Δ−2
k+1(0) − (k − 3)Δ−4

k+1(0)} > 0.

Hence, we safely conclude that the Stein-type shrinkage estimators dominate the
estimator based on full model when the nonsample information is correct. Also,
the maximum risk gain of γ̂ S over γ̂ is achieved at this value of χ. However, it is
important and fair to examine the relative performance of shrinkage estimator for
all possible values of χ, that is, for χ ∈ (0,∞). For comparison purpose, let us
characterize a class of positive semi-definite matrices by

QD =
{
trace( QΓ )

chmax ( QΓ )
→ k + 1

2

}
(3.27)
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where chmax (·) means the largest eigenvalue of (·). In order to provide a meaningful
comparison of the various estimators, we state the following theorem:

Theorem 3.4 (Courant Theorem) If C and D are two positive semi-definite q × q
matrices with D nonsingular, then

chmin(CD−1) √ x≥Cx
x≥Dx

√ chmax(CD−1),

where chmin(·) and chmax(·) mean the smallest and largest eigenvalues of (·),
respectively, and x is a column vector.

We note that the above lower and upper bounds are equal to the infimum and supre-
mum, respectively, of the ratio x≥Cx

x≥Dx for x ∼= 0. Also, for D = I, the ratio is known
as the Rayleigh quotient for matrix C. As an application of the Courant theorem, we
get

chmin( QΓ ) √ δ∞≥ Qδ∞

δ∞≥Γ −1δ∞ √ chmax ( QΓ ), for δ∞ ∼= 0 and Q ∈ QD.

Using the class of matrices defined in (3.27), we safely conclude that all δ∞,
R(γ̂ S; γ ) √ R(γ̂ ; γ ) where strict inequality holds for some δ∞.

More specifically, the value of risk of γ̂ S is 3 at χ = 0. The value of risk
increases monotonically toward trace( QB) as χ moves away from 0. The risk of γ̂ S

is uniformly smaller than γ̂ for many values of χ. The upper limit is attained when
χ ⊂ ∞. In summary, the shrinkage estimator is far superior than the full model
estimator when the submodel is nearly correctly specified. In the case where the
submodel is grossly incorrectly specified, which is the worst possible scenario, then
the performance of the shrinkage estimator will be as good as full model estimator,
a very powerful and unparallel property of shrinkage estimator.

We now compare γ̂ S and γ̂ CS at χ = 0, we get

R(γ̂ S, Q) − R(γ̂ CS, Q) = trace( QB) − k − 3

k − 1
trace( QB) > 0. (3.28)

If the submodel is true then the estimator based on the submodel is far superior
than any existing estimator in the reviewed literature, including shrinkage estimator.
Having said that, as χ departs from the origin E(Δ−4

k+1(χ)) decreases, γ̂ S has a
smaller risk than γ̂ CS . Generally speaking, γ̂ S does not perform better than γ̂ CS in
a small interval near the origin, and as a result γ̂ S dominates ˆγ CS in the rest of the
parameter space. Hence, γ̂ S is the relatively more effective estimator and provides
an efficient alternative to γ̂ CS . This clearly demonstrates that the submodel estimator
may be inconsistent when the model is not true and the estimation accuracy of this
estimator cannot be trusted.
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Next, we compare γ̂ S and γ̂ SP when submodel is true, that is, χ = 0.

R(γ̂ S, Q) = R(γ̂ SP, Q) + trace( QB)

{
φ(2 − φ)ψk+1(Δ

2
k−1,α; 0) − (k − 3)

(k − 1)

}

> R(γ̂ SP, Q), k > 3, (3.29)

satisfying

φ < 1 −
√
1 − (k − 3)

(k − 1)ψk+1(Δ
2
k−1,α; 0) , and ψk+1(Δ

2
k−1,α; 0) <

(k − 1)

(k − 3)
(3.30)

otherwise γ̂ S has a smaller risk. A comparison for γ̂ P versus γ̂ S can be easily
obtained by using φ = 1 in the above expression. The risk of γ̂ S and γ̂ SP intersecting
at χk = χkφ,α occurs if the condition (3.30) is satisfied; otherwise there is no
intersecting point in the parameter space. If χk ∈ [0,χkφ,α ), then R(γ̂ SP, Q) √
R(γ̂ S, Q) while for χk ∈ [χkφ,α ,∞), R(γ̂ S, Q) √ R(γ̂ SP, Q). If (3.30) is not
satisfied then R(γ̂ S, Q) √ R(γ̂ SP, Q).

Note that the application of γ̂ S is constrained by the requirement that k → 4. If
k < 4, then γ̂ SP may be a good choice over estimators based on full model and
submodel estimators, respectively.

Comparing the risk performance of γ̂ PS and γ̂ S , we observed from relation (3.25)
that

R(γ̂ PS, Q)

R(γ̂ S, Q)
√ 1, for all δ∞,

with strict inequality for some δ∞, establishing the fact that γ̂ PS dominates γ̂ S . Thus,
γ̂ PS is superior to γ̂. Clearly, γ̂ PS is preferable over γ̂ S . We suggest that γ̂ S should
not be used in its own right, however it can be used as a tool to construct γ̂ PS .

We observed that the ADR of all the estimators is a function of matrices Q
and Γ. The ADR expression can be drastically simplified by considering the case
Q = Γ −1. Now substitute this choice of Q in ADR expressions in (3.19)–(3.25).
The risk expressions are given in corollary below.

Corollary 3.2
R(γ̂ ,Γ −1) = k (3.31)

R(γ̂ CS,Γ −1) = 1 + χ (3.32)

R(γ̂ SCS,Γ −1) = k − φ(2 − φ)(k − 1) + φ2χ (3.33)

R(γ̂ P ,Γ −1) = k − (k − 1)ψk+1(Δ
2
k−1,α;χ)

+χ{2ψk+1(Δ
2
k−1,α;χ) − ψk+3(Δ

2
k−1,α;χ)}, (3.34)
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R(γ̂ SP,Γ −1) = k − φ(2 − φ)(k − 1)ψk+1(Δ
2
k−1,α;χ)

+χ{2φψk+1(Δ
2
k−1,α;χ) − φ(2 − φ)ψk+3(Δ

2
k−1,α;χ)}, (3.35)

R(γ̂ S,Γ −1) = k − 2(k − 3)χE(Δ−2
k+3 − 2(k − 3)χE(Δ−2

k+3)

+ 2(k − 3)E(Δ−2
k+1)(1 − k + χ)

− (k − 1)(k − 3)2E(Δ−4
k+1) + (k − 3)2χE(Δ−4

k+3) (3.36)

R(γ̂ PS,Γ −1) = R(γ̂ S + 2(k − 1)E
[
(1 − (k − 3)Δ2

k+1)I (Δ2
k+1 < (k − 3))

]

− (k − 1)E
[
(1 − (k − 3)Δ−2

k+1)
2 I (Δ2

k+1 < (k − 3))
]

+χE
[
(1 − (k − 3)Δ−2

k+3)
2 I (Δ2

k+1 < (k − 3))
]

(3.37)

Further, these expressions are useful for numerical study. The risk functions can be
plotted for a quick visual comparison. We refer to Ahmed (2002) for a numerical
study of the estimators. We obtain the same risk analysis using above conical form
of the risk function. The numerical results strongly corroborate with the theoretical
findings.

3.5 Simulation Study

In this section, we investigate the relative performance of suggested estimators on
simulated data. The main purpose of this simulation is to examine the performance
of estimators based on a large-sample methodology in moderate sample situations.

We conduct a rather small simulation study to examine the properties of the
suggested estimators formoderate samples.We calculate the risk of γ̂ (R1), γ̂ CS(R2),
γ̂ P (R3), γ̂ S(R4), and γ̂ PS(R5) based on simulated data.

We define the simulated relative efficiency (RE) of an estimator γ 
 to another
estimator γ 
 by

RE(γ 
 : γ 
) = R(γ 
)
R(γ 
)

,

where R(γ 
) and R(γ 
) are the simulated risks of the estimators γ 
 and γ 
,
respectively. Thus, a value of RE greater than 1 indicates the degree of superior-
ity of γ 
 over γ 
. The simulated efficiency of various proposed estimators relative
to γ̂ is given by

REl = R1

Rq
, q = 2, 3, 4, 5 l < q,
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where R1, R2, R3, R4, and R5 are the simulated risks of γ̂, γ̂ CS , γ̂ P , γ̂ S , and γ̂ PS ,
respectively. We assume that the populations have a normal distribution, and random
numbers are generated for the given k and ni . We consider an equal sample size case.
The samples are drawn from normal populations with εi = 0.2. First, we calculate
the test statistic Dn and then pretest and shrinkage estimators are calculated. The
distribution of the test statistic Dn is computed under the null hypothesis, that is,
Ho : ε1 = ε2 = · · · = εk . The simulation for each estimator is repeated 1,000 times.
The simulation results are showcased in the following tables.

We intend to examine the property of the estimators under realistic scenarios.
Assuming all the parameters are equal is too optimistic (given that the submodel is
true) and perhaps misleading. To this end, we define the parameterχ
 = ∑k

i=1(εi −
εoi )

2. Thus, χ
 = 0 implies that the selected submodel is correctly specified and
no further action is required. However, in practice one seldom knows how to select
a submodel. It is important to investigate the properties of estimators when such a
submodelmaynot hold its ground. In otherwords, all the coefficients of variationmay
not be equal and χ
 > 0. In an effort to examine the performance of the estimators
for χ
 > 0, further samples are simulated from normal populations which assumed
a shift to the right by an amount χ
 when γ ∼= γo.

The efficiency of the various estimators is computed based on 1,000 simulations
for choices of k and α. Tables 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, and 3.7 provide the estimated
relative efficiency for the various estimates over γ̂ for different sample sizes. Not
surprisingly, tables reveal that maximum efficiency of all the estimators relative to
γ̂ achieved at χ
 = 0.

Table 3.1 Relative efficiency for k = 4, α = 0.05, and ni = 50

χ∞ RE1 RE2 RE3 RE4

0.00 3.82 2.65 1.35 1.53
0.15 0.33 0.72 1.00 1.01
0.20 0.11 0.99 1.00 1.00
0.30 0.05 1.00 1.00 1.00

Table 3.2 Relative efficiency for k = 4, α = 0.05, and ni = 30

χ∞ RE1 RE2 RE3 RE4

0.00 4.06 2.76 1.34 1.51
0.15 0.52 0.72 1.04 1.05
0.20 0.16 0.87 0.99 1.00
0.30 0.11 0.93 1.00 1.01
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Table 3.3 Relative efficiency for k = 4, α = 0.05, and ni = 20

χ∞ RE1 RE2 RE3 RE4

0.00 3.90 2.63 1.39 1.51
0.15 0.75 0.79 1.09 1.11
0.20 0.26 0.73 0.99 1.01
0.30 0.20 0.81 1.01 1.00

Table 3.4 Relative efficiency for k = 10, α = 0.05, and ni = 50

χ∞ RE1 RE2 RE3 RE4

0.00 10.22 5.17 3.33 4.41
0.15 0.61 0.85 1.25 1.27
0.20 0.18 0.97 1.03 1.04
0.30 0.11 0.98 1.01 1.05

Table 3.5 Relative efficiency for k = 10, α = 0.05, and ni = 30

χ∞ RE1 RE2 RE3 RE4

0.00 10.14 4.63 3.39 4.17
0.15 0.96 0.98 1.44 1.45
0.20 0.30 0.99 1.09 1.10
0.30 0.21 0.98 1.05 1.06

Table 3.6 Relative efficiency for k = 10, α = 0.05, and ni = 20

χ∞ RE1 RE2 RE3 RE4

0.00 9.39 4.89 3.38 3.95
0.15 1.33 1.13 1.63 1.69
0.20 0.47 0.88 1.17 1.33
0.30 0.35 0.91 1.13 1.21

Table 3.7 Relative efficiency for k = 4, α = 0.30, and ni = 35

χ∞ RE1 RE2 RE3 RE4

0.00 4.08 1.38 1.39 1.47
0.15 0.55 0.97 1.05 1.07
0.20 0.19 0.99 0.99 1.01
0.30 0.11 1.00 1./00 1.01
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Simulation study strongly corroborates the theoretical results and demonstrates
that γ̂ CS performs exceptionally well with the other three estimators when χ
 is
close to zero. Alternatively, as χ
 moves away from the origin, the simulation result
shows that the performance of the submodel estimator deteriorates uniformly. Hence,
it is not a desirable estimation strategy. On the other hand, the performance of γ̂ P is
stable for such departures, that is, it achieves a maximum efficiency atχ
 = 0 which
drops and then tends to the risk of γ̂ from below. Further, the relative efficiency of
γ̂ P is higher than that of γ̂ S and γ̂ PS when χ
 is close to origin. However, for larger
values of χ
, the opposite conclusion holds.

More importantly, γ̂ S and γ̂ PS are superior to γ̂ for all the values of χ
. Further,
γ̂ PS is relatively more efficient than γ̂ S in the entire parameter space induced by χ
.
In a nutshell, Tables 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, and 3.7 reveal that as χ
 is close to 0,
all the proposed estimators are highly efficient relative to γ̂. Further, for larger values
of χ
, the performance of the estimators is similar to the analysis of asymptotic
provided in Sect. 3.4. The estimators based on Stein-rule are the clear winners.

We have also assessed the performance of γ̂ S and γ̂ PS relative to γ̂ P for the larger
sizes of the test, α. Both shrinkage estimators outperform the pretest estimator for
larger values of α for all χ
. The results are documented in Table 3.7. It is seen
that for α → 0.35, the proposed shrinkage estimators dominate γ̂ P for all values of
χ
. Interestingly, the positive part estimator dominates the pretest estimator for even
α = 0.25.

Simulation for other values of k were also performed, providing similar results and
patterns. However, for large values of k the relative efficiency of shrinkage estimators
over γ̂ is substantial. For a detailed simulation study, we refer to Ahmed (2002). For
k = 2, we refer to Ahmed et al. (1998).

3.6 Chapter Summary

Pooling several data from various sources to provide an estimation strategy is an
interesting but a challenging problem. Researchers and professionals are equally
interested in combining several data into a single data set for inference purposes.
The pooled estimator based on a single data set is highly efficient under the stringent
condition of the homogeneity of the parameters of several models. If this condition
is violated, the resulting pooled estimator is highly biased and inconsistent. We
suggested some alternative estimation strategies when we have multi-sample data of
similar characteristics. We explored and discussed efficient estimation strategies that
are a combination of pooled estimators and individual estimators.

Specifically, we suggested pretest and shrinkage estimators when multiple sam-
ples are available to increase the estimation by incorporating the test statistic in the
estimation process. We demonstrate, both analytically and numerically, that our sug-
gested shrinkage estimators based on Stein-rule are highly efficient. They perform
better than the benchmark estimator γ̂ in the entire parameter space. The pretest
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estimators perform better than the classical estimator in an important part of the
parameter space. However, they fail to dominate the benchmark when the assump-
tion of equality of the parameters may not hold. More importantly, the risk function
of pretest estimators are bounded and do not explode.

In closing, we would like to emphasize that the estimator based on pooled data
or based on a submodel alone may not be consistent and related inference based on
this estimator may be misleading. Shrinkage and pretest estimators are considered
to be best suited to the situation. Both methods combine the full model estimators
and submodel estimators via a test statistic and produced satisfactory results. Having
said that, the pooled or submodel estimator is the best when the assumed constraint
on the parameter space is judiciously correct.

These strategies have been implemented in different contexts in the reviewed
literature.We refer to Ahmed et al. (2001, 2006a,b, 2010a,b,c, 2011a, 2012), Muttlak
et al. (2011), Ahmed and Liu (2009), Buhamra et al. (2007), Ghori et al. (2006),
Ahmed and Khan (2002), Ahmed (2000a,b, 1992, 1999, 1988, 2003, 2005), and
other.
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Chapter 4
Estimation Strategies in Multiple
Regression Models

Abstract In this chapter we present various large sample estimation strategies in
a classical multiple regression model for estimation of the regression coefficients.
These strategies are motivated by Stein-rule and pretest estimation procedures. In
the context of two competing regression models (the full model and the candidate
submodel), we suggest an adaptive shrinkage estimation technique that shrinks the
full model estimate in the direction of the submodel estimate. The estimator based
on pretest principle is also considered. Further, we apply the penalty estimation
strategy for both variable selection and parameters estimation. We investigate the
properties of the suggested estimators analytically and numerically. We provide the
relative performance of all the listed estimators with the estimators based on the full
model, respectively. Our analytical and simulation studies reveal that the shrinkage
estimation strategy outperforms the estimation based on the full model procedure.
Further, based on our limited simulation study, shrinkage and pretest estimators
outperform penalty estimators when there are many inactive covariates in the model.
Finally, the suggestedmethodology is evaluated through application to a real prostate
data.

Keywords Regression models · Pretest and shrinkage estimation · Penalty
estimation · Asymptotic bias and risk · Simulation · Prostrate data

4.1 Introduction

In the past decades, it has been known that pretest and shrinkage estimation strate-
gies yield estimators which are superior in terms of risk to the maximum likelihood
estimator (MLE). Particularly, the shrinkage estimator outshines the MLE in the
entire parameter space. Until recently, shrinkage estimators have only been used
to a limited extent in empirical applications, perhaps this is due to the computa-
tional burden and competing alternative estimation strategies. Interestingly, with

S. E. Ahmed, Penalty, Shrinkage and Pretest Strategies, SpringerBriefs in Statistics, 53
DOI: 10.1007/978-3-319-03149-1_4, © The Author(s) 2014



54 4 Estimation Strategies in Multiple Regression Models

improvements in computing capability, and clear advantages to the use of prior
information in many applications, this scenario is rapidly changing. For example,
in many cases the shrinkage estimation strategy has been applied in the real estate
market, where appraisers’ expert knowledge can be fruitful. A real estate expert’s
opinion, experience, and knowledge often give precise information regarding certain
parameter values in a housing pricing model. On the other hand, the recent literature
on variable selection places an emphasis on using the data from an experiment to
find a candidate subspace that represents a sparsity pattern in the predictor space. In
the next stage, researchers may consider this auxiliary information and choose either
the full model or the candidate submodel for subsequent work. The approach in this
chapter is inspired by the Stein-rule and pretest estimation procedures. The Stein-
rule strategy suggests that efficient estimates can be obtained by shrinking the full
model estimates in the direction of submodel estimates. For this reason, we imple-
ment adaptive estimates where the amount of shrinkage depends on an estimate of the
importance of the information left out of the subspace. Efron and Morris (1972) and
many others considered extensions of the Stein-rule method.We consider pretest and
Stein’s approach to multiple regression models for the regression parameters esti-
mation. Further, LASSO, adaptive LASSO and other penalty methods have become
popular procedures of variable selection and estimation in a host of statisticalmodels.
Tibshirani (1996) introduced the least absolute shrinkage and selection operator
(LASSO). This strategy forces some estimates to be shrunk toward exactly zero,
thus resulting in simultaneous parameter selection and then estimation. LASSO is a
member of a wide class of the absolute penalty estimation (APE) family. The penalty
estimation strategy performs well if the model at hand is sparse. However, sparsity
is a strong assumption and may not be judiciously justified in many situations.

In the arena of statistical inference ascertaining, the appropriate statistical model-
estimator for use in representing the sample data is an interesting and challenging
problem. Our plan here is to consider estimation problems under potential linear
restrictions on the regression parameters in a multiple regression model. In numer-
ous studies, many predicting variables are collected and included in the initial model
building stage. However, having too many predictors in the model may result in
increasing the uncertainty of the prediction results. For this and other reasons, vari-
able selection is an exceedingly important measure of statistical analysis. Clearly,
parsimony and reliability of predictors are desirable notions of statistical models. To
this end, available prior information can be effectively used in the variables selec-
tion stage. Generally speaking, one possible source of prior information consists of
knowing which of the predictor variables are of main interest and which variables
are nuisance variables (candidate confounders) that may not effect the analysis of the
association between the response and themain predictors. In some settings, examples
of candidate confounders are age or origin of subjects or materials, and stratification,
such as laboratory effect. As stated earlier, another source of prior information is
the knowledge of results from previous experiments that search for sparsity patterns.
This information at hand can be used to suggest a candidate subspace. A classical
approach for dealing with such prior information would be to test whether the regres-
sion coefficients of the candidate confounders are zero, or, more generally, whether
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the full vector of parameters is in a given subspace. By design, shrinking the full
model estimator in the direction of the subspace leads to more efficient estimators
when the shrinkage is adaptive and based on the estimated distance between the
subspace and the full space. Alternative procedures that have good performance are
based on the penalty estimation technique. The penalty estimation strategy provides
automatic parameter selection and estimation. However, this strategy completely
relies on the selected submodel and ignores the information from the full model,
if any.

Since its inception, shrinkage estimation has received considerable attention from
researchers. Since 1987, Ahmed, his co-researchers, and others have analytically
demonstrated that shrinkage estimators outshine the classical estimators based on
the full model. They showed asymptotic properties of shrinkage and pretest estima-
tors using a quadratic loss function, and demonstrated their dominance over the full
model estimators. For example, Ahmed (1997) gave a detailed description of shrink-
age estimation, and discussed large sample estimation techniques in a regression
model with non-normal errors. Khan and Ahmed (2003) considered the problem of
estimating the coefficient vector of a classical regression model, and demonstrated
analytically and numerically that the positive-part of Stein-rule estimator, and the
improved preliminary test estimator dominate the usual Stein-type, and pretest esti-
mators, respectively. Ahmed and Nicol (2012) considered various large sample esti-
mation techniques in a nonlinear regression model. Non-parametric estimation of
the location parameter vector when uncertain prior information about the regression
parameters is available was considered by Ahmed and Saleh (1990). Ahmed and
Basu (2000) investigated the properties of shrinkage and pretest estimators in the
general vector autoregressive process.

In this chapter, we consider the application of shrinkage and pretest estimation to
the multiple regression model when it is a priori suspected that the coefficients may
be restricted to a subspace or some auxiliary information is available via the variables
selection procedure. In any event, we derive the expressions for asymptotic distrib-
utional bias and asymptotic distribution risk for the listed estimators. We show that
shrinkage estimators have superior performance in terms of bias and risk over other
estimators considered. More importantly, the shrinkage estimator is uniformly more
efficient than the full model estimator under some general conditions. In contrast,
the performance of the submodel and pretest estimators lacks this property. The rel-
ative performance of shrinkage estimators with penalty estimators such as LASSO,
adaptive LASSO, and Smoothly Clipped Absolute Deviation (SCAD) estimators is
evaluated through a simulation study. Further, the estimation strategy is evaluated
through application to a real prostate data set.

The rest of the chapter is organized as follows.Themodel and suggested estimators
are introduced in Sect. 4.2. The estimators are defined in Sect. 4.3. The asymptotic
properties of the listed estimators are presented inSect. 6.3. The results of a simulation
study that includes a comparison of penalty procedures are provided in Sect. 6.4,
along with the application to real data. Finally, Sect. 6.6 contains the concluding
remarks and sheds some light for future research.
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4.2 The Model and Statement of the Problem

In the context of linear regression, consider a problemof predicting themean response
using a set of regressors. If it is a priori known or suspected that a subset of the regres-
sors does not significantly contribute to predicting the mean response, a submodel or
restricted model excluding these covariates may be sufficient for the purpose. While
it is often true that submodel estimators can offer a substantial improvement, in terms
of mean squared error (MSE) over the full model estimator, there is still a concern
that estimators are less desirable to use when the uncertain prior information (UPI)
or the auxiliary information (AI) is incorrect. The advantage of shrinkage strategy,
is therefore, that UPI/AI is incorporated into estimation to the extent that it appears
to be true, given sample information. For this obvious reason, we therefore view
the use of shrinkage estimators as an attractive and optimal trade-off in the context
of a host of applications. Also, any UPI/AE may be validated through a pretest (or
pretesting), and, depending on the outcome of the pretest, may be incorporated into
the model as a parametric restriction. Thus, a pretest estimator chooses between the
full model and the submodel estimators depending on the outcome of the preliminary
test. However, the properties of pretest estimators are different from the full model
and submodel estimation, respectively.

Model and Classical Estimation

Consider the following regression model:

Y = Xβ + ε, (4.1)

whereY = (y1, y2, . . . , yn)
∼ is a vector of responses,X is an n×pfixed designmatrix,

β = (β1, . . . , βp)
∼ is an unknown vector of parameters, ε = (ε1, ε2, . . . , εn)

∼ is the
vector of unobservable random errors, and the superscript (∼) denotes the transpose
of a vector or matrix.

We do not make any distributional assumption about the errors except that ε has a
cumulative distribution function F(ε) with E(ε) = 0, and E(εε∼) = σ 2I, where σ 2

is finite. Now,we list two assumptions commonly known as the regularity conditions:

(i) max
1≥ i ≥ n

x∼
i(X

∼X)−1xi ≤ 0 as n ≤ ⊂, where x∼
i is the ith row of X, and

(ii) lim
n≤⊂

(
X∼X

n

)
= C, where C is a finite positive-definite matrix.

The full model or unrestricted estimator (UE) of β is given by

β̂
UE = (X∼X)−1X∼Y.

Suppose the regression coefficients are restricted to a subspace as follows:

Hβ = h,
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where, H is a known matrix and h is a vector of known constants.
Thus, under the subspace restriction the submodel estimator or restricted estimator

(RE) is given by

β̂
RE = β̂

UE − (X∼X)−1H∼(H(X∼X)−1H∼)−1(Hβ̂
UE − h).

A more interesting application of the above restriction is that β can be partitioned
as β = (β ∼

1,β
∼
2)

∼. The sub-vectors β1 and β2 are assumed to have dimensions p1
and p2 respectively, with p1 + p2 = p. In many applications we are interested in
the estimation of β1 when it is plausible that β2 is a set of nuisance covariates. This
situation may arise when there is over-modeling, and one wishes to cut down the
irrelevant part from the model (4.1). In high-dimensional data analysis it is assumed
that the model is sparse. In other words, it is plausible that β2 is near some specified
βo
2, which, without loss of generality, may be set to a null vector.
In pretest estimation framework, we consider testing the restriction in the form of

the following null hypothesis:
H0 : Hβ = h.

A suitable test statistic to test the above hypothesis is given by

φn = (Hβ̂
UE − h)∼(HC−1H∼)−1(Hβ̂

UE − h)

s2e
, (4.2)

where

s2e = (Y − Xβ̂
UE

)∼(Y − Xβ̂
UE

)

n − p

is an estimator of σ 2. Under the null hypothesis the test statistic will follow a central
chi-square distribution.

4.3 Estimation Strategies

We present shrinkage, pretest, and penalty estimation strategies in this section.

4.3.1 Shrinkage Estimation

We define a Stein-type shrinkage estimator (SE) β̂
S
1 of β1 by

β̂
S
1 = β̂

RE
1 + (β̂

UE
1 − β̂

RE
1 )

{
1 − kφ−1

n

}
, where k = p2 − 2, p2 ≥ 3,

where φn is defined in (4.2).
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A well-known issue with the SE is its tendency to “over-shrink” the resulting
estimator beyond the full model estimator resulting in reversing the sign of the full
model estimator. This could happen if (p2−1)φ−1

n is larger than one in absolute value.
From the practical point of view, the change of sign would effect its interpretability.
However, this behavior does not adversely effect the risk performance of the SE.
To overcome the sign problem and moderate this effect, the positive-rule Stein-type
estimator (PSE) has been suggested in the literature. A PSE has the form

β̂
S+
1 = β̂

RE
1 + (β̂

UE
1 − β̂

RE
1 )

{
1 − kφ−1

n

}+
, where k = p2 − 2, p2 ≥ 3,

where we define the notation z+ = max(0, z). This adjustment controls the over-
shrinking problem in SE. Alternatively, PSE can be written in the following conical
form:

β̂
S+
1 = β̂

RE
1 + (β̂

UE
1 − β̂

RE
1 )

{
1 − kφ−1

n

}
I(φn < k), p2 ≥ 3.

Ahmed (2001), Ahmed and Chitsaz (2011), and Ahmed et al. (2012) have studied
the asymptotic properties of Stein-type estimators in various contexts.

4.3.2 Pretest Estimation

Anatural estimator is to define the pretest estimator (PE) or preliminary test estimator
for the regression parameters β1 as

β̂
PE
1 = β̂

UE
1 − (β̂

UE
1 − β̂

RE
1 )I(φn < cn,α), (4.3)

where I(·) is an indicator function, and cn,α is the 100(1 − α) percentage point of
the test statistic φn.

Clearly, the pretest estimator is the full model estimator when the test statistic lies
in a rejection region, and takes the value of the submodel estimator otherwise. Keep
in mind that in a pretest estimation problem the UPI is tested before choosing the
estimator for practical purposes, while a shrinkage and positive shrinkage estimator
incorporates whatever UPI is available in the estimation process. A shrinkage esti-
mator may be a smoothed version of the pretest estimator, since it is smooth function
of the test statistics, φn.

4.3.3 Penalty Estimation

Penalty estimators are a class of estimators in the penalized least squares family of
estimators, see Ahmed et al. (2010). This method involves penalizing the regression
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coefficients, and shrinking a subset of them to zero. In other words, the penalized
procedure produces a submodel and subsequently estimates the submodel parame-
ters. Several penalty estimators have been proposed in the literature for linear and
generalized linear models. In this section, we consider the least absolute shrinkage
and selection operation (LASSO) (Tibshirani 1996), the smoothly clipped absolute
deviation method (SCAD) (Fan and Li 2001), the adaptive LASSO (Zou 2006),
and minimax concave penalty (MCP) (Zhang 2010). By shrinking some regression
coefficients to zero, these methods select parameters and estimation simultaneously.

Frank and Friedman (1993) introduced bridge regression, a generalized version
of penalty (or absolute penalty type) estimators. For a given penalty function π(·)
and regularization parameter λ, the general form can be written as

S(β) = (y − Xβ)∼(y − Xβ) + λπ(β),

where the penalty function is of the form

π(β) =
m∑

j=1

|βj|γ , γ > 0. (4.4)

The penalty function in (4.4) bounds the Lγ norm of the parameters in the given
model as

∑m
j=1 |βj|γ ≥ t, where t is the tuning parameter that controls the amount

of shrinkage. We see that for γ = 2, we obtain ridge estimates which are obtained
by minimizing the penalized residual sum of squares

β̂
ridge = argmin

β

⎧⎨
⎩

n∑
i=1

(yi − β0 −
p∑

j=1

xijβj)
2 + λ

p∑
j=1

β2
j

⎫⎬
⎭ , (4.5)

where λ is the tuning parameter which controls the amount of shrinkage.
Frank and Friedman (1993) did not solve for the bridge regression estimators

for any γ > 0. Interestingly, for γ < 2, it shrinks the coefficient toward zero, and
depending on the value of λ, it sets some of them to be exactly zero. Thus, the
procedure combines variable selection and shrinking of the coefficients of penalized
regression.

An important member of the penalized least squares family is the L1 penalized
least squares estimator, which is obtained when γ = 1. This is known as the LASSO.

LASSO

LASSO was proposed by Tibshirani (1996), which performs variable selection and
parameter estimation simultaneously. LASSO is closely related to ridge regression.
LASSO solutions are similarly defined by replacing the squared penalty

∑p
j=1 β2

j in

the ridge solution (4.5) with the absolute penalty
∑p

j=1 |βj| in the LASSO,
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β̂
lasso = argmin

β

⎧⎨
⎩

n∑
i=1

(yi − β0 −
p∑

j=1

xijβj)
2 + λ

p∑
j=1

|βj|
⎫⎬
⎭ . (4.6)

Although the change apparently looks subtle, the absolute penalty term made it
impossible to have an analytic solution for the LASSO. Originally, LASSO solu-
tions were obtained via quadratic programming. Later, Efron et al. (2004) proposed
Least AngleRegression (LAR), a type of stepwise regression, withwhich the LASSO
estimates can be obtained at the same computational cost as that of an ordinary least
squares estimation. Further, the LASSO estimator remains numerically feasible for
dimensions of p that are much higher than the sample size n. Friedman et al. (2010)
developed an efficient algorithm for the estimation of a generalized linear model with
a convex penalty, which efficiently computes the solution at a given regularization
parameter. Thus, the whole process is repeated for typically 100 different regulariza-
tion parameters to construct a piecewise linear approximation of the true nonlinear
solution path.

Ahmed et al. (2007) proposed a penalty estimator for partially linear models.
Further, they reappraised the properties of shrinkage estimators based on the Stein-
rule estimation for the same model.

SCAD

Although the LASSO method does both shrinkage and variable selection due to the
nature of the constraint region which often results in several coefficients becom-
ing identically zero, it does not possess oracle properties (Fan and Li 2001). To
overcome the inefficiency of traditional variable selection procedures, Fan and Li
(2001) proposed SCAD to select variables and estimate the coefficients of variables
automatically and simultaneously. This method not only retains the good features
of both subset selection and ridge regression, but also produces sparse solutions,
ensures continuity of the selected models (for the stability of model selection), and
has unbiased estimates for large coefficients. The estimates are obtained as

β̂
SCAD = argmin

β

⎧⎨
⎩

n∑
i=1

(yi − β0 −
p∑

j=1

xijβj)
2 + λ

p∑
j=1

pα,λ|βj|
⎫⎬
⎭ .

Here pα,λ(·) is the smoothly clipped absolute deviation penalty. The solution of
SCAD penalty is originally due to Fan (1997). SCAD penalty is a symmetric and
a quadratic spline on [0,⊂) with knots at λ and αλ, whose first order derivative is
given by

pα,λ(x) = λ

{
I(|x| ≥ λ) + (αλ − |x|)+

(α − 1)λ
I(|x| > λ)

}
, x ≥ 0. (4.7)
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Here λ > 0 and α > 2 are the tuning parameters. For α = ⊂, the expression (4.7)
is equivalent to the L1 penalty.

Adaptive LASSO

Zou (2006) modified the LASSO penalty by using adaptive weights on L1 penalties
on the regression coefficients. Such a modified method was referred to as adaptive
LASSO. It has been shown theoretically that the adaptive LASSO estimator is able
to identify the true model consistently, and the resulting estimator is as efficient as
the oracle.

The adaptive LASSO estimators (aLASSO) β̂aLASSO are obtained by

β̂
aLASSO = argmin

β

⎧⎨
⎩

n∑
i=1

(yi − β0 −
p∑

j=1

xijβj)
2 + λ

p∑
j=1

ŵj|βj|
⎫⎬
⎭ , (4.8)

where the weight function is

ŵj = 1

|β̂→
j |γ ; γ > 0,

and β̂→
j is a root-n consistent estimator of β. Equation (4.8) is a “convex optimization

problem and its global minimizer can be efficiently solved” (Zou 2006).
For example, β̂→

j can be the ordinary least squares (OLS) estimator. Once we have
the OLS estimator, we need to select γ > 0 and calculate the weights. Finally, the
aLASSO estimates are obtained from (4.8). The LARS algorithm (Efron et al. 2004)
can be used to obtain adaptive LASSO estimates. The steps are given below.

Step 1. Reweight the data by defining xnewj = xoldj /ŵj, j = 1, 2, . . . , p
Step 2. Solve the LASSO problem as

β̂
→→ = argmin

β

∣∣∣∣
∣∣∣∣y − ∑p

j=1 xnewj βj

∣∣∣∣
∣∣∣∣
2

+ λ
∑p

j=1 |βj|
Step 3. Return β̂alasso

j = β̂→→
j /ŵj

For a detailed discussion on the computation of adaptive LASSO, we refer to Zou
(2006).

MCP

Zhang (2010) suggested a minimax concave penalty (MCP) estimator which is
given by
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β̂
MCP
n = argmin

⎧⎪⎨
⎪⎩

n∑
i=1

⎛
⎝yi −

pn∑
j=1

xijβj

⎞
⎠

2

+
pn∑

j=1

ρλ(|βj|, γ )

⎫⎪⎬
⎪⎭

,

where ρλ(γ ) is the MCP penalty given by

ρλ(γ ) =
∫ t

0
(λ − x/γ )+ dx,

where γ > 0 is a regularization parameter.
The above methods have been extensively studied in the literature. A bulk of

research is ongoing, and it is hard to keep track of all the interesting work in this
area. It has been pointed out in the reviewing literature that penalty estimators are not
efficient when the dimension p becomes extremely large compared with sample size
n. There are still challenging problemswhen p grows at a non-polynomial rate with n.
Furthermore, non-polynomial dimensionality poses substantial computational chal-
lenges.

Raheem and Ahmed (2012) have studied some penalty estimators in linear regres-
sion models for fixed dimension, and have compared their predictive performance
with shrinkage estimators. They observed that even in the case when p is fixed the
performance of theses estimators is not superior when compared with the shrinkage
estimators in some cases. The developments in the arena of penalty estimation are
still in their infancy.

4.4 Submodel Selection

In the following, we explain how to obtain auxiliary information when dealing with
a real data set to construct shrinkage and pretest estimators. For the data set at hand,
we fit linear regression models to predict the variable of interest from the available
regressors.

In the shrinkage and pretest estimation, we utilize the full model and submodel
estimates and combine them in a way that shrinks the least squares estimates toward
the sub-model estimates. If available in this framework, we utilize the information
contained in the restricted subspace if it contributes significantly in predicting the
response. However, in the absence of UPI about the nuisance subset, one might do a
usual variable selection to filter the nuisance subset out of the covariates in the full
model. To do this, one initiates the process with the model having all the covariates.
Then, the best subset may be selected based on AIC, BIC, or some other model
selection criteria. Separate estimates from the full model and a given submodel are
then combined to obtain shrinkage or pretest estimates, respectively. Finally, a model
with shrunken coefficients is obtained, which reduces the overall prediction error.
The performance of each pair of full model and submodel is evaluated by estimating
the prediction errors based on K-fold cross validation. In a cross validation, the data
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set is randomly divided into K subsets of roughly equal size. One subset is left aside
and termed as test data, while the remaining K − 1 subsets, called training sets, are
used to fit the model. The fitted model is then used to predict the responses of the
test data set. Finally, prediction errors are obtained by taking the squared deviation
of the observed and predicted values in the test set.

We consider K = 5, 10. Both a raw cross-validation estimate (CVE), and a bias
corrected cross-validation estimate of prediction errors are obtained for each config-
uration. The bias corrected cross-validation estimate is the adjusted cross-validation
estimate designed to compensate for the bias introduced by not using the leave-one-
out cross validation (Tibshirani and Tibshirani 2009).

Since cross-validation is a random process, the estimated prediction error varies
across runs and for different values of K . To account for the random variation, we
repeat the cross-validation process 5,000 times, and estimate the average prediction
errors alongwith their standard errors. The number of repetitions was initially varied,
and we settled with this as no noticeable variations in the standard errors were
observed for higher values.

4.4.1 Prostate Data

Hastie et al. (2009) demonstrated various model selection techniques by fitting a
linear regression model to the prostate data. Specifically, the log of prostate-specific
antigen (lpsa) was modeled by the log cancer volume (lcavol), log prostate
weight (lweight), age (age), log benign prostatic hyperplasia amount (lbph),
seminal vesicle invasion (svi), log capsular penetration (lcp), Gleason score
(gleason), and percentage Gleason scores 4 or 5 (pgg45). The idea is to pre-
dict lpsa from the measured variables.

The predictors were first standardized to have zero mean and unit standard devia-
tion before fitting the model. Several model selection criteria were tried—details of
which may be found in Hastie et al. (2009, Table3.3, p. 63).

We consider the models obtained by AIC, BIC, and best subset selection (BSS)
criteria, and consider them as our submodels. The three selection criteria do not give
us the same submodels; however, most importantly, we obtain a submodel when
given a full model, which allows us to construct shrinkage and pretest estimators.
The submodels are listed in Table 4.1.

Table 4.1 Full and candidate submodels for prostate data

Selection Model: Response ∞ Covariates
criterion

Full model lpsa ∞ lcavol+lweight+svi+lbph+age+lcp+ gleason+pgg45
AIC lpsa ∞ lcavol+lweight+svi+lbph+age
BIC lpsa ∞ lcavol+lweight+svi
BSS lpsa ∞ lcavol+lweight
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Now we turn our attention to shrinkage and pretest estimators, and we establish
the asymptotic properties of these estimators in the following section.

4.5 Asymptotic Analysis

We examine the asymptotic properties of the full model, submodel, pretest, and
shrinkage estimatorswhenn is large andp is fixed. The goal is to derive theasymptotic
distributional bias (ADB) and asymptotic distributional risk (ADR) of the estimator
of β. To achieve this goal, we consider a class of local alternatives {Kn}, which is
given by

Kn : Hβ = h + ω√
n
, (4.9)

where ω = (ω1, ω2, . . . , ωp2)
∼ √ Rp2 is a fixed vector. We notice that ω = 0 implies

Hβ = h, i.e., the fixed alternative is a particular case of (4.9).
In the following, we evaluate the performance of each estimator under a local

alternative. First, for an estimator β̂
→
and a positive-definite matrix W , we define the

weighted quadratic loss function

L(β̂
→;β) = n(β̂

→ − β)∼W(β̂
→ − β),

where W is the weighting matrix. For W = I, it is the simple squared error loss
function.

The the risk function is defined as

E[L(β̂
→
,β); W] = R[(β̂→

,β); W],

this can be written as

R[(β̂→
,β); W] = nE[(β̂→ − β)∼W(β̂

→ − β)]
= n tr[W{E(β̂

→ − β)(β̂
→ − β)∼}]

= tr(WΓ →), (4.10)

where Γ → is the covariance matrix of β̂
→
.

The performance of the estimators is generally evaluated by comparing the risk
functions with a suitable matrix W . Naturally, an estimator with a smaller risk is
preferable. The estimator β̂

→
is called inadmissible if there exists another estimator

β̂
0
such that

R(β̂
0
,β) ≥ R(β̂

→
,β) for all (β, W) (4.11)

with strict inequality holding for some β. If this is the case, then we say that the

estimator β̂
0
dominates β̂

→
. On the other hand, instead of (4.11) holding for every n,
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we have
lim

n≤⊂ R(β̂
0
,β) ≥ lim

n≤⊂ R(β̂
→
,β) for all β, (4.12)

with strict inequality for some β, then β̂
→
is called an asymptotically inadmissible

estimator of β. The expression in (4.11) is usually not easy to prove. An alternative
route is to consider the asymptotic distributional risk (ADR).

To begin the process of calculating ADR, we assume the asymptotic cumulative
distribution function (ACDF) of

√
n(β̂

→ − β)/se exists under the sequence of local
alternatives. The ACDF of an estimator β̂

→
is defined as

G(y) = lim
n≤⊂ P[√n(β̂

→ − β)/se ≥ y].

The dispersion matrix obtained from ACDF is given by

Γ =
∫ ∫

· · ·
∫

yy∼G(y)

Now, the ADR is defined as

R(β̂
→;β) = tr(WΓ ). (4.13)

In passing we would like to remark here that the asymptotic risk may be obtained
by replacing Γ with the limit of the actual dispersion matrix of

√
n(β̂

→ − β) in
the ADR function. However, this may require some extra regularity conditions for
consideration.

4.5.1 Bias and ADR Analysis

We obtain the asymptotic distribution of the proposed estimators and the test statistic
ψn. We use the following theorem.

Theorem 4.1 Under the regularity conditions, and if σ 2 < ⊂, as n ≤ ⊂,

√
n s−1

e (β̂
UE − β)

d−≤ Np(0, C−1).

Bias Analysis

The asymptotic distributional bias (ADB) of an estimator β̂
→
is defined as

ADB(β̂
→
) = lim

n≤⊂ E
{

n
1
2 (β̂

→ − β)
}

.
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Theorem 4.2 Under the assumed regularity conditions and theorem above, and
under {Kn}, the ADB of the estimators are as follows:

ADB(β̂
UE
1 ) = 0 (4.14)

ADB(β̂
RE
1 ) = −C−1H∼(HC−1H∼)−1ω (4.15)

ADB(β̂
PE
1 ) = −C−1H∼(HC−1H∼)−1ωHp2+2(χ

2
p2,α;Δ) (4.16)

ADB(β̂
S
1) = −(p2 − 2)C−1H∼(HC−1H∼)−1ωE

{
χ−2

p2 ;Δ
}

(4.17)

ADB(β̂
S+
1 ) = −C−1H∼(HC−1H∼)−1ω

[
Hp2+2(p2 − 2;Δ) + (p2 − 2)

× E
{
χ−2

p2+2(Δ)
}

+E
{
χ−2

p2+2(Δ)I(χ2
p2+2(Δ) > p2 − 2)

}]
, (4.18)

where

E(χ−2j
p (Δ)) =

∫ ⊂

0
x−2jdΦp(x;Δ),

and Φp(x;Δ) is the cdf of a p-variate normal distribution with mean vector 0 and
covariance matrix Δ. Let Hp2+2(· ; Δ) be the cdf of a noncentral chi-square distrib-
ution with p2 + 2 degrees of freedom and noncentrality parameter Δ.

The bias expressions for all the estimators are not in the scalar form.We therefore
take recourse by converting them into quadratic form. Let us define the asymptotic
quadratic distributional bias (AQDB) of an estimator β→ of β by

AQDB(β→) = [ADB(β→)]∼Σ−1[ADB(β→)],

where Σ = σ 2C−1.
Using the definition and following Ahmed (1997), the asymptotic quadratic dis-

tributional biases of the various estimators are presented below.

AQDB(β̂
UE
1 ) = 0, (4.19)

AQDB(β̂
RE
1 ) = Δ (4.20)

AQDB(β̂
PE
1 ) = Δ

{
Hp2+2(χ

2
p2,α;Δ)

}2
(4.21)

AQDB(β̂
S
) = (p2 − 2)2Δ

[
E

{
χ−2

p2+2(Δ)
}]2

(4.22)

ADQB(β̂
S+
1 ) = Δ

[
Hp2+2(p2 − 2;Δ) + (p2 − 2)E

{
χ−2

p2+2(Δ)
}

+ E
{
χ−2

p2+2(Δ)I(χ2
p2+2(Δ) > p2 − 2)

}]
. (4.23)

The AQDB of the full model estimator is an unbounded function of Δ. Evidently,
the magnitude of its bias will depend on the quantity Δ. The AQDB of the pretest
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estimator is a function of Δ and size of the pretest α. For fixed value of α, the bias
function begins at zero, increases to a certain point, and then decreases gradually
to zero. As a function of the size of the test for fixed Δ, the bias function is a
decreasing function of α √ [0, 1). The value of AQDB is maximum at α = 0 and
zero at α = 1. Interestingly, the AQDB of the shrinkage estimator starts from zero at
Δ = 0, increases to a point, and then decreases toward zero. More importantly, the
bias curve of the shrinkage estimator remains below the bias curve of the full model
estimator for all values of Δ. On the other hand, the AQDB curve of the positive part
estimator remains below the AQDB curve of the shrinkage estimator for all values
of Δ.

Risk Analysis

Following Ahmed (2001), we present the risk expressions of the estimators.

Theorem 4.3 Under the assumed regularity conditions and local alternative {Kn},
the ADR expressions are as follows:

R(β̂
UE
1 ; W) = σ 2tr(WC−1) (4.24)

R(β̂
RE
1 ; W) = σ 2tr(WC−1) − σ 2tr(Q) + ω∼B−1Qω (4.25)

R(β̂
PE
1 ; W) = σ 2tr(WC−1) − σ 2tr(Q)Hp2+2(χ

2
p2,α;Δ)

+ ω∼B−1ω
{
2Hp2+2(χ

2
p2,α;Δ) − Hp2+4(χ

2
p2,α;Δ)

}
(4.26)

R(β̂
S
1; W) = σ 2tr(WC−1) − (p2 − 2)σ 2tr(Q)

{
2E[χ−2

p2+2(Δ)]
− (p2 − 2)E[χ−4

p2+4(Δ)]
}

+ (p2 − 2)(p2 + 2)(ω∼B−1Qω)E[χ−4
p2+4(Δ)] (4.27)

R(β̂
S+
1 ; W) = R(β̂

S1; W) + (p2 − 2)σ 2tr(Q)
[
E

{
χ−2

p2+2(Δ)I(χ2
p2+2(Δ)

≥ p2 − 2)
}

− (p2 − 2)E
{
χ−4

p2+2
(Δ)I(χ2

p2+2(Δ) ≥ p2 − 2)
}]

− σ 2tr(Q)Hp2+2(p2 − 2;Δ) + ω∼B−1Qω
{
2Hp2+4(p2 − 2;Δ)

}

− (p2 − 2)ω∼B−1Qω
[
2E

{
χ−2

p2+2(Δ)I(χ2
p2+2(Δ) ≥ p2 − 2)

}

− 2E
{
χ−2

p2+4(Δ)I(χ2
p2+4(Δ) ≥ p2 − 2)

}

+ (p2 − 2)E
{
χ−4

p2+4(Δ)I(χ−4
p2+4(Δ) ≥ p2 − 2)

}]
, (4.28)

where Q = HC−1WC−1H∼B−1, B−1 = H∼C−1H.
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Ahmed (1997) has examined the risk properties of the listed estimators. It was
remarked that none of the full model, submodel, shrinkage, and pretest estimators is
inadmissible with respect to any of the others. However, at Δ = 0,

R(β̂
RE
1 ; W) < R(β̂

PE
1 ; W) < R(β̂

UE
1 ; W).

On the other hand, for Δ ≥ 0 and p2 ≥ 3,

R(β̂
S+
1 ; W) ≥ R(β̂

S
1; W) ≥ R(β̂

UE
1 ; W),

with strict inequality holds whenΔ = 0. Thus, we conclude that β̂
S+
1 performs better

than β̂
UE
1 and β̂

S
1 in the entire parameter space induced by Δ. The gain in risk of

all the estimators over the full model estimator is substantial when Δ = 0 or near.
Clearly, when Δ moves away from the null hypothesis beyond a certain value, the
ADR of the submodel estimator increases and becomes unbounded. This clearly
indicates that the performance of the submodel estimator will depend strongly on
the reliability of the UPI or AI. The performance of the full model is always steady
throughout Δ √ [0,⊂).

TheADRof the pretest estimator is smaller than theADRof the fullmodel estima-
tor near the null hypothesis. However, the ADR that keeps on increasing crosses the
ADR of the full model estimator, reaches maximum, and then decreases monotoni-
cally to the ADR of the full model estimator. Hence a pretest approach controls the
magnitude of the ADR. There are points in the parameter space for which the full
model estimator is superior to the pretest estimator. We find that the performance of
the pretest estimator, which combines data information with UPI, depends heavily
on the correctness of this UPI. However, the gain in the ADR can be substantial

over the full model estimation strategy when UPI is nearly correct. However, β̂
PE
1

combines the UPI in a superior way to that of β̃, in the sense that the ADR of the
pretest estimator is a bounded function of the Δ.

Finally, we compare the ADR performance of shrinkage estimators and the full
model estimator. First, we note that under some general conditions

R(β̂
S+
1 ; W) ≥ R(β̂

UE
1 ; W) for all Δ √ [0,⊂),

with strict inequality for some Δ. Finally, we may conclude from the ADR relations
for these estimators that

R(β̂
S+
1 ; W)

R(β̂
UE
1 ; W)

≥ 1, for all Δ √ [0,⊂),

with strict inequality for some Δ. Therefore, the positive-part shrinkage estimator
dominates the shrinkage estimator. Hence, the positive-part shrinkage estimator is
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also superior to the full model estimator. We observed that the shrinkage estimators
combine the information from the full model and the submodel in a superior way,
since these estimators perform better than the full model estimator regardless of the
correctness of the UPI. However, the gain in ADR over the full model estimator
is substantial when the submodel is nearly correct. We can also conclude that the
proposed positive-part estimator is superior to the shrinkage estimator. However, the
important point here is not the improvement in the sense of a lowering of the ADR
by using the positive part of the usual Stein-rule estimator. More importantly, the
components of the positive-part estimator have the same sign as that of components
of the full model estimator.

From the above discussion, it can be seen that none of the estimators are inad-
missible with respect to each other in the entire parameter space induced by the
noncentrality parameter Δ.

4.6 Simulation Studies

This section is divided into three subsections. First, we compare the relative perfor-
mance of submodel, pretest, and shrinkage estimators to the full model estimator.
Next, a real data set is analyzed. Finally, we investigate the relative performance of
the penalty estimation.

4.6.1 Full Model, Submodel, Pretest, and Shrinkage Estimation

Monte Carlo simulation experiments have been conducted to examine mean squared
error (MSE) performance of the full model, submodel, pretest, and shrinkage esti-
mators. In this study, we simulate the response from the following model:

yi = x1iβ1 + x2iβ2 + · · · + xpiβp + εi, i = 1, . . . , n,

where x1i and x2i ∞ N(1, 2) independently, and the xsi are i.i.d. N(0, 1) for all
s = 3, . . . , p and i = 1, . . . , n. Moreover, εi are i.i.d. N(0, 1).

We are interested in investigating the performance of the estimators when a prede-
fined submodel is available. In otherwords, we are interested in testing the hypothesis
H0 : β j = 0, for j = p1 + 1, p1 + 2, . . . , p1 + p2, with p = p1 + p2. Accordingly,
we partition the regression coefficients as β = (β1,β2) = (β1, 0). We defined
Δ = ||β − β(0)||, where β(0) = (β1, 0) and || · || is the Euclidean norm. To deter-
mine the behavior of the estimators for Δ > 0, further data sets were generated.
Various Δ values have been considered.

The simulated MSE performance of an estimator of β1 was measured by com-
paring its MSE with that of the full model estimator as defined below:
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Fig. 4.1 Relative MSE of estimators to full model estimator for α = 0.05, n = 60, and (p1, p2) =
(4, 5), (4, 8), (6, 10), and (6, 15)

RMSE(β̂
UE
1 : β̂

*
1) = MSE(β̂

UE
1 )

MSE(β̂
*
1)

, (4.29)

where β̂
*
1 is one of the estimators considered in this study. The amount by which

an RMSE is larger than unity indicates the degree of superiority of the estimator β̂
*
1

over the full model estimator.
RMSEs for the proposed estimators are computed for (p1, p2) = (4, 5), (4, 8),

(6, 10), and (6, 15) for n = 60, and plotted in Fig. 4.1. Additionally, Table 4.2 lists
the RMSEs for (p1, p2) = (5, 10) with n = 50. For pretest estimators, we considered
α = 0.05. Based on Fig. 4.1 and Table 4.2, we draw the following conclusion in the
following two scenarios.
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Table 4.2 Simulated RMSE
of estimators to the full model
estimator for n = 50, p1 = 5,
and p2 = 10

Δ β̂
RE
1 β̂

PE
1 β̂

S
1 β̂

S+
1

0.00 4.47 3.37 2.67 3.12
0.05 4.19 2.98 2.53 2.95
0.11 3.65 2.25 2.27 2.55
0.16 3.09 1.73 2.10 2.23
0.21 2.40 1.31 1.84 1.90
0.26 1.92 1.10 1.66 1.69
0.32 1.55 0.97 1.50 1.51
0.37 1.23 0.94 1.40 1.40
0.42 1.01 0.94 1.31 1.31
0.47 0.82 0.96 1.25 1.25
0.53 0.70 0.98 1.21 1.21
0.58 0.59 0.98 1.17 1.17
0.63 0.52 1.00 1.14 1.14
0.68 0.45 1.00 1.13 1.13
0.74 0.39 1.00 1.11 1.11
0.79 0.34 1.00 1.09 1.09
0.84 0.31 1.00 1.09 1.09
0.89 0.27 1.00 1.07 1.07
0.95 0.24 1.00 1.07 1.07
1.00 0.22 1.00 1.06 1.06

Predefined Submodel is True

The simulation study discloses that when the submodel is correctly specified, i.e.,
Δ = 0, the submodel estimator outperforms all other listed estimators in this study.
In other words, at Δ = 0,

RMSE(β̂
RF
1 ) > RMSE(β̂

PE
1 ) > RMSE(β̂

S+
1 ) > RMSE(β̂

S
1) > 1.

Predefined Submodel is Misspecified

In this section, we investigate the performance of the estimators for the general case,
i.e., Δ > 0. As Δ = 0 moves away from 0 the RMSE of the submodel converges to
0: in Fig. 4.1 see the sharply decaying curve that goes below the horizontal line at
RMSE = 1 for Δ > 0. The RMSE of the shrinkage estimators approaches 1 at the
slowest rate (for a range of Δ) as we move away from Δ = 0. This indicates that,
in the event of an imprecise submodel (i.e., even if β2 ∗= 0), shrinkage estimators
have the largest RMSE among all other estimators for a range of Δ. The shrinkage
estimators dominate the full model for all values of Δ. Further, PSE is relatively
more efficient than the usual shrinkage estimator, for all values of Δ.
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The pretest estimator outshines the shrinkage estimators when Δ is in the neigh-
borhood of zero. Otherwise, for larger values of Δ, the RMSE of the shrinkage
estimator is larger than that of the pretest estimator. However, with the increase of
Δ, at some point, RMSE of the pretest estimator approaches 1 from below. This phe-
nomenon suggests that neither the pretest nor the submodel estimator is uniformly
better than the other when Δ > 0.

To sum up, simulation results suggest that the positive shrinkage estimator main-
tains its superiority over the full model, and over the submodel and pretest esti-
mators for a wide range of Δ. A positive shrinkage estimator is preferred, as there
always remains uncertainty in specifying submodels correctly. Moreover, one cannot
go wrong with the shrinkage estimators, even if the assumed submodel is grossly
wrong. In such cases, the estimates are as good as or equal to the full model esti-
mates. The findings of the simulation study strongly corroborates the theoretical
results presented in Sect. 4.5.

4.6.2 Prostate Data Analysis

Let us recall the prostate example introduced in Sect. 4.4.1. Now, we evaluate the
suggested estimation strategy through the prostate data. We compute the average
prediction errors and their standard deviations for the full model; and for submod-
els, pretest and shrinkage estimators for various submodels are shown in Table 4.3.
Prediction errors are based on 5 and 10-fold cross-validation. Average and standard
errors of the prediction errors are obtained after repeating the process 2,000 times.

In Table 4.3, Submodel (AIC) indicates the submodel estimator when the sub-
modelwas selected byAIC.Likewise, Submodel (BIC) andSubmodel (BSS) indicate
the submodels based on BIC and best subset selection BSS. Similarly, the positive

Table 4.3 Average prediction errors of estimators based on K-fold cross-validation repeated 2,000
times

Estimator Raw CVE Bias corrected CVE
K = 5 K = 10 K = 5 K = 10

Full model 0.556 0.030 0.548 0.018 0.543 0.026 0.542 0.017

Submodel (AIC) 0.535 0.023 0.529 0.014 0.525 0.020 0.523 0.013

Submodel (BIC) 0.537 0.020 0.533 0.012 0.529 0.018 0.529 0.011

Submodel (BSS) 0.582 0.017 0.578 0.010 0.576 0.015 0.576 0.009

PS (AIC) 0.554 0.029 0.547 0.018 0.540 0.025 0.541 0.017

PS (BIC) 0.546 0.026 0.541 0.016 0.533 0.023 0.535 0.015

PS (BSS) 0.549 0.026 0.542 0.016 0.536 0.023 0.536 0.015

PE (AIC) 0.536 0.024 0.529 0.014 0.526 0.021 0.525 0.014

PE (BIC) 0.538 0.021 0.533 0.012 0.529 0.019 0.529 0.011

PE (BSS) 0.599 0.030 0.601 0.024 0.602 0.036 0.605 0.029

Numbers in smaller font are the corresponding standard errors
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shrinkage and pretest estimators are denoted by PS(·) and PE(·), respectively. Look-
ing at the bias corrected cross-validation estimate of the prediction errors, on average,
submodel and pretest estimators based on AIC have the smallest prediction errors.
This is followed by the pretest and submodel estimators based on BIC. Interestingly,
average prediction errors based on the submodel given by BSS are much higher than
those obtained from themodels based onAIC or BIC. For instance, a submodel based
on BSS has an average prediction error of 0.576, and the pretest estimator is of 0.605.
For the same submodel, the positive shrinkage estimator has an average prediction
error of 0.536, which is much less than the Submodel (BSS) and PE (BSS). Clearly,
the positive shrinkage estimator is performing better than the submodel and pretest
estimators for this submodel. This is a classic example where the utility of the posi-
tive shrinkage estimator is practically realized. Submodel and/or pretest estimation
may perform better under correct specification of the submodel (e.g., the models
given by AIC and BIC for this data set), whereas the positive shrinkage estimator is
less sensitive to the submodel misspecification.

Apparently, in the presence of imprecise auxiliary information, submodel and
pretest estimators fail to produce the optimal estimates that reduce average prediction
errors. On the other hand, the positive shrinkage estimator maintains a steady risk-
superiority under submodel misspecification.

4.6.3 Penalty Estimation

WeperformMonteCarlo simulation experiments to examine the relative performance
of the penalty estimators to shrinkage estimators and submodel estimators.

We partition the regression coefficients as β = (β1,β2) = (β1, 0), and consider
β1 = (1, 1, 1, 1, 1). Thus, for a fair comparison we are considering the situation
that signals can be separated from the noise. Thus, we are dealing with a true sparse
model.

The performance of an estimator of β1 was measured by calculating its mean
squared error (MSE). After calculating the MSEs, we computed RMSE of the esti-
mators to the full model estimator.We include in this study, submodel, shrinkage, and

the penalty estimator (β̂
LASSO

, β̂
aLASSO

, and β̂
SCAD

). The notion of RMSE criterion
is defined in (4.29).

We present the simulation results for n = 40, 60 and p2 = 5, 10 and 15. RMSEs
are calculated and are shown in Table 4.4 when the submodel is true. We observe the
following:

1. Submodel estimator outperforms all the listed estimators.
2. Positive shrinkage estimator outperforms all the penalty estimators.
3. aLASSO outperforms the LASSO, while SCAD is superior to both LASSO and

aLASSO.

However, there are instances when penalty estimators may outperform shrinkage
estimators.
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Table 4.4 Simulated RMSE for comparing shrinkage and penalty estimators for p1 = 5, Δ = 0

n p2 β̂
RE
1 β̂

S
1 β̂

S+
1 β̂

LASSO
1 β̂

aLASSO
1 β̂

SCAD
1

40 5 2.79 1.61 1.84 1.11 1.56 1.63
10 4.67 2.66 3.16 1.51 2.37 2.64
15 8.47 4.20 5.06 2.33 4.06 4.37

60 5 2.58 1.59 1.77 1.13 1.59 1.73
10 4.31 2.75 3.01 1.48 2.41 2.73
15 7.03 3.72 4.75 2.10 3.57 4.24

Ahmed et al. (2007)was the first to compare shrinkage estimators with an absolute
penalty estimator in a partially linear regression setup. Raheem and Ahmed (2012)
conducted a detailed study on the comparison of risk performance for shrinkage and
some penalty estimators. Similar conclusions were drawn for a partially linear model
by Ahmed et al. (2007). In the next chapter we consider the regression parameters
problem in a partially linear model.

4.7 Chapter Summary

For a linear regressionmodel,wehave considered various estimation strategies for the
regression coefficients based on full model, predefined submodel, shrinkage, pretest,
and penalty estimation. We derived the asymptotic bias and the risk expressions for
the estimators except for the penalty estimators. The relative performance of each
estimation procedure is critically assessed.

We showcased two scenarios:

1. When we have prior information about certain covariates, shrinkage estimators
are directly obtained by combining the full and submodel estimates.

2. On the other hand, if a priori information is not available, the shrinkage estima-
tion takes a two-step approach in obtaining the estimates. In the first step, a set of
covariates is selected based on a suitable model selection criterion such as AIC,
BIC, or best subset selection. Consequently, the remaining covariates become
nuisance, which forms a parametric restriction on the full model, yielding a sub-
model. In the second step, full and submodel estimates are combined in a way
that minimizes the quadratic risk leading to shrinkage estimation.

Shrinkage estimates are obtained using shrink (Raheem and Ahmed 2011)
R package for shrinkage estimation in linear models. All the calculations have been
performed on R statistical software (R Development Core Team 2010).

To illustrate the methods, a real data example has been considered. The suggested
estimation strategies are evaluated through application to a real prostate data set.
Average prediction errors based on repeated cross-validation estimates of the error
rates indicate that shrinkage and submodel estimators have a superior performance
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compared to penalty estimators when the underlying submodel is correctly specified.
This is not unusual, since the submodel estimator dominates all other estimatorswhen
the prior information is correct. Since the data considered in this study have been
interactively analyzed using various model selection criteria, it is expected that the
submodels consist of the best subsets of the available covariates for the respective
data sets. Theoretically, this is equivalent to the case where Δ is very close to zero.
The real data examples, however, do not tell us how sensitive the prediction errors
are under model misspecification. Therefore, we conducted Monte Carlo simulation
to study such characteristics for shrinkage and pretest estimators under varying Δ,
and different sizes of the nuisance subsets.

In a Monte Carlo study, we numerically computed RMSE for the submodel,
shrinkage, and pretest estimators with respect to the full model estimator. Our study
re-established the fact that the submodel estimator outperforms the full estimator near
the pivot (Δ = 0). However, as we deviate from the pivot (Δ > 0), the MSE of the
submodel estimator becomes unbounded. The pretest estimator is a bounded function
of Δ. The pretest estimator performs better than the full model estimator for small
values of Δ, and its RMSE function approaches from below to merge with the line
where RMSE is a unity. On the other hand, RMSE for a positive shrinkage estimator
decays at the slowest rate with the increase of Δ, and performs steadily through
a wider range of the parameter subspace induced by Δ. The shrinkage estimators
dominate the full model estimator.

In penalty estimation, the tuning parameter is estimated using cross-validation.We
only do the comparison based on the selected submodel, because the penalty estima-
tors we consider here do not take advantage of the fact that β is partitioned into main
parameters and nuisance parameters, and thus are at a disadvantage when Δ > 0.
Based on our limited simulation study, the shrinkage estimator performs better than
the penalty estimators for all the cases considered in the simulation study. In particu-
lar, the MSE gain for the shrinkage estimator is more substantial when compared to
LASSO than to the SCAD and adaptive LASSO estimators. The penalty estimators
are competitive when the number of parameters p2 in the nuisance parameter vector
is small, but the shrinkage estimator with appropriate data-based weights performs
best when p2 is large.

Generally speaking, none of the penalty and shrinkage estimation strategies dom-
inates each other in all situations. Penalty estimation procedure assumed that the
signals and noises are well separated. Generally speaking, penalty estimators are
not efficient when there are weak signals. This remains as a direction for follow-up
research.
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Chapter 5
Estimation Strategies in Partially
Linear Models

Abstract This chapter showcases the estimation problem in a partially linear
regression model, when it is a priori suspected that the regression coefficient may
be restricted to a subspace. Various asymptotic estimation strategies are presented.
These estimators are based on the James–Stein and pretests of significance. We
provide natural adaptive estimators that significantly improve upon the full model
estimator in the case where some of the predictors may or may not be active for the
response of interest. The large sample properties of these estimators are established
using the notion of asymptotic distributional risk. Further, we consider the penalty
estimation for simultaneous variable selection and regression parameter estimation
by using the LASSO, adaptive LASSO, and SCAD strategies. Essentially, we con-
sider two regression models: the full model and the candidate submodel. Generally
speaking, Stein-based shrinkage estimation strategy shrinks the full model estimator
in the direction of submodel estimator. We appraise the performance of the penalty
estimators through Monte Carlo simulation. The properties of all the estimators are
compared through simulated mean squared error. Our simulation study reveals that
the shrinkage and penalty estimation strategies outperform the full model estimation
strategy. Finally, the shrinkage estimators perform better than the penalty estimator
when there are many inactive predictors in the model.

Keywords Partially linear models · Pretest and shrinkage estimation · Penalty
estimation · Asymptotic bias and risk · Simulation

5.1 Introduction

In this chapter, we consider estimation strategies in a partially linear model where
the vector of coefficients β in the linear part can be partitioned as (β1,β2) where β1
is the coefficient vector for active predictors or main effects (e.g., treatment and/or
genetic effects) and β2 is a vector for inactive predictors or so-called “nuisance”

S. E. Ahmed, Penalty, Shrinkage and Pretest Strategies, SpringerBriefs in Statistics, 77
DOI: 10.1007/978-3-319-03149-1_5, © The Author(s) 2014
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effects (e.g., age, location). In this scenario, inference about β1 may benefit from
moving the benchmark estimate for the candidate full model in the direction of the
benchmark estimate without the inactive predictors (Steinian shrinkage), or from
deleting the inactive predictors if there is sufficient evidence that these predictors
do not provide useful information (pre-testing). We will investigate the large sample
properties of Stein-type and pretest semiparametric estimators using quadratic loss
function. Interestingly, under general conditions, a Stein-type semiparametric esti-
mator improves on the candidate full model classical semiparametric least square
estimator. The relative performance of the estimators is assessed using asymptotic
analysis of quadratic risk functions, and it is revealed that the Stein-type estimator
outshines the candidate full model estimator in the entire parameter space. How-
ever, the pretest estimator dominates the classical estimator only in a small part of
the parameter space—a typical characteristic of pretest estimation strategies. We
also consider a penalty-type estimator for partially linear models and give a Monte
Carlo simulation comparison of shrinkage, pretest, and penalty-type estimators. The
comparison shows that the shrinkage method performs better than the penalty-type
estimation method when the dimension of the β2 parameter space is large.

We consider the partially linear regressionmodel introduced by Engle et al. (1986)
to study the effect of weather on electricity demand, in which they assumed that the
relationship between temperature and electricity usage was unknown while other
related factors such as income and price were parameterized linearly. A partially
linear regression model is defined as

yi = x∼
iβ + g(ti ) + βi , i = 1, . . . , n, (5.1)

where yi ’s are responses, xi = (xi1, . . . , xip)
∼ and ti ≥ [0, 1] are design points,

β = (ε1, . . . , εp)
∼ is an unknown parameter vector, g(·) is an unknown real-valued

function defined on [0, 1], and the βi ’s are unobservable random errors.
Model (5.1) has wide applications in sociology, economics, finance, and

biometrics. For example, in a clinical trial to compare two treatments, a subject’s
response will depend on the treatment received and on some covariates (e.g., age).
In this case, the experimenter may be unsure of the effect of age on the response, but
may want to estimate the treatment differences which are believed to be constant and
independent of age (Speckman 1988). A survey of the estimation and application of
model ( 5.1) can be found in the monograph of Härdle et al. (2000). Furthermore, we
refer to Wang et al. (2004), Xue et al. (2004), Liang et al. (2004), and Bunea (2004).

Specifying the statistical model is, as always, a critical component in estimation
and inference. One typically studies the consequences of some forms of model mis-
specification. A common type of misspecification in models is caused by including
unnecessary predictors in the model, or by leaving necessary (lurking) variables out.
The validity of eliminating statistical uncertainty through the specification of a par-
ticular parametric formulation depends on information that is generally not available.
The aim of this chapter is to analyze some of the issues involved in the estimation of
a semiparametric model that may be over-parameterized as discussed in Ahmed et al.
(2007) and Hossain et al. (2009). For example, in the data analyzed by Engle et al.
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(1986), the electricity demand may be affected by weather, price, income, strikes,
and other factors. If we have reason to suspect that a strike has no effect on electricity
demand, we may want to decrease the influence of, or delete, this variable.

In many studies the vector of coefficients β in (5.1) consists of two components
or sub-vectors, one including active and the other including relatively less active or
nuisance predictors. For example, if a model is assumed to be sparse then the second
sub-vector will be treated as a null vector.

To this end, we partition (β ∼
1,β

∼
2)

∼, where β1 is the coefficient vector of important
effects for prediction, for example, treatment effects and genetic effects for the data at
hand. In this situation the sub-vector β2 may be considered as vector for “nuisance”
effects, for example, age and laboratory.

In the above situations, inference aboutβ1 will improve bymoving the benchmark
estimate, obtained from the full model, in the direction of the estimate based on a sub-
model. This estimation strategy is known as “Steinian shrinkage”. In this framework,
the Stein-type estimator combines estimation problems by shrinking a benchmark
estimator to a plausible alternative estimator. In the other known approach, one may
drop the nuisance variables from the model if there is a statistical evidence that these
predictors do not provide useful information, commonly known as pretest estimation.

To formulate the problem, let β = (β ∼
1,β

∼
2)

∼, where β1 is the coefficient vector
for predicting variables and β2 is a vector for those variables which do not play much
of a role in overall prediction. To motivate the problem at hand, let us first consider
a linear shrinkage strategy. Following the definition of linear shrinkage estimator in
Sect. 2.2.1, the linear shrinkage estimator for the partially linear model is defined as

β̂
LS
1 = (1 − φ)β̂

RE
1 + φ β̂

UE
1 ,

where β̂
UE
1 and β̂

RE
1 are the estimators of β1 for the model with and without the β2

sub-vectors, respectively. The constant φ is a shrinkage factor and φ ≥ (0, 1). For a

given data-based φ ≥ (0, 1), β̂
LS
1 improves on the least square estimates β̂

UE
1 based

on the full model, and on the submodel estimate β̂
RE
1 . Burman and Chaudhuri (1992)

considered strategies that shrink a nonparametric estimate μ̂(x) ofμ(x) in the model

Y = μ(x)+β in towards a parametric estimate g(β̂
UE

, x) ofμ(x). Furthermore, they
established conditions under which the suggested estimate asymptotically improves

on μ̂(x) and g(β̂
UE

, x).
The rest of this chapter is organized as follows. A pretest semiparametric estimator

based on the partial kernel method (cf. Speckman 1988) is introduced in Sect. 5.2.
Some necessary assumptions are also given in this section. The proposed pretest esti-
mator and shrinkage estimator are presented in Sect. 5.3. The asymptotic properties
of the proposed estimators are presented in Sect. 5.4. Results of a simulation study
that includes a comparisonwith a semiparametric extension of the LASSO, aLASSO,
and SCAD are given in Sect. 5.5. Finally, the conclusion and some discussions are
presented in Sect. 5.6.

http://dx.doi.org/10.1007/978-3-319-03149-1_2
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5.2 Full and Submodel Estimation Strategies

Let us display again the partial linear model of the form

yi = x∼
iβ + g(ti ) + βi . (5.2)

We will assume that 1n = (1, . . . , 1)∼ is not in the space spanned by the column
vectors ofX = (x1, . . . , xn)∼. Chen (1988) established that under regularity condition
on g(·), this model is identifiable. We further assumed the design points xi and ti are
fixed for i = 1, . . . , n.

Consider a restriction on the parameters in this model,

yi = x∼
iβ + g(ti ) + βi subject to Hβ = h, (5.3)

where H is an p2 × p restriction matrix, and h is an p2 × 1 vector of constants.
In many applications when the model is sparse then h = 0; that is, some of the

coefficients are set to zero, and not needed in the initial full model. LetX = (X1, X2),
whereX1 is an n× p1 submatrix containing the active regression variables of interest,
andX2 is a collection n×p2 submatrix thatmay ormay not be useful in the prediction.
Let with p1 + p2 = p, pi ≤ 0 for i = 1, 2, then β = (β ∼

1,β
∼
2)

∼ be the vector of
parameters, where β1 and β2 have dimensions p1 and p2, respectively.

We are interested in the estimation of β1 when themodel is sparse. In other words,
the sub-vector β2 in the full model that is close to 0. Thus, we consider a special case,
Hβ = 0 with H = (0, I), where 0 is a p2 × p1 matrix of zeroes and I is the identity

matrix. Let β̂
UE = (β̂ ′UE

1 , β̂ ∼UE
2 )∼ be a semiparametric least squares estimator of

β under full model in (5.1) as defined subsequently. We call β̂
UE
1 the unrestricted

semiparametric least squares estimator of β1.
On the other hand, if the model is sparse, that is, β2 = 0, then we have the

submodel or restricted model which will have the form

yi = xi1ε
(o)
1 + · · · + xip1ε

(o)
p1 + g(o)(ti ) + β

(o)
i , i = 1, . . . , n. (5.4)

Denoting β̂
RE
1 as the submodel or restricted semiparametric least squares estimator

of β1 as defined subsequently. By definition, β̂
RE
1 performs better than β̂

UE
1 when

the model is actually sparse, that is, the parameter vector β2 is close to 0. However,
when the sub-vector β2 moves far away from the pivot 0, it will have a drastic effect

on estimation and therefore on prediction of β1. The submodel estimator, β̂
RE
1 will

be considerably biased, inefficient, and even possibly inconsistent. The estimate β̂
UE
1

is consistent for departure of β2 from 0, however may not be efficient, especially
when p is large as compared with n. Essentially, we have two extreme estimation

strategies, β̂
UE
1 and β̂

RE
1 suited best for the partially linear regressionmodels (5.1) and

(5.4), respectively. It make sense to consider a compromised strategy between two
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extreme estimation strategies, so that the compromised strategy behaves reasonably
well relative to the full model estimator as well as the submodel estimator.

To this end, we suggest two more estimation strategies for the parameter vector
of interest β1 of the parametric component in (5.1). The first estimator is the pretest

semiparametric least squares estimator, denoted by β̂
PT
1 . To construct a pretest esti-

mator, consider the relevant null hypothesis

H0 : β2 = 0.

The pretest estimator is a combination of the full model estimator and submodel
estimator via the indicator function I (Tn < Tn,α), where Tn is an appropriate test
function to test the null hypothesis H0 versus the alternative hypothesis, Ha : β2 ⊂= 0.
In addition, Tn,α is an α-level critical value using the distribution of Tn . The pretest
test estimator selects the full model estimator or submodel estimator based on the
outcome of the pretest, that is, whether H0 is tenable or untenable.

Remark 5.1 It is worth noting that our main objective is to find an efficient estimator
of β1, keeping in mind that in pretest estimation, deciding against Ha does not
necessarily mean we have evidence that β2 is a null vector, because we do not
have control of the probability of type I error. Alternatively, we hope we may find an
efficient estimator ofβ1 by settingβ2 = 0. Indeed, Tn,α is a threshold that determines
a hard thresholding rule, and α is a tuning parameter.

The second estimation strategy is based on the Stein-rule estimation, the resulting
estimator is known as the shrinkage estimator. From a pretest estimation perspec-

tive, the shrinkage estimator β̂
S
1 can be viewed as a smooth function of the pretest

estimator.
In an attempt to estimate the nonparametric component, we confine ourselves

to the partial kernel smoothing estimator of β, which attains the usual parametric
convergence rate n−1/2 without under-smoothing the nonparametric component g(·),
Speckman (1988). Assume that {x∼

i , ti , yi ; i = 1, . . . , n} satisfy model (5.1). If β is
known to be the true parameter, then by E(βi ) = 0 we have g(ti ) = E(yi − x∼

iβ) for
i = 1, . . . , n. Hence, a natural nonparametric estimator of g(·) given β is

g̃(t,β) =
n∑

i=1

Wni (t)(yi − x∼
iβ),

with the weight functions Wni (·) defined in Assumption 3 below. To estimate β, we
use

β̂
UE = argmin SS(β) = (X̂

∼
X̂)−1X̂

∼
Ŷ, (5.5)
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with

SS(β) =
n∑

i=1

(
yi − x∼

iβ − g̃(ti ,β)
)2 =

n∑
i=1

(ŷi − x̂∼
iβ)2,

where Ŷ = (ŷ1, . . . , ŷn)∼, X̂ = (x̂1, . . . , x̂n)∼, ŷi = yi − ∑n
j=1 Wnj (ti )y j and x̂i =

xi −∑n
j=1 Wnj (ti )x j for i = 1, . . . , n. The full model or unrestricted estimator β̂

UE
1

of β1 is

β̂
UE
1 = (X̂

∼
1MX̂2

X̂1)
−1X̂

∼
1MX̂2

Ŷ,

where X̂1 is composed of the first p1 row vectors of X̂, X̂2 is composed of the last
p2 row vectors of X̂ and MX̂2

= I − X̂2(X̂
∼
2X̂2)

−1X̂
∼
2.

The submodel or restricted estimator β̂
RE
1 of β1 for model (5.3) is

β̂
RE
1 = (X̂

∼
1X̂1)

−1X̂
∼
1Ŷ.

We now list the following assumptions required to derive the main results.

Assumption 1 There exist bounded functions hs(·) over [0, 1], s = 1, . . . , p, such
that

xis = hs(ti ) + uis, i = 1, . . . , n, s = 1, . . . , p, (5.6)

where ui = (ui1, . . . , uip)
∼ are real vectors satisfying

lim
n→→

∑n
i=1 uikuij

n
= bkj , for k = 1, . . . , p, j = 1, . . . , p, (5.7)

and the matrix B = (bkj ) is nonsingular. Moreover, for any permutation ( j1, . . . , jn)

of (1, . . . , n), as n → →,

∣∣∣∣∣

∣∣∣∣∣ max
1∞ j∞n

n∑
i=1

Wni (t j )ui

∣∣∣∣∣

∣∣∣∣∣ = o(n− 1
6 ), (5.8)

where || · || denotes the Euclidean norm and Wni (·) satisfies Assumption 3.

Assumption 2 The functions g(·) and hs(·) satisfy the Lipschitz condition of order
1 on [0, 1] for s = 1, . . . , p.

Assumption 3 The probability weight functions Wni (·) satisfy
(i) max1∞i∞n

∑n
j=1 Wni (t j ) = O(1),

(ii) max1∞i, j∞n Wni (t j ) = O(n−2/3),
(iii) max1∞ j∞n

∑n
i=1 Wni (t j )I (|ti − t j | > cn) = O(dn), where I is the indica-

tor function, cn satisfies lim supn→→ nc3n < →, and dn satisfies lim supn→→
nd3

n < →.
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These assumptions are quite general and can be easily satisfied, see Remarks 5.2–5.3
below.

Remark 5.2 The aboveui j behave like zeromean anduncorrelated randomvariables,
and hs(ti ) is the regression of xis on ti . Especially, suppose that the design points
(xi , ti ) are i.i.d. random variables, and let hs(ti ) = E(xis |ti ) and uis = xis − hs(ti )
with E(ui u∼

i ) = B. Then by the law of large numbers, (5.7) holds with probability
1 and (5.8) holds by Lemma 1 in Shi and Lau (2000). Assumptions (5.6) and (5.7)
have been used in Gao (1995a,b, 1997), Liang and Härdle (1999), among others, and
(5.8) in Shi and Lau (2000).

Remark 5.3 Under regular conditions, theNadaraya-Watsonkernelweights, Priestley
and Chao kernel weights, locally linear weights, and Gasser–Müller kernel weights
satisfy Assumption 3. For example, if we take the p.d.f. of U [−1, 1] as the kernel
function, namely

K (t) = I[−1,1](t)/2,

ti = i/n, and the bandwidth is equal to cn−1/3, where c is a constant, then the
Priestley and Chao kernel weights, which satisfy Assumption 3, are

Wni (t) = 1

2cn
2
3

I⎧∣∣∣t− i
n

∣∣∣∞cn− 1
3

⎨(t) .

5.3 Pretest and Shrinkage Estimation Strategies

This section is devoted to pretest and shrinkage estimation strategies when it is
suspected that the full model is sparse.

Pretest Estimation Strategy

As the name says, the pretest estimator is a function or test statistic for testing
H0 : β2 = 0. We define test statistic Tn as follows:

Tn = n

δ̂ 2
n

β̂
∼
2X̂

∼
2MX̂1

X̂2β̂2,

where

δ̂ 2
n = 1

n

n∑
i=1

(yi − x∼
i β̂ − ĝn(ti ))

2 = 1

n

n∑
i=1

(ŷi − x̂∼
i β̂)2,

with ĝn(·) = ∑n
i=1 Wni (·)(yi − x∼

i β̂) and MX̂1
= I − X̂1(X̂

∼
1X̂1)

−1X̂
∼
1,
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Thus, we can choose an α-level critical value Δ2
p2,α and define β̂

PT
1 as follows:

β̂
PT
1 = β̂1 − (β̂1 − β̂

RE
1 )I (Tn ∞ Δ2

p2,α).

Thus, β̂
PT
1 has two components and chooses β̂

RE
1 when the null hypothesis is

tenable, otherwise β̂1 is selected. Naturally, the dispersion of β̂
PT
1 is controlled,

depending on the value of α, the size of the test. However, the pretest estimation
strategy makes extreme choices for either the full model estimator or submodel
estimator. As a result, the pretest test procedures are not admissible for manymodels,
even though they may improve on unrestricted procedures, a well-documented fact
in the literature. This motivates us to consider another basis for resolving the model-
estimator uncertainty. Stein (1956) demonstrated the inadmissibility of themaximum
likelihood estimatorwhen estimating amultivariatemean vector under quadratic loss.
Sclove et al. (1972) demonstrated the non-optimality of the pretest test estimator in
certain multi-parametric situations by making use of Stein-type estimators.

Ahmed (2001) provided expressions for the asymptotic biases and risks of Stein-
type estimators in exponential regression models with censored data. Ahmed et al.
(2006) studied the asymptotic properties of estimators based on the pretest test and
a Stein-rule in a nonparametric model.

The shrinkage semiparametric estimator β̂
S
1 is defined by

β̂
S
1 = β̂

UE
1 − (β̂

UE
1 − β̂

RE
1 )(p2 − 2)T −1

n , p2 ≤ 3.

Noting that this estimator is in the general form of the Stein-rule family of estimators,
where shrinkage of the benchmark estimator is in the direction of the alternative

submodel estimator β̂
RE
1 . Interestingly, the shrinkage estimator is pulled toward the

submodel estimator when the variance of the least squares estimator is large, and
pulled toward the full model least squares estimator when the submodel estimator has
high variance, high bias, or is more highly correlated with the least squares estimator.

As indicated earlier, now we know that β̂
S
1 is the smooth version of the pretest

estimator, borrowing and extending the language of Donoho and Johnstone (1998),
that pretest and shrinkage estimators are based on hard and smooth thresholdings,
respectively.

Generally speaking, shrinkage estimators adapt to the magnitude of Tn and tend

to β̂
UE
1 as Tn tends to infinity and to β̂

RE
1 as Tn → p2 − 2.

By design, the shrinkage estimator β̂
S
1 may have a different sign from the full

model estimator β̂
UE
1 , caused by over-shrinking. To circumvent this possible over-

shrinking issue, we truncate the second term in β̂
S
1. As a result, this truncation leads

to a convex combination of β̂
UE
1 and β̂

RE
1 . We call the truncated version the positive

shrinkage estimator (PSE). This estimator is defined as follows:
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β̂
S+
1 = β̂

RE
1 +

⎩
1 − (p2 − 2)

Tn

⎫+
(β̂

UE
1 − β̂

RE
1 ), p2 ≤ 3,

where z+ = max(0, z). The positive part estimator β̂
S+
1 is particularly important for

controlling over-shrinking.
In passing we remark here that the shrinkage estimation strategy is similar in spirit

to the model-averaging strategies, Bayesian or otherwise. For further insight on this
remark, we refer to Burnham and Anderson (2002), Hoeting et al. (2002), Hoeting
et al. (1999), and Bickel (1984).

We can define another pretest estimator, replacing β̂
UE
1 by β̂

S
1 in the pretest esti-

mator. We call this estimator the improved pretest estimator (IPT) and is defined
by

β̂
IPT
1 = β̂

RE
1 +

⎬
1 − (p2 − 2)T −1

n

⎭
(β̂

UE
1 − β̂

RE
1 )I (Tn > Δ2

p2,α), p2 ≤ 3.

This estimator dominates β̂
PT
1 over the range of parameter values, but we now have

the restriction p2 ≤ 3. Noting that, if Δ2
p2,α ∞ (p2 − 2) then β̂

IPT
1 behaves like β̂

S+
1

and, for Δ2
,α outside this range, it behaves like the usual pretest estimator. However,

it still continues to perform better than the pretest estimator. See Ahmed (2001) for
details.

5.3.1 Penalty Estimators

The penalty estimators are a class of estimators in the penalized least squares family
of estimators, see Ahmed et al. (2010).

Several penalty estimators have been proposed in the literature for linear and
generalized linear models. In this section, we consider the least absolute shrinkage
and selection operation (LASSO), the smoothly clipped absolute deviation method
(SCAD), and the adaptive LASSO. By shrinking some regression coefficients to
zero, these methods select important variables and estimate the regression model
simultaneously.

An important member of the penalized least squares family is the L1 penalized
least squares estimator, and is known as the least absolute shrinkage and selection
operator (LASSO).

LASSO

LASSO was proposed by Tibshirani (1996), which performs variable selection and
parameter estimation simultaneously. LASSO is closely relatedwith ridge regression.
LASSO solutions are similarly defined by replacing the squared penalty

∑p
j=1 ε2

j in
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the ridge solution (4.5) with the absolute penalty
∑p

j=1 |ε j | in the LASSO,

β̂
lasso = argmin

β




n∑
i=1

(yi − ε0 −
p∑

j=1

xi jε j )
2 + λ

p∑
j=1

|ε j |
⎪⎛
⎝ . (5.9)

Although the change apparently looks subtle, the absolute penalty term made it
impossible to have an analytic solution for the LASSO. Originally, LASSO solu-
tions were obtained via quadratic programming. Later, Efron et al. (2004) proposed
Least Angle Regression (LAR), a type of stepwise regression, with which the lasso
estimates can be obtained at the same computational cost as that of an ordinary least
squares estimation. Furthermore, the LASSO estimator remains numerically feasible
for dimensions of p that are much higher than the sample size n.

SCAD

Although the LASSO method does both shrinkage and variable selection due to the
nature of the constraint region which often results in several coefficients becom-
ing identically zero, it does not possess oracle properties (Fan and Li 2001). To
overcome the inefficiency of traditional variable selection procedures, Fan and Li
(2001) proposed SCAD to select variables and estimate the coefficients of variables
automatically and simultaneously. This method not only retains the good features
of both subset selection and ridge regression, but also produces sparse solutions,
ensures continuity of the selected models (for the stability of model selection), and
has unbiased estimates for large coefficients. The estimates are obtained as

β̂
SCAD = argmin

β




n∑
i=1

(yi − ε0 −
p∑

j=1

xi jε j )
2 + λ

p∑
j=1

pα,λ|ε j |
⎪⎛
⎝ .

Here pα,λ(·) is the smoothly clipped absolute deviation penalty. The solution of
SCAD penalty is originally due to Fan (1997). SCAD penalty is a symmetric and
a quadratic spline on [0,→) with knots at λ and αλ, whose first-order derivative is
given by

pα,λ(x) = λ

⎞
I (|x | ∞ λ) + (αλ − |x |)+

(α − 1)λ
I (|x | > λ)

⎠
, x ≤ 0. (5.10)

Here λ > 0 and α > 2 are the tuning parameters. For α = →, the expression (5.10)
is equivalent to the L1 penalty.

http://dx.doi.org/10.1007/978-3-319-03149-1_4
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Adaptive LASSO

Zou (2006) modified the LASSO penalty by using adaptive weights on L1 penalties
on the regression coefficients. Such a modified method was referred to as adaptive
LASSO. It has been shown theoretically that the adaptive LASSO estimator is able
to identify the true model consistently, and the resulting estimator is as efficient as
the oracle.

The adaptive LASSO estimators (aLASSO) ε̂aLASSO are obtained by

β̂
aLASSO = argmin

β




n∑
i=1

(yi − ε0 −
p∑

j=1

xi jε j )
2 + λ

p∑
j=1

ŵ j |ε j |
⎪⎛
⎝ , (5.11)

where the weight function is

ŵ j = 1

|ε̂∗
j |χ

; χ > 0,

and ε̂∗
j is a root-n consistent estimator ofε. Equation (5.11) is a “convex optimization

problem and its global minimizer can be efficiently solved” (Zou 2006).
The penalty-type estimator was first introduced for linear models. We propose the

penalty estimators for partially linear models, which is an extension of the penalty
estimation methods for linear models. This estimator can be obtained by applying
the penalty estimation method to the residuals (x̂i , ŷi ), i = 1, 2, . . . , n, defined in
Sect. 5.2. Note that the output of the penalty estimation resembles shrinkage and
pretest methods by both shrinking and deleting coefficients. However, it is different
from the pretest and shrinkage procedures because it treats all the covariate coeffi-
cients equally. The LASSO does not single out the nuisance covariates for special
scrutiny as to their usefulness in estimating main effect coefficients.

Now, we turn our attention to analyzing the performance of suggested estimators.
First, we develop the asymptotic properties of the pretest and shrinkage estimators.
To provide a meaningful asymptotic analysis, we will consider local Pitman con-
tiguous models where β2 depends on n and tends to the zero vector as n → →.
Such sequences of models have been considered in the estimation context by Bickel
(1984) and Claeskens and Hjort (2003), among others. In the following section, we
present asymptotic properties of pretest and shrinkage estimators.

5.4 Asymptotic Bias and Risk Analysis

Our main objective is to assess the performance of the full model, submodel, pretest,
and shrinkage estimators when β2 is close to the null vector. We consider a sequence
of local alternatives {Kn} given by
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Kn : β2(n) = n− 1
2 ω, ω ⊂= 0 fixed. (5.12)

We study the asymptotic quadratic risks of positive definite matrix (p.d.m.) M, by

L (β̂
∗
1,β1) = n(β̂

∗
1 − β1)

∼M(β̂
∗
1 − β1),

where β̂
∗
1 can be any one of β̂

UE
1 , β̂

RE
1 , β̂

PT
1 , and β̂

S
1. Now we assume that, for the

estimator β̂
∗
1 of β1, the asymptotic distribution function of β̂

∗
1 under {Kn} exists and

is given by

F(x) = lim
n→→ P

⎬√
n(β̂

∗
1 − β1) ∞ x|Kn

⎭
,

where F(x) is nondegenerate. Then the asymptotic distributional risk (ADR) of β̂
∗
1

is defined as

R(β̂
∗
1, M) = tr

(
M

∫

Rp1

∫
xx∼d F(x)

)
= tr(MV),

where V is the dispersion matrix for the distribution F(x).
Note that, under non-local (fixed) alternatives, all the estimators are asymptotically

equivalent to β̂
UE
1 , while β̂

RE
1 has an unbounded risk. To obtain the non-degenerate

asymptotic distribution F , we consider the local Pitman alternatives (5.12).
First, we present the expression for the asymptotic distributional bias (ADB) of

the proposed estimators. The ADB of an estimator β̂
∗
1 is defined as

ADB(β̂
∗
1) = lim

n→→E
⎬

n
1
2 (β̂

∗
1 − β1)

⎭
.

Let B =
⎧

B11 B12
B21 B22

⎨
with B defined in Assumption 1, Ψ = (ω∼B22.1ω)δ−2,

B22.1 = B22 − B21B−1
11 B12, and Hv(x;Ψ) is the cumulative distribution function of

the noncentral chi-square distribution with noncentrality parameter Ψ and v degrees
of freedom. In addition,

E(Δ−2 j
v (Ψ)) =

∫ →

0
x−2 j d Hv(x;Ψ).

then under assumed regularity conditions and {Kn}, the ADB of the estimators are
given in the following theorem.

Theorem 5.1 The ADB of the estimators are given below.
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ADB(β̂
UE
1 ) = 0,

ADB(β̂
RE
1 ) = − B−1

11 B12ω,

ADB(β̂
PT
1 ) = − B−1

11 B12ωHp2+2(Δ
2
p2,α; (Ψ)),

ADB(β̂
I PT
1 ) = − B−1

11 B12ω
[

H(p2+2)(p2 − 2;Ψ)

+ E(Δ−2
p2+2(Ψ)I (Δ2

p2+2(Ψ) > p2 − 2))
]

ADB(β̂
S
1 ) = − (p2 − 2)B−1

11 B12ωE(Δ−2
p2+2(Ψ))

ADB(β̂
S+
1 ) = − B−1

11 B12ω
[

H(p2+2)(p2 − 2,Ψ) + E(Δ−2
p2+2(Ψ))

+ (p2 − 2)E(Δ−2
p2+2(Ψ))I (Δ2

p2+2(Ψ) > (p2 − 2))
]
.

Proof See Ahmed et al. (2007).

For the special case of B12 = 0, all the estimators are asymptotically unbiased and
hence they are equivalent to each other with respect to the ADBmeasure. Due to this
fact, we will confine ourselves to the situation where B12 ⊂= 0, and the remaining
discussions follow. In this case, the full model estimator is the only asymptotically
unbiased estimator of β, since it is unrelated to the imposed restriction. Noticing that
bias expressions of the estimators are in vector form, we convert them into quadratic
forms by applying the following simple transformation:

(ADB(ω))∼ B11.2 (ADB(ω)) ,

where B11.2 = B11 − B12B−1
22 B21. Thus,the asymptotic quadratic distributional bias

(AQDB) of an estimator β̂
∗
1 of β1 by

AQDB(β̂
∗
1) = (ADB(δ))∼ B11.2 (ADB(δ)) ,

Corollary 5.1 The AQDB of the estimators are

AQDB(β̂
UE
1 ) = 0,

AQDB(β̂
RE
1 ) = χ,

AQDB(β̂
PT
1 ) = χ H2

(p2+2)(Δ
2
p2,α;Ψ),

AQDB(β̂
I PT
1 ) = χ

[
H(p2+2)(p2 − 2,Ψ) + E

⎬
Δ−2

p2+2(Ψ)I (Δ2
p2+2(Ψ) > p2 − 2)

⎭]2
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AQDB(β̂
S
1 ) = (p2 − 2)2χ

⎬
E(Δ−2

p2+2(Ψ))
⎭2

AQDB(β̂
S+
1 ) = χ

[
H(p2+2)(p2 − 2,Ψ) + E(Δ−2

p2+2(Ψ)

− E(Δ−2
p2+2(Ψ))I (Δ2

p2+2(Ψ) < (p2 − 2))
]2

,

where χ = ω∼B21B−1
11 B11.2B−1

11 B12ω.

Evidently, the AQDB of β̂
RE
1 is an unbounded function of χ . The magnitude of

its bias will depend on the quantity of the χ . The quadratic bias of β̂
PT
1 is a function

of χ and α. For fixed α, the bias function begins at zero, increases to a point, then
decreases gradually to zero. On the other hand, as a function of α for fixed χ , it is a
decreasing function of α ≥ [0, 1], with a maximum value at α = 0, and is 0 at α = 1.

The bias function β̂
IPT
1 behaves the same as the bias function of β̂

PT
1 . However, the

bias curve of β̂
IPT
1 remains below the curve of β̂

PT
1 . The AQDB of β̂

S
1 starts from 0

at χ = 0, and increases to a point, then decreases toward 0. The quadratic bias curve

of β̂
S+
1 remains below the curve of β̂

S
1.

Under local alternatives and assumed regularity conditions, we obtain the asymp-
totic dispersion matrices of the estimators by virtue of the following theorem:

Theorem 5.2 Suppose the assumptions of Theorem 5.1 hold. Then, under {Kn}, the
asymptotic covariance matrices of the estimators are:

Γ (β̂
UE
1 ) = δ 2B−1

11.2,

Γ (β̂
RE
1 ) = δ 2B−1

11 + B−1
11 B12ωω∼B21B−1

11 ,

Γ (β̂
PT
1 ) = δ 2

⎬
B−1
11.2

⎬
1 − Hp2+2(Δ

2
p2,α;Ψ)

⎭
+ B−1

11 Hp2+2(Δ
2
p2,α;Ψ)

⎭

+ B−1
11 B12ωω∼B21B−1

11

⎬
2Hp2+2(Δ

2
p2,α;Ψ) − Hp2+4(Δ

2
p2,α;Ψ)

⎭
,

Γ (β I PT
1 ) = Γ (β̂1) + (p2 − 2)B−1

11 B12B−1
22.1B12B−1

11 ·[
2E(Δ−2

p2+2(Ψ)I (Δ2
p2+2(Ψ) ∞ Δ2

p2,α))

− (p2 − 2)E(Δ−4
p2+2(Ψ)I (Δ2

p2+2(Ψ) ∞ Δ2
p2,α))

]

− δ 2B−1
11 B12B−1

22.1B12B−1
11 Hp2+2(Δ

2
p2,α;Ψ)

+ B−1
11 B12ωω

∼
B12B−1

11

[
2Hp2+2(Δ

2
p2,α;Ψ) − Hp2+4(Δ

2
p2,α;Ψ)

]

− (p2 − 2)B−1
11 B12ωω

∼
B12B−1

11

[
2E(Δ−2

p2+2(Ψ)I (Δ2
p2+2(Ψ) ∞ Δ2

p2,α))

− 2E(Δ−2
p2+4(Ψ)I (Δ2

p2+4(Ψ) ∞ Δ2
p2,α))

+ (p2 − 2)E(Δ−4
p2+4(Ψ)I (Δ2

p2+4(Ψ) ∞ Δ2
p2,α))

]
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Γ (β̂
S
1 ) = δ 2B−1

11.2 − (p2 − 2)δ 2B−1
11 B12B−1

22.1B21B−1
11

[
2E(Δ−2

p2+2(Ψ))

− (p2 − 2)E(Δ−4
p2+2(Ψ))

]
+(p22 − 4)B−1

11 B12ωω∼B21B−1
11 E(Δ−4

p2+4(Ψ))

Γ (β̂
S+
1 ) = Γ (β̂

S
1 )

+(p2 − 2)B21B−1
11 B11.2B−1

11 B12

[
E(Δ−2

p2+2(Ψ)I (Δ2
p2+2(Ψ)) ∞ (p2 − 2)

−(p2 − 2)E(Δ−4
p2+2(Ψ)I (Δ2

p2+2(Ψ)) ∞ (p2 − 2)
]

− B−1
11 B12B−1

22.1B21B−1
11 Hp2+2(p2 − 2;Ψ)

+ B−1
11 B12ωω∼B21B−1

11 [2Hp2+2(p2 − 2;Ψ) − Hp2+4(p2 − 2;Ψ)]
− (p2−2)B−1

11 B12ωω∼B21B−1
11 [2E(Δ−2

p2+2(Ψ)I (Δ2
p2+2(Ψ)) ∞ (p2 − 2)

− 2E(Δ−2
p2+4(Ψ)I (Δ2

p2+4(Ψ)) ∞ (p2 − 2)

+ (p2 − 2)E(Δ−4
p2+4(Ψ)I (Δ2

p2+4(Ψ)) ∞ (p2 − 2)].

Proof See Ahmed et al. (2007), and Hossain et al. (2009).

Using the result of the above theorem, the asymptotic distributional risk (ADR)
expressions for the estimators are contained in the following theorem.

Theorem 5.3 The risk of the estimators are:

R(β̂
UE
1 ; M) = δ 2tr(MB−1

11.2),

R(β̂
RE
1 ; M) = δ 2tr(MB−1

11 ) + ω∼Mω,

R(β̂
PT
1 ; M) = δ 2

⎬
tr(MB−1

11.2)
⎬
1 − Hp2+2(Δ

2
p2,α; Ψ)

⎭
+ tr(MB−1

11 )Hp2+2(Δ
2
p2,α; Ψ)

⎭

+ ω∼Mω
⎬
2Hp2+2(Δ

2
p2,α;Ψ) − Hp2+4(Δ

2
p2,α; Ψ)

⎭
,

R(β̂
S
1 ; M) = δ 2

⎬
tr(MB−1

11.2) − (p2 − 2)tr(MB−1
22.1)2E(Δ−2

p2+2(Ψ))

− (p2 − 2)E(Δ−4
p2+2(Ψ))

⎭
+ (p22 − 4)ω∼MωE(Δ−4

p2+4(Ψ)),

R(β̂
I PT
1 ; M) = R(β̂

S
1 ) + (p2 − 2)(tr)(Mϒ)

[
2E(Δ−2

p2+2(Ψ)I (Δ2
p2+2(Ψ)) ∞ Δ2

p2,α)

− (p2 − 2)E(Δ−4
p2+2(Ψ)I (Δ−2

p2+2(Ψ) ∞ Δ2
p2,α))

]

− δ 2(tr)(Mϒ)H(p2+2)(Δ
2
p2,α;Ψ) + ωMω∼

×
[
2H(p2+2)(Δ

2
p2,α;Ψ) − H(p2+4)(Δ

2
p2,α;Ψ)

]

− (p2 − 2)ωMω∼{2E(Δ−2
p2+2(Ψ))I (Δ2

p2+2(Ψ) ∞ Δ2
p2,α)

− 2E(Δ−2
p2+4(Ψ)I (Δ2

p2+4(Ψ)) ∞ Δ2
p2,α)

+ (p2 − 2)E(Δ−4
p2+4(Ψ)I (Δ2

p2+4(Ψ)) ∞ Δ2
p2,α)}

R(β̂
S+
1 ; M) = R(β̂

S
1 ) + (p2 − 2)(tr)(Mϒ)

[
2E(Δ−2

p2+2(Ψ)I (Δ2
p2+2(Ψ)) ∞ (p2 − 2))
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− (p2 − 2)E(Δ−4
p2+2(Ψ))I (Δ2

p2+2(Ψ) ∞ (p2 − 2))
]

− (tr)(Mϒ)H(p2+2)((p2 − 2);Ψ)

+ ωMω∼ [2H(p2+2)((p2 − 2);Ψ) − H(p2+4)((p2 − 2);Ψ)
]

− (p2 − 2)ωMω∼ [2E(Δ−2
p2+2(Ψ))I (Δ2

p2+2(Ψ) ∞ (p2 − 2))

− 2E(Δ−2
p2+4(Ψ))I (Δ2

p2+4(Ψ) ∞ (p2 − 2))

+ (p2 − 2)E(Δ−4
p2+4(Ψ))I (Δ2

p2+4(Ψ) ∞ (p2 − 2))
]
.

Again we discard the case, in Theorem 5.3 B12 = 0. In this situation B11.2 =
B11. Then the ADR of all estimators reduced to the ADR of β̂1. In the remaining
discussion, we therefore assume that B12 ⊂= 0.

If the parametric restriction is true, then it can be verified that

R(β̂
RE
1 ; M) < R(β̂

I PT
1 ; M) < R(β̂

PT
1 ; M) < R(β̂

S+
1 ; M) < R(β̂

S
1; M) < R(β̂

UE
1 ; M).

First, comparing the shrinkage and full model estimators, we see that R(β̂
S
1 , M)

satisfies

R(β̂
S
1 ; M) = δ 2tr(MB−1

11.2) − (p2 − 2)δ 2tr(MB−1
22.1)(

(p2 − 2)E(Δ−4
p2+2(Ψ)) +

(
1 − (p2 + 2)δ−2ω∼Mω

2Ψtr(MB−1
22.1)

)
2E(Δ−4

p2+4(Ψ))

)

∞ R(β̂1; M), for p2 ≤ 3, all Ψ > 0,

and for all M with
tr(MB−1

22.1)

chmax(MB−1
22.1)

≤ p2 + 2

2
,

where chmax(.) is the maximum characteristic root.

Remark 5.4 The above result was established using the following identity:

E(Δ−2
p2+2(Ψ)) − (p2 − 2)E(Δ−4

p2+2(Ψ)) = ΨE(Δ−4
p2+4(Ψ)),

Thus, for anyM ≥ M D andω, R(β̂
S
1 , M) ∞R(β̂

UE
1 , M)under the local alternative,

where

M D =
{

M : tr(MB−1
22.1)

chmax(MB−1
22.1)

≤ p2 + 2

2

}
.
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As Ψ moves away from zero, R(β̂
RE
1 ; M) monotonically increases in Ψ and goes

to infinity asΨ goes to infinity. The ADR of β̂
UE
1 remains constant while R(β̂

PT
1 ; M)

increases, crossing the line R(β̂
UE
1 ; M) as Ψ moves away from a neighborhood of

zero.
Moreover, when Ψ tends to infinity, the risks of β̂

PT
1 and β̂

S
1 approach a common

limit; i.e., the risk of β̂
UE
1 . Thus, β̂

PT
1 and β̂

S
1 have bounded risks, unlike β̂

RE
1 . For

any M ≥ M D and all ω, R(β̂
S+
1 ) ∞ R(β̂

S
1) ∞ R(β̂

UE
1 ) under {Kn}.

In terms of risk, SE dominates UE, and PSE dominates SE. Hence, PSE is also
superior to UE.

Both IPT and PT improve on UE at the null hypothesis at the expense of poor
performance elsewhere in the parameter space. The magnitude of the risk gain of the

pretest estimators over β̂
UE
1 at the null vector depends on the size α of the test. As

α increases, the maximum risk of β̂
IPT

and β̂
PT

decreases. If Δ2
p2,α ≥ [0, p2 − 2],

then β̂
IPT
1 can be simply viewed as β̂

S+
1 and hence β̂

IPT
1 dominates β̂

UE
1 . On the other

hand, β̂
IPT

behaves like the usual pretest estimator β̂
PT
1 whenever Δ2

p2,α ⊂≥ [0, p2−2]
and hence may no longer be superior to β̂

UE
1 for all values of ω.

Consider the case Δ2
p2,α ≥ (p2 − 2,→): neither β̂

IPT
1 nor β̂

PT
1 is superior to β̂

UE
1

in the entire parameter space. As ω moves away from the null vector, the value of the

risk of β̂
IPT
1 increases to a maximum after crossing the risk of β̂

UE
1 , then decreases

toward it. There are some points in the parameter space where the risk function of

β̂
IPT
1 crosses the risk function of β̂

UE
1 , and hence is subject to the kind of criticism

of being absorbed by β̂
PT
1 . Again, β̂

IPT
1 performs uniformly better than β̂

UE
1 when

Δ2
p2,α takes the value outside the interval (p2 − 2,→).
Finally, it is important to remark here that the shrinkage estimators for our criteria

with M ≥ MD outperform the conventional semiparametric least squares estimator in
the entire parameter space for p2 ≤ 3, while the least square estimator is admissible
for p2 = 1 and p2 = 2.

In the following section we present the result of a simulation study to illustrate the
properties of the theoretical results for moderate and large sample sizes. We inves-
tigate the relative performance of the listed estimators including penalty estimators
using the simulated data.

5.5 Simulation Study

In this section, we use simulated data to investigate the mean squared error (MSE)
performance of all the suggested estimators.

The Monte carlo experiment consists of different combinations of sample sizes,
i.e., n = 30, 50, 80, and 100.
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In this study we simulate the response from the following partial linear model:

yi = x1iε1 + x2iε2 + · · · + x piεp + g(ti ) + βi , i = 1, . . . , n,

where the βi are i.i.d standard normal, ti = (i − 0.5)/n, xsi = (ψ
(1)
si )2 + ψ

(1)
i with

ψ
(1)
si i.i.d. ∗ N (0, 1) and ψ

(2)
i i.i.d. ∗ N (0, 1) for all s = 1, . . . , p, and i = 1, . . . , n.

We consider the the parametric restriction in the form of null hypothesis, H0 :
ε j = 0, for j = p1+1, . . . , p with p = p1+ p2. We set the regression coefficients
β = (β1,β2) = (β1, 0) with β1 = (1.5, 3, 2), and the nonlinear function g(t) =
sin(4φ t) to generate response yi . These are fixed for each realization.

In our simulation study, we use

Wni (t j ) = 1

nhn
K

⎧
ti − t j

hn

⎨
= 1

nhn

1√
2φ

e
− (ti −t j )

2

2h2n ,

namely Priestley and Chao’s weight with a Gaussian kernel.
Also, in our simulation experiment, we impliment the cross-validation method

(Bowman and Azzalini 1997) to select the optimal bandwidth hn , which minimizes
the following function:

g(hn) = 1

n

n∑
i=1

(ŷ−i − x̂−i
1 ε̂−i

1n − x̂−i
2 ε̂−i

2n − x̂−i
3 ε̂−i

3n − x̂−i
4 ε̂−i

4n − · · · − x̂−i
p ε̂−i

pn )2,

where (ε̂−i
1n , ε̂−i

2n , ε̂−i
3n , ε̂−i

4n )∼ = (X̂∼−i
X̂

−i
)−1X̂∼−i

ŷ−i , X̂
−i =

⎬
x̂−i

jk

⎭∼
, 1 ∞ k ∞

n, 1 ∞ j ∞ p, ŷ−i = (ŷ−i
1 , . . . , ŷ−i

n ), x̂−i
sk = xsk − ∑n

j ⊂=i Wnj (ti )xs j , ŷ−i
k =

yk − ∑n
j ⊂=i Wnj (ti )y j . Here ŷ−i is the predicted value of y = (y1, y2, . . . yn) at

xi = (x1i , x2i , . . . , x pi ) with yi and xi left out of the estimation of the ε’s.
For comparison purposes, we define the parameter Ψλ = ||β − β(0)||2, where

β(0) = (β1, 0)∼ and || · || is the Euclidian norm. More importantly, we investigate
the characteristic of the suggested estimators for Ψλ > 0. To do so, further samples
were generated such that Ψλ > 0.

We numerically assessed the performance of an estimator of β1 based on theMSE
criterion. However, for relative performance, we have computed the relative MSE of

all the estimators relative to β̂
UE
1 .

The relative mean squared error (RMSE) of an estimator β̂
∀
1 to the full model

least square estimator β̂
UE
1 is defined as follows:

RMSE(β̂
UE
1 : β̂

∀
1) = MSE(β̂

UE
1 )

MSE(β̂
∀
1)

.
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Table 5.1 RMSE of the
estimators to the full model
estimator for n = 60, p2 = 6

Ψλ β̂
RE
1 β̂

IPT
1 β̂

S+
1

0.0 2.69 2.48 1.88
0.2 1.63 1.24 1.36
0.4 0.74 1.03 1.20
0.6 0.38 1.02 1.06
0.8 0.26 1.03 1.03
1.0 0.11 1.02 1.02

Evidently, the amount by which an RMSE is larger than one indicates the degree of

superiority of the estimator β̂
∀
1 over β̂

UE
1 .

Our methods were applied to several simulated data sets. We report the result in
Tables 5.1, 5.2 and Fig. 5.1. Now, we provide the analysis based on simulated data.

Undoubtedly, from Table 5.1 when Ψλ is near the origin, the submodel estimator
outperforms all the suggested estimators in the class. On the contrary, when Ψλ

is larger than zero, the estimated MSE of β̂
RE
1 increases and becomes unbounded,

whereas the estimated RMSEs of all other estimators remain bounded and approach
one.

Clearly, the departure from the restriction is fatal to β̂
RE
1 , but it has a much smaller

impact on the shrinkage and pretest estimators. The finding is consistent with the
asymptotic theory.

The pretest estimator behaves well near the null hypothesis. Our simulation study
clearly indicates that the performance heavily depends on how closeΨλ is to zero. As
a result, the pretest estimator is relatively less efficient than the full model least square

estimator β̂
UE
1 for large values of Ψλ. More importantly, unlike submodel estimator,

the MSE of the pretest estimator is a bounded function of Ψλ. The performance of
the improved pretest estimator is similar to that of the pretest estimator. However, it
is more efficient than the usual pretest estimator.

The shrinkage estimator has remarkable MSE performance. At Ψλ = 0, it is

highly efficient than β̂
UE
1 . On the other hand, as Ψλ increases, the RMSE of the

shrinkage estimator decreases and converges to one irrespective of p1, p2, and n.
Figure 5.1 shows these relative efficiencies of the estimators when the restricted
parameter space is correct and incorrect (Ψ ≤ 0). Furthermore, Fig. 5.1 shows
that the shrinkage estimator works better in cases with large p2. The positive part
estimator MSE function behaves the same way as that of the shrinkage estimator that
is dominating the full model estimator in the entire parameter space induced by Ψλ.
More importantly, it is a superior strategy to the usual shrinkage estimation strategy.
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Fig. 5.1 RMSE of the listed estimators to the full model estimator for p1 = 4, p2 =
5, 8, 11, 14, 17, 20, and n = 60

5.5.1 Penalty Estimation Strategies

We showcase the result of simulation study pertaining to penalty estimators; and
compared with its competitors. The results based on the simulated data are presented
in Table 5.2 for the simulated relative efficiencies of RE, SE, PSE, LASSO, adaptive
LASSO, and SCADwith respect to the full model estimator when the restricted para-
meter space β2 = 0 is correct (Ψλ = 0). Table 5.2 reveals that restricted, shrinkage,
and positive shrinkage estimators outperform all other estimators in terms of risk.
Among the shrinkage and penalty estimators, positive shrinkage estimators maintain
superiority over LASSO, aLASSO, and SCAD estimators when p2 is relatively large.

All computations were conducted using the R statistical system (R Development
Core Team (2010)).
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Table 5.2 RMSE of the proposed estimators to the full model estimator assuming submodel is true

Method p2 = 5 p2 = 8 p2 = 11 p2 = 14 p2 = 17 p2 = 20

RE 2.88 4.37 5.91 10.23 14.46 22.18
SE 1.64 2.40 3.17 4.46 5.70 7.34
PSE 1.87 2.75 3.71 5.41 6.91 8.85
LASSO 1.43 1.91 2.35 3.64 5.27 6.09
ALASSO 1.51 1.98 2.43 3.88 5.47 6.68
SCAD 1.54 2.16 2.99 4.85 6.19 7.19

5.6 Chapter Summary

In this chapter, in the context of a partially linear regression model with potentially
irrelevant nuisance variables, we study the relative performance of full model, sub-
model, shrinkage, pretest, and penalty estimators.

Using the notion of asymptotic distributional risk, we critically and judiciously
examined the risk performance of the estimators. Further, we appraise the risk prop-
erties of penalty estimators with other estimators using Monte Carlo experiments.

We conclude, both analytically and numerically, that the submodel estimator and
the pretest estimator dominate the full model least square estimators at and near the
null hypothesis. The penalty estimators are relatively more efficient when p2 in the
nuisance parameter vector β2 has low dimension. Interestingly, the adaptive shrink-
age estimators perform best when p2 is large. Evidently, the shrinkage estimators
outshine the full model least squares estimator in the entire parameter space induced
by the restriction. In contrast, the performance of the submodel estimator heavily
depends on the nuisance effect. Not only that, but the risk of this estimator tends
to become unbounded when such submodel does not hold. The risk of the pretest

estimators is smaller than the risk of the full model estimator β̂
UE
1 at or near the

null hypothesis. On the other hand, as the hypothesis error grows, the magnitude of
the risk of the pretest estimators increases, crosses the risk of the full model esti-
mator,reaches to a maximum value, then decreases monotonically toward the risk

of β̂
UE
1 .

The shrinkage and pretest estimation strategies can be extended in various direc-
tions to more complex problems. Research on the statistical implications of pro-
posed and related estimators is ongoing. An important problem will be to study the
asymptotic properties of pretest and shrinkage estimators when p increases with n
and/or n < p. It is worth mentioning that this is one of the two areas Bradley Efron
predicted for the early twenty-first century (RSS News, January 1995). Shrinkage
and likelihood-based methods continue to be extremely useful tools for efficient
estimation.
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Chapter 6
Estimation Strategies in Poisson Regression
Models

Abstract We consider the application of shrinkage and penalty estimation for a
Poisson regression model. We present a large sample theory for the full model,
submodel, and shrinkage estimators in terms of their respective asymptotic bias and
risk. Generally speaking, shrinkage estimators are more efficient than the full model
estimator. Nowadays, variable selection is of fundamental importance for modeling
and data analysis. A number of variable selection approaches have been proposed
in the literature. On the other hand, absolute penalty estimation strategy is useful
for simultaneous variable selection and estimation. For this purpose, we consider
three penalty estimators, namely, LASSO, adaptive LASSO, and SCAD. We assess
the relative performance of the penalty estimators with the shrinkage estimators
using Monte Carlo simulation. The relative performance of each estimation strategy
is given in terms of a simulated mean squared error. The simulation results reveal
that shrinkage method is an effective consistent model selection technique and is
comparable to the LASSO, adaptive LASSO, and SCAD when the model is sparse
and number predictors in the model is weak. Finally, the listed estimation strategies
are appraised through the application to two real data sets.

Keywords Poisson regression models · Pretest and shrinkage estimation · Penalty
estimation · Asymptotic bias and risk · Simulation

6.1 Introduction

It has been known that shrinkage estimation strategies produce estimators which are
far superior in terms of risk to the maximum likelihood estimator over the entire
parameter space. However, up until relatively recently, these estimators have only
been used to a limited extent in applications, in part, owing to the computational
burden for the purposes of statistical inference. Now with rapid advancement in
computing capability, and clear advantages to the use of prior information in certain
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applications, this picture is changing. For instance, numerous cases of shrinkage
estimation have appeared in applications involving the real estate market, where
appraisers’ expert knowledge can be very informative, or in housing pricing models
where real estate experts’ knowledge and expertise often yield precise information
regarding certain parameter values.

More importantly, shrinkage estimators are relatively more efficient than classical
estimators based on full model and submodel, respectively. While it is true that sub-
model estimators can offer a substantial risk gain over full model estimators, there
is still a concern that submodel estimators are less desirable to use when uncertain
prior information (UPI) or auxiliary information (AI) is incorrect. The advantage of
the shrinkage approach is, therefore, that UPI or AI is incorporated into estimation
to the extent that it appears to be true, given sample information. The use of shrink-
age estimators is an attractive and effective trade-off in the context of numerous
applications.

We consider the application of shrinkage and penalty estimation to a Poisson
regressionmodel. The Poisson regressionmodel is widely used to study count data in
medicine, economics, and social sciences. This model assumes the response variable
to have a Poisson distribution, and also that the logarithm of its expected value can be
modeled by a linear combination of unknown parameters. In the Poisson regression
model, the response variable for observation i (with i = 1, . . . , n), yi is modeled
as a Poisson random variate with mean μi that is specified as a function of a vector
of predictor variables X and a vector of parameters β. The parameter vector β is
unknown, and we wish to estimate it or test hypotheses about it. These can be done
by using the maximum likelihood method and the likelihood ratio test. It is well
documented in the reviewed literature that pretest and shrinkage estimators of the
James and Stein type have superior performance in terms of asymptotic bias and
risk over other estimators considered, under a variety of conditions. Sapra (2003)
developed the pretest estimationmethod for a Poisson regressionmodel. Hossain and
Ahmed (2012) extends the shrinkage estimation method for Poisson regression by
combining ideas from the recent literature on sparsity patterns. Variable selection is
fundamental in statisticalmodeling. Initially, theremay bemany variables to consider
as candidates for predictors in the model. Some of these variables may not be active
and should therefore be excluded from thefinalmodel so as to achieve the goal of good
prediction accuracy. Researchers are often interested in finding an active subset of
predictors that represent a sparsity pattern in the predictor space. In the next step, they
may consider this information and use it either in the full model or in the submodel.
We follow this procedure in this chapter which is inspired by Stein’s result that in
a dimension greater than two, efficient estimators can be obtained by shrinking full
model estimators in the direction of submodel estimators. In this chapter, we consider
the problem of estimating the parameters of Poisson regressionmodel for the purpose
of predicting a response variable that may be affected by several potential predictor
variables, some of which may be inactive. The prior information from the inactive
variables may be incorporated into the estimation procedure to obtain shrinkage
estimators. The existing literature shows that the shrinkage estimators significantly
improve upon the classical estimators.
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We reappraise the properties of shrinkage estimators for the Poisson regression
model when it is suspected that some of the parameters may be restricted to a
subspace. We develop the properties of shrinkage estimators using the notion of
asymptotic distributional bias and risk. The shrinkage estimators are shown to have
higher efficiency than the classical estimators for a wide class of models. Further-
more, we consider three different penalty estimators—LASSO, adaptive LASSO,
and SCAD—and compare the relative performance with the shrinkage estimators.
Monte Carlo simulations reveal that the shrinkage strategy is competitive compared
with LASSO, adaptive LASSO, and SCAD when, and only when, there is a moder-
ate or large number of inactive predictors in the model. The shrinkage and penalty
strategies are applied to two real data sets to illustrate the usefulness of the proce-
dures in practice. A number of studies have been conducted using the application of
shrinkage estimation by several authors: Ahmed et al. (2007), Ahmed et al. (2006),
Judge andMittelhammaer (2004), Ahmed and Saleh (1999), andAhmed et al. (2012).
They developed shrinkage estimation strategies for parametric, semiparametric, and
nonparametric linear models.

Thus, the goal of this chapter is to analyze some of the issues involved in pa-
rameter estimation for a Poisson regression model when a candidate submodel is
available. For example, in genomics research, it is a common practice to test a subset
of genetic markers for association with a disease. If the subset is found in a certain
population after doing genome-wide association studies, then the subset is tested
for disease association in a new population. In this new population, it is possible
that genetic markers may be discovered that cannot be found in the first population
associated with the disease. Another example can be found in Cameron and Trivedi
(1998), who observed that the number of visits to a doctor may be related to sex,
age, income, illness, number of reduced activity days, general health questionnaire
scores, number of chronic conditions, and dummy variables for two levels (levyplus
and freerepa) of health insurance coverage. In the case when prior information is
not available, the shrinkage estimation strategy uses a two-step approach. In the first
step, a set of covariates (the number of reduced activity days, illness, health question-
naire scores, age, sex, and levyplus) are selected based on the best subset selection
procedure and traditional model selection criteria, such as AIC and BIC. The effects
of other covariates may be inactive. We then use these inactive variables or linear
combinations of them to create a linear subspace of the full parameter space for β.
The statistical objective of this chapter to provide a unified estimation strategy which
implements both shrinkage and penalty methods for estimating the parameters.

The rest of the chapter is organized as follows.Themodel and suggested estimators
are introduced in Sect. 6.2; the asymptotic properties of the proposed estimators and
their asymptotic distributional biases and risks are presented in Sect. 6.3; the results
of a simulation study that includes a comparison with three penalty methods are
given in Sect. 6.4; application to a real data set and a comparison of listed estimation
strategies are described in Sect. 6.5; and Sect. 6.6 contains the concluding remarks.
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6.2 Estimation Strategies

Suppose that yi , given the vector of predictors xi , is independently distributed as
Poisson probability distribution, that is

f (yi |xi ) = e−μi μ
yi
i

yi ! , yi = 0, 1, 2, . . . , i = 1, 2, 3, . . . , n. (6.1)

then the mean parameter is
μi = exp(x∼

iβ). (6.2)

Here, xi = (xi1, xi2, . . . , xip)
∼ is a p × 1 vector of predictors and β is a p × 1 vector

of regression parameters.
Thus, the log-likelihood function is given by

l(β) =
n∑

i=1

[
yi x∼

iβ − exp(x∼
iβ) − ln(yi !)

]
. (6.3)

The derivatives of the log-likelihood with respect to β can be obtained as

εl

εβ
=

n∑
i=1

[
yi − exp(x∼

iβ)
]

xi = 0. (6.4)

The estimator based on full model or unrestricted maximum likelihood estimator
(UE) β̂UE of β is obtained by solving the score Eq. (6.4). Clearly, these equations
are nonlinear in parameter β. These can be solved by using an iterative algorithm
such as the Newton–Raphson method. Under usual regularity conditions (Santos and
Neves 2008) β̂UE is a consistent estimator of β. Furthermore, it follows p-variate
normal distribution as n ≥ ≤with the variance-covariance matrix (I(β))−1, where
I(β) = ∑n

i=1 ex∼
i β xi x∼

i .
We consider a linear subspace where the unknown p-dimensional parameter vec-

tor β satisfies a set of p2 linear restrictions

Hβ = h, (6.5)

where H is p2× p matrix of rank p2 ⊂ p, and h is a given p2×1 vector of constants.
Because H has rank p2, the p2 equations may not contain any redundant information
about β.

The submodel or restricted maximum likelihood estimator (RE), βRE of β is
obtained bymaximizing the log-likelihood function (6.3) under the linear restrictions
Hβ = h.
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6.2.1 Shrinkage Estimation Strategies

To start the process, let l(β̂UE) and l(β̂RE) be the values of the log-likelihood at the
full model and submodel estimates respectively, then

D = 2[l(β̂UE; y1, . . . , yn) − l(β̂RE; y1, . . . , yn)],
= (Hβ̂UE − h)∼[H(I(β))−1H ∼]−1(HβUE − h) + op(1).

Noting that if the submodel is true then distribution of D converges to φ2 with p2
degrees of freedom as n ≥ ≤.

Now we define the shrinkage estimator as

β̂S = β̂RE +
(
1 − (p2 − 2)D−1

)
(β̂UE − β̂RE), p2 ≥ 3.

The shrinkage estimator (SE) combines the information from the full model and
submodel and yields an efficient estimator and subsequently improves the prediction
accuracy. Ahmed (1997) among others, shows that the shrinkage estimator is rela-
tively more efficient than the full model-based least square estimator in the classical
regression models. Recall that by construction the shrinkage estimator is not a con-
vex combination of the full model and submodel estimators. It is possible that the
shrinkage estimator may have the opposite sign of estimator based on the full model.
To alleviate this annoying feature of the shrinkage estimator, we suggest using the
positive version of this estimator, which is known as positive-part shrinkage estimator
(PSE). Let us denote where z+ = max(0, z), then PSE is defined as

β̂S+ = β̂RE +
(
1 − (p2 − 2)D−1

)+
(β̂UE − β̂RE).

6.2.2 Penalty Estimation

As a family of penalized least squares methods, Park and Hastie (2007) proposed the
LASSO version for the Poisson regression model. In a sense, it is a useful method
for simultaneous variable selection and estimation of parameters in the selected
submodel. This procedure calculates the regression coefficients that minimize the
negative log-likelihood function subject to an L1 penalty on the regression parameter
vector.

In this chapter we consider three commonly used penalty estimation strategies.
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LASSO

The LASSO estimate of β is obtained by minimizing the following function. More
specifically,

β̂LASSO = argmin
β

{−l(β) + α||β||1}

= argmin
β

[
−

n∑
i=1

[
yi x∼

iβ − exp(x∼
iβ) − lnyi !

] + α||β||1
]

,

where α is called the tuning parameter, and argmin gives the value of β which
minimizes the function of interest. For large values of α, this technique produces
shrunken estimates of β, often with many components equal to zero. Park and Hastie
(2007) suggested an algorithm that implements the predictor-corrector method to
determine the entire path of the coefficient estimates as α varies from 0 to ≤. The
algorithm computes a series of solutions and estimates the coefficients with a smaller
α each time based on the previous estimate.

Adaptive LASSO

The adaptive LASSO is the solution of

β̂aLASSO = argmin
β

[
−

n∑
i=1

[
yi x∼

iβ − exp(x∼
iβ) − lnyi !

] + α

p∑
i=1

|βi |wi

]
,

where wi ’s are adaptive weights defined as wi = |β̂i |−δ for some positive δ , and β̂i is
the maximizer of the log likelihood l(β). The intuition of the adaptive LASSO is to
put large weights to nuisance variables, and gives small weights to active variables,
as well as shrink their associated coefficients slightly. In passing, we would like to
remark here that adaptive LASSO enjoys oracle properties (Fan and Li 2001) that
LASSO does not have.

SCAD

Fan and Li (2001) proposed the smoothly clipped absolute deviation (SCAD)method
for linear and generalized linear models. This procedure selects important variables
and estimate the regression parameters β simultaneously by maximizing the follow-
ing penalized likelihood function:
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β̂SCAD = argmin
β

[
−

n∑
i=1

[
yi x∼

iβ − exp(x∼
iβ) − lnyi !

] + α

p∑
i=1

pα(|βi |)
]

,

where pα(·) is the smoothly clipped absolute deviation penalty with a tuning para-
meter α. The tuning parameter α is selected using a cross-validation technique. The
penalty pα(·) satisfies pα(0) = 0, and its first-order derivative

p
∼
α(Δ) = α

[
I (Δ ⊂ α) + (aα − Δ)+

(a − 1)α
I (Δ > α)

]
,

where a is some constant usually taken to be a = 3.7 (Fan and Li 2001), and (t)+ =
t I {t > 0} is the hinge loss function. The procedure selects some relatively inactive
variables by producing zero solutions for their associated regression coefficients.

It is worth noting that the output of the above three penalty methods can be
viewed as a shrinkage technique by both shrinking and deleting coefficients. More
importantly, it is different from the classical shrinkage estimation strategy in that it
weighs all the predicting variables coefficients equally. Penalty estimation procedures
do not require a specified linear subspace restriction Hβ = h.

Now, we turn our attention to the estimation of regression parameter using a
classical approach and provide some asymptotic results in the following section.

6.3 Asymptotic Analysis

We present the expressions for the asymptotic bias and risk of the full model, sub-
model, and shrinkage estimators.

We will provide these expressions under local alternatives to give a fair analysis.
To this end, let δ = (δ1, δ2, . . . , δp2) → ∞p2 and consider the following sequence of
local alternatives:

K(n) : Hβ = h + δ√
n
. (6.6)

Now, we present two central key results to the study of statistical properties of
shrinkage estimators in the following theorems.

Theorem 6.1 Under the local alternatives K(n) in (6.6) and the usual regularity
conditions, as n ≥ ≤,

1.
√

n(Hβ̂UE − h)
d−≥ N (δ, HB−1H ∼), where Bp × p = lim

n≥≤
I(β)

n is nonsingular,

2. The quantity D converges to a noncentral chi-squared distribution φ2
p2(χ) with

p2 degrees of freedom and noncentrality parameter χ = δ∼(H B−1H ∼)−1δ.
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Using this theorem, we can obtain the main results of this section. We present (with-
out derivation) the bias and risk expressions for the estimators based on likelihood
function.

Suppose that β√ is any estimator of β and Q is a positive semi-definite matrix,
then the quadratic loss function is

L (β√; Q) = [√
n(β√ − β)

]∗
Q

[√
n(β√ − β)

]
. (6.7)

For theoretical results, we use a general weight Q on the asymptotic variances and
covariances of the estimators. A common choice of Q is the identity matrix. This is
what we use in the simulation study.

The asymptotic distribution function of β√ under K(n) is given by

G( y) = lim
n≥≤ P

[√
n(β√ − β) ⊂ y|K(n)

]
,

where G( y) is a nondegenerate distribution function. We define the asymptotic dis-
tributional risk (ADR) by

R(β√; Q) =
∫

· · ·
∫

y∼ Q ydG( y),

= trace( Q Q√),

where Q√ = ∫ · · · ∫ yy∼dG( y) is the dispersion matrix of G( y).
Note that under fixed or nonlocal alternatives, all the estimators are asymptotically

equivalent to β̂UE, while β̂RE may have an unbounded risk. In order to make an
interesting and meaningful comparison and to obtain a nondegenerate asymptotic
distribution G( y), we will use the local alternatives in (6.6).

The asymptotic distributional bias (ADB) of an estimator β√ is defined as

ADB(β√) = lim
n≥≤ E

{
n

1
2 (β√ − β)

}
=

∫
· · ·

∫
ydG( y),

noting that second equality can be established under the model at hand assumptions.

Theorem 6.2 Under the local alternatives K(n) and the condition of Theorem 6.1,
the ADBs of the estimators are

ADB(β̂UE) = 0,

ADB(β̂RE) = −Jδ, J = B−1H ∼[HB−1H ∼]−1,

ADB(β̂S) = −(p2 − 2)JδE(φ−2
p2+2(χ)),

ADB(β̂S+) = −(p2 − 2)Jδ
[

E(φ−2
p2+2(χ)) − E(φ−2

p2+2(χ)I (φ2
p2+2(χ) < (p2 − 2)))

]

−JδΨp2+2(p2 − 2, χ),



6.3 Asymptotic Analysis 109

where Ψψ(p2 − 2,χ) is the distribution function of the φ2
p2(χ) distribution and the

remaining discussions follows.

Theorem 6.3 Under the local alternatives K(n) and the assumptions of Theorem 6.1,
the risk of the estimators are

R(β̂UE; Q) = trace[QB−1],
R(β̂RE; Q) = R(β̂UE; Q) − trace[QJHB−1] + δ∼(J ∼QJ)δ,

R(β̂S; Q) = R(β̂UE; Q) − 2(p2 − 2)trace[QJHB−1]{2E(φ−2
p2+2(χ))

− (p2 − 2)E(φ−4
p2+2(χ))} + (p2 − 2)δ∼(J ∼QJ)δ{2E(φ−2

p2+2(χ))

− 2E(φ−4
p2+2(χ)) + (p2 − 2)E(φ−4

p2+4(χ))},
R(β̂S+; Q) = R(β̂S; Q) − δ∼(J ∼QJ)δE[(1 − (p2 − 2)φ−2

p2+4(χ))2 I (φ2
p2+4(χ) < p2 − 2)]

− trace[QJHB−1]E[(1 − (p2 − 2)φ−2
p2+2(χ))2 I (φ2

p2+4(χ) < p2 − 2)]
+ 2δ∼(J ∼QJ)δE[(1 − (p2 − 2)φ−2

p2+4(χ))I (φ2
p2+4(χ) < p2 − 2)].

Based on Theorem 6.2, for any Q → QD and all δ and under {Kn},

R(β̂S+; Q) ⊂ R(β̂S; Q) ⊂ R(β̂UE; Q)

where

QD =
{

Q : trace[ Q J H B−1]
Chmax [ Q J H B−1] ≥ p2 + 2

2

}
,

and Chmax (·) is the maximum characteristic root. When Δ = 0, the following
relationship holds:

R(β̂RE; Q) < R(β̂S+; Q) < R(β̂S; Q) < R(β̂UE; Q).

However, for small values of χ(>0),

R(β̂S+; Q) < R(β̂S; Q) < R(β̂UE; Q) < R(β̂RE; Q).

More importantly, βS+ dominates the βUE in the entire parameter space induced
by χ.

In an effort to numerically appraise the performance of suggested estimators,
we conduct a simulation study to compare the performance of the likelihood-based
estimators and the penalty estimators for selected sample sizes.

For relative comparison, we consider the full model or unrestricted estimator β̂UE

as the “baseline” estimator. Hence, the performance of the other estimators appraised
in terms of the simulatedMSE relative to theMSE of β̂UE (RMSE). For any estimator
β̂λ, the simulated relative MSE (RMSE) of β̂λ to β̂UE is given by
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RMSE(β̂√) = simulated MSE(β̂UE)

simulated MSE(β̂√)
.

Evidently, an RMSE larger than one indicates the degree of superiority of the esti-
mator β̂√ over β̂UE.

6.4 Monte Carlo Simulation

We use Monte Carlo simulation experiments to assess the relative risk performance
of the listed estimators. We consider the following model for data generation

log yi = x∼
iβ.

We simulate xi
∼ = (xi1, xi2, . . . , xin) from a multivariate standard normal

distribution.
We consider the partition of β = (β ∼

1,β
∼
2)

∼. The coefficients β1 and β2 are p1 × 1
and p2 × 1 vectors, respectively, with p = p1 + p2. We assume that the model is
sparse and setβ2 = 0. Thus, the interest is in estimatingβ1. However, the assumption
of sparsity may not be a realistic one. We consider the true value of β at β = (β ∼

1, 0)∼
asβ1 = (0.2,−1.2, 0.1, 0.2) for simulating the data. In Table 6.1, we present relative
MSEs of submodel, shrinkage, and penalty estimators (LASSO, adaptive LASSO,
and SCAD) with respect to the full model estimator for n = 50 with p1 = 4. The
simulation results are summarized in Table 6.1 for χ = 0. We estimated the tuning
parameter α for the penalty estimators using a 10-fold cross-validation.

Table 6.1 is computed based on the assumption that the selected submodes is
correct, that is, β2 = 0. However, this assumption maybe hard to justify in some real
situations. In an effort to provide a meaningful comparison, we define the parameter
χ√ = ||β − β(0)||2, where β(0) = (β ∼

1, 0)∼ and || · || is the Euclidian norm. Further
data were generated such that χ is between 0 and 2. The RMSE of the submodel and
shrinkage estimators to the fullmodel estimator is computed for n = 50 and p2 = 10.
The penalty estimators were not considered for χ > 0, because by design these
methods select a submodel and estimate the parameters of the selected submodel,
under the assumption that the selected submodel is the best one and no further
investigation is required. On the contrary, the shrinkage estimators treat this situation
well by adapting to the β2 ∀= 0 case. Thus, we examine the performance of the
shrinkage estimators and study how they compare to submodel and full model when
p is fixed. The results for a sample size of n = 50 are presented in Fig. 6.1 and
Table 6.2, and we obtain the following analysis.

Table 6.1 reveals that the RMSE of all the estimators increases as the number of p2
increases. Moreover, as we would expect, the submodel estimator is the best among
the class of estimators. Furthermore, all the estimators are superior to the full model
estimators. Table 6.1 indicates that the penalty estimation strategy performs better
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Table 6.1 RMSE of the listed estimators to the full model estimator assuming submodel is correct

Method p2 = 3 p2 = 5 p2 = 7 p2 = 9 p2 = 11 p2 = 13 p2 = 15

RE 2.46 3.45 5.48 7.37 9.54 13.82 17.56
SE 1.25 1.58 2.29 3.03 3.64 4.38 4.99
PSE 1.36 1.63 2.82 3.68 4.41 5.44 6.15
LASSO 1.45 1.69 1.92 2.46 2.85 3.88 4.55
ALASSO 1.52 1.78 2.04 2.38 2.93 3.96 4.78
SCAD 1.56 1.89 2.35 2.98 4.16 5.28 5.79
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Fig. 6.1 RMSE of the proposed estimators to the full model estimator with p1 = 4, p2 =
4, 6, 8, 12, 14, 16, 18, and n = 60

than the shrinkage strategy when, and only when, the number of p2 in the model is
relative small. We see from Table 6.1 that, when (p1, p2) = (4, 5), the penalty esti-
mators aremore efficient than the positive shrinkage estimator. On the other hand, the
positive shrinkage estimator is more efficient than estimators for larger values of p2.
This is an interesting and surprising observation. Hence, we suggest to use the pos-
itive shrinkage estimator when the number of inactive predictors is relatively large.
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Table 6.2 RMSE of the
proposed estimators to the
full model estimator with
n = 50 and p2 = 10

χ√ β̂RE β̂S β̂S+

0.00 3.52 2.16 2.45
0.10 3.22 1.92 2.12
0.20 2.56 1.64 1.68
0.30 2.06 1.36 1.37
0.60 1.42 1.11 1.11
1.00 1.19 1.06 1.06
1.20 1.13 1.03 1.03
2.00 1.00 1.00 1.00

The submodel estimator is more efficient than all the estimators in the class when
χ√ is close to 0. On the other hand, the estimated RMSE of the submodel decreases
asχ√ increases, then rapidly converges to 0. However, the estimated RMSE of all the
shrinkage remains bounded and approaches one from above. Hence, severe departure
from the subspace is fatal to the submodel estimator. Thus, our numerical findings
strongly corroborate the theoretical results of Sect. 6.3 based on the large sample
with fixed p.

Finally, we conclude that the results of simulation study are in agreement with the
findings of the analytical work presented earlier. In summary, the penalty estimators
are more efficient than shrinkage estimators when there are a few inactive predictors
in the model. Alternatively, the positive shrinkage estimator is more efficient than
penalty estimators when there is a relatively large number of inactive predictors in the
model. In any event, the submodel estimator is more efficient than both the penalty
and shrinkage estimators, because it is assumed that the predictors that are deleted
in the full model to build a submodel are indeed irrelevant or nearly irrelevant for
prediction.

6.5 Data Examples

We now provide two examples based on published data sets to illustrate the useful-
ness and practical applications of the submodel, shrinkage, and penalty estimation
strategies.

Australian Health Survey Data

We refer to Cameron and Trivedi (1998) for a detailed description of the data.
A total of 5,190 individuals over 18years of age answered all of the essential ques-
tions that are recorded in this data set. The main objective of this survey was to study
the relationship between the number of consultations with a doctor and the type of
health insurance, health status, and socioeconomic indicators. The response variable



6.5 Data Examples 113

Table 6.3 RMSE of the proposed estimators to the full model estimator

Estimators UE RE SE PSE LASSO Adaptive LASSO SCAD

RMSE 1.00 1.90 1.06 1.07 1.11 1.14 1.17

of interest is the number of visits to a doctor that were made during a 2week interval,
and the covariates of interest are sex, age, income, illness, number of reduced activity
days, general health questionnaire scores, number of chronic conditions, and dummy
variables for two levels (levyplus = 1 if respondent is covered by private health in-
surance, 0 otherwise and freerepa = 1 if respondent is covered free by government,
0 otherwise) of health insurance coverage.

The preliminary analysis-based maximum likelihood estimation categories sug-
gests that reduced activity days (β1), illness (β2), health questionnaire scores (β3),
age (β4), sex (β5), levyplus (β6) as the useful variables, while the rest of the variables
income (β7), number of chronic conditions (β8), and freerepa (β9) are not important
variables for predicting the number of visits to a doctor. Wemay use this information
as an auxiliary information to form subspace or to obtain a submodel. Alternatively,
one can use the existing variable selection procedures to obtain a submodel. In any
event, for this example, we set β2 = (β7, β8, β9) = (0, 0, 0), p = 9, p1 = 6,
p2 = 3. The MSE using bootstrap resampling of size 1,000 are computed. The
relative MSE is reported in Table 6.3. The table reveals that the penalty estimators
are efficient more than the shrinkage estimators. Not surprisingly, the submodel es-
timator is the most efficient estimator as compared to the class of estimators studied
here.

Takeover Bids Data

In this example,we apply our estimation strategies to a takeover bids data set provided
by Cameron and Trivedi (1998). The data set includes the number of bids received
by 126 U.S. firms that were targets of tender offers during the period of 1978–1985,
and were taken over within 52weeks of the initial offer. The response count variable
is the number of bids (numbids) after the initial bid received by the target firm. The
data are based on eight explanatory variables.

The initial maximum likelihood inference leads us to conclude that the bid price
(β1), management invitation (β2), and total book value of assets on the takeover bids
(β3) may be useful variables for prediction purposes. However, other variables in
the initial model, percentage of stock held by institutions (β4), legal defense by law-
suit (β5), proposed changes in asset structure (β6), proposed changes in ownership
structure (β7), and government intervention (β8) are not significant to predict the
number of takeover bids received by targeted firms.We wish to treat this information
as auxiliary information to improve the estimation accuracy of the remaining three
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Table 6.4 RMSE of the proposed estimators to the full model estimator

Estimators UE RE SE PSE LASSO Adaptive LASSO SCAD

RMSE 1.00 2.27 1.22 1.24 1.51 1.56 1.74

parameters in the model, resulting in better prediction performance. In this example,
we set β2 = (β4, β5, β6, β7, β8) = (0, 0, 0, 0, 0). Thus, we have p1 = 3, p2 = 5
with n = 126. We use the auxiliary information to construct submodel and shrink-
age estimators. We also apply the penalty estimation procedure and reappraise its
performancewith other estimators for these data. The results are reported in Table 6.4
and the findings remain the same as those of previous example.

In passing, we would like to remark here that in both data examples the estimators
perform better than shrinkage estimators since both models have a relatively small
number of parameters and a small number of the predicting variables found to be
insignificant in the models. In any event, the conclusions from the data examples are
consistent with both analytical and numerical findings.

6.6 Chapter Summary

In this chapter, we consider the estimation problem in a Poisson regression model.
We systematically compare the performance of full model, submodel, shrinkage, and
penalty estimators when the full model may be sparse. We appraise the risk prop-
erties of the submodel and shrinkage estimators both analytically and numerically.
However, the risk properties of the penalty estimators were assessed through Monte
Carlo simulation, since analytical solution is not available.

The simulation study leads to conclude that the penalty and shrinkage estimation
strategies are competitive and provide a good solution when the full model at hand is
sparse. Thepositive shrinkage estimator performsbetter thanpenalty estimatorswhen
the number of inactive predictors is moderate or relatively large in the model. On the
other hand, penalty estimator is more efficient than the shrinkage estimators when
the number of regression coefficients close to zero is small. However, it is important
to note that penalty estimator is useful when n < p. Furthermore, we reconfirm
that SCAD and adaptive LASSO perform better than the LASSO estimator. We
suggest using either SCAD or adaptive LASSO when the full model is really sparse.
However, sparsity is a strong assumption and some thoughts should be given before
doing simultaneous variable selection and estimation.

Finally, we used the suggested estimation strategies on two published data sets
to investigate the relative performance of all estimators to the maximum likelihood
estimator based on the full model. The conclusions drawn based on data set strongly
corroborate our analytical and simulated results.
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