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Series Foreword

The yearly Neural Information Processing Systems (NIPS) workshops bring to-

gether scientists with broadly varying backgrounds in statistics, mathematics, com-

puter science, physics, electrical engineering, neuroscience, and cognitive science,

uni�ed by a common desire to develop novel computational and statistical strate-

gies for information processing, and to understand the mechanisms for information

processing in the brain. As opposed to conferences, these workshops maintain a

exible format that both allows and encourages the presentation and discussion of

work in progress, and thus serve as an incubator for the development of important

new ideas in this rapidly evolving �eld.

The Series Editors, in consultation with workshop organizers and members of

the NIPS Foundation Board, select speci�c workshop topics on the basis of sci-

enti�c excellence, intellectual breadth, and technical impact. Collections of papers

chosen and edited by the organizers of speci�c workshops are built around peda-

gogical introductory chapters, while research monographs provide comprehensive

descriptions of workshop-related topics, to create a series of books that provides

a timely, authoritative account of the latest developments in the exciting �eld of

neural computation.

Michael I. Jordan, Sara A. Solla





Preface

The concept of Large Margins has recently been identi�ed as a unifying principle

for analyzing many di�erent approaches to the problem of learning to classify data

from examples, including Boosting, Mathematical Programming, Neural Networks

and Support Vector Machines. The fact that it is the margin or con�dence level

of a classi�cation (i.e., a scale parameter) rather than the raw training error that

matters has become a key tool in recent years when dealing with classi�ers. The

present volume shows that this applies both to the theoretical analysis and to the

design of algorithms.

Whilst the origin of some of these methods dates back to the work of Vapnik,

Mangasarian and others in the 1960s, it took until the 1990s until applications on

large real-world problems began. This is due to both the computational resources

that recently become available, and theoretical advances, for instance regarding

the nonlinear generalization of algorithms. At present, algorithms that explicitly or

implicitly exploit the concept of margins are among the most promising approaches

to learning from data.

A two-day workshop on this topic was organized at the annual Neural Infor-

mation Processing Systems (NIPS) conference, held in Breckenridge, Colorado, in

December 1998. We are indebted to the people who helped make this happen. In

particular we would like to thank the NIPS workshop chairs Rich Zemel and Sue

Becker, the conference chair Sara Solla, and all the workshop speakers and attendees

who contributed to lively discussions.

The present volume contains a number of papers based on talks presented at the

workshop along with a few articles describing results obtained since the workshop

has taken place. Although it is far too early to give a �nal analysis of Large Margin

Classi�ers, this book attempts to provide a �rst overview of the subject. We hope

that it will help making large margin techniques part of the standard toolbox in

data analysis and prediction, and that it will serve as a starting point for further

research.

Alexander J. Smola, Peter L. Bartlett, Bernhard Sch�olkopf, Dale Schuurmans

Canberra, Cambridge, Waterloo, October 1999





1 Introduction to Large Margin Classi�ers

The aim of this chapter is to provide a brief introduction to the basic concepts of

large margin classi�ers for readers unfamiliar with the topic. Moreover it is aimed

at establishing a common basis in terms of notation and equations, upon which

the subsequent chapters will build (and refer to) when dealing with more advanced

issues.

1.1 A Simple Classi�cation Problem

Assume that we are given a set of training datatraining data

X := fx1; : : : ;xmg � R
N where m 2 N (1.1)

together with corresponding labelslabels

Y := fy1; : : : ; ymg � f�1; 1g: (1.2)

The goal is to �nd some decision function g : R N ! f�1; 1g that accurately

predicts the labels of unseen data points (x; y). That is, we seek a function g that

minimizes the classi�cation error, which is given by the probability that g(x) 6= y.

A common approach to representing decision functions is to use a real valued

prediction function f : R N ! R whose output is passed through a sign threshold to

yield the �nal classi�cation g(x) = sgn (f(x)). Let us start with a simple example:

linear decision functions. In this case the unthresholded prediction is given by a

simple linear function of the input vector xlinear

decision

function
g(x) := sgn (f(x)) where f(x) = (x �w) + b for w 2 R N and b 2 R : (1.3)

This gives a classi�cation rule whose decision boundary fxjf(x) = 0g is an

N � 1 dimensional hyperplane separating the classes \+1" and \�1" from each

other. Figure 1.1 depicts the situation. The problem of learning from data can be

formulated as �nding a set of parameters (w; b) such that sgn ((w � xi) + b) = yi
for all 1 � i � m. However, such a solution may not always exist, in particular if

we are dealing with noisy data. For instance, consider Figure 1.1 with the triangle

replaced by an open circle. This raises the question what to do in such a situation.
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Figure 1.1 A linearly separable classi�cation problem. Note that there may be

several possible solutions as depicted by the two lines. The problem becomes non-

separable if we replace the triangle by an open circle; in which case no solution

(w; b) exists.

1.1.1 Bayes Optimal Solution

Under the assumption that the data X;Y was generated from a probability distri-

bution p(x; y) on R
N � f�1; 1g and that p is known, it is straightforward to �nd a

function that minimizes the probability of misclassi�cation

R(g) :=

Z
RN�f�1;1g

1fg(x)6=yg p(x; y)dxdy: (1.4)

This function satis�esBayes optimal

decision function
g(x) = sgn (p(x; 1)� p(x;�1)) : (1.5)

Consider a practical example.

Example 1.1 Two Gaussian Clusters

Assume that the two classes \+1" and \�1" are generated by two Gaussian clusters
with the same covariance matrix � centered at �+ and �� respectively

p(x; y) =
1

2(2�)N=2j�j1=2
(

e�
1
2 (x��+)>��1(x��+) if y = +1

e�
1
2 (x���)>��1(x���) if y = �1: (1.6)

Since the boundaries completely determine the decision function, we seek the set of

points where p(x;+1) = p(x;�1). In the case of (1.6) this is equivalent to seeking

x such that

(x� �+)
>��1(x� �+) = (x� ��)>��1(x� ��): (1.7)

By rearranging we �nd that this condition is equivalent to

x>��1x� 2�>+�
�1x+ �>+�

�1�+ � x>��1x+ 2�>��
�1x� �>���1�� = 0

2(�>+�
�1 � �>���1)x� (�>+�

�1�+ � �>���1��) = 0 (1.8)
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The latter form is equivalent to having a linear decision function determined by

f(x) =
�
(�+ � ��)>��1

�
x� 1

2 (�
>
+�

�1�+ � �>���1��): (1.9)
linear

discriminant Hence in this simple example the Bayes optimal classi�cation rule is linear.

Problems arise, however, if p(x; y) is not known (as generally happens in practice).

In this case one has to obtain a good estimate of g(x) = sgn (f(x)) from the training

dataX;Y . A famous example of an algorithm for linear separation is the perceptron

algorithm.

1.1.2 The Perceptron Algorithm

The perceptron algorithm is \incremental," in the sense that small changes are

made to the weight vector in response to each labelled example in turn. For any

learning rate � > 0, the algorithm acts sequentially as shown in Table 1.1. Notice

Algorithm 1.1 : Basic Perceptron Algorithm.

argument: Training sample, X = fx1; : : : ;xmg � X, Y = fy1; : : : ; ymg � f�1g
Learning rate, �

returns: Weight vector w and threshold b.
function Perceptron(X;Y; �)

initialize w; b = 0
repeat

for all i from i = 1; : : : ;m
Compute g(xi) = sgn ((w � xi) + b)
Update w; b according to

w0 = w + (�=2) (yi � g(xi))xi

b0 = b+ (�=2) (yi � g(xi)) :

endfor
until for all 1 � i � m we have g(xi) = yi
return f : x 7! (w � x) + b

end

that (w; b) is only updated on a labelled example if the perceptron in state (w; b)

misclassi�es the example. It is convenient to think of the algorithm as maintaining

the hypothesis g : x 7! sgn ((w � x) + b), which is updated each time it misclassi�esperceptron

algorithm an example. The algorithm operates on a training sample by repeatedly cycling

through the m examples, and when it has completed a cycle through the training

data without updating its hypothesis, it returns that hypothesis.

The following result shows that if the training sample is consistent with some

simple perceptron, then this algorithm converges after a �nite number of iterations.

In this theorem, w� and b� de�ne a decision boundary that correctly classi�es all

training points, and every training point is at least distance � from the decision

boundary.
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Theorem 1.1 Convergence of the Perceptron Algorithm

Suppose that there exists a � > 0, a weight vector w� satisfying kw�k = 1, and a

threshold b� such that

yi ((w
� � xi) + b�) � � for all 1 � i � m: (1.10)

Then for all � > 0, the hypothesis maintained by the perceptron algorithm converges

after no more than (b�2 + 1)(R2 + 1)=�2 updates, where R = maxi kxik. Clearly,
the limiting hypothesis is consistent with the training data (X;Y ).

Proof [Novikov, 1962] Let (wj ; bj) be the state maintained immediately before

the jth update occuring at, say, example (xi; yi). To measure the progress of the

algorithm, we consider the evolution of the angle between (wj ; bj) and (w
�; b�) and

note that the inner product ((wj ; bj) � (w�; b�)) grows steadily with each update.

To see this, note that (wj ; bj) is only updated when the corresponding hypothesis

gj misclassi�es yi, which implies that yi � gj(xi) = 2yi. Therefore,

((wj+1; bj+1) � (w�; b�)) = ([(wj ; bj) + (�=2)(yi � gj(xi))(xi; 1)] � (w�; b�))

= ((wj ; bj) � (w�; b�)) + �yi((xi; 1) � (w�; b�))

� ((wj ; bj) � (w�; b�)) + ��

� j��:
On the other hand, the norm of (wj ; bj) cannot grow too fast, because on an update

we have yi((wj � xi) + bj) < 0, and therefore

k(wj+1; bj+1)k2 = k(wj ; bj) + �yi(xi; 1)k2
= k(wj ; bj)k2 + 2�yi((xi; 1) � (wj ; bj)) + �2k(xi; 1)k2
� k(wj ; bj)k2 + �2k(xi; 1)k2
� j�2(R2 + 1):

Combining these two observations with the Cauchy-Schwarz inequality shows thatp
j�2(R2 + 1) � k(wj+1; bj+1)k

� ((wj+1; bj+1) � (w�; b�))p
1 + b�2

� j��p
1 + b�2

;

and thus j � (1 + b�2)(R2 + 1)=�2 as desired.

Since the perceptron algorithm makes an update at least once in every cycle through

the training data, and each iteration involves O(N) computation steps, this theorem

implies that the perceptron algorithm has time complexity O((R2 + 1)mN=�2).
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1.1.3 Margins

The quantity � plays a crucial role in the previous theorem, since it determines how

well the two classes can be separated and consequently how fast the perceptron

learning algorithm converges. This quantity � is what we shall henceforth call a

margin.

De�nition 1.2 Margin and Margin Errors

Denote by f : R N ! R a real valued hypothesis used for classi�cation. Then

�f (x; y) := yf(x); (1.11)
margin

i.e., it is the margin by which the pattern x is classi�ed correctly (so that a negative

value of �f (x; y) corresponds to an incorrect classi�cation). Moreover denote by

�f := min
1�i�m

�f (xi; yi) (1.12)

minimum margin
the minimum margin over the whole sample. It is determined by the \worst"

classi�cation on the whole training set X;Y .

It appears to be desirable to have classi�ers that achieve a large margin �f since

one might expect that an estimate that is \reliable" on the training set will also

perform well on unseen examples. Moreover such an algorithm is more robust with

respect to both patterns and parameters:

Intuitively, for a pattern x that is far from the decision boundary fxjf(x) = 0g
slight perturbations to x will not change its classi�cation sgn (f(x)). To see this,

note that if f(x) is a continuous function in x then small variations in x will

translate into small variations in f(x). Therefore, if yif(xi) is much larger thanrobustness in

patterns zero, yif(xi�") will also be positive for small ". (See, for example, Duda and Hart
[1973].)

Similarly, a slight perturbation to the function f will not a�ect any of the resulting

classi�cations on the training data (x1; y1); :::; (xm; ym). Assume that fw(x) is

continuous in its parameters w. Then, again, if yifw(xi) is much larger than zero,robustness in

parameters yifw�"(xi) will also be positive for small ".

1.1.4 Maximum Margin Hyperplanes

As pointed out in the previous section, it is desirable to have an estimator with

a large margin. This raises the question whether there exists an estimator with

maximum margin, i.e., whether there exists some f� with

f� := argmax
f

�f = argmax
f

min
i
yif(xi): (1.13)

Without some constraint on the size of w, this maximum does not exist. In

Theorem 1.1, we constrained w� to have unit length. If we de�ne f : R N ! R
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.
w

{x | (w  x) + b = 0}.

{x | (w  x) + b = −1}.
{x | (w  x) + b = +1}.

x2
x1

Note:

(w  x1) + b = +1
(w  x2) + b = −1

=>       (w  (x1−x2)) =   2

=> (x1−x2)   =
w

||w||( )

.

.

.

. 2
||w||

yi = −1

yi = +1❍
❍

❍

❍
❍

�

�

�

�

Figure 1.2 A binary classi�cation toy problem: separate balls from diamonds. The

optimal hyperplane is orthogonal to the shortest line connecting the convex hulls of

the two classes (dotted), and intersects it half-way between the two classes. The

problem being separable, there exists a weight vector w and a threshold b such that

yi((w � xi) + b) > 0 (i = 1; : : : ;m). Rescaling w and b such that the point(s) closest

to the hyperplane satisfy j(w � xi) + bj = 1, we obtain a canonical form (w; b) of the

hyperplane, satisfying yi((w � xi) + b) � 1. Note that in this case, the minimum

Euclidean distance between the two classes (i.e., twice the margin), measured

perpendicularly to the hyperplane, equals 2=kwk. This can be seen by considering

two points x1;x2 on opposite sides of the margin, i.e., (w�x1)+b = 1; (w�x2)+b = �1,
and projecting them onto the hyperplane normal vector w=kwk.

by

f(x) =
(w � x) + b

kwk ; (1.14)

then the maximum margin f is de�ned by the weight vector and threshold that

satisfyoptimal

hyperplane
w�; b� = argmax

w;b

m
min
i=1

yi((w � xi) + b)

kwk (1.15)

= argmax
w;b

m
min
i=1

yi sgn ((w � xi) + b)

 (w � xi)kwk2 w +
b

kwk2w
 (1.16)

The formulation (1.16) has a simple geometric interpretation: �bw=kwk2 isEuclidean

Margin the vector in direction w that ends right on the decision hyperplane (since�
w � (�bw=kwk2)� = �b), and for a vector xi, (w � xi)w=kwk2 is the projec-

tion of xi onto w. Therefore, we are interested in maximizing the length of the

vector di�erences (w �xi)w=kwk2� (�bw=kwk2) appropriatedly signed by yig(xi).
The maxi-min problem (1.15) can be easily transformed into an equivalentoptimization

problems constrained optimization task by conjecturing a lower bound on the margin, �,
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and maximizing � subject to the constraint that it really is a lower bound:

w�; b�; ��

= argmax
w;b;�

� subject to
yi((w � xi) + b)

kwk � � for 1 � i � m (1.17)

= argmax
w;b;�

� subject to kwk = 1 and yi((w � xi) + b) � � for 1 � i � m (1.18)

= argmin
w;b

kwk2 subject to yi((w � xi) + b) � 1 for 1 � i � m (1.19)

This last formulation is in the form of a quadratic programming problem, which canquadratic

program be easily handled using standard optimizers [Luenberger, 1973, Bertsekas, 1995].

Notice that (1.18) is in a particularly intuitive form. This formulation states that

we are seeking a weight vector w that obtains large dot products yi(w � xi), but
constrain the weight vector to lie on the unit sphere to prevent obtaining such large

dot products \for free" by scaling up w. Interesting variants of problem (1.18) are

obtained by choosing di�erent norms to constrain the length of the weight vector.

For example, constraining w to lie on the unit `1 sphere instead of the unit `2
sphere gives the problem of determining

w�; b�; ��

= argmax
w;b;�

� subject to kwk1 = 1 and yi((w � xi) + b) � � for 1 � i � m (1.20)

which can easily be shown to be in the form of a linear programming problem.`1 margin

Mangasarian [1997] shows that this is equivalent to �nding the weight vector

and threshold that maximize the minimum `1 distance between the training

patterns and the decision hyperplane, in a direct analogue to the original Euclidean

formulation (1.15).

Similarly, the constraint that w lie on the unit `1 sphere yields the problem

w�; b�; ��

= argmax
w;b;�

� subject to kwk1 = 1 and yi((w � xi) + b) � � for 1 � i � m (1.21)

which is also a linear programming problem, but now equivalent to �nding the`1 margin

weight vector and threshold that maximize the minimum `1 distance between the

training patterns and the decision hyperplane. In general, constraining w to lie on

the unit `p sphere yields a convex programming problem

w�; b�; ��

= argmax
w;b;�

� subject to kwkp = 1 and yi((w � xi) + b) � � for 1 � i � m (1.22)

which is equivalent to �nding the weight vector and threshold that maximize the`q margin

minimum `q distance between the training patterns and the decision hyperplane,

where `p and `q are conjugate norms, i.e., such that
1
p +

1
q = 1 [Mangasarian, 1997].

In solving any of these constrained optimization problems, there is a notion of

critical constraints, i.e., those inequality constraints that are satis�ed as equalities
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by the optimal solution. In our setting, constraints correspond to training examples

(xi; yi), 1 � i � m, and the critical constraints are given by those training

examples that lie right on the margin a distance � from the optimal hyperplane

(cf. Figure 1.2). These critical training patterns are called Support Vectors.Support Vectors

Notice that all the remaining examples of the training set are irrelevant: for non-

critical examples the corresponding constraint yi((w �xi)+b) � 1 in (1.19) does not

play a role in the optimization, and therefore these points could be removed from

the training set without a�ecting the results. This nicely captures our intuition

of the problem: the hyperplane (cf. Figure 1.2) is completely determined by the

patterns closest to it, the solution should not depend on the other examples.

In practice, a separating hyperplane may not exist, e.g., if a high noise level

causes a large overlap of the classes. The previous maximum margin algorithmssoft margin

hyperplane perform poorly in this case because the maximum achievable minimum margin

is negative, and this means the critical constraints are the mislabelled patterns

that are furthest from the decision hyperplane. That is, the solution hyperplane

is determined entirely by misclassi�ed examples! To overcome the sensitivity to

noisy training patterns, a standard approach is to allow for the possibility of

examples violating the constraint in (1.19) by introducing slack variables [Bennett

and Mangasarian, 1992, Cortes and Vapnik, 1995, Vapnik, 1995]

�i � 0; for all i = 1; : : : ;m; (1.23)
slack variables

along with relaxed constraints

yi((w � xi) + b) � 1� �i; for all i = 1; : : : ;m: (1.24)

A classi�er which generalizes well is then found by controlling both the size of w

and the number of training errors, minimizing the objective function

�(w; �) =
1

2
kwk2 + C

mX
i=1

�i (1.25)

subject to the constraints (1.23) and (1.24), for some value of the constant C > 0.

In the following section, we shall see why the size of w is a good measure of the

complexity of the classi�er.

1.2 Theory

In order to provide a theoretical analysis of the learning problem we have to

introduce a few de�nitions and assumptions about the process generating the data.

1.2.1 Basic Assumptions

We assume that the training data X;Y is drawn independently and identicallyindependently

identically

distributed

distributed (iid) according to some probability measure p(x; y). This means that
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all examples (xi; yi) are drawn from p(x; y) regardless of the other examples or the

index i.

This assumption is stronger than it may appear at �rst glance. For instance,

time series data fails to satisfy the condition, since the observations are typically

dependent, and their statistics might depend on the index i.

In (1.4), we de�ned the functional R(g) of a decision function g as the proba-

bility of misclassi�cation. We can generalize this de�nition to apply to prediction

functions f as well as thresholded decision functions g. This yields what we call the

risk functional.

De�nition 1.3 Risk Functional

Denote by c(x; y; f(x)) : R N � R � R ! [0;1) a cost function and by p(x; y) a

probability measure as described above. Then the risk functional for a function

f : R N ! R is de�ned asExpected Risk

R(f) :=

Z
RN�R

c(x; y; f(x)) dp(x; y): (1.26)

Moreover the empirical risk functional for an m{sample X;Y is given by

Remp(f) :=
1
m

mX
i=1

c(xi; yi; f(xi)): (1.27)

Empirical Risk

For thresholded decision functions g : R N ! f�1; 1g we often use 0{1 classi�cation
error as the cost function c(x; y; g(x)) = 1fg(x)6=yg. In this case we obtain the risk

functional de�ned in (1.4) (the probability of misclassi�cation),

R(g) := Prfg(x) 6= yg: (1.28)

In this case, the empirical risk functional is

Remp(g) :=
1
m

mX
i=1

1fg(xi)6=yig; (1.29)

which is just the training error.

Finally we need a quantity called the margin error, which is given by themargin error

proportion of training points that have margin less than �, i.e.,

R�(f) :=
1
m

mX
i=1

1fyif(xi)<�g: (1.30)

This empirical estimate of risk counts a point as an error if it is either incorrectly

classi�ed or correctly classi�ed by with margin less than �.

While one wants to minimize the risk R(g) this is hardly ever possible since p(x; y)

is unknown. Hence one may only resort to minimizing Remp(g) which is based on the

training data. This, however, is not an e�ective method by itself|just consider an

estimator that memorizes all the training data X;Y and generates random outputs

for any other data. This clearly would have an empirical risk Remp(g) = 0 but would

obtain a true risk R(g) = 0:5 (assuming the �nite training sample has measure 0).
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The solution is to take the complexity of the estimate g into account as well, which

will be discussed in the following sections.

1.2.2 Error Bounds for Thresholded Decision Functions

The central result of this analysis is to relate the number of training examples, the

training set error, and the complexity of the hypothesis space to the generalization

error. For thresholded decision functions, an appropriate measure for the complexity

of the hypothesis space is the Vapnik-Chervonenkis (VC) dimension.VC dimension

De�nition 1.4 VC dimension (Vapnik and Chervonenkis, 1971)

The VC dimension h of a space of f�1; 1g-valued functions, G, is the size of the

largest subset of domain points that can be labelled arbitrarily by choosing functions

only from G.

The VC dimension can be used to prove high probability bounds on the error of a

hypothesis chosen from a class of decision functions G|this is the famous result of

Vapnik and Chervonenkis [1971]. The bounds have since been improved slightly by

Talagrand [1994]|see also [Alexander, 1984].

Theorem 1.5 VC Upper Bound

LetG be a class of decision functions mapping R N to f�1; 1g that has VC dimension

h. For any probability distribution p(x; y) on R N�f�1; 1g, with probability at least
1�Æ over m random examples x, for any hypothesis g in G the risk functional with

0{1 loss is bounded by

R(g) � Remp(g) +

s
c

m

�
h+ ln

�
1

Æ

��
(1.31)

where c is a universal constant. Furthermore, if g� 2 G minimizes Remp(�), then
with probability 1� Æ

R(g�) � inf
g2G

R(g) +

s
c

m

�
h+ ln

�
1

Æ

��
(1.32)

(A short proof of this result is given by Long [1998], but with worse constants than

Talagrand's.) These upper bounds are asymptotically close to the best possible,

since there is also a lower bound with the same form:

Theorem 1.6 VC Lower Bound

Let G be a hypothesis space with �nite VC dimension h � 1. Then for any learning

algorithm there exist distributions such that with probability at least Æ over m

random examples, the error of its hypothesis g satis�es

R(g) � inf
g02G

R(g0) +

s
c

m

�
h+ ln

�
1

Æ

��
(1.33)

where c is a universal constant.
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(Results of this form have been given by Devroye and Lugosi [1995], Simon [1996],

Anthony and Bartlett [1999], using ideas from Ehrenfeucht et al. [1989].)

Theorems 1.5 and 1.6 give a fairly complete characterization of the generalization

error that can be achieved by choosing decision functions from a class G. However,

this characterization su�ers from two drawbacks.

The �rst drawback is that the VC dimension must actually be determined (or at

least bounded) for the class of interest|and this is often not easy to do. (However,

bounds on the VC dimension h have been computed for many natural decision

function classes, including parametric classes involving standard arithmetic and

boolean operations. See Anthony and Bartlett [1999] for a review of these results.)

The second (more serious) drawback is that the analysis ignores the structure of

the mapping from training samples to hypotheses, and concentrates solely on the

range of the learner's possible outputs. Ignoring the details of the learning map

can omit many of the factors that are crucial for determining the success of the

learning algorithm in real situations.

For example, consider learning algorithms that operate by �rst computing a real

valued prediction function f from some class F and then thresholding this hypoth-

esis to obtain the �nal decision function g(x) = sgn (f(x)). Here, the VC dimension

is a particularly weak method for measuring the representational capacity of the

resulting function class G = sgn (F ).

One reason is that the VC dimension of G is not sensitive to the scale of F at

the accuracy level of interest. That is, it does not pay attention to whether the

complexity of the hypothesis class is at a scale that is relevant for the outcome of

the predictions.

The �rst step towards a more re�ned analysis that takes scale into account is given

by Vapnik [1979]. Consider a set X0 � R
N of input points with norm bounded by

R > 0 (that is, kxik � R for x 2 X0), and the set F of bounded linear functions

de�ned on X0,

F = fx 7! (w � x) j kwk � 1; x 2 X0 g (1.34)

satisfying jf(x)j � � for all patterns x in X0. Then if we consider the set G of linear

decision functions obtained by thresholding functions in F , Vapnik [1979] shows

VCdim(G) � minfR2=�2; Ng+ 1: (1.35)

Note that this can be much smaller than the VC dimension of sgn (F ) obtained

without taking � into account, which is N + 1 in this case. Therefore, one could

hope to obtain signi�cant bene�ts by using scale sensitive bounds which give much

tighter results for large margin classi�ers. Unfortunately, the bound (1.35) does not

yet suÆce for our purposes, because note that it requires that all points (including

the test points) satisfy the margin condition, and therefore Theorem 1.5 does not

apply in this case. Rigorously obtaining these scale sensitive improvements is the

topic we now address. In the following section, we consider scale-sensitive versions
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of the VC dimension, and obtain upper and lower bounds on risk in terms of these

dimensions.

1.2.3 Margin Dependent Error Bounds for Real Valued Predictors

De�nition 1.7 Fat Shattering Dimension

Let F be a set of real valued functions. We say that a set of points S � X , which
we will index as a vector x 2 X jSj, is �-shattered by F if there is a vector of real

numbers b 2 R jSj such that for any choice of signs y 2 f�1; 1gjSj there is a function
f in F that satis�es

yi(f(xi)� bi) � � for 1 � i � jSj: (1.36)

(That is, f(xi) � bi + � if yi = 1, and f(xi) � bi � � if yi = �1, for all xi in S.
Notice how similar this is to the notion of a minimum margin de�ned by (1.12).)

The fat shattering dimension fatF (�) of the set F is a function from the positive real

numbers to the integers which maps a value � to the size of the largest �-shatteredfat shattering

set, if this is �nite, or in�nity otherwise.

We may think of the fat-shattering dimension of a set of real-valued functions as

the VC dimension obtained by thresholding but requiring that outputs are � above

the threshold for positive classi�cation and � below for negative.

The fat-shattering dimension is closely related to a more basic quantity, the

covering number of a class of functions.

De�nition 1.8 Covering Numbers of a Set

Denote by (S; d) a pseudometric space, Br(x) the closed ball in S centred at x with

radius r, T a subset of S, and " some positive constant. Then the covering number

N ("; T ) is de�ned as the minimum cardinality (that is, number of elements) of acovering

number set of points T 0 � S such that

T �
[

xi2T 0
B"(xi); (1.37)

i.e., such that the maximum di�erence of any element in T and the closest element

in T 0 is less than or equal to ".

Covering a class of functions F with an "-cover means that one is able to ap-

proximately represent F (which may be of in�nite cardinality) by a �nite set. For

learning, it turns out that it suÆces to approximate the restrictions of functions in a

class F to �nite samples. For a subsetX of some domain X , de�ne the pseudometric
`1;X by

`1;X(f; f
0) = max

x2X
jf(x)� f 0(x)j (1.38)

where f and f 0 are real-valued functions de�ned on X . Let N ("; F;m) denote the

maximum, over all X � X of size jXj = m, of the covering number N ("; F ) with

respect to `1;X . The following theorem shows that the fat-shattering dimension
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is intimately related to these covering numbers. (The upper bound is due to Alon

et al. [1997], and the lower bound to Bartlett et al. [1997].)

Theorem 1.9 Bounds on N in terms of fatF
Let F be a set of real functions from a domain X to the bounded interval [0; B].

Let " > 0 and let m � fatF ("=4). Then

log2 e

8
fatF (16") � log2N ("; F;m) � 3 fatF (

"
4 ) log

2
2

�
4eBm

"

�
: (1.39)

Unfortunately, directly bounding N can be quite diÆcult in general. Useful tools

from functional analysis (which deal with the functional inverse of N wrt. �, the so

called entropy number) for obtaining these bounds have been developed for classes

of functions F de�ned by linear mappings from Hilbert spaces [Carl and Stephani,

1990], and linear functions over kernel expansions [Williamson et al., 1998].

The following result shows that we can use covering numbers to obtain upper

bounds on risk in terms of margin error [Shawe-Taylor et al., 1998, Bartlett, 1998].

Theorem 1.10 Bounds on R(f) in terms of N and �

Suppose that F is a set of real-valued functions de�ned on X , " 2 (0; 1) and

� > 0. Fix a probability distribution on X �f�1; 1g and a sample size m. Then the
probability that some f in F has R�(f) = 0 but R(f) � " is no more than
2 N ��2 ; F; 2m� 2�"m=2: (1.40)

Furthermore,

Pr (\some f in F has R(f) � R�(f) + "") � 2 N ��2 ; F; 2m� e�"2m=8: (1.41)

In fact, it is possible to obtain a similar result that depends only on the behaviour

of functions in F near the threshold (see [Anthony and Bartlett, 1999] for details).

Let us have a close look at the bound (1.41) on the probability of excessive

error. The factor e�"
2m=8 in (1.41) stems from a bound of Hoe�ding [1963] on theanatomy of a

uniform conver-

gence bound

probability of a large deviation of a sum of random variables from its mean. The

factor N ��2 ; F; 2m� stems from the fact that the continuous class of functions F

was approximated (to accuracy �=2) by a �nite number of functions. The 2m is

due to the use of a symmetrization argument which is needed to make the overall

argument work. Theorem 1.9 shows that this term is bounded by an exponential

function of the fat-shattering dimension at scale �=8.

Interestingly, a similar result holds in regression. (For a review of these uniform

convergence results, see [Anthony and Bartlett, 1999]).

Theorem 1.11 Bounds on R(f) for Regression

Suppose that F is a set of functions de�ned on a domain X and mapping into

the real interval [0; 1]. Let p be any probability distribution on X � [0; 1], " any

real number between 0 and 1, and m 2 N . Then for the quadratic cost function
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c(x; y; f(x)) = (y � f(x))2 we have

Pr

 
sup
f2F
jR(f)�Remp(f)j � "

!
� 4 N � "

16 ; F; 2m
�
e�"

2m=32: (1.42)

Comparing with (1.41), notice that the scale of the covering number depends on

the desired accuracy ", whereas in (1.41) it depends on the scale � at which the

margins are examined.

1.2.4 Error Bounds for Linear Decision Functions

The following result, due to Bartlett and Shawe-Taylor [1999], gives a bound on the

fat-shattering dimension of large margin linear classi�ers. It has a similar form to

the bound (1.35) on the VC dimension of linear functions restricted to certain sets.

It improves on a straightforward corollary of that result, and on a result of Gurvits

[1997].

Theorem 1.12 Fat Shattering Dimension for Linear Classi�ers

Suppose that BR is the `2 ball of radius R in R n , centered at the origin, and consider

the set

F := ffw j fw(x) = (w � x) with kwk � 1;x 2 BR g : (1.43)

Then

fatF (�) �
�
R
�

�2
: (1.44)

Using this result together with Theorems 1.9 and 1.10 gives the following theorem.

Theorem 1.13 Error Bounds for Linear Classi�ers

De�ne the class F of real-valued functions on the ball of radius R as in (1.43). There

is a constant c such that, for all probability distributions, with probability at least

1 � Æ over m independently generated training examples, every � > 0 and every

function f 2 F with margin at least � on all training examples (i.e., R�(f) = 0)

satis�es

R(f) � c

m

�
R2

�2
log2

�
m

�

�
+ log

�
1

Æ

��
: (1.45)

Furthermore, with probability at least 1 � Æ, for all � > 0, every function f in F

has error

R(f) � R�(f) +

s
c

m

�
R2

�2
log2

�
m

�

�
+ log

�
1

Æ

��
: (1.46)

For estimators using a linear programming approach as in [Mangasarian, 1968]

one may state the following result which is an improvement, by a log factor, of

Theorem 17 in [Bartlett, 1998]. Applying Theorem 1.9, this can be transformed

into a generalization bound as well.
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Theorem 1.14 Capacity Bounds for Linear Classi�ers

There is a constant c such that for the class

FR =
�
x 7! wTx j kxk1 � 1; kwk1 � R

	
(1.47)

we have

fatFR(") � c

�
R

"

�2
ln(2N + 2): (1.48)

Finally, we can obtain bounds for convex combinations of arbitrary hypotheses from

a class G of f�1; 1g-valued functions,

co (G) =

(X
i

�igi

����� �i > 0;
X
i

�i = 1; gi 2 G
)
: (1.49)

See [Schapire et al., 1998]. These bounds are useful in analysing boosting algorithms;

see Section 1.4.

Theorem 1.15 Bounds for Convex Combinations of Hypotheses

Let p(x; y) be a distribution over X �f�1; 1g, and let X be a sample of m examples

chosen iid according to p. Suppose the base-hypothesis space G has VC dimension

h, and let Æ > 0. Then with probability at least 1� Æ over the random choice of the

training set X, Y , every convex combination of functions f 2 co (G) satis�es the

following bound for all � > 0.

R(f) � R�(f) +

s
c

m

�
h log2(m=h)

�2
+ log

�
1

Æ

��
(1.50)

1.3 Support Vector Machines

We now turn to one of the types of learning algorithms that the present book

deals with. For further details, cf. [Vapnik, 1995, 1998, Burges, 1998, Smola and

Sch�olkopf, 1998, Cristianini and Shawe-Taylor, 2000, Sch�olkopf and Smola, 2000]

or the collection [Sch�olkopf et al., 1999a], which also formed the basis for some of

the material presented below.

1.3.1 Optimization Problem

To construct the Optimal Hyperplane (cf. Figure 1.2), one solves the following

optimization problem:

minimize �(w) =
1

2
kwk2 (1.51)

subject to yi((w � xi) + b) � 1; for all i = 1; : : : ;m: (1.52)

This constrained optimization problem is dealt with by introducing Lagrange

multipliers �i � 0 and a LagrangianLagrangian
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L(w; b;�) =
1

2
kwk2 �

mX
i=1

�i (yi((xi �w) + b)� 1) : (1.53)

The Lagrangian L has to be minimized with respect to the primal variables w and

b and maximized with respect to the dual variables �i (i.e., a saddle point has to be

found). Let us try to get some intuition for this. If a constraint (1.52) is violated,

then yi((w � xi) + b) � 1 < 0, in which case L can be increased by increasing

the corresponding �i. At the same time, w and b will have to change such that

L decreases. To prevent ��i (yi((w � xi) + b)� 1) from becoming arbitrarily large,

the change in w and b will ensure that, provided the problem is separable, the

constraint will eventually be satis�ed.

Similarly, one can understand that for all constraints which are not precisely met

as equalities, i.e., for which yi((w � xi) + b) � 1 > 0, the corresponding �i mustKKT

conditions be 0: this is the value of �i that maximizes L. The latter is the statement of the

Karush-Kuhn-Tucker complementarity conditions of optimization theory [Karush,

1939, Kuhn and Tucker, 1951, Bertsekas, 1995].

The condition that at the saddle point, the derivatives of L with respect to the

primal variables must vanish,

@

@b
L(w; b;�) = 0 and

@

@w
L(w; b;�) = 0; (1.54)

leads to
mX
i=1

�iyi = 0 (1.55)

and

w =
mX
i=1

�iyixi: (1.56)

The solution vector thus has an expansion in terms of a subset of the training

patterns, namely those patterns whose Lagrange multiplier �i is non-zero. By thesupport vector

expansion Karush-Kuhn-Tucker complementarity conditions these training patterns are the

ones for which

�i(yi((xi �w) + b)� 1) = 0; i = 1; : : : ;m; (1.57)

and therefore they correspond precisely to the Support Vectors (i.e., critical con-

straints) discussed in Section 1.1.4. Thus we have the satisfying result that the

Support Vectors are the only training patterns that determine the optimal deci-

sion hyperplane; all other training patterns are irrelevant and do not appear in the

expansion (1.56).

By substituting (1.55) and (1.56) into L, one eliminates the primal variables anddual

optimization

problem

arrives at the Wolfe dual of the optimization problem [e.g. Bertsekas, 1995]: �nd
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multipliers �i which

maximize W (�) =
mX
i=1

�i � 1

2

mX
i;j=1

�i�jyiyj (xi � xj) (1.58)

subject to �i � 0 for all i = 1; : : : ;m; and
mX
i=1

�iyi = 0: (1.59)

The hyperplane decision function can thus be written as

g(x) = sgn

 
mX
i=1

yi�i (x � xi) + b

!
(1.60)

where b is computed using (1.57).

The structure of the optimization problem closely resembles those that typically

arise in Lagrange's formulation of mechanics [e.g. Goldstein, 1986]. In that case also,

it is often only a subset of the constraints that are active. For instance, if we keep

a ball in a box, then it will typically roll into one of the corners. The constraints

corresponding to the walls which are not touched by the ball are irrelevant, the

walls could just as well be removed.

Seen in this light, it is not too surprising that it is possible to give a mechanical

interpretation of optimal margin hyperplanes [Burges and Sch�olkopf, 1997]: If we

assume that each support vector xi exerts a perpendicular force of size �i and sign

yi on a solid plane sheet lying along the hyperplane, then the solution satis�es the

requirements of mechanical stability. The constraint (1.55) states that the forces

on the sheet sum to zero; and (1.56) implies that the torques also sum to zero, viaP
i xi � yi�iw=kwk = w �w=kwk = 0.

1.3.2 Feature Spaces and Kernels

To construct Support Vector Machines, the optimal hyperplane algorithm is aug-

mented by a method for computing dot products in feature spaces that are nonlin-

early related to input space [Aizerman et al., 1964, Boser et al., 1992]. The basic

idea is to map the data into some other dot product space (called the feature space)

F via a nonlinear mapfeature space

� : R N ! F ; (1.61)

and then in the space F perform the linear algorithm described above.

For instance, suppose we are given patterns x 2 R
N where most informa-

tion is contained in the d-th order products (monomials) of entries xj of x, i.e.,

xj1xj2 � � �xjd , where j1; : : : ; jd 2 f1; : : : ; Ng. There, we might prefer to extract the
monomial features �rst, and work in the feature space F of all products of d entries.

This approach, however, fails for realistically sized problems: for N -dimensional

input patterns, there exist (N + d� 1)!=(d!(N � 1)!) di�erent monomials. Already

16 � 16 pixel input images (e.g., in character recognition) and a monomial degree

d = 5 yield a dimensionality of 1010.
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This problem can be overcome by noticing that both the construction of the

optimal hyperplane in F (cf. (1.58)) and the evaluation of the corresponding

decision function (1.60) only require the evaluation of dot products (�(x) � �(x0)),
and never require the mapped patterns �(x) in explicit form. This is crucial, since

in some cases, the dot products can be evaluated by a simple kernel [Aizerman

et al., 1964, Boser et al., 1992].Mercer kernel

k(x;x0) = (�(x) � �(x0)): (1.62)
polynomial

kernel For instance, the polynomial kernel

k(x;x0) = (x � x0)d (1.63)

can be shown to correspond to a map � into the space spanned by all products of

exactly d dimensions of R N (Poggio [1975], Boser et al. [1992]). For a proof, see

Sch�olkopf [1997]. For d = 2 and x;x0 2 R 2 , for example, we have [Vapnik, 1995]
(x � x0)2 = (x21; x

2
2;
p
2 x1x2)(y

2
1 ; y

2
2 ;
p
2 y1y2)

> = (�(x) � �(x0)); (1.64)

de�ning �(x) = (x21; x
2
2;
p
2 x1x2).

By using k(x;x0) = ((x �x0)+c)d with c > 0, we can take into account all product

of order up to d (i.e., including those of order smaller than d).

More generally, the following theorem of functional analysis shows that kernels

k of positive integral operators give rise to maps � such that (1.62) holds [Mercer,

1909, Aizerman et al., 1964, Boser et al., 1992, Dunford and Schwartz, 1963]:

Theorem 1.16 Mercer

If k is a continuous symmetric kernel of a positive integral operator T , i.e.,positive

integral

operator (Tf)(x0) =
Z
X
k(x;x0)f(x) dx (1.65)

withZ
X�X

k(x;x0)f(x)f(x0) dx dx0 � 0 (1.66)

for all f 2 L2(X ) (X being a compact subset of R N ), it can be expanded in a

uniformly convergent series (on X � X ) in terms of T 's eigenfunctions  j and

positive eigenvalues �j ,

k(x;x0) =
NFX
j=1

�j j(x) j(x
0); (1.67)

where NF � 1 is the number of positive eigenvalues.

An equivalent way to characterize Mercer kernels is that they give rise to positive

matrices Kij := k(xi;xj) for all fx1; : : : ;xmg [Saitoh, 1988].
As an aside, note that it is not necessary for the input patterns to come from

a vector space. Arbitrary sets of objects can be used, as long as they lead to

positive matrices [Sch�olkopf, 1997]. Indeed, it was shown that one can de�ne kernels
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which measure the similarity of highly structured objects with respect to underlying

generative models (Jaakkola and Haussler [1999b], cf. Chapters 3 and 4).

From (1.67), it is straightforward to construct a map � into a potentially in�nite-

dimensional l2 space which satis�es (1.62). For instance, we may use

�(x) = (
p
�1 1(x);

p
�2 2(x); : : :): (1.68)

Rather than thinking of the feature space as an l2 space, we can alternatively

represent it as the Hilbert space Hk containing all linear combinations of the

functions f(:) = k(xi; :) (xi 2 X ). To ensure that the map � : X ! Hk, which in

this case is de�ned as

�(x) = k(x; :); (1.69)

satis�es (1.62), we need to endow Hk with a suitable dot product h:; :i. In view of

the de�nition of �, this dot product needs to satisfy

hk(x; :); k(x0; :)i = k(x;x0); (1.70)

which amounts to saying that k is a reproducing kernel for Hk. For a Mercer kernelreproducing

kernel (1.67), such a dot product does exist. Since k is symmetric, the  i (i = 1; : : : ; NF )
can be chosen to be orthogonal with respect to the dot product in L2(X ), i.e.,
( j ;  n)L2(X ) = Æjn, using the Kronecker Æjn. From this, we can construct h:; :i
such that

hp�j j ;
p
�n ni = Æjn: (1.71)

Substituting (1.67) into (1.70) then proves the desired equality (for further details,

see Aronszajn [1950], Wahba [1973], Sch�olkopf [1997], Girosi [1998]).

Besides (1.63), SV practictioners use sigmoid kernelssigmoid

kernel
k(x;x0) = tanh(�(x � x0) + �) (1.72)

for suitable values of gain � and threshold �, and radial basis function kernels, as

for instance [Aizerman et al., 1964, Boser et al., 1992, Sch�olkopf et al., 1997]Gaussian RBF

kernel
k(x;x0) = exp

��kx� x0k2=(2 �2)� ; (1.73)

with � > 0. Note that when using Gaussian kernels, for instance, the feature space

Hk thus contains all superpositions of Gaussians on X (plus limit points), whereas

by de�nition of � (1.69), only single bumps k(x; :) do have pre-images under �.

The main lesson from the study of kernel functions, is that the use of kernels can

turn any algorithm that only depends on dot products into a nonlinear algorithm

which is linear in feature space. In the time since this was explicitly pointed out

[Sch�olkopf et al., 1998b] a number of such algorithms have been proposed; until

then, the applications of the kernel trick were a proof of the convergence of rbf

network training by Aizerman et al. [1964] and the nonlinear variant of the SV

algorithm by Boser et al. [1992] (see Figure 1.3).
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Figure 1.3 The idea of SV machines: map the training data nonlinearly into a

higher-dimensional feature space via �, and construct a separating hyperplane with

maximum margin there. This yields a nonlinear decision boundary in input space.

By the use of a kernel function (1.62), it is possible to compute the separating

hyperplane without explicitly carrying out the map into the feature space.

To construct SV machines, one computes an optimal hyperplane in feature space.

To this end, we substitute �(xi) for each training example xi. The weight vector (cf.

(1.56)) then becomes an expansion in feature space. Note that w will typically no

more correspond to the image of just a single vector from input space (cf. Sch�olkopf

et al. [1999b] for a formula to compute the pre-image if it exists), in other words,

w may not be directly accessible any more. However, since all patterns only occurdecision

function in dot products, one can substitute Mercer kernels k for the dot products [Boser

et al., 1992, Guyon et al., 1993], leading to decision functions of the more general

form (cf. (1.60))

g(x) = sgn

 
mX
i=1

yi�i (�(x) � �(xi)) + b

!
= sgn

 
mX
i=1

yi�i k(x;xi) + b

!
(1.74)

and the following quadratic program (cf. (1.58)):

maximize W (�) =
mX
i=1

�i � 1

2

mX
i;j=1

�i�jyiyjk(xi;xj) (1.75)

subject to �i � 0; i = 1; : : : ;m; and
mX
i=1

�iyi = 0: (1.76)

Recall that, as discussed in Section 1.1.4 a separating hyperplane may not always

exist, even in the expanded feature space F . To cope with this diÆculty, slacksoft margin

and kernels variables were introduced to yield the soft margin optimal hyperplane problem

(1.25). Incorporating kernels, and rewriting (1.25) in terms of Lagrange multipliers,

this again leads to the problem of maximizing (1.75), but now subject to the

constraints

0 � �i � C; i = 1; : : : ;m; and
mX
i=1

�iyi = 0: (1.77)



1.3 Support Vector Machines 21

The only di�erence from the separable case (1.76) is the upper bound C (to be

chosen by the user) on the Lagrange multipliers �i. This way, the inuence of the

individual patterns (which could always be outliers) gets limited. As above, the

solution takes the form (1.74). The threshold b can be computed by exploiting the

fact that for all SVs xi with �i < C, the slack variable �i is zero (this again follows

from the Karush-Kuhn-Tucker complementarity conditions), and hence

mX
j=1

yj�j k(xi;xj) + b = yi: (1.78)

The soft margin algorithm can be modi�ed such that it does not require the

regularization constant C. Instead, one speci�es an upper bound 0 < � � 1 on the

fraction of points allowed to lie in the margin (asymptotically, the number of SVs)

[Sch�olkopf et al., 1998c]. This leaves us with a homogeneous target function made

up by the quadratic part of (1.75), and the constraints

0 � �i � 1; i = 1; : : : ;m;
mX
i=1

�iyi = 0; and
1

m

mX
i=1

�i � �: (1.79)

Finally, we note that several generalizations of the SVM algorithm to di�erent

learning tasks exist, such as regression estimation [Vapnik, 1995], density estimation

[Vapnik, 1998, Weston et al., 1999], as well as the estimation of a density's support

and novelty detection [Sch�olkopf et al., 1999].

1.3.3 Smoothness and Regularization

For kernel-based function expansions, one can show [Smola and Sch�olkopf, 1998b]

that given a regularization operator P mapping the functions of the learning

machine into some dot product space, minimization of the regularized risk

Rreg(f) := Remp(f) +
�

2
kPfk2 (1.80)

regularized risk
(with a regularization parameter � � 0) can be written as a constrained optimiza-

tion problem. For particular choices of the loss function, it further reduces to a

SV type quadratic programming problem. The latter thus is not speci�c to SV

machines, but is common to a much wider class of approaches. What gets lost in

the general case, however, is the fact that the solution can usually be expressed in

terms of a small number of SVs (cf. also Girosi [1998], who establishes a connection

between SV machines and basis pursuit denoising [Chen et al., 1999]). This speci�c

feature of SV machines is due to the fact that the type of regularization and the

class of functions that the estimate is chosen from are intimately related [Girosi

et al., 1993, Smola and Sch�olkopf, 1998a, Smola et al., 1998b]: the SV algorithm is

equivalent to minimizing the regularized risk Rreg(f) on the set of functions

f(x) =
X
i

�ik(xi;x) + b; (1.81)
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Σ

. . .

output    σ (Σ υi k (x,xi))

weightsυ1 υ2  υm

. . .

. . .

test vector x

support vectors x1 ... xn

mapped vectors Φ(xi), Φ(x)Φ(x) Φ(xn)

dot product (Φ(x).Φ(xi)) =  k (x,xi)( . ) ( . ) ( . )

Φ(x1) Φ(x2)

        σ ( )

Figure 1.4 Architecture of SV machines. The input x and the Support Vectors

xi are nonlinearly mapped (by �) into a feature space F , where dot products are
computed. By the use of the kernel k, these two layers are in practice computed in

one single step. The results are linearly combined by weights �i, found by solving

a quadratic program (in pattern recognition, �i = yi�i; in regression estimation,

�i = ��i � �i). The linear combination is fed into the function � (in pattern

recognition, �(x) = sgn (x+ b); in regression estimation, �(x) = x+ b).

provided that k and P are interrelated by

k(xi;xj) = ((Pk)(xi; :) � (Pk)(xj ; :)) : (1.82)

To this end, k is chosen as a Green's function of P �P , for in that case, the right

hand side of (1.82) equals

(k(xi; :) � (P �Pk)(xj ; :)) = (k(xi; :) � Æxj (:)) = k(xi;xj): (1.83)

For instance, an RBF kernel corresponds to regularization with a functional con-

taining a speci�c di�erential operator.

In SV machines, the kernel thus plays a dual role: �rstly, it determines the

class of functions (1.81) that the solution is taken from; secondly, via (1.82), the

kernel determines the type of regularization that is used. Using bounds on covering

numbers of Hilbert spaces [Carl and Stephani, 1990], one can show [Williamson

et al., 1998, 1999, Sch�olkopf et al., 1999] that the spectrum of the matrix (k(xi; xj))ij
is closely connected to the generalization performance and also to the spectrum of

the kernel k. This indicates what type of regularization (i.e., kernel) should be used.
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For arbitrary expansions of f into basis functions, say fi, the considerations about

smoothness of the estimate still hold, provided kPfk is a norm in the space spanned

by the basis functions fi (otherwise one could �nd functions f 2 span ffig withregularization

networks kPfk = 0, however f 6= 0). In this case the existing bounds for kernel expansions

can be readily applied to regularization networks as well (cf., e.g., [Williamson et al.,

1998, Smola, 1998] for details). However, one can show [Kimeldorf and Wahba,

1971, Cox and O'Sullivan, 1990], that such an expansion may not fully minimize

the regularized risk functional (1.80). This is one of the reasons why often only

kernel expansions are considered.

Finally it is worth while pointing out the connection between Gaussian Processes

and Support Vector machines. The similarity is most obvious in regression, where

the Support Vector solution is the maximum a posteriori estimate of the corre-

sponding Bayesian inference scheme [Williams, 1998]. In particular, the kernel k ofGaussian

processes Support Vector machines plays the role of a covariance function such that the prior

probability of a function f =
P

i �ik(xi;x) is given by

P (f) / exp
��1

2kPfk2
�
= exp

�
�1

2

X
i;j

�i�jk(xi;xj)

�
: (1.84)

Bayesian methods, however, require averaging over the posterior distribution

P (f jX;Y ) in order to obtain the �nal estimate and to derive error bounds. In

classi�cation the situation is more complicated, since we have Bernoulli distributed

random variables for the labels of the classi�er. See [Williams, 1998] for more details

on this subject.

1.3.4 A Bound on the Leave-One-Out Estimate

Besides the bounds directly involving large margins, which are useful for stating

uniform convergence results, one may also try to estimate R(f) by using leave-

one-out estimates. Denote by fi the estimate obtained from Xnfxig; Y nfyig. Then

Rout(f) :=
1

m

mX
i=1

c(xi; yi; fi(xi)) (1.85)

One can show (cf., e.g., [Vapnik, 1979]) that the latter is an unbiased estimator

of R(f). Unfortunately, Rout(f) is hard to compute and thus rarely used. In the

case of Support Vector classi�cation, however, an upper bound on Rout(f) is not

too diÆcult to obtain. Vapnik [1995] showed that the fraction of Support Vectors

is an upper bound on Rout(f). Jaakkola and Haussler [1999b] have generalized this

result as follows

Rout(f) � 1

m

mX
i=1

1fyiPj 6=i �jyjk(xj ;xi)+yib>0g

=
1

m

mX
i=1

1fyi(f(xi)��ik(xi;xi))>0g: (1.86)
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The latter can be obtained easily without explicitly solving the optimization

problem again for the reduced samples. In particular, for kernels with k(x;x) = 1

like many RBF kernels the condition reduces to testing whether yif(xi)� �i > 0.

The remaining problem is that Rout(f) itself is a random variable and thus it does

not immediately give a bound on R(f). See also Chapters 15 and 17 for futher

details on how to exploit these bounds in practical cases.

1.4 Boosting

Freund and Schapire [1997] proposed the AdaBoost algorithm for combining classi-

�ers produced by other learning algorithms. AdaBoost has been very successful in

practical applications (see Section 1.5). It turns out that it is also a large margin

technique.

Table 1.2 gives the pseudocode for the algorithm. It returns a convex combination

of classi�ers from a class G, by using a learning algorithm L that takes as input a

training sample X, Y and a distribution D on X (not to be confused with the true

distribution p), and returns a classi�er from G. The algorithm L aims to minimize

training error on X, Y , weighted according to D. That is, it aims to minimize

mX
i=1

Di1fh(xi)6=yig: (1.87)

AdaBoost iteratively combines the classi�ers returned by L. The idea behind Ad-

aBoost is to start with a uniform weighting over the training sample, and pro-

gressively adjust the weights to emphasize the examples that have been frequently

misclassi�ed by the classi�ers returned by L. These classi�ers are combined with

convex coeÆcients that depend on their respective weighted errors. The following

theorem shows that Adaboost produces a large margin classi�er, provided L is suc-

cessful at �nding classi�ers with small weighted training error. See [Schapire et al.,

1998]. Recall (1.30) that the margin error of a function f with respect to � on a

sample X;Y is R�(f) =
1
m

Pm
i=1 1fyif(xi)<�g.

Theorem 1.17 Margin Error of AdaBoost

If, at iteration t, L returns a function with weighted training error "t < 1=2, then

AdaBoost returns a function f that satis�es

R�(f) � 2T
TY
t=1

q
"1��t (1� "t)1+�: (1.88)

In particular, if "t � 1=2� 2�, then

R�(f) < (1� �2)T=2; (1.89)

and this is less than " for T � (2=�2) ln(1=").
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Algorithm 1.2 : Adaboost

argument: Training sample, X = fx1; : : : ;xmg � X, Y = fy1; : : : ; ymg � f�1g
Number of iterations, T
Learning algorithm L that chooses a classifier from G to

minimize the weighted training error.

returns: Convex combination of functions from G, f =
PT

t=1 �tgt.
function AdaBoost(X;Y; T)

for all i from i = 1; : : : ;m
D1(i) := 1=m

endfor
for all t from f1; : : : ; Tg

gt := L(X;Y;Dt)

"t :=

mX
i=1

Dt(i)1gt(xi) 6=yi

�t :=
1

2
ln

�
1� "t
"t

�

Zt := 2
p
"t(1� "t)

for all i from i = 1; : : : ;m

Dt+1(i) :=

(
Dt(i)e

��t=Zt if yi = gt(xi)

Dt(i)e
�t=Zt otherwise,

endfor
endfor

return f =

PT
t=1 �tgtPT
i=1 �t

.

end

1.5 Empirical Results, Implementations, and Further Developments

Large margin classi�ers are not only promising from the theoretical point of view.

They also have proven to be competitive or superior to other learning algorithms

in practical applications. In the following we will give references to such situations.

1.5.1 Boosting

Experimental results show that boosting is able to improve the performance of

classi�ers signi�cantly. Extensive studies on the UC Irvine dataset, carried out

by Freund and Schapire [1996] and Quinlan [1996a] with tree classi�ers show the

performance of such methods. However, also other learning algorithms can bene�t

from boosting. Schwenk and Bengio [1998] achieve record performance on an OCR

task on the UC Irvine database, using neural networks as the base classi�ers. See

R�atsch [1998] and Chapter 12 for further results on the performance of improved

versions of boosted classi�ers.
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1.5.2 Support Vector Machines

SV Machines perform particularly well in feature rich highdimensional problems.

Sch�olkopf et al. [1995], Sch�olkopf et al. [1997, 1998a] achieve state of the art, or even

record performance in several Optical Character Recognition (OCR) tasks such as

the digit databases of the United Postal Service (USPS) and the National Institute

of Standards and Technology (NIST). The latter can be obtained at

http://www.research.att.com/�yann/ocr/mnist/
Similar results have been obtained for face recognition by Oren et al. [1997], Osuna

et al. [1997b] and object recognition [Blanz et al., 1996, Sch�olkopf, 1997]. Finally,

also on large noisy problems SV Machines are very competitive as shown in [Smola,

1998, Vannerem et al., 1999].

1.5.3 Implementation and Available Code

Whilst Boosting can be easily implemented by combining a base learner and

following the pseudocode of Table 1.2. Hence one only has to provide a base learning

algorithm satisfying the properties of a weak learner, which defers all problems to

the underlying algorithm.

http://www.research.att.com/�yoav/adaboost/
provides a Java applet demonstrating the basic properties of AdaBoost.

The central problem in Support Vector Machines is a quadratic programming

problem. Unfortunately, o�-the-shelf packages developed in the context of mathe-

matical programming like MINOS [Murtagh and Saunders, 1998], LOQO [Vander-

bei, 1994], OSL [IBM Corporation, 1992], or CPLEX [CPL, 1994] are often pro-

hibitively expensive or unsuitable for optimization problems in more than several

thousand variables (whilst the number of variables may be in the tens of thousands

in practical applications). Furthermore these programs are often optimized to deal

with sparse matrix entries, causing unneeded overhead when solving generic SV

optimization problems (which are sparse in the solution, not in the matrix entries).

This situation led to the development of several quadratic optimization algo-

rithms speci�cally designed to suit the needs of SV machines. Starting from simple

subset selection algorithms as initially described by Vapnik [1979] and subsequently

implemented in, e.g., [Sch�olkopf et al., 1995], more advanced chunking methods were

proposed [Osuna et al., 1997a] (see also [Joachims, 1999] for a detailed description of

the algorithm) for splitting up the optimization problem into smaller subproblems

that could be easily solved by standard optimization code. Other methods exploit

constrained gradient descent techniques [Kaufmann, 1999], or minimize very small

subproblems, such as the Sequential Minimal Optimization algorithm (SMO) by

Platt [1999]. See also Chapter 6 for further methods for training a SV classi�er.

Implementations include SvmLight by Joachims [1999],
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http://www-ai.cs.uni-dortmund.de/thorsten/svm light.html,

the Royal Holloway / AT&T / GMD Support Vector Machine by Saunders et al.

[1998], available at

http://svm.dcs.rhbnc.ac.uk/,

and the implementation by Steve Gunn which can be downloaded from

http://www.isis.ecs.soton.ac.uk/resources/svminfo/.

The �rst two of these optimizers use the GMD (Smola) implementation of an interior

point code along the lines of Vanderbei [1994] as the core optimization engine. It is

available as a standalone package at

http://www.kernel-machines.org/software.html.

This site will also contain pointers to further toolboxes as they become available.

Java applets for demonstration purposes can be found at

http://http://svm.dcs.rhbnc.ac.uk/pagesnew/GPat.shtml

http://http://svm.research.bell-labs.com/SVT/SVMsvt.html.
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1.6 Notation

We conclude the introduction with a list of symbols which are used throughout the

book, unless stated otherwise.

N the set of natural numbers

R the set of reals

X a sample of input patterns

Y a sample of output labels

X an abstract domain

ln logarithm to base e

log2 logarithm to base 2

(x � x0) inner product between vectors x and x0

k:k 2-norm (Euclidean distance), kxk :=p(x � x)
k:kp p-norm , kxkp :=

�PN
i=1 jxijp

�1=p
k:k1 1-norm , kxk1 := maxNi=1 jxij
`p `p metric

L2(X) space of functions on X square integrable wrt. Lebesgue measure

E(�) expectation of random variable �

Pr(�) probability of an event

N dimensionality of input space

m number of training examples

xi input patterns

yi target values, or (in pattern recognition) classes

w weight vector

b constant o�set (or threshold)

h VC dimension

f a real valued function f : R N ! R (unthresholded)

F a family of real valued functions f

g a decision function g : R N ! f�1; 1g
F a family of decision functions g

�f (x; y) margin of function f on the example (x; y), i.e., y f(x)

�f minimum margin, i.e., min1�i�m �f (xi; yi)
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c(x; y; f(x)) cost function

R(g) risk of g, i.e., expected fraction of errors

Remp(g) empirical risk of g, i.e., fraction of training errors

R(f) risk of f

Remp(f) empirical risk of f

k Mercer kernel

F Feature space induced by a kernel

� map into feature space (induced by k)

�i Lagrange multiplier

� vector of all Lagrange multipliers

�i slack variables

� vector of all slack variables

C regularization constant for SV Machines

� regularization constant (C = 1
�)





2 Roadmap

Support Vector Machines

One of the most important issues in current research on SV machines is how toChapter 3

design suitable kernels for speci�c applications. Problems involving categorical or

binary valued data so far constituted a diÆcult setting for kernel methods. In

his chapter, Watkins presents a new concept using generative models to construct

Dynamic Alignment Kernels. These are based on the observation that the sum

of products of conditional probabilities
P

c p(xjc)p(x0jc) is a valid SV kernel. This

is particularly well suited for the use of Hidden Markov Models, thereby opening

the door to a large class of applications like DNA analysis or speech recognition.

The contribution of Oliver, Sch�olkopf, and Smola, deals with a related approach.Chapter 4

It analyses Natural Regularization from Generative Models, corresponding

to a class of kernels including those recently proposed by Jaakkola and Haussler

[1999b]. The analysis hinges on information-geometric properties of the log proba-

bility density function (generative model) and known connections between support

vector machines and regularization theory, and proves that the maximal margin

term induced by the considered kernel corresponds to a penalizer computing the

L2 norm weighted by the generative model. Moreover, it is shown that the feature

map corresponding to the kernel whitens the data.

Large margin classi�ers such as SV machines may be good for correct classi�-Chapter 5

cation, however lack a practical means to give a probabilistic interpretation of a

classi�er's output, i.e., a con�dence rating. This problem is addressed by Platt by

�tting a logistic to the function values of a SVM in order to obtain Probabilities

for SV Machines. The results are comparable to classical statistical techniques

such as logistic regression while conserving the sparseness and thus numerical eÆ-

ciency of SVMs. Pseudocode is given for easy implementation.

Kowalczyk presents an in-depth overview of sequential update algorithms forChapter 6

the Maximal Margin Perceptron. In particular, he derives a new update

method which is based on the observation that the normal vector of the separating

hyperplane can be found as the di�erence between between two points lying in

the convex hull of positive and negative examples respectively. This new method

has the advantage that at each iteration only one Lagrange multiplier has to be

updated, leading to a potentially faster training algorithm. Bounds on the speed

of convergence are stated and an experimental comparison with other training

algorithms shows the good performance of this method.
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Based on ideas from SV classi�cation, Herbrich, Graepel, and Obermayer con-Chapter 7

struct an algorithm to obtain Large Margin Rank Boundaries for Ordinal

Regression. In other words, they present a SV algorithm for learning preference

relations. In addition to that, the chapter contains a detailed derivation of the cor-

responding cost functions, risk functionals, and proves uniform convergence bounds

for the setting. This could be useful for other classes of large margin learning algo-

rithms, too. Experimental evidence shows the good performance of their distribu-

tion independent approach.

Kernel Machines

Arbitrary kernel functions which need not satisfy Mercer's condition can be used byChapter 8

theGeneralized Support Vector Machines algorithm, presented by Mangasar-

ian. This goal is achieved by separating the regularizer from the actual separation

condition. For quadratic regularization this leads to a convex quadratic program

that is no more diÆcult to solve than the standard SV optimization problem. Sparse

expansions are achieved when the 1-norm of the expansion coeÆcients is chosen to

restrict the class of admissible functions. The problems are formulated in a way

which is compatible with Mathematical Programming literature.

In their chapter on Linear Discriminant and Support Vector Classi�ers,Chapter 9

Guyon and Stork give a thorough and authoritative review of linear discriminant

algorithms. SVMs in feature space are one special case of this, and Guyon and

Stork point out similarities and di�erences to other cases. Placing SVMs into this

wider context provides a most useful backdrop which should help avoiding SVM

specialist discussions losing sight of the general picture.

The connection between Regularization Networks and Support VectorChapter 10

Machines is explored by Evgeniou, Pontil, and Poggio. They review uniform con-

vergence results for such learning techniques, and present a new theoretical justi�ca-

tion of SVM and Regularization Networks based on Structural Risk Minimization.

Furthermore, they give an overview over the current state of the art regarding

connections between Reproducing Kernel Hilbert Spaces, Bayesian Priors, Feature

Spaces and sparse approximation techniques.

Boosting

In their chapter onRobust Ensemble Learning, R�atsch, Sch�olkopf, Smola, Mika,Chapter 11

Onoda, and M�uller propose two new voting methods that are more robust to

noise than AdaBoost and related algorithms. These algorithms are inspired by

the observation that voting methods such as AdaBoost can be viewed as �nding

approximate solutions to a linear program. Rather than relying on the weight of a

regularization term, the algorithms use a parameter � that is akin to an estimate of

the noise level in the data (the proportion of training errors). These algorithms have

the attractive property that they produce an estimate of the e�ective complexity

of the combined classi�er.
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Mason, Baxter, and Bartlett then present an elegant generalization of boosting al-Chapter 12

gorithms in their chapter on Functional Gradient Techniques for Combining

Hypotheses. Here they view classi�er voting procedures as, abstractly, performing

iterative descent over an inner product space, and show how existing voting methods

such as AdaBoost can be obtained as special cases of these more general procedures.

Mason et al. then show how the training convergence of existing methods follows

as a special case of a much more general convergence analysis. The main practical

contribution of this chapter is the introduction of a new (sigmoidal) margin cost

functional that can be optimized by a heuristic search procedure (DOOM II). The

resulting procedure achieves good theoretical bounds on its generalization perfor-

mance but also demonstrates systematic improvements over AdaBoost in empirical

tests|especially in domains with signi�cant classi�cation noise.

In their chapter entitled Towards a Strategy for Boosting Regressors,Chapter 13

Karakoulas and Shawe-Taylor describe a new strategy for combining regressors

(as opposed to classi�ers) in a boosting framework. They base their approach

on a soft margin generalization error bound which is expressed in terms of a

given loss measure. Karakoulas and Shawe-Taylor derive a boosting procedure that

iteratively minimizes this loss, and obtain a novel strategy for weighting the training

examples and determining their target values (suitable for regression problems).

Their resulting procedure demonstrates promising improvements in generalization

performance over earlier ad hoc approaches in empirical tests.

Leave-One-Out Methods

Vapnik and Chapelle present Bounds on the Error Expectation for SVM inChapter 14

terms of the leave-one-out estimate and the expected value of certain properties of

the SVM. In their work, which follows up on an announcement by Vapnik during

the workshop that the present volume is based on, they show that previous bounds

involving the minimum margin and the diameter D of the set of support vectors can

be improved by the replacement of D2 by SD. Here, S is a new geometric property

of the support vectors that Vapnik and Chapelle call the span. Experimental results

show that this improvement gives signi�cantly better predictions of test error than

the previous bounds, and seems likely to be useful for model selection.

In their contribution Adaptive Margin Support Vector Machines, WestonChapter 15

and Herbrich take the converse approach. Based on a leave-one-out bound of

Jaakkola and Haussler [1999b], they devise a modi�cation of the original SV

algorithm in order to minimize the bound directly. This formulation is essentially

parameter free, maintains sparsity of the solution, and can be solved by a linear

program. The novelty can be found in the fact that rather than maximizing the

overall minimummargin, the individual margin of patterns is maximized adaptively.

Experiments show that its classi�cation performance is very competitive with an

optimally adjusted SV machine and comparable to a �-SV classi�er. Uniform

convergence bounds are provided.
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Wahba, Lin and Zhang introduce Generalized Approximate Cross Valida-Chapter 16

tion (GACV) for Support Vector Machines. They view SVMs as a regulariza-

tion technique in a reproducing kernel Hilbert space. They review the generalized

comparative Kullback-Leibler distance (GCKL) and they show that the GCKL for

the SVM is an upper bound on its expected misclassi�cation rate. They derive the

GACV as an estimate of the GCKL, as a function of certain tunable parameters.

Preliminary simulations suggest that the GACV has application to model selec-

tion problems, since the minimizer of the GACV is a reasonable estimate of the

minimizer of the GCKL.

The study on Gaussian Processes and SVM: Mean Field and Leave-Chapter 17

One-Out gives an overview of the connections between Gaussian Processes and SV

machines and the implications for cost functions and corresponding probabilistic

settings. The authors, Opper and Winther, use the 'naive mean �eld' approximation

from Statistical Mechanics to provide estimates on the leave-one-out error in kernel

methods which are fast to compute and in very good agreement with the true

leave-one-out error. Experimental results corroborate this �nding.

Beyond the Margin

Ruj�an and Marchand propose an algorithm for Computing the Bayes KernelChapter 18

Classi�er. In the so-called version space view of classi�cation, the SVM solution

of a separable learning problem corresponds to the center of the largest inscribable

sphere in a polytope determined by the training examples. Statistically, however,

it would be preferable to �nd a solution corresponding to the center of mass.

Ruj�an and Marchand propose a Billiard algorithm which, under the assumption

of ergodicity, converges towards the latter.

Rather than considering the minimum margin, Shawe-Taylor and CristianiniChapter 19

focus on Margin Distribution and Soft Margin. The latter is a more robust

quantity than the minimum margin itself which can be easily decreased by a

single mislabeled example. In particular they provide provide generalization bounds,

which motivate algorithms maximizing the minimum margin plus the 2-norm of the

slack variables for those patterns violating the margin condition. This is not the

standard setting in SV machines which in general use the 1-norm of the slacks,

however, it coincides with the target function of optimization algorithms such as

the one in Chapter 6 and can be useful in this regard.

In their chapter on Support Vectors and Statistical Mechanics, Dietrich,Chapter 20

Opper, and Sompolinsky analyze SVMs using methods of statistical mechanics by

representing the SVM solution as the limit of a family of Gibbs distributions. This

way, they are able to derive rather precise learning curves. Their analysis shows

that for \favourable" input distributions, i.e., ones which allow a large margin,

the expected generalization error decays much more rapidly than predicted by

distribution-independent upper bounds of statistical learning theory.
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Section 1.2.3 explained the role of covering numbers of classes of real-valued func-Chapter 21

tions in generalization error bounds. Smola, Elissee�, Sch�olkopf, and Williamson

present bounds on the Entropy Numbers for Convex Combinations and

MLPs. These bounds improve on previous results for convex combinations of pa-

rameterized functions (such as combinations of classi�ers) and compositions of these

combinations (such as multi-layer neural networks). In the latter case especially, the

new bounds presented in Chapter 21 are substantially smaller than the previous

results. They show that even more substantial improvements are possible when the

parameterized functions involve kernels with rapidly decreasing eigenvalues. This

gives the best known bounds for the covering numbers of radial basis function

networks, for instance.
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There is much current interest in kernel methods for classi�cation, regression, PCA,

and other linear methods of data analysis. Kernel methods may be particularly

valuable for problems in which the input data is not readily described by explicit

feature vectors. One such problem is where input data consists of symbol-sequences

of di�erent lengths and the relationships between sequences are best captured by

dynamic alignment scores.

This paper shows that the scores produced by certain dynamic alignment algo-

rithms for sequences are in fact valid kernel functions. This is proved by expressing

the alignment scores explicitly as scalar products.

Dynamic alignment kernels are potentially applicable to biological sequence data,

speech data, and time series data.

3.1 Introduction: Linear Methods using Kernel Functions

In many types of machine learning, the learner is given a training set of cases or

examples x1 : : :xl 2 X , where X denotes the set of all possible cases: cases may be

vectors, pieces of text, biological sequences, sentences, and so on. For supervised

learning, the cases are accompanied by corresponding labels or values y1 : : : yl. The

cases are mapped to feature vectors v1 : : :vl 2 F , where F is a real �nite or Hilbert

space termed the feature space. The mapping from X to F is denoted by �, so that

vi = �(xi). Sometimes the cases are given as feature vectors to start with, in which

case � may be the identity mapping; otherwise � denotes the method of assigning

numeric feature values to a case.
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Once a feature vector vi has been de�ned for each case xi, it becomes possible

to apply a wide range of linear methods such as support-vector machines, linear

regression, principal components analysis (PCA), and k-means cluster analysis.

As shown in [Boser et al., 1992] for SV machines, in for example [Wahba, 1990]

for linear regression, and in [Sch�olkopf et al., 1998b] for PCA and k-means cluster

analysis, the calculations for all of these linear methods may be carried out using

a dual rather than a primal formulation of the problem.

For example, in linear least-squares regression the primal formulation is to �nd

a coeÆcient vector � that minimises kX� � yk where X is the design matrix. If

there are d features, this is an l by d matrix in which the ith row is vi, and each

vi has d elements. If l is larger than d, the usual method of �nding � is to solve

the normal equations XTX� = XTy. This requires the solution of a set of linear

equations with coeÆcients given by the d� d matrix XTX.

The dual formulation is to �nd a vector � that minimises kXXT�� yk, so that
one coeÆcient �i is found for each case vector xi. This requires the solution of a

set of linear equations with coeÆcients given by the l � l matrix XXT .

Both methods lead to the same predicted value ŷ for a new case x. If there are

more cases than features, that is if l > d, the primal method is more economical

because the d�d matrix XTX is smaller than the l� l matrix XXT . For example,

if there are 200 cases, each described by a vector of 10 measurements, then the

primal method requires solving a 10 by 10 system of linear equations, while the

dual method requires solving a 200 by 200 system, which will have rank at most

10. For such a problem, the dual method has no advantage.

The potential advantage of the dual method for regression is that it can be

applied to very large feature vectors. The coeÆcient matrix XXT contains the

scalar products of pairs of feature vectors: the ijth element of XXT is vi � vj . In
the dual calculation, it is only scalar products of feature vectors that are used|

feature vectors never appear on their own. The matrix of scalar products of the

feature vectors encodes the lengths and relative orientations of the features, and

this geometric information is enough for most linear computations.computational

advantage of

kernel method

As the feature vectors vi = �(xi) appear only in scalar products, it is often

possible to avoid computing the feature vectors, and to compute scalar products

directly in some economical fashion from the case descriptions xi instead. A kernel

is a function k that accepts two case descriptions as arguments, and computes the

scalar product of the corresponding feature vectors.

k(x;x0) = �(x) � �(x0) (3.1)

The feature-space mapping � determines k uniquely, but k determines only the

metric properties of the image under � of the case-set X in feature space. � is

not in general invertible, and indeed �(X ) need not even be a linear subspace of

F . � need not be and in general is not a linear mapping: indeed, addition and

multiplication need not even be de�ned for elements of X , if, for example, they are
strings.
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The dual formulation often has a computational advantage over the primal

formulation if the kernel function k is easy to compute, but the mapping to feature

space � is infeasible to compute. A well-known example of this is the \homogeneous

polynomial kernel" of [Vapnik, 1995] in which the cases x; z 2 X are real d

dimensional vectors:

k(x; z) = (x � z)n (3.2)

=
dX

i1=1

� � �
dX

in=1

(xi1 � � �xin) (zi1 � � � zin) (3.3)

for some positive integer n, and 1 � i1; : : : ; in � d. A mapping � that induces this

kernel is, for x = hx1; : : : ; xdi
�(x) = hxi1 � � �xin : 1 � i1 : : : in � di (3.4)

In the character recognition application described in [Vapnik, 1995], the cases were

vectors with dimension 256 and values of n up to 8 were used, so that the vectors

in (3.4) had billions of terms, and the expression (3.2) was vastly easier to compute

than the explicit scalar product (3.3).

3.2 Applying Linear Methods to Structured Objects

Not all data comes naturally as vectors: data may consist of \structured objects,"

such as sequences of di�erent lengths, trees, or sentences. To apply linear methods

to such data, it is necessary either to construct feature vectors explicitly, or to use

a kernel function. The recent success of the methods of [Joachims, 1998] in text

classi�cation has shown how valuable it can be to apply linear statistical methods

to inductive problems where such methods have not previously been used. This

section describes three approaches to mapping structured objects to vectors in

order to apply linear statistical methods.

3.2.1 Sparse Vector Kernels

Joachims [1998] considered the problem of classifying text news stories by subject.

Essentially, Joachims considered a text as a sparse vector, with one dimension for

each possible word. With an eÆcient sparse representation, the dot-product of two

sparse vectors can be computed in a time proportional to the total number of non-text classi�cation

zero elements in the two vectors. A kernel implemented as a sparse dot-product

is a natural method of applying linear methods to sequences. Examples of such

sparse-vector mappings are:

mapping a text to the set of words it contains

mapping a text to the set of pairs of words that are in the same sentence

mapping a symbol sequence to the set of all subsections of some �xed length m
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\Sparse-vector kernels" are an important extension of the range of applicability of

linear methods.

3.2.2 Case-based Features

Often, there are natural matching functions or similarity scores that may be applied

to structured objects. These are functions that can be applied to a pair of objects,

and which return a real-valued score. Although such a matching is not necessarily

representable as a scalar product, any such function can be used to create features

in the following way.

Given any function f : X � X 7! R , and an indexed set of cases, x1; : : : ;xn a

possible feature space mapping is

�(x) = hf(x1;x); : : : ; f(xn;x)i (3.5)

This is not really a true kernel method, as the feature vector is computed explicitly,

and there is no computational advantage in using a kernel. For further details on this

type of map, and the construction of the kernel corresponding to f , cf. [Sch�olkopf

et al., 1999b].

3.2.3 Diagonal-dominance Kernels

A second canonical construction for a kernel k given any f : X � X 7! R , for a

�nite or countable set X , uses a feature space with dimensions indexed by X � X ,
and for any x 2 X the ha;bith element of the vector �(x) is de�ned as

[�(x)]ha;bi =
�
f(a;b) if a = x or b = x

0 otherwise
(3.6)

so that k is de�ned as

k(a;b) = f(a;b)2 + f(b; a)2 if a 6= b (3.7)

and

k(a; a) = f(a; a)2 +
X

c2X ;c 6=a
f(a; c)2 +

X
c2X ;c6=a

f(c; a)2 (3.8)

This \diagonal-dominance" kernel does in some sense provide a computational

advantage, for it enables an arbitrary non-negative symmetric function k(x; z) =

f(x; z)2+f(z;x)2 for x 6= z to be used as a kernel, provided that the diagonal entries

k(x;x) are made suÆciently large that any �nite matrix of dot-products of distinct

elements of X will be diagonally dominant, and therefore positive semide�nite.

The size of diagonal element required may be reduced by de�ning � with respect

to a reference data set R � X

[�(x)]ha;bi =
�
f(a;b) if (a = x or b = x) and (a 2 R or b 2 R )

0 otherwise
(3.9)
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If R is taken to be a small subset of X|perhaps the training data set itself|then

the diagonal elements of the matrix of dot-products of the training data can be set

to the sums of the rows. The diagonal elements from (3.9) may be much smaller than

those from (3.6). It is curious that this construction of an explicit dot-product for

a diagonally dominant matrix only works for matrices with non-negative elements.

Unfortunately matrices with large diagonal elements are likely to provide poor

generalization in learning. Nevertheless, this construction may sometimes be of use.

3.3 Conditional Symmetric Independence Kernels

Joint probability distributions are often used as scoring functions for matching: two

objects \match" if they are in some sense similar, and the degree of similarity or

relatedness is de�ned according to a joint probability distribution that assigns pairs

of related objects higher probabilities than pairs of unrelated objects. A joint p.d.

used in this way will be described in section Section 3.4 below. It is sometimes

possible to show that such a joint p.d. is a valid kernel by showing that the p.d. is

conditionally symmetrically independent.

De�nition 3.1

A joint probability distribution is conditionally symmetrically independent (CSI)

if it is a mixture of a �nite or countable number of symmetric independent

distributions.

CSI joint probability distributions may be written as scalar products in the following

way. Let X;Z be two discrete random variables, and let p be the joint distribution

function, de�ned as

p(x; z) = Pr(X = x and Z = z) (3.10)

and let p be symmetric|that is, p(x; z) = p(z; x) for all x; z. Let C be a random

variable such that

Pr(X;Z j C) = Pr(X j C)Pr(Z j C) (3.11)

and, given C, the distributions of X and Z are identical. Then

p(x; z j c) = p(x j c)p(z j c) (3.12)

for each c in the range C of C (C is the set of values that C may take). ThenCSI kernel

de�nition
p(x; z) =

X
c

p(x j c)p(z j c)p(c)

=
X
c

�
p(x j c)

p
p(c)

��
p(z j c)

p
p(c)

�
(3.13)

where c takes all values in the range of C. This is a scalar product, with the feature-CSI feature space

mapping
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space mapping de�ned as

�(x) =
D
p(x j c)

p
p(c) : c 2 C

E
(3.14)

so that

p(x; z) = �(x) � �(z) (3.15)

We believe that this de�nition can be extended to benign cases in which p is a

probability density which is a mixture of an uncountable number of symmetric

independent densities, indexed by some real-valued parameter c. The technical

complications of such an extension are beyond the scope of this paper.

It is evident that any CSI joint p.d. must be positive semide�nite, but we are so far

unable to establish whether the converse holds, even in the �nite-dimensional case.

That is, we do not know whether all positive semide�nite �nite joint probability

distributions are CSI.

3.4 Pair Hidden Markov Models

A pair hidden Markov model (PHMM) is an HMM that generates two symbol

sequences simultaneously; the two sequences need not necessarily be of the same

length. The PHMM, therefore, de�nes a joint probability distribution over �nite

symbol sequences. Models of this type are used in bioinformatics to construct

probabilistic models of relatedness of pairs of protein or DNA sequences. Durbin

et al. [1998] provide an excellent tutorial introduction and review of HMMs,

PHMMs, and their use in biological sequence analysis.

A PHMM is de�ned as follows.

a �nite set S of states, which is the disjoint union of four subsets:

SAB | states that emit two symbols, one for A and one for B

SA | states that emit one symbol only for A

SB | states that emit one symbol only for B

S� | states that emit no symbols

Distinguished states start and end. The process starts in start, and ends in

the absorbing state end. For notational reasons, it will be convenient to de�ne that

start, end 2 SAB , but both start and end emit no symbols.

A function T ? that gives state transition probabilities: T ?(s; t) is the probability

that the next state is t given that the current state is s.

An alphabet B
For states that emit symbols, probability distributions over B:

For each state s 2 SAB , a probability distribution over B � B
For each state s 2 SAor SB a probability distribution over B
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The class S� of non-emitting states is included for notational convenience: all

states in S� can be eliminated with no change to the joint distribution of emitted

sequences.

A realization of the PHMM is a sequence of states, starting with start and

�nishing with end, together with the symbol(s), if any, emitted in each state. Each

realization, therefore, is a complete record of the construction of two particular

sequences a and b.

The probability of any one realization of a PHMM is straightforward to calculate

| see Section 3.4.1 below. But any particular pair of sequences a and b may

be generated by exponentially many di�erent realizations. Happily there are well-

known eÆcient dynamic programming algorithms for summing over all possible

realizations to calculate the joint probability of any two sequences a and b.

The point of using a PHMM is that it is easy to compute joint probabilities

of pairs of sequences. Under what circumstances can this joint probability be

represented as a scalar product and used as a kernel?

3.4.1 Computing the Joint Probability of Two Sequences

Pair hidden Markov models are of practical importance because there is an eÆcient

dynamic programming algorithm to calculate the joint probability of a pair of

sequences, as follows.

For a state s that emits just one symbol, let the probability that it emits one

symbol a to the �rst sequence only be written E(s; a; �); let E(s; �; b) be de�ned

similarly. If, for example, s 2 SA, then E(s; �; b) and E(s; a; b) are both zero; ony

E(s; a; �) may be positive. Each state will emit a symbol eith always to the �rst

string, or always to the second string, or always two symbols, one to each string.

If s emits two symbols, let the probability of emitting the pair a; b to the �rst and

second sequence respectively be E(s; a; b). Symbol emissions and state transitions

are independent: given that the current state is either the start state or an emitting

state s, let the probability that the next emitting state (or the end state) is t be

written T (s; t) (in this way we ignore non-emitting states). The joint probability of

emitting two sequences a and b may be calculated by considering the sequence of

emitting states s1; s2; : : : ; sp during a realization of the PHMM. The PHMM starts in

the state s0 = start: to obtain a proper probability distribution over all (ordered)

pairs of sequences, we must require that after a and b have been produced, the

PHMM enters state sp+1 = end.

We will derive the probability that a and b are the complete sequences emitted

by the PHMM in three steps: �rst, by considering the conditional probabilities

of adding one or two symbols to existing strings during the realization; next, by

considering the probability that strings a and b are produced at some point during

a realization (but may be extended); and �nally by considering the probability that

the PHMM stops after producing a and b.

Consider a particular time point during the realization. Given that the sequences

emitted so far are c and d, and given that the current state is s, let p(ca;d; t j c;d; s)
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denote the probability that the next state will be a singly emitting state t, that

t will emit the symbol a which is appended to c. Let p(c;db; t j c;d; s) and

p(ca;db; t j c;d; s) be de�ned similarly.

Then we have:

p(ca;d; t j c;d; s) = T (s; t)E(t; a; �)
p(c;db; t j c;d; s) = T (s; t)E(t; �; b)
p(ca;db; t j c;d; s) = T (s; t)E(t; a; b) (3.16)

Let p(ca;db; t) be the probability that at some point during a realization, the

sequences produced so far are ca and db, and the current state (after the last

symbol emission) is t. It follows that

p(ca;db; t) =
X
s

p(c;db; s)T (s; t)E(t; a; �)

+
X
s

p(ca;d; s)T (s; t)E(t; �; b)

+
X
s

p(c;d; s)T (s; t)E(t; a; b) (3.17)

Using this equation, it is possible to build up the probabilities p(c;d; s) for all

pre�xes of a, b by starting with null strings and adding the symbols one at a

time, storing all probabilities computed to use in subsequent stages. Finally, the

probability that a and b are exactly the strings produced by the PHMM is

p(a;b) =
X
s

p(a;b; s)T (s; end) (3.18)

The number of computations required to calculate p(a;b) isO(jajjbjjSj). For further
details, consult [Durbin et al., 1998].

3.5 Conditionally Symmetrically Independent PHMMs

The state diagram of a useful CSI PHMM is shown in Figure 3.5 below.

The state AB emits matching, or nearly matching symbols for both sequences; the

states A and B emit insertions, parts of one sequence that are not parts of the other.

�; Æ; and  are all small probabilities. The most frequently taken state-transitions

are drawn with thicker arrows. The PHMM starts in START, and then typically

repeatedly cycles through AB. Occasionally it will reach the state A or B, and then

generate an insertion of several symbols, before going back to AB. Eventually, the

state END will be reached, and the process will stop.

This PHMM is useful even though it only has three states that emit symbols,

which is the minimum number for a non-trivial PHMM. The joint distribution

de�ned by this PHMM gives high probabilities to sequences that match along large

parts of their lengths, where \match" means that pairs of corresponding symbols

are generated by the state AB.
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Figure 3.1 A CSI pair HMM for Matching

To state suÆcient conditions for a PHMM H to be CSI requires some de�nitions.

Let TAB be the transition probabilities restricted to SAB . That is, for s; t 2 SAB ,
let TAB(s; t) be the probability that, starting from s, the next state in SAB reached

is t.

Let A"(s; t) be the random variable denoting the possibly empty subsequence of

states in SA that the process passes through, given that the process starts in state

s 2 SAB , and given that state t is the next state in SAB reached. Let B"(s; t) be a
random variable de�ned similarly.

De�nition 3.2

A PHMM H has the independent insertion property if, for all s; t 2 SAB , A"(s; t)
and B"(s; t) are independent.

Proposition 3.3

Let H be a PHMM such that:

1. The joint distribution over sequences induced by H is unchanged if SA is

relabelled as SB and SB as SA.
2. For all states s 2 SAB , the symbol-emission joint p.d. over B � B is CSI.

3. H has the independent insertion property.
main result

Then the joint p.d. induced by H over pairs of sequences of symbols is CSI.

Proof The proof is in two stages. It is shown �rst that any PHMM that satis�es

condition 2 may be transformed into an equivalent PHMM in which all states in

SAB have symmetric independent joint emission distributions. Next, it is shown

that the probability of a realization may be factored so that sequences A and B are

independent given the subsequence of states from SAB that occurs in the realization.

The result follows.
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From condition 2, it follows for each s 2 SAB , the symbol-emission p.d. is a

mixture of symmetric independent distributions. It is possible to construct an

equivalent PHMM to H in which all states in SAB have symmetric independent

emission distributions, by replacing each state in SAB with a network of states.

S 1 S 2

S enter

S exit

1

w2w1

. . . . . .S

1

Figure 3.2 Re-writing a doubly emitting state as a mixture of atomic states

As shown in Figure 3.2, the state s can be decomposed into a non-emitting entry

state senter, a set of alternative atomic doubly emitting states s1; s2; : : : and an exit

state sexit. The number of atomic states may be �nite or countably in�nite: note

that even if there are in�nitely many atomic states, the entire PHMM is still, by

construction, equivalent to �nite PHMM in the sense that it generates an identical

joint p.d. over symbol sequences.

For each state t for which a transition to s is possible, the transition occurs

to senter with the same probability. From senter, there is a transition to one of the

atomic states s1; s2; : : :, the transition to si having probability wi. From si there

is a transition with probability 1 to sexit, and from sexit the transition probabilities

are the same as from s. The distribution of symbols emitted by the substituted

network of states consisting of senter, s1; s2; : : :, and sexit is exactly the same as the

distribution of symbols emitted by s.

The point of this substitution is that all of the doubly emitting states s1; s2; : : :

now emit pairs of independent symbols. From now on, therefore, we may assume

that all states in SAB emit pairs of independent symbols.

Let ! be a realization of the PHMM H. Let ! contain n + 1 states from SAB .
Let the sequence of states from SAB be c = hc0; : : : ; cni, with c0 = start and

cn = end.

Let a"i be the possibly empty sequence of states from SA that occur between ci�1
and ci in !, and let b"i be de�ned similarly.



3.6 Conclusion 49

Let a(ci) denote the symbol in sequence a emitted by the state ci, and let b(ci)

be de�ned similarly.

Let a" =
D
a"0; : : : ; a

"
n

E
and let b" =

D
b"0; : : : ; a

"
n

E
be the complete sequences of

insertions of states in SA and SB respectively.

We seek to show that p(a;b j c) = p(a j c) p(b j c). Now, from the independent

insertion property,

p(a"i ; b
"
i j ci�1; ci) = p(a"i j ci�1; ci) p(b"i j ci�1; ci) (3.19)

for 1 � i � n, so that

p(a"; b" j c) =
nY
i=1

p(a"i ; b
"
i j ci�1; ci)

= p(a" j c)p(b" j c) (3.20)

As each ci is an atomic state with an independent emission distribution,

p(a(ci);b(ci) j ci) = p(a(ci) j ci) p(b(ci) j ci) (3.21)

for 1 � i � n, and since states in SA do not a�ect symbols in b, and vice versa, it

follows from (3.21) that

p(a;b j a"; b"; c) = p(a j a"; c) p(b j b"; c) (3.22)

Hence

p(a;b j c) =
X
a";b"

p(a;b j a"; b"; c) p(a"; b" j c) (3.23)

=
X
a";b"

�
p(a j a"; c)p(a" j c)� �p(b j b"; c)p(b" j c)� (3.24)

= p(a j c) p(b j c) (3.25)

where (3.24) follows from (3.22), (3.20) and rearrangement of terms.

This proof shows that a natural and currently used matching function for sequences

can be explicitly represented as a scalar product. The feature space has one

dimension for each possible sequence of atomic doubly emitting states c; the number

of such c for which the mapping �(a) is non-zero is in general exponential in the

length of the symbol sequence a.

3.6 Conclusion

A natural, currently used class of match-scores for sequences have been shown to be

representable as scalar products in a high-dimensional space. It follows that these

match-scores can be used in dual formulations of linear statistical methods, and

also that the match-scores may be used to locate sequences in a Euclidean space.
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We are investigating possible applications and extensions of this approach for

bio-sequence analysis and speech recognition.
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Recently, Jaakkola and Haussler proposed the so-called Fisher kernel to con-

struct discriminative kernel techniques by using generative models. We provide

a regularization-theoretic analysis of this approach and extend the set of kernels

to a class of natural kernels, all based on generative models with density p(xj�)
like the original Fisher kernel. This allows us to incorporate distribution dependent

smoothness criteria in a general way.

As a result of this analyis we show that the Fisher kernel corresponds to a L2(p)

norm regularization. Moreover it allows us to derive explicit representations of the

eigensystem of the kernel, give an analysis of the spectrum of the integral operator,

and give experimental evidence that this may be used for model selection purposes.
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4.1 Introduction

Learning Theory using discriminative and generative models has enjoyed signi�cant

progress over the last decade. Generative techniques such as HMMs, dynamic

graphical models, or mixtures of experts have provided a principled framework for

dealing with missing and incomplete data, uncertainty or variable length sequences.

On the other hand, discriminative models like SV Machines [Boser et al., 1992]

and other kernel methods (Gaussian Processes [Williams, 1998], Regularization

Networks [Girosi et al., 1995], etc.) have become standard tools of applied machine

learning technology, leading to record benchmark results in a variety of domains.

However, until recently, these two strands have been largely separated.

A promising approach to combine the strengths of both worlds by designing

kernels inspired by generative models was made in the work of Jaakkola and

Haussler [1999b,a] (cf. Watkins' Chapter 3 for an alternative approach). They

propose the use of a so-called Fisher kernel to give a \natural" similarity measure

taking into account an underlying probability distribution.

Since de�ning a kernel function automatically implies assumptions about metric

relations between the examples, they argue that these relations should be de�ned

directly from a generative probability model p(xj�), where � are the parameters

of the model. Their choice is justi�ed from two perspectives: that of improving

the discriminative power of the model and from an attempt to �nd a 'natural'

comparison between examples induced by the generative model.

While this is quite an abstract concept, it would be desirable to obtain a deeper

understanding of the regularization properties of the resulting kernel. In other

words, it would be instructive to see which sort of functions such a kernel favours,

which degrees of smoothness are chosen, or how categorical data is treated. Many

of these properties can be seen by deriving the regularization operator (with the

associated prior) [Smola et al., 1998a] to which such a kernel corresponds to.

The chapter is structured as follows. In Section 4.2 we introduce tools from

information geometry and de�ne a class of natural kernels to which also the

two kernels proposed by Jaakkola and Haussler [1999b] belong. A regularization

theoretic analysis of natural kernels follows in Section 4.3. In particular we show

that the so-called Fisher kernel corresponds to a prior distribution over the functions

f(�) taking the form p(f) / exp
��1

2kfk2p
�
, where k � k2p is the norm of the L2(p)

space of functions square integrable wrt. the measure corresponding to p(xj�), i.e.,
the usual norm weighted by the underlying generative model. Finally, in Section 4.4

we derive the decomposition of natural kernels into their eigensystem which allows

to describe the image of input space in feature space. The shape of the latter

has consequences for the generalization behavior of the associated kernel method

(cf., e.g., [Williamson et al., 1998]). Section 4.5 concludes the chapter with some

experiments and a discussion.
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4.2 Natural Kernels

Conventional SV kernels like the ones introduced in Section 1.3.2 by Eq. (1.63),

(1.72) or (1.73) ignore knowledge of the underlying distribution of the data p(x)

which could be provided by a generative model or additional information about the

problem at hand. Instead, a general requirement of smoothness is imposed [Girosi,

1998, Smola et al., 1998b]. This may not always be desirable, e.g., in the case of

categorical data (attributes such as english, german, spanish, . . . ) and sometimes

one may want to enforce a higher degree of smoothness where data is sparse, and less

smoothness where data is abundant. Both issues will be addressed in the following.

To introduce a class of kernels derived from generative models, we need to intro-

duce basic concepts of information geometry. Consider a family of generative models

p(xj�) (i.e., probability measures) smoothly parametrized by �. These models form
a manifold (also called statistical manifold) in the space of all probability measures.

The key idea introduced by Jaakkola and Haussler [1999b] is to exploit the geo-

metric structure on this manifold to obtain an (induced) metric for the training

patterns xi. Rather than dealing with p(xj�) directly one uses the log-likelihood

instead, i.e., l(x; �) := ln p(xj�).
The derivative map of l(xj�) is usually called the score map U� : X ! R

r withscore map

U�(x) := (@�1 l(x; �); : : : ; @�r l(x; �)) = r�l(x; �) = r� ln p(xj�); (4.1)

whose coordinates are taken as a 'natural' basis of tangent vectors. Note that � is

the coordinate system for any parametrization of the probability density p(xj�).
For example, if p(xj�) is a normal distribution, one possible parametrization would
be � = (�; �), where � is the mean vector and � is the covariance matrix of the

Gaussian. The basis given by the score map represents the direction in which the

value of the ith coordinate increases while the others are �xed.

Since the manifold of ln p(xj�) is Riemannian, there is an inner product de�ned

in its tangent space Tp whose metric tensor is given by the inverse of the Fisher

information matrixFisher

information

matrix
I(p) := Ep

�
U�(x)U�(x)

>� i.e., Iij(p) = Ep [@�i ln p(xj�)@�j ln p(xj�)] : (4.2)

Here Ep denotes the expectation with respect to the density p.

This metric is called the Fisher information metric and induces a 'natural'

distance in the manifold. It can be used to measure the di�erence in the generative

process between a pair of examples xi and xj via the score map U�(x) and I
�1.

Note that the metric tensor, i.e., I�1p , depends on p and therefore on the

parametrization �. This is di�erent to the conventional Euclidean metric on R
n

where the metric tensor is simply the identity matrix. For the purposes of calcula-

tion it is often easier to compute Iij as the Hessian of the scores:Hessian of

the scores
I(p) = �Ep

�r�r>� ln p(xj�)� with Iij(p) = �Ep
�
@�i@�j ln p(xj�)

�
(4.3)
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In summary, what we need is a family of probability measures for which the log-

likelihood l(x; �) = ln p(xj�) is a di�erentiable map.
De�nition 4.1 Natural Kernel

Denote by M a positive de�nite matrix and by U�(x) the score map de�ned above.

Then the corresponding natural kernel is given by

knatM (x;x0) := U�(x)
>M�1U�(x0) = r� ln p(xj�)>M�1r� ln p(x

0j�) (4.4)

In particular, ifM = I, hence knatI , the (4.4) reduces to the Fisher kernel [Jaakkola

and Haussler, 1999b]. Moreover ifM = 1 one obtains a kernel we will call the plain

kernel which is often used for convenience if I is too diÆcult to compute.1

In the next section, we will give a regularization theoretic analysis of the class of

natural kernels, hence in particular of knatI and knat1 . This answers the question to

which type of smoothness (or rather 'simplicity') the kernels proposed in [Jaakkola

and Haussler, 1999b] correspond to.

4.3 The Natural Regularization Operator

Let us briey recall the theory of Section 1.3.3. In SV machines one minimizes

a regularized risk functional (1.80) where the complexity term can be written as
�
2 kwk2 in feature space notation, or as �

2 kPfk2 when considering the functions in

input space directly. In particular, the connection between kernels k, feature spaces

F and regularization operators P is given by (1.82) which is repeated below for the

sake of convenience.

k(xi;xj) = ((Pk)(xi; :) � (Pk)(xj ; :)) : (4.5)

It states that if k is a Greens function of P �P , minimizing kwk in feature space is

equivalent to minimizing the regularized risk functional given by kPfk2.
To analyze the properties of natural kernels knatI , we exploit this connection

between kernels and regularization operators by �nding the operator P nat
M such

that (4.5) holds. To this end, we need to specify a dot product in (4.5). Note that

this is part of the choice of the class of regularization operators that we are looking

at | in particular, it is a choice of the dot product space that P maps into. We

opt for the dot product in L2(p) space, i.e.,

hf; gi :=
Z
f(x)g(x)p(xj�)dx (4.6)

1. For the sake of correctness one would have to write knatM;p(x;�) rather than k
nat
M since k also

depends on the generative model and the parameter � chosen by some other procedure such
as density estimation. Moreover note that rather than requiring M to be positive de�nite,
semide�niteness would be suÆcient. However, then, we would have to replace M�1 by the
pseudoinverse and the subsequent reasoning would be signi�cantly more cumbersome.
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since this will lead to a simple form of the corresponding regularization operators.

Other measures would also have been possible, leading to di�erent formal represen-

tations of P .

Proposition 4.2 Regularization Operators for Natural Kernels

Given a positive de�nite matrixM , a generative model p(xj�), and a corresponding
natural kernel knatM (x;x0), P nat

M is an equivalent regularization operator if it satis�es

the following condition:

M =

Z �
P nat
M r� ln p(zj�)

� �
P nat
M r� ln p(zj�)

�>
p(zj�)dz (4.7)

Proof Substituting (4.4) into (4.5) yields

knatM (x;x0)
by def
= r� ln p(xj�)>M�1r� ln p(x

0j�) (4.8)
(4:5)
=



P nat
M knatM (x; z); P nat

M knatM (x0; z)
�

(4.9)

=

Z
r� ln p(xj�)>M�1 �P nat

M r� ln p(zj�)
���

P nat
M r� ln p(zj�)>

�
M�1r� ln p(x

0j�)p(zj�)dz (4.10)

Note that P nat
M acts on p as a function of z only | the terms in x and x0 are not

a�ected which is why we may collect them outside. Thus the necessary condition

(4.7) ensures that the rhs (4.9) equals (4.10) which completes the proof.

Let us consider the two special cases proposed by Jaakkola and Haussler [1999b].

Corollary 4.3 Fisher KernelFisher

regularization

operator

The Fisher Kernel (M = I) induced by a generative probability model with density

p corresponds to a regularizer equal to the squared L2(p)-norm of the estimated

function. Therefore the regularization term is given by

kPfk2 = kfk2L2(p): (4.11)

This can be seen by substituting in P nat
I = 1 into the rhs of (4.7) which yields the

de�nition of the Fisher information matrix.

To get an intuition about what this regularizer does, let us spell it out ex-

plicitly. The solution of SV regression using the Fisher kernel has the form

f(x) =
Pm

i=1 �ik
nat
I (x;xi); where the xi are the SVs, and � is the solution of

the SV programming problem. Applied to this function, we obtain

kf(�)k2L2(p) =
Z
jf(x)j2p(xj�)dx (4.12)

=

Z �X
i
�ir� ln p(xj�)I�1r� ln p(xij�)

�2
p(xj�)dx:

To understand this term, �rst recall that what we actually minimize is the regular-

ized risk Rreg[f ], the sum of (4.12) and the empirical risk given by the normalized

negative log likelihood. The regularization term (4.12) prevents over�tting by fa-

voring solutions with smaller r� ln p(xj�). Consequently, the regularizer will favor
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the solution which is more stable (at). Figure 4.1 illustrates this e�ect.
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Flatness of the regularization term

X
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f|2

log(X|mu)=881.9

log(X|mu)=784.3

log(X|mu)=826.1

mu=.5 (true model)
mu=−2             
mu=3              

Figure 4.1 Flatness of the natural regularizer for a Gaussian generative pdf

� N (0:5; 3), � = (0:5;3). Let us assume we are given two parameter vectors �1

and �2 which both lead to the same high likelihood. In this case, the regularizer

will pick the parameter vector with the property that perturbing it will (on average)

lead to a smaller change in the log likelihood, for in that case r� ln p(xj�) will be
smaller. Consequently, the regularizer will favor the solution which is more stable

(at).

Note, however, that the validity of this intuitive explanation is somewhat limited

since some e�ects can compensate each other as the �i come with di�erent signs.

Finally, we remark that the regularization operator of the conformal transformation

[Amari and Wu, 1999] of the Fisher kernel knatI into
p
p(xj�)pp(x0j�)knatI (x;x0) is

the identity map in L2 space.

In practice, Jaakkola and Haussler [1999b] often use M = 1. In this case,

Proposition 4.2 specializes to the following result.

Corollary 4.4 Plain Kernel

The regularization operator associated with the plain kernel knat1 is the gradient

operator rx in the case where p(xj�) belongs to the exponential family of densities,
i.e., ln p(xj�) = � � x� �(x) + c0.

Proof We substitute ln p(xj�) into the condition (4.7). This yieldsZ
[rzr� ln p(zj�)]> [rzr� ln p(zj�)] p(zj�)dz
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=

Z
[rz(z�r��(x))]

>
[rz(z�r��(x))] p(zj�)dz = 1: (4.13)

since the terms depending only on z vanish after application r�.

This means that the regularization term can be written as (note rxf(x is a vector)

kPfk2 = krxf(x)k2p =
Z
krxf(x)k2p(xj�)dx (4.14)

thus favouring smooth functions via atness in the �rst derivative. Often one is

facing the opposite problem of identifying a kernel knatM from its corresponding

regularization operator P . This can be solved by evaluating (4.7) for the appropriate

class of operators. A possible choice would be Radon-Nikodym derivatives, i.e.,

p�1(x)rx [Canu and Elissee�, 1999] or powers thereof. In this regard (4.7) is

particularly useful, since methods such as the probability integral transform which

can be used to obtain Greens functions for Radon-Nikodym operators in R by

mapping R into [0; 1] with density 1, cannot be extended to R n .

4.4 The Feature Map of Natural Kernel

Given a regularization operator P with an expansion P �P into a discrete eigen-

system (�n;  n), where � are the eigenvalues and  the eigenvectors, and given a

kernel k with

k(xi;xj) :=
X
n

dn
�n
 n(xi) n(xj) (4.15)

where dn 2 0; 1 for all m, and
P

n
dn
�n

convergent. Then k satis�es the self-

consistency property stated in equation (4.5) [Smola et al., 1998b]. For the purpose

of designing a kernel with regularization properties given by P , eq. (4.15) is a

constructive version of Mercer's Theorem (Th. 1.16).

The eigenvalues of the Gram Matrix of the training set are used to bound the

generalization error of a margin classi�er [Sch�olkopf et al., 1999]. By linear algebra

we may explicitly construct such an expansion (4.15).

Proposition 4.5 Map into Feature Space

Denote by I the Fisher information matrix, by M the kernel matrix, and by si;�i
the eigensystem of M� 1

2 IM� 1
2 . The kernel knatM (x;x0) can be decomposed into an

eigensystem

 i(x) =
1p
�i
s>i M

� 1
2r� ln p(xj�) and �i = �i: (4.16)

Note that if M = I we have �i = �i = 1.

Proof It can be seen immediately that (4.15) is satis�ed. This follows from the

fact that si is an orthonormal basis, (1 =
P

i sis
>
i ) and the de�nition of knatM . The

terms depending on �i cancel out mutually.
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The second part (orthonormality of  i) can be seen as follows.

h i;  ji (4.17)

=

Z  
1p
�i
s>i M

� 1
2r� ln p(xj�)

! 
1p
�j
r>� ln p(xj�)M� 1

2 sj

!
p(xj�)dx

=
1p
�i�j

s>i M
� 1
2 IM� 1

2 sj = Æij (4.18)

This completes the proof.
unit

eigenvalues The eigenvalues �Ii of knatI are all 1, reecting the fact that the matrix I whitens

the scores r� ln(p(xj�)). It also can be seen from PI = 1 that (4.16) becomes

 i(x) =
1p
�Ii
si � r� ln(p(xj�)), 1 � i � r.

What are the consequences of the fact that all eigenvalues are equal? Standard

VC dimension bounds [Vapnik, 1995] state that the capacity of a linear classi�er

or regression algorithm is essentially given by R2 � �2. Here, R is the radius of

the smallest sphere containing the data (in feature space), and � is the maximal

allowed length of the weight vector. Recently, it has been shown that both the

spectrum of an associated integral operator [Williamson et al., 1998] and the

spectrum of the Gram matrix k((xi;xj))ij [Sch�olkopf et al., 1999] can be used

to formulate generalization error bounds. This was done by exploiting the fact that

since C := supj k jkL1 exists, (4.16) implies that j�i(x)j =
p
�ij i(x)j �

p
�iC;

i.e., the mapped data live in some parallelepiped whose sidelengths are given

by the square roots of the eigenvalues. New bounds improved upon the generic

VC dimension bounds by taking into account this fact: due to the decay of the

eigenvalues, the mapped data are not distributed isotropically. Therefore capturing

the shape of the mapped data only by the radius of a sphere should be a rather

rough approximation. On the other hand, taking into account the rate of decay of

the eigenvalues allows one to formulate kernel-dependent bounds which are much

more accurate than the standard VC-bounds.

In our case all �i are 1, therefore j�i(x)j = j i(x)j. Hence the upper bound

simply states that the mapped data is contained in some box with equal sidelengths

(hypercube). Moreover, the L2(p) normalization of the eigenfunctions  i means thatR
 i(x)

2p(xj�) dx = 1: Therefore, the squared averaged size of the feature map's

ith coordinate is independent of i, implying that the the mapped data have the

same range in all directions. This isotropy of the Fisher kernels suggests that the

standard 'isotropic' VC bounds should be fairly precise in this case.
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4.5 Experiments

The at eigenspectrum of the Fisher kernel suggests a way of comparing di�erent

models: we compute the Gram matrix for a set of K models p(xj�j) with j = 1 : : :K.
In the case of the true model, we expect �i = 1 for all i. Therefore one might

select the model j such that its spectrum is the attest. As a sanity check for the

theory developed, Figure 4.5 illustrates the selection of the suÆcient statistics (�; �)

of a one-dimensional normal pdf p(xj�) = N (�; �) with 10 training data points

sampled from N (0:5; 3). We computed the eigendecomposition of the empirical

Gram matrices, using the Fisher kernels of a set of di�erent models. The �gure

contains the error bar plots of the ratio of its 2 largest eigenvalues (note that in

this case the parameter space is two-dimensional). The minimum corresponds to

the model to be selected.
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Figure 4.2 Model selection using the ratio of the two largest eigenvalues of the

empirical Gram Matrix. Right: selecting the standard deviation. Left: selecting the

mean

4.6 Discussion

In this chapter we provided a regularization-theoretic analysis of a class of SV

kernels | called natural kernels | based on generative models with density p(xj�),
such as the Fisher kernel. In particular, we have shown that the latter corresponds

to a regularization operator (prior) penalizing the L2(p)-norm of the estimated

function. Comparing this result to the regularization-theoretic analysis of SV kernels

[Smola et al., 1998a], where common SV kernels such as the Gaussian have been

shown to correspond to a sum over di�erential operators of di�erent orders, the

question arises whether it is possible to �nd a modi�ed natural kernel which uses
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higher order derivatives in the regularization term, such as

kPfk2 =
1X
n=0

cn krnfk2L2(p) : (4.19)

Second, we derived the feature map corresponding to natural kernels. It turned

out that the Fisher natural kernel corresponding to a r-parameter generative

model maps the input data into a r-dimensional feature space where the data are

distributed isotropically (in the sense that the covariance matrix is the identity).

This reects the fact that all parameters are considered equally important, and that

the Fisher kernel is invariant with respect to parameter rescaling; it automatically

scales feature space in a principled way. Our analysis provides some understanding

for the impressive empirical results obtained using the Fisher kernel.
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The output of a classi�er should be a calibrated posterior probability to enable

post-processing. Standard SVMs do not provide such probabilities. One method to

create probabilities is to directly train a kernel classi�er with a logit link function

and a regularized maximum likelihood score. However, training with a maximum

likelihood score will produce non-sparse kernel machines. Instead, we train an

SVM, then train the parameters of an additional sigmoid function to map the

SVM outputs into probabilities. This chapter compares classi�cation error rate

and likelihood scores for an SVM plus sigmoid versus a kernel method trained

with a regularized likelihood error function. These methods are tested on three

data-mining-style data sets. The SVM+sigmoid yields probabilities of comparable

quality to the regularized maximum likelihood kernel method, while still retaining

the sparseness of the SVM.

5.1 Introduction

Constructing a classi�er to produce a posterior probability P (classjinput) is very
useful in practical recognition situations. For example, a posterior probability allows

decisions that can use a utility model [Duda and Hart, 1973]. Posterior probabilities

are also required when a classi�er is making a small part of an overall decision, and

the classi�cation outputs must be combined for the overall decision. An example of

this combination is using a Viterbi search or HMM to combine recognition results

from phoneme recognizers into word recognition [Bourlard and Morgan, 1990]. Even

in the simple case of a multi-category classi�er, choosing the category based on

maximal posterior probability over all classes is the Bayes optimal decision for the

equal loss case.
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However, Support Vector Machines [Vapnik, 1998] (SVMs) produce an uncali-

brated value that is not a probability. Let the unthresholded output of an SVM

be

f(x) = h(x) + b; (5.1)

where

h(x) =
X
i

yi�ik(xi;x) (5.2)

lies in a Reproducing Kernel Hilbert Space (RKHS) F induced by a kernel k

[Wahba, 1999b]. Training an SVM minimizes an error function that penalizes an

approximation to the training misclassi�cation rate plus a term that penalizes the

norm of h in the RKHS:SVM

Error
C
X
i

(1� yifi)+ +
1

2
jjhjjF ; (5.3)

where fi = f(xi): Minimizing this error function will also minimize a bound on

the test misclassi�cation rate [Vapnik, 1998], which is also a desirable goal. An

additional advantage of this error function is that minimizing it will produce a

sparse machine where only a subset of possible kernels are used in the �nal machine.

One method of producing probabilistic outputs from a kernel machine was

proposed by Wahba [1992, 1999b]. Wahba used a logistic link function,

P (classjinput) = P (y = 1jx) = p(x) =
1

1 + exp(�f(x)) ; (5.4)

where f is de�ned as above, and then proposed minimizing a negative log multino-

mial likelihood plus a term that penalizes the norm in an RKHS:Maximum

Likelihood

Error � 1

m

X
i

�
yi + 1

2
log(pi) +

1� yi
2

log(1� pi)
�
+ �jjhjj2F ; (5.5)

where pi = p(xi). The output p(x) of such a machine will be a posterior probability.

Minimizing this error function will not directly produce a sparse machine, but a

modi�cation to this method can produce sparse kernel machines [Wahba, 1999a].

This chapter presents modi�cations to SVMs which yield posterior probabilities,

while still maintaining their sparseness. First, the chapter reviews recent work in

modifying SVMs to produce probabilities. Second, it describes a method for �tting

a sigmoid that maps SVM outputs to posterior probabilities. Finally, the SVM

plus sigmoid combination is compared to a regularized likelihood �t using the same

kernel on three di�erent data-mining-style data sets.

5.1.1 Recent Work

Vapnik

[Vapnik, 1998, sec. 11.11] suggests a method for mapping the output of SVMs to

probabilities by decomposing the feature space F into a direction orthogonal to

the separating hyperplane, and all of the N � 1 other dimensions of the feature
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space. The direction orthogonal to the separating hyperplane is parameterized by

t (a scaled version of f(x)), while all of the other directions are parameterized by

a vector u. In full generality, the posterior probability depends on both t and u:

P (y = 1jt;u). Vapnik proposes �tting this probability with a sum of cosine terms:

P (y = 1jt;u) = a0(u) +
NX
n=1

an(u) cos(nt): (5.6)

The coeÆcients of the cosine expansion will minimize a regularized functional [Vap-

nik, 1998, eqn. 7.93], which can be converted into a linear equation for the an that

depends on the value of u for the current input being evaluated.

Preliminary results for this method, shown in [Vapnik, 1998, Figure 11.8], are

promising. However, there are some limitations that are overcome by the method of

this chapter. For example, the Vapnik method requires a solution of a linear system

for every evaluation of the SVM. The method of this chapter does not require a

linear system solver call per evaluation because it averages the P (y = 1jf) over
all u. The price of this eÆciency is that dependencies of P (y = 1jf) on u cannot

be modeled. Another interesting feature of the Vapnik method is that the sum of

the cosine terms is not constrained to lie between 0 and 1, and is not constrained

to be monotonic in f . See, for example, [Vapnik, 1998, Figure 11.8]. There is a

very strong prior for considering the probability P (y = 1jf) to be monotonic in f ,
since the SVM is trained to separate most or all of the positive examples from the

negative examples.

Another method for �tting probabilities to the output of an SVM is to �tHastie &

Tibshirani Gaussians to the class-conditional densities p(f jy = 1) and p(f jy = �1). This
was �rst proposed by Hastie and Tibshirani [1998], where a single tied variance is

estimated for both Gaussians. The posterior probability rule P (y = 1jf) is thus
a sigmoid, whose slope is determined by the tied variance. Hastie and Tibshirani

[1998] then adjust the bias of the sigmoid so that the point P (y = 1jf) = 0:5 occurs

at f = 0. This sigmoid is monotonic, but the single parameter derived from the

variances may not accurately model the true posterior probability.

One can also use a a more exible version of the Gaussian �t to p(f jy = �1).Gaussian Fit

The mean and the variance for each Gaussian is determined from a data set. Bayes'

rule can be used to compute the posterior probability via:

P (y = 1jf) = p(f jy = 1)P (y = 1)P
i=�1;1 p(f jy = i)P (y = i)

; (5.7)

where P (y = i) are prior probabilities that can be computed from the training set.1

In this formulation, the posterior is an analytic function of f with form:

P (y = 1jf) = 1

1 + exp(af2 + bf + c)
: (5.8)

1. This model for SVM output probabilities was independently proposed and used for
speaker identi�cation in a talk by C. J. C. Burges at the 1998 NIPS SVM workshop.
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There are two issues with this model of SVM outputs. First, the posterior estimate

derived from the two-Gaussian approximation violates the strong monotonic prior

mentioned above: the function in (5.8) is non-monotonic. Second, the assumption

of Gaussian class-conditional densities is often violated (see Figure 5.1).

5.2 Fitting a Sigmoid After the SVM

5.2.1 Motivation

Instead of estimating the class-conditional densities p(f jy), we use a parametric

model to �t the posterior P (y = 1jf) directly. The parameters of the model are
adapted to give the best probability outputs.

The form of the parametric model can be inspired by looking at empirical

data. Figure 5.1 shows a plot of the class-conditional densities p(f jy = �1) for
a linear SVM trained on a version of the UCI Adult data set (see [Platt, 1999]).

The plot shows histograms of the densities (with bins 0.1 wide), derived from

threefold cross-validation. These densities are very far away from Gaussian. There

are discontinuities in the derivatives of both densities at both the positive margin

f = 1 and the negative margin f = �1. These discontinuities are not surprising,
considering that the cost function (5.3) also has discontinuities at the margins.

Theory to explain the form of these class-conditional densities is currently under

development.

The class-conditional densities between the margins are apparently exponential.

Bayes' rule (5.7) on two exponentials suggests using a parametric form of a sigmoid:

Sigmoid

P (y = 1jf) = 1

1 + exp(Af +B)
: (5.9)

This sigmoid model is equivalent to assuming that the output of the SVM is

proportional to the log odds of a positive example. This sigmoid model is di�erent

from that proposed in [Hastie and Tibshirani, 1998] because it has two parameters

trained discriminatively, rather than one parameter estimated from a tied variance.

The sigmoid �t works well, as can be seen in Figure 5.2. The data points in

Figure 5.2 are derived by using Bayes' rule on the histogram estimates of the class-

conditional densities in Figure 5.1. For a linear SVM trained on the Adult data

set [Platt, 1999], the sigmoid �ts the non-parametric estimate extremely well, even

beyond the margins. On the other sets and other kernels described in this chapter,

the sigmoid �ts reasonably well, with a small amount of bias beyond the margins.

The non-parametric model of posterior probability for handwritten digits shown

in [Vapnik, 1998, Figure 11.8] is also very close to a sigmoid. Therefore, the sigmoid

posterior model seems to be close to the true model.
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Figure 5.1 The histograms for p(f jy = �1) for a linear SVM trained on the Adult

data set. The solid line is p(f jy = �1); while the dashed line is p(f jy = 1): Notice

that these histograms are not Gaussian.

One can also view the sigmoid function as a linearization (in log-odds space) of

the posterior in (5.8). As long as A < 0, the monotonicity of (5.9) is assured. Even

if, in some cases, the class-conditional densities are close to Gaussian, the sigmoid

�t is still appropriate and valuable.

5.2.2 Fitting the Sigmoid

The parameters A and B of (5.9) are �t using maximum likelihood estimation from

a training set (fi; yi). First, let us de�ne a new training set (fi; ti); where the ti are

target probabilities de�ned as:

ti =
yi + 1

2
: (5.10)

The parameters A and B are found by minimizing the negative log likelihood of

the training data, which is a cross-entropy error function:Sigmoid

Error

Function
min�

X
i

ti log(pi) + (1� ti) log(1� pi); (5.11)

where

pi =
1

1 + exp(Afi +B)
: (5.12)
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Figure 5.2 The �t of the sigmoid to the data for a linear SVM on the Adult data

set (as in Figure 5.1). Each plus mark is the posterior probability computed for all

examples falling into a bin of width 0.1. The solid line is the best-�t sigmoid to the

posterior, using the algorithm described in this chapter.

The minimization in (5.11) is a two-parameter minimization. Hence, it can be per-

formed using any number of optimization algorithms. For robustness, the experi-

ments in this chapter were performed using a model-trust minimization algorithm

[Gill et al., 1981], whose pseudo-code is shown in Appendix 5.5.

Two issues arise in the optimization of (5.11): the choice of the sigmoid training

set (fi; yi), and the method to avoid over-�tting this set.

The easiest training set to use is simply the same training examples used to �tTraining

Set

Choice

the SVM. That is, fi = f(xi); where xi is the ith training example. However, the

training of the SVM causes the SVM outputs fi to be a biased estimate of the

distribution of f out of sample. For examples at the margin, the fi are forced to

have absolute value exactly 1, which certainly will not be a common value for test

examples. The training examples that fail the margin (1� yifi > 0) are also subtly

biased, since the fi are pushed towards the margin by the corresponding �i. Only

the fi that are beyond the margin are substantially unbiased.

For linear SVMs, the bias introduced by training usually is not severe. In almost

all cases, a maximum of N + 1 support vectors will lie on the margin (for an input

dimensionality of N), which is usually a small fraction of the training set. Also, for

many real-world problems that use linear SVMs, optimal performance is reached for

small C, which causes the bias on the margin failures to become small. Therefore,

for linear SVMs, it often possible to simply �t the sigmoid on the training set.
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For non-linear SVMs, the support vectors often form a substantial fraction of

the entire data set, especially when the Bayes error rate for the problem is high

[Vapnik, 1998]. Through empirical experiments, �tting a sigmoid to the training set

of non-linear SVMs sometimes leads to disastrously biased �ts. Therefore, we must

form an unbiased training set of the output of the SVM fi.

One method for forming an unbiased training set is to approximate leave-one-

out estimates of fi, as described in Chapter 15. However, this either requires the

solution of a linear system for every data point in the training set, or a re-run of

an SVM solver at every data point, which can be computationally expensive.

There are two computationally inexpensive methods for deriving an unbiasedHold-Out

Set training set: generating a hold-out set and cross-validation. To use a hold out set,

a fraction of the training set (typically 30%) is not used to train the SVM, but is

used to train the sigmoid. This same hold-out set can be used to estimate other

parameters of the system, such as kernel choice, kernel parameters, and C. Once

A, B, and all of the other system parameters are determined from the hold out set,

the main SVM can be re-trained on the entire training set. If SVM training scales

roughly quadratically with training set size [Platt, 1999, Joachims, 1999], then the

hold-out set will be only 1.5 times slower than simply training on the entire data

set. Because determining the system parameters is often unavoidable, determining

A and B from the hold-out set may not incur extra computation with this method.

Cross-validation is an even better method than a hold-out set for estimating theCross

Validation parameters A and B [Kearns, 1997]. In three-fold cross-validation, the training set

is split into three parts. Each of three SVMs are trained on permutations of two

out of three parts, and the fi are evaluated on the remaining third. The union of

all three sets of fi can form the training set of the sigmoid (and also can be used

to adjust the SVM system parameters). Cross-validation produces larger sigmoid

training sets than the hold-out method, and hence gives a lower variance estimate

for A and B. Three-fold cross-validation takes approximately 2.2 times as long as

training a single SVM on an entire training set. All of the results in this chapter

are presented using three-fold cross-validation.

Even with cross-validated unbiased training data, the sigmoid can still be over�t.

For example, in the Reuters data set [Dumais, 1998, Joachims, 1998], some of the

categories have very few positive examples which are linearly separable from all of

the negative examples. Fitting a sigmoid for these SVMs with maximum likelihood

will simply drive the parameter A to a very large negative number, even if the

positive examples are reweighted. There can be an in�nite number of solutions with

in�nitely steep sigmoids when the validation set is perfectly separable. Therefore,

we must regularize to prevent over�tting to a small number of examples.

Regularization requires either a prior model for the parameter space (A;B), orRegularization

a prior model for a distribution of out-of-sample data. One can imagine using a

Gaussian or Laplacian prior on A. However, there is always one free parameter

in the prior distribution (e.g., the variance). This free parameter can be set using

cross-validation or Bayesian hyperparameter inference [MacKay, 1992], but these

methods add complexity to the code.
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A simpler method is to create a model of out-of-sample data. One model is to

assume that the out-of-sample data is simply the training data perturbed with

Gaussian noise. This is the model behind Parzen windows [Duda and Hart, 1973,

Vapnik, 1998]. However, this model still has a free parameter.

The sigmoid �t in this chapter uses a di�erent out-of-sample model: out-of-sampleNon-Binary

Targets data is modelled with the same empirical density as the sigmoid training data, but

with a �nite probability of opposite label. In other words, when a positive example is

observed at a value fi, we do not use ti = 1, but assume that there is a �nite chance

of opposite label at the same fi in the out-of-sample data. Therefore, a value of

ti = 1� �+ will be used, for some �+. Similarly, a negative example will use a target

value of ti = ��. Using a non-binary target does not require any modi�cation to

the maximum likelihood optimization code. Because (5.11) is simply the Kullback-

Liebler divergence between fi and ti, the function is still well-behaved, even for

non-binary ti.

The probability of correct label can be derived using Bayes' rule. Let us choose a

uniform uninformative prior over probabilities of correct label. Now, let us observe

N+ positive examples. The MAP estimate for the target probability of positive

examples is

t+ =
N+ + 1

N+ + 2
: (5.13)

Similarly, if there are N� negative examples, then the MAP estimate for the target

probability of negative examples is

t� =
1

N� + 2
: (5.14)

These targets are used instead of f0; 1g for all of the data in the sigmoid �t.

These non-binary targets value are Bayes-motivated, unlike traditional non-

binary targets for neural networks [Rumelhart et al., 1986a]. Furthermore, the

non-binary targets will converge to f0; 1g when the training set size approaches

in�nity, which recovers the maximum likelihood sigmoid �t.

The pseudo-code in Appendix 5.5 shows the optimization using the Bayesian

targets.

5.3 Empirical Tests

There are at least two experiments to determine the real-world performance of the

SVM+sigmoid combination. First, the SVM+sigmoid can be compared to a plain

SVM for misclassi�cation rate. Assuming equal loss for Type I and Type II errors,

the optimal threshold for the SVM+sigmoid is P (y = 1jf) = 0:5, while the optimal

threshold for the SVM is f = 0. This �rst experiment checks to see if the 0 threshold

is optimal for SVMs.

The second experiment is to compare the SVM+sigmoid with a kernel machine

trained to explicitly maximize a log multinomial likelihood. For the linear kernel
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case, this is equivalent to comparing a linear SVM to regularized logistic regression.

The purpose of the second experiment is to check the quality of probability estimates

by the SVM+sigmoid hybrid combination, and see if the error function (5.3) causes

fewer misclassi�cations than (5.5). Three di�erent classi�cation tasks were used.

Task Training Testing C Number Number

Set Size Set Size of Inputs of SVMs

Reuters Linear 9603 3299 0.08 300 118

Adult Linear 32562 16282 0.05 123 1

Adult Quadratic 1605 16282 0.3 123 1

Web Linear 49749 21489 1.0 300 1

Web Quadratic 2477 21489 10.0 300 1

Table 5.1 Experimental Parameters

The �rst task is determining the category of a Reuters news article [Dumais, 1998,

Joachims, 1998]. The second task is the UCI Adult benchmark of estimating the

income of a household given census form data [Blake et al., 1998], where the input

vectors are quantized [Platt, 1999]. The third task is determining the category of

a web page given key words in the page [Platt, 1999]. The Reuters task is solved

using a linear SVM, while the Adult and Web tasks are solved with both linear

and quadratic SVMs. The parameters of the training are shown in Table 5.1. The

regularization terms are set separately for each algorithm, via performance on a

hold-out set. The C value shown in Table 5.1 is for the SVM+sigmoid. The sigmoid

parameters are estimated using three-fold cross-validation. The quadratic kernel for

the Adult task is

k(xi;xj) =

�
xi � xj + 1

14

�2
; (5.15)

while the quadratric kernel for the Web task is

k(xi;xj) =

�
xi � xj + 1

12

�2
; (5.16)

The constants 12 and 14 are taken from the average over each data set of the dot

product of an example with itself. This normalization keeps the kernel function in

a reasonable range.

Table 5.2 shows the results of these experiments. The table lists the number

of errors for a raw SVM, an SVM+sigmoid, and a regularized likelihood kernel

method. It also lists the negative log likelihood of the test set for SVM+sigmoid and

for the regularized likelihood kernel method. McNemar's test [Dietterich, 1998] was

used to �nd statistically signi�cant di�erences in classi�cation error rate, while the

Wilcoxson signed rank test [Mosteller and Rourke, 1973] is used to �nd signi�cant

di�erences in the log likelihood. Both of these tests examine the results of a pair

of algorithms on every example in the test set. In Table 5.2, underlined entries
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are pairwise statistically signi�cantly better than all non-underlined entries, while

not statistically signi�cantly better than any other underlined entry. A signi�cance

threshold of p = 0:05 is used.

Task Raw SVM SVM + Regularized SVM + Regularized

Sigmoid Likelihood Sigmoid Likelihood

Number of Number of Number of � log(p) � log(p)
Errors Errors Errors Score Score

Reuters Linear 1043 963 1060 3249 3301

Adult Linear 2441 2442 2434 5323 5288

Adult Quadratic 2626 2554 2610 5772 5827

Web Linear 260 265 248 1121 958

Web Quadratic 444 452 507 1767 2163

Table 5.2 Experimental Results

5.3.1 Discussion

Three interesting results were observed from these experiments. First, adding a

sigmoid sometimes improves the error rate of a raw SVM: a zero threshold is not

necessarily Bayes optimal. For the Reuters Linear and Adult Quadratic tasks, the

sigmoid threshold was signi�cantly better than the standard zero threshold. For

both of these tasks, the ratio of the priors P (y = �1)=P (y = 1) is far from one,

which will tend to push the Bayes optimal threshold away from zero. For example,

on the Adult Quadratic task, the threshold P (y = 1jf) = 0:5 corresponds to a

threshold of f = �0:1722, which is simply a more optimal threshold than zero. The
VC bounds on the generalization error [Vapnik, 1998] do not guarantee that the

zero threshold is Bayes optimal.

The second interesting result is that adding the sigmoid produces probabilities of

roughly comparable quality to the regularized likelihood kernel method. For three

of the �ve tasks, the regularized likelihood yields signi�cantly better probabilities.

For the Web Quadratic task, the SVM+sigmoid has a better overall log likelihood,

but the Wilcoxon rank test prefers the regularized likelihood kernel method because

more data points are more accurate with the latter method.

The third interesting result is that neither the SVM+sigmoid nor the regularized

likelihood kernel machine is a completely dominant method for either error rate or

log likelihood. The SVM+sigmoid makes fewer errors than the regularized likelihood

kernel method for three out of �ve tasks, while the regularized likelihood method

makes fewer errors for one out of �ve tasks. This result is somewhat surprising:

the SVM kernel machine is trained to minimize error rate, while the regularized

likelihood is trained to maximize log likelihood. These experiments indicate that,

when all other factors (e.g., kernel choice) are held constant, the di�erence in

performance between (5.3) and (5.5) is hard to predict a priori.
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Finally, it is interesting to note that there are other kernel methods that produce

sparse machines without relying on an RKHS. One such class of methods penalize

the `1 norm of the function h in (5.3), rather than the RKHS norm [Mangasarian,

1965, Chen et al., 1999] (see, for example, Chapter 8). Fitting a sigmoid after

�tting these sparse kernel machines may, in future work, yield reasonable estimates

of probabilities.

5.4 Conclusions

This chapter presents a method for extracting probabilities P (classjinput) from
SVM outputs, which is useful for classi�cation post-processing. The method leaves

the SVM error function (5.3) unchanged. Instead, it adds a trainable post-processing

step which is trained with regularized binomial maximum likelihood. A two param-

eter sigmoid is chosen as the post-processing, since it matches the posterior that

is empirically observed. Finally, the SVM+sigmoid combination is compared to a

raw SVM and a kernel method entirely trained with regularized maximum likeli-

hood. The SVM+sigmoid combination preserves the sparseness of the SVM while

producing probabilities that are of comparable quality to the regularized likelihood

kernel method.
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5.5 Appendix: Pseudo-code for the Sigmoid Training

This appendix shows the pseudo-code for the training is shown below. The algorithm

is a model-trust algorithm, based on the Levenberg-Marquardt algorithm [Press

et al., 1992].

Input parameters:

out = array of SVM outputs

target = array of booleans: is ith example a positive example?

prior0 = number of negative examples

prior1 = number of positive examples

len = number of training examples

Outputs:

A, B = parameters of sigmoid

A = 0

B = log((prior0+1)/(prior1+1))

hiTarget = (prior1+1)/(prior1+2)

loTarget = 1/(prior0+2)

lambda = 1e-3

olderr = 1e300

pp = temp array to store current estimate of probability of examples

set all pp array elements to (prior1+1)/(prior0+prior1+2)

count = 0

for it = 1 to 100 {

a = 0, b = 0, c = 0, d = 0, e = 0

// First, compute Hessian & gradient of error function

// with respect to A & B

for i = 1 to len {

if (target[i])

t = hiTarget

else

t = loTarget

d1 = pp[i]-t

d2 = pp[i]*(1-pp[i])

a += out[i]*out[i]*d2

b += d2

c += out[i]*d2

d += out[i]*d1

e += d1

}

// If gradient is really tiny, then stop

if (abs(d) < 1e-9 && abs(e) < 1e-9)

break
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oldA = A

oldB = B

err = 0

// Loop until goodness of fit increases

while (1) {

det = (a+lambda)*(b+lambda)-c*c

if (det == 0) { // if determinant of Hessian is zero,

// increase stabilizer

lambda *= 10

continue

}

A = oldA + ((b+lambda)*d-c*e)/det

B = oldB + ((a+lambda)*e-c*d)/det

// Now, compute the goodness of fit

err = 0;

for i = 1 to len {

p = 1/(1+exp(out[i]*A+B))

pp[i] = p

// At this step, make sure log(0) returns -200

err -= t*log(p)+(1-t)*log(1-p)

}

if (err < olderr*(1+1e-7)) {

lambda *= 0.1

break

}

// error did not decrease: increase stabilizer by factor of 10

// & try again

lambda *= 10

if (lambda >= 1e6) // something is broken. Give up

break

}

diff = err-olderr

scale = 0.5*(err+olderr+1)

if (diff > -1e-3*scale && diff < 1e-7*scale)

count++

else

count = 0

olderr = err

if (count == 3)

break

}
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A local learning rule (a modi�cation of the classical perceptron) is presented and

shown to converge to the \optimal hyperplane" separating data points with a

maximal separation margin �. We show that after at most 2D2

�2�2 ln
D
2� updates a

(�nite or in�nite) data set will be separated with a margin larger than (1� �)�, for
any 0 < � < 1, where D is the diameter of the data set. The results are extended to

the kernel case and then the soft margin case with quadratic penalty. Some initial

experimental results including a comparison with six other algorithms for iterative

generation of support vector machines are also presented.

6.1 Introduction

Training a support vector machine requires the solution of a quadratic optimization

task [Cortes and Vapnik, 1995, Vapnik, 1998]. In the case of large data sets (several

thousand data points) this requires deployment of complex, subtle and sometimes

diÆcult to implement procedures. A signi�cant e�ort has been devoted recently

to the development of simpli�ed solutions of this quadratic optimization task. One

direction here is centered on splitting the solution of the soft-margin problem into a

series of smaller size subtasks [Cortes and Vapnik, 1995, Osuna et al., 1997a, Vapnik,

1998, Kaufman, 1998, Joachims, 1999, Platt, 1999]. Those methods rely on batch

processing since the selection of a subtask (an active set) requires an examination

for the whole training set. The extreme case here is the SMO algorithm reducing

the solution of soft margin case to a series of \two point" subproblems [Platt, 1999].
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Another approach is represented by recently proposed extensions of the Adatron

algorithm to the kernel machine case (kernel adatron) [Frie� et al., 1998, Frie�,link to Adatron

1999]. These algorithms are suitable for both on-line and batch implementations,

and in this respect they are close to results in this chapter. The kernel adatron is

based on previous research in the statistical physics of learning, e.g., [Krauth and

M�ezard, 1987, Anlauf and Biehl, 1989]. A number of interesting theoretical results

on Adatron have been obtained, including estimates of convergence rates to optimal

solutions based on replica calculations [Opper, 1989, Watkin et al., 1993], although,

at this stage they are applicable to special cases of the kernel adatron only.1

The approach developed in this chapter is based on solving the original (primal)

problem rather than the dual problem via satisfying KKT conditions as used in

SMO. The underlying idea is to generate a solution by approximating the closest

points between two convex polytopes (formed by convex hulls of the data points

separated according to the class to which they belong). A similar approach was

also independently taken by Keerthi et al. [1999] (this was brought to our attention

by reviewers of the �rst draft of this chapter). Their paper is built upon earlier

work in control theory, where a number of algorithms for determining the closest

point of a convex polytope from the origin were developed, e.g., [Gilbert, 1966,

Michell et al., 1974]. However, apart from a similar general direction, the �nal

results and algorithms in this chapter and in [Keerthi et al., 1999] are di�erent.

To be precise, in our algorithms we concentrate on single point updates selected to

minimize the total number of updates in both on-line and batch modes of learning,

whereas Keerthi et al. [1999] use updates based on multiple points and consider

only batch learning (following approach of Michell et al. [1974]). Furthermore, we

provide proofs of convergence rate and computational complexity, whereas Keerthi

et al. [1999] stop short of this by showing that approximation is possible in �nite

time. As both papers investigate di�erent heuristics for selection of updates, the

bounds on resulting convergence rates di�er (for batch learning). In Section 6.6 we

compare some algorithms introduced in this chapter with those benchmarked by

Keerthi et al. [1999], by running ours on the same set of benchmarks. Interestingly,

the link to papers of Gilbert [1966] and Michell et al. [1974] shows that this chapter

provides novel results of interest in control theory. We leave more detailed discussion

to Section 6.7.

In this chapter we �rst show that the case of separable data (hard margin) can

be solved \on-line," i.e., with an evaluation of one data point at a time and making

a necessary correction. This procedure will ultimately converge to the \optimal

hyperplane" separating data with the maximal margin. As all operations required

are linear, the generalization to the kernel case is standard. In this case, in batch

learning mode, it is also advantageous to minimize the number of updates by using

a greedy search for updates giving maximal \gain." The computational overhead

1. Those restrictions include the homogeneous (no bias) case, some selected learning rates,
speci�c input vectors with �1 entries, etc.
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due to such a search is quite small, especially in the case of high dimensional input

spaces. Such an algorithm is discussed in Section 6.3.1.

In this chapter we also concentrate on proofs of convergence to the optimal

solutions and estimates of the rate of convergence. The proofs presented here have

straightforward geometrical motivations and hold for the \hard margin" case in

full generality (no restrictions on the distribution of training samples, the results

are valid for a �nite set of iterations rather than the thermodynamic limit, etc.)

In Section 6.5 the results are extended to the \soft margin" case with (quadratic

penalty).

The chapter is organized as follows. The basic algorithms are introduced in

Section 6.3 together with convergence proofs. Both on-line and batch, greedy searchchapter

organization based, algorithms are considered. Section 6.4 describes an extension of the basic

algorithms to the kernel case. This is further advanced to the soft margin case with

quadratic penalty in Section 6.5, where a convergence theorem for an algorithm with

a global greedy search is given. A kernel version of a greedy search algorithm has

been evaluated experimentally on NIST handwritten digit benchmark with some

results of experiments presented in Section 6.6.1. In Section 6.6.2 and the Appendix

we present a comparison of this algorithm with six other iterative procedures for

generation of support vector machines which have been previously benchmarked by

Keerthi et al. [1999]. The results are discussed in Section 6.7. The Appendix gives

some details of benchmark tests.

6.2 Basic Approximation Steps

We are given a training sequence (xi; yi) 2 R N�f�1; 1g, i = 1; : : : ;m. We introduce

the notation I(+1) := fi ; yi = 1g, I(�1) := fi ; yi = �1g, , X(+1) := fxi ; yi = 1g
and X(�1) := fxi ; yi = �1g for the indices and data points with positive and

negative labels, respectively.

The data is called linearly separable if there exists a linear functional (shortly a

functional)

�(x) = �w;b(x) := w � x+ b (8x 2 R N ); (6.1)

such that

yi�(xi) > 0 (i = 1; : : : ;m): (6.2)

It is well known that if the data is linearly separable, then (w; b) 2 R N �R as above

can be found by the classical perceptron algorithm in a �nite number of iterations.

We recall, that the margin of the linear functional (6.1) is given by (see also (1.12))

�(�) := min
i=1;:::;m

yi�(xi)

kwk = min
i=1;:::;m

yi(w � xi + b)

kwk : (6.3)

Note that � uniquely determines w and b. Obviously, �(�) is the largest number

d such that yi�(xi) � dkwk for i = 1; : : : ;m, and the data is separable by � i�
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�(�) > 0. A functional �� with the maximal margin

� := max
(w;b)2(RN�0)�R

�(�w;b) = �(��) (6.4)

is called optimal and the hyperplane ���1(0)�R N is called the optimal hyperplane.

Note that an optimal functional is de�ned uniquely up to a positive multiplicative

constant and the optimal hyperplane is unique [Vapnik, 1998].

We recall, the task of �nding an optimal functional is typically formulated as a

quadratic programming problem:the task

minw;b
1
2kwk2

such that yi(w � xi + b) � 1 for all i = 1; : : : ;m
(6.5)

and solved using one of the numerically intensive algorithms developed in the

constraint optimization area. The aim of this chapter is to present an alternative

solution: a simple local rule, which is a modi�cation of the classical perceptron

algorithm, and which we shall call the maximal margin perceptron (MMP).MMP

6.2.1 Minimal Distance of Convex Hulls

For vectors w(+1);w(�1) 2 R N it is convenient to introduce the notation

�w(+1);w(�1)(x) := �w;b(x) = w � x+ b for all x 2 R N ; (6.6)

where

w := w(+1) �w(�1) and b := �
w(+1)

2 � w(�1)2
2

: (6.7)

Vectors w(+1) and w(�1) as above will be called support centers of the hyperplane

�w(+1);w(�1)
�1(0). This hyperplane is orthogonal to the vectorw and passes throughsupport centers

the center w(+1)+w(�1)

2 of the segment joining w(+1) to w(�1) (cf. Figure 6.1).
Let A � R

m be the collection of all sequences ~� = (�i) such that 0 � �i � 1, for

i = 1; : : : ;m and
P

i2I(+1) �i =
P

i2I(�1) �i = 1. Let

w
(+1)
~� :=

X
i2I(+1)

�ixi; (6.8)

w
(�1)
~� :=

X
i2I(�1)

�ixi; (6.9)

w~� := w
(+1)
~� �w(�1)

~� =
mX
i=1

yi�ixi; (6.10)

�~� := �
w
(+1)
~�

;w
(�1)
~�

= �w~�;b~� ; (6.11)

where

b~� := �

w(+1)
~�

2 � w(�1)
~�

2
2

=
1

2

0
@ X
i;j2I(�1)

�i�jxi � xj �
X

i;j2I(+1)
�i�jxi � xj

1
A :
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w ∗
+( )1

w ∗

w ∗
−( )1

ρ ∗ ρ ∗

M

co X( )( )+ 1

co X( )( )− 1

π ∗ ∗ ∗= ⋅ + =( )x w x b 0

Figure 6.1 Illustration of basic de�nitions. The optimal hyperplane ��1
� (0) is

determined by a pair (w(�1)
� ;w

(+1)
� ) 2 coX(�1)�coX(+1) of vectors of closest distance

between the convex polytopes coX(�1) and coX(+1) de�ned as the convex hulls

of data points with negative and positive labels, respectively. This hyperplane is

perpendicular to the vector w� = w
(+1)
� �w

(�1)
� and passes through the middle of

the segments [w
(�1)
� ;w

(+1)
� ]. Note that the maximal margin �, as de�ned in this

book, is half of the margin M de�ned in [Keerthi et al., 1999]. (For consistency, the

margin M is also used as the horizontal axis in �gures displaying benchmark results

in Section 6.6.2 and the Appendix.)

Let coX(+1) := fw(+1)
~� ; ~� 2 Ag and coX(�1) := fw(�1)

~� ; ~� 2 Ag denote

the convex hulls of X(+1) and X(�1), respectively. The sets coX(+1) and coX(�1)

are compact, since both X(+1) and X(�1) are compact (�nite). Hence there exist
~�� 2 A (not necessarily unique) such that the pair of points

(w
(+1)
� ;w

(�1)
� ) := (w

(+1)
~��

;w
(�1)
~��

) 2 coX(+1) � coX(�1)

minimizes distance between coX(+1) and coX(�1), i.e.,

kw�k =
w(+1)

� �w(�1)
�

 = min
(x;x0)2coX(+1)�coX(�1)

kx� x0k; (6.12)

where

w� := w~�� = w
(+1)
� �w(�1)

� =
mX
i=1

��i yixi:
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Proposition 6.1basic estimate

of margin (i) If w(+1) 2 coX(+1) and w(�1) 2 coX(�1) and w = w(+1) �w(�1), then

�(�w(+1);w(�1)) � � �
w(+1) �w(�1)

=2 = kwk=2: (6.13)

(ii) � = 0:5
w(+1)

� �w(�1)
�

.
(iii) The functional �

w
(+1)
� ;w

(�1)
�

: R N ! R is optimal.

(iv) The vector w� := w
(+1)
� �w(�1)

� is unique.

Proposition 6.1(i) provides a practical criterion for checking the quality of generated

estimates of the optimal functional.

Note that, by Proposition 6.1 (ii) and (iv), every inequality in (6.13) is sharp

unless w(+1) �w(�1) = w�, in which case all inequalities become equalities.

Proof

(i) Obviously the �rst inequality in (6.13) holds by the de�nition of the maximal

margin �. We shall show the second one now.

For an optimal functional �0(x) = x �w0+ b0 let us consider the two convex regions
(half spaces)

S+ := fx ; �0(x) � kw0k�g and S� := fx ; �0(x) � �kw0k�g:

The point w(+1) belongs to S+ since

�0(w(+1)) =
X

i2I(+1)
�i�

0(xi) �
X

i2I(+1)
�ikw0k� � kw0k�

for an (�i) 2 A such that w(+1) =
P

i2I(+1) �ixi; note that
P

i2I(+1) �i = 1.

Likewise, w(�1) 2 S�. Hence

kwk =
w(+1) �w(�1)

 � min
(x;x0)2S+�S�

kx� x0k = 2�;

since 2� is the distance between hyperplanes S+ and S�.

(ii) and (iii) Having shown (6.13), it is suÆcient to prove that

�(�
w
(+1)
� ;w

(�1)
�

) �
w(+1)

� �w(�1)
�

=2 = kw�k=2:
Suppose this is not true, hence there exists i 2 f1; : : : ;mg such that

yi�w(+1)
� ;w

(�1)
�

(xi) < kw�k2=2:

We shall show that this leads to a contradiction. Without loss of generality we can

assume yi = 1. Simple algebra shows that the above inequality is equivalent to

w� � (xi �w(+1)
� ) < 0:

Now let us consider the segment (1 � �)w
(+1)
� + �xi, 0 � � � 1, contained in
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coX(+1) and the di�erentiable function �(�) :=
(1� �)w(+1)

� + �xi �w(�1)
�

2
giving the squared distance of the point of the segment from w

(�1)
� 2 coX(�1).

Hence, �(�) > kw�k2 for 0 � � � 1, since kw�k is the distance between coX(+1)

and coX(�1). However, this contradicts that d�
d� (0) = 2w� � (xi�w(+1)

� ) < 0, which

implies that �(�) < �(0) = kw�k2 for a suÆciently small � > 0.

(iv) Indeed, suppose w
(+1)
A 2 coX(+1) and w

(�1)
A 2 coX(�1), are such that wA :=

w
(+1)
A �w(�1)

A 6= w� and kwAk = kw�k. We demonstrate that a contradiction would

follow. Let ~w(+1) := 0:5(w
(+1)
� +w

(+1)
A ) 2 coX(+1), ~w(�1) := 0:5(w

(�1)
� +w

(�1)
A ) 2

coX(�1) and ~w := 0:5( ~w(+1) � ~w(�1)) = 0:5(w� +wA). The last equality implies

that k ~wk < kw�k = kwAk since k ~wk equals the height of the triangle with two

sides equal kw�k. This would contradict (6.12).

Remark 6.2

It can be shown that the following conditions are equivalent:

(i) Data is linearly separable.

(ii) coX(+1) \ coX(�1) = ?.

(iii) w
(+1)
� 6= w

(�1)
� .

(iv) � = 0:5
w(+1)

� �w(�1)
�

 > 0.

6.2.2 Approximation Steps

The basic algorithm will approximate the optimal functional �
w
(+1)
� ;w

(�1)
�

by a

sequence of functionals

�t(x) := �
w
(+1)
t ;w

(�1)
t

(x) = wt � x�

w(+1)
t

2 � w(�1)
t

2
2

; (6.14)

w
(y)
t := w

(y)
~�t

(for y = �1);
where ~�t = (�t;i) 2 A, for t = 1; 2; :::. The sequence (~�t) will be constructed

iteratively in such a way that

dw2 := kwtk2 � kwt+1k2 > 0 for all t: (6.15)

Assume that ~�1; : : : ; ~�t have been de�ned. Then ~�t+1 is de�ned using one of the

two steps described below (some geometrical justi�cation is given in Figure 6.2).

Let

G(~�t; i) := yi(�t(w
(yi)
t )� �t(xi)) = yi(w

(yi)
t � xi) �wt; (6.16)

H(~�t; i) :=
w(yi)

t � xi
; (6.17)

for ~�t 2 A, i 2 f1; : : : ;mg (The function xi 7! G(~�t; i) indicates how the ith

instance is scored by �t with respect to the score for w
(yi)
t . It is obviously de�ned

for any ~� 2 A). Note that G(~�t; i)=H(~�t; i) is the value of the projection of the
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(A) IncreaseStep: G i o( ; ) , .
�α τ≥ <0 1

wt
yi( )− wt

yi( )

xi wt
yi
+1

( )

y wi t

y wi t+1

wt
yi( )− wt

yi( )

x wi t
yi= +1

( )

y wi t

y wi t+1

(B) IncreaseStep: G i o( ; ) , .
�

α τ≥ =0 1

(C) DecreaseStep: G i o( ; ) , .
�α τ< <0 1 (D) DecreaseStep: G i o( ; ) , .

�α τ< =0 1

wt
yi( )−

wt
yi( )

~xi

wt
yi
+1

( )

y wi t

y wi t+1

xi

wt
yi( )−

wt
yi( )

~ ( )x wi t
yi= +1

y wi t

y wi t+1

xi

~xi

~xi

Figure 6.2 Geometrical illustration of the four basic cases of the update steps.

The principle is as follows. Let ~xi :=
P

i 6=j2I(yi) �jxj=(1 � �i) 2 coX(yi) denote the

point of the convex hull coX(yi) obtained by \removing" from w
(yi)
t =

P
i2I(yi) �ixi

the contribution from the ith data vector, (and then rescaling accordingly). (Note

that ~xi = w
(yi)
t if �i = 0.) The support center w(yi)

t is always shifted to the point

w
(yi)
t+1 of the segment [xi; ~xi] being the closest to the other support center, w(�yi)

t .

This will be the point of the orthogonal projection of w(�yi)
t onto the direction

~xi � xi (being the same as the direction of w(yi)
t � xi), if the projection falls within

the segment [xi; ~xi], cf. Figures (A) and (C). However, if the orthogonal projection

falls outside of this segment, then w(yi)
t+1 becomes xi or ~xi, depending which is closest

to w(�yi)
t ; cf. Figures (B) and (D).

vector yiwt onto the direction of w
(yi)
t � xi. If the projection of the point w

(�yi)
t

onto that direction falls into the segment [w
(yi)
t ;xi], then it splits this segment into

proportion G(~�t;i)
H(~�t;i)2

: (1� G(~�t;i)
H(~�t;i)2

) (cf. Figure 6.2).

IncreaseStep We chose a training instance (xi; yi) such that G(~�t; i) � 0 and

xi 6= w
(yi)
t , and then set w

(yi)
t+1 to be the point of the segment �xi + (1 � �)w(yi)

t ,

0 � � � 1, closest to w
(�yi)
t+1 := w

(�yi)
t . This is equivalent to taking the point of the
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segment for � = �o, where

�o := min

0
B@1; yi(w(yi)

t � xi) �wtxi �w(yi)
t

2
1
CA = min

�
1;

G(~�t; i)

H(~�t; i)2

�
> 0; (6.18)

or to setting

�t+1;j :=

(
�oÆij + (1� �o)�t;j if j 2 I(yi);
�t;j otherwise:

(6.19)

DecreaseStep We choose i 2 f1; : : : ;mg such that G(~�t; i) < 0, xi 6= wyi
t and

0 < �t;i < 1. Let

�t;i :=
�t;i

1� �t;i : (6.20)

We set w
(yi)
t+1 to be the point of the segment

�
w
(yi)
t � �t;ixi
1� �t;i + (1� �)w(yi)

t = w
(yi)
t (1 + ��t;i)� xi��t;i;

0 � � � 1, closest to w
(�yi)
t+1 := w

(�yi)
t . This is equivalent to taking the point for

� = �o, where

�o := min

0
B@1; yi(w(yi) � xi) �wt

�t;i

xi �w(yi)
t

2
1
CA = min

�
1;

G(~�t; i)

�t;iH(~�t; i)2

�
> 0; (6.21)

or to setting

�t+1;j :=

(
��o�t;iÆij + (1 + �o�t;i)�t;j if j 2 I(yi);
�t;j otherwise:

(6.22)

Remark 6.3

(i) Note that the IncreaseStep is increasing the Lagrange multiplier of the ith

instance, i.e., �t+1;i > �t;i. In the extreme case of �o = 1, we get �t+1;i = 1

and �t+1;j = 0 for j 2 I(yi), i 6= j, hence all support vectors xj , i 6= j 2 I(yi)

are \pruned." On the other hand, the DecreaseStep is decreasing the Lagrange

multiplier of the ith instance, i.e., �t+1;i < �t;i. In the extreme case of �o = 1 we

have �t+1;i = 0 and the support vector xi is \pruned."

(ii) The DecreaseStep is equivalent to the IncreaseStep with xi replaced by the

\virtual" point ~xi :=
w
(yi)
t ��t;ixi
1��t;i of the convex hull coX(yi) (corresponding to

(~�j) 2 A obtained from ~�t = (�t;i) by setting ith coordinate to 0, and then

rescaling to satisfy
P

i2I(yi) ~�j = 1).

At any time t, the ith training instant can satisfy a precondition of one and only

one of the above two steps.
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A straightforward calculation based on simple geometry (cf. Figure 6.2) leads to

the following expressions for the decrease (6.15) under the application of one of the

above two steps:

dw2(~�t; i) :=

8>>>>>>><
>>>>>>>:

g2=h2 if h2 � g > 0 (� IncreaseStep, �o < 1),

2g � h2 if g > h2 (� IncreaseStep, �o = 1),

g2=h2 if �h2 � �g > 0 (� DecreaseStep, �o < 1),

2�g � �2h2 if �g > �h2 (� DecreaseStep, �o = 1),

0 otherwise;

(6.23)

where h := H(~�t; i), g := G(~�t; i) and � := �t;i for i = 1; : : : ;m.

Obviously not every decrease dw2(~�t; i) will be signi�cant. It is desired to

introduce a trigger condition guaranteeing such a signi�cant decrease and such that

if it fails for all training instances, then the solution derived at the time must have

a good separation margin. A number of options exists to this end. Our preferred

conditions are introduced in the following Lemma.

Lemma 6.4

The inequalitykwtk decrease
kwt+1k2 � kwtk2 � �2 (6.24)

holds if eitherIncreaseStep

trigger
�2 = �Incr(~�t; i) := min

�
G(~�t; i)

2

H(~�t; i)2
; G(~�t; i)

�
> 0; (6.25)

and the IncreaseStep was applied orDecreaseStep

trigger
�2 = �Decr(~�t; i) := �(�t;i)min

�
G(~�t; i)

2

H(~�t; i)2
; ��t;iG(~�t; i)

�
> 0; (6.26)

and the DecreaseStep was applied, where �(�) := 1 if 0 < � < 1 and is := 0,

otherwise.

In (6.26) we assume that �Decr(~�t; i) = 0 if �i = 1.

Note that for any i only one of �Incr(~�t; i) > 0 or �Decr(~�t; i) > 0 can hold at a

time, and if it holds, then the IncreaseStep or the DecreaseStep, respectively, can

be applied.

Remark 6.5

The bound (6.24) in the case IncreaseStep (6.25) is equivalent to the basic bound

A.8 in [Keerthi et al., 1999].

Proof We show the implication (6.25))(6.24). Note that for the IncreaseStep

wt+1 = yi(w
(yi)
t + (xi �w(yi)

t )�o �w(�yi)
t )

= wt + yi(xi �w(yi)
t )�o:
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\Squaring" we get

kwt+1k2 = kwtk2 +
xi �w(yi)

t

2�2o + 2yi�owt � (xi �w(yi)
t ) (6.27)

= kwtk2 + h2�2o � 2g�o; (6.28)

where we have used substitutions h :=
xi �w(yi)

t

 = H(~�t; i) and

g := �yi(xi �w(yi)
t ) �wt = G(~�t; i).

If �o < 1, then �o = g=h2 (cf. Eqn. 6.18). The substitution for �o into (6.28) gives

kwt+1k2 = kwtk2 � g2=h2 � kwtk2 � �2;

since g2=h2 � �2 by (6.25).

If �o = 1, which according to (6.18) is possible only if g � h2, then g2=h2 � g,

�2 = g and (6.28) takes the form

kwt+1k2 = kwtk2 + h2 � 2g � kwtk2 � g = kwtk2 � �2:

It remains to prove the implication (6.26))(6.24) for the DecreaseStep. This is

quite analogous to the previous part of the proof (details are omitted). Note that

alternatively, this part of the proof can be derived from the previous one under

the formal substitution g  ��t;ig and h �t;ih, which reduces the DecreaseStep

to the IncreaseStep with the virtual point ~xi replacing xi, cf. Remark 6.3.(ii) and

Figure 6.2.

6.2.3 Bounds on Margin

In this subsection we link functions �Incr and �Decr with bounds which will be used

to quantify the minimal margin achieved on exit from algorithms given in this

chapter. Let ~� 2 A and i 2 f1; : : : ;mg. Let us �rst observe that����G(~�; i)H(~�; i)

���� =
������
w~� � (xi �w(yi)

~� )

kw~�k
xi �w(yi)

~�


������ kw~�k � kw~�k; (6.29)

yi�~�(xi) =
kw~�k2

2
�G(~�; i); (6.30)

yi�~�(w
(yi)
~� ) =

kw~�k2
2

: (6.31)

The last two relations are derived by direct algebra. It is convenient to introduce

the following de�nition

Æ(~�; i) :=
�iyi(�~�(xi)� �~�(w(yi)

~� ))

kw~�k = ��iG(~�; i)kw~�k ; (6.32)

where the last relation follows from (6.30) and (6.31). For an optimal ~� = ~�� 2 A
we have

Æ(~��; i) = 0 for all i: (6.33)
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This is a form of the known Karush-Kuhn-Tucker condition (cf. Chapter 1), but

we do not pursue this connection here. We rather concentrate on estimating how

much this relation is violated for a sub-optimal ~� 2 A. A simple bound on Æ(~�; i)

is included in the following Lemma.

Lemma 6.6

For every ~� 2 A and every j 2 f1; : : : ;mg the following relations hold
max
i
�Incr(~�; i) � 0; and max

i
�Decr(~�; i) � 0; (6.34)

�(�~�) =
kw~�k
2
� maxiG(~�; i)

kw~�k ; (6.35)

�(�~�) � kw~�k
2
� D

kw~�k
q
max
i
�Incr(~�; i); (6.36)

D

kw~�k
q
max
i
�Decr(~�; i) � Æ(~�; j) � � D

kw~�k
q
max
i
�i2�Incr(~�; i); (6.37)

where D := max1�i;j�m kxi � xjk is the diameter of the data set.
Proof

(i) For a proof of (6.34) it is suÆcient to demonstrate that there exist i; i0 2
f1; : : : ;mg such that �iG(~�; i) � 0 and ��i0G(~�; i0) � 0. Since �i � 0 for all

i, their existence follows from the following relation:

mX
i=1

�iG(~�; i) =
mX
i=1

�iyi(w
(yi)
~� � xi) �w~� = 0:

(ii) Relation (6.35) follows immediately from (6.30) and the de�nition of margin

(cf. Eqn. 6.3).

(iii) We shall show inequality (6.36). First note that

H(~�; i) =
w(yi)

~� � xi
 =


X

j2I(yi)
�j(xj � xi)

 �
X

j2I(yi)
�jkxj � xik � D (6.38)

since �j � 0,
P

j2I(yi) �j = 1 and kxi � xjk � D for every i and every j 2 I(yi).
Similarly,

kw~�k =

X

i2I(+1)
�ixi �

X
i2I(�1)

�ixi

 �


X
(i;j)2I(+1)�I(�1)

�i�j(xi � xj)


� D
X

(i;j)2I(+1)�I(�1)
�i�j = D:

We show now that

G(~�; i) � D
p
�Incr(~�; i) if G(~�; i) � 0 (6.39)



6.2 Basic Approximation Steps 87

First, if �Incr(~�; i) =
G(~�;i)2

H(~�;i)2
� G(~�; i), then

G(~�; i) � DG(~�; i)

H(~�; i)
= D

p
�Incr(~�; i)

by (6.38) and de�nition (6.25). Next, if 0 � �Incr(~�; i) = G(~�; i) � G(~�;i)2

H(~�;i)2
, then

from (6.29) it follows that

0 � G(~�; i)

kw~�k2
=
�Incr(~�; i)

kw~�k2
� G(~�; i)

2

kw~�k2H(~�; i)2
� 1:

Hence, G(~�;i)

kw~�k2 �
p
�Incr(~�;i)

kw~�k , and again

G(~�; i) � kw~�k
p
�Incr(~�; i) � D

p
�Incr(~�; i);

since kw~�k � D. This completes the proof of (6.39).
Substituting (6.39) into (6.30) we obtain the bound

yi�~�(xi) � kw~�k2
2

�D
p
�Incr(~�; i) if �Incr(~�; i) � 0.

which combined with (6.34) implies (6.36).

(iv) Now we demonstrate bounds (6.37). The lower bound follows from (6.32),

(6.39) and (6.34). The proof of the upper bound is quite similar to the previous part

of the proof and will be given now. Note that it holds for �i = 1 since �Decr(~�; i) = 0

and xi = w(yi), thus Æ(~�; i) = 0, in such a case. Hence assume 0 � �i < 1 for the

rest of the proof. If 0 < �Decr(~�; i) = G(~�; i)
2
=H(~�; i)

2 � ��iG(~�; i), then

0 � ��iG(~�; i) � �G(~�; i) � �DG(~�; i)=H(~�; i) = D
p
�Decr(~�; i);

because H � D by (6.38).

If 0 � �Decr(~�; i) = ��iG(~�; i) < G(~�; i)2=H(~�; i)2, then from(6.29):

0 � ��iG(~�; i)kw~�k2
� ��iG(~�; i)kw~�k2

=
�Decr(~�; i)

kw~�k2
� 1:

Hence,

��iG(~�; i)kw~�k2
�
p
�Decr(~�; i)

kw~�k
and again

��iG(~�; i) � kw~�k
p
�Decr(~�; i) � D

p
�Decr(~�; i):
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Putting the above bounds on ��iG(~�; i) together with the de�nition (6.32) of Æ,

we get

Æ(~�; i) � D

kw~�k
p
�Decr(~�; i);

whenever G(~�; i) < 0. This in combination with (6.34) gives the upper bound in

(6.37).

6.3 Basic Algorithms

In this section we formulate a number of algorithms for generation of support

vector machines and present proofs of convergence. We start with the basic maximal

margin perceptron algorithm which can be used for both on-line and batch learning.

Algorithm 6.1 Basic MMP

Given: A method of searching for the next index it+1 (cf. Remark 6.7).
1. Choose �o, 0 < �o < 1, ~�0 2 A. Initialize t = 0.
2. Repeat while either 2.1 or 2.2 can be satis�ed:
Set t = t+ 1 and �nd i = it+1 2 f1; : : : ;mg such that either:

2:1 �Incr(~�t; i) � kwtk2�2o and de�ne ~�t+1 by (6.19) (an IncreaseStep),
or

2:2 �Decr(~�t; i) � kwtk2�2o and de�ne ~�t+1 by (6.22) (a DecreaseStep).

Remark 6.7

Several variations of the above algorithm are possible according to the method of

selection of the next index it+1 at t+1st stage of the Algorithm. Some of them are

listed below.

(i) An \on-line" search with a single pass through the data, with only one instanceon-line MMP

considered at a time, it+1 := it + 1 � m. In such a case only the �rst option,

IncreaseStep, will be e�ective. It is also suÆcient to keep track only of the upgraded

support centers w
(yi)
t+1 := (1 � �o)w(yi)

t and w
(�yi)
t+1 := w

(�yi)
t , where �o is given by

(6.18) rather than storing Lagrange multipliers ~�t.

(ii) Linear search with multiple passes through the data,

it+1 := (it + 1) modulo m.

(iii) Greedy search through the whole data set, with

it+1 := argmax
j

max (�Incr(~�t; j); �Decr(~�t; j)) :
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(iv) Greedy search through the whole data set, with it+1 chosen to maximize (6.23)

it+1 := argmax
j
dw2(j):

(v) Greedy search through the whole data set, with

it+1 := argmax
j
G(~�t; j):

This is the heuristic used in [Gilbert, 1966]. Note that only IncreseStep is utilized

in this case and �Incr plays a role only in the stopping criterion.

Theorem 6.8convergence of

Basic MMP (i) Algorithm 6.1 halts after tupd updates (D is the diameter of the data set) with

tupd � 2��2o ln(kw0k=2�) � 2��2o ln(D=2�): (6.40)

(ii) If for ~�t there does not exist any i 2 f1; : : : ;mg such that either Steps 2.1

or 2.2 of the algorithm can be satis�ed, then �(�~�t) � � � D�o and ��iD�o �
Æ(~�t; i) � D�o, for every 1 � i � m.
We recall that � is the maximal margin of linear separation of the data. Observe that

m does not enter in any of the above bounds, hence the algorithm stops updating

~�t after a �nite number of updates as long as � > 0, even if m =1. Note that for

�o := ��=D the above theorem implies that after 2D2��1��2 ln(D=2�) updates we
achieve the separation margin � (1� �)�.
Proof

(i) From (6.24) it follows that for each update in Algorithm 6.1 kwtk2 �
kwt�1k2(1 � �2o) for t = 2; 3; :::. Hence after t updates kwtk2 � kw0k2(1 � �2o)t.
Since � � kwtk=2 (cf. Eqn. 6.13), we have 4�2 � kw0k2(1 � �2o)t and after taking

the logarithm of both sides we obtain

t ln(1� �2o) � 2 ln
2�

kw0k :

Since ln(1� �2o) � ��2o < 0, we get �nally

t �
2 ln 2�

kw0k
ln(1� �2o)

�
�2 ln 2�

kw0k
�2o

:

The �rst bound in Theorem 6.8 follows. For the second one note that kw0k � D.
(ii) If no update can be implemented, then maxi �Incr(~�t; i) < �2okwtk2 and

maxi �Decr(~�t; i) < �2okwtk2. Using these bounds in (6.36) and (6.37) together with

the bound 2� � kwtk (cf. Eqn. 6.13) completes the proof.
Now we shall consider a modi�cation of the previous algorithm. The di�erence with

respect to the previous algorithm is that thresholds triggering updates are �xed,

independent of kwtk.
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Algorithm 6.2 Basic Algorithm

Given: A method of searching for the next index it+1 (cf. Remark 6.7).
1. Choose �o, �o > 0, ~�0 2 A. Initialize t = 0.
2. Repeat while either 2.1 or 2.2 can be satis�ed:
Set t = t+ 1 and �nd i = it+1 2 f1; : : : ;mg such that either:
2:1 �Incr(~�t; i) � �2o and de�ne ~�t+1 by (6.19) (an IncreaseStep),
or
2:2 �Decr(~�t; i) � �2o and de�ne ~�t+1 by (6.22) (a DecreaseStep).

Theorem 6.9convergence of

Algorithm 6.2 (i) The Algorithm 6.2 halts after

tupd � (kw0k2 � 4�2)��2o � D2��2o (6.41)

updates, where D is the diameter of the data set.

(ii) If after t updates no i 2 f1; : : : ;mg can satisfy condition 2.1 or 2.2 of

Algorithm 6.2, then

�(�~�t) � ��D�o=(2�) (6.42)

and

��iD�o=(2�) � Æ(~�t; i) � D�o=(2�) for every 1 � i � m: (6.43)

Proof

(i) After t updates by Algorithm 6.2, kwtk2 � kw0k2 � t�2o (by Eqn. 6.24), hence

t � (kw0k2 � kwtk2)��2o � (kw0k2 � 4�2)��2o :

(ii) If no update in Algorithm 6.2 is possible, then

max
i
�Incr(~�t; i) < �2o and max

i
�Decr(~�t; i) < �2o: (6.44)

Hence from (6.36) we have

�(�~�t) �
kwtk
2
� D

kwtk�o � ��
D

2�
�o (6.45)

since � � kwtk=2 according to (6.13). Bounds on Æ(~�; i) follow from (6.37), (6.44)

and (6.13).

Remark 6.10

The bound (6.42) in Theorem 6.9 is achievable in not more than 2�
2

�2o
ln kw0k

2� updates

by Algorithm 6.1 according to Theorem 6.8, which is much smaller than the bound

� kw0k2��2
�2o

on the number updates of required by Algorithm 6.2 provided by

Theorem 6.9, if kw0k � �. This is the reason why we have followed the line of

Algorithm 6.1 in the rest of this chapter.
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6.3.1 Exit with Guaranteed Separation Margin

Exit from Algorithm 6.1 is determined by the choice of �o (if multiple passes through

a �nite data set are allowed). If �o is suÆciently small then this yields a functional

with an appreciable margin � � � D�o. However, up front choice of �o may not

be obvious, especially if � and D are not known. In this section we describe a way

around this obstacle in the case of batch learning. It is based on a practical stopping

criterion guaranteeing an approximation of the maximal margin with a prede�ned

precision. In order to formalize this we de�ne the precision of margin approximation

(POMA) for ~� 2 A:precision of

margin

approximation

(POMA)

�(~�) :=
�� �(�~�)

�
: (6.46)

Lemma 6.11

Let 0 < � < 1 and ~� 2 A. If maxi=1;:::;m 2G(~�;i)

kwk2 � �, then �(�~�) � �(1� �), hence
�(~�) � �.
Proof This is implied directly by the following expression on the margin

�(�~�) =
kw~�k
2
�max

i

G(~�; i)

kw~�k
(cf. Eqn. 6.35) and the bound � � kw~�k=2 (cf. Eqn. 6.13).
We recall, in the following algorithm the symbol dw2(~�t; j) denotes the decrease

kwtk2�kwt+1k2 under assumption that the update wt+1 was obtained by applying

the IncreaseStep or the DecreaseStep, respectively, to jth data point (cf. Eqn. 6.23).

Algorithm 6.3 Greedy MMP

1. Choose target POMA �, 0 < � < 1, ~�0 2 A and t = 1.

2. Repeat while maxi=1;:::;m
2G(~�t;i)

kwtk2 > �:

De�ne �t+1 using, respectively, the IncreaseStep (6.19) or
the DecreaseStep (6.22) for i := argmaxj dw

2(~�t; j).
Reset t t+ 1.

Theorem 6.12convergence of

Greedy MMP Algorithm 6.3, halts after

tupd � 2D2

�2�2
ln
kwok
2�

� 2D2

�2�2
ln
D

2�
(6.47)

updates yielding the separation margin � (1� �)�.
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Proof The bound on the separation margin comes from Lemma 6.11. It remains

to show (6.47).

Let �o := ��=D and wt, 1 � t � ~t, be the maximal sequence of vectors wt := w~�t

generated by the Algorithm 6.3 such that

max
i
�Incr(~�t; i) � �2okwtk2 for all t = 1; ::::; ~t� 1; (6.48)

where ~t � 1 (possibly ~t =1). From Lemma 6.4 it follows that kwtk2 � kwt�1k2(1�
�2o), hence kwtk2 � kw0k2(1 � �2o)t for t = 1; 2; 3; : : : ; ~t. Since kwtk � 2�, we �nd

as in the proof of Theorem 6.8(i), that

~t � 2D2

�2�2
ln
D

2�
: (6.49)

Hence ~t is �nite and the bound (6.48) does not hold for t = ~t, i.e.,

max
i
�Incr(~�~t; i) < �2okw~tk2:

Now from Eqn. 6.36 of Lemma 6.6 we obtain

�(�~�~t) �
kw~tk
2
� D

kw~tk
�okw~tk =

kw~tk
2
� �� � kw~tk

2
(1� �):

After substitution for �(�~�~t) from (6.35) we get

kw~tk
2
� maxiG(~�~t; i)

kw~tk
� kw~tk

2
(1� �)

which yields 2maxiG(~�~t;i)

kw~tk2
� �. Thus tupd � ~t and (6.49) implies (6.47).

The above theorem implies immediately the following result.

Corollary 6.13

For the sequence of POMA values for ~�t 2 A generated by Algorithm 6.3 the

following upper bound holds:

�(~�t) � D

�

s
2

t
ln
kwok
2�

� D

�

s
2

t
ln
D

2�
for all t = 1; : : : ; tupd: (6.50)

Remark 6.14

It is not hard to observe that the above Theorem and Corollary (and their

proofs) hold also for a modication of Algorithm 6.3 in which the selection i =

argmaxj dw
2(~�t; j) in Step 2 is replaced by

i = argmax
j
(max (�Incr(~�t; j); �Decr(~�t; j))

or even by i = argmaxj �Incr(~�t; j).

The following algorithm is proposed for those situations where the greedy search

for an update in Algorithm 6.3 is not practical. It combines features of the on-

line search of Algorithm 6.1 with a guarantee of POMA. It evaluates and selects
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candidate support vectors linearly using an acceptance threshold � which is lowered

only gradually. This is done in order to control proliferation of a number of \low

quality" support vectors.

Algorithm 6.4 Linear MMP

Given �, 0 < � < 1, F > 1, ~� 2 A, �1 > 0.
1. Initialize Gmax = max = 0, � = �1, i = 0 and Gw = 1.
2. While Gw > � repeat the following two steps:
2.1. For i (i+ 1) modulo m:
(i) Let Gmax = max(Gmax; G(~�; i)),  = max (�Incr(~�; i); �Decr(~�; i))
and if  > max, then max =  and imax = i.

(ii) If  > �2kw~�k2, then update ~� using the IncreaseStep (6.19) or
the DecreaseStep (6.22), respectively, and reset
Gmax = 0 and max = 0.

2.2. If no update was made for last m checks of 2.1(ii), then reset

� =
p
max=(Fkw~�k), Gw = 2Gmax=kw~�k2 and i = imax � 1.

Note that for each successive set of Gmax and max de�ned in the Step 2.2 of the

above algorithm we have Gmax = maxj G(~�; j) and

max = max
j

max (�Incr(~�; j); �Decr(~�; j)) � 0;

where the last inequality follows from (6.34). Additionally, resetting i to i = imax�1
after change of � ensures that the algorithm starts with an update.

Theorem 6.15convergence of

Linear MMP Algorithm 6.4, halts after

tupd � 2
�
min(

��

DF
; �1)

��2
ln
D

2�
(6.51)

updates yielding the separation margin � (1� �)�, where �1 is the starting values
of the threshold �.

Proof The algorithm stops only if maxiG(~�; i)=kw~�k2 = Gw � �, hence exactly

as in the proof of the previous theorem one can demonstrate that on exit �(�~�) �
(1� �)�. It remains to show bound (6.51).

For the clarity of the proof it is convenient to introduce the maximal sequence

(�n), 1 � n < ~n + 1 of successive values of thresholds � generated by the

Algorithm 6.4 as it runs (we shall use subscript n = 1 for starting values; we also

allow ~n =1, at this stage, although we shall demonstrate that always ~n <1). It

is also convenient to introduce sequences of corresponding parameters: 
(n)
max, G

(n)
w ,

G
(n)
max, w

(+1)
n , w

(�1)
n and wn being snapshots of max, Gw, Gmax, w

(+1)
~� , w

(�1)
~�

and w~�, respectively, at the time when the nth value of �, � = �n, is introduced in
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Algorithm 6.4, for 2 � n < ~n+1. Similarly we introduce the sequences tn and �(�n)

of the number of updates and achieved separation margins �(�~�) for 1 � n < ~n+1.

Note that ~n � 2 and ~n =1 if the algorithm does not stop; if ~n <1, then tupd = t~n
since the algorithms terminates only after �~n was introduced.

From the de�nition of 
(n)
max and �n we get

�n =

q

(n)
max

kwnkF <
�n�1
F

(6.52)

max
i
(�Incr(~�n; i); �Decr(~�n; i)) � (n)max � �2n�1kwnk2 for all n > 1: (6.53)

Using (6.53), we can show as in the proof of Theorem 6.8(i) that

tn � 2 ln(kw1k=2�)
�2n�1

for all n > 2: (6.54)

Similarly, from (6.53) and (6.36) it follows that

�(�n) � kwnk
2
� D

q

(n)
max

kwnk for all n > 2: (6.55)

Now on a substitution for �(�n) from (6.35) and using (6.52), we �nd that

G
(n)
max

kwnk �
D

q

(n)
max

kwnk � D�n�1 � D�1
Fn�2 for all n � 2: (6.56)

From the above inequalities it follows that Algorithm 6.4 must terminate after a

�nite number of values �n was generated, i.e., ~n < 1. Indeed, suppose ~n = 1,

take any n > 2+ ln D�1
�� = lnF . Using the bound 2� � kwnk (cf. Proposition 6.1) we

would have

G
(n)
w kwnk
2

=
G
(n)
max

kwnk �
D�1
Fn�2 < �� � �kwnk

2
;

which would give G
(n)
w � �. Thus the \While" loop in Algorithm 6.4 has to have

terminated, at the latest, immediately after the �n was introduced, giving ~n <1,

in spite of our supposition to the contrary.

Now we concentrate on estimation of the total number of updates. If ~n = 2, then

directly from (6.54) we have

tupd = t2 � 2 ln(kw1k=2�)
(�1)2

: (6.57)

Hence assume now that ~n � 3. Since ~nth value of � has been generated by the

algorithm, it did not terminate after �~n�1 was introduced. This means that the

condition of the \While" loop was satis�ed at the time n = ~n� 1, i.e.,

� < G(~n�1)
w =

2G
(~n�1)
max

kw~n�1k2
:
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On the other hand, from (6.56) we get

G(~n�1)
max � D

q

(~n�1)
max :

Putting this all together we �nd � < 2D

q

(~n�1)
max =kw~n�1k2 andq


(~n�1)
max � �jjw~n�1jj2

2D
:

Finally,

�~n�1 =

q

(~n�1)
max

Fkw~n�1k >
�kw~n�1k
2DF

� ��

DF
;

since kw~n�1k � 2�, cf. Proposition 6.1. Hence from (6.54) we obtain the bound on

the total number of updates (if ~n � 2):

tupd = t~n � 2 ln(kw1k=2�)�
��
DF

�2 =
2D2F 2 ln(kw1k=2�)

�2�2
:

It is easy to see that the above bound and (6.57) can be combined into (6.51).

In parallel to Corollary 6.13 the above theorem implies immediately the following

bound on the precision of margin approximation (6.46).

Corollary 6.16

If �1 � ��
DF , then

�(~�t) � DF

�

s
2

t
ln
D

2�
for t = 1; : : : ; tupd: (6.58)

6.4 Kernel Machine Extension

In this section we extend the above \linear" algorithms to the kernel case in the

standard way. Assume that � : R N ! Z is a mapping from the input space into

a vector space Z (the features space). Assume that (z1; z2) 7! z1 � z2 is a scalar

product in Z and k : R N � R
N ! R is a Mercer kernel such that

�(x1) � �(x2) = k(x1;x2) for all x1;x2 2 R N :

Conceptually, we construct an optimal hyperplane in the features space Z for the

transformed training data

(zi; yi) := (�(xi); yi) 2 Z � f�1; 1g for i = 1; : : : ;m:

Formally, in order to adapt the above algorithms to the current situation, we need to

substitute each vector xi 2 R N by its image �(xi) and then to use the Mercer kernel
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in order to calculate the dot products. In the typical case of very high dimensionalityMercer kernel

of Z the support centers w(+1) and w(�1) cannot be stored directly in the computer
and they should be represented by a vector of Lagrange multipliers ~� = (�i) 2 A
such that

w(+1) =
X

i2I(+1)
�i�(xi) and w

(�1) =
mX

i2I(�1)
�i�(xi):

All algebraic expressions required for the training algorithms can be derived from

four di�erent scalar products which can be recalculated after each update. We shall

introduce a special notation for them now.

xw(i; y) :=�(xi) �w(y)=
X
j2I(y)

�jk(xj ;xi) for all i = 1; : : : ;m (6.59)

x2(i) := k�(xi)k2 = k(xi;xi) for all i = 1; : : : ;m (6.60)

ww(y0; y00) :=w(y) �w(y0)=
mX

i;j2I(y)�I(y0)
�i�jk(xi;xj) for = y; y0 = �1: (6.61)

In particular, in terms of those quantities we have the following expressions

kwk =
p
ww(1; 1) +ww(�1;�1)� 2ww(�1; 1); (6.62)

G(~�; j) = �yj(�(xj)�w(yj)) �w
= �yj (xw(j; 1)� xw(j;�1)�ww(yj ; 1) +ww(yj ;�1)) ; (6.63)

H(~�; j) = jjzj �w(yj)jj =
q
x2(j) +ww(yj ; yj)� 2 xw(j; yj); (6.64)

for j = 1; : : : ;m. The trigger functions �Incr and �Decr have the same forms as before

(cf. Eqns. 6.25 and 6.26), but H and G used in them should be calculated by the

above formulae rather than Eqns. (6.16) and (6.17).

For the separation margins of a functional �w(+1);w(�1) and the maximal margin

we have the following formulae:

�(�w(+1);w(�1)) =
kwk
2
� max

i=1;:::;m

G(~�; i)

kwk ;

� = max
(w;b)2(Z�0)�R

yi(w � �(x) + b)

kwk :

All algorithms of the previous section have straightforward extensions to the kernel

case and so have the convergence Theorems 6.8-6.15, where the data diameter ofkernel case

the transformed data set is expressed as:

D = max
1�i<j�m

q
k(xi;xi) + k(xj ;xj)� 2 k(xi;xj) � 2 max

i=1;:::;m

p
k(xi;xi): (6.65)

In these algorithms the main di�erence is that G and H should be calculated by

the formulae (6.63) and (6.64), rather than (6.16) and (6.17).

One issue, which is not clear, is the computational complexity of the algorithms,

especially in the case when vectors w(+1) and w(�1) cannot be represented explic-

itly. It can be demonstrated that with some care this is not a serious problem, since
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the complexity is comparable with that of the linear (explicit w) case. Further, it

can be shown that in the kernel case the major computational cost is hidden in the

calculation of kernel values for selected support vectors, and that the additional

cost connected with search for the best candidate for upgrade in the case of greedy

algorithms is negligible, so it pays to introduce some sophistication in this regard

(cf. the discussion of computational cost in Section 6.7).

6.5 Soft Margin Extension

Now let us consider the situation when data (zi; yi) = (�(xi); yi), i = 1; : : : ;m, is

not separable. In this section we consider the \soft margin" support vector machine

with violations and quadratic penalty (SVM-VQ, following the notation in [Keerthi

et al., 1999]). In feature space it takes the form of the solution to the followingSVM-VQ

optimization task:

�2 := minw;�i;b

 
1

2
kwk2 + C

2

mX
i=1

�2i

!
such that yi(w � zi + b) � 1� �i (i = 1; : : : ;m):

(6.66)

The signi�cance of this formulation is that it is equivalent to the \separable"

problemSVM-NV

~�2 := min ~w;b
1

2
k ~wk2

such that yi( ~w � ~zi +~b) � 1 (i = 1; : : : ;m):
(6.67)

under the transformation2:

~w :=
�
w;
p
C~�
�
and ~b := b; (6.68)

~zi = 	C(zi) :=

�
zi;

yip
C
~ei

�
for all i = 1; : : : ;m; (6.69)

where ~� = (�i) 2 Rm is the vector of slack variables and ~ei 2 Rm has all coordinates

set to 0 with the exception of the i-th coordinate being 1. Indeed a straightforward

check shows that data (~zi; yi), i = 1; : : : ;m, is separable with margin � (mC)�0:5

(e.g., by � ~w;0 where ~w := (0;
Pm

i=1 ~ei) 2 Z � R
m) and w; b; ~� solves SVM-VQ i�

~w;~b solves (6.67). Following Keerthi et al. [1999], the latter optimization problem

will be referred to as SVM-NV, where \NV" stands for \non-violations." The above

2. Keerthi et al. [1999] credit Frie� [1999] for this transformation and the above equiva-
lence. However, the transformation can be traced back to the earlier research by Cristianini
and Shawe-Taylor (cf. Chapter 19 of this book for details) and the equivalence was known
even earlier [Cortes and Vapnik, 1995, Equation 67].
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transformations ensure that

j�j = ~j�j: (6.70)

It is well known that the solution ŵ; b̂ of (6.67) de�nes an optimal functional

�̂(~z) := ŵ � ~z + b̂ on Z � R
m for the separable data (~zi; yi), i = 1; ::;m. This

functional is related to the optimal functional �
~w
(+1)
� ; ~w

(�1)
�

de�ned by (6.7) for a

pair of points ( ~w
(+1)
� ; ~w

(�1)
� ) of the closest distance between co f~zi ; yi = 1g and

co f~zi ; yi = �1g as follows:

ŵ =
~w
(+1)
� � ~w

(�1)
�

2~�2
and b̂ = �

w(+1)
�

2 � w(�1)
�

2
2~�2

;

where ~� = 0:5
 ~w(+1)

� � ~w
(�1)
�

 denotes the maximal margin for (~zi; yi), i =

1; : : : ;m. (For a justi�cation of the above equations note that yi�̂(~zi) = 1 and

yi� ~w(+1)
� ; ~w

(�1)
�

(~zi) = 0:5
 ~w(+1)

� � ~w
(�1)
�

2 = 2~�2 for every support vector ~zi.) Hence

the algorithms de�ned in previous sections can be used for the solution of SVM-VQ

problem. It is not hard to observe that if k is a Mercer kernel corresponding to the

feature transformation R
N ! Z, zi = �(xi), then the Mercer kernel

~k(xi;xj) := k(xi;xj) + C�1Æij with 1 � i; j � m; (6.71)

where Æij is the Kronecker delta function, is the Mercer kernel corresponding to the

feature transformation 	C : R N ! Z � R
m (cf. Eqn. 6.69).

Hence, the task of solving an SVM-VQ for a kernel k formally reduces to

an application of the kernel extension of one of Algorithms of Section 6.2 with

the modi�ed kernel (6.71). Combining all these observations with theorems of

Section 6.2 we obtain a number of algorithms and theorems stating that an

approximation of optimal SVM-VQ machine of prede�ned precision can be found in

a �nite number of iterations. In particular, from Theorem 6.12 and an observation

that ~� = 1p
2~�

= 1p
2�

we obtain the following result.

Theorem 6.17Greedy MMP:

convergence for

SVM-VQ

Let 0 < � < 1, C > 0, k be a Mercer kernel on R
N and ~k be its extension (6.71).

The kernel extension of Algorithm 6.3 (cf. Section 6.5) applied to data (xi; yi),

i = 1; : : : ;m, with kernel ~k halts after

tupd � 4 ~D2�2

�2
ln

~D�p
2
� 2m ~D2C

�2
ln

~D
p
mC

2
(6.72)

updates of ~�t, where � > 0 is the square root of the optimal value of the functional

de�ned in (6.66) and

~D := max
i6=j

q
k(xi;xi) + k(xj ;xj)� 2k(xi;xj) + 2C�

1
2

� 2max
i

q
k(xi;xi) + C�

1
2 :
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Upon exit the algorithm yields a vector of Lagrange multipliers ~� 2 A for which

exist constants b and E > 0 such that w :=
P

i �iyi�(xi)=E and ~� := ~�=(EC)

satisfy the following conditions (near optimal solution of the SVM-VQ):

�2 �1
2
kwk2 + C

2

mX
i=1

�2k �
�2

(1� �)2 (6.73)

such that yi(w � zi + b) � 1� �i (i = 1; : : : ;m):

Proof From 6.70 it follows that for the maximal separation margin ~� of (~zi; yi),

i = 1; : : : ;m, we have

~� =
1p
2~�

=
1p
2�
� 1p

mC
: (6.74)

(For the latter bound note that for the vector ~w = (0; (1; : : : ; 1)) 2 Z�Rm we have

~w � ~zi = 1=
p
C for all i, and that k ~wk = pm.)

From the bound (6.47) of Theorem 6.12 it follows that Algorithm 6.3 halts after

the number of updates not larger than

2 ~D2

�2~�2
ln

~D

2~�
=

4 ~D2�2

�2
ln

~D�p
2
� 2D2mC

�2
ln

~D
p
mC

2
:

This completes the proof of (6.72).

Now we show that vector ~� 2 A of Lagrange multipliers obtained on exit from

the algorithm has the postulated properties. From Theorem 6.12 we know that

~� � �(� ~w~�;~b~�
) � ~�(1� �); (6.75)

where

~w~� :=
mX
i=1

�iyi~zi =

 
mX
i=1

�iyizi;
~�p
C

!
2 Z � R

m ; (6.76)

~b~� := �
P

i2I(+1) �i~zi
2 � Pi2I(�1) �i~zi

2
2

=

Pi;j2I(�1) �i�jk(xi;xj)
� Pi;j2I(+1) �i�jk(xi;xj)


2

+
#I(�1) �#I(+1)

2C
: (6.77)

From the de�nition of the margin we have

yi( ~w~� � ~zi +~b~�) = yi� ~w~�;~b~�
(~zi) � k ~w~�k�(� ~w~�;~b~�

) for all i = 1; : : : ;m: (6.78)

Introducing the notation

E := k ~w~�k�(� ~w~�;~b~�
) > 0; (6.79)

b := ~b~�=E; (6.80)



100 Maximal Margin Perceptron

we obtain from (6.75) and (6.78)

1

~�2
� 1

�(� ~w~�;~b~�
)2

=

 ~w~�

E

2� 1

~�2(1� �)2 ; (6.81)

1 � yi(
~w~�

E
� ~zi + b) for all i = 1; : : : ;m: (6.82)

For w :=
Pm

i=1 �iyizi=E 2 Z and ~� := ~�=(EC) 2 R
m we have ~w~�=E = (w;

p
C~�).

Using those w and ~� in Eqns. 6.81-6.82, and substituting for ~� from (6.74), we

obtain

~�2 � 1

2
(k ~wk2 + C~�2) � ~�2

(1� �)2 ; (6.83)

1 � yi( ~w � ~zi + yi�i + b) for all i = 1; : : : ;m;

which proves (6.73).

Remark 6.18

For completeness we explicitly describe the SVM machine f~� : R N ! R corre-

sponding to the solution of (6.73) constructed in the above proof. We have

f~�(x) :=
1

E

0
@ mX
j=1

yi�jk(xj ;x) + ~b~�

1
A for all x 2 R N ;

where E = k ~w~�k�(� ~w~�;~b~�
),

k ~w~�k2 = k~�k
2

C
+

mX
i;j=1

yiyj�i�jk(xi;xj);

~b~� = �1
2

X
y=�1

y
X

i;j2I(y)
�i�jk(xi;xj) +

#I(�1) �#I(+1)

2C
;

�(� ~w~�;~b~�
) = k ~w~�k�1

0
@~b~� +min

i

0
@ mX
j=1

yj�jk(xi;xj) +
�iyi
C

1
A
1
A ;

where \#I(y)" denotes cardinality of the set I(y).

6.6 Experimental Results

6.6.1 NIST Digits

In this section we present some initial results of a test of the kernel version

of Algorithm 6.3 (Greedy MMP) on the popular NIST benchmark data set of
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Figure 6.3 Results of the simulation of the Algorithm 6.3 on NIST hand written

digits. The target was discrimination between 0 and the remaining 9 digits. Training

was on 30K samples and the test on 10K samples from di�erent writers. The

horizontal axes show the number of updates t. In Figure A marg(pi) := �(�~�t)

and kwtk=2 is used as the upper bound on the margin. In Figure B we plot the

experimental estimate of the precision of margin approximation (POMA) and its

upper bound given by Corollary 6.13. In the expressions �(~�t) = (� � �(~�t))=� for

the experimental curve and D��1
p
2t�1 ln(0:5D��1) used for the theoretical upper

bound we have used D := 2
p
max k(xi;xi) and the �nal value of kwtk=2 as the

substitution for �.

handwritten digits.3 The software has been written in Matlab. This has someMatlab

simulation drawbacks, such as heavy requirements for memory (RAM) forcing us to use

half rather than the full training set of 60K NIST digits. This restriction should

disappear with the new version of Matlab, which allows storing integer data in

a more eÆcient format than \double precision." For this test the basic logic of

Algorithm 6.3 has been implemented with small enhancements, in particular, with

caching values k(xi;xj), j = 1; : : : ;m, for some frequently used patterns xi.

3. Data set available from http://www.research.att.com/�yann/ocr/mnist/index.html
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In Figures 6.3 we give a sample of results obtained. The target task here wasdigit recognition

experiment the discrimination between 0 and the remaining 9 digits. The training was on 30K

samples, and the test on the standard set 10K samples from di�erent writers. The

fourth degree polynomial kernel was used in this experiment. The fully trained

network used 1038 support vectors, made 41 errors on the test set and achieved

> 80% of the optimal margin.

It can be observed that the main progress in terms of reduction of test error rate

was made in the initial stages of training, especially up to the moment of separationcomparison with

experiment of the training data. After that we entered into a long process of improving the

margin (up to 80% of the optimal margin), with a small improvement of the test

error rate. Such behaviour was also observed in a number of similar experiments

conducted so far with this data set for other kernels.

6.6.2 Benchmark on Checkers, Adult, Wisconsin Breast Cancer and

Two Spirals Data

In this section we discuss a comparison of our Greedy MMP algorithm (MMP) with

six other iterative methods of generating support vector machines (SVM). These

tests follow strictly the methodology used in [Keerthi et al., 1999]: we have used

the same data sets which were made available to us by S. S. Keerthi, the same

Gaussian kernels and the same values of constants C for the soft margin classi�ers

(SVM VQ as described in Section 6.5).

The results for the six methods other than MMP were taken directly from Keerthi

et al. [1999]. These were:

the original Platt's sequential minimal optimization (SMO) algorithm [Platt,

1999] and its application to solving SNM VQ task (SMO Q);

two algorithms introduced in [Keerthi et al., 1999], the nearest point algorithm

(NPA) and minimal norm algorithm (NMA);

the successive overrelaxation algorithm (SOR) of Mangasarian and Musicant

[1998] and its application to solving SVM VQ task (SOR Q). (The latter is an

improved version of kernel adatron of Frie� et al. [1998] according to Keerthi et al.

[1999].)

We have used only four data sets out of nine evaluated by Keerthi et al. [1999].

These were Adult 4, Wisconsin Breast Cancer, Checkers and Two Spirals. The

�rst two of these sets originate from \real life data," the other two are popular

\arti�cial" benchmarks. For two of them, Adult 4 and Checkers, the ratio of the

number of updates to the number of selected support vectors is� 1 (up to 182 and

17855 for Adult 4 and Checkers, respectively). For the other two data sets this ratio

is of order 1 (up to 2.7 and 17.9, for Wisconsin Breast Cancer and Two Spirals,

respectively). This gives a good variety of benchmark tests.

The aim of these tests was to �nd the number of kernel evaluations required by

each algorithm to produce approximations of the optimal soft margin SVMs for
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a range of values of C with \tolerance" � = 0:001 (cf. the Appendix). A special

simulator has been written for this purpose in C++ (cf. the Appendix for some

details). The choice of the number of kernel evaluations as a �gure of merit is

justi�ed by bearing in mind that it is the most numerically costly part of generating

SVM for large input dimensionality N and that it is a metric independent of the

particular hardware implementation of the algorithm.

The results for all six methods other than MMP, are given in [Keerthi et al.,

1999] with the exception of SOR Q (Adatron) for Adult 4 data, since this method

was too slow to converge.

The results presented in the Appendix show clearly that that MMP performed

very well on all these benchmarks, achieving results with the lowest number of kernel

calls most of the time. However, what is more remarkable, for the high values of C

(hence low margin M), when the tasks are becoming most challenging, the relative

advantage of MMP increases. This is especially visible on Adult 4 and Checkers

data, where the addition of a cache for some most recently evaluated values of the

kernel was able to reduce number of kernel evaluations by factors exceeding 100 with

respect to some other methods. Further, we have observed that even a very modest

cache, saving only the �ve last vectors vt =

�
k(xit ;x1); : : : ; k(xit ;xm)

�
2 Rm , has

allowed us not only to curb proliferation of kernel calls for the largest Cs, but also

reduce the number of kernel evaluations as C increases (cf. Figures 6.4-6.6 in the

Appendix).

In Figure 6.6 we have also provided curves showing the minimal number of kernel

evaluations necessary to simulate generated MMPs. We observe that using a cache

of roughly 1/4 of m (the size of the data set, equal 4419 for Adult 4 and 465

for Checkers) allows us to generate MMP with the number of kernel evaluations

approaching the ultimate minimum, the cost of the simulation of the generated

SVM.

6.7 Discussion

The results on digit recognition reported in Section 6.6.1 can be compared to

experiments by Cortes and Vapnik [1995]. They have trained a more general, softcomparison to

Cortes and

Vapnik [1995]

margin support vector machine, on the full 60K training set using chunking and

some specialized quadratic optimization software. In the task of discrimination of

0 from other digits using the 4th degree polynomial kernels they reported only 19

errors on the test set but with a larger network of 1379 support vectors. They did

not achieve a separation of the training data. All these di�erences warrant some

further investigation which is beyond the scope of this chapter.

The simulation results discussed in Section 6.6.2 obtained for the Greedy MMP

(without cache) and by the NPA algorithm of Keerthi et al. [1999] on four bench-comparison to

NPA of Keerthi

et al. [1999]

mark sets are relatively close, though not identical. The closeness can be explained

by the similarity of the basic approaches taken in both algorithms (e.g., reduction of
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the solution to an approximation of the closest points between convex hulls; similar

exit conditions). The di�erence can be attributed to di�erent heuristics adopted to

select upgrades. With an exception of the checkers data, the greedy search heuristic

used by MMP was consistently better than the elaborate upgrades based on multi-

ple points used in NPA. These issues warrant further investigation which is beyond

scope of this chapter.

Now we discuss the relation of this chapter to [Gilbert, 1966] which presentscomparison to

Gilbert [1966] an algorithm for approximation of the point of the convex set K�R N closest to

the origin. This problem is obviously a special case of the problem of �nding two

closest points of two convex sets which was tackled in this chapter, but it is not hard

to show that both problems are in fact equivalent (see [Keerthi et al., 1999, Sec.

2]). A direct adaptation of Gilbert's algorithm to our situation and terminology

of this chapter will produce two sequences of support centers w
(�1)
t 2 coX(�1)

and w
(+1)
t 2 coX(+1), and associated vectors of Lagrange multipliers ~�t 2 A for

t = 1; 2; ::: as follows. We start with arbitrary w
(y)
0 2 coX(y), y = �1. Having

w
(+1)
t , w

(�1)
t and ~�t de�ned, we select an index i := argmaxj G(~�t; j) and then

de�ne w
(yi)
t+1 using the IncreaseStep leaving the other support center unchanged,

i.e., w
(�yi)
t+1 := w

(�yi)
t . As we have pointed out already, this is a special case of

the basic MMP algorithm (Algorithm 6.1). Theorem 6.8 implies that the sequence

wt := w
(+1)
t �w(�1)

t converges to the optimal vector w�. This convergence is also
implied by [Gilbert, 1966, Theorem 3] (with some minor restrictions on initial vector

w0 = w
(1)
0 �w(�1)

0 ). In particular this theorem provides the bound

kwt �w�k < 2Dt�1=2 (6.84)

(which is an adaptation of Eqn. 5.5 in [Gilbert, 1966] to our notation). A straight-

forward geometrical argument translates this into the following upper bound on the

precision of margin approximation (cf. Eqn. 6.46)

�t :=
�� �(�~�t)

�
� Dkwt �w�k

�kwtk <
2D2

�kwtkt1=2 �
2D2

�2t�1=2
: (6.85)

The above bound on POMA is the best possible given (6.84). However, this bound

is signi�cantly weaker (in terms of constant) than the following bound provided by

Corollary 6.13comparison of

bounds on

POMA �t � D

�

s
2

t
ln
D

2�
;

since in a typical case D � �. [Gilbert, 1966, Example 2] implies that the

convergence rate � t�1=2 in the upper bound (6.84) on kwt �w�k is the best

possible in general case. Hence the rate � t�1=2 in the above two bounds on �t is

the best possible in general case and the only possible improvement can be in the

constant factor. The experimental curve in Figure 6.3.B for NIST digits data shows

that there is room for future improvements of such theoretical bounds, for some

special cases at least.
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Another limitation of theory in [Gilbert, 1966] is that his algorithm and theorems

apply only to the sequence of data instances i1; : : : ; it; it+1; ::: used for upgradeslimitations of

[Gilbert, 1966] such that it+1 = argmin1�j�mG(~�t; j). In practice, when m is large, �nding such

it+1 could be a major (numerical) problem which is admitted by Gilbert. In such

a case, one would be forced to use the sequence satisfying the above requirement

only approximately and Theorem 3 of Gilbert does not cover this case. However,

our Algorithm 6.4 and Theorem 6.15, do not have such limitations: they explicitly

specify criteria of \goodness" in terms of bounds guaranteeing the postulated rate

of convergence. In other words, the on-line features of Theorem 6.8, which forced

us to provide local criteria for evaluation of suitability of a data point to provide

a \good" upgrade, have also lead us to Theorem 6.15, for batch mode of learning,

giving theoretical results overcoming some limitations of [Gilbert, 1966].

It is worthwhile to emphasize, that in our algorithms we have utilized also the

DecreaseStep which is not used in [Gilbert, 1966]. However, some forms of both

our IncreaseStep and DecreaseStep are used in [Michell et al., 1974] and [Keerthicomparison to

[Michell et al.,

1974]

et al., 1999]. The major di�erence between our approach and those two papers is as

follows. The two steps are used by us separately, while both Michell et al. [1974] and

Keerthi et al. [1999] use them always in pairs. Our intuition is that such separation

is computationally more eÆcient. This can be one of reasons why our Greedy MMP

algorithm performed better than NPA or MNA algorithms of Keerthi et al. [1999]

on the most benchmark tests presented in the Appendix. However, some additional

investigation is required to clarify this issue.

The dramatic decrease in the number of kernel evaluations required by Greedy

MMP with cache observed for large values of C (hence small margin M) incache impact

Figure 6.6 in the Appendix can be explained as follows. For smaller values of M as

the number of support vectors decreases (cf. Figures 6.4 and 6.5), Greedy MMP is

able to �nd quickly the required support vectors, and then it spends most of the

time on \�ne tuning" Lagrange multipliers �i. This process consists in repeated

modi�cations of coeÆcients, most of the time iterating a relatively small number

of support vectors. Thus even with a very small cache storing kernel values for

the 5 last support vectors a signi�cant savings in terms of kernel evaluations can

be achieved (a factor � 7). Our impression is that other algorithms can also be

improved along these lines (note that both SMO and NPA are already using caches

of critical variables!).

Our preferred batch algorithm, Greedy MMP, requires a global search for each

update. However, this additional overhead is negligible in some complex practical

situations if some care is given to implementation. To illustrate this point wecomputational

cost compare below two theoretical upper bounds on computational cost required to

achieve separation margin � (1 � �)� (unfortunately details are beyond the scope

of this chapter). For simplicity let us assume m � 1 and N � 1 and denote by

coper an upper bound on the computational cost of an elementary calculation, such

as addition, or subtraction, or multiplication, or division, or comparison of two

numbers. In this case the computational cost required by our implementation of
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Algorithm 6.4 (Linear MMP, non-kernel case) has the bound

cost � 10 (Nm+ o(Nm))
D2F 2

�2�2
ln
D

2�
� coper:

In the case of Mercer kernel of either of two forms, k(x;x0) = F (x � x0) or

k(x;x0) = F (jjx � x0jj1), where F (x) is a function with the computational cost

comparable with coper, the cost of the kernel version of Algorithm 6.3 (Greedy

MMP) has the bound

cost � 6 (Nm+ o(Nm))
D2

�2�2
ln
kwok
2�
� coper:

This bound, for the algorithm solving the more complex kernel case, is in fact lower!

The savings are coming from careful implementation and caching of some critical

parameters (c.f. Section 6.4). Although the above two bounds are dominated by the

worst case scenarios, they indicate that with some careful implementation, Greedy

MMP algorithm could be very eÆcient even in the kernel case.

Let us observe that tests we have adopted from Keerthi et al. [1999] are in

fact benchmarks on numerical eÆciency of algorithms rather than their ability tonumerical

eÆciency vs.

generalization

produce good \generalization," which is the main goal for computational learning.

The results in Figure 6.3 show that in the case of NIST digit data the ultimate

accuracy can be achieved very early, with a relatively low margin, and further

slow improvements in the margin do not have signi�cant impact on generalization

error. In this context, the benchmark tests as by Keerthi et al. [1999] which have

measured the eÆciency of algorithms in producing SVMs with margin within 0.1%

of the optimum could be of little relevance to testing their generalization ability.

Somewhat disappointing was the performance of the kernel adatron which wasAdatron

consistently the slowest to converge and even too slow to be included into the

Adult 4 benchmark in [Keerthi et al., 1999] (marked as SOR Q in the Figures 6.5-

6.8). This happens in spite of promising theoretical results indicating that this

algorithm has a good convergence rate (the replica calculations of Opper [1989] and

Watkin et al. [1993] give the exponential rate of convergence to optimal solution

in the thermodynamic limit, � exp(�tupd)). This issue warrants some further

investigation.

It is worthwhile to emphasize that the kernel adatron and the maximal margin

perceptron algorithms are not equivalent. The most obvious di�erence is in theMMP 6�
Adatron way the modi�cation of the Lagrange multipliers (�i) is made in each iteration.

Let us consider the case when the ith example is added to the support vectors. In

such a case the kernel adatron will increase the ith Lagrange multiplier only, in

accordance with the update w w+Æ xi, where Æ is a certain number. In the case

of maximal margin perceptron, such an update is more complicated. For instance,

for the IncreaseStep, while the ith Lagrange multiplier is increased (cf. Eqn. 6.19),

the other multipliers have to be decreased. This has to be done in accordance with

the update w
(yi)
t+1  w

(yi)
t (1�B)+B xi, where 0 � B � 1, since we have to always

maintain the constraint of support centers being convex combinations of support
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vectors. Thus the direction of incremental modi�cation of vector w in both cases

is quite di�erent: for the Adatron it is parallel to xi, while for the maximal margin

perceptron it is parallel to the di�erence xi �w(yi).

6.8 Conclusions

Novel algorithms are proposed for the approximation of the optimal hyperplane

separating data with a maximal margin. Initial experiments show that they work

on large data sets and work very well in comparison to other iterative algorithms for

generation of support vector machines (with improvements exceeding factor 100,

in the extreme cases). The proof of convergence and theoretical bounds on conver-

gence rates to the optimal solution are presented and shown to provide signi�cant

improvements over some results published in the past. More systematic experi-

ments are needed to evaluate the potential of these novel procedures, especially in

an on-line learning mode, which was not experimentally evaluated here at all.
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6.9 Appendix: Details of comparison against six other methods for iterative

generation of support vector machines

In this section we present some details of comparison of a kernel version of Greedy

MMP algorithm introduced in this chapter (MMP) with six iterative procedures

evaluated previously by [Keerthi et al., 1999] (c.f. Section 6.6.2).

Our experiments were done strictly along the lines described in [Keerthi et al.,

1999]. Due to time constraint and that for some bigger sets the results were provided

for only some of the above methods, we have used only four data sets out of nine

used by [Keerthi et al., 1999] and made available to us by S.S. Keerthi.4 The

Gaussian kernel (1.73) was used in solving the soft margin SVM-VQ task described

in Section 6.5 for a range of values of C. Those values have been chosen by Keerthi

4. Warning! Although the data sets are originated from standard benchmark sets, they
have been processed in an obscure way (e.g., only certain input variables are actually
used). Thus for any fair comparison the data as used in [Keerthi et al., 1999] is required.
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et al. [1999] to cover a range of values of the marginM equal to 2~� = 1p
2�

in notation

used in Section 6.5 (cf. Figure 6.1). The objective was to run the algorithm until

the transformed data (~zi; yi), i = 1; : : : ;m, is separated with \tolerance" � = 0:001,

i.e., to generate ~� 2 A such that

�(�~�) � (1� �)k ~wk
2
� (1� �)~�

and the distance of each support vector ~zi, �i > 0, from the hyperplane

�~�
�1(0)�Z � R

m is not higher than (1 + �)k ~wk=2 (which is � ~� 1+�1�� ). These
conditions are easily seen to hold if ~� 2 A is such that

G(~�; i) = yi(�~�(w
(yi)
~� )� �~�(xi)) � ��~�(w~�) = �kw~�k2; (8i);

�G(~�; i) = �yi(�~�(w(yi)
~� )� �~�(xi)) � ��~�(w~�) = �kw~�k2; (8i; �i > 0);

or, equivalently, if

2maxiG(~�; i)

kw~�k2
� �; (8i);

�2maxiG(~�; i)kw~�k2
� �; (8i; �i > 0):

The �rst of the above conditions is satis�ed on exit from the Algorithm 6.3 but

not necessarily the second one. Below we give the pseudo code of the modi�cation

of Algorithm 6.3 which we have used for these benchmark tests. Note that on exit

from this algorithm the above two conditions have to be satis�ed.

Algorithm 6.5 Special Greedy MMP

1. Choose �, 0 < � < 1, ~�0 2 A; t = 1.

2. Repeat while maxi=1;:::;m
2jG(~�t;i)j
kwtk2 > �:

De�ne �t+1 using, respectively, the IncreaseStep (6.19) or
the DecreaseStep (6.22) for i de�ned as follows:

If maxi=1;:::;m 2G(~�t; i) > �kwtk2, then
i := argmaxj dw

2(~�t; j),
else i := argmaxj max(G(j);��(�i)G(j)).
Reset t t+ 1.

The results of experiments are presented in the �ve �gures below. Their overview

has been given in Section 6.6.2.
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M C Number of Kernel calls �10�7

SVs Upd. MMP MMP MMP MMP MMP

5 40 320 1280

0.728 0.003 4419 7319 3.24 3.24 3.24 3.24 3.24

0.469 0.1 3756 7541 3.33 3.33 3.33 3.33 3.32

0.36 0.2 3579 7332 3.24 3.24 3.24 3.24 3.19

0.301 0.3 3479 7371 3.26 3.26 3.26 3.26 3.20

0.212 0.6 3299 7924 3.50 3.50 3.50 3.50 3.38

0.158 1 3184 8730 3.86 3.86 3.86 3.86 3.63

0.104 2 3016 10769 4.76 4.76 4.76 4.75 4.04

0.081 3 2916 12743 5.63 5.63 5.63 5.60 4.25

0.06 5 2793 16277 7.19 7.19 7.18 7.03 4.34

0.04 10 2663 23906 10.56 10.52 10.47 9.82 4.65

0.017 50 2371 61211 27.05 21.21 20.28 15.50 3.23

0.013 100 2251 90583 40.03 20.48 18.83 12.24 1.78

0.0072 500 2014 231792 102.43 18.45 15.00 7.22 0.96

0.006 1000 1913 348224 153.88 17.89 14.08 5.72 0.83

Figure 6.4 Adult 4 Data: number of kernel calls, number of support vectors

and the number of updates. Data for classi�ers other than the maximal margin

perceptron (MMP) are obtained from [Keerthi et al., 1999]. The columns \MMPn"

represent maximal margin perceptron algorithm with a cache preserving the n most

recently calculated vectors (k(xit ;xj))j=1;::::;m 2 R
m of Mercer kernel values (cf.

Figure 6.6 for more plots).
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5

M C Number of Kernel calls �10�6

S. vecs Updates MMP MMP5 MMP40 MMP80

0.104 10 245 3625 1.69 1.65 1.51 1.21

0.057 50 150 7560 3.52 3.10 2.04 1.03

0.044 100 144 12438 5.78 4.75 2.56 1.12

0.026 500 105 25589 11.9 8.43 2.20 0.078

0.021 103 92 36176 16.8 10.2 1.58 0.059

0.01 104 75 82641 38.4 10.6 0.29 0.044

0.007 105 75 141102 65.6 8.74 0.172 0.048

0.0062 106 79 143645 66.8 8.61 0.144 0.051

0.00615 107 80 142820 66.4 8.51 0.146 0.052

Figure 6.5 Checkers Data: number of kernel calls, number of support vectors

and the number of updates. Data for classi�ers other than the maximal margin

perceptron (MMP) are obtained from [Keerthi et al., 1999]. MMPn represents the

maximal margin perceptron algorithm with cache preserving the n most recently

calculated vectors (k(xit ;xj))j=1;::::;m 2 R
m of Mercer kernel values (cf. Figure 6.6

for more plots).
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Figure 6.6 Impact of cache: number of kernel calls for the maximal margin

perceptrons (MMPn) with di�erent cache sizes for Adult 4 and Checkers data.

For clarity we have left only two best support vector machines other than MMPs

from Figure 6.4 and Figure 6.5, respectively. The curves MMPn represent maximal

margin perceptron algorithm with cache preserving the n most recently calculated

vectors (k(xit ;xj))j=1;::::;m 2 R
m of Mercer kernel values. For reference we show also

the curves \Simul" representing the number of kernel calls required to simulate the

generated support vector machines.
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SMO_Q
NPA   
MNA   
SOR_Q
SMO   
SOR   

M C Number of Kernel calls

Support vectors Updates MMP

1.13 0.03 652 1229 8.40E+05

0.72 0.1 503 1041 7.10E+05

0.56 0.2 472 981 6.70E+05

0.48 0.3 410 844 5.80E+05

0.37 0.6 361 817 5.60E+05

0.31 1 351 817 5.60E+05

0.25 2 331 830 5.70E+05

0.23 3 327 811 5.50E+05

0.21 5 317 828 5.70E+05

0.196 10 308 856 5.90E+05

0.183 50 301 818 5.60E+05

0.181 100 300 797 5.50E+05

0.18 500 296 785 5.40E+05

Figure 6.7 Wisconsin Breast Cancer Data: number of kernel calls, number of

support vectors and the number of updates. Data for support vector machines

other than the maximal margin perceptron (MMP) are obtained from [Keerthi

et al., 1999].
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M C Number of Kernel calls

Support vectors Updates MMP

4.47 0.03 195 345 6.75E+04

1.52 0.1 195 400 7.82E+04

0.86 0.2 195 463 9.05E+04

0.63 0.3 195 495 9.67E+04

0.4 0.6 195 564 1.10E+05

0.3 1 195 693 1.35E+05

0.22 2 195 893 1.74E+05

0.19 3 194 1079 2.11E+05

0.17 5 189 1417 2.77E+05

0.15 10 185 1845 3.60E+05

0.14 50 183 3054 5.96E+05

0.138 100 183 3596 7.01E+05

0.1364 500 179 3302 6.44E+05

0.1362 1000 178 3194 6.23E+05

Figure 6.8 Two Spirals Data: number of kernel calls, number of support vectors

and the number of updates. Data for support vector machines other than the

maximal margin perceptron (MMP) are obtained from [Keerthi et al., 1999].
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In contrast to the standard machine learning tasks of classi�cation and metric

regression we investigate the problem of predicting variables of ordinal scale, a

setting referred to as ordinal regression. This problem arises frequently in the social

sciences and in information retrieval where human preferences play a major role.

Whilst approaches proposed in statistics rely on a probability model of a latent

(unobserved) variable we present a distribution independent risk formulation of

ordinal regression which allows us to derive a uniform convergence bound. Applying

this bound we present a large margin algorithm that is based on a mapping from

objects to scalar utility values thus classifying pairs of objects. We give experimental

results for an information retrieval task which show that our algorithm outperforms

more naive approaches to ordinal regression such as Support Vector Classi�cation

and Support Vector Regression in the case of more than two ranks.
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7.1 Introduction

Let us shortly recall the model presented in Chapter 1. Given an iid sample (X;Y ),

and a set F of mappings f : X 7! Y, a learning procedure aims at �nding f� such
that | using a prede�ned loss c : X � Y � Y 7! R | the risk functional (1.26) is

minimized. Using the principle of Empirical Risk Minimization (ERM), one chooses

the function femp which minimizes the mean of the loss Remp(f) (Equation 1.27)

given the sample (X;Y ). Introducing a quantity which characterizes the capacity of

F , bounds for the deviation jR(femp)� inff2F R(f)j can be derived (see Theorems

1.5, 1.6, 1.10, and 1.11). Two main scenarios were considered in the past: (i) If

Y is a �nite unordered set (nominal scale), the task is referred to as classi�cationclassi�cation and

regression learning. Since Y is unordered, the 0 � 1 loss, i.e., cclass(x; y; f(x)) = 1f(x)6=y, is
adequate to capture the loss at each point (x; y). (ii) If Y is a metric space, e.g., the

set of real numbers, the task is referred to as regression estimation. In this case the

loss function can take into account the full metric structure. Di�erent metric loss

functions have been proposed which are optimal under given probability models

P (yjx) (cf. Huber [1981]). Usually, optimality is measured in terms of the mean

squared error of femp.

Here, we consider a problem which shares properties of both cases (i) and (ii).

Like in (i) Y is a �nite set and like in (ii) there exists an ordering among the elements

of Y. In contrast to regression estimation we have to deal with the fact that Y is

a non{metric space. A variable of the above type exhibits an ordinal scale and can

be considered as the result of a coarsely measured continuous variable [Anderson

and Philips, 1981]. The ordinal scale leads to problems in de�ning an appropriate

loss function for our task (see also McCullagh [1980] and Anderson [1984]): On the

one hand, there exists no metric in the space Y, i.e., the distance (y � y0) of two
elements is not de�ned. On the other hand, the simple 0�1 loss does not reect the
ordering in Y. Since no loss function c(x; y; f(x)) can be found that acts on true

ranks y and predicted ranks f(x), we suggest to exploit the ordinal nature of the

elements of Y by considering the order on the space X induced by each mapping

f : X 7! Y. Thus our loss function cpref(x1;x2; y1; y2; f(x1); f(x2)) acts on pairs of

true ranks (y1; y2) and predicted ranks (f(x1); f(x2)). Such an approach makes it

possible to formulate a distribution independent theory of ordinal regression anddistribution

independent

theory of ordinal

regression

to give uniform bounds for the risk functional. Roughly speaking, the proposed

risk functional measures the probability of misclassi�cation of a randomly drawn

pair (x1;x2) of observations, where the two classes are x1�X x2 and x2�X x1 (see
Section 7.3). Problems of ordinal regression arise in many �elds, e.g., in information

retrieval [Wong et al., 1988, Herbrich et al., 1998], in econometric models [Tangian

and Gruber, 1995, Herbrich et al., 1999b], and in classical statistics [McCullagh,

1980, Fahrmeir and Tutz, 1994, Anderson, 1984, de Moraes and Dunsmore, 1995,

Keener and Waldman, 1985].

As an application of the above{mentioned theory, we suggest to model ranks

by intervals on the real line. Then the task is to �nd a latent utility function
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that maps objects to scalar values. Due to the ordering of ranks, the function is

restricted to be transitive and asymmetric, because these are the de�ning properties

of a preference relation. The resulting learning task is also referred to as learning ofpreference

relation preference relations (see Herbrich et al. [1998]). One might think that learning of

preference relations reduces to a standard classi�cation problem if pairs of objects

are considered. This, however, is not true in general because the properties of

transitivity and asymmetry may be violated by traditional Bayesian approaches due

to the problem of stochastic transitivity [Suppes et al., 1989]. Considering pairs of

objects, the task of learning reduces to �nding a utility function that best reects the

preferences induced by the unknown distribution p(x; y). Our learning procedure

on pairs of objects is an application of the large margin idea known from data{

dependent Structural Risk Minimization [Shawe-Taylor et al., 1998]. The resultinglarge margin

algorithm is similar to Support Vector Machines (see Section 1.3). Since during

learning and application of SVMs only inner products of object representations xi
and xj have to be computed, the method of potential functions can be applied (see

Aizerman et al. [1964] or Section 1.3.2).

In Section 7.2 we introduce the setting of ordinal regression and shortly present

well known results and models from the �eld of statistics. In Section 7.3 we introduce

our model for ordinal regression and give a bound for the proposed loss function.

In the following section we present an algorithm for ordinal regression based on

large margin techniques. In Section 7.5 we give learning curves of our approach in

a controlled experiment and in a real{world experiment on data from information

retrieval.

7.2 Classical Models for Ordinal Regression

In this section we shortly recall the well{known cumulative or threshold model for

ordinal regression [McCullagh and Nelder, 1983].

In contrast to Equation (1.2) we assume that there is an outcome space Y =

fr1; : : : ; rqg with ordered ranks rq �Y rq�1�Y � � � �Y r1. The symbol �Y denotes

the ordering between di�erent ranks and can be interpreted as "is preferred to."

Since Y contains only a �nite number of ranks, P (y = rijx) is a multinomial

distribution.

Let us make the assumption of stochastic ordering of the related space X , i.e.,stochastic

ordering for all di�erent x1 and x2 either

Pr(y � rijx1) � Pr(y � rijx2) for all ri 2 Y ; (7.1)

or

Pr(y � rijx1) � Pr(y � rijx2) for all ri 2 Y : (7.2)

Stochastic ordering is satis�ed by a model of the form

l�1(Pr(y � rijx)) = �(ri)� (w � x) ; (7.3)
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model inverse link function P�1
� (�) density dP�(�)=d�

logit ln �
1��

exp(�)

(1+exp(�))2

probit N�1(�) 1p
2�

exp
n
� �2

2

o
complementary log{log ln(� ln(1��)) expf� � exp(�)g

Table 7.1 Inverse link functions for di�erent models for ordinal regression (taken

from McCullagh and Nelder [1983]). Here, N�1 denotes the inverse normal function.

where l�1 : [0; 1] 7! (�1;+1) is a monotonic function often referred to as the

inverse link function and � : Y 7! R is increasing for increasing ranks. The stochastic

ordering follows from the fact that

Pr(y � rijx1) � Pr(y � rijx2), Pr(y � rijx1)� Pr(y � rijx2) � 0

, l�1(Pr(y � rijx1))� l�1(Pr(y � rijx2)) � 0

, (w � (x2 � x1)) � 0 ;

which no longer depends on ri (the same applies to Pr(y � rijx1) � Pr(y � rijx2)).
Such a model is called a cumulative or threshold model and can be motivated by thecumulative model

following argument: Let us assume that the ordinal response is a coarsely measured

latent continuous variable U(x). Thus, we observe rank ri in the training set i�

y = ri , U(x) 2 [�(ri�1); �(ri)] ; (7.4)

where the function U (latent utility) and � = (�(r0); : : : ; �(rq))
T are to be deter-

mined from the data. By de�nition �(r0) = �1 and �(rq) = +1. We see that the

real line is divided into q consecutive intervals, where each interval corresponds to

a rank ri. Let us make a linear model of the latent variable U(x)linear utility

model
U(x) = (w � x) + � ; (7.5)

where � is the random component of zero expectation, E� (�) = 0, and distributed

according to P�. It follows from Equation (7.4) that

Pr(y � rijx) =
iX

j=1

Pr(y = rj jx) =
iX

j=1

Pr(U(x) 2 [�(rj�1); �(rj)])

= Pr(U(x) 2 [�1; �(ri)]) = Pr((w � x) + � � �(ri))
= P (� � �(ri)� (w � x)| {z }

�

) = P�(�(ri)� (w � x)) :

If we now make a distributional assumption P� for � we obtain the cumulative model

by choosing as the inverse link function l�1 the inverse distribution function P�1�

(quantile function). Note that each quantile function P�1� : [0; 1] 7! (�1;+1)

is a monotonic function. Di�erent distributional assumptions for � yield the logit,

probit, or complementary log{log model (see Table 7.1).
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In order to estimate w and � from model (7.3), for the observation (xi; y) we see

0
BBBBBBB@

o1(xi)

o2(xi)
...

oq�2(xi)

oq�1(xi)

1
CCCCCCCA

| {z }
o(xi)

=

0
BBBBBBB@

�xi 1 0 � � � 0 0

�xi 0 1 � � � 0 0
...

...
...

. . .
...

�xi 0 0 � � � 1 0

�xi 0 0 � � � 0 1

1
CCCCCCCA

| {z }
Z(xi)

0
BBBBBBBBBB@

w

�(r1)

�(r2)
...

�(rq�2)

�(rq�1)

1
CCCCCCCCCCA

| {z }
wGLM

;

where oj(xi) = P�1� (Pr(y � rj jxi)) is the transformed probability of ranks less thandesign matrix

or equal to rj given xi, which will be estimated from the sample by the transformed

frequencies of that event. Note that the complexity of the model is determined by

the linearity assumption (7.5) and by P�1� which can be thought of as a regularizer

in the resulting likelihood equation. For the complete training set we obtain0
BB@

o(x1)
...

o(x`)

1
CCA

| {z }
l�1(y) (random)

=

0
BB@

Z(x1) : : : 0
...

. . .
...

0 : : : Z(x`)

1
CCA

| {z }
Z (random)

0
BB@

wGLM

...

wGLM

1
CCA

| {z }
WGLM (parameters)

: (7.6)

The last equation is called the design matrix of a multivariate generalized linear

model (GLM). A generalized linear model y = l(ZWGLM) is mainly determined by

the design matrix Z and the link function l(�) = P�(�). Then given a sample (X;Y )

and a link function | which coincides with a distributional assumption about the

data | methods for calculating the maximum likelihood estimateWGLM exist (seemaximum

likelihood

estimate

McCullagh and Nelder [1983] or Fahrmeir and Tutz [1994] for a detailed discussion).

The main diÆculty in maximizing the likelihood is introduced by the nonlinear link

function.

To conclude this review of classical statistical methods we want to highlight the

two main assumptions made for ordinal regression: (i) the assumption of stochastic

ordering of the space X (ii) and a distributional assumption on the unobservable

latent variable.

7.3 A Risk Formulation for Ordinal Regression

Instead of the distributional assumptions made in the last section, we now consider

a parameterized model space G of mappings from objects to ranks. Each such

function g induces an ordering �X on the elements of the input space by the

following rule

xi�X xj , g(xi)�Y g(xj) : (7.7)
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If we neglect the ordering of the space Y, it was already shown in Section 1.1.1 that
the Bayes{optimal function g�class given by Equation (1.5) is known to minimize

Rclass(g) = Ex;y
�
1g(x)6=y

�
= Ex;y (cclass(x; y; g(x))) : (7.8)

Let us rewrite Rclass(g) by

Rclass(g) =

Z
X
Qclass(x; g) p(x)dx ;

where

Qclass(x; g) =

qX
i=1

Pr(rijx)� Pr(g(x)jx) = 1� Pr(g(x)jx) : (7.9)

A closer look at Equation (7.9) shows that a suÆcient condition for two mappings

g1 and g2 to incur equal risks Rclass(g1) and Rclass(g2) is given by Pr(g1(x)jx) =
Pr(g2(x)jx) for every x. Assuming that Pr(rijx) is one for every x at a certain rank

rk the risks are equal | independently of how "far away" (in terms of rank di�er-

ence) the mappings g1(x) and g2(x) are from the optimal rank argmax ri2Y Pr(rijx).
This evidently shows that cclass is inappropriate for the case where a natural order-

ing is de�ned on the elements of Y.
Since the only available information given by the ranks is the induced ordering

of the input space X (see Equation (7.7)) we argue that a distribution independent

model of ordinal regression has to single out that function g�pref which induces

the ordering of the space X that incurs the smallest number of inversions on pairs

(x1;x2) of objects (for a similar reasoning see Sobel [1993]). To model this property

we note that due to the ordering of the space Y, each mapping g induces an ordering
on the space X by Equation (7.7). Let use de�ne the rank di�erence 	 : Y�Y 7! Z

by

ri 	 rj := i� j : (7.10)

Now given a pair (x1; y1) and (x2; y2) of objects we distinguish between two di�erent

events: y1	y2 > 0 and y1	y2 < 0. According to Equation (7.7) a function g violates

the ordering if y1	y2 > 0 and g(x1)	g(x2) � 0, or y1	y2 < 0 and g(x1)	g(x2) � 0.

Additionally taking into account that each weak order �Y induces an equivalence

�Y [Fishburn, 1985] the case y1 	 y2 = 0 is automatically taken care of. Thus, an

appropriate loss function is given byloss function for

ordinal regression

cpref(x1;x2; y1; y2; g(x1); g(x2)) =

8>><
>>:

1 y1 	 y2 > 0 ^ g(x1)	 g(x2) � 0

1 y2 	 y1 > 0 ^ g(x2)	 g(x1) � 0

0 else

(7.11)

Note, that we can obtain m2 samples drawn according to p(x1;x2; y1; y2). It

is important that these samples do not provide m2 iid samples of the function

cpref(x1;x2; y1; y2; g(x1); g(x2)) for any g. Furthermore, if we de�ne

cg(x1; y1; g(x1)) = Ex;y [cpref(x1;x; y1; y; g(x1); g(x))] ; (7.12)
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the risk functional to be minimized is given byrisk functional for

ordinal regression
Rpref(g) = Ex1;y1;x2;y2 (cpref(x1;x2; y1; y2; g(x1); g(x2)))

= Ex1;y1 (cg(x1; y1; g(x1))) : (7.13)

Although Equation (7.13) shows great similarity to the classi�cation learning risk

functional (7.8) we see that due to the loss function cg, which exploits the ordinal

nature of Y, we have a di�erent pointwise loss function for each g . Thus we have

found a risk functional which can be used for ordinal regression and takes into

account the ordering as proposed by McCullagh and Nelder [1983].

In order to relate Rpref(g) to a simple classi�cation risk we slightly rede�ne

the empirical risk based on cpref and the training data (X;Y ). For notational

simpli�cation let us de�ne the space E of events of pairs x and y with unequal

ranks by

E := f(z; t) j z = (xi;xj) 2 X � X ; t = 
(yk; yl); yk 2 Y; yl 2 Y; jyk 	 ylj > 0g
Furthermore, using the shorthand notation x(1) and x(2) to denote the �rst and

second object of a pair a new training set (X 0; Y 0) can be derived from (X;Y ) if

we use all 2{sets in E derivable from (X;Y ), i.e.,

8 0 < jy(1)i � y(2)i j (X 0; Y 0) =
n��

x
(1)
i ;x

(2)
i

�
;

�
y
(1)
i ; y

(2)
i

��om0

i=1
(7.14)


(y1; y2) := sgn (y1 	 y2) ; (7.15)

where 
 is an indicator function for rank di�erences and m0 is the cardinality of

(X 0; Y 0).

Theorem 7.1 Equivalence of Risk Functionalspreference

learning ,
classi�cation

Assume an unknown probability measure p(x; y) on X � Y is given. Then for each

g : X 7! Y the following equalities hold true

Rpref(g) = Ey1;y2 (j
(y1; y2)j)Ez;t (cclass(z; t;
(g(x1); g(x2)))) ; (7.16)

Remp(g) =
m0

m2

m0X
i=1

cclass

��
x
(1)
i ;x

(2)
i

�
;

�
y
(1)
i ; y

(2)
i

�
;

�
g
�
x
(1)
i

�
; g
�
x
(2)
i

���
:

Proof Let us derive the probability p(z; t) on E derived from p(x1;x2; y1; y2):

p(z; t) =

(
0 t = 0

p(x1;x2; y1; y2)=� t 6= 0
;

where

� = Ey1;y2 (j
(y1; y2)j) = Pr(jy1 	 y2j > 0) :

Now exploiting the de�nition (7.11) of cpref we see

8x1;x2; y1; y2; g : t = cpref(x1;x2; y1; y2; g(x1); g(x2)) :

The �rst statement is proven. The second statement follows by setting X = X;Y =

Y and assigning constant mass of 1=m2 at each point (x1;x2; y1; y2).
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Taking into account that each function g 2 G de�nes a function pg : X � X 7!
f�1; 0;+1g by
pg(x1;x2) := 
(g(x1); g(x2)) ; (7.17)

Theorem 7.1 states that the empirical risk of a certain mapping g on a samplereduction to

classi�cation

problem

(X;Y ) is equivalent to the cclass loss of the related mapping pg on the sample

(X 0; Y 0) up to a constant factor m0=m2 which depends neither on g nor on pg.

Thus, the problem of distribution independent ordinal regression can be reduced to

a classi�cation problem on pairs of objects. It is important to emphasize the chain of

argument that lead to this equivalence. The original problem was to �nd a function

g that maps objects to ranks given a sample (X;Y ). Taking the ordinal nature

of ranks into account leads to the equivalent formulation of �nding a function pg
that maps pairs of objects to the three classes �Y , �Y , and �Y . Reverting the

chain of argumentation may lead to diÆculties by observing that only those pg are

admissible | in the sense that there is a function g that ful�lls Equation (7.17) |

which de�ne an asymmetric, transitive relation on X . Therefore we also call this

the problem of preference learning. It was shown that the Bayes optimal decision

function given by (1.5) on pairs of objects can result in a function pg which is no

longer transitive on X [Herbrich et al., 1998]. This is also known as the problem

of stochastic transitivity [Suppes et al., 1989]. Note also that the conditions of

transitivity and asymmetry e�ectively reduce the space of admissible classi�cation

functions pg acting on pairs of objects.

However, the above formulation is | in the form presented | not amenable to

the straightforward application of classical results from learning theory. The reasonuniform

convergence

bounds

is that the constructed samples of pairs of objects violate the iid assumption. In

order to still be able to give upper bounds on a risk for preference learning we

have to reduce our sample such that the resulting realization of the loss (7.11)

is distributed iid. Under this condition it is then possible to bound the deviation

of the expected risk from the empirical risk. Let � be any permutation of the

numbers 1; : : : ;m. Furthermore, for notational convenience let Cg(i; j) abbreviate
cpref(xi;xj ; yi; yj ; g(xi); g(xj)). Then we see that for any g 2 G

Pr(Cg(�(1); �(2)); Cg(�(2); �(3)); : : : ; Cg(�(m� 1); �(m)))

= Pr(Cg(�(1); �(2))) � Pr(Cg(�(2); �(3))) � : : : � Pr(Cg(�(m� 1); �(m))) : (7.18)

Clearly, m � 1 is the maximum number of pairs of objects that still ful�l the

iid assumption. In order to see this consider that by transitivity the ordering

g(x1)�Y g(x2) and g(x2)�Y g(x3) implies g(x1)�Y g(x3) (and vice versa for �Y
and �Y ). Now we can give the following theorem.

Theorem 7.2 A Margin Bound for Ordinal Regression

Let p be a probability measure on X � fr1; : : : ; rqg, let (X;Y ) be a sample of size
m drawn iid from p. Let � be any permutation of the numbers 1; : : : ;m. For each

function g : X 7! fr1; : : : ; rqg there exists a function f 2 F and a vector � such
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that1

g(x) = ri , f(x) 2 [�(ri�1); �(ri)] : (7.19)

Let the fat{shattering dimension of the set of functions F be bounded above by

the function afatF : R 7! N . Then for each function g with zero training error, i.e.,Pm�1
i=1 Cg(�(i); �(i+ 1)) = 0 and

�f = min
i=1;:::;m�1



�
y�(i); y�(i+1)

� jf(x�(i))� f(x�(i+1))j
with probability 1� Æ

Rpref(g) � 2

m� 1

�
k log2

�
8e(m� 1)

k

�
log2(32(m� 1)) + log2

�
8(m� 1)

Æ

��
;

where k = afatF (�f=8) � e(m� 1).

Proof Let us recall the following theorem based on Theorem 1.10.

Theorem 7.3 [Shawe-Taylor et al., 1998]

Consider a real valued function class F having fat shattering function bounded

above by the a function afatF : R 7! N which is continuous from the right.

Fix � 2 R . Then with probability 1 � Æ a learner that correctly classi�es m

iid generated examples (x1; y1); : : : ; (xm; ym) with h = T�(f) 2 T�(F ) such that

h(xi) = yi; i = 1; : : : ;m and �f = mini yi (jf(xi)� �j) will have error of h bounded

from above by

2

m

�
k log2

�
8em

k

�
log2(32m) + log2

�
8m

Æ

��
; (7.20)

where k = afatF (�f=8) � em.
Taking into account that by construction we got m � 1 iid examples and that

the classi�cation of a pair is carried out by a decision based on the di�erence

f(x�(i))� f(x�(i+1)) we can upper bound Rpref(g) by replacing each m with m� 1
and using � = 0.

The afatF (�){shattering dimension of F can be thought of as the maximum number

of objects that can be arranged in any order using functions from F and a

minimum margin min
(y1; y2)jf(x1)�f(x2)j of � (utilizing Equation (7.7) together
with (7.19)). Note, that the zero training error condition for the above bound is

automatically satis�ed for any � if Remp(g) = 0. Even though this empirical risk

was not based on an iid sample its minimization allows the application of the

above bound. In the following section we will present an algorithm which aims

at minimizing exactly that empirical risk while at the same time enforcing large

margin rank boundaries.

1. Note the close relationship to the cumulative model presented in Section 7.2.
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ÆÆÆ ÆÆ ÆÆ��� � �

�(r2)

�(r1)

�(r1) �(r2)

U(x)

U(x)x1

x2

�

�
�

�

�
�

���

� �
�

�

Æ
Æ
ÆÆÆ

Æ

Æ

�� �� ��

�f

(a) (b)

Figure 7.1 (a) Mapping of objects from rank r1 (�), rank r2 (�), and rank

r3 (Æ) to the axis f(x), where x = (x1; x2)
T . Note that by �(r1) and �(r2) two

coupled hyperplanes are de�ned. (b) The margin of the coupled hyperplanes �f =

min(X0;Y 0) 
(y
(1)
i ; y

(2)
i )jf(x(1)i ) � f(x

(2)
i )j is this time de�ned at the rank boundaries

�(ri).

7.4 An Algorithm for Ordinal Regression

Based on the results of Theorem 7.2 we suggest to model ranks as intervals on the

real line. Similarly to the classical cumulative model used in ordinal regression, let

us introduce a (latent) linear function f : X 7! R for each function g

f(x) = (w � x) ; (7.21)

which are related by (7.19). In order to apply the given theorem we see that we have

to �nd a function f� which incurs no training error on (X 0; Y 0) while controlling
the generalization error by maximizing the margin �f . Note, thatranks as intervals

on the real line
f(xi)� f(xj) = (w � (xi � xj)) ;
which makes apparent that each pair (xi;xj) 2 X 0 is represented by its di�erence

vector (xi � xj) assuming a linear model of f . This allows the straightforward

application of the large margin algorithm given by Equation (1.51) and (1.52)

replacing each xi by (x
(1)
i � x(2)i ). Hence, the maximization of the margin takes

place at the rank boundaries �(ri) (see Equation (7.19) and Figure 7.1). In practice

it is preferable to use the soft margin extension of the large margin algorithm (see

Equation (1.25)). Furthermore due to the KKT conditions (see Equation (1.54))

w� can be written in terms of the training data. This gives

w� =
m0X
i=1

��i ti
�
x
(1)
i � x(2)i

�
; (7.22)

where �� is given bysoft margin
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�� = argmax
C1���0

(��t)=0

2
4 m0X
i=1

�i � 1

2

m0X
i;j=1

�i�jtitj

�
(x

(1)
i � x(2)i ) � (x(1)j � x(2)j )

�35 ; (7.23)

and t = (
(y
(1)
1 ; y

(2)
1 ); : : : ;
(y

(1)
m0 ; y

(2)
m0 )). Note, however, that due to the expansion

of the last term in (7.23),�
(x

(1)
i � x(2)i ) � (x(1)j � x(2)j )

�
= (x

(1)
i �x(1)j )�(x(1)i �x(2)j )�(x(2)i �x(1)j )+(x

(2)
i �x(2)j ) ;

the solution �� to this problem can be calculated solely in terms of the inner

products between the feature vectors without reference to the feature vectors

themselves. Hence, the idea of (implicitly) mapping the data X via a nonlinear

mapping � : X 7! F into a feature space F can successfully applied (for further

details see Section 1.3.2). Replacing each occurrence of x by �(x) giveskernel trick

�� = argmax
C1���0

(��t)=0

2
4 tX
i=1

�i � 1

2

tX
i;j=1

�i�jtitjK
�
x
(1)
i ;x

(2)
i ;x

(1)
j ;x

(2)
j

�35 : (7.24)

where K is for a given function k de�ned by

K(x1;x2;x3;x4) = k(x1;x3)� k(x1;x4)� k(x2;x3) + k(x2;x4) : (7.25)

Here, k : X � X 7! R is a Mercer kernel and for a �xed mapping � is de�ned by

k(x;x0) = (�(x) � �(x0)) :
Some kernels k to be used in learning are given by Equations (1.63) and (1.73). Note

that the usage of kernels instead of explicitly performing the mapping � allows us

to deal with nonlinear functions f without running into computational diÆculties.

Moreover, as stated in Theorem 7.2 the bound on the risk Rpref(w) does not depend

on the dimension of F but on the margin �f .

In order to estimate the rank boundaries we note that due to Equations (1.52) the

di�erence in f� is greater or equal to one for all training examples which constitute
a correctly classi�ed pair. These can easily be obtained by checking 0 < ��i < C,

i.e., training patterns which do not meet the box constraint (see Section 1.1.4).

Thus if �(k) � X 0 is the fraction of objects from the training set with 0 < ��i < C

and rank di�erence 	 exactly one starting from rank rk, i.e.,rank boundaries

�(k) =
n�
x
(1)
i ;x

(2)
i

� ���y(1)i = rk ^ y(2)i = rk+1 ^ 0 < ��i < C
o

(7.26)

then the estimation of �(rk) is given by

��(rk) =
f�(x1) + f�(x2)

2
; (7.27)

where

(x1;x2) = argmin
(xi;xj)2�(k)

[f�(xi)� f�(xj)] : (7.28)
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In other words, the optimal threshold ��(rk) for rank rk lies in the middle of the

utilities of the closest (in the sense of their utility) objects of rank rk and rk+1.

After the estimation of the rank boundaries �(rk) a new object is assigned to a

rank according to Equation (7.19).

We want to emphasize that taking the di�erence vector as a representation of

a pair of objects e�ectively couples all hyperplanes f(x) = �(rk) thus resulting incoupled

hyperplanes a standard QP problem. Furthermore, the e�ective coupling is retained if we use

general `q{margins (see Section 1.1.4). It is the reduction of the hypothesis space

which makes the presented algorithm suited for the task of ordinal regression. Note,

that also the kernel K derived from k acts only in F and thus avoids considering

too large a hypothesis space. All properties are consequences of the modeling of

ranks as intervals on the real line and of the prior knowledge of the ordering of Y.

7.5 Experimental Results

In this section we present some experimental results for the algorithm presented in

Section 7.4. We start by giving results for arti�cial data which allows us to analyze

our algorithm in a controlled setting. Then we give learning curves for an example

from the �eld of information retrieval.

7.5.1 Learning Curves for Ordinal Regression

In this experiment we want to compare the generalization behavior of our algorithm

with the multi-class SVM [Weston and Watkins, 1998] and Support Vector regres-multi-class SVM

and support

vector regression

sion (SVR) (cf. Smola [1998]) | the methods of choice, if one does not pay attention

to the ordinal nature of Y and instead treats ranks as classes (classi�cation) or con-

tinuous response values (regression estimation). Another reason for choosing those

algorithms is their similar regularizer kwk2 and hypothesis space F which make

them as comparable as possible. We generated 1000 observations x = (x1; x2) in

the unit square [0; 1]� [0; 1] � R
2 according to a uniform distribution. We assigned

to each observation x a value y according to

y = i, 10((x1 � 0:5) � (x2 � 0:5))| {z }
f(x)

+� 2 [�(ri�1); �(ri)] ; (7.29)

where � was normally distributed, i.e., � � N(0; 0:125), and � = (�1;�1;�0:1; 0:25;example utility

function 1;+1) is the vector of prede�ned thresholds. In Figure 7.2 (a) the points xi which

are assigned to a di�erent rank after the addition of the normally distributed quan-

tity �i are shown. If we treat the whole task as a classi�cation problem, we would

call them incorrectly classi�ed training examples. The solid lines in Figure 7.2 (a)

indicate the "true" rank boundaries � on f(x).

In order to compare the three di�erent algorithms we randomly drew 100 training

samples (X;Y ) of training set sizes m ranging from 5 to 45, thereby making sure
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Figure 7.2 (a) Scatter plot of data points x which f(x) maps to a di�erent interval

than f(x)+� (see Equation (7.29)). (b) Learning curves for multi-class SVM (dashed

lines), SV regression (dashed{dotted line) and the algorithm for ordinal regression

(solid line) if we measure Rpref . The error bars indicate the 95% con�dence intervals

of the estimated risk Rpref .

that at least one representative of each rank was within the drawn training set.comparison to

other methods Classi�cation with multi-class SVMs was carried out by computing the pairwise

5 � 4=2 = 10 hyperplanes. For all algorithms, i.e., multi-class SVMs, SVR, and

the algorithm presented in Section 7.4, we chose the kernel k(xi;xj) = ((xi �
xj) + 1)2 and a trade-o� parameter C = 1000000. In the particular case of

Support Vector regression we used a value of " = 0:5 for the "{insensitive loss

function (see [Vapnik, 1995] for the de�nition of this loss function) and thresholds

� = (0:5; 1:5; 2:5; 3:5; 4:5) to transform real valued predictions into ranks.

In order to estimate the risk Rpref(g
�)=Ey1;y2(j
(y1; y2)j) from the remaining

995 to 955 data points we averaged over all 100 results for a given training set

size. Thus we obtained the three learning curves shown in Figure 7.2 (b). Notelearning curves

that we used the scaled Rpref | which is larger by a constant factor. It can be

seen that the algorithm proposed for ordinal regression generalizes much faster by

exploiting the ordinal nature underlying Y compared to classi�cation. This can be

explained by the fact that due to the model of a latent utility all "hyperplanes"

f(x) = �(rk) are coupled (see Figure 7.1) which does not hold true for the case

of multi-class SVMs. Furthermore, the learning curves for SVR and the proposed

ordinal regression algorithm are very close which can be explained by the fact

that the prede�ned thresholds �(rk) are de�ned in such a way that their pairwise

di�erence is about 0:5 | the size of the "{tube chosen beforehand. Thus the utility

and the continuous ranks estimated by the regression algorithm are of the same

magnitude which results in the same generalization behavior.
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(a) (b) (c) (d) (e)

Figure 7.3 Assignments of points to ranks r1 (black area) to r5 (white area) by the

learned function g�(x) based on randomly drawn training samples of size 5; 10; 15; 20;

and 25 (top row to bottom row). (a) Results of the algorithm presented in Section

7.4. (b) Results of multi-class SVM if we treat each rank as a class. (c) Results of

SVR if we assign rank ri to number i. (d) Results of SVR if we assign rank ri to

real number exp(i). (e) Underlying assignment uncorrupted by noise.

In Figure 7.3 we plotted the assignments of the unit square to ranks r1 (black

areas) to ranks r5 (white areas) for the functions g�(x) learned from randomly

drawn training sets ranging from size m = 5 (top row) to m = 25 (bottom row).

We used the same parameters as for the computation of the learning curves. In the

rightmost column (e) the true assignment, i.e., y = ri , f(x) 2 [�(ri�1); �(ri)] is
shown. In the �rst column (a) we can see how the algorithm presented in Section

7.4 performs for varying training set sizes. As expected, for the training set size

m = 25, the method found a utility function together with a set of thresholds which

represent the true ranking very well. The second column (b) shows the results of the

abovementioned multi-class SVM on the task. Here the pairwise hyperplanes are

not coupled since the ordinal nature of Y is not taken into account. This results in

a worse generalization, especially in regions, where no training points were given.

The third column (c) gives the assignments made by the SVR algorithm if we

represent each rank ri by i. Similar to the good results seen in the learning curve,

the generalization behavior is comparable to the ordinal regression method (�rst

column). The de�ciency of SVR for this task becomes apparent when we change

the representation of ranks. In the fourth column (d) we applied the same SVR
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Figure 7.4 Learning curves for multi-class SVM (dashed lines) and the algorithm

for ordinal regression (solid line) for the OHSUMED dataset query 1 if we measure

(a) Rpref and (b) Rclass. Error bars indicate the 95% con�dence intervals.

algorithm, this time on the representation exp(i) for rank ri. As can be seen, this

dramatically changes the generalization behavior of the SVR method. We concluderepresentation of

ranks that the crucial task for application of metric regression estimation methods to

the task of ordinal regression is the de�nition of the representation of ranks. This

is automatically | although more time{consuming | solved by the proposed

algorithm.

7.5.2 An Application to Information Retrieval

In this experiment we make the following assumption: After an initial (textual)

query a user makes to an IR system, the system returns a bundle of documents toinformation

retrieval the user. Now the user assigns ranks to a small fraction of the returned documents

and the task for the learning algorithm is to assign ranks to the remaining unranked

documents in order to rank the remaining documents. We assume that the quantity

of interest is the percentage of inversions incurred by the ranking induced by the

learning algorithm. This quantity is captured by Remp(g)=m
0 (m0 = j(X 0; Y 0)j,

see Equation (7.14) for an exact de�nition) and thus after using m = 6 up to

m = 24 documents and their respective ranking we measure this value on the

remaining documents. For this experiment we used the same parameters as in

the previous experiment. The investigated dataset was the OHSUMED dataset

collected by William Hersh2, which consists of 348 566 documents and 106 queries

with their respective ranked results. There are three ranks: \document is relevant,"

\document is partially relevant," and \irrelevant document" wrt. the given textual

2. This dataset is publicly available at ftp://medir.ohsu.edu/pub/ohsumed/.
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query. For our experiments we used the results of query 1 ("Are there adverse e�ects

on lipids when progesterone is given with estrogen replacement therapy?") which

consists of 107 documents taken from the whole database. In order to apply our

algorithm we used the bag{of{words representation [Salton, 1968], i.e., we computedbag{of{words

representation for every document the vector of "term{frequencies{inverse{document{frequencies"

(TFIDF) components. The TFIDF is a weighting scheme for the bag{of{words

representation which gives higher weights to terms which occur very rarely in all

documents. We restricted ourselves to terms that appear at least three times in the

whole database. This results in � 1700 terms which leads for a certain document

to a very high{dimensional but sparse vector. We normalized the length of each

document vector to unity (see Joachims [1998]).

Figure 7.4 (a) shows the learning curves for multi-class SVMs and our algorithm

for ordinal regression measured in terms of the number of incurred inversions. As

can be seen from the plot, the proposed algorithm shows very good generalization

behavior compared to the algorithm which treats each rank as a separate class.

Figure 7.4 (b) shows the learning curves for both algorithms if we measure the

number of misclassi�cations | treating the ranks as classes. As expected, the multi-

class SVMs perform much better than our algorithm. It is important to note again,

that minimizing the zero{one loss Rclass does not automatically lead to a minimal

number of inversions and thus to an optimal ordering.
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Figure 7.5 Learning curves for SVR (dashed lines) and the algorithm for ordinal

regression (solid line) for the OHSUMED dataset query 1 if we measure (a) Rpref

and (b) R0�1. Error bars indicate the 95% con�dence intervals.

Figure 7.5 (a) shows the learning curves for SVR and for our algorithm for ordinal

regression, measured the number of incurred inversions. While the former performs

quite well on the arti�cial dataset, in the real world dataset the SVR algorithm fails

to �nd a ranking which minimizes the number of inversions. This can be explained

by fact that for the real{world example the equidistance in the assumed utility may

no longer hold | especially taking into account that the data space is very sparse
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for this type of problem. Similarly, Figure 7.5 (b) shows the learning curves for both

algorithms if we measure the number of misclassi�cations. As expected from the

curves on the right the SVR algorithm is worse even on that measure. Note that

the SVR algorithm minimizes neither Rpref nor R0�1 which may explain its bad

generalization behavior. Also note that we made no adaptation of the parameter "

| the size of the tube. The reason is that in this particular task there would not

be enough training examples available to set aside a reasonable portion of them for

validation purposes.

7.6 Discussion and Conclusion

In this chapter we considered the task of ordinal regression which is mainly

characterized by the ordinal nature of the outcome space Y. All known approaches

to this problem (see Section 7.2) make distributional assumptions on an underlying

continuous random variable. In contrast, we proposed a loss function which allows

for application of distribution independent methods to solve ordinal regression

problems. By exploiting the fact that the induced loss function class is a set of

indicator functions we could give a distribution independent bound on our proposed

risk. Moreover, we could show that to each ordinal regression problem there exists a

corresponding preference learning problem on pairs of objects. This result built the

link between ordinal regression and classi�cation methods | this time on pairs of

objects. For the representation of ranks by intervals on the real line, we could give

margin bounds on our proposed risk | this time applied at the rank boundaries.

Based on this result we presented an algorithm which is very similar to the well

known Support Vector algorithm but e�ectively couples the hyperplanes used for

rank determination.

Noting that our presented loss involves pairs of objects we see that the problem

of multi-class classi�cation can also be reformulated on pairs of objects which leads

to the problem of learning an equivalence relation. Usually, in order to extend alearning of

equivalence

relation

binary classi�cation method to multiple classes, one{against{one or one{against{

all techniques are devised [Hastie and Tibshirani, 1998, Weston and Watkins, 1998].

Such techniques increase the size of the hypothesis space quadratically or linearly

in the number of classes, respectively. Recent work [Phillips, 1999] has shown that

learning equivalence relations can increase the generalization behavior of binary{

class methods when extended to multiple classes.

Further investigations will include the following question: does the application of

the GLM methods presented in Section 7.2 lead automatically to large margins (see

Theorem 7.2)? The answer to such a question would �nally close the gap between

methods extensively used in the past to theories developed currently in the �eld of

Machine Learning.
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By setting apart the two functions of a support vector machine: separation of points

by a nonlinear surface in the original space of patterns, and maximizing the distance

between separating planes in a higher dimensional space, we are able to de�ne

inde�nite, possibly discontinuous, kernels, not necessarily inner product ones, that

generate highly nonlinear separating surfaces.

Maximizing the distance between the separating planes in the higher dimensional

space is surrogated in the present approach by support vector suppression, which

is achieved by minimizing some desired norm of their Lagrange multipliers. The

norm may be one induced by the separation kernel if it happens to be positive

de�nite, or a Euclidean or a polyhedral norm (i.e., a norm induced by a bounded

polyhedron such as the 1-norm or the 1-norm). Polyhedral norms lead to linear

programs whereas Euclidean norms lead to convex quadratic programs, all with an

arbitrary separation kernel.

A standard support vector machine can be recovered by using the same kernel for

separation and support vector suppression. On a simple test example, all models

perform equally well when a positive de�nite kernel is used. When a negative de�nite

kernel is used, we are unable to solve the nonconvex quadratic program associated

with a conventional support vector machine, while all other proposed models remain

convex and easily generate a surface that separates all given points.
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8.1 Introduction

Support vector machines [Vapnik, 1995, Bennett and Blue, 1997, Girosi, 1998,

Wahba, 1999b, Cherkassky and Mulier, 1998, Sch�olkopf, 1997, Smola, 1998] attempt

to separate points belonging to two given sets in N -dimensional real (Euclidean)

space R N by a nonlinear surface, often only implicitly de�ned by a kernel function.

In our approach here the nonlinear surface in the original input space R N which is

de�ned linearly in its parameters, can be represented as a linear function (plane)

in a higher, often much higher dimensional feature space, say R `. Also, the original

points of the two given sets can also be mapped into this higher dimensional space.

If the two sets are linearly separable in R `, then it is intuitively plausible to generate

a plane mid-way between the furthest parallel planes apart that bound the two sets.

Using a distance induced by the kernel generating the nonlinear surface in R N , it can

be shown [Vapnik and Lerner, 1963] that such a plane optimizes the generalization

ability of the separating plane. If the two sets are not linearly separable, a similar

approach can be used [Cortes and Vapnik, 1995, Vapnik, 1995] to maximize the

distance between planes that bound each set with certain minimal error. Linear

separation by planes with maximal 1-norm distance and by nonlinear surfaces were

proposed earlier in [Mangasarian, 1965, 1968] as well as with soft margins [Bennett

and Mangasarian, 1992]

In this paper we start with a nonlinear separating surface (8.1), de�ned by some

arbitrary kernel k and by some linear parameters u 2 R
m , to be determined, that

turn out to be closely related to some dual variables. Based on this surface we derive

a general convex mathematical program (8.5) that attempts separation via the

nonlinear surface (8.1) while minimizing some function � of the parameters u. In our

formulation here, the function � which attempts to suppress u can be interpreted as

minimizing the number of support vectors, or under more conventional assumptions

as maximizing the distance between the separating planes in R
` . The choice of �

leads to various support vector machines. We consider two classes of such machines

based on whether � is quadratic or piecewise linear. If we choose � to be a quadratic

function generated by the kernel de�ning the nonlinear surface (8.1), then we are led

to the conventional dual quadratic program (8.9) associated with a support vector

machine which requires positive de�niteness of this kernel. However the quadratic

function choice for � can be divorced from the kernel de�ning the separating surface

and this leads to other convex quadratic programs such as (8.10) withoutmaking any

assumptions on the kernel. In [Smola and Sch�olkopf, 1998b] techniques for dealing

with kernels that are not positive semide�nite were also presented. Another class

of support vector machines are generated by choosing a piecewise linear convex

function for � and this leads to linear programs such as (8.11) and (8.12), both

of which make no assumptions on the kernel. In Section 8.5 we give some simple

applications of all four formulations to the Exclusive-Or (XOR) problem using �rst

a positive de�nite second-order polynomial kernel and then a negative de�nite third-

order polynomial kernel. For the positive de�nite kernel all four convex formulations
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are easily solved and the resulting nonlinear surfaces separate all points in all cases.

However, for the negative de�nite kernel, a powerful state-of-the-art package fails

to solve the nonconvex quadratic program associated with the conventional support

vector machine, whereas all other three convex formulations are easily solved and

lead to complete separation of the data by the nonlinear surface.

A word about our notation and background material. All vectors will be column

vectors unless transposed to a row vector by a prime superscript 0. For a vector s

in the N -dimensional real space R N , the step function s� of s 2 R N is de�ned as a

vector of ones and zeros in R
N , with ones corresponding to positive components of

s and zeros corresponding to nonpositive components. The scalar (inner) product

of two vectors s and y in the N -dimensional real space R N will be denoted by s � y.
For an m�N matrix X; Xi will denote the ith row of X and X�j will denote the
jth column of X. The identity matrix in a real space of arbitrary dimension will be

denoted by I; while a column vector of ones of arbitrary dimension will be denoted

by e. We shall employ the MATLAB [1992] \dot" notation to signify application of

a function to all components of a matrix or a vector. For example if X 2 R
m�N ,

then X2
� 2 Rm�N will denote the matrix of elements of X squared.

We begin by de�ning a general kernel function as follows.

De�nition 8.1general kernels

with no

assumptions

Let X 2 R
m�N and B 2 R

N�`. The kernel k(X;B) maps Rm�N � R
N�` into

R
m�`.

In particular if s and t are column vectors in R
N then, k(s0; X 0) is a row vector in

R
m , k(s0; t) is a real number and k(X;X 0) is an m�m matrix. Note that for our

purposes here k(X;X 0) need not be symmetric in general. Examples of kernels are

given in the introduction to the book and below where a 2 Rm , b 2 R `, � 2 R and

d is an integer. For simplicity we restrict ourselves here to �nite dimensional kernels

although many of the results can be extended to in�nite dimensional Hilbert spaces

[Kimeldorf and Wahba, 1971].

Example 8.1

Polynomial Kernel (XB + �ab0)d�
Example 8.2

Neural Network Step Kernel (XB + �ab0)� �

Example 8.3

Radial Basis Kernel e��kX
0
i�B�jk2 , i; j = 1; : : : ;m, ` = m,

where, here only, e is the base of the natural logarithm.

Note that our approach allows discontinuous kernels such as the neural network

step kernel with a discontinuous step function without the need for a smoothing

approximation such as the sigmoid or hyperbolic tangent approximation as is

usually done [Vapnik, 1995, Cherkassky and Mulier, 1998].
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8.2 GSVM: The General Support Vector Machine

We consider a given set A of m points in real N -dimensional space of features

R
N represented by the matrix X 2 R

m�N . Each point Xi, i = 1; : : : ;m, belongs

to class 1 or class -1 depending on whether Yii is 1 or -1, where Y 2 R
m�m is

a given diagonal matrix of plus or minus ones. We shall attempt to discriminate

between the classes 1 and -1 by a nonlinear separating surface, induced by some

kernel k(X;X 0), as follows:GSVM

separating

surface
k(s0; X 0)Y � u = b; (8.1)

where k(s0; X 0) 2 R
m , according to De�nition 8.1. The parameters u 2 R

m and

b 2 R are determined by solving a mathematical program, typically quadratic or

linear. A point s 2 R N is classi�ed in class 1 or -1 according to whether the decision

function

(k(s0; X 0)Y � u� b)�; (8.2)

yields 1 or 0 respectively. The kernel function k(s0; X 0) de�nes a nonlinear map

from s 2 R
N to some other space s 2 R

` where ` may be much larger than N .

In particular if the kernel k is an inner product kernel under Mercer's condition

[Courant and Hilbert, 1953, pp 138-140],[Vapnik, 1995, Cherkassky and Mulier,

1998, Burges, 1998] (an assumption that we will not make in this paper) then for

s and t in R
N :

k(s; t) = �(s) � �(t); (8.3)

and the separating surface (8.1) becomes:

�(s)0�(X 0)Y � u = b; (8.4)

where � is a function, not easily computable, from R
N to R

` , and �(X 0) 2 R
`�m

results from applying � to the m columns of X 0. The diÆculty in computing �

and the possible high dimensionality of R ` have been important factors in using a

kernel k as a generator of a nonlinear separating surface in the original feature space

R
N but which is linear in the high dimensional space R `. Our separating surface

(8.1) written in terms of a kernel function retains this advantage and is linear in

its parameters, u; b. We now state a mathematical program that generates such a

surface for a general kernel k as follows:the GSVM

min
u;b;�

Ce � � + �(u)

s.t. Y (k(X;X 0)Y u� eb) + � � e

� � 0:

(8.5)

Here � is some convex function on R
m , typically some norm or seminorm, and C is

some positive parameter that weights the separation error e � � versus suppression
of the separating surface parameter u. Suppression of u, utilized in [Bradley and



8.3 Quadratic Programming Support Vector Machines 139

Mangasarian, 1998] for feature selection, can be interpreted in one of two ways.

We interpret it here as minimizing the number of support vectors, i.e., constraints

of (8.5) with positive multipliers. A more conventional interpretation is that of

maximizing some measure of the distance or margin between the bounding parallel

planes in R
`, under appropriate assumptions, such as � being a quadratic function

induced by a positive de�nite kernel k as in (8.9) below. As is well known, this leads

to improved generalization by minimizing an upper bound on the VC dimension

[Vapnik, 1995, Sch�olkopf, 1997]. Girosi et al. [1993] used a quadratic function for

the regularization term � while Smola [1998] used linear and quadratic terms.

We term a solution of the mathematical program (8.5) and the resulting sepa-

rating surface (8.1) and corresponding decision function (8.2) a generalized support

vector machine, GSVM. In the following sections of the paper we derive a number

of special cases, including the standard support vector machine. First, however, it

is important to state under what conditions does the mathematical program (8.5)

have a solution.

Proposition 8.2

Existence of a GSVM For any given X 2 R
m�N , any Y 2 R

m�m, C > 0

and any kernel k, the mathematical program (8.5) has a solution whenever � is a

piecewise-linear or quadratic function bounded below on R
m.

Proof The feasible region of (8.5) is always nonempty. Just take: u = 0; b = 0

and � = e. When � is piecewise-linear, existence follows from the standard linear

programming result, that a feasible linear program with a bounded objective has

a solution. Just apply this result to each piece of the objective on its polyhedral

region. For a quadratic � the result is a direct consequence of the Frank-Wolfe

existence result for quadratic programming [Frank and Wolfe, 1956].

We note that no convexity of � was needed for this existence result. However in our

speci�c applications where duality theory will be invoked, � will need to be convex.

8.3 Quadratic Programming Support Vector Machines

We consider in this section support vector machines that include the standard ones

[Vapnik, 1995, Cherkassky and Mulier, 1998, Burges, 1998] and which are obtained

by setting � of (8.5) to be a convex quadratic function �(u) = 1
2u � Hu, where

H 2 Rm�m is some symmetric positive de�nite matrix. The mathematical program

(8.5) becomes the following convex quadratic program:

min
u;b;�

Ce � � + 1
2u �Hu

s.t. Y (k(X;X 0)Y u� eb) + � � e

� � 0:

(8.6)
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The Wolfe [1961] dual [Mangasarian, 1994] of this convex quadratic program is:dual QP GSVM

min
�2Rm

1
2� � Y k(X;X 0)Y H�1Y k(X;X 0)0Y�� e ��

s.t. e � Y� = 0

0 � � � Ce:

(8.7)

Furthermore, the primal variable u is related to the dual variable � by:

u = H�1Y k(X;X 0)0Y�: (8.8)

Equations (8.6)-(8.8) have also been given by Smola and Sch�olkopf [1998b]. If

we assume that the kernel k(X;X 0) is symmetric positive de�nite and let H =

Y k(X;X 0)Y , then our problem (8.6) becomes the standard SVM problem and our

dual problem (8.7) degenerates to the dual problem of the standard support vector

machine [Vapnik, 1995, Cherkassky and Mulier, 1998, Burges, 1998] with u = �:

min
�2Rm

1
2� � Y k(X;X 0)Y�� e ��

s.t. e � Y� = 0

0 � � � Ce:

(8.9)

dual SVM
The positive de�niteness assumption on k(X;X 0) in (8.9) can be relaxed to positive
semide�niteness while maintaining the convex quadratic program (8.6), with H =

Y k(X;X 0)Y , as the direct dual of (8.9) without utilizing (8.7) and (8.8). The

symmetry and positive semide�niteness of the kernel k(X;X 0) for this version of

a support vector machine is consistent with the support vector machine literature.

The fact that � = u in the dual formulation (8.9), shows that the variable u

appearing in the original formulation (8.6) is also the dual multiplier vector for the

�rst set of constraints of (8.6). Hence the quadratic term in the objective function

of (8.6) can be thought of as suppressing as many multipliers of support vectors as

possible and thus minimizing the number of such support vectors. This is another

interpretation of the standard support vector machine that is usually interpreted

as maximizing the margin or distance between parallel separating planes.

This leads to the idea of using other values for the matrix H other than

Y k(X;X 0)Y that will also suppress u. One particular choice is interesting because it

puts no restrictions on k: no symmetry, no positive de�niteness or semide�niteness

and not even continuity. This is the choice H = I in (8.6) which leads to a dual

problem (8.7) with H = I and u = Y k(X;X 0)0Y� as follows:arbitrary-kernel

dual QP GSVM
min
�2Rm

1
2� � Y k(X;X 0)k(X;X 0)0Y�� e0�

s.t. e � Y� = 0

0 � � � Ce:

(8.10)

Note that setting H = I corresponds to weight decay in neural networks and

as shrinkage estimators in statistics [Smola and Sch�olkopf, 1998b]. We also note

that k(X;X 0)k(X;X 0)0 is positive semide�nite with no assumptions on k(X;X 0),
and hence the above problem is an always solvable convex quadratic program
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for any kernel k(X;X 0). In fact by Proposition 8.2 the quadratic program (8.6)

is solvable for any symmetric positive semide�nite matrix H, and by quadratic

programming duality so is its dual problem (8.7), the solution � of which and

u = Y k(X;X 0)0Y� can be immediately used to generate a decision function (8.2).

Thus we are free to choose any symmetric positive de�nite matrix H to generate

a support vector machine. Experimentation will be needed to determine what are

the most appropriate choices for H.

Note that even though (8.10) di�ers from (8.9) merely in the replacement of the

kernel k(X;X 0) by k(X;X 0)k(X;X 0)0, the two problems lead to distinct separating
surfaces (8.1) because u = � for (8.9) and u = Y k(X;X 0)0Y� for (8.10). Note that

some sparsity in the solution � of (8.10) may be lost with the product kernel if it

is not positive de�nite.

We turn our attention to linear programming support vector machines.

8.4 Linear Programming Support Vector Machines

In this section we consider problems generated from the mathematical program

(8.5) by using a piecewise linear function � in the objective function thus leading

to linear programs.

The most obvious choice for � is the 1-norm of u, which leads to the following

linear programming formulation:LP1 GSVM with

arbitrary kernel
min
u;b;�;t

Ce � � + e � t
s.t. Y (k(X;X 0)Y u� eb) + � � e

t � u � �t
� � 0:

(8.11)

A solution (u; b; �; t) to this linear program for a chosen kernel k(X;X 0) will provide
a decision function as given by (8.2). This linear program parallels the quadratic

programming formulation (8.10) that was obtained as the dual of (8.5) by setting

�(u) therein to half the 2-norm squared of u whereas �(u) is set to the 1-norm of

u in (8.11). Another linear programming formulation that somewhat parallels the

quadratic programming formulation (8.9), which was obtained as the dual of (8.5)

by setting �(u) therein to half the 2-norm squared of k(X;X 0)
1
2Y u, is obtained

setting � to be the 1-norm of k(X;X 0)Y u. The motivation for this idea is to

try capturing a norm induced by k(X;X 0) even when the kernel is not positive

semide�nite. This leads to the following linear program:LP2 GSVM with

arbitrary kernel
min
u;b;�;t

Ce � � + e � t
s.t. Y (k(X;X 0)Y u� eb) + � � e

t � k(X;X 0)Y u � �t
� � 0:

(8.12)
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No assumptions of symmetry or positive de�niteness on k(X;X 0) are needed in

either of the above linear programming formulations as was the case in the quadratic

program (8.9).

It is interesting to note that if the linear kernel k(X;X 0) = XX 0 is used in the

linear program (8.11) we obtain the high-performing 1-norm linear SVM proposed

by Bredensteiner and Bennett [1997] and utilized successfully in [Bredensteiner,

1997, Bennett et al., 1998, Bradley and Mangasarian, 1998]. Hence, if we set

w = X 0Y u in (8.11) we obtain [Bradley and Mangasarian, 1998, Equation (13)].

8.5 A Simple Illustrative Example

We �rst demonstrate the workings and sometimes di�erent, yet equally e�ective,

decision surfaces obtained by the various proposed mathematical programming

formulations, for a positive de�nite symmetric kernel. We then show that for a

negative de�nite symmetric kernel, the conventional support vector machine fails

to generate a decision function that correctly separates the given points, whereas

all the new formulations do succeed in generating a decision surface that correctly

separates all the given points.

For our positive de�nite kernel we use a polynomial kernel of order 2, based on

Example 8.1 with B = X 0, � = 1; a = b = e and d = 2, and apply it to the classical

Exclusive-Or (XOR) problem. We thus have:

X =

2
66664

1 1

1 �1
�1 �1
�1 1

3
77775 ; Y =

2
66664

1 0 0 0

0 �1 0 0

0 0 1 0

0 0 0 �1

3
77775 : (8.13)

Hence with the MATLAB [1992] \dot" notation signifying componentwise expo-

nentiation we get that:

k(X;X 0) = (XX 0 + ee0)2� =

2
66664

9 1 1 1

1 9 1 1

1 1 9 1

1 1 1 9

3
77775 ; (8.14)

and

k(s0; X 0) = (s0X 0+e0)2� = [s1+s2+1 s1�s2+1 �s1�s2+1 �s1+s2+1]2�:(8.15)

Solution of the linear program (8.11) with C � 1 gives:

u =
1

8
e; b = 0; � = 0; t =

1

8
e; Ce � � + e � t = 1

2
: (8.16)
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Note that the � = 0 in the above solution means that the decision surface correctly

classi�es all given points represented by X and Y . Solution of either quadratic

program (8.9) or (8.10) with the same kernel and for C � 1 also yields u = 1
8e.

Substitution of this u in (8.6) and solving the resulting linear program gives the

same b; � as in (8.16). Thus all mathematical programs (8.9), (8.10) and (8.11) yield

exactly the same decision surface (8.2):

(k(s0; X 0)Y u� b)� = ((s0X 0 + e0)2�Y u� b)� = (s1s2)�; (8.17)

a step function of the quadratic function s1s2, which correctly classi�es the two

categories class 1 and class -1 and is in agreement with the solution obtained in

[Cherkassky and Mulier, 1998, pages 372-375] for the conventional support vector

machine (8.9). Note that neither mathematical program (8.10) or (8.11) required

positive de�niteness of k(X;X 0), whereas (8.9) does.
However, it is rather interesting to observe that the linear programming solution

(8.16) is not unique. In fact another solution is the following:

u =

2
66664

0
1
4

0
1
4

3
77775 ; b = �

3

2
; � = 0; t =

2
66664

0
1
4

0
1
4

3
77775 ; Ce � � + e � t = 1

2
: (8.18)

For this solution the decision surface (8.2) turns out to be:

(k(z0; X 0)Y u� b)� = ((s0X 0 + e0)2�Y u� b)� =
1

2
(2� (s1 � s2)2)�: (8.19)

This decision surface is rather di�erent from that of (8.17), but it does separate

the two classes correctly and in fact it consists of two parallel lines separating R
2

into 3 regions, whereas (8.17) separates R 2 into four quadrants each pair of which

contains one class. Both of these decision functions are depicted in Figure 8.1 and

Figure 8.2.

Solution of the linear program (8.12) with C > 1 yields:

u =

2
66664

1
24
5
24
1
24
5
24

3
77775 ; b = �1; � = 0; t =

2
66664

0

2

0

2

3
77775 ; (8.20)

which gives the decision surface:

((s0X 0 + e0)2�Y u� b)� =
1

3
(2 + s1s2 � (s1 � s2)2)�: (8.21)

This decision function divides R 2 into three regions by a pair of \square root" curves

that correctly classify the two classes as depicted in Figure 8.3.
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1 20

1

2

-1

-2

Class  1

Class  1

Class  -1

Class  -1

-1-2

Figure 8.1 XOR discrimination by a step function of a quadratic function: (s1s2)�
obtained by the linear program (8.11) and the quadratic programs (8.9) and (8.10).

Finally in order to show that positive de�niteness of the kernel k(X;X 0) is not
essential in any of our new mathematical programming formulations (8.10), (8.11)

or (8.12), and whereas it is in the conventional quadratic programming formulation

(8.9), we consider the following negative de�nite kernel:

k(X;X 0) = (�XX 0 � ee0)3�; (8.22)

and attempt to solve the mathematical programs (8.9),(8.10), (8.11) and (8.12)

with this kernel and with C = 1. The powerful PATH mathematical program-

ming package [Ferris and Munson, 1999, Dirkse and Ferris, 1995] failed to solve the

nonconvex quadratic programming formulation (8.9) for the conventional support

vector machine. (PATH is a Newton-based method for solving a nonsmooth sys-

tems of equations that subsume the Karush Kuhn Tucker conditions of quadratic

and nonlinear programming.) In contrast, the same package solved the quadratic

program (8.10) giving � = 1
576e and a corresponding u = Y k(X;X 0)0Y� = � 1

24e.

Substitution of this u in the quadratic program (8.6) and solving the resulting linear

program gives: b = 0; � = 0. The solution � = 0 indicates that all points repre-

sented by X have been correctly classi�ed, which is corroborated by the resulting

decision surface (s1s2)�, the same as that of (8.17). This indicates the e�ectiveness
of the quadratic program (8.10) in its ability to extract from the negative de�nite

cubic kernel just the required quadratic term to achieve correct separation. Simi-

larly both linear programs (8.11) and (8.12) gave � = 0 thus also achieving complete

separation with this negative de�nite kernel.
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1 20

1

2

-1

-2

Class -1

Class -1

-1-2

Class  1

Figure 8.2 XOR discrimination by a step function of a quadratic function: (2 �
(s1 � s2)

2)� obtained by another solution of the linear program (8.11).

8.6 Conclusion

We have proposed a direct mathematical programming framework for general sup-

port vector machines that makes essentially no or few assumptions on the ker-

nel employed. We have derived new kernel-based linear programming formulations

(8.11) and (8.12), and a new quadratic programming formulation (8.10) that re-

quire no assumptions on the kernel k. These formulations can lead to e�ective but

di�erent decision functions from those obtained by the quadratic programming for-

mulation (8.9) for a conventional support vector machine that requires symmetry

and positive de�niteness of the kernel. Even for negative de�nite kernels these new

formulations can generate decision functions that separate the given points whereas

the conventional support vector machine does not. This leads us to suggest that

further testing and experimentation with mathematical programming formulations

such as (8.11), (8.12) and (8.10) and others are worthwhile. These formulations

may open the way for a variety of support vector machines that could be tested

computationally against each other and against existing ones. Furthermore, broad

classes of serial and parallel optimization algorithms such as [Bennett and Man-

gasarian, 1994] can be brought to bear on these di�erent formulations exploiting

their structure in order to permit the processing of massive databases.
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1 20

1

2

-1

-2

-1-2

Class  1

Class  -1

Class  -1

Figure 8.3 XOR discrimination by a step function of a quadratic function: (2 +

s1s2 � (s1 � s2)
2)� obtained by the linear program (8.12).
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Support Vector Machines were introduced and �rst applied to classi�cation prob-

lems as alternatives to multi-layer neural networks. The high generalization ability

provided by Support Vector Classi�ers (SVCs) has inspired recent work on com-

putational speedups as well as the fundamental theory of model complexity and

generalization. At �rst glance, a Support Vector Classi�er appears to be nothing

more than a generalized linear discriminant in a high dimensional transformed fea-

ture space; indeed, many aspects of SVCs can best be understood in relation to

traditional linear discriminant techniques.

This chapter explores interconnections between many linear discriminant tech-

niques, including Perceptron, Radial Basis Functions (RBFs) and SVCs. The prin-

ciple of duality between learning- or feature-based techniques (such as Perceptrons)

and memory- or example-based methods (such as RBFs) is central to the develop-

ment of SVCs. We provide several other examples of duality in linear discriminant

learning algorithms.
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9.1 Introduction

Support Vector Classi�ers are linear classi�ers in a high dimensional space. Re-

cently, a large number of SVC training algorithms have been proposed [Krauth and

M�ezard, 1987, Frie� et al., 1998, Freund and Schapire, 1998, Sch�olkopf et al., 1999a],

but there seems to be a lack of appreciation of the close relationships among SVCs

and many other classi�cation techniques, in particular older \classical" methods.

Our goal is to clarify key relationships among several important methods. While

we cannot address all relevant techniques, we shall discuss methods that are of his-

torical importance, practical use, and illustrative of key concepts. In doing so, we

shall emphasize the complementary nature of distributed learning based methods

in a direct weight space, and local, memory based methods in a dual parameter

space. We shall not consider questions of regularization, generalization, structural

risk minimization, or convergence rates.

There are three interrelated reasons for the long and extensive literature on

linear classi�ers. First, such classi�ers are computationally quite simple, both

during learning and during classi�cation. Second, despite this simplicity, linear

classi�ers have had great success in a large number of application areas. Finally,

they are amenable to theoretical analysis. For instance, the proof of the Perceptron

convergence theorem greatly encouraged practitioners [Rosenblatt, 1958]. These

reasons continue to underlay the interest in current linear methods such as SVCs.

Our chapter is organized as follows. In Section 9.2 we review the basic concepts

of classi�ers based on linear discriminants and highlight the key role of duality

between learning methods in the direct space and those in a dual space. We

turn, in Section 9.3, to several settings or formulations of the learning problem

for classi�cation, including those based on criteria of training error, Perceptron

objective function and mean squared error objective function. Then in Section 9.4

we describe several training algorithms for linear classi�ers in general and SVCs

in particular. Then in Section 9.5 we consider the properties of the solutions, such

as robustness, sensitivity to outliers, and so on. We conclude in Section 9.6 with a

summary of our main points and a set of outstanding problems.

9.2 What is a Linear Discriminant?

9.2.1 Classi�cation Problem

We consider the two class classi�cation problem, in which patterns, represented as

n-dimensional vectors x, are labeled with binary values y 2 f�1;+1g. For example,
assume that images of handwritten digits 0 and 1 must be classi�ed. An optical

scanner yields a gray level pixel image; each pixel can be encoded as a number

corresponding to one component of x. Images of the digit 0 are labeled �1 and

images of the digit 1 are labeled +1.
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Classi�cation problems are usually characterized by an unknown probability dis-

tribution p(x; y) on R n�f�1;+1g, but training examples xi and their corresponding
class labels yi are provided:

X = fx1; : : : ;xmg � R
n (9.1)

Y = fy1; : : : ; ymg � f�1; 1g: (9.2)

The problem is to �nd a decision function g(x), which predicts accurately the class

label y of any example x that may or may not belong to the training set.

9.2.2 Discriminant Function

The discriminant function approach uses a real valued function f(x), called dis-

criminant function, the sign of which determines the class label prediction: g(x) =discriminant

function sgn (f(x)). The discriminant function f(x) may be parametrized with some param-

eters a = fa1; : : : ; apg that are determined from the training examples by means of

a learning algorithm. To be explicit, we should write f(x; a), but we shall gener-

ally omit this in the following. A great many pattern classi�cation methods employ

discriminant functions, either implicitly or explicitly. For instance, when an input

pattern x is presented to the input layer in a standard three layer neural network

having a 1-of-c representation at the output layer, each output unit computes,

e�ectively, a discriminant function. The pattern is assigned the category label cor-

responding to the output unit with the largest discriminant value.

9.2.3 Linear Discriminant

Linear discriminant functions are discriminant functions that are linear in their

parameters. Two kinds of linear discriminant functions have been studied in depth:

f(x) =w � �(x) linear classi�er or \Perceptron," and (9.3)

f(x) =
mP
i=1

yi�ik(x;xi) kernel classi�er, (9.4)

with parameters w 2 R
N , �i 2 R , basis functions � : R n ! R

N and symmetric

kernel functions k : R n � R
n ! R .1 The basis and kernel functions may also be

parametrized, but the parameters are not subject to training with the examples in

the framework that we consider here.

For certain sets of basis functions, linear discriminant functions are universal ap-

proximators, that is, for well chosen parameters, the decision boundary f(x) = 0

1. We simplify the parametrization of linear classi�ers by integrating an eventual bias
value b as an additional component of the weight vector. This corresponds to assuming
that one of the components of �(x) is a constant.
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can arbitrarily well approximate any decision boundary, including the ideal decision

boundary. Such is the case, for instance, of polynomial classi�ers. The basis func-

tions �k(x) of a polynomial classi�er are monomials that are products of a number

of components of x.

9.2.4 Feature-based Classi�ers

The basis functions �k(x) of linear classi�ers or \Perceptrons" of Equation 9.4 canPerceptron

be understood as feature detectors. For example, in a handwritten digit recognition

task where 0s and 1s have to be classi�ed, algorithms can be derived that detect

the presence or absence of a straight line or of a loop. In the absence of domain

knowledge about the task necessary to design such ad hoc feature detectors, general

purpose basis functions can be used, such as monomials in a polynomial classi�er.

9.2.5 Example-based Classi�ers

RBF
The symmetric kernel functions k(x;x0) of kernel classi�ers of Equation 9.4 are

often (although not necessarily) radial basis functions. For example k(x;x0) =

exp(�kx� x0k2) is a bell shaped or \Gaussian" kernel. Each contribution to the

decision function k(x;xi) is centered around one example xi, where it is maximum,

and vanishes as the Euclidean distance between x and xi increases. Several examples

of general purpose kernel functions are given in Table 9.1. Note that the polynomial

kernel is not, in general, a Radial Basis Function. The computation of the linear

discriminant of kernel classi�ers requires storing in memory the training examples,

thus the name \example-based" or \memory-based" classi�er.

There are close relationships between kernel classi�ers and other non-parametric

classi�cation methods such as Parzen windows [Parzen, 1962b] and nearest neigh-Parzen

windows bors [Cover and Hart, 1967]. Parzen windows are essentially kernel classi�ers nor-

malized such that f(x) can be used as an estimator of the posterior probability

P (y = 1jx). When rectangular windows are used, the classi�cation decision is done

according to the largest number of examples of each class falling within a window

of a given size that is centered around x.

Similarly, in a k nearest neighbor classi�er, the decision is made according to thenearest

neighbors majority label among the k training examples that are nearest to the test point x.

One of the bene�ts of k nearest neighbor classi�ers is that decision boundaries are

smooth where the data is sparse, but sharp and curvy where the data is dense, as

we might wish.

Kernels can also be thought of as similarity measures and thus can often be

designed to incorporate domain knowledge about the task. For example, in a hand-

writing digit recognition task, a similarity measure that incorporates invariancetangent

distance with respect to rotations, translations and other distortions is better suited than

a simple dot product (see for instance the \tangent distance" [Simard et al., 1993,

Sch�olkopf et al., 1998a]).
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9.2.6 Feature and Example Selection

In general, the more complex the classi�cation problem (i.e., the more complex

the optimal decision boundary), the larger the number of features that should be

included in the classi�er, for example all the monomials of a polynomial classi�er of

order d. However the number of parameters to estimate rapidly becomes prohibitive,

e.g., O(nd). Similarly, training a large number of parameters may be infeasible,

either because of high computation complexity or, more seriously, if there is

insuÆcient training data, because the solution is underdetermined.

The classical approach to these general problems is to select a subset of features,

itself often a subtle and challenging task [Sch�urmann, 1996]. One of the most

popular methods is principal component analysis, in which the n-dimensional

features are projected to a subspace so as to minimize an MSE measure [Oja, 1983].principal

component

analysis

Likewise, the computational load imposed by kernel classi�ers can be reduced by

selecting a subset of the training examples or by creating prototypes out of linear

combinations of examples.

9.2.7 Locality

Feature-based linear classi�ers are considered \global" decision functions because

they are globally de�ned by all the training examples. Conversely, kernel classi�ers,

which rely on local radial kernels, each of which determined by a local subset of

the training examples, are often considered \local" classi�ers. When radial kernels

are used, the sign of the decision function f(x) is inuenced by many local soft

decisions of presence or absence of x in the neighborhood of xi.

9.2.8 Duality

Under certain conditions linear classi�ers, Equation 9.4, and kernel classi�ers, Equa-

tion 9.4, are two di�erent representations of the same discriminant function. This

invalidates the usual distinction between \global" and \local" linear discriminant.

For example, a wide variety of training algorithms of linear classi�ers, including

gradient descent algorithms, yield a weight vector w, which is a weighted sum of

the training examples in �-space:

w =
mX
i=1

yi�i�(xi): (9.5)

By substituting w in the expression of the linear classi�er (Equation 9.4): f(x) =

w � �(x) one obtains a kernel classi�er:

f(x) =
mX
i=1

yi�ik(xi;x) (9.6)

with kernel k(xi;x) = �(xi) � �(x).
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k(x;x0) Name

(x � x0 + 1)d Polynomial of order d

exp(�kx� x0k2) Gaussian radial basis function

exp(�kx� x0k) Exponential radial basis function

Table 9.1 Examples of kernels. Increasing parameters d 2 N or  2 R increases

the capacity of the classi�er.

Reciprocally, many kernels admit series expansions (eventually in�nite), and can

therefore be written as a dot product (see Mercer's conditions in Theorem 1.16).

Such is the case, for instance, of the polynomial and the Gaussian kernel (Table 9.1).Mercer

conditions In the following, we will refer to the linear classi�er (Perceptron) as the primal

representation of the linear discriminant and to the corresponding kernel classi�er

as its dual. Therefore, w will be the primal parameters and �i; 1 � i � m the dual

parameters.dual

parameters Depending on the number of features and the number of training examples, it

may be bene�cial to carry out the computations in one or the other representation.

For instance, the polynomial kernel: k(x;x0) = (x � x0 + 1)d expands into the dot

product between � vectors whose components contain all possible products of up to

d components of x vectors. The number of primal parameters to estimate N ' nd

(the dimension of feature space) is often much larger than the number of dual

parameters m (the number of training examples).

9.2.9 Linear Separability

Besides being linear in its parameters, the linear classi�er is linear in its input com-

ponents in the N -dimensional �-space. Thus it de�nes a linear decision boundary

(an (N �1)-dimensional hyperplane). A classi�cation problem is said to be linearly

separable, for given basis functions �(x), if there exists a parameter vector w such

that g(x) = sgn (w � �(x)) classi�es all vectors x without error.

Non-linear separability can arise from a number of causes (Figure 9.2.10):

Classes may overlap in feature space (case (a)), due to the existence of inherently

ambiguous patterns, e.g., a vertical bar can either represent a digit 1 or an lowercase

l). Separability can also be due to the presence of \noisy data," including mean-

ingless patterns and mislabeled valid examples. In the case of overlapping classes,

the ideal decision boundary may nevertheless be linear. For instance, two classes

generated by Gaussian distributions of identical covariance matrices have a Bayes

optimum decision boundary g(x) = sgn (p(x; y = 1)� p(x; y = �1)) that is linear.
Classes may have an ideal decision boundary which is not linear (case (b)), as

might arise in the case of complex multimodal distributions.

From the point of view of �nding an optimum linear discriminant function, these

two cases are quite di�erent. In case (a), one must allow that some examples will be
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misclassi�ed, i.e., that the asymptotic error rate of Bayes optimum decision function

(Bayes error) is non zero. In case (b), the Bayes error is zero, and a better choice

of representation may render the problem separable.

9.2.10 Linearly Separable Training Set

A linearly separable training set is not by itself an indication that the problem is

linearly separable. Any sparse training set is likely to be linearly separable. A non

linearly separable training set indicates that the problem is non linearly separable

(provided that the training data does not contain any error). However, it does not

provide a clue as to whether classes overlap or not.

Given a universal set of basis functions, it is always possible to separate the

training set without error, for some value of the parameter of the associated kernel

assuming no two identical training points have been assigned to di�erent classes.

For instance, one can always reduce the width (increase ) of the Gaussian kernels

centered on the training points. However, this approach tends to over�t the data

and give poor classi�cation error rate on unseen test data. Such over�tting can

easily be understood since, in the limit of in�nitely narrow kernels, any training set

can be learned without error, but no prediction can be made on unseen data. The

training examples are merely \memorized."

A general principle from learning theory predicts that for two classi�ers having

the same training error, the classi�er with smaller capacity is more likely to perform

better on unseen data [Vapnik, 1979]. Loosely speaking, the capacity is related to

the number of training examples that can be separated without error. Therefore,

increasing the kernel parameter allows to learn easily more training examples, but

simultaneously increases capacity. Introducing some errors on the training set by

reducing the capacity may yield a better classi�er.

Note that this is completely independent on whether the data is \noisy" or not.

9.3 Formulations of the Linear Discriminant Training Problem

The goal of linear discriminant function training is to adjust its parameters such

that the expected value of the classi�cation error on unseen patterns (referred to

as expected risk or prediction error) is minimized. Note that only the parameters

w or � are being trained in this framework. The additional parameters of the basis

functions or kernel functions are not subject to training.

Under the assumption that the data is generated by a probability distribution

p(x; y), the prediction error is given by:

R(f) =

Z
RN�f�1;1g

1fg(x)6=yg p(x; y)dxdy: (9.7)

where g(x) = sgn (f(x)) and f(x) is a linear discriminant function.
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(a) (b)

Figure 9.1 Non-linear separability. (a) Overlapping classes. The optimum decision

boundary may still be linear. (b) Non overlapping classes. In the case shown, the

optimum decision boundary is not linear.

The prediction R(f) cannot be computed when p(x; y) is unknown, it can only

be approximated. The various training methods that have been proposed all use

a particular way of approximating R(f), which is always optimum in some sense.

We have selected a subset of methods that have some interesting connections to

Support Vector Classi�ers.

9.3.1 Minimizing the Number of Training Errors

The �rst method consists in estimating R(f) by its discrete approximation com-

puted with the training examples (the empirical risk or training error):

Remp(f) =
mX
i=1

1fg(xi)6=yig: (9.8)

The empirical risk functional Remp(f) is piecewise constant, which is typically

diÆcult to optimize by standard techniques such as gradient descent.

9.3.1.1 Perceptron Objective Function

Perceptron

objective function One of the most popular substitute objective functions is the Perceptron objective

function. The Perceptron objective function is equal to the sum of the \margin

values" of the misclassi�ed examples:

JPerceptron(f) = �
X
i2M

yif(xi) = �
X
i2M

�f (xi; yi) (9.9)

where M = fi; i = 1; : : : ;m : g(xi) = sgn (f(xi)) 6= yig is the set of misclassi�ed
examples and �f (xi; yi) = yif(xi) = yiw ��(x) are the margin values. The margin

values are proportional to the distances from the misclassi�ed examples to the
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decision boundary in �-space. The misclassi�ed examples have negative margin

values: �f (xi; yi) < 0.

If the training set is linearly separable, a set of parameters that minimizes

JPerceptron(f) also minimizes Remp(f) of Equation 9.8. If the training set is not

linearly separable, the minimization of Remp(f) is not guaranteed, but a set of

parameters that minimizes JPerceptron(f) may nevertheless yield an acceptable

practical solution.

9.3.2 Approximating the Bayes Optimum Discriminant Function

Bayes optimum

discriminant A di�erent approach is to approximate the Bayes optimum discriminant function

by a linear discriminant. By minimizing an approximation of R(f), we were trying

to �nd a decision function g(x) = sgn (f(x)), where f(x) is a linear discriminant,

that minimizes the number of classi�cation errors. We now consider the decision

function gBayes(x) = sgn (fBayes(x)), which gives the theoretical minimum number

of classi�cation errors. It is based on a discriminant function, e.g., fBayes0(x) =

p(x; y = 1) � p(x; y = �1), which we approximate with a linear discriminant

function. We have therefore replaced the problem of training a classi�er by that

of estimating a probability density.

Any discriminant function f(x) can be transformed by a monotonically increasing

function without changing the outcome of the decision function g(x) = sgn (f(x)).

The Bayes decision function can therefore be constructed with several discriminant

functions:

fBayes0(x) = p(x; y = 1)� p(x; y = �1) (9.10)

fBayes1(x) = P (y = 1jx)� P (y = �1jx) (9.11)

fBayes2(x) = log

�
p(xjy = 1)

p(xjy = �1)
�
: (9.12)

9.3.2.1 MSE Objective Function

A �rst method consists in seeking the linear discriminant f(x) that best approx-

imates fBayes1(x) = P (y = 1jx) � P (y = �1jx) in the least squares sense. This

function corresponds to the minimum of the objective function:Z
RN�f�1;1g

(fBayes1(x)� f(x))2p(x; y)dxdy: (9.13)

This problem seems to require the knowledge of fBayes1(x). However, it can be

shown (see, e.g., [Duda and Hart, 1973]) that the linear discriminant that minimizes

this objective function also minimizes:Z
RN�f�1;1g

(y � f(x))2p(x; y)dxdy: (9.14)
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Because the probability densities are unknown, the expected value of the objective

function is replaced by its empirical estimate on the training set. The problem is

brought back to that of minimizing the mean squared error objective function:mean square

error
JMSE(f) =

mX
i=1

(yi � f(xi))2 =
mX
i=1

(1� �f (xi; yi))2; (9.15)

where �f (xi; yi) = yif(xi) are the margin values.

9.3.2.2 Logistic Regression

logistic

regression The logistic regression method, which uses the maximum likelihood framework,

optimizes a di�erent objective function. It is assumed that fBayes2(x) = log[p(xjy =
1)=p(xjy = �1)] follows a model linear in its parameters: a linear discriminant

f(x) = w ��(x). One seeks the parameters of f(x) that maximize the likelihood of

the training data, assuming that the model is correct. We derive below an objective

function for logistic regression in our notations.

Maximizing the likelihood function:

L(w) =
mY
i=1

p(xi; yijw) (9.16)

is equivalent to minimizing the cross-entropy objective function:2

JCross entropy(f) = �
mX
i=1

zi log(pi) + (1� zi) log(1� pi); (9.17)

where zi =
yi+1
2 , pi = P (yi = 1jxi). Using Bayes inversion, we can express pi as:

pi =
1

1 + e�fBayes2(x)
= logistic(fBayes2(x)) (9.18)

where logistic(z) = 1=(1 + e�z) = (1 + tanh(z=2))=2 is the logistic function. By

replacing pi and zi by their value in Equation 9.17, the problem can be brought

back to that of minimizing:

2(JCross entropy(f) + log(2)) = �
mX
i=1

(1 + yi) log

�
1 + tanh

�
fBayes2(x)

2

��
(9.19)

+ (1� yi) log
�
1� tanh

�
fBayes2(x)

2

��
; (9.20)

Under the hypothesis that fBayes2(x) follows a model linear in its parameters, the

objective function becomes:

2. The solution to an optimization problem is not modi�ed by transforming the objective
function with a smooth monotically increasing function such as the log and/or removing
or adding positive additive or multiplicative constants.
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JLogistic(f) = �
mX
i=1

log(1 + tanh(�f (xi; yi)=2)); (9.21)

where �f (xi; yi) = yif(xi) are the margin values and f(x) = w � �(x).
From the axioms of probability, P (y = 1jx)� P (y = �1jx) always lies between �1
and +1. In the MSE approach, the estimate of P (y = 1jx) � P (y = �1jx) is the
linear discriminant itself f(xi), which is not limited to taking values between �1 and
+1.3 The logistic function approach is consistent with the axioms of probabilities

in that its estimate of P (y = 1jx) � P (y = �1jx), which is tanh(f(x)=2), always

lies between �1 and +1.neural

networks The similarity between the logistic regression approach and the training of

a one layer neural network can be noticed. The tanh function is nothing but

a sigmoid. Commonly, neural networks are trained with \back-propagation," a

gradient descent method using an MSE objective function [Rumelhart et al., 1986b].

The cross-entropy objective function is also sometimes used.

9.3.2.3 Weight Decay

Learning theoretic predictions of classi�er performance indicate that if two classi-

�ers have the same training error, the classi�er with smallest capacity is more likely

to perform better. This is particularly important when problems are very underde-

termined, that is when the number of training examples is small compared to the

number of parameters to be estimated. Such is the case when a large number of

basis functions �k(x) is used, e.g., in the case of a polynomial classi�er.weight decay

In an e�ort to choose one solution among many that minimize JMSE(f) or

JLogistic(f), additional constraints can be added. One popular constraint is to pick

the solution that has minimum weight vector norm (min kwk). This is achieved by

adding a penalty term to the objective functions, known as \weight decay" term,

e.g.,regularizer

JWD MSE(f) =
mX
i=1

(1� �f (xi; yi))2 + �kwk2; (9.22)

where � is a positive constant. The weight decay can be considered as a regularizer.

9.3.3 Maximizing the Minimum Margin

support vector

classi�er As with nearest-neighbor classi�ers and linear classi�ers such as the Perceptron,

the support vector classi�er approach does not attempt to estimate probabilities.

3. It may seem contradictory that the MSE solution is an approximation to P (y =
1jx)�P (y = �1jx) and yet is not limited to taking values between �1 and +1. However,
this approach is valid in the sense that asymptotic convergence is guaranteed.
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Instead it provides directly a solution to the classi�cation problem, as do empirical

risk minimization methods.

The empirical risk minimization problem, as addressed for instance with the

Perceptron method, also su�ers from underdetermination. For a large number of

basis functions, the training set is likely to be separable. If so, there are usually

many linear discriminant functions that perform the separation without error.

In an e�ort to choose one solution among many, the support vector method

advocates to choose the solution that leaves the largest possible margin on both

sides of the decision boundary in �-space.optimum margin

classi�er There are many equivalent formulations of the optimum margin problem (see the

introduction chapter of this book, Chapter 1). One of them resembles the Perceptron

formulation (Equation 9.9). In our previous notations one must maximize the

smallest possible \margin value" �f (xi; yi), that is minimize the objective function:

JSV C1(f) = � min
i;1�i�m

�f (xi; yi); (9.23)

under the constraints that all examples are well classi�ed and that the weight vector

is normalized.

Another version resembles the MSE with weight decay formulation (Equa-

tion 9.22). One must minimize the norm of the weight vector under the constraints

that the margin values are larger or equal to one. Using the method of Lagrange

multipliers, the problem is brought back to that of optimizing the objective func-

tion:4

JSV C2(f) = kwk2 +
mX
i=1

�i(1� �f (xi; yi)); (9.24)

under the constraints that �i � 0; 8i; 1 � i � m.regularizer

In the introduction chapter of this book, Chapter 1, it is explained what type of

regularizer is associated with the support vector classi�er solution.

9.4 Training Algorithms

There exist a variety of optimization techniques that search for the parameters that

minimize the objective functions de�ned in the previous section. In this section, we

focus only on simple gradient descent algorithms. We have several motivations for

doing so. We want to provide algorithms that are easy to understand intuitively

and easy to implement with a few lines of code. We want to emphasizes connections

between the various training algorithms. We refer the advanced user interested in

large scale real world problems to algorithms that are more eÆcient computation-

ally, e.g., use mathematical programming, described elsewhere [Luenberger, 1973].

4. Optimizing means in this case �nding the saddle point of JSV C2(f), which is a minimum
with respect to w and a maximimum with respect to �i.
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9.4.1 Gradient Descent

gradient descent

The technique underlying all the algorithms presented in this section is called

\gradient descent." Consider an objective function J(w) of some parameters w.

Let rw be the gradient operator:

rw =

�
@

@w1
; : : : ;

@

@wN

�t
: (9.25)

At the solution of the minimization problem, we have:

rwJ(w) = 0: (9.26)

The gradient descent technique consists in iteratively approaching the solution by

making small steps in steepest direction on the slope of the objective function, as

given by the negative gradient:

w w � �rwJ(w); (9.27)

where � is a positive value, called the \learning rate."stochastic

gradient We distinguish two variants of gradient descent procedures: true gradient and

single sample gradient. The true gradient (or batch gradient) method is the method

described above. The single sample gradient method (also sometimes called \on-

line" or \stochastic" gradient) uses the gradient computed on the cost incurred by a

single sample; it updates one sample at a time with this \local" gradient value. We

will describe true gradient methods, from which single sample gradient methods can

trivially be inferred. Single sample methods are often preferred in practice because

of simplicity and speed of convergence.

9.4.2 Algorithms for Linearly Separable Training Sets

Perceptron algorithm

If the training set is linearly separable in �-space, it can be shown that minimizing

the Perceptron objective function with gradient descent yields a linear discriminant

function with zero training error in a �nite number �xed size steps (see the

introduction chapter of this book, Chapter 1).

We �rst use the primal expression of the linear discriminant: f(x) = w � �(x).
The gradient of the objective function JPerceptron(f) (Equation 9.9) is given by:

rwJPerceptron(f) = �
X
i2M

yi�(xi); (9.28)

where M = fi; i = 1; : : : ;m : g(xi) = sgn (f(xi)) 6= yig is the set of misclassi�ed
examples. From this expression, we can derive algorithm 9.1. By substituting the

dual expression of the linear discriminant f(x) =
Pm

j=1 yj�jk(x;xj), one obtains

an alternative dual version. Note that the increments on the �s are of �xed size.

This algorithm di�ers from performing gradient descent in �-space directly.
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The dual Perceptron algorithm has been known for a long time [Aizerman et al.,

1964]. It is a simple way of training kernel classi�ers, which is proven to converge

in a �nite number of steps, as per the Perceptron convergence theorem.

Algorithm 9.1 : Primal and Dual Perceptron

Arguments: Training sample, X = fx1; : : : ;xmg � X, Y = fy1; : : : ; ymg � f�1g.
Returns: Decision function g, parametrized with

primal parameters w (dim. N �-space coordinate weight vector)

or dual parameters � (dim. m sample weight vector).

Function Perceptron(X;Y )

Initialize arbitrarily, e.g., w =
P
i

yi�(xi) or � = 1.

repeat
for all i from i = 1; : : : ;m

Compute the discriminant function values:

f(xi) = w � �(xi) =P
j

yj�jk(xi;xj).

Compute the margin values: �f (xi; yi) = yif(xi).
endfor
Update on the set of misclassified training examples,

M = fi; i = 1; : : : ;m : �f (xi; yi) < 0g:
for all i 2M

primal parameters w w + yi�(xi), or

dual parameter �i  �i + 1.
endfor

until all examples are well classified: �f (xi; yi) > 0.
return g : x 7! sgn (w � �(x)) = sgn (

P
j

yj�jk(x;xj)).

end

Optimum margin Perceptron algorithm

Since the 1992 paper of Boser et al. [Boser et al., 1992], support vector classi�ers

are often associated with quadratic programming (QP); because of the perceived

complexity of QP, this method has had a relatively small impact among pattern

recognition practitioners. While we still recommend using QP for large scale real

world problems, we present here an alternate algorithm (Table 9.2), which is very

simple, and converges to the same solution asymptotically, for � !1 [Krauth and

M�ezard, 1987].Minover

This algorithm closely resembles the Perceptron algorithm. At each iteration,

instead of updating the weight vector with the sum of the misclassi�ed examples,

one updates with a single example: the example with smallest \margin value." The

name of the algorithm is \Minover," for minimum overlap. The concept originated

in the physics community where overlap is a synonym for margin value.



9.4 Training Algorithms 161

Algorithm 9.2 : Primal and Dual Optimum Margin Perceptron (Minover)

Arguments: Training sample, X = fx1; : : : ;xmg � X, Y = fy1; : : : ; ymg � f�1g;
stopping criterion, � 2 R

+.

Returns: Decision function g, parametrized with

primal parameters w (dim. N �-space coordinate weight vector)

or dual parameters � (dim. m sample weight vector).

Function Minover(X;Y; �)
Initialize arbitrarily, e.g., w =

P
i

yi�(xi) or � = 1.

repeat
for all i from i = 1; : : : ;m

Compute the discriminant function values:

f(xi) = w � �(xi) =P
j

yj�jk(xi;xj).

Compute the margin values: �f (xi; yi) = yif(xi).
endfor
Find the training example (xc; yc), which is ``worst classified,''

i.e., has smallest margin value: (xc; yc) = argmin i �f (xi; yi).
Update primal parameters w w + yc�(xc), or

increment dual parameter �c  �c + 1.
until �f (x

c; yc) > �.
return g : x 7! sgn (w � �(x)) = sgn (

P
j

yj�jk(x;xj)).

end

Both the Perceptron and the Minover algorithms are independent on the learning

rate. The norm of the weight vector increases during learning. One can optionally

normalize the weight vector at the end of the training procedure.

Support vector classi�ers draw their name from the fact that their discriminant

function is a function only of a small number of training examples, called support

vectors. Those are the examples with smallest margin value, which are closest to

the decision boundary in �-space.informative

patterns The learning mechanism of the Minover algorithm reveals an important aspect of

support vectors. Support vectors used to be called \informative patterns." Indeed,

in the process of learning, the weight vector is updated only with those patterns that

are hardest to predict (have smallest margin value). In the information theoretic

sense, the examples that are least predictable are the most informative.

9.4.3 Algorithms for Non Linearly Separable Training Sets

As mentioned in Section 9.2.9, a non linearly separable training set may indicate

that the selection of basis functions is not adequate or that the capacity is insuÆ-

cient. This can be remedied by changing the basis functions (or the kernel) and/or

increasing the number of basis functions (or the kernel parameter) to increase the

classi�er capacity. But it may also indicate overlapping classes or \noisy" data

(meaningless or mislabeled examples), in which case it may be detrimental to in-
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crease the capacity. Also, we may want to reduce the capacity at the expense of

introducing some training error in the hope of obtaining a better prediction error.

In these last cases, we need learning algorithms that can converge to a solution

with non zero training error.

Although the Perceptron algorithm does not converge in the non-separable case,

there exist algorithms (e.g., linear programming) that minimize the Perceptron

objective function even in the non-separable case.

Pseudo-inverse and least mean square

Training a linear discriminant function can be thought of as solving a system of

linear inequalities:

yi(w � �(xi)) > 0; i = 1; : : : ;m

Traditionally, people have often replaced this problem by that of solving a system

of equations:

yi(w � �(xi)) = 1; i = 1; : : : ;m

that provides acceptable solutions in both the separable and non separable case,

albeit at the expense of making eventually errors on the training examples in the

separable case.

The treatment of the problem is simpli�ed by introducing matrix notations:

wt� = yt

where w is a (N; 1) matrix, � = [�(x1); : : : ;�(xm)] is a (N;m) matrix, and y is

a (m; 1) matrix. If � is invertible, the solution can be computed as: wt = yt��1.
When � is rectangular, the system is either under or over determined. But one can

always seek the best solution in the least square sense, which is given by:

wt = yt�+

pseudo-inverse
where �+ is the Moore-Penrose pseudo-inverse, for which many computational

algorithms exist [Albert, 1972].

It can be shown that the pseudo-inverse solution minimizes JMSE(f) (Equa-

tion 9.15). Moreover, in the case where the system is underdetermined (N =

dim(w) > m) the pseudo-inverse solution is the solution of minimum norm. It

is the minimum of JWD MSE(f) (Equation 9.22), for �! 0.

It is also possible to minimize the mean squared error JMSE(f) with a gradient

descent method. The gradient of JMSE(f) is:

rwJMSE(f) = �2
mX
i=1

yi(1� �f (xi; yi))�(xi):

The weights must be initialized to zero to converge to the solution with minimum

norm, the learning rate must decrease with the number of iterations, e.g., �(t) = 1=t.
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Algorithm 9.3 : Primal and Dual Gradient Descent

Arguments: Training sample, X = fx1; : : : ;xmg � X, Y = fy1; : : : ; ymg � f�1g.
learning rate �(t) 2 R

+,

stopping criterion, � 2 R
+ and � 2 N .

Returns: Decision function g, parametrized with

primal parameters w (dim. N �-space coordinate weight vector)

or dual parameters � (dim. m sample weight vector).

Function Gradient(X;Y; �(t); �)
Initialize w = 0 or � = 0 and t = 0.
repeat

for all i from i = 1; : : : ;m
Compute the discriminant function values:

f(xi) = w � �(xi) =P
j

yj�jk(xi;xj).

Compute the squashed margin values: �(�f (xi; yi)) = �(yif(xi)).
endfor
Update on all training examples,

for all i from i = 1; : : : ;m
primal parameters w w + �(t)yi[1� �(�f (xi; yi))]�(xi), or

dual parameter �i  �i + �(t)[1� �(�f (xi; yi))].
endfor
Increment t: t t+ 1.

until empirical objective function is small enough J(f) < � or

maximum number of iterations is exceeded t > �.
return g : x 7! sgn (w � �(x)) = sgn (

P
j

yj�jk(x;xj)).

end

Depending on the choice of the squashing function, one obtains various algorithms. (1)
Perceptron: �(z) = sgn (z). (2) MSE: �(z) = z. (3) Logistic regression: �(z) = tanh(z=2).
(4) Neural soft margin: �(z) = 1, if z < �1; �(z) = z, if �1 � z � 1; �(z) = 1, if z > 1.

This algorithm highlights the fact, which is not readily apparent in the pseudo-

inverse solution, that the MSE solution is a weighted combination of the training

patterns. As such, it admits a dual version. Indeed, the Moore-Penrose pseudo-

inverse has the following property5 [Albert, 1972]:

�+ = (�t�)+�t = �t(��t)+

Hence the MSE linear discriminant function has dual forms:

f(x) = wt�(x) = yt�+�(x) = yt(�t�)+�t�(x) (9.29)

= ytK+�(x) = �t�(x) =
nX
i=1

yi�ik(x;xi) (9.30)

5. (�t�)+ = (�t�)�1 if the columns of � are linearly independent and (��t)+ =
(��t)�1 if the rows of � are linearly independent. This provides one way of computing
the pseudo-inverse.
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where K = �t� = [k(xi;xj)]1�i�m;1�j�m is a (m;m) matrix to be pseudo-

inverted, �(x) = �t�(x) = [k(x;xi)]1�i�m is a (m; 1) matrix, and �t = ytK+

is a (1;m) matrix of elements yi�i.

Interestingly, the pseudo-inverse/MSE solution coincides with the optimum mar-

gin solution when all the training examples are support vectors.

Logistic regression

Another very similar algorithm is obtained by minimizing Jlogistic(f). The gradient

of Jlogistic(f) with respect to w is:

rwJlogistic(f) = �12
mX
i=1

yi(1� tanh(�f (xi; yi)=2))�(xi):

As shown in Algorithm 9.3 the only change in the algorithm is to pass the margin

values through a squashing function.back-propagation

Note that, unlike the back-propagation algorithm that trains one layer neural

networks with gradient descent using the MSE objective function, the weight update

is not multiplied by the derivative of the sigmoid (tanh) function.

A Minover algorithm for soft margin classi�er

One may wonder whether it is possible to obtain a support vector classi�er for non

separable training data, by extending the idea of an optimum margin.negative margin

The �rst idea that comes to mind is to minimize the negative margin, instead

of maximizing the positive margin. There are a number of reasons why this is

not a good idea. First the solution may not be unique. It is easy to construct

examples for which there exist several equivalent negative margin solutions (see

Figure 9.4.3) [Lambert, 1969]. Second, the negative margin is solely de�ned by

misclassi�ed examples, which may be \bad" examples to rely on.

Another possibility is to keep maximizing the positive margin, but allow that

a number of training examples be misclassi�ed, with a certain penalty for each

misclassi�ed example. This is the idea behind the soft margin algorithm [Cortes

and Vapnik, 1995] and �-SVC [Sch�olkopf et al., 1998c] .soft margin

The quadratic programming formulation of the soft margin algorithm and �-

SVC are very similar to that of the regular maximum margin algorithm. For the

soft margin algorithm, there is only a set of additional constraints on the Lagrange

multipliers: �i � C, where C is a positive constant. One can trivially extend the

Minover algorithm to compute the soft margin solution (Algorithm 9.4).6

While the original Minover algorithm insists on trying to learn examples that have

negative margin values and cannot be well classi�ed, the soft Minover algorithm

gives them up after a while and continues with the remaining examples.

6. �-SVC provides a more explicit control over the number of non-marginal support
vectors, but it does not lend itself to a simple extention of the Minover algorithm.
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Figure 9.2 Negative margin. Examples can be constructed that have several

equivalent negative margin solutions.

Neural networks and large margin classi�ers

In the separable training set case, if all the training examples are support vectors,

the pseudo-inverse/MSE solution is also the maximum margin solution. This is not

the case in general.

The Kernel-Adatron method [Frie� et al., 1998] is a simple modi�cation of the

MSE update (Algorithm 9.3 (2)), for which �i is replaced by zero if it becomes

negative. It can be shown to converge to the maximum margin solution. The soft

margin constraints �i � C can similarly be enforced by replacing �i by C if it goes

overbound.

One of the e�ects of the squashing function in the logistic regression is to

limit the inuence of very well classi�ed examples (with large positive margins).

Another e�ect is to limit the inuence of misclassi�ed examples (with large negative

margins). This is even emphasized in the back-propagation algorithm, because the

weight update is multiplied by the derivative of the sigmoid (tanh) function.

These two e�ects are similar in spirit to the constraints imposed on �i by the

soft margin algorithm: 0 � �i � C.
If the tanh function is replaced by a piecewise linear squashing function (�(z) =

�1, if z < �1; �(z) = z, if �1 � z � 1; �(z) = 1, if z > 1), another algorithm that

computes a large margin solution is obtained. If an example is very well classi�ed

(�f (xi; yi) � 1), it does not contribute to the weight update. If an example is very

misclassi�ed (�f (xi; yi) � �1), it contributes a �xed maximum increment.
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Algorithm 9.4 : Primal and Dual Soft Margin Perceptron (SoftMinover)

Arguments: Training sample, X = fx1; : : : ;xmg � X, Y = fy1; : : : ; ymg � f�1g;
stopping criterion, � 2 R

+;

soft margin regularization constant, C 2 R
+.

Returns: Decision function g, parametrized with

primal parameters w (dim. N �-space coordinate weight vector)

or dual parameters � (dim. m sample weight vector).

Function SoftMinover(X;Y; �; C)

Initialize: w =
P
i

yi�(xi) and � = 1.

repeat
for all i from i = 1; : : : ;m

Compute the discriminant function values:

f(xi) = w � �(xi) =P
j

yj�jk(xi;xj).

Compute the margin values: �f (xi; yi) = yif(xi).
endfor
Find the training example (xc; yc), which is ``worst classified,''

i.e., has smallest margin value: (xc; yc) = argmin i �f (xi; yi).
if the corresponding �c goes over bound: �c > C

Take the example (xc; yc) out of the training set.

else
Update primal parameters w w + yc�(xc), and

increment dual parameter �c  �c + 1.
endif

until �f (x
c; yc) > � or the training set is empty.

return g : x 7! sgn (w � �(x)) = sgn (
P
j

yj�jk(x;xj)).

end

In the process of learning, the weight vector increases and more and more

examples having margin values greater than one become inactive. The algorithm

progressively focuses on the marginal examples. If the algorithm is initialized with

zero weights, in the separable training set case, it converges to the MSE solution

of minimum norm computed on the marginal examples only. This is precisely the

maximum margin solution.neural

soft margin In the non-separable case, the algorithm ends up focusing on the misclassi�ed

examples. The backpropagation variant that multiplies the update by the derivative

of the squashing function may be preferable. If an example is very misclassi�ed

(�f (xi; yi) � �1), it does not contribute to the weight update. This implements a
kind of soft margin algorithm (9.3) (4) that we refer to as \neural soft margin."



9.5 Which Linear Discriminant? 167

9.5 Which Linear Discriminant?

While there is academic value in comparing methods, in practice it is often diÆcult

to know which linear discriminant method is best suited to the classi�cation

problem at hand. As we have already pointed out, each approach has strengths

and weaknesses, and may be optimum on some criterion. Although recent results

| both theoretical and experimental | argue in favor of SVCs from the point

of view of generalization (see the introduction chapter of this book, Chapter 1),

occasionally other practical considerations may be important, as we now consider.

9.5.1 Feature Selection and Computational Burden

A fact that is not readily apparent from our presentation is that most linear

discriminant methods su�er from intrinsic computational limitations. As discussed

in Section 9.2, for a good choice of the basis functions, linear discriminants yield

classi�cation functions that can approximate the Bayes optimum decision function

arbitrarily well. One approach may be to select a polynomial classi�er of high

order, that is, to use all the monomials up to a certain order as basis functions.

Training such a classi�er in the primal representation using traditional methods is

impractical since the number of parameters to estimate is too large. In the dual

representation, training is possible only if the number of training examples is not

too large. Traditionally, this problem is addressed with various auxiliary techniques

of feature selection (in primal space) or example selection (in dual space).

The advantage of SVCs is that they avoid this diÆcult feature selection step.

Computationally, one can capitalize on the fact that the solution is a function only

of the SVs, a small subset of the training patterns, where learning relies on quadratic

programming in the dual space [Boser et al., 1992]. In particular, SVCs perform an

automatic feature selection and example selection via the selection of SVs.

9.5.2 Probabilistic Interpretation of the Scores

So far, we have only considered discriminant functions as a means to a �nal

classi�cation decision; only the sign of f(x) matters for this purpose. However,

when a classi�er is integrated as part of a larger system, the analog value of

f(x) itself often provides valuable information. For example, consider the design

of a recognition system for zipcodes, unsegmented strings of digits. A single digit

classi�er may be integrated into such a zipcode recognition system in the following

way. The overall system tries several heuristic segmentations of the input string;

for each such \tentative" segmentation, the various segments are submitted to the

digit classi�er. Here, it is important that the digit classi�er return a score or a

con�dence value rather than a simple digit classi�cation so that an overall score for

the whole string for various tentative segmentations can be computed. The highest

such score is selected, yielding the chosen zipcode classi�cation.



168 Linear Discriminant and Support Vector Classi�ers

In other problems, it is convenient to use the value of jf(x)j as a con�dence

value on which a threshold can be set in order to reject test examples that are

ambiguous or meaningless, rather than making a classi�cation error. The question

is therefore how well f(x) serves as a score for various linear discriminants. While

it is not possible to answer that question for every situation, it is worth mentioning

that both the MSE and the logistic regression methods approximate the optimum

Bayes discriminant; their scores can therefore readily be interpreted in terms of

probability estimates. We generally favor the logistic regression estimate because

f(x) provides an estimate of fBayes1 = P (y = 1jx) � P (y = �1jx), which belongs

to the [�1;+1] interval while the MSE estimate does not.

The score provided by SVCs has no direct probabilistic interpretation. Neverthe-

less, there is an analogy between the tanh squashing function of logistic regression

and the piecewise linear squashing function of the \neural soft margin." This sug-

gests that squashing the score of the SVC classi�er with a tanh may be a good

idea, if a heuristic probabilistic interpretation needs to be made. If additional data

is available, it is also possible to add a postprocessor that remaps the scores to prob-

abilities [Sch�urmann, 1996], e.g., by �tting the parameters of a sigmoid tanh(a�x+b)
(see Chapter 5).

9.5.3 Robustness, Regularization, Good and Bad Outliers

Another important practical question is the treatment of outliers. In the context of

SVCs, outliers may be de�ned as a training examples with a small margin value.

On one hand, SVCs tend to emphasize outliers, which are often found among

the support vectors. On the other hand, robust statistics methods derived from

MSE training and logistic regression go in the opposite direction and attempt

to de-emphasize the importance of outliers [Hampel et al., 1986]. Increasing a

regularization penalty is an e�ective method of reducing the importance of outliers.

The soft margin method [Cortes and Vapnik, 1995] and �-SVC [Sch�olkopf et al.,

1998c] reconcile SVCs with robust statistics by limiting the inuence of the worst

outliers. For more precise robust statistics claims, see [Sch�olkopf et al., 1998c].

There is no single good nor single wrong method; nevertheless there are good

and bad outliers. Good outliers are very informative: ambiguous patterns that

help de�ning crisply the decision boundary or rare patterns that help de�ning the

decision boundary in regions that are not densely populated. Bad outliers may be

\informative" in the information theoretic sense | i.e., hard to predict | but very

\non-informative" in practice, i.e., not useful. Such outliers include mislabeled and

meaningless patterns. These bad outliers correspond to errors introduced in the

data and nearly always reduce the accuracy of the �nal classi�er.

The problem of robust methods is that they de-emphasize outliers regardless

of whether they are informative of not. On the contrary, SVCs emphasize them

equally blindly. The solution is called \data cleaning." Since cleaning by verifying

all data entries is tedious, SVCs can be put to work in a bootstrap method. A �rst

classi�er is trained with unclean data. Then, its support vectors (ranked in order of
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decreasing �s) are examined and the \bad outliers" eliminated. The overall process

is iterated until no such \bad" outliers remain [Guyon et al., 1996].

9.6 Conclusion

This chapter has explored the commonalties and relationships between linear dis-

criminant functions and support vector classi�ers. Naturally, we have not exhausted

this subject, but we have described the following connections between \classical"

linear discriminant and SVC: Similarities in the objective functions, which typically

exhibit a tradeo� between minimizing the number of training errors and minimizing

classi�er complexity. Similarities in gradient descent algorithms, whose parameter

update is proportional to [1 � �(�f (xi; yi))], where the margin value �f (xi; yi)) is

proportional to the distance of the training example to the decision boundary, and

�(�) is a squashing function such as a sigmoid. Similarities in the way duality can

be exploited during training to simplify computations. Similarities in the proba-

bilistic interpretation of the scores, in particular how the function �(f(xi)) can

be thought of as an approximation to the Bayes optimum discriminant function

fBayes1 = P (y = 1jx) � P (y = �1jx). Of course, by emphasizing similarities we

do not mean to minimize the di�erences and bene�ts of SVCs over other linear

discriminant techniques, as described by many others (see the introduction chapter

of this book, Chapter 1). For instance SVCs draw their unique properties from the

existence of support vectors and one can capitalize on the fact that the solution

is a function only of the support vectors, a small subset of the training patterns.

Quadratic programming can be used to �nd the optimum margin solution in dual

space [Boser et al., 1992]. Theoretical results and experimental evidence show that

SVCs draw advantages from their unique use of support vectors. Other subjects |

robustness, regularization good and bad outliers | deserve more attention but go

beyond the scope of this chapter.
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Regularization Networks and Support Vector Machines are techniques for solving

certain problems of learning from examples { in particular the regression problem of

approximating a multivariate function from sparse data. We present both formula-

tions in a uni�ed framework, namely in the context of Vapnik's theory of statistical

learning which provides a general foundation for the learning problem, combining

functional analysis and statistics.1
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10.1 Introduction

The purpose of this chapter is to present a theoretical framework for the problem of

learning from examples. Learning from examples can be regarded as the regression

problem of approximating a multivariate function from sparse data { and we will

take this point of view here.2

The problem of approximating a function from sparse data is ill-posed and a

classical way to solve it is regularization theory [Tikhonov and Arsenin, 1977,

Bertero, 1986, Bertero et al., 1988, Wahba, 1990]. Standard regularization theory,

as we will consider here, formulates the regression problem as a variational problem

of �nding the function f that minimizes the functional

min
f2F

Rreg[f ] =
1

m

X
i=1

(yi � f(xi))2 + �kfk2k (10.1)

where kfk2k is a norm in a Reproducing Kernel Hilbert Space (RKHS) F de�ned

by the positive de�nite function k, m is the number of data points or examples

(the m pairs (xi; yi)) and � is the regularization parameter. Under rather general

conditions the solution of equation (10.1) is

f(x) =
X
i=1

�ik(x;xi): (10.2)

Until now the functionals of standard regularization have lacked a rigorous justi-

�cation for a �nite set of training data. Their formulation is based on functional

analysis arguments which rely on asymptotic results and do not consider �nite data

sets.3 Regularization is the approach we have taken in earlier work on learning [Pog-

gio and Girosi, 1989, Girosi et al., 1995, Powell, 1992]. The seminal work of Vapnik

[1979, 1995, 1998] has now set the foundations for a more general theory that jus-

ti�es regularization functionals for learning from �nite sets and can be used to

extend considerably the classical framework of regularization, e�ectively marrying

a functional analysis perspective with modern advances in the theory of probability

and statistics. The basic idea of Vapnik's theory is closely related to regularization:

for a �nite set of training examples the search for the best model or approximating

function has to be constrained to an appropriately \small" hypothesis space (which

can also be thought of as a space of machines or models or network architectures).

If the space is too large, models can be found which will �t exactly the data but will

have a poor generalization performance, that is poor predictive capability on new

data. Vapnik's theory characterizes and formalizes these concepts in terms of the

2. There is a large literature on the subject: useful reviews are [Haykin, 1994, Cherkassky
and Mulier, 1998, Girosi et al., 1995, Vapnik, 1998] and references therein.
3. The method of quasi-solutions of Ivanov [1976] and the equivalent Tikhonov's regular-
ization technique were developed to solve ill-posed problems of the type Af = B, where A
is a (linear) operator, f is the desired solution in a metric space E1, and B are the \data"
in a metric space E2.
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capacity of a set of functions and capacity control depending on the training data:

for instance, for a small training set the capacity of the function space in which f is

sought has to be small whereas it can increase with a larger training set. As we will

see later in the case of regularization, a form of capacity control leads to choosing

an optimal � in equation (10.1) for a given set of data. A key part of the theory is

to de�ne and bound the capacity of a set of functions.

Thus the key and somewhat novel theme of this review is a) to describe a uni�ed

framework for several learning techniques for �nite training sets and b) to justify

them in terms of statistical learning theory. We will consider functionals of the form

Rreg[f ] =
1

m

X
i=1

c(xi; yi; f(x)) + �kfk2k; (10.3)

where c(�; �; �) is a loss function. We will describe how standard regularization

and Support Vector Machines [Vapnik, 1998] for both regression and classi�cation

correspond to the minimization of Rreg in (10.3) for di�erent choices of c:

Standard (L2) Regularization Networks (RN)

c(xi; yi; f(x)) = (yi � f(xi))2 (10.4)

Support Vector Machines Regression (SVMR)

c(xi; yi; f(x)) = jyi � f(xi)j� (10.5)

Support Vector Machines Classi�cation (SVMC)

c(xi; yi; f(x)) = �(1� yif(xi))(1� yif(xi)) (10.6)

where j � j� is Vapnik's epsilon-insensitive norm (see later), �(�) is the Heaviside

function and yi is a real number in RN and SVMR, whereas it takes values �1; 1 in
SVMC. Loss function (10.6) is also called the soft margin loss function. For SVMC,

we will also discuss two other loss functions:

The hard margin loss function:

c(xi; yi; f(x)) = �(1� yif(xi)) (10.7)

The misclassi�cation loss function:

c(xi; yi; f(x)) = �(�yif(xi)) (10.8)

For classi�cation one should minimize (10.8) (or (10.7)), but in practice other loss

functions, such as the soft margin one (10.6) [Cortes and Vapnik, 1995, Vapnik,

1995], are used. We discuss this issue further in Section 10.5.

The minimizer of (10.3) using the three loss functions has the same general

form (10.2) (or f(x) =
P

i=1 �ik(x;xi) + b, see later) but interestingly di�erent

properties. In this review we will show how di�erent learning techniques based on

the minimization of functionals of the form of Rreg in (10.3) can be justi�ed for a

few choices of c(�; �; �) using a slight extension of the tools and results of Vapnik's

statistical learning theory. In Section 10.2 we outline the main results in the theory
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of statistical learning and in particular Structural Risk Minimization { the technique

suggested by Vapnik to solve the problem of capacity control in learning from

\small" training sets. At the end of the section we will outline a technical extension

of Vapnik's Structural Risk Minimization framework (SRM). With this extension

both RN and Support Vector Machines (SVMs) can be seen within a SRM scheme.

In recent years a number of papers claim that SVM cannot be justi�ed in a data-

independent SRM framework (i.e., [Shawe-Taylor et al., 1998]). One of the goals of

this chapter is to provide such a data-independent SRM framework that justi�es

SVM as well as RN. After the section on regularization (Section 10.3) we will

describe SVMs (Section 10.4). As we saw already, SVMs for regression can be

considered as a modi�cation of regularization formulations of the type of (10.1).

Section 10.5 describes in more detail how and why both RN and SVM can be

justi�ed in terms of SRM, in the sense of Vapnik's theory: the key to capacity control

is how to choose � for a given set of data. Section 10.6 describes a naive maximum a

posteriori (MAP) Bayesian interpretation of RNs and of SVMs. It also shows why

a formal MAP Bayesian interpretation, though interesting and even useful, may

be somewhat misleading. Section 10.7 discusses relations of the regularization and

SVM techniques with other representations of functions and signals such as sparse

representations from overcomplete dictionaries.

10.2 Overview of Statistical Learning Theory

Statistical learning theory as developed by Vapnik builds on the so-called empirical

risk minimization (ERM) induction principle. The ERM method consists in using

the training data set X � Y = f(x1; y1); : : : ; (xm; ym)g, with (xi; yi) 2 R
N � R

sampled from an unknown probability distribution p(x; y), to build a stochastic

approximation of the expected risk (see also Section 1.2.1)

R(f) :=

Z
RN�R

c(x; y; f(x)) p(x; y) dx dy; (10.9)

namely the empirical risk:

Remp(f) :=
1

m

X
i=1

c(xi; yi; f(x)): (10.10)

The central question of statistical learning theory is whether the expected risk of

the minimizer of the empirical risk in a hypothesis space F is close to the expected

risk of the minimizer of the expected risk in F , f0. Notice that the question is not

necessarily whether we can �nd f0 but whether we can \imitate" f0 in the sense that

the expected risk of our solution is close to that of f0. Formally the theory answers

the question of �nding under which conditions the method of ERM satis�es:

lim
m!1

Remp(f̂m) = lim
m!1

R(f̂m) = R(f0) (10.11)
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in probability (all statements are probabilistic since we start with p(x; y) on the

data), where we note with f̂m the minimizer of the empirical risk (10.10) in F .

It can be shown (see for example [Vapnik, 1998]) that in order for the limits

in eq. (10.11) to hold true in probability, or more precisely, for the empirical

risk minimization principle to be non-trivially consistent (see [Vapnik, 1998] for a

discussion about consistency versus non-trivial consistency), the following uniform

law of large numbers (which \translates" to one-sided uniform convergence in

probability of empirical risk to expected risk in F ) is a necessary and suÆcient

condition:

lim
m!1

Pr

(
sup
f2F

(R(f)�Remp(f)) > �

)
= 0 8� > 0 (10.12)

Intuitively, if F is very \large" then we can always �nd f̂m 2 F with 0 empirical

error. This however does not guarantee that the expected risk of f̂m is also close to

0, or close to R(f0).

Typically in the literature the two-sided uniform convergence in probability:

lim
m!1

Pr

(
sup
f2F
jR(f)�Remp(f)j > �

)
= 0 8� > 0 (10.13)

is considered, which clearly implies (10.12). In this chapter we focus on the stronger

two-sided case and note that one can get one-sided uniform convergence with some

minor technical changes to the theory. We will not discuss the technical issues

involved in the relations between consistency, non-trivial consistency, two-sided and

one-sided uniform convergence (a discussion can be found in [Vapnik, 1998]), and

from now on we concentrate on the two-sided uniform convergence in probability,

which we simply refer to as uniform convergence.

The theory of uniform convergence of ERM has been developed in [Vapnik and

Chervonenkis, 1971, 1981, 1991, Vapnik, 1979, 1998]. It has also been studied in the

context of empirical processes [Dudley, 1984, Pollard, 1984, Dudley et al., 1991].

Here we summarize the main results of the theory.

10.2.1 Uniform Convergence and the Vapnik-Chervonenkis Bound

Vapnik and Chervonenkis [1971, 1981] studied under what conditions uniform

convergence of the empirical risk to expected risk takes place. The results are

formulated in terms of three important quantities that measure the complexity

of a set of functions: the VC entropy, the annealed VC entropy, and the growth

function. We begin with the de�nitions of these quantities.
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De�nition 10.1

Given a probability p(x; y) over R
N � R , the VC entropy of a set of functions

fc(x; y; f(x)) : f 2 Fg, on a data set of size m is de�ned as:

HF (�;m) �
Z
RN�R

ln N (�; F;X � Y )
Y
i=1

p(xi; yi)dxidyi (10.14)

where N (�; F;X � Y ), with X � Y = f(x1; y1); : : : ; (xm; ym)g, is the size of the

minimal �-net (see also de�nition 1.8) of the set:

fq(f ;X � Y ) = (c(x1; y1; f(x)); :::; c(xm; ym; f(x))) : f 2 Fg (10.15)

under the metric:

`1;X�Y (q(f ;X � Y ); q(f 0;X � Y ))
= max

1�i�m
jc(xi; yi; f(x))� c(xi; yi; f 0(x))j (10.16)

De�nition 10.2

Given a probability p(x; y) over R
N � R , the annealed VC entropy of a set of

functions fc(x; y; f(x)) : f 2 Fg, on a data set of size m is de�ned as:

HF
ann(�;m) � ln

Z
RN�R

N (�; F;X � Y )
Y
i=1

p(xi; yi)dxidyi (10.17)

De�nition 10.3

The growth function of a set of functions fc(x; y; f(x)) : f 2 Fg, on a data set of

size m is de�ned as:

GF (�;m) � ln

 
sup

X�Y 2(RN�R)
N (�; F;X � Y )

!
= ln N (�; F;m) (10.18)

(where N (�; F;m) is as de�ned in Chapter 1).

Notice that all three quantities are functions of the number of data m and of �, and

that clearly:

HF (�;m) � HF
ann(�;m) � GF (�;m) : (10.19)

These de�nitions can easily be extended in the case of indicator functions, i.e.,

functions c taking binary values4 such as f�1; 1g, in which case the three quantities
do not depend on � for � < 1, since all vectors of the set (10.15) are at the vertices

of the hypercube f0; 1g.
Using these de�nitions we can now state three important results of statistical

learning theory [Vapnik, 1998]:

4. In the case of indicator functions, y is binary, and c is 0 for f(x) = y, 1 otherwise.
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For a given probability distribution p(x; y):

1. The necessary and suÆcient condition for uniform convergence is that

lim
m!1

HF (�;m)

m
= 0 8� > 0 (10.20)

2. A suÆcient condition for fast asymptotic rate of convergence5 is that

lim
m!1

HF
ann(�;m)

m
= 0 8� > 0 (10.21)

It is an open question whether this is also a necessary condition.

A suÆcient condition for distribution independent (that is, for any p(x; y)) fast

rate of convergence is that

lim
m!1

GF (�;m)

m
= 0 8� > 0 (10.22)

For indicator functions this is also a necessary condition.

According to statistical learning theory, these three quantities are what one should

consider when designing and analyzing learning machines: the VC-entropy and the

annealed VC-entropy for an analysis which depends on the probability distribution

p(x; y) of the data, and the growth function for a distribution independent analysis.

In this chapter we consider only distribution independent results, although the

reader should keep in mind that distribution dependent results are likely to be

important in the future.

Unfortunately the growth function of a set of functions is diÆcult to compute in

practice. So the standard approach in statistical learning theory is to use an upper

bound on the growth function which is given using another important quantity,

the VC-dimension (see de�nition 1.4), which is another (looser) measure of the

complexity, capacity, of a set of functions (also provides an upper bound on the

growth function). In this chapter we concentrate on this quantity, but it is important

that the reader keeps in mind that the VC-dimension is in a sense a \weak" measure

of complexity of a set of functions, so it typically leads to loose upper bounds on

the growth function: in general one is better o�, theoretically, using directly the

growth function.

The remarkable property of the VC-dimension is that, although as we mentioned

it only provides an upper bound to the growth function, in the case of indicator

functions, �niteness of the VC-dimension is a necessary and suÆcient condition

for uniform convergence (eq. (10.13)) independent of the underlying distribution

p(x; y). However, in the case of real valued functions, �niteness of the VC-dimension

is only suÆcient for uniform convergence. Later in this section we will discuss a

measure of capacity that provides also necessary conditions.

5. This means that for any m > m0 we have that Prfsupf2F jR(f) � Remp(f)j > �g <
e�c�

2m for some constant c > 0. Intuitively, fast rate is typically needed in practice.
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The VC-dimension can be used to get bounds on the expected risk of f̂m.6 In

particular (see introduction), if h is the VC-dimension of a set of functions F , and

A � c(x; y; f(x)) � B, then the following inequality holds with probability 1� �:
���R(f0)�R(f̂m)��� � 2(B �A)

s
h ln 2em

h � ln(�4 )

m
(10.23)

Furthermore the following bounds holds with probability 1 � � uniformly for all

functions f 2 F :

jR(f)�Remp(f)j � (B �A)
s
h ln 2em

h � ln(�4 )

m
(10.24)

Inequalities (10.24) and (10.23) suggest a method for achieving good generalization:

not only minimize the empirical risk, but instead minimize a combination of the

empirical risk and the complexity of the hypothesis space. This observation leads

us to the method of Structural Risk Minimization that we describe next.

10.2.2 The Method of Structural Risk Minimization

The idea of SRM is to de�ne a nested sequence of hypothesis spaces F1 � F2 � : : : �
Fn(m) with n(m) a non-decreasing integer function of m, where each hypothesis

space Fi has VC-dimension �nite and larger than that of all previous sets, i.e., if

hi is the VC-dimension of space Fi, then h1 � h2 � : : : � hn(m). For example Fi
could be the set of polynomials of degree i, or a set of splines with i nodes, or some

more complicated nonlinear parameterization. For each element Fi of the structure

the solution of the learning problem is:

f̂i;m = arg min
f2Fi

Remp(f) (10.25)

Because of the way we de�ne our structure it should be clear that the larger i is

the smaller the empirical error of f̂i;m is (since we have greater \exibility" to �t

our training data), but the larger the VC-dimension part (second term) of the right

hand side of (10.24) is. Using such a nested sequence of more and more complex

hypothesis spaces, the SRM learning technique consists of choosing the space Fn�(m)

for which the right hand side of inequality (10.24) is minimized. It can be shown

[Vapnik, 1979] that for the chosen solution f̂n�(m);m inequalities (10.24) and (10.23)

hold with probability at least (1 � �)n(m) � 1 � n(m)�,7 where we replace h with

hn�(m), f0 with the minimizer of the expected risk in Fn�(m), namely fn�(m), and

f̂m with f̂n�(m);m.

6. It is important to note that bounds on the expected risk of f̂m using the annealed
VC-entropy also exist. These are tighter than the VC-dimension ones.

7. We want (10.24) to hold simultaneously for all spaces Fi, since we choose the best f̂i;m.
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With an appropriate choice of n(m)8 it can be shown that asm!1 and n(m)!
1, the expected risk of the solution of the method approaches in probability the

minimum of the expected risk in F =
S1
i=1 Fi, call it R(fF ). Moreover, if the (true)

target function f0 belongs to the closure of F , then eq. (10.11) holds in probability

(see for example [Vapnik, 1998]).

However, in practice m is �nite (\small"), so n(m) is small which means that

F =
Sn(m)
i=1 Fi is a small space. Therefore R(fF ) may be much larger than the

expected risk of our (true) target function f0, since f0 may not be in F . The

distance between R(fF ) and R(f0) is called the approximation error and can be

bounded using results from approximation theory. We do not discuss these results

here and refer the reader to Lorentz [1986] and DeVore [1998].

10.2.3 �-uniform Convergence and the V Dimension

As mentioned above �niteness of the VC-dimension is not a necessary condition

for uniform convergence in the case of real valued functions. To get a necessary

condition we need a slight extension of the VC-dimension that has been developed

by Kearns and Schapire [1994] and Alon et al. [1997], known as the V{dimension.

Here we summarize the main results of that theory that we will also use later on to

design regression machines for which we will have distribution independent uniform

convergence. We begin with some de�nitions of the V dimension, a variation of

the fat-shattering dimension de�ned in Chapter 1. The V dimension will the be

measure of complexity used in this section.9

De�nition 10.4

Let A � c(x; y; f(x)) � B, f 2 F , with A and B <1. The V-dimension of c in F

(of the set fc(x; y; f(x)); f 2 Fg) is de�ned as the maximum number h of vectors

(x1; y1) : : : ; (xh; yh) that can be separated into two classes in all 2h possible ways

using rules:

class 1 if c(x; yi; f(xi)) � s+ 

class �1 if c(x; yi; f(xi)) � s� 
for f 2 F and some s 2 [ + A;B � ]. If, for any number m, it is possible to �nd

m points (x1; y1) : : : ; (xm; ym) that can be separated in all the 2 possible ways, we

will say that the V-dimension of c in F is in�nite.

Notice that if for each point (xi; yi) we use a di�erent si � 0, we get the fat-

shattering dimension (see Chapter 1). Furthermore, for  = 0 this de�nition

becomes the same as the de�nition for VC-dimension. Intuitively, for  > 0 the

\rule" for separating points is more restrictive than the rule in the case  = 0. It

requires that there is a \margin" between the points: points for which c(x; y; f(x))

8. Various cases are discussed in [Devroye et al., 1996], i.e., n(m) = m.
9. The fat-shattering dimension can also be used.
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is between s +  and s �  are not classi�ed. As a consequence, the V dimension

is a decreasing function of  and in particular is smaller than the VC-dimension.

If c is an indicator function, say �(�yf(x)), then for any  de�nition 10.4 reduces

to that of the VC-dimension of a set of indicator functions. Generalizing slightly

the de�nition of eq. (10.13) we will say that for a given � > 0 the ERM method

converges �-uniformly in F in probability, (or that there is �-uniform convergence)

if:

lim
m!1

Pr

(
sup
f2F
jRemp(f)�R(f)j > �

)
= 0: (10.26)

Notice that if eq. (10.26) holds for every � > 0 we have uniform convergence (eq.

(10.13)). Moreover, it can be shown (variation of [Vapnik, 1998]) that �-uniform

convergence in probability implies that:

R(f̂m) � R(f0) + 2� (10.27)

in probability, where, as before, f̂m is the minimizer of the empirical risk and f0 is

the minimizer of the expected expected risk in F .10

The basic theorems for the V-dimension are the following:

Theorem 10.5 Alon et al., 1993

Let A � c(x; y; f(x))) � B, f 2 F , F be a set of bounded functions. For any � > 0,

if the V dimension of c in F is �nite for  = �� for some constant � � 1
48 , then

the ERM method �-converges in probability.

Theorem 10.6 Alon et al., 1993

Let A � c(x; y; f(x))) � B, f 2 F , F be a set of bounded functions. The ERM

method uniformly converges (in probability) if and only if the V dimension of

c in F is �nite for every  > 0. So �niteness of the V dimension for every

 > 0 is a necessary and suÆcient condition for distribution independent uniform

convergence of the ERM method for real-valued functions.

Theorem 10.7 Alon et al., 1993

Let A � c(x; y; f(x)) � B, f 2 F , F be a set of bounded functions. For any � � 0,

for all m � 2
�2 we have that if h is the V dimension of c in F for  = �� (� � 1

48 ),

h �nite, then:

Pr

(
sup
f2F
jRemp(f)�R(f)j > �

)
� G(�;m; h); (10.28)

where G is an increasing function of h and a decreasing function of � and m, with

G ! 0 as m!1.11

10. This is like �-learnability in the PAC model [Valiant, 1984].
11. Closed forms of G can be derived (see for example [Alon et al., 1997]) but we do not
present them here for simplicity of notation.
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From this theorem we can easily see that for any � > 0, for all m � 2
�2 :

Pr
n
R(f̂m) � R(f0) + 2�

o
� 1� 2G(�;m; h); (10.29)

where f̂m is, as before, the minimizer of the empirical risk in F . An important

observations to keep in mind is that theorem 10.7 requires the V dimension of the

loss function c in F . In the case of classi�cation, this implies that if we want to

derive bounds on the expected misclassi�cation we have to use the V dimension of

the loss function �(�yf(x)) (which is the V C � dimension of the set of indicator

functions fg(x) := sgn (f(x)); f 2 Fg), and not the V dimension of the set F .

The theory of the V dimension justi�es the \extended" SRM method we describe

below. It is important to keep in mind that the method is only of theoretical interest

and will only be used later as a theoretical motivation for RN and SVM.

Let m be the number of training data. For a �xed � > 0 such that m � 2
�2 ,

let  = 1
48�, and consider, as before, a nested sequence of hypothesis spaces

F1 � F2 � : : : � Fn(m;�), where each hypothesis space Fi has V-dimension �nite

and larger than that of all previous sets, i.e., if hi is the V-dimension of space Fi,

then h1 � h2 � : : : � hn(m;�). For each element Fi of the structure consider the

solution of the learning problem to be:

f̂i;m = arg min
f2Fi

Remp(f): (10.30)

Because of the way we de�ne our structure the larger i is the smaller the empirical

error of f̂i;m is (since we have more \exibility" to �t our training data), but the

larger the right hand side of inequality (10.28) is. Using such a nested sequence of

more and more complex hypothesis spaces, this extended SRM learning technique

consists of �nding the structure element Fn�(m;�) for which the trade o� between

empirical error and the right hand side of (10.28) is optimal. One practical idea

is to �nd numerically for each Fi the \e�ective" �i so that the bound (10.28) is

the same for all Fi, and then choose f̂i;m for which the sum of Remp(f) and �i is

minimized.

We conjecture that as m!1, for appropriate choice of n(m; �) with n(m; �)!
1 as m ! 1, the expected risk of the solution of the method converges in

probability to a value less than 2� away from the minimum expected risk in

F =
S1
i=1 Fi. Notice that we described an SRM method for a �xed �. If the V

dimension of Fi is �nite for every  > 0, we can further modify the extended SRM

method so that �! 0 asm!1. We conjecture that if the (true) target function f0
belongs to the closure of F , then as m!1, with appropriate choices of �, n(m; �)

and n�(m; �) the solution of this SRM method can be proven (as before) to satisfy

eq. (10.11) in probability. Finding appropriate forms of �, n(m; �) and n�(m; �) is
an open theoretical problem (which we believe to be a technical matter). Again, as

in the case of \standard" SRM, in practice m is �nite so F =
Sn(m;�)
i=1 Fi is a small

space and the solution of this method may have expected risk much larger that the

expected risk of the (true) target function. Approximation theory can be used to

bound this di�erence [Niyogi and Girosi, 1996].
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The proposed method is diÆcult to implement in practice since it is diÆcult to

decide the optimal trade o� between empirical error and the bound (10.28). If we

had constructive bounds on the deviation between the empirical and the expected

risk like that of equation (10.24) then we could have a practical way of choosing the

optimal element of the structure. Unfortunately existing bounds of that type ([Alon

et al., 1997, Bartlett et al., 1996], also Section 1.2) are not tight. So the �nal choice

of the element of the structure may be done in practice using other techniques such

as cross-validation [Wahba, 1990].

10.2.4 Overview of our Approach

In order to set the stage for the next two sections on regularization and Support

Vector Machines, we outline here how we can justify the proper use of the RN

and the SVM functionals (see (10.3)) in the framework of the SRM principles just

described.

The basic idea is to de�ne a structure in terms of a nested sequence of hypothesis

spaces F1 � F2 � : : : � Fn(m) with Fr being the set of functions f in the RKHS

with:

kfk2k � Ar; (10.31)

where Ar is a monotonically increasing sequence of positive constants. Following

the SRM method outlined above, for each m we will minimize the empirical risk

1

m

X
i=1

c(xi; yi; f(x)); (10.32)

subject to the constraint (10.31). This in turn leads to using the Lagrange multiplier

�r and to minimizing

1

m

X
i=1

c(xi; yi; f(x)) + �r(kfk2k �Ar); (10.33)

with respect to f and maximizing with respect to �r � 0 for each element of the

structure. We can then choose the optimal n�(m) and the associated ��(m), and
get the optimal solution f̂n�(m).

The solution we get using this method is clearly the same as the solution of:

1

m

X
i=1

c(xi; yi; f(x)) + ��(m)kfk2k (10.34)

where ��(m) is the optimal Lagrange multiplier corresponding to the optimal

element of the structure An�(m).

Notice that this approach is quite general. In particular it can be applied to

standard L2 regularization, to SVM regression, and, as we will see, to SVM

classi�cation with the appropriate c(�; �; �).
In Section 10.5 we will describe this approach in more detail. We have outlined

this theoretical method here so that the reader understands our motivation for
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reviewing in the next two sections the approximation schemes resulting from the

minimization of functionals of the form of equation (10.34) for the three loss function

(10.4), (10.5) and (10.6).

10.3 Regularization Networks

In this section we consider the approximation scheme that arises from the mini-

mization of the quadratic functional

min
f2F

Rreg[f ] =
1

m

X
i=1

(yi � f(xi))2 + �kfk2k (10.35)

for a �xed �. Formulations like equation (10.35) are a special form of regularization

theory developed by Tikhonov and Arsenin [1977], Ivanov [1976] and others to

solve ill-posed problems and in particular to solve the problem of approximating

the functional relation between x and y given a �nite number of examples X�Y =

fxi; yigi=1. As we mentioned in the previous sections our motivation in this chapter
is to use this formulation as an approximate implementation of Vapnik's SRM

principle.

In standard regularization the data term is an L2 loss function for the empirical

risk, whereas the second term { called stabilizer { is usually written as a functional


(f) with certain properties [Tikhonov and Arsenin, 1977, Poggio and Girosi, 1989,

Girosi et al., 1995]. Here we consider a special class of stabilizers, that is the norm

kfk2k in a RKHS induced by a symmetric, positive de�nite function k(x;y). This

choice allows us to develop a framework of regularization which includes most of

the usual regularization schemes. The only signi�cant omission in this treatment {

that we make here for simplicity { is the restriction on k to be symmetric positive

de�nite so that the stabilizer is a norm. However, the theory can be extended

without problems to the case in which k is positive semide�nite, in which case the

stabilizer is a semi-norm [Wahba, 1990, Madych and Nelson, 1990a, Dyn, 1991, Dyn

et al., 1986]. This approach was also sketched in [Smola and Sch�olkopf, 1998b].

The stabilizer in equation (10.35) e�ectively constrains f to be in the RKHS

de�ned by the positive de�nite kernel k. It is possible to show (see for example

[Poggio and Girosi, 1989, Girosi et al., 1995]) that the function that minimizes the

functional (10.35) has the form:

f(x) =
X
i=1

�ik(x;xi); (10.36)

the coeÆcients �i depend on the data and satisfy the following linear system of

equations:

(K + �I)� = y (10.37)

where I is the identity matrix, and we have de�ned

(y)i = yi ; (�)i = �i ; (K)ij = k(xi;xj): (10.38)
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It is remarkable that the solution of the more general case of

min
f2F

Rreg[f ] =
1

m

X
i=1

c(xi; yi; f(x)) + �kfk2k; (10.39)

where the function c is any di�erentiable function, is quite similar: the solution has

exactly the same general form of (10.36), though the coeÆcients cannot be found

anymore by solving a linear system of equations as in equation (10.37) [Girosi, 1991,

Girosi et al., 1991, Smola and Sch�olkopf, 1998b].

The approximation scheme of equation (10.36) has a simple interpretation in

terms of a network with one layer of hidden units [Poggio and Girosi, 1992, Girosi

et al., 1995]. Using di�erent kernels we get various RN's. A short list of examples

is given in Table 10.1.

Kernel Function Regularization Network

k(x� y) = exp(�kx� yk2) Gaussian RBF

k(x� y) = (kx� yk2 + c2)�
1
2 Inverse Multiquadric

k(x� y) = (kx� yk2 + c2)
1
2 Multiquadric

k(x� y) = kx� yk2n+1 Thin plate splines

k(x� y) = kx� yk2n ln(kx� yk)
k(x;y) = tanh(x � y � �) (only for some values of �)

Multi Layer Perceptron

k(x;y) = (1 + x � y)d Polynomial of degree d

k(x; y) = B2n+1(x� y) B-splines

k(x; y) = sin(d+1=2)(x�y)
sin

(x�y)
2

Trigonometric polynomial of degree d

Table 10.1 Some possible kernel functions. The �rst four are radial kernels. The

multiquadric and thin plate splines are positive semide�nite and thus require an

extension of the simple RKHS theory of this chapter. The last three kernels are listed

in [Vapnik, 1998]. Polynomial Kernel were used in [Poggio, 1975], and B-spline in

[Vapnik et al., 1997]. The last two kernels are one-dimensional: multidimensional

kernels can be built by tensor products of one-dimensional ones. The functions

Bn are piecewise polynomials of degree n, whose exact de�nition can be found in

[Schumaker, 1981].

When the kernel k is positive semide�nite, there is a subspace of functions f which

have norm kfk2k equal to zero. They form the null space of the functional kfk2k and
in this case the minimizer of (10.35) has the form [Wahba, 1990]:

f(x) =
X
i=1

�ik(x;xi) +
lX

j=1

bj�j(x); (10.40)
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where f�jglj=1 is a basis in the null space of the stabilizer, which in most cases is

a set of polynomials, and therefore will be referred to as the \polynomial term" in

equation (10.40). The coeÆcients bj and �i depend on the data. For the standard

regularization case of equation (10.35), the coeÆcients of equation (10.40) satisfy

the following linear system:

(K + �I)�+�Tb = y; (10.41)

�� = 0; (10.42)

where I is the identity matrix, and we have de�ned

(y)i = yi ; (�)i = �i ; (b)i = bi ; (10.43)

(K)ij = k(xi;xj) ; (�)ji = �j(xi): (10.44)

When the kernel is positive de�nite, as in the case of the Gaussian, the null space

of the stabilizer is empty. However, it is often convenient to rede�ne the kernel

and the norm induced by it so that the induced RKHS contains only zero-mean

functions, that is functions f1(x) s.t.
R
X
f1(x)dx = 0. In the case of a radial kernel

k, for instance, this amounts to considering a new kernel

k0(x;y) = k(x;y)� �0 (10.45)

without the zeroth order Fourier component, and a norm

kfk2k0 = kfk2k �
a20
�0

(10.46)

where �0 is the eigenvalue corresponding to the zeroth order Fourier component,

and a0 is the coeÆcient of f corresponding to that component. The null space

induced by the new k0 is the space of constant functions. Then the minimizer of

the corresponding functional (10.35) has the form:

f(x) =
X
i=1

�ik
0(x;xi) + b; (10.47)

with the coeÆcients satisfying equations (10.41) and (10.42), that respectively

become:

(K 0 + �I)�+ 1b = (K � �0I + �I)�+ 1b = (K + (�� �0)I)�+ 1b = y; (10.48)X
i=1

�i = 0: (10.49)

Equations (10.47) and (10.49) imply that the the minimizer of (10.35) is of the

form:

f(x) =
X
i=1

�ik
0(x;xi) + b =

X
i=1

�i(k(x;xi)� �0) + b =
X
i=1

�ik(x;xi) + b: (10.50)

Thus we can e�ectively use a positive de�nite k and the constant b, since the

only change in equation (10.48) just amounts to the use of a di�erent �. Choosing

to use a non-zero b e�ectively means choosing a di�erent feature space and a
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di�erent stabilizer from the usual case of equation (10.35): the constant feature

is not considered in the RKHS norm and therefore is not \penalized." This choice

is often quite reasonable, since in many regression and, especially, classi�cation

problems, shifts by a constant in f should not be penalized.

In summary, the argument of this section shows that using a RN of the form

(10.50) (for a certain class of kernels k) is equivalent to minimizing functionals such

as (10.35) or (10.39). The choice of k is equivalent to the choice of a corresponding

RKHS and leads to various standard learning techniques such as Radial Basis

Function networks.

Notice that in the framework we use here the kernels k are not required to be

radial or even shift-invariant. Regularization techniques used to solve supervised

learning problems [Poggio and Girosi, 1989, Girosi et al., 1995] were typically

used with shift invariant stabilizers (tensor product and additive stabilizers are

exceptions, see [Girosi et al., 1995]).

10.3.1 From Regression to Classi�cation

So far we only considered the case that the unknown function can take any real

values, speci�cally the case of regression. In the particular case that the unknown

function takes only two values, i.e., -1 and 1, we have the problem of binary pattern

classi�cation, i.e., the case where we are given data that belong to one of two classes

(classes -1 and 1) and we want to �nd a function that separates these classes. It

can be shown [Duda and Hart, 1973] that, if c in equation (10.39) is (y � f(x))2,
and if k de�nes a �nite dimensional RKHS, then the minimizer of the equation

Rreg[f ] =
1

m

X
i=1

(f(xi)� yi)2 + �kfk2k; (10.51)

for � ! 0 approaches asymptotically the function in the RKHS that is closest in

the L2 norm to the regression function:

f0(x) = P (y = 1jx)� P (y = �1jx) (10.52)

The optimal Bayes rule classi�er is given by thresholding the regression function,

i.e., by sign(f0(x)). Notice that in the case of in�nite dimensional RKHS asymptotic

results ensuring consistency are available (see [Devroye et al., 1996, Theorem 29.8])

but depend on several conditions that are not automatically satis�ed in the case

we are considering. The Bayes classi�er is the best classi�er, given the correct

probability distribution P . However, approximating function (10.52) in the RKHS

in L2 does not necessarily imply that we �nd the best approximation to the Bayes

classi�er. For classi�cation, only the sign of the regression function matters and

not the exact value of it. Notice that an approximation of the regression function

using a mean square error criterion places more emphasis on the most probable

data points and not on the most \important" ones which are the ones near the

separating boundary.
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In the next section we will study Vapnik's more natural approach to the problem

of classi�cation that is based on choosing a loss function c di�erent from the

square error. This approach leads to solutions that emphasize data points near

the separating surface.

10.4 Support Vector Machines

In this section we discuss the technique of Support Vector Machines (SVM) for

Regression (SVMR) [Vapnik, 1995, 1998] in terms of the SVM functional. We then

show the SVM for binary pattern classi�cation can be derived as a special case of

the regression formulation [Pontil et al., 1998b].

10.4.1 SVM in RKHS

Once again the problem is to learn a functional relation between x and y given a

�nite number of examples X � Y .
The method of SVMR corresponds to the following functional

Rreg[f ] =
1

m

X
i=1

jyi � f(xi)j� + �kfk2k (10.53)

which is a special case of equation (10.39) and where

jxj� �
(

0 if jxj < �

jxj � � otherwise;
(10.54)

is the ��Insensitive Loss Function (ILF) (also noted with L�). Note that the ILF

assigns zero cost to errors smaller then �. In other words, for the cost function j � j�
any function closer than � to the data points is a perfect interpolant. We can think

of the parameter � as the resolution at which we want to look the data. For this

reason we expect that the larger � is, the simpler the representation will be. We

will come back to this point in Section 10.7.

The minimizer of Rreg in the RKHS Hk de�ned by the kernel k has the general

form given by equation (10.50), that is

f(x) =
X
i=1

�ik(xi;x) + b; (10.55)

where we can include the constant b for the same reasons discussed in Section 10.3.

The coeÆcient �i are found by solving the following problem:

Problem 10.8

min
�
R[�] = 1

2

X
i;j=1

�i�jk(xi;xj)�
X
i=1

�iyi + �
X
i=1

j�ij (10.56)
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subject to the constraintsX
i=1

�i = 0 and � C

m
� �i � C

m
for all i = 1; : : : ;m: (10.57)

The support vectors (SV) are the points for which j�ij > 0. Points at which the error

is smaller than � are never support vectors, and do not enter in the determination

of the solution. A consequence of this fact is that if the SVM were run again on the

new data set consisting of only the SVs the same solution would be found. Finally

notice that by setting �i = ��i+ ���i , with ��i; ��
�
i � 0 we �nd the standard quadratic

programming formulation of SVMR [Vapnik, 1998].

10.4.2 From Regression to Classi�cation

In the previous section we discussed the connection between regression and classi�-

cation in the framework of regularization. In this section, after stating the formula-

tion of SVM for binary pattern classi�cation (SVMC) as developed by Cortes and

Vapnik [1995], we discuss a connection between SVMC and SVMR. We will not

discuss the theory of SVMC here; we refer the reader to [Vapnik, 1998]. We point

out that the SVM technique has �rst been proposed for binary pattern classi�cation

problems and then extended to the general regression problem by Vapnik [1995].

Here our primary focus is regression and we consider classi�cation as a special case

of regression. SVMC can be formulated as the problem of minimizing:

Rreg[f ] =
1

m

X
i

�(1� yif(xi))(1� yif(xi)) + 1

2C
kfk2k; (10.58)

which is again of the form (10.3). Using the fact that yi 2 f�1;+1g it is easy to

see that our formulation (equation (10.58)) is equivalent to the following quadratic

programming problem, originally proposed by Cortes and Vapnik [1995]:

Problem 10.9

min
f2Hk;�

�(f; �) =
C

m

X
i=1

�i +
1

2
kfk2k (10.59)

subject to the constraints:

yif(xi) � 1� �i; for all i = 1; : : : ;m

�i � 0; for all i = 1; : : : ;m:
(10.60)

The solution of this problem is again of the form (10.55), where it turns out that

0 � �i � C
m . The input data points xi for which �i is di�erent from zero are called,

as in the case of regression, support vectors (SVs). It is often possible to write the

solution f(x) as a linear combination of SVs in a number of di�erent ways (for

example in case that the feature space induced by the kernel k has dimensionality

lower than the number of SVs). The SVs that appear in all these linear combinations

are called essential support vectors.
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Roughly speaking the motivation for problem (10.9) is to minimize the empirical

error measured by
P

i=1 �i
12 while controlling capacity measured in terms of the

norm of f in the RKHS. In fact, the norm of f is related to the notion of margin, an

important idea for SVMC for which we refer the reader to [Vapnik, 1998, Burges,

1998].

We now address the following question: what happens if we apply the SVMR

formulation (10.53) to the binary pattern classi�cation case, i.e., the case where yi
take values f�1; 1g, treating classi�cation as a regression on binary data?

It is possible to show that for a given constant C in problem (10.9), there exist

C and � in problem (10.8) such that the solutions of the two problems are the same,

up to a constant factor. This is summarized in the following theorem:

Theorem 10.10

Suppose the classi�cation problem (10.9) is solved with parameter C, and the

optimal solution is found to be f . Then, there exists a value a 2 (0; 1) such that for
8� 2 [a; 1), if problem (10.8) is solved with parameter (1��)C, the optimal solution
will be (1� �)f .

We refer to [Pontil et al., 1998b] for the proof. A direct implication of this result

is that one can solve any SVMC problem through the SVMR formulation. It is an

open question what theoretical implications Theorem 10.10 may have about SVMC

and SVMR. In particular in Section 10.5 we will discuss some recent theoretical

results on SVMC that have not yet been extended to SVMR. It is possible that

Theorem 10.10 may help to extend them to SVMR.

10.5 SRM for RNs and SVMs

At the end of Section 10.2 we outlined how one should implement both RN and

SVM according to SRM. To use the standard SRM method we �rst need to know

the VC-dimension of the hypothesis spaces we use. In Sections 10.3 and 10.4 we saw

that both RN and SVM use as hypothesis spaces sets of bounded functions f in a

RKHS with jjf jj2k bounded (i.e., jjf jj2k � A), where k is the kernel of the RKHS.

So in order to use the standard SRM method outlined in Section 10.2 we need to

know the VC dimension of such spaces under the loss functions of RN and SVM.

Unfortunately it can be shown that when the loss function c is (y � f(x))2 (the
L2) and also when it is jyi � f(xi)j� (the L�), the VC-dimension of c(xi; y; f(x))

with f in FA = ff : jjf jj2k � Ag does not depend on A, and is in�nite if the RKHS

12. As we mentioned in Section 10.2, for binary pattern classi�cation the empirical error
is de�ned as a sum of binary numbers which in problem (10.9) would correspond toP

i=1 �(�i). However in such a case the minimization problem becomes computationally
intractable. This is why in practice in the cost functional �(f; �) we approximate �(�i)
with �i. We discuss this further in Section 10.5.
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is in�nite dimensional. More precisely we have the following theorem (for a proof

see for example [Williamson et al., 1998, Evgeniou and Pontil, 1999b])

Theorem 10.11

Let M be the dimensionality of a RKHS Hk. For both the L2 and the �-insensitive

loss function c, the VC-dimension of c in the space FA = ff 2 Hk : jjf jj2k � Ag is
O(M), independently of A. Moreover, if M is in�nite, the VC-dimension is in�nite

for any A.

It is thus impossible to use SRM with this kind of hypothesis spaces: in the case

of �nite dimensional RKHS, the RKHS norm of f cannot be used to de�ne a

structure of spaces with di�erent VC-dimensions, and in the (typical) case that the

dimensionality of the RKHS is in�nite, it is not even possible to use bound (10.24).

So the VC-dimension cannot be used directly neither for RN nor for SVMR.

On the other hand, we can still use the V dimension and the extended SRM

method outlined in Section 10.2. Again we need to know the V dimension of our

loss function c in the space FA de�ned above. In the typical case that the input

space X is bounded, the V dimension does depend on A and is not in�nite in the

case of in�nite dimensional RKHS. More precisely the following theorem holds (for

a proof see [Evgeniou and Pontil, 1999b]):

Theorem 10.12

LetM be the dimensionality of a RKHS Hk with kernel k. Assume our input space

X is bounded and let R be the radius of the smallest ball B containing the data x

in the feature space induced by kernel k. The V dimension h for regression using

L2 or L� loss functions for hypothesis spaces FA = ff 2 Hk j kfkk � Ag and y
bounded, is �nite for 8  > 0, with h � O(min (M; (R

2+1)(A2+1)
2 )).

Notice that for �xed  and �xed radius of the data the only variable that

controls the V dimension is the upper bound on the RKHS norm of the functions,

namely A. Moreover, the V dimension is �nite for 8  > 0, therefore, according to

Theorem 10.6, ERM uniformly converges in FA for any A < 1, both for RN and

for SVMR. Thus both RNs and SVMR are consistent in FA for any A < 1. So,

theoretically, we can use the extended SRM method with a sequence of hypothesis

spaces FA each de�ned for di�erent As. To repeat, for a �xed  > 0 (we can let 

go to 0 as m ! 1) we �rst de�ne a structure F1 � F2 � : : : � Fn(m) where Fr
is the set of bounded functions f in a RKHS with jjf jj2k � Ar, Ar < 1, and the

numbers Ar form an increasing sequence. Then we minimize the empirical risk in

each Fr by solving the problem:

minimize
1

m

X
i=1

c(xi; yi; f(xi)) subject to jjf jj2k � Ar (10.61)

To solve this minimization problem we minimize

1

m

X
i=1

c(xi; yi; f(xi)) + �r(jjf jj2k �Ar) (10.62)
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with respect to f and maximize with respect to the Lagrange multiplier �r. If fr
is the solution of this problem, at the end we choose the optimal fn�(m) in Fn�(m)

with the associated �n�(m), where optimality is decided based on a trade o� between

empirical error and the bound (10.28) for the �xed  (which, as we mentioned, can

approach zero). In the case of RN, c is the L2 loss function, whereas in the case of

SVMR it is the �-insensitive loss function.

In practice it is diÆcult to implement the extended SRM for two main reasons.

First, as we discussed in Section 10.2, SRM using the V dimension is practically

diÆcult because we do not have tight bounds to use in order to pick the optimal

Fn�(m) (combining theorems 10.12 and 10.7 bounds on the expected risk of RN and

SVMR machines of the form (10.61) can be derived - see also a similar bound in

Chapter 1 - but these bounds are not practically useful). Second, even if we could

make a choice of Fn�(m), it is computationally diÆcult to implement the SRM since

problem (10.61) is a constrained minimization one with non-linear constraints, and

solving such a problem for a number of spaces Fr can be computationally diÆcult.

So implementing SRM using the V dimension of nested subspaces of a RKHS is

practically a very diÆcult problem.

On the other hand, if we had the optimal Lagrange multiplier �n�(m), we could

simply solve the unconstrained minimization problem:

1

m

X
i=1

c(xi; yi; f(xi)) + �n�(m)jjf jj2k (10.63)

both for RN and for SVMR. This is exactly the problem we solve in practice, as we

described in Sections 10.3 and 10.4. Since the value �n�(m) is not known in practice,

we can only \implement" the extended SRM approximately by minimizing (10.63)

with various values of � and then picking the best � using techniques such as cross-

validation [Allen, 1974, Wahba, 1980, 1985, Kearns et al., 1997], Generalized Cross

Validation, Finite Prediction Error and the MDL criteria (see [Vapnik, 1998] for a

review and comparison). It is important to notice that bound (10.28) does not hold

if we use the norm of the solution of (10.63) instead of A in Theorem 10.12. We

discuss this issue below.

Summarizing, both the RN and the SVMR methods discussed in Sections 10.3

and 10.4 can be seen as approximations of the extended SRM method using the

V dimension, with nested hypothesis spaces being of the form FA = ff 2 Hk :

jjf jj2k � Ag, Hk being a RKHS de�ned by kernel k. For both RN and SVMR the

V dimension of the loss function c in FA is �nite for 8  > 0, so the ERM method

uniformly converges in FA for any A < 1, and we can use the extended SRM

method outlined in Section 10.2.

10.5.1 SRM for SVM Classi�cation

It is interesting to notice that the same analysis can be used for the problem of

classi�cation. In this case the following theorem holds [Evgeniou and Pontil, 1999a]:
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Theorem 10.13

LetM be the dimensionality of a RKHS Hk with kernel k. Assume our input space

X is bounded and let R be the radius of the sphere where our data x belong to, in the

feature space induced by kernel k. The V dimension of the soft margin loss function

�(1 � yf(x))(1 � yf(x)) in FA = ff 2 Hk : jjf jjk � Ag is � O(min(M ,R
2A2

2 )). In

the case that M is in�nite the V dimension becomes � O(R
2A2

2 ), which means it

is �nite for 8  > 0.

This theorem, combined with the theorems on V dimension summarized in Sec-

tion 10.2, can be used for a distribution independent analysis of SVMC (of the form

(10.61)) like that of SVMR and RN. However, a direct application of theorems 10.13

and 10.7 leads to a bound on the expected soft margin error of the SVMC solution,

instead of a more interesting bound on the expected misclassi�cation error. We can

bound the expected misclassi�cation error as follows.

Using Theorem 10.7 with the soft margin loss function we can get a bound on

the expected soft margin loss in terms of the empirical one (the
P

i=1 �i of problem

10.9) and the V dimension given by theorem 10.13. Theorem 10.7 implies:

Pr
n
sup
f2FA

jRemp(f)�R(f)j > �
o
� G(�;m; h); (10.64)

where both the expected and the empirical errors are measured using the soft

margin loss function, and h is the V dimension of Theorem 10.13 for  = �� and

� as in Theorem 10.7. On the other hand, �(�yf(x)) � �(1 � yf(x))(1 � yf(x))
for 8 (x; y), which implies that the expected misclassi�cation error is less than the

expected soft margin error. Using (10.64) we get that (uniformly) for all f 2 FA:
Pr fR(f) > �+Remp(f)g � G(�;m; h); (10.65)

Notice that (10.65) is di�erent from existing bounds that use the empirical hard

margin (�(1� yf(x))) error (see Chapter 1 or [Bartlett and Shawe-Taylor, 1999]).

It is similar in spirit to bounds in Chapter 19 where the
P

i=1 �
2
i is used.

13 On the

other hand, it can be shown [Evgeniou and Pontil, 1999a] that the V dimension

for loss functions of the form �(1� yf(x))(1� yf(x))� is of the form O(R
2A2


2
�

) for

8 0 < � � 1. Thus, using the same approach outlined above for the soft margin,

we can get bounds on the misclassi�cation error of SVMC in terms of
P

i=1(�i)
�,

which, for � near 0, is close to the margin error used for the bounds in Chapter 1

and in [Bartlett and Shawe-Taylor, 1999]. It is important to point out that bounds

like (10.65) hold only for the machines of the form (10.61), and not for the machines

of the form (10.3) typically used in practice (Evgeniou and Pontil [1999a]). This

is unlike the bound in Bartlett and Shawe-Taylor [1999] which holds for machines

of the form (10.61) and is derived using the theoretical results of Bartlett [1998]

where a type of \continuous" SRM (for example for a structure of hypothesis spaces

13. The
P

i=1 �i can be very di�erent from the hard margin (or the misclassi�cation)
error. This may lead to various pathological situations (cf., e.g., [Rifkin et al., 1999]).
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de�ned through the continuous parameter A of (10.61)) is studied.14 For more

information we refer the reader to Bartlett [1998], Evgeniou and Pontil [1999a].

In the case of classi�cation the diÆculty is the minimization of the empirical

misclassi�cation error. Notice that SVMC does not minimize the misclassi�cation

error, and instead minimizes the empirical error using the soft margin loss function.

One can still use the SRM method with the soft margin loss function (10.6), in

which case minimizing the empirical risk is possible. The SRM method with the

soft margin loss function would be consistent, but the misclassi�cation error of the

solution may not be minimal. It is unclear whether SVMC is consistent in terms of

misclassi�cation error. In fact the V dimension of the misclassi�cation loss function

(which is the same as the VC-dimension - see Section 10.2) is known to be equal

to the dimensionality of the RKHS plus one [Vapnik, 1998]. This implies that, as

discussed at the beginning of this section, it cannot be used to study the expected

misclassi�cation error of SVMC in terms of the empirical one.

10.5.1.1 Distribution Dependent Bounds for SVMC

We close this section with a brief reference to a recent distribution dependent

result on the generalization error of SVMC. This result does not use the V or VC

dimensions, which, as we mentioned in Section 10.2, are used only for distribution

independent analysis. It also leads to bounds on the performance of SVMC that

(unlike the distribution independent ones) can be useful in practice.15

For a given training set of size m, let us de�ne SVm to be the number of

essential support vectors of SVMC, (as we de�ned them in Section 10.4). Let Rm

be the radius of the smallest hypersphere in the feature space induced by kernel

k containing all essential SVs, kfk2k(m) the norm of the solution of SVMC, and

�(m) = 1
kfk2

k
(m)

the margin. Then for a �xed kernel and for a �xed value of the

SVMC parameter C the following theorem holds:

Theorem 10.14 Vapnik [1998]

The expected misclassi�cation risk of the SVM trained on m data points sampled

from R
N � R according to a probability distribution p(x; y) is bounded by:

E

8><
>:
min

�
SVm+1;

R2
m+1

�(m+1)

�
m+ 1

9>=
>; (10.66)

where the expectation E is taken over p(x; y).

This theorem can also be used to justify the current formulation of SVMC, since

minimizing jjf jj2k(m) (which is what we do in SVMC) a�ects the bound of The-

orem 10.14. It is an open question whether the bound of (10.14) can be used to

14. It is important to notice that all these bounds are not tight enough in practice.
15. Further distribution dependent results have been derived recently - see Chapter 19.
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construct learning machines that are better than current SVM. The theorem sug-

gests that a learning machine should, instead of only minimizing jjf jj2k, minimize
min

�
SVm;

R2
m+1

�(m+1)

�
. Finally, it is an open question whether similar results exist

for the case of SVMR. As we mentioned in Section 10.4, the connection between

SVMC and SVMR outlined in that section may suggest how to extend such results

to SVMR. The problem of �nding better distribution dependent results on the gen-

eralization capabilities of SVM is a topic of current research which may lead to

better learning machines.

10.6 A Bayesian Interpretation of Regularization and SRM?

10.6.1 Maximum A Posteriori Interpretation of Regularization

It is well known that a variational principle of the type of equation (10.1) can

be derived not only in the context of functional analysis [Tikhonov and Arsenin,

1977], but also in a probabilistic framework [Kimeldorf and Wahba, 1971, Wahba,

1990, 1980, Poggio et al., 1985, Marroquin et al., 1987, Bertero et al., 1988]. In this

section we illustrate this connection for both RN and SVM, in the setting of RKHS.

Consider the standard regularization case

min
f2Hk

Rreg[f ] =
1

m

X
i=1

(yi � f(xi))2 + �kfk2k (10.67)

Following Girosi et al. [1995] let us de�ne:

1. X � Y = f(xi; yi)g for i = 1; � � � ;m to be the set of training examples, as in the

previous sections.

2. P[f jX � Y ] as the conditional probability of the function f given the examples

X � Y .
3. P[X � Y jf ] as the conditional probability of X � Y given f . If the function

underlying the data is f , this is the probability that by random sampling the

function f at the sites fxigi=1 the set of measurement fyigi=1 is obtained. This is
therefore a model of the noise.

4. P[f ]: is the a priori probability of the random �eld f . This embodies our a

priori knowledge of the function, and can be used to impose constraints on the

model, assigning signi�cant probability only to those functions that satisfy those

constraints.

Assuming that the probability distributions P[X � Y jf ] and P[f ] are known, the
posterior distribution P[f jX�Y ] can now be computed by applying the Bayes rule:

P[f jX � Y ] / P[X � Y jf ] P[f ]: (10.68)
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If the noise is normally distributed with variance �, then the probability P[X�Y jf ]
can be written as:

P[X � Y jf ] / e� 1
2�2

P
i=1(yi�(xi))2 : (10.69)

For now let us write informally the prior probability P[f ] as
P[f ] / e�kfk2k : (10.70)

Following the Bayes rule (10.68) the a posteriori probability of f is written as

P[f jX � Y ] / e�[ 1
2�2

P
i=1(yi�f(xi))2+kfk2k] : (10.71)

One of the several possible estimates [Marroquin et al., 1987] of the function f from

the probability distribution (10.71) is the so called MAP (Maximum A Posteriori)

estimate, that considers the function that maximizes the a posteriori probability

P[f jX � Y ], and therefore minimizes the exponent in equation (10.71). The MAP

estimate of f is therefore the minimizer of the functional:

1

m

X
i=1

(yi � f(xi))2 + 1

m
�kfk2k (10.72)

where � is the a priori de�ned constant 2�2, that is

1

m

X
i=1

(yi � f(xi))2 + ~�kfk2k : (10.73)

where ~� = �
m . This functional is the same as that of equation (10.67), but here it is

important to notice that �(m) = �
m . As noticed by Girosi et al. [1995], functionals of

the type (10.70) are common in statistical physics [Parisi, 1988], where the stabilizer

(here kfk2k) plays the role of an energy functional. As we will see later, the RKHS

setting we use in this chapter makes clear that the correlation function of the

physical system described by kfk2k is the kernel k(x;y).16
Thus in the standard MAP interpretation of RN the data term is a model of

the noise and the stabilizer is a prior on the regression function f . The informal

argument outlined above can be made formally precise in the setting of this chapter

in which the stabilizer is a norm in a RKHS (see also [Wahba, 1990]). To see the

argument in more detail, let us write the prior (10.70) as:

P [f ] / e�kfk2k = e�
P

n=1

a2n
�n (10.74)

16. As observed by Girosi et al. [1995], (see also [Poggio and Girosi, 1989]) prior prob-
abilities can also be seen as a measure of complexity, assigning high complexity to the
functions with small probability. It has been proposed by Rissanen [1978] to measure the
complexity of a hypothesis in terms of the bit length needed to encode it. It turns out that
the MAP estimate mentioned above is closely related to the Minimum Description Length
Principle: the hypothesis f which for given X � Y can be described in the most compact
way is chosen as the \best" hypothesis. Similar ideas have been explored by others (see
[Vapnik, 1995, 1998] for a summary).
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whereM is the dimensionality of the RKHS, with possiblyM =1. Of course func-

tions f can be represented as vectors a in the reference system of the eigenfunctions

 n of the kernel k since

f(x) =
X
n=1

an n(x) : (10.75)

The stabilizer

kfk2k =
X
n=1

a2n
�n

= aT��1a (10.76)

can of course be also expressed in any other reference system ( 0 = A ) as

kfk2k = bTK�1b (10.77)

which suggests that K can be interpreted as the covariance matrix in the reference

system of the  0. It is clear in this setting that the stabilizer can be regarded as

the Malahanobis distance of f from the mean of the functions. P [f ] is therefore a

multivariate Gaussian with zero mean in the Hilbert space of functions de�ned by

k and spanned by the  n:

P [f ] / e�kfk2k = e�(b
TK�1b) : (10.78)

Thus the stabilizer can be related to a Gaussian prior on the function space.

The interpretation is attractive since it seems to capture the idea that the

stabilizer e�ectively constrains the desired function to be in the RKHS de�ned

by the kernel k. It also seems to apply not only to standard regularization but to

any functional of the form

Rreg[f ] =
1

m

X
i=1

V (yi � f(xi)) + �kfk2k (10.79)

where V (�) is any monotonically increasing loss function (see [Girosi et al., 1991]).

In particular it can be applied to the SVM (regression) case in which the relevant

functional is

1

m

X
i=1

jyi � f(xi)j� + �kfk2k : (10.80)

In both cases, one can write P [X � Y jf ] and P [f ] for which the MAP estimate of

P [f jX � Y ] / P [X � Y jf ]P [f ] (10.81)

gives either equation (10.79) or equation (10.80). Of course, the MAP estimate is

only one of several possible. In many cases, the average of f =
R
fdP [f jX � Y ]

may make more sense17 (see [Marroquin et al., 1987]). This argument provides a

formal proof of the well-known equivalence between Gaussian processes de�ned by

17. In the Gaussian case - Regularization Networks - MAP and average estimates coincide.
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the previous equation with P [f jX �Y ] Gaussian and the RN de�ned by (10.67).18

In the following we comment separately on the stabilizer { common to RN and

SVM { and on the data term { which is di�erent in the two cases.

10.6.2 Bayesian Interpretation of the Stabilizer in the RN and SVM

Functionals

Assume that the problem is to estimate f from sparse data yi at location xi. From

the previous description it is clear that choosing a kernel k is equivalent to assuming

a Gaussian prior on f with covariance equal to k. Thus choosing a prior through k

is equivalent a) to assume a Gaussian prior and b) to assume a correlation function

associated with the family of functions f . The relation between positive de�nite

kernels and correlation functions k of Gaussian random processes is characterized

in details in [Wahba, 1990, Theorem 5.2]. In applications it is natural to use an

empirical estimate of the correlation function, whenever available. Notice that in

the MAP interpretation a Gaussian prior is assumed in RN as well as in SVM. For

both RN and SVM when empirical data are available on the statistics of the family

of functions of the form (10.75) one should check that P [f ] is Gaussian and make

it zero-mean. Then an empirical estimate of the correlation function E[f(x)f(y)]

(with the expectation relative to the distribution P [f ]) can be used as the kernel.

Notice also that the basis functions  n associated with the positive de�nite function

k(x;y) correspond to the Principal Components associated with k.

10.6.3 Bayesian Interpretation of the Data Term in the Regularization

and SVM Functional

As already observed the model of the noise that has to be associated with the

data term of the SVM functional is not Gaussian additive as in RN. The same is

true for the speci�c form of Basis Pursuit Denoising considered in Section 10.7,

given the equivalence with SVM. Data terms of the type V (yi � f(xi)) can be

interpreted [Girosi et al., 1991] in probabilistic terms as non-Gaussian noise models.

Recently, Pontil et al. [1998a] derived the noise model corresponding to Vapnik's

�-insensitive loss function. It turns out that the underlying noise model consists of

the superposition of Gaussian processes with di�erent variances and means, that

is19:

exp (�jxj�) =
Z +1

�1
dt

Z 1

0

d��(t)�(�)
p
� exp

���(x� t)2� ; (10.82)

18. Ironically, it is only recently that the neural network community seems to have realized
the equivalence of many so-called neural networks and Gaussian processes and the fact
that they work quite well (see [MacKay, 1997, Williams, 1998] and references therein).
19. In the following we introduce the variable � = (2�2)�1.
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with:

��(t) =
1

2(�+ 1)

�
�[��;�](t) + Æ(t� �) + Æ(t+ �)

�
; (10.83)

�(�) / �2 exp
�
� 1

4�

�
: (10.84)

where �[��;�](t) is 1 for t 2 [��; �], 0 otherwise. For the derivation see [Pontil et al.,

1998a]. Notice that the variance has a unimodal distribution that does not depend

on �, and the mean has a distribution which is uniform in the interval [��; �], (except
for two delta functions at ��, which ensures that the mean has not zero probability
to be equal to ��). The distribution of the mean is consistent with the current

understanding of Vapnik's ILF: errors smaller than � do not count because they

may be due entirely to the bias of the Gaussian noise.

10.6.4 Why a MAP Interpretation may be Misleading

We have just seen that minimization of both the RN and the SVMR functionals can

be interpreted as corresponding to the MAP estimate of the posterior probability

of f given the data, for certain models of the noise and for a speci�c Gaussian prior

on the space of functions f . However, a Bayesian interpretation of this type may in

general be inconsistent with Structural Risk Minimization and more generally with

Vapnik's analysis of the learning problem. The following argument due to Vapnik

shows the general point.

Consider functionals (10.35) and (10.53). From a Bayesian point of view instead

of the parameter � { which in RN and SVM is a function of the data (through the

SRM principle) { we have ~� which depends on the data as �
m : the constant � has

to be independent of the training data (i.e., their size m). On the other hand, as

we discussed in Section 10.2, SRM dictates a choice of � depending on the training

set. It seems unlikely that � could simply depend on �
m as the MAP interpretation

requires for consistency.

Fundamentally, the core of Vapnik's analysis is that the key to learning from

�nite training sets is capacity control, that is the control of the complexity of

the hypothesis space as a function of the training set. From this point of view

the ability to choose � as a function of the training data is essential to our

interpretation of Regularization and SVM in terms of the VC theory (compare the

procedure described in our SRM section 10.2). Full capacity control and appropriate

dependency of � on the training set, which we expect in the general case not to be

simply of the form �
m , is lost in the direct MAP interpretation that we described

in this chapter. Of course, an empirical Bayesian interpretation relying on hyper-

parameters in the prior is possible and often useful but it amounts to little more

than a parametric form for the posterior distribution, usually used in conjunction

with maximum likelihood estimation of the parameters from the data.



10.7 Connections Between SVMs and Sparse Approximation Techniques 199

10.7 Connections Between SVMs and Sparse Approximation Techniques

In recent years there has been a growing interest in approximating functions and

representing signals using linear superposition of a small number of basis functions

selected from a large, redundant set of basis functions, called a dictionary. These

techniques go under the name of Sparse Approximations (SAs) [Chen, 1995, Chen

et al., 1999, Olshausen and Field, 1996, Harpur and Prager, 1996, Daubechies, 1992,

Mallat and Zhang, 1993, Coifman and Wickerhauser, 1992, DeVore, 1998]. We will

start with a short overview of SAs. Then we will discuss a result due to Girosi [1998]

that shows an equivalence between SVMs and a particular SA technique.

10.7.1 The Problem of Sparsity

Given a dictionary of basis functions (for example a frame, or just a redundant

set of basis functions) f 1(x); : : : ;  n(x)g with n very large (possibly in�nite), SA

techniques seek an approximation of a function f(x) as a linear combination of

the smallest number of elements of the dictionary, that is, an approximation of the

form:

f�(x) =

jX
j=1

�j j(x); (10.85)

with the smallest number of non-zero coeÆcients �i. Formally, the problem is

formulated as minimizing the following cost function:

R[�] = D

0
@f(x); nX

j=1

�j j(x)

1
A+ �k�kL0 ; (10.86)

where D is a cost measuring the distance (in some prede�ned norm) between the

true function f(x) and our approximation, the L0 norm of a vector counts the

number of elements of that vector which are di�erent from zero, and � is a parameter

that controls the trade o� between sparsity and approximation. Observe that the

larger � is in (10.86), the more sparse the solution will be.

In the more general case of learning function f is not given, and instead we

have a data set X � Y = f(x1; y1); : : : (xm; ym)g of the values yi of f at locations

xi.20 Note that in order to minimize R[�] we need to know f at all points x.

In the learning paradigm, in the particular case that D(f(x);
Pn

j=1 �j j(x)) =

kf(x) � Pn
j=1 �j j(x)k2L2 , the �rst term in equation (10.86) is replaced by an

empirical one, and (10.86) becomes:

1

m

X
i=1

0
@yi � nX

j=1

�j j(xi)

1
A2

+ �k�kL0 (10.87)

20. For simplicity we consider the case where the input distribution P (x) is distribution.
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Minimizing (10.86) can be used as well to �nd sparse approximations in the case

that the function f is generated by a function f0 corrupted by additive noise. In

this case the problem can be formulated as �nding a solution � to:

f = 	�+ � (10.88)

with the smallest number of non-zero elements, where 	 is the matrix with columns

the elements of the dictionary, and � is the noise. If we take a probabilistic approach

and the noise is Gaussian, the problem can again be formulated as minimizing:

R[�] =
f(x)�

nX
j=1

�j j(x)


2

L2

+ �k�kL0 ; (10.89)

Unfortunately it can be shown that minimizing (10.86) is NP-hard because of

the L0 norm. In order to circumvent this shortcoming, approximated versions

of the cost function above have been proposed. For example, Chen [1995], Chen

et al. [1999] use the L1 norm as an approximation of the L0 norm, obtaining

an approximation scheme that they call Basis Pursuit De-Noising (BPDN) which

consists of minimizing:

R[�] =
f(x)�

nX
j=1

�j j(x)


2

L2

+ �

nX
j=1

j�j j; (10.90)

10.7.2 Equivalence between BPDN and SVMs

In this section we consider the particular case in which we are given a data set

X � Y = f(x1; y1); : : : ; (xm; ym)g, and the dictionary consists of basis functions of

the form:

 j(x) = k(x;xi) 8i = 1; : : : ;m (10.91)

where k is the reproducing kernel of a RKHS Hk, and the size m of X �Y is equal

to the size n of the dictionary. Moreover, following Girosi [1998], we assume that

f(x) in eq. (10.86) is in the RKHS, and we use as the cost D in (10.86) the norm

in the RKHS Hk induced by the kernel k, and approximate the L0 norm with L1.

Under these assumptions, we get the SA technique that minimizes:

R[�] =
f(x)�

X
j=1

�j j(x)


2

k

+ �k�kL1 : (10.92)

subject to f(xi) = yi.

It can be shown [Girosi, 1998] that this technique is equivalent to SVMR in

the following sense: the two techniques give the same solution, which is obtained

by solving the same quadratic programming problem. Girosi [1998] proves the

equivalence between SVMR and BPDN under the assumption that the data set

f(xi; yi)gi=1 has been obtained by sampling, in absence of noise, the target function
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f . Functional (10.92) di�ers from (10.90) only in the cost D. While Chen et al.

[1999], in their BPDN method, measure the reconstruction error with an L2
criterion, Girosi measures it by the true distance, in the Hk norm, between the

target function f and the approximating function f�. This measure of distance,

which is common in approximation theory, is better motivated than the L2 norm

because it not only enforces closeness between the target and the model, but also

between their derivatives, since k � kk is a measure of smoothness.
Notice that from eq. (10.92) the cost function E cannot be computed because it

requires the knowledge of f (in the �rst term). If we had k � kL2 instead of k � kk in
eq. (10.92),this would force us to consider the approximation:

kf(x)� f�(x)k2L2 �
1

m

X
i=1

(yi � f�(xi))2 (10.93)

However if we used the norm k � kk we can use the reproducing property obtaining

(see [Girosi, 1998]):

R[�] = 1

2

0
@kfk2k + X

i;j=1

�i�jk(xi;xj)� 2
X
i=1

�iyi

1
A+ �k�kL1 (10.94)

Observe that functional (10.94) is the same as the objective function of SVM of

problem 10.8 up to the constant 1
2kfk2k. However, in the SVM formulation the

coeÆcients �i satisfy two constraints, which in the case of sparsity are trivially

satis�ed under further assumptions. For details see [Girosi, 1998]. It also follows

from eq. (10.85) and (10.91) that the approximating function is of the form:

f�(x) � f�(x) =
X
i=1

�ik(x;xi): (10.95)

This model is similar to the one of SVM (eq. (10.55)), except for the constant b.

This relation between SVMR and SA suggests directly that SVM yield a sparse

representation.

10.8 Remarks

10.8.1 Regularization Networks can implement SRM

One of the main focuses of this review is to describe and motivate the classical

technique of regularization { minimization of functionals such as in equation (10.1)

{ within the framework of VC theory. In particular we have shown that classical

regularization functionals can be motivated within the statistical framework of

capacity control.
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Standard Regularization Rreg[f ] =
1
m

P
i=1(yi � f(xi))

2 + �kfk2k
SVM Regression (SVMR) Rreg[f ] =

1
m

P
i=1 jyi � f(xi)j� + �kfk2k

SVM Classi�cation (SVMC) Rreg[f ] =
1
m

P
i=1 �(1� yif(xi))(1� yif(xi)) + �kfk2k

Table 10.2 A uni�ed framework: the minimizer of each of these three functionals

has always the same form: f(x) =
P

i=1 �ik(x;xi) or f(x) =
P

i=1 �ik(x;xi) + b: Of

course in classi�cation the decision function is sgn (f(x)).

10.8.2 The SVM Functional is a Special Formulation of Regularization

Throughout our review it is clear that standard Regularization Networks as well as

Support Vector Machines for regression and Support Vector Machines for classi�ca-

tion (see Table 10.2) can be justi�ed within the same framework, based on Vapnik's

SRM principle and the notion of V dimension. The three functionals of the table

have di�erent loss functions c(�; �; �) but the same stabilizer. Thus the minimizer has
the same general form and, as a consequence, the associated network has the same

architecture. In particular, RKHS, associated kernels, and the mapping they induce

from the input space into a higher dimensional space of features  n, are exactly

the same in SVM as in RN. The di�erent loss functions of SVM determine however

quite di�erent properties of the solution (see Table (10.2)) which is, unlike regu-

larization, sparse in the �n. Notice that loss functions di�erent from quadratic loss

have been used before in the context of regularization. In particular, the physical

analogy of representing the data term using nonlinear spring (standard L2 regular-

ization corresponds to linear springs) was used and studied before (for instance see

[Girosi et al., 1991]). It is, however, the speci�c choice of the loss functions in SVMC

and SVMR that provides some of their characteristic features, such as sparsity of

the solution. Notice also that the geometric interpretation of kfk2k in terms of the

margin [Vapnik, 1998] is true only for the classi�cation case and depends on the

speci�c loss function c(�; �; �) used in SVMC.

10.8.3 Capacity Control and the Physical World

An interesting question outside the realm of mathematics which has been asked

recently is why large margin classi�ers seem to work well enough in the physical

world. As we saw throughout this review, the question is really the same as

the question of why to assume smoothness in regression, that is why to use

stabilizers such as kfk2k, which are usually smoothness functionals. Smoothness

can be justi�ed by observing that in many cases smoothness of input-output

relations are implied directly by the existence of physical laws with continuity

and di�erentiability properties. In classi�cation minimization of kfk2k corresponds

to maximization of the margin in the space of the  n; it is also equivalent to

choosing the decision boundary resulting from thresholding the smoothest f in the
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original space, according to the smoothness criterion induced by k (notice that the

decision boundary is the level crossing of f and not necessarily smooth everywhere).

Conversely, we would not be able to generalize for input-output relations that are

not smooth, that is for which "similar" inputs do not correspond to "similar"

outputs (in an appropriate metric!). Such cases exist: for instance the mapping

provided by a telephone directory between names and telephone numbers is usually

not "smooth" and it is a safe bet that it would be diÆcult to learn it from examples.

In cases in which physical systems are involved, however, input-output relations

have some degree of smoothness and can be learned. From this point of view

large margin (in feature space) and smoothness are properties of the physical world

that are key to allow generalization, learning and the development of theories and

models.
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AdaBoost and other ensemble methods have successfully been applied to a number

of classi�cation tasks, seemingly defying problems of over�tting. AdaBoost performs

gradient descent in an error function with respect to the margin, asymptotically

concentrating on the patterns which are hardest to learn. For noisy problems,

however, this can be disadvantageous. Indeed, theoretical analysis has shown that

the margin distribution, as opposed to just the minimal margin, plays a crucial

role in understanding this phenomenon. Loosely speaking, some outliers should

be tolerated if this has the bene�t of substantially increasing the margin on the

remaining points.

We propose new boosting algorithms which, similar to �-Support-Vector Classi-

�cation, allows for the possibility of a pre-speci�ed fraction � of points to lie in the

margin area or even on the wrong side of the decision boundary.

Unlike other regularized boosting algorithms [Mason et al., 1999, R�atsch et al.,

1998], this gives a nicely interpretable way of controlling the trade-o� between

minimizing the training error and capacity.

11.1 Introduction

Boosting and related Ensemble learning methods have been recently used with great

success in applications such as Optical Character Recognition [Drucker et al., 1993,

LeCun et al., 1995, Schwenk and Bengio, 1998] (see also Section 1.5).

The idea of a large (minimum) margin explains the good generalization perfor-

mance of AdaBoost in the low noise regime. However, AdaBoost performs worse

on noisy tasks [Quinlan, 1996b, R�atsch et al., 1998], such as the iris and the breast

cancer benchmark data sets [Blake et al., 1998]. On the latter tasks, a large margin

on all training points cannot be achieved without adverse e�ects on the generaliza-

tion error. This experimental observation was supported by the study of Schapire

et al. [1998] (see also Theorem 1.15), where the generalization error of ensemble

methods was bounded by the sum of the fraction of training points which have

a margin smaller than some value �, say, plus a complexity term depending on

the base hypotheses and �. While this worst-case bound1 can only capture part

of what is going on in practice, it nevertheless already conveys the message that

in some cases it pays to allow for some points which have a small margin, or are

misclassi�ed, if this leads to a larger overall margin on the remaining points.

To cope with this problem, it was mandatory to construct regularized variants of

AdaBoost, which traded o� the number of margin errors and the size of the margin

[Mason et al., 1999, R�atsch et al., 1998]. This goal, however, was so far achieved in

a heuristic way by introducing regularization parameters which have no immediate

interpretation and which cannot be adjusted easily.

1. Note that the complexity term depends on the VC dimension of the base hypothesis,
which is a worst case capacity measure.
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The present chapter addresses this problem in two ways. Primarily, it makes an

algorithmic contribution (including pseudocode) to the problem of constructing

regularized boosting algorithms. However, compared to the previous e�orts, it

parameterizes the trade-o� in a much more intuitive way: its only free parameter

directly determines the fraction of margin errors.

This, in turn, is also appealing from a theoretical point of view, since it involves a

parameter which controls a quantity that plays a crucial role in the generalization

error bounds (cf. also Mason et al. [1999], Schapire et al. [1998]). Furthermore, it

allows the user to roughly specify this parameter once a reasonable estimate of the

expected error (possibly from other studies) can be obtained, thus reducing the

training time.

11.2 Boosting and the Linear Programming Solution

Before deriving new algorithms, we briey discuss the properties of the solution

generated by standard AdaBoost and, closely related, Arc-GV [Breiman, 1999],

and discuss the relation to a linear programming (LP) solution over the class of

base hypotheses G. Let us recall the de�nitions from Section 1.4: Let fgt(x) : t =
1; : : : ; Tg be a sequence of hypotheses and � = [�1 : : : �T ] their weights satisfying

�t � 0. The hypotheses gt are elements of a hypotheses class2 G = fg : x 7! f�1gg,
which is de�ned by a base learning algorithm L.

The ensemble generates the label which is the weighted majority of the votes by

sgn (f(x)) where

f(x) =
X
t

�t
k�k1 gt(x): (11.1)

In order to express that f and therefore also the margin � depend on � and for themargins

ease of notation we de�ne (cf. also De�nition 1.2)

�(z;�) := yf(x) where z := (x; y) and f is de�ned as in (11.1). (11.2)

Likewise we set

�(�) := min
1�i�m

�(zi;�) ; (11.3)

i.e., we will use the normalized margin.

The minimization objective of AdaBoost can be expressed in terms of the marginsminimization

objective
G(�) :=

mX
i=1

exp(�k�k1�(zi;�)) : (11.4)

2. Most of the work is also applicable to a hypothesis class of the type G = fg : x 7!
[�1; 1]g, except for all things which depend on the de�nition of �t.
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In every iteration AdaBoost tries to minimize this error by a stepwise maxi-

mization of the margin. It is widely believed that AdaBoost tries to maximize

the smallest margin on the training set [Breiman, 1999, Freund and Schapire, 1997,

Frean and Downs, 1998, Schapire et al., 1998, R�atsch et al., 1998]. Strictly speaking,

however, a general proof is missing. It would imply that AdaBoost asymptotically

approximates (up to scaling) the solution of the following linear programming prob-linear

programming lem over the complete hypothesis set G (cf. Grove and Schuurmans [1998], assuming

a �nite number of basis hypotheses):

maximize �

subject to �(zi;�) � � for all 1 � i � m
�t; � � 0 for all 1 � t � jGj
k�k1 = 1

(11.5)

Since such a linear program cannot be solved exactly for a in�nite hypothesis

set in general, it is interesting to analyze approximation algorithms for this kind

of problems. First we have a look at the asymptotic properties of two Boosting

algorithms (AdaBoost and Arc-GV).

Considering the optimization strategy of AdaBoost, it essentially consists of two

parts: (i) the selection of a hypothesis and then (ii) the weighting of this hypothesis.

In turn, we address their bene�ts (or shortcomings, respectively) for achieving

convergence to the LP solution.

The �rst part is done by adaptively re-weighting the patterns in each iteration tchoosing

hypotheses
wt+1(zi) =

@G(�t)=@�(zi;�
t)Pm

j=1 @G(�t)=@�(zj ;�t)
=

exp(�k�tk1�(zi;�t))Pm
j=1 exp(�k�tk1�(zj ;�t))

; (11.6)

where �t = [�1; : : : ; �t; 0; 0; : : :] is the weight vector after the t-th iteration.

AdaBoost assigns the highest weights to the patterns with the smallest margin, i.e.,

to those patterns for which the inequality on the margin in (11.5) is (almost) an

equality. In the case of an equality for a pattern in (11.5) the Lagrange multiplier

would be non-zero (if � is optimal). Increasing the weight will eventually lead to

a larger margin of the corresponding pattern and, hence, to an increase of �. This

way of �nding a new hypothesis seems to be appropriate. After all, Arc-GV, which

has been proven to converge [Breiman, 1999], is identical to AdaBoost in the �rst

part (cf. page 212), i.e., in choosing the hypotheses.

The second part is computing the weight of the selected hypothesis �t. We �rstchoosing

coeÆcients consider AdaBoost. Then we show what has to be changed to get Arc-GV and the

desired convergence property.

AdaBoost minimizes the function G with respect to the weight �t for the new

hypothesis. However, minimizing G does not guarantee maximization of �(�) (cf.

Figure 11.1). In particular, in the t-th iteration, the minimization of G wrt. �t
amounts to:

�t := argmin
�t�0

mX
i=1

exp
��(k�t�1k1 + �t)�

�
zi;�

t
��

(11.7)
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= log

�
1� �t
�t

�
; (11.8)

where �t is de�ned as in Algorithm 1.2 (cf. footnote 2). Now suppose that k�t�1k1
is large enough and �(�t) > 0. Then G may be minimized either by maximizing

the margin (which brings us closer to the LP solution) or by increasing k�tk1 =

k�t�1k1 + �t (which increases the slope of the cost function). Therefore, in this

case, one will obtain values of �t somewhat larger than the value maximizing �

(see Figure 11.1 for an example). In other cases it may occur that �t is chosen too

small.

0.2 0.4 0.6 0.8 1
−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

0.2 0.4 0.6 0.8 1
10

−2

10
−1

10
0

10
1

10
2

0.2 0.4 0.6 0.8 1
10

−15

10
−10

10
−5

10
0

10
5

10
10

Figure 11.1 Illustration of the non-optimal selection of �t in (11.7) (on a toy

example): Left: �(�); middle and right: G(�) for two di�erent stages in the boosting
process (k�k1 = 30 and 300). We set � = � + (1 � �)��1k�k1et, where et being

the t-th unit vector. In all three cases, � is shown on the abscissae. Clearly, the

maximum of � and the minimum of G do not match.

A di�erent, particularly simple strategy would be to choose �t such that the margin

is maximal, i.e.,

�t := argmax
�t>0

min
1�i�m

�(zi;�
t):

Unfortunately, there exist examples where this strategy leads to non-optimal mar-

gins: Assume we have n > 2 hypotheses and m > 2 patterns. Now we run

the algorithm and get at some iteration the margins [�(z1); �(z2); : : : ; �(zm)] :=

[y1f(x1); y2f(x2); : : : ; ymf(xm)] with �(z1) = �(z2) < min(�lp; �(zi)), (i =

3; : : : ;m), on the training set. Furthermore, suppose two hypotheses have the

margins [�1; 1; : : :] and [1;�1; : : :]. If one of these is chosen, then �t will be 0, but
there exists a solution such that �(�) > �(z1) using all n hypotheses. (The rest of

the hypotheses can be constructed in such a way that there exists no hypothesis

which would increase the margin.) Interestingly, AdaBoost would choose �t > 0

and would eventually be able to solve this dilemma (for �(z1) > 0).
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Breiman [1999] proposed a modi�cation of AdaBoost { Arc-GV { making it

possible to show the asymptotic convergence of �(�t) to the global solution �lp:

Theorem 11.1 [Breiman, 1999]Breiman's

convergence

results

Choose �t in each iteration as

�t := argmin
�2[0;1]

mX
i=1

exp
��k�tk1

�
�(zi;�

t)� �(�t�1)
��
; (11.9)

and assume that the base learner always �nds the hypothesis g 2 G, which

minimizes the weighted training error with respect to the weights given in (11.6).

Then

lim
t!1

�(�t) = �lp ;

where �lp is the maximum possible margin for a combined classi�er from G.

Note that the algorithm above can be derived from a slightly modi�ed errorArc-GV's

objective function:

Ggv(�t) :=
mX
i=1

exp
��k�tk1

�
�(zi;�

t)� �(�t�1)
��
: (11.10)

The optimization problem in (11.9) can be solved analytically and we get [Breiman,

1999]

�t = log

�
1� �t
�t

�
+ log

�
1� �(�t�1)
1 + �(�t�1)

�
: (11.11)

Thus, we just have an additional term which only depends on the margin in the

last iteration. It always has the opposite sign as �(�t�1).
The question one might ask now is, whether to use AdaBoost or Arc-GV in

practice, or more speci�cally, whether Arc-GV converges fast enough to pro�t from

its asymptotic properties? To this end, we conduct an experiment with about 25toy experiment

(appropriate) hypotheses on a data set with 50 patterns.3 In this �nite hypothesis

class setting we can easily solve the linear program maximizing the margin and

can expect that AdaBoost and also Arc-GV reach the asymptotic regime after a

reasonable number of iterations. First, we generate appropriate hypotheses and data

sets, i.e., learning problems, such that we get a selection of �lp (some negative and

some positive). Then we run AdaBoost and Arc-GV on these sets and record �(�t)

after 100 and 1000 iterations. Figure 11.2 shows the results of this experiment andobservations
we can observe that (a) AdaBoost has problems �nding the optimal combination

if �lp < 0, (b) Arc-GV's convergence does not depend on �lp, and (c) for �lp > 0

AdaBoost usually converges to the maximum margin solution faster than Arc-GV.

Observation (a) becomes clear from (11.4): G(�) will not converge to 0 and

k�k1 can be bounded by some value. Thus the asymptotic case cannot be reached,

3. With the banana shape dataset from http://www.�rst.gmd.de/~raetsch/data/banana.html.
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Figure 11.2 AdaBoost's and Arc-GV's margins (on the x{axis) vs. the optimal

margin �lp (y{axis) for a toy problem (a dot after 100, a \+" after 1000 iterations).

whereas for Arc-GV the optimum is always found. Having a look at equations (11.8)

and (11.11) we see that in AdaBoost k�k1 will converge faster to1 than in Arc-GV

(for �lp > 0), supporting the third observation.

Moreover, the number of iterations necessary to converge to a good solution seems

to be reasonable, but for an (almost) optimal solution the number of iterations is

unexpectedly high. This implies that for real world hypothesis sets the number of

iterations needed to �nd an almost optimal solution can become prohibitive, but

we conjecture that in practice a reasonably good approximation to the optimum is

provided by both, AdaBoost and Arc-GV.

11.3 �-Algorithms

For the LP-AdaBoost approach it has been shown for noisy problems, that the

generalization performance is usually not as good as the one of AdaBoost [Grove

and Schuurmans, 1998, Breiman, 1999, R�atsch, 1998]. From Theorem 1.15 this fact

becomes clear, as the minimum of the right hand side of inequality (1.50) need not

necessarily be achieved with a maximum margin. We now propose an algorithm

where we can directly control the number of margin errors and therefore also the

contribution of both terms in inequality (1.50) separately (cf. Theorem 11.3). We

�rst consider a small hypothesis class and end up with a linear program { �-LP-

AdaBoost. In Subsection 11.3.2 we then combine this algorithm with the ideas from

Section 11.2 and get two algorithms { �-Arc and RoBoost { which approximate the

�-LP solution.
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11.3.1 �-LP-AdaBoost

Let us consider the case where we have given a (�nite) set G = fg : x 7! [�1; 1]g
of T hypothesis. To �nd the coeÆcients � for the combined hypothesis f(x) we

extend the LP-AdaBoost algorithm [Grove and Schuurmans, 1998, R�atsch, 1998,

R�atsch et al., 1998] and solve the following linear optimization problem, similar in

spirit to [Sch�olkopf et al., 1998c]:

maximize �� 1
�m

Pm
i=1 �i

subject to �(zi;�) � �� �i for all 1 � i � m
�i; �t; � � 0 for all 1 � t � T and 1 � i � m
k�k1 = 1

(11.12)

This algorithm does not force all margins to be beyond zero and we get a soft

margin classi�cation with a regularization constant 1
�m . The following proposition

shows that � has an immediate interpretation:

Proposition 11.2

Suppose we run the algorithm given in (11.12) on some data with the resulting

optimal � > 0. Then

1. � upper-bounds the fraction of margin errors.

2. 1� � is an upper bound on the fraction of patterns with a margin larger than �.
For an outline of the proof see Figure 11.3 (cf. also Sch�olkopf et al. [1998c], Graepel

et al. [1999]).

Interestingly, if we choose the hypothesis set G with T = m hypotheses to beSVM connection

gi(x) = yik(xi;x); (i = 1 : : :m) ; (11.13)
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Figure 11.3 Graphical proof of the �-property.

Imagine decreasing �, starting from some large

value. The �rst term in �� � 1
m

Pm
i=1 �i (cf. (11.12))

will decrease proportionally to �, while the second

term will decrease proportionally to the fraction of

points outside of the margin area. Hence, � will

shrink as long as the latter fraction is larger than �.

At the optimum, it therefore must be � � (Propo-

sition 11.2, 1). Next, imagine increasing �, starting

from 0. Again, the change in the �rst term is propor-

tional to �, but this time, the change in the second

term is proportional to the fraction of patterns in

the margin area or exactly on the margin. Hence, �

will grow as long as the latter fraction is smaller

than �, eventually leading to Proposition 11.2, 2.
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then the algorithm above is equivalent to the Linear Programming Machines

(LPMs) [Graepel et al., 1999] with some kernel k(�; �) (except for the additional

constraints �t � 0). In �-LP-AdaBoost we are not restricted to a �xed kernel

type as we can use arbitrary base hypotheses (and also an arbitrary number of

hypotheses { as long as we can �t the problem into a computer).

Since the slack variables �i only enter the cost function linearly, their absoluterobustness

size is not important. Loosely speaking, this is due to the fact that for the optimum

of the primal objective function, only derivatives wrt. the primal variables matter,

and the derivative of a linear function is constant.

In the case of SVMs, where the hypotheses can be thought as vectors in some

feature space, this statement can be translated into a precise rule for distorting

training patterns without changing the solution: we can move them locally parallel

to the above vector. This yields a desirable resistance (or robustness) property. For

general base hypotheses, it is diÆcult to state the allowed class of transformations

in input space. Nevertheless, note that the algorithm essentially depends on the

number of outliers, not on the size of the margin error [Sch�olkopf et al., 1998c].

11.3.2 �-Arc and RoBoost

Suppose, we have a very large (but �nite or at least with �nite covering number

N�) base hypothesis class G. Then it is very diÆcult to solve (11.12) as (11.5)

directly. To this end, we propose two algorithms { �-Arc and RoBoost { that can

approximate the solution of (11.12).

The optimal � for �xed margins �(zi;�) in (11.12) can be written asrewriting

�-LP-AdaBoost

��(�) := argmax
�2[0;1]

 
�� 1

�m

mX
i=1

(�� �(zi;�))+
!
: (11.14)

where (�)+ := max(�; 0). Setting �i := (��(�) � �(zi;�))+ and subtracting
1
�m

Pm
i=1 �i from the resulting inequality on both sides, yields (for all 1 � i � m)

�(zi;�) + �i � ��(�) (11.15)

�(zi;�) + �i � 1

�m

mX
i=1

�i � ��(�)� 1

�m

mX
i=1

�i : (11.16)

Two more substitutions are needed to transform the problem into one which can

be solved by the AdaBoost algorithm, i.e., (11.6) and (11.7). In particular we have

to get rid of the slack variables �i again by absorbing them into quantities similar

to �(zi;�) and �(�).

This works as follows: on the right hand side of (11.16) we have the objectiveintroducing the

soft margin function (cf. (11.12)) and on the left hand side a term that depends nonlinearly on

�. De�ning

~��(�) := ��(�)� 1

�m

mX
i=1

�i (11.17)
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~��(zi;�) := �(zi;�) + �i � 1

�m

mX
i=1

�i; (11.18)

which we substitute for �(�) and �(z;�) in (11.5), respectively, we obtain a new

optimization problem. Note that ~��(�) and ~��(zi;�) play the role of a corrected

margin. We obtain a non-linear min-max problem

maximize ~�(�)

subject to ~�(zi;�) � ~�(�) for all 1 � i � m
�t � 0 for all 1 � t � T

k�k1 = 1

; (11.19)

which Arc-GV and AdaBoost can solve approximately (cf. Section 11.2). Hence,

replacing the margin � by ~�(z;�) in equations (11.4), (11.6) and (11.7), we obtain

two new algorithms which we refer to as �-Arc and RoBoost. Algorithm 11.1

contains the pseudocode of RoBoost. To get the �-Arc algorithm, the two marked

Algorithm 11.1 : RoBoost

argument: Training sample, X = fx1; : : : ;xmg � X, Y = fy1; : : : ; ymg � f�1g
Number of iterations, T

returns: Convex combination of functions from G.

function E = ~G(�)

�� := argmax
�2[�1;1]

�� 1

�m

mX
i=1

(�(zi;�)� �)+

Set �i := (�(zi;�)� ��)+ for all i = 1; : : : ;m

� E :=

mX
i=1

exp

"
�k�k1

 
�(zi;�) + �i � 1

�m

mX
i=1

�i

!#

end
function RoBoost(X;Y; T; �)

for all i = 1; : : : ;m
w1(zi) := 1=m

endfor
for all t from f1; : : : ; Tg

gt := L(X;Y;wt)

� �t := argmax
�t�0

~G(�t)

for all i from i = 1; : : : ;m
wt+1(zi) := exp

���(zi;�t)� (�(zi;�
t)� �t�)+

�
endfor
wt+1 := wt+1=kwt+1k1

endfor

return f =

PT
t=1 �tgtPT
i=1 �t

.

end

L is a learning algorithm that chooses a classi�er from G to minimize weighted training
error. For �-Arc only the lines marked with \�" have to be changed (see text).
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lines in Algorithm 11.1 have to be replaced by

E :=
mX
i=1

exp

"
�k�k1

 
�(zi;�) + �i � 1

�m

mX
i=1

�j � ~��(�
t�1)

!#
;

where �i � (�(zi;�)� ��)+ and �t := argmax �t2[0;1]
~G(�t):

Clearly, the computational costs for determining the hypothesis weight �t is con-computational

complexity siderably higher than for AdaBoost. The implementation given in Algorithm 11.1

is O(m2 log2(m)) of simple operations (maybe there exist better implementations).

This might be a problem, if the base hypothesis is very simple and computing �t
takes a relatively high fraction of the computing time. To avoid this problem, one

can use similar approximation approaches as used in Schapire and Singer [1998].

We can now state interesting properties for RoBoost and �-Arc by using Theoremthe � bound

1.15 that bounds the generalization error R(f) for ensemble methods. In our case

R�(f) � � by construction (i.e., the number of patterns with a margin smaller

than �, cf. Proposition 11.2), thus we get the following simple reformulation of this

bound:

Theorem 11.3

Let p(x; y) be a distribution over X � [�1; 1], and let X be a sample of m examples

chosen iid according to p. Suppose the base-hypothesis space G has VC dimension

h, and let Æ > 0. Then with probability at least 1 � Æ over the random choice of

the training set X, Y , every function f 2 co (G) generated by the algorithms above
satis�es the following bound for all � 2 (0; 1) with �� > 0.

R(f) � � +
s

c

m

�
h log2(m=h)

�2�
+ log

�
1

Æ

��
(11.20)

The tradeo� in minimizing the right hand side between the �rst and the second

term is controlled directly by an easy interpretable regularization parameter �.

11.4 Experiments

In a �rst study, we show a set of toy experiments to illustrate the general behavior

of Arc-GV and RoBoost. As base hypothesis class G we use RBF networks [R�atsch

et al., 1998], and as data a two-class problem generated from several 2D Gauss blobs

(cf. footnote 3 on page 212) where we randomly ipped � = 0%; 10%; 20%; 25% of

the labels. We obtained the following results:

�-Arc and RoBoost lead to approximately �m patterns that are e�ectively used in

the training of the base learner: Figure 11.4 (upper) shows the fraction of patterns

that have high average weights during the learning process (i.e.,
PT

t=1 wt(zi) >

1=2m). We �nd that the number of the latter increases (almost) linearly with �.

This follows from (11.17) as the (soft) margin of patterns with �(z;�) < �� is set

to �� and therefore the weight of those patterns will be the same.
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Both algorithms lead to the fraction � of margin errors (cf. dashed line in Figure

11.4) exactly as predicted in Proposition 11.2.

The (estimated) test error, averaged over 10 training sets, exhibits a rather at

minimum in � (�gure 11.4 (lower)). This indicates that just as for �-SVMs, where

corresponding results have been obtained, � is a well-behaved parameter in the

sense that a slight misadjustment it is not harmful.

The � algorithms are more robust against label noise than AdaBoost and Arc-GV

(which we recover for � = 0). As illustrated in Figure 11.5, also for increasing noise

� the minimum around the optimal � stays reasonably at. This coincides with the

interpretation of Theorem 11.3 that an optimal � should increase with the noise

level.

The results of �-Arc and RoBoost are almost the same. This coincides with the

observations in Section 11.2 for � > 0.

Finally, a good parameter of � can already be inferred from prior knowledge of the

expected error. Setting it to a value similar to the latter provides a good starting

point for further optimization (cf. Theorem 11.3).
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Figure 11.4 Toy experiment (� = 0): the upper shows the average fraction of

important patterns, the av. fraction of margin errors and the av. training error for

di�erent values of the regularization constant � for �-Arc/RoBoost. The bottom

plots show the corresponding generalization error. In both cases the parameter �

allows us to reduce the test errors to values much lower than for the hard margin

algorithm (for � = 0 we recover Arc-GV/AdaBoost and for � = 1 we get Bagging.)
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Figure 11.5 Illustration of RoBoost's robustness. Depicted is RoBoost's general-

ization error over � for di�erent label noise levels (on the training set; solid=0%,

dashed=10%, dot-dashed=20%, and dotted=25%). Also, the minimal generaliza-

tion error is better than for plain AdaBoost, which achieved 12:3, 13:8, 15:8 and 17:7

respectively. Especially for higher noise levels RoBoost performed relatively better

(best results 11:2%, 11:5%, 12:9%, and 15:3% respectively).

Note that for � = 1 we recover the Bagging algorithm (if we used bootstrap

samples), as the weights of all patterns will be the same (wt(zi) = 1=m for all

i = 1; : : : ;m) and also the hypothesis weights will be constant (�t � 1=T for all

t = 1; : : : ; T ) . This can be seen by setting �� = 1 and �t to an arbitrary positive

constant (as G(�) will not depend on �t in this case).

Finally, we present a small comparison on ten benchmark data sets obtained

from the UCI benchmark repository [Merz and Murphy, 1998]. We analyze the

performance of single RBF networks, AdaBoost, �-Arc and RBF-SVMs (we assume

that �-Arc and RoBoost perform very similar). For AdaBoost and �-Arc we use

RBF networks [R�atsch et al., 1998] as base hypothesis. The model parameters of

RBF (number of centers etc.), �-Arc (�) and SVMs (�;C) are optimized using

5-fold cross-validation. More details on the experimental setup can be found in

[R�atsch et al., 1998]. Figure 11.1 shows the generalization error estimates (after

averaging over 100 realizations of the data sets) and the con�dence interval. The

results of best classi�er and the classi�ers that are not signi�cantly worse are

set in bold face. To test the signi�cance, we used a t-test (p = 80%). On eight

out of the ten data sets, �-Arc performs signi�cantly better than AdaBoost. This

clearly shows the superior performance of �-Arc and supports this soft margin

approach for AdaBoost. Furthermore, we �nd that the performances of �-Arc and

the SVM are comparable. In three cases the SVM performs better and in two cases

�-Arc performs best. Summarizing, AdaBoost is useful for low noise cases, where

the classes are separable. �-Arc/RoBoost extends the applicability of boosting to

problems that are diÆcult to separate and should be applied if the data are noisy.
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RBF AB �-Arc SVM

Banana 10.8�0.06 12.3�0.07 10.6�0.05 11.5�0.07
B.Cancer 27.6�0.47 30.4�0.47 25.8�0.46 26.0�0.47
Diabetes 24.3�0.19 26.5�0.23 23.7�0.20 23.5�0.17
German 24.7�0.24 27.5�0.25 24.4�0.22 23.6�0.21
Heart 17.6�0.33 20.3�0.34 16.5�0.36 16.0�0.33
Ringnorm 1.7�0.02 1.9�0.03 1.7�0.02 1.7�0.01
F.Sonar 34.4�0.20 35.7�0.18 34.4�0.19 32.4�0.18
Thyroid 4.5�0.21 4.4�0.22 4.4�0.22 4.8�0.22
Titanic 23.3�0.13 22.6�0.12 23.0�0.14 22.4�0.10
Waveform 10.7�0.11 10.8�0.06 10.0�0.07 9.9�0.04

Table 11.1 Generalization error estimates and con�dence intervals. The best

classi�ers for a particular data set are marked in bold face (see text).

11.5 Conclusion

We analyzed the AdaBoost algorithm and found that Arc-GV and AdaBoost are

suitable for approximating the solution of non-linear min-max problems over huge

hypothesis classes. We re-parameterized the LPReg-AdaBoost algorithm (cf. Grove

and Schuurmans [1998], R�atsch et al. [1998], R�atsch [1998]) and introduced a new

regularization constant � that controls the fraction of patterns inside the margin

area. The new parameter is highly intuitive and has to be optimized only on a �xed

interval [0; 1].

Using the fact that AdaBoost can approximately solve min-max problems, we

found a formulation of AdaBoost {RoBoost { and similarly of Arc-GV { �-Arc {

that implements the �-idea for Boosting by de�ning an appropriate soft margin

(cf. also Bennett and Mangasarian [1992]). The present paper extends previous

work on regularizing boosting (DOOM [Mason et al., 1999], AdaBoostReg [R�atsch

et al., 1998]) and shows the utility and exibility of the soft margin approach for

AdaBoost.

We found empirically that the generalization performance in RoBoost and �-Arc

depends only slightly on the optimal choice of the regularization constant. This

makes model selection (e.g., via cross-validation) much easier.

Future work will study the detailed regularization properties of the regularized

versions of AdaBoost, in particular how it compares to �-LP Support Vector

Machines.
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Much recent attention, both experimental and theoretical, has been focussed on

classi�cation algorithms which produce voted combinations of classi�ers. Recent

theoretical work has shown that the impressive generalization performance of

algorithms like AdaBoost can be attributed to the classi�er having large margins

on the training data.

We present abstract algorithms for �nding linear and convex combinations of

functions that minimize arbitrary cost functionals (i.e., functionals that do not

necessarily depend on the margin). Many existing voting methods can be shown to
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be special cases of these abstract algorithms. Then, following previous theoretical

results bounding the generalization performance of convex combinations of classi-

�ers in terms of general cost functions of the margin, we present a new algorithm,

DOOM II, for performing a gradient descent optimization of such cost functions.

Experiments on several data sets from the UC Irvine repository demonstrate

that DOOM II generally outperforms AdaBoost, especially in high noise situations.

Margin distribution plots verify that DOOM II is willing to \give up" on examples

that are too hard in order to avoid over�tting. We also show that the over�tting

behavior exhibited by AdaBoost can be quanti�ed in terms of our proposed cost

function.

12.1 Introduction

There has been considerable interest recently in voting methods for pattern classi-

�cation, which predict the label of a particular example using a weighted vote over

a set of base classi�ers. For example, AdaBoost [Freund and Schapire, 1997] and

Bagging [Breiman, 1996] have been found to give signi�cant performance improve-

ments over algorithms for the corresponding base classi�ers [Drucker and Cortes,

1996, Freund and Schapire, 1996, Quinlan, 1996a, Dietterich, 1998, Schwenk and

Bengio, 1998, Bauer and Kohavi, 1997, Maclin and Opitz, 1997], and have led to

the study of many related algorithms [Breiman, 1999, Schapire and Singer, 1998,

Friedman et al., 1998, R�atsch et al., 1998, Du�y and Helmbold, 1999, Friedman,

1999]. Recent theoretical results suggest that the e�ectiveness of these algorithms

is due to their tendency to produce large margin classi�ers. (See Section 1.4 for a

de�nition of margins and a review of these results.)

Mason, Bartlett, and Baxter [1999] presented improved upper bounds on the

misclassi�cation probability of a combined classi�er in terms of the average over

the training data of a certain cost function of the margins. That paper also described

experiments with an algorithm, DOOM, that modi�es the classi�er weights of an

existing combined classi�er in order to minimize this cost function. This algorithm

exhibits performance improvements over AdaBoost, which suggests that these

margin cost functions are appropriate quantities to optimize. Unlike the DOOM

algorithm (which does not provide a method for choosing the base classi�ers), the

DOOM II algorithm presented in this chapter provides an iterative method for

choosing both the base classi�ers and their weights so as to minimize the cost

functions suggested by the theoretical analysis of [Mason et al., 1999].

In this chapter, we present a general algorithm, MarginBoost, for choosing a

combination of classi�ers to optimize the sample average of any cost function of the

margin. MarginBoost performs gradient descent in function space, at each iteration

choosing a base classi�er to include in the combination so as to maximally reduce

the cost function. The idea of performing gradient descent in function space in

this way is due to Breiman [1999]. It turns out that, as in AdaBoost, the choice

of the base classi�er corresponds to a minimization problem involving weighted
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classi�cation error. That is, for a certain weighting of the training data, the base

classi�er learning algorithm attempts to return a classi�er that minimizes the weight

of misclassi�ed training examples.

There is a simpler and more abstract way to view the MarginBoost algorithm.

In Section 12.2, we describe a class of algorithms (called AnyBoost) which are

gradient descent algorithms for choosing linear combinations of elements of an inner

product space so as to minimize some cost functional. Each component of the linear

combination is chosen to maximize a certain inner product. (In MarginBoost, this

inner product corresponds to the weighted training error of the base classi�er.)

In Section 12.5, we give convergence results for this class of algorithms. For

MarginBoost with a convex cost function, these results show that, with a particular

choice of the step-size, if the base classi�er minimizes the appropriate weighted error

then the algorithm converges to the global minimum of the cost function.

In Section 12.3, we show that this general class of algorithms includes as special

cases a number of popular and successful voting methods, including AdaBoost

[Freund and Schapire, 1997], an extension of AdaBoost to combinations of real-

valued functions [Schapire and Singer, 1998], and LogitBoost [Friedman et al., 1998].

That is, all of these algorithms implicitly minimize some margin cost function by

gradient descent.

In Section 12.4, we review the theoretical results from [Mason et al., 1999]

bounding the error of a combination of classi�ers in terms of the sample average of

certain cost functions of the margin. The cost functions suggested by these results

are signi�cantly di�erent from the cost functions that are implicitly minimized by

the methods described in Section 12.3. In Section 12.6, we present experimental

results for the MarginBoost algorithm with cost functions that are motivated by

the theoretical results. These experiments show that the new algorithm typically

outperforms AdaBoost, and that this is especially true with label noise. In addition,

the theoretically-motivated cost functions provide good estimates of the error of

AdaBoost, in the sense that they can be used to predict its over�tting behaviour.

Similar techniques for directly optimizing margins (and related quantities) have

been described by several authors. R�atsch et al. [1998] show that versions of

AdaBoost modi�ed to use regularization are more robust for noisy data. Friedman

[1999] describes general \boosting" algorithms for regression and classi�cation using

various cost functions and presents speci�c cases for boosting decision trees. Du�y

and Helmbold [1999] describe two algorithms (GeoLev and GeoArc) which attempt

to produce combined classi�ers with uniformly large margins on the training data.

Freund [1999] presents a new boosting algorithm which uses example weights similar

to those suggested by the theoretical results from [Mason et al., 1999].
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12.2 Optimizing Cost Functions of the Margin

We begin with some notation. We assume that examples (x; y) are randomly

generated according to some unknown probability distribution D on X � Y where

X is the space of measurements (typically X � R
N ) and Y is the space of labels

(Y is usually a discrete set or some subset of R ).

Although the abstract algorithms of the following section apply to many di�erent

machine learning settings, our primary interest in this chapter is voted combinations

of classi�ers of the form sgn (F (x)), where

F (x) =
TX
t=1

wtft(x);

ft : X ! f�1g are base classi�ers from some �xed class F and wt 2 R are the

classi�er weights. Recall (De�nition 1.2) that the margin of an example (x; y) with

respect to the classi�er sgn (F (x)) is de�ned as yF (x).

Given a set S = f(x1; y1); : : : ; (xm; ym)g of m labelled examples generated

according to D we wish to construct a voted combination of classi�ers of the form

described above so that PD(sgn (F (x)) 6= y) is small. That is, the probability that

F incorrectly classi�es a random example is small. Since D is unknown and we are

only given a training set S, we take the approach of �nding voted classi�ers which

minimize the sample average of some cost function of the margin. That is, for a

training set S we want to �nd F such that

C(F ) =
1

m

mX
i=1

C(yiF (xi)) (12.1)

is minimized for some suitable cost function C : R ! R . Note that we are using the

symbol C to denote both the cost function of the real margin yF (x), and the cost

functional of the function F . Which interpretation is meant should always be clear

from the context.

12.2.1 AnyBoost

One way to produce a weighted combination of classi�ers which optimizes (12.1)

is by gradient descent in function space, an idea �rst proposed by Breiman [1999].

Here we present a more abstract treatment that shows how many existing voting

methods may be viewed as gradient descent in a suitable inner product space.

At an abstract level we can view the base hypotheses f 2 F and their com-

binations F as elements of an inner product space (X ; h; i). In this case, X is a

linear space of functions that contains lin (F), the set of all linear combinations of
functions in F , and the inner product is de�ned by

hF;Gi := 1

m

mX
i=1

F (xi)G(xi) (12.2)



12.2 Optimizing Cost Functions of the Margin 225

for all F;G 2 lin (F). However, the AnyBoost algorithms de�ned in this section

and their convergence properties studied in Section 12.5 are valid for any cost

function and inner product. For example, they will hold in the case hF;Gi :=R
X
F (x)G(x)dP (x) where P is the marginal distribution on the input space gener-

ated by D.
Now suppose we have a function F 2 lin (F) and we wish to �nd a new f 2 F to

add to F so that the cost C(F + �f) decreases, for some small value of �. Viewed

in function space terms, we are asking for the \direction" f such that C(F + �f)

most rapidly decreases. Viewing the cost C as a functional on lin (F), the desired
direction is simply �rC(F )(x), the negative of the functional derivative of C at

F . Here, rC(F ) is the unique function such that for any f 2 X ,
C(F + f) = C(F ) + hrC(F ); fi+ o(kfk): (12.3)

If we assume that C is di�erentiable everywhere then

rC(F )(x) := @C(F + �1x)

@�

����
�=0

; (12.4)

where 1x if the indicator function of x. Since we are restricted to choosing our new

function f from F , in general it will not be possible to choose f = �rC(F ), so
instead we search for an f with greatest inner product with �rC(F ). That is, we
should choose f to maximize

�hrC(F ); fi :

This can be motivated by observing that (12.3) implies that, to �rst order in �,

C(F + �f) = C(F ) + � hrC(F ); fi

and hence the greatest reduction in cost will occur for the f which maximizes

�hrC(F ); fi.
The preceding discussion motivates Algorithm 12.1, an iterative algorithm for

�nding linear combinations F of base hypotheses in F that minimize the cost C(F ).

Note that we have allowed the base hypotheses to take values in an arbitrary set Y ,

we have not restricted the form of the cost or the inner product, and we have not

speci�ed what the step-sizes should be. Appropriate choices for these things will

be made when we apply the algorithm to more concrete situations. Note also that

the algorithm terminates when �hrC(Ft); ft+1i � 0, i.e., when the weak learner

L returns a base hypothesis ft+1 which no longer points in the downhill direction

of the cost function C(F ). Thus, the algorithm terminates when, to �rst order, a

step in function space in the direction of the base hypothesis returned by L would

increase the cost.
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Algorithm 12.1 : AnyBoost

Require :

An inner product space (X ; h; i) containing functions mapping from X to some set Y .

A class of base classi�ers F � X .
A di�erentiable cost functional C: lin (F)! R .

A weak learner L(F ) that accepts F 2 lin (F) and returns f 2 F with a large value
of �hrC(F ); fi.
Let F0(x) := 0.
for t := 0 to T do
Let ft+1 := L(Ft).
if �hrC(Ft); ft+1i � 0 then
return Ft.

end if
Choose wt+1.
Let Ft+1 := Ft + wt+1ft+1

end for
return FT+1.

12.2.2 AnyBoost.L1

The AnyBoost algorithm can return an arbitrary linear combination of elements

of the base hypothesis class. Such exibility has the potential to cause over�tting.

Indeed, Theorem 12.2 in the following section provides guaranteed generalization

performance for certain classes of cost functions, provided the algorithm returns

elements of co (F), that is convex combinations of elements from the base hypothesis

class.1 This consideration motivates Algorithm 12.2|AnyBoost.L1|a normalized

version of AnyBoost that only returns functions in the convex hull of the base

hypothesis class F .
Notice that the stopping criterion of AnyBoost.L1 is �hrC(Ft); ft+1 � Fti � 0,

rather than �hrC(Ft); ft+1i � 0. To see why, notice that at every iteration Ft
must lie in co (F). Hence, in incorporating a new component ft+1, we update Ft
to (1 � �)Ft + �ft+1 for some � 2 [0; 1]. Hence, Ft+1 = Ft + �(ft+1 � Ft) which
corresponds to stepping in the direction corresponding to ft+1�Ft. Geometrically,
�hrC(Ft); ft+1 � Fti � 0 implies that the change Ft+1 � Ft associated with the

addition of ft+1 is not within 90Æ of �rC(Ft).

1. For convenience, we assume that the class F contains the zero function, or equivalently,
that co (F) denotes the convex cone containing convex combinations of functions from F
and the zero function.
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Algorithm 12.2 : AnyBoost.L1

Require :

An inner product space (X ; h; i) containing functions mapping from X to some set Y .

A class of base classi�ers F � X .
A di�erentiable cost functional C: co (F)! R .

A weak learner L(F ) that accepts F 2 co (F) and returns f 2 F with a large value
of �hrC(F ); f � F i.
Let F0(x) := 0.
for t := 0 to T do
Let ft+1 := L(Ft).
if �hrC(Ft); ft+1 � Fti � 0 then
return Ft.

end if
Choose wt+1.

Let Ft+1 :=
Ft + wt+1ft+1Pt+1

s=1 jwsj
:

end for
return FT+1.

12.2.3 AnyBoost.L2

AnyBoost.L1 enforces an L1 constraint on the size of the combined hypotheses

returned by the algorithm. Although for certain classes of cost functionals we have

theoretical guarantees on the generalization performance of such algorithms (see

Section 12.4), from an aesthetic perspective an L2 constraint is more natural in

an inner product space setting. In particular, we can then ask our algorithm to

perform gradient descent on a regularized cost functional of the form

C(F ) + �kFk2;

where � is a regularization parameter, without needing to refer to the individual

weights in the combination F (contrast with AnyBoost.L1). In future work we plan

to investigate the experimental performance of algorithms based on L2 constraints.

With an L2 rather than L1 constraint, we also have the freedom to allow the

weak learner to return general linear combinations in the base hypothesis class, not

just single hypotheses.2 In general a linear combination F 2 lin (F) will be closer
to the negative gradient direction than any single base hypothesis, hence stepping

2. The optimal direction in which to move for AnyBoost.L1 is always a pure direction
f 2 F if the current combined hypothesis Ft is already on the convex hull of F . So a weak
learner that produces linear combinations will be no more powerful than a weak learner
returning a single hypothesis in the L1 case. This is not true for the L2 case.
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in the direction of F should lead to a greater reduction in the cost function, while

still ensuring the overall hypothesis constructed is an element of lin (F).
A weak learner L that accepts a direction G and attempts to choose an f 2 F

maximizing hG; fi can easily be converted to a weak learner L0 that attempts to
choose an H 2 lin (F) maximizing hG;Hi; the details are given in Algorithm 12.3.

L0 would then be substituted for L in the AnyBoost algorithm.

Algorithm 12.3 : L0: a weak learner returning linear combinations

Require :

An inner product space (X ; h; i) (with associated norm kFk2 := hF; F i) containing
functions mapping from X to some set Y .

A class of base classi�ers F � X .
A di�erentiable cost functional C: lin (F)! R .

A weak learner L(G) that accepts a \direction" G 2 S and returns f 2 F with a large
value of hG; fi.
A starting function Ft 2 lin (F).

Let G0 := �rC(Ft)=krC(Ft)k.
Let H0 := 0.
for t := 0 to T do
Let ht+1 := L(Gt).
Let Ht+1 := �Ht + �ht+1, with the constraints kHt+1k = 1 and hHt+1; Gti maximal.
if � = 0 then
return Ht.

end if
Let Gt+1 := G0 �Ht+1.

end for
return HT+1.

12.2.4 AnyBoost and Margin Cost Functionals

Since the main aim of this chapter is optimization of margin cost functionals, in this

section we specialize the AnyBoost and AnyBoost.L1 algorithms of the previous two

sections by restricting our attention to the inner product (12.2), the cost (12.1),

and Y = f�1g. In this case,

rC(F )(x) = f 0 if x 6= xi; i = 1 : : :m
1

m
yiC

0(yiF (xi)) if x = xi;

where C 0(z) is the derivative of the margin cost function with respect to z. Hence,

�hrC(F ); fi = � 1

m2

mX
i=1

yif(xi)C
0(yiF (xi)):
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Any sensible cost function of the margin will be monotonically decreasing, hence

�C 0(yiF (xi)) will always be positive. Dividing through by � 1
m2

Pm
i=1 C

0(yiF (xi)),
we see that �nding an f maximizing �hrC(F ); fi is equivalent to �nding an f

minimizing

�
mX
i=1

yif(xi)
C 0(yiF (xi))Pm
i=1 C

0(yiF (xi))
: (12.5)

Since Y = f�1g, yif(xi) is either 1 if f(xi) = yi or �1 if f(xi) 6= yi. Hence (12.5)

can be rewritten asX
i:f(xi)6=yi

D(i)�
X

i:f(xi)=yi

D(i) = 2
X

i:f(xi) 6=yi
D(i)� 1;

where D(1); : : : ; D(m) is the distribution

D(i) :=
C 0(yiF (xi))Pm
i=1 C

0(yiF (xi))
:

So �nding an f maximizing �hrC(F ); fi is equivalent to �nding f minimizing the

weighted error X
i:f(xi) 6=yi

D(i):

Making the appropriate substitutions in AnyBoost yields Algorithm 12.4, Margin-

Boost.

For AnyBoost.L1 we require a weak learner that maximizes �hrC(F ); f � F i
where F is the current convex combination. In the present setting this is equivalent

to minimizing

mX
i=1

[F (xi)� f(xi)] yiD(i)

with D(i) as above. Making the appropriate substitutions in AnyBoost.L1 yields

Algorithm 12.5, MarginBoost.L1.

12.3 A Gradient Descent View of Voting Methods

Many of the most successful voting methods are, for the appropriate choice of cost

function and step-size, speci�c cases of the AnyBoost algorithm described above

(or its derivatives).

The AdaBoost algorithm [Freund and Schapire, 1997] is arguably one of the

most important developments in practical machine learning in the past decade.

Many studies [Freund and Schapire, 1996, Quinlan, 1996a, Drucker and Cortes,

1996, Schwenk and Bengio, 1998] have demonstrated that AdaBoost can produce

extremely accurate classi�ers from base classi�ers as simple as decision stumps or
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Algorithm 12.4 : MarginBoost

Require :

A di�erentiable cost function C: R ! R .

A class of base classi�ers F containing functions f :X ! f�1g.
A training set S = f(x1; y1); : : : ; (xm; ym)g with each (xi; yi) 2 X � f�1g.
A weak learner L(S;D) that accepts a training set S and a distributionD on the train-

ing set and returns base classi�ers f 2 F with small weighted error
P

i:f(xi)6=yi D(i).

Let D0(i) := 1=m for i = 1; : : : ;m.
Let F0(x) := 0.
for t := 0 to T do
Let ft+1 := L(S;Dt).
if
Pm

i=1Dt(i)yift+1(xi) � 0 then
return Ft.

end if
Choose wt+1.
Let Ft+1 := Ft + wt+1ft+1

Let Dt+1(i) :=
C0
�
yiFt+1(xi)

�
Pm

i=1 C
0
�
yiFt+1(xi)

�
for i = 1; : : : ;m.

end for
return FT+1

as complex as neural networks or decision trees. The interpretation of AdaBoost as

an algorithm which performs a gradient descent optimization of the sample average

of a cost function of the margins has been examined by several authors [Breiman,

1999, Frean and Downs, 1998, Friedman et al., 1998, Du�y and Helmbold, 1999].

To see that the AdaBoost algorithm (shown in Table 1.2) is in fact MarginBoost

using the cost function C(�) = e�� we need only verify that the distributions

and stopping criteria are identical. The distribution Dt+1 from AdaBoost can be

rewritten asQt
s=1 e

�yiwsfs(xi)

m
Qt

s=1 Zs
: (12.6)

Since Dt+1 is a distribution then

m
tY

s=1

Zs =
mX
i=1

tY
s=1

e�yiwsfs(xi) (12.7)

and clearly

tY
s=1

e�yiwsfs(xi) = e�yiFt(xi): (12.8)
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Algorithm 12.5 : MarginBoost.L1

Require :

A di�erentiable cost function C: R ! R .

A class of base classi�ers F containing functions f :X ! f�1g.
A training set S = f(x1; y1); : : : ; (xm; ym)g with each (xi; yi) 2 X � f�1g.
A weak learner L(S;D; F ) that accepts a training set S, a distribution D on the

training set and a combined classi�er F , and returns base classi�ers f 2 F with small
weighted error:

Pm
i=1 [F (xi)� f(xi)] yiD(i).

Let D0(i) := 1=m for i = 1; : : : ;m.
Let F0(x) := 0.
for t := 0 to T do
Let ft+1 := L(S;Dt; Ft).
if
Pm

i=1Dt(i)yi [ft+1(xi)� Ft(xi)] � 0 then
return Ft.

end if
Choose wt+1.

Let Ft+1 :=
Ft + wt+1ft+1Pt+1

s=1 jwsj
:

Let Dt+1(i) :=
C0
�
yiFt+1(xi)

�
Pm

i=1 C
0
�
yiFt+1(xi)

�
for i = 1; : : : ;m.

end for
return FT+1

Substituting (12.7) and (12.8) into (12.6) gives the MarginBoost distribution for the

cost function C(�) = e��. By de�nition of �t, the stopping criterion in AdaBoost isX
i:ft+1(xi)6=yi

Dt(i) � 1

2
:

This is equivalent to X
i:ft+1(xi)=yi

Dt(i)�
X

i:ft+1(xi)6=yi
Dt(i) � 0;

which is identical to the stopping criterion of MarginBoost.

Given that we have chosen ft+1 we wish to choose wt+1 to minimize

mX
i=1

C(yiFt(xi) + yiwt+1ft+1(xi)):
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Di�erentiating with respect to wt+1, setting this to 0 and solving for wt+1 gives

wt+1 =
1

2
ln

 P
i:ft+1(xi)=yi

Dt(i)P
i:ft+1(xi)6=yi Dt(i)

!
:

This is exactly the setting of wt used in the AdaBoost algorithm. So for this choice

of cost function it is possible to �nd a closed form solution for the line search for

optimal step-size at each round. Hence, AdaBoost is performing gradient descent

on the cost functional

C(F ) =
1

m

mX
i=1

e�yiF (xi)

with step-size chosen by a line search.

Schapire and Singer [1998] examine AdaBoost in the more general setting where

classi�ers can produce real values in [�1; 1] indicating their con�dence in f�1g-
valued classi�cation. The general algorithm3 they present is essentially AnyBoost

with the cost function C(yF (x)) = e�yF (x) and base classi�ers f : X ! [�1; 1].
The ARC-X4 algorithm due to Breiman [1999] is approximately AnyBoost.L1

with the cost function C(�) = (1� �)5 with a constant step-size.

Friedman et al. [1998] examine AdaBoost as an approximation to maximum like-

lihood. From this viewpoint they develop a more direct approximation (LogitBoost)

which exhibits similar performance. LogitBoost is AnyBoost with the cost function

C(�) = log2(1 + e�2�) and step-size chosen via a single Newton-Raphson step.

Lee et al. [1996] describe an iterative algorithm for constructing convex combi-

nations of basis functions to minimize a quadratic cost function. They use a con-

structive approximation result to prove the rate of convergence of this algorithm to

the optimal convex combination. This algorithm can be viewed as gradient descent

with a quadratic cost function C(�) = (1��)2 and step-size decreasing at the rate
1=t.

Table 12.1 summarizes the cost function and step-size choices for which AnyBoost

and its derivatives approximately reduce to existing voting methods.

12.4 Theoretically Motivated Cost Functions

The following de�nition from [Mason et al., 1999] gives a condition on a cost

function CN (�) that suÆces to prove upper bounds on error probability in terms of

sample averages of CN (yF (x)). The condition requires the cost function CN (�) to

lie strictly above the mistake indicator function, sgn (��). How close CN (�) can

be to sgn (��) depends on a complexity parameter N .

3. They also present a base learning algorithm for decision trees which directly optimizes
the exponential cost function of the margin at each iteration. This variant of boosting
does not reduce to a gradient descent optimization.
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Algorithm Cost function Step-size

AdaBoost [Freund and Schapire, 1996] e�yF (x) Line search

ARC-X4 [Breiman, 1996] (1� yF (x))5 1

Con�denceBoost [Schapire and Singer, 1998] e�yF (x) Line search

LogitBoost [Friedman et al., 1998] ln(1 + e�2yF (x)) Newton-Raphson

Constructive NN algorithm [Lee et al., 1996] (1� yF (x))2 1=t

Table 12.1 Summary of existing voting methods which can be viewed as gradient

descent optimizers of margin cost functions.

De�nition 12.1

A family fCN : N 2 N g of margin cost functions is B-admissible for B � 0 if for

all N 2 N there is an interval I � R of length no more than B and a function

	N : [�1; 1]! I that satis�es

sgn (��) � EZ (	N (Z)) � CN (�)

for all � 2 [�1; 1], where EZ(�) denotes the expectation when Z is chosen randomly

as Z = (1=N)
PN

i=1 Zi with Zi 2 f�1g and Pr(Zi = 1) = (1 + �)=2.

The following theorem from [Mason et al., 1999] gives a high probability upper

bound on the generalization error of any convex combination of classi�ers in terms

of the sample average of CN (yF (x)) and a complexity term depending on N .

Theorem 12.2

For any B-admissible family fCN : N 2 N g of margin cost functions, any �nite

hypothesis class H and any distribution D on X � f�1g, with probability at least

1� Æ over a random sample S of m labelled examples chosen according to D, every
N and every F in co (F) satis�es

Pr [yF (x) � 0] < ES [CN (yF (x))] + �N ;

where

�N =

r
B2

2m
(N ln jFj+ ln(N(N + 1)=Æ)):

A similar result applies for in�nite classes F with �nite VC-dimension.

In this theorem, as the complexity parameter N increases, the sample-based

error estimate ES [CN (yF (x))] decreases towards the training error (proportion of

misclassi�ed training examples). On the other hand, the complexity penalty term

�N increases with N . Hence, in choosing the e�ective complexity N of the combined

classi�er, there is a trade-o� between these two terms. Smaller cost functions give a

more favourable trade-o�. The left plot of Figure 12.1 illustrates a family CN (�) of
cost functions that satisfy the B-admissibility condition. Notice that these functions

are signi�cantly di�erent from the exponential and logit cost functions that are
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used in AdaBoost and LogitBoost respectively. Unlike the exponential and logit

functions, CN (�) is nonconvex and for large negative margins the value of CN (�)

is signi�cantly smaller.
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Figure 12.1 Cost functions CN (�), for N = 20; 50 and 100, compared to the

function sgn (��). Larger values of N correspond to closer approximations to

sgn (��). The theoretically motivated cost function C40(�) and the exponential and

logit cost functions are also plotted together for comparison.

12.5 Convergence Results

In this section we prove convergence results for the abstract algorithms AnyBoost

and AnyBoost.L1, under quite weak conditions on the cost functional C. The pre-

scriptions given for the step-sizes wt in these results are for convergence guarantees

only: in practice they will almost always be smaller than necessary, hence �xed

small steps or some form of line search should be used.

Throughout this section we are interested in the limiting behaviour of AnyBoost

(and its derivatives) and thus assume that the algorithms do not terminate after

some �xed number of iterations T (although the algorithms can terminate due to

internal termination conditions).

12.5.1 Convergence of AnyBoost

The following theorem supplies a speci�c step-size for AnyBoost and characterizes

the limiting behaviour with this step-size.

Theorem 12.3

Let C: lin (F) ! R be any lower bounded, Lipschitz di�erentiable cost functional

(that is, there exists L > 0 such that krC(F ) � rC(F 0)k � LkF � F 0k for all
F; F 0 2 lin (F)). Let F0; F1; : : : be the sequence of combined hypotheses generated
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by the AnyBoost algorithm, using step-sizes

wt+1 := �hrC(Ft); ft+1i
Lkft+1k2 : (12.9)

Then AnyBoost either halts on round t with �hrC(Ft); ft+1i � 0, or C(Ft)

converges to some �nite value C�, in which case

lim
t!1

hrC(Ft); ft+1i = 0:

Proof First we need a general lemma.

Lemma 12.4

Let (X ; h; i) be an inner product space with squared norm kFk2 := hF; F i and let

C:X ! R be a di�erentiable functional with krC(F )�rC(F 0)k � LkF �F 0k for
all F; F 0 2 X . Then for any w > 0 and F;G 2 X ,

C(F + wG)� C(F ) � w hrC(F ); Gi+ Lw2

2
kGk2:

Proof De�ne g: R ! R by g(w) := C(F +wG). Then g0(w) = hrC(F + wG); Gi
and hence

jg0(w)� g0(0)j = jhrC(F + wG)�rC(F ); Gij
� krC(F + wG)�rC(F )kkGk by Cauchy-Schwartz

� LwkGk2 by Lipschitz continuity of rC.
Thus, for w > 0,

g0(w) � g0(0) + LwkGk2 = hrC(F ); Gi+ LwkGk2

which implies

g(w)� g(0) =
Z w

0

g0(�) d�

�
Z w

0

hrC(F ); Gi+ L�kGk2 d�

= w hrC(F ); Gi+ Lw2

2
kGk2:

Substituting g(w) = C(F + wG) on the left hand side gives the result.

Now we can write:

C(Ft)� C(Ft+1) = C(Ft)� C(Ft + wt+1ft+1)

� �wt+1 hrC(Ft); ft+1i �
Lw2

t+1kft+1k2
2

by Lemma 12.4:

If kft+1k = 0 then hrC(Ft); ft+1i = 0 and AnyBoost will terminate. Otherwise,
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the greatest reduction occurs when the right hand side is maximized, i.e., when

wt+1 = �hrC(Ft); ft+1i
Lkft+1k2 ;

which is the step-size in the statement of the theorem. Thus, for our stated step-size,

C(Ft)� C(Ft+1) � hrC(Ft); ft+1i
2

2Lkft+1k2 : (12.10)

If �hrC(Ft); ft+1i � 0 then AnyBoost terminates. Otherwise, since C is bounded

below, C(Ft)� C(Ft+1)! 0 which implies hrC(Ft); ft+1i ! 0.

The next theorem shows that if the weak learner can always �nd the best weak

hypothesis ft 2 F on each round of AnyBoost, and if the cost functional C is

convex, then any accumulation point F of the sequence Ft generated by AnyBoost

with step-sizes given by (12.9) is guaranteed to be a global minimum. It is convenient

to assume that the hypothesis class F is negation closed, which means f 2 F
implies �f 2 F . In this case, a function ft+1 that maximizes �hrC(Ft); ft+1i
always satis�es �hrC(Ft); ft+1i � 0. For ease of exposition, we have assumed that

rather than terminating when �hrC(FT ); fT+1i = 0, AnyBoost simply continues

to return FT for all subsequent time steps t.

Theorem 12.5

Let C: lin (F)! R be a convex cost functional with the properties in Theorem 12.3,

and let (Ft) be the sequence of combined hypotheses generated by the AnyBoost

algorithm with step-sizes given by (12.9). Assume that the weak hypothesis class F
is negation closed and that on each round the AnyBoost algorithm �nds a function

ft+1 maximizing �hrC(Ft); ft+1i. Then the sequence (Ft) satis�es

lim
t!1

sup
f2F
�hrC(Ft); fi = 0; (12.11)

and any accumulation point F of Ft satis�es

C(F ) = inf
G2lin (F)

C(G): (12.12)

Proof Equation (12.11) follows immediately from Theorem 12.3. For the proof of

(12.12) we need the following more general lemma:

Lemma 12.6

Let C be a di�erentiable convex cost function on an inner product space (X ; h; i)
with norm kFk2 = hF; F i. LetM be any linear subspace of X and letM? denote

the perpendicular subspace to M (M? = fG 2 X : hG;F i = 0 8F 2 Mg). If
F 2M satis�es

rC(F ) 2M?
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then

C(F ) = inf
G2M

C(G):

Proof Consider G 2M. By the convexity of C, for all 0 � � � 1,

C ((1� �)F + �G)� ((1� �)C(F ) + �C(G)) � 0:

Taking the limit as �! 0 yields,

hG� F;rC(F )i � C(G)� C(F ):
Since G� F 2M and rC(F ) 2M?, this implies C(G) � C(F ).
Now let F be an accumulation point of Ft. By Lipschitz continuity of rC(F ) and
(12.11),

sup
f2F
�hrC(F ); fi = 0;

which by the negation closure of F implies hrC(F ); fi = 0 for all f 2 F , hence
rC(F ) 2 lin (F)?. Thus F 2 lin (F) and rC(F ) 2 lin (F)?, which by Lemma 12.6
implies (12.12).

12.5.2 Convergence of AnyBoost.L1

The following theorem supplies a speci�c step-size for AnyBoost.L1 and character-

izes the limiting behaviour under this step-size regime.

Theorem 12.7

Let C be a cost function as in Theorem 12.3. Let F0; F1; : : : be the sequence of

combined hypotheses generated by the AnyBoost.L1 algorithm, using step-sizes

wt+1 :=
�hrC(Ft); ft+1 � Fti

Lkft+1 � Ftk2 + hrC(Ft); ft+1 � Fti (12.13)

Then AnyBoost.L1 either terminates at some �nite time t with

�hrC(Ft); ft+1 � Fti � 0, or C(Ft) converges to a �nite value C
�, in which case

lim
t!1

hrC(Ft); ft+1 � Fti = 0:

Proof Note that the step-sizes wt are always positive. In addition, if the wt are

such that
Pt

s=1 ws < 1 for all t then clearly the second case above will apply. So

without loss of generality assume
Pt

s=1 ws = 1. Applying Lemma 12.4, we have:

C(Ft)� C(Ft+1) = C(Ft)� C
�
Ft + wt+1ft+1

1 + wt+1

�
= C(Ft)� C

�
Ft +

wt+1
1 + wt+1

(ft+1 � Ft)
�

� � wt+1
1 + wt+1

hrC(Ft); ft+1 � Fti



238 Functional Gradient Techniques for Combining Hypotheses

�L
2

�
wt+1

1 + wt+1

�2
kft+1 � Ftk2: (12.14)

If �hrC(Ft); ft+1 � Fti � 0 then the algorithm terminates. Otherwise, the right

hand side of (12.14) is maximized when

wt+1 =
�hrC(Ft); ft+1 � Fti

Lkft+1 � Ftk2 + hrC(Ft); ft+1 � Fti
which is the step-size in the statement of the theorem. Thus, for our stated step-size,

C(Ft)� C(Ft+1) � hrC(Ft); ft+1 � Fti
2

2Lkft+1 � Ftk2 ;

which by the lower-boundedness of C implies hrC(Ft); ft+1 � Fti ! 0.

The next theorem shows that if the weak learner can always �nd the best weak

hypothesis ft 2 F on each round of AnyBoost.L1, and if the cost function C is

convex, then AnyBoost.L1 is guaranteed to converge to the global minimum of the

cost. As with Theorem 12.5, we have assumed that rather than terminating when

�hfT+1 � FT ;rC(FT )i � 0, AnyBoost.L1 simply continues to return FT for all

subsequent time steps t.

Theorem 12.8

Let C be a convex cost function with the properties in Theorem 12.3, and let (Ft)

be the sequence of combined hypotheses generated by the AnyBoost.L1 algorithm

using the step-sizes in (12.13). Assume that the weak hypothesis class F is negation

closed and that on each round the AnyBoost.L1 algorithm �nds a function ft+1
maximizing �hrC(Ft); ft+1 � Fti. Then
lim
t!1

sup
f2F
�hrC(Ft); f � Fti = 0; (12.15)

and any accumulation point F of the sequence (Ft) satis�es

C(F ) = inf
G2co (F)

C(G); (12.16)

where co (F) is the set of all convex combinations of hypotheses from F .
Proof Equation (12.15) follows immediately from Theorem 12.7. Now let F be

an accumulation point of Ft. By (12.15) and continuity of rC(F ), for all f 2 F ,

hrC(F ); f � F i = 0;

or equivalently hrC(F ); fi = hrC(F ); F i for all f 2 F . Using the same argument
as in the proof of Lemma 12.6, any G 2 co (F) has

hG� F;rC(F )i � C(G)� C(F ):

But because F is negation closed, we can write G =
P
wifi where all wi are positive
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and
P
wi = 1. Then

hG� F;rC(F )i =
X

wi hfi;rC(F )i � hF;rC(F )i = 0:

It follows that C(G) � C(F ).
At this point we should note that for cost functions which are nonconvex (like

those motivated by the theoretical result of Section 12.4) we can only guarantee

convergence to a local minimum.

12.6 Experiments

AdaBoost had been perceived to be resistant to over�tting despite the fact that

it can produce combinations involving very large numbers of classi�ers. However,

recent studies have shown that this is not the case, even for base classi�ers as

simple as decision stumps. Grove and Schuurmans [1998] demonstrated that running

AdaBoost for hundreds of thousands of rounds can lead to signi�cant over�tting,

while a number of authors [Dietterich, 1998, R�atsch et al., 1998, Bauer and Kohavi,

1997, Maclin and Opitz, 1997] showed that, by adding label noise, over�tting can

be induced in AdaBoost even with relatively few classi�ers in the combination.

Given the theoretical motivations described in Sections 12.4 and 12.5 we propose

a new algorithm (DOOM II) based on MarginBoost.L1 which performs a gradient

descent optimization of

1

m

mX
i=1

(1� tanh(�yiF (xi))); (12.17)

where F is restricted to be a convex combination of classi�ers from some base

class F and � is an adjustable parameter of the cost function. Henceforth we

will refer to (12.17) as the normalized sigmoid cost function (normalized because

the weights are normalized so F is a convex combination). This family of cost

functions (parameterized by �) is qualitatively similar to the family of cost functions

(parameterized by N) shown in Figure 12.1. Using the family from Figure 12.1

in practice may cause diÆculties for the gradient descent procedure because the

functions are very at for negative margins and for margins close to 1. Using the

normalized sigmoid cost function alleviates this problem.

Choosing a value of � corresponds to choosing a value of the complexity parameter

N in Theorem 12.2. It is a data dependent parameter which measures the resolution

at which we examine the margins. A large value of � corresponds to a high resolution

and hence high e�ective complexity of the convex combination. Thus, choosing a

large value of � amounts to a belief that a high complexity classi�er can be used

without over�tting. Conversely, choosing a small value of � corresponds to a belief

that a high complexity classi�er can only avoid over�tting if it has large margins.
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Algorithm 12.6 : DOOM II

Require :

A class of base classi�ers F containing functions f :X ! f�1g.
A training set S = f(x1; y1); : : : ; (xm; ym)g with each (xi; yi) 2 X � f�1g.
A weak learner L(S;D; F ) that accepts a training set S, a distribution D on the

training set and a combined classi�er F , and returns base classi�ers f 2 F with small
error:

Pm
i=1[F (xi)� f(xi)]yiD(i).

A �xed small step-size �.

Let D0(i) := 1=m for i = 1; : : : ;m.
Let F0 := 0.
for t := 0 to T do
Let ft+1 := L(S;Dt; Ft).
if
Pm

i=1Dt(i)[yift+1(xi)� yiFt(xi)] � 0 then
Return Ft.

end if
Let wt+1 := �.

Let Ft+1 :=
Ft + wt+1ft+1Pt+1

s=1 jwsj
:

Let Dt+1(i) :=
1� tanh2(�yiFt+1(xi))Pm

i=1(1� tanh2(�yiFt+1(xi)))

for i = 1; : : : ;m.
end for

In the above implementation of DOOM II we are using a �xed small step-size � (for

all of the experiments � = 0:05). In practice the use of a �xed � could be replaced

by a line search for the optimal step-size at each round.

It is worth noting that since the l1-norm of the classi�er weights is �xed at 1 for

each iteration and the cost function has the property that C(��) = 1� C(�), the
choice of � is equivalent to choosing the l1-norm of the weights while using the cost

function C(�) = 1� tanh(�).

Given that the normalized sigmoid cost function is nonconvex the DOOM II

algorithm will su�er from problems with local minima. In fact, the following result

shows that for cost functions satisfying C(��) = 1 � C(�), the MarginBoost.L1
algorithm will strike a local minimum at the �rst step.

Lemma 12.9

Let C: R ! R be any cost function satisfying C(��) = 1�C(�). If MarginBoost.L1
can �nd the optimal weak hypothesis f1 at the �rst time step, it will terminate at

the next time step, returning f1.
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Proof Assume without loss that C 0(0) < 0. With F0 = 0, hrC(F0); fi =

(C 0(0)=m)
Pm

i=1 yif(xi) and so by assumption, f1 will satisfy

mX
i=1

yif1(xi) = inf
f2F

mX
i=1

yif(xi)

and F1 = f1. Now C(��) = 1� C(�)) C 0(��) = C 0(�), and since f1 only takes

the values �1, we have for any f :

hrC(F1); f � F1i = C 0(1)
m

mX
i=1

yi(f(xi)� f1(xi)):

Thus, for all f 2 F , �hrC(F1); f � F1i � 0 and hence MarginBoost.L1 will

terminate, returning f1.

A simple technique for avoiding this local minimum is to apply some notion of

randomized initial conditions in the hope that the gradient descent procedure will

then avoid this local minimum. Either the initial margins could be randomized or

a random initial classi�er could be chosen from F . Initial experiments showed that

both these techniques are somewhat successful, but could not guarantee avoidance

of the single classi�er local minimum unless many random initial conditions were

tried (a computationally intensive prospect).

A more principled way of avoiding this local minimum is to remove f1 from F
after the �rst round and then continue the algorithm returning f1 to F only when

the cost goes below that of the �rst round. Since f1 is a local minimum the cost is

guaranteed to increase after the �rst round. However, if we continue to step in the

best available direction (the attest uphill direction) we should eventually \crest

the hill" de�ned by the basin of attraction of the �rst classi�er and then start to

decrease the cost. Once the cost decreases below that of the �rst classi�er we can

safely return the �rst classi�er to the class of available base classi�ers. Of course,

we have no guarantee that the cost will decrease below that of the �rst classi�er at

any round after the �rst. Practically however, this does not seem to be a problem

except for very small values of � where the cost function is almost linear over [�1; 1]
(in which case the �rst classi�er corresponds to a global minimum anyway).

In order to compare the performance of DOOM II and AdaBoost a series of

experiments were carried out on a selection of data sets taken from the UCI

machine learning repository [Blake et al., 1998]. To simplify matters, only binary

classi�cation problems were considered. All of the experiments were repeated 100

times with 80%, 10% and 10% of the examples randomly selected for training,

validation and test purposes respectively. The results were then averaged over the

100 repeats. For all of the experiments axis-orthogonal hyperplanes (also known

as decision stumps) were produced by the weak learner. This �xed the complexity

of the weak learner and thus avoided any problems with the complexity of the

combined classi�er being dependent on the actual classi�ers produced by the weak

learner.
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For AdaBoost, the validation set was used to perform early stopping. AdaBoost

was run for 2000 rounds and then the combined classi�er from the round corre-

sponding to minimum error on the validation set was chosen. For DOOM II, the

validation set was used to set the data dependent complexity parameter �. DOOM

II was run for 2000 rounds with � = 2; 4; 6; 10; 15 and 20 and the optimal � was

chosen to correspond to minimum error on the validation set after 2000 rounds. The

typical behaviour of the test error as DOOM II proceeds is shown in Figure 12.2

for various values of �. For small values of � the test error converges to a value

much worse than AdaBoost's test error. As � is increased to the optimal value the

test errors decrease. In the case of the sonar data set used in Figure 12.2 the test

errors for AdaBoost and DOOM II with optimal � are similar. Of course, with

AdaBoost's adaptive step-size it converges much faster than DOOM II (which uses

a �xed step-size).
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Figure 12.2 Test error for the sonar data set over 10000 rounds of AdaBoost and

DOOM II with � = 2; 4 and 10.

AdaBoost and DOOM II were run on nine data sets to which varying levels of

label noise had been applied. A summary of the experimental results is provided in

Table 12.2. The attained test errors are shown for each data set for a single stump,

AdaBoost applied to stumps and DOOM II applied to stumps with 0%, 5% and

15% label noise. A graphical representation of the di�erence in test error between

AdaBoost and DOOM II is shown in Figure 12.3. The improvement in test error

exhibited by DOOM II over AdaBoost (with standard error bars) is shown for each

data set and noise level. These results show that DOOM II generally outperforms

AdaBoost and that the improvement is generally more pronounced in the presence

of label noise.

The e�ect of using the normalized sigmoid cost function rather than the expo-

nential cost function is best illustrated by comparing the cumulative margin dis-

tributions generated by AdaBoost and DOOM II. Figure 12.4 shows comparisons
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Examples 208 303 351 435 690 699 768 2514 3190

Attributes 60 13 34 16 15 9 8 29 60

0% Stump 26.0 26.9 17.6 6.2 14.5 8.1 27.6 7.0 22.6

Label AdaBoost 16.0 16.8 10.1 3.5 14.1 4.2 25.8 0.5 6.4

Noise DOOM II 15.8 16.5 9.7 4.5 13.0 3.0 25.1 0.7 5.7

5% Stump 30.4 29.0 21.7 10.6 18.0 12.1 29.7 12.4 26.4

Label AdaBoost 23.0 21.6 16.7 9.6 17.5 9.0 27.9 8.6 13.9

Noise DOOM II 23.3 20.3 14.6 9.4 17.0 8.0 27.9 7.1 12.1

15% Stump 36.6 33.7 27.7 19.3 25.1 20.3 34.2 21.0 31.1

Label AdaBoost 33.8 29.8 26.8 19.0 25.1 18.6 33.3 18.3 22.2

Noise DOOM II 32.6 27.6 25.9 19.0 24.7 17.6 33.1 17.1 20.3

Table 12.2 Summary of test errors for a single stump, AdaBoost stumps and

DOOM II stumps with varying levels of label noise on nine UCI data sets. The

best test error for each data set is displayed in bold face. Note that since DOOM II

uses an independent validation set to choose the cost function parameter �, we are

comparing it to a version of AdaBoost modi�ed to use an independent validation

set for early stopping.
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Figure 12.3 Summary of test error advantage (with standard error bars) of

DOOM II over AdaBoost with varying levels of noise on nine UCI data sets.

for two data sets with 0% and 15% label noise applied. For a given margin, the

value on the curve corresponds to the proportion of training examples with margin

less than or equal to this value. These curves show that in trying to increase the
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margins of negative examples AdaBoost is willing to sacri�ce the margin of positive

examples signi�cantly. In contrast, DOOM II \gives up" on examples with large

negative margin in order to reduce the value of the cost function.
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Figure 12.4 Margin distributions for AdaBoost and DOOM II with 0% and 15%

label noise for the breast-cancer and splice data sets.

Given that AdaBoost su�ers from over�tting and minimizes an exponential

cost function of the margins, this cost function certainly does not relate to test

error. How does the value of our proposed cost function correlate with AdaBoost's

test error? The theoretical bound suggests that for the \right" value of the data

dependent complexity parameter � our cost function and the test error should

be closely correlated. Figure 12.5 shows the variation in the normalized sigmoid

cost function, the exponential cost function and the test error for AdaBoost for

four UCI data sets over 10000 rounds. As before, the values of these curves were

averaged over 100 random train/validation/test splits. The value of � used in each

case was chosen by running DOOM II for various values of � and choosing the �

corresponding to minimum error on the validation set. These curves show that there

is a strong correlation between the normalized sigmoid cost (for the right value of

�) and AdaBoost's test error. In all four data sets the minimum of AdaBoost's test

error and the minimum of the normalized sigmoid cost very nearly coincide. In the

sonar and labor data sets AdaBoost's test error converges and over�tting does not

occur. For these data sets both the normalized sigmoid cost and the exponential cost

converge, although in the case of the sonar data set the exponential cost converges

signi�cantly later than the test error. In the cleve and vote1 data sets AdaBoost

initially decreases the test error and then increases the test error (as over�tting

occurs). For these data sets the normalized sigmoid cost mirrors this behaviour,

while the exponential cost converges to 0.

To examine the e�ect of step-size we compare AdaBoost to a modi�ed version

using �xed step-sizes, called "-AdaBoost. In "-AdaBoost, the �rst classi�er is given

weight 1 and all others thereafter are given weight ". A comparison of the test

errors of both of these algorithms for various values of " is shown in Figure 12.6.



12.6 Experiments 245

0

5

10

15

20

25

30

1 10 100 1000 10000

Rounds

sonar

AdaBoost test error
Exponential cost

Normalized sigmoid cost

0

5

10

15

20

25

30

1 10 100 1000 10000

Rounds

cleve

AdaBoost test error
Exponential cost

Normalized sigmoid cost

0

5

10

15

20

25

30

1 10 100 1000 10000

Rounds

labor

AdaBoost test error
Exponential cost

Normalized sigmoid cost

0

1

2

3

4

5

6

7

8

1 10 100 1000 10000

Rounds

vote1

AdaBoost test error
Exponential cost

Normalized sigmoid cost

Figure 12.5 AdaBoost test error, exponential cost and normalized sigmoid cost

over 10000 rounds of AdaBoost for the sonar, cleve, labor and vote1 data sets.

Both costs have been scaled in each case for easier comparison with test error.

As expected, changing the value of the �xed step size " simply translates the test

error curve on the log scale and does not signi�cantly alter the minimum test error.
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"-AdaBoost for " = 0:01; 0:02; 0:05 and 0:10.



246 Functional Gradient Techniques for Combining Hypotheses

12.7 Conclusions

We have shown how most existing \boosting-type" algorithms for combining clas-

si�ers can be viewed as gradient descent on an appropriate cost functional in a

suitable inner product space. We presented AnyBoost, an abstract algorithm of

this type for generating general linear combinations from some base hypothesis

class, and a related algorithm, AnyBoost.L1, for generating convex combinations

from the base hypothesis class. Prescriptions for the step-sizes in these algorithms

guaranteeing convergence to the optimal linear or convex combination were given.

For cost functions depending only upon the margins of the classi�er on the train-

ing set, AnyBoost and AnyBoost.L1 become MarginBoost and MarginBoost.L1.

We showed that many existing algorithms for combining classi�ers can be viewed

as special cases of MarginBoost.L1; each algorithm di�ering only in its choice of

margin cost function and step-size. In particular, AdaBoost is MarginBoost.L1 with

e�z as the cost function of the margin z, and with a step-size equal to the one that

would be found by a line search.

The main theoretical result from [Mason et al., 1999] provides bounds on the

generalization performance of a convex combination of classi�ers in terms of training

sample averages of certain, sigmoid-like, cost functions of the margin. This suggests

that algorithms such as Adaboost that optimize an exponential margin cost function

are placing too much emphasis on examples with large negative margins, and that

this is a likely explanation for over�tting, particularly in the presence of label noise.

Motivated by this result, we derived DOOM II|a further specialization of

MarginBoost.L1|that used 1�tanh(z) as its cost function of the margin z. Exper-
imental results on the UCI datasets veri�ed that DOOM II generally outperformed

AdaBoost when boosting decision stumps, particularly in the presence of label

noise. We also found that DOOM II's cost on the training data was a very reliable

predictor of test error, while AdaBoost's exponential cost was not.

In future we plan to investigate the properties of AnyBoost.L2, mentioned in

Sec. 12.2.3. Although we do not have theoretical results on the generalization

performance of this algorithm, viewed in the inner product space setting an L2
constraint on the combined hypothesis is considerably more natural than an L1
constraint. In addition, the inner product perspective on boosting can be applied

to any inner product space, not just spaces of functions as done here. This opens

up the possibility of applying boosting in many other machine learning settings.
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We study the problem of boosting learners for regression using the perspective

a�orded by a margin analysis of classi�er boosting. The approach motivates a novel

strategy for generating the distribution of examples used to train the weak learners,

and for determining their target values. Experimental results are given to show the

performance of our approach.
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13.1 Introduction

The idea of boosting learners who can perform slightly better than random in a

classi�cation task led to a general purpose algorithm which is able to combine the

strengths of di�erent hypotheses [Schapire, 1990]. This approach to combining the

strengths of individual learners was further re�ned in the Adaboost algorithm which

created a weighted combination, with the weights determined by the performance

of the individual weak learners [Freund and Schapire, 1997]. This approach to

improving the performance of classi�cation algorithms has been incorporated into

state-of-the-art learning systems and has received attention from the statistical

community [Friedman et al., 1998].

The problem of applying a similar strategy for regression has also begun to be

studied, initially by reducing to the classi�cation case [Bertoni et al., 1997, Freund

and Schapire, 1997]. The disadvantages of this approach include the implementation

overhead, the massive weight changes when errors are small compared with the

bounds of the target and that it may be inappropriate for algorithms which rely

on the gradient of the error function. Ridgeway et al. [1998] also transformed

the regression problem to a classi�cation one and �tted a naive Bayes classi�er

to the resulting dataset. The initial results from this technique do not seem to

counterbalance its computational complexity. Drucker [1997] developed a boosting

algorithm by devising a loss for each training point as the ratio of the error over the

maximal error and using multiplicative weight updating. The main disadvantage of

this algorithm is the dependence of the loss function on the maximal error. This

may lead to big changes in the weighting as a single extreme value varies.

The results of these approaches were not very encouraging and it appeared

that the very impressive improvements found in the classi�cation case were not

reproducible for regression. In a very recent paper Friedman [1999] has developed

a set of boosting algorithms for regression from the perspective of numerical

optimization in function space. His algorithms deviate from standard boosting by

performing deterministic gradient descent in the space of weak learners, rather than

stochastic gradient descent in boosting where the distribution of examples is also

used to control the generation of the weak learners.

We study the problem of boosting learners for regression and motivate a novel

strategy for generating the distribution of examples used to train the weak learners,

and for determining their target values. Our approach is motivated by three ideas.

First, we build on recent results bounding the generalization in terms of the

margin of a classi�er. This viewpoint has been used to explain the performance

of the standard boosting algorithm [Schapire et al., 1998], where it is shown that

the distribution given to the weak learners is a function of the margins of the

training points with respect to the current hypothesis. More recently the analysis

of generalization in terms of the margin has been extended to more robust measures

of the distribution of margin values [Shawe-Taylor and Cristianini, 1998] with

applications to regression. Using this perspective on the boosting procedure, we
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motivate a di�erent criterion and distribution for the weak learners which are then

combined to optimize the overall performance for future accuracy.

Second, as in [Schapire and Singer, 1998], we cast the boosting regression problem

as an optimization one. Thirdly, to control the complexity of the weak learners, we

expand on the constructive neural network algorithm for incremental learning of

Dunkin et al. [1997].

The rest of the chapter is structured as follows. Section 13.2 presents some

background theoretical results. The boosting strategy is developed in Section 13.3.

The algorithm for generating weak learners is presented in Section 13.4, while the

overall boosting algorithm is outlined in Section 13.5. Experimental results are

given in Section 13.6 that illustrate the performance of our approach. The chapter

is concluded in Section 13.7.

13.2 Background Results

Our main ingredient in motivating the new algorithm will be Theorem 13.3 which

bounds the probability that a regression function makes an error larger than � on

a randomly generated test example. The aim of the boosting algorithm will be

to minimize this error bound. In order to give the theorem, recall the notion of

-shattering from the introduction (De�nition 1.7).

The �rst bound on the fat shattering dimension of bounded linear functions in a

�nite dimensional space was obtained by Shawe-Taylor et al. [1998]. Gurvits [1997]

generalized this to in�nite dimensional Banach spaces. We will quote an improved

version of this bound for Hilbert spaces which is contained in [Bartlett and Shawe-

Taylor, 1999] (see also Theorem 1.12, slightly adapted here for an arbitrary bound

on the linear operators).

Theorem 13.1 Bartlett and Shawe-Taylor [1999]

Consider a Hilbert space and the class of linear functions L of norm less than or

equal to A restricted to the sphere of radius R about the origin. Then the fat

shattering dimension of L can be bounded by

FatL() �
�
AR



�2
:

De�nition 13.2

We say that a class of functions F is sturdy if and only if its images under the

evaluation maps

~xF :F �! R ; ~xF : f 7! f(x) (13.1)

are compact subsets of R for all x 2 X.
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Fix � � 0. For a training point (x; y) 2 X � R , real valued function f and  2 R ,

we de�ne

@((x; y); f; ) = maxf0; jf(x)� yj � (� � )g: (13.2)

This quantity is the amount by which f exceeds the error margin �� on the point
(x; y) or 0 if f is within � �  of the target value. Hence, this is the �-insensitive

loss measure considered by Vapnik [1995] with � = L� := � � . For a training set
S, we de�ne (cf. (19.1))

D(S; f; ) =
s X

(x;y)2S
@((x; y); f; )2: (13.3)

We now quote a result from [Shawe-Taylor and Cristianini, 1998] (see also Chap-

ter 19). For more background material on the motivation of Support Vector Re-

gression using these bounds we refer the reader to [Cristianini and Shawe-Taylor,

2000].

Theorem 13.3 Shawe-Taylor and Cristianini [1998]

Let F be a sturdy class of real-valued functions with range [a; b] and fat shattering

dimension bounded by FatF (). Fix � 2 R , � > 0 and a scaling of the output

range � 2 R . Consider a �xed but unknown probability distribution on the space

X � [a; b]. Then with probability 1� Æ over randomly drawn training sets S of size

m for all  with � �  > 0 for any function f 2 F the probability that f has

output error jf(x)�yj larger than � on a randomly chosen input/output pair (x; y)
is bounded by

�(m; k; Æ) =
2

m

 
k log2 65m

�
b� a


�2
log2 9em

�
b� a


�
+ log2

64m1:5(b� a)
Æ�

!
;

where

k =
h
FatF (�=16) + ~D2

i
and ~D = 16(D(S; f; ) + �)=;

provided m � 2=� and there is no discrete probability on training points with error

greater than �.

There has been some work on introducing soft margins into boosting in order to

avoid over�tting. For example R�atsch et al. [1998] used a postprocessing phase to

choose a soft margin hyperplane in place of the weights found by boosting. Our

strategy is to start with the soft margin bound on generalization of Theorem 13.3

and motivate a boosting algorithm which boosts the soft margin directly rather

than the more usual exponential function of the margin. This should make the

algorithm more resilient to over�tting.

Combining Theorem 13.1 and 13.3 suggests that the quantity which will bound

the probability of a randomly generated point having error greater than � in the

case of linear function classes with weight vector norm B and inputs in a ball of
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radius R about the origin is

B2R2 +D(S; f; )2
2

: (13.4)

In the next section we will use this equation to optimize the choice of , hence

determining the �-insensitive measure as L� = � � . The aim is to optimize the

bound by trading o� the complexity against the training error. As the boosting

progresses this trade-o� is adjusted automatically to optimize the bound. Although

we do not do so, there would be no diÆculty in using Theorem 13.3 to give a bound

on the overall performance of the boosted regressor.

13.3 Top Level Description of the Boosting Strategy

The top level algorithm looks like this:

De�ne (x)+ = x if x � 0, 0 otherwise. Following the motivation suggested in the

previous section, we then want to minimize:

D(S; f; � � L�)2 =
X
i

(jf(xi)� yij � L�)2+ (13.5)

for an appropriate choice of L�, which will be chosen adaptively L� = L�t at the

t-th boosting step. We de�ne

Zt =

P
i(jft(xi)� yij � L�t )2+P

i(jft�1(xi)� yij � L�t�1)2+
(13.6)

where ft(x) = ft�1(x) + �tht(x) and

Z1 =

P
i(jf1(xi)� yij � L�1)2+

m
: (13.7)

The standard approach taken by boosting is to greedily minimize Zt at stage t.

Friedman et al. [1998] motivate the standard choice of distribution by showing

that it implements a gradient descent in the space of weak learners. For boosting

regressors there are two ways in which the remaining errors appear, in the weight

given to the training examples in the distribution used for the next weak learner,

and in the residual errors which are also passed to the weak learner as target values.

Following [Friedman et al., 1998] we take the derivative of Zt with respect to the

loss of the current composite hypothesis on the i-th training example to de�ne the

distribution Dt+1 used for training the t+ 1-st weak learner. Hence, we de�ne

Dt+1
i / (jft(xi)� yij � L�t )+; (13.8)

and take D0
i = 1=m. Note that this means that the weak learner may have zero

weight on some training examples. Using the de�nition of Zt given above we have

D(S; f; � � L�)2 =
X
i

(jft(xi)� yij � L�t )2+ = m
tY

j=1

Zj : (13.9)
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Note that as the iterations proceed the value of L�t reduces, so that we approach

iterative least squares regression, albeit with an alternative weighting of the exam-

ples. The value of L�t is that it helps to eliminate from consideration points whose

error is already well controlled hence focussing the attention of the weak learner on

the examples that are proving diÆcult to �t.

At each stage our strategy is to choose �t to minimize Zt. This is equivalent to

minimizing the expression:

ft(�) =
X
i

(jft�1(xi) + �ht(xi)� yij � L�t )2+; (13.10)

with respect to �, and setting �t = argmin (ft(�)). We de�ne

si(�) =

8>><
>>:
�1 if ft�1(xi) + �ht(xi)� yi < �L�t
1 if ft�1(xi) + �ht(xi)� yi > L�t
0 otherwise.

(13.11)

Hence, we can write

f(�) =
X
i

si(�)(ft�1(xi) + �tht(xi)� yi � si(�)L�t )2: (13.12)

In order to choose �t to minimize this sum (following the approach of Schapire

and Singer [1998]), we will have to divide the interval into 2m segments since there

will be critical points when si(�) changes value. Hence critical values of � are

�i = (L�t + yi � ft�1(xi))=ht(xi) and ��i = (yi � ft�1(xi)�L�t )=ht(xi). Once inside
an interval the optimization will be quadratic so that an exact solution can be

obtained. The algorithm examines all the critical points and optimizes in the two

adjacent intervals.

Note that for L� < , the results of the previous section show that the following

expression:

A2R2

(� � L�)2 +
X

i:L�<jf(xi)�yij
(L� � jf(xi)� yij)2=(� � L�)2

=
A2R2

2
+

X
i:L�<jf(xi)�yij

(1 + (jf(xi)� yij � �)=)2 (13.13)

where  = � � L�, can be used to bound the probability of a randomly drawn test

point having error greater than �. One can think of this bound as a way of trading

in the excess errors (over L�) for additional complexity. The quantity A2R2=2 is

the base complexity, where L� determines the band within which we consider the

accuracy suÆcient. The larger  becomes the more accuracy we demand, which

reduces the base complexity but increases the cost of the excess errors.

The training set is used to choose � = �t { this is the target error that we are

trying to reduce. The value taken is the 95 percentile of the errors on the training

set. Once determined we choose L�t to be the value which minimizes the above

expression subject to the constraint that L�t < �.
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To summarize the top level algorithm: Consider an arbitrary stage t. At this stage

we will have a current hypothesis, ft, given by ft =
Pt

j=1 �jhj . This hypothesis

will have residual errors ri = yi�ft(xi); and we let �t be the 95 percentile of the set
frig. We then de�ne A =

qPt
j=1 �

2
j ; Ri =

qPt
j=1 hj(xi)

2; and set R = maxiRi.

Now we choose L�t+1 to be the value of L which minimizes the expression

A2R2

(�t � L)2 +
P

i:L<jft(xi)�yij(L� jft(xi)� yij)2
(�t � L)2 ; (13.14)

and set the distribution Dt+1 according to

Dt+1
i / (jft(xi)� yij � L�t+1)+: (13.15)

The (t + 1)-st weak learner ht+1 will then be generated using a sample generated

according to Dt+1 using target values given by the current residuals ri. Finally,

�t+1 is chosen to be the value of � which minimizes the expressionX
i

(jft(xi) + �ht+1(xi)� yij � L�t+1)2+: (13.16)

Algorithm 13.1 : Weak real learner

Require :

A training set S = f(x1; y1); : : : ; (xm; ym)g.
A bound, \factor".

Let B = max(jyij) � factor.
TotB = 0.
j = 1.
while error(j � 1)� error(j) > 10�4 and j � maxHiddenNodes do
TotB = TotB � (j � 1)=j.
for k = 1; : : : ; j � 1 do
bk = bk � (j � 1)=j.

end for
for i = 1; : : : ;m do
Initialize fnj(xi) to zero.
for k = 1; : : : ; j � 1 do
fnj(xi) = fnj(xi) + bkgk(xi); % where gk is the kth sigmoid output.

end for
Calculate residuals using the sum of the network outputs; ri = yi � fnj(xi).

end for
Bmax = B � TotB.
Train new network bj � gj to output ri adjusting neuron weights and output weight
bj which is constrained by adding (jbj j �Bmax)2+ to error.
TotB = TotB + jbj j.
error(j) = 1=N �Pi(fnj(xi) + bjgj(xi)� yi)

2.
j = j + 1.

end while
Return h =

Pj�1
k=1 bkgk.
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13.4 Generation of Weak Learners

We wished to allow the weak learners to alter their complexity by for example

varying the number of hidden units in a neural network. In order to allow us to

control complexity in a continuous fashion (rather than a discrete number of hidden

units) we moved to using the incremental learning algorithm described by Dunkin

et al. [1997]. This algorithm outputs a single hidden layer network of sigmoid

neurons with a linear output unit. The complexity is controlled by a bound B

placed on the sum of the weights connecting to the output unit. The algorithm is

guaranteed to converge to a global optimum of the L2 error of its output provided

the neuron added at each incremental step is chosen optimally. Since a boosting

algorithm creates a linear combination of its weak learners, the overall combined

learner will be equivalent to a single layer neural network with sigmoid units. We

could attempt to �nd such a neural network by applying the weak learning algorithm

once with a very large value of B. In our experiments we compare results obtained

following this approach with using the boosting strategy. It should, however, be

clear that the boosting is providing an alternative way of searching the hypothesis

space by focussing the algorithms attention on the examples that are consistently

proving hard to �t.

The complexity of the weak learner is controlled by the bound B placed on

the sum of the weights connecting to the output neuron of the weak learner.

We are using B = factor � max jyj, with factor controlled by the progress of

the approximation. If the approximation is improving by more than 5% as each

weak learner is added the factor is reduced slightly, while the reverse holds if the

approximation improves by less than 5%. The overall incremental algorithm is given

in Algorithm 13.1.

13.5 Overall Algorithm

We are now able to present the overall boosting algorithm as shown in Algo-

rithm 13.2. Here the �nal regressor will be a three layer sigmoid neural network

with linear output neuron and a tree like structure for the computational nodes.

This structure is more powerful than that output by the support vector machine

with a sigmoid kernel (assuming that the sigmoid kernel is positive de�nite for the

given data points and hence could be used).

The next section will present preliminary results obtained with the above algo-

rithm on the Boston housing dataset, including comparisons with other regression

stategies, including �-support vector regression and bagging.
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Algorithm 13.2 : RealBoost

Require :

A training set S = f(x1; y1); : : : ; (xm; ym)g.
Initialize L�1, �1, factor, f0 = 0.
Initialize D0 to be the uniform distribution over the x0s.
t = 1, A = 0.
Let ri = yi, for i = 1; : : : ;m.
while t � 50 do
Select a sample (xk1 ; rk1); : : : ; (xk` ; rk`) according to distribution Dt�1.
ht = Weak real learn((xk1 ; rk1); : : : ; (xk` ; rk`); factor).
�t = argmin �

�P
i(jft�1(xi) + �ht(xi)� yij � L�t )

2
+

	
.

ft = ft�1 + �tht.
A =

p
�2
t +A2.

Let ri = ri � �tht(xi), for i = 1; : : : ;m.
if max train error reduction > 5% then
Decrement factor.

else
Increment factor.

end if
�t = 95 percentile of errors of ft on the training set.
R = maxi(k(hj(xi))tj=1k).
L�t+1 = argminL<�t

�
A2R2

(�t�L)2 +
P
i:L<jft(xi)�yij

(L�jft(xi)�yij)2
(�t�L)2

�
.

Compute a distribution Dt+1(xi) / (jft(xi)� yij � L�t+1)+.
t = t+ 1.

end while
Return ft�1.

13.6 Experiments

The experiments presented here are preliminary and are intended to show that

the approach compares well with bagging [Breiman, 1996] and Drucker's algorithm

[Drucker, 1997], and delivers impressive results on one benchmark dataset.

The data considered was the Boston housing dataset [Merz and Murphy, 1998],

which comprises 506 cases, the dependent variable being the median price of housing

in the Boston area. There are 12 continuous predictor variables. The data was split

into 481 cases for training, and 25 for testing. In all experiments reported the

algorithms were run over 100 random splits of training and testing sets.

Figure 13.1 shows the average decay in training and testing error of RealBoost

with boosting iteration. Note that the soft margin approach does seem to have

the desired e�ect of controlling over�tting, since the generalization error decays

consistently downwards, even after the complexity of the weak learners starts to

increase (see Figure 13.4). Figure 13.2 shows how the value of L�t decays with

boosting iteration, while the complexity of the boosted regressor (
P

t �
2
t ) increases.
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Figure 13.1 Test and training error against boosting iteration of RealBoost

Figure 13.3 shows the movement of the values of L�t and �t with the progress of

the boosting iterations. Finally Figure 13.4 shows the development of the value of

\factor," which controls the capacity of the weak learners.

To compare our algorithm with bagging, we trained 50 weak learners, according

to the incremental algorithm of Section 13.4, by resampling uniformly from the

training set. We implemented Drucker's algorithm by similarly training 50 weak

learners. As discussed in Section 13.4 we also need to test whether the boosted

regressor is a \better" solution than the one provided by �tting a single, large

neural network. For this purpose, we also ran experiments by using the incremental

algorithm to train a single weak learner, where the capacity of the learner was set

to an arbitrarily high number.

The results are summarized in Table 13.1. Compared to the other algorithms

RealBoost has smaller standard deviation by a factor of 2. It is worth noting that

bagging and the single weak learner yielded very similar results. This is in contrast

to the results from RealBoost, indicating that despite its somewhat ad hoc design

the reweighting scheme of RealBoost may give rise to a combined regressor with

lower generalization error.

The results from our algorithm compare well with the results from bagging

regression trees in [Drucker, 1997] where the average test error over 100 random

splits is 12.4 and the results from �-SVR in [Sch�olkopf et al., 1998c] where for

di�erent values of the parameter � the average test of support vector regression

varies between 8.7 (std = 6:8) and 11.3 (std = 9:5). It should be pointed out that

in the latter algorithm the parameter � that controls the accuracy and number

of support vectors has to be speci�ed a priori. Despite this the experiments are

performed using both training and validations sets for training. We also used the

validation set for training, but did not need to adapt any parameters, since � and
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Figure 13.4 Complexity schedule during the boosting iterations

Training Testing

Mean (STD) Mean (STD)

RealBoost 0.204 (0.992) 9.592 (5.256)

Drucker 13.458 (1.354) 16.53 (10.82)

Bagging 11.712 (0.403) 14.704 (10.275)

Single learner 11.885 (1.771) 15.576 (10.51)

Table 13.1 Mean and standard deviations of RealBoost, Drucker's algorithm,

Bagging and the single weak learner

L� are adjusted automatically by the algorithm. The setting of the value of �t as the
95% percentile and the reduction factor could require adaptation for signi�cantly

di�erent types of data, but the one setting was adequate for all of the experiments

reported here and hence we regard these as pre�xed constant values.

13.7 Conclusions

The chapter has presented a strategy for boosting weak regressors that is motivated

by recent results estimating the probability of errors based on a measure of the

distribution of the training errors. The bound provides a guide to setting the

insensitivity of the loss function used, which is then used to generate the distribution

of examples passed to the weak learner.

Experiments have demonstrated that the algorithm performs well on a standard

benchmark dataset, when compared with alternative approaches.
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We introduce the concept of span of support vectors (SV) and show that the

generalization ability of support vector machines (SVM) depends on this new

geometrical concept. We prove that the value of the span is always smaller (and

can be much smaller) than the diameter of the smallest sphere containing the

support vectors, used in previous bounds [Vapnik, 1998]. We also demonstrate

experimentally that the prediction of the test error given by the span is very

accurate and has direct application in model selection (choice of the optimal

parameters of the SVM).

14.1 Introduction

Recently, a new type of algorithm with a high level of performance called Support

Vector Machines (SVM) has been introduced [Boser et al., 1992, Vapnik, 1995].

Usually, the good generalization ability of SVM is explained by the existence

of a large margin: bounds on the error rate for a hyperplane that separates the

data with some margin were obtained in [Bartlett and Shawe-Taylor, 1999, Shawe-

Taylor et al., 1998]. In Vapnik [1998], another type of bound was obtained which

demonstrated that for the separable case the expectation of probability of error for

hyperplanes passing through the origin depends on the expectation of R2=�2, where

R is the maximal norm of support vectors and � is the margin.



262 Bounds on Error Expectation for SVM

In this chapter we derive bounds on the expectation of error for SVM from the

leave-one-out estimator, which is an unbiased estimate of the probability of test

error. These bounds (which are tighter than the one de�ned in Vapnik [1998] and

valid for hyperplanes not necessarily passing through the origin) depend on a new

concept called the span of support vectors.

The bounds obtained show that the generalization ability of SVM depends

on more complex geometrical constructions than large margin. To introduce the

concept of the span of support vectors we have to describe the basics of SVM.

14.2 SVM for Pattern Recognition

We call the hyperplane

w0 � x+ b0 = 0 (14.1)
optimal

hyperplane optimal if it separates the training data

(x1; y1); :::; (x`; y`); x 2 Rm ; y 2 f�1; 1g (14.2)

and if the margin between the hyperplane and the closest training vector is maximal.

This means that the optimal hyperplane has to satisfy the inequalities

yi(w � xi + b) � 1 i = 1; :::; ` (14.3)

and has to minimize the functional

R(w) = w �w: (14.4)

This quadratic optimization problem can be solved in the dual space of Lagrange

multipliers. One constructs the Lagrangiandual

formulation

L(w; b;�) =
1

2
w �w �

X̀
i=1

�i[yi(w � xi + b)� 1] (14.5)

and �nds its saddle point: the point that minimizes this functional with respect to

w and b and maximizes it with respect to

�i � 0 for all i = 1; :::; `: (14.6)

Minimization over w de�nes the equation

w =
X̀
i=1

�iyixi (14.7)

and minimization over b de�nes the equation

X̀
i=1

�iyi = 0: (14.8)
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Substituting (14.7) back into the Lagrangian (14.5) and taking into account (14.8),

we obtain the functional

W (�) =
X̀
i=1

�i � 1

2

X̀
i;j=1

�i�jyiyjxi � xj ; (14.9)

which we have to maximize with respect to parameters � satisfying two constraints:

equality constraint (14.8) and positivity constraints (14.6). The optimal solution

�0 = (�01; : : : ; �
0
`) speci�es the coeÆcients for the optimal hyperplane

w0 =
X̀
i=1

�0i yixi: (14.10)

Therefore the optimal hyperplane isdecision

function X̀
i=1

�0i yixi � x+ b0 = 0; (14.11)

where b0 is chosen to maximize the margin. It is important to note that the optimal

solution satis�es the Kuhn-Tucker conditions

�0i [yi(w0 � xi + b0)� 1] = 0: (14.12)

From these conditions it follows that if the expansion of vector w0 uses vector xi
with non-zero weight �0i then the following equality must hold

yi(w0 � xi + b0) = 1: (14.13)

Vectors xi that satisfy this equality are called support vectors.

Note that the norm of vector w0 de�nes the margin � between optimal separating

hyperplane and the support vectorsmargin

� =
1

jjw0jj : (14.14)

Therefore taking into account (14.8) and (14.13) we obtain

1

�2
= w0 �w0 =

X̀
i=1

yi�
0
iw0 � xi =

X̀
i=1

yi�
0
i (w0 � xi + b0) =

X̀
i=1

�0i (14.15)

where � is the margin for the optimal separating hyperplane.

In the non-separable case we introduce slack variables �i and minimize the

functionalnon-separable

case
R(w; b;�) =

1

2
w �w + C

X̀
i=1

�i (14.16)

subject to constraints

yi(w0 � xi + b0) � 1� �i where �i � 0: (14.17)
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When the constant C is suÆciently large and the data is separable, the solution of

this optimization problem coincides with the one obtained for the separable case.

To solve this quadratic optimization problem for the non-separable case, we

consider the Lagrangian

L(w; b;�) =
1

2
w �w �

X̀
i=1

�i[yi(w � xi + b)� 1 + �i] + C
X̀
i=1

�i �
X̀
i=1

�i�i; (14.18)

which we minimize with respect to w, b and �i and maximize with respect to the

Lagrange multipliers �i � 0 and �i � 0.

The result of minimization over w and b leads to the conditions (14.7) and (14.8)

and result of minimization over �i gives the new condition

�i + �i = C: (14.19)

Taking into account that �i � 0, we obtain

0 � �i � C: (14.20)

Substituting (14.7) into the Lagrangian, we obtain that in order to �nd the optimal

hyperplane, one has to maximize the functional (14.9), subject to constraints (14.8)

and (14.20).

The box constraints (14.20) (instead of the positivity constraints (14.6)) entail

the di�erence in the methods for constructing optimal hyperplanes in the non-

separable case and in the separable case respectively. For the non-separable case,

the Kuhn-Tucker conditions

�0i [yi(w0 � xi + b0)� 1 + �i] = 0 and �i�i = 0 (14.21)

must be satis�ed. Vectors xi that correspond to nonzero �
0
i are referred as support

vectors. For support vectors the equalities

yi(w0 � xi + b0) = 1� �i (14.22)

hold. From conditions (14.21) and (14.19) it follows that if �i > 0, then �i = 0 and

therefore �i = C.

We will distinguish between two types of support vectors: support vectors for

which 0 < �0i < C and support vectors for which �0i = C. To simplify notations wecategory

of a support

vector

sort the support vectors such that the �rst n� support vectors belong to the �rst

category (with 0 < �i < C) and the next m = n � n� support vectors belong to

the second category (with �i = C).

When constructing SVMs one usually maps the input vectors x 2 X into

a high dimensional (even in�nite dimensional) feature space �(x) 2 F where

one constructs the optimal separating hyperplane. Note that both the optimal

hyperplane (14.11) and the target functional (14.9) that has to be maximized to �nd

the optimal hyperplane depend on the inner product between two vectors rathernon linear

SVM than on input vectors explicitly. Therefore one can use the general representation

of inner product in order to calculate it. It is known that the inner product between
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two vectors �(x1) � �(x2) has the following general representation
�(x1) � �(x2) = k(x1;x2); (14.23)

where k(x1;x2) is a kernel function that satis�es the Mercer conditions (symmetric

positive de�nite function). The form of kernel function k(x1;x2) depends on the

type of mapping of the input vectors �(x). In order to construct the optimal

hyperplane in feature space, it is suÆcient to use a kernel function instead of inner

product in expressions (14.9) and (14.11).

Further we consider bounds in the input space X. However all results are true

for any mapping �. To obtain the corresponding results in a feature space one uses

the representation of the inner product in feature space k(x;xi) instead of the inner

product x � xi.

14.3 The Leave-one-out Procedure

The bounds introduced in this chapter are derived from the leave-one-out cross-

validation estimate. This procedure is usually used to estimate the probability of

test error of a learning algorithm.

Suppose that using training data of size ` one tries simultaneously to estimate a

decision rule and evaluate the quality of this decision rule. Using training data, one

constructs a decision rule. Then one uses the same training data to evaluate the

quality of the obtained rule based on the leave-one-out procedure: one removes fromleave-one-out

procedure the training data one element (say (xp; yp)), constructs the decision rule on the basis

of the remaining training data and then tests the removed element. In this fashion

one tests all ` elements of the training data (using ` di�erent decision rules). Let us

denote the number of errors in the leave-one-out procedure by L(x1; y1; :::;x`; y`).
Luntz and Brailovsky proved the following lemma:

Lemma 14.1 Luntz and Brailovsky [1969]

The leave-one-out procedure gives an almost unbiased estimate of the probability

of test error

Ep`�1error = E

�L(x1; y1; :::;x`; y`)
`

�
; (14.24)

where p`�1error is the probability of test error for the machine trained on a sample of

size `� 1.

\Almost" in the above lemma refers to the fact the probability of test error is for

samples of size `� 1 instead of `.

Remark 14.2

For SVMs one needs to conduct the leave-one-out procedure only for support

vectors: non support vectors will be recognized correctly since removing a point

which is not a support vector does not change the decision function.
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In Section 14.5, we introduce upper bounds on the number of errors made by the

leave-one-out procedure. For this purpose we need to introduce a new concept,

called the span of support vectors.

14.4 Span of the Set of Support Vectors

Let us �rst consider the separable case. Suppose that

(x1; y1); :::; (xn; yn) (14.25)

is a set of support vectors and

�0 = (�01; :::; �
0
n) (14.26)

is the vector of Lagrange multipliers for the optimal hyperplane.

For any �xed support vector xp we de�ne the set �p as a constrained linear

combinations of the points fxigi6=p:

�p =

8<
:

nX
i=1; i6=p

�ixi :
nX

i=1; i6=p
�i = 1; and 8i 6= p; �0i + yiyp�

0
p�i � 0

9=
; (14.27)

Note that �i can be less than 0.

We also de�ne the quantity Sp, which we call the span of the support vector xp
as the distance between xp and this set (see �gure 14.1)span

S2p = d2(xp;�p) = min
x2�p

(xp � x)2; (14.28)

As shown in Figure 14.2, it can happen that xp 2 �p, which implies Sp =

d(xp;�p) = 0. Intuitively, for smaller Sp = d(xp;�p) the leave-one-out procedure is

less likely to make an error on the vector xp. Indeed, we will prove (see Lemma 14.5))

that if Sp < 1=(D�0p) (D is the diameter of the smallest sphere containing the

training points), then the leave-one-out procedure classi�es xp correctly. By setting

�p = �1, we can rewrite Sp as:

S2p = min

8<
:
 

nX
i=1

�ixi

!2

: �p = �1;
nX
i=1

�i = 0; �0i + yiyp�
0
p�i � 0

9=
; (14.29)

The maximal value of Sp is called the S-span

S = maxfd(x1;�1); :::; d(xn;�n)g = max
p

Sp: (14.30)

We will prove (cf. Lemma 14.3 below) that Sp � DSV . Therefore,

S � DSV : (14.31)

Depending on �0 = (�01; :::; �
0
n) the value of the span S can be much less than

diameter DSV of the support vectors. Indeed, in the example of Figure 14.2,

d(x1;�1) = 0 and by symmetry, d(xi;�i) = 0, for all i and we have S = 0.
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Figure 14.1 Consider the 2D example above: 3 support vectors with �1 = �2 =

�3=2. The set �1 is the semi-opened dashed line: �1 = f�2x2+�3x3; �2+�3 = 1; �2 �
�1; �3 � 2g.

Now we generalize the span concept for the non-separable case. In the non-

separable case we distinguish between two categories of support vectors: the supportnon-separable

case vectors for which

0 < �i < C for all 1 � i � n� (14.32)

and the support vectors for which

�j = C for all = n� + 1 � i � n: (14.33)

We de�ne the span of support vectors using support vectors of the �rst category.

That means we consider the value Sp = d(xp;�p) where

�p =

8<
:

n�X
i=1; i6=p

�ixi :
n�X

i=1; i6=p
�i = 1; 8i 6= p 0 � �0i + yiyp�

0
p�i � C

9=
; (14.34)

The di�erences in the de�nition of the span for the separable and the non-separable

case are that in the non-separable case we ignore the support vectors of the second

category and add an upper bound C in the constraints on �i.

Therefore in the non-separable case the value of the span of support vectors

depends on the value of C. It is not obvious that the set �p is not empty. It is

proven in the following lemma.

Lemma 14.3

Both in the separable and non-separable case, the set �p is not empty. Moreover

Sp = d(xp;�p) � DSVbound on

the span
The proof can be found in the Appendix.
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Figure 14.2 In this example, we have x1 2 �1 and therefore d(x1;�1) = 0. The set

�1 has been computed using �1 = �2 = �3 = �4

Remark 14.4

From lemma 14.3, we conclude (as in the separable case) that

S � DSV ; (14.35)

where DSV is the diameter of the smallest sphere containing the support vectors

of the �rst category.

14.5 The Bounds

The generalization ability of SVMs can be explained by their capacity control.

Indeed, the VC dimension of hyperplanes with margin � is less than D2=4�2, where

D is the diameter of the smallest sphere containing the training points [Vapnik,

1995]. This is the theoretical idea motivating the maximization of the margin.

This section presents new bounds on the generalization ability of SVMs. The

major improvement lies in the fact that the bounds will depend on the span of the

support vectors, which gives tighter bounds that ones depending on the diameter

of the training points.

Let us �rst introduce our fundamental result:
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Lemma 14.5

If in the leave-one-out procedure a support vector xp corresponding to 0 < �p < C

is recognized incorrectly, then the inequality

�0pSpmax(D; 1=
p
C) � 1 (14.36)

holds true.

The proof can be found in the appendix. The previous lemma leads us to the

following theorem for the separable case:

Theorem 14.6

Suppose that a SVM separates training data of size ` without error. Then the

expectation of the probability of error p`�1error for the SVM trained on the training

data of size `� 1 has the bound

Ep`�1error � E
�
SD

`�2

�
; (14.37)

where the values of span of support vectors S, diameter of the smallest sphere

containing the training points D, and the margin � are considered for training sets

of size `.

Proof Let us prove that the number of errors made by the leave-one-out procedure

is bounded by SD
�2 . Taking the expectation and using lemma 14.1 will prove the

theorem.

Consider a support vector xp incorrectly classi�ed by the leave-one-out procedure.

Then Lemma 14.5 gives �0pSpD � 1 (we consider the separable case and C = 1)

and

�0p �
1

SD
(14.38)

holds true. Now let us sum the left and right hand sides of this inequality over all

support vectors where the leave-one-out procedure commits an error

L(x1; y1; :::;x`; y`)
SD

�
X
�
�0i : (14.39)

Here
P
� indicates that the sum is taken only over support vectors where the leave-

one-out procedure makes an error. From this inequality we have

L(x1; y1; :::;x`; y`)
`SD

� 1

`

nX
i=1

�0i : (14.40)

Therefore we have (using (14.15))

L(x1; y1; :::;x`; y`)
`

� SD
Pn

i=1 �
0
i

`
=
SD

`�2
: (14.41)

Taking the expectation over both sides of the inequality and using the Luntz and

Brailovsky Lemma we prove the theorem.
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For the non-separable case the following theorem is true.

Theorem 14.7

The expectation of the probability of error p`�1error for a SVM trained on the training

data of size `� 1 has the bound

Ep`�1error � E
 
Smax(D; 1=

p
C)
Pn�

i=1 �
0
i +m

`

!
; (14.42)

where the sum is taken only over �i corresponding to support vectors of the �rst

category (for which 0 < �i < C) and m is the number of support vectors of the

second category (for which �i = C). The values of the span of support vectors S,

diameter of the smallest sphere containing the training points D, and the Lagrange

multipliers �0 = (�01; :::; �
0
n) are considered for training sets of size `.

Proof The proof of this theorem is similar to the proof of theorem 14.6. We

consider all support vectors of the second category (corresponding to �j = C)

as an error. For the �rst category of support vectors we estimate the number

L�(x1; y1; :::;x`; y`) of errors in the leave-one-out procedure using Lemma 14.5 as

in the proof of Theorem 14.6. We obtain

L(x1; y1; :::;x`; y`)
`

� L
�(x1; y1; :::;x`; y`) +m

`

� Smax(D; 1=
p
C)
P�

�i +m

`

Taking the expectation over both sides of the inequality and using the Luntz and

Brailovsky Lemma we prove the theorem.

Note that in the case when m = 0 (separable case), the equality (14.15) holds true.

In this case (provided that C is large enough) the bounds obtained in these two

theorems coincide.

Note that in Theorems 14.6 and 14.7, it is possible using inequality (14.35) to

bound the value of the span S by the diameter of the smallest sphere containing the

support vectors DSV . But, as pointed out by the experiments (see Section 14.6),

this would lead to looser bounds as the span can be much less than the diameter.

14.5.1 Extension

In the proof of Lemma 14.5, it appears that the diameter of the training points D

can be replaced by the span of the support vectors after the leave-one-out procedure.

But since the set of support vectors after the leave-one-out procedure is unknown,

we bounded this unknown span by D. Nevertheless this remark motivated us to

analyze the case where the set of support vectors remains the same during the

leave-one-out procedure.

In this situation, we are allowed to replace D by S in lemma 14.5 and more

precisely, the following theorem is true.
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Theorem 14.8

If the sets of support vectors of �rst and second categories remain the same during

the leave-one-out procedure, then for any support vector xp, the following equality

holds:

yp(f
0(xp)� fp(xp)) = �0pS

2
p (14.43)

where f0 and fp are the decision function given by the SVM trained respectively

on the whole training set and after the point xp has been removed.

The proof can be found in the appendix.

The assumption that the set of support vectors does not change during the leave-

one-out procedure is not satis�ed in most cases. Nevertheless, the proportion of

points which violate this assumption is usually small compared to the number of

support vectors. In this case Theorem 14.8 provides a good approximation of the

result of the leave-one-out procedure, as pointed out by the experiments (see Section

14.6, Figure 14.4).

Note that Theorem 14.8 is stronger than lemma 14.5 for three reasons: the term

Spmax(D; 1=
p
C) becomes S2p , the inequality turns out to be an equality and the

result is valid for any support vector. The previous theorem enables us to compute

the number of errors made by the leave-one-out procedure:

Corollary 14.9

Under the assumption of Theorem 14.8, the test error prediction given by the leave-

one-out procedure isspan-rule

t` =
1

`
L(x1; y1; :::;x`; y`) = 1

`
Cardfp : �0pS2p � ypf0(xp)g (14.44)

14.6 Experiments

The previous bounds on the generalization ability of Support Vector Machines

involved the diameter of the smallest sphere enclosing the training points [Vapnik,

1995]. We have shown (cf inequality (14.35)) that the span S is always smaller than

this diameter, but to appreciate the gain, we conducted some experiments.

First we compare the diameter of the smallest sphere enclosing the training

points, the one enclosing the support vectors and the span of the support vectorscomparison

span -

diameter

using the postal database. This dataset consists of 7291 handwritten digits of size

16x16 with a test set of 2007 examples. Following Sch�olkopf et al. [1999], we split

the training set in 23 subsets of 317 training examples. Our task is to separate

digits 0 to 4 from 5 to 9. Error bars in Figure 14.3 are standard deviations over the

23 trials. The diameters and the span in Figure 14.3 are plotted for di�erent values

of �, the width of the RBF kernel we used:

k(x;y) = e�
jjx�yjj2

2�2 : (14.45)
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Figure 14.3 Comparison of D, DSV and S

In this example, the span is up to 6 times smaller than the diameter.

Now we would like to use the span for predicting accurately the test error. This

would enable us to perform eÆcient model selection, i.e., choosing the optimal

values of parameters in SVMs (the width of the RBF kernel � or the constant C,

for instance).

Note that the span S is de�ned as a maximum S = maxp Sp and therefore taking

into account the di�erent values Sp should provide a more accurate estimation of

the generalization error than the span S only. Therefore, we used the span-rule

(14.44) in Corollary 1 to predict the test error.

Our experiments have been carried out on two databases: a separable one, the

postal database, described above and a noisy one, the breast-cancer database.1 The

latter has been split randomly 100 times into a training set containing 200 examples

and a test set containing 77 examples.

Figure 14.4 a compares the test error and its prediction given by the span-rule

(14.44) for di�erent values of the width � of the RBF kernel on the postal database.model

selection Figure 14.4b plots the same functions for di�erent values of C on the breast-cancer

database. The prediction is very accurate and the curves are almost identical.

The computation of the span-rule (14.44) involves computing the span Sp (14.29)

for every support vector. Note, however, that we are interested in the inequality

S2p � ypf(xp)=�
0
p, rather than the exact value of the span Sp. Therefore, if while

minimizing Sp = d(xp;�p) we �nd a point x� 2 �p such that d(xp;x
�)2 �

ypf(xp)=�
0
p, we can stop the minimization because this point will be correctly

classi�ed by the leave-one-out procedure.

Figure 14.5 compares the time required to (a) train the SVM on the postal

database, (b) compute the estimate of the leave-one-out procedure given by the

span-rule (14.44) and (c) compute exactly the leave-one-out procedure. In order

to have a fair comparison, we optimized the computation of the leave-one-outcomputation

time

1. Available from http://svm.first.gmd.de/�raetsch/data/breast-cancer
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Figure 14.4 Test error and its prediction using the span-rule (14.44) (left: choice

of � in the postal database, right: choice of C in the breast-cancer database).

procedure in the following way: for every support vector xp, we take as starting

point for the minimization (14.9) involved to compute fp (the decision function

after having removed the point xp), the solution given by f0 on the whole training

set. The reason is that f0 and fp are usually \close."

The results show that the time required to compute the span is not prohibitive

and is very attractive compared to the leave-one-out procedure.

14.7 Conclusion

In this chapter, we have shown that the generalization ability of support vector

machines depends on a more complicated geometrical concept than the margin

only. A direct application of the concept of span is the selection of the optimal

parameters of the SVM since the span enables to get an accurate prediction of the

test error.

Similarly to Chapter 15, the concept of the span also leads to new learning

algorithms involving the minimization of the number of errors made by the leave-

one-out procedure.
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and leave-one-out on the postal database

14.8 Appendix: Proofs

Lemma 14.3. We will prove this result for the non-separable case. The result

is also valid for the separable case since it can be seen as a particular case of the

non-separable one with C large enough. Let us de�ne �+
p as the subset of �p with

additional constraints �i � 0:

�+
p = f

nX
i=1; i 6=p

�ixi 2 �p : �i � 0 i 6= pg: (14.46)

We shall prove that �+
p 6= ; by proving that a vector � of the following form exists:

�j = 0 for all n� + 1 � j � n (14.47)

�i = �
C � �0i
�0p

; yi = yp; i 6= p; i = 1; :::; n� (14.48)

�i = �
�0i
�0p
; yi 6= yp; i = 1; :::; n� (14.49)

0 � � � 1 (14.50)

nX
i=1

�i = 1 (14.51)
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It is straightforward to check that if such a vector � exists, then
P
�ixi 2 �+

p and

therefore �+
p 6= ;. Since �+

p � �p, we will have � 6= ;.
Taking into account equations (14.48) and (14.49), we can rewrite constraint

(14.51) as follows:

1 =
�

�0p

0
BBBBBBBB@

n�X
i=1; i6=p

yi=yp

(C � �0i ) +
n�X
i=1

yi 6=yp

�0i

1
CCCCCCCCA

(14.52)

We need to show that the value of � given by equation (14.52) satis�es constraint

(14.50). For this purpose, let us de�ne � as:

� =
n�X

i= yi=yp

(C � �0i ) +
n�X

i= yi 6=yp
�0i (14.53)

= �yp
n�X
i=1

yi�
0
i +

n�X
i= yi=yp

C (14.54)

Now, note that

nX
i=1

yi�
0
i =

n�X
i=1

yi�
0
i + C

nX
i=n�+1

yi = 0: (14.55)

Combining equations (14.54) and (14.55) we get

� = Cyp

nX
i=n�+1

yi +
n�X

i= yi=yp

C

= Ck;

where k is an integer. Since equation (14.53) gives � > 0, we have �nally

� � C: (14.56)

Let us rewrite equation (14.52) as:

1 =
�

�0p
(�� (C � �0p)): (14.57)

We obtain

� =
�0p

�� (C � �0p)
(14.58)

Taking into account inequality (14.56), we �nally get 0 � � � 1. Thus, constraint

(14.50) is ful�lled and �+
p is not empty. Now note that the set �+

p is included in
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the convex hull of fxigi6=p and since �+
p 6= ;, we obtain

d(xp;�
+
p ) � DSV ; (14.59)

where DSV is the diameter of the smallest ball containing the support vectors of

the �rst category. Since �+
p � �p we �nally get

Sp = d(xp;�p) � d(xp;�+
p ) � DSV : (14.60)

Lemma 14.5. Let us �rst consider the separable case. Suppose that our training

set fx1; : : : ;x`g is ordered such that the support vectors are the �rst n training

points. The non-zero Lagrange multipliers associated with these support vectors

are

�01; :::; �
0
n (14.61)

In other words, the vector �0 = (�01; : : : ; �
0
n; 0; : : : ; 0) maximizes the functional

W (�) =
X̀
i=1

�i � 1

2

X̀
i;j=1

�i�jyiyjxi � xj (14.62)

subject to the constraints

� � 0; (14.63)

X̀
i=1

�iyi = 0: (14.64)

Let us consider the result of the leave-one-out procedure on the support vector

xp. This means that we maximized functional (14.62) subject to the constraints

(14.63), (14.64) and the additional constraint

�p = 0; (14.65)

and obtained the solution

�p = (�p1; :::; �
p
` ): (14.66)

Using this solution we construct the separating hyperplane

wp � x+ bp = 0; (14.67)

where

wp =
X̀
i=1

�pi yixi: (14.68)

We would like to prove that if this hyperplane classi�es the vector xp incorrectly:

yp(wp � xp + bp) < 0 (14.69)
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then

�0p �
1

SpD
: (14.70)

Since �p maximizes (14.62) under constraints (14.63), (14.64) and (14.65), the

following inequality holds true

W (�p) �W (�0 � Æ); (14.71)

where the vector Æ = (Æ1; :::; Æn) satis�es the following conditions

Æp = �0p; (14.72)

�0 � Æ � 0; (14.73)

nX
i=1

Æiyi = 0: (14.74)

Æi = 0; i > n (14.75)

From inequality (14.71) we obtain

W (�0)�W (�p) �W (�0)�W (�0 � Æ): (14.76)

Since �0 maximizes (14.62) under the constraints (14.63) and (14.64), the following

inequality holds true

W (�0) �W (�p + ); (14.77)

where  = (1; :::; `) is a vector satisfying the constraints

�p +  � 0; (14.78)

X̀
i=1

iyi = 0: (14.79)

�pi = 0 =) i = 0; i 6= p (14.80)

From (14.76) and (14.77), we have

W (�p + )�W (�p) �W (�0)�W (�0 � Æ) (14.81)

Let us calculate both the left hand side,I1, and the right hand side, I2 of inequality

(14.81).

I1 =W (�p + )�W (�p)

=
X̀
i=1

(�pi + i)� 1

2

X̀
i;j=1

(�pi + i)(�
p
j + j)yiyjxi � xj

�
X̀
i=1

�pi +
1

2

X̀
i;j=1

�pi�
p
jyiyjxi � xj
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=
X̀
i=1

i �
X̀
i;j

i�
p
jyiyjxi � xj �

1

2

X̀
i;j

yiyjijxi � xj

=
X̀
i=1

i(1� yiwp � xi)� 1

2

X̀
i;j

yiyjij(xi;xj)

Taking into account that

X̀
i=1

iyi = 0 (14.82)

we can rewrite expression

I1 =
X̀
i6=p

i[1�yi(wp �xi+bp)]+p[1�yp(wp �xp+bp)]� 1

2

nX
i;j

yiyjijxi �xj :(14.83)

Since for i 6= p the condition (14.80) means that either i = 0 or xi is a support

vector of the hyperplane wp, the following equality holds

i[yi(wp � xi + bp)� 1] = 0: (14.84)

We obtain

I1 = p[1� yp(wp � xp + bp)]� 1

2

nX
i;j

yiyjijxi � xj : (14.85)

Now let us de�ne vector  as follows:

p = k = a; (14.86)

i = 0 i 62 fk; pg; (14.87)

where a is some constant and k such that yp 6= yk and �pk > 0. For this vector we

obtain

I1 = a[1� yp(wp � xp + bp)]� a2

2
jjxp � xkjj2

� a[1� yp(wp � xp + bp)]� a2

2
D2: (14.88)

Let us choose the value a to maximize this expression

a =
1� yp(wp � xp + bp)

D2
: (14.89)

Putting this expression back into (14.88) we obtain

I1 � 1

2

(1� yp[(xp;wp) + bp])
2

D2
: (14.90)

Since, according to our assumption, the leave-one-out procedure commits an error

at the point xp (that is, the inequality (14.69) is valid), we obtain

I1 � 1

2D2
: (14.91)
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Now we estimate the right hand side of inequality (14.81)

I2 =W (�0)�W (�0 � Æ): (14.92)

We choose Æi = �yiyp�0p�i, where � is the vector that de�nes the value of d(xp;�p)
in equation (14.29). We have

I2 =W (�0)�W (�0 � Æ)

=
nX
i=1

�0i �
1

2

nX
i;j=1

�0i�
0
jyiyjxi � xj �

nX
i=1

(�0i + yiyp�
0
p�i)

+
1

2

nX
i;j=1

(�0i + yiyp�
0
p�i)(�

0
j + yjyp�

0
p�j)yiyjxi � xj

= �yp�0p
nX
i=1

yi�i + yp�
0
p

nX
i;j=1

�0i�jyixi � xj +
1

2
(�0p)

2

 
nX
i=1

�ixi

!2

:

Since
Pn

i=1 �i = 0 and xi is a support vector, we have

I2 = yp�
0
p

nX
i=1

�iyi[yi(w0 � xi + b0)� 1] +
(�0p)

2

2

 
nX
i=1

�ixi

!2

=
(�0p)

2

2
S2p : (14.93)

Combining (14.81), (14.91) and (14.93) we obtain

�0pSpD � 1: (14.94)

Consider now the non-separable case. The sketch of the proof is the same. There are

only two di�erences: First, the vector  needs to satisfy �p+ � C. A very similar

proof to the one of lemma 14.3 gives us the existence of . The other di�erence lies

in the choice of a in equation (14.88). The value of a which maximizes equation

(14.88) is

a� =
1� yp(wp � xp + bp)

D2
: (14.95)

But we need to ful�ll the condition a � C. Thus, if a� > C, we replace a by C in

equation (14.88) and we get:

I1 � C[1� yp(wp � xp + bp)]� C2

2
D2

= CD2

�
a� � C

2

�
� CD2 a

�

2
=
C

2
[1� yp(wp � xp + bp)] � C

2

The last inequality comes from (14.69). Finally, we have

I1 � 1

2
min

�
C;

1

D2

�
: (14.96)

By combining this last inequality with (14.81) and (14.93) we prove the lemma.
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Theorem 14.8. The proof follows the proof of Lemma 14.5. Under the assump-

tion that the set of support vectors remain the same during the leave-one-out pro-

cedure, we can take Æ =  = �0 ��p as �0 ��P is a vector satisfying simultane-

ously the set of constraints (14.75) and (14.80). Then inequality (14.81) becomes

an equality:

I1 =W (�0)�W (�p) = I2 (14.97)

From inequality (14.76), it follows that

I2 � I�2 =W (�0)�W (�0 � Æ�); (14.98)

where Æ�i = �yiyp�0p�i and � is given by the de�nition of the span Sp (cf equation

(14.29)). The computation of I2 and I
�
2 is similar to the one involved in the proof

of Lemma 14.5 (cf equation (14.93))

I�2 =
(�0p)

2

2
S2p � �0p[yp(w0 � xp + b0)� 1] (14.99)

I2 =
(�0p)

2

2

 X
i

��ixi

!2

� �0p[yp(w0 � xp + b0)� 1]; (14.100)

where

��i = yi
�pi � �0i
�0p

(14.101)

From (14.98), we get (
P

i �
�
ixi)

2 � S2p : Now note that
P

i6=p �
�
ixi 2 �p and by

de�nition of Sp, (
P

i �
�
ixi)

2 � S2p . Finally, we have X
i

��ixi

!2

= S2p : (14.102)

The computation of I1 gives (cf. equation (14.88))

I1 = �0p[1� yp(wp � xp + bp)]�
(�0p)

2

2

 X
i

��ixi

!2

(14.103)

Putting the values of I1 and I2 back in equation (14.97), we get

(�0p)
2

 X
i

��ixi

!2

= �0pyp[f
0(xp)� fp(xp)] (14.104)

and the theorem is proven by dividing by �0p and taking into account (14.102):

�0pS
2
p = yp[f

0(xp)� fp(xp)] (14.105)
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In this chapter we present a new learning algorithm, Leave{One{Out (LOO{) SVMs

and its generalization Adaptive Margin (AM{) SVMs, inspired by a recent upper

bound on the leave{one{out error proved for kernel classi�ers by Jaakkola and

Haussler. The new approach minimizes the expression given by the bound in an

attempt to minimize the leave{one{out error. This gives a convex optimization

problem which constructs a sparse linear classi�er in feature space using the kernel

technique. As such the algorithm possesses many of the same properties as SVMs

and Linear Programming (LP{) SVMs. These former techniques are based on the

minimization of a regularized margin loss, where the margin is treated equivalently

for each training pattern. We propose a minimization problem such that adaptive

margins for each training pattern are utilized. Furthermore, we give bounds on the

generalization error of the approach which justi�es its robustness against outliers.

We show experimentally that the generalization error of AM{SVMs is comparable

to SVMs and LP{SVMs on benchmark datasets from the UCI repository.
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15.1 Introduction

The study of classi�cation learning has shown that algorithms which learn a

real{valued function for classi�cation can control their generalization error by

making use of a quantity known as the margin (see Section 1.1.3). Based on these

results, learning machines which directly control the margin (e.g., SVMs, LP{SVMs)

have been proven to be successful in classi�cation learning [Mason et al., 1999,

Vapnik, 1998, Smola, 1998]. Moreover, it turned out to be favourable to formulate

the decision functions in terms of a symmetric, positive semide�nite, and square

integrable function k(�; �) referred to as a kernel (see Section 1.3.2). The class of

decision functions | also known as kernel classi�ers [Smola, 1998, Jaakkola and

Haussler, 1999b] | is then given by1decision function

f(x) =
mX
i=1

�iyik(xi;x) � � 0 : (15.1)

For simplicity we ignore classi�ers which use an extra threshold term (cf. Eq. (1.74)).

Whilst the algorithms proposed so far are restricted to a �xed margin (the same

constant value) at each training pattern (xi; yi), we show that adaptive margins can

successfully be used. Moreover, it turns out that adaptive margins e�ectively control

the complexity of the model. The chapter is structured as follows: In Section 15.2

we describe the LOO-SVM algorithm. The generalization of LOO-SVMs to control

the margin adaptively, which gives AM-SVMs, is then presented in Section 15.3 and

their relation to SVMs and LP{SVMs is revealed in Section 15.4. In Section 15.5

we give bounds on the generalization error of AM{SVMs which justify the use of

adaptive margins as a regularizer. In Section 15.6 results of a comparison of AM{

SVMs with SVMs on arti�cial and benchmark datasets from the UCI repository2

are presented. Finally, in Section 15.7 we summarize the chapter and discuss further

directions.

15.2 Leave{One{Out Support Vector Machines

Support Vector Machines obtain sparse solutions that yield a direct assessment

of generalization: the leave-one-out error is bounded by the expected ratio of the

number of non{zero coeÆcients �i to the number m of training examples [Vapnik,

1995]. Jaakkola and Haussler [1999b] derive a bound on this error for a class of

classi�ers which includes SVMs but can be applied to non{sparse solutions. In

1. Although this class of functions is dependent on the training set, the restrictions put on
k(�; �) automatically ensure that the inuence of each new basis function k(xi; �) decreases
rapidly for increasing training set sizes m. Thus we can assume the existence of a �xed
feature space (see, e.g., [Graepel et al., 1999]).
2. http://www.ics.uci.edu/mlearn/MLRepository.html.
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order to motivate our reasoning we restate their result which is given by (1.86) in

a more concise form.leave{one{out

bound
Theorem 15.1

For any training set of examples xi 2 RN and labels yi 2 f�1g, for an SVM the

leave{one{out error estimate of the classi�er is bounded by

1

m

mX
i=1

�

0
@�yiX

j 6=i
yj�jk(xi;xj)

1
A : (15.2)

where �(�) is the step function.

This bound is slightly tighter than the classical SVM leave{one{out bound. This is

easy to see when one considers that all training points that have �i = 0 cannot be

leave{one{out errors in either bound. Vapnik's bound assumes all support vectors

(all training points with �i > 0) are errors, whereas they only contribute as errors

in Equation (15.2) if

yi
X
j 6=i

�jyjk(xi;xj) � 0: (15.3)

In practice this means the bound is tighter for less sparse solutions.

Theorem 15.1 motivates the following algorithm [Weston, 1999]: directly minimize

the expression in the bound. In order to achieve this, one introduces slack variables

following the standard approach of Cortes and Vapnik [1995] to give the following

optimization problem:

minimize
mX
i=1

�Æi (15.4)

subject to yi
X
j 6=i

�jyjk(xi;xj) � 1� �i; for all i = 1; : : : ;m (15.5)

� � 0; � � 0: (15.6)

where one chooses a �xed constant for the margin to ensure non{zero solutions.

To make the optimization problem tractable, the smallest value for Æ for which we

obtain a convex objective function is Æ = 1. Noting also that yi
P

j 6=i �jyjk(xi;xj) =
yif(xi)� �ik(xi;xi) we obtain the equivalent linear program:Leave{one{out

SVM

minimize
mX
i=1

�i (15.7)

subject to yif(xi) � 1� �i + �ik(xi;xi); for all i = 1; : : : ;m (15.8)

� � 0; � � 0: (15.9)

As in other kernel classi�ers, one uses the decision rule given in Equation (15.1).

Note that Theorem 15.1 is no longer valid for this learning algorithm. Nevertheless,

let us study the resulting method which we call a Leave{One{Out Support Vector

Machine (LOO{SVM).
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Firstly, the technique appears to have no free regularization parameter.3 Thisregularization

should be compared with Support Vector Machines which control the amount of

regularization with the free parameter C (see Section 1.3). For SVMs, in the case

of C = 1 one obtains a hard margin classi�er with no training errors. In the case

of noisy or linear inseparable datasets4 (through noise, outliers, or class overlap)

one must admit some training errors (by constructing a so called soft margin { see

Section 1.1.4 ). To �nd the best choice of training error/margin tradeo� one has to

choose the appropriate value of C. In LOO{SVMs a soft margin is automatically

constructed. This happens because the algorithm does not attempt to minimize

the number of training errors { it minimizes the number of training points that are

classi�ed incorrectly even when they are removed from the linear combination that

forms the decision rule. However, if one can classify a training point correctly when

it is removed from the linear combination then it will always be classi�ed correctly

when it is placed back into the rule. This can be seen as �iyik(xi;xi) has always the

same sign as yi, any training point is pushed further from the decision boundary

by its own component of the linear combination. Note also that summing for all

j 6= i in the constraint (15.5) is equivalent to setting the diagonal of the kernel

matrix to zero and instead summing for all j. Thus the regularization employed by

LOO{SVMs disregards the values k(xi;xi) = 0 for all i.sparsity

Secondly, like Support Vector machines, the solutions can be sparse; that is,

only some of the coeÆcients �i; i = 1; : : : ;m are non{zero (see Section 15.6.2 for

computer simulations con�rming this). As the coeÆcient of a training point does

not contribute to its leave-one-out error in constraint (15.5) the algorithm does not

assign a non{zero value to the coeÆcient of a training point in order to correctly

classify it. A training point has to be classi�ed correctly by the training points of

the same label that are close to it (in feature space), but the training point itself

makes no contribution to its own classi�cation.

In the next section we show how this method does in fact have an implicit

regularization parameter and generalize the method to control the regularization

on the set of decision functions.

15.3 Adaptive Margin SVMs

In the setting of the optimization problem (15.7){(15.9) it is easy to see that a

training point xi is linearly penalized for failing to obtain a margin of �f (xi; yi) �
1 + �ik(xi;xi). That is, the larger the contribution the training point has to the

decision rule (the larger the value of �i), the larger its margin must be. Thus,

3. As we shall see later there is an implicit regularization parameter, but it is �xed. The
generalization of this problem which allows one to control this parameter gives Adaptive
Margin SVMs.
4. Here we refer to linearly inseparability in feature space. Both SVMs and LOO{SVM
Machines are essentially linear classi�ers.
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the algorithm controls the margin for each training point adaptively. From this

formulation one can generalize the algorithm to control regularization through the

margin loss. To make the margin at each training point a controlling variable we

propose the following learning algorithm:Adaptive Margin

SVM
minimize

mX
i=1

�i (15.10)

subject to yif(xi) � 1� �i + ��ik(xi;xi); for all i = 1; : : : ;m: (15.11)

� � 0; � � 0: (15.12)

This algorithm can then be viewed in the following way (see Figure 15.1): Suppose

the data lives on the surface of a hypersphere in F , e.g., k(�; �) is an RBF kernel given

by Equation (1.73). Then k(xi;xj) is the cosine of the angle between �(xi) and

�(xj). As soon as a point �(xk) is an outlier (the cosine of the angles to points in

its class are small and to points in the other class are large) �k in Equation (15.11)

has to be large in order to classify �(xk) correctly. Whilst SVMs and LP{SVMs

use the same margin for such an outlier, they attempt to classify �(xk) correctly.

In AM{SVMs the margin is automatically increased to 1+ ��kk(xk;xk) for �(xk)

and thus less attempt is made to change the decision function.

�(xk) (outlier)

F

�(xk) (representative)

Figure 15.1 Adaptation of margins at each training pattern depending on the

distance k(xi;xj) in feature space F . Note that k(xi;xj) is large if the enclosed

angle between data points is small. See the text for explanation.

cluster centres
Moreover, in AM{SVMs the points �(xk) which are representatives of clusters

(centres) in feature space F , i.e., those which have large values of the cosine of the

angles to points from their class, will have non{zero �k. In order to see this we

consider two points k and k0 of the same class. Let us assume that k having �k > 0

is the centre of a cluster (in the metric induced by �) and k0 (having �k0 > 0) lies
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at the boundary of the cluster. Hence we subdivide the set of all points into

i 2 C+ �i = 0; yi = yk; i 6= k; i 6= k0

i 2 C� �i = 0; yi 6= yk

i 2 I+ �i > 0; yi = yk; i 6= k; i 6= k0

i 2 I� �i > 0; yi 6= yk

:

We consider the change in � if we increase �k by � > 0 (giving �0) and simul-

taneously decrease �k0 by � (giving �00). From Equation (15.10)-(15.12) we know

that

i 2 C+ �0i = �i �00i � �k(xi;xk0)

i 2 C� �0i � �k(xi;xk) �00i = �i

i 2 I+ �0i � �i ��k(xi;xk) �00i = �i +�k(xi;xk0)

i 2 I� �0i = �i +�k(xi;xk) �00i � �i ��k(xi;xk0)

i = k �0k � �k ��(1� �)k(xk;xk) �00k = �k +�k(xk;xk0)

i = k0 �0k0 � �k0 ��k(xk0 ;xk) �00k0 � �k0 + (1� �)�k(xk0 ;xk0)
Now we choose the largest � such that all inequalities for i 2 fI+; I�; k; k0g become
equalities and the r.h.s for all inequalities for i 2 fC+; C�g equal zero. Then, the
relative change in the objective function is given by

1

�

X̀
i=1

(�0i � �00i ) =
X
i2I+

(k(xi;xk0)� k(xi;xk))
| {z }

change of intra{class distance

�
X
i2I�

(k(xi;xk0)� k(xi;xk))
| {z }

change of inter{class distance

;

where we assumed that k(xk;xk) = k(xk0 ;xk0). Since the cluster centres in feature

space F minimize the intra{class distance whilst maximizing the inter{class dis-

tances it becomes apparent that their �k will be higher. Taking into account that

the maximal � to be considerable for this analysis is decreasing as � increases we

see that for suitably small � AM{SVMs tend to give non{zero �'s only to cluster

centres in feature space F (see also Section 15.6 and Figure 15.4).

It is worthwhile to study the inuence of �:

If � = 0 no adaptation of the margins is performed. This is equivalent to

minimizing training error with no regularization, i.e., approximating the expected

risk R(f) (1.26) with the empirical risk (1.27) (see Section 1.2).

If � ! 1 the margin at each point tends to in�nity (1 + ��ik(xi;xi)) and the

solution is thus to set all �'s to an equal and small value. This corresponds to

paying no attention to Remp(f) and is equivalent to density estimation on each

class (Parzen's windows) [Parzen, 1962a].

If � = 1 the resulting algorithm is equivalent to LOO{SVMs.
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15.4 Relationship of AM{SVMs to Other SVMs

Using the soft margin loss

c(x; y; f(x)) = max(1� yf(x); 0) (15.13)

one can derive SVMs and LP-SVMs by choosing di�erent regularizers. If we use the

quadratic regularization functional

QQP(f) = kwk22 ; (15.14)

we directly obtain the well known class of SVMs (see Section 1.3), i.e.,SVMs

minimize
mX
i=1

�i + �
mX

i;j=1

�i�jyiyjk(xi;xj)

subject to yif(xi) � 1� �i; for all i = 1; : : : ;m

� � 0; � � 0:

(15.15)

Here we used

w =
mX
j=1

�jyj�(x) ; (15.16)

where �(�) maps into a feature space F such that (�(x) � �(x0)) = k(x;x0). It
is known that QQP(f) controls the covering number N (�; F ) of the induced loss{

function class (Theorem 1.5) [Shawe-Taylor et al., 1998, Smola, 1998]. This choice

of regularizer favours at functions in feature space.LP{SVMs

Similarly using a linear regularization functional

QLP(f) =
X

�i (15.17)

we obtain LP{SVMs. The corresponding minimization problem is given by5

minimize
mX
i=1

�i + �

mX
i=1

�i

subject to yif(xi) � 1� �i; for all i = 1; : : : ;m

� � 0; � � 0:

(15.18)

Recently it was shown that also QLP(f) can also be used to control the covering

number of c(�; �; f(�)) [Smola, 1998]. In contrast to the quadratic regularizer, QLP(f)

favours non{smooth functions by strongly penalizing basis functions �j(�) with a

small eigenvalue [Smola, 1998].

Comparing these algorithms to AV-SVMs, one can see all three produce a sparse

kernel classi�er. It is easy to see that for � = 0 and � ! 1 all three algorithms

revert to the same learnt function. It is only how � strati�es the set of decision

functions to form the type of regularization that di�erentiates the three algorithms.

5. Note, that we require � � 0 which allows us to omit the absolute values on the �i's.
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15.5 Theoretical Analysis

To obtain margin distribution bounds for Adaptive Margin Machines we apply the

following theorem to be found in [Shawe-Taylor and Cristianini, 1999b]:

Theorem 15.2

Consider a �xed but unknown probability distribution on the input space X with

support in the ball of radius R about the origin. Then with probability 1 � Æ

over randomly drawn training sets (X;Y ) of size m for all � > 0 such that

d((x; y);w; �) = 0, for some (x; y) 2 (X;Y ), the generalization of a linear classi�er

w on X satisfying kwkX � 1 is bounded from above by

� =
2

m

�
� log2

�
8em

�

�
log2(32m) + log2

�
2m(28 + log2(m))

Æ

��
; (15.19)

where

� =

�
65[(R+D)2 + 2:25RD]

�2

�
; (15.20)

D = D(S;w; �) =

vuut mX
i=1

d2i

di = d((xi; y);w; �) = maxf0; �� y(w � xi)g
and provided m � maxf2=�; 6g and � � em.
Applying the bound to AM{SVMs we can give the following theorem.

Theorem 15.3

Consider a �xed but unknown probability distribution on the feature space F
with support in the ball of radius R about the origin. Then with probability

1 � Æ over randomly drawn training sets (X;Y ) of size m for � � 0 and � � 0

which are feasible solutions of AM{SVMs such that d((x; y);w; 1) = 0 for some

(x; y) 2 (X;Y ), the generalization error R(f) is bounded by

� =
2

m

�
� log2

�
8em

�

�
log2(32m) + log2

�
2m(28 + log2(m))

Æ

��
; (15.21)

where

� � �65[(WR+ 3D)2]
�
;

D =

vuut mX
i=1

[max f0; �i � ��ik(xi;xi)g]2 ;

W 2 =
mX

i;j=1

�i�jyiyjk(xi;xj) ;

provided m � maxf2=�; 6g and � � em.
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Proof Firstly, AM{SVMs are linear classi�ers f(x) = (w � �(x)) where w is

de�ned by Equation (15.16). We wish to rede�ne the measure of margin error

d((x; y);w; �) = � � yif(xi) in Theorem 15.2 in terms of �i and ��ik(xi;xi)

to capture the adaptive margin of a training point xi. Then we know from the

assumption of a feasible solution �; � that

maxf0; �� yif(xi))g � maxf0; �� 1 + �i � ��ik(xi;xi)g : (15.22)

In order to apply Theorem 15.2 for any vector w we have to normalize �, D, and

� by the norm of kwkF =W given by (15.16). This results in

� =

�
65[(R+ 1

WD)2 + 2:25 1
WRD]

�2
W 2

�
: (15.23)

Now we �x � = 1 as done by AM{SVMs. This gives for Equation (15.22)

maxf0; �� yif(xi))g � maxf0; �i � ��ik(xi;xi)g : (15.24)

Making use of"�
R+

1

W
D

�2
+ 2:25

1

W
RD

#
W 2 � [(WR+ 3D)2] ; (15.25)

the theorem is proven.

From the theorem, one can gain the following insights. Our goal to minimize the

generalization error is achieved by minimizing �, the minimum of which is a tradeo�

between minimizing W (the margin) and D (the loss with adaptive margin). We

require a small value of both but small values of one term automatically gives a

large value of the other. By minimizing
Pm

i=1 �i AM{SVMs e�ectively control the

tradeo� between the two terms through the parameter �. For small values of �, the

resulting D is small and W can take any value as it is not minimized (it can be

forced to very large values). For large � the increased margin in D acts a regularizer,

penalizing large values of �. This results in small values of W (a smooth function)

but large values of D (large training error). This bound motivates the objective

function of AM{SVMs which at �rst appears to only minimize error and have no

regularization. In fact, as we have seen, the regularization comes from the adaptive

margin in the constraints controlled by �.
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15.6 Experiments

15.6.1 Arti�cial Data

15.6.1.1 LOO{SVMs

We �rst describe some two dimensional examples to illustrate how the new tech-

nique works. Let us �rst consider AM{SVMs with regularization parameter � = 1

(this corresponds to LOO{SVMs, see Section 15.2). Figures 15.2 and 15.3 show two

arti�cially constructed training problems with various solutions. We �xed k(�; �) to
be a radial basis function (RBF) kernel

k(x;x0) = exp
��kx� x0k2=(2 �2)� ; (15.26)

and then found the solution to the problems with LOO{SVM, which has no other

free parameters, and with SVMs, for which one controls the soft margin with the

free parameter C = 1
� . The �rst solution (left) for both training problems is the

LOO{SVM solution and the other two solutions for each problem are SVMs with

di�erent choices of soft margin using parameter C = 1 (middle) and C = 100

(right).

In the �rst problem (Figure 15.2) the two classes (represented by crosses and

dots) are almost linearly separable apart from a single outlier. The automatic soft

margin control of LOO{SVMs constructs a classi�er which incorrectly classi�es the

far right dot, assuming that it is an outlier. The Support Vector solutions both

classify the outlier correctly resulting in non{smooth decision rules. In the second

problem (Figure 15.3) the two classes occupy opposite sides (horizontally) of the

picture, but slightly overlap. In this case the data is only separable with a highly

nonlinear decision rule, as reected in the solution by an SVM with parameter

C = 100 (right). Both problems highlight the diÆculty of choosing the parameter

C in SVMs, whereas LOO{SVMs (AM{SVMs with � = 1) appear to produce

robust6, natural decision rules.

15.6.1.2 AM{SVMs

In order to demonstrate how the regularization parameter � in AM{SVMs (rather

than being �xed to � = 1 as in LOO-SVMs) a�ects the generated decision rule we

give a comparison on the same toy problem as SVMs and LP-SVMs. We generated

another two class problem in R
2 (represented by crosses and dots) and trained an

AM{SVM using RBF{kernels (� = 0:5) with � = 1; 2; 5; 10 (see Figure 15.4). As

can be seen increasing � allows AM{SVMs to widen the margin for points far away

6. As there is no unique de�nition of robustness (see, e.g., [Huber, 1981]) we call a
classi�cation learning algorithm robust if a few patterns far apart from the remaining
ones (in the metric induced by �) have no inuence on the resulting decision function.
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Figure 15.2 A simple two dimensional problem with one outlier solved by LOO-

SVMs (left) and SVMs with C = 1 (middle) and C = 100 (right). LOO-SVMs soft

margin regularization appears to perform better than the choices of parameter for

SVMs.

Figure 15.3 A simple two dimensional problem of two overlapping classes solved

by LOO-SVMs (left) and SVMs with C = 1 (middle) and C = 100 (right). LOO-

SVMs soft margin regularization appears to perform better than the choices of

parameter for SVMs.

from the decision surface. Consequently, the algorithm is more robust to outliers

which results in very smooth decision functions. In Figure 15.5 we used the same

dataset and trained � LP{SVMs [Graepel et al., 1999]. � LP{SVMs are obtained

by reparameterizing Equation (15.18) where � upper{bounds the number of margin

errors. Varying � = 0:0; 0:1; 0:2; 0:5 shows that margin errors are sacri�ced in order

to lower the complexity of the decision function f measured in the one{norm (see

Equation (15.17) where � can be replaced by a �xed function of �). As already

mentioned this leads to non{smooth functions. Furthermore it should be noted that

the outlier (dot) on the far left side leads to very rugged decision functions. Similar

conclusions can be drawn for � SVMs [Sch�olkopf et al., 1998c] (see Figure 15.6)

though the decision functions are smoother. Thus, AM{SVMs turn out to provide

robust solutions (through control of the regularization parameter) which provide a

new approach when compared to the solutions of SVMs and LP{SVMs. In these toy

examples AM{SVMS appear to provide decision functions which are less inuenced

by single points (outliers).
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Figure 15.4 Decision functions (solid lines) obtained by AM{SVMs with di�erent

choices of the regularization parameter �. The dashed line represents the minimal

margin over all training points. (a) � = 1 is equivalent to LOO{SVMs (b) � = 2,

(c) � = 5, and (d) � = 10 widens the amount to which margin errors at each point

are accepted and thus results in very at functions. Note, that less attention is paid

to the outlier (dot) at the left hand side.

Figure 15.5 Decision functions (solid lines) obtained by � LP{SVMs with di�erent

choices of the assumed noise level �. The dashed line represents the margin. (a)

� = 0:0 leads to very non{smooth and over�tted decision functions. (b) � = 0:1, (c)

� = 0:2, and (d) � = 0:5 smooth the decision function.

15.6.2 Benchmark Datasets

We conducted computer simulations using 6 arti�cial and real world datasets from

the UCI benchmark repository, following the same experimental setup as by R�atsch

et al. [1998]. The authors of this article also provide a website to obtain the data.7

Briey, the setup is as follows: the performance of a classi�er is measured by its

average error over one hundred partitions of the datasets into training and testing

sets. Free parameter(s) in the learning algorithm are chosen as the median value of

the best model chosen by cross validation over the �rst �ve training datasets.

Table 15.1 compares percentage test error of LOO{SVMs to AdaBoost (AB),

Regularized AdaBoost (ABR) and SVMs which are all known to be excellent

classi�ers.8 The competitiveness of LOO{SVMs to SVMs and ABR (which both

7. http://svm.�rst.gmd.de/�raetsch/data/benchmarks.htm. The datasets have been pre-
processed to have mean zero and standard deviation one, and the exact one hundred splits
of training and testing sets used in the author's experiments can be obtained.
8. The results for AB, ABR and SVMs were taken from [R�atsch et al., 1998]
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Figure 15.6 Decision functions (solid lines) obtained by � SVMs with di�erent

choices of the assumed noise level �. The dashed line represents the margin. (a)

� = 0:0 leads to an over�tted decision functions (note the captured outlier in the

lower left region). (b) � = 0:1, (c) � = 0:2, and (d) � = 0:5 allow for much atter

functions though regularizing di�erently to AM{SVMs.

AB ABR SVM LOO{SVM

Banana 12.3 10.9 11.5 10.6

B. Cancer 30.4 26.5 26.0 26.3

Diabetes 26.5 23.9 23.5 23.4

Heart 20.3 16.6 16.0 16.1

Thyroid 4.4 4.4 4.8 5.0

Titanic 22.6 22.6 22.4 22.7

Table 15.1 Comparison of percentage test error of AdaBoost (AB), Regularized

AdaBoost (ABR), Support Vector Machines (SVMs) and Leave{One{Out SVMs

(LOO{SVMs) on 6 datasets.

have a soft margin control parameter) is remarkable considering LOO{SVMs have

no free parameter. This indicates that the soft margin automatically selected by

LOO{SVMs is close to optimal. AdaBoost loses out to the three other algorithms,

being essentially an algorithm designed to deal with noise-free data.

To give more insight into the behaviour of the algorithm we give two plots in

Figure 15.7. The left graph shows the fraction of training points that have non{

zero coeÆcients (SVs) plotted against log(�) (RBF width) on the thyroid dataset.

Here, one can see the sparsity of the decision rule, the sparseness of which depends

on the chosen value of �. The right graph shows the percentage training and test

error (train err and test err), the value of
Pm

i=1 �i (slacks) and the value of the

bound given in Theorem 15.1 (l-o-o bound). One can see the training and test

error (and the bound) closely match. The minimum of all four plots is roughly at

log(�) = �1, indicating one could perform model selection using one of the known

expressions. Note also that for a reasonable range of � the test error is roughly the

same, indicating the soft margin control overcomes over�tting problems.
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Figure 15.7 The fraction of training patterns that are Support Vectors (top) and

various error rates (bottom) both plotted against RBF kernel width for Leave{One{

Out Machines on the thyroid dataset.
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Figure 15.8 Test error plotted against the regularization parameter � in AM{

SVMs. The three plots from left to right are (a) the banana dataset, (b) heart

dataset and (c) titanic dataset. Note how � = 1 is close to the optimum of the bowl

in the �rst two plots, but in the third plot the plot is not a bowl at all { the best

choice of regularization is to choose no regularization (� = 0).

Finally, we conducted experiments to assess the e�ect in generalization performance

by controlling the regularization parameter � in AM-SVMs. Figure 15.8 plots �

against test error for three of the datasets averaged over 10 runs for the �rst two,

and over all 100 runs for the last. The banana dataset (left) and the heart dataset

(middle) gave bowl-shaped graphs with the minimum exactly (banana) or almost

(heart) at � = 1. The optimum choice of � for the titanic dataset, on the other

hand, is at � = 0. In this case the best choice of the regularization parameter �

is to have no regularization at all { the training points give enough information

about the unknown decision function. Note this error rate for � = 0 is as good as

the best SVM solution (see Table 15.1). The �rst two plots and the results in Table

15.1 justify the choice of � = 1 in LOO-SVMs. The last plot in Figure 15.8 justi�es

AM-SVMs.



15.7 Discussion 295

15.7 Discussion

In this chapter we presented a new learning algorithm for kernel classi�ers. Mo-

tivated by minimizing a bound on leave{one{out error we obtained LOO{SVMs

and generalizing this approach to control regularization through the margin loss we

obtained AM-SVMs. This approach introduced a novel method of capacity control

via margin maximization by allowing adaptive rather than �xed margins at each

training pattern. We have shown experimentally that this reformulation results in

an algorithm which is robust against outliers. Nevertheless, our algorithm has a

parameter � which needs to be optimized for a given learning problem. Further

investigations can be made in the derivation of bounds on the leave{one{out error

of this algorithm which allows for eÆcient model order selection. Finally, we note

that penalization of the diagonal of the kernel matrix is a well known technique in

regression estimation known as Ridge Regression [Hoerl and Kennard, 1970].

Acknowledgments

The authors would like to thank Alex Gammerman, Thore Graepel, Tom Melluish,

and Craig Saunders for discussions. In particular, we are indebted to both John

Shawe-Taylor and Vladimir Vapnik for their help with this work. Ralf Herbrich

would like to thank the Department of Computer Science at Royal Holloway for

the warm hospitality during his research stay. Jason Weston thanks the ESPRC for

providing �nancial support through grant GR/L35812.





16 GACV for Support Vector Machines

Grace Wahba

Department of Statistics

University of Wisconsin

1210 West Dayton Street

Madison, WI 53706, USA

wahba@stat.wisc.edu

Yi Lin

Department of Statistics

University of Wisconsin

1210 West Dayton Street

Madison, WI 53706, USA

yilin@stat.wisc.edu

Hao Zhang

Department of Statistics

University of Wisconsin

1210 West Dayton Street

Madison, WI 53706, USA

hzhang@stat.wisc.edu

We introduce the Generalized Approximate Cross Validation (GACV) for estimat-

ing tuning parameter(s) in SVMs. The GACV has as its target the choice of param-

eters which will minimize the Generalized Comparative Kullback-Leibler Distance

(GCKL). The GCKL is seen to be an upper bound on the expected misclassi�ca-

tion rate. Some modest simulation examples suggest how it might work in practice.

The GACV is the sum of a term which is the observed (sample) GCKL plus a

margin-like quantity.
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16.1 Introduction

It is now common knowledge that the support vector machine (SVM) paradigm,

which has proved highly successful in a number of classi�cation studies, can be

cast as a variational/regularization problem in a reproducing kernel Hilbert space

(RKHS), see [Kimeldorf and Wahba, 1971, Wahba, 1990, Girosi, 1998, Poggio andreproducing

kernel

Hilbert

space (RKHS)

Girosi, 1998], the papers and references in [Sch�olkopf et al., 1999a], and elsewhere.

In this note, which is a sequel to [Wahba, 1999b], we look at the SVM paradigm

from the point of view of a regularization problem, which allows a comparison with

penalized log likelihood methods, as well as the application of model selection and

tuning approaches which have been used with those and other regularization-type

algorithms to choose tuning parameters in nonparametric statistical models.

We �rst note the connection between the SVM paradigm in RKHS and the (dual)

mathematical programming problem traditional in SVM classi�cation problems.

We then review the Generalized Comparative Kullback-Leibler distance (GCKL)GCKL

for the usual SVM paradigm, and observe that it is trivially a simple upper bound

on the expected misclassi�cation rate. Next we revisit the GACV (GeneralizedGACV

Approximate Cross Validation) as a proxy for the GCKL proposed by Wahba

[1999b] and the argument that it is a reasonable estimate of the GCKL. We

found that it is not necessary to do the randomization of the GACV in [Wahba,

1999b], because it can be replaced by an equally justi�able approximation which is

readily computed exactly, along with the SVM solution to the dual mathematical

programming problem. This estimate turns out interestingly, but not surprisingly

to be simply related to what several authors have identi�ed as the (observed) VC

dimension of the estimated SVM. Some preliminary simulations are suggestive of

the fact that the minimizer of the GACV is in fact a reasonable estimate of the

minimizer of the GCKL, although further simulation and theoretical studies are

warranted. It is hoped that this preliminary work will lead to better understanding

of \tuning" issues in the optimization of SVM's and related classi�ers.

16.2 The SVM Variational Problem

Let T be an index set, t 2 T . Usually T = Ed, Euclidean d-space, but not necessar-

ily. Let K(s; t); s; t 2 T , be a positive de�nite function on T 
T , and let HK be the

RKHS with reproducing kernel (RK) K. See [Wahba, 1990, 1982, Lin et al., 1998]reproducing

kernel for more on RKHS. RK's which are tensor sums and products of RK's are discussed

there and elsewhere. K may contain one or more tuning parameters, to be chosen.

A variety of RK's with success in practical applications have been proposed by var-

ious authors, see, e.g., the Publications list at http://www.kernel-machines.org.

Recently [Poggio and Girosi, 1998] interestingly observed how di�erent scales may

be accommodated using RKHS methods. We are given a training set fyi; tig, where
the attribute vector ti 2 T , and yi = �1 according as an example with attribute
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vector ti is in category A or B. The classical SVM paradigm is equivalent to: �nd

f� of the form const+ h, where h 2 HK to minimizeregularization

problem
1

n

nX
i=1

(1� yifi)+ + �khk2HK
; (16.1)

here fi = f(ti), and (�)+ = �; � > 0;= 0 otherwise. Similar regularization problems

have a long history, see, for example [Kimeldorf and Wahba, 1971]. Once the

minimizer, call it f� is found, then the decision rule for a new example with attribute

vector t is: A if f�(t) > 0, B if f�(t) < 0.

We will assume for simplicity that K is strictly positive de�nite on T 

T , although this is not necessary. The minimizer of (16.1) is known to be in

the span fK(�; ti); i = 1; � � �ng, of representers of evaluation in HK . The func-

tion K(�; ti) is K(s; ti) considered as a function of s with ti �xed. The fa-

mous \reproducing" property gives the inner product in HK of two represen-

ters as < K(�; ti);K(�; tj) >HK
= K(ti; tj). Thus, if h(�) =

Pn
i=1 ciK(�; ti), then

khk2HK
=
Pn

i;j=1 cicjK(ti; tj). Letting e = (1; � � � ; 1)0; y = (y1; � � � ; yn)0; c =

(c1; � � � ; cn)0; (f(t1); � � � f(tn))0 = (f1; � � � ; fn)0, and with some abuse of notation,

letting f = (f1; � � � ; fn)0 and K now be the n� n matrix with ijth entry K(ti; tj),

and noting that f(t) = d+
Pn

i=1 ciK(t; ti) for some c; d, we have

f = Kc+ ed (16.2)

and the variational problem (16.1) becomes: �nd (c; d) to minimize

1

n

nX
i=1

(1� yifi)+ + �c0Kc: (16.3)

16.3 The Dual Problem

Let Y be the n � n diagonal matrix with yi in the iith position, and let H =
1

2n�Y KY . By going to the dual form of (16.3), it can be shown that c = 1
2n�Y �,

where � is the solution to the problem

maximize L = �1
2
�0H�+ e0� (16.4)

subject to

(
0 � � � e

e0Y � = y0� = 0:
(16.5)

Assuming that there is an i for which 0 < �i < 1, it can also be shown that

d = 1=yi�
Pn

j=1 cjK(ti; tj): This is the usual form in which the SVM is computed.

In the experiments reported below, we used the MINOS [Murtagh and Saunders,

1998] optimization routine to �nd �, and hence c. The support vectors are those

K(�; ti) for which �i 6= 0, equivalently ci 6= 0. d can be found from any of the

support vectors for which 0 < �i < 1.
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For future reference we review the relation between the (hard) margin () of the

support vector machine classi�er and
P

yif�i�1 ��i. In the situation where we can

separate the training set points perfectly,  is given by

2 = 2n�

0
@ X
yif�i�1

��i

1
A�1

: (16.6)

See [Cortes and Vapnik, 1995, Bartlett and Shawe-Taylor, 1999]. (Notice the

notation is a bit di�erent from ours in these papers.) By de�nition the margin

of the (hard margin) support vector machine classi�er is  = 1
khkHK

= (c0Kc)�1=2.margin of the

SVM classi�er The equality (16.6) can be seen from the following: In the perfectly separable case,

where all members of the training set are classi�ed correctly, ��i is the solution of

the problem below:

maximize L = �1
2
�0H�+ e0� (16.7)

subject to �i � 0 and y0� = 0: (16.8)

Introducing the Lagrangian multipliers � = (�1; : : : ; �n)
0 and � for the constraints,

the Lagrangian for this problem is

LP = �1
2
�0H�+ e0�� �y0�� �0�

and ��i satis�es the Kuhn-Tucker conditions:

@

@�
LP = �H�+ e� �y � � = 0

�i � 0; i = 1; 2; :::; n

y0� = 0

�i � 0; i = 1; 2; :::; n

�i�i = 0; i = 1; 2; :::; n

From these and the relation that c = Y ��=(2n�), it is easy to get

c0Kc =
1

2n�
�0�H�� =

1

2n�
[�0�e� ��0�y � �0��] =

1

2n�
[�0�e] : (16.9)

Since ��i = 0 if yifi > 1, we �nally get

2 = (c0Kc)�1 = 2n�

2
4 X
yif�i�1

��i

3
5�1 :

16.4 The Generalized Comparative Kullback-Leibler Distance

Suppose unobserved yi's will be generated according to an (unknown) probability

model with p(t) = ptrue(t) being the probability that an instance with attribute

vector t is in class A. Let yj be an (unobserved) value of y associated with tj .
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Given f�, de�ne the Generalized Comparative Kullback-Leibler distance (GCKL

distance) with respect to g asGCKL

GCKL(ptrue; f�)
:
= GCKL(�) = Etrue

1

n

nX
j=1

g(yjf�j): (16.10)

Here f� is considered �xed and the expectation is taken over future, unobserved

yj . If g(�) = ln(1 + e�� ), (which corresponds to classical penalized log likelihoodpenalized log

likelihood estimation if it replaces (1 � �)+ in (16.1)) GCKL(�) reduces to the usual CKL

for Bernoulli data1 averaged over the attribute vectors of the training set. More

details may be found in [Wahba, 1999b]. Let [� ]� = 1 if � > 0 and 0 otherwise. If

g(�) = [�� ]�, then
Etrue[�yjf�j ]� = p[true]j [�f�j ]� + (1� p[true]j)[f�j ]� (16.11)

= p[true]j ; f�j < 0 (16.12)

= (1� p[true]j); f�j > 0; (16.13)

where p[true]j = p[true](tj), so that the GCKL(�) is the expected misclassi�cation

rate for f� on unobserved instances if they have the same distribution of tj as the

training set. Similarly, if g(�) = (1� �)+, then
Etrue(1� yjf�j)+ = p[true]j(1� f�j); f�j < �1 (16.14)

= 1 + (1� 2p[true]j)f�j ; � 1 � f�j � 1 (16.15)

= (1� p[true]j)(1 + f�j); f�j > 1: (16.16)

Note that [�yifi]� � (1 � yifi)+, so that the GCKL for (1 � yifi)+ is an upper

bound for the expected misclassi�cation rate - see Figure 16.1.

16.5 Leaving-out-one and the GACV

Recently there has been much interest in choosing � (or its equivalent, referred to

in the literature as 1
2nC ), as well as other parameters inside K. See for example

[Burges, 1998, Cristianini et al., 1999, Kearns et al., 1997], surely not a complete

list. Important references in the statistics literature that are related include [Efron

and Tibshirani, 1997, Ye and Wong, 1997]. Lin et al. [1998] consider in detail the

case g(�) = ln(1+ e�� ). We now obtain the GACV estimate for � and other tuning

parameters.

1. The usual CKL (comparative Kullback-Leibler distance) is the Kullback-Leibler dis-
tance plus a term which depends only on p[true]. In this case g is the negative log likelihood
and f� plays the role of (an estimate of) the logit ln[p=1 � p]. See also [Friedman et al.,
1998].
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Figure 16.1 g(�) = (1� �)+ and g(�) = [�� ]� compared.

Let f
[�i]
� be the solution to the variational problem: �nd f of the form f = const+h

with h 2 HK to minimize

1

n

nX
j=1

j 6=i

g(yjfj) + �khk2HK
: (16.17)

Then the leaving-out-one function V0(�) is de�ned asleaving-out-one

V0(�) =
1

n

nX
i=1

g(yif
[�i]
�i ): (16.18)

Since f
[�i]
�i does not depend on yi but is (presumably) on average close to f�i, we

may consider V0(�) a proxy for GCKL(�), albeit one that is not generally feasible

to compute in large data sets. Now let

V0(�) = OBS(�) +D(�); (16.19)

where OBS(�) is the observed match of f� to the data,

OBS(�) =
1

n

nX
i=1

g(yif�i) (16.20)

and

D(�) =
1

n

nX
i=1

[g(yif
[�i]
�i )� g(yif�i)]: (16.21)
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Using a �rst order Taylor series expansion gives

D(�) � � 1
n

nX
i=1

@g

@f�i
(f�i � f [�i]�i ): (16.22)

Next we let �(f) be a \prediction" of y given f . Here we let

�i = �(fi) =
X

y2f+1;�1g

@

@fi
g(yifi): (16.23)

When g(�) = ln(1+ e�� ) then �(f) = 2p�1 = Efyjpg. Since this g(�) corresponds
to the penalized log likelihood estimate, it is natural in this case to de�ne the

\prediction" of y given f as the expected value of y given f (equivalently, p). For

g(�) = (1� �)+, this de�nition results in �(f) = �1; f < �1;�(f) = 0;�1 � f � 1

and �(f) = 1 for f > 1. This might be considered a kind of all-or-nothing prediction

of y, being, essentially, �1 outside of the margin and 0 inside it. Letting ��i = �(f�i)

and �
[�i]
�i = �(f

[�i]
�i ), we may write (ignoring, for the moment, the possibility of

dividing by 0),

D(�) � � 1
n

nX
i=1

@g

@f�i

(f�i � f [�i]�i )

(yi � �[�i]�i )
(yi � �[�i]�i ) (16.24)

This is equation (6.36) in [Wahba, 1999b]. We now provide somewhat di�erent

arguments than in [Wahba, 1999b] to obtain a similar result, which, however is

easily computed as soon as the dual variational problem is solved.

Let f�[i; x] be the solution of the variational problem (16.1) 2 given the data

fy1; � � � ; yi�1; x; yi+1; � � � ; yng. Note that the variational problem does not require

that x = �1. Thus f�[i; yi](ti) � f�i. To simplify the notation, let f�[i; x](ti) =

f�i[i; x] = f�i[x]. In [Wahba, 1999b] it is shown, via a generalized leaving-out-one

lemma, that �(f) as we have de�ned it has the property that f
[�i]
�i = f�[i; �

[�i]
�i ](ti).

Letting �
[�i]
�i = x, this justi�es the approximation

f�i � f [�i]�i

yi � �[�i]�i

� f�i[yi]� f�i[x]
yi � x � @f�i

@yi
: (16.25)

Furthermore, �
[�i]
�i � �(f

[�i]
�i ) = �(f�i) whenever f

[�i]
�i and f�i are both in the

interval (�1;�1), or [�1; 1], or (1;1), which can be expected to happen with few

exceptions. Thus, we make the further approximation (yi��[�i]�i ) � (yi���i), and
we replace (16.24) by

D(�) � � 1
n

nX
i=1

@g

@f�i

@f�i
@yi

(yi � ��i): (16.26)

2. d is not always uniquely determined; this however does not appear to be a problem in
practice, and we shall ignore it.
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Now, for g(�) = (1� �)+
@g

@f�i
(yi � ��i) = �2; yif�i < �1

= �1; yif�i 2 [�1; 1]
= 0; yif�i > 1;

giving �nally

D(�) � 1

n

X
yif�i<�1

2
@f�i
@yi

+
1

n

X
yif�i2[�1;1]

@f�i
@yi

: (16.27)

It is not hard to see how @f�i
@yi

should be interpreted. Fixing � and solving the

variational problem for f� we obtain � = ��, c = c� = 1
2n�Y �� and for

the moment letting f� be the column vector with ith component f�i, we have

f� = Kc� + ed = 1
2n�KY �� + ed. From this we may write

@f�i
@yi

= K(ti; ti)
��i
2n�

� kK(�; ti)k2HK

��i
2n�

: (16.28)

The resulting GACV (�), which is believed to be a reasonable proxy for GCKL(�),

is, �nallyGACV

GACV (�) =
1

n

nX
i=1

(1� yif�i)+ + D̂(�); (16.29)

where

D̂(�) =
1

n

2
42 X

yif�i<�1

��i
2n�

� kK(�; ti)k2HK
+

X
yif�i2[�1;1]

��i
2n�

� kK(�; ti)k2HK

3
5 :(16.30)

If K = K�, where � are some parameters inside K to which the result is sensitive,

then we may let GACV (�) = GACV (�; �). Note the relationship between D̂

and
P

yif�i�1 ��i and the margin . If K(�; �) is a radial basis function then

kK(�; ti)k2HK
= K(0; 0). Furthermore kK(�; ti) �K(�; tj)k2HK

is bounded above by

2K(0; 0). If all members of the training set are classi�ed correctly then yifi > 0

and the sum following the 2 in (16.30) does not appear and D̂(�) = K(0; 0)=n2.

We note that Opper and Winther (Chapter 17) have obtained a di�erent approx-

imation for f�i � f [�i]�i .

16.6 Numerical Results

We give two rather simple examples. For the �rst example, attribute vectors t were

generated according to a uniform distribution on T , the square depicted in Figure

16.2. The points outside the larger circle were randomly assigned +1 (" + ") with

probability p[true] = :95 and �1 ("o") with probability :05. The points between

the outer and inner circles were assigned +1 with probability p[true] = :50, and the
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points inside the inner circle were assigned +1 with probability p[true] = :05. In this

and the next example, K(s; t) = e�
1

2�2
ks�tk2 , where � is a tunable parameter to be

chosen. Figure 16.3 gives a plot of log10(GACV ) of (16.29) and log10(GCKL) of

(16.10) as a function of log10 �, for log10 � = �1. Figure 16.4 gives the corresponding
plot as a function of log10 � for log10 � = �2:5, which was the minimizer of

log10(GACV ) in Figure 16.3. Figure 16.5 shows the level curve for f� = 0 for

log10 � = �2:5 and log10 � = �1:0, which was the minimizer of log10(GACV )

over the two plots. This can be compared to the theoretically optimal classi�er,

which the Neyman-Pearson Lemma says would be any curve between the inner and

outer circles, where the theoretical log-odds ratio is 0. For the second example,

Figure 16.6 corresponds to Figure 16.2, with p[true] = :95; :5 and :05 respectively in

the three regions, starting from the top. Figure 16.7 gives a plot of log10(GACV )

and log10(GCKL) as a function of log10 � for log10 � = �1:25 and Figure 16.8

gives log10(GACV ) and log10(GCKL) as a function of log10 � for log10 � = �2:5,
which was the minimizer of Figure 16.7. Figure 16.9 gives the level curves for f�
at 0 for log10 � = �2:5, log10 � = �1:25, which was the minimizer of log10(GACV )

over Figures 16.7 and 16.8. This can also be compared to the theoretically optimal

classi�er, which would be any curve falling between the two sine waves of Figure

16.7.

It can be seen that log10GACV tracks log10GCKL very well in Figures 16.3,

16.4, 16.7 and 16.8, more precisely, the minimizer of log10GACV is a good estimate

of the minimizer of log10GCKL.

A number of cross-sectional curves were plotted, �rst in log10 � for a trial value

of log10 � and then in log10 � for the minimizing value of log10 � (in the GACV

curve), and so forth, to get to the plots shown. A more serious e�ort to obtain

the global minimizers over of log10(GACV ) over log10 � and log10 � is hard to do

since both the GACV and the GCKL curves are quite rough. The curves have

been obtained by evaluating the functions at increments on a log scale of :25 and

joining the points by straight line segments. However, these curves (or surfaces)

are not actually continuous, since they may have a jump (or tear) whenever the

active constraint set changes. This is apparently a characteristic of generalized cross

validation functions for constrained optimization problems when the solution is not

a continuously di�erentiable function of the observations, see, for example [Wahba,

1982, Figure 7]. In practice, something reasonably close to the minimizer can be

expected to be adequate.

Work is continuing on examining the GACV and the GCKL in more complex

situations.

Acknowledgments

The authors thank Fangyu Gao and David Callan for important suggestions in this

project. This work was partly supported by NSF under Grant DMS-9704758 and

NIH under Grant R01 EY09946.



306 GACV for Support Vector Machines

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Example 1: n = 200

Figure 16.2 Data for Example 1, With Regions of Constant (Generating) Prob-

ability.

−8 −6 −4 −2 0 2 4 6
−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

log10(lambda)

Example 1: n= 200, log10(sigma) = −1.0

log10(GACV)
log10(GCKL)

Figure 16.3 Plot of log10GACV and log10GCKL as a function of log10 � for

log10 � = �1:0.



16.6 Numerical Results 307

−8 −6 −4 −2 0 2 4 6
−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

log10(sigma)

Example 1: n = 200, log10(lambda) = −2.5

log10(OBS+D)
log10(GCKL)

Figure 16.4 Plot of log10GACV and log10GCKL as a function of log10 � for

log10 � = �2:5.

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Example 1: log10(lambda) = −2.5, log10(sigma) = −1.0

0

0

0

0

0

0

0

0

0

Figure 16.5 Level curve for f� = 0.



308 GACV for Support Vector Machines

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Example 2: n = 200

Figure 16.6 Data for Example 2, and Regions of Constant (Generating) Proba-

bility.

−8 −6 −4 −2 0 2 4 6
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

log10(lambda)

Example 2: n = 200, log10(sigma) = −1.25

log10(GACV)
log10(GCKL)

Figure 16.7 Plot of log10GACV and log10GCKL as a function of log10 � for

log10 � = �1:25.



16.6 Numerical Results 309

−8 −6 −4 −2 0 2 4 6
−0.4

−0.35

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

log10(sigma)

Example 2: n = 200, log10(lambda) = −2.5

log10(GACV)
log10(GCKL)

Figure 16.8 Plot of log10GACV and log10GCKL as a function of log10 � for

log10 � = �2:5.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Example 2:  log10(lambda) = −2.5, log10(sigma) = −1.25

0

0

0 0

0

0

0

0

Figure 16.9 Level curve for f� = 0.





17 Gaussian Processes and SVM: Mean Field

and Leave-One-Out

Manfred Opper

Department of Computer Science and Applied Mathematics,

Aston University

Birmingham B4 7ET

United Kingdom

m.opper@aston.ac.uk

http://neural-server.aston.ac.uk/People/opperm/

Ole Winther

Theoretical Physics II, Lund University

S�olvegatan 14 A

S-223 62 Lund

Sweden

winther@thep.lu.se

http://www.thep.lu.se/tf2/sta�/winther/

In this chapter, we elaborate on the well-known relationship between Gaussian

processes (GP) and Support Vector Machines (SVM). Secondly, we present ap-

proximate solutions for two computational problems arising in GP and SVM. The

�rst one is the calculation of the posterior mean for GP classi�ers using a \naive"

mean �eld approach. The second one is a leave-one-out estimator for the gener-

alization error of SVM based on a linear response method. Simulation results on

a benchmark dataset show similar performances for the GP mean �eld algorithm

and the SVM algorithm. The approximate leave-one-out estimator is found to be

in very good agreement with the exact leave-one-out error.
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17.1 Introduction

It is well-known that Gaussian Processes (GP) and Support Vector Machines (SVM)

are closely related, see, e.g., [Wahba, 1999b, Williams, 1998]. Both approaches

are non-parametric. This means that they allow (at least for certain kernels) for

in�nitely many parameters to be tuned, but increasing with the amount of data,

only a �nite number of them are active. Both types of models may be understood as

generalizations of single layer perceptrons, where each input node to the perceptron

computes a distinct nonlinear feature of the original inputs to the machine. In

principle, the number of such features (and of the corresponding perceptron weights)

can be arbitrarily large. However, by the speci�c training method, such vast increase

in complexity does not necessarily result in over�tting.

For the support vector machine (in its simplest version), a quadratic optimiza-

tion algorithm maximizes the gap between positive and negative examples. A sim-

ple mathematical analysis of this optimization problem shows that all the weights

become just linear combinations of the input feature vectors. Hence, the corre-

sponding coeÆcients in this combination are the new parameters to be calculated.

Their number never exceeds the number of examples. Moreover, it is not neces-

sary to evaluate the many nonlinear feature vectors during the calculations, but

all calculations are expressed by the kernel function which is the inner product of

two vectors of features at di�erent input points. In fact, one need not even specify

the non-linear features explicitly, but any positive semide�nite kernel function will

implicitly de�ne such features (see Chapter 1 for details).

A second way to regularize this problem comes from the Bayesian approach. Here,

one introduces a prior distribution over the perceptron weights, which puts a smaller

weight on the more complex features. If the prior distribution is a multivariate

Gaussian (in the simplest case, just a product of univariate ones), the activation

function of the single layer perceptron becomes a Gaussian process. Although a

derivation of covariance functions based on a limiting process of multilayer networks

is possible [Neal, 1996, Williams, 1997], one often simply uses a parameterized

covariance function instead. Besides the simple fact that any kernel function used

in the SVM approach can be used as a covariance function of the Gaussian process

approach and vice versa, there are more striking mathematical relations between

the two approaches as we will discuss in following.

This chapter deals with two subjects. First, we will show how SVM can be

understood as the maximum a posteriori (MAP) prediction from GP using a

certain non-normalized likelihood. The second part deals with two approximation

techniques that are useful in performing calculations for SVM or GP which would

otherwise be intractable or time consuming. We will discuss a linear response

method to derive an approximate leave-one-out estimator for the generalization

error of SVM. Mean �eld methods (which have been originally developed within

statistical mechanics) can be used to cope with posterior averages for GP which

are not analytically tractable.
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The rest of the chapter is organized as follows. Section 17.2 reviews the Gaussian

process approach to noise-free classi�cation. In Section 17.3, we discuss how to

extend this to modeling with noise. Section 17.4 deals with the relation of SVM

to the maximum a posteriori prediction of GP. In Section 17.5, we derive a leave-

one-out estimator for the generalization error using linear response theory and a

(mean �eld) assumption. Section 17.6 reviews the \naive" mean �eld approach

to Gaussian process classi�cation. SVM and the naive mean �eld algorithm are

compared in simulations in Section 17.7. The chapter is concluded in Section 17.8.

17.2 Gaussian Process Classi�cation

Gaussian processes give a natural formulation of Bayesian learning in terms of prior

distributions over functions. Here, we give a short summary of the basic concepts

of Bayesian learning as applied to Gaussian Processes.

We consider a binary classi�er with output g(x) = sgnf(x), where f(x) called

(using neural network terminology) the \activation" at input point x. In a Bayesian

approach, all information about f(x), when example data are known, is encoded

in a posterior distribution of activations functions. The �rst ingredient to such anLikelihood

approach is the Likelihood of f(x) which for noise-free classi�cation and output

label y is

p(yjf(x)) = �( y f(x)) =

(
1 y f(x) > 0

0 y f(x) < 0
: (17.1)

The second ingredient needed to form the posterior is the prior distribution over

activations. A simple choice is a Gaussian process prior. This means that any �niteGaussian Process

prior set of function values

f = (f(x1); : : : ; f(xm)) (17.2)

at arbitrary points x1; : : : ;xm of the input space have a joint Gaussian distribution

p(f) =
1p

(2�)m detk
e�

1
2 (f�m)Tk�1(f�m) (17.3)

where m = (m(x1); : : : ;m(xm)) is the mean and

k � E(�T )�mmT (17.4)

is the covariance matrix having elements

k(xi;xj); i; j 2 1; : : : ;m : (17.5)

The so-called covariance function, k(x;x0) is an explicit function of the paircovariance

function (kernel) of input points and determines correlations of activations at di�erent points. A

popular choice is the radial basis covariance function eq. (1.73), but any function

that gives rise to a positive semide�nite covariance matrix can be used. The

covariance function reects our prior beliefs about the variability of the function
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f(x). The mean function m(x) is usually set to a constant. The covariance function

is completely equivalent to the Kernel function in the SVM approach as will be

shown below.

17.2.1 Statistical Inference for Gaussian Processes

Given the training set

Dm = f(xi; yi)ji = 1; : : : ;mg; (17.6)

the inference task is to predict the correct label y on a new point x. In the Bayesian

framework, this is done by using the posterior distribution of f(x) (which in the

following will also be abbreviated by f). To calculate the posterior, the newposterior

activation is included in the prior: p(f ; f(x)). The posterior is then given by

p(f ; f(x)jy) = 1

p(y)
p(yjf)| {z }

Likelihood

p(f ; f(x))| {z }
Prior

; (17.7)

where we have denoted the training set outputs by y = y1; : : : ; ym and the

Likelihood of the training set activations is

p(yjf) =
mY
i=1

p(yijf(xi)) =
mY
i=1

�(yi f(xi)) : (17.8)

Finally the normalization constant is

p(y) =

Z
df p(yjf) p(f) : (17.9)

The predictive distribution is

p(f(x)jy) =
Z
df p(f ; f(x)jy) : (17.10)

Using this distribution we can calculate the probability for output y: p(yjy) =R
df p(yjf)p(f jy). In the ideal case, (Bayes) optimal predictions are obtained byBayes optimal

prediction choosing the output with highest probability. For binary �1-classi�cation, the Bayes
classi�er may be written as

yBayes(Dm;x) = sgn

Z
df p(f jy) sgn f : (17.11)

The mean �eld approach{discussed in Section 17.6{aims at calculating an approx-

imation to the Bayes classi�er.

17.3 Modeling the Noise

So far we have only considered noise-free classi�cation. In real situations, noise or

ambiguities will almost always be present and are{in the Bayesian framework{at

least conceptually straightforward to model.
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We will consider two noise models: \input" (or additive) noise and output

(multiplicative) noise. Input noise is de�ned as a random term added to theinput noise

activation function in the likelihood:

p(yjf(x); �(x)) = �(y (f(x) + �(x)) ) (17.12)

The output noise is ip noise, i.e.,output noise

p(yjf(x); �(x)) = �(y �(x) f(x)) (17.13)

where � 2 f�1;+1g.
There are two ways to incorporate the input noise in the Gaussian Process frame-

work: either to average it out by directly modifying the Likelihood according to

p(yjf) =
Z
d� p(yjf; �)p(�) (17.14)

or to change variables to the \noisy" process f + � with a modi�ed prior and

unchanged Likelihood eq. (17.1).

The simplest example is Gaussian noise with zero mean and variance v: The �rst

approach gives the modi�ed Likelihood

p(yjf) = �

�
yfp
v

�
; (17.15)

where �(x) =
R x
�1

dyp
2�
e�

y2

2 is an error-function. This Likelihood corresponds to

probit regression [Neal, 1997]. In the second approach, we use the fact that the

process f + �{due to the Gaussianity of the noise{is also a Gaussian process with

the following covariance matrix

knoisy = E
�
(f + �)(f + �)T

��E [f + �]E
�
(f + �)T

�
= k+ vI : (17.16)

For output noise, we take an iid ip process which ips the classi�cation label with

a probability given by �, thus

p(yjf) =
X
�=�1

p(�)p(yjf; �)

= ��(�yf) + (1� �)�(yf)
= �+ (1� 2�)�(yf) : (17.17)

Such a noise process could model the e�ects of outliers, i.e., examples which

are wrongly classi�ed independently of the corresponding value of the activation

function. Usually, we expect that the probability of a ip is small, when f(x) is large

and we have high con�dence on the label. However, there may be some fraction of

outliers in the data which may not be treated well by such a model. For those, we

include the possibility that the probability of ip is independent of the location.

In the following, we will show 1. how SVM can be obtained from Gaussian

processes with a modi�ed (non-normalized) Likelihood and 2. the slack variable

for SVM corresponds to the realization of the input noise � in the GP framework.
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17.4 From Gaussian Processes to SVM

We will start by discussing the additive noise model and in the end of this section

shortly consider the multiplicative noise model.

To obtain support vector machines from Gaussian processes, we may �rst look at

the maximum a posteriori (MAP) values for activations and noise variables which

can be obtained by maximizing the joint distribution

p(y; �; f) =
Y
i

[p(yijfi; �i)p(�i)] p(f) ; (17.18)

where we have suppressed the explicit x dependence. Equivalently, we may minimize

the negative log posterior, L = � log p(y; �; f). Shifting the activation variables to a
zero mean Gaussian process, i.e., f(x)! f(x)+m(x) with constant meanm(x) = b

and enforcing the inequality constraints of the Likelihood p(yjf; �) = �(y(f+b+�))

by non-negative Lagrange multipliers �, we arrive at

L = �
X
i

log p(�i)� log p(f)�
X
i

�i [yi(fi + b+ �i)] : (17.19)

The MAP-parameters are obtained from the saddlepoint of L. A straightforward

optimization @L
@fi

= 0 leads to the well known SVM expression

fSVMi =
X
j

kijyj�j (17.20)

and the MAP prediction is given by

ySVM(x) = sgn(
X
j

k(x;xj)yj�j + b) : (17.21)

Unfortunately, if the noise distribution has zero mean, the variation with respect

to the other variables gives the trivial solution f = � = 0. To obtain the SVM

solution, a further ad hoc modi�cation (equivalent to the introduction of a margin)

is necessary. The �nal expression reads

L = �
X
i

log p(�i)� log p(f)�
X
i

�i [yi(fi + b+ �i)� 1] : (17.22)

The expression for �i and �i obtained by a variation of this expression depends

explicitly on the noise model. For Laplace noise p(�) = C
2 exp(�Cj�j), we obtain

the Kuhn-Tucker conditions corresponding to the linear slack penalty C
P

i �i (with

�i � 0) and Gaussian noise leads to the Kuhn-Tucker conditions corresponding to

the quadratic slack penalty 1
2v

P
i �

2
i [Cortes and Vapnik, 1995], Note that the

mean of the Gaussian process b plays the role of the threshold (or bias) in the SVM

framework.1

1. It is also possible to include a (e.g Gaussian) prior over b. The usual choice for SVM
corresponds to a at prior.
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The ad hoc introduction of the extra margin destroys the probabilistic interpre-

tation of the corresponding 'Likelihood' p(yjf; �) = �(y(f + b + �) � 1) which

does not correspond to a true probability, because it is not normalized, i.e.,P
y=�1 p(yjf; �) � 1. Hence, a direct Bayesian probabilistic interpretation of SVM

is not fully possible (at least in the simple MAP approach that we have sketched).

So if we want to associate probabilities with output predictions, it is most natural

to work in the Gaussian process framework (but see also Chapter 5). In practice

however, it turns out that often the predictions made by both approaches are very

similar when the same covariance function (kernel) and noise (slack) model are

used.

It is not possible to follow the same scheme for the output noise realization � = �1
because this leads to a combinatorial optimization problem which cannot be solved

easily. Alternatively, one could use the Likelihood eq. (17.17) where the noise

realization has been averaged out. However, eq. (17.17) is not a 0-1 probability

corresponding to a simple inequality constraint that in the optimization may be

enforced using a Lagrange multiplier. For inference with Gaussian processes{on the

other hand{this is not a problem, since formally and practically, it is straightforward

to deal with the Likelihood eq. (17.17) as we will see in Section 17.6.

17.5 Leave-One-Out Estimator

In this section, we derive an approximate leave-one-out (loo) estimator for the

generalization error of the SVM-classi�er. Although we do not know if our leave-

one-out estimator can be cast into a bound on the true loo error (for bounds see

[Jaakkola and Haussler, 1999b], Chapters 1 and 16), it seems to be at an excellent

approximation (at least in the cases that we have applied it). Previously, we have

given a derivation based on a limiting procedure of the TAP-mean �eld equations

[Opper and Winther, 1999a]. The derivation given here is based on a linear response

approach which is similar to the one derived by Wahba [1999b], however for a

di�erent loss function. For a similar approach in the framework of neural networks,

see [Larsen and Hansen, 1996]. The approximation made in this approach is similar

to an assumption which is also hidden in mean �eld theories: For systems which

are composed of a large number of interacting degrees of freedom, a perturbation

of a single one of them will change the remaining ones only slightly. To keep the

derivation as simple as possible, we consider zero bias, b = 0. At the end of this

section, we briey sketch how to generalize the result to b 6= 0.

The basic idea is to calculate the change of the solution fi for input i in response

to removing example l. We will denote the solution at i without the lth example

by f
nl
i . Before and after the removal of example l, we have the following solutions

fi =
X
j

kij yj �j (17.23)
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f
nl
i =

X
j 6=l

kij yj �
nl
j (17.24)

or

Æfi = Æf
nl
i � fnli � fi =

X
j 6=l

kij yj Æ�j � kil yl �l : (17.25)

There are two basic contributions to the change Æfi. The �rst term above is the

indirect change due to the change of �j in response to removing l and the second

term is the direct contribution. The leave-one-out error is obtained as a simple error

count

�SVMloo =
1

m

X
i

�
�
�yifnii

�
: (17.26)

Unfortunately, the �rst term in eq. (17.25) cannot be calculated without making

a speci�c approximation. The following derivation is for the SVM framework with

linear slack penalty.

The Kuhn-Tucker conditions of SVM learning distinguishes between three di�er-leave-one-out

approximation ent groups of examples. We make the assumption that example j 2 1; : : : ; l� 1; l+
1; : : : ;m, remains in the same group after retraining the SVM when example l(6= j)

is removed. Explicitly,

1. Non-support vectors (yjfj > 1 and �j = 0), will remain non-support vectors:

Æ�j = 0.

2. Margin support vectors (yjfj = 1 and �j 2 [0; C]), will remain margin support

vectors: Æfj = 0.

3. Misclassi�ed patterns (yjfj < 1 and �j = C), will remain misclassi�ed patterns:

Æ�j = 0.

It is easy to construct a set of examples for which this assumption is not valid. We

expect the approximation to be typically quite good when the number of support

vectors is large because then upon removal of a support vector, the new solution will

mainly be expressed as a (small) reorganization of the remaining margin support

vectors. With this simplifying assumption, we may now solve eq. (17.25) in the form

mSVX
j 6=l

kij yj Æ�j � kil yl �l = 0 (17.27)

to �nd Æ�j for the margin support vectors (the non-support vectors and misclassi�ed

patterns are assumed to have Æ�j = 0).

It is necessary to consider explicitly the group to which the removed example

belongs. We see immediately that if example l is a non-support vector then Æ�j = 0.

If example l is a margin support vector, we get

Æ�i =
mSVX
j 6=l

h
(k
nl
mSV)

�1
i
ij
kjl yl �l ; (17.28)
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where k
nl
mSV is the covariance matrix of the margin support sector patterns exclud-

ing the lth pattern. Inserting the result in Æfi and setting l = i, we �nd

Æfi =

8<
:

mSVX
j;j0 6=i

kij

h
(k
ni
mSV)

�1
i
jj0
kj0i � kii

9=
; yi �i = � 1�

k�1mSV
�
ii

yi �i : (17.29)

In the last equality a matrix identity for the partitioned inverse matrix has been

used.

For example l being a misclassi�ed pattern, the sum in eq. (17.27) runs over all

margin support vectors, thus

Æ�i =
mSVX
j

�
k�1mSV

�
ij
kjl yl �l ; (17.30)

and

Æfi =

8<
:

mSVX
j;j0

kij
�
k�1mSV

�
jj0
kj0i � kii

9=
; yi �i : (17.31)

We see that the reaction Æfi is proportional to a direct change term through the

factor �i. We have now obtained the leave-one-out estimator eq. (17.26) for SVM

with yi f
ni
i = yi fi+ yi Æfi and Æfi given by eqs. (17.29) and (17.31) for respectively

margin support vectors and misclassi�ed patterns. Note that the sum over patterns

will only run over support vectors since the reaction is estimated to be zero for

non-support vectors.

One may argue that it is computationally expensive to invert kmSV. However,

we expect that the computational cost of this operation is comparable to �nding

the solution to the optimization problem since it{on top of identifying the support

vectors{also requires the inverse of kSV. This is also observed in simulations. Using

this leave-one-out estimator is thus much cheaper than the exact leave-one-out

estimate that requires running the algorithm N times (although each run will

probably only take a few iterations if one uses an iterative learning scheme like the

Adatron algorithm [Anlauf and Biehl, 1989] with the full training set solution as the

starting point). Another possible way of decreasing the computational complexity

of the estimator is to use methods in the spirit of the randomized GACV by Wahba

[1999b].

These results may easily be generalized non-zero threshold: To include threshold

fi should be substituted with fi + b. The Kuhn-Tucker condition for the margin

support vectors therefore changes to yi(fi + bi) = 1 which implies Æfi = �Æb. E.g.
for l being a margin support vector, we now have

Æ�i =
mSVX
j 6=l

h
(k
nl
mSV)

�1
i
ij
(kjl yl �l � Æb) : (17.32)

The saddlepoint condition for b, @L@b = 0, gives
P

i yi�i = 0. This condition impliesPmSV
i yiÆ�i = 0 which together with the expression for Æ�i above determines Æb.
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17.6 Naive Mean Field Algorithm

The aim of the mean �eld approach is to compute an approximation to the Bayes

prediction yBayes(x) = sgnhsgnf(x)i for the GP classi�er, where we have introduced

the notation h: : :i to denote a posterior average. We will only discuss a 'naive' mean

�eld algorithm with the aim of stressing the similarities and di�erences between

the SVM and Gaussian process approach. We will follow the derivation given in

[Opper and Winther, 1999a] based on the so-called Callen identity [Parisi, 1988].

An independent derivation is given by Opper and Winther [1999b].

We will use the simpli�ed prediction y(x) = sgnhf(x)i which the Bayes classi�er

reduces to when the posterior is symmetric around its mean. We �rst give exact

expressions for the posterior

hf(x)i = 1

p(y)

Z
dfdf f p(yjf)p(f ; f(x)) : (17.33)

Using the following identity fj p(f) = �
P

i k(xj ;xi)
@
@fi
p(f) (or rather its extension

to p(f ; f)), which is easily derived from (17.3) setting m = 0, we can write

hf(x)i = � 1

p(y)

Z
dfdf p(yjf)

X
i

k(x;xi)
@

@fi
p(f ; f(x)) (17.34)

We may now use integration by parts to shift the di�erentiation from the prior to

the Likelihood:

hf(x)i =
X
i

k(x;xi)
1

p(y)

Z
dfdf p(f ; f(x))

@

@fi
p(yjf)

=
mX
i=1

k(x;xi) yi �i : (17.35)

Remarkably, this has the same form as the prediction of the SVM eq. (1.81). While

for the SVM, the corresponding representation follows directly from the representer

theorem of Kimeldorf and Wahba [1971], we can not use this argument for the mean

�eld method, because (17.35) is not derived from minimizing a cost function. For

the mean �eld approach, the \embedding strength" �i of example i is given by

�i =
yi
p(y)

Z
dfp(f)

@

@fi
p(yjf) (17.36)

Note that the �i's will always be non-negative when p(yijf(xi)) is an increasing

function of yif(xi).

We give now a mean �eld argument for the approximate computation of the

�i. There are di�erent ways of de�ning a mean �eld theory. The present one has

the advantage over other approaches [Opper and Winther, 1999a], that no matrix

inversions are needed in the �nal algorithm. To proceed, auxiliary variables t are

introduced using a standard Gaussian transformation

�i =
yi
p(y)

Z
dfdt

(2�)m
exp

�
�1
2
tTkt+ itT f

�
@

@fi
p(yjf) (17.37)
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=
yi
p(y)

Z
dfdt

(2�)m
(�iti) exp

�
�1
2
tTkt+ itT f

�
p(yjf) = �iyihitii ;

where the i not appearing as an index is the imaginary unit i =
p�1. In the

second equality integration by parts is applied. In the last equality the bracket is

understood as a formal average over the joint complex measure of the variables f

and t. Next, we separate the integrations over fi and ti from the rest of the variables

to get

�i = yi

*R
dfidti exp

�
�1

2kii(ti)
2 + (�iti)(

P
j 6=i kij(�itj)� fi))

�
@p(yijfi)

@fiR
dfidti exp

�
�1

2kii(ti)
2 + (�iti)(

P
j 6=i kij(�itj)� fi))

�
p(yijfi)

+
(17.38)

This identity can be proved by noting that the average over fi and ti in h: : :i exactly
cancels the denominator given us back the original expression for �i.

We may now carry out the explicitly written integrals over fi and ti. Using the

Likelihood for output noise eq. (17.17), we �nd

�i = yi

*R dfi exp�� (fi�
P

j 6=i kij(�itj))2
2kii

�
@p(yijfi)

@fiR
dfi exp

�
� (fi�

P
j 6=i kij(�itj))2
2kii

�
p(yijfi)

+

=
1p
kii

*
(1� 2�)D

�P
j 6=i kij(�itj)p

kii

�
�+ (1� 2�)�

�
yi

P
j 6=i kij(�itj)p

kii

�+ ; (17.39)

where D(z) = e�z
2=2=
p
2� is the Gaussian measure. So far everything is exact. The\naive" mean

�eld

approximation

\naive" mean �eld approximation amounts to neglecting the uctuations of the

variable
P

j 6=i kij(�itj) and substituting it with its expectation
P

j 6=i kijh�itji =P
j 6=i kijyj�j . This corresponds to moving the expectation through the nonlinear-

ities. One should however keep in mind, that the integrations are over a complex

measure and that the tj are not random variables in a strict sense. The result of this

approximation is a self-consistent set of equations for �i = �iyihtii. The explicit
expression for �i becomes

�i =
1p
kii

(1� 2�)D (zi)

�+ (1� 2�)� (zi)
; zi = yi

hfii � kiiyi�ip
kii

: (17.40)

In Figure 17.1, �i is plotted as function of zi (with kii = 1). The shape

of the \embedding"-function depends crucially upon whether we model with or

without output noise. For the noise-free case, � = 0, �i is a decreasing function

of yihfii � kii�i = zi
p
kii which may be thought of as a naive approximation to

(y times) the activation for input i trained without the ith example. The result is

intuitively appealing because it says that the harder it is to predict an example's

label, the larger weight �i it should have.2 In the noisy case, �i is a decreasing

2. In the more advanced TAP (named after Thouless, Anderson & Palmer) mean �eld
theory zi is proportional to the \unlearned" mean activation [Opper and Winther, 1999a].
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�i(� = 0)�

zi

-�i(� > 0)

Figure 17.1 The \embedding strength" �i plotted as a function of zi with kii = 1.

function of zi down to certain point at which the algorithm tends to consider the

example as being corrupted by noise and consequently gives it a smaller weight. This

illustrates the di�erence between ip noise and using the linear slack penalty for

support vectors where the \hardest" patterns are given the largest weight, �i = C.

It is interesting to note that for the mean �eld algorithm �i, in contrast to

SVM, is an explicit function of other variables of the algorithm. The fact that

the function is non-linear makes it impossible to solve the equations analytically

and we have to resort to numerical methods. In Table 17.1, we give pseudo-code

for a parallel iterative scheme for the solution of the mean �eld equations. An

Algorithm 17.1 : Naive mean �eld

Initialization:
Start from tabula rasa, � := 0.
Learning rate, � := 0:05.
Fault tolerance, ftol := 10�5.

Iterate:
while maxi jÆ�ij2 > ftol do:

for all i:

hfii :=
X
j

kijyj�j

Æ�i :=
1p
kii

(1� 2�)D(zi)

�+ (1� 2�)�(zi)
� �i; zi � yi

hfii � kiiyi�ip
kii

endfor
for all i:

�i := �i + �Æ�i
endwhile

important contributing factor to ensure (and to get fast) convergence is the use of

an adaptable learning rate: We set � := 1:1� if \the error"
P

i jÆ�ij2 decreases in
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the update step and � := �=2 otherwise. Clearly, the algorithm does not converge

for all values of the hyperparameters.3 However, if the SVM has a solution for

a certain choice of hyperparameters, the mean �eld algorithm will almost always

converge to a solution and vice versa. The important question of how to tune the

hyperparameters is discussed in the following.

For comparison, we also give the leave-one-out estimator for the naive mean �eldleave-one-out

estimator algorithm. It is derived from the mean �eld equations using linear response theory

[Opper and Winther, 1999a] in completely the same fashion as the leave-one-out

estimator for SVM

�naiveloo =
1

m

SVX
i

�

�
�yihfii+

�
1

[(
+ k)�1]ii
� 
i

�
�i

�
; (17.41)

where 
 is a diagonal matrix with elements


i = kii

�
1

yi�ihfii � 1

�
: (17.42)

We thus have the same basic structure as for the SVM estimator. However, this

estimator requires the inversion of the full covariance matrix. In the next section,

we will demonstrate on a benchmark dataset that the leave-one-out estimators are

in very good agreement with the exact leave-one-out errors. This has also been

observed previously on other benchmarks [Opper and Winther, 1999b,a]. We also

show that despite the fact that this algorithm looks very di�erent from SVM, the

solution obtained and the performance is quite similar. The mean �eld approach

will tend to produce smaller minimal margin, however we have not observed that

this has any e�ect on performance.

17.7 Simulation Results

The two algorithms have been tested on theWisconsin breast cancer dataset, which

is a binary classi�cation task (tumor is malignant or benign) based on 9 attributes,

see, e.g., [Ster and Dobnikar, 1996]. We have removed the 16 examples with missing

values and used standard preprocessing as to set the mean for every input equal to

zero and the variance to unity across the dataset of 683 examples. The performance

is{as in previous studies{accessed using 10-fold cross validation [Ster and Dobnikar,

1996].

For SVM, we used the parallel version of the Adatron algorithm of Anlauf and

Biehl [1989] which, extended to general covariance functions, has turned out to

3. In Bayesian modeling, hyperparameters refer to \higher level" parameters which are
not determined directly in the algorithm (in contrast to, e.g., �). The hyperparameters
for this algorithm are the output ip probability �, the input noise variance v and the
input lengthscale(s) in the kernel, e.g., � in the radial basis kernel eq. (1.73). The algorithm
depends on the two latter hyperparameters only through the covariance matrix eq. (17.16).



324 Gaussian Processes and SVM: Mean Field and Leave-One-Out

be a fast iterative algorithm [Frie� et al., 1998]. For naive mean �eld theory, we

solved the mean �eld equations using the iterative scheme described in the previous

section.

We chose to work with the radial basis covariance function eq. (1.73). The

Gaussian noise model is used in noisy process formulation thus adding the input

noise variance v to the diagonal of the covariance matrix as in eq. (17.16). For

the mean �eld algorithm, we have the additional output noise parameter �. These

two(three) parameters are chosen as to minimize the leave-one-out (loo) error for

one of the 10 training sets by scanning through a number of parameter values. We

found the values �2 = 0:15=N and v = 1:3 for both algorithms and � = 0. The

true minimum is probably not found by this very rough procedure, however, the

performance turned out to be quite insensitive to the choice of hyperparameters.

Since we use the training set to assess the performance through the 10-fold cross

validation scheme, the loo estimate and test error are not independent. However,

our main emphasis is not on generalization performance but rather on learning

speed and on the precision of the loo estimators. The 10-fold cross validation error

for respectively SVM and naive mean �eld theory is � = 0:0307 (21) and � = 0:0293

(20), where the numbers in parentheses indicate the number of misclassi�cations.

The loo errors are �loo = 0:0293 and �loo = 0:0270. The more advanced TAP mean

�eld algorithm [Opper and Winther, 1999b,a] �nds a solution very similar to the

one of the naive mean �eld algorithm. In another study using the SVM-algorithm,

Frie� et al. [1998] �nd � = 0:0052. The di�erence may be due to a number of reasons:

di�erent splitting of the data set, di�erent choice of hyperparameters, use of bias

and/or handling of missing values. With other methods the following error rates are

found: multi-layer neural networks � = 0:034, linear discriminant � = 0:040, RBF

neural networks � = 0:041 and CART � = 0:058 [Ster and Dobnikar, 1996].

In Table 17.1, we compare the learning speed of the two algorithms{trained on one

of the 10 training sets (with 614 examples){both with and without evaluating the

loo estimator (in CPU seconds on an Alpha 433au) and the number of iterations

required to achieve the required precision, maxi jÆ�ij2 < ftol = 10�5. We also

compare the leave-one-out estimator �loo with the exact loo estimator �
exact
loo for both

algorithms. In this case the loo estimators for both algorithms are in accordance

with the exact values. Apart from the case where the value of � is very small

corresponding closely to a nearest-neighbor classi�er, we have always observed that

the leave-one-out estimators are very precise, deviating at most one classi�cation

from the correct value [Opper and Winther, 1999a].

Without evaluating the loo estimators, the naive mean �eld algorithm is about 4

times faster than the Adatron. With the leave-one-out estimator, the SVM is about

4 times faster than the naive mean �eld algorithm. This is due to the fact that for

�SVMloo , eq. (17.26), we only need to invert the covariance matrix for the margin

support vector examples, which in this example is 272-dimensional, whereas �naiveloo ,

eq. (17.41) requires the inversion of the full covariance matrix (614-dimensional). If

the linear slack penalty had been used, the number of support vectors would have

been smaller and the advantage of using �SVMloo would have been even greater.
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Table 17.1 Results for the Wisconsin dataset.

Algorithm �exactloo �loo CPU w. loo CPU wo. loo It.

SVM 0.0261 0.0261 5 4 195

Naive Mean Field 0.0293 0.0293 16 1 31

In Figure 17.2, we compare the solutions found by the two algorithms. The

solutions for the \embedding strengths" �i are quite similar. However, the small

di�erences in embedding strength give rise to di�erent distributions of margins.

The mean �eld algorithm achieves both smaller and larger margins than SVM.

We have also indicated which of the examples are predicted as wrongly classi�ed

by the loo estimators. Interestingly, these are almost exclusively all the examples

with the highest �i starting around the point where the �i-curve's slope increases.

This observation suggests that a heuristic cut-o� for small �i could be introduced

to make the loo estimators faster without signi�cantly deteriorating the quality of

the estimators. Simple heuristics could be developed like, e.g., only considering the

covariance matrix for the 10% of the examples with highest �i, if one expects the

error rate to be around 5%.
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Figure 17.2 Left �gure: The \embedding strengths" �i for each example. The

right �gure: The margins yifi for SVM and yihfii for naive mean �eld theory (same
ordering as the left plot). The triangles are for support vectors and circles are

for naive mean �eld theory. They are sorted in ascending order according to their

support vector �i value and the naive mean �eld solution is rescaled to the length

of the support vector solution. In the lower right corner of the left �gure, it is

indicated which examples contribute to the loo error.
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17.8 Conclusion

This contribution discusses two aspects of classi�cation with Gaussian Processes

and Support Vector Machines (SVM). The �rst one deals with the relation between

the two approaches. We show that the SVM can be derived as a maximum posterior

prediction of a GP model. However, the corresponding likelihood is not normalized

and a fully satisfactory probabilistic interpretation is not possible.

The second aspect deals with approximate approaches for treating two di�erent

computational problems arising in GP and SVM learning. We show how to derive

an approximate leave-one-out estimator for the generalization error for SVM using

linear response theory. This estimator requires only the inversion of the covariance

matrix of the margin support vector examples. As the second problem we discuss

the computation of the Bayes prediction for a GP classi�er. We give a derivation of

an algorithm based on a 'naive' mean �eld method. The leave-one-out estimator for

this algorithm requires the inversion of the covariance matrix for the whole training

set. This underlines a di�erence between SVM and GP which may have important

practical consequences when working with large data sets: the GP solution lacks

the sparseness property of SVM.

We have presented simulations for the Wisconsin breast cancer dataset, with the

model hyperparameters determined by minimizing the approximate leave-one-out

estimator. The performance of both algorithms was found to be very similar. The

approximate leave-one-out estimators were in perfect agreement with the exact

leave-one-out estimators.

An important problem for future research is to �nd eÆcient ways for tuning a

larger number of hyperparameters in the kernel automatically. This will be neces-

sary, e.g., in order to adapt the length-scales of the input components individually.

The minimization of a leave-one-out estimator is only one possible technique for

�nding reasonable values for such parameters. Bayesian approaches to model se-

lection such as the evidence (or MLII) method could be interesting alternatives

[Berger, 1985, MacKay, 1992]. They are obviously well suited for the Bayesian GP

approach. But they may also be interesting for an application to SVM. However,

in order to implement such approaches properly, it will be necessary to understand

the quantitative relations and di�erences between GP and SVM in more detail.
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We present below a simple ray-tracing algorithm for estimating the Bayes classi�er

for a given class of parameterized kernels.

18.1 Introduction

Since the Editors of this book were kind enough to already write down the

Introduction to this Chapter, we will concentrate here on a pictorial exposition of a

simple but powerful algorithm for estimating the Bayes classi�er. Two preliminary

comments: if the �nite set of examples under consideration is linearly separable

- the examples belonging to two classes can be separated by a hyperplane - then

using kernels instead of maximal margin perceptrons will probably decrease quite

a bit the generalization error at the price of longer learning- and run times. This

Chapter will show how to improve further the classi�cation performance at the cost

of even longer learning times.Better learning

takes more

time

If the example set is not linearly separable, then there are two possible ways

of getting rid of the intersection between the two classes convex hulls's. One is

to partition each class in smaller pieces until the corresponding convex hulls do

not overlap any longer. This idea leads to network growth algorithms as in [Ruj�an

and Marchand, 1989, Marchand et al., 1989]. Another alternative is to embed the

two sets in a high dimensional space where they must become linearly separable.
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This can achieved by adding combinations of the already existing feautures to

the input vectors. A particularly compact and elegant method was introduced in

[Boser et al., 1992] and led to the kernel support vector machines. Both types of

algorithms construct a network architecture depending on the training set and both

use perceptrons as their basic units. The SVM approach is more successful due to

its strong regularization properties and the available theoretical bounds on the

expected structural risk. However, the training times are still quite long and, more

importantly, running the classi�er is slower than for usual feedforward networks.

18.2 A Simple Geometric Problem

Here is the main message of this Chapter in a two-dimensional nutshell. Consider

a convex polygon P in 2D, de�ned through the set of side normal vectors xi:

P = fy : (y � xi) � 1gmi=1, where y = (y1; y2). Given a direction v compute the line

(v � y) = 1 partitioning the polygon P into two parts of equal area A1 = A2 (see

Figure 18.1). Call this line the Bayes decision line for direction v.

v

A

P

A21

Figure 18.1 Partitioning a convex polyhedron in two equal volumes by a hyper-

plane with normal v.

Now let us draw such Bayes lines in all possible directions, as shown in Fig-

ure 18.2. Contrary to our triangle preconditioned expectations, these lines do not

intersect in one point. Hence, no matter how we choose a point inside the polygon

P, there will be directions along which the v oriented line will not partition P
into two equal areas. The Bayes point is de�ned here as the point for which theThe Bayes

point direction-averaged squared area-di�erence is minimal.
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Figure 18.2 The set of Bayes-decision lines.

In general, it is rather diÆcult to compute the Bayes point. The convex polyhedra we

will consider are de�ned through a set of inequalities, the vertices of the polyhedron

are not known. Under such conditions one feasible approximation of the Bayes point

is to compute the center of the largest inscribed circle or, better, the symmetry

center of the largest area inscribed ellipse. As shown below, the center of the largest

inscribed circle corresponds (in most cases) to the maximal margin perceptron.

For strongly elongated polygons, a de�nitely better approach is to consider the

center of mass of the polygon, as illustrated in Figure 18.3 Jumping suddenly into

Figure 18.3 The largest inscribed circle and the center of mass (cross).

N -dimensions, the question is now how to sample e�ectively a high dimensional

polyhedron in order to compute its center of mass. One possibility is to use Monte

Carlo sampling [Neal, 1996] or sampling with pseudo-random sequences [Press et al.,

1992].
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Figure 18.4 Trajectory (dashed line) after 1000 bounces.

As suggested by one of us, [Ruj�an, 1997], another viable alternative is to use a ray-

tracing method. The bounding polygon will be considered as a billiard table insideBilliards

which a ball bounces elastically on the walls. With few exceptions corresponding

to fully integrable or rational angle billiards, the so de�ned Hamiltonian dynamics

will be ergodic, implying that a typical trajectory will homogeneously cover the

polygon, as illustrated in Figure 18.4. It is known that the entropy of polygonal (and

polyhedral) billiards vanish [Zemlyakov and Katok, 1975]. However, by excluding

from the billiard a spherical region inside the polyhedron, one can make the

dynamics hyperbolic [Bunimovich, 1979]. Such a billiard is somewhat similar to the

Sinai-Lorenz billiard, which has strong mixing properties [Bunimovich and Sinai,

1980, Berry, 1981]. The absence of a general theorem, however, does not prevent

us from using this algorithm. In the following, we will simply assume that a typical

classi�cation problem leads to ergodic dynamics and will sample accordingly the

phase space. The presence of limit cycles, typical for fully integrable systems or

KAM-tori in soft chaos can be - in principle - detected numerically.

18.3 The Maximal Margin Perceptron

Consider a set of N -dimensional m data points fx1; : : : ;xmg belonging to two

classes labeled by fy1; : : : ; ymg; yi = �1. We are seeking the plane normal w and

two thresholds b+1; b�1 such that

(w � xi)� b+1 > 0; yi = +1 (18.1)

(w � xi)� b�1 < 0; yi = �1 (18.2)

b+1 > b�1
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This corresponds to �nding two parallel hyperplanes passing between the two

convex hulls of the positive and negative examples, respectively, such that their

distance (the gap or margin) is maximalMaximal margin

G = max
w

b+1 � b�1
(w �w) (18.3)

This primal problem is the maximal margin or maximal \dead zone" perceptron

[Vapnik, 1979, Lampert, 1969]. Eq. (18.1-18.2) and can be rewritten compactly as

a set of linear inequalitiesA set of linear

inequalities...
yi(xi; 1)

T (w;�b) � � � 0; i = 1; 2; � � � ;m (18.4)

where b = b+1+b�1
2 is the threshold of the maximal margin perceptron and � =

b+1�b�1
2 the stability of the set of linear inequalities (18.4). Note that in this notation...and its stability

the normal vector (w;�b) is also N + 1-dimensional.

A two dimensional illustration of these concepts is shown in Figure 18.5.

+1

-1

A

B

C

Figure 18.5 The maximal margin perceptron (once again!).

As shown by [Lampert, 1969] and geometrically evident from Figure 18.5, the

minimal connector problem is dual to the maximal margin problem: �nd two convex

combinations

X+ =
X

fi:yi=+1g
�+i xi;

X
fi:yi=+1g

�+i = 1; �+i � 0 (18.5)
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X� =
X

fi:yi=�1g
��i xi;

X
fi:yi=�1g

��i = 1; ��i � 0 (18.6)

such that

L2 = minf�+i ;��i gkX+ �X�k2 (18.7)
Minimal

connector
The corresponding weight vector is given by wmm = X+�X�. (18.7) together with
the convexity constraints (18.5-18.6) de�nes a quadratic programming problem. In

the mathematical programming literature the vertices A, B, and C in Figure 18.5

are called active constraints. Only the Lagrange multipliers �+i and ��i correspond-Active

constraints ing to active vertices i are strictly positive, all others vanish. The active constraints

satisfy the inequalities Eq. (18.1-18.2) as equalities. Furthermore, the gap G, Eq.

(18.3) and the minimal connector's length L, Eq. (18.7) are equal only at optimality.

Vapnik calls the active constraints support vectors, since the expression for wmm

(Eqs. (18.5-18.6)) involves two convex combination of the active constraints only.

A better geometric picture can be obtained by considering the linear conjugate

vector space, so that Eq. (18.4) describes now hyperplanes whose normals are given

by zi = yi(xi; 1). In this space all W = (w;�b) vectors satisfying the linear

inequalities Eq. (18.4) lie within the convex cone shown in Figure 18.6. The rayThe version space

corresponds to the direction of the maximal margin perceptron. The point at which

it intersects the unit sphere is at distance

dmm
i =

����� (wmm � xi)p
(xi � xi)

� b
����� = � (18.8)

from the active example xi. Hence, if all active examples have the same length, theThe max margin

perceptron as

largest inscribed

sphere

maximal margin perceptron corresponds to the center of the largest sphere inscribed

into the spherical polyhedron de�ned by the intersection of the unit sphere with

the version space polyhedral cone.

18.4 The Bayes Perceptron

Given a set of data z = fzigmi=1 and an unknow example x, the optimal prediction

for the corresponding class label y for a squared error loss is given by (see for

example [Neal, 1996]):

f(x) =

Z
g(x;W)P (Wjz)dW (18.9)

where g is the perceptron output-function, g(x;W) = sgnf(x �w)� bg and P (Wjz)
the posterior network distribution. As usual, the Bayes identity

P (Wjz) = P (zjW)P (W)

P (z)
(18.10)

relates the posterior distribution to the prior P (W). It was shown by [Watkin,

1993] that for an iid posterior, the Bayes classi�er Eq. (18.9) can be represented by
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Figure 18.6 The version space is a convex polyhedral cone. The upper left plane

corresponds to the active vertex A, the one upper right to the vertex B, and the

lower one to the vertex C in Figure 18.5. The version space is restricted to the

intersection between the unit sphere and the convex cone by the normalization

constant (Wi �Wi) � 1: i = 1; : : : ;m. The ray corresponds to the direction of the

maximal margin perceptron.

a single perceptron corresponding to the center of mass of the version space:Bayes point =

Bayes perceptron
lim

N!1;M!1;mN =const
f(x) = g(x;W�) (18.11)

where

W� =
1

vol (W)

Z
W2V

WdV (18.12)

Hence, the center of mass of the intersection of the version space polyhedral cone

with the unit sphere de�nes the Bayes perceptron parameters as long as the pos-

terior is uniform. It is, however, not diÆcult to generalize the sampling algorithm

presented below to nonuniform posteriors. As described in Chapter 1, the Bayes

point is the center of mass of a polyhedral hypersurface whose local mass density

is proportional to the posterior distribution (18.10). Under the ergodicity assump-

tion the ray-tracing algorithm provides a collection of homogeneously distributed

sampling points. The center of mass can be then estimated by a weighed average of

these vectors, where the weights are proportional to the posterior probability den-

sity. Before describing the implementation of the billiard algorithm in more detail,

we consider the generalization of these ideas to SVM.
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18.5 The Kernel-Billiard

As explained in the introduction to this book (Chapter 1), the support vector

machines are somewhat similar to the method of potential functions and \boost-

ing" architectures. From a physicist's point of view, however, the support vector

machines (SVM) operate on the quantum probability amplitude (wave-packets) �

with L2 metric, while the method of potential functions and the boosting on a clas-
sical probability density with L1 metric. To see this consider Figure 1.4 in Chapter

1: the SVM architecture acts as an operator on the input �(x) feature vector, while

the method of potential functions propagates directly the input vector through the

set of real functions �(xi), the dot-product layer is missing. The boosting architec-

ture requires, in addition, the weights connected to the output unit to be convex

coeÆcients. Hence, they can be interpreted as the probability that the \hypothesis"

function �i is correct.

In order to generalize the perceptron learning method described above to kernels,

one must rewrite the algorithm in terms of dot-products of the form qij = (xi �xj). If
this is possible, one makes the substitution qij  (�(xi) ��(xj)) = k(xi;xj), where

k(x;y) is a Mercer-kernel. The main trick is thus to substitute this positive de�niteChange in the

dot-product kernel for all scalar products. The explicit form of �i � �(xi) is not needed.

18.5.1 The Flipper Algorithm

Algorithm 18.1 : Flipper [Ruj�an, 1997]

1. Initialize center of mass vector, counters, etc., normalize example vectors according to
Eq. (18.19).

2. Find a feasible solution W inside the version space,

3. Generate a random unit direction vector V in version space,

4. For iteration nB < Nmax max-iterations, (ight time � < �max max-time)

compute ight-times to all bounding planes (m2 dot-products� kernel evaluations),

compute plane-index of the next bounce (corresponds to shortest positive ight
time),

compute new position in version space W0 and store it in center of mass vector,

compute the reected direction vector V0,

5. Test conditions : go back to 3) if escaped to 1 or exit at Nmax

Therefore, the typical number of operations is O(M2Nmax) kernel evaluations. To

�nd a feasible solution use any perceptron learning algorithm or the light-trap

method described below. Figure 18.7 illustrates the main step of the algorithm.Elastic scattering
We compute the ight times for all planes and choose the smallest positive one.

This will be the plane �rst hit by the billiard trajectory. We move the ball to the
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’V

d⊥

V⊥
V

W’

X

W

Figure 18.7 Bouncing on a plane. The ight time from point W to the plane can

be computed from the scalar products d? = (W�X) and V? = (V�X) as � = �d?=V?.
The collision takes place at W0 =W+ �V and the new direction is V0 = V+2V?X.

new position and reect the direction of ight. The arc between the old and the

new position is added according to the rules derived below to the center of mass

estimate. Since the version space is a polyhedral cone, the trajectory will escape

sometimes to in�nity. In such cases we restart it from the actual estimated center

of mass. Note the analogy to the two-dimensional geometrical problem mentioned

above.

How many bounces NB do we need before the estimated center of mass vector

will be within an " distance from the true center of mass with probability 1 � �?
If the generated series of vectors W are identically and independently generated

from the posterior distribution, then, as shown in Appendix A, applying Hoe�ding's

inequality results in

NB > �
2m

"2
ln
2m

�
(18.13)

Convergence

estimate
where m is the number of training vectors and for simplicity we assume that each

component of the training vectors x lies in the interval [�1; 1]. The Hoe�ding's

estimate is multiplied by the correlation length, �.

Let us describe a given trajectory by the sequence of hyperplane indices hit by

the billiard ball. The correlation length is the rate at which the correlation between

these symbols decreases. Consider two trajectories started from neighboring points

in slightly di�erent directions. It seems reasonable to assume that the two trajecto-

ries will become fully uncorrelated once the two balls start to bounce on di�erent
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planes. Hence, � equals the average number of bounces after which two trajectories

originally close in phase space bounce for the �rst time on di�erent planes. The

very important question whether � is constant or some function of m is still open.

Note that the best known algorithm for estimating the center of mass of a convex

polyhedron uses the largest volume inscribed ellipsoid and apart logarithmic terms

scales with O(m3:5) [Khachiyan and Todd, 1993]. If � grows slower than m
1
2 ,

than the ipper algorithm is faster than the Khachiyan { Todd algorithm. By

introducing slight changes in our algorithm we can enhance the mixing properties

of the billiard and thus optimize �. A simple solution is, for instance, to introduce

a reecting sphere around the (estimated) center of mass, lying completely inside

the polyhedron. Another possibility is to use a random, nonlinear scattering angle

function simulating a dispersing boundary. Such a dynamics would dissipate energy

but leads to better mixing properties. This interesting topic will be addressed

elsewhere.

When generalizing the billiard algorithm to kernel methods, we have �rst to

show that the center of mass of the now very high dimensional space lies in the

span de�ned by the example set. Let �i � �(xi) denote in feature space the image
of the training example xi. The version space V is de�ned to be the following set

of weight vectors:

V = fw : (w ��i) > 0 for i = 1; : : : ;mg (18.14)

where m denotes the number of training examples.

Any vector w lying in the version space can be written as w = wk +w? where

wk lies in the space spanned by f�igmi=1:

9 �1; : : : ; �m : wk =
mX
i=1

�i�i (18.15)

and w? lies in the orthogonal complement of that space (with respect to V):
(w? ��i) = 0 8i = 1; : : : ;m (18.16)

Hence, (wk+w?) 2 V if and only if (wk�w?) 2 V. For each w the w? components

cancel and the center of mass w�:

w� =
1

vol (V)
Z
V
wdw (18.17)

lies in the space spanned by f�igmi=1.Center of mass

is in examples's

span

This small Lemma implies that instead of choosing a general direction in feature

space we can restrict ourselves to a vector lying in the subspace spanned by the

example vectors:

V =

 
mX
i=1

�n�i; v0

!
(18.18)
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subject to the normalization condition

(V �V) =
mX
i=1

mX
j=1

�i�jk(xi;xj) + v20 = 1 (18.19)

The formulation of the ipper algorithm ensures that all subsequent direction

vectors will also lie in the linear span. As usual, we expand also the weight vector

as

W =

 
mX
i=1

�i�i;�b
!

(18.20)

The normal vectors of the version space polyhedron boundaries are given in this

description by

Zp =
1p

k(xp;xp) + 1
(yp�p�p; yp) (18.21)

where p 2 P denotes the subset of the extended example vectors (hyperplanes),

which bounds from inside the zero-error feature space. Support vectors as de�ned

by the maximal margin algorithm (MMSV) are related to those training examples

which touch the largest inscribed hypersphere. Support vectors as de�ned in a

Bayesian context correspond to hyperplanes bounding the zero-error feature space

(BSV). Obviously, MMSV � BSV � X.Feature space

support vectors In general, the vectors �i; i = 1; : : : ;m are neither orthogonal, nor linearly in-

dependent. Therefore, the expansions (18.18)-(18.20) are not unique. In addition,

some of the example hyperplanes might (will!) lie outside the version space poly-

hedral cone and therefore cannot contribute to the center of mass we are seeking.

Strictly speaking, the expansions in Eqs. (18.18) - (18.21) should be only in terms

of the p 2 P support vectors. This set is unknown, however, at the beginning of

the algorithm. This ambiguity, together with the problem of a drifting trajectory

(discussed below in more detail), are speci�c to the kernel method.

As explained in Figure 18.7, if we bounce on the j-th example hyperplane

V ?j =
mX
i=1

yj�ik(xi;xj) + v0yj (18.22)

and, similarly

W?
j =

mX
i=1

yj�ik(xi;xj)� byj (18.23)

Flight times
Once the example index j� corresponding to the smallest positive ight time �min,

j� = argmin
j;�min>0

�min; �min = �
W?

j

V ?j
(18.24)

has been calculated, the update rules for V and W are

�i  �i � 2yj�V
?Æi;j� (18.25)
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v0  v0 � 2yj�V
?

and

�i  �i + �min�i (18.26)

b b+ �minv0

In order to update the center of mass vector we de�ne the sum of two unit vectors a

and b as follows (see Figure 18.8). Each vector has an associated weight, denoted by

�a and �b, respectively. The sum of the two vectors is c, with weight �c = �a + �b.

If we choose the vector a as the unit vector in direction x, then, according to

Figure 18.8, the coordinates of the three vectors are a = (1; 0), b = (cos�; sin�),

and c = (cos�1; sin�1), respectively. Note that cos� = (a �b). We now require that

the angle of the resultant vector c equals �1 =
�b
�c
�, as when adding parallel forces.

Center of mass

update

φ1

a

b
c

φ

ρ

ρ
ρ

a

b
c

Figure 18.8 Adding two vectors lying on the unit hypersphere. The weights are

denoted by � and c = a+ b implies �c = �a + �b.

This leads to the following addition rule

c = cos(
��b

�a + �b
)a+

sin( ��b
�a+�b

)

sin(�)
[b� cos(�)a] (18.27)

where cos� = ab k(a;b). As explained in [Ruj�an, 1997], we can add recursively

using Eq. (18.27) the middle points of the arcs between the two bouncing points

W and W0, with a weight given by the length of the arc, which is proportional

to the angle �. If the new direction points towards the free space, �min = 1, we

restart the billiard at the actual center of mass in a randomly chosen direction. If

the number of bounces and the dimension are large enough, which is almost always

the case, then it is enough to add the bouncing points with the weight determined

by the posterior probability density.
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Now consider the case when the number of BSV's is less than m. This means

that in the example set there are some hyperplanes which can not contribute to the

center of mass. The simplest such example occurs when the ball bounces for a long

time between two given planes while moving (drifting) along with a constant speed,

while the other examples are inactive. According to the update rules Eqs. (18.25-

18.26), all examples contribute to both w and the threshold b! However, when

using the center of mass for classi�cation the contributions from inactive examples

cancel out.

18.5.2 The Light-Trap Algorithm

We can extend the main idea behind the billiard dynamics in several ways. One

variant is the light-trap algorithm, which can be used to generate a feasible solution.

Instead of the full reecting mirror in Figure 18.7, consider a half-reecting mirror,

schematically shown in Figure 18.9Trapping

billiards

’V

V

x

V’’

Figure 18.9 Bouncing on a semi-transparent plane. If the \light" comes from

above (V? < 0) the trajectory is elastically reected. If, however, the light shines

from below, (V? > 0), the trajectory is allowed to pass through the mirror.

Therefore, if we start the trajectory at a point making few errors in version space,

any time we encounter a non satis�ed linear inequality we will \pass" through it,

reducing by one the number of errors. Eventually, the trajectory will be trapped

in the version space with zero errors. This algorithm is particularly simple to
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implement for the Gaussian kernel

k(x;y) = e
�kx�yk2

2�2 (18.28)
Gauss kernels

where the starting point corresponds to the limit � ! 0. In this limit all �i vectors

are pairwise orthogonal andX�,X+ are given by the center of mass of negative and

positive example vectors in feature space: �i = 1=m� for negative and �i = 1=m+

for positive examples, respectively.m�1 is the number of positive (negative) training
examples.

This is nothing else than a Bayesian decision for fully uncorrelated patterns, the

only useful information being the occurrence frequency of the two classes. This

solution is a good starting point, making relatively few errors also for �nite �

values. This idea can be easily implemented and provides in this context a new

perceptron-learning method, thus making the billiard method self contained.

18.5.3 The Soft Billiard

Another natural extension is to \soften" the billiard, by allowing for one or more

errors, as illustrated in the Figure 18.10

Figure 18.10 Projecting a trajectory beyond the zero-error version space.

Soft

billiards The \onion-algorithm" sorts the positive ight times in increasing order. While the

shortest ight time corresponds to the boundary of the zero-error feature space

polyhedron, we can sample now the position this ray would have on the second

(one-error version space), third (two-error version space), etc., bounce. Therefore,

while keeping the trajectory inside the zero-error cone, we generate at a minimal

additional cost simultaneously estimates of the zero, one-error, two-errors, etc.
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version spaces. By keeping track of the original labels of the planes the trajectory

is bouncing upon, we produce a set of \center-of-mass" vectors corresponding

to a given (n�; n+) number of negative and positive errors, respectively. After

convergence, we can try di�erent ways of weighting these results without having to

rerun the sampling procedure again.

This method provides a powerful tool of searching for good \mass-centers" in

addition to changing the kernel parameter �. It has also the same drawback, namely

it requires a careful testing according to the \k out on m"-estimate protocol.

18.6 Numerical Tests

We did not yet perform exhaustive tests on the SVM variant of these algorithms.

While in the process of editing this manuscript we received an article [Herbrich

et al., 1999a] where numerical results obtained on a large set of data strongly sup-

port our conclusions. For illustration purposes we present below results obtained

for normal perceptrons, were also analytic results are available [Opper and Haus-

sler, 1991]. The training examples have been generated at random and classi�ed

according to a randomly chosen but �xed \teacher" perceptron. Figure 18.11 shows

the theoretical Bayes learning curve. The experimental results were obtained using

the billiard algorithm and represents an average over 10 di�erent runs.
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Figure 18.11 The learning curve (generalization probability) as a function of

� = M
D
, where M is the number of randomly generated examples and D = 100 the

input dimension. The continuous curve is the Bayes result of Opper and Haussler,

the points with error bars represent billiard results.
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Figure 18.12 Comparison between average generalization values obtained with

the maximal margin perceptron and the ipper algorithm, respectively. Same

parameter values as in Figure 18.11.

Figure 18.11 shows a comparison between the average generalization error of the

maximal margin perceptron (lower curve) vs. the billiard results. Not shown is the

fact that in each single run the maximal margin perceptron was worse than the

billiard result. We present below the results obtained with the Gaussian kernel Eq.

(18.28) for two real-life data sets. In Figure 18.13 are the sonar data [Gorman and

Sejnowsky, 1988], split into two sets according to the aperture angle. Note that

di�erent versions of this split are in circulation. Our split can be found in P.R.'s

www-home page (http://www.neuro.uni-oldenburg/�rujan)
These results show that using the onion-algorithm one can obtain very good,

stable results for a rather wide range of � values.

We also tested our algorithms on the Wisconsin breast cancer data collected

by W. H. Wolberg (Breast Cancer Database, University of Wisconsin Hospitals,

Madison). After removing all incomplete examples we are left with 673 cases. Each

has 9 attributes and 2 classes. Using the leave-10-out cross-validation method we

obtain for � = 1:75 25 errors for the maximal margin SVM and 23 errors by the

billiard algorithm (out of 670 tests).
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Figure 18.13 The aspect-angle dependent sonar data split: comparison between

the generalization error obtained with the maximal margin SVM, the ipper, and

the onion algorithms, respectively. Note that di�erent data splits are available in

the literature.

18.7 Conclusions

Although we have not yet tested in great detail the billiard algorithm for SVM's,

we believe that this algorithm and its variants provide good estimates for the

Bayesian kernel classi�ers. Another interesting observation is that the best results

were obtained just before the billiard dynamics \closed." In general, for small values

of the kernel parameter �, the trajectories are rather short, the ball escapes often

to1. As � increases the trajectory length increases as well. A phase-transition like

change happens for even larger values of �: the length of the trajectory seems to

diverge, the billiard is closed.

Further theoretical work is necessary for determining correctly the typical cor-

relation length � in Eq. (18.13). If it turns out that � does not depend on the

dimension (number of training examples), then the estimate (18.13) would suggest

that the billiard method is superior to any known algorithm for solving convex

programming problems.Ideal gas

of balls In the present implementation the billiard based algorithms are slow in compar-

ison to the QP algorithms, for instance. However, since they can be run in parallel

on di�erent processors without having to exchange a lot of data, they are well suited

for massively parallel processing.
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err +0 +1 +2 +3 +4 +5

-0 8 (3,5) 9 (1,8) 13 (1,12) 18 (1,17) 20 (0,20) 21 (0,21)

-1 10 (5,5) 7 (2,5) 8 (1, 7) 8 (1, 7) 9 (1, 8) 11 (1,10)

-2 10 (5,5) 8 (3,5) 8 (2, 6) 6 (1, 5) 10 (1, 9) 16 (1,15)

-3 10 (5,5) 9 (4,5) 10 (3, 7) 6 (1, 5) 7 (1, 6) 9 (1, 8)

-4 12 (7,5) 10 (5,5) 10 (4, 6) 9 (3, 6) 8 (1, 7) 8 (1, 7)

-5 10 (8,2) 10 (5,5) 9 (4, 5) 9 (4, 5) 8 (3, 5) 7 (1, 6)

Table 18.1 Typical error table delivered by the soft billiard (onion) algorithm.

The matrix indices represent the number of errors made allowed when computing

the weight vector for the � and the + class, respectively. The matrix elements

contain the total number of errors made on the test set and their split into � and

+ class errors, respectively. The results shown are for the aspect-dependent angle

sonar data. A gaussian kernel with � = 4:4 has been used, the total number of test

examples was 104.
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18.8 Appendix

In this section, we �rst present a sampling lemma (that directly follows from

Hoe�ding's inequality) and then discuss its implications on the number of samples

needed to �nd a good estimate of the center of mass of the version space.

Lemma 18.1

Let v be a n-dimensional vector (v1; v2; : : : ; vn) where each component vi is con�ned

to the real interval [a; b]. Let v1;v2; : : : ;vk be k independent vectors that are

identically distributed according to some unknown probability distribution P . Let

� be the true mean of v (i.e., � =
R
vdP (v)) and let �̂ be the empirical estimate

of � obtained from k samples (i.e., �̂ = (1=k)
Pk

j=1 vj). Let jj�̂ � �jj denote the
Euclidean distance between �̂ and �. Then with probability at least 1��, jj�̂��jj < �

whenever

k >
n(b� a)2

2�2
ln

�
2n

�

�
(18.29)
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Proof To have jj�̂��jj < �, it is suÆcient to have j�̂i��ij < �=
p
n simultaneously

for each component i = 1; : : : ; n. Let Ai be the event for which j�̂i � �ij < �=
p
n

and let Ai be the complement of that event so that Pr(A1 \ A2 � � � \ An) =

1 � Pr(A1 [ A2 � � � [ An). Hence we have Pr(A1 \ A2 � � � \ An) > 1 � � if and

only if Pr(A1 [ A2 � � � [ An) < �. However, from the well known union bound, we

have Pr(A1[A2 � � �[An) �
Pn

i=1 Pr(Ai). Hence to have Pr(A1\A2 � � �\An) > 1��,
it is suÆcient to have Pr(Ai) < �=n for i = 1; : : : ; n. Consequently, in order to have

jj�̂� �jj < � with probability at least 1� �, it is suÆcient to have j�̂i� �ij > �=
p
n

with probability at most �=n for each component i. Now, for any component i,

Hoe�ding's inequality [Hoe�ding, 1963] states that:

Pr fj�̂i � �ij � �g � 2e�2k�
2=(b�a)2 (18.30)

The lemma then follows by choosing � = �=
p
n and by imposing that �=n be larger

than the right-hand side of Hoe�ding's inequality.

To apply this lemma to the problem of estimating the center of mass of the version

space, we could just substitute for the vector v, the separating weight vector (that

would include an extra component for the threshold). However, we immediately

run into a diÆculty when the separating vector lies in an in�nite-dimensional

feature space. In that case, we just apply the lemma for the m-dimensional vector

(�1; �2; : : : ; �m), dual to the separating weight vector. Hence, because we must now

replace n by the number m of training examples, the number k of samples needed

becomes:

k >
m(b� a)2

2�2
ln

�
2m

�

�
(18.31)

Regardless of whether we are sampling directly the weight vectors or the duals,

the bound obtained from this lemma for estimating the center of mass applies only

when we are sampling according to the true Bayesian posterior distribution.
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Typical bounds on generalization of Support Vector Machines are based on the min-

imum distance between training examples and the separating hyperplane. There has

been some debate as to whether a more robust function of the margin distribution

could provide generalization bounds. Freund and Schapire [1998] have shown how

a di�erent function of the margin distribution can be used to bound the number

of mistakes of an on-line learning algorithm for a perceptron, as well as to give an

expected error bound.

We show that a slight generalization of their construction can be used to give

a pac style bound on the tail of the distribution of the generalization errors that

arise from a given sample size. Furthermore, we show that the approach can be

viewed as a change of kernel and that the algorithms arising from the approach are

exactly those originally proposed by Cortes and Vapnik [1995]. Finally, we discuss

the relations of this approach with other techniques, such as regularization and

shrinkage methods.1

1. Parts of this work have appeared in [Shawe-Taylor and Cristianini, 1999b,a]
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19.1 Introduction

The presence of noise in the data introduces a trade-o� in every learning problem:

complex hypotheses can be very accurate on the training set, but have worse

predictive power than simpler and slightly inaccurate hypotheses. Hence the right

balance between accuracy and simplicity of a hypothesis needs to be sought and this

is usually attained by minimizing a cost function formed of two parts, one describing

the complexity of the hypothesis, the other measuring its training error. In the case

of linear functions this leads to an additional diÆculty as the problem of minimizing

the number of training errors is computationally infeasible if we parametrize the

problem in terms of the dimension of the inputs [Arora et al., 1997]. We avoid this

apparent impasse by bounding the generalization in terms of a di�erent function

of the training set performance, namely one based on the distribution of margin

values, but not directly involving training error. We will show in this paper that

minimizing this new criterion can be performed eÆciently.

When considering large margin classi�ers, where the complexity of a hypothesis

is measured by its margin with respect to the data, the presence of noise can lead

to further problems, for example datasets may be non-separable, and hence theirnon-separable

data margin would be negative, making application of the non-agnostic result impossible.

Moreover solutions found by maximizing the margin are not stable with respect to

the training points { slight modi�cations in the training set can signi�cantly change

the hypothesis { a brittleness which makes the maximal margin solution somehow

undesirable. These problems have led to the technique of the \soft-margin," a

procedure aimed at extending the large margin algorithms to the noisy case by

permitting a trade-o� between accuracy and margin.

Despite successes in extending this style of analysis to the agnostic case [Bartlett,

1998] (see (1.46) in this book) and applying it to neural networks [Bartlett, 1998],

boosting [Schapire et al., 1998], and Bayesian algorithms [Cristianini et al., 1998],

there has been concern that the measure of the distribution of margin values

attained by the training set is largely ignored in a bound in terms of its minimal

value. Intuitively, there appeared to be something lost in a bound that depended

so critically on the positions of possibly a small proportion of the training set.

Though more robust algorithms have been introduced, the problem of robust

bounds has remained open until recently. Freund and Schapire [1998] showed that

for on-line learning a measure of the margin distribution can be used to give

mistake bounds for a perceptron algorithm, and a bound on the expected error.

Following a similar technique, in this paper we provide theoretical pac bounds onmargin

distribution generalization using a more general function of the margin distribution achieved on

the training set; we show that this technique can be viewed as a change of kernel and

that algorithms arising from the approach correspond exactly to those originally

proposed by Cortes and Vapnik [1995] as techniques for agnostic learning. Finally,

we will show that the algorithms obtained in this way are intimately related to

certain techniques, usually derived in the framework of regularization or of Bayesian
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analysis and hence this work can be used to provide a learning-theoretic justi�cation

for such techniques.

Note that this style of analysis can also be used to transfer other hard margin

results into a soft margin setting, and furthermore it can be extended to cover the

nonlinear and regression cases [Shawe-Taylor and Cristianini, 1998].

19.2 Margin Distribution Bound on Generalization

We consider learning from examples of a binary classi�cation. We denote the domain

of the problem byX and a sequence of inputs by x = (x1; : : : ; xm) 2 Xm. A training

sequence is typically denoted by z = ((x1; y1); : : : ; (xm; ym)) 2 (X �f�1; 1g)m and

the set of training examples by S. By Erz(f) we denote the number of classi�cation

errors of the function f on the sequence z.

As we will typically be classifying by thresholding real valued functions we

introduce the notation T�(f) to denote the function giving output 1 if f has output

greater than or equal to � and �1 otherwise. For a class of real-valued functions H
the class T�(H) is the set of derived classi�cation functions.fat shattering

dimension
De�nition 19.1

Let F be a set of real valued functions. We say that a set of points X is -shattered

by F if there are real numbers rx indexed by x 2 X such that for all binary vectors

b indexed by X, there is a function fb 2 F satisfying fb(x) � rx + , if bx = 1 and

fb(x) � rx � , otherwise.
The relevance of the fat shattering dimension and margin for learning is illustrated

in the following theorem which bounds the generalization error in terms of the

fat shattering dimension of the underlying function class measured at a scale

proportional to the margin.

Theorem 19.2 Shawe-Taylor, Bartlett, Williamson, and Anthony, 1998

Consider a real valued function class F having fat-shattering dimension bounded

above by the function fat : R ! N which is continuous from the right. Fix

� 2 R . Then with probability at least 1 � Æ a learner who correctly classi�es

m independently generated examples S with h = T�(f) 2 T�(F ) such that

 = mini yi(f(xi)� �) > 0 will have the error of h bounded from above by

�(m; k; Æ) =
2

m

�
k log2

�
8em

k

�
log2(32m) + log2

�
8m

Æ

��
;

where k = fat(=8) � em.
The �rst bound on the fat shattering dimension of bounded linear functions in a

�nite dimensional space was obtained by Shawe-Taylor et al. [1998]. Gurvits [1997]

generalized this to in�nite dimensional Banach spaces (see Theorem 1.12 for an

improved version thereof).
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We �rst summarize results from [Shawe-Taylor and Cristianini, 1999b]. Let X be an

inner product space. We de�ne the following inner product space derived from X.

De�nition 19.3

Let Lf (X) be the set of real valued functions f on X with countable support

supp(f) (that is functions in Lf (X) are non-zero for only countably many points)

for which the sum of the squared values

kfk2 =
X

x2supp(f)
f(x)2

converges. We de�ne the inner product of two functions f; g 2 Lf (X), by

hf; gi =
X

x2supp(f)
f(x)g(x):

Note that the sum which de�nes the inner product can be shown to converge by

using the Cauchy-Schwartz inequality on the di�erence of partial sums and hence

showing that the partial sums form a Cauchy sequence. Clearly the space is closed

under addition and multiplication by scalars.

Now for any �xed � > 0 we de�ne an embedding of X into the inner productmap to a

separation space space X � Lf (X) as follows: �� : x 7! (x;�Æx), where Æx 2 Lf (X) is de�ned

by Æx(y) = 1, if y = x and 0, otherwise. Embedding the input space X into

X � Lf (X) maps the training data into a space where it can be separated by a

large margin classi�er and hence we can apply Theorem 19.2. The cost of performing

this separation appears in the norm of the linear operator acting in Lf (X) which

forces the required margin. The following de�nition speci�es the amount by which

a training point has to be adjusted to reach the desired margin .

For a linear classi�er (u; b) on X and margin  2 R we de�ne

d((x; y); (u; b); ) = maxf0;  � y(hu; x i � b)g:
This quantity is the amount by which (u; b) fails to reach the margin  on the point

(x; y) or 0 if its margin is larger than . For a misclassi�ed point (x; y) we will have

d((x; y); (u; b); ) > , and so misclassi�cation is viewed as a worse margin error,

but is not distinguished into a separate category. We now augment (u; b) to the

linear functional

û =

0
@u; 1

�

X
(x;y)2S

d((x; y); (u; b); )yÆx

1
A :

in the space X �Lf (X). The action of the additional component is exactly enough

to ensure that those training points that failed to reach margin  in the input

space now do so in the augmented space. The cost of the additional component

is in its e�ect of increasing the square of the norm of the linear functional by
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D(S; (u; b); )2=�2, where

D(S; (u; b); ) =

s X
(x;y)2S

d((x; y); (u; b); )2: (19.1)

At the same time the norm of the training points has been increased by the addi-

tional component �Æx. Taking both these adjustments into account and verifying

that the o�-training set performance of the augmented classi�er matches exactly

the original linear function gives the following theorem as a consequence of Theo-

rems 19.2 and 1.12.

Theorem 19.4 Shawe-Taylor and Cristianini [1999b]bound for a �xed

map Fix � > 0, b 2 R . Consider a �xed but unknown probability distribution on the

input space X with support in the ball of radius R about the origin. Then with

probability 1 � Æ over randomly drawn training sets S of size m for all  > 0 the

generalization of a linear classi�er u onX with kuk = 1, thresholded at b is bounded

by

�(m;h; Æ) =
2

m

�
h log2

�
8em

h

�
log2(32m) + log2

�
8m

Æ

��
;

where

h =

�
64:5(R2 +�2)(1 +D(S; (u; b); )2=�2)

2

�
;

provided m � 2=�, h � em and there is no discrete probability on misclassi�ed

training points.

Note that unlike Theorem 19.2 the theorem does not require that the linear classi�er

(u; b) correctly classi�es the training data. Misclassi�ed points will contribute more

to the quantity D(S; (u; b); ), but will not change the structure of the result. This

contrasts with their e�ect on Theorem 19.2 where resorting to the agnostic version

introduces a square root into the expression for the generalization error.

In practice we wish to choose the parameter � in response to the data in order to

minimize the resulting bound. In order to obtain a bound which holds for di�erent

values of � it will be necessary to apply the Theorem 19.4 several times for a

�nite subset of values. Note that the minimum of the expression for h (ignoring

the constant and suppressing the denominator 2) is (R + D)2 attained when

� =
p
RD. The discrete set of values must be chosen to ensure that we can get

a good approximation to this optimal value. The solution is to choose a geometric

sequence of values { see [Shawe-Taylor and Cristianini, 1999b] for details.

Theorem 19.5 Shawe-Taylor and Cristianini [1999b]

Fix b 2 R . Consider a �xed but unknown probability distribution on the input spacebound for

optimal map X with support in the ball of radius R about the origin. Then with probability

1 � Æ over randomly drawn training sets S of size m for all  > 0 such that

d((x; y); (u; b); ) = 0, for some (x; y) 2 S, the generalization of a linear classi�er u
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on X satisfying kuk � 1 is bounded by

�(m;h; Æ) =
2

m

�
h log2

�
8em

h

�
log2(32m) + log2

�
2m(28 + log2(m))

Æ

��
;

where

h =

�
65[(R+D)2 + 2:25RD]

2

�
;

for D = D(S; (u; b); ), and provided m � maxf2=�; 6g, h � em and there is no

discrete probability on misclassi�ed training points.

As discussed above the bound can be used for classi�ers that misclassify some

training points. The e�ect of misclassi�ed points will only be felt in the value of

D. Such points do not change the form of the expression. This is in contrast with

traditional agnostic bounds which involve the square root of the ratio of the fat

shattering dimension and sample size (see for example expression (1.46) in this

book). If a point is an extreme outlier, it is possible that its e�ect on D might be

such that the bound will be worse than that obtained using the agnostic approach

(where the \size" of misclassi�cation is irrelevant). However, it is likely that in

usual situations the bound given here will be signi�cantly tighter than the standard

agnostic one. The other advantage of the new bound will be discussed in the next

section where we show that in contrast to the computational diÆculty of minimizing

the number of misclassi�cations, there exists an eÆcient algorithm for optimizing

the value of h given in Theorem 19.5.

19.3 An Explanation for the Soft Margin Algorithm

The theory developed in the previous section provides a way to transform a non

linearly separable problem into a separable one by mapping the data to a higher

dimensional space, a technique that can be viewed as using a kernel in a similar

way to Support Vector Machines.

Is it possible to give an e�ective algorithm for learning a large margin hyperplane

in this augmented space? This would automatically give an algorithm for choosing

the hyperplane and value of , which result in a margin distribution in the original

space for which the bound of Theorem 19.5 is minimal. It turns out that not only

is the answer yes, but also that such an algorithm already exists.

The mapping � de�ned in the previous section implicitly de�nes a kernel as

follows:separation

kernels

k(x; x0) = h��(x); ��(x0) i
= h(x;�Æx); (x0;�Æx0) i
= hx; x0 i+�2hÆx; Æx0 i
= hx; x0 i+�2Æx(x

0)



19.4 Related Techniques 355

By using these kernels, the decision function of a SV machine would be:

f(x) =
mX
i=1

�iyik(x; xi) + b

=
mX
i=1

�iyi
�hx; xi i+�2Æx(xi)

�
+ b

and the Lagrange multipliers �i would be obtained by solving the Quadratic

Programming problem of minimizing in the positive quadrant the dual objective

function:

L =
mX
i=1

�i � 1

2

mX
i;j=1

yiyj�i�jk(xi; xj)

=
mX
i=1

�i � 1

2

mX
i;j=1

yiyj�i�j [hxi; xj i+�2Æi(j)]

=
mX
i=1

�i � 1

2

mX
i;j=1

yiyj�i�jhxi; xj i ��2 1

2

mX
i;j=1

yiyj�i�jÆi(j)

=
mX
i=1

�i � 1

2

mX
i;j=1

yiyj�i�jhxi; xj i ��2 1

2

mX
i=1

�2i

This is exacly the dual QP problem that one would obtain by solving the soft

margin problem in one of the cases stated in the appendix of [Cortes and Vapnik,

1995]:soft margin

minimize:
1

2
hu;u i+ C

X
�2i

subject to: yj [hu; xj i � b] � 1� �j
�i � 0

The solution they obtain is:

L =
X

�i �
X

yiyj�i�jhxi; xji � 1

4C

X
�2i

which makes clear how the trade o� parameter C in their formulation is related to

the kernel parameter �.

19.4 Related Techniques

Another way of looking at this technique is that optimizing the soft margin, or

enlarging the margin distribution, is equivalent to replacing the covariance matrixcovariance

of augmented

data

K with the covariance K 0

K 0 = K + �I
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which has a heavier diagonal. Again, there is a simple relationship between the

trade o� parameter � and the � and C of the previous formulations. So rather

than using a soft margin algorithm, one can use a (simpler) hard margin algorithm

after adding �I to the covariance matrix. This approach has also been considered

by Smola and Sch�olkopf [1998b] for the regression case where they also introduce

an upper bound on the size of the �'s in order to improve robustness to outliers.

Figure 19.4 shows the results of experiments performed on the ionosphere data

of the UCI repository [Blake et al., 1998]. The plot is of the generalization error for

di�erent values of the parameter �.

0 1 2 3 4 5 6
0.02

0.04

0.06

0.08

0.1

0.12

0.14

Figure 19.1 Generalization error as a function of �, in a hard margin problem

with augmented covariance K0 = K + �I, for ionosphere data.

This technique is well known in classical statistics, where it is sometimes called the

\shrinkage method" (see Ripley [1996]). Basically, in Bayesian discrimination (seeequivalent

techniques Section 1.1.1) it suggests replacing the empirical covariance function � with some
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function closer to the identity I, by choosing an element of the line joining them

(1 � �)� + �I. A redundant degree of freedom is then removed, leaving with the

new covariance � + �I. In the case of linear regression this technique, known as

ridge regression, can be derived from assuming Gaussian noise on the target values.

It was originally motivated by the trade o� between bias and variance [Hoerl and

Kennard, 1970] and leads to a form of weight decay. This approach is equivalent to

a form of regularization in the sense of Tikhonov. The theory of ill-posed problems

was developed by Tikhonov in the context of solving inverse problems [Tikhonov

and Arsenin, 1977]. Smola and Sch�olkopf [1998b] derived ridge regression using

dual variables and for example Vovk et al. [1998] have applied this to benchmark

problems. It is well known that one can perform regularization by replacing the

covariance matrix XTX with XTX+�I, and learning machines based on Gaussian

Processes implicitly exploit this fact in addition to the choice of kernel.

Another explanation proposed for the same technique is that it reduces the

number of e�ective free parameters, as measured by the trace of K. Note �nally

that from an algorithmical point of view these kernels still give a positive de�nite

matrix, and a better conditioned problem than the hard margin case, since the

eigenvalues are all increased by �. The so-called box constraint algorithm which

minimizes the 1-norm of the slack variables is not directly comparable with the

2-norm case considered here.

Remark 19.6

Note that

R
qX

�2i = RD = �2 = � =
1

4C

so a choice of  in the margin distribution bound controls the parameter C in the

soft margin setting, and the trade-o� parameter � in the regularization setting. A

reasonable choice of  can be one that minimizes some VC bound on the capacity,

for example maximizing the margin in the augmented space, or controlling other

parameters (margin; eigenvalues; radius; etc). Note also that this formulation also

makes intuitive sense: a small  corresponds to a small � and to a large C: little

noise is assumed, and so there is little need for regularization; vice versa a large 

corresponds to a large � and a small C, which corresponds to assuming a high level

of noise. Similar reasoning leads to similar relations in the regression case.

19.5 Conclusion

The analysis we have presented provides a principled way to deal with noisy data in

large margin classi�ers, and justi�es the like the soft margin algorithm as originally

proposed by Cortes and Vapnik. We have proved that one such algorithm exactly

minimizes the bound on generalization provided by our margin distribution analysis,

and is equivalent to using an augmented version of the kernel. Many techniques

developed for the hard margin case can then be extended to the soft-margin case,
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as long as the quantities they use can be measured in terms of the modi�ed kernel

(margin, radius of the ball, eigenvalues).

The algorithms obtained in this way are strongly related to regularization tech-

niques, and other methods developed in di�erent frameworks in order to deal with

noise. Computationally, the algorithm can be more stable and better conditioned

than the standard maximal margin approach.

Finally, the same proof technique can also be used to produce analogous bounds

for nonlinear functions in the classi�cation case, and for the linear and nonlinear

regression case with di�erent losses, as reported in the full paper [Shawe-Taylor and

Cristianini, 1998].
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We apply methods of Statistical Mechanics to study the generalization performance

of Support Vector Machines in large dataspaces.

20.1 Introduction

Many theoretical approaches for estimating the generalization ability of learning

machines are based on general, distribution independent bounds. Since such bounds

hold even for very unfavourable data generating mechanisms, it is not clear a priori

how tight they are in less pessimistic cases.
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Hence, it is important to study models of nontrivial learning problems for which

we can get exact results for generalization errors and other properties of a trained

learning machine. A method for constructing and analysing such learning situations

has been provided by Statistical Mechanics. Statistical Mechanics is a �eld of

Theoretical Physics which deals with a probabilistic description of complex systems

that are composed of many interacting entities. Tools originally developped to study

the properties of amorphous materials enable us to conduct controlled, analytical

experiments for the performance of learning machines for speci�c types of data

distributions when the numbers of tunable parameters and examples are large.

While often statistical theories provide asymptotic results for sizes of the training

data sample that are much larger than some intrinsic complexity of a learning

machine, in contrast, the so called 'thermodynamic limit' of Statistical Mechanics

allows to simulate the e�ects of small relative sample sizes. This is achieved by taking

the limit where both the sample size and the number of parameters approaches

in�nity, but an appropriate ratio is kept �xed.

Starting with the pioneering work of Elizabeth Gardner [1988] this approach

has been successfully applied during the last decade to a variety of problems in

the context of neural networks (for a review, see, e.g., [Seung et al., 1992, Watkin

et al., 1993, Opper and Kinzel, 1996]). This chapter will deal with an application

to learning with Support Vector Machines (SVMs). A somewhat more detailed

analysis which was designed for readers with a Statistical Physics background, can

be found in [Dietrich et al., 1999].

20.2 The Basic SVM Setting

We will restrict ourselves to SVM classi�ers. They are de�ned (for more expla-

nations, see the introductory chapter to this book) by a nonlinear mapping �(�)
from input vectors x 2 R

N into a feature space F . The mapping is constructed

from the eigenvectors  j(x) and eigenvalues �j of an SVM kernel k(x;y) via

�(x) = (
p
�1 1(x);

p
�2 2(x); : : :).

The output y of the SVM can be represented as a linear classi�cation

sgn (�(x) �w) = sgn

0
@NFX
j=1

p
�j j(x)wj

1
A (20.1)

in feature space, where for simplicity, we have set the bias term equal to zero. For

a realizable setting, the weights wj , j = 1; : : : ; NF are adjusted to a set of example

pairs f(y1;x1); : : : ; (ym;xm)g by minimizing the quadratic function 1
2 jjwjj2 under

the constraints that y(�(x) �w) � 1 for all examples.
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20.3 The Learning Problem

We assume a simple noise free scenario, where the generation of data is modelled

within the so called teacher-student framework. Here, it is assumed that some clas-teacher-student

framework si�er (the teacher) which has a similar representation as the machine of interest,

gives the correct outputs to a set of randomly generated input data. The general-

ization error can be measured as the probability of disagreement on a random input

between teacher and student machine. In our case, we choose the representation

yi = sgn

0
@X

j

p
�jBj j(xi)

1
A : (20.2)

All nonzero components are assumed to be chosen independently at random from

a distribution with zero mean and unit variance. We will also consider the case,

where a �nite fraction of the Bj are 0 in order to tune the complexity of the rule.

Finally, the inputs xi are taken as independent random vectors with a uniform

probability distribution D(x) on the hypercube f�1; 1gN . We are interested in the

performance of the SVM averaged over these distributions.

We will specialize on a family of kernels which have the form k(x;y) = K
�
x�y
N

�
,

where, for simplicity, we set K(0) = 0. These kernels are permutation symmetric

in the components of the input vectors and contain the simple perceptron margin

classi�er as a special case, when K(z) = z. For binary input vectors x 2 f�1; 1gN ,
the eigenvalue decomposition for this type of kernels is known [K�uhn and van

Hemmen, 1996]. The eigenfunctions are products of components of the inputeigenvalue

decomposition vectors, i.e.,  i(x) = 2�N=2
Q

j2Si xj , which are simple monomials, where Si �
f1; : : : ; Ng is a subset of the components of x. For polynomial kernels, these features
have also been derived in [Smola et al., 1998a]. The corresponding eigenvalues

are found to be �i = 2N=2
P

x k(e;x) i(x), with e = (1; : : : ; 1)T . They depend

on the cardinality jSij of the set Si only. For jSij = 1, the eigenfunctions are

the N linear functions xj , j = 1; : : : ; N . For jSij = 2, we have the N(N � 1)=2

bilinear combinations xixj etc. The behaviour of the eigenvalues for large input

dimension N is given by �i ' 2N

N jSij
K(jSij)(0): K(l) denotes the l-th derivative of

the function K. The rapid decrease of the eigenvalues with the cardinality jSij
is counterbalanced by the strong increase of their degeneracy which grows like

njSij =
�
N
jSij
� ' N jSij=jSij!. This keeps the overall contribution of eigenvaluesP

jSij=l �injSij for di�erent cardinalities l of the same order.

20.4 The Approach of Statistical Mechanics

The basic idea to map SVM learning to a problem in Statistical Mechanics is to

de�ne a (Gibbs) measure p�(w) over the weights w which in a speci�c limit is
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concentrated at the weights of the trained SVM. This is done by setting

p�(w) =
1

Z
e�

1
2�jjwjj2

mY
i=1

�

0
@yi NFX

j=1

p
�j j(xi)wj � 1

1
A : (20.3)

�(x) is the unit step function which equals 1 for x � 0 and 0 else. Z normalizes

the distribution. In the limit � ! 1, this distribution is concentrated at the

minimum of jjwjj2 in the subspace of weights where all arguments of the �

functions are nonnegative. This is equivalent to the conditions of the SVM quadratic

programming problem. A di�erent approach has been discussed in [Opper, 1999],

where the Kuhn Tucker conditions of the optimization problem have been directly

implemented into a Statistical Mechanics framework. It will be interesting to see,

if this method can also be applied to the generalization problem of SVMs.

The strategy of the Statistical Mechanics approach consists of calculating expec-

tations of interesting quantities which are functions of the weight vector w over

both the distribution (20.3) and over the distribution of the training data. At the

end of the calculation, the limit � !1 is taken. These averaging procedures can be

performed analytically only in the limit where N !1 and m!1. They require

a variety of delicate and nontrivial manipulations which for lack of space cannot

be explained in this contribution. One of these techniques is to apply a central

limit theorem (valid in the 'thermodynamic limit') for carrying out expectationsthermodynamic

limit over the random inputs, utilizing the fact that the features  j are orthogonal with

respect to the chosen input distribution. This is the main reason, why we prefer

to work in high-dimensional feature space rather than using the low dimensional

kernel representation. A review of the standard techniques used in the Statistical

Mechanics approach and their application to the generalization performance of neu-

ral networks can be found, e.g., in [Seung et al., 1992, Watkin et al., 1993, Opper

and Kinzel, 1996]), a general review of the basic principles is [M�ezard et al., 1987].

The results of our analysis will depend on the way, in which the two limits

N ! 1 and m ! 1 are carried out. In general, one expects that a decay of the

generalization error �g to zero should occur only when m = O (NF ), because NF
is the number of parameters of the data model. Nevertheless, when the mapping �

contains a reasonably strong linear part, �g may drop to small values already on a

scale of m = �N examples. Hence, in taking the limit N ! 1, we will make the

general ansatz m = �N l, l 2 N and discuss di�erent regions of the generalization

performance by varying l. Our model di�ers from a previous Statistical Mechanics

approach to SVMs [Buhot and Gordon, 1999] where the dimension of the feature

space grew only linear with N .
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20.5 Results I: General

One of the most basic and natural quantities which result from the calculation is a

so called order parameter which for the SVM is de�ned by

R =
X
i

�ihwiBii (20.4)

where �i := �i=2
N , and h:::i denotes an average with respect to the distribution

(20.3) and the distributions of the data and of the teacher vector. R is a weighted

overlap between the teacher and SVM student weight vectors. This similarity

measure between teacher and student allows us to express the generalization error

by �g = 1
� arccos

Rp
Bq
: Here B =

P
i �ih(Bi)

2i and q0 =
P

i �ih(wi)2i denotegeneralization

error speci�c squared norms of the teacher and student weight vectors. Note that by the

speci�c form of �g, the teacher's rule is perfectly learnt when the student vector

points in the same direction as the teacher irrespectively of the student vector's

length. Furthermore, an analysis of the contributions coming from eigenvectors of

di�erent complexities (i.e., cardinalities jSij) will give us an intuitive understanding
of the SVMs inference of the rule.

As a general result of our analysis, we �nd that if the number of examples is

scaled as m = �N l,scaling of number

of inputs
All high order components Bi are completely undetermined, i.e., R(+) :=P
jSij>l �ihwiBii ! 0, and also that q(+)0 :=

P
jSij>l �ih(wi)2i ! 0, in the large N

limit.

This does not mean that the values of the corresponding weights wi are zero, they

are just too small to contribute in the limit to the weighted sums (20.4).

All low order components are completely determined, in the sense that wi = cBi

for all i with jSij < l, where c depends on � only. The only components which are

actually learnt at a scale l are those for jSij = l.

To illustrate this behaviour for the simplest case, we study quadratic kernels of

the form K(x) = (1 � d)x2 + dx, where the parameter d, 0 < d < 1, controls the

nonlinearity of the SVM's mapping. The eigenvectors of lowest complexity are just

the N linear monomials � xj , and the remaining ones are the N(N�1)=2 quadratic
terms of the form xixj . The learning curve is shown in Figure 20.1, where we have

included results from simulations for comparison.

If the number of examples scales linearly with the input dimension, i.e., m = �N

(left side of Figure 20.1), the SVM is able to learn only the linear part of the

teacher's rule. However, since there is not enough information to infer the remaining

N(N � 1)=2 weights of the teacher's quadratic part, the generalization error of the

SVM reaches a nonzero plateau as �!1 according to �g(�)� �g(1) � ��1. The
height of the plateau is given by �g(1) = ��1 arccos(d), which increases from zero

at d = 1, when the kernel is entirely linear, to �g =
1
2 at d = 0 when only quadratic

features are present.
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Figure 20.1 Decrease of the generalization error on di�erent scales of examples,

for quadratic SVM kernel learning a quadratic teacher rule (d = 0:5; B = 1) and

various gaps . Simulations were performed with N= 201 and averaged over 50 runs

(left and next �gure), and N= 20, 40 runs (right).

If we increase the number of examples to grow quadratically with N , i.e.,

m = �N2 (right side of Figure 20.1), the generalization error will decrease towards

zero with a behavior � 1=� asymptotically, where the prefactor does not depend

on d.

The retarded learning of the more complex components of the mapping �

generalizes to kernels which are polynomials of higher order z > 2. On the scale ofpolynomial

kernels m = �N l examples, when l < z, the generalization error decreases to a plateau as

�!1 which is given by

�g =
1

�
arccos

vuutPl
j=1

K(j)(0)
j!

K(1)
: (20.5)

Only at the highest scale m = �Nz, we get an asymptotical vanishing of the

generalization error to zero as �g � 0:500489
z! ��1.
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Figure 20.2 Learning curves for linear student and quadratic SVM kernels, all

learning a linear teacher rule (B = d). For � = 10, a �nite size scaling is shown in

the inset.

20.6 Results II: Over�tting

As the next problem, we study the ability of the SVM to cope with the problem

of over�tting when learning a rule which has a much lower complexity than the

mapping �. We model such a problem by keeping the SVM quadratic, but choosing

a data generating mechanism which is de�ned by a simple linear separation of

examples. This is achieved by setting jBij = 1 for jSij = 1 and jBij = 0 for the

higher order components. Our results for the generalization error are shown in

Figure 20.2, where the number of examples is scaled as m = �N . Surprisingly,

although the complexity of the SVM is by far higher than the underlying rule, only

a rather weak form of over�tting is observed. The SVM is able to learn the N

teacher weights Bi on the correct scale of m = �N examples. The asymptotic rate

of convergence is �g � ��2=3. If we had used a simple linear SVM for the same task,

we would have learned the underlying concept only slightly faster at �g � ��1.
We can compare these results with simple bounds on the expected generalization

error as described in Section 1.3.4 of the introductory chapter. E.g., the expectation

of the ratio of the number of support vectors over the total number of examples

m yields an upper bound on �g [Vapnik, 1995]. Calculating the expected number

of support vectors within the Statistical Mechanics approach yields an asymptotic

decay � ��1=3 for this bound which decays at a slower rate than the actual �g.
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20.7 Results III: Dependence on the Input Density

One can expect that if the density of inputs acts in a favourable way together

with the teacher's concept, learning of the rule will be faster. We have modelled

such a situation by constructing an input distribution which is correlated with

the teacher weights Bi by having a gap of zero density of size 2 around the

teacher's decision boundary. In this case we expect to have a large margin between

positive and negative examples. The density for this model is of the form D(x) �
�
�jPi

p
�iB� i(x)j � 

�
.

For a quadratic SVM learning from a quadratic teacher rule, we observe a faster

decay of the generalization error than in the case of a uniform density. However,

on the linear scale m = �N (Figure 20.1) the asymptotic decay is still of the form

�g(�) � �g(1) � ��1. A dramatic improvement is obtained on the highest scale

m = �N2, where the generalization error drops to zero like �g � ��3e�ĉ()�
2

. In

this case, the mismatch between the true generalization error and the simple bound

based on the fraction of support vectors is much more striking. The latter decreases

much slower, i.e., only algebraically with �.

20.8 Discussion and Outlook

The present work analysed the performance of SV Machines by methods of Statisti-

cal Mechanics. These methods give distribution dependent results on generalization

errors for certain simple distributions in the limit of high dimensional input spaces.

Why do we expect that this somewhat limited approach may be of interest to

the machine learning community? Some of the phenomena discussed in this chapter

could de�nitely be observed qualitatively in other, more general approaches which

are based on rigorous bounds. E.g., the recently introduced concept of luckiness

[Shawe-Taylor et al., 1998, Sch�olkopf et al., 1999] applied to the case of the

favourable density with a gap would give smaller generalization errors than for

a uniform density. This is because the margin (taken as a luckiness function) would

come out typically larger. Nevertheless, the quantitative agreement with the true

learning curves is usually less good. Hence, an application of the bounds to model

selection may in some cases lead to suboptimal results.

On the other hand, the power of the Statistical Mechanics approach comes from

the fact that (in the so far limited situations, where it can be applied) it yields

quantitatively exact results in the thermodynamic limit, with excellent agreement

with the simulations of large systems. Hence, this approach can be used to check

the tightness of bounds in controlled analytical experiments. We hope that it will

also give an idea how bounds could be improved or replaced by good heuristics.

So far, we have restricted our results to a noise free scenario, but it is straight-

forward to extend the approach to noisy data. It is also possible to include SVM

training with errors (resulting in the more advanced optimization problem with
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slack variables) in the formalism. We expect that our analysis will give insight into

the performance of model selection criteria which are used in order to tune the

parameters of the SVM learning algorithm to the noise. We have already shown for

the noise free case that a very simple statistics like the relative number of support

vectors can give a wrong prediction for the rate of convergence of the generaliza-

tion error. It will be interesting to see if more sophisticated estimates based on the

margin will give tighter bounds.
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Bounds on the generalization performance of algorithms such as boosting, linear

programming machines and (multilayer) RBF-networks require a good estimate

of the covering or entropy numbers for the corresponding hypothesis classes. The

classes are generated by convex combinations and concatenations of basis functions

for which we provide functional analytic bounds on the entropy numbers.

The results are novel in three regards. First, bounds are given for vector val-

ued functions directly without having to use a generalization of the VC dimension

or other combinatorial quantities. Secondly, bounds are derived for convex com-

binations of parametric families. It is shown that signi�cantly better bounds can

be obtained depending on the eigenvalues of the corresponding integral operators

when one deals with kernel functions. Finally, a concatenation theorem allows the

use of the previously established results to images of nonlinear operators, such as

the outputs of multilayer networks.

21.1 Introduction

Theoretical bounds on the generalization performance of Support Vector (SV)

Machines follow from general results of statistical learning theory along with good

bounds on covering numbers for the class of functions induced by such machines

(cf., e.g., Section 1.2.3). Williamson et al. [1998] show how bounds can be obtained

using the machinery of entropy numbers of operators. This is possible because the

class of functions is de�ned via a restriction of a weight vector w to lie within a

certain ball in feature space.

The present chapter extends and modi�es the methods of [Williamson et al., 1998]

in order to deal with other types of learning machines as well. These include convex

combinations of hypotheses as used in boosting [Schapire et al., 1998] and linear

programming machines [Bennett, 1999, Weston et al., 1999], or concatenations of

hypothesis classes such as multilayer rbf networks. In particular our results applyApplications:

Kernel Boosting

LP Machines

RBF Networks

to the algorithms given in Chapter 8 and Chapter 12. As a by-product we also

provide good bounds for the problem of estimating vector valued functions.

The generalization performance of learning machines can be bounded in terms

of the covering number (see De�nition 1.8) of the loss function induced hypothesis

class. The necessary tools can be found in Section 1.2.3. In particular Theorem 1.10

states the connection between N and R(f).

Before going into the actual calculations let us briey review existing results on

this topic. Covering numbers for classes of functions de�ned via an `2 constraint

were proven for convex combinations of hypotheses by Lee et al. [1996]. Their

result, however, was solely based on a theorem of Maurey [1981] ignoring e�ects of

the kernel. Gurvits and Koiran [1997] give a bound for similar settings and Bartlett

[1998] proved bounds on the fat shattering dimension based on a weight constraint

of Multilayer Perceptrons. See also [Anthony and Bartlett, 1999, Sec. 14.6] for an

overview.
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In addition to the techniques pointed out in Chapter 1 we will have to introduce

entropy numbers (the functional inverse of covering numbers) along with a number

of background results in Section 21.2. Next we present a result concerning arbitrary

convex combinations of a parametrized family of functions (Section 21.3).

In Section 21.4 we show how one may exploit the geometry of base hypothesis

classes H induced by kernels to obtain bounds on N (�; co (H)) (the �-covering

numbers of the convex hull of H) that are better than those obtainable via general

results (such as those by Carl et al. [1999]) which are solely in terms of N (�;H).

Finally in Section 21.5 we show how to apply the reasoning based on linear

operators and their entropy numbers to classes of functions that certainly cannot

be expressed in terms of a single linear operator | the most interesting for learning

applications being multilayer perceptrons.

All of the proofs are in the appendix. Also in the appendix is an illustration of

the diÆculty in using p-convex combinations, with p > 1, when there are an in�nite

number of terms (when p = 2, this corresponds to traditional weight decay in the

limit of an in�nite number of nodes).

21.2 Tools from Functional Analysis

As already pointed out in the introduction, our aim is to provide good bounds on

N . While direct computation of the latter is often quite diÆcult, the use of its

functional inverse, the so called entropy number �n is more amenable to practical

analysis.

De�nition 21.1 Entropy Numbers

Denote by UA the unit ball in a metric space A = (A; d). The n-th entropy

number �n(A) = �n(A; d) of a set A � A with respect to the metric d is de�nedEntropy Numbers

as the minimum radius � of balls such that there exist a1; : : : ; an 2 A with

A � Sn
i=1 �UA + ai.

If A and B are normed spaces (e.g., Banach spaces), the entropy number �n(T )

of an operator T : A ! B is de�ned as the entropy number of the image of the unit

ball, i.e., �n(T ) := �n(T (UA)) and the �-covering of T (UA) is with respect to the

metric of the space B. We sometimes write �n(T;B) to make the metric involved

explicit.

By construction �n is the functional inverse of N (�); hence if we can view the class

of functions used by a learning machine as generated by applying some operator

to a unit ball in some space, we will be able to bound the covering numbers of the

machine in terms of the entropy numbers of the operator. If A and B are Banach

spaces, we will denote by L(A;B) the set of all bounded linear operators mapping

from A to B.
For some learning machines one needs bounds on entropy numbers of convex

hulls in terms of the entropy numbers of the base model class. In this chapter we



372 Entropy Numbers for Convex Combinations and MLPs

will demonstrate the di�erence in scaling between general statements on convex

combinations and the improvement that can be obtained for the special class of

kernel functions by explicitly exploiting the kernel map. We can use a special case

of [Carl et al., 1999, Corollary 4.5].

Proposition 21.2 Entropy numbers of Convex Hulls

For all Banach spaces A and all precompact subsets A � A satisfying the bound

�n(A) � cn� 1
p with c; p > 0; n 2 N (21.1)

there exists a constant �(p) such that for all n 2 N ,
�2n(co (A)) � c�(p)n� 1

p ; (21.2)

where co (A) =
S1
n=1f

Pn
i=1 �iaijai 2 A;

P
i j�ij � 1g is the (symmetric absolute)

convex hull of A.Convex Hulls

This result will be useful in computing the entropy number of convex combinations,

once the entropy number of the base class has been determined. The following

proposition which follows directly from volume considerations addresses the latter

problem.

Proposition 21.3 Compact setsCompact and

�nite

dimensional

Given a p-dimensional Banach space A and a compact set � � A there exists a

constant c(�;A) > 0 such that the entropy number satis�es

�n(�) � c(�;A)vol (�) 1pn�
1
p : (21.3)

The constants depend on the geometrical properties of the space, e.g., whether �

is a box or a ball. Finally we need another bound to take advantage of the fact

that we only evaluate a function f 2 F on an m-sample. This can be achieved by

Maurey's theorem (see [Carl, 1985]). We state a special case applicable to Hilbert

spaces, since that is all we need in the present paper.

Proposition 21.4 Maurey, CarlHilbert spaces

Let m 2 N , H a Hilbert space and let S 2 L(H; `m1) be a linear operator. Then

there exists a constant c such that

�2n(S) � ckSk
�
n�1 log

�
1 + m

n

�� 1
2 : (21.4)

We will make use of vector-valued sequence spaces. If X is a normed space withVector-valued

sequence spaces norm k�kX , and x = (x1; : : : ; xm)
T 2 X , then kxk`mp (X ) := k(kx1kX ; : : : ; kxmkX k`mp

where k � k`mp is the traditional `mp norm, kzk`mp = (
Pm

i=1 jzijp)1=p. In particular

denote by `qp(`
s
r) a \mixed" norm acting on R

q�s . (See [Diestel et al., 1995, p.32].)

Corollary 21.5 Bounds for `m1(`
d
1) spaces

Let m; d 2 N , H a Hilbert space, and let S 2 L(H; `m1(`d1)). Then there exists a

constant c = c(d) such that

�2n(S) � ckSk
�
n�1 log

�
1 + md

n

�� 1
2 : (21.5)
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Since `m1(`
d
1) is norm equivalent to `md

1 (albeit with a constant depending on d),

the corollary can be seen to follow directly from Proposition 21.4.

Finally one needs methods of combining these bounds, e.g., when mapping sets

whose entropy numbers are bounded into another space with operators that might

restrict the model class even more. The following proposition from [Carl and

Stephani, 1990] is very useful.

Proposition 21.6 Products of operatorsProduct

inequality Suppose A;B; C are Banach spaces and R 2 L(A;B) and S 2 L(B; C). If n1; n2 2 N
and n � n1n2 then the entropy numbers of RS : A ! C satisfy
�n(RS) � �n1(R)�n2(S): (21.6)

A simple variation on this standard result is the following.

Proposition 21.7

Suppose A and B are Banach spaces, V � A and S 2 L(A;B). Then for all

n1; n2; n 2 N such that n � n1n2,
�n(S(V )) = �n(S(V );B) � �n1(V;A)�n2(S(UA);B) = �n1(V )�n2(S): (21.7)

This is needed if V cannot be seen as generated by a linear operator. In some cases,

products of operators will not be suÆcient, especially if the overall function class

cannot be viewed as generated by a single linear operator itself. However, the e�ect

of a nonlinear operator can be seen as being contained in the union of several linear

ones, as the following proposition shows.

Proposition 21.8 Sets of operatorsConcatenation

Result Denote by W;Y Banach spaces, S a linear operator S : W ! Y, L(W;Y) the
space of such operators and S � L(W;Y). Consider the pseudo norm1 on L(W;Y)
induced by a set W � W in a fashion similar to the standard operator norm on

L(W;Y):
kSkW := sup

w2W
kSwkY : (21.8)

Let

SW :=
[
S2S

SW: (21.9)

1. It is easy to check that kSkW is a pseudo norm. In fact we have

kS + S0kW = sup
w2W

k(S + S0)wkY � sup
w2W

kSwkY + sup
w2W

kS0wkY = kSkW + kS0kW
k�SkW = sup

w2W
k�SwkY = j�j sup

w2W
kSwkY = j�jkSkW

kSkW = sup
w2W

kSwkY � kSw�kY � 0
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Then for n; n0 2 N
�n�n0(SW ) := �n�n0(SW; k � kW ) := �n�n0 ([S2SSW;Y) (21.10)

� �n(S; k � kW ) + sup
S2S;Y

�n0(SW ):

In particular forW being the unit ball, i.e.,W = UW the metric on L(W;Y) reduces
to the standard operator norm and we have

�n�n0(SUW) � �n(S) + sup
S2S

�n0(S) (21.11)

This proposition will become very useful in the case of concatenations of nonlinear

estimators such as in multilayer perceptrons (see Section 21.8 for a proof). There,

each subsequent layer can be represented in terms of set of operators acting on the

output of the previous layer (cf. Section 21.5).

Now that all the basic ingredients have been presented we may proceed by proving

bounds for the classes of functions used by practical learning algorithms.

21.3 Convex Combinations of Parametric Families

Consider the class of functions co� F obtained by an absolute convex combination ofVector Valued

Convex

Combination

some parametric family of basis functions F = F� := ff jf : X ! R with  2 �g:

co� F :=

(
f

�����f =X
i

�ifi with �i 2 R d ;
X
i

k�ik`d1 � �; i 2 �
)
: (21.12)

Observe elements f 2 co� F map f :X ! R
d . Recall the L1 norm for functions

f :X ! R is kfkL1 = supx2X jf(x)j. The L1(`d1) norm for functions f :X ! R
d is

kfkL1(`d1)
= supx2X kf(x)k`d1 .

For functions f Lipschitz continuous in their parametrization  with compact

�nite dimensional index sets � one obtains the following statement.

Proposition 21.9 Convex Combinations in L1(`d1) spaces
Denote by � � X a compact p-dimensional index set, and F� the corresponding

parametric family with jf(x)j � 1 for all x 2 X and f 2 F�. Moreover denote by

cL(�; X) a Lipschitz constant satisfying

sup
;02�

sup
x2X
jf(x)� f0(x)j � cL(�; X)k � 0k: (21.13)

Then there exists a positive constant c(�; p;X ) > 0 such that

�2n(co� F;L1(`d1)) � c(�; p;X )cL(�;X )�n�
1
pd : (21.14)

Next we can bound �n(co� F; `
m
1(`

d
1)) which corresponds to measuring the richnessEvaluation

operator of co� F on an arbitrary m-sample X = (x1; : : : ;xm) � X . For this purpose we
introduce the evaluation operator SX as

SX : L1(`d1)! `m1(`
d
1) (21.15)
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SX : f 7! (f(x1); : : : ; f(xm)): (21.16)

The �rst thing to note is that SX is linear and has norm 1 due to the L1(`d1)
norm. Hence we can apply Proposition 21.7 to bound �n(SX(co� F ); `

m
1(`

d
1)) by

�n1(SX)�n2(co� F ) with n1n2 � n. Next we use Propositions 21.4 and 21.9 to

bound the terms �n1(SX) and �n2(co� F ) respectively.
2

Proposition 21.10 Convex Combinations in `m1(`
d
1) spacesSimple Rate

Bound The entropy number (with respect to the `m1(`
d
1) metric) of the �-convex combina-

tion co� F evaluated at m arbitrary points X := (x1; : : : ;xm) � X satis�es

en = �2n(SXco� F; `
m
1(`

d
1))

� �~c(�; p;X)cL(�; X) inf
n1;n22N ;n1+n2�n

�
n�11 log

�
1 + md

n1

�� 1
2

n
� 1
pd

2 (21.17)

for some constant ~c(�; p;X) > 1.

By setting n1 = n2 = bn=2c one can check that en = O(n�
1
2� 1

pd ). Since X was

arbitrary, we can thus bound supX2Xm N (�; (co� F )(X); `m1(`
d
1)) by inverting the

bound on �n(co� F ). Ignoring log(m) terms, one gets

log sup
X2Xm

N (�; (co� F )(X); `m1(`
d
1)) = O

�
��

2pd
pd+2

�
(21.18)

For large p or d this is roughly O(1=�2) which is similar to the results obtained

in [Gurvits, 1997, Bartlett, 1998] derived using the fat-shattering dimension, a

version of Maurey's theorem and the generalization of the Sauer-Shelah-Vapnik-

Chervonenkis lemma of Alon et al. [1997]. When log(m) factors are taken into

account the above result is slightly better than those previous results.

As we will show subsequently, one can do much better by exploiting properties

of kernels in a more explicit way. The reason we can do better is that we takeBetter Bounds

via Kernels more account of the geometry of F than just its covering numbers. The fact that

information about N (�; F ) alone can not provide tight bounds on N (�; co� F ) has

been observed previously by Talagrand [1993]. The easiest way to see that bounds

such as Proposition 21.2 can not be always tight is to observe that co coF = coF ,

but the bound of the proposition would not even apply in that case.

21.4 Convex Combinations of Kernels

Better bounds on �n can be obtained for convex combinations of kernels. Speci�cally

we are interested in computing N (�; coF ) when F = fx 7! k(x;x1)jx1 2 Xg. In
order to do this we take the point of view in [Williamson et al., 1998]: the hypothesis

class is considered as the image of a linear operator.

2. Note that �n(SX(co� F )) = �n((co� F )(X)).
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21.4.1 Feature Space

We use the de�nitions of Section 1.3.2, however with a deviation from the conditionsGeneralized

kernels on k imposed by Mercer's Theorem (Th. 1.16). Speci�cally we only require k :

X � X ! R to be a bounded symmetric function in its arguments (no positivity

needed). Note that the requirement is similar to the one in Chapter 8.

Moreover we assume that there exists an expansion of k into the eigensystem

(�i;  i(x)) of the corresponding symmetric integral operator (cf. (1.65))

Tf(x) :=

Z
X
k(x;y)f(y)dy (21.19)

such that (cf. (1.67))

k(x;y) =
X
i

�i i(x) i(y): (21.20)

We will require that k induces a trace-class operator, i.e., that
P

i j�ij is �nite, and
that moreover there exists a constant Ck such that

sup
i2N

sup
x2X
j i(x)j � Ck: (21.21)

The latter is standard for Mercer kernels [Mercer, 1909], however for general

symmetric operators this need not automatically be the case. Consequently the

class of admissible functions is signi�cantly larger than the one suitable for SV

machines. For instance, Bn spline kernels (i.e., n + 1 times convolutions of the

unit interval) of arbitrary order n 2 N can be used, whereas SV machines would

only allow spline kernels of odd order. The crucial point in dealing with convexExtending the

Kernel Trick combinations of kernels is that elements of

co� F =�
f : X ! R

d

����f(x) =P
i

�ik(xi;x); �i 2 R d ;
P
i

k�ik`d1 � �; xi 2 X
�

(21.22)

still can be written as a dot product in some feature space. (By de�nition of co� F

we have
P

i j�ij j � �j with
P

j �j � �.) This is done by setting

f(x) =
mX
i=1

�ik(xi;x) (21.23)

=
mX
i=1

�i
X
j

�j j(xi) j(x) = ((w1;�(x)); : : : ; (wd;�(x))): (21.24)

Here wj and �(x) are de�ned as follows (for SV kernels this de�nition coincides

with the standard form derived from Mercer's theorem (1.68)):

�(x) :=
�pj�1j 1(x);pj�2j 2(x); : : :� (21.25)

wj :=

 p
j�1j sgn (�1)

mX
i=1

�ij 1(xi);
p
j�2j sgn (�2)

mX
i=1

�ij 2(xi); : : :

!
(21.26)
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w

�(x)

w

�(x)

Figure 21.1 Left: In the SV case the weight vector w is contained in a ball of some

(given) radius and the data lies inside some hyperellipsoid. Right: In the convex

combination algorithms the weight vector wj is contained in a scaled version of the

convex hull of the data �(X ), e.g., a hyperellipsoid of identical shape but di�erent

size.

It is understood that �ij denotes the j-th component of �i. From the assumptions

above one can see that in analogy to [Williamson et al., 1998] again
S
x2X ��(x)

is contained inside a box B with sidelengths 2Ck
p
�i. Hence also wj is contained

in a scaled version �jB since it is a convex combination of elements from B and

moreover by construction
P

j �j � �. This restriction of wj is exactly the property

we take advantage of to derive the new bounds.

21.4.2 Scaling and Evaluation Operators

Rather than dealing with parallelepipeds B we will use hyperellipsoids E for

convenience, since the latter can be seen to have been generated by scaling the

unit ball in `2 according to some operator A. With slight abuse of notation, the

situation we construct is summarised in the following diagram.Scaling

Operator
X � �� �(X ) A�1 ��

T
U`2

A

����������������

E

(21.27)

That is, we seek an operator A : `2 ! `2 such that AU`2 =: E � �(X ) which
implies A�1�(X ) � U`2 . This can be ensured by constructing A such that

A: (xj)j 7! (RA � aj � xj)j where aj 2 R + (21.28)

with RA := Ckk(
pj�j j=aj)jk`2 where Ck is the constant from (21.21). Hence the

situation (see Figure 21.1) is quite similar to the SV case [Williamson et al., 1998].

The mapped data is contained inside some hyperellipsoid. The weight vectors

wj , however, are constrained to a ball in the SV case and to a hyperellipsoid

diag(�1;�2; : : :)E of the same shape as the original data in the case of convexTwo Ellipsoids

combinations. This means that while in SV machines capacity is allocated equally
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along all directions, in the present case much capacity is allocated in those directions

where the data is spread out a lot and little capacity where there is little spread.

Since f(x) 2 R d one has to apply the scaling operator A for each output dimension

separately, i.e., one e�ectively has to apply the operator Ad (in a similar fashion to

[Smola et al., 1999]) withMultiple

Scaling
Ad : `2(`

d
2)! `2(`

d
2) with Ad := A�A� : : :�A| {z }

d�times
: (21.29)

Before carrying out the exact calculations we de�ne an appropriate evaluation

operator S�(X). We setMultiple

Evaluation
S�(X): `2(`

d
2)! `m1(`

d
1) (21.30)

S�(X): (w1; : : :wd) 7!

0
BB@

((�(x1);w1); : : : ; (�(x1);wd))
...

((�(xm);w1); : : : ; (�(xm);wd))

1
CCA : (21.31)

This operator evaluates the estimate f on the dataset X, and it is precisely the

entropy number of the image of S�(X) we are seeking. The present considerations

lead to the following theorem for convex combinations of kernels in analogy to the

results in [Williamson et al., 1998].

21.4.3 Bounds on Entropy Numbers

Theorem 21.11 Bounds for Linear Programming Machines

Denote by k a symmetric bounded kernel, let � be induced via (21.25) and let

S�(X) be given by (21.30). Moreover let A be de�ned by (21.28) and Ad by (21.29).

Then the entropy numbers of co� F satisfy the following inequalities: For n; t 2 N ,
�n(co� F ) � c�kAdk2 log�1=2(n) log1=2

�
1 + dm

logn

�
(21.32)

�n(co� F ) � ��n(A
2
d) (21.33)

�nt(co� F ) � c� log�1=2(n) log1=2
�
1 + dm

logn

�
�t(A

2
d) (21.34)

where c is a constant as de�ned in Corollary 21.5.

This result (and also its proof) is a modi�ed combination of the results in

[Williamson et al., 1998, Smola et al., 1999]; the key di�erence is that the weight

vector is constrained to a di�erent set and that is why the operator Ad appears

twice.

It remains to bound the entropy number of Ad. We use a slight variation on a

result from [Smola et al., 1999].
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Corollary 21.12 Entropy numbers for the vector valued case

Let k be a kernel which induces a trace-class integral operator and satis�es (21.21).

Let A be de�ned by (21.28) and Ad by (21.29). Then

�n(Ad: `2(`
d
2)! `2(`

d
2))

� inf
(as)s:

�p
�s
as

�
s

2`2
sup
j2N

6Ck
p
d


�p

�s
as

�
s


`2

n�
1
j�d (a1a2 � � � aj) 1j : (21.35)

21.4.4 Applications to Kernel Functions

Although the above results seem rather abstruse and complex, it turns out they

can be applied without too much pain. By using arguments as in [Williamson

et al., 1998] (subsequently further simpli�ed by Guo et al. [1999]) one can explicitly

compute the entropy numbers of the Ad operator. The following two propositions

follow immediately from their counterparts for the case of SV regularization.

Proposition 21.13 Polynomial Decay

Let k be a symmetric kernel with eigenvalues j�j j = O(j�(�+1=2)) and � > 0. Then

�n(A
2
d: `2(`

d
2)! `2(`

d
2)) = O(ln�� n): (21.36)

This result can be seen as follows. As A is a diagonal scaling operator, the scaling

factors of A2 are simply those of A squared, i.e., decaying twice as fast. Moreover,

the dimensionality of the output does not change the rate of decay in terms

of the eigenvalues �i except for a constant factor. Comparing the result with

its SV counterpart in [Williamson et al., 1998] shows that the condition on the

eigenvalues was changed from i�(�=2+1) into i�(�+1=2). The conclusions and the

method of proving this, however, remain unchanged. A similar result can be stated

for exponentially decaying eigenvalues of k.

Since the eigenfunctions of a translation invariant kernel are the traditional

Fourier bases, the eigenvalues can be determined in terms of Fourier transform

coeÆcients. We then have:

Proposition 21.14 Polynomial Exponential Decay in R
d

For translation invariant kernels, k(x;x0) = k(x � x0) in R
d � R

d with Fourier

transform satisfying ln jF [k](!)j � O(k!kp) with p > 0 and corresponding operator

Ad one has

ln ��1n (A2
d: `2(`

d
2)! `2(`

d
2)) = O(ln

p
p+d n): (21.37)

Analogous results hold for the other propositions obtained in [Williamson et al.,

1998]. Note that whereas in Proposition 21.13 an improvement of the rates in n was

achievable (over those in [Williamson et al., 1998]), in Proposition 21.14 no such

thing happened since the bound is in terms of ln �n instead of �n. The constants

would be quite di�erent though.
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Of course the above considerations only indicate that the class of functions

implemented by linear programming machines is smaller (in the sense of smaller

covering numbers) than that implemented by traditional support vector machines.

This a�ects the bound on generalization error, but does not imply that error will

be smaller: for some problems traditional SV machines may achieve smaller error.

The point is that the capacity is distributed di�erently among the class of kernel

expandable functions, i.e., a di�erent structure (in the sense of structural risk

minimization) is chosen. More emphasis is put on the �rst eigenfunctions of the

kernel. If one has experimental evidence that this might be useful (say, e.g., from

compression experiments [Sch�olkopf et al., 1999b]), one should consider using such

a regularizer.

Examples of kernels with rapid decay of the �rst eigenvalues are Gaussian RBF-

kernels k(x;x0) = exp(�kx � x0k2) (p = 2), or the \damped harmonic oscillator"

kernel k(x;x0) = 1=(1 + kx � x0k) (p � 1). Since �n(A
2
d) enters into the overall

bound the overall covering numbers can be smaller than in the SV case where we

have to bound �n(Ad).

21.5 Multilayer Networks

Whilst the techniques presented so far provide eÆcient tools for dealing with the

capacity of sets generated by linear operators in some Hilbert spaces, many practical

cases fail to satisfy these assumptions (e.g., multilayer perceptrons, rbf-networks, or

combinations thereof). However, many of the latter ways of representing functions

can be seen as generated by (nonlinear) concatenations of linear operators.

x1; : : :xm

d1 d3

�1

d2

O1 O2 O3

�2 �3

Figure 21.2 Structure of a Multilayer Network. Data is fed in on the left hand

side. Each processing layer maps a (with respect to this layer) �xed input into a

set of outputs via the evaluation operator SX . Thus the possible outputs of a layer

consist of the union of outputs for all di�erent evaluation operators SX . The output

dimensionality is denoted by di, the size of the model class per layer by �i.
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Figure 21.2 depicts a multilayer network. The i �rst layers create, for �xed input, a

set of outputs Oi � `m1(`
di
1 ) when the constraint �i is imposed on the model class

of the corresponding layer by requiring that the sum of the absolute values of the

weights in the ith layer is �i. The outputs Oi can be seen as generated by a class

of operators Si de�ned as the set of all possible evaluation operators

Si :=
[

X2Oi�1
S�(X) with i > 1 (21.38)

For i = 1 we set S1 := fS�(X)g where X is the actual training data. Thus at each

layer we have a situation as in Proposition 21.8.

We need to compute the entropy number of Si in order to compute the entropy

number of Oi. The following proposition uses the connection between �n(Oi�1)
and �n(Si). Moreover, in order to apply our result to Regularization Network type

Multilayer Perceptrons it pays o� to have a speci�c connection between Si and Oi

for Tikhonov regularizers as well (see (21.42) and (21.43)).

Proposition 21.15 Entropy numbers for classes of operators

Let k(x;x0) be a kernel with Lipschitz constant lk, i.e.,

jk(x;x0)� k(x;x00)j � lkkx0 � x00k for all x;x0;x00 2 X ; (21.39)

where X is an index set with entropy number �n(X ), and Si the set of operators
as de�ned in (21.38). Then the following bound holds: For W de�ned according to

(21.12), i.e.,

W� :=
n
(w1; : : : ;wdo)

���wj =
P

j �ij�(xi) where �ij 2 R ;
P

i;j j�ij j � �
o

(21.40)

and the `m1(`
di�1
1 ) on X and the `di1 metric on Y we obtain (recall the de�ni-

tion (21.9))

�n(SW�) � �lk�n(X ): (21.41)

Moreover for W de�ned as

W� :=

(
(w1; : : : ;wdo)

�����
doX
i=1

kwik2 � �

)
(21.42)

and the mixed Euclidean metric on both X and Y respectively, i.e., `m1(`
d
2), we have

�n(S) �
p
2�lk�n(X ): (21.43)

Now we can just go and daisy-chain the separate layers and repeatedly apply

Proposition 21.8. For simplicity we will only carry out this calculation for MLPs

with a convexity constraint. The second case (via (21.43)) is straightforward. We

obtain the following corollary.
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Corollary 21.16 Entropy Numbers for Multilayer Perceptrons

For an l layer network MLP as in Figure 21.2 we obtain (set F := F1)

�n(MLP) �
lX

i=1

�ni(F ) l
l�i
k

lY
j=i

�j (21.44)

where n �Ql
i=1 ni.

For the sake of simplicity we assumed that all layers are built in the same way.

That is why only �n(F ) appears in the inequality instead of one di�erent Fi for

each layer. In order to see the implications of this result we apply it to kernels

satisfying the conditions of Proposition 21.14.

Corollary 21.17 MLPs from kernels with rapidly decaying spectra

For Multilayer Perceptrons built from translation invariant kernels, k(x;x0) =

k(x � x0) in R
d � R

d with Fourier transform satisfying ln jF [k](!)j = O(k!kp)
with p > 0, corresponding operator Ad, and `1 type convexity constraint on the

weights one has

ln ��1n (MLP : `m1(`
d0

2 )! `m1(`
d
2)) = O(ln

p
p+d n) (21.45)

This can be seen by applying Proposition 21.14 to each single layer, noticing that

the �nite sample size part completely dominated by the behaviour of the eigenvalues

of the kernel and �nally applying Corollary 21.16. There, in particular, note that

since in (21.44) only the products of the entropy numbers of the individual layers

appear, their e�ect is equal when taking the logarithm of the overall term.

Hence the asymptotic rate of growth of the covering numbers of an MLP built

with such smooth kernels is the same as that for a network with a single hidden layer.

Consequently from the point of the asymptotic speed of statistical convergence the

class of functions of an MLP cannot be e�ectively more complicated than that of a

single hidden layer network.

21.6 Discussion

We showed that linear programming machines do carry out a form of regularization,

which is quite di�erent from the regularization of SV machines. Furthermore,

by taking advantage of the speci�c properties of kernels bounds on the covering

numbers of the class of functions computed by such machines can be obtained

which are better than those which ignore the e�ect of the kernel. Speci�cally, for

some kernels (e.g., Gaussian RBF) exponentially better rates (Proposition 21.14)

than those for arbitrary kernels (Prop 21.10) can be obtained | observe the ln

in (21.37). In addition, we showed that one can extend the techniques to classes

of functions such as those generated by multilayer RBF networks. The proofs

relied on an operator theoretic viewpoint. The slower rates of growth of covering

numbers obtained from the LP regularizer of course do not imply that LP machines
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perform better (or worse) than SV machines; just that the \size" of the two e�ective

classes di�ers and thus so do the generalization error bounds obtained via uniform

convergence theorems.

In this extended summary we have limited ourselves to outlining how the rate of

growth of covering numbers can be determined. For a successful learning algorithm,

however, good estimates of the constants (and not only the rates) are crucial. We

refer the reader to [Williamson et al., 1998, Guo et al., 1999] for the calculation

of tighter bounds, by more carefully evaluating the inf and sup in the bounds on

�n(A). It would be of some interest to see if such a more re�ned calculation could

be experimentally corroborated.
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21.7 Appendix: A Remark on Traditional Weight Decay

One might conjecture that a result similar to that for ordinary convex hulls could

be established for q-convex combinations with q > 1, i.e.,

Fq :=
n
f
���f =Pj�jfj with

P
j j�j jq � 1

o
(21.46)

(For the sake of simplicity we only consider Y = R in this section.) Training large

neural networks with weight decay (q = 2) is such a case. However, under the

assumption of an in�nite number of basis functions the conjecture is false. It is

suÆcient to show that for q > 1, Fq is unbounded in L1. Consider an in�nite index
set I � � for which, for some other set M of nonzero measure and some constant

� > 0

f(x) � � for all f 2 I;x 2M: (21.47)

An example is f(x) = e�(x�)
2

for which any compact sets I;M satisfy (21.47).

Obviously

f(x) :=
X
j

�jfj (x) � �
X
j

�j for �j � 0; j 2 I;x 2M: (21.48)

For n 2 N , let f̂n :=
Pn

j=1 n
�1=qfi . By construction, the `

n
q norm of the coeÆcients

equals 1, however f̂n(x) � �n1�1=q for all x 2 M . Thus limn!1 kf̂nkL1 =1 and

therefore Fq contains unbounded elements for q > 1, which leads to in�nitely large

covering numbers for Fq. Thus Fq with q > 1 is not a suitable choice as a hypothesis

class (in the absence of further regularization).

This leads to the question why, despite the previous reasoning, weight decay has

been found to work in practice. One reason is that in standard neural networks

settings the number of basis functions is limited (either by construction, via some

penalty term, etc.), thus the above described situation might not occur. Secondly,

e.g., in rbf-networks, a clustering step for �nding the centers is inserted before

training the �nal weights. This means that the basis functions are suÆciently

di�erent from each other | observe that the similarity of some basis functions

was explicitly exploited in the counterexample above.

Finally, also by the distance of the centers of the basis functions (thus of their

peaks), penalization with a diagonal matrix is not too di�erent from penalization

via a kernel matrix (provided the widths of the basis functions is equal, and not

signi�cantly larger than the distance between the centers) | the main diagonal

elements will be 1 and the o� diagonal elements rather small, thus an approximation

by the unit matrix is not too unrealistic. There exists, however, a case where this

reasoning might go wrong in practice. Assume one wants to modify a boosting

algorithm in such a way that instead of convex combinations one would like to

have p-convex combinations with p > 1. After iterating a suÆciently long time the

situation described above might occur as the number of basis functions (i.e., weak

learners) keeps on increasing with the iterations.
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21.8 Appendix: Proofs

Proof (Proposition 21.7) Suppose we have an �n1 ; n1 cover of V . Hence we can

�nd a1; : : : ; an1 2 A such that

V �
n1[
i=1

f�n1UA + aig: (21.49)

Exploiting the linearity of S yields that

S(V ) �
n1[
i=1

f�n1S(UA) + S(ai)g: (21.50)

Hence, constructing an �n2 ; n2 cover of S(UA) by b1; : : : ; bn2 2 B leads to an

�n1�n2 ; n1n2 cover of S(V ). Thus we get

S(V ) �
n1[
i=1

n2[
j=1

f�n1�n2bi + Saig (21.51)

which completes the proof.

Proof (Proposition 21.8) The proof works by constructing the �n�n0(SW ) cover

explicitly.3 Denote by S� = fS1; : : : ; Sng � S a set achieving an � cover of S wrt.

the norm induced by W . Moreover denote by Y�0(Si) := fyi1; : : : ; yin0g an �0 cover
of SiW . What we have to show is that

S
1�i�n Y�0(Si), which has cardinality at

most n � n0, is an �+ �0 cover of SW .

For any y = Sw 2 SW there exists an operator Si with kSw0 � Siw0k � � for

all w0 2 W , hence in particular ky � Siwk � � as w 2 W . Furthermore there

exists a yij 2 Y�0(Si) with kyij � Siwk � �0 which leads to ky � yijk � � + �0.
Finally, such an n cover with �0 is always possible for all SiW since by construction

�0 = supS2S �n0(S).

Proof (Proposition 21.9) The �rst step is to compute an upper bound on

�n(F�) = �n(F�; L1(`
p
1)) in terms of the entropy numbers of �. By de�nition we

have

kf � f0k � cL(�;X )d(; 0) (21.52)

and therefore

�n(F�) � cL(�;X )�n(�): (21.53)

3. A related approach was taken by Bartlett [1998] to compute the fat shattering di-
mension of multilayer perceptrons by exploiting a Lipschitz condition. Moreover a similar
result was stated in [Haussler, 1992, Lemma 8, pg. 123].
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As we are interested in the absolute convex combination in d dimensions, we need

to take into account that we have to add in F� for each dimension separately. Let

B =

0
B@

d timesz }| {
(F�; 0; : : : ; 0| {z }

d�1 times

) [ : : : [ (0; : : : ; 0; F�)

1
CA (21.54)

denote the base hypothesis class. Clearly if F� is indexed by p-dimensions, B is

indexed by pd-dimensions. From Proposition 21.3 we can obtain

�n(B) � c(�;X )vol (�) 1p cL(�;X )n�
1
pd (21.55)

Now apply Proposition 21.2 to obtain

�2n(co� F ) � ��(p)c(�;X )vol (�) 1p cL(�;X )
�
1
n

� 1
pd : (21.56)

Collecting the constants into c(�; p;X ) gives the desired result.

Proof (Theorem 21.11) The diagram in Equation (21.57) indicates the line of

reasoning we use for bounding �n(F�).

U`2(`d2) � `2(`d2)
T ��

�

��

`m1(`
d
1)

�U`2 � `2(`d2)
Ad �� �AdU`2(`d2) � `2(`d2)

S�(X)

�������������������������
Ad �� �A2

dU`2 � `2(`d2)

S
A�1�(X)

��
(21.57)

Here T : `2(`
d
2) ! `m1(`

d
1) depicts the linear operator corresponding to F�. In

order to bound `m1(`
d
1) entropy numbers of the hypothesis class evaluated on an m-

sample test setX, one has to bound �n(S�(X)(�AdU`2(`d2))), since the weight vectors

(w1; : : : ;wd) will be contained in �AdU`2(`d2). Moreover we have by construction

S�(X)(�AdU`2(`d2)) = SA�1�(X)(�AdAdU`2): (21.58)

where we used (�(x);wi) = (A�1�(x); Awi) which is applicable since f can

be represented as a linear functional in some feature space. Using (21.58) and

Proposition 21.6 one obtains

�n(S�(X)(�AdU`2(`d2))) � ��n(SA�1�(X)A
2
d)

� inf
n1;n22N ;n1n2�n

�n1(SA�1�(X))�n2(A
2
d):

(21.59)

Combining the factorization properties obtained above with Proposition 21.6

yields the desired results: by construction, due to the Cauchy-Schwartz inequality

kSA�1�(X)k = 1. Since SA�1�(X) is an operator mapping from a Hilbert space `2
into an `m1 one can use Maurey's theorem (see Proposition 21.4).
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Proof (Proposition 21.15)We have to show that supw2W�
kSx0w�Sx00wk � �

if kx0 � x00k � �0. For the case of a linear programming regularizer one has

kSx0w � Sx00wk`m1(`do1 ) = max
1�n�m

doX
i=1

������
0
@X

j

�ij�(xj); �(x
0
n)� �(x00n)

1
A
������ (21.60)

� max
1�n�m

doX
i=1

X
j

lkj�ij j kx0n � x00nk`di1 (21.61)

� lk�kx0 � x00k`m1
�
`
di
1

� (21.62)

Assuming that there exists an � cover of X with n points, this automatically

generates an lk�� cover of S with the same number of points, which proves the

theorem.

The second part can be shown in a similar manner by exploiting that

j(�(x)� �(x0); w)j2 � k�(x)� �(x0)k2kwk2 (21.63)

= (k(x;x)� k(x;x0) + k(x0;x0)� k(x;x0))kwk2 (21.64)

� 2lkkx� x0k`di2 kwk
2 (21.65)

Hence we have

kSxw � Sx0wk2`m1(`do2 )
= max

1�n�m

doX
i=1

j(wi;�(x
0
n)� �(x00n))j2 (21.66)

� max
1�n�m

doX
i=1

2lkkx0n � x00nk`di2 kwik2 (21.67)

� 2lk�kx0 � x00k`m1
�
`
di
2

� (21.68)

Again, assuming that there exists an � cover of X with n points, this automatically

generates a
p
2lk�� cover of S with the same number of points.
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central limit theorem, 362
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margin distribution, 351
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maximum likelihood estimate, 119
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comparison to SVMs, 68
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Mercer conditions, 152
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Minover algorithm, 160
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neural networks, 360
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notation, 28
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pair hidden Markov model, 44

independent insertion property,

47
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perceptron algorithm, 159
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post-processing, 61

Gaussian, 63
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predictive distribution, 314
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principal components analysis, 39
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probability distribution
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Bayesian interpretation, 194

network, 171
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Fisher, 55
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reproducing kernel, 298

reproducing property, 299

Reuters data set, 69
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risk
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pseudo-code, 72

sigmoid post-processing, 61

slack variables, 8, 29, 283

SMO, 102

soft margin, 97, 164

algorithm for, 355
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SRM, see structural risk minimiza-

tion

Statistical Mechanics, 359
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structural risk minimization, 178

support centers, 78

support vector, 8, 16
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mechanical interpretation, 17

pattern recognition, 19

support vector classi�er, 157

support vector machine
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symbol sequences, generative models
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symbols, 28
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teacher-student framework, 361
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thermodynamic limit, 360, 362
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transitive relation, 122
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uniform convergence, 174

uniform convergence bound
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utility function, 117

variational problem, 298, 302, 304

version space, 331
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weight decay, 157, 384
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